Note: This page contains sample records for the topic optimized filtering step from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: November 12, 2013.
1

Limited memory optimal filtering  

Microsoft Academic Search

Linear and nonlinear optimal filters with limited memory length are developed. The filter output is the conditional probability density function and, in the linear Gaussian case, is the conditional mean and covariance matrix where the conditioning is only on a fixed amount of most recent data. This is related to maximum-likelihood least-squares estimation. These filters have application in problems where

A. Jazwinski

1968-01-01

2

A Hybrid Computer Optimal Filter.  

National Technical Information Service (NTIS)

In 1971 a hybrid computer algorithm for implementation of an optimal nonlinear one-step predictor by applying Bayes' Rule to sequentially update the conditional probability density function from the latest data was presented in a paper. Such a filter has ...

L. Basanez P. Brunet R. S. Bucy R. Huber D. S. Miller

1975-01-01

3

Optimal Phase-Only Filters.  

National Technical Information Service (NTIS)

This report summarizes the results obtained during the contract No. F 19628-88-K-0018 entitled 'Optimal Phase-only Filters'. This research was focused on Phase-only Filters (POFs) and Binary Phase-only Filters (BPOFs). We prove in this report that the con...

B. V. Kumar Z. Bahri

1990-01-01

4

Optimal filtering for patterned displays  

Microsoft Academic Search

Displays with repeating patterns of colored subpixels gain spatial resolution by setting individual subpixels rather than by setting entire pixels. This paper describes optimal filtering that produces subpixel values from a high-resolution input image. The optimal filtering is based on an error metric inspired by psychophysical experiments. Minimizing the error metric yields a linear system of equations, which can be

John C. Platt

2000-01-01

5

Synthetic approach to optimal filtering  

Microsoft Academic Search

As opposed to the analytic approach used in the modern theory of optimal filtering, a synthetic approach is presented. The signal\\/sensor data, which are generated by either computer simulation or actual experiments, are synthesized into a filter by training a recurrent multilayer perceptron (RMLP) with at least one hidden layer of fully or partially interconnected neurons and with or without

James Ting-Ho Lo

1994-01-01

6

Design of Optimal Digital Filters  

NASA Astrophysics Data System (ADS)

Four methods for designing digital filters optimal in the Chebyshev sense are developed. The properties of these filters are investigated and compared. An analytic method for designing narrow-band FIR filters using Zolotarev polynomials, which are extensions of Chebyshev polynomials, is proposed. Bandpass and bandstop narrow-band filters as well as lowpass and highpass filters can be designed by this method. The design procedure, related formulae and examples are presented. An improved method of designing optimal minimum phase FIR filters by directly finding zeros is proposed. The zeros off the unit circle are found by an efficient special purpose root-finding algorithm without deflation. The proposed algorithm utilizes the passband minimum ripple frequencies to establish the initial points, and employs a modified Newton's iteration to find the accurate initial points for a standard Newton's iteration. The proposed algorithm can be used to design very long filters (L = 325) with very high stopband attenuations. The design of FIR digital filters in the complex domain is investigated. The complex approximation problem is converted into a near equivalent real approximation problem. A standard linear programming algorithm is used to solve the real approximation problem. Additional constraints are introduced which allow weighting of the phase and/or group delay of the approximation. Digital filters are designed which have nearly constant group delay in the passbands. The desired constant group delay which gives the minimum Chebyshev error is found to be smaller than that of a linear phase filter of the same length. These filters, in addition to having a smaller, approximately constant group delay, have better magnitude characteristics than exactly linear phase filters with the same length. The filters have nearly equiripple magnitude and group delay. The problem of IIR digital filter design in the complex domain is formulated such that the existence of best approximation is guaranteed. An efficient and numerically stable algorithm for the design is proposed. The methods to establish a good initial point are investigated. Digital filters are designed which have nearly constant group delay in the passbands. The magnitudes of the filter poles near the passband edge are larger than of those far from the passband edge. A delay overshooting may occur in the transition band (don't care region), and it can be reduced by decreasing the maximum allowed pole magnitude of the design problem at the expense of increasing the approximation error.

Chen, Xiangkun

7

Fault detection via optimally robust detection filters  

Microsoft Academic Search

An approach is presented for using optimally robust detection filters to generate analytic redundancy. By introducing an appropriate criterion the design of the filter is formulated as an optimization problem. Its solution shows that the optimally robust detection filter consists of a bandpass filter and a linear system which is obtained by solving a general eigenvalue problem. The algorithm for

X. Ding; P. M. Frank

1989-01-01

8

Design and optimization of nanostructured optical filters  

NASA Astrophysics Data System (ADS)

Optical filters encompass a vast array of devices and structures for a wide variety of applications. Generally speaking, an optical filter is some structure that applies a designed amplitude and phase transform to an incident signal. Different classes of filters have vastly divergent characteristics, and one of the challenges in the optical design process is identifying the ideal filter for a given application and optimizing it to obtain a specific response. In particular, it is highly advantageous to obtain a filter that can be seamlessly integrated into an overall device package without requiring exotic fabrication steps, extremely sensitive alignments, or complicated conversions between optical and electrical signals. This dissertation explores three classes of nano-scale optical filters in an effort to obtain different types of dispersive response functions. First, dispersive waveguides are designed using a sub-wavelength periodic structure to transmit a single TE propagating mode with very high second order dispersion. Next, an innovative approach for decoupling waveguide trajectories from Bragg gratings is outlined and used to obtain a uniform second-order dispersion response while minimizing fabrication limitations. Finally, high Q-factor microcavities are coupled into axisymmetric pillar structures that offer extremely high group delay over very narrow transmission bandwidths. While these three novel filters are quite diverse in their operation and target applications, they offer extremely compact structures given the magnitude of the dispersion or group delay they introduce to an incident signal. They are also designed and structured as to be formed on an optical wafer scale using standard integrated circuit fabrication techniques. A number of frequency-domain numerical simulation methods are developed to fully characterize and model each of the different filters. The complete filter response, which includes the dispersion and delay characteristics and optical coupling, is used to evaluate each filter design concept. However, due to the complex nature of the structure geometries and electromagnetic interactions, an iterative optimization approach is required to improve the structure designs and obtain a suitable response. To this end, a Particle Swarm Optimization algorithm is developed and applied to the simulated filter responses to generate optimal filter designs.

Brown, Jeremiah Daniel

9

Approximations to optimal nonlinear filters  

Microsoft Academic Search

Let the signal and noise processes be given as solutions to nonlinear stochastic differential equations. The optimal filter for the problem, derived elsewhere, is usually infinite dimensional. Several methods of obtaining possibly useful finite dimensional approximations are considered here, and some of the special problems of simulation are discussed. The numerical results indicate a number of useful features of the

H. Kushner

1967-01-01

10

Optimal unbiased filtering via linear matrix inequalities  

Microsoft Academic Search

Solutions to the optimal H? and L2?L? unbiased reduced-order filtering problems are obtained in terms of linear matrix inequalities (LMIs). The order of the optimal filter is equal to the number of measurements. Both continuous- and discrete-time results are presented. An explicit parametrization of all optimal unbiased filters is provided in terms of a free contractive matrix.

Karolos M. Grigoriadis

1998-01-01

11

Step-size control for acoustic echo cancellation filters - an overview  

Microsoft Academic Search

In this paper we present an overview about several approaches for controlling the step size for adaptive echo cancellation filters in hands-free telephones. First an optimal step size is derived. For the determination of this step size the power of a non-measurable signal has to be estimated. Detection and estimation methods for the determination of this power and for the

Andreas Mäder; Henning Puder; Gerhard Uwe Schmidt

2000-01-01

12

Direct electromagnetic optimization of microwave filters  

Microsoft Academic Search

This article explores an optimization procedure for microwave filters and multiplexers. The procedure is initialized by a classical filter synthesis based on a segmented electromagnetic synthesis that provides the basic dimensions of the structure. The optimization loop, which combines a global electromagnetic analysis and a coupling identification, improves the structure response compared to an empirical optimization

S. Bila; D. Baillargeat; M. Aubourg; S. Verdeyme; P. Guillon; F. Seyfert; J. Grimm; L. Baratchart; C. Zanchi; J. Sombrin

2001-01-01

13

Stepped Triangular CIC-Cosine Decimation Filter  

Microsoft Academic Search

This paper presents a new two-stage CIC-cosine decimation filter. The original CIC filter is replaced by a two-stage CIC structure where the first section is realized in a nonrecursive form, and the second section is a CIC filter which works at lower rate that depends on the decimation factor of the first stage. Using the polyphase decomposition, the subfilters of

G. J. Dolecek; S. K. Mitra

2006-01-01

14

Optimal weighted median filtering under structural constraints  

Microsoft Academic Search

A new expression for the output moments of weighted median filtered data is derived. The noise attenuation capability of a weighted median filter can now be assessed using the L-vector and M-vector parameters in the new expression. The second major contribution of the paper is the development of a new optimality theory for weighted median filters. This theory is based

Ruikang Yang; Lin Yin; Moncef Gabbouj; Jaakko Astola; Yrjo Neuvo

1995-01-01

15

Optimal weighted median filters under structural constraints  

Microsoft Academic Search

An algorithm is developed for finding optimal weighted median (WM) filters which minimize noise subject to a predetermined set of structural constraints on the filter's behavior. Based on the derivation of the output moments of weighted medians, it is shown that optimal weighted medians with structural constraints may be found by solving a group of linear inequalities. One-dimensional applications are

Ruikang Yang; Lin Yin; Moncef Gabbouj; Jaakko Astola; Yrjö Neuvo

1993-01-01

16

Optimal filtering for systems with unknown inputs  

Microsoft Academic Search

An optimal filtering formula is derived for linear time-varying discrete systems with unknown inputs. By making use of the well-known innovations filtering technique, the derivation is an extension of a new observer design method for time-invariant deterministic systems with unknown inputs. The systems under consideration have the most general form. The derived optimal filter has a similar form to the

M. Hou; R. J. Patton

1998-01-01

17

Stepped Triangular CIC Filter for Rational Sample Rate Conversion  

Microsoft Academic Search

The modification of the conventional CIC (cascaded-integrator-comb) filter for rational sample rate conversion (SRC) is presented here, where the conversion factor is a ratio of two mutually prime numbers. Specifically, we consider the case where the decimation factor M can be expressed as a product of two integers. The overall filter realization is based on a stepped triangular form of

Gordana Jovanovic-dolecek; Sanjit K. Mitra

2006-01-01

18

Compact Dual-Band Filter Using Defected Stepped Impedance Resonator  

Microsoft Academic Search

This letter presents a novel approach for designing a dual-band bandpass filter by using defected stepped impedance resonator (DSIR). The resonant frequency of the DSIR is found to be much lower than that of the conventional microstrip stepped impedance resonator (SIR), which reduces the circuit size effectively. Two types of second-order DSIR microstrip bandpass filter operating at 1.85 and 2.35

Bian Wu; Chang-hong Liang; Pei-yuan Qin; Qi Li

2008-01-01

19

Optimal filtering for Bayesian detection and attribution of climate change  

Microsoft Academic Search

In the conventional approach to the detection of an anthropogenic or other externally forced climate change signal, optimal filters (fingerprints) are used to maximize the ratio of the observed climate change signal to the natural variability noise. If detection is successful, attribution of the observed climate change to the hypothesized forcing mechanism is carried out in a second step by

R. Schnur; Kl. Hasselmann

2005-01-01

20

An optimal Bloom filter replacement  

Microsoft Academic Search

This paper considers space-efficient data structures for storing an approximation S' to a set S such that S ? S' and any element not in S belongs to S' with probability at most ?. The Bloom filter data structure, solving this problem, has found widespread use. Our main result is a new RAM data structure that improves Bloom filters in

Anna Pagh; Rasmus Pagh; S. Srinivasa Rao

2005-01-01

21

Optimal Step-Size Constant Modulus Algorithm  

Microsoft Academic Search

The step size leading to the absolute minimum of the constant modulus (CM) criterion along the search direction can be obtained algebraically at each iteration among the roots of a third-degree polynomial. The resulting optimal step-size CMA (OS-CMA) is compared with other CM-based iterative techniques in terms of performance-versus-complexity trade-off.

Vicente Zarzoso; Pierre Comon

2008-01-01

22

Optimal multiobjective design of digital filters using spiral optimization technique.  

PubMed

The multiobjective design of digital filters using spiral optimization technique is considered in this paper. This new optimization tool is a metaheuristic technique inspired by the dynamics of spirals. It is characterized by its robustness, immunity to local optima trapping, relative fast convergence and ease of implementation. The objectives of filter design include matching some desired frequency response while having minimum linear phase; hence, reducing the time response. The results demonstrate that the proposed problem solving approach blended with the use of the spiral optimization technique produced filters which fulfill the desired characteristics and are of practical use. PMID:24083108

Ouadi, Abderrahmane; Bentarzi, Hamid; Recioui, Abdelmadjid

2013-09-13

23

Improving particle filters in rainfall-runoff models: Application of the resample-move step and the ensemble Gaussian particle filter  

NASA Astrophysics Data System (ADS)

The objective of this paper is to analyze the improvement in the performance of the particle filter by including a resample-move step or by using a modified Gaussian particle filter. Specifically, the standard particle filter structure is altered by the inclusion of the Markov chain Monte Carlo move step. The second choice adopted in this study uses the moments of an ensemble Kalman filter analysis to define the importance density function within the Gaussian particle filter structure. Both variants of the standard particle filter are used in the assimilation of densely sampled discharge records into a conceptual rainfall-runoff model. The results indicate that the inclusion of the resample-move step in the standard particle filter and the use of an optimal importance density function in the Gaussian particle filter improve the effectiveness of particle filters. Moreover, an optimization of the forecast ensemble used in this study allowed for a better performance of the modified Gaussian particle filter compared to the particle filter with resample-move step.

Plaza Guingla, Douglas A.; Keyser, Robin; Lannoy, GabriëLle J. M.; Giustarini, Laura; Matgen, Patrick; Pauwels, Valentijn R. N.

2013-07-01

24

Optimal filtering for multirate systems  

Microsoft Academic Search

For a multirate system where the output sampling is slower than the input updating, this brief aims at designing filters for fast state estimation in the H2 and H? settings. Because of the multirate nature, linear matrix inequality solutions to the design problems involve a nonconvex constraint, which is numerically tackled by the product reduction algorithm. Finally, a design example

Jie Sheng; Tongwen Chen; Sirish L. Shah

2005-01-01

25

Optimal filtering in fractional Fourier domains  

Microsoft Academic Search

For time-invariant degradation models and stationary signals and noise, the classical Fourier domain Wiener filter, which can be implemented in O(N log N) time, gives the minimum mean-square-error estimate of the original undistorted signal. For time-varying degradations and nonstationary processes, however, the optimal linear estimate requires O(N2) time for implementation. We consider filtering in fractional Fourier domains, which enables significant

A. Kutay; Haldun M. Ozaktas; O. Ankan; L. Onural

1997-01-01

26

Coaxial combline filters using the stepped-impedance resonators  

Microsoft Academic Search

This work presents a series of investigations on the design of a coaxial combline filter using stepped-impedance coaxial resonator (SIRs). First, a full-wave EM simulation code based the finite-element method (FEM) is developed to analyze the resonances a coaxial stepped-impedance resonator (SIR) with a tuning screw. The couplings of the fundamental and high-order resonant modes between a pair of SIRs

Hao-Hui Chen; Rong-Chan Hsieh; Yu-Ting Shih; Young-Huang Chou; Ming-Huei Chen

2010-01-01

27

Fractional-step Tow-Thomas biquad filters  

NASA Astrophysics Data System (ADS)

In this paper we propose the use of fractional capacitors in the Tow-Thomas biquad to realize both fractional lowpass and asymmetric bandpass filters of order 0filters can be designed using an integer-order transfer function approximation of the fractional capacitors. MATLAB and PSPICE simulations of first order fractional-step low and bandpass filters of order 1.1, 1.5, and 1.9 are given as examples. Experimental results of fractional low pass filters of order 1.5 implemented with silicon-fabricated fractional capacitors verify the operation of the fractional Tow-Thomas biquad.

Freeborn, Todd J.; Maundy, Brent; Elwakil, Ahmed

28

On optimal linear filtering for edge detection  

Microsoft Academic Search

In this paper, we revisit the analytical expressions of the three Canny's (1983) criteria for edge detection quality: good detection, good localization, and low multiplicity of false detections. Our work differs from Canny's work on two essential points. Here, the criteria are given for discrete sampled signals, i.e., for the real, implemented filters. Instead of a single-step edge as input

Didier Demigny

2002-01-01

29

Particle Swarm Optimization with Dynamic Step Length  

NASA Astrophysics Data System (ADS)

Particle swarm optimization (PSO) is a robust swarm intelligent technique inspired from birds flocking and fish schooling. Though many effective improvements have been proposed, however, the premature convergence is still its main problem. Because each particle's movement is a continuous process and can be modelled with differential equation groups, a new variant, particle swarm optimization with dynamic step length (PSO-DSL), with additional control coefficient- step length, is introduced. Then the absolute stability theory is introduced to analyze the stability character of the standard PSO, the theoretical result indicates the PSO with constant step length can not always be stable, this may be one of the reason for premature convergence. Simulation results show the PSO-DSL is effective.

Cui, Zhihua; Cai, Xingjuan; Zeng, Jianchao; Sun, Guoji

30

Optimal design of active EMC filters  

NASA Astrophysics Data System (ADS)

A recent trend in automotive industry is adding electrical drive systems to conventional drives. The electrification allows an expansion of energy sources and provides great opportunities for environmental friendly mobility. The electrical powertrain and its components can also cause disturbances which couple into nearby electronic control units and communication cables. Therefore the communication can be degraded or even permanently disrupted. To minimize these interferences, different approaches are possible. One possibility is to use EMC filters. However, the diversity of filters is very large and the determination of an appropriate filter for each application is time-consuming. Therefore, the filter design is determined by using a simulation tool including an effective optimization algorithm. This method leads to improvements in terms of weight, volume and cost.

Chand, B.; Kut, T.; Dickmann, S.

2013-07-01

31

Optimal filtering techniques for analytical streamflow forecasting  

Microsoft Academic Search

This paper describes the development of a streamflow forecasting model based on the Sacramento soil moisture accounting model and applies optimal filtering techniques to sequentially update watershed-scale soil moisture state values, to improve streamflow predictions. In general hydrology is the study of the waters of the Earth, especially with relation to the effects of precipitation and evaporation upon the occurrence

D. Kantamneni; Dan Simon; Stuart Schwartz

2005-01-01

32

The Dolph Chebyshev Window: A Simple Optimal Filter  

Microsoft Academic Search

Analyzed data for numerical prediction can be effectively initialized by means of a digital filter. Computation time is reduced by using an optimal filter. The construction of optimal filters involves the solution of a nonlinear minimization problem using an iterative procedure. In this paper a simple filter based on the Dolph-Chebyshev window, which has properties similar to those of an

Peter Lynch

1997-01-01

33

On the optimality of nonunitary filter banks in subband coders  

Microsoft Academic Search

This paper investigates the energy compaction capabilities of nonunitary filter banks in subband coding. It is shown that nonunitary filter banks have larger coding gain than unitary filter banks because of the possibility of performing half-whitening in each channel. For long filter unit pulse responses, optimization of subband coding gain for stationary input signals results in a filter bank decomposition,

Sven Ole Aase; Tor A. Ramstad

1995-01-01

34

H(infty) -Optimal Fractional Delay Filters  

NASA Astrophysics Data System (ADS)

Fractional delay filters are digital filters to delay discrete-time signals by a fraction of the sampling period. Since the delay is fractional, the intersample behavior of the original analog signal becomes crucial. In contrast to the conventional designs based on the Shannon sampling theorem with the band-limiting hypothesis, the present paper proposes a new approach based on the modern sampled-data H-infinity optimization that aims at restoring the intersample behavior beyond the Nyquist frequency. By using the lifting transform or continuous-time blocking the design problem is equivalently reduced to a discrete-time H-infinity optimization, which can be effectively solved by numerical computation softwares. Moreover, a closed-form solution is obtained under an assumption on the original analog signals. Design examples are given to illustrate the advantage of the proposed method.

Nagahara, Masaaki; Yamamoto, Yutaka

2013-09-01

35

Optimal filtering with linear canonical transformations  

Microsoft Academic Search

Optimal filtering with linear canonical transformations allows smaller mean-square errors in restoring signals degraded by linear time- or space-variant distortions and non-stationary noise. This reduction in error comes at no additional computational cost. This is made possible by the additional flexibility that comes with the three free parameters of linear canonical transformations, as opposed to the fractional Fourier transform which

Billur Barshan; M. Alper Kutay; Haldun M. Ozalctas

1997-01-01

36

Customized optimal filter for eliminating operator's tremor  

NASA Astrophysics Data System (ADS)

Remote manually operated tasks such as those found in teleoperation, virtual reality, or joystick-based computer access, require the generation of an intermediate signal which is transmitted to the controlled subsystem (robot arm, virtual environment or cursor). When man-machine movements are distorted by tremor, performance can be improved by digitally filtering the intermediate signal before it reaches the controlled device. This paper introduces a novel filtering framework in which digital equalizers are optimally designed after pursuit tracking task experiments. Due to inherent properties of the man-machine system, the design of tremor suppression equalizers presents two serious problems: (1) performance criteria leading to optimizations that minimize mean-squared error are not efficient for tremor elimination, and (2) movement signals show highly ill-conditioned autocorrelation matrices, which often result in useless or unstable solutions. A new performance indicator is introduced, namely the F-MSEd, and the optimal equalizer according to this new criterion is developed. Ill-condition of the autocorrelation matrix is overcome using a novel method which we call pulled-optimization. Experiments performed with both a person with tremor disability, and a vibration inducing device, show significant results.

Gonzalez, Juan G.; Heredia, Edwin A.; Rahman, Tariq; Barner, Kenneth E.; Arce, Gonzalo R.

1995-12-01

37

Optimal nonlinear filtering in GPS\\/INS integration  

Microsoft Academic Search

The application of optimal nonlinear\\/non-Gaussian filtering to the problem of INS\\/GPS integration in critical situations is described. This approach is made possible by a new technique called particle filtering, and exhibits superior performance when compared with classical suboptimal techniques such as extended Kalman filtering. Particle filtering theory is introduced and GPS\\/INS integration simulation results are discussed.

H. Carvalho; P. Del Moral; A. Monin; G. Salut

1997-01-01

38

Design of multirate filter banks by ℋ? optimization  

Microsoft Academic Search

A procedure is developed to design IIR synthesis filters in a multirate filter bank. The filters minimize the l2-induced norm of the error system between the multirate filter bank and a desired pure time-delay system. This criterion is reduced to one of ℋ? optimization, for which there is ready-made software

Tongwen Chen; Bruce A. Francis

1995-01-01

39

Minimum Euclidean distance optimal filter (MEDOF): version 2.0  

Microsoft Academic Search

We previously reported computer code designed to generate optical correlator filters by putting our optimization algorithm into practice. This code is MEDOF: Minimum Euclidean Distance Optimal Filter. MEDOF's version 1.0 demonstrated filters which maximize correlation peak intensity (INT). We also gave some discussion to the quadratic ratio metrics of signal to noise ratio (SNR) and peak to correlation energy ratio

R. Shane Barton; Richard D. Juday

1995-01-01

40

Optimal filters with heuristic 1-norm sparsity constraints  

NASA Astrophysics Data System (ADS)

We present a design method for sparse optimal Finite Impulse Response (FIR) filters that improve the visibility of a desired stochastic signal corrupted with white Gaussian noise. We emphasize that the filters we seek are of high-order but sparse, thus significantly reducing computational complexity. An optimal FIR filter for the estimation of a desired signal corrupted with white noise can be designed by maximizing the signal-to-noise ratio (SNR) of the filter output with the constraint that the magnitude (in 2-norm) of the FIR filter coefficients are set to unity.1, 2 This optimization problem is in essence maximizing the Rayleigh quotient and is thus equivalent to finding the eigenvector with the largest eigenvalue.3 While such filters are optimal, they are rarely sparse. To ensure sparsity, one must introduce a cardinality constraint in the optimization procedure. For high order filters such constraints are computationally burdensome due to the combinatorial search space. We relax the cardinality constraint by using the 1-norm approximation of the cardinality function. This is a relaxation heuristic similar to the recent sparse filter design work of Baran, Wei, and Oppenheim.4 The advantage of this relaxation heuristic is that the solutions tend to be sparse and the optimization procedure reduces to a convex program, thus ensuring global optimality. In addition to our proposed optimization procedure for deriving sparse FIR filters, we show examples where sparse high-order filters significantly perform better than low-order filters, whereas complexity is reduced by a factor of 10.

Yazdani, Mehrdad; Hecht-Nielsen, Robert

2011-09-01

41

An Optimal Structure for Implementation of Digital Filters  

Microsoft Academic Search

In this paper, different structures for an elliptic filter with fixed point arithmetic are implemented and compared. The filter must be quantized for hardware implementation. This quantization is done in two steps. First the coefficients of filter are quantized and then the accuracy of internal nodes are limited. According to the simulation results, lattice and DF2- parallel structures have minimal

S. Rahmanian; E. Rahmani; A. N. Avanaki; S. M. Fakhraie

2006-01-01

42

Metal finishing wastewater pressure filter optimization  

SciTech Connect

The 300-M Area Liquid Effluent Treatment Facility (LETF) of the Savannah River Site (SRS) is an end-of-pipe industrial wastewater treatment facility, that uses precipitation and filtration which is the EPA Best Available Technology economically achievable for a Metal Finishing and Aluminum Form Industries. The LETF consists of three close-coupled treatment facilities: the Dilute Effluent Treatment Facility (DETF), which uses wastewater equalization, physical/chemical precipitation, flocculation, and filtration; the Chemical Treatment Facility (CTF), which slurries the filter cake generated from the DETF and pumps it to interim-StatuS RCRA storage tanks; and the Interim Treatment/Storage Facility (IT/SF) which stores the waste from the CTF until the waste is stabilized/solidified for permanent disposal, 85% of the stored waste is from past nickel plating and aluminum canning of depleted uranium targets for the SRS nuclear reactors. Waste minimization and filtration efficiency are key to cost effective treatment of the supernate, because the waste filter cake generated is returned to the IT/SF. The DETF has been successfully optimized to achieve maximum efficiency and to minimize waste generation.

Norford, S.W.; Diener, G.A.; Martin, H.L.

1992-12-31

43

Metal finishing wastewater pressure filter optimization  

SciTech Connect

The 300-M Area Liquid Effluent Treatment Facility (LETF) of the Savannah River Site (SRS) is an end-of-pipe industrial wastewater treatment facility, that uses precipitation and filtration which is the EPA Best Available Technology economically achievable for a Metal Finishing and Aluminum Form Industries. The LETF consists of three close-coupled treatment facilities: the Dilute Effluent Treatment Facility (DETF), which uses wastewater equalization, physical/chemical precipitation, flocculation, and filtration; the Chemical Treatment Facility (CTF), which slurries the filter cake generated from the DETF and pumps it to interim-StatuS RCRA storage tanks; and the Interim Treatment/Storage Facility (IT/SF) which stores the waste from the CTF until the waste is stabilized/solidified for permanent disposal, 85% of the stored waste is from past nickel plating and aluminum canning of depleted uranium targets for the SRS nuclear reactors. Waste minimization and filtration efficiency are key to cost effective treatment of the supernate, because the waste filter cake generated is returned to the IT/SF. The DETF has been successfully optimized to achieve maximum efficiency and to minimize waste generation.

Norford, S.W.; Diener, G.A.; Martin, H.L.

1992-01-01

44

Optimal Gabor filters for texture segmentation  

Microsoft Academic Search

Texture segmentation involves subdividing an image into differently textured regions. Many texture segmentation schemes are based on a filter-bank model, where the filters, called Gabor filters, are derived from Gabor elementary functions. The goal is to transform texture differences into detectable filter-output discontinuities at texture boundaries. By locating these discontinuities, one can segment the image into differently textured regions. Distinct

Dennis F. Dunn; William E. Higgins

1995-01-01

45

Dielectric phase shifter based on the piezo-tunable impedance-step filter  

Microsoft Academic Search

New devices based on the impedance-step filter are developed and studied. One of them is low loss band-puss tunable filter controlled by means of substrate effective dielectric constant change. Second setup is also tunable filter but utilized as a phase shifter. It represents the combination in one device: (1) impedance-step filter controlled from the direction of end- walls, and (2)

Yuriy Poplavko; Valeriy Pashkov; Vitaliy Molchanov; Denis Shmigin; Andrey Yeremenko

2007-01-01

46

Optimal peak sidelobe filters for biphase pulse compression  

Microsoft Academic Search

A technique for the generation of mismatched filters that minimize the peak sidelobe in the correlation of a biphase code is developed. The technique is applied to several well-known codes, and the resulting sidelobe performance is compared to that of the matched filter and optimal integrated sidelobe level filter. The theory is shown to be applicable to the generation of

J. M. Baden; M. N. Cohen

1990-01-01

47

Optimal filter banks for signal reconstruction from noisy subband components  

Microsoft Academic Search

Conventional design techniques for analysis and synthesis filters in subband processing applications guarantee perfect reconstruction of the original signal from its subband components. The resulting filters, however, lose their optimality when additive noise due, for example, to signal quantization, disturbs the subband sequences. We propose filter design techniques that minimize the reconstruction mean squared error (MSE) taking into account the

A. N. Delopoulos; S. D. Kollias

1996-01-01

48

Evolutionary Gabor Filter Optimization with Application to Vehicle Detection  

Microsoft Academic Search

Despite the considerable amount of research work on the ap- plication of Gabor filters in pattern classification, their design and selection have been mostly done on a trial and error basis. Existing techniques are either only suitable for a small number of filters or less problem-oriented. A systematic and general evolutionary Gabor filter optimization (EGFO) approach that yields a more

Zehang Sun; George Bebis; Ronald Miller

2003-01-01

49

Defect detection in textured materials using optimized filters  

Microsoft Academic Search

The problem of automated defect detection in textured materials is investigated. A new approach for defect detection using linear FIR filters with optimized energy separation is proposed. The performance of different feature separation criteria with reference to fabric defects has been evaluated. The issues relating to the design of optimal filters for supervised and unsupervised web inspection are addressed. A

Ajay Kumar; Grantham K. H. Pang

2002-01-01

50

Polynomial systems approach to optimal linear filtering and prediction  

Microsoft Academic Search

The solution of the optimal linear estimation problem is considered, using a polynomial matrix description for the discrete system. The filter or predictor is given by the solution of two diophantine equations and is equivalent to the state equation form of the steady-state Kalman filter, or the transfer-function matrix form of the Wiener filter. The pole-zero properties of the optimal

M. J. GRIMBLE

1985-01-01

51

Synthesis of general topology multiple coupled resonator filters by optimization  

Microsoft Academic Search

A synthesis procedure, using optimization, for multiple coupled resonator filters having general topology and general response is described. The error function for the optimization is based on the values of the characteristic function at its zeros and poles. The optimization is performed directly on the element values of the coupling matrix. Convergence of the optimization is extremely fast and nearly

Walid A. Atia; Kawthar A. Zaki; A. E. Atia

1998-01-01

52

Optimal filtering for Bayesian detection and attribution of climate change  

NASA Astrophysics Data System (ADS)

In the conventional approach to the detection of an anthropogenic or other externally forced climate change signal, optimal filters (fingerprints) are used to maximize the ratio of the observed climate change signal to the natural variability noise. If detection is successful, attribution of the observed climate change to the hypothesized forcing mechanism is carried out in a second step by comparing the observed and predicted climate change signals. In contrast, the Bayesian approach to detection and attribution makes no distinction between detection and attribution. The purpose of filtering in this case is to maximize the impact of the evidence, the observed climate change, on the prior probability that the hypothesis of an anthropogenic origin of the observed signal is true. Whereas in the conventional approach model uncertainties have no direct impact on the definition of the optimal detection fingerprint, in optimal Bayesian filtering they play a central role. The number of patterns retained is governed by the magnitude of the predicted signal relative to the model uncertainties, defined in a pattern space normalized by the natural climate variability. Although this results in some reduction of the original phase space, this is not the primary objective of Bayesian filtering, in contrast to the conventional approach, in which dimensional reduction is a necessary prerequisite for enhancing the signal-to-noise ratio. The Bayesian filtering method is illustrated for two anthropogenic forcing hypotheses: greenhouse gases alone, and a combination of greenhouse gases plus sulfate aerosols. The hypotheses are tested against 31-year trends for near-surface temperature, summer and winter diurnal temperature range, and precipitation. Between six and thirteen response patterns can be retained, as compared with the one or two response patterns normally used in the conventional approach. Strong evidence is found for the detection of an anthropogenic climate change in temperature, with some preference given to the combined forcing hypothesis. Detection of recent anthropogenic trends in diurnal temperature range and precipitation is not successful, but there remains strong net evidence for anthropogenic climate change if all data are considered jointly.

Schnur, R.; Hasselmann, Kl.

2005-01-01

53

Optimal filter-based detection of microcalcifications.  

PubMed

This paper deals with the problem of texture feature extraction in digital mammograms. We use the extracted features to discriminate between texture representing clusters of microcalcifications and texture representing normal tissue. Having a two-class problem, we suggest a texture feature extraction method based on a single filter optimized with respect to the Fisher criterion. The advantage of this criterion is that it uses both the feature mean and the feature variance to achieve good feature separation. Image compression is desirable to facilitate electronic transmission and storage of digitized mammograms. In this paper, we also explore the effects of data compression on the performance of our proposed detection scheme. The mammograms in our test set were compressed at different ratios using the Joint Photographic Experts Group compression method. Results from an experimental study indicate that our scheme is very well suited for detecting clustered microcalcifications in both uncompressed and compressed mammograms. For the uncompressed mammograms, at a rate of 1.5 false positive clusters/image our method reaches a true positive rate of about 95%, which is comparable to the best results achieved so far. The detection performance for images compressed by a factor of about four is very similar to the performance for uncompressed images. PMID:11686626

Gulsrud, T O; Husøy, J H

2001-11-01

54

Multiagent system for optimizing filter coefficients in image compression  

NASA Astrophysics Data System (ADS)

In this paper, we present a new intelligent agent-based method to design filter banks that maximize compression quality. In this method, a multi-agent system containing cooperating intelligent agents with different roles is developed to search for filter banks that improve image compression quality. The multi-agent system consists of one generalization agent, and several problem formulation, optimization, and compression agents. The generalization agent performs problem decomposition and result collection. It distributes optimization tasks to optimization agents, and later collects results and selects one solution that works well on all training images as the final output. Problem formulation agents build optimization models that are used by the optimization agents. The optimization formulation includes both the overall performance of image compression and metrics of individual filters. The compression performance is provided by the image coding agent. Optimization agents apply various optimization methods to find the best filter bank for individual training images. Our method is modular and flexible, and is suitable for distributed processing. In experiments, we applied the proposed method to a set of benchmark images and designed filter banks that improve the compression performance of existing filter banks.

Shang, Yi; Li, Longzhuang

1999-10-01

55

Optimal linear filtering under parameter uncertainty  

Microsoft Academic Search

This paper addresses the problem of designing a guaranteed minimum error variance robust filter for convex bounded parameter uncertainty in the state, output, and input matrices. The design procedure is valid for linear filters that are obtained from the minimization of an upper bound of the error variance holding for all admissible parameter uncertainty. The results provided generalize the ones

Jose C. Geromel

1999-01-01

56

Optimal Filter Design for Annular Imaging.  

National Technical Information Service (NTIS)

The purpose of this paper is the design of spatial filters that maximize the ratio of the energy incident on an annulus of specified radius and infinitely small width in the image plane of a lens-filter combination to the energy incident from a point sour...

A. Fedotowsky K. Lehovec

1973-01-01

57

Tunable UHF TV channel power filter optimization  

Microsoft Academic Search

In this paper the design and realization of a mechanically tunable TEM-mode channel power filter for the UHF TV band are presented. A three-stage coaxial resonator filter was made without tunable capacitors and with minimum necessary adjustment by two inductive couplings. Calculated and experimental results agreed very well

J. R. Bogdanovic; G. M. Donic; MomEilo D. Sarenac; S. M. Milosevic

1998-01-01

58

Simple index modulation profile with fast-converging design optimization for multichannel fiber Bragg grating filters  

NASA Astrophysics Data System (ADS)

In this paper, a novel hybrid algorithm featuring a simple index modulation profile with fast-converging optimization is proposed towards the design of dense wavelength-division-multiplexing systems (DWDM) multichannel fiber Bragg grating (FBG) filters. The approach is based on utilizing one of other FBG design approaches that may suffer from spectral distortion as the first step, then performing Lagrange multiplier optimization (LMO) for optimized correction of the spectral distortion. In our design examples, the superposition method is employed as the first design step for its merits of easy fabrication, and the discrete layer-peeling (DLP) algorithm is used to rapidly obtain the initial index modulation profiles for the superposition method. On account of the initially near-optimum index modulation profiles from the first step, the LMO optimization algorithm shows fast convergence to the target reflection spectra in the second step and the design outcome still retains the advantage of easy fabrication.

Hsin, Chen-Wei

2011-07-01

59

Optimal Filter Systems for Photometric Redshift Estimation  

NASA Astrophysics Data System (ADS)

In the coming years, several cosmological surveys will rely on imaging data to estimate the redshift of galaxies, using traditional filter systems with 4-5 optical broad bands; narrower filters improve the spectral resolution, but strongly reduce the total system throughput. We explore how photometric redshift performance depends on the number of filters nf , characterizing the survey depth by the fraction of galaxies with unambiguous redshift estimates. For a combination of total exposure time and telescope imaging area of 270 hr m2, 4-5 filter systems perform significantly worse, both in completeness depth and precision, than systems with nf gsim 8 filters. Our results suggest that for low nf the color-redshift degeneracies overwhelm the improvements in photometric depth, and that even at higher nf the effective photometric redshift depth decreases much more slowly with filter width than naively expected from the reduction in the signal-to-noise ratio. Adding near-IR observations improves the performance of low-nf systems, but still the system which maximizes the photometric redshift completeness is formed by nine filters with logarithmically increasing bandwidth (constant resolution) and half-band overlap, reaching ~0.7 mag deeper, with 10% better redshift precision, than 4-5 filter systems. A system with 20 constant-width, nonoverlapping filters reaches only ~0.1 mag shallower than 4-5 filter systems, but has a precision almost three times better, ?z = 0.014(1 + z) versus ?z = 0.042(1 + z). We briefly discuss a practical implementation of such a photometric system: the ALHAMBRA Survey.

Benítez, N.; Moles, M.; Aguerri, J. A. L.; Alfaro, E.; Broadhurst, T.; Cabrera-Caño, J.; Castander, F. J.; Cepa, J.; Cerviño, M.; Cristóbal-Hornillos, D.; Fernández-Soto, A.; González Delgado, R. M.; Infante, L.; Márquez, I.; Martínez, V. J.; Masegosa, J.; Del Olmo, A.; Perea, J.; Prada, F.; Quintana, J. M.; Sánchez, S. F.

2009-02-01

60

Optimal filtering in linear systems with time delays  

Microsoft Academic Search

The optimal linear filtering theory of Kalman and Bucy is extended to include linear systems with multiple time delays as well as the smoothing problem. The (ordinary) filter differential equation and variance equation of the Kalman-Bucy theory are replaced by partial differential equations. An explicit solution is given of the smoothing problem for systems without time delays.

H. Kwakernaak

1967-01-01

61

Finite-dimensional sensor orbits and optimal nonlinear filtering  

Microsoft Academic Search

The filtering problem of a system with linear dynamics and non-Gaussian a priori distribution is investigated. A closed-form exact solution to the problem is presented along with an approximation scheme. The approximation is made in the construction of a mathematical model. It reduces optimal estimation to a combination of linear estimations. The asymptotic behavior of the filter is examined. The

JAMES TING-HO LO

1972-01-01

62

Estimating Optimal Tracking Filter Performance for Manned Maneuvering Targets  

Microsoft Academic Search

The majority of tactical weapons systems require that manned maneuverable vehicles, such as aircraft, ships, and submarines, be tracked accurately. An optimal Kalman filter has been derived for this purpose using a target model that is simple to implement and that represents closely the motions of maneuvering targets. Using this filter, parametric tracking accuracy data have been generated as a

Robert Singer

1970-01-01

63

Optimal Design of Filters with Bounded, Lossy Elements  

Microsoft Academic Search

This paper proposes a solution to the problem of designing a filter of given structure, incorporating nonideal elements, to meet or exceed given insertion loss specifications subject to element value bounds. This problem is reformulated as a nonlinear programming problem, i.e., minimize an objective function subject to inequality constraints, whose solution yields a filter optimal in a min-max sense. To

L. S. LASDON; A. D. WAREN

1966-01-01

64

Optimized and iterative Wiener filter for image restoration  

Microsoft Academic Search

Two new techniques were suggested in this research. The first one is for optimizing image restoration with Wiener filter by suggesting an efficient method for estimating an optimum value for the signal to noise ratio parameter used in Wiener filter restoration formula. The estimated value is different for each segment in frequency domain. Estimation depends on the degraded image only,

A. M. A. Mahmood

2009-01-01

65

Optimal realizable filters and the minimum Euclidean distance principle.  

PubMed

Minimizing a Euclidean distance in the complex plane optimizes a wide class of correlation metrics for filters implemented on realistic devices. The algorithm searches over no more than two real scalars (gain and phase). It unifies a variety of previous solutions for special cases (e.g., a maximum signal-to-noise ratio with colored noise and a real filter and a maximum correlation intensity with no noise and a coupled filter). It extends optimal partial information filter theory to arbitrary spatial light modulators (fully complex, coupled, discrete, finite contrast ratio, and so forth), additive input noise (white or colored), spatially nonuniform filter modulators, and additive correlation detection noise (including signaldependent noise). An appendix summarizes the algorithm as it is implemented in available computer code. PMID:20856317

Juday, R D

1993-09-10

66

Theory of optimal orthonormal filter banks  

Microsoft Academic Search

In a previous paper we derived a set of necessary and sufficient conditions for maximizing the coding gain in an orthonormal filter bank. These are referred to as the decorrelation and majorization conditions. While each of these two conditions is individually only necessary and not sufficient, they together form a set of necessary and sufficient conditions. In this paper we

P. P. Vaidyanathan

1996-01-01

67

Robustness of optimal binary filters for sparse noise  

NASA Astrophysics Data System (ADS)

An optimal binary image filter is an operator defined on an observed random set (image) and the output random set estimates some ideal (uncorrupted) random set with minimal error. Assuming the probability law of the ideal process is determined by a parameter vector, the output law is also determined by a parameter vector, and this latter law is a function of the input law and a degradation operator producing the observed image from the ideal image. The robustness question regards the degree to which performance of an optimal filter degrades when it is applied to an image process whose law differs (not too greatly) form the law of the process for which it is optimal. The present paper examines robustness of the optimal translation-invariant binary filter for restoring images degraded by sparse salt-and-pepper noise. An analytical model is developed in terms of prior probabilities of the signal and this model is used to compute a robustness surface.

Dougherty, Edward R.; Grigoryan, Artyom M.

1997-10-01

68

Stepped Impedance Resonators in Triple Band Bandpass Filter Design for Wireless Communication Systems  

Microsoft Academic Search

Triple band microstrip tri-section bandpass filter using stepped impedance resonators (SIRs) is designed, simulated, built, and measured using hair pin structure. The complete design procedure is given from analytical stage to implementation stage with details The coupling between SIRs is investigated for the first time in detail by studying their effect on the filter characteristics including bandwidth, and attenuation to

Eroglu; Abdullah

2010-01-01

69

Principal component filter banks for optimal multiresolution analysis  

Microsoft Academic Search

An important issue in multiresolution analysis is that of optimal basis selection. An optimal P-band perfect reconstruction filter bank (PRFB) is derived in this paper, which minimizes the approximation error (in the mean-square sense) between the original signal and its low-resolution version. The resulting PRFB decomposes the input signal into uncorrelated, low-resolution principal components with decreasing variance. Optimality issues are

Michail K. Tsatsanis; Georgios B. Giannakis

1995-01-01

70

Optimal realizable filters and the minimum Euclidean distance principle  

Microsoft Academic Search

Minimizing a Euclidean distance in the complex plane optimizes a wide class of correlation metrics for filters implemented on realistic devices. The algorithm searches over no more than two real scalars (gain and phase). It unifies a variety of previous solutions for special cases (e.g., a maximum signal-to-noise ratio with colored noise and a real filter and a maximum correlation

Richard D. Juday

1993-01-01

71

Optimization of filtering schemes for broadband astro-combs.  

PubMed

To realize a broadband, large-line-spacing astro-comb, suitable for wavelength calibration of astrophysical spectrographs, from a narrowband, femtosecond laser frequency comb ("source-comb"), one must integrate the source-comb with three additional components: (1) one or more filter cavities to multiply the source-comb's repetition rate and thus line spacing; (2) power amplifiers to boost the power of pulses from the filtered comb; and (3) highly nonlinear optical fiber to spectrally broaden the filtered and amplified narrowband frequency comb. In this paper we analyze the interplay of Fabry-Perot (FP) filter cavities with power amplifiers and nonlinear broadening fiber in the design of astro-combs optimized for radial-velocity (RV) calibration accuracy. We present analytic and numeric models and use them to evaluate a variety of FP filtering schemes (labeled as identical, co-prime, fraction-prime, and conjugate cavities), coupled to chirped-pulse amplification (CPA). We find that even a small nonlinear phase can reduce suppression of filtered comb lines, and increase RV error for spectrograph calibration. In general, filtering with two cavities prior to the CPA fiber amplifier outperforms an amplifier placed between the two cavities. In particular, filtering with conjugate cavities is able to provide <1 cm/s RV calibration error with >300 nm wavelength coverage. Such superior performance will facilitate the search for and characterization of Earth-like exoplanets, which requires <10 cm/s RV calibration error. PMID:23187265

Chang, Guoqing; Li, Chih-Hao; Phillips, David F; Szentgyorgyi, Andrew; Walsworth, Ronald L; Kärtner, Franz X

2012-10-22

72

Optimal Filter Estimation for Lucas-Kanade Optical Flow  

PubMed Central

Optical flow algorithms offer a way to estimate motion from a sequence of images. The computation of optical flow plays a key-role in several computer vision applications, including motion detection and segmentation, frame interpolation, three-dimensional scene reconstruction, robot navigation and video compression. In the case of gradient based optical flow implementation, the pre-filtering step plays a vital role, not only for accurate computation of optical flow, but also for the improvement of performance. Generally, in optical flow computation, filtering is used at the initial level on original input images and afterwards, the images are resized. In this paper, we propose an image filtering approach as a pre-processing step for the Lucas-Kanade pyramidal optical flow algorithm. Based on a study of different types of filtering methods and applied on the Iterative Refined Lucas-Kanade, we have concluded on the best filtering practice. As the Gaussian smoothing filter was selected, an empirical approach for the Gaussian variance estimation was introduced. Tested on the Middlebury image sequences, a correlation between the image intensity value and the standard deviation value of the Gaussian function was established. Finally, we have found that our selection method offers a better performance for the Lucas-Kanade optical flow algorithm.

Sharmin, Nusrat; Brad, Remus

2012-01-01

73

Sub-Optimal Ensemble Filters and distributed hydrologic modeling: a new challenge in flood forecasting  

NASA Astrophysics Data System (ADS)

Data assimilation techniques based on Ensemble Filtering are widely regarded as the best approach in solving forecast and calibration problems in geophysics models. Often the implementation of statistical optimal techniques, like the Ensemble Kalman Filter, is unfeasible because of the large amount of replicas used in each time step of the model for updating the error covariance matrix. Therefore the sub optimal approach seems to be a more suitable choice. Various sub-optimal techniques were tested in atmospheric and oceanographic models, some of them are based on the detection of a "null space". Distributed Hydrologic Models differ from the other geo-fluid-dynamics models in some fundamental aspects that make complex to understanding the relative efficiency of the different suboptimal techniques. Those aspects include threshold processes , preferential trajectories for convection and diffusion, low observability of the main state variables and high parametric uncertainty. This research study is focused on such topics and explore them through some numerical experiments on an continuous hydrologic model, MOBIDIC. This model include both water mass balance and surface energy balance, so it's able to assimilate a wide variety of datasets like traditional hydrometric "on ground" measurements or land surface temperature retrieval from satellite. The experiments that we present concern to a basin of 700 kmq in center Italy, with hourly dataset on a 8 months period that includes both drought and flood events, in this first set of experiment we worked on a low spatial resolution version of the hydrologic model (3.2 km). A new Kalman Filter based algorithm is presented : this filter try to address the main challenges of hydrological modeling uncertainty. The proposed filter use in Forecast step a COFFEE (Complementary Orthogonal Filter For Efficient Ensembles) approach with a propagation of both deterministic and stochastic ensembles to improve robustness and convergence proprieties. After, through a P.O.D. Reduction from control theory, we compute a Reduced Order Forecast Covariance matrix . In analysis step the filter uses a LE (Local Ensemble) Kalman Filter approach. We modify the LE Kalman Filter assimilation scheme and we adapt its formulation to the P.O.D. Reduced sub-space propagated in forecast step. Through this, assimilation of observations is made only in the maximum covariance directions of the model error. Then the efficiency of this technique is weighed in term of hydrometric forecast accuracy in a preliminary convergence test of a synthetic rainfall event toward a real rain fall event.

Baroncini, F.; Castelli, F.

