Science.gov

Sample records for optimized liquid culture

  1. Optimization of liquid culture conditions of Philippine wild edible mushrooms as potential source of bioactive lipids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With remarkable bioactivities and delightful taste, mushrooms have been a commercial nutraceutical around the world. Mushrooms are cultivated on solid materials. Here we report the successful cultivation of four Philippine edible mushrooms in liquid medium. This work highlights the optimal liquid cu...

  2. Optimization of conditions for the efficient production of mutan in streptococcal cultures and post-culture liquids.

    PubMed

    Wiater, A; Szczodrak, J; Pleszczyńska, M

    2005-01-01

    The strain Streptococcus sobrinus CCUG 21020 was found to produce water-insoluble and adhesive mutan. The factors influencing both stages of the mutan production, i.e. streptococcal cultures and glucan synthesis in post-culture supernatants were standardized. The application of optimized process parameters for mutan production on a larger scale made it possible to obtain approximately 2.2 g of water-insoluble glucan per 11 of culture supernate--this productivity was higher than the best reported in the literature. It was shown that some of the tested beet sugars might be successfully utilized as substitutes for pure sucrose in the process of mutan synthesis. Nuclear magnetic resonance analyses confirmed that the insoluble biopolymer synthesized by a mixture of crude glucosyltransferases was a mixed-linkage (1-->3), (1-->6)-alpha-D-glucan (the so-called mutan) with a greater proportion of 1,3 to 1,6 linkages. PMID:15813222

  3. Optimization of large-scale culture conditions for the production of cordycepin with Cordyceps militaris by liquid static culture.

    PubMed

    Kang, Chao; Wen, Ting-Chi; Kang, Ji-Chuan; Meng, Ze-Bing; Li, Guang-Rong; Hyde, Kevin D

    2014-01-01

    Cordycepin is one of the most important bioactive compounds produced by species of Cordyceps sensu lato, but it is hard to produce large amounts of this substance in industrial production. In this work, single factor design, Plackett-Burman design, and central composite design were employed to establish the key factors and identify optimal culture conditions which improved cordycepin production. Using these culture conditions, a maximum production of cordycepin was 2008.48 mg/L for 700 mL working volume in the 1000 mL glass jars and total content of cordycepin reached 1405.94 mg/bottle. This method provides an effective way for increasing the cordycepin production at a large scale. The strategies used in this study could have a wide application in other fermentation processes. PMID:25054182

  4. Optimization of Large-Scale Culture Conditions for the Production of Cordycepin with Cordyceps militaris by Liquid Static Culture

    PubMed Central

    Kang, Chao; Wen, Ting-Chi; Kang, Ji-Chuan; Meng, Ze-Bing; Li, Guang-Rong; Hyde, Kevin D.

    2014-01-01

    Cordycepin is one of the most important bioactive compounds produced by species of Cordyceps sensu lato, but it is hard to produce large amounts of this substance in industrial production. In this work, single factor design, Plackett-Burman design, and central composite design were employed to establish the key factors and identify optimal culture conditions which improved cordycepin production. Using these culture conditions, a maximum production of cordycepin was 2008.48 mg/L for 700 mL working volume in the 1000 mL glass jars and total content of cordycepin reached 1405.94 mg/bottle. This method provides an effective way for increasing the cordycepin production at a large scale. The strategies used in this study could have a wide application in other fermentation processes. PMID:25054182

  5. A Novel Liquid Medium for the Efficient Growth of the Salmonid Pathogen Piscirickettsia salmonis and Optimization of Culture Conditions

    PubMed Central

    Marshall, Sergio H.; Henríquez, Vitalia; Gómez, Fernando A.; Martínez, Irene; Altamirano, Claudia

    2013-01-01

    Piscirickettsia salmonis is the bacterium that causes Piscirickettsiosis, a systemic disease of salmonid fish responsible for significant economic losses within the aquaculture industry worldwide. The growth of the bacterium for vaccine formulation has been traditionally accomplished by infecting eukaryotic cell lines, a process that involves high production costs and is time-consuming. Recent research has demonstrated that it is possible to culture pure P. salmonis in a blood containing (cell-free) medium. In the present work we demonstrate the growth of P. salmonis in a liquid medium free from blood and serum components, thus establishing a novel and simplified bacteriological medium. Additionally, the new media reported provides improved growth conditions for P. salmonis, where biomass concentrations of approximately 800 mg cell dry weight L−1 were obtained, about eight times higher than those reported for the blood containing medium. A 2- level full factorial design was employed to evaluate the significance of the main medium components on cell growth and an optimal temperature range of 23–27°C was determined for the microorganism to grow in the novel liquid media. Therefore, these results represent a breakthrough regarding P. salmonis research in order to optimize pure P. salmonis growth in liquid blood and serum free medium. PMID:24039723

  6. Optimization of the Liquid Culture Medium Composition to Obtain the Mycelium of Agaricus bisporus Rich in Essential Minerals.

    PubMed

    Krakowska, Agata; Reczyński, Witold; Muszyńska, Bożena

    2016-09-01

    Agaricus bisporus species (J.E. Lange) Imbach one of the most popular Basidiomycota species was chosen for the research because of its dietary and medicinal value. The presented herein studies included determination of essential mineral accumulation level in the mycelium of A. bisporus, cultivated on liquid cultures in the medium supplemented with addition of the chosen metals' salts. Quantitative analyses of Zn, Cu, Mg, and Fe in liquid cultures made it possible to determine the relationship between accumulation of the selected mineral in A. bisporus mycelium and the culture conditions. Monitoring of the liquid cultures and determination of the elements' concentrations in mycelium of A. bisporus were performed using the flame technique of AAS method. Concentration of Zn in the mycelium, maintained in the medium with the addition of its salt, was in a very wide range from 95.9 to 4462.0 mg/g DW. In the analyzed A. bisporus mycelium, cultured in the medium enriched with copper salt, this metal concentration changed from 89.79 to 7491.50 mg/g DW; considering Mg in liquid cultured mycelium (medium with Mg addition), its concentration has changed from 0.32 to 10.55 mg/g DW. The medium enriched with iron salts has led to bioaccumulation of Fe in mycelia of A. bisporus. Determined Fe concentration was in the range from 0.62 to 161.28 mg/g DW. The proposed method of liquid A. bisporus culturing on medium enriched with the selected macro- and microelements in proper concentrations ratio have led to obtaining maximal growth of biomass, characterized by high efficiency of the mineral accumulation. As a result, a dietary component of increased nutritive value was obtained. PMID:26857993

  7. Optimizing stem cell culture.

    PubMed

    van der Sanden, Boudewijn; Dhobb, Mehdi; Berger, François; Wion, Didier

    2010-11-01

    Stem cells always balance between self-renewal and differentiation. Hence, stem cell culture parameters are critical and need to be continuously refined according to progress in our stem cell biology understanding and the latest technological developments. In the past few years, major efforts have been made to define more precisely the medium composition in which stem cells grow or differentiate. This led to the progressive replacement of ill-defined additives such as serum or feeder cell layers by recombinant cytokines or growth factors. Another example is the control of the oxygen pressure. For many years cell cultures have been done under atmospheric oxygen pressure which is much higher than the one experienced by stem cells in vivo. A consequence of cell metabolism is that cell culture conditions are constantly changing. Therefore, the development of high sensitive monitoring processes and control algorithms is required for ensuring cell culture medium homeostasis. Stem cells also sense the physical constraints of their microenvironment. Rigidity, stiffness, and geometry of the culture substrate influence stem cell fate. Hence, nanotopography is probably as important as medium formulation in the optimization of stem cell culture conditions. Recent advances include the development of synthetic bioinformative substrates designed at the micro- and nanoscale level. On going research in many different fields including stem cell biology, nanotechnology, and bioengineering suggest that our current way to culture cells in Petri dish or flasks will soon be outdated as flying across the Atlantic Ocean in the Lindbergh's plane. PMID:20803548

  8. Liquid Culture Production of Fungal Microsclerotia.

    PubMed

    Jackson, Mark A; Payne, Angela R

    2016-01-01

    Fungal microsclerotia ("small" sclerotia) are compact hyphal aggregates, typically 50-600 μm in diameter, that are formed under unfavorable nutritional and/or environmental conditions. These structures are often melanized and desiccated to some degree containing endogenous nutritional reserves for use when favorable conditions return. Many fungi, mostly plant pathogens, produce microsclerotia as a survival structure. Liquid culture methods have been developed for producing microsclerotia of the Ascomycota Metarhizium spp, Colletotrichum truncatum, Mycoleptodiscus terrestris, and Trichoderma spp. While these fungi have varying culture conditions that optimize microsclerotia production, all share common nutritional and environmental requirements for microsclerotia formation. Described are the general liquid culture techniques, media components, and harvesting and drying methods necessary to produce stable microsclerotial granules of these fungi. PMID:27565493

  9. Microcalorimetric assessment of liquid culture media.

    PubMed

    Allerberger, F J; Dierich, M P

    1987-04-01

    Microcalorimetry constitutes an analytic tool to register the heat effects produced by the metabolic processes taking place in a bacterial culture. Since these depend on the nutrients supplied in the media, microcalorimetry allows conclusions to be drawn about the nature and quality of the culture medium when using a standard germ. Taking Columbia Broth as an example, we showed that faulty weighing of the dry substrate, incorrect pH or overheating during the dissolving or autoclaving procedures could be detected by the use of the microcalorimetry. A microcalorimetric assessment to compare media of the same name produced by different manufacturers was carried out and significant differences were observed. We consider this microcalorimetric technique to be a valuable tool in the assessment of liquid culture media. PMID:3307230

  10. Acoustic Liquid Handling for Rapid siRNA Transfection Optimization.

    PubMed

    Xiao, Andrew S; Lightcap, Eric S; Bouck, David C

    2015-09-01

    Gene knockdown by small interfering RNA (siRNA) has been used extensively to investigate the function of genes in targeted and genome-wide studies. One of the primary challenges of siRNA studies of any scale is to achieve sufficient gene knockdown to produce the biological changes that lead to measurable phenotypes. Reverse, lipid-based transfection efficiency minimally requires the optimization of the following parameters: cell number, knockdown duration, siRNA oligonucleotide concentration, type/brand of transfection lipid, and transfection lipid concentration. In this study, we describe a methodology to utilize the flexibility and low-volume range of the Echo acoustic liquid handler to rapidly screen a matrix of transfection conditions. The matrix includes six different transfection lipids from three separate vendors across a broad range of concentrations. Our results validate acoustic liquid transfer for the delivery of siRNAs and transfection reagents. Finally, this methodology is applied to rapidly optimize transfection conditions across many tissue culture cell lines derived from various originating tissues. PMID:25924619

  11. The Production of Fungal Microsclerotia in Liquid Culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A liquid culture production method has been developed for small sclerotia (microsclerotia) of various biological control fungi. The mycoherbicides Colletotrichum truncatum and Mycoleptodiscus terrestris and the mycoinsecticide Metarhizium anisopliae have all been shown to produce microsclerotia und...

  12. Optimization of Cultural Conditions for Antioxidant Exopolysaccharides from Xerocomus badius Grown in Shrimp Byproduct

    PubMed Central

    Gao, Xiujun; Yan, Peisheng; Liu, Xin; Wang, Jianbing; Yu, Jiajia

    2016-01-01

    To optimize the production conditions for exopolysaccharides with higher antioxidant activities from Xerocomus badius cultured in shrimp byproduct medium, Plackett-Burman design, path of steepest ascent, and response surface methodology were explored. Based on the results of Plackett-Burman design and path of steepest ascent, a Box-Behnken design was applied to optimization and the regression models. The optimal cultural condition for high yield and antioxidant activity of the exopolysaccharides was determined to be 10.347% of solid-to-liquid ratio, a 4.322% content of bran powder, and a 1.217% concentration of glacial acetic acid. Culturing with the optimal cultural conditions resulted in an exopolysaccharides yield of 4.588 ± 0.346 g/L and a total antioxidant activity of 2.956 ± 0.105 U/mg. These values are consistent with the values predicted by the corresponding regression models (RSD < 5%). PMID:26998481

  13. Optimized suspension culture: the rotating-wall vessel

    NASA Technical Reports Server (NTRS)

    Hammond, T. G.; Hammond, J. M.

    2001-01-01

    Suspension culture remains a popular modality, which manipulates mechanical culture conditions to maintain the specialized features of cultured cells. The rotating-wall vessel is a suspension culture vessel optimized to produce laminar flow and minimize the mechanical stresses on cell aggregates in culture. This review summarizes the engineering principles, which allow optimal suspension culture conditions to be established, and the boundary conditions, which limit this process. We suggest that to minimize mechanical damage and optimize differentiation of cultured cells, suspension culture should be performed in a solid-body rotation Couette-flow, zero-headspace culture vessel such as the rotating-wall vessel. This provides fluid dynamic operating principles characterized by 1) solid body rotation about a horizontal axis, characterized by colocalization of cells and aggregates of different sedimentation rates, optimally reduced fluid shear and turbulence, and three-dimensional spatial freedom; and 2) oxygenation by diffusion. Optimization of suspension culture is achieved by applying three tradeoffs. First, terminal velocity should be minimized by choosing microcarrier beads and culture media as close in density as possible. Next, rotation in the rotating-wall vessel induces both Coriolis and centrifugal forces, directly dependent on terminal velocity and minimized as terminal velocity is minimized. Last, mass transport of nutrients to a cell in suspension culture depends on both terminal velocity and diffusion of nutrients. In the transduction of mechanical culture conditions into cellular effects, several lines of evidence support a role for multiple molecular mechanisms. These include effects of shear stress, changes in cell cycle and cell death pathways, and upstream regulation of secondary messengers such as protein kinase C. The discipline of suspension culture needs a systematic analysis of the relationship between mechanical culture conditions and

  14. Optimized Liquid-Liquid Extractive Rerefining of Spent Lubricants

    PubMed Central

    Kamal, Muhammad Ashraf; Khan, Fasihullah

    2014-01-01

    Central composite design methodology has been employed to model the sludge yield data obtained during liquid-liquid extractive rerefining of spent lubricants using an alcohol (1-butanol) and a ketone (methyl ethyl ketone) as prospective solvents. The study has resulted in two reasonably accurate multivariate process models that relate the sludge yield (R2 = 0.9065 and 0.9072 for alcohol and ketone, resp.) to process variables (settling time t, operating temperature T, and oil to solvent ratio r). Construction of such models has allowed the maximization of the sludge yield (more than 8% and 3% in case of alcohol and ketone, resp.) so that the extraction of useable oil components from spent lubricants can economically be performed under extremely mild conditions (t = 16.7 h, T = 10°C, and r = 2) and fairly moderate conditions (t = 26.6 h, T = 10°C, and r = 5) established for the alcohol and ketone correspondingly. Based on these performance parameters alcohol appears to be superior over ketone for this extraction process. Additionally extractive treatment results in oil stocks with lesser quantity of environmentally hazardous polyaromatic hydrocarbons that are largely left in the separated sludge. PMID:24688388

  15. Optimized determination of polybrominated diphenyl ethers by ultrasound-assisted liquid-liquid extraction and high-performance liquid chromatography.

    PubMed

    He, Kuang; Lv, YuanCai; Chen, YuanCai

    2014-10-01

    A method based on ultrasound-assisted liquid-liquid extraction and high-performance liquid chromatography has been optimized for the determination of six polybrominated diphenyl ether congeners. The optimal condition relevant to the extraction was first investigated, more than 98.7 ± 0.7% recovery was achieved with dichloromethane as extractant, 5 min extraction time, and three cycles of ultrasound-assisted liquid-liquid extraction. Then multiple function was employed to optimize polybrominated diphenyl ether detection conditions with overall resolution and chromatography signal area as the responses. The condition chosen in this experiment was methanol/water 93:7 v/v, flow rate 0.80 mL/min, column temperature 30.0°C. The optimized technique revealed good linearity (R(2) > 0.9962 over a concentration range of 1-100 μg/L) and repeatability (relative standard deviation < 6.3%). Furthermore, the detection limit (S/N = 3) of the method were ranged from 0.02 to 0.13 μg/L and the quantification limit (S/N = 10) ranged from 0.07 to 0.35 μg/L. Finally, the proposed method was applied to spiked samples and satisfactory results were achieved. These results indicate that ultrasound-assisted liquid-liquid extraction coupled with high-performance liquid chromatography was effective to identify and quantify the complex polybrominated diphenyl ethers in effluent samples. PMID:25142014

  16. Thin sheets achieve optimal wrapping of liquids

    NASA Astrophysics Data System (ADS)

    Paulsen, Joseph; Démery, Vincent; Davidovitch, Benny; Santangelo, Christian; Russell, Thomas; Menon, Narayanan

    2015-03-01

    A liquid drop can wrap itself in a sheet using capillary forces [Py et al., PRL 98, 2007]. However, the efficiency of ``capillary origami'' at covering the surface of a drop is hampered by the mechanical cost of bending the sheet. Thinner sheets deform more readily by forming small-scale wrinkles and stress-focussing patterns, but it is unclear how coverage efficiency competes with mechanical cost as thickness is decreased, and what wrapping shapes will emerge. We place a thin (~ 100 nm) polymer film on a drop whose volume is gradually decreased so that the sheet covers an increasing fraction of its surface. The sheet exhibits a complex sequence of axisymmetric and polygonal partially- and fully- wrapped shapes. Remarkably, the progression appears independent of mechanical properties. The gross shape, which neglects small-scale features, is correctly predicted by a simple geometric approach wherein the exposed area is minimized. Thus, simply using a thin enough sheet results in maximal coverage.

  17. Trends in High Performance Liquid Chromatography for Cultural Heritage.

    PubMed

    Degano, Ilaria; La Nasa, Jacopo

    2016-04-01

    The separation, detection and quantitation of specific species contained in a sample in the field of Cultural Heritage requires selective, sensitive and reliable methods. Procedures based on liquid chromatography fulfil these requirements and offer a wide range of applicability in terms of analyte types and concentration range. The main applications of High Performance Liquid Chromatography in this field are related to the separation and detection of dyestuffs in archaeological materials and paint samples by reversed-phase liquid chromatography with suitable detectors. The relevant literature will be revised, with particular attention to sample treatment strategies and future developments. Reversed phase chromatography has also recently gained increasing importance in the analysis of lipid binders and lipid materials in archaeological residues: the main advantages and disadvantages of the new approaches will be discussed. Finally, the main applications of ion chromatography and size exclusion chromatography in the field of Cultural Heritage will be revised in this chapter. PMID:27573145

  18. Optimizing heterosurface adsorbent synthesis for liquid chromatography

    NASA Astrophysics Data System (ADS)

    Bogoslovskii, S. Yu.; Serdan, A. A.

    2016-03-01

    The structural and geometric parameters of a silica matrix (SM) for the synthesis of heterosurface adsorbents (HAs) are optimized. Modification is performed by shielding the external surfaces of alkyl-modified silica (AS) using human serum albumin and its subsequent crosslinking. The structural and geometric characteristics of the SM, AS, and HA are measured via low-temperature nitrogen adsorption. It is found that the structural characteristics of AS pores with diameters D < 6 nm do not change during HA synthesis, while the volume of pores with diameters of 6 nm < D < 9 nm shrinks slightly due to the adsorption of albumin in the pore orifices. It is established that the volume of pores with diameters D > 9 nm reduces significantly due to adsorption of albumin. It is concluded that silica gel with a maximum pore size distribution close to 5 nm and a minimal proportion of pores with D > 9 nm is optimal for HA synthesis; this allows us to achieve the greatest similarity between the chromatographic retention parameters for HA and AS. The suitability of the synthesized adsorbents for analyzing drugs in biological fluids through direct sample injection is confirmed by chromatography. It was found that the percentage of the protein fraction detected at the outlet of the chromatographic column is 98%.

  19. Proliferation and maturation of human erythroid progenitors in liquid culture.

    PubMed

    Fibach, E; Manor, D; Oppenheim, A; Rachmilewitz, E A

    1989-01-01

    Hemopoiesis is studied in vitro mainly in semisolid culture, where hemopoietic progenitors develop into discrete colonies. We describe a liquid culture system that supports the proliferation and maturation of human erythroid progenitors. We seeded mononuclear cells from the peripheral blood (PB) of patients with beta-thalassemia in liquid medium in the presence of conditioned medium from human bladder carcinoma cells. Seven days later, RBCs, normoblasts, granulocytes, and monocytes disappeared, and the number of lymphocytes dropped considerably. In contrast, erythroid colony-forming cells increased fourfold to tenfold. The next step entailed the removal of colony-stimulating factor (CSF) and CSF-secreting cells, the exclusion of macrophages by harvesting nonadherent cells, and the lysis of T lymphocytes by treatment with monoclonal rat antihuman lymphocyte antibodies (CAMPATH-1) and complement. Reculture of the remaining cells in liquid medium supplemented with recombinant erythropoietin (EPO) resulted in the exclusive development of erythroid cells, with myeloid cells reduced to less than 2%. Stainable hemoglobin (Hb) appeared on day 3, with over 85% of the population containing hemoglobin by day 11 and the cell number increasing from 0.2 X 10(6) to 3 X 10(6) mL. By permitting the manipulation of culture conditions and components and increasing the cell yield, the liquid system may facilitate quantitative analysis of growth kinetics as well as biochemical and immunologic characterization of the developing erythroid cell. PMID:2910352

  20. Liquid culture production of fungal microsclerotia for use in biological control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A method has been developed for producing microsclerotia of various fungi in liquid culture. Colletotrichum truncatum, Mycoleptodiscus terrestris, Ascochyta caulina, and an entomopathogenic fungus have all been shown to produce microsclerotia in liquid culture under appropriate environmental and nut...

  1. Optimal contrast enhancement liquid for dynamic MRI of swallowing.

    PubMed

    Ohkubo, M; Higaki, T; Nishikawa, K; Otonari-Yamamoto, M; Sugiyama, T; Ishida, R; Wakoh, M

    2016-09-01

    Several dynamic magnetic resonance imaging (MRI) techniques to observe swallowing and their parameters have been reported. Although these studies used several contrast enhancement liquids, no studies were conducted to investigate the most suitable liquids. The purpose of this study was to identify the optimal contrast enhancement liquid for dynamic MRI of swallowing. MRI was performed using a new sequence consisting of true fast imaging with steady-state precession, generalised auto-calibrating partially parallel acquisition and a keyhole imaging technique. Seven liquids were studied, including pure distilled water, distilled water with thickener at 10, 20 and 30 mg mL(-1) concentrations and oral MRI contrast medium at 1, 2 or 3 mg mL(-1) . Distilled water showed the highest signal intensity. There were statistically significant differences among the following contrast media: distilled water with thickener at 20 mg mL(-1) and the oral MRI contrast medium at 2 mg mL(-1) and 1 mg mL(-1) . It can be concluded that the optimal liquid for dynamic MRI of swallowing is a water-based substance that allows variations in viscosity. PMID:27328011

  2. Optimization of a packed bed reactor for liquid waste treatment

    SciTech Connect

    Schmidt, C.A.; Brower, M.J.; Coogan, J.J.; Tennant, R.A.

    1993-11-01

    The authors describe an optimization study of a packed bed reactor (PBR), developed for the treatment of hazardous liquid wastes. The focus is on the destruction of trichloroethylene (TCE). The PBR technology offers many distinct advantages over other processes: simple design, high destruction rates (99.99%), low costs, ambient pressure operation, easy maintenance and scaleability. The cost effectiveness, optimal operating parameters and scaleability were determined. As a second stage of treatment, a silent discharge plasma (SDP) reactor was installed to further treat offgases from the PBR. A primary advantage of this system is closed loop operation, where exhaust gases are continuously recycled and not released into the atmosphere.

  3. Characterization and optimization of liquid electrodes for lateral dielectrophoresis.

    PubMed

    Demierre, Nicolas; Braschler, Thomas; Linderholm, Pontus; Seger, Urban; van Lintel, Harald; Renaud, Philippe

    2007-03-01

    Using the concept of insulator-based "electrodeless" dielectrophoresis, we present a novel geometry for shaping electric fields to achieve lateral deviation of particles in liquid flows. The field is generated by lateral planar metal electrodes and is guided along access channels to the active area in the main channel. The equipotential surfaces at the apertures of the access channels behave as vertical "liquid" electrodes injecting the current into the main channel. The field between a pair of adjacent liquid electrodes generates the lateral dielectrophoretic force necessary for particle manipulation. We use this force for high-speed deviation of particles. By adding a second pair of liquid electrodes, we focus a particle stream. The position of the focused stream can be swept across the channel by adjusting the ratio of the voltages applied to the two pairs. Based on conformal mapping, we provide an analytical model for estimating the potential at the liquid electrodes and the field distribution in the main channel. We show that the simulated particle trajectories agree with observations. Finally, we show that the model can be used to optimize the device geometry in different applications. PMID:17330167

  4. A simple and cost effective liquid culture system for the micropropagation of two commercially important apple rootstocks.

    PubMed

    Mehta, Mohina; Ram, Raja; Bhattacharya, Amita

    2014-07-01

    The two commercially important apple rootstocks i.e., MM106 and B9 were micropropagated using a liquid culture system. Three different strengths of 0.8% agar solidified PGR free basal MS medium were first tested to optimize the culture media for both the rootstocks. Full strength medium (MS0) supported maximum in vitro growth, multiplication, rooting and survival under field conditions as opposed to quarter and half strength media. When three different volumes of liquid MS0 were tested, highest in vitro growth, multiplication, rooting and also survival under field conditions were achieved in 20 mL liquid MS0. The cost of one litre of liquid medium was also reduced by 8 times to Rs. 6.29 as compared to solid medium. The cost of 20 mL medium was further reduced to Rs. 0.125. PMID:25059043

  5. Optimization of Lipase Production by a Rhizopus MR12 in Shake Culture

    NASA Astrophysics Data System (ADS)

    Kader, R.; Yousuf, A.; Hoq, M. M.

    Rhizopus sp. a mould of mucor family, excrete lipase when cultured on lipolytic media. The Rhizopus sp. produced a larger clear zone on tributyrin agar medium suggesting its esterase activity. It was further investigated in liquid medium in order to optimize the lipase production conditions under shake culture. Lipase production was found to be maximum with medium containing maltose (1%) and peptone (5%) as carbon and nitrogen sources, respectively with Rhizopus sp. The enzyme production was profoundly influenced by initial pH of the medium and optimum value of this parameter was found to be 6.0. Maximum enzyme production was obtained at 30°C with a shaking rate of 200 rpm. Ca2+ was found to stimulate lipase production, while it was strongly inhabited by Hg2+. Lipase production was increased about 23.7% under optimized cultivation conditions over olive oil-peptone medium.

  6. Multivariable optimization of liquid rocket engines using particle swarm algorithms

    NASA Astrophysics Data System (ADS)

    Jones, Daniel Ray

    Liquid rocket engines are highly reliable, controllable, and efficient compared to other conventional forms of rocket propulsion. As such, they have seen wide use in the space industry and have become the standard propulsion system for launch vehicles, orbit insertion, and orbital maneuvering. Though these systems are well understood, historical optimization techniques are often inadequate due to the highly non-linear nature of the engine performance problem. In this thesis, a Particle Swarm Optimization (PSO) variant was applied to maximize the specific impulse of a finite-area combustion chamber (FAC) equilibrium flow rocket performance model by controlling the engine's oxidizer-to-fuel ratio and de Laval nozzle expansion and contraction ratios. In addition to the PSO-controlled parameters, engine performance was calculated based on propellant chemistry, combustion chamber pressure, and ambient pressure, which are provided as inputs to the program. The performance code was validated by comparison with NASA's Chemical Equilibrium with Applications (CEA) and the commercially available Rocket Propulsion Analysis (RPA) tool. Similarly, the PSO algorithm was validated by comparison with brute-force optimization, which calculates all possible solutions and subsequently determines which is the optimum. Particle Swarm Optimization was shown to be an effective optimizer capable of quick and reliable convergence for complex functions of multiple non-linear variables.

  7. Optimal Culture Conditions for Mycelial Growth of Lignosus rhinocerus

    PubMed Central

    Siti Murni, M.J.; Fauzi, D.; Abas Mazni, O.; Saleh, N.M.

    2011-01-01

    Lignosus rhinocerus is a macrofungus that belongs to Polyporaceae and is native to tropical regions. This highly priced mushroom has been used as folk medicine to treat diseases by indigenous people. As a preliminary study to develop a culture method for edible mushrooms, the cultural characteristics of L. rhinocerus were investigated in a range of culture media under different environmental conditions. Mycelial growth of this mushroom was compared on culture media composed of various carbon and nitrogen sources in addition to C/N ratios. The optimal conditions for mycelial growth were 30℃ at pH 6 and 7. Rapid mycelial growth of L. rhinocerus was observed on glucose-peptone and yeast extract peptone dextrose media. Carbon and nitrogen sources promoting mycelial growth of L. rhinocerus were glucose and potassium nitrate, respectively. The optimum C/N ratio was approximately 10 : 1 using 2% glucose supplemented as a carbon source in the basal media. PMID:22783083

  8. Optimization to the Culture Conditions for Phellinus Production with Regression Analysis and Gene-Set Based Genetic Algorithm

    PubMed Central

    Li, Zhongwei; Xin, Yuezhen; Wang, Xun; Sun, Beibei; Xia, Shengyu; Li, Hui

    2016-01-01

    Phellinus is a kind of fungus and is known as one of the elemental components in drugs to avoid cancers. With the purpose of finding optimized culture conditions for Phellinus production in the laboratory, plenty of experiments focusing on single factor were operated and large scale of experimental data were generated. In this work, we use the data collected from experiments for regression analysis, and then a mathematical model of predicting Phellinus production is achieved. Subsequently, a gene-set based genetic algorithm is developed to optimize the values of parameters involved in culture conditions, including inoculum size, PH value, initial liquid volume, temperature, seed age, fermentation time, and rotation speed. These optimized values of the parameters have accordance with biological experimental results, which indicate that our method has a good predictability for culture conditions optimization. PMID:27610365

  9. Optimization to the Culture Conditions for Phellinus Production with Regression Analysis and Gene-Set Based Genetic Algorithm.

    PubMed

    Li, Zhongwei; Xin, Yuezhen; Wang, Xun; Sun, Beibei; Xia, Shengyu; Li, Hui; Zhu, Hu

    2016-01-01

    Phellinus is a kind of fungus and is known as one of the elemental components in drugs to avoid cancers. With the purpose of finding optimized culture conditions for Phellinus production in the laboratory, plenty of experiments focusing on single factor were operated and large scale of experimental data were generated. In this work, we use the data collected from experiments for regression analysis, and then a mathematical model of predicting Phellinus production is achieved. Subsequently, a gene-set based genetic algorithm is developed to optimize the values of parameters involved in culture conditions, including inoculum size, PH value, initial liquid volume, temperature, seed age, fermentation time, and rotation speed. These optimized values of the parameters have accordance with biological experimental results, which indicate that our method has a good predictability for culture conditions optimization. PMID:27610365

  10. Range optimized theory of electron liquids with application to jellium

    NASA Astrophysics Data System (ADS)

    Donley, James; Pryor, Craig

    2015-03-01

    A simple optimization scheme is used to compute the density-density response function of the 3-D homogeneous electron gas at zero temperature. Higher order terms in the perturbation expansion beyond the random phase approximation are summed approximately by enforcing the constraint that the spin density radial distribution functions be positive. Quantitative comparison is made with previous theory and data from quantum Monte Carlo simulation. Agreement with the available simulation data is good for the entire paramagnetic region. Generalization of the theory to inhomogeneous electron liquids such as in semiconductors will be discussed.

  11. Optimizing culture medium for meristem tissue culture of several Saccharum species and commercial hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The optimal range of medium nutrients and plant growth regulators (PGR) was investigated for in vitro culture of diverse sugarcane species and cultivars. Macro-nutrients, nitrogen (N), phosphorous (P) and potassium (K), were essential for growth of leaf primordia. Although the best concentration of ...

  12. Primary cancer cell culture: mammary-optimized vs conditional reprogramming.

    PubMed

    Alamri, Ahmad M; Kang, Keunsoo; Groeneveld, Svenja; Wang, Weisheng; Zhong, Xiaogang; Kallakury, Bhaskar; Hennighausen, Lothar; Liu, Xuefeng; Furth, Priscilla A

    2016-07-01

    The impact of different culture conditions on biology of primary cancer cells is not always addressed. Here, conditional reprogramming (CRC) was compared with mammary-optimized EpiCult-B (EpiC) for primary mammary epithelial cell isolation and propagation, allograft generation, and genome-wide transcriptional consequences using cancer and non-cancer mammary tissue from mice with different dosages of Brca1 and p53 Selective comparison to DMEM was included. Primary cultures were established with all three media, but CRC was most efficient for initial isolation (P<0.05). Allograft development was faster using cells grown in EpiC compared with CRC (P<0.05). Transcriptome comparison of paired CRC and EpiC cultures revealed 1700 differentially expressed genes by passage 20. CRC promoted Trp53 gene family upregulation and increased expression of epithelial differentiation genes, whereas EpiC elevated expression of epithelial-mesenchymal transition genes. Differences did not persist in allografts where both methods yielded allografts with relatively similar transcriptomes. Restricting passage (<7) reduced numbers of differentially expressed genes below 50. In conclusion, CRC was most efficient for initial cell isolation but EpiC was quicker for allograft generation. The extensive culture-specific gene expression patterns that emerged with longer passage could be limited by reducing passage number when both culture transcriptomes were equally similar to that of the primary tissue. Defining impact of culture condition and passage on the transcriptome of primary cells could assist experimental design and interpretation. For example, differences that appear with passage and culture condition are potentially exploitable for comparative studies targeting specific biological networks in different transcriptional environments. PMID:27267121

  13. Optimization of Pulse Shape Discrimination of PROSPECT Liquid Scintillator Signals

    NASA Astrophysics Data System (ADS)

    Han, Ke; Prospect Collaboration

    2015-04-01

    PROSPECT, A Precision Oscillation and Spectrum Experiment, will use a segmented Li-6 doped liquid scintillator detector for precision measurement of the reactor anti-neutrino spectrum at the High Flux Isotope Reactor at Oak Ridge National Laboratory. PROSPECT also searches for very short baseline neutrino oscillation, an indication of the existence of eV-scale sterile neutrinos. Pulse shape analysis of the prompt anti-neutino signal and delayed neutron capture on Li-6 signal will greatly suppress background sources such as fast neutrons and accidental coincidence of gammas. In this talk, I will discuss different pulse shape parameters used in PROSPECT prototype detectors and multivariate optimization of event selection cuts based on those parameters.