2009-09-01

74

Assessment of optimally filtered recent geodetic mean dynamic topographies  

NASA Astrophysics Data System (ADS)

AbstractRecent geoids from the Gravity Recovery and Climate Experiment (GRACE) and the Gravity field and steady state Ocean Circulation Explorer satellite mission (GOCE) contain useful short-scale information for the construction of a geodetic ocean mean dynamic topography (MDT). The geodetic MDT is obtained from subtracting the geoid from a mean sea surface (MSS) as measured by satellite altimetry. A gainful use of the MDT and an adequate assessment needs an <span class="hlt">optimal</span> <span class="hlt">filtering</span>. This is accomplished here by defining a cutoff length scale dmax for the geoid and applying a Gaussian <span class="hlt">filter</span> with half-width radius r on the MDT. A series of MDTs (GRACE, GOCE, and combined satellite-only (GOCO) solutions) is tested, using different sets of <span class="hlt">filter</span> parameters dmax and r. <span class="hlt">Optimal</span> global and regional dependent <span class="hlt">filter</span> parameters are estimated. To find <span class="hlt">optimal</span> parameters and to assess the resulting MDTs, the geostrophic surface currents induced by the <span class="hlt">filtered</span> geodetic MDT are compared to corrected near-surface currents obtained from the Global Drifter Program (GDP). The global <span class="hlt">optimal</span> cutoff degree and order (d/o) dmax (half-width radius r of the spatial Gaussian <span class="hlt">filter</span>) is 160 (1.1°) for GRACE; 180 (1.1-1.2°) for 1st releases of GOCE (time- and space-wise methods) and GOCO models; and 210 (1.0 degree) for 2nd and 3rd releases of GOCE and GOCO models. The cutoff d/o is generally larger (smaller) and the <span class="hlt">filter</span> length smaller (larger) for regions with strong, small-scale (slow, broad scale) currents. The smallest deviations from the drifter data are obtained with the GOCO03s geoid model, although deviations of other models are only slightly higher.</p> <div class="credits"> <p class="dwt_author">Siegismund, F.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">75</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/210366"> <span id="translatedtitle">Limiting performance of <span class="hlt">optimal</span> linear <span class="hlt">filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We study the lowest achievable mean square estimation error in two limiting <span class="hlt">optimal</span> linearfiltering problems. First, when the intensity of the process noise tends to zero, the lowestachievable mean square estimation error is a function of the unstable poles of the system.Second, when the intensity of the measurement noise tends to zero, the lowest achievablemean square estimation error is a</p> <div class="credits"> <p class="dwt_author">Julio H. Braslavsky; Mar??a M. Seron; David Q. Mayne; Petar V. Kokotovic</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">76</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.cc.gatech.edu/fac/Thad.Starner/p/032_20_ARVR/device_synchronization_using_optimal_linear_filter_.pdf"> <span id="translatedtitle">Device synchronization using an <span class="hlt">optimal</span> linear <span class="hlt">filter</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In order to be convincing and natural, interactive graphics applica- tions must correctly synchronize user motion with rendered graph- ics and sound output. We present a solution to the synchronization problem that is based on <span class="hlt">optimal</span> estimation methods and fixed- lag dataflow techniques. A method for discovering and correcting prediction errors using a generalized likelihood approach is also presented. And</p> <div class="credits"> <p class="dwt_author">Martin Friedmann; Thad Starner; Alex Pentland</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">77</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/260732"> <span id="translatedtitle">S-procedure in <span class="hlt">optimal</span> non-stochastic <span class="hlt">filtering</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The paper is purposed to extend the field of application of the stan- dard linear-quadratic and H-infinity <span class="hlt">optimization</span>. We consider <span class="hlt">optimal</span> lin- ear <span class="hlt">filtering</span> problem for a class of uncertain systems with non-stochastic exogenous noises and non-linear plant disturbances. The discrete time case is under consideration. However, the results obtained can be ap- plied to continuous-time systems with constant or</p> <div class="credits"> <p class="dwt_author">A. Megretsky</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">78</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2881565"> <span id="translatedtitle">An <span class="hlt">optimized</span> blockwise nonlocal means denoising <span class="hlt">filter</span> for 3-D magnetic resonance images</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">A critical issue in image restoration is the problem of noise removal while keeping the integrity of relevant image information. Denoising is a crucial <span class="hlt">step</span> to increase image quality and to improve the performance of all the tasks needed for quantitative imaging analysis. The method proposed in this paper is based on a 3D <span class="hlt">optimized</span> blockwise version of the Non Local (NL) means <span class="hlt">filter</span> [1]. The NL-means <span class="hlt">filter</span> uses the redundancy of information in the image under study to remove the noise. The performance of the NL-means <span class="hlt">filter</span> has been already demonstrated for 2D images, but reducing the computational burden is a critical aspect to extend the method to 3D images. To overcome this problem, we propose improvements to reduce the computational complexity. These different improvements allow to drastically divide the computational time while preserving the performances of the NL-means <span class="hlt">filter</span>. A fully-automated and <span class="hlt">optimized</span> version of the NL-means <span class="hlt">filter</span> is then presented. Our contributions to the NL-means <span class="hlt">filter</span> are: (a) an automatic tuning of the smoothing parameter, (b) a selection of the most relevant voxels, (c) a blockwise implementation and (d) a parallelized computation. Quantitative validation was carried out on synthetic datasets generated with BrainWeb [2]. The results show that our <span class="hlt">optimized</span> NL-means <span class="hlt">filter</span> outperforms the classical implementation of the NL-means <span class="hlt">filter</span>, as well as two other classical denoising methods (Anisotropic Diffusion [3] and Total Variation minimization process [4]) in terms of accuracy (measured by the Peak Signal to Noise Ratio) with low computation time. Finally, qualitative results on real data are presented.</p> <div class="credits"> <p class="dwt_author">Coupe, Pierrick; Yger, Pierre; Prima, Sylvain; Hellier, Pierre; Kervrann, Charles; Barillot, Christian</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">79</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1996SPIE.2969...16D"> <span id="translatedtitle"><span class="hlt">Optimization</span> <span class="hlt">steps</span> in a cuneiform inscription characterization process</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Recently, an investigation of using holographically based techniques for the cuneiform inscription characterization has been reported in several publications. This paper provides an overview of the development of the experimental systems and techniques. Particularly, we describe the main <span class="hlt">optimization</span> <span class="hlt">steps</span> as well as the selected correlation results, and the general frame of the future work.</p> <div class="credits"> <p class="dwt_author">Demoli, Nazif; Dahms, Uwe; Gruber, Hartmut; Wernicke, Guenther K.</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">80</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50132550"> <span id="translatedtitle">Matched <span class="hlt">filter</span> bound <span class="hlt">optimization</span> for multiuser downlink transmit beamforming</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper is devoted to the <span class="hlt">optimization</span> of the matched <span class="hlt">filter</span> bounds (MFB) of different co-channel users, using adaptive antenna arrays at base stations for downlink transmit beamforming in cellular mobile communication systems. We mainly consider time division multiple access (TDMA) frequency division duplexing (FDD) based systems. Note that in the case of time division duplexing (TDD), under terrain assumptions</p> <div class="credits"> <p class="dwt_author">Giuseppe Montalbano; D. T. M. Slock</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_3");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a style="font-weight: bold;">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_5");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_4 div --> <div id="page_5" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_4");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a style="font-weight: bold;">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_6");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">81</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=AD485275"> <span id="translatedtitle"><span class="hlt">Optimal</span> <span class="hlt">Filter</span> Design for Sampled Data Systems with Illustrative Examples.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">This paper presents a method of <span class="hlt">optimal</span> <span class="hlt">filter</span> design for sampled data systems, based on the theory originally developed by R. E. Kalman. The first half of the paper deals with the theoretical development of mathematical models for linear, discrete dynami...</p> <div class="credits"> <p class="dwt_author">F. D. Jardine</p> <p class="dwt_publisher"></p> <p class="publishDate">1965-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">82</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/619750"> <span id="translatedtitle">New approaches to constrained <span class="hlt">optimization</span> of digital <span class="hlt">filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Two algorithms are presented for the design of constrained least-squares digital <span class="hlt">filters</span>. They can bound the error according to user specifications while also minimizing the total weighted squared error (TWSE). Although the two algorithms are very different internally, they produce very similar results. One algorithm produces nearly <span class="hlt">optimal</span> solutions, and the other algorithm produces solutions that are guaranteed to be</p> <div class="credits"> <p class="dwt_author">J. W. Adams; J. L. Sullivan; R. Hashemi; C. Ghadimi; J. Franklin; B. Tucker</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">83</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/3489536"> <span id="translatedtitle">On incremental sigma-delta modulation with <span class="hlt">optimal</span> <span class="hlt">filtering</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The paper presents a quantization-theoretic framework for studying incremental sigma-delta (??) data conversion systems. The framework makes it possible to efficiently compute the quantization intervals and hence the transfer function of the quantizer, and to determine the mean square error (MSE) and maximum error for the <span class="hlt">optimal</span> and conventional linear <span class="hlt">filters</span> for first and second order incremental ?? modulators. The</p> <div class="credits"> <p class="dwt_author">Sam Kavusi; Hossein Kakavand; A. E. Gamal</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">84</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013AIPC.1532..883H"> <span id="translatedtitle">Adaptive mesh <span class="hlt">optimization</span> for improved one-<span class="hlt">step</span> forming</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">To reduce the simulation time and improve solution accuracy, an adaptive mesh <span class="hlt">optimization</span> method is proposed for one-<span class="hlt">step</span> forming simulation of auto-body panels. For a given auto-body part model, the state variables of model, such as thickness, strain and stress, is firstly estimated through one-<span class="hlt">step</span> inverse forming method. Incorporating the distribution of these physical properties and geometric characteristics of model, an adaptive node placement technique is presented, which implies that in the regions with high curvature or strain-rate a high mesh density is desirable and on the contrary it is sparse. Simultaneously, the features of the original mesh, such as welding point, a stiffener for reinforcement, forming lines or holes in the interior of model, are preserved in the process of mesh <span class="hlt">optimization</span>. Finally, numerical examples are shown to demonstrate that the proposed <span class="hlt">optimization</span> method here exhibits good performance.</p> <div class="credits"> <p class="dwt_author">Hu, Ping; Liu, Mingzeng; Li, Baojun; Zhang, Xiangkui; Shen, Guozhe</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">85</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/20519156"> <span id="translatedtitle">Selection of <span class="hlt">optimal</span> spectral sensitivity functions for color <span class="hlt">filter</span> arrays.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A color image meant for human consumption can be appropriately displayed only if at least three distinct color channels are present. Typical digital cameras acquire three-color images with only one sensor. A color <span class="hlt">filter</span> array (CFA) is placed on the sensor such that only one color is sampled at a particular spatial location. This sparsely sampled signal is then reconstructed to form a color image with information about all three colors at each location. In this paper, we show that the wavelength sensitivity functions of the CFA color <span class="hlt">filters</span> affect both the color reproduction ability and the spatial reconstruction quality of recovered images. We present a method to select perceptually <span class="hlt">optimal</span> color <span class="hlt">filter</span> sensitivity functions based upon a unified spatial-chromatic sampling framework. A cost function independent of particular scenes is defined that expresses the error between a scene viewed by the human visual system and the reconstructed image that represents the scene. A constrained minimization of the cost function is used to obtain <span class="hlt">optimal</span> values of color-<span class="hlt">filter</span> sensitivity functions for several periodic CFAs. The sensitivity functions are shown to perform better than typical RGB and CMY color <span class="hlt">filters</span> in terms of both the s-CIELAB ?E error metric and a qualitative assessment. PMID:20519156</p> <div class="credits"> <p class="dwt_author">Parmar, Manu; Reeves, Stanley J</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">86</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/971830"> <span id="translatedtitle">A <span class="hlt">filter</span>-based evolutionary algorithm for constrained <span class="hlt">optimization</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">We introduce a <span class="hlt">filter</span>-based evolutionary algorithm (FEA) for constrained <span class="hlt">optimization</span>. The <span class="hlt">filter</span> used by an FEA explicitly imposes the concept of dominance on a partially ordered solution set. We show that the algorithm is provably robust for both linear and nonlinear problems and constraints. FEAs use a finite pattern of mutation offsets, and our analysis is closely related to recent convergence results for pattern search methods. We discuss how properties of this pattern impact the ability of an FEA to converge to a constrained local optimum.</p> <div class="credits"> <p class="dwt_author">Clevenger, Lauren M. (University of New Mexico); Hart, William Eugene; Ferguson, Lauren Ann (Texas Tech University)</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">87</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/58929783"> <span id="translatedtitle"><span class="hlt">OPTIMAL</span> TRANSACTION <span class="hlt">FILTERS</span> UNDER TRANSITORY TRADING OPPORTUNITIES: Theory and Empirical Illustration</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">If transitory profitable trading opportunities exist, <span class="hlt">filter</span> rules are used in practice to mitigate transaction costs. The <span class="hlt">filter</span> size is difficult to determine a priori. Our paper uses a dynamic programming framework to design a <span class="hlt">filter</span> that is <span class="hlt">optimal</span> in the sense of maximizing expected returns after transaction costs. The <span class="hlt">optimal</span> <span class="hlt">filter</span> size depends crucially on the degree of persistence</p> <div class="credits"> <p class="dwt_author">RONALD J. BALVERS; YANGRU WU</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">88</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50267139"> <span id="translatedtitle">Low-spurious coaxial-line bandpass <span class="hlt">filter</span> with saucer-loaded <span class="hlt">stepped</span>-impedance resonators</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A low-spurious coaxial-line bandpass <span class="hlt">filter</span> (BPF) with saucer-loaded <span class="hlt">stepped</span>-impedance resonators (SAUSIRs) has been developed. The SAUSIR consists of a conventional <span class="hlt">stepped</span>-impedance resonator (SIR) and a thin metal saucer loaded in the SIR to control higher-order resonant frequencies of the resonator. By adjusting the positions of the saucers in SAUSIRs, higher-order resonant frequencies of the SAUSIRs in BPF can be scattered</p> <div class="credits"> <p class="dwt_author">Hiromitsu Uchida; Yukinobu Furukawa; Tetsu Ohwada</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">89</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50809600"> <span id="translatedtitle">Trisection <span class="hlt">stepped</span>-impedance resonators for design of dual-band bandstop <span class="hlt">filter</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this paper, we present the dual-band bandstop <span class="hlt">filter</span> design using tri-section <span class="hlt">stepped</span>-impedance resonators. The proposed tri-section <span class="hlt">stepped</span>-impedance resonator has the features of dual-band and size reduction due to its nonuniform impedance characteristic. There are two degrees of freedom in the proposed synthesis equations, which can be used for circuit miniaturization and changing impractical impedances into more realizable ones. An</p> <div class="credits"> <p class="dwt_author">Chih-Kang Lung; Kuo-Sheng Chin; Jeffrey S. Fu</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">90</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1993gnc..conf.1740A"> <span id="translatedtitle">Development of an <span class="hlt">optimized</span> LEB <span class="hlt">filter</span> and its application to INS/GPS test data</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">An <span class="hlt">optimized</span> linear-ellipsoidal-bounded (LEB) <span class="hlt">filter</span> has been developed and applied to data obtained from a ground test using a combined INS/GPS configuration. In this cascaded configuration, the <span class="hlt">filter</span> receives eight outputs from the INS (accelerations, velocity, angles, altitude) and six outputs from the GPS (velocities and positions). The GPS measurements have included the effect of SA of varying or unknown spectrum which, although likely to be estimated and compensated with some modelling techniques at the expense of including extra state variables, could also be dealt with the approach indicated in this article at much less effort. An <span class="hlt">optimized</span> formulation for the LEB <span class="hlt">filter</span> is presented in which the volume of the ellipsoid containing the estimation errors is minimized at every <span class="hlt">step</span> or at selected intervals. The SA effect is modelled as an unknown-but-bounded (UBB) noise process. Comparisons with an Extended Kalman <span class="hlt">filter</span> (KF) show that KF innovations are not white and the LEB <span class="hlt">filter</span> estimates are one order of magnitude smaller that those produced by the KF.</p> <div class="credits"> <p class="dwt_author">Antonini, Claudio D.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">91</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009AIPC.1185..306C"> <span id="translatedtitle">A Wavelet-based <span class="hlt">Optimal</span> <span class="hlt">Filtering</span> Method for Adaptive Detection: Application to Metallic Magnetic Calorimeters</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Optimal</span> <span class="hlt">filtering</span> allows the maximization of signal-over-noise ratio for the improvement of both energy threshold and resolution. Nevertheless, its effective efficiency depends on the estimation of signal and noise spectra. In practice, these are often estimated by averaging over a set of carefully chosen data. In case of time-varying noise, adaptive non-linear algorithms can be used if the shape of the signal is known. However, their convergence is not guaranteed, especially with 1/f-type noise. In this paper, a new method is presented for adaptive noise whitening and template signal estimation. First, the noise is continuously characterized in the wavelet domain, where the signal is decomposed over a set of scales, corresponding to band-pass <span class="hlt">filters</span>. Both time resolution and decorrelation properties of the wavelet transform allow an accurate and robust estimation of the noise structure, even if pulses or correlated noise are present. The whitening <span class="hlt">step</span> then amounts to a normalization of each scale by the estimated noise variance. A matched <span class="hlt">filter</span> is then applied on the whitened signal. The required signal template is constructed from a single event, denoised by a <span class="hlt">filtering</span> technique called wavelet thresholding. As an example, application to metallic magnetic calorimeter data is presented. The method reaches the precision of conventional <span class="hlt">optimal</span> <span class="hlt">filtering</span>, further allowing noise monitoring, adaptive threshold and improving the energy resolution of up to 8% in some cases.</p> <div class="credits"> <p class="dwt_author">Censier, B.; Rodrigues, M.; Loidl, M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">92</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009PMB....54.7183A"> <span id="translatedtitle">Comparison of IMRT planning with two-<span class="hlt">step</span> and one-<span class="hlt">step</span> <span class="hlt">optimization</span>: a strategy for improving therapeutic gain and reducing the integral dose</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The aim of this study was to evaluate the effectiveness and efficiency in inverse IMRT planning of one-<span class="hlt">step</span> <span class="hlt">optimization</span> with the <span class="hlt">step</span>-and-shoot (SS) technique as compared to traditional two-<span class="hlt">step</span> <span class="hlt">optimization</span> using the sliding windows (SW) technique. The Pinnacle IMRT TPS allows both one-<span class="hlt">step</span> and two-<span class="hlt">step</span> approaches. The same beam setup for five head-and-neck tumor patients and dose-volume constraints were applied for all <span class="hlt">optimization</span> methods. Two-<span class="hlt">step</span> plans were produced converting the ideal fluence with or without a smoothing <span class="hlt">filter</span> into the SW sequence. One-<span class="hlt">step</span> plans, based on direct machine parameter <span class="hlt">optimization</span> (DMPO), had the maximum number of segments per beam set at 8, 10, 12, producing a directly deliverable sequence. Moreover, the plans were generated whether a split-beam was used or not. Total monitor units (MUs), overall treatment time, cost function and dose-volume histograms (DVHs) were estimated for each plan. PTV conformality and homogeneity indexes and normal tissue complication probability (NTCP) that are the basis for improving therapeutic gain, as well as non-tumor integral dose (NTID), were evaluated. A two-sided t-test was used to compare quantitative variables. All plans showed similar target coverage. Compared to two-<span class="hlt">step</span> SW <span class="hlt">optimization</span>, the DMPO-SS plans resulted in lower MUs (20%), NTID (4%) as well as NTCP values. Differences of about 15-20% in the treatment delivery time were registered. DMPO generates less complex plans with identical PTV coverage, providing lower NTCP and NTID, which is expected to reduce the risk of secondary cancer. It is an effective and efficient method and, if available, it should be favored over the two-<span class="hlt">step</span> IMRT planning.</p> <div class="credits"> <p class="dwt_author">Abate, A.; Pressello, M. C.; Benassi, M.; Strigari, L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">93</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1636674"> <span id="translatedtitle"><span class="hlt">Optimal</span> Noise <span class="hlt">Filtering</span> in the Chemotactic Response of Escherichia coli</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Information-carrying signals in the real world are often obscured by noise. A challenge for any system is to <span class="hlt">filter</span> the signal from the corrupting noise. This task is particularly acute for the signal transduction network that mediates bacterial chemotaxis, because the signals are subtle, the noise arising from stochastic fluctuations is substantial, and the system is effectively acting as a differentiator which amplifies noise. Here, we investigated the <span class="hlt">filtering</span> properties of this biological system. Through simulation, we first show that the cutoff frequency has a dramatic effect on the chemotactic efficiency of the cell. Then, using a mathematical model to describe the signal, noise, and system, we formulated and solved an <span class="hlt">optimal</span> <span class="hlt">filtering</span> problem to determine the cutoff frequency that bests separates the low-frequency signal from the high-frequency noise. There was good agreement between the theory, simulations, and published experimental data. Finally, we propose that an elegant implementation of the <span class="hlt">optimal</span> <span class="hlt">filter</span> in combination with a differentiator can be achieved via an integral control system. This paper furnishes a simple quantitative framework for interpreting many of the key notions about bacterial chemotaxis, and, more generally, it highlights the constraints on biological systems imposed by noise.</p> <div class="credits"> <p class="dwt_author">Andrews, Burton W; Yi, Tau-Mu; Iglesias, Pablo A</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">94</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011NIMPA.645..300L"> <span id="translatedtitle">Design and <span class="hlt">optimization</span> of multipole lens and Wien <span class="hlt">filter</span> systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The differential algebra (DA) method has been employed to compute the optical properties and aberrations up to the fifth order of multipole systems containing electrostatic and magnetic round, quadrupole, hexapole and octopole lenses, and Wien <span class="hlt">filters</span>. A new software package has been developed, which computes the geometrical and chromatic aberrations up to the fifth order by using a single DA ray trace. It also has an <span class="hlt">optimization</span> module where a weighted set of aberrations can be minimized by the automatic adjustment of a set of user-defined system variables. In this paper, we present our new method for designing and <span class="hlt">optimizing</span> multipole systems including Wien <span class="hlt">filters</span>, and illustrate its application with three relevant examples.</p> <div class="credits"> <p class="dwt_author">Liu, Haoning; Wang, Liping; Rouse, John; Munro, Eric</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">95</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1990apcb.conf...73N"> <span id="translatedtitle"><span class="hlt">Optimal</span> <span class="hlt">filter</span> techniques for quasi-periodic oscillations.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Optimal</span> <span class="hlt">filter</span> analysis techniques are employed in order to set constraints on the nature of possible relationships between low frequency noise (LFN) and quasiperiodic oscillations (QPOs) in GX 5-1 on timescales near the QPO coherence length. Models are explored in which LFN shots modulate sinusoidal QPOs for shot rates up to 400 Hz and shot clustering fractions up to ?50%. Such models are found to be constrained by comparison with the data.</p> <div class="credits"> <p class="dwt_author">Norris, J. P.; Hertz, P.; Wood, K. S.; Vaughan, B. A.; Michelson, P. F.; Mitsuda, K.; Dotani, T.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">96</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/24290712"> <span id="translatedtitle">AN <span class="hlt">OPTIMAL</span> EXTENDED KALMAN <span class="hlt">FILTER</span> DESIGNED BY GENETIC ALGORITHMS</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A Geno-Kalman <span class="hlt">filter</span> is utilized for state estimation of a bench-scale batch reactor that handles an exothermic reaction between H2O2 and Na2S2O3. This reaction system includes three different states including the concentration of reactants as well as the temperature of the reactor. All of the states are measured during the process. The proposed procedure is to run an <span class="hlt">optimal</span> extended</p> <div class="credits"> <p class="dwt_author">N. Rezaei; H. Kordabadi; A. Elkamel; A. Jahanmiri</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">97</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/672026"> <span id="translatedtitle">A multi-dimensional procedure for BNCT <span class="hlt">filter</span> <span class="hlt">optimization</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">An initial version of an <span class="hlt">optimization</span> code utilizing two-dimensional radiation transport methods has been completed. This code is capable of predicting material compositions of a beam tube-<span class="hlt">filter</span> geometry which can be used in a boron neutron capture therapy treatment facility to improve the ratio of the average radiation dose in a brain tumor to that in the healthy tissue surrounding the tumor. The <span class="hlt">optimization</span> algorithm employed by the code is very straightforward. After an estimate of the gradient of the dose ratio with respect to the nuclide densities in the beam tube-<span class="hlt">filter</span> geometry is obtained, changes in the nuclide densities are made based on: (1) the magnitude and sign of the components of the dose ratio gradient, (2) the magnitude of the nuclide densities, (3) the upper and lower bound of each nuclide density, and (4) the linear constraint that the sum of the nuclide density fractions in each material zone be less than or equal to 1.0. A local <span class="hlt">optimal</span> solution is assumed to be found when one of the following conditions is satisfied in every material zone: (1) the maximum positive component of the gradient corresponds to a nuclide at its maximum density and the sum of the density fractions equals 1.0 or, and (2) the positive and negative components of the gradient correspond to nuclides densities at their upper and lower bounds, respectively, and the remaining components of the gradient are sufficiently small. The <span class="hlt">optimization</span> procedure has been applied to a beam tube-<span class="hlt">filter</span> geometry coupled to a simple tumor-patient head model and an improvement of 50% in the dose ratio was obtained.</p> <div class="credits"> <p class="dwt_author">Lille, R.A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">98</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1579140"> <span id="translatedtitle">On the <span class="hlt">optimal</span> and suboptimal nonlinear <span class="hlt">filtering</span> problem for discrete-time systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper examines <span class="hlt">optimal</span> and suboptimal algorithms for the state <span class="hlt">filtering</span> problem in discrete-time nonlinear systems. The <span class="hlt">optimal</span> equations of sequential <span class="hlt">filtering</span> are analyzed and conditions are obtained which ensure a multimodal character for the a posteriori densities. This analysis is utilized in the discussion of the performance of suboptimal linearized <span class="hlt">filters</span>, and suggestions are made for their improvement in</p> <div class="credits"> <p class="dwt_author">M. L. ANDRADE NETTO; L. Gimeno; M. J. MENDES</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">99</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23796954"> <span id="translatedtitle"><span class="hlt">Optimization</span> of adenovirus 40 and 41 recovery from tap water using small disk <span class="hlt">filters</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Currently, the U.S. Environmental Protection Agency's Information Collection Rule (ICR) for the primary concentration of viruses from drinking and surface waters uses the 1MDS <span class="hlt">filter</span>, but a more cost effective option, the NanoCeram(®) <span class="hlt">filter</span>, has been shown to recover comparable levels of enterovirus and norovirus from both matrices. In order to achieve the highest viral recoveries, filtration methods require the identification of <span class="hlt">optimal</span> concentration conditions that are unique for each virus type. This study evaluated the effectiveness of 1MDS and NanoCeram <span class="hlt">filters</span> in recovering adenovirus (AdV) 40 and 41 from tap water, and <span class="hlt">optimized</span> two secondary concentration procedures the celite and organic flocculation method. Adjustments in pH were made to both virus elution solutions and sample matrices to determine which resulted in higher virus recovery. Samples were analyzed by quantitative PCR (qPCR) and Most Probable Number (MPN) techniques and AdV recoveries were determined by comparing levels of virus in sample concentrates to that in the initial input. The recovery of adenovirus was highest for samples in unconditioned tap water (pH 8) using the 1MDS <span class="hlt">filter</span> and celite for secondary concentration. Elution buffer containing 0.1% sodium polyphosphate at pH 10.0 was determined to be most effective overall for both AdV types. Under these conditions, the average recovery for AdV40 and 41 was 49% and 60%, respectively. By <span class="hlt">optimizing</span> secondary elution <span class="hlt">steps</span>, AdV recovery from tap water could be improved at least two-fold compared to the currently used methodology. Identification of the <span class="hlt">optimal</span> concentration conditions for human AdV (HAdV) is important for timely and sensitive detection of these viruses from both surface and drinking waters. PMID:23796954</p> <div class="credits"> <p class="dwt_author">McMinn, Brian R</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-06-21</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">100</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013OptLE..51.1223W"> <span id="translatedtitle">Feature-preserving <span class="hlt">optimization</span> for noisy mesh using joint bilateral <span class="hlt">filter</span> and constrained Laplacian smoothing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Advanced 3D optical and laser scanners can generate mesh models with high-resolution details, while inevitably introducing noises from various sources and mesh irregularity due to inconsistent sampling. Noises and irregularity of a scanned model prohibit its use in practical applications where high quality models are required. However, <span class="hlt">optimizing</span> a noisy mesh while preserving its geometric features is a challenging task. We present a robust two-<span class="hlt">step</span> approach to meet the challenges of noisy mesh <span class="hlt">optimization</span>. In the first <span class="hlt">step</span>, we propose a joint bilateral <span class="hlt">filter</span> to remove noises on a mesh while maintaining its volume and preserving its features. In the second <span class="hlt">step</span>, we develop a constrained Laplacian smoothing scheme by adding two kinds of constraints into the original Laplacian equation. As most noises have been removed in the first <span class="hlt">step</span>, we can easily detect feature edges from the model and add them as constraints in the Laplacian smoothing. As a result, the constrained scheme can simultaneously preserve sharp features and avoid volume shrinkage during mesh smoothing. By integrating these two <span class="hlt">steps</span>, our approach can effectively remove noises, maintain features, improve regularity for a noisy mesh, as well as avoid side-effects such as volume shrinkage. Extensive qualitative and quantitative experiments have been performed on meshes with synthetic and raw noises to demonstrate the feasibility and effectiveness of our approach.</p> <div class="credits"> <p class="dwt_author">Wei, Mingqiang; Shen, Wuyao; Qin, Jing; Wu, Jianhuang; Wong, Tien-Tsin; Heng, Pheng-Ann</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-11-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_4");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a style="font-weight: bold;">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_6");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_5 div --> <div id="page_6" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_5");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a style="font-weight: bold;">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_7");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">101</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50242310"> <span id="translatedtitle">Integration of <span class="hlt">optimized</span> low-pass <span class="hlt">filters</span> in band-pass <span class="hlt">filters</span> for out-of-band improvement</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We propose an original structure for the design of high performance <span class="hlt">filters</span> with simultaneously controlled band-pass and band-reject responses. The band-reject response is controlled due to the integration of low-pass structure. Thus, the spurious resonances of the band-pass <span class="hlt">filter</span> are rejected up to the low-pass <span class="hlt">filter</span> ones. In this way, we have to <span class="hlt">optimize</span> the response of the low-pass structure</p> <div class="credits"> <p class="dwt_author">CCdric QUENDO; C. Person; E. Rius; M. Ney</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">102</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1497668"> <span id="translatedtitle">Simple and effective EM-based <span class="hlt">optimization</span> procedure for microwave <span class="hlt">filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A simple and effective computerized <span class="hlt">optimization</span> procedure for microwave <span class="hlt">filters</span> is discussed. The basic idea is to integrate a fast and accurate electromagnetic (EM) solver, a <span class="hlt">filter</span> design strategy, and two different <span class="hlt">optimization</span> algorithms. The structural parameters to be modified are then chosen with the objective of improving the interaction between the EM solver and the <span class="hlt">optimization</span> process. A simple</p> <div class="credits"> <p class="dwt_author">J. T. Alos; M. Guglielmi</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">103</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1847839"> <span id="translatedtitle">A near <span class="hlt">optimal</span> deblocking <span class="hlt">filter</span> for H.264 advanced video coding</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We propose a near <span class="hlt">optimal</span> hardware architecture for deblocking <span class="hlt">filter</span> in H.264\\/MPEG-4 AVC. We propose a novel <span class="hlt">filtering</span> order and a data reuse strategy that result in significant saving in <span class="hlt">filtering</span> time, local memory usage, and memory traffic. Every 16x16 macroblock requires 192 <span class="hlt">filtering</span> operations. After a few initialization cycles, our 5-stage pipelined architecture is able to perform one <span class="hlt">filtering</span></p> <div class="credits"> <p class="dwt_author">Shen-yu Shih; Cheng-ru Chang; Youn-long Lin</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">104</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009JEI....18d3009A"> <span id="translatedtitle"><span class="hlt">Optimal</span> <span class="hlt">filtering</span> of polyphase-downsampling-based multiple description coded video</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We combine an <span class="hlt">optimal</span> <span class="hlt">filtering</span> approach with a multiple description coding (MDC) approach to enhance the quality of video at the receiver. <span class="hlt">Optimal</span> <span class="hlt">filter</span> coefficients are computed at the encoder and added to each description. At the decoder, <span class="hlt">optimal</span> <span class="hlt">filter</span> coefficients are obtained directly from the bit stream and employed to improve the quality. Experimental results show that the proposed approach enables better MDC performance for video in case of packet losses.</p> <div class="credits"> <p class="dwt_author">Ate?, Ça?lar; Urhan, O?uzhan; Ertürk, Sarp</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">105</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26287979"> <span id="translatedtitle"><span class="hlt">Step-by-step</span> process integration method for the improvements and <span class="hlt">optimization</span> of sodium tripolyphosphate process plant</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Improvement and <span class="hlt">optimization</span> of a complex chemical plant motivated by energy savings is presented in this paper. The reference object of the research is the sodium tripolyphosphate plant in “IHP-Prahovo”, the biggest factory for producing chemical products in Serbia and Montenegro. The research is done by using a <span class="hlt">step-by-step</span> process integration approach, which combines several computer-based simulation\\/<span class="hlt">optimization</span> methodologies. The evaluation</p> <div class="credits"> <p class="dwt_author">Predrag Raskovi?</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">106</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1998JaJAP..37.1010K"> <span id="translatedtitle">Polymer <span class="hlt">Optimization</span> of Pigmented Photoresists for Color <span class="hlt">Filter</span> Production</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The lithographic performance of pigmented photoresists for color <span class="hlt">filter</span> production is affected by the structure of the employed polymer. Four polymers with acrylate backbones and pendant reactive acrylate/methacrylate groups were prepared, and the effects of their molecular weights and acid values on the pixel pattern quality, development time, sensitivity and development mode were elucidated. ECHIPTM, a statistical experimental design program was used for <span class="hlt">optimization</span> studies revealing that the red resist performs best, when polymers with relatively low acid values (<40 mg KOH/g polymer) and high molecular weights >50,000 are used. The green and the blue resists yielded <span class="hlt">optimal</span> patterns at molecular weights in the range of 20,000 30,000 with acid values of about 50 60 mg KOH/g polymer. The sensitivity of resists containing polymers with pendant acryloyl groups is in general higher than that of the corresponding methacryloyl derivatives. Polymers having butyl acrylate-methacrylic acid backbone units showed the highest sensitivity among the polymers investigated. When developed with an <span class="hlt">optimized</span> tetramethyl ammonium hydroxide (TMAH) based developer, resists using polymers with methyl methacrylate units showed peeling type development, while butyl acrylate copolymers effected homogeneous dissolution yielding higher resolution.</p> <div class="credits"> <p class="dwt_author">Kudo, Takanori; Nanjo, Yuki; Nozaki, Yuko; Yamaguchi, Hidemasa; Kang, Wen-Bing; Pawlowski, Georg</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">107</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49829688"> <span id="translatedtitle"><span class="hlt">Optimizing</span> LPC <span class="hlt">filter</span> parameters for multi-pulse excitation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Present LPC analysis procedures assume that the input to the all-pole <span class="hlt">filter</span> is white; the <span class="hlt">filter</span> parameters are obtained by minimizing the mean-squared error between the <span class="hlt">filter</span> output samples and their values obtained by linear prediction on the basis of past output samples. It is well known that these procedures often do not yield accurate <span class="hlt">filter</span> parameters for periodic (or</p> <div class="credits"> <p class="dwt_author">Sharad Singhal; Bishnu S. Atal</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">108</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www-pord.ucsd.edu/~ihoteit/lrkpkf.pdf"> <span id="translatedtitle">A New Approximate Solution of the <span class="hlt">Optimal</span> Nonlinear <span class="hlt">Filter</span> for Data Assimilation in Meteorology and Oceanography</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper introduces a new approximate solution of the <span class="hlt">optimal</span> nonlinear <span class="hlt">filter</span> suitable for nonlinear oceanic and atmospheric data assimilation problems. The method is based on a local linearization in a low-rank kernel representation of the state's probability density function. In the resulting low-rank kernel particle Kalman (LRKPK) <span class="hlt">filter</span>, the standard (weight type) particle <span class="hlt">filter</span> correction is complemented by a</p> <div class="credits"> <p class="dwt_author">I. Hoteit; D.-T. Pham; G. Triantafyllou; G. Korres</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">109</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51131627"> <span id="translatedtitle">An input-balanced realization based adaptive IIR <span class="hlt">filter</span> using particle swarm <span class="hlt">optimization</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this paper, based on input-balanced realizations (IBR) and the particle swarm <span class="hlt">optimization</span> (PSO) technique a novel adaptive IIR <span class="hlt">filter</span> is proposed. This <span class="hlt">filter</span> is derived from the input-balanced realization (IBR) that yields an excellent per- formance against finite precision errors. With such a realization, the stability of the adaptive <span class="hlt">filter</span> can be ensured easily. As well known, the traditional</p> <div class="credits"> <p class="dwt_author">Yue Wang; Gang Li; Liping Chang</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">110</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50217662"> <span id="translatedtitle"><span class="hlt">Optimal</span> design of wide band low loss SAW <span class="hlt">filters</span>, using slanted interdigital transducers</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Slanted finger SAW transducers allow one to design wide band <span class="hlt">filters</span> with excellent characteristics. One of the most interesting modifications of such a <span class="hlt">filter</span> is the slanted SPUDT. We present an approach to the analysis of such <span class="hlt">filters</span> based on consistent use of the Y-matrix instead of the conventional P-matrix. Conditions of <span class="hlt">optimal</span> matching of such SPUDT are obtained and</p> <div class="credits"> <p class="dwt_author">S. M. Balashov; K. H. Baek</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">111</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/66222"> <span id="translatedtitle">FIR <span class="hlt">Filter</span> Design via Spectral Factorization and Convex <span class="hlt">Optimization</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">udio, spectrum shaping, ... ) upper bounds are convex in h; lower bounds are notMagnitude <span class="hlt">filter</span> design problem involves magnitude specsClassical example: lowpass <span class="hlt">filter</span> designlowpass <span class="hlt">filter</span> with maximum stopband attenuation:521\\/51IS()l variables: h C R (<span class="hlt">filter</span> coefficients),52 G R (stopband attenuation) parameters: 51 ( R (logarithmic passband ripple), n (order),Op (passband frequency), Os (stopband frequency)magnitude <span class="hlt">filter</span> design problems are nonconvex can</p> <div class="credits"> <p class="dwt_author">Lieven Vandenberghe; Shao-po Wu; Stephen Boyd</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">112</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1993STIN...9418278D"> <span id="translatedtitle"><span class="hlt">Optimal</span> design of binary phase-only <span class="hlt">filters</span> using genetic algorithms</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The genetic algorithm is a mathematical <span class="hlt">optimization</span> technique which has generally been applied to one-dimensional problems. In this work, the genetic algorithm was applied to a two-dimensional problem--the construction of binary phase-only spatial <span class="hlt">filters</span> for optical pattern recognition. Spatial <span class="hlt">filters</span> that are invariant to range and aspect changes are required for robust pattern recognition. Construction of invariant <span class="hlt">filters</span> is an <span class="hlt">optimization</span> problem where the correlation is the objective function for the genetic algorithm. Results are presented for correlation of a genetic algorithm-constructed <span class="hlt">filter</span> with a multiple aspect angle target set. <span class="hlt">Filters</span> using a hill-climber algorithm were also constructed and tested.</p> <div class="credits"> <p class="dwt_author">Deb, Kalyanmoy</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">113</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50581355"> <span id="translatedtitle">An <span class="hlt">Optimal</span> FIR <span class="hlt">Filter</span> for Linear TIE Models of Local Clocks</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this paper, we present an <span class="hlt">optimal</span> finite impulse response (FIR) <span class="hlt">filter</span> for linear TIE models of local clocks. A comparison with the unbiased FIR <span class="hlt">filter</span> is provided. Estimations are carried out for a local crystal clock using GPS-based sawtooth measurements. As a main conclusion, we notice that an <span class="hlt">optimal</span> solution does not contribute too much to estimation accuracy and</p> <div class="credits"> <p class="dwt_author">Yuriy S. Shmaliy</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">114</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://ajith.softcomputing.net/nabic09_9.pdf"> <span id="translatedtitle">Design of <span class="hlt">Optimal</span> Digital IIR <span class="hlt">Filters</span> by using a Bandwidth Adaptive Harmony Search Algorithm</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Evolutionary <span class="hlt">optimization</span> algorithms have been recently applied to <span class="hlt">optimal</span> digital IIR <span class="hlt">filter</span> design. In this paper, we apply a Bandwidth Adaptive Harmony Search (BAHS) algorithm to the design of 1- dimensional IIR <span class="hlt">filters</span>. Harmony Search is an evolutionary algorithm, which emulates the improvisation process of musicians. We have modified the algorithm by setting the bandwidth equal to the standard deviation</p> <div class="credits"> <p class="dwt_author">Sayan Ghosh; Debarati Kundu; Kaushik Suresh; Swagatam Das; Ajith Abraham</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">115</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50700822"> <span id="translatedtitle">Particle Swarm <span class="hlt">Optimization</span> with Quantum Infusion for the design of digital <span class="hlt">filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this paper, particle swarm <span class="hlt">optimization</span> with quantum infusion (PSO-QI) has been applied for the design of digital <span class="hlt">filters</span>. In PSO-QI, Global best (gbest) particle (in PSO star topology) obtained from particle swarm <span class="hlt">optimization</span> is enhanced by doing a tournament with an offspring produced by quantum behaved PSO, and selecting the winner as the new gbest. <span class="hlt">Filters</span> are designed based</p> <div class="credits"> <p class="dwt_author">Bipul Luitel; Ganesh Kumar Venayagamoorthy</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">116</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1580960"> <span id="translatedtitle">A direct derivation of the <span class="hlt">optimal</span> linear <span class="hlt">filter</span> using the maximum principle</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The purpose of this paper is to present an alternate derivation of <span class="hlt">optimal</span> linear <span class="hlt">filters</span>. The basic technique is the use of a matrix version of the maximum principle of Pontryagin coupled with the use of gradient matrices to derive the <span class="hlt">optimal</span> values of the <span class="hlt">filter</span> coefficients for minimum variance estimation under the requirement that the estimates be unbiased. The</p> <div class="credits"> <p class="dwt_author">M. Athans; E. Tse</p> <p class="dwt_publisher"></p> <p class="publishDate">1967-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">117</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1581200"> <span id="translatedtitle"><span class="hlt">Optimal</span> adaptive <span class="hlt">filter</span> realizations for sample stochastic processes with an unknown parameter</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Techniques are given for realizing <span class="hlt">optimal</span> learning systems for <span class="hlt">filtering</span> a sampled stochastic process in the presence of an unknown constant or time-varying parameter. It is shown how the nonlinear Bayes <span class="hlt">optimal</span> (quadratic sense) adaptive <span class="hlt">filters</span> can be directly realized for continuous parameter spaces by real-time analog systems. Examples are given for both constant and time-varying unknown parameters.</p> <div class="credits"> <p class="dwt_author">C. Hilborn; D. Lainiotis</p> <p class="dwt_publisher"></p> <p class="publishDate">1969-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">118</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26957168"> <span id="translatedtitle"><span class="hlt">Optimal</span> <span class="hlt">filtering</span> with random sensor delay, multiple packet dropout and uncertain observations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper studies the problem of <span class="hlt">optimal</span> <span class="hlt">filtering</span> of discrete-time systems with random sensor delay, multiple packet dropout and uncertain observation. The random sensor delay, multiple packet dropout or uncertainty in observation is transformed to a stochastic parameter in the system representation. A new formulation enables us to design an <span class="hlt">optimal</span> <span class="hlt">filter</span> for a system with multiple packet dropout in</p> <div class="credits"> <p class="dwt_author">M. Sahebsara; T. Chen; S. L. Shah</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">119</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1638130"> <span id="translatedtitle">Continuous-time envelope-constrained <span class="hlt">filter</span> design via Laguerre <span class="hlt">filters</span> and ℋ? <span class="hlt">optimization</span> methods</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The envelope-constrained <span class="hlt">filtering</span> problem is concerned with the design of a time-invariant <span class="hlt">filter</span> to process a given input signal such that the noiseless output of the <span class="hlt">filter</span> is guaranteed to lie within a specified output mask while minimizing the noise gain of the <span class="hlt">filter</span>. An algorithm is developed to solve the continuous-time envelope-constrained <span class="hlt">filter</span> design problem with the ℋ? norm</p> <div class="credits"> <p class="dwt_author">Zhuquan Zang; Antoni Cantoni; Kok Lay Teo</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">120</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/4297560"> <span id="translatedtitle"><span class="hlt">Optimal</span> HMM <span class="hlt">filtering</span> and decision feedback equalisation for differential encoded transmission systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this paper conditional hidden Markov model (HMM) <span class="hlt">filters</span> and conditional Kalman <span class="hlt">filters</span> (KF) are coupled together to improve demodulation of differential encoded signals in noisy fading channels. We present an indicator matrix representation for differential encoded signals and the <span class="hlt">optimal</span> HMM <span class="hlt">filter</span> for demodulation. The <span class="hlt">filter</span> requires O(N<sup>3<\\/sup>) calculations per time iteration, where N is the number of message</p> <div class="credits"> <p class="dwt_author">Jason Ford; John Moore</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_5");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a style="font-weight: bold;">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_7");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_6 div --> <div id="page_7" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_6");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a style="font-weight: bold;">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_8");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">121</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013MNRAS.428..195A"> <span id="translatedtitle">Constraining clumpy dusty torus models using <span class="hlt">optimized</span> <span class="hlt">filter</span> sets</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Recent success in explaining several properties of the dusty torus around the central engine of active galactic nuclei has been gathered with the assumption of clumpiness. The properties of such clumpy dusty tori can be inferred by analysing spectral energy distributions (SEDs), sometimes with scarce sampling given that large aperture telescopes and long integration times are needed to get good spatial resolution and signal. We aim at using the information already present in the data and the assumption of clumpy dusty torus, in particular, the CLUMPY models of Nenkova et al., to evaluate the optimum next observation such that we maximize the constraining power of the new observed photometric point. To this end, we use the existing and barely applied idea of Bayesian adaptive exploration, a mixture of Bayesian inference, prediction and decision theories. The result is that the new photometric <span class="hlt">filter</span> we use is the one that maximizes the expected utility, which we approximate with the entropy of the predictive distribution. In other words, we have to sample where there is larger variability in the SEDs compatible with the data with what we know of the model parameters. We show that Bayesian adaptive exploration can be used to suggest new observations, and ultimately <span class="hlt">optimal</span> <span class="hlt">filter</span> sets, to better constrain the parameters of the clumpy dusty torus models. In general, we find that the region between 10 and 200 ?m produces the largest increase in the expected utility, although sub-mm data from Atacama Large Millimeter Array also prove to be useful. It is important to note that here we are not considering the angular resolution of the data, which is key when constraining torus parameters. Therefore, the expected utilities derived from this methodology must be weighted with the spatial resolution of the data.</p> <div class="credits"> <p class="dwt_author">Asensio Ramos, A.; Ramos Almeida, C.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">122</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/27047918"> <span id="translatedtitle">Entropy-Based <span class="hlt">Optimization</span> of Wavelet Spatial <span class="hlt">Filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A new class of spatial <span class="hlt">filters</span> for surface electromyographic (EMG) signal detection is proposed. These <span class="hlt">filters</span> are based on the 2-D spatial wavelet decomposition of the surface EMG recorded with a grid of electrodes and inverse transformation after zeroing a subset of the transformation coefficients. The <span class="hlt">filter</span> transfer function depends on the selected mother wavelet in the two spatial directions.</p> <div class="credits"> <p class="dwt_author">Dario Farina; Ernest Nlandu Kamavuako; Jian Wu; Francesco Naddeo</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">123</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/14382421"> <span id="translatedtitle">The Asymptotic <span class="hlt">Optimal</span> Frequency Domain <span class="hlt">Filter</span> for Edge Detection</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In an earlier paper by Shanmugam, Dickey, and Green, an edge detection <span class="hlt">filter</span> was derived which maximized the energy within a specified interval about an edge feature. The initial expression of this <span class="hlt">filter</span> involved a prolate spheroidal wave function. However, a careful analysis of the application of an asymptotic approximation to this function uncovered a major dimensional error. The corrected</p> <div class="credits"> <p class="dwt_author">W. H. H. J. Lunscher</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">124</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1613888"> <span id="translatedtitle"><span class="hlt">Optimization</span> of digital <span class="hlt">filters</span> for low roundoff noise</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper treats the problem of minimizing the roundoff noise in digital <span class="hlt">filters</span> using fixed-point arithmetic under sinusoidal input. A basic assumption made is that of representing the roundoff error as white noise that is independent from sample to sample and from source to source. The minimax noise principle is introduced to serve as a guide in the <span class="hlt">filter</span> design</p> <div class="credits"> <p class="dwt_author">W. Lee</p> <p class="dwt_publisher"></p> <p class="publishDate">1974-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">125</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1681492"> <span id="translatedtitle"><span class="hlt">Optimal</span> color <span class="hlt">filters</span> in the presence of noise</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The effect of noise on the number of effective channels (color <span class="hlt">filters</span>) used to record a color image is investigated. Transmittances of color <span class="hlt">filters</span> are calculated that minimize the mean square error that occurs when estimating, from the recorded data, the colors in the image under a collection of viewing illuminants. Since the results indicate that a significant improvement in</p> <div class="credits"> <p class="dwt_author">Michael J. Vrhel; H. Joel Trussell</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">126</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/27507242"> <span id="translatedtitle">Three-Dimensional Micro Propeller Design by Using Efficient Two <span class="hlt">Step</span> <span class="hlt">Optimization</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A practical and efficient <span class="hlt">optimal</span> design procedure is presented for three-dimensional micro-propeller. To manage many design related variables and operating conditions efficiently, the design procedure consists of two <span class="hlt">steps</span> for <span class="hlt">optimization</span> of operating conditions and blade geometries. First, operating condition points are extracted from the design-of-experiments, and provided as the input data of the geometry <span class="hlt">optimization</span> <span class="hlt">step</span>. Next, in the</p> <div class="credits"> <p class="dwt_author">Ki-Hak Lee; Yong-Hee Jeon; Kyu-Hong Kim; Dong-Ho Lee; Kyung-Tae Lee</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">127</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/18579949"> <span id="translatedtitle">Spectral <span class="hlt">filter</span> <span class="hlt">optimization</span> for the recovery of parameters which describe human skin.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">This paper presents a method for finding spectral <span class="hlt">filters</span> that minimize the error associated with histological parameters characterizing normal skin tissue. These parameters can be recovered from digital images of the skin using a physics-based model of skin coloration. The relationship between the image data and histological parameter values is defined as a mapping function from the image space to the parameter space. The accuracy of this function is determined by the choice of optical <span class="hlt">filters</span>. An <span class="hlt">optimization</span> criterion for finding the <span class="hlt">optimal</span> <span class="hlt">filters</span> is defined by combing methodology from differential geometry with statistical error analysis. It is shown that the magnitude of errors associated with the <span class="hlt">optimal</span> <span class="hlt">filters</span> is typically half of that for typical RGB <span class="hlt">filters</span> on a three-parameter model of human skin coloration. Finally, other medical image applications are identified to which this generic methodology could be applied. PMID:18579949</p> <div class="credits"> <p class="dwt_author">Preece, Stephen J; Claridge, Ela</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">128</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50551993"> <span id="translatedtitle">Full wave coupled resonator <span class="hlt">filter</span> <span class="hlt">optimization</span> using a multi-port admittance-matrix</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A <span class="hlt">filter</span> <span class="hlt">optimization</span> strategy based on full wave EM simulations is proposed. With the introduction of additional internal ports in the <span class="hlt">filter</span> model, the multi-port admittance-matrix (Y-matrix) is obtained. The main advantage lies in the fact that the <span class="hlt">filter</span>'s basic parameters, as there are the resonant frequency of each resonator, the coupling coefficients and the external Qs are directly accessible</p> <div class="credits"> <p class="dwt_author">S. Otto; A. Lauer; J. Kassner; A. Rennings</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">129</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50671220"> <span id="translatedtitle"><span class="hlt">Optimized</span> design of digital <span class="hlt">filter</span> in Sigma-Delta A\\/D converter</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A multi-stage digital decimator for sigma-delta analog-to-digital converter with an oversampling ratio of 64 is described. To <span class="hlt">optimize</span> the architecture of the digital <span class="hlt">filters</span> and the circuit implementation, multi-rate multi-stage decimation, half-band <span class="hlt">filter</span> and multiplier sharing are used. The <span class="hlt">filter</span> is designed and simulated using SIMULINK and MATLAB while the hardware realization is obtained using FPGA Xilinx technology. A significant</p> <div class="credits"> <p class="dwt_author">Zhao YigianglXingDongyangl; Xing Dongyang; Zhao Hongliang</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">130</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50117051"> <span id="translatedtitle">A neural network model for CAD and <span class="hlt">optimization</span> of microwave <span class="hlt">filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Improvement of the performance\\/cost ratio for modern microwave <span class="hlt">filters</span> requires manufacturing-oriented design, hence accommodating full-wave tolerance analyses and yield <span class="hlt">optimization</span> which are very computer-insensitive. The use of neural networks for reducing the design effort of microwave <span class="hlt">filters</span>, although still in its infancy, seems to provide a rather promising option. Once properly selected and trained, neural networks can approximate the <span class="hlt">filter</span></p> <div class="credits"> <p class="dwt_author">P. Burrascano; M. Dionigi; C. Fancelli; M. Mongiardo</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">131</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/27090375"> <span id="translatedtitle">Contingency <span class="hlt">Filtering</span> Techniques for Preventive Security-Constrained <span class="hlt">Optimal</span> Power Flow</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper focuses on contingency <span class="hlt">filtering</span> to accelerate the iterative solution of preventive security-constrained <span class="hlt">optimal</span> power flow (PSCOPF) problems. To this end, we propose two novel <span class="hlt">filtering</span> techniques relying on the comparison at an intermediate PSCOPF solution of post-contingency constraint violations among postulated contingencies. We assess these techniques by comparing them with severity index-based <span class="hlt">filtering</span> schemes, on a 60-and a</p> <div class="credits"> <p class="dwt_author">Florin Capitanescu; Mevludin Glavic; Damien Ernst; Louis Wehenkel</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">132</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1427847"> <span id="translatedtitle"><span class="hlt">Optimal</span> simple <span class="hlt">step</span>-stress plan for cumulative exposure model using log-normal distribution</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Optimal</span> times of changing stress level for simple <span class="hlt">step</span>-stress plans under a cumulative exposure model using the log-normal distribution are determined for a wide range of values of the parameters in the model. A table of <span class="hlt">optimal</span> times of changing stress level for various model parameters values is obtained. A formula for <span class="hlt">optimal</span> time of changing stress level is also</p> <div class="credits"> <p class="dwt_author">Abdulla A. Alhadeed; Shie-shien Yang</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">133</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/details.jsp?query_id=0&page=0&ostiID=913143"> <span id="translatedtitle">Method for <span class="hlt">optimizing</span> output in ultrashort-pulse multipass laser amplifiers with selective use of a spectral <span class="hlt">filter</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A method for <span class="hlt">optimizing</span> multipass laser amplifier output utilizes a spectral <span class="hlt">filter</span> in early passes but not in later passes. The pulses shift position slightly for each pass through the amplifier, and the <span class="hlt">filter</span> is placed such that early passes intersect the <span class="hlt">filter</span> while later passes bypass it. The <span class="hlt">filter</span> position may be adjust offline in order to adjust the number of passes in each category. The <span class="hlt">filter</span> may be <span class="hlt">optimized</span> for use in a cryogenic amplifier.