  14. Hyperhydricity and flavonoid content of Scutellaria species in vitro on polyester-supported liquid culture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three Scutellaria species (Scutellaria lateriflora, S. costaricana and S. baicalensis) were grown in different in vitro physical environments: agar, liquid culture, and liquid culture with fiber-supported paper (with initial media volumes of 20 mL and 30 mL). During an eight-week time course, tiss...

  15. Optimizing the flow in a liquid sodium dynamo experiment

    NASA Astrophysics Data System (ADS)

    Taylor, N. Zane

    The Madison Dynamo experiment drives a turbulent flow of liquid sodium in a sphere in order to observe a MHD dynamo instability: An exponentially growing magnetic field at the expense of kinetic energy. Initial runs of the experiment observed intermittent bursts of the predicted magnetic mode, but no self-excited field was observed. It was found that turbulent fluctuations were producing large-scale magnetic fields that were a significant fraction of the magnitude of the fields induced by the mean flow. These turbulent-induced fields were solely detrimental, opposing the generation of the magnetic field produced by the mean flow. Baffles and vanes were added to the experiment to optimize the helical pitch of the mean flow and to remove the large-scale detrimental fluctuations. The observed drop in required motor power and a drop in specific measured magnetic response modes gives direct confirmation that these large detrimental eddies have been removed. A probe was developed to characterize the turbulence in the MDE after the baffles were installed and it was determined that the remaining turbulent EMF was mostly acting as an enhanced dissipation to the induced magnetic field. After these modifications, the induced magnetic field produced by the flowing sodium interacting with a seed magnetic field now closely matches laminar predictions. However, no self-excited field has been observed. A velocity inversion technique has been developed that compares internal and external field measurements with a predictive model and determines what the effective mean flow is in the experiment. Results from this velocity inversion give another metric on how optimized the flow profile is and also provide the most robust method of determining how close the experiment is to achieving a dynamo.

  16. Optimizing liquid effluent monitoring at a large nuclear complex.

    PubMed

    Chou, Charissa J; Barnett, D Brent; Johnson, Vernon G; Olson, Phil M

    2003-12-01

    Effluent monitoring typically requires a large number of analytes and samples during the initial or startup phase of a facility. Once a baseline is established, the analyte list and sampling frequency may be reduced. Although there is a large body of literature relevant to the initial design, few, if any, published papers exist on updating established effluent monitoring programs. This paper statistically evaluates four years of baseline data to optimize the liquid effluent monitoring efficiency of a centralized waste treatment and disposal facility at a large defense nuclear complex. Specific objectives were to: (1) assess temporal variability in analyte concentrations, (2) determine operational factors contributing to waste stream variability, (3) assess the probability of exceeding permit limits, and (4) streamline the sampling and analysis regime. Results indicated that the probability of exceeding permit limits was one in a million under normal facility operating conditions, sampling frequency could be reduced, and several analytes could be eliminated. Furthermore, indicators such as gross alpha and gross beta measurements could be used in lieu of more expensive specific isotopic analyses (radium, cesium-137, and strontium-90) for routine monitoring. Study results were used by the state regulatory agency to modify monitoring requirements for a new discharge permit, resulting in an annual cost savings of US dollars 223,000. This case study demonstrates that statistical evaluation of effluent contaminant variability coupled with process knowledge can help plant managers and regulators streamline analyte lists and sampling frequencies based on detection history and environmental risk. PMID:15160897

  17. Optimizing the performance of a solar liquid piston pump

    NASA Astrophysics Data System (ADS)

    Murphy, C. L.

    The 0.1-m solar liquid piston pump (SLPP) model is shown to exhibit stable operation over a wide range of conditions, provided the heat input (at T = 85 C) and the heat rejected (at T = 22 C) are maintained above the critical values for stalling. Under these conditions, the pumps operation is affected primarily by the heating coil position and the geometries of the inlet and outlet water tubes. It is found that the optimum output power of the model SLPP is 4.5 W at a pumping heat of 2 m, a mass flow rate of 0.23 kg/s, and an overall efficiency of 1%. It is noted that further optimization of the model would at best only marginally increase the output power and efficiency. It is thought that larger mass flow rates can be obtained by increasing the cross sectional area of the working tube and/or staging a number of pumps in parallel. It is possible to increase the pump head by staging a number of pumps in series.

  18. Culture Conditions for Production of Biomass, Adenosine, and Cordycepin from Cordyceps sinensis CS1197: Optimization by Desirability Function Method

    PubMed Central

    Ghatnur, Shashidhar M.; Parvatam, Giridhar; Balaraman, Manohar

    2015-01-01

    Background: Cordyceps sinensis (CS) is a traditional Chinese medicine contains potent active metabolites such as nucleosides and polysaccharides. The submerged cultivation technique is studied for the large scale production of CS for biomass and metabolites production. Objective: To optimize culture conditions for large-scale production of CS1197 biomass and metabolites production. Materials and Methods: The CS1197 strain of CS was isolated from dead larvae of natural CS and the authenticity was assured by the presence of two major markers adenosine and cordycepin by high performance liquid chromatography and mass spectrometry. A three-level Box-Behnken design was employed to optimize process parameters culturing temperature, pH, and inoculum volume for the biomass yield, adenosine and cordycepin. The experimental results were regressed to a second-order polynomial equation by a multiple regression analysis for the prediction of biomass yield, adenosine and cordycepin production. Multiple responses were optimized based on desirability function method. Results: The desirability function suggested the process conditions temperature 28°C, pH 7 and inoculum volume 10% for optimal production of nutraceuticals in the biomass. The water extracts from dried CS1197 mycelia showed good inhibition for 2 diphenyl-1-picrylhydrazyl and 2,2-azinobis-(3-ethyl-benzo-thiazoline-6-sulfonic acid-free radicals. Conclusion: The result suggests that response surface methodology-desirability function coupled approach can successfully optimize the culture conditions for CS1197. SUMMARY Authentication of CS1197 strain by the presence of adenosine and cordycepin and culturing period was determined to be for 14 daysContent of nucleosides in natural CS was found higher than in cultured CS1197 myceliumBox-Behnken design to optimize critical cultural conditions: temperature, pH and inoculum volumeWater extract showed better antioxidant activity proving credible source of natural antioxidants

  19. Statistical culture-based strategies to enhance chlamydospore production by Trichoderma harzianum SH2303 in liquid fermentation*

    PubMed Central

    Li, Ya-qian; Song, Kai; Li, Ya-chai; Chen, Jie

    2016-01-01

    Trichoderma-based formulations are applied as commercial biocontrol agents for soil-borne plant pathogens. Chlamydospores are active propagules in Trichoderma spp., but their production is currently limited due to a lack of optimal liquid fermentation technology. In this study, we explored response surface methodologies for optimizing fermentation technology in Trichoderma SH2303. Our initial studies, using the Plackett-Burman design, identified cornmeal, glycerol, and initial pH levels as the most significant factors (P<0.05) for enhancing the production of chlamydospores. Subsequently, we applied the Box-Behnken design to study the interactions between, and optimal levels of, a number of factors in chlamydospore production. These statistically predicted results indicated that the highest number of chlamydospores (3.6×108 spores/ml) would be obtained under the following condition: corn flour 62.86 g/L, glycerol 7.54 ml/L, pH 4.17, and 6-d incubation in liquid fermentation. We validated these predicted values via three repeated experiments using the optimal culture and achieved maximum chlamydospores of 4.5×108 spores/ml, which approximately a 8-fold increase in the number of chlamydospores produced by T. harzianum SH2303 compared with that before optimization. These optimized values could help make chlamydospore production cost-efficient in the future development of novel biocontrol agents. PMID:27487807

  20. Statistical culture-based strategies to enhance chlamydospore production by Trichoderma harzianum SH2303 in liquid fermentation.

    PubMed

    Li, Ya-Qian; Song, Kai; Li, Ya-Chai; Chen, Jie

    2016-08-01

    Trichoderma-based formulations are applied as commercial biocontrol agents for soil-borne plant pathogens. Chlamydospores are active propagules in Trichoderma spp., but their production is currently limited due to a lack of optimal liquid fermentation technology. In this study, we explored response surface methodologies for optimizing fermentation technology in Trichoderma SH2303. Our initial studies, using the Plackett-Burman design, identified cornmeal, glycerol, and initial pH levels as the most significant factors (P<0.05) for enhancing the production of chlamydospores. Subsequently, we applied the Box-Behnken design to study the interactions between, and optimal levels of, a number of factors in chlamydospore production. These statistically predicted results indicated that the highest number of chlamydospores (3.6×10(8) spores/ml) would be obtained under the following condition: corn flour 62.86 g/L, glycerol 7.54 ml/L, pH 4.17, and 6-d incubation in liquid fermentation. We validated these predicted values via three repeated experiments using the optimal culture and achieved maximum chlamydospores of 4.5×10(8) spores/ml, which approximately a 8-fold increase in the number of chlamydospores produced by T. harzianum SH2303 compared with that before optimization. These optimized values could help make chlamydospore production cost-efficient in the future development of novel biocontrol agents. PMID:27487807

  1. Optimization of digitization procedures in cultural heritage preservation

    NASA Astrophysics Data System (ADS)

    Martínez, Bea; Mitjà, Carles; Escofet, Jaume

    2013-11-01

    The digitization of both volumetric and flat objects is the nowadays-preferred method in order to preserve cultural heritage items. High quality digital files obtained from photographic plates, films and prints, paintings, drawings, gravures, fabrics and sculptures, allows not only for a wider diffusion and on line transmission, but also for the preservation of the original items from future handling. Early digitization procedures used scanners for flat opaque or translucent objects and camera only for volumetric or flat highly texturized materials. The technical obsolescence of the high-end scanners and the improvement achieved by professional cameras has result in a wide use of cameras with digital back to digitize any kind of cultural heritage item. Since the lens, the digital back, the software controlling the camera and the digital image processing provide a wide range of possibilities, there is necessary to standardize the methods used in the reproduction work leading to preserve as high as possible the original item properties. This work presents an overview about methods used for camera system characterization, as well as the best procedures in order to identify and counteract the effect of the lens residual aberrations, sensor aliasing, image illumination, color management and image optimization by means of parametric image processing. As a corollary, the work shows some examples of reproduction workflow applied to the digitization of valuable art pieces and glass plate photographic black and white negatives.

  2. Water permeability of primary mouse keratinocyte cultures grown at the air-liquid interface

    SciTech Connect

    Cumpstone, M.B.; Kennedy, A.H.; Harmon, C.S.; Potts, R.O.

    1989-04-01

    In order to study the development of the epidermal permeability barrier in vitro, tritiated water (HTO) flux was measured across murine keratinocytes cultured at the air-liquid interface. Using a micro-diffusion technique, it was shown that air-liquid cultures form areas where the water diffusion is comparable to that of intact neonatal mouse skin. When water permeability is measured over a large area of the culture surface, however, significantly higher flux is obtained. These results show that under the culture conditions used, areas of water barrier comparable to intact neonatal mouse skin coexist with regions of less complete barrier formation.

  3. Dissolved oxygen levels affect microsclerotia formation by liquid cultures of metarhizium brunneum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sclerotia, overwintering propagules formed by some fungi when faced with adverse nutritional or environmental conditions, are composed of melanized hyphal aggregates capable of withstanding desiccation, oxidative stress, and UV radiation. Using liquid culture fermentation, we identified nutritional...

  4. Human Performance Optimization: Culture Change and Paradigm Shift.

    PubMed

    Deuster, Patricia A; OʼConnor, Francis G

    2015-11-01

    The term "Human Performance Optimization" (HPO) emerged across the Department of Defense (DoD) around 2006 when the importance of human performance for military success on the battlefield was acknowledged. Likewise, the term Total Force Fitness (TFF) arose as a conceptual framework within DoD in response to the need for a more holistic approach to the unparalleled operational demands with multiple deployments and strains on the United States Armed Forces. Both HPO and TFF are frameworks for enhancing and sustaining the health, well-being, and performance among our warriors and their families; they are fundamental to accomplishing our nation's mission. A demands-resources model for HPO is presented within the context of TFF to assist in operationalizing actions to enhance performance. In addition, the role leaders can serve is discussed; leaders are uniquely postured in the military chain of command to directly influence a culture of fitness for a ready force, and promote the concept that service members are ultimately responsible for their fitness and performance. PMID:26506199

  5. Enhanced production of Fumigaclavine C in liquid culture of Aspergillus fumigatus under a two-stage process.

    PubMed

    Zhu, Yi-Xiang; Yao, Ling-Yun; Jiao, Rui-Hua; Lu, Yan-Hua; Tan, Ren-Xiang

    2014-01-01

    Fumigaclavine C (FC) produced by Aspergillus fumigatus is a conidiation associated ergot alkaloid with strong anti-inflammatory activity. However, its wide application has been severely limited by low FC production from submerged culture. In this work, a novel two-stage culture process by combining shake culture with static culture was proposed to enhance the production of FC. After the process optimization, the FC production reached 62.7 mg/L, which was significantly higher than ever report. For scaling up this new culture process, the gas-liquid interfacial area per unit volume (Agas-liq) was identified as the key factor. The results showed that in a combined stirred-static bioreactor system, a maximum FC production (58.97 mg/L) was obtained at an Agas-liq value of 1.30 cm(2)/mL. These results demonstrated that two-stage culture is an efficient strategy to enhance FC production and the information obtained will be useful to production of this powerful bioactive compound on a large scale. PMID:24291794

  6. Solid matrix and liquid culture procedures for growth of potatoes

    NASA Astrophysics Data System (ADS)

    Tibbitts, T. W.; Cao, W.

    1994-11-01

    This report discusses the advantages and limitations of several different procedures for growth of potatoes for CELSS. Solution culture, in which roots and stolons are submerged, and aeroponic culture were not found useful for potatoes because stolons did not produce tubers unless a severe stress was applied to the plants. In detailed comparison studies, three selected culture systems were compared, nutrient film technique (NFT), NFT with shallow media, and pot culture with deep media. For the NFT and NFT plus shallow media, plants were grown in 0.3 m2 trays and for the deep medium culture, in 20 liter pots. A 1 cm depth of arcillite, a baked montmorillonite clay, was used as shallow media (NFT-arc). Peatvermiculite mixture was used to fill the pots for the deep media. Nutrient solution, modified half-strength Hoagland's was recirculated among the tray culture plants with pH automatically controlled at 5.5, and conductivity maintained ~ 1100 μS cm-1 by adding stock nutrients or renewing the solution. A separate nutrient solution was used to water the pot plants four times daily to excess and the excess was discarded. Plants of Norland cv. were utilized and transplanted from sterile-propagated stem cutting plantlets. The plants were grown for 66 days under 12 h photoperiod in a first study and grown for 54 days under 24 h photoperiod in a second study. Under both photoperiods, total plant growth was greater in NFT-arc than in either NFT or pot culture. Under 12 h photoperiod, tuber dry weight was 30% higher with NFT-arc, but 50% lower with NFT, than with pot culture. Under 24 h photoperiod, however, tuber dry weight in both NFT and NFT-arc was only 20% of that in pot culture. The NFT and NFT-arc produced a greater shoot growth and larger number of small tubers than pot culture, especially with 24 h photoperiod. It is concluded that there are serious limitations to the use of NFT alone for growth of potatoes in a CELSS system. These limitations can be minimized by

  7. Accumulation of dibenzocyclooctadiene lignans in agar cultures and in stationary and agitated liquid cultures of Schisandra chinensis (Turcz.) Baill.

    PubMed

    Szopa, Agnieszka; Kokotkiewicz, Adam; Marzec-Wróblewska, Urszula; Bucinski, Adam; Luczkiewicz, Maria; Ekiert, Halina

    2016-05-01

    Schisandra chinensis plant in vitro cultures were maintained on Murashige and Skoog (MS) medium supplemented with 3 mg/l 6-benzyladenine (BA) and 1 mg/l 1-naphthaleneacetic acid (NAA) in an agar system and also in two different liquid systems: stationary and agitated. Liquid cultures were grown in batch (30 and 60 days) and fed-batch modes. In the methanolic extracts from lyophilized biomasses and in the media, quantification of fourteen dibenzocyclooctadiene lignans identified based on co-chromatography with authentic standards using high-performance liquid chromatography with diode array detection (HPLC-DAD) and/or liquid chromatography with diode array detection and electrospray ionization mass spectrometry (LC-DAD-ESI-MS) methods. For comparison purposes, phytochemical analyses were performed of lignans in the leaves and fruits of the parent plant. The main lignans detected in the biomass extracts from all the tested systems were schisandrin (max. 65.62 mg/100 g dry weight (DW)), angeloyl-/tigloylgomisin Q (max. 49.73 mg/100 g DW), deoxyschisandrin (max. 43.65 mg/100 g DW), and gomisin A (max. 34.36 mg/100 g DW). The highest total amounts of lignans in the two tested stationary systems were found in extracts from the biomass harvested after 30 days of batch cultivation: 237.86 mg/100 g DW and 274.65 mg/100 g DW, respectively. In the agitated culture, the total content reached a maximum value of 244.80 mg/100 g DW after 60 days of the fed-batch mode of cultivation. The lignans were not detected in the media. This is the first report which documents the potential usefulness of S. chinensis shoot cultures cultivated in liquid systems for practical purposes. PMID:26685855

  8. Optimization of ultrasound assisted dispersive liquid-liquid microextraction of six antidepressants in human plasma using experimental design.

    PubMed

    Fernández, P; Taboada, V; Regenjo, M; Morales, L; Alvarez, I; Carro, A M; Lorenzo, R A

    2016-05-30

    A simple Ultrasounds Assisted-Dispersive Liquid Liquid Microextraction (UA-DLLME) method is presented for the simultaneous determination of six second-generation antidepressants in plasma by Ultra Performance Liquid Chromatography with Photodiode Array Detector (UPLC-PDA). The main factors that potentially affect to DLLME were optimized by a screening design followed by a response surface design and desirability functions. The optimal conditions were 2.5mL of acetonitrile as dispersant solvent, 0.2mL of chloroform as extractant solvent, 3min of ultrasounds stirring and extraction pH 9.8.Under optimized conditions, the UPLC-PDA method showed good separation of antidepressants in 2.5min and good linearity in the range of 0.02-4μgmL(-1), with determination coefficients higher than 0.998. The limits of detection were in the range 4-5ngmL(-1). The method precision (n=5) was evaluated showing relative standard deviations (RSD) lower than 8.1% for all compounds. The average recoveries ranged from 92.5% for fluoxetine to 110% for mirtazapine. The applicability of DLLME/UPLC-PDA was successfully tested in twenty nine plasma samples from antidepressant consumers. Real samples were analyzed by the proposed method and the results were successfully submitted to comparison with those obtained by a Liquid Liquid Extraction-Gas Chromatography - Mass Spectrometry (LLE-GC-MS) method. The results confirmed the presence of venlafaxine in most cases (19 cases), followed by sertraline (3 cases) and fluoxetine (3 cases) at concentrations below toxic levels. PMID:26955756

  9. Optimization of culture conditions for Gardnerella vaginalis biofilm formation.

    PubMed

    Machado, Daniela; Palmeira-de-Oliveira, Ana; Cerca, Nuno

    2015-11-01

    Bacterial vaginosis is the leading vaginal disorder in women in reproductive age. Although bacterial vaginosis is related with presence of a biofilm composed predominantly by Gardnerella vaginalis, there has not been a detailed information addressing the environmental conditions that influence the biofilm formation of this bacterial species. Here, we evaluated the influence of some common culture conditions on G. vaginalis biofilm formation, namely inoculum concentration, incubation period, feeding conditions and culture medium composition. Our results showed that culture conditions strongly influenced G. vaginalis biofilm formation and that biofilm formation was enhanced when starting the culture with a higher inoculum, using a fed-batch system and supplementing the growth medium with maltose. PMID:26381661

  10. Optimal 3-D culture of primary articular chondrocytes for use in the Rotating Wall Vessel Bioreactor

    PubMed Central

    Mellor, Liliana F.; Baker, Travis L.; Brown, Raquel J.; Catlin, Lindsey W.; Oxford, Julia Thom

    2014-01-01

    INTRODUCTION Reliable culturing methods for primary articular chondrocytes are essential to study the effects of loading and unloading on joint tissue at the cellular level. Due to the limited proliferation capacity of primary chondrocytes and their tendency to dedifferentiate in conventional culture conditions, long-term culturing conditions of primary chondrocytes can be challenging. The goal of this study was to develop a suspension culturing technique that not only would retain the cellular morphology but also maintain gene expression characteristics of primary articular chondrocytes. METHODS Three-dimensional culturing methods were compared and optimized for primary articular chondrocytes in the rotating wall vessel bioreactor, which changes the mechanical culture conditions to provide a form of suspension culture optimized for low shear and turbulence. We performed gene expression analysis and morphological characterization of cells cultured in alginate beads, Cytopore-2 microcarriers, primary monolayer culture, and passaged monolayer cultures using reverse transcription-PCR and laser scanning confocal microscopy. RESULTS Primary chondrocytes grown on Cytopore-2 microcarriers maintained the phenotypical morphology and gene expression pattern observed in primary bovine articular chondrocytes, and retained these characteristics for up to 9 days. DISCUSSION Our results provide a novel and alternative culturing technique for primary chondrocytes suitable for studies that require suspension such as those using the rotating wall vessel bioreactor. In addition, we provide an alternative culturing technique for primary chondrocytes that can impact future mechanistic studies of osteoarthritis progression, treatments for cartilage damage and repair, and cartilage tissue engineering. PMID:25199120

  11. Transcriptomic Analysis of Liquid Non-Sporulating Streptomyces coelicolor Cultures Demonstrates the Existence of a Complex Differentiation Comparable to That Occurring in Solid Sporulating Cultures

    PubMed Central

    Yagüe, Paula; Rodríguez-García, Antonio; López-García, María Teresa; Rioseras, Beatriz; Martín, Juan Francisco; Sánchez, Jesús; Manteca, Angel

    2014-01-01

    Streptomyces species produce many clinically relevant secondary metabolites and exhibit a complex development that includes hyphal differentiation and sporulation in solid cultures. Industrial fermentations are usually performed in liquid cultures, conditions in which Streptomyces strains generally do not sporulate, and it was traditionally assumed that no differentiation took place. The aim of this work was to compare the transcriptomes of S. coelicolor growing in liquid and solid cultures, deepening the knowledge of Streptomyces differentiation. Microarrays demonstrated that gene expression in liquid and solid cultures were comparable and data indicated that physiological differentiation was similar for both conditions. Eighty-six percent of all transcripts showed similar abundances in liquid and solid cultures, such as those involved in the biosynthesis of actinorhodin (actVA, actII-4) and undecylprodigiosin (redF); activation of secondary metabolism (absR1, ndsA); genes regulating hydrophobic cover formation (aerial mycelium) (bldB, bldC, bldM, bldN, sapA, chpC, chpD, chpE, chpH, ramA, ramC, ramS); and even some genes regulating early stages of sporulation (wblA, whiG, whiH, whiJ). The two most important differences between transcriptomes from liquid and solid cultures were: first, genes related to secondary metabolite biosynthesis (CDA, CPK, coelichelin, desferrioxamine clusters) were highly up-regulated in liquid but not in solid cultures; and second, genes involved in the final stages of hydrophobic cover/spore maturation (chpF, rdlA, whiE, sfr) were up-regulated in solid but not in liquid cultures. New information was also provided for several non-characterized genes differentially expressed in liquid and solid cultures which might be regulating, at least in part, the metabolic and developmental differences observed between liquid and solid cultures. PMID:24466012

  12. Optimization of Buffalo (Bubalus bubalis) Embryonic Stem Cell Culture System

    PubMed Central

    Zandi, Mohammad; Muzaffar, Musharifa; Shah, Syed Mohmad; Kumar Singh, Manoj; Palta, Prabhat; Kumar Singla, Suresh; Manik, Radheysham; Chauhan, Manmohan Singh

    2015-01-01

    Objective In order to retain an undifferentiated pluripotent state, embryonic stem (ES) cells have to be cultured on feeder cell layers. However, use of feeder layers limits stem cell research, since experimental data may result from a combined ES cell and feeder cell response to various stimuli. Materials and Methods In this experimental study, a buffalo ES cell line was established from in vitro derived blastocysts and characterized by the Alkaline phosphatase (AP) and immunoflourescence staining of various pluripotency markers. We examined the effect of various factors like fibroblast growth factor 2 (FGF-2), leukemia inhibitory factor (LIF) and Y-27632 to support the growth and maintenance of bubaline ES cells on gelatin coated dishes, in order to establish feeder free culture systems. We also analyzed the effect of feeder-conditioned media on stem cell growth in gelatin based cultures both in the presence as well as in the absence of the growth factors. Results The results showed that Y-27632, in the presence of FGF-2 and LIF, resulted in higher colony growth and increased expression of Nanog gene. Feeder-Conditioned Medium resulted in a significant increase in growth of buffalo ES cells on gelatin coated plates, however, feeder layer based cultures produced better results than gelatin based cultures. Feeder layers from buffalo fetal fibroblast cells can support buffalo ES cells for more than two years. Conclusion We developed a feeder free culture system that can maintain buffalo ES cells in the short term, as well as feeder layer based culture that can support the long term maintenance of buffalo ES cells. PMID:26199905

  13. Optimizing the performance of a solar liquid piston pump

    NASA Astrophysics Data System (ADS)

    Murphy, C. L.

    Utilization of solar energy for pumping water for irrigation or storage is discussed. Oscillations of a Freon 113 liquid column are generated in a working tube when a continuous flow of hot water, and cooling water, are supplied to heated and cooling coils located in the tube. The oscillations are converted into a pump (SLPP) model exhibited self starting, stable operation over a wide range of conditions, provides the inlet hot water heat source and inlet cooling water heat sink are above and below the critical values for stalling at a given pump head. The operation of the SLPP model, is primarily affected by the heating coil position within the working tube, and the geometries of the inlet and outlet water tubes.

  14. Production of microsclerotia of the entomopathogenic fungus Metarhizium anisopliae in liquid culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of this study was the development of a liquid culture method for producing stable, infective propagules of the entomopathogenic fungus Metarhizium anisopliae for control of soil-dwelling insect pests. Three strains of M. anisopliae, F52, TM109, and MA1200, were evaluated using aerated, liq...

  15. Optimal Mixing Rate in Linear Solvent Strength Gradient Liquid Chromatography.

    PubMed

    Blumberg, Leonid M; Desmet, Gert

    2016-02-16

    The mixing rate (Rϕ) is the temporal rate of increase in the solvent strength in gradient LC. The optimal Rϕ (Rϕ,Opt) for a gradient analysis is the one at which a required separation capacity and peak capacity of the analysis are obtained in the shortest time. The Rϕ,Opt of LSS (linear solvent strength) gradient LC is found in dimensionless form (rϕ,Opt) expressing Rϕ,Opt in units of hold-up time (t0) and characteristic strength-constant (Φchar). Previously unknown effect of the gradient band compression on the peak capacity is taken into account. The rϕ,Opt depends on the solvent composition range covered by the mixing ramp and on the available pressure. A default rϕ at which the analysis time is contained within 30% margin of its minimum at rϕ,Opt for a broad range of conditions is proposed. As an example, the recommended default for small-molecule samples is 5% increase in the solvent strength per each t0-long increment in time. At this rate, approximately 0.2√N units of peak capacity are generated per each 10% solvent strength increment. The effect of a column kinetic optimization is also evaluated. PMID:26756262

  16. Optimizing a culture medium for biomass and phenolic compounds production using Ganoderma lucidum

    PubMed Central

    Zárate-Chaves, Carlos Andrés; Romero-Rodríguez, María Camila; Niño-Arias, Fabián Camilo; Robles-Camargo, Jorge; Linares-Linares, Melva; Rodríguez-Bocanegra, María Ximena; Gutiérrez-Rojas, Ivonne

    2013-01-01

    The present work was aimed at optimizing a culture medium for biomass production and phenolic compounds by using Ganoderma lucidum. The culture was optimized in two stages; a Plackett-Burman design was used in the first one for identifying key components in the medium and a central composite design was used in the second one for optimizing their concentration. Both responses (biomass and phenolic compounds) were simultaneously optimized by the latter methodology regarding desirability, and the optimal concentrations obtained were 50.00 g/L sucrose, 13.29 g/L yeast extract and 2.99 g/L olive oil. Maximum biomass production identified in these optimal conditions was 9.5 g/L and that for phenolic compounds was 0.0452 g/L, this being 100% better than that obtained in the media usually used in the laboratory. Similar patterns regarding chemical characterization and biological activity towards Aspergillus sp., from both fruiting body and mycelium-derived secondary metabolites and extracts obtained in the proposed medium were observed. It was shown that such statistical methodologies are useful for optimizing fermentation and, in the specific case of G. lucidum, optimizing processes for its production and its metabolites in submerged culture as an alternative to traditional culture. PMID:24159308

  17. Effects of selenium and light wavelengths on liquid culture of Cordyceps militaris Link.

    PubMed

    Dong, J Z; Liu, M R; Lei, C; Zheng, X J; Wang, Y

    2012-04-01

    To investigate the effects of selenium and light wavelengths on the growth of liquid-cultured Cordyceps militaris and the main active components' accumulation, culture conditions as selenium selenite concentrations and light of different wavelengths were studied. The results are: adenosine accumulation proved to be significantly selenium dependent (R(2) = 0.9403) and cordycepin contents were determined to be not significantly selenium dependent (R(2) = 0.3845) but significantly enhanced by selenium except for 20 ppm; there were significant differences in cordycepin contents, adenosine contents, and mycelium growth caused by light wavelengths: cordycepin, blue light > pink light > daylight, darkness, red light; adenosine, red light > pink light, darkness, daylight, blue light; and mycelium growth, red light > pink light, darkness, daylight > blue light. In conclusion, light wavelength had a significant influence on production of mycelia, adenosine, and cordycepin, so lightening wavelength should be changed according to target products in the liquid culture of C. militaris. PMID:22434354

  18. Community structure and antibiotic production of Streptomyces nodosus bioreactors cultured in liquid environments

    PubMed Central

    Pereira, Tanya; Nikodinovic, Jasmina; Nakazono, Chojin; Dennis, Gary R.; Barrow, Kevin D.; Chuck, Jo‐Anne

    2008-01-01

    Summary Immobilized bacteria are being assessed by industry for drug delivery, novel fermentation systems and the protection of organisms in harsh environments. Alginate bioreactors containing Streptomyces nodosus were examined for community structure, cell viability and amphotericin production under different growth conditions. When cell proliferation was encouraged, substrate hyphae were found inside the alginate matrix and within multicellular projections on the surface of the capsule. The periphery of these projections had erect and branched hyphae, morphologically identical to aerial hyphae. Antibiotic production from immobilized organisms was assessed using conditioned culture medium to eliminate the emergence of a free‐dwelling population. These organisms sporulated with reduced antibiotic production compared with free‐dwelling cultures. The commitment to sporulate was independent of a surface but dependent on community size and nutritional status. This is the first report of the sporulation of S. nodosus in liquid cultures and description of the multicellular community the organism adopts at a solid–liquid interface. PMID:21261857

  19. Rapid Mycobacterial Liquid Culture-Screening Method for Mycobacterium avium Complex Based on Secreted Antigen-Capture Enzyme-Linked Immunosorbent Assay▿

    PubMed Central

    Shin, Sung Jae; Anklam, Kelly; Manning, Elizabeth J. B.; Collins, Michael T.