</p> <div class="credits"> <p class="dwt_author">Backus, Sterling J. (Erie, CO); Kapteyn, Henry C. (Boulder, CO)</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-07-10</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">134</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1522529"> <span id="translatedtitle">Structured design of a 288-tap FIR <span class="hlt">filter</span> by <span class="hlt">optimized</span> partial product tree compression</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A compact 10-b, 288-tap finite impulse response (FIR) <span class="hlt">filter</span> is designed by adopting structured architecture that employs an <span class="hlt">optimized</span> partial product tree compression method. The new scheme is based on the addition of equally weighted partial products resulted from 288 multiplications of the <span class="hlt">filter</span> coefficients and the inputs. The 288 multiplication and 287 addition operations are decomposed to add 1440</p> <div class="credits"> <p class="dwt_author">Jun Rim Choi; Lak Hyun Jang; Seong Wook Jung; Jin Ho Choi</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">135</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50042911"> <span id="translatedtitle">Structured design of a 288-tap FIR <span class="hlt">filter</span> by <span class="hlt">optimized</span> partial product tree compression</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A compact 10-bit, 288-tap FIR <span class="hlt">filter</span> is designed by adopting structured architecture which employs <span class="hlt">optimized</span> partial product tree compression method. The new architecture is based on the addition of equally weighted partial products which result from 288 multiplications of the <span class="hlt">filter</span> coefficients and the inputs. The 288 multiplication and 287 addition operations are decomposed to add 1440 partial products to</p> <div class="credits"> <p class="dwt_author">Jun Rim Choi; Seong Wook Jeong; Lak Hyun Jang; Jin Ho Choi</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">136</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/4290575"> <span id="translatedtitle">A Diversity Controlled Genetic Algorithm for <span class="hlt">Optimization</span> of FRM Digital <span class="hlt">Filters</span> over DBNS Multiplier Coefficient Space</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper presents a novel diversity controlled (DC) genetic algorithm (GA) for the <span class="hlt">optimization</span> of frequency-response masking (FRM) FIR digital <span class="hlt">filters</span> over the double base number system (DBNS) multiplier coefficient space. The use of DBNS multiplier coefficients reduces the complexity and power consumption in the hardware implementation of the resulting FRM FIR digital <span class="hlt">filters</span>. A direct application of GAs to</p> <div class="credits"> <p class="dwt_author">Sai Mohan Kilambi; Behrouz Nowrouzian</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">137</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50812086"> <span id="translatedtitle"><span class="hlt">Optimization</span> of FIR <span class="hlt">filters</span> in subexpression space with constrained adder depth</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A popular technique in the design of multiplierless FIR <span class="hlt">filters</span> explores the common subexpression sharing when the <span class="hlt">filter</span> coefficients are <span class="hlt">optimized</span>. In these techniques, the coefficient multiplier are realized as a multiplier block (MB) with shared shifters and adders. Many researches showed that the power consumption of a MB is often not simply proportional to the number of adders but</p> <div class="credits"> <p class="dwt_author">Ya Jun Yu; Yong Ching Lim</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">138</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1420578"> <span id="translatedtitle">Speed estimation of an induction motor drive using an <span class="hlt">optimized</span> extended Kalman <span class="hlt">filter</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper presents a novel method to achieve good performance of an extended Kalman <span class="hlt">filter</span> (EKF) for speed estimation of an induction motor drive. A real-coded genetic algorithm (GA) is used to <span class="hlt">optimize</span> the noise covariance and weight matrices of the EKF, thereby ensuring <span class="hlt">filter</span> stability and accuracy in speed estimation. Simulation studies on a constant V\\/Hz controller and a</p> <div class="credits"> <p class="dwt_author">K. L. Shi; T. F. Chan; Y. K. Wong; S. L. Ho</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">139</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/391698"> <span id="translatedtitle">Designing <span class="hlt">optimal</span> spatial <span class="hlt">filters</span> for single-trial EEG classification in a movement task</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We devise spatial <span class="hlt">filters</span> for multi-channel EEG that lead to signals which discriminate <span class="hlt">optimally</span> between two conditions. We demonstrate the effectiveness of this method by classifying single-trial EEGs, recorded during preparation for movements of left or right index finger or right foot. Best classification rates for 3 subjects were 94%, 90% and 84%, respectively. The <span class="hlt">filters</span> are estimated from a</p> <div class="credits"> <p class="dwt_author">Johannes Müller-gerking; Gert Pfurtscheller; Henrik Flyvbjerg</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">140</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ijcas.org/admin/paper/files/IJCAS_v6_n3_pp.378-385.pdf"> <span id="translatedtitle"><span class="hlt">Optimal</span> <span class="hlt">Filtering</span> for Linear Discrete-Time Systems with Single Delayed Measurement</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper aims to present a polynomial approach to the steady-state <span class="hlt">optimal</span> <span class="hlt">filtering</span> for delayed systems. The design of the steady-state <span class="hlt">filter</span> involves solving one polynomial equation and one spectral factorization. The key problem in this paper is the derivation of spectral factorization for systems with delayed measurement, which is more difficult than the standard systems without delays. To get</p> <div class="credits"> <p class="dwt_author">Hong-Guo Zhao; Huan-Shui Zhang; Cheng-Hui Zhang; Xin-Min Song</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_6");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a style="font-weight: bold;">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_8");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_7 div --> <div id="page_8" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_7");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a style="font-weight: bold;">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_9");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">141</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/4775710"> <span id="translatedtitle"><span class="hlt">Optimal</span> and self-tuning weighted measurement fusion Wiener <span class="hlt">filter</span> for the multisensor multichannel ARMA signals</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">For the multisensor multichannel autoregressive moving average (ARMA) signals with white measurement noises, using the modern time series analysis method, based on the ARMA innovation models, white noise estimators, and measurement predictors, an <span class="hlt">optimal</span> weighted measurement fusion Wiener <span class="hlt">filter</span> is presented by the weighted least squares (WLS) method. It can handle the fused <span class="hlt">filtering</span>, smoothing and prediction problems in a</p> <div class="credits"> <p class="dwt_author">Xiao-jun Sun; Zi-li Deng</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">142</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51150265"> <span id="translatedtitle"><span class="hlt">Optimization</span> of wide-bandpass <span class="hlt">filter</span> within the Terahertz frequency regime</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Passband <span class="hlt">filters</span> in the THz frequency range devices are one the most useful application of metamaterials to cover the so called THz gap. A design procedure to obtain THz <span class="hlt">filters</span> with a broad transmission bandwidth is proposed. We apply the powerful and versatile Periodic Method of Moment (PMM) to evaluate the response of the metamaterial. The design is <span class="hlt">optimized</span> by</p> <div class="credits"> <p class="dwt_author">S. Genovesi; T.-J. Yen; A. Monorchio; E. Prati; Y.-J. Chiang; F. Costa</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">143</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50146680"> <span id="translatedtitle"><span class="hlt">Optimal</span> design of real and complex minimum phase digital FIR <span class="hlt">filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We present a generalized <span class="hlt">optimal</span> minimum phase digital FIR <span class="hlt">filter</span> design algorithm that supports (1) arbitrary magnitude response specifications, (2) high coefficient accuracy, and (3) real and complex <span class="hlt">filters</span>. The algorithm uses the discrete Hilbert transform relationship between the magnitude spectrum of a causal real sequence and its minimum phase delay phase spectrum given by Cizek (1970). We extend the</p> <div class="credits"> <p class="dwt_author">N. Damera-Venkata; Brian L. Evans</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">144</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22319301"> <span id="translatedtitle"><span class="hlt">Optimal</span> <span class="hlt">filters</span> with multiple packet losses and its application in wireless sensor networks.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">This paper is concerned with the <span class="hlt">filtering</span> problem for both discrete-time stochastic linear (DTSL) systems and discrete-time stochastic nonlinear (DTSN) systems. In DTSL systems, an linear <span class="hlt">optimal</span> <span class="hlt">filter</span> with multiple packet losses is designed based on the orthogonal principle analysis approach over unreliable wireless sensor networks (WSNs), and the experience result verifies feasibility and effectiveness of the proposed linear <span class="hlt">filter</span>; in DTSN systems, an extended minimum variance <span class="hlt">filter</span> with multiple packet losses is derived, and the <span class="hlt">filter</span> is extended to the nonlinear case by the first order Taylor series approximation, which is successfully applied to unreliable WSNs. An application example is given and the corresponding simulation results show that, compared with extended Kalman <span class="hlt">filter</span> (EKF), the proposed extended minimum variance <span class="hlt">filter</span> is feasible and effective in WSNs. PMID:22319301</p> <div class="credits"> <p class="dwt_author">Liu, Yonggui; Xu, Bugong; Feng, Linfang; Li, Shanbin</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-04-06</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">145</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/15524032"> <span id="translatedtitle">3 <span class="hlt">steps</span> for <span class="hlt">optimizing</span> self-pay outsourcing.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Just because you outsource your self-pay receivables doesn't mean a dramatic improvement in return is inevitable. For <span class="hlt">optimal</span> results, providers need to be actively involved in the process by carefully screening the vendor, coordinating activities to allow for a seamless transition, and implementing a system that accurately and continually tracks results. PMID:15524032</p> <div class="credits"> <p class="dwt_author">Seman, Maria H; Guyton, Elizabeth M</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">146</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2000SPIE.4115..302S"> <span id="translatedtitle"><span class="hlt">Optimal</span> <span class="hlt">filter</span> in the frequency-time mixed domain to extract moving object</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">There are same occasions to extract the moving object from image sequence in the region of remote sensing, robot vision and so on. The process needs to have high accurate extraction and simpler realization. In this paper, we propose the design method of the <span class="hlt">optimal</span> <span class="hlt">filter</span> in the frequency-time mixed domain. Frequency selective <span class="hlt">filter</span> to dynamic images usually are designed in 3-D frequency domain. But, design method of the <span class="hlt">filter</span> is difficult because of its high parameter degree. By the use of frequency-time mixed domain(MixeD) which constitutes of 2-D frequency domain and 1-D time domain, design of <span class="hlt">filters</span> becomes easier. But usually the desired and noise frequency component of image tend to concentrate near the origin in the frequency domain. Therefore, conventional frequency selective <span class="hlt">filters</span> are difficult to distinguish these. We propose the <span class="hlt">optimal</span> <span class="hlt">filter</span> in the MixeD in the sense of least mean square error. First of all, we apply 2-D spatial Fourier to dynamic images, and at each point in 2-D frequency domain, designed FIR <span class="hlt">filtering</span> is applied to 1-D time signal. In designing the <span class="hlt">optimal</span> <span class="hlt">filter</span>, we use the following information to decide the characteristics of the <span class="hlt">optimal</span> <span class="hlt">filter</span>. (1) The number of finite frames of input images. (2) The velocity vector of the signal desired. (3) The power spectrum of the noise signal. Signals constructed by these information are applied for the evaluation function and it decides <span class="hlt">filter</span> coefficients. After <span class="hlt">filtering</span>, 2-D inverse Fourier transform is applied to obtain the extracted image.</p> <div class="credits"> <p class="dwt_author">Shinmura, Hideyuki; Hiraoka, Kazuhiro; Hamada, Nozomu</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">147</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1451862"> <span id="translatedtitle"><span class="hlt">Optimal</span> mismatched <span class="hlt">filter</span> design for radar ranging, detection, and resolution</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In a multiple-target environment a radar signal processor often uses weighting <span class="hlt">filters</span> that are not matched to the transmitted waveform. In this paper the mean-square range-estimation error, the detection Signal-to-noise ratio (SNR), and the effects of sidelobes are expressed in terms of the impulse response of an arbitrary mismatched <span class="hlt">filter</span>. It is desired to find that impulse response that results</p> <div class="credits"> <p class="dwt_author">ROBERT J. McAULAY; J. Johnson</p> <p class="dwt_publisher"></p> <p class="publishDate">1971-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">148</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1994SPIE.2308..963W"> <span id="translatedtitle">Design of gain-<span class="hlt">optimized</span> perfect reconstruction regular lattice <span class="hlt">filter</span> banks</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This paper considers perfect reconstruction lattice <span class="hlt">filter</span> banks. When <span class="hlt">optimizing</span> for coding gain the purpose is to find a simple perfect reconstruction structure with few multiplication and reasonable gain. We present such a system which also possesses a certain regularity when expanding from N to 2N channels. Results including both obtained gain and the number of <span class="hlt">filter</span> multiplications and <span class="hlt">filter</span> magnitude responses are presented. The results show that the system gives strange <span class="hlt">filter</span> responses, but good coding gain considering the number of multiplications.</p> <div class="credits"> <p class="dwt_author">Waldemar, Patrick; Ramstad, Tor A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">149</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23757586"> <span id="translatedtitle">Distributed <span class="hlt">Optimal</span> Consensus <span class="hlt">Filter</span> for Target Tracking in Heterogeneous Sensor Networks.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">This paper is concerned with the problem of <span class="hlt">filter</span> design for target tracking over sensor networks. Different from most existing works on sensor networks, we consider the heterogeneous sensor networks with two types of sensors different on processing abilities (denoted as type-I and type-II sensors, respectively). However, questions of how to deal with the heterogeneity of sensors and how to design a <span class="hlt">filter</span> for target tracking over such kind of networks remain largely unexplored. We propose in this paper a novel distributed consensus <span class="hlt">filter</span> to solve the target tracking problem. Two criteria, namely, unbiasedness and <span class="hlt">optimality</span>, are imposed for the <span class="hlt">filter</span> design. The so-called sequential design scheme is then presented to tackle the heterogeneity of sensors. The minimum principle of Pontryagin is adopted for type-I sensors to <span class="hlt">optimize</span> the estimation errors. As for type-II sensors, the Lagrange multiplier method coupled with the generalized inverse of matrices is then used for <span class="hlt">filter</span> <span class="hlt">optimization</span>. Furthermore, it is proven that convergence property is guaranteed for the proposed consensus <span class="hlt">filter</span> in the presence of process and measurement noise. Simulation results have validated the performance of the proposed <span class="hlt">filter</span>. It is also demonstrated that the heterogeneous sensor networks with the proposed <span class="hlt">filter</span> outperform the homogenous counterparts in light of reduction in the network cost, with slight degradation of estimation performance. PMID:23757586</p> <div class="credits"> <p class="dwt_author">Zhu, Shanying; Chen, Cailian; Li, Wenshuang; Yang, Bo; Guan, Xinping</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-03-20</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">150</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PASP..125..838P"> <span id="translatedtitle">An Efficient and <span class="hlt">Optimal</span> <span class="hlt">Filter</span> for Identifying Point Sources in Millimeter/Submillimeter Wavelength Sky Maps</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A new technique for reliably identifying point sources in millimeter/submillimeter wavelength maps is presented. This method accounts for the frequency dependence of noise in the Fourier domain as well as nonuniformities in the coverage of a field. This <span class="hlt">optimal</span> <span class="hlt">filter</span> is an improvement over commonly-used matched <span class="hlt">filters</span> that ignore coverage gradients. Treating noise variations in the Fourier domain as well as map space is traditionally viewed as a computationally intensive problem. We show that the penalty incurred in terms of computing time is quite small due to casting many of the calculations in terms of FFTs and exploiting the absence of sharp features in the noise spectra of observations. Practical aspects of implementing the <span class="hlt">optimal</span> <span class="hlt">filter</span> are presented in the context of data from the AzTEC bolometer camera. The advantages of using the new <span class="hlt">filter</span> over the standard matched <span class="hlt">filter</span> are also addressed in terms of a typical AzTEC map.</p> <div class="credits"> <p class="dwt_author">Perera, T. A.; Wilson, G. W.; Scott, K. S.; Austermann, J. E.; Schaar, J. R.; Mancera, A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">151</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1992agcp.agar.....A"> <span id="translatedtitle">Multivariable frequency response methods for <span class="hlt">optimal</span> Kalman-Bucy <span class="hlt">filters</span> with applications to radar tracking systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The problem of multi-output, infinite-time, linear time-invariant <span class="hlt">optimal</span> Kalman-Bucy <span class="hlt">filter</span> both in continuous and discrete-time cases in frequency domain is addressed. A simple new algorithm is given for the analytical solution to the steady-state gain of the optimum <span class="hlt">filter</span> based on a transfer function approach. The algorithm is based on spectral factorization of observed spectral density matrix of the <span class="hlt">filter</span> which generates directly the return-difference matrix of the <span class="hlt">optimal</span> <span class="hlt">filter</span>. The method is more direct than by algebraic Riccati equation solution and can easily be implemented on digital computer. The design procedure is illustrated by examples and closed-form solution of ECV and ECA radar tracking <span class="hlt">filters</span> are considered as an application of the method.</p> <div class="credits"> <p class="dwt_author">Arcasoy, C. C.</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">152</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/610743"> <span id="translatedtitle"><span class="hlt">Optimized</span> <span class="hlt">filtering</span> of regional and teleseismic seismograms: results of maximizing SNR measurements from the wavelet transform and <span class="hlt">filter</span> banks</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Development of a worldwide network to monitor seismic activity requires deployment of seismic sensors in areas which have not been well studied or may have from available recordings. Development and testing of detection and discrimination algorithms requires a robust representative set of calibrated seismic events for a given region. Utilizing events with poor signal-to-noise (SNR) can add significant numbers to usable data sets, but these events must first be adequately <span class="hlt">filtered</span>. Source and path effects can make this a difficult task as <span class="hlt">filtering</span> demands are highly varied as a function of distance, event magnitude, bearing, depth etc. For a given region, conventional methods of <span class="hlt">filter</span> selection can be quite subjective and may require intensive analysis of many events. In addition, <span class="hlt">filter</span> parameters are often overly generalized or contain complicated switching. We have developed a method to provide an <span class="hlt">optimized</span> <span class="hlt">filter</span> for any regional or teleseismically recorded event. Recorded seismic signals contain arrival energy which is localized in frequency and time. Localized temporal signals whose frequency content is different from the frequency content of the pre-arrival record are identified using rms power measurements. The method is based on the decomposition of a time series into a set of time series signals or scales. Each scale represents a time-frequency band with a constant Q. SNR is calculated for a pre-event noise window and for a window estimated to contain the arrival. Scales with high SNR are used to indicate the band pass limits for the <span class="hlt">optimized</span> <span class="hlt">filter</span>.The results offer a significant improvement in SNR particularly for low SNR events. Our method provides a straightforward, <span class="hlt">optimized</span> <span class="hlt">filter</span> which can be immediately applied to unknown regions as knowledge of the geophysical characteristics is not required. The <span class="hlt">filtered</span> signals can be used to map the seismic frequency response of a region and may provide improvements in travel-time picking, bearing estimation regional characterization, and event detection. Results are shown for a set of low SNR events as well as 92 regional and teleseismic events in the Middle East.</p> <div class="credits"> <p class="dwt_author">Leach, R.R.; Schultz, C.; Dowla, F.</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-07-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">153</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/4722816"> <span id="translatedtitle">A novel technique for the design and DCGA <span class="hlt">optimization</span> of bilinear-LDI lattice-based digital IF <span class="hlt">filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Intermediate frequency (IF) <span class="hlt">filters</span> find diverse practical applications in modern communication systems. This paper presents a novel technique for the design and <span class="hlt">optimization</span> of digital IF <span class="hlt">filters</span>. This technique consists of two separate stages. In the first stage, the bilinear-LDI lattice digital <span class="hlt">filter</span> realization approach is exploited and applied to the design of an infinite- precision digital IF <span class="hlt">filter</span> responsible</p> <div class="credits"> <p class="dwt_author">Yifan Wu; Behrouz Nowrouzian</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">154</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50556810"> <span id="translatedtitle"><span class="hlt">Optimized</span> Resonant Control for Shunt Active Power <span class="hlt">Filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper presents an <span class="hlt">optimization</span> technique of the resonant controller based on the minimization of an objective function through the Nelder-Mead method. This function allows to evaluate the behavior of the system in steady state and transient conditions. The <span class="hlt">optimized</span> controller has been compared with the Naslin polynomial based one. The results show that by means of the <span class="hlt">optimization</span> technique</p> <div class="credits"> <p class="dwt_author">Antonio Dell'Aquila; Maria Marinelli; Vito Giuseppe Monopoli; Agostino Lecci</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">155</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009ApPhL..95z1101Y"> <span id="translatedtitle">Design of one-dimensional optical pulse-shaping <span class="hlt">filters</span> by time-domain topology <span class="hlt">optimization</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Time-domain topology <span class="hlt">optimization</span> is used here to design optical pulse-shaping <span class="hlt">filters</span> in Si/SiO2 thin-film systems. A novel envelope objective function as well as explicit penalization are used to adapt the <span class="hlt">optimization</span> method to this unique class of design problems.</p> <div class="credits"> <p class="dwt_author">Yang, Lirong; Lavrinenko, Andrei V.; Hvam, Jørn M.; Sigmund, Ole</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">156</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1640542"> <span id="translatedtitle">GSVD-based <span class="hlt">optimal</span> <span class="hlt">filtering</span> for single and multimicrophone speech enhancement</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A generalized singular value decomposition (GSVD) based algorithm is proposed for enhancing multimicrophone speech signals degraded by additive colored noise. This GSVD-based multimicrophone algorithm can be considered to be an extension of the single-microphone signal subspace algorithms for enhancing noisy speech signals and amounts to a specific <span class="hlt">optimal</span> <span class="hlt">filtering</span> problem when the desired response signal cannot be observed. The <span class="hlt">optimal</span></p> <div class="credits"> <p class="dwt_author">Simon Doclo; Marc Moonen</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">157</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50850358"> <span id="translatedtitle">Particle Swarm <span class="hlt">Optimization</span> Aided Kalman <span class="hlt">Filter</span> for Object Tracking</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Object tracking aims to detect the path of objects moving randomly by obtaining input from a series of images. Automatic detection and tracking of object is an interesting area of research for defence related applications like missile tracking, security systems and commercial fields like virtual reality interfaces, robot vision etc., Kalman <span class="hlt">filter</span> tracks the object by assuming the initial state</p> <div class="credits"> <p class="dwt_author">Nimmakayala Ramakoti; Ari Vinay; Ravi Kumar Jatoth</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">158</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.cs.tut.fi/~bogdand/Recent_work/iir_eus.pdf"> <span id="translatedtitle">ON CONVEX STABILITY DOMAIN AND <span class="hlt">OPTIMIZATION</span> OF IIR <span class="hlt">FILTERS</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We discuss descriptions of convex domains containing Schur polynomials, built around a given Schur polynomial. We show that the domain described by a positive realness constraint always contains the domain characterized by Rouche's theorem. We also show how to handle computa- tionally the positive realness condition, using semidefinite programming, in the context of designing stable IIR <span class="hlt">filters</span>. Two recent methods</p> <div class="credits"> <p class="dwt_author">Bogdan Dumitrescu</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">159</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1646919"> <span id="translatedtitle">On-road vehicle detection using evolutionary Gabor <span class="hlt">filter</span> <span class="hlt">optimization</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Past work on vehicle detection has emphasized the issues of feature extraction and classification, however, less attention has been given on the critical issue of feature selection. The focus of this paper is on improving the performance of on-road vehicle detection by employing a set of Gabor <span class="hlt">filters</span> that have been specifically customized for the problem of vehicle detection. The</p> <div class="credits"> <p class="dwt_author">Zehang Sun; George Bebis; Ronald Miller</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">160</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1427740"> <span id="translatedtitle"><span class="hlt">Optimal</span> simple <span class="hlt">step</span>-stress plan for Khamis-Higgins model</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Optimal</span> times of changing stress-level for the simple <span class="hlt">step</span>-stress plans under the Khamis-Higgins model (an alternative to the Weibull <span class="hlt">step</span>-stress model) are determined for a wide range of values of the model parameters. The applicability of the \\</p> <div class="credits"> <p class="dwt_author">Abdulla A. Alhadeed; Shie-Shien Yang</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_7");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a style="font-weight: bold;">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_9");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_8 div --> <div id="page_9" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_8");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a style="font-weight: bold;">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_10");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">161</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/u84013w08647353q.pdf"> <span id="translatedtitle">Vibration reduction in a <span class="hlt">step</span> motor using <span class="hlt">optimal</span> control time intervals and amplitudes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Summary This paper deals with the <span class="hlt">optimal</span> vibration elimination technique and the experimental demonstration of a cylindrical linear <span class="hlt">step</span> motor dynamic behavior. Electrical, mechanical and magnetic motion equations are used to analyze the system behavior, employing a general-purpose method and finite element method. The oscillatory transient region of the <span class="hlt">step</span> response and the inertial effect of the mover are investigated.</p> <div class="credits"> <p class="dwt_author">S. S. Gürleyük</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">162</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3482905"> <span id="translatedtitle"><span class="hlt">Optimally</span> designed narrowband guided-mode resonance reflectance <span class="hlt">filters</span> for mid-infrared spectroscopy</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">An alternative to the well-established Fourier transform infrared (FT-IR) spectrometry, termed discrete frequency infrared (DFIR) spectrometry, has recently been proposed. This approach uses narrowband mid-infrared reflectance <span class="hlt">filters</span> based on guided-mode resonance (GMR) in waveguide gratings, but <span class="hlt">filters</span> designed and fabricated have not attained the spectral selectivity (? 32 cm?1) commonly employed for measurements of condensed matter using FT-IR spectroscopy. With the incorporation of dispersion and optical absorption of materials, we present here <span class="hlt">optimal</span> design of double-layer surface-relief silicon nitride-based GMR <span class="hlt">filters</span> in the mid-IR for various narrow bandwidths below 32 cm?1. Both shift of the <span class="hlt">filter</span> resonance wavelengths arising from the dispersion effect and reduction of peak reflection efficiency and electric field enhancement due to the absorption effect show that the optical characteristics of materials must be taken into consideration rigorously for accurate design of narrowband GMR <span class="hlt">filters</span>. By incorporating considerations for background reflections, the <span class="hlt">optimally</span> designed GMR <span class="hlt">filters</span> can have bandwidth narrower than the designed <span class="hlt">filter</span> by the antireflection equivalence method based on the same index modulation magnitude, without sacrificing low sideband reflections near resonance. The reported work will enable use of GMR <span class="hlt">filters</span>-based instrumentation for common measurements of condensed matter, including tissues and polymer samples.</p> <div class="credits"> <p class="dwt_author">Liu, Jui-Nung; Schulmerich, Matthew V.; Bhargava, Rohit; Cunningham, Brian T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">163</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.wseas.us/e-library/conferences/tenerife2001/papers/629.pdf"> <span id="translatedtitle"><span class="hlt">Optimizing</span> Data Measurements at Test Beds Using Multi-<span class="hlt">Step</span> Genetic Algorithms</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Series of measurements should be planned carefully in order to reduce the costs and to allow an ecient execution at measuring devices. For this planning process, we present a multi-<span class="hlt">step</span> <span class="hlt">optimization</span> method using genetic algorithms. As a concrete application, we arrange a set of Design of Experiment measuring points appearing during the calibration of combustion engines in an <span class="hlt">optimal</span> way.</p> <div class="credits"> <p class="dwt_author">K. KN; J. POLAND; A. MITTERERÉ; A. ZELL; Tubingen Sand</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">164</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/56996123"> <span id="translatedtitle">A <span class="hlt">step</span> towards high quality one-class Collaborative <span class="hlt">Filtering</span> using online social relationships</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Current available recommender systems mostly predict the target user's preferences using the traditional method, Collaborative <span class="hlt">Filtering</span> (CF), which relies on people who share similar interests with the target user. Unfortunately, CF may lead to an invalid recommendation due to the lack of explicit feedback or item ratings from users in the real-world systems. One-class Collaborative <span class="hlt">Filtering</span> (OCCF) became more realistic</p> <div class="credits"> <p class="dwt_author">Sirawit Sopchoke; Boonserm Kijsirikul</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">165</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49886967"> <span id="translatedtitle">Time-<span class="hlt">optimal</span> acceleration control and point-to-point of <span class="hlt">step</span> motors</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The time-<span class="hlt">optimal</span> acceleration (free-end-velocity) control problem and the time-<span class="hlt">optimal</span> point-to-point move (zero-end-velocity) control problem for a bifilar-wound hybrid <span class="hlt">step</span> motor are discussed. The necessary conditions for the <span class="hlt">optimal</span> controls are derived from motor, load, and driver circuit models using Pontryagin's minimum principle. A reduced-order relaxation method, involving forward\\/backward integrations, for finding the solutions to the nonlinear two-point boundary value problems</p> <div class="credits"> <p class="dwt_author">Ronald H. Brown; Yan Zhu; Xin Feng</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">166</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009IJTFM.129..681T"> <span id="translatedtitle">Multi-Resonator Generation by Genetic <span class="hlt">Optimization</span> for Application to Planar-Circuit Bandpass <span class="hlt">Filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This paper proposes a design method of arbitrarily-shaped bandpass <span class="hlt">filters</span> with multiple resonators in the limited space. Although the proposed method is based on the genetic-algorithm (GA) <span class="hlt">optimization</span>, we newly introduce the fitness function which estimates not only the magnitude of S-parameters but also the phase characteristics in a passband. Conventional GAs without phase evaluation are difficult to design a <span class="hlt">filter</span> having the specified number of resonators efficiently, whereas the present method can easily construct such a <span class="hlt">filter</span>. As an example, arbitrarily-shaped planar-circuit <span class="hlt">filters</span> with 3 and 4 resonators are <span class="hlt">optimized</span> in the limited space and fabricated. The effectiveness of the present technique is verified by comparison of frequency responses between the calculated and the measured results.</p> <div class="credits"> <p class="dwt_author">Tsuji, Mikio; Deguchi, Hiroyuki; Kido, Akinori; Ohira, Masataka</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">167</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/19529515"> <span id="translatedtitle">Design of multichannel DWDM fiber Bragg grating <span class="hlt">filters</span> by Lagrange multiplier constrained <span class="hlt">optimization</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We present the synthesis of multi-channel fiber Bragg grating (MCFBG) <span class="hlt">filters</span> for dense wavelength-division-multiplexing (DWDM) application by using a simple <span class="hlt">optimization</span> approach based on a Lagrange multiplier <span class="hlt">optimization</span> (LMO) method. We demonstrate for the first time that the LMO method can be used to constrain various parameters of the designed MCFBG <span class="hlt">filters</span> for practical application demands and fabrication requirements. The designed <span class="hlt">filters</span> have a number of merits, i.e., flat-top and low dispersion spectral response as well as single stage. Above all, the maximum amplitude of the index modulation profiles of the designed MCFBGs can be substantially reduced under the applied constrained condition. The simulation results demonstrate that the LMO algorithm can provide a potential alternative for complex fiber grating <span class="hlt">filter</span> design problems. PMID:19529515</p> <div class="credits"> <p class="dwt_author">Lee, Cheng-Ling; Lee, Ray-Kuang; Kao, Yee-Mou</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-11-13</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">168</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007SPIE.6732E..24S"> <span id="translatedtitle"><span class="hlt">Optimization</span> of the fine structure and flow behavior of anisotropic porous <span class="hlt">filters</span>, synthesized by SLS method</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The main goal of the work was <span class="hlt">optimization</span> of the phase and porous fine structures of <span class="hlt">filter</span> elements and subsequent laser synthesis by the method layer-by-layer Selective Laser Sintering (SLS) of functional devices, exploration of their properties and requirements of synthesis. Common methodical approaches are developed by the searching <span class="hlt">optimal</span> requirements of layer-by-layer synthesis usable to different powder compositions and concrete guidelines (conditions of sintering, powder composition, etc.) for SLS of <span class="hlt">filter</span> elements (including anisotropic) from metal-polymer powder mixture - brass + polycarbonate{PC} = 6:1. As a result of numerical simulations it designed an original graph - numerical procedure and represented a computer program for definition of flow <span class="hlt">filter</span> performances, as homogeneous (isotropic) as heterogeneous (anisotropic), having the cylindrical shape. Calculation of flow behavior for anisotropic <span class="hlt">filter</span> elements allows predicting their future applications and managing its.</p> <div class="credits"> <p class="dwt_author">Shishkovsky, I.; Sherbakov, V.; Pitrov, A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">169</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/39928549"> <span id="translatedtitle">On <span class="hlt">optimal</span> <span class="hlt">filtering</span> of GPS dual frequency observations without using orbit information</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The concept of <span class="hlt">optimal</span> <span class="hlt">filtering</span> of observations collected with a dual frequency GPS P-code receiver is investigated in comparison\\u000a to an approach for C\\/A-code units. The <span class="hlt">filter</span> presented here uses only data gathered between one receiver and one satellite.\\u000a The estimated state vector consists of a one-way pseudorange, ionospheric influence, and ambiguity biases. Neither orbit information\\u000a nor station information is</p> <div class="credits"> <p class="dwt_author">Hans-Juergen Eueler; Clyde C. Goad</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">170</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/27097768"> <span id="translatedtitle">Compact and Low Loss Dual-Band Bandpass <span class="hlt">Filter</span> Using Pseudo-Interdigital <span class="hlt">Stepped</span> Impedance Resonators for WLANs</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this letter, pseudo-interdigital <span class="hlt">stepped</span> impedance resonators (PI-SIRs) are used to design the bandpass <span class="hlt">filter</span> (BPF) with dual-band response. By tuning the impedance ratio (K) and physical length of SIRs, the BPF has good dual-passband performances at 2.4\\/5.2GHz and high isolation between the two passbands. It is shown that the dual-band BPF has a smaller area and lower insertion loss</p> <div class="credits"> <p class="dwt_author">Min-Hang Weng; Hung-Wei Wu; Yan-Kuin Su</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">171</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=DE84701882"> <span id="translatedtitle">Time Resolution of Liquid Argon Detectors. Part 1. <span class="hlt">Optimal</span> <span class="hlt">Filter</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A study was made on the dependence of time resolution of liquid argon ionization chamber on electronic circuit parameters, energy losses in chamber gap, detector capacity and Ar purity. The technique for evaluating <span class="hlt">optimal</span> filtration of signals is present...</p> <div class="credits"> <p class="dwt_author">R. N. Krasnokutskij N. N. Fedyakin R. S. Shuvalov</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">172</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22345542"> <span id="translatedtitle">Design of almost symmetric orthogonal wavelet <span class="hlt">filter</span> bank via direct <span class="hlt">optimization</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">It is a well-known fact that (compact-support) dyadic wavelets [based on the two channel <span class="hlt">filter</span> banks (FBs)] cannot be simultaneously orthogonal and symmetric. Although orthogonal wavelets have the energy preservation property, biorthogonal wavelets are preferred in image processing applications because of their symmetric property. In this paper, a novel method is presented for the design of almost symmetric orthogonal wavelet FB. Orthogonality is structurally imposed by using the unnormalized lattice structure, and this leads to an objective function, which is relatively simple to <span class="hlt">optimize</span>. The designed <span class="hlt">filters</span> have good frequency response, flat group delay, almost symmetric <span class="hlt">filter</span> coefficients, and symmetric wavelet function. PMID:22345542</p> <div class="credits"> <p class="dwt_author">Murugesan, Selvaraaju; Tay, David B H</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-02-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">173</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009spip.conf..193S"> <span id="translatedtitle">Designing Linear Phase FIR <span class="hlt">Filters</span> with Particle Swarm <span class="hlt">Optimization</span> and Harmony Search</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In recent years, evolutionary methods have shown great success in solving many combinatorial <span class="hlt">optimization</span> problems such as FIR (Finite Impulse Response) <span class="hlt">filter</span> design. An ordinary method in FIR <span class="hlt">filter</span> design problem is Parks-McClellan, which is both difficult to implement and computationally expensive. The goal of this paper is to design a near <span class="hlt">optimal</span> linear phase FIR <span class="hlt">filter</span> using two recent evolutionary approaches; Particle Swarm <span class="hlt">Optimization</span> (PSO) and Harmony Search (HS). These methods are robust, easy to implement, and they would not trap in local optima due to their stochastic behavior. In addition, they have distinguishing features such as less variance error and smaller overshoots in both stop and pass bands. To prove these benefits, two case studies are presented and obtained results are compared with previous implementations. In both cases, better and reliable results are achieved.</p> <div class="credits"> <p class="dwt_author">Shirvani, Abdolreza; Khezri, Kaveh; Razzazi, Farbod; Lucas, Caro</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">174</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/15603077"> <span id="translatedtitle">Two-stage hybrid <span class="hlt">optimization</span> of fiber Bragg gratings for design of linear phase <span class="hlt">filters</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We present a new hybrid <span class="hlt">optimization</span> method for the synthesis of fiber Bragg gratings (FBGs) with complex characteristics. The hybrid <span class="hlt">optimization</span> method is a two-tier search that employs a global <span class="hlt">optimization</span> algorithm [i.e., the tabu search (TS) algorithm] and a local <span class="hlt">optimization</span> method (i.e., the quasi-Netwon method). First the TS global <span class="hlt">optimization</span> algorithm is used to find a "promising" FBG structure that has a spectral response as close as possible to the targeted spectral response. Then the quasi-Newton local <span class="hlt">optimization</span> method is applied to further <span class="hlt">optimize</span> the FBG structure obtained from the TS algorithm to arrive at a targeted spectral response. A dynamic mechanism for weighting of different requirements of the spectral response is employed to enhance the <span class="hlt">optimization</span> efficiency. To demonstrate the effectiveness of the method, the synthesis of three linear-phase optical <span class="hlt">filters</span> based on FBGs with different grating lengths is described. PMID:15603077</p> <div class="credits"> <p class="dwt_author">Zheng, Rui Tao; Ngo, Nam Quoc; Le Binh, Nguyen; Tjin, Swee Chuan</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">175</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004JOSAA..21.2399Z"> <span id="translatedtitle">Two-stage hybrid <span class="hlt">optimization</span> of fiber Bragg gratings for design of linear phase <span class="hlt">filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present a new hybrid <span class="hlt">optimization</span> method for the synthesis of fiber Bragg gratings (FBGs) with complex characteristics. The hybrid <span class="hlt">optimization</span> method is a two-tier search that employs a global <span class="hlt">optimization</span> algorithm [i.e., the tabu search (TS) algorithm] and a local <span class="hlt">optimization</span> method (i.e., the quasi-Netwon method). First the TS global <span class="hlt">optimization</span> algorithm is used to find a ``promising'' FBG structure that has a spectral response as close as possible to the targeted spectral response. Then the quasi-Newton local <span class="hlt">optimization</span> method is applied to further <span class="hlt">optimize</span> the FBG structure obtained from the TS algorithm to arrive at a targeted spectral response. A dynamic mechanism for weighting of different requirements of the spectral response is employed to enhance the <span class="hlt">optimization</span> efficiency. To demonstrate the effectiveness of the method, the synthesis of three linear-phase optical <span class="hlt">filters</span> based on FBGs with different grating lengths is described.</p> <div class="credits"> <p class="dwt_author">Zheng, Rui Tao; Ngo, Nam Quoc; Binh, Le Nguyen; Tjin, Swee Chuan</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">176</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PhRvA..88c5601J"> <span id="translatedtitle"><span class="hlt">Optimal</span> quantum control of Bose-Einstein condensates in magnetic microtraps: Consideration of <span class="hlt">filter</span> effects</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We theoretically investigate protocols based on <span class="hlt">optimal</span> control theory (OCT) for manipulating Bose-Einstein condensates in magnetic microtraps, using the framework of the Gross-Pitaevskii equation. In our approach we explicitly account for <span class="hlt">filter</span> functions that distort the computed <span class="hlt">optimal</span> control, a situation inherent to many experimental OCT implementations. We apply our scheme to the shakeup process of a condensate from the ground to the first excited state, following a recent experimental and theoretical study, and demonstrate that the fidelity of OCT protocols is not significantly deteriorated by typical <span class="hlt">filters</span>.</p> <div class="credits"> <p class="dwt_author">Jäger, Georg; Hohenester, Ulrich</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">177</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2266978"> <span id="translatedtitle">Classifying EEG for Brain-Computer Interface: Learning <span class="hlt">Optimal</span> <span class="hlt">Filters</span> for Dynamical System Features</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Classification of multichannel EEG recordings during motor imagination has been exploited successfully for brain-computer interfaces (BCI). In this paper, we consider EEG signals as the outputs of a networked dynamical system (the cortex), and exploit synchronization features from the dynamical system for classification. Herein, we also propose a new framework for learning <span class="hlt">optimal</span> <span class="hlt">filters</span> automatically from the data, by employing a Fisher ratio criterion. Experimental evaluations comparing the proposed dynamical system features with the CSP and the AR features reveal their competitive performance during classification. Results also show the benefits of employing the spatial and the temporal <span class="hlt">filters</span> <span class="hlt">optimized</span> using the proposed learning approach.</p> <div class="credits"> <p class="dwt_author">Song, Le; Epps, Julien</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">178</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/5435007"> <span id="translatedtitle">Comparison of Interior Point <span class="hlt">Filter</span> Line Search Strategies for Constrained <span class="hlt">Optimization</span> by Performance Profiles</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Abstract—This paper,presents,a performance,evaluation,of three sets of modifications,that can,be incorporated,into the primal-dual interior point <span class="hlt">filter</span> line search method,for nonlinear programming herein illustrated. In this framework, each entry in the <span class="hlt">filter</span> relies on three components, the feasibility, the centrality and the <span class="hlt">optimality</span>, that are present in the first-order <span class="hlt">optimality</span> conditions. The modifications,are concerned,with an acceptance condition, a barrier parameter update formula and</p> <div class="credits"> <p class="dwt_author">M. Fernanda P. Costa; Edite M. G. P. Fernandes</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">179</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/18364986"> <span id="translatedtitle">Classifying EEG for brain-computer interface: learning <span class="hlt">optimal</span> <span class="hlt">filters</span> for dynamical system features.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Classification of multichannel EEG recordings during motor imagination has been exploited successfully for brain-computer interfaces (BCI). In this paper, we consider EEG signals as the outputs of a networked dynamical system (the cortex), and exploit synchronization features from the dynamical system for classification. Herein, we also propose a new framework for learning <span class="hlt">optimal</span> <span class="hlt">filters</span> automatically from the data, by employing a Fisher ratio criterion. Experimental evaluations comparing the proposed dynamical system features with the CSP and the AR features reveal their competitive performance during classification. Results also show the benefits of employing the spatial and the temporal <span class="hlt">filters</span> <span class="hlt">optimized</span> using the proposed learning approach. PMID:18364986</p> <div class="credits"> <p class="dwt_author">Song, Le; Epps, Julien</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">180</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www2.math.kth.se/~alq/SICON74a.pdf"> <span id="translatedtitle">A New Algorithm for <span class="hlt">Optimal</span> <span class="hlt">Filtering</span> of Discrete-Time Stationary Processes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">An algorithm (which does not involve the usual Riccati-type equation) for computing t\\/e gain matrices of the Kalman <span class="hlt">filter</span> is presented. If the dimension k of the state space is much larger than that of the observation process, the number of nonlinear equations to be solved in each <span class="hlt">step</span> is of order k rather than k as by the usual</p> <div class="credits"> <p class="dwt_author">Anders Lindquist</p> <p class="dwt_publisher"></p> <p class="publishDate">1974-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_8");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a style="font-weight: bold;">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_10");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_9 div --> <div id="page_10" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_9");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a style="font-weight: bold;">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_11");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">181</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/27042005"> <span id="translatedtitle">Space-mapping <span class="hlt">optimization</span> of planar coupled-resonator microwave <span class="hlt">filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper presents an iterative technique for the design of planar coupled-resonator microwave <span class="hlt">filters</span>, which exploits initial information on the equivalent circuit elements within the space-mapping technique. To accelerate the convergence of the design process, information on the dependence of the elements of the equivalent circuit on adjustable geometrical and physical parameters, which is available from the initial design <span class="hlt">step</span>,</p> <div class="credits"> <p class="dwt_author">Smain Amari; Conrad LeDrew; Wolfgang Menzel</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">182</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JCoPh.237..320B"> <span id="translatedtitle"><span class="hlt">Optimal</span> <span class="hlt">filtering</span> of complex turbulent systems with memory depth through consistency constraints</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In this article, we develop a linear theory for <span class="hlt">optimal</span> <span class="hlt">filtering</span> of complex turbulent signals with model errors through linear autoregressive models. We will show that when the autoregressive model parameters are chosen such that they satisfy absolute stability and consistency conditions of at least order-2 of the classical multistep method for solving initial value problems, the <span class="hlt">filtered</span> solutions with autoregressive models of order p?2 are <span class="hlt">optimal</span> in the sense that they are comparable to the estimates obtained from the true <span class="hlt">filter</span> with perfect model. This result is reminiscent of the Lax-equivalence fundamental theorem in the analysis of finite difference discretization scheme for the numerical solutions of partial differential equations. We will apply this linear theory to <span class="hlt">filter</span> two nonlinear problems, the slowest mode of the truncated Burgers-Hopf and the Lorenz-96 model. On these nonlinear problems, we will show that whenever these linear conditions are satisfied, the <span class="hlt">filtered</span> solutions accuracy is significantly improved. Finally, we will also apply the recently developed offline test criteria to understand the robustness of the multistep <span class="hlt">filter</span> on various turbulent nature, including the stochastically forced linear advection-diffusion equation and a toy model for barotropic turbulent Rossby waves.</p> <div class="credits"> <p class="dwt_author">Bakunova, Eugenia S.; Harlim, John</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">183</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23523646"> <span id="translatedtitle"><span class="hlt">Optimizing</span> the bandpass <span class="hlt">filter</span> for acoustic stimuli in recording ocular vestibular-evoked myogenic potentials.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">This study aimed to determine the <span class="hlt">optimal</span> bandpass <span class="hlt">filter</span> (BPF) setting for acoustic stimuli in recording the ocular vestibular-evoked myogenic potential (oVEMP). Twelve healthy volunteers underwent oVEMP tests using acoustic stimuli with various high-pass <span class="hlt">filters</span> (1, 10 and 100Hz) and low-pass <span class="hlt">filters</span> (500, 1000 and 2000Hz). Initially, various effects of high-pass <span class="hlt">filter</span> on the oVEMPs were examined under Conditions A (BPF of 1-1000Hz), B (BPF of 10-1000Hz) and C (BPF of 100-1000Hz). Of these conditions, Condition A showed 100% response rate and had larger nI-pI amplitude than Conditions B and C. Thus, Condition A was selected for subsequent analysis of the various effects of low-pass <span class="hlt">filter</span> on the oVEMPs. However, Condition A (BPF of 1-1000Hz) did not significantly differ from Conditions D (BPF of 1-500Hz) and E (BPF of 1-2000Hz) in terms of the latencies and amplitudes of oVEMPs. Condition A thus is supposed to be the <span class="hlt">optimal</span> recording condition for oVEMPs. In conclusion, the <span class="hlt">optimal</span> BPF setting for acoustic stimuli in recording oVEMPs is suggested to be between 1 and 1000Hz. PMID:23523646</p> <div class="credits"> <p class="dwt_author">Wang, Shou-Jen; Jaw, Fu-Shan; Young, Yi-Ho</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-03-21</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">184</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/14458056"> <span id="translatedtitle"><span class="hlt">Optimal</span> and self-tuning white noise estimators with applications to deconvolution and <span class="hlt">filtering</span> problems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Using the innovation analysis method in the time domain, based on the autoregressive moving average (ARMA) innovation model, this paper presents a unified white noise estimation theory that includes both input and measurement white noise estimators, and presents a new steady-state <span class="hlt">optimal</span> state estimation theory. Non-recursive <span class="hlt">optimal</span> state estimators are given, whose recursive version gives a steady-state Kalman <span class="hlt">filter</span>, where</p> <div class="credits"> <p class="dwt_author">Zi-Li Deng; Huan-Shui Zhang; Shu-Jun Liu; Lu Zhou</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">185</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49868187"> <span id="translatedtitle">A new relaxation algorithm for the time <span class="hlt">optimal</span> control problem of <span class="hlt">step</span> motors</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The free end-velocity time-<span class="hlt">optimal</span> control of a bifilar-wound hybrid <span class="hlt">step</span> motor is considered. The necessary conditions for the <span class="hlt">optimal</span> control are derived from motor, load, and driver circuit models using Pontryagin's minimum principle. A reduced-order relaxation method, involving forward\\/backward integrations, is presented for finding the solution to the nonlinear two-point boundary value problem specified by the necessary conditions, including generation</p> <div class="credits"> <p class="dwt_author">R. H. Brown; Y. Zhu; X. Feng</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">186</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/32844671"> <span id="translatedtitle">A two-<span class="hlt">step</span> EMG-and-<span class="hlt">optimization</span> process to estimate muscle force during dynamic movement</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The present study proposed a two-<span class="hlt">step</span> EMG-and-<span class="hlt">optimization</span> method for muscle force estimation in dynamic condition. Considering the strengths and the limitations of existing methods, the proposed approach exploited the advantages of min\\/max <span class="hlt">optimization</span> with constraints on the contributions of the flexor and extensor muscle groups to the net joint moment estimated through an EMG-to-moment approach. Our methodology was tested at</p> <div class="credits"> <p class="dwt_author">David Amarantini; Guillaume Rao; Eric Berton</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">187</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/61373882"> <span id="translatedtitle"><span class="hlt">Optimal</span> <span class="hlt">step</span> assays and flow rates in gaseous diffusion squared-off cascades for uranium enrichment</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Optimal</span> <span class="hlt">step</span> assays and interstage up-flow rates for enriching and stripping sections of uranium gaseous diffusion squared-off cascades are manageably determined without any additional approximations beyond the usual ones (i.e., a close separation process and a constant cut in the whole section). This is accomplished by the application of the <span class="hlt">optimization</span> conditions to the function to be minimized, i.e., the</p> <div class="credits"> <p class="dwt_author">O. Fiorella; M. Mangia; E. Oliveri</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">188</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/17610985"> <span id="translatedtitle">Genetic algorithm matched <span class="hlt">filter</span> <span class="hlt">optimization</span> for automated detection of blood vessels from digital retinal images.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Due to the importance of the matched <span class="hlt">filter</span> in the automated detection of blood vessels in digital retinal images, improving its response is highly desirable. This <span class="hlt">filter</span> may vary in many ways depending on the parameters that govern its response. In this paper, new parameters to <span class="hlt">optimize</span> the sensitivity of the matched <span class="hlt">filter</span> are found using genetic algorithms on the test set of the DRIVE databases. The area under the receiver operating curve (ROC) is used as a fitness function for the genetic algorithm. To evaluate the improved matched <span class="hlt">filter</span>, the maximum average accuracy (MAA) is calculated to be 0.9422 and the average area under ROC is 0.9582. PMID:17610985</p> <div class="credits"> <p class="dwt_author">Al-Rawi, Mohammed; Karajeh, Huda</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-07-03</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">189</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012SPIE.8401E..20M"> <span id="translatedtitle"><span class="hlt">Optimization</span> of high speed pipelining in FPGA-based FIR <span class="hlt">filter</span> design using genetic algorithm</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This paper compares FPGA-based full pipelined multiplierless FIR <span class="hlt">filter</span> design options. Comparison of Distributed Arithmetic (DA), Common Sub-Expression (CSE) sharing and n-dimensional Reduced Adder Graph (RAG-n) multiplierless <span class="hlt">filter</span> design methods in term of size, speed, and A*T product are provided. Since DA designs are table-based and CSE/RAG-n designs are adder-based, FPGA synthesis design data are used for a realistic comparison. Superior results of a genetic algorithm based <span class="hlt">optimization</span> of pipeline registers and non-output fundamental coefficients are shown. FIR <span class="hlt">filters</span> (posted as open source by Kastner et al.) for <span class="hlt">filters</span> in the length from 6 to 151 coefficients are used.</p> <div class="credits"> <p class="dwt_author">Meyer-Baese, Uwe; Botella, Guillermo; Romero, David E. T.; Kumm, Martin</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">190</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/20643606"> <span id="translatedtitle"><span class="hlt">Optimal</span> design of FIR triplet halfband <span class="hlt">filter</span> bank and application in image coding.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">This correspondence proposes an efficient semidefinite programming (SDP) method for the design of a class of linear phase finite impulse response triplet halfband <span class="hlt">filter</span> banks whose <span class="hlt">filters</span> have <span class="hlt">optimal</span> frequency selectivity for a prescribed regularity order. The design problem is formulated as the minimization of the least square error subject to peak error constraints and regularity constraints. By using the linear matrix inequality characterization of the trigonometric semi-infinite constraints, it can then be exactly cast as a SDP problem with a small number of variables and, hence, can be solved efficiently. Several design examples of the triplet halfband <span class="hlt">filter</span> bank are provided for illustration and comparison with previous works. Finally, the image coding performance of the <span class="hlt">filter</span> bank is presented. PMID:20643606</p> <div class="credits"> <p class="dwt_author">Kha, H H; Tuan, H D; Nguyen, T Q</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-07-19</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">191</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23609642"> <span id="translatedtitle">Design of reflective color <span class="hlt">filters</span> with high angular tolerance by particle swarm <span class="hlt">optimization</span> method.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We propose three color <span class="hlt">filters</span> (red, green, blue) based on a two-dimensional (2D) grating, which maintain the same perceived specular colors for a broad range of incident angles with the average polarization. Particle swarm <span class="hlt">optimization</span> (PSO) method is employed to design these <span class="hlt">filters</span> for the first time to our knowledge. Two merit functions involving the reflectance curves and color difference in CIEDE2000 formula are respectively constructed to adjust the structural parameters during the <span class="hlt">optimization</span> procedure. Three primary color <span class="hlt">filters</span> located at 637nm, 530nm and 446nm with high saturation are obtained with the peak reflectance of 89%, 83%, 66%. The reflectance curves at different incident angles are coincident and the color difference is less than 8 for the incident angle up to 45°. The electric field distribution of the structure is finally studied to analyze the optical property. PMID:23609642</p> <div class="credits"> <p class="dwt_author">Yang, Chenying; Hong, Liang; Shen, Weidong; Zhang, Yueguang; Liu, Xu; Zhen, Hongyu</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-04-22</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">192</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/6454353"> <span id="translatedtitle"><span class="hlt">Optimal</span> Switched Dynamic Modulated Power <span class="hlt">Filter</span> Compensator for Radial Distribution System</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper presents a novel pulse width switched modulated power <span class="hlt">filter</span> compensator (MPFC) for the voltage stability enhancement, energy utilization, loss reduction, and power factor correction in a radial distribution network using the Particle Swarm <span class="hlt">Optimization</span> (PSO) technique. The MPFC is controlled by a novel dynamic tri-loop error driven controller. The dynamic controller is regulated to minimize the switching current</p> <div class="credits"> <p class="dwt_author">Adel M. Sharaf; Adel A. A. El-gammal</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">193</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/27073205"> <span id="translatedtitle"><span class="hlt">Optimal</span> H2 <span class="hlt">Filtering</span> in Networked Control Systems With Multiple Packet Dropout</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This note studies the problem of <span class="hlt">optimal</span> H2 <span class="hlt">filtering</span> in networked control systems (NCSs) with multiple packet dropout. A new formulation is employed to model the multiple packet dropout case, where the random dropout rate is transformed into a stochastic parameter in the system's representation. By generalization of the H2-norm definition, new relations for the stochastic -norm of a linear</p> <div class="credits"> <p class="dwt_author">Mehrdad Sahebsara; Tongwen Chen; Sirish L. Shah</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">194</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/4783786"> <span id="translatedtitle">Synthesis and <span class="hlt">Optimization</span> of 2D <span class="hlt">Filter</span> Designs for Heterogeneous FPGAs</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Many image processing applications require fast convolution of an image with one or more 2D <span class="hlt">filters</span>. Field-Programmable Gate Arrays (FPGAs) are often used to achieve this goal due to their fine grain parallelism and reconfigurability. However, the heterogeneous nature of modern reconfigurable devices is not usually considered during design <span class="hlt">optimization</span>. This article proposes an algorithm that explores the space of</p> <div class="credits"> <p class="dwt_author">Christos-savvas Bouganis; Sung-boem Park; George A. Constantinides; Peter Y. K. Cheung</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">195</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/262384"> <span id="translatedtitle">An effective coded excitation scheme based on a predistorted FM signal and an <span class="hlt">optimized</span> digital <span class="hlt">filter</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Presents a coded excitation imaging system based on a predistorted FM excitation and a digital compression <span class="hlt">filter</span> designed for medical ultrasonic applications, in order to preserve both axial resolution and contrast. In radars, <span class="hlt">optimal</span> Chebyshev windows efficiently weight a nearly rectangular spectrum. For the small time-bandwidth (TB) products available in ultrasound, the rectangular spectrum approximation is not valid, which reduces</p> <div class="credits"> <p class="dwt_author">Thanassis X. Misaridis; J. A. Jensen</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">196</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/2051656"> <span id="translatedtitle">Performance evaluation of subband coding and <span class="hlt">optimization</span> of its <span class="hlt">filter</span> coefficients</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this paper, two analytical methods to evaluate coding performance of subband coding are proposed, and <span class="hlt">optimization</span> of its <span class="hlt">filter</span> coefficients from the viewpoint of energy compaction property is considered. The first method is based on matrix representation of subband coding in time domain, where the coding gain given by Jayant and Noll is introduced as a performance measure for</p> <div class="credits"> <p class="dwt_author">Jiro Katto; Yasuhiko Yasuda</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">197</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N9322024"> <span id="translatedtitle">Multivariable Frequency Response Methods for <span class="hlt">Optimal</span> Kalman-Bucy <span class="hlt">Filters</span> with Applications to Radar Tracking Systems.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The problem of multi-output, infinite-time, linear time-invariant <span class="hlt">optimal</span> Kalman-Bucy <span class="hlt">filter</span> both in continuous and discrete-time cases in frequency domain is addressed. A simple new algorithm is given for the analytical solution to the steady-state gain ...</p> <div class="credits"> <p class="dwt_author">C. C. Arcasoy</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">198</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23844390"> <span id="translatedtitle">Efficient and accurate <span class="hlt">optimal</span> linear phase FIR <span class="hlt">filter</span> design using opposition-based harmony search algorithm.