    2009-01-01

    Sensors in automated liquid culture systems for mycobacteria, such as MGIT, BacT/Alert 3D, and Trek ESP II, flag growth of any type of bacteria; a positive signal does not mean that the target mycobacteria are present. All signal-positive cultures thus require additional and often laborious testing. An immunoassay was developed to screen liquid mycobacterial cultures for evidence of Mycobacterium avium complex (MAC). The method, called the MAC-enzyme-linked immunosorbent assay (ELISA), relies on detection of MAC-specific secreted antigens in liquid culture. Secreted MAC antigens were captured by the MAC-ELISA with polyclonal anti- Mycobacterium avium subsp. paratuberculosis chicken immunoglobulin Y (IgY), detected using rabbit anti-MAC IgG, and then revealed using horseradish peroxidase-conjugated goat anti-rabbit IgG. When the MAC-ELISA was evaluated using pure cultures of known mycobacterial (n = 75) and nonmycobacterial (n = 17) organisms, no false-positive or false-negative MAC-ELISA results were found. By receiver operator characteristic (ROC) analysis of 1,275 previously identified clinical isolates, at the assay optimal cutoff the diagnostic sensitivity and specificity of the MAC-ELISA were 92.6% (95% confidence interval [95% CI], 90.3 to 94.5) and 99.9% (95% CI, 99.2 to 100), respectively, with an area under the ROC curve of 0.992. Prospective evaluation of the MAC-ELISA with an additional 652 clinical samples inoculated into MGIT ParaTB medium and signaling positive per the manufacturer's instructions found that the MAC-ELISA was effective in determining those cultures that actually contained MAC species and warranting the resources required to identify the organism by PCR. Of these 652 MGIT-positive cultures, the MAC-ELISA correctly identified 96.8% (of 219 MAC-ELISA-positive cultures) as truly containing MAC mycobacteria, based on PCR or high-performance liquid chromatography (HPLC) as reference tests. Only 6 of 433 MGIT signal-positive cultures (1

  20. Optimization of screening for radioactivity in urine by liquid scintillation.

    SciTech Connect

    Shanks, Sonoya Toyoko; Reese, Robert P.; Preston, Rose T.

    2007-08-01

    Numerous events have or could have resulted in the inadvertent uptake of radionuclides by fairly large populations. Should a population receive an uptake, valuable information could be obtained by using liquid scintillation counting (LSC) techniques to quickly screen urine from a sample of the affected population. This study investigates such LSC parameters as discrimination, quench, volume, and count time to yield guidelines for analyzing urine in an emergency situation. Through analyzing variations of the volume and their relationships to the minimum detectable activity (MDA), the optimum ratio of sample size to scintillating chemical cocktail was found to be 1:3. Using this optimum volume size, the alpha MDA varied from 2100 pCi/L for a 30-second count time to 35 pCi/L for a 1000-minute count time. The typical count time used by the Sandia National Laboratories Radiation Protection Sample Diagnostics program is 30 minutes, which yields an alpha MDA of 200 pCi/L. Because MDA is inversely proportional to the square root of the count time, count time can be reduced in an emergency situation to achieve the desired MDA or response time. Note that approximately 25% of the response time is used to prepare the samples and complete the associated paperwork. It was also found that if the nuclide of interest is an unknown, pregenerated discriminator settings and efficiency calibrations can be used to produce an activity value within a factor of two, which is acceptable for a screening method.

  1. Designing & Optimizing a Moving Magnet Pump for Liquid Sodium Systems

    NASA Astrophysics Data System (ADS)

    Hvasta, Michael G.

    Advanced materials such as NF-616, NF-709, HT-UPS, and silicon carbide (SiC) have greater strength than traditional structural materials such as 316-SS. Thus, using these high-strength materials to build sodium-cooled fast reactors (SFRs) could potentially reduce construction costs by lessening the required amount of material, and increase the efficiency of electromagnetic pumps by limiting ohmic heating within the pump duct walls. However, information pertaining to the sodium-compatibility of these alloys and ceramics is very sparse. Therefore, two separate test facilities were built to study the impact of both static and dynamic sodium corrosion The dynamic test facility enabled sodium corrosion to be studied under prototypic SFR operating conditions (T = 500 [C], V = 9.35 [m/s], CO = 2-3 [wppm]). The oxygen concentration, CO, within the dynamic test facility was maintained using a cold trap and measured with a plugging meter. The flow rate of the sodium was measured using a calibrated electromagnetic flowmeter. A moving magnet pump (MMP) was used to move the liquid sodium past the corrosion samples at a high velocity. Using newly developed theory, it was found that MMP performance could be accurately modeled and predicted for a wide variety of pump configurations.

  2. The Benefits of Social Influence in Optimized Cultural Markets

    PubMed Central

    Abeliuk, Andrés; Berbeglia, Gerardo; Cebrian, Manuel; Van Hentenryck, Pascal

    2015-01-01

    Social influence has been shown to create significant unpredictability in cultural markets, providing one potential explanation why experts routinely fail at predicting commercial success of cultural products. As a result, social influence is often presented in a negative light. Here, we show the benefits of social influence for cultural markets. We present a policy that uses product quality, appeal, position bias and social influence to maximize expected profits in the market. Our computational experiments show that our profit-maximizing policy leverages social influence to produce significant performance benefits for the market, while our theoretical analysis proves that our policy outperforms in expectation any policy not displaying social signals. Our results contrast with earlier work which focused on showing the unpredictability and inequalities created by social influence. Not only do we show for the first time that, under our policy, dynamically showing consumers positive social signals increases the expected profit of the seller in cultural markets. We also show that, in reasonable settings, our profit-maximizing policy does not introduce significant unpredictability and identifies “blockbusters”. Overall, these results shed new light on the nature of social influence and how it can be leveraged for the benefits of the market. PMID:25831093

  3. The benefits of social influence in optimized cultural markets.

    PubMed

    Abeliuk, Andrés; Berbeglia, Gerardo; Cebrian, Manuel; Van Hentenryck, Pascal

    2015-01-01

    Social influence has been shown to create significant unpredictability in cultural markets, providing one potential explanation why experts routinely fail at predicting commercial success of cultural products. As a result, social influence is often presented in a negative light. Here, we show the benefits of social influence for cultural markets. We present a policy that uses product quality, appeal, position bias and social influence to maximize expected profits in the market. Our computational experiments show that our profit-maximizing policy leverages social influence to produce significant performance benefits for the market, while our theoretical analysis proves that our policy outperforms in expectation any policy not displaying social signals. Our results contrast with earlier work which focused on showing the unpredictability and inequalities created by social influence. Not only do we show for the first time that, under our policy, dynamically showing consumers positive social signals increases the expected profit of the seller in cultural markets. We also show that, in reasonable settings, our profit-maximizing policy does not introduce significant unpredictability and identifies "blockbusters". Overall, these results shed new light on the nature of social influence and how it can be leveraged for the benefits of the market. PMID:25831093

  4. Optimization of extraction of phenolic acids from a vegetable waste product using a pressurized liquid extractor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato tubers are eaten worldwide for their nutritional value, but potato peels are often disposed as waste. This study identified the phenolic acids content in potato peels, tuber, and developed an optimized method for extraction of phenolic acids from potato peels using a pressurized liquid extrac...

  5. Theoretical modeling of optimal focusing conditions using laser-induced breakdown spectroscopy in liquid jets.

    PubMed

    Yaroshchyk, Pavel; Morrison, Richard J S; Body, Doug; Chadwick, Bruce L

    2004-11-01

    Optimal conditions are determined for laser-induced breakdown spectroscopy in liquid jets by investigating laser de-focusing and laser energy variation in aqueous liquid jets containing dilute levels of calcium chloride. It has been found that the atomic emission shows a strong correlation with both laser pulse energy and focal position. The data cannot be rationalized on the basis of electron density or ionization temperature changes alone, but rather it requires the additional consideration of the volume of the liquid sample interacting with the laser and that portion of the volume which is above the threshold energy for plasma formation. A moving breakdown model has been applied to the plasma formation in the jet to calculate the amount of sample ablated with sufficient energy for plasma formation, which models well the observed results and allows prediction of optimal focusing conditions for a given laser energy. PMID:18070410

  6. Validated Liquid Culture Monitoring System for Lifespan Extension of Caenorhabditis elegans through Genetic and Dietary Manipulations.

    PubMed

    Win, Myat Thu Thu; Yamamoto, Yasuhiko; Munesue, Seiichi; Han, Dong; Harada, Shin-Ichi; Yamamoto, Hiroshi

    2013-08-01

    Nutritional and genetic factors influence aging and life expectancy. The reduction of food intake without malnutrition, referred to caloric restriction (CR), has been shown to increase lifespan in a wide variety of species. The nematode Caenorhabditis elegans (C. elegans) is one of the principle models with which to study the biology of aging and search for anti-aging compounds. In this study, we validated and optimized a high-throughput liquid culture system to monitor C. elegans lifespan with minimized mechanical stress. We used alive and ultraviolet (UV)-killed Escherichia coli (E. coli) OP50 at 10(8) or 10(9) colony-forming units (cfu)/ml to feed Bristol N2 wild-type (WT) and mutant worms of a well-characterized insulin/insulin-like growth factor signaling (ILS) pathway: the insulin receptor homolog daf-2 (e1370), phosphatidylinositol 3-kinase age-1 (hx546), and transcriptional factor FOXO homolog daf-16 (mu86 and mgDf50). Compared with alive E. coli at 10(9) cfu/ml, supplementations of alive E. coli at 10(8) cfu/ml or UV-killed E. coli at 10(9) cfu/ml dramatically prolonged lifespan in WT and age-1 mutants, and to a lesser extent, in daf-2 and daf-16 mutants, suggesting that signaling pathways in CR and ILS do not overlap fully. Feeding 10(8) cfu/ml UV-killed E. coli, which led to maximally saturated longevity in WT and daf-2 mutant, can prolonged lifespan in age-1, but not daf-16, mutants. This approach will be useful for investigating the biology of aging, physiological responses and gene functions under CR conditions and also for screening pharmacologic compounds to extend lifespan or affect other biologic processes. PMID:23936742

  7. Technique for the optimization of the powerhead configuration and performance of liquid rocket engines

    NASA Astrophysics Data System (ADS)

    St. Germain, Brad David

    The development and optimization of liquid rocket engines is an integral part of space vehicle design, since most Earth-to-orbit launch vehicles to date have used liquid rockets as their main propulsion system. Rocket engine design tools range in fidelity from very simple conceptual level tools to full computational fluid dynamics (CFD) simulations. The level of fidelity of interest in this research is a design tool that determines engine thrust and specific impulse as well as models the powerhead of the engine. This is the highest level of fidelity applicable to a conceptual level design environment where faster running analyses are desired. The optimization of liquid rocket engines using a powerhead analysis tool is a difficult problem, because it involves both continuous and discrete inputs as well as a nonlinear design space. Example continuous inputs are the main combustion chamber pressure, nozzle area ratio, engine mixture ratio, and desired thrust. Example discrete variable inputs are the engine cycle (staged-combustion, gas generator, etc.), fuel/oxidizer combination, and engine material choices. Nonlinear optimization problems involving both continuous and discrete inputs are referred to as Mixed-Integer Nonlinear Programming (MINLP) problems. Many methods exist in literature for solving MINLP problems; however none are applicable for this research. All of the existing MINLP methods require the relaxation of the discrete variables as part of their analysis procedure. This means that the discrete choices must be evaluated at non-discrete values. This is not possible with an engine powerhead design code. Therefore, a new optimization method was developed that uses modified response surface equations to provide lower bounds of the continuous design space for each unique discrete variable combination. These lower bounds are then used to efficiently solve the optimization problem. The new optimization procedure was used to find optimal rocket engine designs

  8. A Microfluidic Cell Co-Culture Platform with a Liquid Fluorocarbon Separator

    PubMed Central

    Brewer, Bryson M.; Shi, Mingjian; Edd, Jon F.; Webb, Donna J.; Li, Deyu

    2014-01-01

    A microfluidic cell co-culture platform that uses a liquid fluorocarbon oil barrier to separate cells into different culture chambers has been developed. Characterization indicates that the oil barrier could be effective for multiple days, and a maximum pressure difference between the oil barrier and aqueous media in the cell culture chamber could be as large as ∼3.43 kPa before the oil barrier fails. Biological applications have been demonstrated with the separate transfection of two groups of primary hippocampal neurons with two different fluorescent proteins and subsequent observation of synaptic contacts between the neurons. In addition, the quality of the fluidic seal provided by the oil barrier is shown to be greater than that of an alternative solid-PDMS valve barrier design by testing the ability of each device to block low molecular weight CellTracker dyes used to stain cells in the culture chambers. PMID:24420386

  9. Optimization of Aqueous Biphasic Tumor Spheroid Microtechnology for Anti-Cancer Drug Testing in 3D Culture

    PubMed Central

    Lemmo, Stephanie; Atefi, Ehsan; Luker, Gary D.; Tavana, Hossein

    2014-01-01

    Tumor spheroids are three-dimensional clusters of cancer cells that exhibit characteristics of poorly perfused tumors and hence present a relevant model for testing the efficacy of anti-cancer compounds. The use of spheroids for drug screening is hindered by technological complexities for high throughput generation of consistent size spheroids individually addressable by drug compounds. Here we present and optimize a simple spheroid technology based on the use of an aqueous two-phase system. Cancer cells confined in a drop of the denser aqueous dextran phase are robotically dispensed into a microwell containing the immersion aqueous polyethylene glycol phase. Cells remain within the drop and form a viable spheroid, without a need for any external stimuli. The size of resulting spheroids is sensitive to volume variations of dispensed drops from the air displacement pipetting head of a commercial liquid handling robot. Therefore, we parametrically optimize the process of dispensing of dextran phase drops. For a given cell density, this optimization reproducibly generates consistent size spheroids in standard 96-well plates. In addition, we evaluate the use of a commercial biochemical assay to examine cellular viability of cancer cell spheroids. Spheroids show a dose-dependent response to cisplatin similar to a monolayer culture. However unlike their two-dimensional counterpart, spheroids exhibit resistance to paclitaxel treatment. This technology, which uses only commercially-available reagents and equipment, can potentially expedite anti-cancer drug discovery. Although the use of robotics makes the ATPS spheroid technology particularly useful for drug screening applications, this approach is compatible with simpler liquid handling techniques such as manual micropipetting and offers a straightforward method of 3D cell culture in research laboratories. PMID:25221631

  10. Irradiance optimization of outdoor microalgal cultures using solar tracked photobioreactors.

    PubMed

    Hindersin, Stefan; Leupold, Marco; Kerner, Martin; Hanelt, Dieter

    2013-03-01

    Photosynthetic activity and temperature regulation of microalgal cultures (Chlorella vulgaris and Scenedesmus obliquus) under different irradiances controlled by a solar tracker and different cell densities were studied in outdoor flat panel photobioreactors. An automated process control unit regulated light and temperature as well as pH value and nutrient concentration in the culture medium. CO2 was supplied using flue gas from an attached combined block heat and power station. Photosynthetic activity was determined by pulse amplitude modulation fluorometry. Compared to the horizontal irradiance of 55 mol photons m(-2) d(-1) on a clear day, the solar tracked photobioreactors enabled a decrease and increase in the overall light absorption from 19 mol photons m(-2) d(-1) (by rotation out of direct irradiance) to 79 mol photons m(-2) d(-1) (following the position of the sun). At biomass concentrations below 1.1 g cell dry weight (CDW) L(-1), photoinhibition of about 35 % occurred at irradiances of ≥1,000 μmol photons m(-2) s(-1) photosynthetic active radiation (PAR). Using solar tracked photobioreactors, photoinhibition can be reduced and at optimum biomass concentration (≥2.3 g CDW L(-1)), the culture was irradiated up to 2,000 μmol photons m(-2) s(-1) to overcome light limitation with biomass yields of 0.7 g CDW mol photons(-1) and high photosynthetic activities indicated by an effective quantum yield of 0.68 and a maximum quantum yield of 0.80 (F v/F m). Overheating due to high irradiance was avoided by turning the PBR out of the sun or using a cooling system, which maintained the temperature close to the species-specific temperature optima. PMID:22847362

  11. Rapid presumptive identification of anaerobes in blood cultures by gas-liquid chromatography.

    PubMed Central

    Sondag, J E; Ali, M; Murray, P R

    1980-01-01

    Production of volatile and nonvolatile metabolic acids in blood culture broths by aerobic, facultative anaerobic, and obligate anaerobic bacteria was analyzed by gas-liquid chromatography. Anaerobic blood culture isolates were presumptively identified by the qualitative analysis of volatile fatty acids. Isolates, with a characteristic Gram stain reaction and cellular morphology, were identified by the following acid patterns: Bacteriodes fragilis group with acetic and propionic acids; Fusobacterium with acetic, butyric, and usually propionic acids; Veillonella with acetic and propionic acids; gram-positive cocci with acetic and butyric acids; and Clostridium with acetic and butyric acids. PMID:7381002

  12. A phenomenological description of an incoherent Fermi liquid near optimal doping in high Tc cuprates.

    PubMed

    Kim, Ki-Seok; Kim, Hyun-Chul

    2011-12-14

    Marginal Fermi-liquid physics near optimal doping in high T(c) cuprates has been explained within two competing scenarios such as the spin-fluctuation theory based on an itinerant picture and the slave-particle approach based on a localized picture. In this study we propose an alternative scenario for the anomalous transport within the context of the slave-particle approach. Although the marginal Fermi-liquid phenomenology was interpreted previously within deconfinement of the compact gauge theory, referred to as the strange metal phase, we start from confinement, introducing the Polyakov loop parameter into an SU(2) gauge theory formulation of the t-J model. The Polyakov loop parameter gives rise to incoherent electrons through the confinement of spinons and holons, which result from huge imaginary parts of self-energy corrections for spinons and holons. This confinement scenario serves a novel mechanism for the marginal Fermi-liquid transport in the respect that the scattering source has nothing to do with symmetry breaking. Furthermore, the incoherent Fermi-liquid state evolves into the Fermi-liquid phase through crossover instead of an artificial second-order transition as temperature is lowered, where the crossover phenomenon does not result from the Anderson-Higgs mechanism but originates from an energy scale in the holon sector. We fit experimental data for the electrical resistivity around the optimal doping and find a reasonable match between our theory and the experiment. PMID:22101360

  13. Monitoring utilizations of amino acids and vitamins in culture media and Chinese hamster ovary cells by liquid chromatography tandem mass spectrometry.

    PubMed

    Qiu, Jinshu; Chan, Pik Kay; Bondarenko, Pavel V

    2016-01-01

    Monitoring amino acids and vitamins is important for understanding human health, food nutrition and the culture of mammalian cells used to produce therapeutic proteins in biotechnology. A method including ion pairing reversed-phase liquid chromatography with tandem mass spectrometry was developed and optimized to quantify 21 amino acids and 9 water-soluble vitamins in Chinese hamster ovary (CHO) cells and culture media. By optimizing the chromatographic separation, scan time, monitoring time window, and sample preparation procedure, and using isotopically labeled (13)C, (15)N and (2)H internal standards, low limits of quantitation (≤0.054 mg/L), good precision (<10%) and good accuracy (100±10%) were achieved for nearly all the 30 compounds. Applying this method to CHO cell extracts, statistically significant differences in the metabolite levels were measured between two cell lines originated from the same host, indicating differences in genetic makeup or metabolic activities and nutrient supply levels in the culture media. In a fed-batch process of manufacturing scale bioreactors, two distinguished trends for changes in amino acid concentrations were identified in response to feeding. Ten essential amino acids showed a zigzag pattern with maxima at the feeding days, and 9 non-essential amino acids displayed a smoothly changing profile as they were mainly products of cellular metabolism. Five of 9 vitamins accumulated continuously during the culture period, suggesting that they were fed in access. The method serves as an effective tool for the development and optimization of mammalian cell cultures. PMID:26355770

  14. Geometry optimization method versus predictive ability in QSPR modeling for ionic liquids.

    PubMed

    Rybinska, Anna; Sosnowska, Anita; Barycki, Maciej; Puzyn, Tomasz

    2016-02-01

    Computational techniques, such as Quantitative Structure-Property Relationship (QSPR) modeling, are very useful in predicting physicochemical properties of various chemicals. Building QSPR models requires calculating molecular descriptors and the proper choice of the geometry optimization method, which will be dedicated to specific structure of tested compounds. Herein, we examine the influence of the ionic liquids' (ILs) geometry optimization methods on the predictive ability of QSPR models by comparing three models. The models were developed based on the same experimental data on density collected for 66 ionic liquids, but with employing molecular descriptors calculated from molecular geometries optimized at three different levels of the theory, namely: (1) semi-empirical (PM7), (2) ab initio (HF/6-311+G*) and (3) density functional theory (B3LYP/6-311+G*). The model in which the descriptors were calculated by using ab initio HF/6-311+G* method indicated the best predictivity capabilities ([Formula: see text] = 0.87). However, PM7-based model has comparable values of quality parameters ([Formula: see text] = 0.84). Obtained results indicate that semi-empirical methods (faster and less expensive regarding CPU time) can be successfully employed to geometry optimization in QSPR studies for ionic liquids. PMID:26830600

  15. Dispositional optimism and physical wellbeing: the relevance of culture, gender, and socioeconomic status.

    PubMed

    Khallad, Yacoub

    2013-01-01

    The present study examined the relationship between dispositional optimism and physical wellbeing (as reflected in physical symptom reporting) in two groups of American and Jordanian college students. It also assessed moderation effects of culture, gender, and socioeconomic status (SES). Participants were administered a questionnaire consisting of items pertaining to dispositional optimism (as measured by the Revised Life Orientation Test, LOT-R) along with items assessing physical symptom reporting and sociodemographic factors (e.g., gender, socioeconomic status). The results revealed significant negative correlations between dispositional optimism and physical symptom reporting for both American and Jordanian participants, although the magnitude of the correlation for the American group was noticeably larger than that for the Jordanian group. The results also showed that women, especially Jordanians, were more likely than men to report physical symptoms. Among Jordanians, physical symptom reporting was more common among those of lower SES. No statistically significant differences in physical symptom reporting were found between American men and women or between the two cultural groups. Multiple regression analyses revealed no statistically significant interactions between optimism and cultural background, optimism and gender, or optimism and SES. Overall, the results suggest that optimism is the factor most predictive of physical symptom reporting, followed by SES and gender. These results corroborate previous findings on the relationship between dispositional optimism and physical wellbeing, and point to crosscultural differences in relationship patterns. These differences suggest that although personality characteristics such as optimism may play an important role in the physical wellbeing of both Western and non-Western groups, the influence of sociodemographic factors such as gender and SES and their interaction with cultural variables must not be overlooked

  16. Diamagnetic levitation enhances growth of liquid bacterial cultures by increasing oxygen availability.

    PubMed

    Dijkstra, Camelia E; Larkin, Oliver J; Anthony, Paul; Davey, Michael R; Eaves, Laurence; Rees, Catherine E D; Hill, Richard J A

    2011-03-01

    Diamagnetic levitation is a technique that uses a strong, spatially varying magnetic field to reproduce aspects of weightlessness, on the Earth. We used a superconducting magnet to levitate growing bacterial cultures for up to 18 h, to determine the effect of diamagnetic levitation on all phases of the bacterial growth cycle. We find that diamagnetic levitation increases the rate of population growth in a liquid culture and reduces the sedimentation rate of the cells. Further experiments and microarray gene analysis show that the increase in growth rate is owing to enhanced oxygen availability. We also demonstrate that the magnetic field that levitates the cells also induces convective stirring in the liquid. We present a simple theoretical model, showing how the paramagnetic force on dissolved oxygen can cause convection during the aerobic phases of bacterial growth. We propose that this convection enhances oxygen availability by transporting oxygen around the liquid culture. Since this process results from the strong magnetic field, it is not present in other weightless environments, e.g. in Earth orbit. Hence, these results are of significance and timely to researchers considering the use of diamagnetic levitation to explore effects of weightlessness on living organisms and on physical phenomena. PMID:20667843

  17. On-line optimal control for fed-batch culture of baker's yeast production

    SciTech Connect

    Wu, W.T.; Chen, K.C.; Chiou, H.W.

    1985-05-01

    A method of on-line optimal control for fed-batch culture of bakers yeast production is proposed. The feed rate is taken as the control variable. The specific growth rate of the yeast is the output variable and is determined from the balance equation of oxygen. A moving model is obtained by using the data from the feed rate and the specific growth rate. Based on the moving model, an optimal feed rate for fed-batch culture is then achieved. 11 references.

  18. Spore Yield and Microcycle Conidiation of Colletotrichum gloeosporioides in Liquid Culture

    PubMed Central

    Cascino, J. J.; Harris, R. F.; Smith, C. S.; Andrews, J. H.

    1990-01-01

    The effect of V8 juice concentration (5 to 40%, vol/vol), spore inoculum density (105 and 107 spores per ml), and liquid batch or fed-batch culture condition on mycelium and spore production by Colletotrichum gloeosporioides was evaluated. The amount of mycelium produced, the time required for initiation of sporulation following attainment of maximum mycelium, and the time for attainment of maximum spore concentration increased with increasing V8 juice concentration in batch culture. Cultures containing V8 juice at >10% achieved a similar spore density (apparent spore-carrying capacity) of about 0.8 mg of spores per ml (1 × 107 to 2 × 107 spores per ml) independent of inoculum density and V8 juice concentration. The relative spore yield decreased from a high of 64% of the total biomass for the low-inoculum 5% V8 culture, through 13% for the analogous 40% V8 culture, to a low of 2% for the high-inoculum 27% V8 culture. Fed-batch cultures were used to establish conditions of high spore density and low substrate availability but high substrate flux. The rate of addition of V8 juice was adjusted to approximate the rate of substrate utilization by the (increasing) biomass. The final spore concentration was about four times higher (3.0 mg of spores per ml) than the apparent spore-carrying capacity in batch culture. This high spore yield was obtained at the expense of greatly reduced mycelium, resulting in a high relative spore yield (62% of the total biomass). Microcycle conidiation occurred in the fed-batch but not batch systems. These data indicate that substrate-limited, fed-batch culture can be used to increase the amount and efficiency of spore production by C. gloeosporioides by maintaining microcycle conidiation conditions favoring allocation of nutrients to spore rather than mycelium production. PMID:16348245

  19. Optimization of liquid-liquid extraction of biosurfactants from corn steep liquor.

    PubMed

    Vecino, X; Barbosa-Pereira, L; Devesa-Rey, R; Cruz, J M; Moldes, A B

    2015-09-01

    In this work, the optimization of the operational conditions for the chloroform-based extraction of surface-active compounds from corn steep liquor (CSL) was carried out and the nutritional properties of the remnant aqueous phase (CSL-less biosurfactant) was evaluated as microbial fermentation medium. The optimal conditions to obtain biosurfactants from CSL were as follows: chloroform/CSL ratio 2 (v/v), 56 °C at extraction times >30 min. At the optima conditions, 100 % of biosurfactant extract can be obtained from CSL, obtaining 12.0 ± 0.5 g of biosurfactant extract/Kg of CSL. The critical micelle concentration (CMC) of the biosurfactant extract was 399.4 mg L(-1). This value is similar to the CMC of cetrimonium bromide (CTAB), a cationic surfactant used in the formulation of nanoparticles. The extraction of biosurfactant can be also carried out at room temperature although in this case, the extraction yield decreased about 15 %. The extraction of surface-active compounds from agroindustrial streams can suppose important advances for the bio-based surfactants industry. Biosurfactants obtained in this work are not only more eco-friendly than chemical detergents but also can be cost competitive with its chemical counterparts. Furthermore, after the extraction of surface-active compounds, CSL-less biosurfactant was found to be suitable as nutritional supplement for lactic acid bacteria, maintaining its nutritional properties in comparison with regular CSL. PMID:25911424

  20. Multi-residue method for determination of selected neonicotinoid insecticides in honey using optimized dispersive liquid-liquid microextraction combined with liquid chromatography-tandem mass spectrometry.

    PubMed

    Jovanov, Pavle; Guzsvány, Valéria; Franko, Mladen; Lazić, Sanja; Sakač, Marijana; Šarić, Bojana; Banjac, Vojislav

    2013-07-15

    The objective of this study was to develop analytical method based on optimized dispersive liquid-liquid microextraction (DLLME) as a pretreatment procedure combined with reversed phase liquid chromatographic separation on C18 column and isocratic elution for simultaneous MS/MS determination of selected neonicotinoid insecticides in honey. The LC-MS/MS parameters were optimized to unequivocally provide good chromatographic separation, low detection (LOD, 0.5-1.0 μg kg(-1)) and quantification (LOQ, 1.5-2.5 μg kg(-1)) limits for acetamiprid, clothianidin, thiamethoxam, imidacloprid, dinotefuran, thiacloprid and nitenpyram in honey samples. Using different types (chloroform, dichloromethane) and volumes of extraction (0.5-3.0 mL) and dispersive (acetonitrile; 0.0-1.0 mL) solvent and by mathematical modeling it was possible to establish the optimal sample preparation procedure. Matrix-matched calibration and blank honey sample spiked in the concentration range of LOQ-100.0 μg kg(-1) were used to compensate the matrix effect and to fulfill the requirements of SANCO/12495/2011 for the accuracy (R 74.3-113.9%) and precision (expressed in terms of repeatability (RSD 2.74-11.8%) and within-laboratory reproducibility (RSDs 6.64-16.2%)) of the proposed method. The rapid (retention times 1.5-9.9 min), sensitive and low solvent consumption procedure described in this work provides reliable, simultaneous, and quantitative method applicable for the routine laboratory analysis of seven neonicotinoid residues in real honey samples. PMID:23622535

  1. Genetic algorithm to optimize the design of main combustor and gas generator in liquid rocket engines

    NASA Astrophysics Data System (ADS)

    Son, Min; Ko, Sangho; Koo, Jaye

    2014-06-01

    A genetic algorithm was used to develop optimal design methods for the regenerative cooled combustor and fuel-rich gas generator of a liquid rocket engine. For the combustor design, a chemical equilibrium analysis was applied, and the profile was calculated using Rao's method. One-dimensional heat transfer was assumed along the profile, and cooling channels were designed. For the gas-generator design, non-equilibrium properties were derived from a counterflow analysis, and a vaporization model for the fuel droplet was adopted to calculate residence time. Finally, a genetic algorithm was adopted to optimize the designs. The combustor and gas generator were optimally designed for 30-tonf, 75-tonf, and 150-tonf engines. The optimized combustors demonstrated superior design characteristics when compared with previous non-optimized results. Wall temperatures at the nozzle throat were optimized to satisfy the requirement of 800 K, and specific impulses were maximized. In addition, the target turbine power and a burned-gas temperature of 1000 K were obtained from the optimized gas-generator design.

  2. Scalable 96-well Plate Based iPSC Culture and Production Using a Robotic Liquid Handling System

    PubMed Central

    Conway, Michael K.; Gerger, Michael J.; Balay, Erin E.; O'Connell, Rachel; Hanson, Seth; Daily, Neil J.; Wakatsuki, Tetsuro

    2015-01-01

    Continued advancement in pluripotent stem cell culture is closing the gap between bench and bedside for using these cells in regenerative medicine, drug discovery and safety testing. In order to produce stem cell derived biopharmaceutics and cells for tissue engineering and transplantation, a cost-effective cell-manufacturing technology is essential. Maintenance of pluripotency and stable performance of cells in downstream applications (e.g., cell differentiation) over time is paramount to large scale cell production. Yet that can be difficult to achieve especially if cells are cultured manually where the operator can introduce significant variability as well as be prohibitively expensive to scale-up. To enable high-throughput, large-scale stem cell production and remove operator influence novel stem cell culture protocols using a bench-top multi-channel liquid handling robot were developed that require minimal technician involvement or experience. With these protocols human induced pluripotent stem cells (iPSCs) were cultured in feeder-free conditions directly from a frozen stock and maintained in 96-well plates. Depending on cell line and desired scale-up rate, the operator can easily determine when to passage based on a series of images showing the optimal colony densities for splitting. Then the necessary reagents are prepared to perform a colony split to new plates without a centrifugation step. After 20 passages (~3 months), two iPSC lines maintained stable karyotypes, expressed stem cell markers, and differentiated into cardiomyocytes with high efficiency. The system can perform subsequent high-throughput screening of new differentiation protocols or genetic manipulation designed for 96-well plates. This technology will reduce the labor and technical burden to produce large numbers of identical stem cells for a myriad of applications. PMID:26068617

  3. Scalable 96-well Plate Based iPSC Culture and Production Using a Robotic Liquid Handling System.

    PubMed

    Conway, Michael K; Gerger, Michael J; Balay, Erin E; O'Connell, Rachel; Hanson, Seth; Daily, Neil J; Wakatsuki, Tetsuro

    2015-01-01

    Continued advancement in pluripotent stem cell culture is closing the gap between bench and bedside for using these cells in regenerative medicine, drug discovery and safety testing. In order to produce stem cell derived biopharmaceutics and cells for tissue engineering and transplantation, a cost-effective cell-manufacturing technology is essential. Maintenance of pluripotency and stable performance of cells in downstream applications (e.g., cell differentiation) over time is paramount to large scale cell production. Yet that can be difficult to achieve especially if cells are cultured manually where the operator can introduce significant variability as well as be prohibitively expensive to scale-up. To enable high-throughput, large-scale stem cell production and remove operator influence novel stem cell culture protocols using a bench-top multi-channel liquid handling robot were developed that require minimal technician involvement or experience. With these protocols human induced pluripotent stem cells (iPSCs) were cultured in feeder-free conditions directly from a frozen stock and maintained in 96-well plates. Depending on cell line and desired scale-up rate, the operator can easily determine when to passage based on a series of images showing the optimal colony densities for splitting. Then the necessary reagents are prepared to perform a colony split to new plates without a centrifugation step. After 20 passages (~3 months), two iPSC lines maintained stable karyotypes, expressed stem cell markers, and differentiated into cardiomyocytes with high efficiency. The system can perform subsequent high-throughput screening of new differentiation protocols or genetic manipulation designed for 96-well plates. This technology will reduce the labor and technical burden to produce large numbers of identical stem cells for a myriad of applications. PMID:26068617

  4. [Absence of mutagenic effect of Pseudomonas syringae pv. atrofaciens 9400 and Pantoea agglomerans P324 culture liquids].

    PubMed

    Bohdan, Iu M; Butsenko, L M; Pasichnyk, L A; Hvozdiak, R I

    2010-01-01

    The mutagenic activity of the culture liquids of phytopathogenic strain Pseudomonas syringae pv. atrofaciens 9400 and epiphytic strain Pantoea agglomerans P324 was studied in the Ames test and Allium cepa-test. In pro- and eucariotic test-systems no effect of the culture liquids of these bacteria on spontaneous mutations of Salmonella typhimurium TA98 and TA100 or chromosome aberrations in the cells of Allium cepa root apical meristem was found. PMID:20812509

  5. Barrier function of human keratinocyte cultures grown at the air-liquid interface.

    PubMed

    Mak, V H; Cumpstone, M B; Kennedy, A H; Harmon, C S; Guy, R H; Potts, R O

    1991-03-01

    Stratum corneum (SC), the outermost and least permeable layer of skin, is the major barrier to passive transepidermal water loss. In the research described in this paper, we have used human keratinocyte cultures, grown at the air-liquid (A/L) interface, to examine the relationship between epidermal differentiation (including SC formation) and barrier function. Histologically, the A/L culture showed several markers of complete differentiation, including the presence of well-organized and defined epidermal cell layers, keratohyalin granules, and a multilayered SC. The permeability of tritiated water through epidermal cultures, which had grown for 3 weeks at the A/L interface, was measured with a microdiffusion apparatus. The results of these experiments demonstrated that: a) the human keratinocyte cultures developed a substantial barrier (i.e., a multilayered SC) to water diffusion across the entire surface. If the relative humidity of the culturing environment was lowered from 100% to around 75%, the barrier was significantly improved; b) the differentiation promoter, 1.25-dihydroxy-vitamin-D3, increased the number of SC layers and reduced water permeation through the culture; c) the nature of the keratinocyte support matrix could be altered to improve the morphology as well as the barrier function of the epidermal cultures. Overall, the observations are consistent with the relationship that is believed to exist between SC intercellular lipid content and percutaneous penetration. Confirmation of this hypothesis will further the considerable potential of human keratinocyte A/L cultures as a valuable and relevant model in which to study drug absorption and metabolism. PMID:2002253

  6. Pyrazinamide resistance determined by liquid culture at low pH better correlates with genetic mutations in MDR tuberculosis isolates.

    PubMed

    Pang, Yu; Wang, Zhongdong; Zheng, Huiwen; Song, Yuanyuan; Wang, Yufeng; Zhao, Yanlin

    2015-12-01

    We detected the pyrazinamide (PZA) susceptibility of Mycobacterium tuberculosis strains in the Bactec MGIT 960 liquid medium with different pH values. Our results demonstrated that PZA resistance determined by liquid culture at pH 5.7 (94.9%) showed better correlation with genetic changes among multidrug-resistant M. tuberculosis isolates (P=0.001). PMID:26506283

  7. Rational approach to optimize cellulase mixtures for hydrolysis of regenerated cellulose containing residual ionic liquid.

    PubMed

    Engel, Philip; Krull, Susan; Seiferheld, Bianca; Spiess, Antje C

    2012-07-01

    For the efficient production of glucose for platform chemicals or biofuels, cellulosic biomass is pretreated and subsequently hydrolyzed with cellulases. Although ionic liquids (IL) are known to effectively pretreat cellulosic biomass, the hydrolysis of IL pretreated biomass has not been optimized so far. Here, we present a semi-empirical model to rationally optimize the hydrolysis of pretreated α-cellulose - regenerated from IL and containing residual IL from the pretreatment. First, the influence of the IL MMIM DMP on the individual cellulases endoglucanase I, cellobiohydrolase I and β-glucosidase was investigated. Second, an enzyme loading-dependent model was developed to describe kinetics for the individual cellulases and cellulase mixtures. Third, this model was used to optimize the cellulase mixture for the efficient hydrolysis of regenerated cellulose containing residual IL. Finally, we could significantly increase the initial hydrolysis rate in 10% (v/v) MMIM DMP by 49% and the sugar yield by 10% points. PMID:22100231

  8. Response surface methodology for the optimization of dispersive liquid-liquid microextraction of chloropropanols in human plasma.

    PubMed

    Gonzalez-Siso, Paula; Lorenzo, Rosa A; Regenjo, María; Fernández, Purificación; Carro, Antonia M

    2015-10-01

    Chloropropanols are processing toxicants with a potential risk to human health due to the increased intake of processed foods. A rapid and efficient method for the determination of three chloropropanols in human plasma was developed using ultrasound-assisted dispersive liquid-liquid microextraction. The method involved derivatization and extraction in one step followed by gas chromatography with tandem mass spectrometry analysis. Parameters affecting extraction, such as sample pH, ionic strength, type and volume of dispersive and extraction solvents were optimized by response surface methodology using a pentagonal design. The linear range of the method was 5-200 ng/mL for 1,3-dichloro-2-propanol, 10-200 ng/mL for 2,3-dichloro-2-propanol and 10-400 ng/mL for 3-chloropropane-1,2-diol with the determination coefficients between 0.9989 and 0.9997. The limits of detection were in the range of 0.3-3.2 ng/mL. The precision varied from 1.9 to 10% relative standard deviation (n = 9). The recovery of the method was between 91 and 101%. Advantages such as low consumption of organic solvents and short time of analysis make the method suitable for the biomonitoring of chloropropanols. PMID:26205350

  9. Approaches to Optimizing Animal Cell Culture Process: Substrate Metabolism Regulation and Protein Expression Improvement

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanxing

    Some high value proteins and vaccines for medical and veterinary applications by animal cell culture have an increasing market in China. In order to meet the demands of large-scale productions of proteins and vaccines, animal cell culture technology has been widely developed. In general, an animal cell culture process can be divided into two stages in a batch culture. In cell growth stage a high specific growth rate is expected to achieve a high cell density. In production stage a high specific production rate is stressed for the expression and secretion of qualified protein or replication of virus. It is always critical to maintain high cell viability in fed-batch and perfusion cultures. More concern has been focused on two points by the researchers in China. First, the cell metabolism of substrates is analyzed and the accumulation of toxic by-products is decreased through regulating cell metabolism in the culture process. Second, some important factors effecting protein expression are understood at the molecular level and the production ability of protein is improved. In pace with the rapid development of large-scale cell culture for the production of vaccines, antibodies and other recombinant proteins in China, the medium design and process optimization based on cell metabolism regulation and protein expression improvement will play an important role. The chapter outlines the main advances in metabolic regulation of cell and expression improvement of protein in animal cell culture in recent years.

  10. Optimized measurement of radium-226 concentration in liquid samples with radon-222 emanation.

    PubMed

    Perrier, Frédéric; Aupiais, Jean; Girault, Frédéric; Przylibski, Tadeusz A; Bouquerel, Hélène

    2016-06-01

    Measuring radium-226 concentration in liquid samples using radon-222 emanation remains competitive with techniques such as liquid scintillation, alpha or mass spectrometry. Indeed, we show that high-precision can be obtained without air circulation, using an optimal air to liquid volume ratio and moderate heating. Cost-effective and efficient measurement of radon concentration is achieved by scintillation flasks and sufficiently long counting times for signal and background. More than 400 such measurements were performed, including 39 dilution experiments, a successful blind measurement of six reference test solutions, and more than 110 repeated measurements. Under optimal conditions, uncertainties reach 5% for an activity concentration of 100 mBq L(-1) and 10% for 10 mBq L(-1). While the theoretical detection limit predicted by Monte Carlo simulation is around 3 mBq L(-1), a conservative experimental estimate is rather 5 mBq L(-1), corresponding to 0.14 fg g(-1). The method was applied to 47 natural waters, 51 commercial waters, and 17 wine samples, illustrating that it could be an option for liquids that cannot be easily measured by other methods. Counting of scintillation flasks can be done in remote locations in absence of electricity supply, using a solar panel. Thus, this portable method, which has demonstrated sufficient accuracy for numerous natural liquids, could be useful in geological and environmental problems, with the additional benefit that it can be applied in isolated locations and in circumstances when samples cannot be transported. PMID:26998570

  11. Biotite weathering and nutrient uptake by ectomycorrhizal fungus, Suillus tomentosus, in liquid-culture experiments

    NASA Astrophysics Data System (ADS)

    Balogh-Brunstad, Zsuzsanna; Kent Keller, C.; Thomas Dickinson, J.; Stevens, Forrest; Li, C. Y.; Bormann, Bernard T.

    2008-06-01

    Ectomycorrhiza-forming fungi (EMF) alter the nutrient-acquisition capabilities of vascular plants, and may play an important role in mineral weathering and the partitioning of products of weathering in soils under nutrient-limited conditions. In this study, we isolated the weathering function of Suillus tomentosus in liquid-cultures with biotite micas incubated at room temperature. We hypothesized that the fungus would accelerate weathering by hyphal attachment to biotite surfaces and transmission of nutrient cations via direct exchange into the fungal biomass. We combined a mass-balance approach with scanning electron microscopy (SEM) and atomic force microscopy (AFM) to estimate weathering rates and study dissolution features on biotite surfaces. Weathering of biotite flakes was about 2-3 orders of magnitude faster in shaken liquid-cultures with fungus compared to shaken controls without fungus, but with added inorganic acids. Adding fungus in nonshaken cultures caused a higher dissolution rate than in inorganic pH controls without fungus, but it was not significantly faster than organic pH controls without fungus. The K +, Mg 2+ and Fe 2+ from biotite were preferentially partitioned into fungal biomass in the shaken cultures, while in the nonshaken cultures, K + and Mg 2+ was lost from biomass and Fe 2+ bioaccumulated much less. Fungal hyphae attached to biotite surfaces, but no significant surface changes were detected by SEM. When cultures were shaken, the AFM images of basal planes appeared to be rougher and had abundant dissolution channels, but such channel development was minor in nonshaken conditions. Even under shaken conditions the channels only accounted for only 1/100 of the total dissolution rate of 2.7 × 10 -10 mol of biotite m -2 s -1. The results suggest that fungal weathering predominantly occurred not by attachment and direct transfer of nutrients via hyphae, but because of the acidification of the bulk liquid by organic acids, fungal

  12. Optimization and robustness analysis of hybridoma cell fed-batch cultures using the overflow metabolism model.

    PubMed

    Amribt, Z; Dewasme, L; Vande Wouwer, A; Bogaerts, Ph

    2014-08-01

    The maximization of biomass productivity in fed-batch cultures of hybridoma cells is analyzed based on the overflow metabolism model. Due to overflow metabolism, often attributed to limited oxygen capacity, lactate and ammonia are formed when the substrate concentrations (glucose and glutamine) are above a critical value, which results in a decrease in biomass productivity. Optimal feeding rate, on the one hand, for a single feed stream containing both glucose and glutamine and, on the other hand, for two separate feed streams of glucose and glutamine are determined using a Nelder-Mead simplex optimization algorithm. The optimal multi exponential feed rate trajectory improves the biomass productivity by 10 % as compared to the optimal single exponential feed rate. Moreover, this result is validated by the one obtained with the analytical approach in which glucose and glutamine are fed to the culture so as to control the hybridoma cells at the critical metabolic state, which allows maximizing the biomass productivity. The robustness analysis of optimal feeding profiles obtained with different optimization strategies is considered, first, with respect to parameter uncertainties and, finally, to model structure errors. PMID:24519722

  13. Pyrone and pyridone compounds in the liquid culture of Physisporinus sanguinolentus.

    PubMed

    Svensson, M; Lundgren, L N; Woods, C; Fatehi, J; Stenlid, J

    2001-04-01

    Chromatographic separation of the liquid culture filtrate of the basidiomycete fungus Physisporinus sanguinolentus has yielded three new compounds viz., 2-methyl-4-pyrone, 2-methyl-5,6-dihydro-4-pyrone and the pyridone form of 4-hydroxy-2-methylpyridine, together with the known triacetic acid lactone, the sesquiterpene dialdehyde merulidial and a derivative of merulidial. Their structures were elucidated by spectroscopic analysis and by comparison to literature data and a synthetic sample. One of the compounds, merulidial, was shown to inhibit the germination of spores and the hyphal growth of the wood-rotting basidiomycete Heterobasidion annosum and the saprophytic mould Cladosporium cucumerinum. PMID:11314963

  14. Topology optimization for the design of folding liquid crystal elastomer actuators.

    PubMed

    Fuchi, Kazuko; Ware, Taylor H; Buskohl, Philip R; Reich, Gregory W; Vaia, Richard A; White, Timothy J; Joo, James J

    2015-10-01

    Aligned liquid crystal elastomers (LCEs) are capable of undergoing large reversible shape change in response to thermal stimuli and may act as actuators for many potential applications such as self-assembly and deployment of micro devices. Recent advances in LCE patterning tools have demonstrated sub-millimetre control of director orientation, enabling the preparation of materials with arbitrarily complex director fields. However, without design tools to connect the 2D director pattern with the activated 3D shape, LCE design relies on intuition and trial and error. Here we present a design methodology to generate reliable folding in monolithic LCEs designed with topology optimization. The distributions of order/disorder and director orientations are optimized so that the remotely actuated deformation closely matches a target deformation for origami folding. The optimal design exhibits a strategy to counteract the mechanical frustration that may lead to an undesirable deformation, such as anti-clastic bending. Multi-hinge networks were developed using insights from the optimal hinge designs and were demonstrated through the fabrication and reversible actuation of a self-folding box. Topology optimization provides an important step towards leveraging the opportunities afforded by LCE patterning into functional designs. PMID:26270868

  15. Magneto-responsive liquid crystalline elastomer nanocomposites as potential candidates for dynamic cell culture substrates.

    PubMed

    Herrera-Posada, Stephany; Mora-Navarro, Camilo; Ortiz-Bermudez, Patricia; Torres-Lugo, Madeline; McElhinny, Kyle M; Evans, Paul G; Calcagno, Barbara O; Acevedo, Aldo

    2016-08-01

    Recently, liquid crystalline elastomers (LCEs) have been proposed as active substrates for cell culture due to their potential to attach and orient cells, and impose dynamic mechanical signals through the application of external stimuli. In this report, the preparation of anisotropic and oriented nematic magnetic-sensitized LCEs with iron oxide nanoparticles, and the evaluation of the effect of particle addition at low concentrations on the resultant structural, thermal, thermo-mechanical, and mechanical properties is presented. Phase transformations produced by heating in alternating magnetic fields were investigated in LCEs in contact with air, water, and a common liquid cell culture medium was also evaluated. The inclusion of nanoparticles into the elastomers displaced the nematic-to-isotropic phase transition, without affecting the nematic structure as evidenced by similar values of the order parameter, while reducing the maximum thermomechanical deformations. Remote and reversible deformations of the magnetic LCEs were achieved through the application of alternating magnetic fields, which induces the nematic-isotropic phase transition through nanoparticle heat generation. Formulation parameters can be modified to allow for remote actuation at values closer to the human physiological temperature range and within the range of deformations that can affect the cellular behavior of fibroblasts. Finally, a collagen surface treatment was performed to improve compatibility with NIH-3T3 fibroblast cultures, which enabled the attachment and proliferation of fibroblasts on substrates with and without magnetic particles under quiescent conditions. The LCEs developed in this work, which are able to deform and experience stress changes by remote contact-less magnetic stimulation, may allow for further studies on the effect of substrate morphology changes and dynamic mechanical properties during in vitro cell culture. PMID:27157764

  16. Biodegradation of Endocrine Disruptors in Solid-Liquid Two-Phase Partitioning Systems by Enrichment Cultures

    PubMed Central

    dos Santos, Silvia Cristina Cunha; Ouellette, Julianne; Juteau, Pierre; Lépine, François; Déziel, Eric

    2013-01-01

    Naturally occurring and synthetic estrogens and other molecules from industrial sources strongly contribute to the endocrine disruption of urban wastewater. Because of the presence of these molecules in low but effective concentrations in wastewaters, these endocrine disruptors (EDs) are only partially removed after most wastewater treatments, reflecting the presence of these molecules in rivers in urban areas. The development of a two-phase partitioning bioreactor (TPPB) might be an effective strategy for the removal of EDs from wastewater plant effluents. Here, we describe the establishment of three ED-degrading microbial enrichment cultures adapted to a solid-liquid two-phase partitioning system using Hytrel as the immiscible water phase and loaded with estrone, estradiol, estriol, ethynylestradiol, nonylphenol, and bisphenol A. All molecules except ethynylestradiol were degraded in the enrichment cultures. The bacterial composition of the three enrichment cultures was determined using 16S rRNA gene sequencing and showed sequences affiliated with bacteria associated with the degradation of these compounds, such as Sphingomonadales. One Rhodococcus isolate capable of degrading estrone, estradiol, and estriol was isolated from one enrichment culture. These results highlight the great potential for the development of TPPB for the degradation of highly diluted EDs in water effluents. PMID:23728808

  17. The optimization of extraction of antioxidants from apple pomace by pressurized liquids.

    PubMed

    Wijngaard, Hilde; Brunton, Nigel

    2009-11-25

    Pressurized liquid extraction (PLE) is a green extraction technique that can enhance extraction rates of bioactive compounds. PLE was used to extract antioxidants and polyphenols from industrially generated apple pomace at two different temperature ranges: 160 to 193 degrees C and 75 to 125 degrees C. Antioxidant activity (DPPH radical scavenging test), total phenol content and three individual polyphenol groups were determined. Response surface methodology was used to optimize the five response values. Maximum antioxidant activity was obtained at a temperature of 200 degrees C, but unwanted compounds such as hydroxymethylfurfural were formed. Therefore a lower temperature range between 75 and 125 degrees C is recommended. Using this temperature range, a maximum antioxidant activity was determined at 60% ethanol and 102 degrees C. By using PLE the antioxidant activity was increased 2.4 times in comparison to traditional solid-liquid extraction, and the technique may be a promising alternative to conventional techniques for extracting antioxidants. PMID:19845350

  18. Habitus and Flow in Primary School Musical Practice: Relations between Family Musical Cultural Capital, Optimal Experience and Music Participation

    ERIC Educational Resources Information Center

    Valenzuela, Rafael; Codina, Nuria

    2014-01-01

    Based on Bourdieu's idea that cultural capital is strongly related to family context, we describe the relations between family musical cultural capital and optimal experience during compulsory primary school musical practice. We analyse whether children from families with higher levels of musical cultural capital, and specifically with regard…

  19. Towards an Optimized Culture Medium for the Generation of Mouse Induced Pluripotent Stem Cells*

    PubMed Central

    Chen, Jiekai; Liu, Jing; Han, Qingkai; Qin, Dajiang; Xu, Jianyong; Chen, You; Yang, Jiaqi; Song, Hong; Yang, Dongshan; Peng, Meixiu; He, Wenzhi; Li, Ronghui; Wang, Hao; Gan, Yi; Ding, Ke; Zeng, Lingwen; Lai, Liangxue; Esteban, Miguel A.; Pei, Duanqing

    2010-01-01

    Generation of induced pluripotent stem cells from somatic cells using defined factors has potential relevant applications in regenerative medicine and biology. However, this promising technology remains inefficient and time consuming. We have devised a serum free culture medium termed iSF1 that facilitates the generation of mouse induced pluripotent stem cells. This optimization of the culture medium is sensitive to the presence of Myc in the reprogramming factors. Moreover, we could reprogram meningeal cells using only two factors Oct4/Klf4. Therefore, iSF1 represents a basal medium that may be used for mechanistic studies and testing new reprogramming approaches. PMID:20595395

  20. Optimization of culture conditions for flexirubin production by Chryseobacterium artocarpi CECT 8497 using response surface methodology.

    PubMed

    Venil, Chidambaram Kulandaisamy; Zakaria, Zainul Akmar; Ahmad, Wan Azlina

    2015-01-01

    Flexirubins are the unique type of bacterial pigments produced by the bacteria from the genus Chryseobacterium, which are used in the treatment of chronic skin disease, eczema etc. and may serve as a chemotaxonomic marker. Chryseobacterium artocarpi CECT 8497, an yellowish-orange pigment producing strain was investigated for maximum production of pigment by optimizing medium composition employing response surface methodology (RSM). Culture conditions affecting pigment production were optimized statistically in shake flask experiments. Lactose, l-tryptophan and KH2PO4 were the most significant variables affecting pigment production. Box Behnken design (BBD) and RSM analysis were adopted to investigate the interactions between variables and determine the optimal values for maximum pigment production. Evaluation of the experimental results signified that the optimum conditions for maximum production of pigment (521.64 mg/L) in 50 L bioreactor were lactose 11.25 g/L, l-tryptophan 6 g/L and KH2PO4 650 ppm. Production under optimized conditions increased to 7.23 fold comparing to its production prior to optimization. Results of this study showed that statistical optimization of medium composition and their interaction effects enable short listing of the significant factors influencing maximum pigment production from Chryseobacterium artocarpi CECT 8497. In addition, this is the first report optimizing the process parameters for flexirubin type pigment production from Chryseobacterium artocarpi CECT 8497. PMID:25979288

  1. On the model-based optimization of secreting mammalian cell (GS-NS0) cultures.

    PubMed

    Kiparissides, A; Pistikopoulos, E N; Mantalaris, A

    2015-03-01

    The global bio-manufacturing industry requires improved process efficiency to satisfy the increasing demands for biochemicals, biofuels, and biologics. The use of model-based techniques can facilitate the reduction of unnecessary experimentation and reduce labor and operating costs by identifying the most informative experiments and providing strategies to optimize the bioprocess at hand. Herein, we investigate the potential of a research methodology that combines model development, parameter estimation, global sensitivity analysis, and selection of optimal feeding policies via dynamic optimization methods to improve the efficiency of an industrially relevant bioprocess. Data from a set of batch experiments was used to estimate values for the parameters of an unstructured model describing monoclonal antibody (mAb) production in GS-NS0 cell cultures. Global Sensitivity Analysis (GSA) highlighted parameters with a strong effect on the model output and data from a fed-batch experiment were used to refine their estimated values. Model-based optimization was used to identify a feeding regime that maximized final mAb titer. An independent fed-batch experiment was conducted to validate both the results of the optimization and the predictive capabilities of the developed model. The successful integration of wet-lab experimentation and mathematical model development, analysis, and optimization represents a unique, novel, and interdisciplinary approach that addresses the complicated research and industrial problem of model-based optimization of cell based processes. PMID:25219609

  2. Liquid chromatographic method for determination of water in soils and the optimization of anion separations by capillary zone electrophoresis

    SciTech Connect

    Benz, N.

    1994-10-01

    A liquid chromatographic method for the determination of water in soil or clay samples is presented. In a separate study, the optimization of electrophoretic separation of alkylated phenolate ions was optimized by varying the pH and acetonitrile concentration of the buffer solutions.

  3. Antifatigue Activity of Liquid Cultured Tricholoma matsutake Mycelium Partially via Regulation of Antioxidant Pathway in Mouse

    PubMed Central

    Li, Quan; Wang, Yanzhen; Cai, Guangsheng; Kong, Fange; Wang, Xiaohan; Liu, Yang; Yang, Chuanbin; Wang, Di; Teng, Lirong

    2015-01-01

    Tricholoma matsutake has been popular as food and biopharmaceutical materials in Asian countries for its various pharmacological activities. The present study aims to analyze the antifatigue effects on enhancing exercise performance of Tricholoma matsutake fruit body (ABM) and liquid cultured mycelia (TM) in mouse model. Two-week Tricholoma matsutake treatment significantly enhances the exercise performance in weight-loaded swimming, rotating rod, and forced running test. In TM- and ABM-treated mice, some factors were observed at 60 min after swimming compared with nontreated mice, such as the increased levels of adenosine triphosphate (ATP), antioxidative enzymes, and glycogen and the reduced levels of malondialdehyde and reactive oxygen species in muscle, liver, and/or serum. Further data obtained from western blot show that CM and ABM have strongly enhanced the activation of 5′-AMP-activated protein kinase (AMPK), and the expressions of peroxisome proliferator have activated receptor γ coactivator-1α (PGC-1α) and phosphofructokinase-1 (PFK-1) in liver. Our data suggest that both Tricholoma matsutake fruit body and liquid cultured mycelia possess antifatigue effects related to AMPK-linked antioxidative pathway. The information uncovered in our study may serve as a valuable resource for further identification and provide experimental evidence for clinical trials of Tricholoma matsutake as an effective agent against fatigue related diseases. PMID:26697489

  4. Optimization and Design of 2d Honeycomb Lattice Photonic Crystal Modulated by Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Guo, Caihong; Zheng, Jihong; Gui, Kun; Zhang, Menghua; Zhuang, Songlin

    2013-12-01

    Photonic crystals (PCs) with infiltrating liquid crystals (LCs) have many potential applications because of their ability to continuously modulate the band-gaps. Using the plane-wave expansion method (PWM), we simulate the band-gap distribution of 2D honeycomb lattice PC with different pillar structures (circle, hexagonal and square pillar) and with different filling ratios, considering both when the LC is used as filling pillar material and semiconductors (Si, Ge) are used in the substrate, and when the semiconductors (Si, Ge) are pillar material and the LC is the substrate. Results show that unlike LC-based triangle lattice PC, optimized honeycomb lattice PC has the ability to generate absolute photonic band-gaps for fabricating optical switches. We provide optimization parameters for LC infiltrating honeycomb lattice PC structure based on simulation results and analysis.

  5. Optimization of liquid scintillation measurements applied to smears and aqueous samples collected in industrial environments

    NASA Astrophysics Data System (ADS)

    Chapon, Arnaud; Pigrée, Gilbert; Putmans, Valérie; Rogel, Gwendal

    Search for low-energy β contaminations in industrial environments requires using Liquid Scintillation Counting. This indirect measurement method supposes a fine control from sampling to measurement itself. Thus, in this paper, we focus on the definition of a measurement method, as generic as possible, for both smears and aqueous samples' characterization. That includes choice of consumables, sampling methods, optimization of counting parameters and definition of energy windows, using the maximization of a Figure of Merit. Detection limits are then calculated considering these optimized parameters. For this purpose, we used PerkinElmer Tri-Carb counters. Nevertheless, except those relative to some parameters specific to PerkinElmer, most of the results presented here can be extended to other counters.

  6. Simulation and optimization of liquid crystal gratings with alternate twisted nematic and planar aligned regions.

    PubMed

    Li, Jia-Nan; Hu, Xi-Kui; Wei, Bing-Yan; Wu, Zi-Jian; Ge, Shi-Jun; Ji, Wei; Hu, Wei; Lu, Yan-Qing

    2014-08-01

    Electro-optical properties of liquid crystal (LC) gratings with alternate twisted nematic (TN) and planar aligned (PA) regions are simulated. Three typical steps are introduced: first, the LC director distributions of the two different regions are simulated. Then, the phase and amplitude of the emergent light in each region are calculated through Jones matrix. Based on this information, the voltage-dependent diffraction efficiency is achieved by Fourier transformation, finally. It gives an exact explanation for the mechanism of this kind of gratings. Experiments with optimized parameters are carried out through photopatterning. The trend of the measured voltage-dependent efficiency fits the simulation result very well. This method can be used to optimize the performance of LC gratings with alternate TN and PA regions, and exhibits great potential in the simulation of corresponding photonics and display applications. PMID:25090348

  7. a System which Uses a Continuous Optimization Approach for the Design of AN Optimum Extractant Molecule for Use in Liquid-Liquid Extraction.

    NASA Astrophysics Data System (ADS)

    Naser, Samer Fahim

    The design of an extractant molecule for use in liquid-liquid extraction, traditionally a combinatorial optimization problem, has been solved using continuous optimization. UNIFAC, a thermodynamic group contribution method which allows the calculation of an activity coefficient of a component from its chemical structure, was used as the basis for all calculations. A computer system was developed which employs a three step procedure. First, the error in the liquid-liquid equilibrium relations resulting from the specification of a target separation criteria is minimized by continuously varying the functional groups in the design group pool. Second, the theoretical molecule obtained from the first step is used as a starting point to optimize up to seven separation criteria by variation of functional groups and mole fractions to obtain the optimum theoretical extractant molecule which satisfies the equilibrium relations. Third, the theoretical molecule is used to generate alternative extractant molecules which contain integer functional group values only. Numeric molecular structure constraints were developed which help maintain the feasibility of molecules in the first two steps, and allow the rejection of infeasible molecules in the third step. These constraints include limits on boiling point and molecular weight. The system developed was successfully tested on several separation problems and has suggested extractants as good or better than ones currently in use. This is the first reported use of continuous optimization in molecular design. For large design pools, this approach, as opposed to combinatorial optimization, is several orders of magnitude faster.

  8. Optimization of liquid jet system for laser-induced breakdown spectroscopy analysis

    NASA Astrophysics Data System (ADS)

    Skočovská, Katarína; Novotný, Jan; Prochazka, David; Pořízka, Pavel; Novotný, Karel; Kaiser, Jozef

    2016-04-01

    A complex optimization of geometrical and temporal parameters of a jet system (developed in Laser-induced breakdown spectroscopy (LIBS) laboratory of Brno University of Technology) for direct elemental analysis of samples in a liquid state of matter using LIBS was carried out. First, the peristaltic pump was synchronized with the flashlamp of the ablation laser, which reduced variation of the ablated sample amount. Also, the fluctuation of the laser ray angle incident on the jet surface was diminished. Such synchronization reduced signal standard deviations and thus increased repeatability of the measurements. Then, laser energy and distance of the focusing lens from the sample were optimized. The gate delay time and the gate width were optimized for single pulse (SP) experiments; the gate delay time and the inter-pulse delay were optimized for the use of double pulse (DP) variant. Results were assessed according to the highest signal to noise ratios and the lowest relative standard deviations of the signal. The sensitivity of the single pulse and the double pulse LIBS for the detection of heavy metals traces, copper (Cu i at 324.754 nm) and lead (Pb i at 405.781 nm), in aqueous solution of copper (ii) sulfate and lead (ii) acetate, was estimated in terms of limits of detection (LODs). As a result, sensitivity improvement of DP LIBS system was observed, the LOD of Cu obtained with DP was calculated 40% lower than LOD gained from SP technique.

  9. Application of Sigmoidal Transformation Functions in Optimization of Micellar Liquid Chromatographic Separation of Six Quinolone Antibiotics.