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">In this paper, opposition-based harmony search has been applied for the <span class="hlt">optimal</span> design of linear phase FIR <span class="hlt">filters</span>. RGA, PSO, and DE have also been adopted for the sake of comparison. The original harmony search algorithm is chosen as the parent one, and opposition-based approach is applied. During the initialization, randomly generated population of solutions is chosen, opposite solutions are also considered, and the fitter one is selected as a priori guess. In harmony memory, each such solution passes through memory consideration rule, pitch adjustment rule, and then opposition-based reinitialization generation jumping, which gives the optimum result corresponding to the least error fitness in multidimensional search space of FIR <span class="hlt">filter</span> design. Incorporation of different control parameters in the basic HS algorithm results in the balancing of exploration and exploitation of search space. Low pass, high pass, band pass, and band stop FIR <span class="hlt">filters</span> are designed with the proposed OHS and other aforementioned algorithms individually for comparative <span class="hlt">optimization</span> performance. A comparison of simulation results reveals the <span class="hlt">optimization</span> efficacy of the OHS over the other <span class="hlt">optimization</span> techniques for the solution of the multimodal, nondifferentiable, nonlinear, and constrained FIR <span class="hlt">filter</span> design problems. PMID:23844390</p> <div class="credits"> <p class="dwt_author">Saha, S K; Dutta, R; Choudhury, R; Kar, R; Mandal, D; Ghoshal, S P</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-06-10</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">199</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1502341"> <span id="translatedtitle">Efficient electromagnetic <span class="hlt">optimization</span> of microwave <span class="hlt">filters</span> and multiplexers using rational models</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A method is presented for the efficient <span class="hlt">optimization</span> of microwave <span class="hlt">filters</span> and multiplexers designed from an ideal prototype. The method is based on the estimation of a rational function adjusted to a reduced number of samples of the microwave device response obtained either through electromagnetic analysis or measurements. From this rational function, a circuital network having the previously known topology</p> <div class="credits"> <p class="dwt_author">Alejandro García-Lampérez; Sergio Llorente-Romano; Magdalena Salazar-Palma; Tapan K. Sarkar</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">200</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50323162"> <span id="translatedtitle"><span class="hlt">Optimal</span> online parameter estimation for a class of infinite dimensional systems using Kalman <span class="hlt">filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We consider the problem of online parameter estimation for a class of structurally perturbed infinite dimensional systems. By viewing the system as an augmented system with the unknown constant parameters being the additional states, a time varying infinite dimensional system results whose evolution operator depends on the available output signal. An <span class="hlt">optimal</span> <span class="hlt">filter</span> for the resulting time varying system is</p> <div class="credits"> <p class="dwt_author">Michael A. Demetriou; Kazufumi Ito</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_9");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a style="font-weight: bold;">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_11");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_10 div --> <div id="page_11" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_10");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a style="font-weight: bold;">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_12");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">201</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/800756"> <span id="translatedtitle">A Discrete Expression of Canny's Criteria for <span class="hlt">Step</span> Edge Detector Performances Evaluation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Optimal</span> <span class="hlt">filters</span> for edge detection are usually developed in the continuous domain and then transposed by sampling to the discrete domain. Simpler <span class="hlt">filters</span> are directly defined in the discrete domain. We define criteria to compare <span class="hlt">filter</span> performances in the discrete domain. Canny has defined (1983, 1986) three criteria to derive the equation of an <span class="hlt">optimal</span> <span class="hlt">filter</span> for <span class="hlt">step</span> edge detection:</p> <div class="credits"> <p class="dwt_author">Didier Demigny; Tawfik Kamlé</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">202</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/57414822"> <span id="translatedtitle">Do Humans <span class="hlt">Optimally</span> Exploit Redundancy to Control <span class="hlt">Step</span> Variability in Walking?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">It is widely accepted that humans and animals minimize energetic cost while walking. While such principles predict average behavior, they do not explain the variability observed in walking. For robust performance, walking movements must adapt at each <span class="hlt">step</span>, not just on average. Here, we propose an analytical framework that reconciles issues of <span class="hlt">optimality</span>, redundancy, and stochasticity. For human treadmill walking,</p> <div class="credits"> <p class="dwt_author">Jonathan B. Dingwell; Joby John; Joseph P. Cusumano</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">203</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/14400819"> <span id="translatedtitle"><span class="hlt">Optimal</span> <span class="hlt">Step</span>Stress Accelerated Degradation Test Plan for Gamma Degradation Processes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Step</span>-stress accelerated degradation testing (SSADT) is a useful tool for assessing the lifetime distribution of highly reliable products (under a typical-use condition) when the available test items are very few. Recently, an <span class="hlt">optimal</span> SSADT plan was proposed based on the assumption that the underlying degradation path follows a Wiener process. However, the degradation model of many materials (especially in the</p> <div class="credits"> <p class="dwt_author">Sheng-Tsaing Tseng; Narayanaswamy Balakrishnan; Chih-Chun Tsai</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">204</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/19534146"> <span id="translatedtitle">Two-<span class="hlt">step</span> <span class="hlt">optimization</span> of pressure and recovery of reverse osmosis desalination process.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Driving pressure and recovery are two primary design variables of a reverse osmosis process that largely determine the total cost of seawater and brackish water desalination. A two-<span class="hlt">step</span> <span class="hlt">optimization</span> procedure was developed in this paper to determine the values of driving pressure and recovery that minimize the total cost of RO desalination. It was demonstrated that the <span class="hlt">optimal</span> net driving pressure is solely determined by the electricity price and the membrane price index, which is a lumped parameter to collectively reflect membrane price, resistance, and service time. On the other hand, the <span class="hlt">optimal</span> recovery is determined by the electricity price, initial osmotic pressure, and costs for pretreatment of raw water and handling of retentate. Concise equations were derived for the <span class="hlt">optimal</span> net driving pressure and recovery. The dependences of the <span class="hlt">optimal</span> net driving pressure and recovery on the electricity price, membrane price, and costs for raw water pretreatment and retentate handling were discussed. PMID:19534146</p> <div class="credits"> <p class="dwt_author">Liang, Shuang; Liu, Cui; Song, Lianfa</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">205</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/19465967"> <span id="translatedtitle">Three-<span class="hlt">step</span> design <span class="hlt">optimization</span> for multi-channel fibre Bragg gratings.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Methods to produce <span class="hlt">optimal</span> designs for multi-channel fiber Bragg gratings (FBGs) with identical or close to identical channel-to-channel spectral characteristics are discussed. The proposed approach consists of three distinct <span class="hlt">steps</span>. The first two <span class="hlt">steps</span> (preliminary semi-analytic minimization and subsequent fine-tuning) do not depend on the grating design details, but on the number of channels only and can be readily applied to similar problems in other fields, e.g., in radio-physics and coding theory. The third <span class="hlt">step</span> (spectral characteristic quality improvement) is FBG field specific. A comparison with other known <span class="hlt">optimization</span> methods shows that the proposed approach yields generally superior results for small to moderate number of channels (N < 60). PMID:19465967</p> <div class="credits"> <p class="dwt_author">Kolossovski, Kazimir; Sammut, Rowland; Buryak, Alexander; Stepanov, Dmitrii</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">206</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013IJEEP..14..477B"> <span id="translatedtitle">Decoupled Control Strategy of Grid Interactive Inverter System with <span class="hlt">Optimal</span> LCL <span class="hlt">Filter</span> Design</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This article presents a control strategy for a three-phase grid interactive voltage source inverter that links a renewable energy source to the utility grid through a LCL-type <span class="hlt">filter</span>. An <span class="hlt">optimized</span> LCL-type <span class="hlt">filter</span> has been designed and modeled so as to reduce the current harmonics in the grid, considering the conduction and switching losses at constant modulation index (Ma). The control strategy adopted here decouples the active and reactive power loops, thus achieving desirable performance with independent control of active and reactive power injected into the grid. The startup transients can also be controlled by the implementation of this proposed control strategy: in addition to this, <span class="hlt">optimal</span> LCL <span class="hlt">filter</span> with lesser conduction and switching copper losses as well as core losses. A trade-off has been made between the total losses in the LCL <span class="hlt">filter</span> and the Total Harmonic Distortion (THD%) of the grid current, and the <span class="hlt">filter</span> inductor has been designed accordingly. In order to study the dynamic performance of the system and to confirm the analytical results, the models are simulated in the MATLAB/Simulink environment, and the results are analyzed.</p> <div class="credits"> <p class="dwt_author">Babu, B. Chitti; Anurag, Anup; Sowmya, Tontepu; Marandi, Debati; Bal, Satarupa</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">207</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/20887016"> <span id="translatedtitle">Design <span class="hlt">optimization</span> of vena cava <span class="hlt">filters</span>: an application to dual filtration devices.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Pulmonary embolism (PE) is a significant medical problem that results in over 300,000 fatalities per year. A common preventative treatment for PE is the insertion of a metallic <span class="hlt">filter</span> into the inferior vena cava that traps thrombi before they reach the lungs. The goal of this work is to use methods of mathematical modeling and design <span class="hlt">optimization</span> to determine the configuration of trapped thrombi that minimizes the hemodynamic disruption. The resulting configuration has implications for constructing an <span class="hlt">optimally</span> designed vena cava <span class="hlt">filter</span>. Computational fluid dynamics is coupled with a nonlinear <span class="hlt">optimization</span> algorithm to determine the <span class="hlt">optimal</span> configuration of a trapped model thrombus in the inferior vena cava. The location and shape of the thrombus are parametrized, and an objective function, based on wall shear stresses, determines the worthiness of a given configuration. The methods are fully automated and demonstrate the capabilities of a design <span class="hlt">optimization</span> framework that is broadly applicable. Changes to thrombus location and shape alter the velocity contours and wall shear stress profiles significantly. For vena cava <span class="hlt">filters</span> that trap two thrombi simultaneously, the undesirable flow dynamics past one thrombus can be mitigated by leveraging the flow past the other thrombus. Streamlining the shape of the thrombus trapped along the cava wall reduces the disruption to the flow but increases the area exposed to low wall shear stress. Computer-based design <span class="hlt">optimization</span> is a useful tool for developing vena cava <span class="hlt">filters</span>. Characterizing and parametrizing the design requirements and constraints is essential for constructing devices that address clinical complications. In addition, formulating a well-defined objective function that quantifies clinical risks and benefits is needed for designing devices that are clinically viable. PMID:20887016</p> <div class="credits"> <p class="dwt_author">Singer, Michael A; Wang, Stephen L; Diachin, Darin P</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">208</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/1010409"> <span id="translatedtitle">Design <span class="hlt">Optimization</span> of Vena Cava <span class="hlt">Filters</span>: An application to dual filtration devices</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Pulmonary embolism (PE) is a significant medical problem that results in over 300,000 fatalities per year. A common preventative treatment for PE is the insertion of a metallic <span class="hlt">filter</span> into the inferior vena cava that traps thrombi before they reach the lungs. The goal of this work is to use methods of mathematical modeling and design <span class="hlt">optimization</span> to determine the configuration of trapped thrombi that minimizes the hemodynamic disruption. The resulting configuration has implications for constructing an <span class="hlt">optimally</span> designed vena cava <span class="hlt">filter</span>. Computational fluid dynamics is coupled with a nonlinear <span class="hlt">optimization</span> algorithm to determine the <span class="hlt">optimal</span> configuration of trapped model thrombus in the inferior vena cava. The location and shape of the thrombus are parameterized, and an objective function, based on wall shear stresses, determines the worthiness of a given configuration. The methods are fully automated and demonstrate the capabilities of a design <span class="hlt">optimization</span> framework that is broadly applicable. Changes to thrombus location and shape alter the velocity contours and wall shear stress profiles significantly. For vena cava <span class="hlt">filters</span> that trap two thrombi simultaneously, the undesirable flow dynamics past one thrombus can be mitigated by leveraging the flow past the other thrombus. Streamlining the shape of thrombus trapped along the cava wall reduces the disruption to the flow, but increases the area exposed to abnormal wall shear stress. Computer-based design <span class="hlt">optimization</span> is a useful tool for developing vena cava <span class="hlt">filters</span>. Characterizing and parameterizing the design requirements and constraints is essential for constructing devices that address clinical complications. In addition, formulating a well-defined objective function that quantifies clinical risks and benefits is needed for designing devices that are clinically viable.</p> <div class="credits"> <p class="dwt_author">Singer, M A; Wang, S L; Diachin, D P</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-12-03</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">209</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3775040"> <span id="translatedtitle">Role of <span class="hlt">step</span> size and max dwell time in anatomy based inverse <span class="hlt">optimization</span> for prostate implants</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">In high dose rate (HDR) brachytherapy, the source dwell times and dwell positions are vital parameters in achieving a desirable implant dose distribution. Inverse treatment planning requires an <span class="hlt">optimal</span> choice of these parameters to achieve the desired target coverage with the lowest achievable dose to the organs at risk (OAR). This study was designed to evaluate the optimum source <span class="hlt">step</span> size and maximum source dwell time for prostate brachytherapy implants using an Ir-192 source. In total, one hundred inverse treatment plans were generated for the four patients included in this study. Twenty-five treatment plans were created for each patient by varying the <span class="hlt">step</span> size and maximum source dwell time during anatomy-based, inverse-planned <span class="hlt">optimization</span>. Other relevant treatment planning parameters were kept constant, including the dose constraints and source dwell positions. Each plan was evaluated for target coverage, urethral and rectal dose sparing, treatment time, relative target dose homogeneity, and nonuniformity ratio. The plans with 0.5 cm <span class="hlt">step</span> size were seen to have clinically acceptable tumor coverage, minimal normal structure doses, and minimum treatment time as compared with the other <span class="hlt">step</span> sizes. The target coverage for this <span class="hlt">step</span> size is 87% of the prescription dose, while the urethral and maximum rectal doses were 107.3 and 68.7%, respectively. No appreciable difference in plan quality was observed with variation in maximum source dwell time. The <span class="hlt">step</span> size plays a significant role in plan <span class="hlt">optimization</span> for prostate implants. Our study supports use of a 0.5 cm <span class="hlt">step</span> size for prostate implants.</p> <div class="credits"> <p class="dwt_author">Manikandan, Arjunan; Sarkar, Biplab; Rajendran, Vivek Thirupathur; King, Paul R.; Sresty, N.V. Madhusudhana; Holla, Ragavendra; Kotur, Sachin; Nadendla, Sujatha</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">210</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23664450"> <span id="translatedtitle">Global localization of 3D anatomical structures by pre-<span class="hlt">filtered</span> Hough Forests and discrete <span class="hlt">optimization</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The accurate localization of anatomical landmarks is a challenging task, often solved by domain specific approaches. We propose a method for the automatic localization of landmarks in complex, repetitive anatomical structures. The key idea is to combine three <span class="hlt">steps</span>: (1) a classifier for pre-<span class="hlt">filtering</span> anatomical landmark positions that (2) are refined through a Hough regression model, together with (3) a parts-based model of the global landmark topology to select the final landmark positions. During training landmarks are annotated in a set of example volumes. A classifier learns local landmark appearance, and Hough regressors are trained to aggregate neighborhood information to a precise landmark coordinate position. A non-parametric geometric model encodes the spatial relationships between the landmarks and derives a topology which connects mutually predictive landmarks. During the global search we classify all voxels in the query volume, and perform regression-based agglomeration of landmark probabilities to highly accurate and specific candidate points at potential landmark locations. We encode the candidates' weights together with the conformity of the connecting edges to the learnt geometric model in a Markov Random Field (MRF). By solving the corresponding discrete <span class="hlt">optimization</span> problem, the most probable location for each model landmark is found in the query volume. We show that this approach is able to consistently localize the model landmarks despite the complex and repetitive character of the anatomical structures on three challenging data sets (hand radiographs, hand CTs, and whole body CTs), with a median localization error of 0.80mm, 1.19mm and 2.71mm, respectively. PMID:23664450</p> <div class="credits"> <p class="dwt_author">Donner, René; Menze, Bjoern H; Bischof, Horst; Langs, Georg</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-03-17</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">211</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002OptEn..41.1507J"> <span id="translatedtitle">New method of grain boundary extraction by directional <span class="hlt">optimal</span> <span class="hlt">filtering</span>: applying to estimate creep in metals</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">It is economically important for manufacturers of high-temperature machines to be able to measure creep so they can predict residual service life more accurately. This paper describes and refines an image analysis method for evaluating creep in laboratory test pieces. It is a preliminary study of how to extract relevant information for creep measurement by counting cavities. Sample preparation for quantification by image analysis is an important <span class="hlt">step</span> determining the further development of the image analysis technique. Grain-boundary extraction, which involves directional information, is the major problem to be solved before measurement can be automated. The search for a crest-line extraction <span class="hlt">filter</span> by the Canny method has led to the development of a directional wavelet transform <span class="hlt">filter</span>. The results of this innovative <span class="hlt">filtering</span> method are applied here.</p> <div class="credits"> <p class="dwt_author">Journaux, Stephane; Gouton, Pierre; Thauvin, G.</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">212</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21413209"> <span id="translatedtitle"><span class="hlt">Optimal</span> configurations of <span class="hlt">filter</span> cavity in future gravitational-wave detectors</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Sensitivity of future laser interferometric gravitational wave detectors can be improved using squeezed light with frequency-dependent squeeze angle and/or amplitude, which can be created using additional so-called <span class="hlt">filter</span> cavities. Here we compare performances of several variants of this scheme, proposed during the last few years, assuming the case of a single relatively short (tens of meters) <span class="hlt">filter</span> cavity suitable for implementation already during the life cycle of the second-generation detectors, like Advanced LIGO. Using numerical <span class="hlt">optimization</span>, we show that the phase <span class="hlt">filtering</span> scheme proposed by Kimble et al [H. J. Kimble, Yu. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, Phys. Rev. D 65, 022002 (2001).] looks like the best candidate for this scenario.</p> <div class="credits"> <p class="dwt_author">Khalili, F. Ya. [Physics Faculty, Moscow State University, Moscow 119992 (Russian Federation)</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-06-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">213</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/19516623"> <span id="translatedtitle">Design <span class="hlt">optimization</span> of integrated BiDi triplexer optical <span class="hlt">filter</span> based on planar lightwave circuit.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Design <span class="hlt">optimization</span> of a novel integrated bi-directional (BiDi) triplexer <span class="hlt">filter</span> based on planar lightwave circuit (PLC) for fiber-to-the premise (FTTP) applications is described. A multi-mode interference (MMI) device is used to <span class="hlt">filter</span> the up-stream 1310nm signal from the down-stream 1490nm and 1555nm signals. An array waveguide grating (AWG) device performs the dense WDM function by further separating the two down-stream signals. The MMI and AWG are built on the same substrate with monolithic integration. The design is validated by simulation, which shows excellent performance in terms of <span class="hlt">filter</span> spectral characteristics (e.g., bandwidth, cross-talk, etc.) as well as insertion loss. PMID:19516623</p> <div class="credits"> <p class="dwt_author">Xu, Chenglin; Hong, Xiaobin; Huang, Wei-Ping</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-05-29</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">214</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009ITEIS.129...59O"> <span id="translatedtitle"><span class="hlt">Optimal</span> Design of CSD Coefficient FIR <span class="hlt">Filters</span> Subject to Number of Nonzero Digits</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In a hardware implementation of FIR(Finite Impulse Response) digital <span class="hlt">filters</span>, it is desired to reduce a total number of nonzero digits used for a representation of <span class="hlt">filter</span> coefficients. In general, a design problem of FIR <span class="hlt">filters</span> with CSD(Canonic Signed Digit) representation, which is efficient one for the reduction of numbers of multiplier units, is often considered as one of the 0-1 combinational problems. In such the problem, some difficult constraints make us prevent to linearize the problem. Although many kinds of heuristic approaches have been applied to solve the problem, the solution obtained by such a manner could not guarantee its <span class="hlt">optimality</span>. In this paper, we attempt to formulate the design problem as the 0-1 mixed integer linear programming problem and solve it by using the branch and bound technique, which is a powerful method for solving integer programming problem. Several design examples are shown to present an efficient performance of the proposed method.</p> <div class="credits"> <p class="dwt_author">Ozaki, Yuichi; Suyama, Kenji</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">215</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005SPIE.5852..352J"> <span id="translatedtitle"><span class="hlt">Optimized</span> SU-8 UV-lithographical process for a Ka-band <span class="hlt">filter</span> fabrication</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Rapidly expanding of millimeter wave communication has made Ka-band <span class="hlt">filter</span> fabrication to gain more and more attention from the researcher. Described in this paper is a high quality UV-lithographic process for making high aspect ratio parts of a coaxial Ka band dual mode <span class="hlt">filter</span> using an ultra-thick SU-8 photoresist layer, which has a potential application in LMDS systems. Due to the strict requirements on the perpendicular geometry of the <span class="hlt">filter</span> parts, the microfabrication research work has been concentrated on modifying the SU-8 UV-lithographical process to improve the vertical angle of sidewalls and high aspect ratio. Based on the study of the photoactive property of ultra-thick SU-8 layers, an <span class="hlt">optimized</span> prebake time has been found for obtaining the minimum UV absorption by SU-8. The <span class="hlt">optimization</span> principle has been tested using a series of experiments of UV-lithography on different prebake times, and proved effective. An <span class="hlt">optimized</span> SU-8 UV-lithographical process has been developed for the fabrication of thick layer <span class="hlt">filter</span> structures. During the test fabrication, microstructures with aspect ratio as high as 40 have been produced in 1000 mm ultra-thick SU-8 layers using the standard UV-lithography equipment. The sidewall angles are controlled between 85~90 degrees. The high quality SU-8 structures will then be used as positive moulds for producing copper structures using electroforming process. The microfabication process presented in this paper suits the proposed <span class="hlt">filter</span> well. It also reveals a good potential for volume production of high quality RF devices.</p> <div class="credits"> <p class="dwt_author">Jin, Peng; Jiang, Kyle; Tan, Jiubin; Lancaster, M. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">216</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009IEITF..92..311P"> <span id="translatedtitle">A Variable Error Data Normalized <span class="hlt">Step</span>-Size LMS Adaptive <span class="hlt">Filter</span> Algorithm: Analysis and Simulations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This paper investigates noise reduction performance and performs convergence analysis of a Variable Error Data Normalized <span class="hlt">Step</span>-Size Least Mean Square (VEDNSS LMS) algorithm. Adopting VEDNSS LMS provides fast convergence at early stages of adaptation while ensuring small final misadjustment. An analysis of convergence and steady-state performance for zero-mean Gaussian inputs is provided. Simulation results comparing the proposed algorithm to existing algorithms indicate its superior performance under various noise and frequency environments.</p> <div class="credits"> <p class="dwt_author">Park, Chee-Hyun; Hong, Kwang-Seok</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">217</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50633090"> <span id="translatedtitle">Bit-Level <span class="hlt">Optimization</span> of Shift-and-Add Based FIR <span class="hlt">Filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Implementation of FIR <span class="hlt">filters</span> using shift-and-add multipliers has been an active research area for the last decade. However, almost all algorithms so far has been focused on reducing the number of adders and subtractors, while little effort was put on the bit-level implementation. In this work we propose a method to <span class="hlt">optimize</span> the number of full adders and half adders</p> <div class="credits"> <p class="dwt_author">Kenny Johansson; Oscar Gustafsson; Lars Wanhammar</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">218</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/18583726"> <span id="translatedtitle">Adaptive wavelet EMG compression based on local <span class="hlt">optimization</span> of <span class="hlt">filter</span> banks.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">This paper presents an adaptive wavelet technique for compression of surface electromyographic signals. The technique employs an <span class="hlt">optimization</span> algorithm to adjust the wavelet <span class="hlt">filter</span> bank in order to minimize the distortion of the compressed signal. Orthogonality of the transform is ensured by using a restriction-free parametrization described elsewhere. A case study involving real-life isotonic and isometric electromyographic signals is presented for illustration. The results show that the proposed approach outperforms the standard non-<span class="hlt">optimized</span> wavelet technique in terms of the percent residual difference for a given compression factor. PMID:18583726</p> <div class="credits"> <p class="dwt_author">Paiva, Juliana Pereira Lisboa M; Kelencz, Carlos Alberto; Paiva, Henrique Mohallem; Galvão, Roberto Kawakami H; Magini, Marcio</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-06-26</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">219</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/20856467"> <span id="translatedtitle"><span class="hlt">Optimization</span> of interference <span class="hlt">filters</span> with genetic algorithms applied to silver-based heat mirrors.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">In the <span class="hlt">optimization</span> of multilayer stacks for various optical <span class="hlt">filtering</span> purposes not only the thicknesses of the thin films are to be <span class="hlt">optimized</span>, but also the sequence of materials. Materials with very different optical properties, such as metals and dielectrics, may be combined. A genetic algorithm is introduced to search for the <span class="hlt">optimal</span> sequence of materials along with their optical thicknesses. This procedure is applied to a heat mirror in combination with a blackbody absorber for thermal solar energy applications at elevated temperatures (250 °C). The heat mirror is based on silver films with antireflective dielectric layers. Seven dielectrics have been considered. For a five-layer stack the sequence (TiO(2)/Ag/TiO(2)/Ag/Y(2)O(3)) is found to be <span class="hlt">optimal</span>. PMID:20856467</p> <div class="credits"> <p class="dwt_author">Eisenhammer, T; Lazarov, M; Leutbecher, M; Schöffel, U; Sizmann, R</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">220</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1536175"> <span id="translatedtitle"><span class="hlt">Optimized</span> piezoelectric energy harvesting circuit using <span class="hlt">step</span>-down converter in discontinuous conduction mode</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">An <span class="hlt">optimized</span> method of harvesting vibrational energy with a piezoelectric element using a <span class="hlt">step</span>-down DC-DC converter is presented. In this configuration, the converter regulates the power flow from the piezoelectric element to the desired electronic load. Analysis of the converter in discontinuous current conduction mode results in an expression for the duty cycle-power relationship. Using parameters of the mechanical system,</p> <div class="credits"> <p class="dwt_author">Geffrey K. Ottman; Heath F. Hofmann; George A. Lesieutre</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_10");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a style="font-weight: bold;">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_12");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_11 div --> <div id="page_12" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_11");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a style="font-weight: bold;">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_13");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">221</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/48007829"> <span id="translatedtitle"><span class="hlt">Optimization</span> of a <span class="hlt">stepped</span> circular pin-fin array to enhance heat transfer performance</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A <span class="hlt">Stepped</span> circular pin-fin array is formulated numerically and <span class="hlt">optimized</span> with Kriging metamodeling technique to enhance heat\\u000a transfer performance. The problem is defined by two non-dimensional geometric design variables composed of height of the channel,\\u000a height of smaller diameter part of the pin-fins, and smaller diameter of the pin-fins, to maximize heat transfer rate compromising\\u000a with friction loss. Ten designs</p> <div class="credits"> <p class="dwt_author">Kwang-Yong Kim; Mi-Ae Moon</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">222</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5659467"> <span id="translatedtitle"><span class="hlt">Optimal</span> <span class="hlt">step</span> assays and flow rates in gaseous diffusion squared-off cascades for uranium enrichment</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary"><span class="hlt">Optimal</span> <span class="hlt">step</span> assays and interstage up-flow rates for enriching and stripping sections of uranium gaseous diffusion squared-off cascades are manageably determined without any additional approximations beyond the usual ones (i.e., a close separation process and a constant cut in the whole section). This is accomplished by the application of the <span class="hlt">optimization</span> conditions to the function to be minimized, i.e., the total up-flow rate, still expressed in integral form. The use of suitable dimensionless variables allows quick evaluations of the <span class="hlt">optimal</span> parameters of any plant, provided that the product and waste assays range from 1 to 99% and from 0.05 to 0.65%, respectively, and that the number of enriching and stripping <span class="hlt">steps</span> be, at most, seven and four, respectively. The results are consistent with those available in the literature; in particular, it is confirmed that, for low and intermediate product assays, a number of enriching <span class="hlt">steps</span> higher than five is unnecessary in most cases.</p> <div class="credits"> <p class="dwt_author">Fiorella, O.; Mangia, M.; Oliveri, E.</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">223</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009AGUFM.H23C0975L"> <span id="translatedtitle">Daily Time <span class="hlt">Step</span> Refinement of <span class="hlt">Optimized</span> Flood Control Rule Curves for a Global Warming Scenario</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Pacific Northwest temperatures have warmed by 0.8 °C since 1920 and are predicted to further increase in the 21st century. Simulated streamflow timing shifts associated with climate change have been found in past research to degrade water resources system performance in the Columbia River Basin when using existing system operating policies. To adapt to these hydrologic changes, <span class="hlt">optimized</span> flood control operating rule curves were developed in a previous study using a hybrid <span class="hlt">optimization</span>-simulation approach which rebalanced flood control and reservoir refill at a monthly time <span class="hlt">step</span>. For the climate change scenario, use of the <span class="hlt">optimized</span> flood control curves restored reservoir refill capability without increasing flood risk. Here we extend the earlier studies using a detailed daily time <span class="hlt">step</span> simulation model applied over a somewhat smaller portion of the domain (encompassing Libby, Duncan, and Corra Linn dams, and Kootenai Lake) to evaluate and refine the <span class="hlt">optimized</span> flood control curves derived from monthly time <span class="hlt">step</span> analysis. Moving from a monthly to daily analysis, we found that the timing of flood control evacuation needed adjustment to avoid unintended outcomes affecting Kootenai Lake. We refined the flood rule curves derived from monthly analysis by creating a more gradual evacuation schedule, but kept the timing and magnitude of maximum evacuation the same as in the monthly analysis. After these refinements, the performance at monthly time scales reported in our previous study proved robust at daily time scales. Due to a decrease in July storage deficits, additional benefits such as more revenue from hydropower generation and more July and August outflow for fish augmentation were observed when the <span class="hlt">optimized</span> flood control curves were used for the climate change scenario.</p> <div class="credits"> <p class="dwt_author">Lee, S.; Fitzgerald, C.; Hamlet, A. F.; Burges, S. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">224</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24128476"> <span id="translatedtitle"><span class="hlt">Optimization</span> of a blanching <span class="hlt">step</span> to maximize sulforaphane synthesis in broccoli florets.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A blanching <span class="hlt">step</span> was designed to favor sulforaphane synthesis in broccoli. Blanching was optimised through a central composite design, and the effects of temperature (50-70°C) and immersion time in water (5-15min) on the content of total glucosinolates, glucoraphanin, sulforaphane, and myrosinase activity were determined. Results were analysed by ANOVA and the <span class="hlt">optimal</span> condition was determined through response surface methodology. Temperature between 50 and 60°C significantly increased sulforaphane content (p<0.05), whilst blanching at 70 and 74°C diminished significantly this content, compared to fresh broccoli. The <span class="hlt">optimal</span> blanching conditions given by the statistical model were immersion in water at 57°C for 13min; coinciding with the minimum glucosinolates and glucoraphanin content, and with the maximum myrosinase activity. In the <span class="hlt">optimal</span> conditions, the predicted response of 4.0?mol sulforaphane/g dry matter was confirmed experimentally. This value represents a 237% increase with respect to the fresh vegetable. PMID:24128476</p> <div class="credits"> <p class="dwt_author">Pérez, Carmen; Barrientos, Herna; Román, Juan; Mahn, Andrea</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-08-27</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">225</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50192300"> <span id="translatedtitle">Computer diagnosis and tuning of microwave <span class="hlt">filters</span> using model-based parameter estimation and multi-level <span class="hlt">optimization</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper describes an approach for the computer diagnosis and tuning of microwave <span class="hlt">filters</span> relying upon model-based parameter estimation and multi-level <span class="hlt">optimization</span>. This approach uses the reduced-order system and the effect of measurement noise is also considered. This approach can be applied to many classes of the <span class="hlt">filters</span>. Examples are presented to demonstrate its feasibility</p> <div class="credits"> <p class="dwt_author">Masoud Kahrizi; Safieddin Safavi-Naeini; Sujeet K. Chaudhuri</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">226</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009SPIE.7490E..53Z"> <span id="translatedtitle">An <span class="hlt">optimized</span> item-based collaborative <span class="hlt">filtering</span> recommendation algorithm based on item genre prediction</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">With the fast development of Internet, many systems have emerged in e-commerce applications to support the product recommendation. Collaborative <span class="hlt">filtering</span> is one of the most promising techniques in recommender systems, providing personalized recommendations to users based on their previously expressed preferences in the form of ratings and those of other similar users. In practice, with the adding of user and item scales, user-item ratings are becoming extremely sparsity and recommender systems utilizing traditional collaborative <span class="hlt">filtering</span> are facing serious challenges. To address the issue, this paper presents an approach to compute item genre similarity, through mapping each item with a corresponding descriptive genre, and computing similarity between genres as similarity, then make basic predictions according to those similarities to lower sparsity of the user-item ratings. After that, item-based collaborative <span class="hlt">filtering</span> <span class="hlt">steps</span> are taken to generate predictions. Compared with previous methods, the presented collaborative <span class="hlt">filtering</span> employs the item genre similarity can alleviate the sparsity issue in the recommender systems, and can improve accuracy of recommendation.</p> <div class="credits"> <p class="dwt_author">Zhang, De-Jia</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">227</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22240558"> <span id="translatedtitle"><span class="hlt">Optimization</span> of a <span class="hlt">filter</span>-lysis protocol to purify rat testicular homogenates for automated spermatid counting.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Quantifying testicular homogenization-resistant spermatid heads (HRSH) is a powerful indicator of spermatogenesis. These counts have traditionally been performed manually using a hemocytometer, but this method can be time consuming and biased. We aimed to develop a protocol to reduce debris for the application of automated counting, which would allow for efficient and unbiased quantification of rat HRSH. We developed a <span class="hlt">filter</span>-lysis protocol that effectively removes debris from rat testicular homogenates. After <span class="hlt">filtering</span> and lysing the homogenates, we found no statistical differences between manual (classic and <span class="hlt">filter</span>-lysis) and automated (<span class="hlt">filter</span>-lysis) counts using 1-way analysis of variance with Bonferroni's multiple comparison test. In addition, Pearson's correlation coefficients were calculated to compare the counting methods, and there was a strong correlation between the classic manual counts and the <span class="hlt">filter</span>-lysis manual (r = 0.85, P = .002) and the <span class="hlt">filter</span>-lysis automated (r = 0.89, P = .0005) counts. We also tested the utility of the automated method in a low-dose exposure model known to decrease HRSH. Adult Fischer 344 rats exposed to 0.33% 2,5-hexanedione in the drinking water for 12 weeks demonstrated decreased body (P = .02) and testes (P = .002) weights. In addition, there was a significant reduction in the number of HRSH per testis (P = .002) when compared to controls. A filterlysis protocol was <span class="hlt">optimized</span> to purify rat testicular homogenates for automated HRSH counts. Automated counting systems yield unbiased data and can be applied to detect changes in the testis after low-dose toxicant exposure. PMID:22240558</p> <div class="credits"> <p class="dwt_author">Pacheco, Sara E; Anderson, Linnea M; Boekelheide, Kim</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-12</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">228</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23228858"> <span id="translatedtitle"><span class="hlt">Stepped</span> Care to <span class="hlt">Optimize</span> Pain care Effectiveness (SCOPE) trial study design and sample characteristics.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Pain is the most common physical symptom in primary care, accounting for an enormous burden in terms of patient suffering, quality of life, work and social disability, and health care and societal costs. Although collaborative care interventions are well-established for conditions such as depression, fewer systems-based interventions have been tested for chronic pain. This paper describes the study design and baseline characteristics of the enrolled sample for the <span class="hlt">Stepped</span> Care to <span class="hlt">Optimize</span> Pain care Effectiveness (SCOPE) study, a randomized clinical effectiveness trial conducted in five primary care clinics. SCOPE has enrolled 250 primary care veterans with persistent (3 months or longer) musculoskeletal pain of moderate severity and randomized them to either the <span class="hlt">stepped</span> care intervention or usual care control group. Using a telemedicine collaborative care approach, the intervention couples automated symptom monitoring with a telephone-based, nurse care manager/physician pain specialist team to treat pain. The goal is to <span class="hlt">optimize</span> analgesic management using a <span class="hlt">stepped</span> care approach to drug selection, symptom monitoring, dose adjustment, and switching or adding medications. All subjects undergo comprehensive outcome assessments at baseline, 1, 3, 6 and 12 months by interviewers blinded to treatment group. The primary outcome is pain severity/disability, and secondary outcomes include pain beliefs and behaviors, psychological functioning, health-related quality of life and treatment satisfaction. Innovations of SCOPE include <span class="hlt">optimized</span> analgesic management (including a <span class="hlt">stepped</span> care approach, opioid risk stratification, and criteria-based medication adjustment), automated monitoring, and centralized care management that can cover multiple primary care practices. PMID:23228858</p> <div class="credits"> <p class="dwt_author">Kroenke, Kurt; Krebs, Erin; Wu, Jingwei; Bair, Matthew J; Damush, Teresa; Chumbler, Neale; York, Tish; Weitlauf, Sharon; McCalley, Stephanie; Evans, Erica; Barnd, Jeffrey; Yu, Zhangsheng</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-12-08</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">229</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20775124"> <span id="translatedtitle">Continuous intensity map <span class="hlt">optimization</span> (CIMO): A novel approach to leaf sequencing in <span class="hlt">step</span> and shoot IMRT</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A new leaf-sequencing approach has been developed that is designed to reduce the number of required beam segments for <span class="hlt">step</span>-and-shoot intensity modulated radiation therapy (IMRT). This approach to leaf sequencing is called continuous-intensity-map-<span class="hlt">optimization</span> (CIMO). Using a simulated annealing algorithm, CIMO seeks to minimize differences between the <span class="hlt">optimized</span> and sequenced intensity maps. Two distinguishing features of the CIMO algorithm are (1) CIMO does not require that each <span class="hlt">optimized</span> intensity map be clustered into discrete levels and (2) CIMO is not rule-based but rather simultaneously <span class="hlt">optimizes</span> both the aperture shapes and weights. To test the CIMO algorithm, ten IMRT patient cases were selected (four head-and-neck, two pancreas, two prostate, one brain, and one pelvis). For each case, the <span class="hlt">optimized</span> intensity maps were extracted from the Pinnacle{sup 3} treatment planning system. The CIMO algorithm was applied, and the <span class="hlt">optimized</span> aperture shapes and weights were loaded back into Pinnacle. A final dose calculation was performed using Pinnacle's convolution/superposition based dose calculation. On average, the CIMO algorithm provided a 54% reduction in the number of beam segments as compared with Pinnacle's leaf sequencer. The plans sequenced using the CIMO algorithm also provided improved target dose uniformity and a reduced discrepancy between the <span class="hlt">optimized</span> and sequenced intensity maps. For ten clinical intensity maps, comparisons were performed between the CIMO algorithm and the power-of-two reduction algorithm of Xia and Verhey [Med. Phys. 25(8), 1424-1434 (1998)]. When the constraints of a Varian Millennium multileaf collimator were applied, the CIMO algorithm resulted in a 26% reduction in the number of segments. For an Elekta multileaf collimator, the CIMO algorithm resulted in a 67% reduction in the number of segments. An average leaf sequencing time of less than one minute per beam was observed.</p> <div class="credits"> <p class="dwt_author">Cao Daliang; Earl, Matthew A.; Luan, Shuang; Shepard, David M. [Department of Radiation Oncology, University of Maryland, 22 South Greene St., Baltimore, Maryland 21201 (United States); Department of Computer Science and Department of Radiology, University of New Mexico, New Mexico 87131 (United States); Department of Radiation Oncology, University of Maryland, 22 South Greene St., Baltimore, Maryland 21201 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-04-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">230</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009OptEn..48h0501L"> <span id="translatedtitle"><span class="hlt">Optimal</span> design of single resonant and ultrabroadband long-period fiber grating <span class="hlt">filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We propose a spectral flat-top, single resonant, and ultrabroadband-more than 180 nm in a -20-dB bandwidth-long-period fiber grating (LPG) <span class="hlt">filter</span>. The ultrabroadband LPG is based on a thin cladding layer LPG synthesized by the Lagrange multiplier <span class="hlt">optimization</span> (LMO) algorithm. As the bandwidth and resonant spectra cover a very wide band, both material dispersion and waveguide dispersion were included in the calculations of the LMO method. To the best of our knowledge, the bandwidth of the designed flat-top LPG <span class="hlt">filter</span> in the -20-dB coupling is the broadest currently existing in the literature. Such designed LPG devices can be very useful for a variety of applications in broadband optical communication systems.</p> <div class="credits"> <p class="dwt_author">Lee, Cheng-Ling; Han, Pin</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">231</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008JPhCS.142a2007T"> <span id="translatedtitle"><span class="hlt">Optimized</span> <span class="hlt">step</span>-stacked-routing ESD diode and its effects on LNA minimum noise figure</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Low capacitance loading is a continuous demand and challenge for ESD device design. In this research, an inter-digital ESD diode realized in TSMC 0.18um process is <span class="hlt">optimized</span> and verified. The diode is capable of passing 7?V HBM with 190fF capacitance loading for dual diode protection scheme. Using the novel <span class="hlt">Step</span>-Stacked-Routing technique, the capacitance is reduced by 18%. The effect on LNA minimum noise figure of this diode is analyzed and simulated with the extracted small signal model.</p> <div class="credits"> <p class="dwt_author">Tsai, Julius M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">232</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6357212"> <span id="translatedtitle">A prior knowledge based <span class="hlt">optimal</span> Wiener <span class="hlt">filtering</span> approach to ultrasonic scattering amplitude estimation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Advances in component life prediction techniques have prompted increased interest in quantitative nondestructive characterization of flaws in engineering materials. Flaw characterization techniques utilize a signature from the flaw. In ultrasonics, the signature is estimated from noise-corrupted experimental measurements of the scattered acoustic wave field resulting from insonification of the flaw. Estimating the flaw's signature involves removing the effects of the measurement system in the presence of noise. In the frequency domain, the flaw's signature is called a scattering amplitude. The purpose of this work is to evaluate an <span class="hlt">optimal</span> Wiener <span class="hlt">filtering</span> approach to scattering amplitude estimation.</p> <div class="credits"> <p class="dwt_author">Neal, S.P.</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">233</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/46626895"> <span id="translatedtitle">An <span class="hlt">optimized</span> solution of multi-criteria evaluation analysis of landslide susceptibility using fuzzy sets and Kalman <span class="hlt">filter</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The Kalman recursive algorithm has been very widely used for integrating navigation sensor data to achieve <span class="hlt">optimal</span> system performances. This paper explores the use of the Kalman <span class="hlt">filter</span> to extend the aggregation of spatial multi-criteria evaluation (MCE) and to find <span class="hlt">optimal</span> solutions with respect to a decision strategy space where a possible decision rule falls. The approach was tested in</p> <div class="credits"> <p class="dwt_author">Pece V. Gorsevski; Piotr Jankowski</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">234</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/800275"> <span id="translatedtitle"><span class="hlt">Optimal</span> Edge Detectors for Ramp Edges</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">It is argued that the best way to model an edge is by assuming all ideal mathematical function passed through a low-pass <span class="hlt">filter</span> and and immersed in noise. Using techniques similar to those developed by J. Canny (1983, 1986) and L.A. Spacek (1986), <span class="hlt">optimal</span> <span class="hlt">filters</span> are derived for ramp edges of various slopes. The <span class="hlt">optimal</span> nonrecursive <span class="hlt">filter</span> for ideal <span class="hlt">step</span></p> <div class="credits"> <p class="dwt_author">Maria Petrou; Josef Kittler</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">235</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011JNEng...8b5012S"> <span id="translatedtitle">CSP patches: an ensemble of <span class="hlt">optimized</span> spatial <span class="hlt">filters</span>. An evaluation study</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Laplacian <span class="hlt">filters</span> are widely used in neuroscience. In the context of brain-computer interfacing, they might be preferred to data-driven approaches such as common spatial patterns (CSP) in a variety of scenarios such as, e.g., when no or few user data are available or a calibration session with a multi-channel recording is not possible, which is the case in various applications. In this paper we propose the use of an ensemble of local CSP patches (CSPP) which can be considered as a compromise between Laplacian <span class="hlt">filters</span> and CSP. Our CSPP only needs a very small number of trials to be <span class="hlt">optimized</span> and significantly outperforms Laplacian <span class="hlt">filters</span> in all settings studied. Additionally, CSPP also outperforms multi-channel CSP and a regularized version of CSP even when only very few calibration data are available, acting as a CSP regularizer without the need of additional hyperparameters and at a very low cost: 2-5 min of data recording, i.e. ten times less than CSP.</p> <div class="credits"> <p class="dwt_author">Sannelli, Claudia; Vidaurre, Carmen; Müller, Klaus-Robert; Blankertz, Benjamin</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">236</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/16359687"> <span id="translatedtitle"><span class="hlt">Optimizing</span> the integrated pulsed amperometric multicycle <span class="hlt">step</span> waveform for the determination of tetracyclines.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A method of modified integrated pulsed amperometric detection with multicycle <span class="hlt">step</span> waveform (Multi-IPAD) following high-performance liquid chromatography (HPLC) was applied for the determination of tetracyclines (TCs) including dimethyltetracycline (DMTC), oxytetracycline (OTC) and tetracycline (TC). The key advantages of the Multi-IPAD are the abilities to enhance sensitivity and reproducibility and the ability to keep working electrode clean through the use of a high-frequent waveform alteration in integration <span class="hlt">step</span> and the use of a cleaning potential, which is quite different from conventional three-<span class="hlt">step</span> potential waveform. The analyses were carried out using the mobile phase of acetonitrile-water mixture solution (10:90, v/v) containing 1% perchloric acid on a C(18) column at a flow rate of 0.21 mL/min. The IPAD waveform parameters were <span class="hlt">optimized</span> to maximize the signal-to-noise ratio (S/N) and successfully applied for the sensitive detection of TCs. The detection limits (S/N=3, 20 microL injected) were 0.07 mg/L for DMTC, 0.08 mg/L for OTC and 0.05 mg/L for TC. The peak height relative standard deviations (RSDs) of every compound for replicate injection (n=15) determined were below 4.6%. PMID:16359687</p> <div class="credits"> <p class="dwt_author">Cai, Yu-e; Cai, Yaqi; Shi, Yali; Mou, Shifen; Lu, Yiqiang</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-12-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">237</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1985milc.conf....1P"> <span id="translatedtitle"><span class="hlt">Optimization</span> of a matched-<span class="hlt">filter</span> receiver for frequency hopping code acquisition in jamming</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A matched-<span class="hlt">filter</span> receiver for frequency hopping (FH) code acquisition is <span class="hlt">optimized</span> when either partial-band tone jamming or partial-band Gaussian noise jamming is present. The receiver is matched to a segment of the FH code sequence, sums hard per-channel decisions to form a test, and uses multiple tests to verify acquisition. The length of the matched <span class="hlt">filter</span> and the number of verification tests are fixed. <span class="hlt">Optimization</span> is then choosing thresholds to maximize performance based upon the receiver's degree of knowledge about the jammer ('side-information'). Four levels of side-information are considered, ranging from none to complete. The latter level results in a constant-false-alarm-rate (CFAR) design. At each level, performance sensitivity to threshold choice is analyzed. Robust thresholds are chosen to maximize performance as the jammer varies its power distribution, resulting in simple design rules which aid threshold selection. Performance results, which show that optimum distributions for the jammer power over the total FH bandwidth exist, are presented.</p> <div class="credits"> <p class="dwt_author">Pawlowski, P. R.; Polydoros, A.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">238</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013WRR....49.3194R"> <span id="translatedtitle">State estimation in large-scale open channel networks using sequential Monte Carlo methods: <span class="hlt">Optimal</span> sampling importance resampling and implicit particle <span class="hlt">filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This article investigates the performance of Monte Carlo-based estimation methods for estimation of flow state in large-scale open channel networks. After constructing a state space model of the flow based on the Saint-Venant equations, we implement the <span class="hlt">optimal</span> sampling importance resampling <span class="hlt">filter</span> to perform state estimation in a case in which measurements are available at every time <span class="hlt">step</span>. Considering a case in which measurements become available intermittently, a random-map implementation of the implicit particle <span class="hlt">filter</span> is applied to estimate the state trajectory in the interval between the measurements. Finally, some heuristics are proposed, which are shown to improve the estimation results and lower the computational cost. In the first heuristics, considering the case in which measurements are available at every time <span class="hlt">step</span>, we apply the implicit particle <span class="hlt">filter</span> over time intervals of a desired size while incorporating all the available measurements over the corresponding time interval. As a second heuristic method, we introduce a maximum a posteriori (MAP) method, which does not require sampling. It will be seen, through implementation, that the MAP method provides more accurate results in the case of our application while having a smaller computational cost. All estimation methods are tested on a network of 19 tidally forced subchannels and 1 reservoir, Clifton Court Forebay, in Sacramento-San Joaquin Delta in California, and numerical results are presented.</p> <div class="credits"> <p class="dwt_author">Rafiee, Mohammad; Barrau, Axel; Bayen, Alexandre M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">239</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22561939"> <span id="translatedtitle">Real-time defect detection of steel wire rods using wavelet <span class="hlt">filters</span> <span class="hlt">optimized</span> by univariate dynamic encoding algorithm for searches.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We propose a new defect detection algorithm for scale-covered steel wire rods. The algorithm incorporates an adaptive wavelet <span class="hlt">filter</span> that is designed on the basis of lattice parameterization of orthogonal wavelet bases. This approach offers the opportunity to design orthogonal wavelet <span class="hlt">filters</span> via <span class="hlt">optimization</span> methods. To improve the performance and the flexibility of wavelet design, we propose the use of the undecimated discrete wavelet transform, and separate design of column and row wavelet <span class="hlt">filters</span> but with a common cost function. The coefficients of the wavelet <span class="hlt">filters</span> are <span class="hlt">optimized</span> by the so-called univariate dynamic encoding algorithm for searches (uDEAS), which searches the minimum value of a cost function designed to maximize the energy difference between defects and background noise. Moreover, for improved detection accuracy, we propose an enhanced double-threshold method. Experimental results for steel wire rod surface images obtained from actual steel production lines show that the proposed algorithm is effective. PMID:22561939</p> <div class="credits"> <p class="dwt_author">Yun, Jong Pil; Jeon, Yong-Ju; Choi, Doo-chul; Kim, Sang Woo</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">240</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/19586794"> <span id="translatedtitle"><span class="hlt">Optimal</span> real-time Q-ball imaging using regularized Kalman <span class="hlt">filtering</span> with incremental orientation sets.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Diffusion MRI has become an established research tool for the investigation of tissue structure and orientation. Since its inception, Diffusion MRI has expanded considerably to include a number of variations such as diffusion tensor imaging (DTI), diffusion spectrum imaging (DSI) and Q-ball imaging (QBI). The acquisition and analysis of such data is very challenging due to its complexity. Recently, an exciting new Kalman <span class="hlt">filtering</span> framework has been proposed for DTI and QBI reconstructions in real-time during the repetition time (TR) of the acquisition sequence. In this article, we first revisit and thoroughly analyze this approach and show it is actually sub-<span class="hlt">optimal</span> and not recursively minimizing the intended criterion due to the Laplace-Beltrami regularization term. Then, we propose a new approach that implements the QBI reconstruction algorithm in real-time using a fast and robust Laplace-Beltrami regularization without sacrificing the <span class="hlt">optimality</span> of the Kalman <span class="hlt">filter</span>. We demonstrate that our method solves the correct minimization problem at each iteration and recursively provides the <span class="hlt">optimal</span> QBI solution. We validate with real QBI data that our proposed real-time method is equivalent in terms of QBI estimation accuracy to the standard offline processing techniques and outperforms the existing solution. Last, we propose a fast algorithm to recursively compute gradient orientation sets whose partial subsets are almost uniform and show that it can also be applied to the problem of efficiently ordering an existing point-set of any size. This work enables a clinician to start an acquisition with just the minimum number of gradient directions and an initial estimate of the orientation distribution functions (ODF) and then the next gradient directions and ODF estimates can be recursively and <span class="hlt">optimally</span> determined, allowing the acquisition to be stopped as soon as desired or at any iteration with the <span class="hlt">optimal</span> ODF estimates. This opens new and interesting opportunities for real-time feedback for clinicians during an acquisition and also for researchers investigating into <span class="hlt">optimal</span> diffusion orientation sets and real-time fiber tracking and connectivity mapping. PMID:19586794</p> <div class="credits"> <p class="dwt_author">Deriche, Rachid; Calder, Jeff; Descoteaux, Maxime</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-06-12</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_11");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a style="font-weight: bold;">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_13");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_12 div --> <div id="page_13" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_12");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a style="font-weight: bold;">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_14");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">241</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55354751"> <span id="translatedtitle"><span class="hlt">Optimizing</span> the anode-<span class="hlt">filter</span> combination in the sense of image quality and average glandular dose in digital mammography</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper presents the <span class="hlt">optimized</span> image quality and average glandular dose in digital mammography, and provides recommendations concerning anode-<span class="hlt">filter</span> combinations in digital mammography, which is based on amorphous selenium (a-Se) detector technology. The full field digital mammography (FFDM) system based on a-Se technology, which is also a platform of tomosynthesis prototype, was used in this study. X-ray tube anode-<span class="hlt">filter</span> combinations,</p> <div class="credits"> <p class="dwt_author">Mari Varjonen; Pekka Strömmer</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">242</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/4299355"> <span id="translatedtitle"><span class="hlt">Optimizing</span> the Target-<span class="hlt">Filter</span> Combination in Digital Mammography in the Sense of Image Quality and Average Glandular Dose</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper presents the <span class="hlt">optimized</span> target – <span class="hlt">filter</span> combinations to meet with the high image quality and the lowest possible\\u000a average glandular dose in digital mammography based on amorphous selenium (a-Se) detector technology. Study also provides recommendations for target-<span class="hlt">filter</span> combinations in digital mammography for different\\u000a breast thicknesses. The full field digital mammography (FFDM) system based on a-Se technology, which is</p> <div class="credits"> <p class="dwt_author">Mari Varjonen; Pekka Strömmer</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">243</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1497890"> <span id="translatedtitle">Integration of <span class="hlt">optimized</span> low-pass <span class="hlt">filters</span> in a bandpass <span class="hlt">filter</span> for out-of-band improvement</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this paper, we discuss the control and suppression of spurious resonances commonly encountered with distributed bandpass <span class="hlt">filters</span>. The basic idea consists of introducing low-pass structures within bandpass topologies. By adjusting low-pass <span class="hlt">filter</span> cutoff frequencies, harmonic resonances are attenuated, while maintaining in-band performances. In addition, transmission losses may be reduced as the insertion technique leads to optimum designs in terms</p> <div class="credits"> <p class="dwt_author">Cédric Quendo; Eric Rius; C. Person; M. Ney</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">244</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008JMAA..342.1280W"> <span id="translatedtitle">Kalman-Bucy <span class="hlt">filtering</span> equations of forward and backward stochastic systems and applications to recursive <span class="hlt">optimal</span> control problems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This paper is concerned with Kalman-Bucy <span class="hlt">filtering</span> problems of a forward and backward stochastic system which is a Hamiltonian system arising from a stochastic <span class="hlt">optimal</span> control problem. There are two main contributions worthy pointing out. One is that we obtain the Kalman-Bucy <span class="hlt">filtering</span> equation of a forward and backward stochastic system and study a kind of stability of the aforementioned <span class="hlt">filtering</span> equation. The other is that we develop a backward separation technique, which is different to Wonham's separation theorem, to study a partially observed recursive <span class="hlt">optimal</span> control problem. This new technique can also cover some more general situation such as a partially observed linear quadratic non-zero sum differential game problem is solved by it. We also give a simple formula to estimate the information value which is the difference of the <span class="hlt">optimal</span> cost functionals between the partial and the full observable information cases.</p> <div class="credits"> <p class="dwt_author">Wang, Guangchen; Wu, Zhen</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">245</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5669716"> <span id="translatedtitle"><span class="hlt">Optimization</span> of solar hay drying in a <span class="hlt">step</span>-flow dryer</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This paper reports on <span class="hlt">optimization</span> of solar hay drying in a <span class="hlt">step</span>-flow dryer. Artificially drying lucerne immediately after cutting eliminates quality losses during field drying and minimizes the number of field operations. The average potential drying, calculated over a 20-year period for southeast Queensland, is about $40 (Australian)/t of hay, minus drying costs. The optimum technique of hay drying immediately after cutting in a solar-supplemented, <span class="hlt">step</span>-flow dryer was investigated. A computer model was developed to minimize the cost of drying and to define the optimum drying parameters. Sensitivity analyses were carried out for drying air temperatures in the range of 30 to 70{degrees}C. The results show that there is an optimum number of hours of operation per day (8 h/d) for any combination of the other variables. The most critical factors affecting annual savings are the temperature of drying air, the length of the drying season, the cost of fuel, and the specific cost of the collector. An economic analysis showed that an average annual increase in profit of about $16/t of dried hay (at 12% w.b.) could be attained under optimum sets of operating conditions.</p> <div class="credits"> <p class="dwt_author">Radajewski, W.; Gaydon, D.; McGahan, E.J. (Dept. of Primary Industries, Agricultural Engineering Section, Toowoomba, Queensland (AU))</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">246</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013EL....10330007L"> <span id="translatedtitle">One <span class="hlt">step</span> memory of group reputation is <span class="hlt">optimal</span> to promote cooperation in public goods games</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Individuals' change of social ties has been observed to promote cooperation under specific mechanism, such as success-driven or expectation-driven migration. However, there is no clear criterion or information from players' instinctive memory or experience for them to consult as they would like to change their social ties. For the first time we define the reputation of a group based on individual's memory law. A model is proposed, where all players are endowed with the capacity to adjust interaction ambience involved if the reputation of their environment fails to satisfy their expectations. Simulation results show that cooperation decays as the increase of player's memory depth and one <span class="hlt">step</span> memory is <span class="hlt">optimal</span> to promote cooperation, which provides a potential interpretation for that most species memorize their reciprocators over very short time scales. Of intrigue is the result that cooperation can be improved greatly at an <span class="hlt">optimal</span> interval of moderate expectation. Moreover, cooperation can be established and stabilized within a wide range of model parameters even when players choose their new partners randomly under the combination of reputation and group switching mechanisms. Our work validates the fact that individuals' short memory or experience within a multi-players group acts as an effective ingredient to boost cooperation.