    PubMed

    Hadjmohammadi, Mohammadreza; Salary, Mina

    2016-03-01

    A chemometrics approach has been used to optimize the separation of six quinolone compounds by micellar liquid chromatography (MLC). A Derringer's desirability function, a multicriteria decision-making (MCDM) method, was tested for evaluation of two different measures of chromatographic performance (resolution and analysis time). The effect of three experimental parameters on a chromatographic response function (CRF) expressed as a product of two sigmoidal desirability functions was investigated. The sigmoidal functions were used to transform the optimization criteria, resolution and analysis time into the desirability values. The factors studied were the concentration of sodium dodecyl sulfate, butanol content and pH of the mobile phase. The experiments were done according to the face-centered cube central composite design, and the calculated CRF values were fitted to a polynomial model to correlate the CRF values with the variables and their interactions. The developed regression model showed good descriptive and predictive ability (R(2) = 0.815, F = 6.919, SE = 0.038, [Formula: see text]) and used, by a grid search algorithm, to optimize the chromatographic conditions for the separation of the mixture. The efficiency of prediction of polynomial model was confirmed by performing the experiment under the optimal conditions. PMID:26590234

  10. Optimization of liquid jet system for laser-induced breakdown spectroscopy analysis.

    PubMed

    Skočovská, Katarína; Novotný, Jan; Prochazka, David; Pořízka, Pavel; Novotný, Karel; Kaiser, Jozef

    2016-04-01

    A complex optimization of geometrical and temporal parameters of a jet system (developed in Laser-induced breakdown spectroscopy (LIBS) laboratory of Brno University of Technology) for direct elemental analysis of samples in a liquid state of matter using LIBS was carried out. First, the peristaltic pump was synchronized with the flashlamp of the ablation laser, which reduced variation of the ablated sample amount. Also, the fluctuation of the laser ray angle incident on the jet surface was diminished. Such synchronization reduced signal standard deviations and thus increased repeatability of the measurements. Then, laser energy and distance of the focusing lens from the sample were optimized. The gate delay time and the gate width were optimized for single pulse (SP) experiments; the gate delay time and the inter-pulse delay were optimized for the use of double pulse (DP) variant. Results were assessed according to the highest signal to noise ratios and the lowest relative standard deviations of the signal. The sensitivity of the single pulse and the double pulse LIBS for the detection of heavy metals traces, copper (Cu i at 324.754 nm) and lead (Pb i at 405.781 nm), in aqueous solution of copper (ii) sulfate and lead (ii) acetate, was estimated in terms of limits of detection (LODs). As a result, sensitivity improvement of DP LIBS system was observed, the LOD of Cu obtained with DP was calculated 40% lower than LOD gained from SP technique. PMID:27131663

  11. Optimization of neuronal cultures from rat superior cervical ganglia for dual patch recording.

    PubMed

    Amendola, Julien; Boumedine, Norah; Sangiardi, Marion; El Far, Oussama

    2015-01-01

    Superior cervical ganglion neurons (SCGN) are often used to investigate neurotransmitter release mechanisms. In this study, we optimized the dissociation and culture conditions of rat SCGN cultures for dual patch clamp recordings. Two weeks in vitro are sufficient to achieve a significant CNTF-induced cholinergic switch and to develop mature and healthy neuronal profiles suited for detailed patch clamp analysis. One single pup provides sufficient material to prepare what was formerly obtained from 12 to 15 animals. The suitability of these cultures to study neurotransmitter release mechanisms was validated by presynaptically perturbing the interaction of the v-SNARE VAMP2 with the vesicular V-ATPase V0c subunit. PMID:26399440

  12. Modelling of Microalgae Culture Systems with Applications to Control and Optimization.

    PubMed

    Bernard, Olivier; Mairet, Francis; Chachuat, Benoît

    2016-01-01

    Mathematical modeling is becoming ever more important to assess the potential, guide the design, and enable the efficient operation and control of industrial-scale microalgae culture systems (MCS). The development of overall, inherently multiphysics, models involves coupling separate submodels of (i) the intrinsic biological properties, including growth, decay, and biosynthesis as well as the effect of light and temperature on these processes, and (ii) the physical properties, such as the hydrodynamics, light attenuation, and temperature in the culture medium. When considering high-density microalgae culture, in particular, the coupling between biology and physics becomes critical. This chapter reviews existing models, with a particular focus on the Droop model, which is a precursor model, and it highlights the structure common to many microalgae growth models. It summarizes the main developments and difficulties towards multiphysics models of MCS as well as applications of these models for monitoring, control, and optimization purposes. PMID:25604163

  13. Genotypes-Independent Optimization of Nitrogen Supply for Isolated Microspore Cultures in Barley.

    PubMed

    Lu, Ruiju; Chen, Zhiwei; Gao, Runhong; He, Ting; Wang, Yifei; Xu, Hongwei; Guo, Guimei; Li, Yingbo; Liu, Chenghong; Huang, Jianhua

    2016-01-01

    To establish a high-efficiency system of isolated microspore culture for different barley genotypes, we investigated the effects of nitrogen sources and concentrations on callus induction and plant regeneration in different barley genotypes. The results showed that the organic nitrogen sources greatly increased the callus induction, and the great reduction of total nitrogen sources would significantly decrease the callus induction. And the further optimization experiments revealed that the increasing of organic nitrogen sources was much important in callus induction while it seemed different in plant regeneration. Based on the great effects of organic nitrogen on callus induction, the medium of N6-ANO1/4-2000 might be the best choice for the microspore culture system. In addition, the phylogenetic analysis indicated that there were clear differences of genetic backgrounds among these barley genotypes, and it also suggested that this medium for microspore culture had widespread utilization in different barley genotypes. PMID:27525264

  14. Genotypes-Independent Optimization of Nitrogen Supply for Isolated Microspore Cultures in Barley

    PubMed Central

    Lu, Ruiju; Chen, Zhiwei; Gao, Runhong; He, Ting; Wang, Yifei; Xu, Hongwei; Guo, Guimei; Li, Yingbo

    2016-01-01

    To establish a high-efficiency system of isolated microspore culture for different barley genotypes, we investigated the effects of nitrogen sources and concentrations on callus induction and plant regeneration in different barley genotypes. The results showed that the organic nitrogen sources greatly increased the callus induction, and the great reduction of total nitrogen sources would significantly decrease the callus induction. And the further optimization experiments revealed that the increasing of organic nitrogen sources was much important in callus induction while it seemed different in plant regeneration. Based on the great effects of organic nitrogen on callus induction, the medium of N6-ANO1/4-2000 might be the best choice for the microspore culture system. In addition, the phylogenetic analysis indicated that there were clear differences of genetic backgrounds among these barley genotypes, and it also suggested that this medium for microspore culture had widespread utilization in different barley genotypes. PMID:27525264

  15. Effect of Light Wavelengths and Coherence on Growth, Enzymes Activity, and Melanin Accumulation of Liquid-Cultured Inonotus obliquus (Ach.:Pers.) Pilát.

    PubMed

    Poyedinok, Natalia; Mykhaylova, Oksana; Tugay, Tatyana; Tugay, Andrei; Negriyko, Anatoly; Dudka, Irina

    2015-05-01

    To investigate effects of light wavelengths and coherence on growth of liquid-cultured Inonotus obliquus mycelia, melanin accumulation and enzymes activity, culture condition as light of different wavelengths and coherence were studied. Short-term exposure of the vegetative mycelium by low-intensity coherent blue light was optimal for stimulation of growth, melanin synthesis, and increase in extracellular and intracellular activities of tyrosinase and polyphenoloxidase and extracellular catalase. Red coherent light, in the same mode, can effectively be used to stimulate the growth of mycelium and to increase intracellular and extracellular activity of polyphenoloxidase, extracellular catalase and tyrosinase, and intracellular peroxidase. Low-coherent light had less stimulating effect on the biosynthetic activity of I. оbliquus. It should be used in the cultivation directed at the obtaining endomelanin, polyphenoloxidase, and extracellular tyrosinase. PMID:25809995

  16. Initial eye movements during face identification are optimal and similar across cultures

    PubMed Central

    Or, Charles C.-F.; Peterson, Matthew F.; Eckstein, Miguel P.

    2015-01-01

    Culture influences not only human high-level cognitive processes but also low-level perceptual operations. Some perceptual operations, such as initial eye movements to faces, are critical for extraction of information supporting evolutionarily important tasks such as face identification. The extent of cultural effects on these crucial perceptual processes is unknown. Here, we report that the first gaze location for face identification was similar across East Asian and Western Caucasian cultural groups: Both fixated a featureless point between the eyes and the nose, with smaller between-group than within-group differences and with a small horizontal difference across cultures (8% of the interocular distance). We also show that individuals of both cultural groups initially fixated at a slightly higher point on Asian faces than on Caucasian faces. The initial fixations were found to be both fundamental in acquiring the majority of information for face identification and optimal, as accuracy deteriorated when observers held their gaze away from their preferred fixations. An ideal observer that integrated facial information with the human visual system's varying spatial resolution across the visual field showed a similar information distribution across faces of both races and predicted initial human fixations. The model consistently replicated the small vertical difference between human fixations to Asian and Caucasian faces but did not predict the small horizontal leftward bias of Caucasian observers. Together, the results suggest that initial eye movements during face identification may be driven by brain mechanisms aimed at maximizing accuracy, and less influenced by culture. The findings increase our understanding of the interplay between the brain's aims to optimally accomplish basic perceptual functions and to respond to sociocultural influences. PMID:26382003

  17. Optimization of refractive liquid crystal lenses using an efficient multigrid simulation.

    PubMed

    Milton, Harry; Brimicombe, Paul; Morgan, Philip; Gleeson, Helen; Clamp, John

    2012-05-01

    A multigrid computational model has been developed to assess the performance of refractive liquid crystal lenses, which is up to 40 times faster than previous techniques. Using this model, the optimum geometries producing an ideal parabolic voltage distribution were deduced for refractive liquid crystal lenses with diameters from 1 to 9 mm. The ratio of insulation thickness to lens diameter was determined to be 1:2 for small diameter lenses, tending to 1:3 for larger lenses. The model is used to propose a new method of lens operation with lower operating voltages needed to induce specific optical powers. The operating voltages are calculated for the induction of optical powers between + 1.00 D and + 3.00 D in a 3 mm diameter lens, with the speed of the simulation facilitating the optimization of the refractive index profile. We demonstrate that the relationship between additional applied voltage and optical power is approximately linear for optical powers under + 3.00 D. The versatility of the computational simulation has also been demonstrated by modeling of in-plane electrode liquid crystal devices. PMID:22565739

  18. In vitro optimization of the Gallus domesticus oviduct epithelial cells culture.

    PubMed

    Kasperczyk, K; Bajek, A; Joachimiak, R; Walasik, K; Marszalek, A; Drewa, T; Bednarczyk, M

    2012-06-01

    The aim of this experiment was to establish an efficient method for isolation and further culture in vitro of the normal chicken oviduct epithelial cells (COEC) for cell-based research models. Different factors were tested to optimize COEC primary culture for repeatable results: the origin of isolated cells (oviduct Infundibulum or Magnum section); the oviduct tissue dissociation procedure (mechanical scrapping or mincing), tissue digestion times (15, 30 and 45 min), the culture plates coating (colagene I, polystyrene surface or 3T3 feeder layer), the growth media (classic DMEM/Ham's F12 and defined serum-free medium, Lonza Switzerland), incubation temperature (37 °C vs 41°C) and different cell seeding numbers: 0.2M, 0.5M and 1.0M cells/well. The COEC isolated by mincing the Infundibular neck and digestion of tissue for 30 min formed cell aggregates of bright colour and gave proliferating colonies of epithelial-like character which was the best result obtained from all applied procedures in our studies. The fibroblast-like cells considered as contaminants occurred only sporadically up to day 7 of culture. Seeding about 1M cells in 1 mL of serum-free medium onto 12-well dishes gave the optimal growth of colonies resulting in 5 to 7 confluent culture wells from a single oviduct sample. Feeder layer and collagen I did not improve adhesion of the COEC to the culture vessel. Adoption of 37 °C and 41 °C did not reveal apparent differences to the condition of cultured COEC. Cell differentiation and proliferation potential depends on number and replicative capacity of isolated progenitors. The progenitors are responsible for holoclones formation and good culture growth. The percentage of colonies developed from the cells isolated from Infundibulum was greater than that of other samples in our studies. We conclude that the model of COEC primary cultures from different segments of oviduct, in particular infundibulum, should be incorporated to the range of avian cells

  19. OPTIMIZED DETERMINATION OF TRACE JET FUEL VOLATILE ORGANIC COMPOUNDS IN HUMAN BLOOD USING IN-FIELD LIQUID-LIQUID EXTRACTION WITH SUBSEQUENT LABORATORY GAS CHROMATOGRAPHIC-MASS SPECTROMETRIC ANALYSIS AND ON-COLUMN LARGE VOLUME INJECTION

    EPA Science Inventory

    A practical and sensitive method to assess volatile organic compounds (VOCs) from JP-8 jet fuel in human whole blood was developed by modifying previously established liquid-liquid extraction procedures, optimizing extraction times, solvent volume, specific sample processing te...

  20. Optimizing culture conditions for free-living stages of the nematode parasite Strongyloides ratti.

    PubMed

    Dulovic, Alex; Puller, Vadim; Streit, Adrian

    2016-09-01

    The rat parasitic nematode Strongyloides ratti (S. ratti) has recently emerged as a model system for various aspects of parasite biology and evolution. In addition to parasitic parthenogenetic females, this species can also form facultative free-living generations of sexually reproducing adults. These free-living worms are bacteriovorous and grow very well when cultured in the feces of their host. However, in fecal cultures the worms are rather difficult to find for observation and experimental manipulation. Therefore, it has also been attempted to raise S. ratti on Nematode Growth Media (NGM) plates with Escherichia coli OP50 as food, exactly as described for the model nematode Caenorhabditis elegans. Whilst worms did grow on these plates, their longevity and reproductive output compared to fecal cultures were dramatically reduced. In order to improve the culture success we tested other plates occasionally used for C. elegans and, starting from the best performing one, systematically varied the plate composition, the temperature and the food in order to further optimize the conditions. Here we present a plate culturing protocol for free-living stages of S. ratti with strongly improved reproductive success and longevity. PMID:27334397

  1. Enhancing inulinase yield by irradiation mutation associated with optimization of culture conditions

    PubMed Central

    Gou, Yafeng; Li, Jianhua; Zhu, Junbao; Xu, Wanyun; Gao, Jianfeng

    2015-01-01

    A new inulinase-producing strain was isolated from rhizosphere soils of Jerusalem artichoke collected from Shihezi (Xinjiang, China) using Jerusalem artichoke power (JAP) as sole carbon source. It was identified as an Aspergillus niger strain by analysis of 16S rRNA. To improve inulinase production, this fungus was subjected to mutagenesis induced by 60Co γ-irradiation. A genetically stable mutant (designated E12) was obtained and it showed 2.7-fold higher inulinase activity (128 U/mL) than the parental strain in the supernatant of a submerged culture. Sequential methodology was used to optimize the inulinase production of stain E12. A screening trial was first performed using Plackett-Burman design and variables with statistically significant effects on inulinase bio-production were identified. These significant factors were further optimized by central composite design experiments and response surface methodology. Finally, it was found that the maximum inulinase production (185 U/mL) could be achieved under the optimized conditions namely pH 7.0, yeast extract concentration of 5.0 g/L, JAP concentration of 66.5 g/L, peptone concentration of 29.1 g/L, solution volume of 49.4 mL in 250-mL shake flasks, agitation speed of 180 rpm, and fermentation time of 60 h. The yield of inulinase under optimized culture conditions was approximately 1.4-fold of that obtained by using basal culture medium. These findings are of significance for the potential industrial application of the mutant E12. PMID:26413078

  2. Enhancing inulinase yield by irradiation mutation associated with optimization of culture conditions.

    PubMed

    Gou, Yafeng; Li, Jianhua; Zhu, Junbao; Xu, Wanyun; Gao, Jianfeng

    2015-01-01

    A new inulinase-producing strain was isolated from rhizosphere soils of Jerusalem artichoke collected from Shihezi (Xinjiang, China) using Jerusalem artichoke power (JAP) as sole carbon source. It was identified as an Aspergillus niger strain by analysis of 16S rRNA. To improve inulinase production, this fungus was subjected to mutagenesis induced by (60)Co γ-irradiation. A genetically stable mutant (designated E12) was obtained and it showed 2.7-fold higher inulinase activity (128 U/mL) than the parental strain in the supernatant of a submerged culture. Sequential methodology was used to optimize the inulinase production of stain E12. A screening trial was first performed using Plackett-Burman design and variables with statistically significant effects on inulinase bio-production were identified. These significant factors were further optimized by central composite design experiments and response surface methodology. Finally, it was found that the maximum inulinase production (185 U/mL) could be achieved under the optimized conditions namely pH 7.0, yeast extract concentration of 5.0 g/L, JAP concentration of 66.5 g/L, peptone concentration of 29.1 g/L, solution volume of 49.4 mL in 250-mL shake flasks, agitation speed of 180 rpm, and fermentation time of 60 h. The yield of inulinase under optimized culture conditions was approximately 1.4-fold of that obtained by using basal culture medium. These findings are of significance for the potential industrial application of the mutant E12. PMID:26413078

  3. Insights into an Optimization of Plasmodium vivax Sal-1 In Vitro Culture: The Aotus Primate Model

    PubMed Central

    Obaldía, Nicanor; Nuñez, Marlon; Dutary, Sahir; Lim, Caeul; Barnes, Samantha; Kocken, Clemens H. M.; Duraisingh, Manoj T.; Adams, John H.; Pasini, Erica M.

    2016-01-01

    Malaria is one of the most significant tropical diseases, and of the Plasmodium species that cause human malaria, P. vivax is the most geographically widespread. However, P. vivax remains a relatively neglected human parasite since research is typically limited to laboratories with direct access to parasite isolates from endemic field settings or from non-human primate models. This restricted research capacity is in large part due to the lack of a continuous P. vivax in vitro culture system, which has hampered the ability for experimental research needed to gain biological knowledge and develop new therapies. Consequently, efforts to establish a long-term P. vivax culture system are confounded by our poor knowledge of the preferred host cell and essential nutrients needed for in vitro propagation. Reliance on very heterogeneous P. vivax field isolates makes it difficult to benchmark parasite characteristics and further complicates development of a robust and reliable culture method. In an effort to eliminate parasite variability as a complication, we used a well-defined Aotus-adapted P. vivax Sal-1 strain to empirically evaluate different short-term in vitro culture conditions and compare them with previous reported attempts at P. vivax in vitro culture Most importantly, we suggest that reticulocyte enrichment methods affect invasion efficiency and we identify stabilized forms of nutrients that appear beneficial for parasite growth, indicating that P. vivax may be extremely sensitive to waste products. Leuko-depletion methods did not significantly affect parasite development. Formatting changes such as shaking and static cultures did not seem to have a major impact while; in contrast, the starting haematocrit affected both parasite invasion and growth. These results support the continued use of Aotus-adapted Sal-1 for development of P. vivax laboratory methods; however, further experiments are needed to optimize culture conditions to support long-term parasite

  4. Insights into an Optimization of Plasmodium vivax Sal-1 In Vitro Culture: The Aotus Primate Model.

    PubMed

    Shaw-Saliba, Kathryn; Thomson-Luque, Richard; Obaldía, Nicanor; Nuñez, Marlon; Dutary, Sahir; Lim, Caeul; Barnes, Samantha; Kocken, Clemens H M; Duraisingh, Manoj T; Adams, John H; Pasini, Erica M

    2016-07-01

    Malaria is one of the most significant tropical diseases, and of the Plasmodium species that cause human malaria, P. vivax is the most geographically widespread. However, P. vivax remains a relatively neglected human parasite since research is typically limited to laboratories with direct access to parasite isolates from endemic field settings or from non-human primate models. This restricted research capacity is in large part due to the lack of a continuous P. vivax in vitro culture system, which has hampered the ability for experimental research needed to gain biological knowledge and develop new therapies. Consequently, efforts to establish a long-term P. vivax culture system are confounded by our poor knowledge of the preferred host cell and essential nutrients needed for in vitro propagation. Reliance on very heterogeneous P. vivax field isolates makes it difficult to benchmark parasite characteristics and further complicates development of a robust and reliable culture method. In an effort to eliminate parasite variability as a complication, we used a well-defined Aotus-adapted P. vivax Sal-1 strain to empirically evaluate different short-term in vitro culture conditions and compare them with previous reported attempts at P. vivax in vitro culture Most importantly, we suggest that reticulocyte enrichment methods affect invasion efficiency and we identify stabilized forms of nutrients that appear beneficial for parasite growth, indicating that P. vivax may be extremely sensitive to waste products. Leuko-depletion methods did not significantly affect parasite development. Formatting changes such as shaking and static cultures did not seem to have a major impact while; in contrast, the starting haematocrit affected both parasite invasion and growth. These results support the continued use of Aotus-adapted Sal-1 for development of P. vivax laboratory methods; however, further experiments are needed to optimize culture conditions to support long-term parasite

  5. Optimization of a Brayton cryocooler for ZBO liquid hydrogen storage in space

    NASA Astrophysics Data System (ADS)

    Deserranno, D.; Zagarola, M.; Li, X.; Mustafi, S.

    2014-11-01

    NASA is evaluating and developing technology for long-term storage of cryogenic propellant in space. A key technology is a cryogenic refrigerator which intercepts heat loads to the storage tank, resulting in a reduced- or zero-boil-off condition. Turbo-Brayton cryocoolers are particularly well suited for cryogen storage applications because the technology scales well to high capacities and low temperatures. In addition, the continuous-flow nature of the cycle allows direct cooling of the cryogen storage tank without mass and power penalties associated with a cryogenic heat transport system. To quantify the benefits and mature the cryocooler technology, Creare Inc. performed a design study and technology demonstration effort for NASA on a 20 W, 20 K cryocooler for liquid hydrogen storage. During the design study, we optimized these key components: three centrifugal compressors, a modular high-capacity plate-fin recuperator, and a single-stage turboalternator. The optimization of the compressors and turboalternator were supported by component testing. The optimized cryocooler has an overall flight mass of 88 kg and a specific power of 61 W/W. The coefficient of performance of the cryocooler is 23% of the Carnot cycle. This is significantly better performance than any 20 K space cryocooler existing or under development.

  6. Peak Capacity Optimization in Comprehensive Two Dimensional Liquid Chromatography: A Practical Approach

    PubMed Central

    Gu, Haiwei; Huang, Yuan; Carr, Peter W.

    2010-01-01

    In this work we develop a practical approach to optimization in comprehensive two dimensional liquid chromatography (LC×LC) which incorporates the important under-sampling correction and is based on the previously developed gradient implementation of the Poppe approach to optimizing peak capacity. The Poppe method allows the determination of the column length, flow rate as well as initial and final eluent compositions that maximize the peak capacity at a given gradient time. It was assumed that gradient elution is applied in both dimensions and that various practical constraints are imposed on both the initial and final mobile phase composition in the first dimension separation. It was convenient to consider four different classes of solute sets differing in their retention properties. The major finding of this study is that the under-sampling effect is very important and causes some unexpected results including the important counter-intuitive observation that under certain conditions the optimum effective LC×LC peak capacity is obtained when the first dimension is deliberately run under sub-optimal conditions. PMID:21145554

  7. Primary Air-Liquid Interface Culture of Nasal Epithelium for Nasal Drug Delivery.

    PubMed

    Ong, Hui Xin; Jackson, Claire L; Cole, Janice L; Lackie, Peter M; Traini, Daniela; Young, Paul M; Lucas, Jane; Conway, Joy

    2016-07-01

    Nasal drug administration is a promising alternative to oral and parenteral administration for both local and systemic delivery of drugs. The benefits include its noninvasive nature, rapid absorption, and circumvention of first pass metabolism. Hence, the use of an in vitro model using human primary nasal epithelial cells could be key to understanding important functions and parameters of the respiratory epithelium. This model will enable investigators to address important and original research questions using a biologically relevant in vitro platform that mimics the in vivo nasal epithelial physiology. The purpose of this study was to establish, systematically characterize, and validate the use of a primary human nasal epithelium model cultured at the air-liquid interface for the study of inflammatory responses and drug transport and to simultaneously quantify drug effects on ciliary activity. PMID:27223825

  8. A Janus-paper PDMS platform for air-liquid interface cell culture applications

    NASA Astrophysics Data System (ADS)

    Rahimi, Rahim; Ochoa, Manuel; Donaldson, Amy; Parupudi, Tejasvi; Dokmeci, Mehmet R.; Khademhosseini, Ali; Ghaemmaghami, Amir; Ziaie, Babak

    2015-05-01

    A commercially available Janus paper with one hydrophobic (polyethylene-coated) face and a hygroscopic/hydrophilic one is irreversibly bonded to a polydimethylsiloxane (PDMS) substrate incorporating microfluidic channels via corona discharge surface treatment. The bond strength between the polymer-coated side and PDMS is characterized as a function of corona treatment time and annealing temperature/time. A maximum strength of 392 kPa is obtained with a 2 min corona treatment followed by 60 min of annealing at 120 °C. The water contact angle of the corona-treated polymer side decreases with increased discharge duration from 98° to 22°. The hygroscopic/hydrophilic side is seeded with human lung fibroblast cells encapsulated in a methacrylated gelatin (GelMA) hydrogel to show the potential of this technology for nutrient and chemical delivery in an air-liquid interface cell culture.

  9. Optimization of cultural conditions for conversion of glycerol to ethanol by Enterobacter aerogenes S012.

    PubMed

    Nwachukwu, Raymond E S; Shahbazi, Abolghasem; Wang, Lijun; Worku, Mulumebet; Ibrahim, Salam; Schimmel, Keith

    2013-01-01

    The aim of this research is to optimize the cultural conditions for the conversion of glycerol to ethanol by Enterobacter aerogenes S012. Taguchi method was used to screen the cultural conditions based on their signal to noise ratio (SN). Temperature (°C), agitation speed (rpm) and time (h) were found to have the highest influence on both glycerol utilization and ethanol production by the organism while pH had the lowest. Full factorial design, statistical analysis, and regression model equation were used to optimize the selected cultural parameters for maximum ethanol production. The result showed that fermentation at 38°C and 200 rpm for 48 h would be ideal for the bacteria to produce maximum amount of ethanol from glycerol. At these optimum conditions, ethanol production, yield and productivity were 25.4 g/l, 0.53 g/l/h, and 1.12 mol/mol-glycerol, repectively. Ethanol production increased to 26.5 g/l while yield and productivity decreased to 1.04 mol/mol-glycerol and 0.37 g/l/h, respectively, after 72 h. Analysis of the fermentation products was performed using HPLC, while anaerobic condition was created by purging the fermentation vessel with nitrogen gas. PMID:23388539

  10. Significantly enhanced production of recombinant nitrilase by optimization of culture conditions and glycerol feeding.

    PubMed

    Liu, Jun-Feng; Zhang, Zhi-Jun; Li, Ai-Tao; Pan, Jiang; Xu, Jian-He

    2011-02-01

    The production of a recombinant nitrilase expressed in Escherichia coli JM109/pNLE was optimized in the present work. Various culture conditions and process parameters, including medium composition, inducer, induction condition, pH and temperature, were systematically examined. The results showed that nitrilase production in E. coli JM109/pNLE was greatly affected by the pH condition and the temperature in batch culture, and the highest nitrilase production was obtained when the fermentation was carried out at 37°C, initial pH 7.0 without control and E. coli was induced with 0.2 mM isopropyl-β-D-thiogalactoside at 4.0 h. Furthermore, enzyme production could be significantly enhanced by adopting the glycerol feeding strategy with lower flow rate. The enzyme expression was also authenticated by sodium dodecyl phosphate polyacrylamide gel electrophoresis analysis. Finally, under the optimized conditions for fed-batch culture, cell growth, specific activity and nitrilase production of the recombinant E. coli were increased by 9.0-, 5.5-, and 50-fold, respectively. PMID:20862583

  11. Optimization of cultural conditions for conversion of glycerol to ethanol by Enterobacter aerogenes S012

    PubMed Central

    2013-01-01

    The aim of this research is to optimize the cultural conditions for the conversion of glycerol to ethanol by Enterobacter aerogenes S012. Taguchi method was used to screen the cultural conditions based on their signal to noise ratio (SN). Temperature (°C), agitation speed (rpm) and time (h) were found to have the highest influence on both glycerol utilization and ethanol production by the organism while pH had the lowest. Full factorial design, statistical analysis, and regression model equation were used to optimize the selected cultural parameters for maximum ethanol production. The result showed that fermentation at 38°C and 200 rpm for 48 h would be ideal for the bacteria to produce maximum amount of ethanol from glycerol. At these optimum conditions, ethanol production, yield and productivity were 25.4 g/l, 0.53 g/l/h, and 1.12 mol/mol-glycerol, repectively. Ethanol production increased to 26.5 g/l while yield and productivity decreased to 1.04 mol/mol-glycerol and 0.37 g/l/h, respectively, after 72 h. Analysis of the fermentation products was performed using HPLC, while anaerobic condition was created by purging the fermentation vessel with nitrogen gas. PMID:23388539

  12. Studies of mineralization in tissue culture: optimal conditions for cartilage calcification

    NASA Technical Reports Server (NTRS)

    Boskey, A. L.; Stiner, D.; Doty, S. B.; Binderman, I.; Leboy, P.

    1992-01-01

    The optimal conditions for obtaining a calcified cartilage matrix approximating that which exists in situ were established in a differentiating chick limb bud mesenchymal cell culture system. Using cells from stage 21-24 embryos in a micro-mass culture, at an optimal density of 0.5 million cells/20 microliters spot, the deposition of small crystals of hydroxyapatite on a collagenous matrix and matrix vesicles was detected by day 21 using X-ray diffraction, FT-IR microscopy, and electron microscopy. Optimal media, containing 1.1 mM Ca, 4 mM P, 25 micrograms/ml vitamin C, 0.3 mg/ml glutamine, no Hepes buffer, and 10% fetal bovine serum, produced matrix resembling the calcifying cartilage matrix of fetal chick long bones. Interestingly, higher concentrations of fetal bovine serum had an inhibitory effect on calcification. The cartilage phenotype was confirmed based on the cellular expression of cartilage collagen and proteoglycan mRNAs, the presence of type II and type X collagen, and cartilage type proteoglycan at the light microscopic level, and the presence of chondrocytes and matrix vesicles at the EM level. The system is proposed as a model for evaluating the events in cell mediated cartilage calcification.

  13. Optimization of culture conditions of Fusarium solani for the production of neoN-methylsansalvamide.

    PubMed

    Lee, Hee-Seok; Phat, Chanvorleak; Nam, Woo-Seon; Lee, Chan

    2014-01-01

    The aim of this study was to optimize the culture conditions of Fusarium solani KCCM90040 on cereal grain for the production of neoN-methylsansalvamide, a novel low-molecular-weight cyclic pentadepsipeptide exhibiting cytotoxic and multidrug resistance reversal effects. From the analysis of variance results using response surface methodology, temperature, initial moisture content, and growth time were shown to be important parameters for the production of neoN-methylsansalvamide on cereal grain. A model was established in the present study to describe the relationship between environmental conditions and the production of neoN-methylsansalvamide on rice, the selected cereal grain. The optimal culture conditions were determined at 25.79 °C with the initial moisture content of 40.79%, and 16.19 days of growth time. This report will give important information concerning the optimization of environmental conditions using statistic methodology for the production of a new cyclic pentadepsipeptide from fungi. PMID:25130748

  14. Optimization of culture medium and conditions for penicillin acylase production by Streptomyces lavendulae ATCC 13664.

    PubMed

    Torres-Bacete, Jesús; Arroyo, Miguel; Torres-Guzmán, Raquel; De La Mata, Isabel; Acebal, Carmen; Castillón, M Pilar

    2005-08-01

    The culture medium for Streptomyces lavendulae ATCC 13664 was optimized on a shake-flask scale by using a statistical factorial design for enhanced production of penicillin acylase. This extracellular enzyme recently has been reported to be a penicillin K acylase, presenting also high hydrolytic activity against penicillin V and other natural aliphatic penicillins such as penicillin K, penicillin F, and penicillin dihydroF. The factorial design indicated that the main factors that positively affect penicillin acylase production by S. lavendulae were the concentration of yeast extract and the presence of oligoelements in the fermentation medium, whereas the presence of olive oil in the medium had no effect on enzyme production. An initial concentration of 2.5% (w/v) yeast extract and 3 microg/mL of CuSO4 x 5H2O was found to be best for acylase production. In such optimized culture medium, fermentation of the microorganism yielded 289 IU/L of enzyme in 72 h when employing a volume medium/volume flask ratio of 0.4 and a 300-rpm shaking speed. The presence of copper, alone and in combination with other metals, stimulated biomass as well as penicillin acylase production. The time course of penicillin acylase production was also studied in the optimized medium and conditions. Enzyme production showed catabolite repression by different carbon sources such as glucose, lactose, citrate, glycerol, and glycine. PMID:16118466

  15. Liquid biopsy and therapeutic response: Circulating tumor cell cultures for evaluation of anticancer treatment

    PubMed Central

    Khoo, Bee Luan; Grenci, Gianluca; Jing, Tengyang; Lim, Ying Bena; Lee, Soo Chin; Thiery, Jean Paul; Han, Jongyoon; Lim, Chwee Teck

    2016-01-01

    The lack of a robust anticancer drug screening system to monitor patients during treatment delays realization of personalized treatment. We demonstrate an efficient approach to evaluate drug response using patient-derived circulating tumor cell (CTC) cultures obtained from liquid biopsy. Custom microfabricated tapered microwells were integrated with microfluidics to allow robust formation of CTC clusters without pre-enrichment and subsequent drug screening in situ. Rapid feedback after 2 weeks promotes immediate intervention upon detection of drug resistance or tolerance. The procedure was clinically validated with blood samples (n = 73) from 55 patients with early-stage, newly diagnosed, locally advanced, or refractory metastatic breast cancer. Twenty-four of these samples were used for drug evaluation. Cluster formation potential correlated inversely with increased drug concentration and therapeutic treatment. This new and robust liquid biopsy technique can potentially evaluate patient prognosis with CTC clusters during treatment and provide a noninvasive and inexpensive assessment that can guide drug discovery development or therapeutic choices for personalized treatment. PMID:27453941

  16. Computer assisted optimization of liquid chromatographic separations of small molecules using mixed-mode stationary phases.

    PubMed

    Ordoñez, Edgar Y; Benito Quintana, José; Rodil, Rosario; Cela, Rafael

    2012-05-18

    Mixed-mode stationary phases are gaining adepts in liquid chromatography (LC) as more and more applications are published and new commercial columns appear in the market ought to their ability to retain and separate analytes with multiple functionalities. The increased number of adjustable variables gives these columns an enhanced value for the chromatographer, but, on the other hand, it complicates the process of developing satisfactory separations when complex samples must be analyzed. Thus, the availability of computer assisted methods development (CAMD) tools is highly desirable in this field. Therefore, the first specific tool for the CAMD of LC separations in mixed-mode columns is presented. The tool consists in two processes. The first one develops a retention model for peaks in a predefined experimental domain of pH and buffer concentration. In this domain, the retention as a function of the proportion of organic modifier is modeled using a two-stage re-calibration process departing from isocratic retention data and then, from gradient elutions. With this two-stage approach, reliability is gained. In the second process, the model is finally interpolated and used for the unattended optimization of the different possible elution modes available in these columns. This optimization process is driven by an evolutionary algorithm. The development and application of this new chemometrics tool is demonstrated by the optimization of a mixture of neutral and ionizable compounds. Hence, several different types of gradients were generated, showing a good agreement between simulated and experimental data, with retention time errors lower than 5% in most cases. On the other hand, classical CAMD tools, such as design of experiments, were unable to efficiently deal with mixed-mode optimizations, rendering errors above 30% for several compounds. PMID:22494641

  17. Optimizing the electrochemical performance of imidazolium-based polymeric ionic liquids by varying tethering groups

    NASA Astrophysics Data System (ADS)

    Jia, Zhe

    candidates for this purpose, were attached as tethering groups to imidazolium cations in order to optimize the Tg and ionic conductivities. Previous research on oligomer/polymer electrolytes showed that attaching PEO to the imidazolium cation lowered the Tg of ILs and increased their conductivity. PEO is also chemically stable, dissolves metal ions, and when incorporated into ionic liquids, provides a solvent free electrolyte. A series of IL model compounds and PILs were first synthesized with various lengths of PEO attached on the imidazole. The thermophysical and electrochemical properties of ILs and PILs, including density, viscosity, conductivity and thermal properties were characterized in order to investigate the effect of tethering groups.