</p> <div class="credits"> <p class="dwt_author">Li, Aming; Wu, Te; Cong, Rui; Wang, Long</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">247</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1500695"> <span id="translatedtitle">Simple CAD procedure for microwave <span class="hlt">filters</span> and multiplexers</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The design of microwave <span class="hlt">filters</span> and multiplexers requires a common <span class="hlt">step</span> before actual hardware implementation, namely, the identification of a number of specific ideal electrical components with actual waveguide discontinuities. In the past, this <span class="hlt">step</span> was accomplished semi-analytically using approximate single-mode discontinuity models. The complete <span class="hlt">filter</span> or multiplexer could then be assembled, but additional final tuning or <span class="hlt">optimization</span> with a</p> <div class="credits"> <p class="dwt_author">Marco Guglielmi</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">248</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007SPIE.6781E..52P"> <span id="translatedtitle">Design of optical thin film systems for ultraviolet narrow-band interference <span class="hlt">filters</span> based on needle <span class="hlt">optimization</span> technique</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Solar blind ultraviolet communication systems can provide short to medium range non line-of-sight and line-of-sight links which are covert and insensitive to meteorological conditions. These unique properties endow solar blind ultraviolet communication systems increasing applications. While optical <span class="hlt">filters</span> are key components of these solar blind ultraviolet communication systems. Although <span class="hlt">filters</span> can be designed in different forms, thin-film interference narrow-band <span class="hlt">filters</span> are widely adopted. In this paper, we make use of NCNBIF, which was so-called nonconventional narrow-band interference <span class="hlt">filters</span> proposed by Jerzy Ciosek firstly, to design ultraviolet narrow-band interference <span class="hlt">filters</span>. Generally, classical narrow-band interference dielectric <span class="hlt">filters</span>, such as Fabry-Pérot <span class="hlt">filters</span>, have a half-wave-thickness spacer layer. In contrast with a classical interference <span class="hlt">filter</span>, the NCNBIF does not have a half-wave-thickness spacer layer. This spacer layer of NCNBIF consists of two different materials. This new kind of film system (NCNBIF) is synthesized by using needle <span class="hlt">optimization</span> technique, and possesses desired spectral characteristics.</p> <div class="credits"> <p class="dwt_author">Peng, Guanliang; Yang, Jiankun; Jia, Honghui; Chang, Shengli; Yang, Juncai</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-11-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">249</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013SPIE.8777E..1BE"> <span id="translatedtitle">Spectral <span class="hlt">filtering</span> <span class="hlt">optimization</span> of a measuring channel of an x-ray broadband spectrometer</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A new channel of an X-ray broadband spectrometer has been developed for the 2 - 4 keV spectral range. It uses a spectral <span class="hlt">filtering</span> by using a non-periodic multilayer mirror. This channel is composed by a <span class="hlt">filter</span>, an aperiodic multilayer mirror and a detector. The design and realization of the optical coating mirror has been defined such as the reflectivity is above 8% in almost the entire bandwidth range 2 - 4 keV and lower than 2% outside. The mirror is <span class="hlt">optimized</span> for working at 1.9° grazing incidence. The mirror is coated with a stack of 115 chromium / scandium (Cr / Sc) non-periodic layers, between 0.6 nm and 7.3 nm and a 3 nm thick top SiO2 layer to protect the stack from oxidization. To control thin thicknesses, we produced specific multilayer mirrors which consist on a superposition of two periodic Cr / Sc multilayers with the layer to calibrate in between. The mirror and subnanometric layers characterizations were made at the "Laboratoire Charles Fabry" (LCF) with a grazing incidence reflectometer working at 8.048 keV (Cu K? radiation) and at the synchrotron radiation facility SOLEIL on the hard X-ray branch of the "Metrology" beamline. The reflectivity of the mirrors as a function of the photon energy was obtained in the Physikalisch Technische Bundesanstalt (PTB) laboratory at the synchrotron radiation facility Bessy II.</p> <div class="credits"> <p class="dwt_author">Emprin, B.; Troussel, Ph.; Villette, B.; Delmotte, F.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">250</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012JKPS...60.1161O"> <span id="translatedtitle">Application of digital tomosynthesis (DTS) of <span class="hlt">optimal</span> deblurring <span class="hlt">filters</span> for dental X-ray imaging</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Digital tomosynthesis (DTS) is a limited-angle tomographic technique that provides some of the tomographic benefits of computed tomography (CT) but at reduced dose and cost. Thus, the potential for application of DTS to dental X-ray imaging seems promising. As a continuation of our dental radiography R&D, we developed an effective DTS reconstruction algorithm and implemented it in conjunction with a commercial dental CT system for potential use in dental implant placement. The reconstruction algorithm employed a backprojection <span class="hlt">filtering</span> (BPF) method based upon <span class="hlt">optimal</span> deblurring <span class="hlt">filters</span> to suppress effectively both the blur artifacts originating from the out-focus planes and the high-frequency noise. To verify the usefulness of the reconstruction algorithm, we performed systematic simulation works and evaluated the image characteristics. We also performed experimental works in which DTS images of enhanced anatomical resolution were successfully obtained by using the algorithm and were promising to our ongoing applications to dental X-ray imaging. In this paper, our approach to the development of the DTS reconstruction algorithm and the results are described in detail.</p> <div class="credits"> <p class="dwt_author">Oh, J. E.; Cho, H. S.; Kim, D. S.; Choi, S. I.; Je, U. K.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">251</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/21324782"> <span id="translatedtitle">A new color <span class="hlt">filter</span> array with <span class="hlt">optimal</span> properties for noiseless and noisy color image acquisition.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Digital color cameras acquire color images by means of a sensor on which a color <span class="hlt">filter</span> array (CFA) is overlaid. The Bayer CFA dominates the consumer market, but there has recently been a renewed interest for the design of CFAs . However, robustness to noise is often neglected in the design, though it is crucial in practice. In this paper, we present a new 2 × 3-periodic CFA which provides, by construction, the <span class="hlt">optimal</span> tradeoff between robustness to aliasing, chrominance noise and luminance noise. Moreover, a simple and efficient linear demosaicking algorithm is described, which fully exploits the spectral properties of the CFA. Practical experiments confirm the superiority of our design, both in noiseless and noisy scenarios. PMID:21324782</p> <div class="credits"> <p class="dwt_author">Condat, Laurent</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-02-14</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">252</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/992023"> <span id="translatedtitle"><span class="hlt">Optimizing</span> the Advanced Ceramic Material (ACM) for Diesel Particulate <span class="hlt">Filter</span> Applications</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This paper describes the application of pore-scale filtration simulations to the ‘Advanced Ceramic Material’ (ACM) developed by Dow Automotive for use in advanced diesel particulate <span class="hlt">filters</span>. The application required the generation of a three dimensional substrate geometry to provide the boundary conditions for the flow model. An innovative stochastic modeling technique was applied matching chord length distribution and the porosity profile of the material. Additional experimental validation was provided by the single channel experimental apparatus. Results show that the stochastic reconstruction techniques provide flexibility and appropriate accuracy for the modeling efforts. Early <span class="hlt">optimization</span> efforts imply that needle length may provide a mechanism for adjusting performance of the ACM for DPF applications. New techniques have been developed to visualize soot deposition in both traditional and new DPF substrate materials. Loading experiments have been conducted on a variety of single channel DPF substrates to develop a deeper understanding of soot penetration, soot deposition characteristics, and to confirm modeling results.</p> <div class="credits"> <p class="dwt_author">Dillon, Heather E.; Stewart, Mark L.; Maupin, Gary D.; Gallant, Thomas R.; Li, Cheng; Mao, Frank H.; Pyzik, Aleksander J.; Ramanathan, Ravi</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-10-02</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">253</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50762472"> <span id="translatedtitle">A novel technique for the design and DCGA <span class="hlt">optimization</span> of guaranteed BIBO stable Jaumann digital IF <span class="hlt">filters</span> over the CSD multiplier coefficient space</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Intermediate Frequency (IF) <span class="hlt">filters</span> find diverse practical applications in modern communication systems. This paper presents a novel technique for the design and discrete <span class="hlt">optimization</span> of guaranteed BIBO stable digital IF <span class="hlt">filters</span> over the canonical signed-digit (CSD) multiplier coefficient space. This technique consists of two separate stages. In the first stage, the bilinear-LDI Jaumann digital <span class="hlt">filter</span> design approach is employed to</p> <div class="credits"> <p class="dwt_author">Francisco Marquez-Stricker; Yifan Wu; Behrouz Nowrouzian</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">254</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=AD676714"> <span id="translatedtitle">Linear <span class="hlt">Filtering</span> with Constraints.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">This paper develops the solution to the linear <span class="hlt">filtering</span> problem with constraints, utilizing the basic Kalman-Bucy <span class="hlt">filtering</span> theory. Specifically, the equations are developed for obtaining the <span class="hlt">optimal</span> <span class="hlt">filter</span> where the mean squared values of the <span class="hlt">optimal</span> es...</p> <div class="credits"> <p class="dwt_author">A. J. Collmeyer S. C. Gupta</p> <p class="dwt_publisher"></p> <p class="publishDate">1968-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">255</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23834855"> <span id="translatedtitle">Geometric <span class="hlt">optimization</span> of a <span class="hlt">step</span> bearing for a hydrodynamically levitated centrifugal blood pump for the reduction of hemolysis.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A hydrodynamically levitated centrifugal blood pump with a semi-open impeller has been developed for mechanical circulatory assistance. However, a narrow bearing gap has the potential to cause hemolysis. The purpose of the present study is to <span class="hlt">optimize</span> the geometric configuration of the hydrodynamic <span class="hlt">step</span> bearing in order to reduce hemolysis by expansion of the bearing gap. First, a numerical analysis of the <span class="hlt">step</span> bearing, based on lubrication theory, was performed to determine the <span class="hlt">optimal</span> design. Second, in order to assess the accuracy of the numerical analysis, the hydrodynamic forces calculated in the numerical analysis were compared with those obtained in an actual measurement test using impellers having <span class="hlt">step</span> lengths of 0%, 33%, and 67% of the vane length. Finally, a bearing gap measurement test and a hemolysis test were performed. As a result, the numerical analysis revealed that the hydrodynamic force was the largest when the <span class="hlt">step</span> length was approximately 70%. The hydrodynamic force calculated in the numerical analysis was approximately equivalent to that obtained in the measurement test. In the measurement test and the hemolysis test, the blood pump having a <span class="hlt">step</span> length of 67% achieved the maximum bearing gap and reduced hemolysis, as compared with the pumps having <span class="hlt">step</span> lengths of 0% and 33%. It was confirmed that the numerical analysis of the <span class="hlt">step</span> bearing was effective, and the developed blood pump having a <span class="hlt">step</span> length of approximately 70% was found to be a suitable configuration for the reduction of hemolysis. PMID:23834855</p> <div class="credits"> <p class="dwt_author">Kosaka, Ryo; Yada, Toru; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-07-03</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">256</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007AGUFM.H13I..05K"> <span id="translatedtitle">A Reduced Extended Kalman <span class="hlt">Filter</span> Method For Data Assimilation And Parameter <span class="hlt">Optimization</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This work is an extension of our two recent papers [Kao et al., Data assimilation with an extended Kalman <span class="hlt">filter</span> for an impact-produced shock-wave study, J. Comp. Phys., 196 (2004), 705-723, and Kao et al., Estimating model parameters for an impact-produced shock-wave simulation: <span class="hlt">Optimal</span> use of partial data with the extended Kalman <span class="hlt">filter</span>, J. Comp. Phys., 214 (2006), 725-737 ] about the applications of the extended Kalman <span class="hlt">filter</span> (EKF) to data assimilation in predictive codes. We have shown through the above two studies that the EKF method successfully estimates the evolving model state variables as well as model parameters of a shock-wave system by merging single-point pressure data into an Euler-equations computer code. We here intend to introduce a reduced EKF for the same purposes in terms of data assimilation and parameter <span class="hlt">optimization</span>, but with a much smaller computational cost so that the applications of EKF to multi-dimensional realistic problems can be made possible. One of the distinctive features of EKF is that, as the system evolves forward in time, the EKF algorithm tracks the time-dependent error-covariance matrix of the model's state variables and parameters based on a consistent tangent-linear approximation of the model dynamics. When data becomes available at one instant in time, the update of the model state variables and parameters is achieved through a functional form of the linear merger of the model prediction and the data, subjective to the minimization of the trace of the error-covariance matrix of the model state variables and parameters. It, however, has been a concern that the calculation for the time evolution of the error-covariance matrix in applying EKF is computationally demanding and prohibitively expensive for real multi-dimensional problems. Several simplified approaches of EKF have been proposed to reduce the computational burden. This current study was actually motivated by Dee's work [Dee, P. D., 1991: Simplification of the Kalman <span class="hlt">filter</span> for meteorological data assimilation. Q. J. Meteorol. Soc., 117, 365-384] and the results revealed in Evensen's study [Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods for forecast error statistics. J. Geophys. Res., 99, C5, 10143-10162]. In Kao et al. (2006), we were aware of that the errors associated with the model parameters are the main source of the total variances of the model state variables. Our simplification presented here somewhat resembles to the approach by Dee but takes it to an extreme by not considering the sensitivity due to the internal dynamics in the error propagation at all. Our method operates on the formalism in Kao et al. (2006) which is based upon an augmentation that the model parameters are treated as a part of the state variable vector, where the model parameters receive no influence from model dynamics and are only subject to a system error. The two groups within this augmented state vector would create four blocks in the error-covariance matrix among which a well-defined inter-relationship associated with error propagation can be derived. The test of the reduced EKF against the full EKF using the shock-wave model and cloud microphysics model will be presented. With cost effectiveness up to orders of magnitudes, the results are also satisfactory in terms of the assimilated field variables and <span class="hlt">optimized</span> model parameters.</p> <div class="credits"> <p class="dwt_author">Kao, C. J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">257</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1994OptEn..33.1767H"> <span id="translatedtitle">Design and evaluation of three-level composite <span class="hlt">filters</span> obtained by <span class="hlt">optimizing</span> a compromise average performance measure</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Correlation <span class="hlt">filters</span> with three transmittance levels (+1, 0, and -1) are of interest in optical pattern recognition because they can be implemented on available spatial light modulators and because the zero level allows us to include a region of support (ROS). The ROS can provide additional control over the <span class="hlt">filter</span>'s noise tolerance and peak sharpness. A new algorithm based on <span class="hlt">optimizing</span> a compromise average performance measure (CAPM) is proposed for designing three-level composite <span class="hlt">filters</span>. The performance of this algorithm is compared to other three-level composite <span class="hlt">filter</span> designs using a common image database and using figures of merit such as the Fisher ratio, error rate, and light efficiency. It is shown that the CAPM algorithm yields better results.</p> <div class="credits"> <p class="dwt_author">Hendrix, Charles D.; Vijaya Kumar, B. V. K.</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">258</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3570435"> <span id="translatedtitle">Identification of CpG islands in DNA sequences using statistically <span class="hlt">optimal</span> null <span class="hlt">filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">CpG dinucleotide clusters also referred to as CpG islands (CGIs) are usually located in the promoter regions of genes in a deoxyribonucleic acid (DNA) sequence. CGIs play a crucial role in gene expression and cell differentiation, as such, they are normally used as gene markers. The earlier CGI identification methods used the rich CpG dinucleotide content in CGIs, as a characteristic measure to identify the locations of CGIs. The fact, that the probability of nucleotide G following nucleotide C in a CGI is greater as compared to a non-CGI, is employed by some of the recent methods. These methods use the difference in transition probabilities between subsequent nucleotides to distinguish between a CGI from a non-CGI. These transition probabilities vary with the data being analyzed and several of them have been reported in the literature sometimes leading to contradictory results. In this article, we propose a new and efficient scheme for identification of CGIs using statistically <span class="hlt">optimal</span> null <span class="hlt">filters</span>. We formulate a new CGI identification characteristic to reliably and efficiently identify CGIs in a given DNA sequence which is devoid of any ambiguities. Our proposed scheme combines maximum signal-to-noise ratio and least squares <span class="hlt">optimization</span> criteria to estimate the CGI identification characteristic in the DNA sequence. The proposed scheme is tested on a number of DNA sequences taken from human chromosomes 21 and 22, and proved to be highly reliable as well as efficient in identifying the CGIs.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">259</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2904769"> <span id="translatedtitle">Do Humans <span class="hlt">Optimally</span> Exploit Redundancy to Control <span class="hlt">Step</span> Variability in Walking?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">It is widely accepted that humans and animals minimize energetic cost while walking. While such principles predict average behavior, they do not explain the variability observed in walking. For robust performance, walking movements must adapt at each <span class="hlt">step</span>, not just on average. Here, we propose an analytical framework that reconciles issues of <span class="hlt">optimality</span>, redundancy, and stochasticity. For human treadmill walking, we defined a goal function to formulate a precise mathematical definition of one possible control strategy: maintain constant speed at each stride. We recorded stride times and stride lengths from healthy subjects walking at five speeds. The specified goal function yielded a decomposition of stride-to-stride variations into new gait variables explicitly related to achieving the hypothesized strategy. Subjects exhibited greatly decreased variability for goal-relevant gait fluctuations directly related to achieving this strategy, but far greater variability for goal-irrelevant fluctuations. More importantly, humans immediately corrected goal-relevant deviations at each successive stride, while allowing goal-irrelevant deviations to persist across multiple strides. To demonstrate that this was not the only strategy people could have used to successfully accomplish the task, we created three surrogate data sets. Each tested a specific alternative hypothesis that subjects used a different strategy that made no reference to the hypothesized goal function. Humans did not adopt any of these viable alternative strategies. Finally, we developed a sequence of stochastic control models of stride-to-stride variability for walking, based on the Minimum Intervention Principle. We demonstrate that healthy humans are not precisely “<span class="hlt">optimal</span>,” but instead consistently slightly over-correct small deviations in walking speed at each stride. Our results reveal a new governing principle for regulating stride-to-stride fluctuations in human walking that acts independently of, but in parallel with, minimizing energetic cost. Thus, humans exploit task redundancies to achieve robust control while minimizing effort and allowing potentially beneficial motor variability.</p> <div class="credits"> <p class="dwt_author">Dingwell, Jonathan B.; John, Joby; Cusumano, Joseph P.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">260</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/4020513"> <span id="translatedtitle">Uncertainty relation for resolution in space, spatial frequency, and orientation <span class="hlt">optimized</span> by two-dimensional visual cortical <span class="hlt">filters</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Two-dimensional spatial linear <span class="hlt">filters</span> are constrained by general uncertainty relations that limit their attainable information resolution for orientation, spatial frequency, and two-dimensional (2D) spatial position. The theoretical lower limit for the joint entropy, or uncertainty, of these variables is achieved by an <span class="hlt">optimal</span> 2D <span class="hlt">filter</span> family whose spatial weighting functions are generated by exponentiated bivariate second-order polynomials with complex coefficients, the elliptic generalization of the one-dimensional elementary functions proposed in Gabor's famous theory of communication [J. Inst. Electr. Eng. 93, 429 (1946)]. The set includes <span class="hlt">filters</span> with various orientation bandwidths, spatial-frequency bandwidths, and spatial dimensions, favoring the extraction of various kinds of information from an image. Each such <span class="hlt">filter</span> occupies an irreducible quantal volume (corresponding to an independent datum) in a four-dimensional information hyperspace whose axes are interpretable as 2D visual space, orientation, and spatial frequency, and thus such a <span class="hlt">filter</span> set could subserve an <span class="hlt">optimally</span> efficient sampling of these variables. Evidence is presented that the 2D receptive-field profiles of simple cells in mammalian visual cortex are well described by members of this <span class="hlt">optimal</span> 2D <span class="hlt">filter</span> family, and thus such visual neurons could be said to <span class="hlt">optimize</span> the general uncertainty relations for joint 2D-spatial-2D-spectral information resolution. The variety of their receptive-field dimensions and orientation and spatial-frequency bandwidths, and the correlations among these, reveal several underlying constraints, particularly in width/length aspect ratio and principal axis organization, suggesting a polar division of labor in occupying the quantal volumes of information hyperspace.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:4020513</p> <div class="credits"> <p class="dwt_author">Daugman, J G</p> <p class="dwt_publisher"></p> <p class="publishDate">1985-07-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_12");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a style="font-weight: bold;">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_14");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_13 div --> <div id="page_14" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_13");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a style="font-weight: bold;">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_15");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">261</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/40719673"> <span id="translatedtitle"><span class="hlt">Optimization</span> and field application of a <span class="hlt">filter</span> pack system for the simultaneous sampling of atmospheric HN0 3, NH 3 AND SO 2</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Optimization</span> and field application of a <span class="hlt">filter</span> pack system for the simultaneous collection of atmospheric gas-phase HN03, NH3 and S02 have been studied. A Teflon prefilter was used to remove particulate matter. Nylon <span class="hlt">filter</span>, oxalic-acid-treated Whatman 41 <span class="hlt">filter</span> and sodium-carbonate-treated Whatman 41 <span class="hlt">filter</span> were used for the collection of HN03, NH3 and S02, respectively. For the collection of gas-phase HN03,</p> <div class="credits"> <p class="dwt_author">Duran Karaka?; Semra G. Tuncel</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">262</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22453408"> <span id="translatedtitle"><span class="hlt">Optimizing</span> single mode robustness of the distributed modal <span class="hlt">filtering</span> rod fiber amplifier.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">High-power fiber amplifiers for pulsed applications require large mode area (LMA) fibers having high pump absorption and near diffraction limited output. Photonic crystal fibers allow realization of short LMA fiber amplifiers having high pump absorption through a pump cladding that is decoupled from the outer fiber diameter. However, achieving ultra low NA for single mode (SM) guidance is challenging, thus different design strategies must be applied. The distributed modal <span class="hlt">filtering</span> (DMF) design enables SM guidance in ultra low NA fibers with very large cores, where large preform tolerances can be compensated during the fiber draw. Design <span class="hlt">optimization</span> of the SM bandwidth of the DMF rod fiber is presented. Analysis of band gap properties results in a fourfold increase of the SM bandwidth compared to previous results, achieved by utilizing the first band of cladding modes, which can cover a large fraction of the Yb emission band including wavelengths of 1030 nm and 1064 nm. Design parameters tolerating refractive index fabrication uncertainties of ± 10?? are targeted to yield stable SM bandwidths. PMID:22453408</p> <div class="credits"> <p class="dwt_author">Jørgensen, Mette Marie; Petersen, Sidsel Rübner; Laurila, Marko; Lægsgaard, Jesper; Alkeskjold, Thomas Tanggaard</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-03-26</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">263</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/18689747"> <span id="translatedtitle">Selection of plants for <span class="hlt">optimization</span> of vegetative <span class="hlt">filter</span> strips treating runoff from turfgrass.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Runoff from turf environments, such as golf courses, is of increasing concern due to the associated chemical contamination of lakes, reservoirs, rivers, and ground water. Pesticide runoff due to fungicides, herbicides, and insecticides used to maintain golf courses in acceptable playing condition is a particular concern. One possible approach to mitigate such contamination is through the implementation of effective vegetative <span class="hlt">filter</span> strips (VFS) on golf courses and other recreational turf environments. The objective of the current study was to screen ten aesthetically acceptable plant species for their ability to remove four commonly-used and degradable pesticides: chlorpyrifos (CP), chlorothalonil (CT), pendimethalin (PE), and propiconazole (PR) from soil in a greenhouse setting, thus providing invaluable information as to the species composition that would be most efficacious for use in VFS surrounding turf environments. Our results revealed that blue flag iris (Iris versicolor) (76% CP, 94% CT, 48% PE, and 33% PR were lost from soil after 3 mo of plant growth), eastern gama grass (Tripsacum dactyloides) (47% CP, 95% CT, 17% PE, and 22% PR were lost from soil after 3 mo of plant growth), and big blue stem (Andropogon gerardii) (52% CP, 91% CT, 19% PE, and 30% PR were lost from soil after 3 mo of plant growth) were excellent candidates for the <span class="hlt">optimization</span> of VFS as buffer zones abutting turf environments. Blue flag iris was most effective at removing selected pesticides from soil and had the highest aesthetic value of the plants tested. PMID:18689747</p> <div class="credits"> <p class="dwt_author">Smith, Katy E; Putnam, Raymond A; Phaneuf, Clifford; Lanza, Guy R; Dhankher, Om P; Clark, John M</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-08-08</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">264</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007SPIE.6490E..29K"> <span id="translatedtitle">Autostereoscopic display with 60 ray directions using LCD with <span class="hlt">optimized</span> color <span class="hlt">filter</span> layout</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We developed a mobile-size integral videography (IV) display that reproduces 60 ray directions. IV is an autostereoscopic video image technique based on integral photography (IP). The IV display consists of a 2-D display and a microlens array. The maximal spatial frequency (MSF) and the number of rays appear to be the most important factors in producing realistic autostereoscopic images. Lens pitch usually determines the MSF of IV displays. The lens pitch and pixel density of the 2-D display determine the number of rays it reproduces. There is a trade-off between the lens pitch and the pixel density. The shape of an elemental image determines the shape of the area of view. We developed an IV display based on the above correlationship. The IV display consists of a 5-inch 900-dpi liquid crystal display (LCD) and a microlens array. The IV display has 60 ray directions with 4 vertical rays and a maximum of 18 horizontal rays. We <span class="hlt">optimized</span> the color <span class="hlt">filter</span> on the LCD to reproduce 60 rays. The resolution of the display is 256x192, and the viewing angle is 30 degrees. These parameters are sufficient for mobile game use. Users can interact with the IV display by using a control pad.</p> <div class="credits"> <p class="dwt_author">Koike, Takafumi; Oikawa, Michio; Utsugi, Kei; Kobayashi, Miho; Yamasaki, Masami</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-02-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">265</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/4412924"> <span id="translatedtitle">Texas Two-<span class="hlt">Step</span>: A Framework for <span class="hlt">Optimal</span> Multi-Input Single-Output Deconvolution</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Multi-input single-output deconvolution (MISO-D) aims to extract a deblurred estimate of a target signal from several blurred and noisy observations. This paper develops a new two <span class="hlt">step</span> framework-Texas two-<span class="hlt">step</span>-to solve MISO-D problems with known blurs. Texas two-<span class="hlt">step</span> first reduces the MISO-D problem to a related single-input single-output deconvolution (SISO-D) problem by invoking the concept of sufficient statistics (SSs) and then</p> <div class="credits"> <p class="dwt_author">Max Deffenbaugh; Richard G. Baraniuk</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">266</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22254562"> <span id="translatedtitle">Improvement of hemocompatibility for hydrodynamic levitation centrifugal pump by <span class="hlt">optimizing</span> <span class="hlt">step</span> bearings.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">We have developed a hydrodynamic levitation centrifugal blood pump with a semi-open impeller for a mechanically circulatory assist. The impeller levitated with original hydrodynamic bearings without any complicated control and sensors. However, narrow bearing gap has the potential for causing hemolysis. The purpose of the study is to investigate the geometric configuration of the hydrodynamic <span class="hlt">step</span> bearing to minimize hemolysis by expansion of the bearing gap. Firstly, we performed the numerical analysis of the <span class="hlt">step</span> bearing based on Reynolds equation, and measured the actual hydrodynamic force of the <span class="hlt">step</span> bearing. Secondly, the bearing gap measurement test and the hemolysis test were performed to the blood pumps, whose <span class="hlt">step</span> length were 0 %, 33 % and 67 % of the vane length respectively. As a result, in the numerical analysis, the hydrodynamic force was the largest, when the <span class="hlt">step</span> bearing was around 70 %. In the actual evaluation tests, the blood pump having <span class="hlt">step</span> 67 % obtained the maximum bearing gap, and was able to improve the hemolysis, compared to those having <span class="hlt">step</span> 0% and 33%. We confirmed that the numerical analysis of the <span class="hlt">step</span> bearing worked effectively, and the blood pump having <span class="hlt">step</span> 67 % was suitable configuration to minimize hemolysis, because it realized the largest bearing gap. PMID:22254562</p> <div class="credits"> <p class="dwt_author">Kosaka, Ryo; Yada, Toru; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">267</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008SPIE.6913E.153V"> <span id="translatedtitle"><span class="hlt">Optimizing</span> the anode-<span class="hlt">filter</span> combination in the sense of image quality and average glandular dose in digital mammography</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This paper presents the <span class="hlt">optimized</span> image quality and average glandular dose in digital mammography, and provides recommendations concerning anode-<span class="hlt">filter</span> combinations in digital mammography, which is based on amorphous selenium (a-Se) detector technology. The full field digital mammography (FFDM) system based on a-Se technology, which is also a platform of tomosynthesis prototype, was used in this study. X-ray tube anode-<span class="hlt">filter</span> combinations, which we studied, were tungsten (W) - rhodium (Rh) and tungsten (W) - silver (Ag). Anatomically adaptable fully automatic exposure control (AAEC) was used. The average glandular doses (AGD) were calculated using a specific program developed by Planmed, which automates the method described by Dance et al. Image quality was evaluated in two different ways: a subjective image quality evaluation, and contrast and noise analysis. By using W-Rh and W-Ag anode-<span class="hlt">filter</span> combinations can be achieved a significantly lower average glandular dose compared with molybdenum (Mo) - molybdenum (Mo) or Mo-Rh. The average glandular dose reduction was achieved from 25 % to 60 %. In the future, the evaluation will concentrate to study more <span class="hlt">filter</span> combinations and the effect of higher kV (>35 kV) values, which seems be useful while <span class="hlt">optimizing</span> the dose in digital mammography.</p> <div class="credits"> <p class="dwt_author">Varjonen, Mari; Strömmer, Pekka</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">268</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50372429"> <span id="translatedtitle">Rate-distortion <span class="hlt">optimization</span> of spatial <span class="hlt">filters</span> for motion-compensated video coding</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We propose a novel motion-compensated prediction scheme for improving the rate-distortion performance of motion compensated video coders. Our scheme uses a codebook of <span class="hlt">filters</span> so that the prediction block is encoded by specifying jointly an integer motion vector and the index of a <span class="hlt">filter</span> in the codebook. The two-dimensional spatial <span class="hlt">filter</span> furnishes simultaneously the functions of motion compensation, pixel interpolation</p> <div class="credits"> <p class="dwt_author">Vincent Fong; Wai-Yip Chan</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">269</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003SPIE.5039..858B"> <span id="translatedtitle">Spin-on bottom antireflective coating defect reduction by proper <span class="hlt">filter</span> selection and process <span class="hlt">optimization</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A design of experiment (DOE) was implemented to show the effects of various point of use <span class="hlt">filters</span> on the coat process. The DOE takes into account the <span class="hlt">filter</span> media, pore size, and pumping means, such as dispense pressure, time, and spin speed. The coating was executed on a TEL Mark 8 coat track, with an IDI M450 pump, and PALL 16 stack Falcon <span class="hlt">filters</span>. A KLA 2112 set at 0.69µm pixel size was used to scan the wafers to detect and identify the defects. The process found for DUV42P to maintain a low defect coating irrespective of the <span class="hlt">filter</span> or pore size is a high start pressure, low end pressure, low dispense time, and high dispense speed. The IDI M450 pump has the capability to compensate for bubble type defects by venting the defects out of the <span class="hlt">filter</span> before the defects are in the dispense line and the variable dispense rate allows the material in the dispense line to slow down at the end of dispense and not create microbubbles in the dispense line or tip. Also the differential pressure sensor will alarm if the pressure differential across the <span class="hlt">filter</span> increases over a user-determined setpoint. The pleat design allows more surface area in the same footprint to reduce the differential pressure across the <span class="hlt">filter</span> and transport defects to the vent tube. The correct low defect coating process will maximize the advantage of reducing <span class="hlt">filter</span> pore size or changing the <span class="hlt">filter</span> media.</p> <div class="credits"> <p class="dwt_author">Brakensiek, Nickolas L.; Kidd, Brian; Mesawich, Michael; Stevens, Don, Jr.; Gotlinsky, Barry</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">270</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3791008"> <span id="translatedtitle">Globally <span class="hlt">Optimal</span> Multisensor Distributed Random Parameter Matrices Kalman <span class="hlt">Filtering</span> Fusion with Applications</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">This paper proposes a new distributed Kalman <span class="hlt">filtering</span> fusion with random state transition and measurement matrices, i.e., random parameter matrices Kalman <span class="hlt">filtering</span>. It is proved that under a mild condition the fused state estimate is equivalent to the centralized Kalman <span class="hlt">filtering</span> using all sensor measurements; therefore, it achieves the best performance. More importantly, this result can be applied to Kalman <span class="hlt">filtering</span> with uncertain observations including the measurement with a false alarm probability as a special case, as well as, randomly variant dynamic systems with multiple models. Numerical examples are given which support our analysis and show significant performance loss of ignoring the randomness of the parameter matrices.</p> <div class="credits"> <p class="dwt_author">Luo, Yingting; Zhu, Yunmin; Luo, Dandan; Zhou, Jie; Song, Enbin; Wang, Donghua</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">271</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/18072488"> <span id="translatedtitle">Dual-energy approach to contrast-enhanced mammography using the balanced <span class="hlt">filter</span> method: spectral <span class="hlt">optimization</span> and preliminary phantom measurement.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Dual-energy contrast agent-enhanced mammography is a technique of demonstrating breast cancers obscured by a cluttered background resulting from the contrast between soft tissues in the breast. The technique has usually been implemented by exploiting two exposures to different x-ray tube voltages. In this article, another dual-energy approach using the balanced <span class="hlt">filter</span> method without switching the tube voltages is described. For the spectral <span class="hlt">optimization</span> of dual-energy mammography using the balanced <span class="hlt">filters</span>, we applied a theoretical framework reported by Lemacks et al. [Med. Phys. 29, 1739-1751 (2002)] to calculate the signal-to-noise ratio (SNR) in an iodinated contrast agent subtraction image. This permits the selection of beam parameters such as tube voltage and balanced <span class="hlt">filter</span> material, and the <span class="hlt">optimization</span> of the latter's thickness with respect to some critical quantity-in this case, mean glandular dose. For an imaging system with a 0.1 mm thick CsI:T1 scintillator, we predict that the <span class="hlt">optimal</span> tube voltage would be 45 kVp for a tungsten anode using zirconium, iodine, and neodymium balanced <span class="hlt">filters</span>. A mean glandular dose of 1.0 mGy is required to obtain an SNR of 5 in order to detect 1.0 mg/cm2 iodine in the resulting clutter-free image of a 5 cm thick breast composed of 50% adipose and 50% glandular tissue. In addition to spectral <span class="hlt">optimization</span>, we carried out phantom measurements to demonstrate the present dual-energy approach for obtaining a clutter-free image, which preferentially shows iodine, of a breast phantom comprising three major components-acrylic spheres, olive oil, and an iodinated contrast agent. The detection of iodine details on the cluttered background originating from the contrast between acrylic spheres and olive oil is analogous to the task of distinguishing contrast agents in a mixture of glandular and adipose tissues. PMID:18072488</p> <div class="credits"> <p class="dwt_author">Saito, Masatoshi</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">272</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21032835"> <span id="translatedtitle">Dual-energy approach to contrast-enhanced mammography using the balanced <span class="hlt">filter</span> method: Spectral <span class="hlt">optimization</span> and preliminary phantom measurement</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Dual-energy contrast agent-enhanced mammography is a technique of demonstrating breast cancers obscured by a cluttered background resulting from the contrast between soft tissues in the breast. The technique has usually been implemented by exploiting two exposures to different x-ray tube voltages. In this article, another dual-energy approach using the balanced <span class="hlt">filter</span> method without switching the tube voltages is described. For the spectral <span class="hlt">optimization</span> of dual-energy mammography using the balanced <span class="hlt">filters</span>, we applied a theoretical framework reported by Lemacks et al. [Med. Phys. 29, 1739-1751 (2002)] to calculate the signal-to-noise ratio (SNR) in an iodinated contrast agent subtraction image. This permits the selection of beam parameters such as tube voltage and balanced <span class="hlt">filter</span> material, and the <span class="hlt">optimization</span> of the latter's thickness with respect to some critical quantity--in this case, mean glandular dose. For an imaging system with a 0.1 mm thick CsI:Tl scintillator, we predict that the <span class="hlt">optimal</span> tube voltage would be 45 kVp for a tungsten anode using zirconium, iodine, and neodymium balanced <span class="hlt">filters</span>. A mean glandular dose of 1.0 mGy is required to obtain an SNR of 5 in order to detect 1.0 mg/cm{sup 2} iodine in the resulting clutter-free image of a 5 cm thick breast composed of 50% adipose and 50% glandular tissue. In addition to spectral <span class="hlt">optimization</span>, we carried out phantom measurements to demonstrate the present dual-energy approach for obtaining a clutter-free image, which preferentially shows iodine, of a breast phantom comprising three major components - acrylic spheres, olive oil, and an iodinated contrast agent. The detection of iodine details on the cluttered background originating from the contrast between acrylic spheres and olive oil is analogous to the task of distinguishing contrast agents in a mixture of glandular and adipose tissues.</p> <div class="credits"> <p class="dwt_author">Saito, Masatoshi [Department of Radiological Technology, School of Health Sciences, Faculty of Medicine, Niigata University, Niigata 951-8518 (Japan)</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-11-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">273</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/4278684"> <span id="translatedtitle">Using of Intelligent Particle Swarm <span class="hlt">Optimization</span> Algorithm to Synthesis the Index Modulation Profile of Narrow Ban Fiber Bragg Grating <span class="hlt">Filter</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A new method for synthesis of fiber Bragg gratings based <span class="hlt">filter</span> is proposed. By combining the transmission matrix method and\\u000a the particles swarm <span class="hlt">optimization</span> algorithm, we obtain a novel method for the inverse problem of the synthesizing fiber gratings.\\u000a With adjusting the parameters of the PSO algorithm we can get the demand index modulation for the target reflection spectrums\\u000a including</p> <div class="credits"> <p class="dwt_author">Yumin Liu; Zhongyuan Yu</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">274</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013ApPhL.103i3702I"> <span id="translatedtitle">Focusing time harmonic scalar fields in non-homogenous lossy media: Inverse <span class="hlt">filter</span> vs. constrained power focusing <span class="hlt">optimization</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Two strategies to focus time harmonic scalar fields in known inhomogeneous lossy media are compared. The first one is the Inverse <span class="hlt">Filter</span> (IF) method, which faces the focusing task as the synthesis of a nominal field. The second one is the Constrained Power Focusing <span class="hlt">Optimization</span> (CPFO) method, which tackles the problem in terms of constrained mask constrained power <span class="hlt">optimization</span>. Numerical examples representative of focusing in noninvasive microwave hyperthermia are provided to show that CPFO is able to outperform IF, thanks to the additional degrees of freedom arising from the adopted power synthesis formulation.</p> <div class="credits"> <p class="dwt_author">Iero, D. A. M.; Isernia, T.; Crocco, L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">275</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/973636"> <span id="translatedtitle">Toward an <span class="hlt">Optimal</span> Position for IVC <span class="hlt">Filters</span>: Computational Modeling of the Impact of Renal Vein Inflow</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The purpose of this report is to evaluate the hemodynamic effects of renal vein inflow and <span class="hlt">filter</span> position on unoccluded and partially occluded IVC <span class="hlt">filters</span> using three-dimensional computational fluid dynamics. Three-dimensional models of the TrapEase and Gunther Celect IVC <span class="hlt">filters</span>, spherical thrombi, and an IVC with renal veins were constructed. Hemodynamics of steady-state flow was examined for unoccluded and partially occluded TrapEase and Gunther Celect IVC <span class="hlt">filters</span> in varying proximity to the renal veins. Flow past the unoccluded <span class="hlt">filters</span> demonstrated minimal disruption. Natural regions of stagnant/recirculating flow in the IVC are observed superior to the bilateral renal vein inflows, and high flow velocities and elevated shear stresses are observed in the vicinity of renal inflow. Spherical thrombi induce stagnant and/or recirculating flow downstream of the thrombus. Placement of the TrapEase <span class="hlt">filter</span> in the suprarenal vein position resulted in a large area of low shear stress/stagnant flow within the <span class="hlt">filter</span> just downstream of thrombus trapped in the upstream trapping position. <span class="hlt">Filter</span> position with respect to renal vein inflow influences the hemodynamics of <span class="hlt">filter</span> trapping. Placement of the TrapEase <span class="hlt">filter</span> in a suprarenal location may be thrombogenic with redundant areas of stagnant/recirculating flow and low shear stress along the caval wall due to the upstream trapping position and the naturally occurring region of stagnant flow from the renal veins. Infrarenal vein placement of IVC <span class="hlt">filters</span> in a near juxtarenal position with the downstream cone near the renal vein inflow likely confers increased levels of mechanical lysis of trapped thrombi due to increased shear stress from renal vein inflow.</p> <div class="credits"> <p class="dwt_author">Wang, S L; Singer, M A</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-07-13</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">276</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=PB2007103886"> <span id="translatedtitle">Carbon Nanotube <span class="hlt">Filter</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Monolithic, macroscopic, nanoporous nanotube <span class="hlt">filters</span> are fabricated having radially aligned carbon nanotube walls. The freestanding <span class="hlt">filters</span> have diameters and lengths up to several centimeters. A single-<span class="hlt">step</span> <span class="hlt">filtering</span> process was demonstrated in two impor...</p> <div class="credits"> <p class="dwt_author">A. Srivastava O. N. Srivastava P. M. Ajayan R. Vajtal S. Talapatra</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">277</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/11508962"> <span id="translatedtitle"><span class="hlt">Optimal</span> focusing by spatio-temporal inverse <span class="hlt">filter</span>. I. Basic principles.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A focusing technique based on the inversion of the propagation operator relating an array of transducers to a set of control points inside a medium was proposed in previous work [Tanter et al., J. Acoust. Soc. Am. 108, 223-234 (2000)] and is extended here to the time domain. As the inversion of the propagation operator is achieved both in space and time, this technique allows calculation of the set of temporal signals to be emitted by each element of the array in order to <span class="hlt">optimally</span> focus on a chosen control point. This broadband inversion process takes advantage of the singular-value decomposition of the propagation operator in the Fourier domain. The physical meaning of this decomposition is explained in a homogeneous medium. In particular, a definition of the number of degrees of freedom necessary to define the acoustic field generated by an array of limited aperture in a focal plane of limited extent is given. This number corresponds to the number of independent signals that can be created in the focal area both in space and time. In this paper, this broadband inverse-focusing technique is compared in homogeneous media with the classical focusing achieved by simple geometrical considerations but also with time-reversal focusing. It is shown that, even in a simple medium, slight differences appear between these three focusing strategies. In the companion paper [Aubry et al., J. Acoust. Soc. Am. 110, 48-58 (2001)] the three focusing techniques are compared in heterogeneous, absorbing, or complex media where classical focusing is strongly degraded. The strong improvement achieved by the spatio-temporal inverse-<span class="hlt">filter</span> technique emphasizes the great potential of multiple-channel systems having the ability to apply completely different signal waveforms on each transducer of the array. The application of this focusing technique could be of great interest in various ultrasonic fields such as medical imaging, nondestructive testing, and underwater acoustics. PMID:11508962</p> <div class="credits"> <p class="dwt_author">Tanter, M; Aubry, J F; Gerber, J; Thomas, J L; Fink, M</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">278</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51167291"> <span id="translatedtitle">Solution of the H? <span class="hlt">optimal</span> linear <span class="hlt">filtering</span> problem for discrete-time systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The solution of l2 (minimum variance) and H? estimation problems is considered using a polynomial systems approach. The results for the l2 <span class="hlt">filtering</span> problem, which corresponds with Wiener or Kalman <span class="hlt">filtering</span>\\/prediction, are first presented in polynomial matrix form. Attention then turns to the solution of the H? estimation problem for scalar systems. Numerous examples are presented to illustrate the computational</p> <div class="credits"> <p class="dwt_author">MICHAEL J. GRIMBLE; AHMED EL SAYED</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">279</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51137197"> <span id="translatedtitle">A efficient parallel deblocking <span class="hlt">filter</span> based on GPU: Implementation and <span class="hlt">optimization</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The deblocking <span class="hlt">filter</span> represents one of the most time consuming tasks of the H.264\\/AVC standard. Due to its characteristics of data dependencies and frequent memory access, it poses an arduous challenge to mapping the algorithm onto massively parallel architecture efficiently. In this paper, a novel parallel deblocking <span class="hlt">filter</span> is proposed based on GPU, which weaken the dependencies between MBs by</p> <div class="credits"> <p class="dwt_author">Huayou Su; Chunyuan Zhang; Jun Chai; Qianming Yang</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">280</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1548264"> <span id="translatedtitle"><span class="hlt">Optimization</span> of resonant second- and third-order nonlinearities in <span class="hlt">step</span> and continuously graded semiconductor quantum wells</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Methods for systematic <span class="hlt">optimization</span> of <span class="hlt">step</span>-graded and continuously graded ternary alloy based quantum wells (QW's), in respect to second- or third-order intersubband nonlinear susceptibilities at resonance, are discussed. The use of these methods is examplified on the design of AlxGa1-xN and AlxGa1-x As-based QW's intended for resonant second harmonic or third harmonic generation with h?=116 meV or h?=240 meV pump</p> <div class="credits"> <p class="dwt_author">Dragan Indjin; Zoran Ikonic; V. Milanovic; Jelena Radovanovic</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_13");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a style="font-weight: bold;">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_15");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_14 div --> <div id="page_15" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_14");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a style="font-weight: bold;">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_16");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">281</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/l7n0953308055074.pdf"> <span id="translatedtitle">Projected Hessians for Preconditioning in One-<span class="hlt">Step</span> One-Shot Design <span class="hlt">Optimization</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">One-shot <span class="hlt">optimization</span> aims at attaining feasibility and <span class="hlt">optimality</span> simultaneously, especially on problems where even the linearized constraint equations cannot be resolved economically. Here we consider a scenario where forming and factoring the active Jacobian is out of the question, as is for example the case when the constraints represent some discretization of the Navier Stokes equation. Assuming that the ‘user’</p> <div class="credits"> <p class="dwt_author">Andreas Griewankl</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">282</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.matheon.de/preprints/243.pdf"> <span id="translatedtitle">Projected Hessians for Preconditioning in One-<span class="hlt">Step</span> One-Shot Design <span class="hlt">Optimization</span>1</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">One-shot <span class="hlt">optimization</span> aims at attaining feasibility and <span class="hlt">optimality</span> simultane- ously, especially on problems where even the linearized constraint equations cannot be resolved economically. Here we consider a scenario where forming and factoring the active Jacobian is out of the question, as is for example the case when the constraints represent some discretization of the Navier Stokes equation. Assuming that the</p> <div class="credits"> <p class="dwt_author">Andreas Griewank</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">283</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/24485349"> <span id="translatedtitle">Modeling and <span class="hlt">Optimization</span> of the <span class="hlt">Step</span> Coverage of Tungsten LPCVD in Trenches and Contact Holes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A model is presented to calculate the <span class="hlt">step</span> coverage of blanket tungsten low pressure chemical vapor deposition(W-LPCVD) from tungsten hexafluoride (WF6). The model can calculate tungsten growth in trenches and circular contactholes, in the case of the WF6 reduction by H2, SiH4, or both. The <span class="hlt">step</span> coverage model predictions have been verified experimentallyby scanning electron microscopy (SEM). We found that</p> <div class="credits"> <p class="dwt_author">A. Hasper; J. Holleman; J. Middelhoek; C. R. Kleijn; C. J. Hoogendoorn</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">284</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23028457"> <span id="translatedtitle">Identifying the preferred subset of enzymatic profiles in nonlinear kinetic metabolic models via multiobjective global <span class="hlt">optimization</span> and Pareto <span class="hlt">filters</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary"><span class="hlt">Optimization</span> models in metabolic engineering and systems biology focus typically on <span class="hlt">optimizing</span> a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as <span class="hlt">optimization</span> of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear <span class="hlt">optimization</span> methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global <span class="hlt">optimization</span> methods to non-linear representations. In this work we address the multi-objective global <span class="hlt">optimization</span> of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global <span class="hlt">optimization</span> methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the <span class="hlt">optimization</span>, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto <span class="hlt">optimal</span> alternatives, each achieving a unique combination of objectives values. To facilitate the post-<span class="hlt">optimal</span> analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto <span class="hlt">filters</span> that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study that <span class="hlt">optimizes</span> the ethanol production in the fermentation of Saccharomyces cerevisiae. PMID:23028457</p> <div class="credits"> <p class="dwt_author">Pozo, Carlos; Guillén-Gosálbez, Gonzalo; Sorribas, Albert; Jiménez, Laureano</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-09-20</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">285</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3447875"> <span id="translatedtitle">Identifying the Preferred Subset of Enzymatic Profiles in Nonlinear Kinetic Metabolic Models via Multiobjective Global <span class="hlt">Optimization</span> and Pareto <span class="hlt">Filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary"><span class="hlt">Optimization</span> models in metabolic engineering and systems biology focus typically on <span class="hlt">optimizing</span> a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as <span class="hlt">optimization</span> of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear <span class="hlt">optimization</span> methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global <span class="hlt">optimization</span> methods to non-linear representations. In this work we address the multi-objective global <span class="hlt">optimization</span> of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global <span class="hlt">optimization</span> methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the <span class="hlt">optimization</span>, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto <span class="hlt">optimal</span> alternatives, each achieving a unique combination of objectives values. To facilitate the post-<span class="hlt">optimal</span> analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto <span class="hlt">filters</span> that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study that <span class="hlt">optimizes</span> the ethanol production in the fermentation of Saccharomyces cerevisiae.</p> <div class="credits"> <p class="dwt_author">Pozo, Carlos; Guillen-Gosalbez, Gonzalo; Sorribas, Albert; Jimenez, Laureano</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">286</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/16306648"> <span id="translatedtitle"><span class="hlt">Optimal</span> <span class="hlt">filter</span> design for shielded and unshielded ambient noise reduction in fetal magnetocardiography.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The greatest impediment to extracting high-quality fetal signals from fetal magnetocardiography (fMCG) is environmental magnetic noise, which may have peak-to-peak intensity comparable to fetal QRS amplitude. Being an unstructured Gaussian signal with large disturbances at specific frequencies, ambient field noise can be reduced with hardware-based approaches and/or with software algorithms that digitally <span class="hlt">filter</span> magnetocardiographic recordings. At present, no systematic evaluation of <span class="hlt">filters</span>' performances on shielded and unshielded fMCG is available. We designed high-pass and low-pass Chebychev II-type <span class="hlt">filters</span> with zero-phase and stable impulse response; the most commonly used band-pass <span class="hlt">filters</span> were implemented combining high-pass and low-pass <span class="hlt">filters</span>. The achieved ambient noise reduction in shielded and unshielded recordings was quantified, and the corresponding signal-to-noise ratio (SNR) and signal-to-distortion ratio (SDR) of the retrieved fetal signals was evaluated. The study regarded 66 fMCG datasets at different gestational ages (22-37 weeks). Since the spectral structures of shielded and unshielded magnetic noise were very similar, we concluded that the same <span class="hlt">filter</span> setting might be applied to both conditions. Band-pass <span class="hlt">filters</span> (1.0-100 Hz) and (2.0-100 Hz) provided the best combinations of fetal signal detection rates, SNR and SDR; however, the former should be preferred in the case of arrhythmic fetuses, which might present spectral components below 2 Hz. PMID:16306648</p> <div class="credits"> <p class="dwt_author">Comani, S; Mantini, D; Alleva, G; Di Luzio, S; Romani, G L</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-11-08</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">287</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54159152"> <span id="translatedtitle">Two-stage hybrid <span class="hlt">optimization</span> of fiber Bragg gratings for design of linear phase <span class="hlt">filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We present a new hybrid <span class="hlt">optimization</span> method for the synthesis of fiber Bragg gratings (FBGs) with complex characteristics. The hybrid <span class="hlt">optimization</span> method is a two-tier search that employs a global <span class="hlt">optimization</span> algorithm [i.e., the tabu search (TS) algorithm] and a local <span class="hlt">optimization</span> method (i.e., the quasi-Netwon method). First the TS global <span class="hlt">optimization</span> algorithm is used to find a ``promising'' FBG</p> <div class="credits"> <p class="dwt_author">Rui Tao Zheng; Nam Quoc Ngo; Le Nguyen Binh; Swee Chuan Tjin</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">288</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011MNRAS.413.1145B"> <span id="translatedtitle"><span class="hlt">Optimal</span> <span class="hlt">filtering</span> of optical and weak lensing data to search for galaxy clusters: application to the COSMOS field</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Galaxy clusters are usually detected in blind optical surveys via suitable <span class="hlt">filtering</span> methods. We present an <span class="hlt">optimal</span> matched <span class="hlt">filter</span> which maximizes their signal-to-noise ratio by taking advantage of the knowledge we have of their intrinsic physical properties and of the data noise properties. In this paper we restrict our application to galaxy magnitudes, positions and photometric redshifts if available, and we also apply the <span class="hlt">filter</span> separately to weak lensing data. The method is suitable to be naturally extended to a multi-band approach which could include not only additional optical bands but also observables with different nature such as X-rays. For each detection, the <span class="hlt">filter</span> provides its significance, an estimate for the richness and for the redshift even if photo-z are not given. The provided analytical error estimate is tested against numerical simulations. We finally apply our method to the COSMOS field and compare the results with previous cluster detections obtained with different methods. Our catalogue contains 27 galaxy clusters with minimal threshold at 3? level including both optical and weak-lensing information.</p> <div class="credits"> <p class="dwt_author">Bellagamba, F.; Maturi, M.; Hamana, T.; Meneghetti, M.; Miyazaki, S.; Moscardini, L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">289</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003SPIE.5202..310B"> <span id="translatedtitle"><span class="hlt">Optimization</span> of a binary <span class="hlt">filter</span> by direct binary search algorithm for rotation-invariant JTC</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">An optimum training process using a direct binary search algorithm for synthesising a spatial domain binary <span class="hlt">filter</span> to implement in the joint transform correlator (JTC) architecture is presented. The major advantage of the proposed <span class="hlt">filter</span> are rotation invariance, higher discriminability for similar targets, and convenience for optical implementation in the JTC using a Ferroelectric over silicon SLM as a binary phase modulator. Results of the invariant <span class="hlt">filter</span> are presented for classical JTC, DC free JTC using phase shifting technique, and for the binarised JTC by applying edge-enhancement and mean thresholding at the JPS. Testing so far, shows that binary <span class="hlt">filter</span> is able to distinguish between target and anti-target images for all these cases.</p> <div class="credits"> <p class="dwt_author">Butt, J. A.; Wilkinson, T. D.; Crossland, W. A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">290</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5339417"> <span id="translatedtitle">Modeling and <span class="hlt">optimization</span> of the <span class="hlt">step</span> coverage of tungsten LPCVD in trenches and contact holes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">In this paper a model is presented to calculate the <span class="hlt">step</span> coverage of blanket tungsten low pressure chemical vapor deposition (W-LPCVD) from tungsten hexafluoride (WF{sub 6}). The model can calculate tungsten growth in trenches and circular contact holes, in the case of the WF{sub 6} reduction by H{sub 2}, SiH{sub 4}, or both. The <span class="hlt">step</span> coverage model predictions have been verified experimentally by scanning electron microscopy (SEM). The authors found that the predictions of the <span class="hlt">step</span> coverage model for the H{sub 2} reduction of WF{sub 6} are very accurate, if the partial pressures of the reactants at the inlet of the trench or contact hole are known. To get these reactant inlet partial pressures, the authors used a reactor model which calculates the surface partial pressures of all the reactants. These calculated surface partial pressures are used as input for the authors' <span class="hlt">step</span> coverage model. In this study the authors showed that thermodiffusion plays a very important role in the actual surface partial pressure. In the case where SiH{sub 4} was present in the gas mixture trends are predicted very well but the absolute values predicted by the <span class="hlt">step</span> coverage model are too high. The partial pressure of HF, which is a by-product of the H{sub 2} reduction reaction, may be very high inside trenches or contact holes, especially just before closing of the trench or contact hole. The authors found no influence of the calculated HF partial pressure on the <span class="hlt">step</span> coverage.</p> <div class="credits"> <p class="dwt_author">Hasper, A.; Holleman, J.; Middelhock, J. (Faculty of Electrical Engineering, Univ. of Twente, 7500 AE Enschede (NL)); Kleijn, C.R.; Hoogendoorn, C.J. (Faculty of Applied Physics, Delft Univ. of Technology, 2600 GA Delft (NL))</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">291</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53992498"> <span id="translatedtitle"><span class="hlt">Optimized</span> SU8 UV-lithographical process for a Ka-band <span class="hlt">filter</span> fabrication</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Rapidly expanding of millimeter wave communication has made Ka-band <span class="hlt">filter</span> fabrication to gain more and more attention from the researcher. Described in this paper is a high quality UV-lithographic process for making high aspect ratio parts of a coaxial Ka band dual mode <span class="hlt">filter</span> using an ultra-thick SU-8 photoresist layer, which has a potential application in LMDS systems. Due to</p> <div class="credits"> <p class="dwt_author">Peng Jin; Kyle Jiang; Jiubin Tan; M. J. Lancaster</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">292</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA061862"> <span id="translatedtitle"><span class="hlt">Optimization</span> of <span class="hlt">Step</span>-up Gear Trains with Different Kinematic Profiles.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">It was the purpose of this project to provide the tools which allow efficiency comparisons between fuze related two and three pass <span class="hlt">step</span>-up gear trains of different tooth geometries which are subject to operation in a spin environment. To this end mathemat...</p> <div class="credits"> <p class="dwt_author">G. G. Lowen</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">293</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/48473144"> <span id="translatedtitle">A First <span class="hlt">Step</span> Towards the Use of Proper General Decomposition Method for Structural <span class="hlt">Optimization</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In structural <span class="hlt">optimization</span>, the implicit nature of the cost function with respect to the <span class="hlt">optimization</span> parameters, i.e. through\\u000a the solution of the structural problem calculated with fixed values of these parameters, leads to prohibitive computations\\u000a whatever the adopted formulation.\\u000a \\u000a \\u000a Consequently, it yields limitations in both the number of parameters and the size of the structural problem. Moreover, some\\u000a know-how is</p> <div class="credits"> <p class="dwt_author">A. Leygue; E. Verron</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">294</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=https://www.cvl.isy.liu.se/ScOut/Publications/Papers/scia99_kaw.pdf"> <span id="translatedtitle">Advanced <span class="hlt">Filter</span> Design</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper presents a general approach for obtain- ing <span class="hlt">optimal</span> <span class="hlt">filters</span> as well as <span class="hlt">filter</span> sequences. A <span class="hlt">filter</span> is termed <span class="hlt">optimal</span> when it minimizes a chosen distance measure with respect to an ideal <span class="hlt">filter</span>. The method al- lows specification of the metric via simultaneous weight- ing functions in multiple domains, e.g. the spatio- temporal space and the Fourier space. Metric</p> <div class="credits"> <p class="dwt_author">Hans Knutsson; Mats Andersson; Johan Wiklund</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">295</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1993ApOpt..32.6310E"> <span id="translatedtitle"><span class="hlt">Optimization</span> of interference <span class="hlt">filters</span> with genetic algorithms applied to silver-based heat mirrors</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Using a genetic algorithm, an <span class="hlt">optimization</span> procedure is presented that <span class="hlt">optimizes</span> the sequence of materials and their thickness simultaneously. An example is given of heat mirrors for thermal solar energy applications.