  18. Numerical simulation for optimizing mode shaping and supercontinuum flatness of liquid filled seven-core photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Tian, Liang; Wei, Li; Guoying, Feng

    2015-05-01

    A seven-core photonic crystal fiber filled with commercial index-matching liquids is designed to optimize mode shaping and supercontinuum flatness. Numerical simulation of supercontinuum generation in these liquid-filled seven-core PCFs is conducted at 25 °C. The definition of spectral flatness measure is used to quantitatively describe SC flatness. Numerical simulations are performed to study the propagation of femtosecond pulse in the liquid-filled seven-core PCFs. Results show that mode shaping and supercontinuum flatness can be easily optimized and modified using the index-matching liquids in seven-core PCF without varying the structure of the air rings around the guiding cores. Simulations also show that 50 fs pulses with a center wavelength of 1064 nm generate relatively flat SC spectra in the 25 cm-long liquid-filled PCF. A flat spectral bandwidth of 400 nm (900-1300 nm) is achieved with an applied pump power of 30 kW. The simulation results demonstrate that using index-matching liquids to fill the inner ring of the seven-core PCF optimizes mode shaping and generates flat SC spectrum in specified wavelength region. Results further demonstrate that the SC flatness increased with increasing PCF dispersion corresponding to pump wavelength, on the premise that generated enough spectrum width, when the pump worked in the normal dispersion region. Temperature barely affects the spectrum flatness, but can affect spectrum broadening.

  19. Culturing Caenorhabditis elegans in Axenic Liquid Media and Creation of Transgenic Worms by Microparticle Bombardment

    PubMed Central

    Samuel, Tamika K.; Sinclair, Jason W.; Pinter, Katherine L.; Hamza, Iqbal

    2014-01-01

    In this protocol, we present the required materials, and the procedure for making modified C. elegans Habituation and Reproduction media (mCeHR). Additionally, the steps for exposing and acclimatizing C. elegans grown on E. coli to axenic liquid media are described. Finally, downstream experiments that utilize axenic C. elegans illustrate the benefits of this procedure. The ability to analyze and determine C. elegans nutrient requirement was illustrated by growing N2 wild type worms in axenic liquid media with varying heme concentrations. This procedure can be replicated with other nutrients to determine the optimal concentration for worm growth and development or, to determine the toxicological effects of drug treatments. The effects of varied heme concentrations on the growth of wild type worms were determined through qualitative microscopic observation and by quantitating the number of worms that grew in each heme concentration. In addition, the effect of varied nutrient concentrations can be assayed by utilizing worms that express fluorescent sensors that respond to changes in the nutrient of interest. Furthermore, a large number of worms were easily produced for the generation of transgenic C. elegans using microparticle bombardment. PMID:25145601

  20. Serum and supplement optimization for EU GMP-compliance in cardiospheres cell culture.

    PubMed

    Chimenti, Isotta; Gaetani, Roberto; Forte, Elvira; Angelini, Francesco; De Falco, Elena; Zoccai, Giuseppe Biondi; Messina, Elisa; Frati, Giacomo; Giacomello, Alessandro

    2014-04-01

    Cardiac progenitor cells (CPCs) isolated as cardiospheres (CSs) and CS-derived cells (CDCs) are a promising tool for cardiac cell therapy in heart failure patients, having CDCs already been used in a phase I/II clinical trial. Culture standardization according to Good Manufacturing Practices (GMPs) is a mandatory step for clinical translation. One of the main issues raised is the use of xenogenic additives (e.g. FBS, foetal bovine serum) in cell culture media, which carries the risk of contamination with infectious viral/prion agents, and the possible induction of immunizing effects in the final recipient. In this study, B27 supplement and sera requirements to comply with European GMPs were investigated in CSs and CDCs cultures, in terms of process yield/efficiency and final cell product gene expression levels, as well as phenotype. B27- free CS cultures produced a significantly reduced yield and a 10-fold drop in c-kit expression levels versus B27+ media. Moreover, autologous human serum (aHS) and two different commercially available GMP AB HSs were compared with standard research-grade FBS. CPCs from all HSs explants had reduced growth rate, assumed a senescent-like morphology with time in culture, and/or displayed a significant shift towards the endothelial phenotype. Among three different GMP gamma-irradiated FBSs (giFBSs) tested, two provided unsatisfactory cell yields, while one performed optimally, in terms of CPCs yield/phenotype. In conclusion, the use of HSs for the isolation and expansion of CSs/CDCs has to be excluded because of altered proliferation and/or commitment, while media supplemented with B27 and the selected giFBS allows successful EU GMP-complying CPCs culture. PMID:24444305

  1. Optoelectronic optimization of mode selective converter based on liquid crystal on silicon

    NASA Astrophysics Data System (ADS)

    Wang, Yongjiao; Liang, Lei; Yu, Dawei; Fu, Songnian

    2016-03-01

    We carry out comprehensive optoelectronic optimization of mode selective converter used for the mode division multiplexing, based on liquid crystal on silicon (LCOS) in binary mode. The conversion error of digital-to-analog (DAC) is investigated quantitatively for the purpose of driving the LCOS in the application of mode selective conversion. Results indicate the DAC must have a resolution of 8-bit, in order to achieve high mode extinction ratio (MER) of 28 dB. On the other hand, both the fast axis position error of half-wave-plate (HWP) and rotation angle error of Faraday rotator (FR) have negative influence on the performance of mode selective conversion. However, the commercial products provide enough angle error tolerance for the LCOS-based mode selective converter, taking both of insertion loss (IL) and MER into account.

  2. Optimization of the separation of some psychotropic drugs and their respective metabolites by liquid chromatography.

    PubMed

    Cutroneo, P; Beljean, M; Luu, R Phan Tan; Siouffi, A-M

    2006-05-01

    A chemometric procedure is described to optimize the separation of some drugs used in the treatment of psychotic disorders: haloperidol, levomepromazine, risperidone, venlafaxine, carbamazepine and their main metabolites: reduced haloperidol, 9-hydroxy risperidone, desmethyl levomepromazine, desmethyl venlafaxine. The purpose of the procedure is the unambiguous identification and detection in biological fluids. Isocratic reversed-phase liquid chromatography with diode array detection was utilized. An experimental design methodology was carried out in which the experimental response is selectivity. In this way the designs for mixture compounds and for process variables (five variables) was performed which produced 36 experiments to carry out. The desirability function was used to select optimum separation conditions. The procedure provides a chromatogram of well separated solutes. PMID:16406446

  3. Liquid chromatography-photolysis-electrochemical detection for organoiodides. 1. Optimization and application

    SciTech Connect

    Selavka, C.M.; Krull, I.S.

    1987-11-15

    An improved high-performance liquid chromatographic detection method has been applied for the trace determination of iodinated organic compounds. The method, which incorporates postcolumn, on-line UV irradiation prior to oxidative electrochemical (EC) detection, exploits the facile photochemical dissociation of the C-I bond to form anionic iodide and a number of solvolyzed products. Following bond cleavage, iodide, is readily detected amperometrically a moderate oxidative potentials, allowing for the determination of a number of organoiodides at the 25-75 pg level. Following optimization of experimental parameters, the detection approach is linear over 3 orders of magnitude, and enhanced selectivity is demonstrated through the utilization of chromatographic retention times, dual electrode response ratios, and qualitative lamp on/off responses for analyte identification. The method is validated in a single-blind study and is successfully applied to the determination of liothyronine (T/sub 3/) in tablets.

  4. Design and optimization of photonic crystal fiber for liquid sensing applications

    NASA Astrophysics Data System (ADS)

    Arif, Md. Faizul Huq; Ahmed, Kawsar; Asaduzzaman, Sayed; Azad, Md. Abul Kalam

    2016-06-01

    This paper proposes a hexagonal photonic crystal fiber (H-PCF) structure with high relative sensitivity for liquid sensing; in which both core and cladding are microstructures. Numerical investigation is carried out by employing the full vectorial finite element method (FEM). The analysis has been done in four stages of the proposed structure. The investigation shows that the proposed structure achieves higher relative sensitivity by increasing the diameter of the innermost ring air holes in the cladding. Moreover, placing a single channel instead of using a group of tiny channels increases the relative sensitivity effectively. Investigating the effects of different parameters, the optimized structure shows significantly higher relative sensitivity with a low confinement loss.

  5. Teratogenic potential in cultures optimized for oligodendrocyte development from mouse embryonic stem cells.

    PubMed

    Sadowski, Dorota; Kiel, Mary E; Apicella, Marisa; Arriola, Aileen G; Chen, Cui Ping; McKinnon, Randall D

    2010-09-01

    We describe a rapid and efficient 5-step program of defined factors for the genesis of brain myelin-forming oligodendrocytes (OLs) from embryonic stem cells (ESCs). The OLs emerge on the same time frame in vitro as seen in vivo. Factors promoting neural induction (retinoids, noggin) are required, while exogenous Sonic hedgehog is not. In contrast we were unable to generate OLs by trans-differentiation of ethically neutral mesenchymal stem cells, indicating a requirement for cis-differentiation via neural ectoderm for OL genesis. In the ESC-derived cultures, our optimized protocol generated a mixed population with 49% O4(+), Olig2(+) OL lineage cells. These cultures also retained pluripotential markers including Oct4, and an analysis of embryoid body formation in vitro, and allogeneic grafts in vivo, revealed that the ESC-derived cultures also retained teratogenic cells. The frequency of embryoid body formation from terminal differentiated OL cultures was 0.001%, 100-fold lower than that from ESCs. Our results provide the first quantitative measurement of teratogenicity in ESC-derived, exhaustively differentiated allogeneic grafts, and demonstrate the unequivocal need to purify ESC-derived cells in order to generate a safe population for regenerative therapy. PMID:20131970

  6. Optimization of a steaming with liquid smoke smoking process of Mediterranean mussel (Mytilus galloprovincialis).

    PubMed

    Petridis, Dimitris; Zotos, Anastasios; Kampouris, Theodoros; Roumelioti, Zoi

    2013-02-01

    Mussel samples were brined in 0%, 10% and 20% sodium chloride solutions and steamed with 2%, 5% and 8% liquid smoke at 1 (atmospheric pressure), 1.5 and 2 bar pressures. Sodium chloride and moisture content and instrumental color were analyzed. They were also objectively and hedonically assessed by 35 and 70 panellists, respectively, for their smoked flavor, saltiness, juiciness and color. The sodium chloride content was influenced by the brine concentration and brightness by the smoke and brine concentrations. The smoked flavor significantly and linearly (p = 0.018) influenced by the liquid smoke and brine concentration. A linear effect (p < 0.001) of brine concentration (p < 0.001) on sensory saltiness was expectedly observed. Brine concentration affected not only the saltiness but also the juiciness of the mussel smoked products. All factors of the study produced a significant linear effect (p = 0.008) on the intensity of color. Brine concentration was the only process variable affecting all the hedonic sensory variables in a curvilinear mode. The optimal hedonic conditions of the mussel products were achieved at smoke concentrations 3.8-8%, brine level from 8.5% to 13.5% at pressure 1 bar and from 11.5% to 16.5% at pressure 1.5 bar. All hedonic variables reached their maximum likeliness between 9 and 13. The optimal objective saltiness and juiciness varied between moderate and adequate salty and juicy product. The physicochemical variables employed in the study were adequately perceived by the panellists' sensory objective assessment as redundancy analysis revealed. Sodium chloride and moisture were the most important chemical variables (R (2 )= 42% and 13%, respectively). PMID:23239761

  7. [Optimization of liquid ammonia treatment for enzymatic hydrolysis of Saccharum arundinaceum to fermentable sugars].

    PubMed

    Liu, Jianjun; Peng, Hehuan; Zhao, Xiangjun; Cheng, Cheng; Chen, Feng; Shao, Qianjun

    2013-03-01

    China has abundant available marginal land that can be used for cultivation of lignocellulosic energy plants. Saccharum arundinaceum Retz. is a potential energy crop with both high biomass yield and low soil fertility requirements. It can be planted widely as cellulosic ethanol feedstock in southern China. In the present work Saccharum arundinaceum was pretreated by liquid ammonia treatment (LAT) to overcome biomass recalcitrance, followed by enzymatic hydrolysis. The monosaccharide contents (glucose, xylose, and arabinose) of the enzymatic hydrolysate were determined by high performance liquid chromatography. Experimental results show that the optimal LAT pretreatment conditions were 130 0C, 2:1 (W/W) ammonia to biomass ratio, 80% moisture content (dry weight basis) and 5 min residence time. Approximately 69.34% glucan and 82.60% xylan were converted after 72 h enzymatic hydrolysis at 1% glucan loading using 15 FPU/(g of glucan) of cellulase. The yields of glucose and xylose were 573% and 1 056% higher than those of the untreated biomass, and the LAT-pretreated substrates obtained an 8-fold higher of total monosaccharide yield than untreated substrates. LAT pretreatment was an effective to increase the enzymatic digestibility of Saccharum arundinaceum compared to acid impregnated steam explosion and similar to that of acid treatment and ammonia fiber expansion treatment. PMID:23789274

  8. Optimized setup for two-dimensional convection experiments in thin liquid films.

    PubMed

    Winkler, Michael; Abel, Markus

    2016-06-01

    We present a novel experimental setup to investigate two-dimensional thermal convection in a freestanding thin liquid film. Such films can be produced in a controlled way on the scale of 5-1000 nm. Our primary goal is to investigate convection patterns and the statistics of reversals in Rayleigh-Bénard convection with varying aspect ratio. Additionally, questions regarding the physics of liquid films under controlled conditions can be investigated, like surface forces, or stability under varying thermodynamical parameters. The film is suspended in a frame which can be adjusted in height and width to span an aspect ratio range of Γ = 0.16-10. The top and bottom frame elements can be set to specific temperature within T = 15 °C to 55 °C. A thickness to area ratio of approximately 10(8) enables only two-dimensional fluid motion in the time scales relevant for turbulent motion. The chemical composition of the film is well-defined and optimized for film stability and reproducibility and in combination with carefully controlled ambient parameters allows the comparison to existing experimental and numerical data. PMID:27370492

  9. Optimized ion acceleration using high repetition rate, variable thickness liquid crystal targets

    NASA Astrophysics Data System (ADS)

    Poole, Patrick; Willis, Christopher; Cochran, Ginevra; Andereck, C. David; Schumacher, Douglass

    2015-11-01

    Laser-based ion acceleration is a widely studied plasma physics topic for its applications to secondary radiation sources, advanced imaging, and cancer therapy. Recent work has centered on investigating new acceleration mechanisms that promise improved ion energy and spectrum. While the physics of these mechanisms is not yet fully understood, it has been observed to dominate for certain ranges of target thickness, where the optimum thickness depends on laser conditions including energy, pulse width, and contrast. The study of these phenomena is uniquely facilitated by the use of variable-thickness liquid crystal films, first introduced in P. L. Poole et al. PoP21, 063109 (2014). Control of the formation parameters of these freely suspended films such as volume, temperature, and draw speed allows on-demand thickness variability between 10 nanometers and several 10s of microns, fully encompassing the currently studied thickness regimes with a single target material. The low vapor pressure of liquid crystal enables in-situ film formation and unlimited vacuum use of these targets. Details on the selection and optimization of ion acceleration mechanism with target thickness will be presented, including recent experiments on the Scarlet laser facility and others. This work was performed with support from the DARPA PULSE program through a grant from AMRDEC and by the NNSA under contract DE-NA0001976.

  10. Optimized setup for two-dimensional convection experiments in thin liquid films

    NASA Astrophysics Data System (ADS)

    Winkler, Michael; Abel, Markus

    2016-06-01

    We present a novel experimental setup to investigate two-dimensional thermal convection in a freestanding thin liquid film. Such films can be produced in a controlled way on the scale of 5-1000 nm. Our primary goal is to investigate convection patterns and the statistics of reversals in Rayleigh-Bénard convection with varying aspect ratio. Additionally, questions regarding the physics of liquid films under controlled conditions can be investigated, like surface forces, or stability under varying thermodynamical parameters. The film is suspended in a frame which can be adjusted in height and width to span an aspect ratio range of Γ = 0.16-10. The top and bottom frame elements can be set to specific temperature within T = 15 °C to 55 °C. A thickness to area ratio of approximately 108 enables only two-dimensional fluid motion in the time scales relevant for turbulent motion. The chemical composition of the film is well-defined and optimized for film stability and reproducibility and in combination with carefully controlled ambient parameters allows the comparison to existing experimental and numerical data.

  11. Culture media statistical optimization for biomass production of a ligninolytic fungus for future rice straw degradation.

    PubMed

    Sarria-Alfonso, Viviana; Sánchez-Sierra, John; Aguirre-Morales, Mauricio; Gutiérrez-Rojas, Ivonne; Moreno-Sarmiento, Nubia; Poutou-Piñales, Raúl A

    2013-06-01

    The main objective of this study was to optimize a culture media for low scale biomass production of Pleurotus spp. Future applications of this optimization will be implemented for "in situ" rice straw degradation, increase soil nutrients availability, and lower residue and rice culture management costs. Soil samples were taken from different points in six important rice production cities in Colombia. For carbon and nitrogen source selection a factorial 4(2) design was carried out. The Plackett-Burman design permitted to detect carbon, nitrogen and inducer effects on fungus growth (response variable for all designs). This optimization was carried out by a Box-Behnken design. Finally a re-optimization assay for glucose concentration was performed by means of a One Factor design. Only 4/33 (12 %) isolates showed and important laccase or manganese peroxidase activity compared to Pleurotus ostreatus (HPB/P3). We obtained an increased biomass production in Pleurotus spp. (T1.1.) with glucose, followed by rice husk. Rice straw was considered an inducing agent for lignin degradation. Glucose was a significant component with positive effects, whereas Tween 80 and pH had negative effects. On the contrary, rice husk, yeast extract and CaCl2 were not significant components for increase the biomass production. Final media composition consisted of glucose 25 g L(-1), yeast extract 5 g L(-1), Tween 80 0.38 % (v/v), Rice husk 10 g L(-1), CaCl2 1 g L(-1), and pH 4.88 ± 0.2. The Box-Behnken polynomial prediction resulted to be lower than the experimental validation of the model (6.59 vs. 6.91 Log10 CFU ml(-1) respectively). PMID:24426109

  12. Cross-Cultural Comparison of the Effects of Optimism, Intrinsic Motivation, and Family Relations on Vocational Identity

    ERIC Educational Resources Information Center

    Shin, Yun-Jeong; Kelly, Kevin R.

    2013-01-01

    This study explored the effects of optimism, intrinsic motivation, and family relations on vocational identity in college students in the United States and South Korea. The results yielded support for the hypothesized multivariate model. Across both cultures, optimism was an important contributing factor to vocational identity, and intrinsic…

  13. Development and population dynamics of Steinernema yirgalemense (Rhabditida: Steinernematidae) and growth characteristics of its associated Xenorhabdus indica symbiont in liquid culture.

    PubMed

    Ferreira, T; Addison, M F; Malan, A P

    2016-05-01

    Entomopathogenic nematodes have become a valuable addition to the range of biological control agents available for insect control. An endemic nematode, Steinernema yirgalemense, has been found to be effective against a wide range of key insect pests. The next step would be the mass production this nematode for commercial application. This requires the establishment of monoxenic cultures of both the nematode and the symbiotic bacterium Xenorhabdus indica. First-stage juveniles of S. yirgalemense were obtained from eggs, while X. indica was isolated from nematode-infected wax moth larvae. The population density of the various life stages of S. yirgalemense during the developmental phase in liquid culture was determined. The recovery of infective juveniles (IJs) to the third-stage feeding juveniles, was 67 ± 10%, reaching a maximum population density of 75,000 IJs ml- 1 on day 13 after inoculation. Adult density increased after 8 days, with the maximum female density being 4600 ml- 1 on day 15, whereas the maximum male density was 4300 ml- 1 on day 12. Growth curves for X. indica showed that the exponential phase was reached 15 h after inoculation to the liquid medium. The stationary phase was reached after 42 h, with an average of 51 × 107 colony-forming units ml- 1. Virulence tests showed a significant difference in insect mortality between in vitro- and in vivo-produced nematodes. The success obtained with the production of S. yirgalemense in liquid culture can serve as the first step in the optimizing and upscaling of the commercial production of nematodes in fermenters. PMID:26156314

  14. Pressurized liquid extraction of anthocyanins and biflavonoids from Schinus terebinthifolius Raddi: A multivariate optimization.

    PubMed

    Feuereisen, Michelle M; Gamero Barraza, Mariana; Zimmermann, Benno F; Schieber, Andreas; Schulze-Kaysers, Nadine

    2017-01-01

    Response surface methodology was employed to investigate the effects of pressurized liquid extraction (PLE) parameters on the recovery of phenolic compounds (anthocyanins, biflavonoids) from Brazilian pepper (Schinus terebinthifolius Raddi) fruits. The effects of temperature, static time, and ethanol as well as acid concentration on the polyphenol yield were described well by quadratic models (p<0.0001). A significant influence of the ethanol concentration (p<0.0001) and several interactions (p<0.05) were identified. Identification of the biflavonoid I3',II8-binaringenin in drupes of S. terebinthifolius was achieved by UHPLC-MS(2). Interestingly, at high extraction temperatures (>75°C), an artifact occurred and was tentatively identified as a diastereomer of I3',II8-binaringenin. Multivariate optimization led to high yields of phenolic compounds from the exocarp/drupes at 100/75°C, 10/10min, 54.5/54.2% ethanol, and 5/0.03% acetic acid. This study demonstrates that PLE is well suited for the extraction of phenolic compounds from S. terebinthifolius and can efficiently be optimized by response surface methodology. PMID:27507511

  15. Optimization of cyanide extraction from wastewater using emulsion liquid membrane system by response surface methodology.

    PubMed

    Xue, Juan Qin; Liu, Ni Na; Li, Guo Ping; Dang, Long Tao

    2016-01-01

    To solve the disposal problem of cyanide wastewater, removal of cyanide from wastewater using a water-in-oil emulsion type of emulsion liquid membrane (ELM) was studied in this work. Specifically, the effects of surfactant Span-80, carrier trioctylamine (TOA), stripping agent NaOH solution and the emulsion-to-external-phase-volume ratio on removal of cyanide were investigated. Removal of total cyanide was determined using the silver nitrate titration method. Regression analysis and optimization of the conditions were conducted using the Design-Expert software and response surface methodology (RSM). The actual cyanide removals and the removals predicted using RSM analysis were in close agreement, and the optimal conditions were determined to be as follows: the volume fraction of Span-80, 4% (v/v); the volume fraction of TOA, 4% (v/v); the concentration of NaOH, 1% (w/v); and the emulsion-to-external-phase volume ratio, 1:7. Under the optimum conditions, the removal of total cyanide was 95.07%, and the RSM predicted removal was 94.90%, with a small exception. The treatment of cyanide wastewater using an ELM is an effective technique for application in industry. PMID:27533852

  16. Geographic Differences in Time to Culture Conversion in Liquid Media: Tuberculosis Trials Consortium Study 28. Culture Conversion Is Delayed in Africa

    PubMed Central

    Mac Kenzie, William R.; Heilig, Charles M.; Bozeman, Lorna; Johnson, John L.; Muzanye, Grace; Dunbar, Denise; Jost, Kenneth C.; Diem, Lois; Metchock, Beverly; Eisenach, Kathleen; Dorman, Susan; Goldberg, Stefan

    2011-01-01

    Background Tuberculosis Trials Consortium Study 28, was a double blind, randomized, placebo-controlled, phase 2 clinical trial examining smear positive pulmonary Mycobacterium tuberculosis. Over the course of intensive phase therapy, patients from African sites had substantially delayed and lower rates of culture conversion to negative in liquid media compared to non-African patients. We explored potential explanations of this finding. Methods In TBTC Study 28, protocol-correct patients (n = 328) provided spot sputum specimens for M. tuberculosis culture in liquid media, at baseline and weeks 2, 4, 6 and 8 of study therapy. We compared sputum culture conversion for African and non-African patients stratified by four baseline measures of disease severity: AFB smear quantification, extent of disease on chest radiograph, cavity size and the number of days to detection of M. tuberculosis in liquid media using the Kaplan-Meier product-limit method. We evaluated specimen processing and culture procedures used at 29 study laboratories serving 27 sites. Results African TB patients had more extensive disease at enrollment than non-African patients. However, African patients with the least disease by the 4 measures of disease severity had conversion rates on liquid media that were substantially lower than conversion rates in non-African patients with the greatest extent of disease. HIV infection, smoking and diabetes did not explain delayed conversion in Africa. Some inter-site variation in laboratory processing and culture procedures within accepted practice for clinical diagnostic laboratories was found. Conclusions Compared with patients from non-African sites, African patients being treated for TB had delayed sputum culture conversion and lower sputum conversion rates in liquid media that were not explained by baseline severity of disease, HIV status, age, smoking, diabetes or race. Further investigation is warranted into whether modest variation in laboratory

  17. Determination of volatile components of green, black, oolong and white tea by optimized ultrasound-assisted extraction-dispersive liquid-liquid microextraction coupled with gas chromatography.

    PubMed

    Sereshti, Hassan; Samadi, Soheila; Jalali-Heravi, Mehdi

    2013-03-01

    Ultrasound assisted extraction (UAE) followed by dispersive liquid-liquid microextraction (DLLME) was used for extraction and preconcentration of volatile constituents of six tea plants. The preconcentrated compounds were analyzed by gas chromatography-mass spectrometry (GC-MS). Totally, 42 compounds were identified and caffeine was quantitatively determined. The main parameters (factors) of the extraction process were optimized by using a central composite design (CCD). Methanol and chloroform were selected as the extraction solvent and preconcentration solvent, respectively .The optimal conditions were obtained as 21 in for sonication time; 32°C for temperature; 27 L for volume of extraction solvent and 7.4% for salt concentration (NaCl/H(2)O). The determination coefficient (R(2)) was 0.9988. The relative standard deviation (RSD %) was 4.8 (n=5), and the enhancement factors (EFs) were 4.0-42.6. PMID:23375769

  18. Aflatoxin B1 degradation by liquid cultures and lysates of three bacterial strains.

    PubMed

    Adebo, Oluwafemi Ayodeji; Njobeh, Patrick Berka; Sidu, Sibusiso; Tlou, Matsobane Godfrey; Mavumengwana, Vuyo

    2016-09-16

    Aflatoxin contamination remains a daunting issue to address in food safety. In spite of the efforts geared towards prevention and elimination of this toxin, it still persists in agricultural commodities. This has necessitated the search for other measures such as microbial degradation to combat this hazard. In this study, we investigated the biodegradation of aflatoxin B1 (AFB1), using lysates of three bacterial strains (Pseudomonas anguilliseptica VGF1, Pseudomonas fluorescens and Staphylococcus sp. VGF2) isolated from a gold mine aquifer. The bacterial cells were intermittently lysed in the presence and absence of protease inhibitors to obtain protease free lysates, subsequently incubated with AFB1 for 3, 6, 12, 24, and 48h to investigate whether any possible AFB1 degradation occurred using high performance liquid chromatography (HPLC) for detection. Results obtained revealed that after 6h of incubation, protease inhibited lysates of Staphylococcus sp. VGF2 demonstrated the highest degradation capacity of 100%, whereas P. anguilliseptica VGF1 and P. fluorescens lysates degraded AFB1 by 66.5 and 63%, respectively. After further incubation to 12h, no residual AFB1 was detected for all the lysates. Lower degrading ability was however observed for liquid cultures and uninhibited lysates. Data on cytotoxicity studies against human lymphocytes showed that the degraded products were less toxic than the parent AFB1. From this study, it can thus be deduced that the mechanism of degradation by these bacterial lysates is enzymatic. This study shows the efficacy of crude bacterial lysates for detoxifying AFB1 indicating potential for application in the food and feed industry. PMID:27294556

  19. Establishment and culture optimization of a new type of pituitary immortalized cell line

    SciTech Connect

    Kokubu, Yuko; Asashima, Makoto; Kurisaki, Akira

    2015-08-07

    The pituitary gland is a center of the endocrine system that controls homeostasis in an organism by secreting various hormones. The glandular anterior pituitary consists of five different cell types, each expressing specific hormones. However, their regulation and the appropriate conditions for their in vitro culture are not well defined. Here, we report the immortalization of mouse pituitary cells by introducing TERT, E6, and E7 transgenes. The immortalized cell lines mainly expressed a thyrotroph-specific thyroid stimulating hormone beta (Tshb). After optimization of the culture conditions, these immortalized cells proliferated and maintained morphological characteristics similar to those of primary pituitary cells under sphere culture conditions in DMEM/F12 medium supplemented with N2, B27, basic FGF, and EGF. These cell lines responded to PKA or PKC pathway activators and induced the expression of Tshb mRNA. Moreover, transplantation of the immortalized cell line into subcutaneous regions and kidney capsules of mice further increased Tshb expression. These results suggest that immortalization of pituitary cells with TERT, E6, and E7 transgenes is a useful method for generating proliferating cells for the in vitro analysis of pituitary regulatory mechanisms. - Highlights: • Mouse pituitary cell lines were immortalized by introducing TERT, E6, and E7. • The immortalized cell lines mainly expressed thyroid stimulating hormone beta. • The cell lines responded to PKA or PKC pathway activators, and induced Tshb.

  20. Optimization of culture medium and modeling of curdlan production from Paenibacillus polymyxa by RSM and ANN.

    PubMed

    Rafigh, Sayyid Mahdi; Yazdi, Ali Vaziri; Vossoughi, Manouchehr; Safekordi, Ali Akbar; Ardjmand, Mehdi

    2014-09-01

    Paenibacillus polymyxa ATCC 21830 was used for the production of curdlan gum for first time. A Box-Behnken experimental design was applied to optimize six variables of batch fermentation culture each at three levels. Statistical analyses were employed to investigate the direct and interactive effects of variables on curdlan production. Optimum cultural conditions were temperature (50°C), pH (7), fermentation time (96 h), glucose (100 g/L), yeast extract (3 g/L) and agitation speed (150 rpm). The yield of curdlan production was 6.89 g/L at optimum condition medium. Response surface methodology (RSM) and artificial neural network (ANN) were used to model cultural conditions of curdlan production. The maximum yield of curdlan production were predicted to be 6.68 and 6.85 g/L by RSM and ANN at optimum condition. The prediction capabilities of RSM and ANN were then statistically compared. The results showed that the ANN model is much more accurate in prediction as compared to the RSM. The infrared (IR) and NMR spectra, the thermogram of DSC and pattern of X-ray diffraction for the curdlan of the present study were almost identical to those of the commercial curdlan sample. The average molecular weight of the purified curdlan was determined to be 170 kDa by gel permeation chromatography. PMID:25062991

  1. Optimization of culture conditions to obtain maximal growth of penicillin-resistant Streptococcus pneumoniae

    PubMed Central

    Restrepo, Andrea V; Salazar, Beatriz E; Agudelo, María; Rodriguez, Carlos A; Zuluaga, Andres F; Vesga, Omar

    2005-01-01

    Background Streptococcus pneumoniae, particularly penicillin-resistant strains (PRSP), constitute one of the most important causes of serious infections worldwide. It is a fastidious microorganism with exquisite nutritional and environmental requirements to grow, a characteristic that prevents the development of useful animal models to study the biology of the microorganism. This study was designed to determine optimal conditions for culture and growth of PRSP. Results We developed a simple and reproducible method for culture of diverse strains of PRSP representing several invasive serotypes of clinical and epidemiological importance in Colombia. Application of this 3-step culture protocol consistently produced more than 9 log10 CFU/ml of viable cells in the middle part of the logarithmic phase of their growth curve. Conclusion A controlled inoculum size grown in 3 successive steps in supplemented agar and broth under 5% CO2 atmosphere, with pH adjustment and specific incubation times, allowed production of great numbers of PRSP without untimely activation of autolysis mechanisms. PMID:15932633

  2. Optimization of production of Brucella abortus S19 culture in bioreactor using soyabean casein digest medium.

    PubMed

    Kamaraj, Govindasamy; Rajendra, Lingala; Shankar, Chinchkar Ramachandra; Srinivasan, Villuppanoor Alwar

    2010-10-01

    A method of cultivating Brucella abortus S19 culture in bioreactor was attempted using three different media. Culture conditions in bioreactor were optimized by varying agitation and aeration parameters. Varying the aeration ranging from 0.5 vvm to 0.8 vvm and agitation rate ranging from 250 rpm to 400 rpm during bacterial growth was found to yield highest viable count within 48 hours of culture period. A count of > 1 x 10(11) CFU per ml within 48 to 60 hours post seeding was obtained consistently in all five consecutive batches (P > 0.05) with 6 x 10(11) CFU per ml being the maximum yield when the organism is grown in soyabean casein digest medium. B. abortus S19 maintained its smooth characteristics throughout its growth in bioreactor. The vaccine prepared with soyabean casein digest medium was found to be potent and safe with a protective index of 3.33 in mice. The vaccine was tested in 10 cattle calves of 3 to 13 months age and all the vaccinated animals were seropositive on 28, 60, 90, 120 and 150 days post-vaccination when analyzed by fluorescence polarization assay (FPA). PMID:21213590

  3. Knowledge-based function optimization using fuzzy cultural algorithms with evolutionary programming.

    PubMed

    Reynolds, R G; Zhu, S

    2001-01-01

    In this paper, the advantages of a fuzzy representation in problem solving and search is investigated using the framework of Cultural algorithms (CAs). Since all natural languages contain a fuzzy component, the natural question is "Does this fuzzy representation facilitate the problem-solving process, within these systems". In order to investigate this question we use the CA framework of Reynolds (1996), CAs are a computational model of cultural evolution derived from and used to express basic anthropological models of culture and its development. A mathematical model of a full fuzzy CA is developed there. In it, the problem solving knowledge is represented using a fuzzy framework. Several theoretical results concerning its properties are presented. The model is then applied to the solution of a set of 12 difficult, benchmark problems in nonlinear real-valued function optimization. The performance of the full fuzzy model is compared with 8 other fuzzy and crisp architectures. The results suggest that a fuzzy approach can produce a statistically significant improvement in search efficiency over nonfuzzy versions for the entire set of functions, the then investigate the class of performance functions for which the full fuzzy system exhibits the greatest improvements over nonfuzzy systems. In general, these are functions which require some preliminary investigation in order to embark on an effective search. PMID:18244764

  4. An Axenic Plant Culture System for Optimal Growth in Long-Term Studies: Design and Maintenance

    NASA Technical Reports Server (NTRS)

    Henry, Amelia; Doucette, William; Norton, Jeanette; Jones, Scott; Chard, Julie; Bugbee, Bruce

    2006-01-01

    The symbiotic co-evolution of plants and microbes leads to difficulties in understanding which of the two components is responsible for a given environmental response. Plant-microbe studies greatly benefit from the ability to grow plants in axenic (sterile) culture. Several studies have used axenic plant culture systems, but experimental procedures are often poorly documented, the plant growth environment is not optimal, and axenic conditions are not rigorously verified. We developed a unique axenic system using inert components that promotes plant health and can be kept sterile for at least 70 d. Crested wheatgrass (Agropyron cristatum cv. DII) plants were grown in sand within flow-through glass columns that were positively pressured with filtered air. Plant health was optimized by regulating temperature, light level, CO2 concentration, humidity, and nutrients. The design incorporates several novel aspects, such as pretreatment of the sand with Fe, graduated sand layers to optimize the air-water balance of the root zone, and modification of a laminar flow hood to serve as a plant growth chamber. Adaptations of several sterile techniques were necessary for maintenance of axenic conditions. Axenic conditions were verified by plating and staining leachates as well as rhizoplane stain. This system was designed to study nutrient and water stress effects on root exudates, but is useful for assessing a broad range of plant-microbe-environment interactions. Based on total organic C analysis, 74% of exudates was recovered in the leachate, 6% was recovered in the bulk sand, and 17% was recovered in the rhizosphere sand. Carbon in the leachate after 70 d reached 255 micro-g/d. Fumaric, malic, malonic, oxalic, and succinic acids were measured as components of the root exudates.

  5. Haloxyfop mode of action in liquid cultures of proso millet: An analysis of haloxyfop sensitivity changes during growth

    SciTech Connect

    Irzyk, G.P.

    1989-01-01

    Haloxyfop is a grass-selective herbicide that inhibits acetyl-CoA carboxylase in species that are not tolerant to the herbicide. Liquid cultures of proso millet (Panicum miliaceum) cells treated with haloxyfop at different phases of growth exhibited different levels of sensitivity to the herbicide. Treatment of 1-d cultures with 1 {mu}M haloxyfop completely inhibited growth within 48 h. In contrast, 1 mM haloxyfop was required to elicit a similar response in 4-, 7-, or 10-d cultures. Calculated IC{sub 50} values indicated a 300-fold decrease in haloxyfop sensitivity during the period from 1 to 4 d. This period of growth coincided with the greatest increase in cell number during culture growth and suggested that dividing cells are most sensitive to haloxyfop. Uptake and metabolism of {sup 14}C-haloxyfop in 1-d and 4-d cultures were compared. In both cultures, amounts of radiolabel uptake were similar. Almost all radioactivity extracted from 1- and 4-d cells was present as the parent compound. These results suggested that the sensitivity change was related to other factors. Acetyl-CoA carboxylase activity of proso millet cells, measured in vitro by the acetyl-CoA-dependent incorporation of {sup 14} C-bicarbonate into an acid-stable product, was essentially constant during culture growth. Micromolar concentrations of haloxyfop significantly inhibited acetyl-CoA carboxylase activity from both sensitive and insensitive cultures. Thus, the change in the sensitivity of cultures to haloxyfop was not correlated with changes in acetyl-CoA carboxylase abundance, activity, or sensitivity to haloxyfop during culture growth. In vivo incorporation of {sup 14}C-acetate into lipids was decreased by 1 {mu}M haloxyfop in both 1-d and 4-d cultures at the earliest sampling times but the amount of inhibition was significantly greater in the sensitive cultures.

  6. Optimization of Pressurized Liquid Extraction of Three Major Acetophenones from Cynanchum bungei Using a Box-Behnken Design

    PubMed Central

    Li, Wei; Zhao, Li-Chun; Sun, Yin-Shi; Lei, Feng-Jie; Wang, Zi; Gui, Xiong-Bin; Wang, Hui

    2012-01-01

    In this work, pressurized liquid extraction (PLE) of three acetophenones (4-hydroxyacetophenone, baishouwubenzophenone, and 2,4-dihydroxyacetophenone) from Cynanchum bungei (ACB) were investigated. The optimal conditions for extraction of ACB were obtained using a Box-Behnken design, consisting of 17 experimental points, as follows: Ethanol (100%) as the extraction solvent at a temperature of 120 °C and an extraction pressure of 1500 psi, using one extraction cycle with a static extraction time of 17 min. The extracted samples were analyzed by high-performance liquid chromatography using an UV detector. Under this optimal condition, the experimental values agreed with the predicted values by analysis of variance. The ACB extraction yield with optimal PLE was higher than that obtained by soxhlet extraction and heat-reflux extraction methods. The results suggest that the PLE method provides a good alternative for acetophenone extraction. PMID:23203079

  7. Long-term storage of aerobic granules in liquid media: viable but non-culturable status.

    PubMed

    Wan, Chunli; Zhang, Qinlan; Lee, Duu-Jong; Wang, Yayi; Li, Jieni

    2014-08-01

    Long-term storage and successful reactivation after storage are essential for practical applications of aerobic granules on wastewater treatment. This study cultivated aerobic granules (SI) in sequencing batch reactors and then stored the granules at 4 °C in five liquid media (DI water (SW), acetone (SA), acetone/isoamyl acetate mix (SAA), saline water (SS), and formaldehyde (SF)) for over 1 year. The first four granules were then successfully reactivated in 24h cultivation. The specific oxygen uptake rates (SOUR) of the granules followed SI>SS>SA>SAA>SW>SF; and the corresponding granular strengths (10 min ultrasound) followed SI>SA=SS>SAA>SW>SF. During storage the granular cells secreted excess quantities of cyclic-diguanylate (c-di-GMP) and pentaphosphate (ppGpp) as responses to the stringent challenges. We proposed that to force cells in granules (Alphaproteobacteria, Flavobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, Sphingobacteria, and Clostridia) entering viable but non-culturable (VBNC) status is the key of success for extended period storage of granules. PMID:24950091

  8. Optimal design of scalable photo-bioreactor for phototropic culturing of Haematococcus pluvialis.

    PubMed

    Yoo, Jae Jun; Choi, Seung Phill; Kim, Byung Woo; Sim, Sang Jun

    2012-01-01

    The unicellular green microalgae, Haematococcus pluvialis, has been examined as a microbial source for the production of astaxanthin, which has been suggested as a food supplement for humans and is also prescribed as an ingredient in eye drops because of its powerful anti-oxidant properties. In this study, we estimated the effects of the slope of a V-shaped bottom design, the volumetric flow rate of air, height/diameter (H/D) ratio, and diameter of an air sparger on the performance of a photo-bioreactor. These parameters were selected because they are recognized as important factors effecting the mixing that produces increased cell density in the reactor. The mixing effect can be measured by changes in optical density in the bioreactor over a period of time. A 6 L indoor photo-bioreactor was prepared in a short time period of 24 h for the performance study. A bioreactor designed with a V-shaped bottom with a slope of 60° showed an optical density change of 0.052 at 680 nm, which was sixfold less than the change in a photo-bioreactor designed with a flat bottom. Studies exploring the effects of bioreactor configuration and a porous metal sparger with a 10 μm pore size showed the best performance at an H/D ratio of 6:1 and a sparger diameter of 1.3 cm, respectively. The optimal rate of air flow was 0.2 vvm. The indoor culture of microalgae in the photo-bioreactor was subsequently carried for an application study using the optimal values established for the important factors. The indoor culture system was composed of a light source controlled according to cell phase, a carbon dioxide feeder, a bag-type reactor with an H/D ratio of 6:1, and a temperature controller. Results demonstrated the efficient production of microalgal cells and astaxanthin in the amounts of 2.62 g/L and 78.37 mg/L, respectively, when using adequate hydrodynamic mixing. Furthermore, the optimal design of a photo-bioreactor can be applied for the phototropic culturing of other microalgae for

  9. Surviving death-anxieties in liquid modern times: examining Zygmunt Bauman's cultural theory of death and dying.

    PubMed

    Higo, Masa

    2012-01-01

    Despite his prominence as a leading contemporary social theorist, Zygmunt Bauman's long-term writing on the cultural theory of death and dying has largely been overlooked in the sociological literature of death and dying, particularly in the United States. Bauman uniquely theorizes how we survive death-anxieties today: Contemporary, liquid modern culture has engaged us in ceaseless pursuit of the unattainable consumer sensation of bodily fitness as a way to suppress and thus survive our death-anxieties. Bauman also argues that the prevalence of this cultural formula to survive death-anxieties has simultaneously increased, more than ever before in social history, the volume of individual responsibility for restlessly coping with existential anxieties in the societies of consumers. While unique and insightful, his theoretical argument has a limitation; largely succeeding Freud's classic view of mortality, Bauman's contemporary theory may lead us to neglect potentially important social, cultural, and historical variations in how mortality has been understood. PMID:23057247

  10. Determination of alachlor and its metabolite 2,6-diethylaniline in microbial culture medium using online microdialysis enriched-sampling coupled to high-performance liquid chromatography.

    PubMed

    Chen, Chi-Zen; Yan, Cheing-Tong; Kumar, Ponnusamy Vinoth; Huang, Jenn-Wen; Jen, Jen-Fon

    2011-08-10

    In this study, a simple and novel microdialysis sampling technique incorporating hollow fiber liquid phase microextraction (HF-LPME) coupled online to high-performance liquid chromatography (HPLC) for the one-step sample pretreatment and direct determination of alachlor (2-chloro-2',6'-diethyl-N -(methoxymethyl)acetanilide) and its metabolite 2,6-diethylaniline (2,6-DEA) in microbial culture medium has been developed. A reversed-phase C-18 column was utilized to separate alachlor and 2,6-DEA from other species using an acetonitrile/water mixture (1:1) containing 0.1 M phosphate buffer solution at pH 7.0 as the mobile phase. Detection was carried out with a UV detector operated at 210 nm. Parameters that influenced the enrichment efficiency of online HF-LPME sampling, including the length of the hollow fiber, the perfusion solvent and its flow rate, the pH, and the salt added in sample solution, as well as chromatographic conditions were thoroughly optimized. Under optimal conditions, excellent enrichment efficiency was achieved by the microdialysis of a sample solution (pH 7.0) using hexane as perfusate at the flow rate of 4 μL/min. Detection limits were 72 and 14 ng/mL for alachlor and 2,6-DEA, respectively. The enrichment factors were 403 and 386 (RSD < 5%) for alachlor and 2,6-DEA, respectively, when extraction was performed by using a 40 cm regenerated cellulose hollow fiber and hexane as perfusion solvent at the flow rate of 0.1 μL/min. The proposed method provides a sensitive, flexible, fast, and eco-friendly procedure to enrich and determine alachlor and its metabolite (2,6-DEA) in microbial culture medium. PMID:21707080

  11. Biodegradation of alachlor in liquid and soil cultures under variable carbon and nitrogen sources by bacterial consortium isolated from corn field soil

    PubMed Central

    2013-01-01

    Alachlor, an aniline herbicide widely used in corn production, is frequently detected in water resources. The main objectives of this research were focused on isolating bacterial consortium capable of alachlor biodegradation, assessing the effects of carbon and nitrogen sources on alachlor biodegradation and evaluating the feasibility of using bacterial consortium in soil culture. Kavar corn field soil with a long history of alachlor application in Fars province of Iran has been explored for their potential of alachlor biodegradation. The influence of different carbon compounds (glucose, sodium citrate, sucrose, starch and the combination of these compounds), the effect of nitrogen sources (ammonium nitrate and urea) and different pH (5.5-8.5) on alachlor removal efficiency by the bacterial consortium in liquid culture were investigated. After a multi-step enrichment program 100 days of acclimation, a culture with the high capability of alachlor degradation was obtained (63%). Glucose and sodium citrate had the highest alachlor reduction rate (85%). Alachlor reduction rate increased more rapidly by the addition of ammonium nitrate (94%) compare to urea. Based on the data obtained in the present study, pH of 7.5 is optimal for alachlor biodegradation. After 30 days of incubation, the percent of alachlor reduction were significantly enhanced in the inoculated soils (74%) as compared to uninoculated control soils (17.67%) at the soil moisture content of 25%. In conclusion, bioaugmentation of soil with bacterial consortium may enhance the rate of alachlor degradation in a polluted soil. PMID:23452801

  12. High performance liquid chromatographic determination of ultra traces of two tricyclic antidepressant drugs imipramine and trimipramine in urine samples after their dispersive liquid-liquid microextraction coupled with response surface optimization.

    PubMed

    Shamsipur, Mojtaba; Mirmohammadi, Mehrosadat

    2014-11-01

    Dispersive liquid-liquid microextraction (DLLME) coupled with high performance liquid chromatography by ultraviolet detection (HPLC-UV) as a fast and inexpensive technique was applied to the determination of imipramine and trimipramine in urine samples. Response surface methodology (RSM) was used for multivariate optimization of the effects of seven different parameters influencing the extraction efficiency of the proposed method. Under optimized experimental conditions, the enrichment factors and extraction recoveries were between 161.7-186.7 and 97-112%, respectively. The linear range and limit of detection for both analytes found to be 5-100ng mL(-1) and 0.6ng mL(-1), respectively. The relative standard deviations for 5ng mL(-1) of the drugs in urine samples were in the range of 5.1-6.1 (n=5). The developed method was successfully applied to real urine sample analyses. PMID:25178259

  13. Optimized liquid chromatography tandem mass spectrometry approach for the determination of diquat and paraquat herbicides.

    PubMed

    Hao, Chunyan; Zhao, Xiaoming; Morse, David; Yang, Paul; Taguchi, Vince; Morra, Franca

    2013-08-23

    Liquid chromatography tandem mass spectrometry (LC-MS/MS) determination of quaternary ammonium herbicides diquat (DQ) and paraquat (PQ) can be very challenging due to their complicated chromatographic and mass spectrometric behaviors. Various multiple reaction monitoring (MRM) transitions from radical cations M(+) and singly charged cations [M-H](+), have been reported for LC-MS/MS quantitation under different chromatographic and mass spectrometric conditions. However, interference peaks were observed for certain previously reported MRM transitions in our study. Using a Dionex Acclaim(®) reversed-phase and HILIC mixed-mode LC column, we evaluated the most sensitive MRM transitions from three types of quasi-molecular ions of DQ and PQ, elucidated the cross-interference phenomena, and demonstrated that the rarely mentioned MRM transitions from dications M(2+) offered the best selectivity for LC-MS/MS analysis. Experimental parameters, such as IonSpray (IS) voltage, source temperature, declustering potential (DP), column oven temperature, collision energy (CE), acid and salt concentrations in the mobile phases were also optimized and an uncommon electrospray ionization (ESI) capillary voltage of 1000V achieved the highest sensitivity. Employing the proposed dication transitions 92/84.5 for DQ and 93/171 for PQ, the direct aqueous injection LC-MS/MS method developed was able to provide a method detection limit (MDL) of 0.1μg/L for the determination of these two herbicides in drinking water. PMID:23871562

  14. Effect of pressure, particle size, and time on optimizing performance in liquid chromatography.

    PubMed

    Carr, Peter W; Wang, Xiaoli; Stoll, Dwight R

    2009-07-01

    Although the principles of optimization of high-performance liquid chromatography (HPLC) have a long history starting with the work of Giddings in the 1960s and continuing with work by Knox and Guiochon extending into the 1990s we continue to see statements that flatly contradict theory. A prominent example is the notion that optimum "performance", as measured by plate count, is always obtained by operating conventional length columns (e.g., 5-15 cm) at eluent velocities corresponding to the minimum plate height in the van Deemter curve. In the past decade the introduction of "Poppe plots" by Poppe and "kinetic plots" by Desmet and others has simplified the selection of "optimum" conditions, but it is evident that many workers are not entirely comfortable with this framework. Here we derive a set of simple, yet accurate, equations that allow rapid calculation of the column length and eluent velocity that will give either the maximum plate count in a given time or a given plate count in the shortest time. Equations are developed for the optimum column length, eluent velocity, and thus plate count for both the cases when particle size is preselected and when particle size is optimized along with eluent velocity and column length. Although both of these situations have been previously considered the implications of the resulting equations have not been previously made explicit. Lack of full understanding of the consequences of the differences between these two cases is very important and responsible for many erroneous conclusions. The simple closed-form equations that result from this work complement the graphical, iterative approaches of Poppe and Desmet; the resulting compact framework allows practitioners to rapidly and effectively find the operating parameters needed to achieve a specific separation goal in the shortest time and to compare emerging technologies (e.g., high pressure, high temperature, and different particle types) in terms of their impact on

  15. Mixed culture optimization for marigold flower ensilage via experimental design and response surface methodology.

    PubMed

    Navarrete-Bolaños, José Luis; Jiménez-Islas, Hugo; Botello-Alvarez, Enrique; Rico-Martínez, Ramiro

    2003-04-01

    Endogenous microorganisms isolated from the marigold flower (Tagetes erecta) were studied to understand the events taking place during its ensilage. Studies of the cellulase enzymatic activity and the ensilage process were undertaken. In both studies, the use of approximate second-order models and multiple lineal regression, within the context of an experimental mixture design using the response surface methodology as optimization strategy, determined that the microorganisms Flavobacterium IIb, Acinetobacter anitratus, and Rhizopus nigricans are the most significant in marigold flower ensilage and exhibit high cellulase activity. A mixed culture comprised of 9.8% Flavobacterium IIb, 41% A. anitratus, and 49.2% R. nigricans used during ensilage resulted in an increased yield of total xanthophylls extracted of 24.94 g/kg of dry weight compared with 12.92 for the uninoculated control ensilage. PMID:12670157

  16. Optimization of Culture Parameters for Maximum Polyhydroxybutyrate Production by Selected Bacterial Strains Isolated from Rhizospheric Soils.

    PubMed

    Lathwal, Priyanka; Nehra, Kiran; Singh, Manpreet; Jamdagni, Pragati; Rana, Jogender S

    2015-01-01

    The enormous applications of conventional non-biodegradable plastics have led towards their increased usage and accumulation in the environment. This has become one of the major causes of global environmental concern in the present century. Polyhydroxybutyrate (PHB), a biodegradable plastic is known to have properties similar to conventional plastics, thus exhibiting a potential for replacing conventional non-degradable plastics. In the present study, a total of 303 different bacterial isolates were obtained from soil samples collected from the rhizospheric area of three crops, viz., wheat, mustard and sugarcane. All the isolates were screened for PHB (Poly-3-hydroxy butyric acid) production using Sudan Black staining method, and 194 isolates were found to be PHB positive. Based upon the amount of PHB produced, the isolates were divided into three categories: high, medium and low producers. Representative isolates from each category were selected for biochemical characterization; and for optimization of various culture parameters (carbon source, nitrogen source, C/N ratio, different pH, temperature and incubation time periods) for maximizing PHB accumulation. The highest PHB yield was obtained when the culture medium was supplemented with glucose as the carbon source, ammonium sulphate at a concentration of 1.0 g/l as the nitrogen source, and by maintaining the C/N ratio of the medium as 20:1. The physical growth parameters which supported maximum PHB accumulation included a pH of 7.0, and an incubation temperature of 30 degrees C for a period of 48 h. A few isolates exhibited high PHB accumulation under optimized conditions, thus showing a potential for their industrial exploitation. PMID:26638531

  17. Analysis and optimization of thermal stratification and self-pressurization effects in liquid hydrogen storage systems -- Part 1: Model development

    SciTech Connect

    Gursu, S.; Veziroglu, T.N. . Clean Energy Research Inst.); Sherif, S.A. . Dept. of Mechanical Engineering); Sheffield, J.W. )

    1993-09-01

    This paper reports on analyses and optimization studies of problems associated with liquid hydrogen thermal stratification and self-pressurization in cryogenic vessels. Three different pressure rise models were employed to calculate the self-pressurization and boil-off rates. These are a homogeneous model, a surface-evaporation model, and a thermal stratification model. The first two models are based on the assumption that no temperature gradients exist in the tank, while the thermal stratification model takes the temperature distribution into account. Employing the thermal stratification model, temperature gradients and their effect on the pressure rise rates in liquid hydrogen tanks are analyzed.

  18. [Optimization of Chlorella pyrenoidosa-15 photoheterotrophic culture and its use in wastewater treatment].

    PubMed

    Wang, Xiu-jin; Li, Zhao-sheng; Xing, Guan-lan; Li, Zhuo-ning; Yuan, Hong-li; Yang, Jin-shui

    2012-08-01

    To improve the biomass and lipid productivity of the microalgae Chlorella pyrenoidosa-15, the carbon and nitrogen sources were screened to culture it heterotrophically. The best carbon and nitrogen sources were glucose and soy peptone, respectively. The carbon and nitrogen concentrations were optimized with the help of response surface design. The maximum biomass productivity was predicted to be 0.62 g x (L x d)(-1) with glucose and soy peptone concentrations of 17.53 g x L(-1) and 8.67 g x L(-1), respectively. The results of response surface design were validated with biomass productivity of 0.63 g x (L x d)(-1) and lipid content of 19.25%. The lipid productivity reached 121.3 mg x (L x d)(-1). In the research of Chlorella pyrenoidosa-15 cultured in non-autoclaved Beijing urban wastewater, the maximum algae biomass dry weight of 1.00 g x L(-1) was achieved with a lipid content of 24.12%. Results also showed that the treatment using Chlorella pyrenoidosa-15 effectively reduced the COD values and total nitrogen content in the wastewater, with a COD degradation rate of 80.9%, and a 69% decrease in total nitrogen content. PMID:23213898

  19. Growth and differentiation of primary and passaged equine bronchial epithelial cells under conventional and air-liquid-interface culture conditions

    PubMed Central

    2011-01-01

    Background Horses develop recurrent airway obstruction (RAO) that resembles human bronchial asthma. Differentiated primary equine bronchial epithelial cells (EBEC) in culture that closely mimic the airway cells in vivo would be useful to investigate the contribution of bronchial epithelium in inflammation of airway diseases. However, because isolation and characterization of EBEC cultures has been limited, we modified and optimized techniques of generating and culturing EBECs from healthy horses to mimic in vivo conditions. Results Large numbers of EBEC were obtained by trypsin digestion and successfully grown for up to 2 passages with or without serum. However, serum or ultroser G proved to be essential for EBEC differentiation on membrane inserts at ALI. A pseudo-stratified muco-ciliary epithelium with basal cells was observed at differentiation. Further, transepithelial resistance (TEER) was more consistent and higher in P1 cultures compared to P0 cultures while ciliation was delayed in P1 cultures. Conclusions This study provides an efficient method for obtaining a high-yield of EBECs and for generating highly differentiated cultures. These EBEC cultures can be used to study the formation of tight junction or to identify epithelial-derived inflammatory factors that contribute to lung diseases such as asthma. PMID:21649893

  20. Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids.

    PubMed

    Jones, J Andrew; Vernacchio, Victoria R; Sinkoe, Andrew L; Collins, Shannon M; Ibrahim, Mohammad H A; Lachance, Daniel M; Hahn, Juergen; Koffas, Mattheos A G

    2016-05-01

    Metabolic engineering and synthetic biology have enabled the use of microbial production platforms for the renewable production of many high-value natural products. Titers and yields, however, are often too low to result in commercially viable processes. Microbial co-cultures have the ability to distribute metabolic burden and allow for modular specific optimization in a way that is not possible through traditional monoculture fermentation methods. Here, we present an Escherichia coli co-culture for the efficient production of flavonoids in vivo, resulting in a 970-fold improvement in titer of flavan-3-ols over previously published monoculture production. To accomplish this improvement in titer, factors such as strain compatibility, carbon source, temperature, induction point, and inoculation ratio were initially optimized. The development of an empirical scaled-Gaussian model based on the initial optimization data was then implemented to predict the optimum point for the system. Experimental verification of the model predictions resulted in a 65% improvement in titer, to 40.7±0.1mg/L flavan-3-ols, over the previous optimum. Overall, this study demonstrates the first application of the co-culture production of flavonoids, the most in-depth co-culture optimization to date, and the first application of empirical systems modeling for improvement of titers from a co-culture system. PMID:26860871

  1. A low-cost culture medium for the production of Nannochloropsis gaditana biomass optimized for aquaculture.

    PubMed

    Camacho-Rodríguez, J; Cerón-García, M C; González-López, C V; Fernández-Sevilla, J M; Contreras-Gómez, A; Molina-Grima, E

    2013-09-01

    Nannochloropsis gaditana is a microalga with a high nutritional value and a protein and polyunsaturated fatty acid (PUFA) content that makes it interesting as a feed in aquaculture. To maximize its productivity and nutritional value in large-scale culture, a well-known commercial medium was optimized to the most favorable nutrient level using commercial fertilizers. Optimal growth conditions were obtained in the alternative fertilizer-based medium at a nitrogen concentration of 11.3 mM, a phosphorus concentration of 0.16 mM, and a micronutrient concentration of 30 μL L(-1). This alternative medium allowed to obtain a biomass concentration similar to that achieved when using the commercial formula but with a reduction in Cu, Fe, and Mo content of 71%, 89%, and 99%, respectively. A maximum biomass productivity of 0.51 g L(-1) d(-1) was obtained. The eicosapentaenoic acid and protein contents of the biomass were 2.84% and 44% of dry weight, respectively. PMID:23863872

  2. Increased diazinon hydrolysis to 2-isopropyl-6-methyl-4-pyrimidinol in liquid medium by a specific Streptomyces mixed culture.

    PubMed

    Briceño, G; Schalchli, H; Rubilar, O; Tortella, G R; Mutis, A; Benimeli, C S; Palma, G; Diez, M C

    2016-08-01

    Actinobacteria identified as Streptomyces spp. were evaluated for their ability to remove diazinon as the only carbon source from a liquid medium. Single cultures of Streptomyces strains were exposed to diazinon at a concentration of 50 mg L(-1). After 96 h incubation, six of the eight cultures grew and five strains showed an increase in their total protein concentrations and changes in their protein profile. Up to 32% of the diazinon was removed by the single Streptomyces cultures. A compatibility assay showed that the different Streptomyces species were not antagonistic. Twenty-six mixed cultures were then prepared. Diazinon removal was increased when mixed cultures were used, and maximum diazinon removal of 62% was observed when the Streptomyces spp. strains AC5, AC9, GA11 and ISP13 were mixed; this was defined as the selected mixed culture (SMC). Diazinon removal was positively influenced by the addition of glucose into the liquid medium. Our study showed a diazinon degradation rate of 0.025 h(-1), half-life of 28 h(-1) and 2-isopropyl-6-methyl-4-pyrimidinol (IMHP) production of 0.143 mg L h(-1). Rapid diazinon hydrolysis to IMHP was associated with a decrease in the pH of the medium as a consequence of microbial glucose metabolism and organic acid exudation. Moreover, the SMC of Streptomyces was able to remove IMHP. This work constitutes a new, if not the only, report on diazinon degradation by mixed cultures of Streptomyces spp. Given the high levels of diazinon removal, the SMC formed by four Streptomyces strains has the potential to be used to treat the diazinon present in environmental matrices. PMID:27176942

  3. Defining an optimal surface chemistry for pluripotent stem cell culture in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Zonca, Michael R., Jr.

    new avenue for stem cell culture and maintenance using an optimal organic-based chemistry.

  4. Identification of a New Marine Bacterial Strain SD8 and Optimization of Its Culture Conditions for Producing Alkaline Protease

    PubMed Central

    Cui, Hongxia; Yang, Muyang; Wang, Liping; Xian, Cory J.

    2015-01-01

    While much attention has been given to marine microorganisms for production of enzymes, which in general are relatively more stable and active compared to those from plants and animals, studies on alkaline protease production from marine microorganisms have been very limited. In the present study, the alkaline protease producing marine bacterial strain SD8 isolated from sea muds in the Geziwo Qinhuangdao sea area of China was characterized and its optimal culture conditions were investigated. Strain SD8 was initially classified to belong to genus Pseudomonas by morphological, physiological and biochemical characterizations, and then through 16S rDNA sequence it was identified to be likely Pseudomonas hibiscicola. In addition, the culture mediums, carbon sources and culture conditions of strain SD8 were optimized for maximum production of alkaline protease. Optimum enzyme production (236U/mL when cultured bacteria being at 0.75 mg dry weight/mL fermentation broth) was obtained when the isolate at a 3% inoculum size was grown in LB medium at 20 mL medium/100mL Erlenmeyer flask for 48h culture at 30°C with an initial of pH 7.5. This was the first report of strain Pseudomonas hibiscicola secreting alkaline protease, and the data for its optimal cultural conditions for alkaline protease production has laid a foundation for future exploration for the potential use of SD8 strain for alkaline protease production. PMID:26716833

  5. Identification of a New Marine Bacterial Strain SD8 and Optimization of Its Culture Conditions for Producing Alkaline Protease.