</p> <div class="credits"> <p class="dwt_author">Eisenhammer, T.; Lazarov, M.; Leutbecher, M.; Schoffel, U.; Sizmann, R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">296</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49849089"> <span id="translatedtitle">Pyramid Implementation Of <span class="hlt">Optimal</span> <span class="hlt">Step</span> Conjugate Search Algorithms For Some Computer Vision Problems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Optimization</span> of a cost function arises in several computer vision problems. The cost functions in these problems are usually derived from discretization of functionals obtained from regularization principles or stochastic estimation techniques using Markov random field models. In this paper we present a parallel implementation on a pyramid of the line search conjugate gradient algorithm for minimizing the cost functions</p> <div class="credits"> <p class="dwt_author">T. Simchony; R. Chellappa; Z. Lichtenstein</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">297</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013SPIE.8842E..0HS"> <span id="translatedtitle">Evaluation and <span class="hlt">optimization</span> of the Savitzky-Golay smoothing <span class="hlt">filter</span> for noise reduction in thin film interference signal analysis</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In this work, we present a comparison between Savitzky-Golay <span class="hlt">filtering</span> and the traditional treatment of subtracting a dark signal to reduce noise from thin film interference spectra, acquired by a spectrometer in an adaptive system, where integration time needs to be varied for each measurement. We show that both classical Savitzky-Golay and dark signal removal are not <span class="hlt">optimal</span> for interference spectra, however by applying a gradual variation of the Savitzky-Golay bin parameters across the signal, an adaptive version of the Savitsky-Golay technique can be used as a general-purpose noise reduction method for signals collected by an adaptive thin film thickness measurement system.</p> <div class="credits"> <p class="dwt_author">Stavroulakis, Petros I.; Liatsis, Panos; Tipping, Nicholas; Craddock, Paul</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">298</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006SPIE.6314E..21Y"> <span id="translatedtitle"><span class="hlt">Optimal</span> design of integrated acousto-optic tunable <span class="hlt">filters</span> based on investigation of SAW in acoustic waveguide</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A detailed investigation of surface acoustic wave (SAW) propagating in x-cut y propagation lithium niobate (LiNbO3) for integrated acousto-optic tunable <span class="hlt">filters</span> (IAOTF) is reported in this paper. With getting curves of velocities, the walk-off angular (the angular between the power-flux vector and the propagation direction) can be obtained by the cubic spline interpolation method. The electromechanical coupling constant curve is given. Now, an <span class="hlt">optimal</span> configuration of IAOTF has been designed, in which the direction of interdigital transducer should be inclined about 4.18°.</p> <div class="credits"> <p class="dwt_author">Yang, Jisheng; Xu, Hehua; Wen, Chuanjing; Sun, Changku</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">299</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012NIMPA.686..162L"> <span id="translatedtitle">Application of quasi-<span class="hlt">optimal</span> weights to searches of anomalies. Statistical criteria for <span class="hlt">step</span>-like anomalies in cumulative spectra</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">It is demonstrated how the method of quasi-<span class="hlt">optimal</span> weights can be applied to searches of anomalies in experimental data. As an example, a convenient statistical criterion is derived for <span class="hlt">step</span>-like anomalies in cumulative ?-decay spectra in the direct neutrino mass measurement experiments. It is almost as powerful as the locally most powerful one and appreciably excels the conventional ?2 and Kolmogorov-Smirnov tests. It is also compared with an ad hoc criterion of «pairwise correlations of neighbours»; the latter is seen to be less powerful even if more sensitive to more general anomalies. As a realistic example, the criteria are applied to the Troitsk-?-mass data.</p> <div class="credits"> <p class="dwt_author">Lokhov, A. V.; Tkachov, F. V.; Trukhanov, P. S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">300</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20003887"> <span id="translatedtitle">Single-<span class="hlt">step</span> syngas-to-dimethyl ether processes for <span class="hlt">optimal</span> productivity, minimal emissions, and natural gas-derived syngas</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Process schemes for single-<span class="hlt">step</span> syngas-to-dimethyl ether (DME) were developed in two stages: (1) the performance of the syngas-to-DME reactor was <span class="hlt">optimized</span> with respect to the feed gas composition and (2) the <span class="hlt">optimal</span> reactor feed gas system was integrated with synthesis gas generators. It was shown that the reactor performance is very sensitive to the H{sub 2}:CO ratio in the feed gas. The <span class="hlt">optimal</span> DME productivity and best material utilization were obtained with a feed gas containing 50% hydrogen and 50% carbon monoxide. In the second phase the syngas generation units considered were CO{sub 2}-methane reformer, steam-methane reformer, methane partial oxidation, and coal gasifier. The integration adjusts the H{sub 2}:CO ratio in natural gas-derived syngas to fit the <span class="hlt">optimal</span> DME reactor operation and minimizes CO{sub 2} emissions and material loss. The technical feasibility of these schemes was demonstrated by simulations using realistic reactor models, kinetics, and thermodynamics under commercially relevant conditions.</p> <div class="credits"> <p class="dwt_author">Peng, X.D.; Wang, A.W.; Toseland, B.A.; Tijm, P.J.A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-11-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_14");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a style="font-weight: bold;">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_16");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_15 div --> <div id="page_16" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_15");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a style="font-weight: bold;">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_17");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">301</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/13333386"> <span id="translatedtitle"><span class="hlt">Optimal</span> Hinfinity <span class="hlt">filtering</span> in networked control systems with multiple packet dropouts</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper studies the problem of H? <span class="hlt">filtering</span> in networked control systems (NCSs) with multiple packet dropouts. A new formulation enables us to assign separate dropout rates from the sensors to the controller and from the controller to the actuators. By employing the new formulation, random dropout rates are transformed into stochastic parameters in the system’s representation. A generalized H?-norm</p> <div class="credits"> <p class="dwt_author">Mehrdad Sahebsara; Tongwen Chen; Sirish L. Shah</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">302</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/55016814"> <span id="translatedtitle">Use of intracavity <span class="hlt">filters</span> for <span class="hlt">optimization</span> of far-infrared free-electron lasers</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The interaction distance for relativistic electrons and optical radiation in a mode-locked free-electron laser is often limited by the electron bunch length. For a far-infrared oscillator the round-trip gain and the output coupling efficiency can be increased by the introduction of intracavity <span class="hlt">filters</span>.</p> <div class="credits"> <p class="dwt_author">E. D. Shaw; C. K. N. Patel</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">303</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/19184246"> <span id="translatedtitle">Use of intracavity <span class="hlt">filters</span> for <span class="hlt">optimization</span> of far-infrared free-electron lasers</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The interaction distance for relativistic electrons and optical radiation in a mode-locked free-electron laser is often limited by the electron bunch length. For a far-infrared oscillator, the round-trip gain and the output coupling efficiency can be increased by the introduction of an intracavity <span class="hlt">filter</span> composed of four metal meshes.</p> <div class="credits"> <p class="dwt_author">E. D. Shaw; C. K. N. Patel</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">304</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/21900202"> <span id="translatedtitle"><span class="hlt">Optimization</span> and application of median <span class="hlt">filter</span> corrections to relieve diverse spatial patterns in microtiter plate data.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The standard (STD) 5 × 5 hybrid median <span class="hlt">filter</span> (HMF) was previously described as a nonparametric local backestimator of spatially arrayed microtiter plate (MTP) data. As such, the HMF is a useful tool for mitigating global and sporadic systematic error in MTP data arrays. Presented here is the first known HMF correction of a primary screen suffering from systematic error best described as gradient vectors. Application of the STD 5 × 5 HMF to the primary screen raw data reduced background signal deviation, thereby improving the assay dynamic range and hit confirmation rate. While this HMF can correct gradient vectors, it does not properly correct periodic patterns that may present in other screening campaigns. To address this issue, 1 × 7 median and a row/column 5 × 5 hybrid median <span class="hlt">filter</span> kernels (1 × 7 MF and RC 5 × 5 HMF) were designed ad hoc, to better fit periodic error patterns. The correction data show periodic error in simulated MTP data arrays is reduced by these alternative <span class="hlt">filter</span> designs and that multiple corrective <span class="hlt">filters</span> can be combined in serial operations for progressive reduction of complex error patterns in a MTP data array. PMID:21900202</p> <div class="credits"> <p class="dwt_author">Bushway, Paul J; Azimi, Behrad; Heynen-Genel, Susanne</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-09-06</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">305</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1583230"> <span id="translatedtitle"><span class="hlt">Optimal</span> stack <span class="hlt">filtering</span> and the estimation and structural approaches to image processing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Two approaches have been used in the past to design rank-order based nonlinear <span class="hlt">filters</span> for enhancing or restoring images: the structural approach and the estimation approach. The first approach requires structural descriptions of the image and the process which has altered it, whereas the second requires statistical descriptions of the image and the process which has altered it. The many</p> <div class="credits"> <p class="dwt_author">E. J. Coyle; J.-H. Lin; M. Gabbouj</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">306</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/27057451"> <span id="translatedtitle">Bacterial Foraging Technique-Based <span class="hlt">Optimized</span> Active Power <span class="hlt">Filter</span> for Load Compensation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The conventional method of obtaining the coefficients of proportional plus integral (PI) controllers for the active power <span class="hlt">filter</span> utilizes a linear model of the PWM inverter. The values so obtained may not give satisfactory results for a wide variation in operating conditions. This paper presents a new algorithm based on the foraging behavior of E-coli Bacteria in the human intestine,</p> <div class="credits"> <p class="dwt_author">S. Mishra; C. N. Bhende</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">307</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1639671"> <span id="translatedtitle">On the <span class="hlt">optimality</span> of ideal <span class="hlt">filters</span> for pyramid and wavelet signal approximation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The reconstructed lowpass component in a quadrature mirror <span class="hlt">filter</span> (QMF) bank provides a coarser resolution approximation of the input signal. Since the outputs of the two QMF branches are orthogonal, the transformation that provides the maximum energy compaction in the lowpass channel is also the one that results in the minimum approximation error. This property is used as a common</p> <div class="credits"> <p class="dwt_author">Michael Unser</p> <p class="dwt_publisher"></p> <p class="publishDate">1993-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">308</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/13270934"> <span id="translatedtitle">A sub-<span class="hlt">optimal</span> distributed Kalman <span class="hlt">filter</span> with fusion feedback for acyclic systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this paper, a new distributed Kalman <span class="hlt">filter</span> is proposed for state estimation of systems with acyclic digraph, namely acyclic systems. This method can be applied to a number of large-scale systems including sensor networks and formation flying missions. An acyclic system can be represented by an overlapping block-diagonal state space (OBDSS) model, which requires an extensive communication overhead for</p> <div class="credits"> <p class="dwt_author">Seyyedmohsen Azizi; Khashayar Khorasani</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">309</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ars.usda.gov/research/publications/Publications.htm?seq_no_115=286120"> <span id="translatedtitle"><span class="hlt">Optimal</span> optical <span class="hlt">filters</span> of fluorescence excitation and emission for poultry fecal detection</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ars.usda.gov/services/TekTran.htm">Technology Transfer Automated Retrieval System (TEKTRAN)</a></p> <p class="result-summary">Purpose: An analytic method to design excitation and emission <span class="hlt">filters</span> of a multispectral fluorescence imaging system is proposed and was demonstrated in an application to poultry fecal inspection. Methods: A mathematical model of a multispectral imaging system is proposed and its system parameters, ...</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">310</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/1082192"> <span id="translatedtitle">Exploration of <span class="hlt">Optimization</span> Options for Increasing Performance of a GPU Implementation of a Three-dimensional Bilateral <span class="hlt">Filter</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This report explores using GPUs as a platform for performing high performance medical image data processing, specifically smoothing using a 3D bilateral <span class="hlt">filter</span>, which performs anisotropic, edge-preserving smoothing. The algorithm consists of a running a specialized 3D convolution kernel over a source volume to produce an output volume. Overall, our objective is to understand what algorithmic design choices and configuration options lead to <span class="hlt">optimal</span> performance of this algorithm on the GPU. We explore the performance impact of using different memory access patterns, of using different types of device/on-chip memories, of using strictly aligned and unaligned memory, and of varying the size/shape of thread blocks. Our results reveal <span class="hlt">optimal</span> configuration parameters for our algorithm when executed sample 3D medical data set, and show performance gains ranging from 30x to over 200x as compared to a single-threaded CPU implementation.</p> <div class="credits"> <p class="dwt_author">Bethel, E. Wes; Bethel, E. Wes</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-06</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">311</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23639906"> <span id="translatedtitle">A comparison of reanalysis techniques: applying <span class="hlt">optimal</span> interpolation and Ensemble Kalman <span class="hlt">Filtering</span> to improve air quality monitoring at mesoscale.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">To fulfill the requirements of the 2008/50 Directive, which allows member states and regional authorities to use a combination of measurement and modeling to monitor air pollution concentration, a key approach to be properly developed and tested is the data assimilation one. In this paper, with a focus on regional domains, a comparison between <span class="hlt">optimal</span> interpolation and Ensemble Kalman <span class="hlt">Filter</span> is shown, to stress pros and drawbacks of the two techniques. These approaches can be used to implement a more accurate monitoring of the long-term pollution trends on a geographical domain, through an <span class="hlt">optimal</span> combination of all the available sources of data. The two approaches are formalized and applied for a regional domain located in Northern Italy, where the PM10 level which is often higher than EU standard limits is measured. PMID:23639906</p> <div class="credits"> <p class="dwt_author">Candiani, Gabriele; Carnevale, Claudio; Finzi, Giovanna; Pisoni, Enrico; Volta, Marialuisa</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-04-29</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">312</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010CG.....36.1005G"> <span id="translatedtitle">An <span class="hlt">optimized</span> solution of multi-criteria evaluation analysis of landslide susceptibility using fuzzy sets and Kalman <span class="hlt">filter</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Kalman recursive algorithm has been very widely used for integrating navigation sensor data to achieve <span class="hlt">optimal</span> system performances. This paper explores the use of the Kalman <span class="hlt">filter</span> to extend the aggregation of spatial multi-criteria evaluation (MCE) and to find <span class="hlt">optimal</span> solutions with respect to a decision strategy space where a possible decision rule falls. The approach was tested in a case study in the Clearwater National Forest in central Idaho, using existing landslide datasets from roaded and roadless areas and terrain attributes. In this approach, fuzzy membership functions were used to standardize terrain attributes and develop criteria, while the aggregation of the criteria was achieved by the use of a Kalman <span class="hlt">filter</span>. The approach presented here offers advantages over the classical MCE theory because the final solution includes both the aggregated solution and the areas of uncertainty expressed in terms of standard deviation. A comparison of this methodology with similar approaches suggested that this approach is promising for predicting landslide susceptibility and further application as a spatial decision support system.</p> <div class="credits"> <p class="dwt_author">Gorsevski, Pece V.; Jankowski, Piotr</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-08-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">313</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51101369"> <span id="translatedtitle">An <span class="hlt">optimal</span> control algorithm based on Kalman <span class="hlt">filter</span> for ARMA disturbances</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Harmonic rule is popularly used in machine setup adjustment problems introduced by Grubbs (1954). The algo­ rithm is <span class="hlt">optimal</span> when the disturbance process is white noise and the initial process bias is an unknown value. When the initial process bias is assumed to be a random variable with a priori distribution, Grubbs' extended rule <span class="hlt">optimal</span> when the disturbance process is</p> <div class="credits"> <p class="dwt_author">Fangyi He</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">314</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/53754412"> <span id="translatedtitle">Three-dimensional optical modeling and <span class="hlt">optimizations</span> of color <span class="hlt">filter</span> liquid-crystal-on-silicon microdisplays</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We have developed a three-dimensional (3D) optical modeling of small color pixels in color <span class="hlt">filter</span> liquid-crystal-on-silicon (CF-LCOS) microdisplays. The 3D optical modeling includes a LC electromechanical analysis of color LC cells, a calculation of optical reflectance using the extended Jones matrix, and a standard RGB (sRGB) representation of the optical reflectance in the pixel array. The simulated optical reflectance agreed</p> <div class="credits"> <p class="dwt_author">Baolong Zhang; Hoi-Sing Kwok; Ho-Chi Huang</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">315</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/57514191"> <span id="translatedtitle"><span class="hlt">Optimization</span> of matrix solid-phase dispersion conditions for UV <span class="hlt">filters</span> determination in biota samples</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A low solvent consumption method for the determination of eight ultraviolet (UV) <span class="hlt">filters</span>, displaying low to medium polarities, in freeze-dried samples of marine bivalves and fish is proposed. Matrix solid-phase dispersion (MSPD) and gas chromatography with mass spectrometry (GC-MS) were used as sample preparation and determination techniques, respectively. This work describes the influence of several parameters (type and amount of</p> <div class="credits"> <p class="dwt_author">Noelia Negreira; Isaac Rodríguez; Rosario Rodil; Elisa Rubí; Rafael Cela</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">316</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/390095"> <span id="translatedtitle"><span class="hlt">Optimal</span> spatial <span class="hlt">filtering</span> of single trial EEG during imagined hand movement</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The development of an EEG-based brain-computer interface (BCI) requires rapid and reliable discrimination of EEG patterns, e. g., associated with motor imagery. One sided hand movement imagination results in EEG changes located at contra- and ipsilateral central areas. We demonstrate that spatial <span class="hlt">filters</span> for multi-channel EEG effectively extract discriminatory information from two populations of single-trial EEG, recorded during left and</p> <div class="credits"> <p class="dwt_author">H. Ramoser; J. Müller-gerking; G. Pfurtscheller</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">317</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49886412"> <span id="translatedtitle">Performance <span class="hlt">optimization</span> of elliptic SC ladder <span class="hlt">filters</span> using signal-flow graph transformations</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Switched-capacitor <span class="hlt">filters</span> are derived from doubly-terminated LC networks using signal-flow graph techniques. Conventionally, one SC circuit is obtained from the prototype network. A class of signal-flow graph transformations that allow a whole family of equivalent circuits to be generated for a given transfer function is proposed. The resulting circuits feature low sensitivity to capacitor mismatch. It is shown by a</p> <div class="credits"> <p class="dwt_author">Arnold Muralt; George S. Moschytz</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">318</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1999MaCom..68.1465C"> <span id="translatedtitle">Almost <span class="hlt">optimal</span> convergence of the point vortex method for vortex sheets using numerical <span class="hlt">filtering</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Standard numerical methods for the Birkhoff-Rott equation for a vortex sheet are unstable due to the amplification of roundoff error by the Kelvin-Helmholtz instability. A nonlinear <span class="hlt">filtering</span> method was used by Krasny to eliminate this spurious growth of round-off error and accurately compute the Birkhoff-Rott solution essentially up to the time it becomes singular. In this paper convergence is proved for the discretized Birkhoff-Rott equation with Krasny <span class="hlt">filtering</span> and simulated roundoff error. The convergence is proved for a time almost up to the singularity time of the continuous solutionE The proof is in an analytic function class and uses a discrete form of the abstract Cauchy-Kowalewski theorem. In order for the proof to work almost up to the singularity time, the linear and nonlinear parts of the equation, as well as the effects of Krasny <span class="hlt">filtering</span>, are precisely estimated. The technique of proof applies directly to other ill-posed problems such as Rayleigh-Taylor unstable interfaces in incompressible, inviscid, and irrotational fluids, as well as to Saffman-Taylor unstable interfaces in Hele-Shaw cells.</p> <div class="credits"> <p class="dwt_author">Caflisch, Russel E.; Hou, Thomas Y.; Lowengrub, John</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">319</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23863422"> <span id="translatedtitle">Microorganism inactivation by an ozonation <span class="hlt">step</span> <span class="hlt">optimized</span> for micropollutant removal from tertiary effluent.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">This paper demonstrates the additional benefit of the microbicidal efficacy of an ozonation plant implemented for micropollutant removal from tertiary effluent. Due to the low amount of viruses and protozoa in the tertiary effluent, bacteriophage MS2 and spores of Bacillus subtilis were dosed as surrogates. At specific ozone consumptions of 0.6 and 0.9 g O3/g dissolved organic carbon (DOC) a 2-log colony forming unit (CFU) reduction was achieved for indigenous Escherichia coli and enterococci, and the limits of the European bathing water directive for the excellent quality of inland waters were met. Higher removal was impeded by the shielding effect of suspended solids in the effluent, which implies the combination of ozonation with a preceding filtration <span class="hlt">step</span> if higher microbicidal performances are required. The surrogate virus MS2 was reduced by 4-5 log while no significant inactivation was detected for B. subtilis spores. Additionally, the impact of ozonation on the biochemical oxygen demand (BOD) was studied. The BOD5 measurement was not adversely affected despite the reduced concentration of microorganisms after ozonation. The intrinsic increase in BOD5 averaged 15% at 0.6-0.7 g O3/g DOC. The impact of the projected increase on the surface water quality is generally not considered a problem but has to be assessed on a case-by-case approach. PMID:23863422</p> <div class="credits"> <p class="dwt_author">Schaar, H; Sommer, R; Schürhagl, R; Yillia, P; Kreuzinger, N</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">320</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26182713"> <span id="translatedtitle">Topology <span class="hlt">optimization</span> of dielectric substrates for <span class="hlt">filters</span> and antennas using SIMP</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Summary  In this paper a novel design procedure based on the integration of full wave Finite Element Analysis (FEA) and a topology\\u000a design method employing Sequential Linear Programming (SLP) is introduced. The employed design method is the Solid Isotropic\\u000a Material with Penalization (SIMP) technique formulated as a general non-linear <span class="hlt">optimization</span> problem. SLP is used to solve\\u000a the <span class="hlt">optimization</span> problem with the</p> <div class="credits"> <p class="dwt_author">G. Kiziltas; N. Kikuchi; J. L. Volakis; J. Halloran</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_15");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a style="font-weight: bold;">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_17");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_16 div --> <div id="page_17" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_16");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a style="font-weight: bold;">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_18");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">321</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007IJTIA.127...36Y"> <span id="translatedtitle"><span class="hlt">Optimization</span> of Input and Output <span class="hlt">Filters</span> in Matrix Converter Drive System</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This paper presents an AC-AC power converter integrated with techniques that provide environmental harmony. The voltage source PWM inverter has been established as the major motor drive equipment. However, it is associated with issues pertaining to PWM switching as well as issues related to the input harmonics caused by capacitor input type rectification. Hence, there is need for a converter that addresses these problems and provides an environmentally harmonious solution. The matrix converter has a topology that inherently exhibits sinusoidal input current waveforms and less stressful output voltage waveforms. Combining the matrix converter with certain <span class="hlt">filter</span> topologies is shown to provide an environmentally harmonious solution.</p> <div class="credits"> <p class="dwt_author">Yamada, Kenji; Higuchi, Tsuyoshi; Hara, Hidenori; Yamamoto, Eiji; Kume, Tsuneo; Swamy, Mahesh M.</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">322</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010AIPC.1285..450J"> <span id="translatedtitle">Reduction of Common-Mode Conducted Noise Emissions in PWM Inverter-fed AC Motor Drive Systems using <span class="hlt">Optimized</span> Passive EMI <span class="hlt">Filter</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Conducted electromagnetic interference (EMI) generated by PWM inverter-fed induction motor drive systems, which are currently widely used in many industrial and/or avionic applications, causes severe parasitic current problems, especially at high frequencies (HF). These restrict power electronic drive's evolution. In order to reduce or minimize these EMI problems, several techniques can be applied. In this paper, insertion of an <span class="hlt">optimized</span> passive EMI <span class="hlt">filter</span> is proposed. This <span class="hlt">filter</span> is <span class="hlt">optimized</span> by taking into account real impedances of each part of a considered AC motor drive system contrarily to commercial EMI <span class="hlt">filters</span> designed by considering internal impedance of disturbance source and load, equal to 50?. Employing the latter EMI <span class="hlt">filter</span> would make EMI minimization less effective. The proposed EMI <span class="hlt">filter</span> <span class="hlt">optimization</span> is mainly dedicated to minimize common mode (CM) currents due to its most dominant effects in this kind of system. The efficiency of the proposed <span class="hlt">optimization</span> method using two-port network approach is deduced by comparing the minimized CM current spectra to an applied normative level (ex. DO-160D in aeronautics).</p> <div class="credits"> <p class="dwt_author">Jettanasen, C.; Ngaopitakkul, A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">323</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/8746705"> <span id="translatedtitle">A K edge <span class="hlt">filter</span> technique for <span class="hlt">optimization</span> of the coherent-to-Compton scatter ratio method.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The ratio method involves forming the ratio of the elastic to inelastic x-ray scatter signals from a localized region of a scattering medium to determine its mean atomic number. An analysis is presented of two major error sources influencing the ratio method: firstly statistical (photon) noise and secondly multiple scattering and self-attenuation of the primary and scatter radiations in the medium. It is shown that a forward scattering geometry minimizes errors of both types for substances composed of elements with low and medium atomic number. However, owing to the small energy separation (approximately 100 eV) of coherent and Compton scatter for this geometry, they cannot be distinguished directly with semiconductor (e.g., Ge) detectors. A novel K edge <span class="hlt">filter</span> technique is described which permits separation of the elastic and Compton signals in the forward-scatter geometry. The feasibility of this method is demonstrated by experimental results obtained with Ta fluorescence radiation provided by a fluorescent x-ray source <span class="hlt">filtered</span> with an Er foil. The extension of this technique to the "in vivo" measurement of low momentum transfer inelastic scattering from biological tissues, possibly providing useful diagnostic information, is briefly discussed. PMID:8746705</p> <div class="credits"> <p class="dwt_author">Harding, G; Armstrong, R; McDaid, S; Cooper, M J</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">324</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011PhPl...18j3503F"> <span id="translatedtitle">Metrics for comparing plasma mass <span class="hlt">filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">High-throughput mass separation of nuclear waste may be useful for <span class="hlt">optimal</span> storage, disposal, or environmental remediation. The most dangerous part of nuclear waste is the fission product, which produces most of the heat and medium-term radiation. Plasmas are well-suited to separating nuclear waste because they can separate many different species in a single <span class="hlt">step</span>. A number of plasma devices have been designed for such mass separation, but there has been no standardized comparison between these devices. We define a standard metric, the separative power per unit volume, and derive it for three different plasma mass <span class="hlt">filters</span>: the plasma centrifuge, Ohkawa <span class="hlt">filter</span>, and the magnetic centrifugal mass <span class="hlt">filter</span>.</p> <div class="credits"> <p class="dwt_author">Fetterman, Abraham J.; Fisch, Nathaniel J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">325</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/1062576"> <span id="translatedtitle">Metrics For Comparing Plasma Mass <span class="hlt">Filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">High-throughput mass separation of nuclear waste may be useful for <span class="hlt">optimal</span> storage, disposal, or environmental remediation. The most dangerous part of nuclear waste is the fission product, which produces most of the heat and medium-term radiation. Plasmas are well-suited to separating nuclear waste because they can separate many different species in a single <span class="hlt">step</span>. A number of plasma devices have been designed for such mass separation, but there has been no standardized comparison between these devices. We define a standard metric, the separative power per unit volume, and derive it for three different plasma mass <span class="hlt">filters</span>: the plasma centrifuge, Ohkawa <span class="hlt">filter</span>, and the magnetic centrifugal mass <span class="hlt">filter</span>. __________________________________________________</p> <div class="credits"> <p class="dwt_author">Abraham J. Fetterman and Nathaniel J. Fisch</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-08-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">326</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22046993"> <span id="translatedtitle">Metrics for comparing plasma mass <span class="hlt">filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">High-throughput mass separation of nuclear waste may be useful for <span class="hlt">optimal</span> storage, disposal, or environmental remediation. The most dangerous part of nuclear waste is the fission product, which produces most of the heat and medium-term radiation. Plasmas are well-suited to separating nuclear waste because they can separate many different species in a single <span class="hlt">step</span>. A number of plasma devices have been designed for such mass separation, but there has been no standardized comparison between these devices. We define a standard metric, the separative power per unit volume, and derive it for three different plasma mass <span class="hlt">filters</span>: the plasma centrifuge, Ohkawa <span class="hlt">filter</span>, and the magnetic centrifugal mass <span class="hlt">filter</span>.</p> <div class="credits"> <p class="dwt_author">Fetterman, Abraham J.; Fisch, Nathaniel J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-10-15</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">327</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23729235"> <span id="translatedtitle"><span class="hlt">Optimal</span> spatial <span class="hlt">filtering</span> for brain oscillatory activity using the Relevance Vector Machine.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Over the past decade, various techniques have been proposed for localization of cerebral sources of oscillatory activity on the basis of magnetoencephalography (MEG) or electroencephalography recordings. Beamformers in the frequency domain, in particular, have proved useful in this endeavor. However, the localization accuracy and efficacy of such spatial <span class="hlt">filters</span> can be markedly limited by bias from correlation between cerebral sources and short duration of source activity, both essential issues in the localization of brain data. Here, we evaluate a method for frequency-domain localization of oscillatory neural activity based on the relevance vector machine (RVM). RVM is a Bayesian algorithm for learning sparse models from possibly overcomplete data sets. The performance of our frequency-domain RVM method (fdRVM) was compared with that of dynamic imaging of coherent sources (DICS), a frequency-domain spatial <span class="hlt">filter</span> that employs a minimum variance adaptive beamformer (MVAB) approach. The methods were tested both on simulated and real data. Two types of simulated MEG data sets were generated, one with continuous source activity and the other with transiently active sources. The real data sets were from slow finger movements and resting state. Results from simulations show comparable performance for DICS and fdRVM at high signal-to-noise ratios and low correlation. At low SNR or in conditions of high correlation between sources, fdRVM performs markedly better. fdRVM was successful on real data as well, indicating salient focal activations in the sensorimotor area. The resulting high spatial resolution of fdRVM and its sensitivity to low-SNR transient signals could be particularly beneficial when mapping event-related changes of oscillatory activity. PMID:23729235</p> <div class="credits"> <p class="dwt_author">Belardinelli, P; Jalava, A; Gross, J; Kujala, J; Salmelin, R</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">328</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003PhDT.......169G"> <span id="translatedtitle">Measurement and <span class="hlt">optimization</span> of fiber mechanical properties for use in a novel HTS tunable <span class="hlt">filter</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This dissertation is a study of the thermal physical properties of a single fiber to be used as a key part of an HTS tunable <span class="hlt">filter</span>. Eight classes of candidate fibers were narrowed down to carbon and borosilicate fibers for more study. Novel measurement methods were used in this project that overcame the shortcomings of literature methods, which can only measure the properties at room temperature. The experimental apparatus was designed and built, and measurements were made of Young's modulus, tensile strength, ultimate strain, torsional modulus and thermal linear expansion of both types of fibers at both room temperature and 95K. The errors of the measurement, including random variations in fiber diameter, were analyzed statistically to determine error bounds. The measurement results were used to determine the mechanical performance of each of the fibers when applied to suspending the toractor system. Based on the working conditions of both carbon fiber and borosilicate fiber, the borosilicate fiber was chosen for this purpose. The performance margin of the fiber suspending system was estimated by using a statistical model. A new model was proposed to demonstrate the relationship of the cross-section structure of Polyacrylonitrile (PAN)-based carbon fiber and its mechanical properties. The theoretical predictions on the properties of PAN-based carbon fiber based on this model agree very well with the experimental data. The Young's modulus and tensile strength of PAN-based carbon fiber with known diameter can be calculated by a simple equation without taking time to do an experimental measurement.</p> <div class="credits"> <p class="dwt_author">Guo, Libing</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-10-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">329</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23201520"> <span id="translatedtitle">Production of algal biodiesel from marine macroalgae Enteromorpha compressa by two <span class="hlt">step</span> process: <span class="hlt">optimization</span> and kinetic study.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">In this investigation, Enteromorpha compressa algal oil with high free fatty acids (FFA) used as a feedstock for biodiesel production. Two <span class="hlt">step</span> process was developed and kinetic study executed to obtain reaction rate constant for the transesterification reaction. The acid esterification was carried out to reduce FFA from 6.3% to 0.34% with <span class="hlt">optimized</span> parameters of 1.5% H(2)SO(4), 12:1 methanol-oil ratio, 400 rpm at 60 °C and 90 min of reaction time. The maximum biodiesel yield 90.6% was achieved from base transesterification through optimum conditions of 1% NaOH, 9:1 methanol-oil ratio, 600 rpm and 60 °C temperature for 70 min. The algal biodiesel was characterized by GC-MS, HPLC and NIR. This transesterification follows first order reaction kinetics and the activation energy was determined as 73,154.89 J/mol. The biodiesel properties were analyzed and found to be within the limits of American standards. Hence, E. compressa serves as a valuable renewable raw-material for biodiesel production. PMID:23201520</p> <div class="credits"> <p class="dwt_author">Suganya, Tamilarasan; Nagendra Gandhi, Nagarajan; Renganathan, Sahadevan</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-10-23</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">330</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006SPIE.6153E.153U"> <span id="translatedtitle">Development of <span class="hlt">optimized</span> <span class="hlt">filter</span> for TARC and developer with the goal of having small pore size and minimizing microbubble reduction</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Microbubble in <span class="hlt">filtering</span> Tetra Methyl Ammonium Hydroxide (TMAH) were counted to find the <span class="hlt">filter</span> which generates the lowest microbubble in resist development process. Hydrophilic Highly Asymmetric Poly Aryl Sulfone (HAPAS) <span class="hlt">filter</span> was developed and tested. The result showed that generation of microbubbles was as low as that of the Nylon 6,6 <span class="hlt">filter</span> which had the best performance to date. Microbubbles in TARC are counted using the same method as the developer testing described above except for mainstream flow rate and the counter model. The results show that counts in the small channel could be reduced by smaller pore size <span class="hlt">filter</span> such as conventional 0.02um rated <span class="hlt">filter</span>. However, counts in the larger channel could be reduced by larger pore size <span class="hlt">filter</span> such as 0.1um rated <span class="hlt">filter</span>. Based on the above results, 0.02um rated asymmetric nylon 6,6 <span class="hlt">filter</span> was developed. As a result, 0.02um rated asymmetric Nylon 6,6 <span class="hlt">filter</span> achieved relatively lower count at any channel as compared to the standard 0.04um rated Nylon 6,6 <span class="hlt">filter</span>. Nylon 6,6 <span class="hlt">filters</span> were installed in resist as an improvement for preventive maintenance (PM) at Wafertech, L.L.C. instead of the currently used <span class="hlt">filter</span> which has more hydrophobic membrane material. Using the Nylon 6,6 membrane, the number of defects immediately after <span class="hlt">filter</span> change greatly decreased from 493 pcs of the more hydrophobic <span class="hlt">filter</span> to 6 pcs/wafer, then after purging with about 250ml, the number of defects reduced within the process specification while the more hydrophobic <span class="hlt">filter</span> had required 2L purging and 12-36 hours of PM time.</p> <div class="credits"> <p class="dwt_author">Umeda, Toru; Tsuzuki, Shuichi; Boucher, Mikal; Dinh, Hung; Ma, L. C.; Boten, Russell</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">331</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22096750"> <span id="translatedtitle">Technical note: <span class="hlt">Optimization</span> for improved tube-loading efficiency in the dual-energy computed tomography coupled with balanced <span class="hlt">filter</span> method</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Purpose: This article describes the spectral <span class="hlt">optimization</span> of dual-energy computed tomography using balanced <span class="hlt">filters</span> (bf-DECT) to reduce the tube loadings and dose by dedicating to the acquisition of electron density information, which is essential for treatment planning in radiotherapy. Methods: For the spectral <span class="hlt">optimization</span> of bf-DECT, the author calculated the beam-hardening error and air kerma required to achieve a desired noise level in an electron density image of a 50-cm-diameter cylindrical water phantom. The calculation enables the selection of beam parameters such as tube voltage, balanced <span class="hlt">filter</span> material, and its thickness. Results: The <span class="hlt">optimal</span> combination of tube voltages was 80 kV/140 kV in conjunction with Tb/Hf and Bi/Mo <span class="hlt">filter</span> pairs; this combination agrees with that obtained in a previous study [M. Saito, ''Spectral <span class="hlt">optimization</span> for measuring electron density by the dual-energy computed tomography coupled with balanced <span class="hlt">filter</span> method,'' Med. Phys. 36, 3631-3642 (2009)], although the thicknesses of the <span class="hlt">filters</span> that yielded a minimum tube output were slightly different from those obtained in the previous study. The resultant tube loading of a low-energy scan of the present bf-DECT significantly decreased from 57.5 to 4.5 times that of a high-energy scan for conventional DECT. Furthermore, the air kerma of bf-DECT could be reduced to less than that of conventional DECT, while obtaining the same figure of merit for the measurement of electron density and effective atomic number. Conclusions: The tube-loading and dose efficiencies of bf-DECT were considerably improved by sacrificing the quality of the noise level in the images of effective atomic number.</p> <div class="credits"> <p class="dwt_author">Saito, Masatoshi [Department of Radiological Technology, School of Health Sciences, Faculty of Medicine, Niigata University, Niigata 951-8518 (Japan)</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-08-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">332</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/6050899"> <span id="translatedtitle"><span class="hlt">Filtered</span> statistics</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Column statistics are an important element of cardinality estimation frameworks. More accurate estimates allow the <span class="hlt">optimizer</span> of a RDBMS to generate better plans and improve the overall system's efficiency. This paper introduces <span class="hlt">filtered</span> statistics, which model value distribution over a set of rows restricted by a predicate. This feature, available in Microsoft SQL Server, can be used to handle column</p> <div class="credits"> <p class="dwt_author">Pawel Terlecki; Hardik Bati; César A. Galindo-legaria; Peter Zabback</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">333</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005JMiMi..15..867I"> <span id="translatedtitle">Surface micromachined optical low-cost all-air-gap <span class="hlt">filters</span> based on stress-<span class="hlt">optimized</span> Si3N4 layers</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A new surface micromachining approach based on a multiple Si3N4- and silicon-layer stack is presented. The fabrication process is implemented by plasma-enhanced chemical vapour deposition of stress-<span class="hlt">optimized</span> films, reactive ion etching using SF6/CHF3/Ar, wet chemical etching of the sacrificial silicon layers by KOH and critical point drying. Using this approach, the fabrication of an optical all-air-gap vertical-cavity Fabry-Pérot <span class="hlt">filter</span> is demonstrated. The surface micromachined <span class="hlt">filter</span> consists of two DBR mirrors, each having five 590 nm thick Si3N4 membranes separated by 390 nm wide air gaps. The distance between the mirrors (cavity) is 710 nm. The optical characterization and a white light interferometer measurement document the accuracy of the layer positioning and the performance of this low-cost approach. The <span class="hlt">filter</span> shows the designed <span class="hlt">filter</span> dip at 1490 nm, the full width at half maximum (FWHM) of the <span class="hlt">filter</span> is 1.5 nm and the insertion loss is just 1.3 dB. The process is compatible with a variety of materials, e.g. III-V compounds, silicon, as well as organic materials, facilitating a huge application spectrum for sensors.</p> <div class="credits"> <p class="dwt_author">Irmer, S.; Alex, K.; Daleiden, J.; Kommallein, I.; Oliveira, M.; Römer, F.; Tarraf, A.; Hillmer, H.</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-04-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">334</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50689942"> <span id="translatedtitle">Energy-based modulation error control for high-power drives with output LC-<span class="hlt">filters</span> and synchronous <span class="hlt">optimal</span> pulse width modulation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In order to reduce the switching frequencies of power semiconductors, synchronous <span class="hlt">optimal</span> pulse width modulation provides an appropriate solution. The switching angles result from complex offline calculations, assuming steady-state operation. Medium voltage drives when applied to the retrofit of existing fixed speed induction motors often include an output LC-<span class="hlt">filter</span> which introduces a resonant circuit. Therefore, only in steady-state operations the</p> <div class="credits"> <p class="dwt_author">Tomasz Laczynski; Timur Werner; Axel Mertens</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">335</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009AGUFM.H43F1096K"> <span id="translatedtitle">Many-objective Groundwater Monitoring Network Design Using Bias-Aware Ensemble Kalman <span class="hlt">Filtering</span> and Evolutionary <span class="hlt">Optimization</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">This study contributes the ASSIST (Adaptive Strategies for Sampling in Space and Time) framework for improving long-term groundwater monitoring decisions across space and time while accounting for the influences of systematic model errors (or predictive bias). The ASSIST framework combines contaminant flow-and-transport modeling, bias-aware ensemble Kalman <span class="hlt">filtering</span> (EnKF) and many-objective evolutionary <span class="hlt">optimization</span>. Our goal in this work is to provide decision makers with a fuller understanding of the information tradeoffs they must confront when performing long-term groundwater monitoring network design. Our many-objective analysis considers up to 6 design objectives simultaneously and consequently synthesizes prior monitoring network design methodologies into a single, flexible framework. This study demonstrates the ASSIST framework using a tracer study conducted within a physical aquifer transport experimental tank located at the University of Vermont. The tank tracer experiment was extensively sampled to provide high resolution estimates of tracer plume behavior. The simulation component of the ASSIST framework consists of stochastic ensemble flow-and-transport predictions using ParFlow coupled with the Lagrangian SLIM transport model. The ParFlow and SLIM ensemble predictions are conditioned with tracer observations using a bias-aware EnKF. The EnKF allows decision makers to enhance plume transport predictions in space and time in the presence of uncertain and biased model predictions by conditioning them on uncertain measurement data. In this initial demonstration, the position and frequency of sampling were <span class="hlt">optimized</span> to: (i) minimize monitoring cost, (ii) maximize information provided to the EnKF, (iii) minimize failure to detect the tracer, (iv) maximize the detection of tracer flux, (v) minimize error in quantifying tracer mass, and (vi) minimize error in quantifying the moment of the tracer plume. The results demonstrate that the many-objective problem formulation provides a tremendous amount of information for decision makers. Specifically our many-objective analysis highlights the limitations and potentially negative design consequences of traditional single and two-objective problem formulations. These consequences become apparent through visual exploration of high-dimensional tradeoffs and the identification of regions with interesting compromise solutions. The prediction characteristics of these compromise designs are explored in detail, as well as their implications for subsequent design decisions in both space and time.</p> <div class="credits"> <p class="dwt_author">Kollat, J. B.; Reed, P. M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-12-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">336</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2007R%26QE...50..235L"> <span id="translatedtitle">Combined digital <span class="hlt">filtering</span> of harmonic content of phase-shift keyed signals in the problem of estimation of the time delay</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We propose a two-<span class="hlt">step</span> method for digital <span class="hlt">filtering</span> of phase-shift keyed signals <span class="hlt">filtering</span> in the problem of determination of the time delay during the multichannel propagation. The first <span class="hlt">step</span> is realized as an information-<span class="hlt">optimal</span> linear <span class="hlt">filter</span> with complex coefficients, while the second <span class="hlt">step</span>, as a quadratic <span class="hlt">filter</span> based on the minimum-variance criterion. The e.ciency of the proposed method is demonstrated for short PSK signals with various carrier frequencies against the background of additive and multiplicative noise. The developed algorithm can easily be implemented in real time on the basis of a digital signal processor.</p> <div class="credits"> <p class="dwt_author">Loginov, A. A.; Morozov, O. A.; Soldatov, E. A.; Khmelev, S. L.</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">337</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/20833536"> <span id="translatedtitle">Two-<span class="hlt">step</span> biodiesel production from Calophyllum inophyllum oil: <span class="hlt">optimization</span> of modified ?-zeolite catalyzed pre-treatment.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">In this study, a two-<span class="hlt">step</span> process was developed to produce biodiesel from Calophyllum inophyllum oil. Pre-treatment with phosphoric acid modified ?-zeolite in acid catalyzed esterification process preceded by transesterification which was done using conventional alkali catalyst potassium hydroxide (KOH). The objective of this study is to investigate the relationship between the reaction temperatures, reaction time and methanol to oil molar ratio in the pre-treatment <span class="hlt">step</span>. Central Composite Design (CCD) and Response Surface Methodology (RSM) were utilized to determine the best operating condition for the pre-treatment <span class="hlt">step</span>. Biodiesel produced by this process was tested for its fuel properties. PMID:20833536</p> <div class="credits"> <p class="dwt_author">SathyaSelvabala, Vasanthakumar; Selvaraj, Dinesh Kirupha; Kalimuthu, Jalagandeeswaran; Periyaraman, Premkumar Manickam; Subramanian, Sivanesan</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-08-22</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">338</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/e10pwb5j3a7rcckt.pdf"> <span id="translatedtitle">On improving the GA <span class="hlt">step</span>-wise shape <span class="hlt">optimization</span> method through the application of the Fixed Grid FEA paradigm</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In previous work by the authors, a Genetic Algorithm (GA) based shape <span class="hlt">optimization</span> technique was introduced. The method was shown to be capable of producing high-fidelity <span class="hlt">optimal</span> shapes. However, the process was computationally expensive and required constant re-meshing due to distorted boundary elements resulting from large boundary movements. This paper combines the Fixed Grid (FG) method of Finite Element Analysis</p> <div class="credits"> <p class="dwt_author">S. Y. Woon; O. M. Querin; G. P. Steven</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">339</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2002ASAJ..111.2426C"> <span id="translatedtitle"><span class="hlt">Optimal</span> sweep cycle for time-varying comb <span class="hlt">filters</span> for binaural dichotic presentation to improve speech perception in sensorineural hearing impairment</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In a previous investigation [P. C. Pandey et al., J. Acoust. Soc. Am. 110, 2705 (2001)], a scheme using binaural dichotic presentation was devised for simultaneously reducing the effect of increased temporal and spectral masking in bilateral sensorineural hearing impairment. Speech was processed by a pair of time-varying comb <span class="hlt">filters</span> with passbands corresponding to cyclically swept auditory critical bands, with the objective that spectral components in neighboring critical bands do not mask each other and sweeping of <span class="hlt">filter</span> passbands provides relaxation time to the sensory cells on the basilar membrane. Presently investigation is carried out to find the <span class="hlt">optimal</span> value of the sweep cycle. Comb <span class="hlt">filters</span> used were 256-coefficient linear phase <span class="hlt">filters</span>, with transition crossovers adjusted for low perceived spectral distortion, 1 dB passband ripple, 30 dB stopband attenuation, and 78-117 Hz transition width. Acoustic stimuli consisted of swept sine wave and running speech from a male and a female speaker. Bilateral loss was simulated by adding broadband noise with constant short-time SNR. Listening tests with stimuli processed using sweep cycles of 10, 20, 40, 50, 60, 80, 100 ms indicated highest perceptual quality ranking for sweep cycle in the 40-60 ms range, with a peak at 50 ms.</p> <div class="credits"> <p class="dwt_author">Cheeran, Alice N.; Pandey, Prem C.; Jangamashetti, Dakshayani S.</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">340</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1996SPIE.2662...24L"> <span id="translatedtitle">Using adaptive genetic algorithms in the design of morphological <span class="hlt">filters</span> in textural image processing</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">An adaptive GA scheme is adopted for the <span class="hlt">optimal</span> morphological <span class="hlt">filter</span> design problem. The adaptive crossover and mutation rate which make the GA avoid premature and at the same time assure convergence of the program are successfully used in <span class="hlt">optimal</span> morphological <span class="hlt">filter</span> design procedure. In the string coding <span class="hlt">step</span>, each string (chromosome) is composed of a structuring element coding chain concatenated with a <span class="hlt">filter</span> sequence coding chain. In decoding <span class="hlt">step</span>, each string is divided into 3 chains which then are decoded respectively into one structuring element with a size inferior to 5 by 5 and two concatenating morphological <span class="hlt">filter</span> operators. The fitness function in GA is based on the mean-square-error (MSE) criterion. In string selection <span class="hlt">step</span>, a stochastic tournament procedure is used to replace the simple roulette wheel program in order to accelerate the convergence. The final convergence of our algorithm is reached by a two <span class="hlt">step</span> converging strategy. In presented applications of noise removal from texture images, it is found that with the <span class="hlt">optimized</span> morphological <span class="hlt">filter</span> sequences, the obtained MSE values are smaller than those using corresponding non-adaptive morphological <span class="hlt">filters</span>, and the <span class="hlt">optimized</span> shapes and orientations of structuring elements take approximately the same shapes and orientations as those of the image textons.</p> <div class="credits"> <p class="dwt_author">Li, Wei; Haese-Coat, Veronique; Ronsin, Joseph</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-03-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_16");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a style="font-weight: bold;">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_18");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_17 div --> <div id="page_18" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_17");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a style="font-weight: bold;">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_19");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">341</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011JEI....20c3015G"> <span id="translatedtitle">Fuzzy similarity measure-based hybrid image <span class="hlt">filter</span> for color image restoration: multimethodology evolutionary computation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A fuzzy similarity measure-based hybrid image <span class="hlt">filter</span> (FHF) is proposed for color image restoration in this paper. Operation is carried out in three <span class="hlt">steps</span>: parameter <span class="hlt">optimization</span>, hybrid image <span class="hlt">filter</span> setup, and image restoration. For parameter <span class="hlt">optimization</span>, a multimethodology evolutionary computation (MMEC) is presented for real-parameter <span class="hlt">optimization</span> problems. Then, FHF with a fuzzy-based similarity measure is introduced for noise reduction. Finally, a color image is restored with an experience-based construction of FHF which has been <span class="hlt">optimized</span> via MMEC. Experimental results show the proposed FHF achieves a high peak signal-to-noise ratio and mean structural similarity by effectively reducing Gaussian, impulse, and mixed-noise.</p> <div class="credits"> <p class="dwt_author">Guo, Shu-Mei; Yang, Chin-Chang</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">342</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N9427799"> <span id="translatedtitle">Time-<span class="hlt">Step</span> Enlargement and <span class="hlt">Optimal</span> Smoothing in Runge-Kutta Time-Integration Algorithms by Implicit and Explicit Smoothing.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">Runge-Kutta (RK) time integration schemes are used in many industrial codes for the computation of steady flows, using the Euler and Navier-Stokes equations. For equations with diffusion, the maximum time <span class="hlt">step</span> in a RK scheme is of O(h squared). A techniqu...</p> <div class="credits"> <p class="dwt_author">R. C. A. Linders</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">343</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2004SPIE.5577..691W"> <span id="translatedtitle">The <span class="hlt">optimal</span> design of ripple-free <span class="hlt">filter</span> based on three-mirror Gires-Tournois resonator</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Optical bandpass <span class="hlt">filters</span> with ripple-free spectral response are highly desirable for dense wavelength-division-multiplexed (DWDM) systems. We study and analyze the transmission characteristics of an optical bandpass <span class="hlt">filter</span>, based on a three-mirror Gires-Tournois resonator (GTR) in a Michelson interferometer (MI). The three-mirror GTR (R1, R2, R3) is actually an all-pass <span class="hlt">filter</span> with the reflectivity of the end mirror R3 being unity. In this paper, we present an analytical expression for the optimum design which has a ripple-free spectral response. The results show that flattop spectra can be obtained by suitably choosing the reflectivities R1, R2 of the two mirrors. Whereas a two-mirror GTR-based bandpass <span class="hlt">filter</span> has only one unique optimum reflectivity, a three-mirror GTR-based <span class="hlt">filter</span> has many sets of optimum values, making it easier to be designed to give much better performance. The effects of the reflective coefficients of the mirrors on the optical performance were also discussed.</p> <div class="credits"> <p class="dwt_author">Wei, Li; Song, Shaowen; Lit, John W. Y.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-10-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">344</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20767048"> <span id="translatedtitle">Estimating model parameters for an impact-produced shock-wave simulation: <span class="hlt">Optimal</span> use of partial data with the extended Kalman <span class="hlt">filter</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This paper builds upon our recent data assimilation work with the extended Kalman <span class="hlt">filter</span> (EKF) method [J. Kao, D. Flicker, R. Henninger, S. Frey, M. Ghil, K. Ide, Data assimilation with an extended Kalman <span class="hlt">filter</span> for an impact-produced shock-wave study, J. Comp. Phys. 196 (2004) 705-723.]. The purpose is to test the capability of EKF in <span class="hlt">optimizing</span> a model's physical parameters. The problem is to simulate the evolution of a shock produced through a high-speed flyer plate. In the earlier work, we have showed that the EKF allows one to estimate the evolving state of the shock wave from a single pressure measurement, assuming that all model parameters are known. In the present paper, we show that imperfectly known model parameters can also be estimated accordingly, along with the evolving model state, from the same single measurement. The model parameter <span class="hlt">optimization</span> using the EKF can be achieved through a simple modification of the original EKF formalism by including the model parameters into an augmented state variable vector. While the regular state variables are governed by both deterministic and stochastic forcing mechanisms, the parameters are only subject to the latter. The <span class="hlt">optimally</span> estimated model parameters are thus obtained through a unified assimilation operation. We show that improving the accuracy of the model parameters also improves the state estimate. The time variation of the <span class="hlt">optimized</span> model parameters results from blending the data and the corresponding values generated from the model and lies within a small range, of less than 2%, from the parameter values of the original model. The solution computed with the <span class="hlt">optimized</span> parameters performs considerably better and has a smaller total variance than its counterpart using the original time-constant parameters. These results indicate that the model parameters play a dominant role in the performance of the shock-wave hydrodynamic code at hand.</p> <div class="credits"> <p class="dwt_author">Kao, Jim [Los Alamos National Laboratory, Applied Physics Division, P.O. Box 1663, MS T086, Los Alamos, NM 87545 (United States)]. E-mail: kao@lanl.gov; Flicker, Dawn [Los Alamos National Laboratory, Applied Physics Division, P.O. Box 1663, MS T086, Los Alamos, NM 87545 (United States); Ide, Kayo [University of California at Los Angeles (United States); Ghil, Michael [University of California at Los Angeles (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-05-20</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">345</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009SPIE.7383E..85W"> <span id="translatedtitle">IR image signature of target detection based on the morphology <span class="hlt">filter</span> with self-adaptive <span class="hlt">optimized</span> genetic algorithms</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">It is utilized the morphology <span class="hlt">filter</span> and self-adaptive genetic algorithm to present the morphology <span class="hlt">filter</span> with selfoptimized genetic algorithms (MFGA) for detecting IR image signature of the target. According to training the structuring element from original image data, some constraint conditions such as the prior knowledge and statistics laws , we summarize a judgment rule on finding out the best of structuring elements. As two special applications about IR image signature of the detections, one is detected solid thruster plume IR image and the other is weak-small infrared target under complex background. Compared the experimental results of the MFGA with those of the morphology <span class="hlt">filter</span> (MF), we find that the MFGA has high convergence speed, greatly enhanced the Signal Noise ratio of target detection and effectively detecting target from complex background. And the experimental results and methods have a great significance in aerial forecasting and space defense.</p> <div class="credits"> <p class="dwt_author">Wang, Ming-Jun; Wu, Zhen-Sen; Li, Ying-Le; Wang, Yun-Qiang</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">346</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/24110283"> <span id="translatedtitle">An <span class="hlt">optimized</span> and low-cost FPGA-based DNA sequence alignment - A <span class="hlt">step</span> towards personal genomics.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">DNA sequence alignment is a cardinal process in computational biology but also is much expensive computationally when performing through traditional computational platforms like CPU. Of many off the shelf platforms explored for speeding up the computation process, FPGA stands as the best candidate due to its performance per dollar spent and performance per watt. These two advantages make FPGA as the most appropriate choice for realizing the aim of personal genomics. The previous implementation of DNA sequence alignment did not take into consideration the price of the device on which <span class="hlt">optimization</span> was performed. This paper presents <span class="hlt">optimization</span> over previous FPGA implementation that increases the overall speed-up achieved as well as the price incurred by the platform that was <span class="hlt">optimized</span>. The <span class="hlt">optimizations</span> are (1) The array of processing elements is made to run on change in input value and not on clock, so eliminating the need for tight clock synchronization, (2) the implementation is unrestrained by the size of the sequences to be aligned, (3) the waiting time required for the sequences to load to FPGA is reduced to the minimum possible and (4) an efficient method is devised to store the output matrix that make possible to save the diagonal elements to be used in next pass, in parallel with the computation of output matrix. Implemented on Spartan3 FPGA, this implementation achieved 20 times performance improvement in terms of CUPS over GPP implementation. PMID:24110283</p> <div class="credits"> <p class="dwt_author">Shah, Hurmat Ali; Hasan, Laiq; Ahmad, Nasir</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-07-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">347</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=healthy+AND+living&pg=5&id=EJ839844"> <span id="translatedtitle">The University of Arizona College of Medicine <span class="hlt">Optimal</span> Aging Program: <span class="hlt">Stepping</span> in the Shadows of Successful Aging</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">The <span class="hlt">Optimal</span> Aging Program (OAP) at the University of Arizona, College of Medicine is a longitudinal mentoring program that pairs students with older adults who are considered to be aging "successfully." This credit-bearing elective was initially established in 2001 through a grant from the John A. Hartford Foundation, and aims to expand the…</p> <div class="credits"> <p class="dwt_author">Sikora, Stephanie</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">348</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008JAP...103gE915Q"> <span id="translatedtitle">Enhanced microwave ferromagnetic resonance absorption and bandwidth using a microstrip meander line with <span class="hlt">step</span>-impedance low-pass <span class="hlt">filter</span> in a yttrium iron garnet-gallium arsenide layer structure</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Simulations of the <span class="hlt">step</span>-impedance low-pass <span class="hlt">filter</span> (LPF) in gallium arsenide (GaAs) substrate show that, in contrast to a 50 ? microstrip, the magnetic fields of the propagating microwaves are heavily concentrated in its inductive elements. The concentrated local magnetic fields facilitate enhanced coupling into an yttrium iron garnet/gadolinium gallium garnet layer over the GaAs substrate and, thus, significantly increase the microwave power absorptions at the ferromagnetic resonance (FMR) frequencies. The large tunable range of FMR frequency and the corresponding S21 and S11 parameters measured have verified the simulation results. Simultaneous enhancement of FMR absorption level and widening of absorption bandwidth has been accomplished in a band-stop <span class="hlt">filter</span> that utilizes a microstrip meander line with four identical <span class="hlt">step</span>-impedance LPFs, each of 5.70 mm long, inserted in a nonuniform bias magnetic field. A tunable FMR absorption frequency range of 5-21 GHz, an absorption level of -35.5 dB, and a corresponding 3 dB absorption bandwidth as large as 1.70 GHz, centered at 20.3 GHz, have been demonstrated.</p> <div class="credits"> <p class="dwt_author">Qiu, Gang; Tsai, Chen S.; Kobayashi, Masatoshi M.; Wang, Bert S. T.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-04-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">349</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/22105751"> <span id="translatedtitle">Modeling <span class="hlt">filters</span> for formation of mono-energetic neutron beams in the research reactor IRT MEPhI and <span class="hlt">optimization</span> of radiation shielding for liquid-xenon detector</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The paper considers formation of mono-energetic neutron beams at the entrance of experimental channels in research reactors for various applications. The problem includes the following <span class="hlt">steps</span>: 1. Full-scale mathematical model of the research IRT MEPhI was developed for numerical evaluations of neutron spectra and neutron spatial distribution in the area of experimental channels. 2. Modeling of <span class="hlt">filters</span> in the channel to shift neutron spectrum towards the required mono-energetic line was performed. 3. Some characteristics of neutron beams at the entrance of detector were evaluated. The <span class="hlt">filter</span> materials were selected. The calculations were carried out with application of the computer code based on the high-precision Monte-Carlo code MCNP. As a result, mathematical model was created for the <span class="hlt">filter</span> which is able to form mono-energetic (24 keV) neutron beam. The study was carried out within the frames of the research project on development of Russian emission detector with liquid noble gas to observe rare processes of neutrino scattering and particles of hypothetical dark matter in atomic nuclei. (authors)</p> <div class="credits"> <p class="dwt_author">Ivakhin, S. V.; Tikhomirov, G. V.; Bolozdynya, A. I.; Efremenko, Y. V.; Akimov, D. Y.; Stekhanov, V. N. [Laboratory of Experimental Nuclear Physics, National Research Nuclear Univ. MEPhI, Kashirskoe sh., 31, Moscow, 115409 (Russian Federation)</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">350</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2006RScI...77cA515H"> <span id="translatedtitle">Improvement of beam uniformity by magnetic <span class="hlt">filter</span> <span class="hlt">optimization</span> in a Cs-seeded large negative-ion source</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The influence of magnetic <span class="hlt">filter</span> configuration on the beam uniformity was examined to improve beam uniformity in a large Cs-seeded negative-ion source. By reducing the <span class="hlt">filter</span> strength of the transverse magnetic field used in a typical negative-ion source, the beam uniformity was largely improved with the improvement of the plasma uniformity while the beam intensity was kept to be nearly constant. However, the coextracted electron current greatly increased. To suppress the coextracted electron current, a tent-shaped magnetic <span class="hlt">filter</span> was applied together with modifications in the cusp magnets to form a typical multicusp positive-ion source arrangement. The uniformity in longitudinal beam profile was improved with the deviation of local beam intensity within 16% that was nearly equal to the deviation obtained at 50 G cm of the transverse <span class="hlt">filter</span> strength. In the meantime, the coextracted electron current was kept to be the same as the H- ion current. The present result suggests that the uniformity of H- ion-beam profile is affected by the uniformity of atoms or protons in the source plasma, which are the primary species of negative ions under Cs-seeded surface production.</p> <div class="credits"> <p class="dwt_author">Hanada, M.; Seki, T.; Takado, N.; Inoue, T.; Tobari, H.; Mizuno, T.; Hatayama, A.; Dairaku, M.; Kashiwagi, M.; Sakamoto, K.; Taniguchi, M.; Watanabe, K.</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">351</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/20779000"> <span id="translatedtitle">Improvement of beam uniformity by magnetic <span class="hlt">filter</span> <span class="hlt">optimization</span> in a Cs-seeded large negative-ion source</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The influence of magnetic <span class="hlt">filter</span> configuration on the beam uniformity was examined to improve beam uniformity in a large Cs-seeded negative-ion source. By reducing the <span class="hlt">filter</span> strength of the transverse magnetic field used in a typical negative-ion source, the beam uniformity was largely improved with the improvement of the plasma uniformity while the beam intensity was kept to be nearly constant. However, the coextracted electron current greatly increased. To suppress the coextracted electron current, a tent-shaped magnetic <span class="hlt">filter</span> was applied together with modifications in the cusp magnets to form a typical multicusp positive-ion source arrangement. The uniformity in longitudinal beam profile was improved with the deviation of local beam intensity within 16% that was nearly equal to the deviation obtained at 50 G cm of the transverse <span class="hlt">filter</span> strength. In the meantime, the coextracted electron current was kept to be the same as the H{sup -} ion current. The present result suggests that the uniformity of H{sup -} ion-beam profile is affected by the uniformity of atoms or protons in the source plasma, which are the primary species of negative ions under Cs-seeded surface production.</p> <div class="credits"> <p class="dwt_author">Hanada, M.; Seki, T.; Takado, N.; Inoue, T.; Tobari, H.; Mizuno, T.; Hatayama, A.; Dairaku, M.; Kashiwagi, M.; Sakamoto, K.; Taniguchi, M.; Watanabe, K. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Keio University, Yokohama 223-8522 (Japan); Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Keio University, Yokohama 223-8522 (Japan); Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan)</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-03-15</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">352</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2011JAP...110f3115Z"> <span id="translatedtitle">Three-dimensional optical analyses and <span class="hlt">optimizations</span> of a vertical alignment color-<span class="hlt">filters</span>-embedded liquid-crystal-on-silicon microdisplay</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The process of vertical alignment (VA) mode color <span class="hlt">filter</span> liquid crystal on silicon (CF-LCoS) microdisplay was developed. In order to minimize the fringing field effect in small color pixels, a three dimensional (3D) optical model was established and performed to analyze this VA mode CF-LCoS microdisplay. The simulated result was compared with the experimental data and they coincided well. <span class="hlt">Optimization</span> of this breed of VA mode CF-LCoS microdisplay was proposed with <span class="hlt">optimal</span> pretilt angle and pixel size. With the pretilt angle of 86 degrees and the pixel size of 15 ?m, the color purity of the VA mode CF-LCoS microdisplay could attain more than 60% National Television Standards Committee (NTSC) level, and the contrast was larger than 400.</p> <div class="credits"> <p class="dwt_author">Zhang, Baolong; Li, Dan; Dai, Fengzhi; Yang, Shifeng; Kwok, Hoising</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">353</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/18785761"> <span id="translatedtitle">Biological/biomedical accelerator mass spectrometry targets. 1. <span class="hlt">optimizing</span> the CO2 reduction <span class="hlt">step</span> using zinc dust.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Biological and biomedical applications of accelerator mass spectrometry (AMS) use isotope ratio mass spectrometry to quantify minute amounts of long-lived radioisotopes such as (14)C. AMS target preparation involves first the oxidation of carbon (in sample of interest) to CO 2 and second the reduction of CO 2 to filamentous, fluffy, fuzzy, or firm graphite-like substances that coat a -400-mesh spherical iron powder (-400MSIP) catalyst. Until now, the quality of AMS targets has been variable; consequently, they often failed to produce robust ion currents that are required for reliable, accurate, precise, and high-throughput AMS for biological/biomedical applications. Therefore, we described our <span class="hlt">optimized</span> method for reduction of CO 2 to high-quality uniform AMS targets whose morphology we visualized using scanning electron microscope pictures. Key features of our <span class="hlt">optimized</span> method were to reduce CO 2 (from a sample of interest that provided 1 mg of C) using 100 +/- 1.3 mg of Zn dust, 5 +/- 0.4 mg of -400MSIP, and a reduction temperature of 500 degrees C for 3 h. The thermodynamics of our <span class="hlt">optimized</span> method were more favorable for production of graphite-coated iron powders (GCIP) than those of previous methods. All AMS targets from our <span class="hlt">optimized</span> method were of 100% GCIP, the graphitization yield exceeded 90%, and delta (13)C was -17.9 +/- 0.3 per thousand. The GCIP reliably produced strong (12)C (-) currents and accurate and precise F m values. The observed F m value for oxalic acid II NIST SRM deviated from its accepted F m value of 1.3407 by only 0.0003 +/- 0.0027 (mean +/- SE, n = 32), limit of detection of (14)C was 0.04 amol, and limit of quantification was 0.07 amol, and a skilled analyst can prepare as many as 270 AMS targets per day. More information on the physical (hardness/color), morphological (SEMs), and structural (FT-IR, Raman, XRD spectra) characteristics of our AMS targets that determine accurate, precise, and high-hroughput AMS measurement are in the companion paper. PMID:18785761</p> <div class="credits"> <p class="dwt_author">Kim, Seung-Hyun; Kelly, Peter B; Clifford, Andrew J</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-09-12</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">354</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49719703"> <span id="translatedtitle"><span class="hlt">Optimization</span> of pressurized liquid extraction and purification conditions for gas chromatography–mass spectrometry determination of UV <span class="hlt">filters</span> in sludge</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This work presents an effective sample preparation method for the determination of eight UV <span class="hlt">filter</span> compounds, belonging to different chemical classes, in freeze-dried sludge samples. Pressurized liquid extraction (PLE) and gas chromatography–mass spectrometry (GC–MS) were selected as extraction and determination techniques, respectively. Normal-phase, reversed-phase and anionic exchange materials were tested as clean-up sorbents to reduce the complexity of raw PLE</p> <div class="credits"> <p class="dwt_author">N. Negreira; I. Rodríguez; E. Rubí; R. Cela</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">355</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.clevelandfed.org/Research/workpaper/1999/Wp9906.pdf"> <span id="translatedtitle">The Band Pass <span class="hlt">Filter</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The `ideal' band pass <span class="hlt">filter</span> can be used to isolate the component of a time series that lies within a particular band of frequencies. However, applying this <span class="hlt">filter</span> requires a dataset of infinite length. In practice, some sort of approximation is needed. Using projections, we derive approximations that are <span class="hlt">optimal</span> when the time series representations underlying the raw data have</p> <div class="credits"> <p class="dwt_author">Lawrence J. Christiano; Terry J. Fitzgerald</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">356</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1580973"> <span id="translatedtitle">Approaches to adaptive <span class="hlt">filtering</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The different methods of adaptive <span class="hlt">filtering</span> are divided into four categories: Bayesian, maximum likelihood (ML), correlation, and covariance matching. The relationship between the methods and the difficulties associated with each method are described. New algorithms for the direct estimation of the <span class="hlt">optimal</span> gain of a Kalman <span class="hlt">filter</span> are given.</p> <div class="credits"> <p class="dwt_author">R. Mehra</p> <p class="dwt_publisher"></p> <p class="publishDate">1972-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">357</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/38206474"> <span id="translatedtitle">The Band Pass <span class="hlt">Filter</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We develop <span class="hlt">optimal</span> finite-sample approximations for the band pass <span class="hlt">filter</span>. These approximations include one-sided <span class="hlt">filters</span> that can be used in real time. <span class="hlt">Optimal</span> approximations depend upon the details of the time series representation that generates the data. Fortunately, for U.S. macroeconomic data, getting the details exactly right is not crucial. A simple approach, based on the generally false assumption that</p> <div class="credits"> <p class="dwt_author">Lawrence J. Christiano; Terry J. Fitzgerald</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">358</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/6089227"> <span id="translatedtitle">A unified approach to multistage frequency-response masking <span class="hlt">filter</span> design using the WLS technique</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper presents a unified approach to the <span class="hlt">optimal</span> design of sharp linear-phase finite-impulse-response (FIR) digital <span class="hlt">filters</span> synthesized using the multistage frequency-response masking (FRM) technique. In this approach, the design of a k-stage FRM <span class="hlt">filter</span> is achieved in a recursive manner. The minimax design problem arising at each <span class="hlt">step</span> of the synthesis process is converted into a corresponding weighted least-squares</p> <div class="credits"> <p class="dwt_author">Wei Rong Lee; Lou Caccetta; Kok Lay Teo; Volker Rehbock</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">359</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/21144528"> <span id="translatedtitle"><span class="hlt">Optimization</span> of pressurized liquid extraction and purification conditions for gas chromatography-mass spectrometry determination of UV <span class="hlt">filters</span> in sludge.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">This work presents an effective sample preparation method for the determination of eight UV <span class="hlt">filter</span> compounds, belonging to different chemical classes, in freeze-dried sludge samples. Pressurized liquid extraction (PLE) and gas chromatography-mass spectrometry (GC-MS) were selected as extraction and determination techniques, respectively. Normal-phase, reversed-phase and anionic exchange materials were tested as clean-up sorbents to reduce the complexity of raw PLE extracts. Under final working conditions, graphitized carbon (0.5 g) was used as in-cell purification sorbent for the retention of co-extracted pigments. Thereafter, a solid-phase extraction cartridge, containing 0.5 g of primary secondary amine (PSA) bonded silica, was employed for off-line removal of other interferences, mainly fatty acids, overlapping the chromatographic peaks of some UV <span class="hlt">filters</span>. Extractions were performed with a n-hexane:dichloromethane (80:20, v:v) solution at 75°C, using a single extraction cycle of 5 min at 1500 psi. Flush volume and purge time were set at 100% and 2 min, respectively. Considering 0.5 g of sample and 1 mL as the final volume of the purified extract, the developed method provided recoveries between 73% and 112%, with limits of quantification (LOQs) from 17 to 61 ng g(-1) and a linear response range up to 10 ?g g(-1). Total solvent consumption remained around 30 mL per sample. The analysis of non-spiked samples confirmed the sorption of significant amounts of several UV <span class="hlt">filters</span> in sludge with average concentrations above 0.6 ?g g(-1) for 3-(4-methylbenzylidene) camphor (4-MBC), 2-ethylhexyl-p-methoxycinnamate (EHMC) and octocrylene (OC). PMID:21144528</p> <div class="credits"> <p class="dwt_author">Negreira, N; Rodríguez, I; Rubí, E; Cela, R</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-11-19</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">360</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/17188694"> <span id="translatedtitle"><span class="hlt">Optimization</span> of simulated moving bed and column chromatography for a plasmid DNA purification <span class="hlt">step</span> and for a chiral separation.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">This work analyzes the performance of the SMB and the column chromatography processes for two different case studies: the first stage of the plasmid DNA (pDNA) polishing, and the Tröger's base enantiomer separation, in which the adsorption isotherms are linear and non-linear, respectively. Simulation tools are used together with an <span class="hlt">optimization</span> routine (Non-Sorting Genetic Algorithm (NSGA)) in order to find the optimum operating conditions leading to maximum productivity and minimum solvent consumption; the optimum solution for each of the processes is a curve on the productivity-solvent consumption plane, the so-called Pareto set. The comparison between the column and the SMB processes is based on the relative position of the two Pareto sets calculated at equal conditions and for the same final purity and recovery of the target species. The results show that SMB is superior to column chromatography in the two case studies investigated, i.e. in the case of the linear isotherm (pDNA), the productivity gain is up to a factor two for a given value of the solvent consumption. Furthermore, the flexibility of the SMB operation is larger, since the Pareto sets are flatter and they prolong into regions of the productivity-solvent consumption plane that are not accessible with the column chromatography process. PMID:17188694</p> <div class="credits"> <p class="dwt_author">Paredes, Galatea; Mazzotti, Marco</p> <p class="dwt_publisher"></p> <p class="publishDate">2006-12-22</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_17");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a style="font-weight: bold;">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_19");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_18 div --> <div id="page_19" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_18");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a style="font-weight: bold;">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_20");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">361</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012SPIE.8450E..2JV"> <span id="translatedtitle">Towards ultra-precise optical interference <span class="hlt">filters</span> on large area: computational and experimental <span class="hlt">optimization</span> of the homogeneity of magnetron-sputtered precision optical coatings</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The <span class="hlt">optimization</span> of the uniformity of high precision optical <span class="hlt">filters</span> is often a critical and time consuming procedure. The goal of the present paper is to evaluate critical factors that influence the thickness distribution on substrates during a magnetron sputter process. A new developed sputter coater “EOSS” was used to deposit SiO2 and Nb2O5 single films and optical <span class="hlt">filters</span>. It is based on dynamic deposition using a rotating turntable. Two sets of cylindrical double magnetrons are used for the low and the high index layers, respectively. In contrast to common planar magnetrons, the use of cylindrical magnetrons should yield a more stable distribution during the lifetime of the target. The thickness distribution on the substrates was measured by optical methods. Homogenization is carried out by shaping apertures. The distribution of the particle flow from the cylindrical magnetron was simulated using particle-in-cell Monte Carlo plasma simulation developed at Fraunhofer IST. Thickness profiles of the low index and the high index layers are calculated by numerical simulation and will be compared with the experimental data. Experimental factors such as wobbling of the magnetron during rotation, geometrical changes of critical components of the coater such as uniformity shapers as well as gas flow variations will be evaluated and discussed.</p> <div class="credits"> <p class="dwt_author">Vergöhl, Michael; Pflug, Andreas; Rademacher, Daniel</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">362</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2009JSP...134..365K"> <span id="translatedtitle">The Diffusion Kernel <span class="hlt">Filter</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A particle <span class="hlt">filter</span> method is presented for the discrete-time <span class="hlt">filtering</span> problem with nonlinear Itô stochastic ordinary differential equations (SODE) with additive noise supposed to be analytically integrable as a function of the underlying vector-Wiener process and time. The Diffusion Kernel <span class="hlt">Filter</span> is arrived at by a parametrization of small noise-driven state fluctuations within branches of prediction and a local use of this parametrization in the Bootstrap <span class="hlt">Filter</span>. The method applies for small noise and short prediction <span class="hlt">steps</span>. With explicit numerical integrators, the operations count in the Diffusion Kernel <span class="hlt">Filter</span> is shown to be smaller than in the Bootstrap <span class="hlt">Filter</span> whenever the initial state for the prediction <span class="hlt">step</span> has sufficiently few moments. The established parametrization is a dual-formula for the analysis of sensitivity to gaussian-initial perturbations and the analysis of sensitivity to noise-perturbations, in deterministic models, showing in particular how the stability of a deterministic dynamics is modeled by noise on short times and how the diffusion matrix of an SODE should be modeled (i.e. defined) for a gaussian-initial deterministic problem to be cast into an SODE problem. From it, a novel definition of prediction may be proposed that coincides with the deterministic path within the branch of prediction whose information entropy at the end of the prediction <span class="hlt">step</span> is closest to the average information entropy over all branches. Tests are made with the Lorenz-63 equations, showing good results both for the <span class="hlt">filter</span> and the definition of prediction.</p> <div class="credits"> <p class="dwt_author">Krause, Paul</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">363</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/4758789"> <span id="translatedtitle">Vessel enhancement <span class="hlt">filter</span> using directional <span class="hlt">filter</span> bank</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Vessel enhancement is an important preprocessing <span class="hlt">step</span> in accurate vessel-tree reconstruction which is necessary in many medical imaging applications. Conventional vessel enhancement approaches used in the literature are Hessian-based <span class="hlt">filters</span>, which are found to be sensitive to noise and sometimes give discontinued vessels due to junction suppression. In this paper, we propose a novel framework for vessel enhancement for angiography</p> <div class="credits"> <p class="dwt_author">Phan T. H. Truc; Young-koo Lee; Sungyoung Lee; Tae-seong Kim</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">364</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60391349"> <span id="translatedtitle">Wiener <span class="hlt">filter</span> for nuclear medicine images</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">To improve the quality of digital nuclear medicine images, a new implementation of the Wiener restoration <span class="hlt">filter</span> has been developed. The Wiener <span class="hlt">filter</span> uses as its <span class="hlt">optimality</span> criterion the minimization of the mean-square error between the undistorted image of the object and the <span class="hlt">filtered</span> image. In order to form this <span class="hlt">filter</span>, the object and noise power spectrums are needed. The</p> <div class="credits"> <p class="dwt_author">M. A. King; P. W. Doherty; R. B. Schwinger; B. C. Penney</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">365</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/12325152"> <span id="translatedtitle">Scale-up and <span class="hlt">optimization</span> of an acoustic <span class="hlt">filter</span> for 200 L/day perfusion of a CHO cell culture.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Acoustic cell retention devices have provided a practical alternative for up to 50 L/day perfusion cultures but further scale-up has been limited. A novel temperature-controlled and larger-scale acoustic separator was evaluated at up to 400 L/day for a 10(7) CHO cell/mL perfusion culture using a 100-L bioreactor that produced up to 34 g/day recombinant protein. The increased active volume of this scaled-up separator was divided into four parallel compartments for improved fluid dynamics. Operational settings of the acoustic separator were <span class="hlt">optimized</span> and the limits of robust operations explored. The performance was not influenced over wide ranges of duty cycle stop and run times. The maximum performance of 96% separation efficiency at 200 L/day was obtained by setting the separator temperature to 35.1 degrees C, the recirculation rate to three times the harvest rate, and the power to 90 W. While there was no detectable effect on culture viability, viable cells were selectively retained, especially at 50 L/day, where there was a 5-fold higher nonviable washout efficiency. Overall, the new temperature-controlled and scaled-up separator design performed reliably in a way similar to smaller-scale acoustic separators. These results provide strong support for the feasibility of much greater scale-up of acoustic separations. PMID:12325152</p> <div class="credits"> <p class="dwt_author">Gorenflo, Volker M; Smith, Laura; Dedinsky, Bob; Persson, Bo; Piret, James M</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-11-20</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">366</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51103165"> <span id="translatedtitle">Miniaturization coaxial cavity <span class="hlt">filter</span> design used in 3G communication</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A novel <span class="hlt">stepped</span> impedance resonator is proposed for a cavity resonator <span class="hlt">filter</span> design. According to the basic principle of <span class="hlt">stepped</span> impedance resonators SIR, a miniaturization coaxial cavity <span class="hlt">filter</span> used in 3G communication is designed by using ?? g\\/4- type SIR as the basic harmonic unit. Simulation results show that compared with normal cavity <span class="hlt">filter</span>, this <span class="hlt">filter</span> has the advantages of</p> <div class="credits"> <p class="dwt_author">Dongxu Feng; Zhelei Xia; Fanghua Ling; Shuang Liu</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">367</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/details.jsp?query_id=0&page=0&ostiID=865803"> <span id="translatedtitle">Disk <span class="hlt">filter</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">An electric disk <span class="hlt">filter</span> provides a high efficiency at high temperature. A hollow outer <span class="hlt">filter</span> of fibrous stainless steel forms the ground electrode. A refractory <span class="hlt">filter</span> material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer <span class="hlt">filter</span> surfaces through the electrified refractory <span class="hlt">filter</span> media and between the high voltage electrodes and is removed from a space in the high voltage electrode.</p> <div class="credits"> <p class="dwt_author">Bergman, Werner (Pleasanton, CA)</p> <p class="dwt_publisher"></p> <p class="publishDate">1986-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">368</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013SPIE.8660E..0EW"> <span id="translatedtitle">Median <span class="hlt">filtering</span> in multispectral <span class="hlt">filter</span> array demosaicking</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Inspired by the concept of the colour <span class="hlt">filter</span> array (CFA), the research community has shown much interest in adapting the idea of CFA to the multispectral domain, producing multispectral <span class="hlt">filter</span> arrays (MSFAs). In addition to newly devised methods of MSFA demosaicking, there exists a wide spectrum of methods developed for CFA. Among others, some vector based operations can be adapted naturally for multispectral purposes. In this paper, we focused on studying two vector based median <span class="hlt">filtering</span> methods in the context of MSFA demosaicking. One solves demosaicking problems by means of vector median <span class="hlt">filters</span>, and the other applies median <span class="hlt">filtering</span> to the demosaicked image in spherical space as a subsequent refinement process to reduce artefacts introduced by demosaicking. To evaluate the performance of these measures, a tool kit was constructed with the capability of mosaicking, demosaicking and quality assessment. The experimental results demonstrated that the vector median <span class="hlt">filtering</span> performed less well for natural images except black and white images, however the refinement <span class="hlt">step</span> reduced the reproduction error numerically in most cases. This proved the feasibility of extending CFA demosaicking into MSFA domain.</p> <div class="credits"> <p class="dwt_author">Wang, Xingbo; Thomas, Jean-Baptiste; Hardeberg, Jon Y.; Gouton, Pierre</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">369</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.bauer.uh.edu/povel/documents/povel_jleo_1999.pdf"> <span id="translatedtitle"><span class="hlt">Optimal</span> \\</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This article describes <span class="hlt">optimal</span> bankruptcy laws in a framework with asymmetric information. The key idea is that the financial distress of a firm is not observed by its lenders for quite a while. As early rescues are much cheaper than late rescues, it may pay if the creditors are forgiving in bankruptcy, thereby inducing the revelation of difficulties as early</p> <div class="credits"> <p class="dwt_author">Paul Povel</p> <p class="dwt_publisher"></p> <p class="publishDate">1999-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">370</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/351051"> <span id="translatedtitle">Matched Myriad <span class="hlt">Filtering</span> for Robust Communications</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Weighted myriad <span class="hlt">filters</span> is a robust nonlinear filteringframework motivated by the statistical properties of ff-stable distributions. Derived to be <span class="hlt">optimal</span> in impulsive environments,the class of myriad <span class="hlt">filters</span> includes a rich varietyof <span class="hlt">filtering</span> operations which can be controlled by simply adjustinga tuning parameter k. Weighted myriad <span class="hlt">filters</span> rangefrom highly robust mode-like selection <span class="hlt">filters</span> (k = 0) to theefficient class of linear</p> <div class="credits"> <p class="dwt_author">Juan G. Gonzalez; David W. Griffith</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">371</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2010APS..DFD.RJ006C"> <span id="translatedtitle">Game-theoretic Kalman <span class="hlt">Filter</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The Kalman <span class="hlt">Filter</span> (KF) is celebrated as the <span class="hlt">optimal</span> estimator for systems with linear dynamics and gaussian uncertainty. Although most systems of interest do not have linear dynamics and are not forced by gaussian noise, the KF is used ubiquitously within industry. Thus, we present a novel estimation algorithm, the Game-theoretic Kalman <span class="hlt">Filter</span> (GKF), which intelligently hedges between competing sequential <span class="hlt">filters</span> and does not require the assumption of gaussian statistics to provide a "best" estimate.</p> <div class="credits"> <p class="dwt_author">Colburn, Christopher; Bewley, Thomas</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">372</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/details.jsp?query_id=0&page=0&ostiID=4281796"> <span id="translatedtitle"><span class="hlt">FILTER</span> TREATMENT</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A process is described for reconditioning fused alumina <span class="hlt">filters</span> which have become clogged by the accretion of bismuth phosphate in the <span class="hlt">filter</span> pores, The method consists in contacting such <span class="hlt">filters</span> with faming sulfuric acid, and maintaining such contact for a substantial period of time.</p> <div class="credits"> <p class="dwt_author">Sutton, J.B.; Torrey, J.V.P.</p> <p class="dwt_publisher"></p> <p class="publishDate">1958-08-26</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">373</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.teachengineering.org/view_activity.php?url=collection/cub_/activities/cub_human/cub_human_lesson08_activity1.xml"> <span id="translatedtitle">Kidney <span class="hlt">Filtering</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">In this activity, students <span class="hlt">filter</span> different substances through a plastic window screen, different sized hardware cloth and poultry netting. Their model shows how the thickness of a <span class="hlt">filter</span> in the kidney is imperative in deciding what will be <span class="hlt">filtered</span> out and what will stay within the blood stream.</p> <div class="credits"> <p class="dwt_author">Integrated Teaching And Learning Program</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">374</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/4741182"> <span id="translatedtitle">Intelligent Content <span class="hlt">Filtering</span> Model for Network Security Audit System</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper presents a model of intelligent content <span class="hlt">filtering</span> model to resolve the current network security audit system in <span class="hlt">filtering</span> the information deficiency. First of all, in accordance with the characteristics of network security audit system, as well as the advantages and disadvantages of content <span class="hlt">filtering</span> methods commonly, this paper choose suitable <span class="hlt">filter</span> method, and then, <span class="hlt">optimize</span> the <span class="hlt">filter</span> method</p> <div class="credits"> <p class="dwt_author">Junliang Zhang; Dingyi Fang; Li Liu</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">375</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=PB217270"> <span id="translatedtitle">Design Requirements for Municipal Diatomite <span class="hlt">Filters</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">The report describes progress made toward developing an optimum diatomite <span class="hlt">filter</span> design for municipal water treatment plants. Individual research projects relative to this <span class="hlt">optimization</span> program are delineated.</p> <div class="credits"> <p class="dwt_author">P. E. Morgan E. R. Baumann</p> <p class="dwt_publisher"></p> <p class="publishDate">1964-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">376</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013SPIE.8744E..01R"> <span id="translatedtitle">Generalized linear correlation <span class="hlt">filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">We present two generalized linear correlation <span class="hlt">filters</span> (CFs) that encompass most of the state-of-the-art linear CFs. The common criteria that arc used in linear CF design are the mean squared error (MSE), output noise variance (ONV), and average similarity measure (ASM). We present a simple formulation that uses an <span class="hlt">optimal</span> tradeoff among these criteria both constraining and not constraining the correlation peak value, and refer to them as generalized Constrained Correlation <span class="hlt">Filter</span> (CCF) and Unconstrained Couelation <span class="hlt">Filter</span> (UCF). We show that most state-of-the-art linear CFs arc subsets of these <span class="hlt">filters</span>. We present a technique for efficient UCF computation. We also introduce the modified CCF (mCCF) that chooses a unique correlation peak value for each training image, and show that mCCF usually outperforms both UCF and CCF.</p> <div class="credits"> <p class="dwt_author">Rodriguez, Andres; Vijaya Kumar, B. V. K.</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">377</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PMB....58.3413Z"> <span id="translatedtitle">Iterative total-variation reconstruction versus weighted <span class="hlt">filtered</span>-backprojection reconstruction with edge-preserving <span class="hlt">filtering</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Iterative image reconstruction with the total-variation (TV) constraint has become an active research area in recent years, especially in x-ray CT and MRI. Based on Green's one-<span class="hlt">step</span>-late algorithm, this paper develops a transmission noise weighted iterative algorithm with a TV prior. This paper compares the reconstructions from this iterative TV algorithm with reconstructions from our previously developed non-iterative reconstruction method that consists of a noise-weighted <span class="hlt">filtered</span> backprojection (FBP) reconstruction algorithm and a nonlinear edge-preserving post <span class="hlt">filtering</span> algorithm. This paper gives a mathematical proof that the noise-weighted FBP provides an <span class="hlt">optimal</span> solution. The results from both methods are compared using clinical data and computer simulation data. The two methods give comparable image quality, while the non-iterative method has the advantage of requiring much shorter computation times.</p> <div class="credits"> <p class="dwt_author">Zeng, Gengsheng L.; Li, Ya; Zamyatin, Alex</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-05-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">378</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3265183"> <span id="translatedtitle">A <span class="hlt">step-by-step</span> guide to systematically identify all relevant animal studies</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Before starting a new animal experiment, thorough analysis of previously performed experiments is essential from a scientific as well as from an ethical point of view. The method that is most suitable to carry out such a thorough analysis of the literature is a systematic review (SR). An essential first <span class="hlt">step</span> in an SR is to search and find all potentially relevant studies. It is important to include all available evidence in an SR to minimize bias and reduce hampered interpretation of experimental outcomes. Despite the recent development of search <span class="hlt">filters</span> to find animal studies in PubMed and EMBASE, searching for all available animal studies remains a challenge. Available guidelines from the clinical field cannot be copied directly to the situation within animal research, and although there are plenty of books and courses on searching the literature, there is no compact guide available to search and find relevant animal studies. Therefore, in order to facilitate a structured, thorough and transparent search for animal studies (in both preclinical and fundamental science), an easy-to-use, <span class="hlt">step-by-step</span> guide was prepared and <span class="hlt">optimized</span> using feedback from scientists in the field of animal experimentation. The <span class="hlt">step-by-step</span> guide will assist scientists in performing a comprehensive literature search and, consequently, improve the scientific quality of the resulting review and prevent unnecessary animal use in the future.</p> <div class="credits"> <p class="dwt_author">Leenaars, Marlies; Hooijmans, Carlijn R; van Veggel, Nieky; ter Riet, Gerben; Leeflang, Mariska; Hooft, Lotty; van der Wilt, Gert Jan; Tillema, Alice; Ritskes-Hoitinga, Merel</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">379</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/22037056"> <span id="translatedtitle">A <span class="hlt">step-by-step</span> guide to systematically identify all relevant animal studies.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Before starting a new animal experiment, thorough analysis of previously performed experiments is essential from a scientific as well as from an ethical point of view. The method that is most suitable to carry out such a thorough analysis of the literature is a systematic review (SR). An essential first <span class="hlt">step</span> in an SR is to search and find all potentially relevant studies. It is important to include all available evidence in an SR to minimize bias and reduce hampered interpretation of experimental outcomes. Despite the recent development of search <span class="hlt">filters</span> to find animal studies in PubMed and EMBASE, searching for all available animal studies remains a challenge. Available guidelines from the clinical field cannot be copied directly to the situation within animal research, and although there are plenty of books and courses on searching the literature, there is no compact guide available to search and find relevant animal studies. Therefore, in order to facilitate a structured, thorough and transparent search for animal studies (in both preclinical and fundamental science), an easy-to-use, <span class="hlt">step-by-step</span> guide was prepared and <span class="hlt">optimized</span> using feedback from scientists in the field of animal experimentation. The <span class="hlt">step-by-step</span> guide will assist scientists in performing a comprehensive literature search and, consequently, improve the scientific quality of the resulting review and prevent unnecessary animal use in the future. PMID:22037056</p> <div class="credits"> <p class="dwt_author">Leenaars, Marlies; Hooijmans, Carlijn R; van Veggel, Nieky; ter Riet, Gerben; Leeflang, Mariska; Hooft, Lotty; van der Wilt, Gert Jan; Tillema, Alice; Ritskes-Hoitinga, Merel</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-10-28</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">380</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/774088"> <span id="translatedtitle">Kaon <span class="hlt">Filtering</span> For CLAS Data</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">The analysis of data from CLAS is a multi-<span class="hlt">step</span> process. After the detectors for a given running period have been calibrated, the data is processed in the so called pass-1 cooking. During the pass-1 cooking each event is reconstructed by the program a1c which finds particle tracks and computes momenta from the raw data. The results are then passed on to several data monitoring and <span class="hlt">filtering</span> utilities. In CLAS software, a <span class="hlt">filter</span> is a parameterless function which returns an integer indicating whether an event should be kept by that <span class="hlt">filter</span> or not. There is a main <span class="hlt">filter</span> program called g1-<span class="hlt">filter</span> which controls several specific <span class="hlt">filters</span> and outputs several files, one for each <span class="hlt">filter</span>. These files may then be analyzed separately, allowing individuals interested in one reaction channel to work from smaller files than using the whole data set would require. There are several constraints on what the <span class="hlt">filter</span> functions should do. Obviously, the <span class="hlt">filtered</span> files should be as small as possible, however the <span class="hlt">filter</span> should also not reject any events that might be used in the later analysis for which the <span class="hlt">filter</span> was intended.</p> <div class="credits"> <p class="dwt_author">McNabb, J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-30</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_18");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a style="font-weight: bold;">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_20");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_19 div --> <div id="page_20" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_19");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a style="font-weight: bold;">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_21");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">381</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/58917757"> <span id="translatedtitle">SOLVING A HYDTROTREATER FEED <span class="hlt">FILTER</span> FOULING PROBLEM</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Feed <span class="hlt">filters</span> were installed in Syncrude hydrotreater units to protect the catalyst beds from plugging by fine solids in the feed. Severe <span class="hlt">filter</span> fouling occurred after a process flow sheet change. The root cause of fouling was revealed through a <span class="hlt">step-by-step</span> scientific investigation. It was first confirmed that the fouling problem was related to a process flow sheet change that</p> <div class="credits"> <p class="dwt_author">X. A. Wu; K. H. Chung</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">382</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2614560"> <span id="translatedtitle">Multiresolution Bilateral <span class="hlt">Filtering</span> for Image Denoising</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">The bilateral <span class="hlt">filter</span> is a nonlinear <span class="hlt">filter</span> that does spatial averaging without smoothing edges; it has shown to be an effective image denoising technique. An important issue with the application of the bilateral <span class="hlt">filter</span> is the selection of the <span class="hlt">filter</span> parameters, which affect the results significantly. There are two main contributions of this paper. The first contribution is an empirical study of the <span class="hlt">optimal</span> bilateral <span class="hlt">filter</span> parameter selection in image denoising applications. The second contribution is an extension of the bilateral <span class="hlt">filter</span>: multiresolution bilateral <span class="hlt">filter</span>, where bilateral <span class="hlt">filtering</span> is applied to the approximation (low-frequency) subbands of a signal decomposed using a wavelet <span class="hlt">filter</span> bank. The multiresolution bilateral <span class="hlt">filter</span> is combined with wavelet thresholding to form a new image denoising framework, which turns out to be very effective in eliminating noise in real noisy images. Experimental results with both simulated and real data are provided.</p> <div class="credits"> <p class="dwt_author">Zhang, Ming; Gunturk, Bahadir K.</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">383</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/details.jsp?query_id=0&page=0&ostiID=7235367"> <span id="translatedtitle"><span class="hlt">Filtering</span> apparatus</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A vertical vessel is described having a lower inlet and an upper outlet enclosure separated by a main horizontal tube sheet. The inlet enclosure receives the flue gas from a boiler of a power system and the outlet enclosure supplies cleaned gas to the turbines. The inlet enclosure contains a plurality of particulate-removing clusters, each having a plurality of <span class="hlt">filter</span> units. Each <span class="hlt">filter</span> unit includes a <span class="hlt">filter</span> clean-gas chamber defined by a plate and a perforated auxiliary tube sheet with <span class="hlt">filter</span> tubes suspended from each tube sheet and a tube connected to each chamber for passing cleaned gas to the outlet enclosure. The clusters are suspended from the main tube sheet with their <span class="hlt">filter</span> units extending vertically and the <span class="hlt">filter</span> tubes passing through the tube sheet and opening in the outlet enclosure. The flue gas is circulated about the outside surfaces of the <span class="hlt">filter</span> tubes and the particulate is absorbed in the pores of the <span class="hlt">filter</span> tubes. Pulses to clean the <span class="hlt">filter</span> tubes are passed through their inner holes through tubes free of bends which are aligned with the tubes that pass the clean gas. 18 figs.</p> <div class="credits"> <p class="dwt_author">Haldipur, G.B.; Dilmore, W.J.</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">384</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23757593"> <span id="translatedtitle">Parametric Bayesian <span class="hlt">Filters</span> for Nonlinear Stochastic Dynamical Systems: A Survey.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Nonlinear stochastic dynamical systems are commonly used to model physical processes. For linear and Gaussian systems, the Kalman <span class="hlt">filter</span> is <span class="hlt">optimal</span> in minimum mean squared error sense. However, for nonlinear or non-Gaussian systems, the estimation of states or parameters is a challenging problem. Furthermore, it is often required to process data online. Therefore, apart from being accurate, the feasible estimation algorithm also needs to be fast. In this paper, we review Bayesian <span class="hlt">filters</span> that possess the aforementioned properties. Each <span class="hlt">filter</span> is presented in an easy way to implement algorithmic form. We focus on parametric methods, among which we distinguish three types of <span class="hlt">filters</span>: <span class="hlt">filters</span> based on analytical approximations (extended Kalman <span class="hlt">filter</span>, iterated extended Kalman <span class="hlt">filter</span>), <span class="hlt">filters</span> based on statistical approximations (unscented Kalman <span class="hlt">filter</span>, central difference <span class="hlt">filter</span>, Gauss--Hermite <span class="hlt">filter</span>), and <span class="hlt">filters</span> based on the Gaussian sum approximation (Gaussian sum <span class="hlt">filter</span>). We discuss each of these <span class="hlt">filters</span>, and compare them with illustrative examples. PMID:23757593</p> <div class="credits"> <p class="dwt_author">Stano, Pawe; Lendek, Zsofia; Braaksma, Jelmer; Babuska, Robert; de Keizer, Cees; den Dekker, Arnold J</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-24</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">385</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/956351"> <span id="translatedtitle">Stack <span class="hlt">filter</span> classifiers</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Just as linear models generalize the sample mean and weighted average, weighted order statistic models generalize the sample median and weighted median. This analogy can be continued informally to generalized additive modeels in the case of the mean, and Stack <span class="hlt">Filters</span> in the case of the median. Both of these model classes have been extensively studied for signal and image processing but it is surprising to find that for pattern classification, their treatment has been significantly one sided. Generalized additive models are now a major tool in pattern classification and many different learning algorithms have been developed to fit model parameters to finite data. However Stack <span class="hlt">Filters</span> remain largely confined to signal and image processing and learning algorithms for classification are yet to be seen. This paper is a <span class="hlt">step</span> towards Stack <span class="hlt">Filter</span> Classifiers and it shows that the approach is interesting from both a theoretical and a practical perspective.</p> <div class="credits"> <p class="dwt_author">Porter, Reid B [Los Alamos National Laboratory; Hush, Don [Los Alamos National Laboratory</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">386</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1640132"> <span id="translatedtitle">A variable <span class="hlt">step</span> size LMS algorithm</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A least-mean-square (LMS) adaptive <span class="hlt">filter</span> with a variable <span class="hlt">step</span> size is introduced. The <span class="hlt">step</span> size increases or decreases as the mean-square error increases or decreases, allowing the adaptive <span class="hlt">filter</span> to track changes in the system as well as produce a small steady state error. The convergence and steady-state behavior of the algorithm are analyzed. The results reduce to well-known results</p> <div class="credits"> <p class="dwt_author">Raymond H. Kwong; Edward W. Johnston</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">387</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013PhyD..246....1L"> <span id="translatedtitle">Unscented/ensemble transform-based variational <span class="hlt">filter</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">To deal with high dimensional nonlinear <span class="hlt">filtering</span> problems, a hybrid scheme called Unscented/Ensemble transform Variational <span class="hlt">Filter</span> (UEVF) is introduced. This is the combination of an Unscented Transform (UT), an Ensemble Transform (ET) and a rank-reduction method to compute the background covariance error matrices as well as a variational minimization to conduct the mean correction. The proposed UEVF is more efficient than the Unscented Kalman <span class="hlt">Filter</span> (UKF) to estimate the ensemble mean and covariance by the blending of a variational <span class="hlt">optimization</span> instead of a Kalman linear correction as well as the ET-like covariance estimation into the update <span class="hlt">step</span>. Moreover, in order to tackle the high dimension dynamics, truncated singular value decomposition is applied to provide a size reduction of a sigma-points set with an adaptive fashion. For performance verifications, we present two numerical experiments with different dynamics. The first system is the chaotic and high dimensional Lorenz-95 model. We show the performance of different <span class="hlt">filters</span> including the UEVF as the increasing of dimensionality or noise level. The second simulation is a model based on the 2D shallow water equation. The same tests are provided on this hydrodynamical system. All the numerical experiments confirm that the UEVF outperforms the widely applied Kalman-like <span class="hlt">filters</span> explicitly.</p> <div class="credits"> <p class="dwt_author">Lei, Ming; Baehr, Christophe</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">388</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23567732"> <span id="translatedtitle">Microwave assisted biodiesel production from Jatropha curcas L. seed by two-<span class="hlt">step</span> in situ process: <span class="hlt">optimization</span> using response surface methodology.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The synthesis of fatty acid ethyl esters (FAEEs) by a two-<span class="hlt">step</span> in situ (reactive) esterification/transesterification from Jatropha curcas L. (JCL) seeds using microwave system has been investigated. Free fatty acid was reduced from 14% to less than 1% in the first <span class="hlt">step</span> using H2SO4 as acid catalyst after 35 min of microwave irradiation heating. The organic phase in the first <span class="hlt">step</span> was subjected to a second reaction by adding 5 N KOH in ethanol as the basic catalyst. Response surface methodology (RSM) based on central composite design (CCD) was utilized to design the experiments and analyze the influence of process variables (particles seed size, time of irradiation, agitation speed and catalyst loading) on conversion of triglycerides (TGs) in the second <span class="hlt">step</span>. The highest triglycerides conversion to fatty acid ethyl esters (FAEEs) was 97.29% at the optimum conditions:<0.5mm seed size, 12.21 min irradiation time, 8.15 ml KOH catalyst loading and 331.52 rpm agitation speed in the 110 W microwave power system. PMID:23567732</p> <div class="credits"> <p class="dwt_author">Jaliliannosrati, Hamidreza; Amin, Nor Aishah Saidina; Talebian-Kiakalaieh, Amin; Noshadi, Iman</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-03-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">389</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/23943524"> <span id="translatedtitle">A high-throughput sample preparation method for cellular proteomics using 96-well <span class="hlt">filter</span> plates.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">A high-throughput sample preparation protocol based on the use of 96-well molecular weight cutoff (MWCO) <span class="hlt">filter</span> plates was developed for shotgun proteomics of cell lysates. All sample preparation <span class="hlt">steps</span>, including cell lysis, buffer exchange, protein denaturation, reduction, alkylation and proteolytic digestion are performed in a 96-well plate format, making the platform extremely well suited for processing large numbers of samples and directly compatible with functional assays for cellular proteomics. In addition, the usage of a single plate for all sample preparation <span class="hlt">steps</span> following cell lysis reduces potential samples losses and allows for automation. The MWCO <span class="hlt">filter</span> also enables sample concentration, thereby increasing the overall sensitivity, and implementation of washing <span class="hlt">steps</span> involving organic solvents, for example, to remove cell membranes constituents. The <span class="hlt">optimized</span> protocol allowed for higher throughput with improved sensitivity in terms of the number of identified cellular proteins when compared to an established protocol employing gel-filtration columns. PMID:23943524</p> <div class="credits"> <p class="dwt_author">Switzar, Linda; van Angeren, Jordy; Pinkse, Martijn; Kool, Jeroen; Niessen, Wilfried M A</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-09-17</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">390</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50340577"> <span id="translatedtitle">High speed frequency response masking <span class="hlt">filter</span> design using genetic algorithm</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper presents the design of high-speed, multiplier free, arbitrary bandwidth shape FIR <span class="hlt">filters</span> based on frequency response masking technique (FRM). The FRM <span class="hlt">filter</span> structure has been modified to improve the throughput by replacing long bandedge shaping <span class="hlt">filter</span> with several cascaded short <span class="hlt">filters</span> [Yong Lian, 2000]. Genetic algorithm (GA) is introduced to simultaneously <span class="hlt">optimize</span> all subfilters in a cascaded connection.</p> <div class="credits"> <p class="dwt_author">Ling Cen; Yong Lian</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">391</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50043853"> <span id="translatedtitle">Low-cost waveguide <span class="hlt">filters</span> with printed-circuit inserts</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">An easy to manufacture waveguide <span class="hlt">filter</span> is presented. This type of <span class="hlt">filter</span> is based on printed-circuit-board inserts with resonator strips. The electromagnetic properties of the strips interacting with the electromagnetic field inside the waveguide are described by equivalent circuit elements. <span class="hlt">Filter</span> synthesis and computer <span class="hlt">optimization</span> is applied to design band-stop <span class="hlt">filters</span>. Finally simulated results are compared with measurements</p> <div class="credits"> <p class="dwt_author">H. Schmiedel; M. Muller; A. Anufriev</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">392</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/k58811ux100t7461.pdf"> <span id="translatedtitle"><span class="hlt">Optimization</span> of activated carbon production from empty fruit bunch fibers in one-<span class="hlt">step</span> steam pyrolysis for cadmium removal from aqueous solution</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The fast growth of the palm oil industry in Malaysia is associated with various waste products, namely the empty fruit bunches\\u000a (EFB), which have a negative impact on the environment. Therefore, these wastes were utilized as a cheap raw material for\\u000a the production of activated carbon (AC) with less energy consumption. One-<span class="hlt">step</span> steam pyrolysis was used to produce AC from</p> <div class="credits"> <p class="dwt_author">Ma’an F. Alkhatib; Suleyman A. Muyibi; Jeminat Omotayo Amode</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">393</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADP000047"> <span id="translatedtitle">Optimum Geometry of <span class="hlt">Stepped</span>-Taper Beams.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">An application of the parametric load index approach is presented which yields a general least weight formulation for <span class="hlt">stepped</span> taper beams <span class="hlt">optimized</span> for any prescribed number of <span class="hlt">stepped</span> segments. The method provides for treating all cross-sectional dimensi...</p> <div class="credits"> <p class="dwt_author">L. Spunt</p> <p class="dwt_publisher"></p> <p class="publishDate">1981-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">394</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013SPIE.8771E..0JP"> <span id="translatedtitle">Metal-dielectric photonic devices for spatial <span class="hlt">filtering</span> and image contrast enhancement</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Propagation of light through layered metamaterials consisting of a metal-dielectric stack may be described as linear spatial <span class="hlt">filtering</span>. We present the modelling and <span class="hlt">optimization</span> strategy for engineering such metamaterials, as well as the measurement results of spatial <span class="hlt">filters</span> consisting of titanium oxide and silver layers evaporated with PVD. Depending on the point spread function, the metamaterial can be applied for subdiffraction spatial <span class="hlt">filtering</span> or for classical spatial <span class="hlt">filtering</span> operations. We <span class="hlt">optimize</span> the metamaterial with respect to the shape of the complex amplitude transfer function, the average transmission coefficient and to average reflections. The shape of the point spread function can only be tailored in a limited degree, due to the limited number of the degrees of freedom contained in the structure, and only in one, planarly or radially oriented dimension. The metamaterial optimised for high-pass <span class="hlt">filtering</span> consists of several substructures, each of which is an individual cavity, and is <span class="hlt">optimized</span> by tuning the resonance order of these cavities. In this way we obtain a high transmission for a broad range of spatial frequencies. This metamaterial can be applied to modify the contrast of the object or to introduce a phase-contrast. It may be used for far-field imaging. As an example, we propose to apply it as a novel phase-<span class="hlt">step</span> visualization photonic element.</p> <div class="credits"> <p class="dwt_author">Pastuszczak, Anna; Wróbel, Piotr; Stefaniuk, Tomasz; Stolarek, Marcin; Wlaz?o, Mateusz; Koty?ski, Rafa?</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">395</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013MSSP...40..520T"> <span id="translatedtitle">The automatic selection of an <span class="hlt">optimal</span> wavelet <span class="hlt">filter</span> and its enhancement by the new sparsogram for bearing fault detection. Part 2 of the two related manuscripts that have a joint title as "Two automatic vibration-based fault diagnostic methods using the novel sparsity measurement—Parts 1 and 2"</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Rolling element bearings are the most important components used in machinery. Bearing faults, once they have developed, quickly become severe and can result in fatal breakdowns. Envelope spectrum analysis is one effective approach to detect early bearing faults through the identification of bearing fault characteristic frequencies (BFCFs). To achieve this, it is necessary to find a band-pass <span class="hlt">filter</span> to retain a resonant frequency band for the enhancement of weak bearing fault signatures. In Part 1 paper, the wavelet packet <span class="hlt">filters</span> with fixed center frequencies and bandwidths used in a sparsogram may not cover a whole bearing resonant frequency band. Besides, a bearing resonant frequency band may be split into two adjacent imperfect orthogonal frequency bands, which reduce the bearing fault features. Considering the above two reasons, a sparsity measurement based <span class="hlt">optimal</span> wavelet <span class="hlt">filter</span> is required to be designed for providing more flexible center frequency and bandwidth for covering a bearing resonant frequency band. Part 2 paper presents an automatic selection process for finding the <span class="hlt">optimal</span> complex Morlet wavelet <span class="hlt">filter</span> with the help of genetic algorithm that maximizes the sparsity measurement value. Then, the modulus of the wavelet coefficients obtained by the <span class="hlt">optimal</span> wavelet <span class="hlt">filter</span> is used to extract the envelope. Finally, a non-linear function is introduced to enhance the visual inspection ability of BFCFs. The convergence of the <span class="hlt">optimal</span> <span class="hlt">filter</span> is fastened by the center frequencies and bandwidths of the <span class="hlt">optimal</span> wavelet packet nodes established by the new sparsogram. Previous case studies including a simulated bearing fault signal and real bearing fault signals were used to show that the effectiveness of the <span class="hlt">optimal</span> wavelet <span class="hlt">filtering</span> method in detecting bearing faults. Finally, the results obtained from comparison studies are presented to verify that the proposed method is superior to the other three popular methods.</p> <div class="credits"> <p class="dwt_author">Tse, Peter W.; Wang, Dong</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-11-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">396</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/54123888"> <span id="translatedtitle">Reciprocal <span class="hlt">optimization</span> of noise and signal spectra</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Noise sources and methods of <span class="hlt">optimizing</span> reception are discussed. An optimum noise spectrum in the sense of the most efficient jamming performance is calculated for receivers which use signal-matched <span class="hlt">filtering</span> or well-known <span class="hlt">optimal</span> <span class="hlt">filtering</span> procedures against colored noise. In the case of an <span class="hlt">optimal</span> <span class="hlt">filter</span> receiver being jammed by colored noise, a favorable noise spectrum which depends on the value</p> <div class="credits"> <p class="dwt_author">H.-J. Bueckmann</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">397</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/details.jsp?query_id=0&page=0&ostiID=5159649"> <span id="translatedtitle">Ethernet <span class="hlt">filter</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">This invention is comprised of an apparatus and method that prevents access to unauthorized data in a local area network, such as Ethernet, in which information is transmitted from a transceiver to at least one workstation. Encoded data packets transmitted from the transceiver are <span class="hlt">filtered</span> by splitting the packet into two signals. One signal contains the data that was transmitted, while the other signal contains tainted data. The <span class="hlt">filter</span> determines whether a workstation is authorized to access the data, and then delivers either the tainted data to unauthorized workstations, or the data that was transmitted to authorized workstations.</p> <div class="credits"> <p class="dwt_author">Charney, E.J.; Tanzella, A.J.; Wujcik, J.G.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-11-09</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">398</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49854718"> <span id="translatedtitle">Matched <span class="hlt">filter</span> design for fingerprint image enhancement</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A procedure for <span class="hlt">filter</span> design is described for enhancing fingerprint images. Four <span class="hlt">steps</span> of this procedure are described: user specification of appropriate image features, determination of local ridge orientations throughout the image, smoothing of this orientation image, and pixel-by-pixel image enhancement by application of oriented, matched <span class="hlt">filter</span> masks. The contribution of this work is to quantify and justify the functional</p> <div class="credits"> <p class="dwt_author">L. O'Gorman; Jeffrey V. Nickerson</p> <p class="dwt_publisher"></p> <p class="publishDate">1988-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">399</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50949792"> <span id="translatedtitle">Unscented grid <span class="hlt">filtering</span> and elman recurrent networks</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper develops an unscented grid-based <span class="hlt">filter</span> for improved recurrent neural network modeling of time series. The <span class="hlt">filter</span> approximates directly the weight posterior distribution as a linear mixture using deterministic unscented sampling. The weight posterior is obtained in one <span class="hlt">step</span>, without linearisation through derivatives. An expectation maximisation algorithm is formulated for evaluation of the complete data likelihood and finding the</p> <div class="credits"> <p class="dwt_author">Nikolay Y. Nikolaev; Derrick Mirikitani; Evgueni Smirnov</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">400</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1435916"> <span id="translatedtitle">An approach to the approximation problem for nonrecursive digital <span class="hlt">filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A direct design procedure for nonrecursive digital <span class="hlt">filters</span>, based primarily on the frequency-response characteristic of the desired <span class="hlt">filters</span>, is presented. An <span class="hlt">optimization</span> technique is used to minimize the maximum deviation of the synthesized <span class="hlt">filter</span> from the ideal <span class="hlt">filter</span> over some frequence range. Using this frequency-sampling technique, a wide variety of low-pass and bandpass <span class="hlt">filters</span> have been designed, as well as</p> <div class="credits"> <p class="dwt_author">LAWRENCE R. RABINER; BERNARD GOLD; C. McGonegal</p> <p class="dwt_publisher"></p> <p class="publishDate">1970-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_19");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a style="font-weight: bold;">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_21");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_20 div --> <div id="page_21" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_20");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a style="font-weight: bold;">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_22");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">401</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://illuminations.nctm.org/LessonDetail.aspx?id=L829"> <span id="translatedtitle">Drug <span class="hlt">Filtering</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://nsdl.org/nsdl_dds/services/ddsws1-1/service_explorer.jsp">NSDL National Science Digital Library</a></p> <p class="result-summary">In this math meets health science activity, learners observe a model of exponential decay, and how kidneys <span class="hlt">filter</span> blood. Learners will calculate the amount of a drug in the body over a period of time. Then, they will make and analyze the graphical representation of this exponential function. This lesson guide includes questions for learners, assessment options, extensions, and reflection questions.</p> <div class="credits"> <p class="dwt_author">Iles, Lawrence F.</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">402</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26128997"> <span id="translatedtitle"><span class="hlt">Filtering</span> centrifuge</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Below, we propose a new automatic airtight <span class="hlt">filtering</span> centrifuge for separating suspensions containing a nonabrasive solid phase with a particle size greater than 10 #m, andwe presentthe results of atest ofanexperimental model of such a centrifuge. It is based on a slotted-type screen. The centrifuge was developed and tested under laboratory conditions and in an experimental polyethylene-syn thesis unit in</p> <div class="credits"> <p class="dwt_author">A. E. Solokhnenko; V. I. Kukushkin</p> <p class="dwt_publisher"></p> <p class="publishDate">1978-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">403</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1989PhDT........62S"> <span id="translatedtitle">Discrete-time <span class="hlt">filtering</span> of linear continuous-time processes</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Continuous-time measurements are prefiltered before sampling, to remove additive white noise. The discrete-time <span class="hlt">optimal</span> <span class="hlt">filter</span> comprises a digital algorithm which is applied to the prefiltered, sampled measurements; the algorithm is based on the discrete-time equivalent model of the overall system. For the case of an integrate-and-dump analog prefilter, a discrete-time equivalent model was developed and the corresponding <span class="hlt">optimal</span> <span class="hlt">filter</span> was found for the general case, where the continuous-time measurement and process noise signals are correlated. A commonly used approximate discrete-time model was analyzed by defining and evaluating the true-error-covariance matrix of the estimate, and comparing it with the supposed error covariance matrix. It was shown that there is a class of unstable processes for which the former error covariance matrix attains unbounded norm, in spite of the continuing bounded nature of the other error covariance matrix. The main part of the thesis concerns the problem of finding an <span class="hlt">optimal</span> prefilter. The <span class="hlt">steps</span> of obtaining the <span class="hlt">optimal</span> prefilter comprise: deriving a discrete-time equivalent-model of the overall system; finding the equation which is satisfied by the error covariance matrix; deriving the expressions which are satisfied by the first coefficients of the Maclaurin expansions of the error covariance matrix in the small parameter T; and obtaining the <span class="hlt">optimal</span> prefilter by matrix <span class="hlt">optimization</span>. The results obtained indicate that the <span class="hlt">optimal</span> prefilter may be implemented through systems of different orders; the minimum order required is discussed, which is of great practical importance as the simplest possible prefilter. In discussion of the problem of discrete-time quadratic regulation of linear continuous time processes, the case of practical interest, where a zero-order hold is part of the digital-to-analog converter, is considered. It is shown that the duality between the regulation and <span class="hlt">filtering</span> problems is not conserved after discretization when an integrate-and-dump prefilter is used. Analysis of a specific model shows that the results obtained in the regulation problem are completely different from those obtained in the <span class="hlt">filtering</span> problem.</p> <div class="credits"> <p class="dwt_author">Shats, Samuel</p> <p class="dwt_publisher"></p> <p class="publishDate">1989-06-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">404</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3186970"> <span id="translatedtitle">Pharmacokinetic/Pharmacodynamic (PK/PD) Indices of Antibiotics Predicted by a Semimechanistic PKPD Model: a <span class="hlt">Step</span> toward Model-Based Dose <span class="hlt">Optimization</span>?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">A pharmacokinetic-pharmacodynamic (PKPD) model that characterizes the full time course of in vitro time-kill curve experiments of antibacterial drugs was here evaluated in its capacity to predict the previously determined PK/PD indices. Six drugs (benzylpenicillin, cefuroxime, erythromycin, gentamicin, moxifloxacin, and vancomycin), representing a broad selection of mechanisms of action and PK and PD characteristics, were investigated. For each drug, a dose fractionation study was simulated, using a wide range of total daily doses given as intermittent doses (dosing intervals of 4, 8, 12, or 24 h) or as a constant drug exposure. The time course of the drug concentration (PK model) as well as the bacterial response to drug exposure (in vitro PKPD model) was predicted. Nonlinear least-squares regression analyses determined the PK/PD index (the maximal unbound drug concentration [fCmax]/MIC, the area under the unbound drug concentration-time curve [fAUC]/MIC, or the percentage of a 24-h time period that the unbound drug concentration exceeds the MIC [fT>MIC]) that was most predictive of the effect. The in silico predictions based on the in vitro PKPD model identified the previously determined PK/PD indices, with fT>MIC being the best predictor of the effect for ?-lactams and fAUC/MIC being the best predictor for the four remaining evaluated drugs. The selection and magnitude of the PK/PD index were, however, shown to be sensitive to differences in PK in subpopulations, uncertainty in MICs, and investigated dosing intervals. In comparison with the use of the PK/PD indices, a model-based approach, where the full time course of effect can be predicted, has a lower sensitivity to study design and allows for PK differences in subpopulations to be considered directly. This study supports the use of PKPD models built from in vitro time-kill curves in the development of <span class="hlt">optimal</span> dosing regimens for antibacterial drugs.</p> <div class="credits"> <p class="dwt_author">Nielsen, Elisabet I.; Cars, Otto; Friberg, Lena E.</p> <p class="dwt_publisher"></p> <p class="publishDate">2011-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">405</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.agu.org/journals/wr/wr0704/2006WR004942/2006WR004942.pdf"> <span id="translatedtitle"><span class="hlt">Optimization</span> of a coupled hydrology–crop growth model through the assimilation of observed soil moisture and leaf area index values using an ensemble Kalman <span class="hlt">filter</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">It is well known that the presence and development stage of vegetation largely influences the soil moisture content. In its turn, soil moisture availability is of major importance for the development of vegetation. The objective of this paper is to assess to what extent the results of a fully coupled hydrology–crop growth model can be <span class="hlt">optimized</span> through the assimilation of</p> <div class="credits"> <p class="dwt_author">Valentijn R. N. Pauwels; Niko E. C. Verhoest; Gabriëlle J. M. De Lannoy; Vincent Guissard; Cozmin Lucau; Pierre Defourny</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">406</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/26953836"> <span id="translatedtitle">Reduced-order estimation Part 1. <span class="hlt">Filtering</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper presents a method for designing an ‘optimum’ unbiased reduced-order <span class="hlt">filter</span>. For the proposed approach to work, the order of the <span class="hlt">filter</span> must be greater than a certain minimum determined by the number of independent observations of the system available. The filler is much like a Luenberger observer for the state to be estimated, but with parameters <span class="hlt">optimized</span> with</p> <div class="credits"> <p class="dwt_author">KRISHAN M. NAGPAL; RONALD E. HELMICK; CRAIG S. SIMS</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">407</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/21064241"> <span id="translatedtitle">Nonlinear <span class="hlt">Filtering</span> with Fractional Brownian Motion</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Our objective is to study a nonlinear <span class="hlt">filtering</span> problem for the observation process perturbed by a Fractional Brownian Motion (FBM) with Hurst index 1/2 <H<1 . A reproducing kernel Hilbert space for the FBM is considered and a 'fractional' Zakai equation for the unnormalized <span class="hlt">optimal</span> <span class="hlt">filter</span> is derived.</p> <div class="credits"> <p class="dwt_author">Amirdjanova, A. [Department of Statistics, University of Michigan, Ann Arbor, MI 48109-1092 (United States)</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-12-19</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">408</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/49993183"> <span id="translatedtitle">Efficient speckle <span class="hlt">filtering</span> of SAR images</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A new promising method of speckle <span class="hlt">filtering</span> is described and applied to both, synthetically generated and real SAR-images. The new method, which the authors call EPOS (Edge Preserving <span class="hlt">Optimized</span> Speckle-<span class="hlt">filter</span>), is based upon the statistical properties of speckle noise. The knowledge of speckle variance allows the distinction of homogeneous areas from those, containing edges or single scattering targets. This discrimination</p> <div class="credits"> <p class="dwt_author">Wilhelm Hagg; Manfred Sties</p> <p class="dwt_publisher"></p> <p class="publishDate">1994-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">409</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/19569400"> <span id="translatedtitle">Direct construction of phase-only <span class="hlt">filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A new direct construction of phase-only <span class="hlt">filters</span> which have application for threshold optical correlation detectors is proposed. Simulations performed using 21 M48 model tank images and 21 M113 model armored peronnel carrier images illustrate the powerfulness of the method. It is found that the resulting <span class="hlt">filters</span> and their <span class="hlt">optimized</span> binarizations can be designed to contain a great deal of information</p> <div class="credits"> <p class="dwt_author">Robert R. Kallman</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">410</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/350179"> <span id="translatedtitle">Wavelet domain <span class="hlt">filtering</span> for nuclear medicine imaging</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The authors propose a new <span class="hlt">filtering</span>\\/estimation method for nuclear medicine imaging. The statistical method of cross-validation is used to design <span class="hlt">optimal</span> wavelet domain <span class="hlt">filters</span> for improved image estimation. The quality of the resulting images is much better than standard image estimates, in both visual and mean square error senses. Moreover, experiments have shown that, using the new estimate, one can</p> <div class="credits"> <p class="dwt_author">Robert D. Nowak; David J. Nowak; R. G. Baraniuk; Robert S. Hellman</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">411</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2005SPIE.5672..358M"> <span id="translatedtitle">Nonlinear matched <span class="hlt">filtering</span> for point source detection</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">The task of object detection depends on the ability to suppress the noise present in images in order to increase the signal-to-noise ratio. The standard linear matched <span class="hlt">filter</span> is the <span class="hlt">optimal</span> <span class="hlt">filter</span> on the assumption of the Gaussian distribution of the signal and the noise. However, as a rule the distribution of the signal in image processing is not Gaussian. The linear matched <span class="hlt">filter</span> becomes sub-<span class="hlt">optimal</span>. Any non-Gaussian distribution function can be closely approximated using the Gaussian Mixture Model (GMM). We use GMM to approximate the signal distribution function and derive the <span class="hlt">optimal</span> <span class="hlt">filter</span> by means of mean square error (MSE) minimization. The <span class="hlt">optimal</span> non-linear <span class="hlt">filter</span> is determined by the assumed signal distribution function. We use non-linear matched <span class="hlt">filtering</span> for point source detection in astronomical images. We derive the GMM components by fitting the theoretical point source distribution function. The <span class="hlt">filtered</span> images are subjected to image segmentation and subsequent point source detection. The non-linear matched <span class="hlt">filtering</span> has been tested with simulated data and has been shown to significantly improve the quality of point source detection. Receiver operating characteristic technique has been used to evaluate performance of various Gaussian mixtures for point source detection. This algorithm is currently used for the Spitzer Spatial Telescope.</p> <div class="credits"> <p class="dwt_author">Makovoz, David</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">412</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=N7332537"> <span id="translatedtitle">Properties of Multilayer <span class="hlt">Filters</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">New methods were investigated of using optical interference coatings to produce bandpass <span class="hlt">filters</span> for the spectral region 110 nm to 200 nm. The types of <span class="hlt">filter</span> are: triple cavity metal dielectric <span class="hlt">filters</span>; all dielectric reflection <span class="hlt">filters</span>; and all dielectr...</p> <div class="credits"> <p class="dwt_author">P. W. Baumeister</p> <p class="dwt_publisher"></p> <p class="publishDate">1973-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">413</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/973849"> <span id="translatedtitle">Plasmonic <span class="hlt">filters</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Metal films perforated with subwavelength hole arrays have been show to demonstrate an effect known as Extraordinary Transmission (EOT). In EOT devices, optical transmission passbands arise that can have up to 90% transmission and a bandwidth that is only a few percent of the designed center wavelength. By placing a tunable dielectric in proximity to the EOT mesh, one can tune the center frequency of the passband. We have demonstrated over 1 micron of passive tuning in structures designed for an 11 micron center wavelength. If a suitable midwave (3-5 micron) tunable dielectric (perhaps BaTiO{sub 3}) were integrated with an EOT mesh designed for midwave operation, it is possible that a fast, voltage tunable, low temperature <span class="hlt">filter</span> solution could be demonstrated with a several hundred nanometer passband. Such an element could, for example, replace certain components in a <span class="hlt">filter</span> wheel solution.</p> <div class="credits"> <p class="dwt_author">Passmore, Brandon Scott; Shaner, Eric Arthur; Barrick, Todd A.</p> <p class="dwt_publisher"></p> <p class="publishDate">2009-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">414</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://patft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.htm&r=1&p=1&f=G&l=50&d=PTXT&S1=%22Pulmonary+artery+thromboembolism%22&OS=%22Pulmonary+artery+thromboembolism%22&RS=%22Pulmonary+artery+thromboembolism%22"> <span id="translatedtitle">Vein <span class="hlt">filter</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://patft.uspto.gov/netahtml/PTO/search-adv.htm">US Patent & Trademark Office Database</a></p> <p class="result-summary">A vein <span class="hlt">filter</span> having improved collectability of chyme blood or thrombi and stability of indwelling. The <span class="hlt">filter</span> includes at least 3 wires radially spreading backward of a head member and connected such that the intervals between any adjacent two wires are connected with threads of an equal length at a substantially equal distance from the head member. At respective connection parts where the threads are connected to the wires, hook parts to be hooked on the inner wall of a blood vessel are provided. The head member is on the apex of a shaft extending back and the rear end of each wire is connected to a slide member slidable along the shaft. The wires are preferably made of shape memory alloy or stainless spring steel.</p> <div class="credits"> <p class="dwt_author">Okada; Masayosi (Osaka, JP)</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-05-06</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">415</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1987spin.rept...68."> <span id="translatedtitle">Eyeglass <span class="hlt">Filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Biomedical Optical Company of America's suntiger lenses eliminate more than 99% of harmful light wavelengths. NASA derived lenses make scenes more vivid in color and also increase the wearer's visual acuity. Distant objects, even on hazy days, appear crisp and clear; mountains seem closer, glare is greatly reduced, clouds stand out. Daytime use protects the retina from bleaching in bright light, thus improving night vision. <span class="hlt">Filtering</span> helps prevent a variety of eye disorders, in particular cataracts and age related macular degeneration.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">1987-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">416</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1638041"> <span id="translatedtitle">Theory and design of signal-adapted FIR paraunitary <span class="hlt">filter</span> banks</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We study the design of signal-adapted FIR paraunitary <span class="hlt">filter</span> banks, using energy compaction as the adaptation criterion. We present some important properties that globally <span class="hlt">optimal</span> solutions to this <span class="hlt">optimization</span> problem satisfy. In particular, we show that the <span class="hlt">optimal</span> <span class="hlt">filters</span> in the first channel of the <span class="hlt">filter</span> bank are spectral factors of the solution to a linear semi-infinite programming (SIP) problem.</p> <div class="credits"> <p class="dwt_author">Pierre Moulin; M. Kivanc Mihcak</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">417</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/18814877"> <span id="translatedtitle"><span class="hlt">Optimization</span> of the single-<span class="hlt">step</span> synthesis of hybrid C(8) silica monoliths dedicated to nano-liquid chromatography and capillary electrochromatography.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Hybrid silica monoliths functionalized with octyl groups and dedicated to chromatographic separations in the reversed-phase mode were directly synthesized within capillaries according to the protocol described by Yan et al. [L.J. Yan, Q.H. Zhang, Y.Q. Feng, W.B. Zhang, T. Li, L.H. Zhang, Y.K. Zhang, J. Chromatogr. A 1121 (2006) 92]. Although these monoliths allowed reaching high efficiencies in capillary electrochromatography (CEC), serious limitations prohibited their application in nano-liquid chromatography (nano-LC). Such limitations observed as poor performances in the nano-LC mode and the lack of reproducibility of the synthesis were related to the longitudinal morphological inhomogeneities of the hybrid material along the capillary. Thus, several modifications were conducted in the synthesis protocol in order to improve the resulting morphology of the monolith making it suitable for nano-LC separations. The influence of several critical parameters (such as the addition temperature of the basic catalyst and the hydrolysis duration) on the textural and chromatographic properties had been extensively studied. It was found that a decrease (i.e. 0 degrees C) of the temperature addition of the basic catalyst associated with a shorter hydrolysis duration (1h instead of 6h) allowed (i) delaying the gelation time and consequently facilitating the capillary filling <span class="hlt">step</span>, (ii) increasing the structural homogeneity of the hybrid monoliths, i.e. their chromatographic performances in nano-liquid chromatography also (iii) greatly improving the reproducibility of the synthesis within the capillary without impairing the material's carbon load, i.e. the incorporation of the less hydrolysable C(8) precursor. The resulting hybrid monoliths afforded retention factors comparable to that previously obtained for C(18) grafted silica monoliths and efficiencies that are the best ever recorded in nano-LC with hybrid monoliths and that are close to the ones achieved with grafted silica monoliths. In fact, this modified protocol allowed a significant improvement of the performances in nano-LC which could be observed by the decrease of the mean value of H(min) going from 123 microm (Yan's protocol) to 24 microm (modified protocol) for a same length of capillary (l = 8.5 cm). In addition, the reproducibility of the synthesis was greatly improved through a factor six of reduction on the calculated standard deviation of these efficiencies. The high permeability and longitudinal homogeneity of the synthesized monolith allowed increasing the capillary length (for example, a 75-cm capillary was conveniently filled with hybrid silica monolith) and the column could be eluted at a very low backpressure leading to chromatographic performances up to 40,000 plates. Finally, the good efficiencies in the nano-LC mode combined with the excellent performances already present in the CEC mode led to fast (less than 1 min) and high efficient separations in the pressurized capillary electrochromatography (p-CEC) mode. PMID:18814877</p> <div class="credits"> <p class="dwt_author">Roux, R; Jaoudé, M Abi; Demesmay, C; Rocca, J-L</p> <p class="dwt_publisher"></p> <p class="publishDate">2008-09-10</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">418</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.mathematics.pitt.edu/documents/ntrelax_r7.pdf"> <span id="translatedtitle">NUMERICAL ANALYSIS OF <span class="hlt">FILTER</span> BASED STABILIZATION FOR EVOLUTION EQUATIONS</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We consider <span class="hlt">filter</span> based stabilization for evolution equations (in general) and for the Navier-Stokes equations (in particular). The first method we consider is to advance in time one time <span class="hlt">step</span> by a given method and then to apply an (uncoupled and modular) <span class="hlt">filter</span> to get the approximation at the new time level. This <span class="hlt">filter</span> based stabilization, although algorithmically appealing, is</p> <div class="credits"> <p class="dwt_author">VINCENT J. ERVIN; WILLIAM J. LAYTONy; MONIKA NEDAz</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">419</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50258641"> <span id="translatedtitle">Integration of pass-band <span class="hlt">filters</span> in patch antennas</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this paper, we present the possibility to insert pass-band <span class="hlt">filters</span> directly in a patch antenna in order to reduce the size of microwave front ends and to master the bandwidth of the antenna. In a first <span class="hlt">step</span>, commercial <span class="hlt">filters</span> are used and mounted on the antenna. Then, we propose to develop miniaturized integrated <span class="hlt">filters</span> which can be directly integrated</p> <div class="credits"> <p class="dwt_author">F. Queudet; I. Pele; B. Froppier; Y. Mahe; S. Toutain</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">420</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://enkf.nersc.no/Publications/hou01a.pdf"> <span id="translatedtitle">A Sequential Ensemble Kalman <span class="hlt">Filter</span> for Atmospheric Data Assimilation</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">An ensemble Kalman <span class="hlt">filter</span> may be considered for the 4D assimilation of atmospheric data. In this paper, an efficient implementation of the analysis <span class="hlt">step</span> of the <span class="hlt">filter</span> is proposed. It employs a Schur (elementwise) product of the covariances of the background error calculated from the ensemble and a correlation function having local support to <span class="hlt">filter</span> the small (and noisy) background-error</p> <div class="credits"> <p class="dwt_author">P. L. Houtekamer; Herschel L. Mitchell</p> <p class="dwt_publisher"></p> <p class="publishDate">2001-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_20");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a style="font-weight: bold;">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_22");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_21 div --> <div id="page_22" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_21");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a style="font-weight: bold;">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_23");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">421</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1991wrsu.rept.....S"> <span id="translatedtitle">New algorithms for broad-band and narrowband source localization and a separable 2-D IIR <span class="hlt">filter</span> realization</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary"><span class="hlt">Optimal</span> Design of ARMA (IIR) <span class="hlt">filters</span> with arbitrary number of poles and zeros from Impulse Response Data has been developed. The general criterion derived in this report has never been found before. <span class="hlt">Optimal</span> synthesis of two dimensional IIR <span class="hlt">filters</span> using one dimensional modules have been developed. <span class="hlt">Optimal</span> design of a class of two dimensional IIR <span class="hlt">filters</span> from spatial domain data has been developed. <span class="hlt">Optimal</span> identification of Multivariable systems from Impulse response data is given. A Periodogram-based Maximum Likelihood estimator of Narrowband frequencies requiring only off the shelf hardware/software has been developed. A faster Simulated-Annealing method has been developed and applied to frequency estimation. A coherent one-<span class="hlt">step</span> angles of arrival estimator of multiple broadband sources has been developed. Existing coherent techniques can not localize well separated sources in one <span class="hlt">step</span>. An Order-Recursive approach has been given for AR-Bispectrum estimation. A Time-Delay-Neural Network has been trained with LPC coefficients for Phoneme/Vowel recognition. Parametric Non-linear prediction algorithms have been introduced for the first time for speech prediction/synthesis/coding.</p> <div class="credits"> <p class="dwt_author">Shaw, Arnab K.</p> <p class="dwt_publisher"></p> <p class="publishDate">1991-09-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">422</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/5435729"> <span id="translatedtitle">Method for producing a <span class="hlt">filter</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A method, for producing a <span class="hlt">filter</span> having partially different apparent densities, comprises the <span class="hlt">steps</span> assembling at least two kinds of foamed bodies having different cell densities, which are formed of an organic compound such as urethane, into a three dimensional structure. The obtained composite body immersed into a slurry composed of ceramic such as cordierite so that the slurry is attached to the surface of the composite body, which is fired to burn off the foamed bodies. By selecting the portion to be formed into high density, mechanical strength and exhaust gas purifying efficiency of the <span class="hlt">filter</span> can be improved.</p> <div class="credits"> <p class="dwt_author">Tomita, M.; Wakayama, M.</p> <p class="dwt_publisher"></p> <p class="publishDate">1983-08-02</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">423</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/220576"> <span id="translatedtitle">Ceramic <span class="hlt">filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary"><span class="hlt">Filters</span> were formed from ceramic fibers, organic fibers, and a ceramic bond phase using a papermaking technique. The distribution of particulate ceramic bond phase was determined using a model silicon carbide system. As the ceramic fiber increased in length and diameter the distance between particles decreased. The calculated number of particles per area showed good agreement with the observed value. After firing, the papers were characterized using a biaxial load test. The strength of papers was proportional to the amount of bond phase included in the paper. All samples exhibited strain-tolerant behavior.</p> <div class="credits"> <p class="dwt_author">Holmes, B.L.; Janney, M.A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1995-12-31</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">424</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50567778"> <span id="translatedtitle">A 40GHz MMIC SPDT Bandpass <span class="hlt">Filter</span> Integrated Switch</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary"><span class="hlt">Stepped</span>-impedance resonators (SIR) with HEMTs loaded at one end are used to develop a 40 GHz MMIC SPDT <span class="hlt">filter</span> integrated switch. The HEMTs are used to switch the resonant frequencies of the loaded <span class="hlt">stepped</span>-impedance resonators. At on-state, the resonators resonate at the same center frequency to pass the RF signal. With the coupled-resonator <span class="hlt">filter</span> theory, the <span class="hlt">filter</span> response could be</p> <div class="credits"> <p class="dwt_author">Shih-Fong Chao; Che-Chung Kuo; Zou-Min Tsai</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">425</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADA323660"> <span id="translatedtitle">Optimum Low Cost Two Channel IIR Orthonormal <span class="hlt">Filter</span> Bank.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">In this paper, we statistically <span class="hlt">optimize</span> a well known class of IIR two channel orthonormal <span class="hlt">filter</span> banks parameterized by a single coefficient when subband quantizers are present. The <span class="hlt">optimization</span> procedure is extremely simple and very fast compared for ex...</p> <div class="credits"> <p class="dwt_author">J. Tuqan P. P. Vaidyanathan</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">426</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1585253"> <span id="translatedtitle">An analytical formula for the design of quadrature mirror <span class="hlt">filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Quadrature mirror <span class="hlt">filters</span> have an outstanding relevance in the implementation of <span class="hlt">filter</span> banks for dividing the speech signal into frequency bands and for reconstructing it from these subbands. An analytical formula is given, which allows one to <span class="hlt">optimize</span> the design of the basic low-pass FIR <span class="hlt">filter</span> by means of a straight nonlinear minimization procedure.</p> <div class="credits"> <p class="dwt_author">GIANCARLO PIRANI; VALERIO ZINGARELLI</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">427</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/15839350"> <span id="translatedtitle">2-<span class="hlt">Step</span> IMAT and 2-<span class="hlt">Step</span> IMRT: a geometrical approach.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The purpose of this paper is to develop a method that reduces the number of segments for intensity modulated arc therapy (IMAT) and intensity modulated radiotherapy (IMRT) for concave target volumes (TV). The aim was to utilize no more than two intensity levels per organ at risk (OAR) and to derive both <span class="hlt">optimal</span> segment widths and weights from geometric considerations. Brahme's model of an annular target surrounding a circular OAR was used as test model. Brahme's solution was substituted by a single segment added to a simple field blocking the OAR. Width and weight of the segment were the free parameters to <span class="hlt">optimize</span>. The objective function to minimize was the root mean square (rms) error of the dose in the target volume. One boundary condition was--neglecting scatter--"zero-dose" to the OAR. The resulting rules for width and weight of the additive segment are referred to as "<span class="hlt">optimized</span> 2-<span class="hlt">Step</span> IMAT" and "2-<span class="hlt">Step</span> IMRT." The recommendations were applied to some simplified plans representing clinical cases using a commercial planning system. <span class="hlt">Optimized</span> 2-<span class="hlt">Step</span> IMAT improved the rms by a factor of 4 with respect to techniques simply blocking the OAR. The additional segment reduced the rms below 3% for cases with gaps between OAR and TV larger than 8% of the TV diameter. The results for 2-<span class="hlt">Step</span> IMAT are applicable to IMRT and aperture modulated arc therapy (AMAT). 2-<span class="hlt">Step</span> IMAT can be utilized for noncylindrical cases and for more than one OAR. A geometrical and topological approach to IMAT and IMRT can be useful to understand fluence profiles. The results could be applied to ameliorate other topology-based procedures used in some planning systems. Basic mechanisms of 2-<span class="hlt">Step</span> IMAT can assist with the creation of rules for adaptive IMRT to compensate for patient motion. PMID:15839350</p> <div class="credits"> <p class="dwt_author">Bratengeier, Klaus</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-03-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">428</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013JKPS...62.1330C"> <span id="translatedtitle">Analytic study on the effects of the number of MLC segments and the least segment area on <span class="hlt">step</span>-and-shoot head-and-neck IMRT planning using direct machine parameter <span class="hlt">optimization</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">In this study, we present the concurrent effects of the number of segments (NS) and the least segment area (LSA) for <span class="hlt">step</span>-and-shoot head-and-neck intensity-modulated radiation therapy (IMRT) planning using the direct machine parameter <span class="hlt">optimization</span> (DMPO), on which basis we suggest the <span class="hlt">optimal</span> NS and LSA ranges. We selected three head-and-neck patients who had received IMRT via the simultaneous integrated boost (SIB) technique and classified them as easy, intermediate, and difficult cases. We formulated a benchmark plan and made 11 additional plans by re-<span class="hlt">optimizing</span> the benchmark by varying the NS and the LSA for each case. Clinical and physical plan-quality evaluation parameters were considered separately: the conformality index (CI), the homogeneity index (HI) and the maximum or mean doses for the organs-at-risk were the clinical factors, and these were summarized as plan-quality parameter, Q. The modulation index (MI), the total monitor units (MUs), and the final composite cost function F were employed as parameters in the evaluation of the physical aspects. A 2-way analysis of variance (2-way ANOVA) was used to determine the effects of the NS and the LSA concurrently. Pearson's correlations among the total MU, MI, F, and Q were examined as well. Overall plan-efficiency factor ? was defined to estimate the <span class="hlt">optimal</span> NS and LSA by considering the plan's quality and the beam delivery efficiency together. Plans with simple targets or a small number of beams (NB) were affected by the LSA whereas plans with complex targets or large NB were affected by the NS. Moreover, smaller NS and smaller LSA were advantageous for simple plans whereas larger NS and smaller LSA were beneficial for complex plans. When we consider the plan's quality and the beam delivery efficiency, {NS = 60-80, LSA = 8-12 cm2} are the proper ranges for head-and-neck IMRT planning with DMPO; however, the combination may differ based on the complexity of a given plan.</p> <div class="credits"> <p class="dwt_author">Cheong, Kwang-Ho; Kang, Sei-Kwon; Lee, MeYeon; Kim, Haeyoung; Bae, Hoonsik; Park, SoAh; Hwang, Taejin; Kim, KyoungJu; Han, Taejin</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-05-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">429</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/50991653"> <span id="translatedtitle">A wave <span class="hlt">filtering</span> based electric load curve decomposition method for AGC</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper proposes a wave <span class="hlt">filtering</span> based electric load curve decomposition method for automatic generation control (AGC). A two-<span class="hlt">step</span> scheme is used for the load curve decomposition to get three different components which are characterized by different frequencies. Butterworth low-pass <span class="hlt">filtering</span> algorithm (BLFA) is used in both <span class="hlt">steps</span>. In this <span class="hlt">filter</span> algorithm, the framework of infinite impulse response (IIR) is</p> <div class="credits"> <p class="dwt_author">Wei Shen; Wenchuan Wu; Hongbin Sun; Boming Zhang; Mu Jiang</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">430</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/60793639"> <span id="translatedtitle">Cordierite silicon nitride <span class="hlt">filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The objective of this project was to develop a silicon nitride based crossflow <span class="hlt">filter</span>. This report summarizes the findings and results of the project. The project was phased with Phase I consisting of <span class="hlt">filter</span> material development and crossflow <span class="hlt">filter</span> design. Phase II involved <span class="hlt">filter</span> manufacturing, <span class="hlt">filter</span> testing under simulated conditions and reporting the results. In Phase I, Cordierite Silicon Nitride</p> <div class="credits"> <p class="dwt_author">J. Sawyer; B. Buchan; R. Duiven; M. Berger; J. Cleveland; J. Ferri</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">431</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/331747"> <span id="translatedtitle">Improved Wavelet Denoising via Empirical Wiener <span class="hlt">Filtering</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Wavelet shrinkage is a signal estimation technique that exploits the remarkable abilities of the wavelet transformfor signal compression. Wavelet shrinkage using thresholding is asymptotically <span class="hlt">optimal</span> in a minimax mean-squareerror (MSE) sense over a variety of smoothness spaces. However, for any given signal, the MSE-<span class="hlt">optimal</span> processingis achieved by the Wiener <span class="hlt">filter</span>, which delivers substantially improved performance. In this paper, we develop</p> <div class="credits"> <p class="dwt_author">Sandeep P. Ghael; Akbar M. Sayeed</p> <p class="dwt_publisher"></p> <p class="publishDate">1997-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">432</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3637832"> <span id="translatedtitle">Adaptive <span class="hlt">filtering</span> of microarray gene expression data based on Gaussian mixture decomposition</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p class="result-summary">Background DNA microarrays are used for discovery of genes expressed differentially between various biological conditions. In microarray experiments the number of analyzed samples is often much lower than the number of genes (probe sets) which leads to many false discoveries. Multiple testing correction methods control the number of false discoveries but decrease the sensitivity of discovering differentially expressed genes. Concerning this problem, <span class="hlt">filtering</span> methods for improving the power of detection of differentially expressed genes were proposed in earlier papers. These techniques are two-<span class="hlt">step</span> procedures, where in the first <span class="hlt">step</span> some pool of non-informative genes is removed and in the second <span class="hlt">step</span> only the pool of the retained genes is used for searching for differentially expressed genes. Results A very important parameter to choose is the proportion between the sizes of the pools of removed and retained genes. A new method, which we propose, allow to determine close to <span class="hlt">optimal</span> threshold values for sample means and sample variances for gene <span class="hlt">filtering</span>. The method is adaptive and based on the decomposition of the histogram of gene expression means or variances into mixture of Gaussian components. Conclusions By performing analyses of several publicly available datasets and simulated datasets we demonstrate that our adaptive method increases sensitivity of finding differentially expressed genes compared to previous methods of <span class="hlt">filtering</span> microarray data based on using fixed threshold values.</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2013-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">433</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/details.jsp?query_id=0&page=0&ostiID=6866284"> <span id="translatedtitle">Optical ranked-order <span class="hlt">filtering</span> using threshold decomposition</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">A hybrid optical/electronic system performs median <span class="hlt">filtering</span> and related ranked-order operations using threshold decomposition to encode the image. Threshold decomposition transforms the nonlinear neighborhood ranking operation into a linear space-invariant <span class="hlt">filtering</span> <span class="hlt">step</span> followed by a point-to-point threshold comparison <span class="hlt">step</span>. Spatial multiplexing allows parallel processing of all the threshold components as well as recombination by a second linear, space-invariant <span class="hlt">filtering</span> <span class="hlt">step</span>. An incoherent optical correlation system performs the linear <span class="hlt">filtering</span>, using a magneto-optic spatial light modulator as the input device and a computer-generated hologram in the <span class="hlt">filter</span> plane. Thresholding is done electronically. By adjusting the value of the threshold, the same architecture is used to perform median, minimum, and maximum <span class="hlt">filtering</span> of images. A totally optical system is also disclosed. 3 figs.</p> <div class="credits"> <p class="dwt_author">Allebach, J.P.; Ochoa, E.; Sweeney, D.W.</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-10-09</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">434</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/867499"> <span id="translatedtitle">Optical ranked-order <span class="hlt">filtering</span> using threshold decomposition</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">A hybrid optical/electronic system performs median <span class="hlt">filtering</span> and related ranked-order operations using threshold decomposition to encode the image. Threshold decomposition transforms the nonlinear neighborhood ranking operation into a linear space-invariant <span class="hlt">filtering</span> <span class="hlt">step</span> followed by a point-to-point threshold comparison <span class="hlt">step</span>. Spatial multiplexing allows parallel processing of all the threshold components as well as recombination by a second linear, space-invariant <span class="hlt">filtering</span> <span class="hlt">step</span>. An incoherent optical correlation system performs the linear <span class="hlt">filtering</span>, using a magneto-optic spatial light modulator as the input device and a computer-generated hologram in the <span class="hlt">filter</span> plane. Thresholding is done electronically. By adjusting the value of the threshold, the same architecture is used to perform median, minimum, and maximum <span class="hlt">filtering</span> of images. A totally optical system is also disclosed.</p> <div class="credits"> <p class="dwt_author">Allebach, Jan P. (West Lafayette, IN); Ochoa, Ellen (Pleasanton, CA); Sweeney, Donald W. (Alamo, CA)</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">435</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/6377465"> <span id="translatedtitle">Optical ranked-order <span class="hlt">filtering</span> using threshold decomposition</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">This patent describes a hybrid optical/electronic system. It performs median <span class="hlt">filtering</span> and related ranked-order operations using threshold decomposition to encode the image. Threshold decomposition transforms the nonlinear neighborhood ranking operation into a linear space-invariant <span class="hlt">filtering</span> <span class="hlt">step</span> followed by a point-to-point threshold comparison <span class="hlt">step</span>. Spatial multiplexing allows parallel processing of all the threshold components as well as recombination by a second linear, space-invariant <span class="hlt">filtering</span> <span class="hlt">step</span>. An incoherent optical correlation system performs the linear <span class="hlt">filtering</span>, using a magneto-optic spatial light modulator as the input device and a computer-generated hologram in the <span class="hlt">filter</span> plane. Thresholding is done electronically. By adjusting the value of the threshold, the same architecture is used to perform median, minimum, and maximum <span class="hlt">filtering</span> of images. A totally optical system is also disclosed.</p> <div class="credits"> <p class="dwt_author">Allebach, J.P.; Ochoa, E.; Sweeney, D.W.</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-08-14</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">436</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.irisa.fr/aspi/legland/pub/legland04a.pdf"> <span id="translatedtitle">STABILITY AND UNIFORM APPROXIMATION OF NONLINEAR <span class="hlt">FILTERS</span> USING THE HILBERT METRIC AND APPLICATION TO PARTICLE <span class="hlt">FILTERS</span>1</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We study the stability of the <span class="hlt">optimal</span> <span class="hlt">filter</span> w.r.t. its initial condition and w.r.t. the model for the hidden state and the observations in a general hidden Markov model, using the Hilbert projective metric. These stability results are then used to prove, under some mixing assumption, the uniform convergence to the <span class="hlt">optimal</span> <span class="hlt">filter</span> of several particle <span class="hlt">filters</span>, such as the</p> <div class="credits"> <p class="dwt_author">FRANÇOIS LE GLAND; NADIA OUDJANE</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">437</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.fda.gov/food/guidanceregulation/importsexports/importing/ucm075108.htm"> <span id="translatedtitle">PNSI Wizards: <span class="hlt">Step-by-Step</span> Instructions</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://google2.fda.gov/search?client=FDAgov&site=FDAgov&lr=&proxystylesheet=FDAgov&output=xml_no_dtd&&proxycustom=%3CADVANCED/%3E">Center for Food Safety and Applied Nutrition (CFSAN)</a></p> <p class="result-summary"><span class="hlt">Step-by-Step</span> Instructions for submitting Prior Notice for Food Articles using FDA's PNSI (Prior Notice System Interface) Version 1.9. More results from www.fda.gov/food/guidanceregulation/importsexports</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">438</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2003SPIE.5094...73B"> <span id="translatedtitle">A nonlinear connectionist approach to performance enhancement of correlation <span class="hlt">filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Correlation-based <span class="hlt">filters</span> (e.g MACE, MACH) have been widely employed for automatic target acquisition. In general, a bank of <span class="hlt">filters</span> is developed wherein each <span class="hlt">filter</span> is trained to respond to a particular range of conditions (such as aspect angle). Individual <span class="hlt">filter</span> outputs are utilized to determine a best match between objects in a scene and the training information. However, it is not uncommon for discrete clutter objects to correlate well with an individual <span class="hlt">filter</span>, resulting in an unacceptable false alarm rate (FAR). It is the authors" hypothesis that although a clutter event may correlate well with an individual <span class="hlt">filter</span>, there are discernable differences in the way clutter and targets correlate across the bank of <span class="hlt">filters</span>. In this paper, the authors investigate a connectionist based approach that combines the individual <span class="hlt">filter</span> outputs in a non-linear manner for improved performance. Particular attention is given to designing the correlation <span class="hlt">filter</span> constraints in conjunction with the combination approach to <span class="hlt">optimize</span> performance.</p> <div class="credits"> <p class="dwt_author">Brucks, Timothy; Riddle, Jack G.; VanMaasdam, Peter J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2003-09-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">439</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/51023277"> <span id="translatedtitle">Microstrip dual-band band pass <span class="hlt">filter</span> using hairpin resonator and microstrip tapped feed line</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A new miniaturized microstrip <span class="hlt">filter</span> using 3 <span class="hlt">stepped</span> impedance resonators and micro strip tapped feed line is designed for dual band applications at the frequencies 2.5 and 6 GHz . The microstrip line is loaded with <span class="hlt">stepped</span> impedance hairpin resonators through coupling lines. To construct band pass <span class="hlt">filter</span> parallel and series resonance characteristics of <span class="hlt">stepped</span> impedance hairpin resonator is utilized.</p> <div class="credits"> <p class="dwt_author">K. Vidhya; T. Jayanthy</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">440</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1420878"> <span id="translatedtitle">Sequential connection and phase control of a high-current rectifier <span class="hlt">optimized</span> for copper electrowinning applications</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper proposes an <span class="hlt">optimized</span> sequential control technique for copper electrowinning high-current rectifiers. The converter comprises two series-connected six-pulse double-wye rectifiers, a <span class="hlt">step</span>-down transformer, and a tuned input <span class="hlt">filter</span>. The six-pulse rectifiers are fed from delta and polygon primary windings with different turns ratio and phase shifted by 5°. Under the proposed control scheme, one rectifier is kept at nominal</p> <div class="credits"> <p class="dwt_author">Eduardo P. Wiechmann; Rolando P. Burgos; Joachim Holtz</p> <p class="dwt_publisher"></p> <p class="publishDate">2000-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_21");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a style="font-weight: bold;">22</a> <a onClick='return showDiv("page_23");' href="#">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_23");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_22 div --> <div id="page_23" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_22");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a style="font-weight: bold;">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_24");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">441</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1577970"> <span id="translatedtitle"><span class="hlt">Step</span> motor control for maximum torque</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">The relationship between the switching angle and the output torque of a <span class="hlt">step</span> motor is derived, and the <span class="hlt">optimal</span> angle, which maximized the output torque, is found. The resulting maximum torque, which varies with the velocity, is an upper limit for the torque that can be generated by the <span class="hlt">step</span> motor.</p> <div class="credits"> <p class="dwt_author">J. Tal</p> <p class="dwt_publisher"></p> <p class="publishDate">1976-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">442</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2008ITEIS.128..462T"> <span id="translatedtitle">Optimum Design of Balanced SAW <span class="hlt">Filters</span> Using Differential Evolution</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">An optimum design technique of balanced surface acoustic wave (SAW) <span class="hlt">filters</span> using a differential evolution (DE) is proposed. First of all, in order to evaluate the performance of balanced SAW <span class="hlt">filters</span> based on the computer simulation, a network model of them is composed by using mixed-mode S-parameters. Then the structural design of balanced SAW <span class="hlt">filters</span> is formulated as a function <span class="hlt">optimization</span> problem for improving their performance in both the balance characteristics and the <span class="hlt">filter</span> characteristics. For solving the function <span class="hlt">optimization</span> problem, a basic DE is employed. In order to apply the basic DE to the <span class="hlt">optimization</span> problem effectively, a distorted problem space defined by various design parameters is embedded in a regularized continuous search space. Finally, through the computational experiments conducted on a balanced SAW <span class="hlt">filter</span>, the usefulness of the proposed optimum design technique is demonstrated. Besides, it is clarified that the non-symmetric structure of SAW <span class="hlt">filter</span> has a possibility to improve its balance characteristics.</p> <div class="credits"> <p class="dwt_author">Tagawa, Kiyoharu</p> <p class="dwt_publisher"></p> <p class="publishDate"></p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">443</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/servlets/purl/922835"> <span id="translatedtitle">A <span class="hlt">Filtering</span> Method For Gravitationally Stratified Flows</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Gravity waves arise in gravitationally stratified compressible flows at low Mach and Froude numbers. These waves can have a negligible influence on the overall dynamics of the fluid but, for numerical methods where the acoustic waves are treated implicitly, they impose a significant restriction on the time <span class="hlt">step</span>. A way to alleviate this restriction is to <span class="hlt">filter</span> out the modes corresponding to the fastest gravity waves so that a larger time <span class="hlt">step</span> can be used. This paper presents a <span class="hlt">filtering</span> strategy of the fully compressible equations based on normal mode analysis that is used throughout the simulation to compute the fast dynamics and that is able to damp only fast gravity modes.</p> <div class="credits"> <p class="dwt_author">Gatti-Bono, Caroline; Colella, Phillip</p> <p class="dwt_publisher"></p> <p class="publishDate">2005-04-25</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">444</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/13994990"> <span id="translatedtitle">Guided Image <span class="hlt">Filtering</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In this paper, we propose a novel type of explicit image fil- ter - guided <span class="hlt">filter</span>. Derived from a local linear model, the guided <span class="hlt">filter</span> generates the <span class="hlt">filtering</span> output by considering the content of a guidance image, which can be the input image itself or another different image. The guided <span class="hlt">filter</span> can perform as an edge-preserving smoothing opera- tor like</p> <div class="credits"> <p class="dwt_author">Kaiming He; Jian Sun; Xiaoou Tang</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">445</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.springerlink.com/index/u3706w6v1835243m.pdf"> <span id="translatedtitle"><span class="hlt">Filtering</span>, FDR and power</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">BACKGROUND: In high-dimensional data analysis such as differential gene expression analysis, people often use <span class="hlt">filtering</span> methods like fold-change or variance <span class="hlt">filters</span> in an attempt to reduce the multiple testing penalty and improve power. However, <span class="hlt">filtering</span> may introduce a bias on the multiple testing correction. The precise amount of bias depends on many quantities, such as fraction of probes <span class="hlt">filtered</span> out,</p> <div class="credits"> <p class="dwt_author">Maarten van Iterson; Judith M. Boer; Renée X. de Menezes</p> <p class="dwt_publisher"></p> <p class="publishDate">2010-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">446</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/4335832"> <span id="translatedtitle">Collaborative <span class="hlt">Filtering</span> Recommender Systems</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">One of the potent personalization technologies powering the adap- tive web is collaborative <span class="hlt">filtering</span>. Collaborative <span class="hlt">filtering</span> (CF) is the process of <span class="hlt">filtering</span> or evaluating items through the opinions of other people. CF technol- ogy brings together the opinions of large interconnected communities on the web, supporting <span class="hlt">filtering</span> of substantial quantities of data. In this chapter we in- troduce the core</p> <div class="credits"> <p class="dwt_author">J. Ben Schafer; Dan Frankowski; Jonathan L. Herlocker; Shilad Sen</p> <p class="dwt_publisher"></p> <p class="publishDate">2007-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">447</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1501713"> <span id="translatedtitle">Design of microwave <span class="hlt">filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">A survey of the major techniques used in the design of microwave <span class="hlt">filters</span> is presented in this paper. It is shown that the basis for much fundamental microwave <span class="hlt">filter</span> theory lies in the realm of lumped-element <span class="hlt">filters</span>, which indeed are actually used directly for many applications at microwave frequencies as high as 18 GHz. Many types of microwave <span class="hlt">filters</span> are</p> <div class="credits"> <p class="dwt_author">Ralph Levy; Richard V. Snyder; George Matthaei</p> <p class="dwt_publisher"></p> <p class="publishDate">2002-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">448</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/doepatents/details.jsp?query_id=0&page=0&ostiID=10171262"> <span id="translatedtitle">HEPA <span class="hlt">filter</span> dissolution process</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p class="result-summary">This invention is comprised of a process for dissolution of spent high efficiency particulate air (HEPA) <span class="hlt">filters</span> and then combining the complexed <span class="hlt">filter</span> solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent <span class="hlt">filters</span> which is an inefficient method of treating spent HEPA <span class="hlt">filters</span> for disposal.</p> <div class="credits"> <p class="dwt_author">Brewer, K.N.; Murphy, J.A.</p> <p class="dwt_publisher"></p> <p class="publishDate">1992-12-31</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">449</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2012RaPC...81..874C"> <span id="translatedtitle">Effects of electron beam irradiation of cellulose acetate cigarette <span class="hlt">filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A method to reduce the molecular weight of cellulose acetate used in cigarette <span class="hlt">filters</span> by using electron beam irradiation is demonstrated. Radiation levels easily obtained with commercially available electron accelerators result in a decrease in average molecular weight of about six-times with no embrittlement, or significant change in the elastic behavior of the <span class="hlt">filter</span>. Since a first <span class="hlt">step</span> in the biodegradation of cigarette <span class="hlt">filters</span> is reduction in the <span class="hlt">filter</span> material's molecular weight this invention has the potential to allow the production of significantly faster degrading <span class="hlt">filters</span>.</p> <div class="credits"> <p class="dwt_author">Czayka, M.; Fisch, M.</p> <p class="dwt_publisher"></p> <p class="publishDate">2012-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">450</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1450270"> <span id="translatedtitle">An introduction to matched <span class="hlt">filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">In a tutorial exposition, the following topics are discussed: definition of a matched <span class="hlt">filter</span>; where matched <span class="hlt">filters</span> arise; properties of matched <span class="hlt">filters</span>; matched-<span class="hlt">filter</span> synthesis and signal specification; some forms of matched <span class="hlt">filters</span>.</p> <div class="credits"> <p class="dwt_author">G. Turin</p> <p class="dwt_publisher"></p> <p class="publishDate">1960-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">451</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ntis.gov/search/product.aspx?ABBR=ADP004596"> <span id="translatedtitle">Applied Kalman <span class="hlt">Filtering</span>: An Overview.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ntis.gov/search/index.aspx">National Technical Information Service (NTIS)</a></p> <p class="result-summary">A brief resume of the evolution of Kalman <span class="hlt">filtering</span> from classical <span class="hlt">filter</span> theory is presented. The required format of the discrete <span class="hlt">filter</span> model is discussed. The recursive equations for the discrete Kalman <span class="hlt">filter</span> <span class="hlt">filter</span> are then presented, but not derived...</p> <div class="credits"> <p class="dwt_author">R. G. Brown</p> <p class="dwt_publisher"></p> <p class="publishDate">1984-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">452</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1628800"> <span id="translatedtitle">Soliton interaction penalty reduction by receiver <span class="hlt">filtering</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">We present the first detailed numerical study of the impact of receiver low-pass <span class="hlt">filtering</span> in soliton interaction-limited communication systems. We propagate 40-Gb\\/s pseudorandom bit sequences (PRBS's) of 2 8-1 solitons up to one soliton collision distance (zc ) and <span class="hlt">optimize</span> the <span class="hlt">filter</span> bandwidth to minimize the interaction induced eye opening penalty. The distance at 0.5-dB penalty is increased over 40%</p> <div class="credits"> <p class="dwt_author">Bamdad Bakhshi; Peter A. Andrekson; Magnus Karlsson; Kent Bertilsson</p> <p class="dwt_publisher"></p> <p class="publishDate">1998-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">453</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.osti.gov/scitech/biblio/282448"> <span id="translatedtitle">Miniature superconducting <span class="hlt">filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.osti.gov/scitech">SciTech Connect</a></p> <p class="result-summary">Because of the intrinsic low loss of high temperature superconductors at microwave frequencies it is possible to reduce the size of <span class="hlt">filters</span> while still retaining excellent performance. In order to accomplish this reduction in size new <span class="hlt">filter</span> geometry is required. Under this theme of miniaturization a number of new and novel types of microwave <span class="hlt">filter</span> are discussed, this includes delay line <span class="hlt">filters</span>, lumped element <span class="hlt">filters</span> and <span class="hlt">filters</span> based on slow wave structures. Each of the <span class="hlt">filters</span> are constructed out of high temperature superconductors (HTS).</p> <div class="credits"> <p class="dwt_author">Lancaster, M.J.; Huang, F.; Porch, A.; Avenhaus, B.; Hong, J.S.; Hung, D. [Univ. of Birmingham, Edgbaston (United Kingdom). School of Electronic and Electrical Engineering</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-07-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">454</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/1015808"> <span id="translatedtitle">Optimum 3-<span class="hlt">step</span> <span class="hlt">step</span>-stress tests</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">Optimum simple <span class="hlt">step</span>-stress accelerated life testing plans have practical limitations. They highly depend upon the assumption of a linear relationship between stress and time-to-failure and use only two extreme stresses that can cause irrelevant failure modes. Thus, 3-<span class="hlt">step</span> plans are preferable. In this paper, the authors derive the optimum quadratic plan and propose and evaluate a 3-<span class="hlt">step</span> test plan, the</p> <div class="credits"> <p class="dwt_author">Imad I. H. Khamis; James J. Higgins</p> <p class="dwt_publisher"></p> <p class="publishDate">1996-01-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">455</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/12636128"> <span id="translatedtitle">Tap water <span class="hlt">filters</span>.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">Moen PureTouch <span class="hlt">filters</span> remove impurities from tap water without removing fluoride. These carbon block <span class="hlt">filters</span> consist of finely powdered activated carbon that is combined with a plastic binder material and heated to form a hollow cylinder. The blocks are further wrapped with material to improve performance and reduce clogging. The <span class="hlt">filters</span> are available with different <span class="hlt">filtering</span> capabilities (Table 1). The <span class="hlt">filters</span> mount in the faucet spout or under the sink. PMID:12636128</p> <div class="credits"> <p class="dwt_author"></p> <p class="dwt_publisher"></p> <p class="publishDate">2003-02-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">456</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/1987ApOpt..26.5200K"> <span id="translatedtitle">Direct construction of phase-only <span class="hlt">filters</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">A new direct construction of phase-only <span class="hlt">filters</span> which have application for threshold optical correlation detectors is proposed. Simulations performed using 21 M48 model tank images and 21 M113 model armored peronnel carrier images illustrate the powerfulness of the method. It is found that the resulting <span class="hlt">filters</span> and their <span class="hlt">optimized</span> binarizations can be designed to contain a great deal of information and to be stable under perturbations in the training set. The present <span class="hlt">filters</span> have higher SNR for true targets and a better discrimination performance against false targets than previous techniques.</p> <div class="credits"> <p class="dwt_author">Kallman, Robert R.</p> <p class="dwt_publisher"></p> <p class="publishDate">1987-12-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">457</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://www.ncbi.nlm.nih.gov/pubmed/2180633"> <span id="translatedtitle">Adaptive <span class="hlt">filtering</span> in biological signal processing.</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p class="result-summary">The high dependence of conventional <span class="hlt">optimal</span> <span class="hlt">filtering</span> methods on the a priori knowledge of the signal and noise statistics render them ineffective in dealing with signals whose statistics cannot be predetermined accurately. Adaptive <span class="hlt">filtering</span> methods offer a better alternative, since the a priori knowledge of statistics is less critical, real time processing is possible, and the computations are less expensive for this approach. Adaptive <span class="hlt">filtering</span> methods compute the <span class="hlt">filter</span> coefficients "on-line", converging to the <span class="hlt">optimal</span> values in the least-mean square (LMS) error sense. Adaptive <span class="hlt">filtering</span> is therefore apt for dealing with the "unknown" statistics situation and has been applied extensively in areas like communication, speech, radar, sonar, seismology, and biological signal processing and analysis for channel equalization, interference and echo canceling, line enhancement, signal detection, system identification, spectral analysis, beamforming, modeling, control, etc. In this review article adaptive <span class="hlt">filtering</span> in the context of biological signals is reviewed. An intuitive approach to the underlying theory of adaptive <span class="hlt">filters</span> and its applicability are presented. Applications of the principles in biological signal processing are discussed in a manner that brings out the key ideas involved. Current and potential future directions in adaptive biological signal processing are also discussed. PMID:2180633</p> <div class="credits"> <p class="dwt_author">Iyer, V K; Ploysongsang, Y; Ramamoorthy, P A</p> <p class="dwt_publisher"></p> <p class="publishDate">1990-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">458</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://adsabs.harvard.edu/abs/2013CG.....55...44M"> <span id="translatedtitle">Resampling the ensemble Kalman <span class="hlt">filter</span></span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p class="result-summary">Ensemble Kalman <span class="hlt">filters</span> (EnKF) based on a small ensemble tend to provide collapse of the ensemble over time. It is demonstrated that this collapse is caused by positive coupling of the ensemble members due to use of the estimated Kalman gain for the update of all ensemble members at each time <span class="hlt">step</span>. This coupling can be avoided by resampling the Kalman gain from its sampling distribution in the conditioning <span class="hlt">step</span>. In the analytically tractable Gauss-linear model finite sample distributions for all covariance matrix estimates involved in the Kalman gain estimate are known and hence exact Kalman gain resampling can be done. For the general nonlinear case we introduce the resampling ensemble Kalman <span class="hlt">filter</span> (ResEnKF) algorithm. The resampling strategy in the algorithm is based on bootstrapping of the ensemble and Monte Carlo simulation of the likelihood model. We also define a semi-parametric and parametric version of the resampling ensemble Kalman <span class="hlt">filter</span> algorithm. An empirical study demonstrates that ResEnKF provides more reliable prediction intervals than traditional EnKF, on the cost of somewhat less accuracy in the point predictions.</p> <div class="credits"> <p class="dwt_author">Myrseth, Inge; Sætrom, Jon; Omre, Henning</p> <p class="dwt_publisher"></p> <p class="publishDate">2013-06-01</p> </div> </div> </div> </div> <div class="floatContainer result odd" lang="en"> <div class="resultNumber element">459</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://academic.research.microsoft.com/Publication/27804951"> <span id="translatedtitle">Introduction to <span class="hlt">Step</span> Dynamics and <span class="hlt">Step</span> Instabilities</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://academic.research.microsoft.com/">Microsoft Academic Search </a></p> <p class="result-summary">This paper provides an elementary introduction to the basic concepts used in describing epitaxial crystal growth in terms of the thermodynamics and kinetics of atomic <span class="hlt">steps</span>. Selected applications to morphological instabilities of <span class="hlt">stepped</span> surfaces are reviewed, and some open problems are outlined.</p> <div class="credits"> <p class="dwt_author">Joachim Krug</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div class="floatContainer result " lang="en"> <div class="resultNumber element">460</div> <div class="resultBody element"> <p class="result-title"><a target="resultTitleLink" href="http://science.gov/scigov/link.html?type=RESULT&redirectUrl=http://eric.ed.gov/?q=U.s.+AND+court+AND+system&pg=3&id=EJ717477"> <span id="translatedtitle">One <span class="hlt">Step</span> Forward, Half a <span class="hlt">Step</span> Backward?</span></a>  </p> <div class="result-meta"> <p class="source"><a target="_blank" id="logoLink" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p class="result-summary">|More than thirty cases involving desegregation of public school systems handed down in the first 25 years after Brown v. Board of Education, Topeka, Kansas, by the U.S. Supreme Court are discussed. However, the last 25 years have resulted in a situation of having the nation taking one <span class="hlt">step</span> forward and half a <span class="hlt">step</span> backwards, due to the conditions…</p> <div class="credits"> <p class="dwt_author">Russo, Charles J.</p> <p class="dwt_publisher"></p> <p class="publishDate">2004-01-01</p> </div> </div> </div> </div> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_22");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a> <a onClick='return showDiv("page_2");' href="#">2</a> <a onClick='return showDiv("page_3");' href="#">3</a> <a onClick='return showDiv("page_4");' href="#">4</a> <a onClick='return showDiv("page_5");' href="#">5</a> <a onClick='return showDiv("page_6");' href="#">6</a> <a onClick='return showDiv("page_7");' href="#">7</a> <a onClick='return showDiv("page_8");' href="#">8</a> <a onClick='return showDiv("page_9");' href="#">9</a> <a onClick='return showDiv("page_10");' href="#">10</a> <a onClick='return showDiv("page_11");' href="#">11</a> <a onClick='return showDiv("page_12");' href="#">12</a> <a onClick='return showDiv("page_13");' href="#">13</a> <a onClick='return showDiv("page_14");' href="#">14</a> <a onClick='return showDiv("page_15");' href="#">15</a> <a onClick='return showDiv("page_16");' href="#">16</a> <a onClick='return showDiv("page_17");' href="#">17</a> <a onClick='return showDiv("page_18");' href="#">18</a> <a onClick='return showDiv("page_19");' href="#">19</a> <a onClick='return showDiv("page_20");' href="#">20</a> <a onClick='return showDiv("page_21");' href="#">21</a> <a onClick='return showDiv("page_22");' href="#">22</a> <a style="font-weight: bold;">23</a> <a onClick='return showDiv("page_24");' href="#">24</a> <a onClick='return showDiv("page_25");' href="#">25</a> </span> </span> <a id="NextPageLink" onclick='return showDiv("page_24");' href="#" title="Next Page"> <img id="NextPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.next.18x20.png" alt="Next Page" /></a> <a id="LastPageLink" onclick='return showDiv("page_25.0");' href="#" title="Last Page"> <img id="LastPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.last.18x20.png" alt="Last Page" /></a> </div> </div> </div><!-- page_23 div --> <div id="page_24" class="hiddenDiv"> <div id="filter_results_form" class="filter_results_form floatContainer" style="visibility: visible;"> <div style="width:100%" id="PaginatedNavigation" class="paginatedNavigationElement"> <a id="FirstPageLink" onclick='return showDiv("page_1");' href="#" title="First Page"> <img id="FirstPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.first.18x20.png" alt="First Page" /></a> <a id="PreviousPageLink" onclick='return showDiv("page_23");' href="#" title="Previous Page"> <img id="PreviousPageLinkImage" class="Icon" src="http://www.science.gov/scigov/images/icon.previous.18x20.png" alt="Previous Page" /></a> <span id="PageLinks" class="pageLinks"> <span> <a onClick='return showDiv("page_1");' href="#">1</a>