    PubMed

    Cui, Hongxia; Yang, Muyang; Wang, Liping; Xian, Cory J

    2015-01-01

    While much attention has been given to marine microorganisms for production of enzymes, which in general are relatively more stable and active compared to those from plants and animals, studies on alkaline protease production from marine microorganisms have been very limited. In the present study, the alkaline protease producing marine bacterial strain SD8 isolated from sea muds in the Geziwo Qinhuangdao sea area of China was characterized and its optimal culture conditions were investigated. Strain SD8 was initially classified to belong to genus Pseudomonas by morphological, physiological and biochemical characterizations, and then through 16S rDNA sequence it was identified to be likely Pseudomonas hibiscicola. In addition, the culture mediums, carbon sources and culture conditions of strain SD8 were optimized for maximum production of alkaline protease. Optimum enzyme production (236U/mL when cultured bacteria being at 0.75 mg dry weight/mL fermentation broth) was obtained when the isolate at a 3% inoculum size was grown in LB medium at 20 mL medium/100mL Erlenmeyer flask for 48h culture at 30°C with an initial of pH 7.5. This was the first report of strain Pseudomonas hibiscicola secreting alkaline protease, and the data for its optimal cultural conditions for alkaline protease production has laid a foundation for future exploration for the potential use of SD8 strain for alkaline protease production. PMID:26716833

  6. Production of microsclerotia by Brazilian strains of Metarhizium spp. using submerged liquid culture fermentation.

    PubMed

    Mascarin, Gabriel Moura; Kobori, Nilce Naomi; de Jesus Vital, Rayan Carlos; Jackson, Mark Alan; Quintela, Eliane Dias

    2014-05-01

    We investigated the potential production and desiccation tolerance of microsclerotia (MS) by Brazilian strains of Metarhizium anisopliae (Ma), M. acridum (Mc) and M. robertsii (Mr). These fungi were grown in a liquid medium containing 16 g carbon l⁻¹ with a carbon:nitrogen ratio of 50:1. One hundred milliliters cultures were grown in 250 ml Erlenmeyer flasks in a rotary incubator shaker at 28 °C and 200 rpm for 5 days. Five-day-old MS were harvested, mixed with diatomaceous earth (DE) and air-dried for 2 days at 30 °C. The air-dried MS-DE granular preparations were milled by mortar + pestle and stored in centrifuged tubes at either 26 or -20 °C. Desiccation tolerance and conidia production were assessed for dried MS granules by measuring hyphal germination after incubation for 2 days on water agar plates at 26 °C and for conidia production following 7 days incubation. Yields of MS by all strains of Metarhizium were 6.1-7.3 × 10⁶ l⁻¹ after 3 days growth with maximum MS yields (0.7-1.1 × 10⁷ l⁻¹) after 5 days growth. No differences in biomass accumulation were observed after 3 days growth, whereas Ma-CG168 showed the highest biomass accumulation after 5 days growth. Dried MS-DE preparations of all fungal strains were equally tolerant to desiccation (≥93 % germination) and the highest conidia production was obtained by MS granules of Mc-CG423 (4 × 10⁹ conidia g⁻¹). All MS granules showed similar stability after storage at either 26 or -20 °C for 3.5 months. PMID:24343780

  7. Optimization of liquid media and biosafety assessment for algae-lysing bacterium NP23.

    PubMed

    Liao, Chunli; Liu, Xiaobo; Shan, Linna

    2014-09-01

    To control algal bloom caused by nutrient pollution, a wild-type algae-lysing bacterium was isolated from the Baiguishan reservoir in Henan province of China and identified as Enterobacter sp. strain NP23. Algal culture medium was optimized by applying a Placket-Burman design to obtain a high cell concentration of NP23. Three minerals (i.e., 0.6% KNO3, 0.001% MnSO4·H2O, and 0.3% K2HPO4) were found to be independent factors critical for obtaining the highest cell concentration of 10(13) CFU/mL, which was 10(4) times that of the control. In the algae-lysing experiment, the strain exhibited a high lysis rate for the 4 algae test species, namely, Chlorella vulgari, Scenedesmus, Microcystis wesenbergii, and Chlorella pyrenoidosa. Acute toxicity and mutagenicity tests showed that the bacterium NP23 had no toxic and mutagenic effects on fish, even in large doses such as 10(7) or 10(9) CFU/mL. Thus, Enterobacter sp. strain NP23 has strong potential application in the microbial algae-lysing project. PMID:25188453

  8. Protocol optimization for long-term liquid storage of goat semen in a chemically defined extender.

    PubMed

    Zhao, B-T; Han, D; Xu, C-L; Luo, M-J; Chang, Z-L; Tan, J-H

    2009-12-01

    A specific problem in the preservation of goat semen has been the detrimental effect of seminal plasma on the viability of spermatozoa in extenders containing egg yolk or milk. The use of chemically defined extenders will have obvious advantages in liquid storage of buck semen. Our previous study showed that the self-made mZAP extender performed better than commercial extenders, and maintained a sperm motility of 34% for 9 days and a fertilizing potential for successful pregnancies for 7 days. The aim of this study was to extend the viability and fertilizing potential of liquid-stored goat spermatozoa by optimizing procedures for semen processing and storage in the mZAP extender. Semen samples collected from five goat bucks of the Lubei White and Boer breeds were diluted with the extender, cooled and stored at 5 degrees C. Stored semen was evaluated for sperm viability parameters, every 48 h of storage. Data from three ejaculates of different bucks were analysed for each treatment. The percentage data were arcsine-transformed before being analysed with anova and Duncan's multiple comparison test. While cooling at the rate of 0.1-0.25 degrees C/min did not affect sperm viability parameters, doing so at the rate of 0.6 degrees C/min from 30 to 15 degrees C reduced goat sperm motility and membrane integrity. Sperm motility and membrane integrity were significantly higher in semen coated with the extender containing 20% egg yolk than in non-coated semen. Sperm motility, membrane integrity and acrosomal intactness were significantly higher when coated semen was 21-fold diluted than when it was 11- or 51-fold diluted and when extender was renewed at 48-h intervals than when it was not renewed during storage. When goat semen coated with the egg yolk-containing extender was 21-fold diluted, cooled at the rate of 0.07-0.25 degrees C/min, stored at 5 degrees C and the extender renewed every 48 h, a sperm motility of 48% was maintained for 13 days, and an in vitro

  9. Optimization of an air-liquid interface exposure system for assessing toxicity of airborne nanoparticles.

    PubMed

    Latvala, Siiri; Hedberg, Jonas; Möller, Lennart; Odnevall Wallinder, Inger; Karlsson, Hanna L; Elihn, Karine

    2016-10-01

    The use of refined toxicological methods is currently needed for characterizing the risks of airborne nanoparticles (NPs) to human health. To mimic pulmonary exposure, we have developed an air-liquid interface (ALI) exposure system for direct deposition of airborne NPs on to lung cell cultures. Compared to traditional submerged systems, this allows more realistic exposure conditions for characterizing toxicological effects induced by airborne NPs. The purpose of this study was to investigate how the deposition of silver NPs (AgNPs) is affected by different conditions of the ALI system. Additionally, the viability and metabolic activity of A549 cells was studied following AgNP exposure. Particle deposition increased markedly with increasing aerosol flow rate and electrostatic field strength. The highest amount of deposited particles (2.2 μg cm(-2) ) at cell-free conditions following 2 h exposure was observed for the highest flow rate (390 ml min(-1) ) and the strongest electrostatic field (±2 kV). This was estimated corresponding to deposition efficiency of 94%. Cell viability was not affected after 2 h exposure to clean air in the ALI system. Cells exposed to AgNPs (0.45 and 0.74 μg cm(-2) ) showed significantly (P < 0.05) reduced metabolic activities (64 and 46%, respectively). Our study shows that the ALI exposure system can be used for generating conditions that were more realistic for in vitro exposures, which enables improved mechanistic and toxicological studies of NPs in contact with human lung cells.Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd. PMID:26935862

  10. Application of response surface method for optimization of dispersive liquid-liquid microextraction of water-soluble components of Rosa damascena Mill. essential oil.

    PubMed

    Sereshti, Hassan; Karimi, Maryam; Samadi, Soheila

    2009-01-01

    Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) was applied for the determination of Rose water constituents. The effective parameters such as volume of extraction and disperser solvents, temperature, and salt effect were inspected by a full factorial design to identify important parameters and their interactions. It showed that salt addition had no effect on the efficiency. Next, a central composite design was applied to obtain optimum point of the important parameters. The optimal condition was obtained as 37.0 microL for extractor, 0.42 mL for disperser and temperature for 48 degrees C. The main components that were extracted at the optimum point were benzeneethanol (24.87%), geraniol (23.07%), beta-citronellol (22.38%), nerol (8.48%), eugenol (5.98%) and linalool (5.62%). PMID:19091322

  11. Development of an ionic-liquid-based dispersive liquid-liquid microextraction method for the determination of antichagasic drugs in human breast milk: Optimization by central composite design.

    PubMed

    Padró, Juan M; Pellegrino Vidal, Rocío B; Echevarria, Romina N; Califano, Alicia N; Reta, Mario R

    2015-05-01

    Chagas disease constitutes a major public health problem in Latin America. Human breast milk is a biological sample of great importance for the analysis of therapeutic drugs, as unwanted exposure through breast milk could result in pharmacological effects in the nursing infant. Thus, the goal of breast milk drug analysis is to inquire to which extent a neonate may be exposed to a drug during lactation. In this work, we developed an analytical technique to quantify benznidazole and nifurtimox (the two antichagasic drugs currently available for medical treatment) in human breast milk, with a simple sample pretreatment followed by an ionic-liquid-based dispersive liquid-liquid microextraction combined with high-performance liquid chromatography and UV detection. For this technique, the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate has been used as the "extraction solvent." A central composite design was used to find the optimum values for the significant variables affecting the extraction process: volume of ionic liquid, volume of dispersant solvent, ionic strength, and pH. At the optimum working conditions, the average recoveries were 77.5 and 89.7%, the limits of detection were 0.06 and 0.09 μg/mL and the interday reproducibilities were 6.25 and 5.77% for benznidazole and nifurtimox, respectively. The proposed methodology can be considered sensitive, simple, robust, accurate, and green. PMID:25711461

  12. Monitoring the oleuropein content of olive leaves and fruits using ultrasound- and salt-assisted liquid-liquid extraction optimized by response surface methodology and high-performance liquid chromatography.

    PubMed

    Ismaili, Ahmad; Heydari, Rouhollah; Rezaeepour, Reza

    2016-01-01

    A novel and rapid ultrasound- and salt-assisted liquid-liquid extraction coupled with high-performance liquid chromatography has been optimized by response surface methodology for the determination of oleuropein from olive leaves. Box-Behnken design was used for optimizing the main parameters including ultrasound time (A), pH (B), salt concentration (C), and volume of miscible organic solvent (D). In this technique, a mixture of plant sample and extraction solvent was subjected to ultrasound waves. After ultrasound-assisted extraction, phase separation was performed by the addition of salt to the liquid phase. The optimal conditions for the highest extraction yield of oleuropein were ultrasound time, 30 min; volume of organic solvent, 2.5 mL; salt concentration, 25% w/v; and sample pH, 4. Experimental data were fitted with a quadratic model. Analysis of variance results show that BC interaction, A(2) , B(2) , C(2) , and D(2) are significant model terms. Unlike the conventional extraction methods for plant extracts, no evaporation and reconstitution operations were needed in the proposed technique. PMID:26530030

  13. Knockout confirmation for Hurries: rapid genotype identification of Trypanosoma cruzi transfectants by polymerase chain reaction directly from liquid culture.

    PubMed

    Alcantara, Monica Visnieski; Fragoso, Stenio Perdigão; Picchi, Gisele Fernanda Assine

    2014-07-01

    Gene knockout is a widely used approach to evaluate loss-of-function phenotypes and it can be facilitated by the incorporation of a DNA cassette having a drug-selectable marker. Confirmation of the correct knockout cassette insertion is an important step in gene removal validation and has generally been performed by polymerase chain reaction (PCR) assays following a time-consuming DNA extraction step. Here, we show a rapid procedure for the identification of Trypanosoma cruzi transfectants by PCR directly from liquid culture - without prior DNA extraction. This simple approach enabled us to generate PCR amplifications from different cultures varying from 106-108 cells/mL. We also show that it is possible to combine different primer pairs in a multiplex detection reaction and even to achieve knockout confirmation with an extremely simple interpretation of a real-time PCR result. Using the "culture PCR" approach, we show for the first time that we can assess different DNA sequence combinations by PCR directly from liquid culture, saving time in several tasks for T. cruzi genotype interrogation. PMID:24936912

  14. Optimization of the in-needle extraction device for the direct flow of the liquid sample through the sorbent layer.

    PubMed

    Pietrzyńska, Monika; Voelkel, Adam

    2014-11-01

    In-needle extraction was applied for preparation of aqueous samples. This technique was used for direct isolation of analytes from liquid samples which was achieved by forcing the flow of the sample through the sorbent layer: silica or polymer (styrene/divinylbenzene). Specially designed needle was packed with three different sorbents on which the analytes (phenol, p-benzoquinone, 4-chlorophenol, thymol and caffeine) were retained. Acceptable sampling conditions for direct analysis of liquid sample were selected. Experimental data collected from the series of liquid samples analysis made with use of in-needle device showed that the effectiveness of the system depends on various parameters such as breakthrough volume and the sorption capacity, effect of sampling flow rate, solvent effect on elution step, required volume of solvent for elution step. The optimal sampling flow rate was in range of 0.5-2 mL/min, the minimum volume of solvent was at 400 µL level. PMID:25127610

  15. Development and Optimization of a Flocculation Procedure for Improved Solid-Liquid Separation of Digested Biomass

    SciTech Connect

    Patton, Caroline; Lischeske, James J.; Sievers, David A.

    2015-11-03

    One viable treatment method for conversion of lignocellulosic biomass to biofuels begins with saccharification (thermochemical pretreatment and enzymatic hydrolysis), followed by fermentation or catalytic upgrading to fuels such as ethanol, butanol, or other hydrocarbons. The post-hydrolysis slurry is typically 4-8 percent insoluble solids, predominantly consisting of lignin. Suspended solids are known to inhibit fermentation as well as poison catalysts and obstruct flow in catalyst beds. Thus a solid-liquid separation following enzymatic hydrolysis would be highly favorable for process economics, however the material is not easily separated by filtration or gravimetric methods. Use of a polyacrylamide flocculant to bind the suspended particles in a corn stover hydrolyzate slurry into larger flocs (1-2mm diameter) has been found to be extremely helpful in improving separation. Recent and ongoing research on novel pretreatment methods yields hydrolyzate material with diverse characteristics. Therefore, we need a thorough understanding of rapid and successful flocculation design in order to quickly achieve process design goals. In this study potential indicators of flocculation performance were investigated in order to develop a rapid analysis method for flocculation procedure in the context of a novel hydrolyzate material. Flocculation conditions were optimized on flocculant type and loading, pH, and mixing time. Filtration flux of the hydrolyzate slurry was improved 170-fold using a cationic polyacrylamide flocculant with a dosing of approximately 22 mg flocculant/g insoluble solids at an approximate pH of 3. With cake washing, sugar recovery exceeded 90 percent with asymptotic yield at 15 L wash water/kg insoluble solids.

  16. A simple colony-formation assay in liquid medium, termed 'tadpoling', provides a sensitive measure of Saccharomyces cerevisiae culture viability.

    PubMed

    Welch, Aaron Z; Koshland, Douglas E

    2013-12-01

    Here we describe the first high-throughput amenable method of quantifying Saccharomyces cerevisiae culture viability. Current high-throughput methods of assessing yeast cell viability, such as flow cytometry and SGA analysis, do not measure the percentage viability of a culture but instead measure cell vitality or colony fitness, respectively. We developed a method, called tadpoling, to quantify the percentage viability of a yeast culture, with the ability to detect as few as one viable cell amongst ~10(8) dead cells. The most important feature of this assay is the exploitation of yeast colony formation in liquid medium. Utilizing a microtiter dish, we are able to observe a range of viability of 100% to 0.0001%. Comparison of tadpoling to the traditional plating method to measure yeast culture viability reveals that, for the majority of Saccharomyces species analyzed there is no significant difference between the two methods. In comparison to flow cytometry using propidium iodide, the high-throughput method of measuring yeast culture viability, tadpoling is much more accurate at culture viabilities < 1%. Thus, we show that tadpoling provides an easy, inexpensive, space-saving method, amenable to high-throughput screens, for accurately measuring yeast cell viability. PMID:24185677

  17. Optimization of nisin production by Lactococcus lactis UQ2 using supplemented whey as alternative culture medium.

    PubMed

    González-Toledo, S Y; Domínguez-Domínguez, J; García-Almendárez, B E; Prado-Barragán, L A; Regalado-González, C

    2010-08-01

    Lactococcus lactis UQ2 is a nisin A-producing native strain. In the present study, the production of nisin by L. lactis UQ2 in a bioreactor using supplemented sweet whey (SW) was optimized by a statistical design of experiments and response surface methodology (RSM). In a 1st approach, a fractional factorial design (FFD) of the order 2(5-1) with 3 central points was used. The effect on nisin production of air flow, SW, soybean peptone (SP), MgSO(4)/MnSO(4) mixture, and Tween 80 was evaluated. From FFD, the most significant factors affecting nisin production were SP (P = 0.011), and SW (P = 0.037). To find optimum conditions, a central composite design (CCD) with 2 central points was used. Three factors were considered, SW (7 to 10 g/L), SP (7 to10 g/L), and small amounts of added nisin as self-inducer (NI 34.4 to 74.4 IU/L). Nisin production was expressed as international units (IU). From RSM, an optimum nisin activity of 180 IU/mL was predicted at 74.4 IU/L NI, 13.8 g/L SP, and 14.9 or 5.11 g/L SW, while confirmatory experiments showed a maximum activity of 178 +/- 5.2 IU/mL, verifying the validity of the model. The 2nd-order model showed a coefficient of determination (R(2)) of 0.828. Optimized conditions were used for constant pH fermentations, where a maximum activity of 575 +/- 17 IU/mL was achieved at pH 6.5 after 12 h. The adsorption-desorption technique was used to partially purify nisin, followed by drying. The resulting powder showed an activity of 102150 IU/g. Practical Application: Nisin production was optimized using supplemented whey as alternative culture medium, using a native L. lactis UQ2 strain. Soybean peptone, SW, and subinhibitory amounts of nisin were successfully employed to optimize nisin production by L. lactis UQ2. Dried semipurified nisin showed an activity of 102150 IU/g. PMID:20722935

  18. Effects of extracellular matrix proteins on macrophage differentiation, growth, and function: comparison of liquid and agar culture systems

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Both spaceflight and skeletal unloading suppress the haematopoietic differentiation of macrophages (Sonnenfeld et al., Aviat. Space Environ. Med., 61:648-653, 1990; Armstrong et al., J. Appl. Physiol., 75:2734-2739, 1993). The mechanism behind this reduction in haematopoiesis has yet to be elucidated. However, changes in bone marrow extracellular matrix (ECM) may be involved. To further understand the role of ECM products in macrophage differentiation, we have performed experiments evaluating the effects of fibronectin, laminin, collagen type I, and collagen type IV on macrophage development and function. Bone marrow-derived macrophages cultured on four different ECM substrates in liquid culture medium showed less growth than those cultured on plastic. Significant morphological differences were seen on each of the substrates used. Phenotypically and functionally, as measured by class II major histocompatibility molecule (MHCII) expression, MAC-2 expression, and the secretion of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha), these macrophages were similar. In contrast, bone marrow-derived macrophages cultured in suspension, using agar, showed no difference in growth when exposed to ECM proteins. However, IL-6 and TNF-alpha secretion was affected by fibronectin, laminin, collagen type I, and collagen type IV in a concentration-dependent manner. We conclude that the ECM products fibronectin, laminin, collagen type I, and collagen type IV have profound effects on macrophage development and function. Additionally, we suggest that an ECM-supplemented agar culture system provides an environment more analogous to in vivo bone marrow than does a traditional liquid culture system.

  19. Optimization of culture conditions for an efficient xeno-feeder free limbal cell culture system towards ocular surface regeneration.

    PubMed

    Varghese, Viji Mary; Prasad, Tilak; Kumary, T V

    2010-10-01

    Ex vivo expansion of limbal stem cells from a small biopsy and its subsequent transplantation is the golden choice of treatment for limbal stem cell deficiency. Use of murine 3T3 feeder layer is a prerequisite for this ex vivo expansion. There is an ever-increasing demand for feeder free cultures to avoid xenotoxicity and transmission of xeno-diseases to human system. This study was aimed to establish an efficient xeno-feeder free limbal culture system towards ocular surface regeneration. To study the effect of initial dispase treatment and culture system used, migratory distance of cells from explants was analyzed from phase contrast images using "interactive measurements" of Qwin software (Leica). Expression of p63 in different culture systems was studied by immunofluorescent staining, followed by quantitative confocal microscopy (Carl Zeiss). Results showed dispase treatment was not necessary for establishing limbal explant culture. A combination of Iscove's modified Dulbecco's medium and Panserin 801 resulted in formation of autofeeder layer with maintenance of progenitor characteristics, thus mimicking natural tissue architecture. Further analysis of this culture system showed that cells could be cultured till confluency. Immunofluorescent staining of ABCG2 revealed presence of stem cell marker in the confluent cell layer. Scanning Electron Micrographs demonstrated homogenous population of tightly packed cells in this culture system. Replacement of bovine serum with autologous serum did not affect morphology or growth of cells in this culture system. This study will be a major step in the development of xeno-feeder free epithelial equivalents towards ocular surface reconstruction. PMID:20196106

  20. A polysaccharide isolated from the liquid culture of Lentinus edodes (shiitake) mushroom mycelia containing black rice bran protects mice against a Salmonella lipopolysaccharide-induced endotoxemia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endotoxemia (sepsis, septic shock) is an inflammatory, virulent disease that results mainly from bacterial infection. The present study investigates the inhibitory effect of the bio-processed polysaccharide (BPP) isolated from the edible Lentinus edodes liquid mycelial mushroom culture supplemented...

  1. Determination of optimal ionic liquid for organic single-crystal field-effect transistors

    NASA Astrophysics Data System (ADS)

    Ono, S.; Miwa, K.; Seki, S.

    2016-02-01

    We investigate organic single-crystal field-effect transistors with various ionic liquids as gate dielectric. We find that the mobility of the field-effect transistors for both p-type and n-type organic semiconductors increases with decreasing total capacitance of the ionic liquid. However, it does not depend on the ion species at the interface between the organic semiconductor and the ionic liquid. By choosing an appropriate ionic liquid, a high carrier mobility of 12.4 cm2/V s in rubrene single crystals (p-type) and 0.13 cm2/V s in 7.7.8.8-Tetracyanoquinodimethane single crystals (n-type) are achieved. This study clarifies the influence of ionic liquids on the device performance of organic field-effect transistors and shows a way to maximize carrier mobility at the solid/liquid interface.

  2. Ultrastructural and Immunocytochemical Studies on the H2O2-Producing Enzyme Pyranose Oxidase in Phanerochaete chrysosporium Grown under Liquid Culture Conditions

    PubMed Central

    Daniel, Geoffrey; Volc, Jindrich; Kubatova, Elena; Nilsson, Thomas

    1992-01-01

    The ultrastructural distribution of the sugar-oxidizing enzyme pyranose 2-oxidase (POD) in hyphae of Phanerochaete chrysosporium K-3 grown under liquid culture conditions optimal for the enzyme's production was studied by transmission electron microscopy immunocytochemistry. Using the 3-dimethylaminobenzoic acid-3-methyl-2-benzothiazolinone hydrazone hydrochloride H2O2 peroxidase spectrophotometric assay, POD was detected in mycelial extracts from days 7 to 18, with maximum activity recorded on day 12. Onset of POD activity occurred in the secondary phase of hyphal development at a time of stationary growth, glucose limitation, and pH increase. POD was also detected extracellularly in the culture fluid from days 7 to 18, with maximum activity recorded on day 13. At early stages of development (3 to 4 days), using anti-POD antibodies and immunogold labeling, POD was localized in multivesicular and electron-dense bodies and in cell membrane regions. After 10 to 12 days of growth, at maximum POD activity, POD was concentrated within the periplasmic space where it was associated with membrane-bound vesicles and other membrane structures. At later stages of development (17 to 18 days), when the majority of hyphae were lysed, POD was observed associated with residual intracellular membrane systems and vesicles. Transmission electron microscopy immunocytochemical studies also demonstrated an extracellular distribution of the enzyme at the stationary growth phase, showing its association with fungal extracellular slime. In studies of ligninolytic cultures of the same fungus, POD was found to have a similar intracellular and extracellular distribution in slime as that recorded for cultures grown with cornsteep. POD's peripheral cytoplasmic distribution shows similarities to the cellular distribution of that reported previously for H2O2-dependent lignin and manganese peroxidases in P. chrysosporium. Images PMID:16348809

  3. Cultural Differences in Optimism, Pessimism, and Coping: Predictors of Subsequent Adjustment in Asian American and Caucasian American College Students.

    ERIC Educational Resources Information Center

    Chang, Edward C.

    1996-01-01

    Cultural differences were examined between 111 Asian American and 111 Caucasian American students matched on age and sex in a prospective design study. Using separate optimism and pessimism scores, Asian Americans were found to be more pessimistic than Caucasian Americans. Asian Americans were also found to use more problem avoidance and social…

  4. PHOTOBIOREACTORS FOR PHYCOLOGY: DESIGN AND FUNCTION OF A COMPUTER-CONTROLLED, CULTURING APPARATUS OPTIMIZED FOR ANALYTICAL INVESTIGATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The majority of photobioreactor research has been directed at optimizing biomass yields. However, the potential for exploiting these highly controlled culturing environments for most physiological research has yet to be realized. The main reason for this is that photobioreactor technology has tend...

  5. Bacillus coagulans tolerance to 1-ethyl-3-methylimidazolium-based ionic liquids in aqueous and solid-state thermophilic culture.

    PubMed

    Simmons, Christopher W; Reddy, Amitha P; Vandergheynst, Jean S; Simmons, Blake A; Singer, Steven W

    2014-01-01

    The use of ionic liquids (ILs) to disrupt the recalcitrant structure of lignocellulose and make polysaccharides accessible to hydrolytic enzymes is an emerging technology for biomass pretreatment in lignocellulosic biofuel production. Despite efforts to reclaim and recycle IL from pretreated biomass, residual IL can be inhibitory to microorganisms used for downstream fermentation. As a result, pathways for IL tolerance are needed to improve the activity of fermentative organisms in the presence of IL. In this study, microbial communities from compost were cultured under high-solids and thermophilic conditions in the presence of 1-ethyl-3-methylimidazolium-based ILs to enrich for IL-tolerant microorganisms. A strain of Bacillus coagulans isolated from an IL-tolerant community was grown in liquid and solid-state culture in the presence of the ILs 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) or 1-ethyl-3-methylimidazolium chloride ([C2mim][Cl]) to gauge IL tolerance. Viability and respiration varied with the concentration of IL applied and the type of IL used. B. coagulans maintained growth and respiration in the presence of 4 wt% IL, a concentration similar to that present on IL-pretreated biomass. In the presence of both [C2mim][OAc] and [C2mim][Cl] in liquid culture, B. coagulans grew at a rate approximately half that observed in the absence of IL. However, in solid-state culture, the bacteria were significantly more tolerant to [C2mim][Cl] compared with [C2mim][OAc]. B. coagulans tolerance to IL under industrially relevant conditions makes it a promising bacterium for understanding mechanisms of IL tolerance and discovering IL tolerance pathways for use in other microorganisms, particularly those used in bioconversion of IL-pretreated plant biomass. PMID:24376258

  6. Screening and characterization of Isochrysis strains and optimization of culture conditions for docosahexaenoic acid production.

    PubMed

    Liu, Jin; Sommerfeld, Milton; Hu, Qiang

    2013-06-01

    Isochrysis is a genus of marine unicellular microalgae that produces docosahexaenoic acid (DHA, C22:6), a very long chain polyunsaturated fatty acid (PUFA) of significant health and nutritional value. Mass cultivation of Isochrysis for DHA production for human consumption has not been established due to disappointing low DHA productivity obtained from commonly used Isochrysis strains. In this study, 19 natural Isochrysis strains were screened for DHA yields and the results showed that the cellular DHA content ranged from 6.8 to 17.0 % of total fatty acids with the highest DHA content occurring in the exponential growth phase. Isochrysis galbana #153180 exhibited the greatest DHA production potential and was selected for further investigation. The effects of different light intensities, forms, and concentrations of nitrogen, phosphorus, and salinity on growth and DHA production of I. galbana #153180 were studied in a bubble column photobioreactor (PBR). Under favorable culture conditions, I. galbana #153180 contained DHA up to 17.5 % of total fatty acids or 1.7 % of cell dry weight. I. galbana #153180 was further tested in outdoor flat-plate PBRs varying in light path length, starting cell density (SCD), and culture mode (batch versus semicontinuous). When optimized, record high biomass and DHA productivity of I. galbana #153180 of 0.72 g L(-1) day(-1) and 13.6 mg L(-1) day(-1), or 26.4 g m(-2) day(-1) and 547.7 mg m(-2) day(-1), respectively, were obtained, suggesting that I. galbana #153180 may be a desirable strain for commercial production of DHA. PMID:23423326

  7. Liquid-Liquid Extraction for Recovery of Paclitaxel from Plant Cell Culture: Solvent Evaluation and Use of Extractants for Partitioning and Selectivity

    PubMed Central

    McPartland, Timothy J.; Patil, Rohan A.; Malone, Michael F.; Roberts, Susan C.

    2012-01-01

    A major challenge in the production of metabolites by plant cells is the separation and purification of a desired product from a number of impurities. An important application of plant cell culture is the biosynthesis of the anti-cancer agent paclitaxel. Liquid-liquid extraction plays a critical role in the recovery of paclitaxel and other valuable plant-derived products from culture broth. In this study, the extraction of paclitaxel and a major unwanted by-product, cephalomannine, from plant cell culture broth into organic solvents is quantified. Potential solvent mixtures show varying affinity and selectivity for paclitaxel over cephalomannine. The partition coefficient of paclitaxel is highest in ethyl acetate and dichloromethane, with measured values of 28 and 25, respectively; however selectivity coefficients are less than 1 for paclitaxel over cephalomannine for both solvents. Selectivity coefficient increases to 1.7 with extraction in n-hexane but the partition coefficient decreases to 1.9. Altering the pH of the aqueous phase results in an increase in both recovery and selectivity using n-hexane, but does not change the results for other solvents significantly. The addition of extractants trioctyl amine (TOA) or tributyl phosphate (TBP) to n-hexane gives significantly higher partition coefficients for paclitaxel (8.6 and 23.7, respectively), but no selectivity. Interestingly, when 20% hexafluorobenzene (HFB) is added to n-hexane, the partition coefficient remains approximately constant but the selectivity coefficient for paclitaxel over cephalomannine improves to 4.5. This significant increase in selectivity early in the purification process has the potential to simplify downstream processing steps and significantly reduce overall purification costs. PMID:22581674

  8. Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity

    PubMed Central

    Higuchi, Akon; Kao, Shih-Hsuan; Ling, Qing-Dong; Chen, Yen-Ming; Li, Hsing-Fen; Alarfaj, Abdullah A.; Munusamy, Murugan A.; Murugan, Kadarkarai; Chang, Shih-Chang; Lee, Hsin-Chung; Hsu, Shih-Tien; Kumar, S. Suresh; Umezawa, Akihiro

    2015-01-01

    The tentative clinical application of human pluripotent stem cells (hPSCs), such as human embryonic stem cells and human induced pluripotent stem cells, is restricted by the possibility of xenogenic contamination resulting from the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. Therefore, we investigated hPSC cultures on biomaterials with different elasticities that were grafted with different nanosegments. We prepared dishes coated with polyvinylalcohol-co-itaconic acid hydrogels grafted with an oligopeptide derived from vitronectin (KGGPQVTRGDVFTMP) with elasticities ranging from 10.3 to 30.4 kPa storage moduli by controlling the crosslinking time. The hPSCs cultured on the stiffest substrates (30.4 kPa) tended to differentiate after five days of culture, whereas the hPSCs cultured on the optimal elastic substrates (25 kPa) maintained their pluripotency for over 20 passages under xeno-free conditions. These results indicate that cell culture matrices with optimal elasticity can maintain the pluripotency of hPSCs in culture. PMID:26656754

  9. Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity.

    PubMed

    Higuchi, Akon; Kao, Shih-Hsuan; Ling, Qing-Dong; Chen, Yen-Ming; Li, Hsing-Fen; Alarfaj, Abdullah A; Munusamy, Murugan A; Murugan, Kadarkarai; Chang, Shih-Chang; Lee, Hsin-Chung; Hsu, Shih-Tien; Kumar, S Suresh; Umezawa, Akihiro

    2015-01-01

    The tentative clinical application of human pluripotent stem cells (hPSCs), such as human embryonic stem cells and human induced pluripotent stem cells, is restricted by the possibility of xenogenic contamination resulting from the use of mouse embryonic fibroblasts (MEFs) as a feeder layer. Therefore, we investigated hPSC cultures on biomaterials with different elasticities that were grafted with different nanosegments. We prepared dishes coated with polyvinylalcohol-co-itaconic acid hydrogels grafted with an oligopeptide derived from vitronectin (KGGPQVTRGDVFTMP) with elasticities ranging from 10.3 to 30.4 kPa storage moduli by controlling the crosslinking time. The hPSCs cultured on the stiffest substrates (30.4 kPa) tended to differentiate after five days of culture, whereas the hPSCs cultured on the optimal elastic substrates (25 kPa) maintained their pluripotency for over 20 passages under xeno-free conditions. These results indicate that cell culture matrices with optimal elasticity can maintain the pluripotency of hPSCs in culture. PMID:26656754

  10. Business-objective-directed, constraint-based multivariate optimization of high-performance liquid chromatography operational parameters.

    PubMed

    Chester, T L

    2003-10-24

    The goal of a separation can be defined in terms of business needs. One goal often used is to provide the required separation in minimum time, but many other goals are also possible. These include maximizing resolution within an analysis-time limit, or minimizing the overall cost. The remaining requirements of the separation can be applied as constraints in the optimization of the goal. We will present a flexible, business-objective-based approach for optimizing the operational parameters of high performance liquid chromatography (HPLC) methods. After selecting the stationary phase and the mobile-phase components, several isocratic experiments are required to build a retention model. Multivariate optimization is performed, within the model, to find the best combination of the parameters being varied so that the result satisfies the goal to the fullest extent possible within the constraints. Interdependencies of parameters can be revealed by plotting the loci of optimal variable values or the function being optimized against a constraint. We demonstrate the concepts with a model separation originally requiring a 54 min analysis time. Multivariate optimization reduces the predicted analysis time to as short as 8 min, depending on the goals and constraints specified. PMID:14601838

  11. Ionic Liquids as Electrolytes for Electrochemical Double-Layer Capacitors: Structures that Optimize Specific Energy.

    PubMed

    Mousavi, Maral P S; Wilson, Benjamin E; Kashefolgheta, Sadra; Anderson, Evan L; He, Siyao; Bühlmann, Philippe; Stein, Andreas

    2016-02-10

    Key parameters that influence the specific energy of electrochemical double-layer capacitors (EDLCs) are the double-layer capacitance and the operating potential of the cell. The operating potential of the cell is generally limited by the electrochemical window of the electrolyte solution, that is, the range of applied voltages within which the electrolyte or solvent is not reduced or oxidized. Ionic liquids are of interest as electrolytes for EDLCs because they offer relatively wide potential windows. Here, we provide a systematic study of the influence of the physical properties of ionic liquid electrolytes on the electrochemical stability and electrochemical performance (double-layer capacitance, specific energy) of EDLCs that employ a mesoporous carbon model electrode with uniform, highly interconnected mesopores (3DOm carbon). Several ionic liquids with structurally diverse anions (tetrafluoroborate, trifluoromethanesulfonate, trifluoromethanesulfonimide) and cations (imidazolium, ammonium, pyridinium, piperidinium, and pyrrolidinium) were investigated. We show that the cation size has a significant effect on the electrolyte viscosity and conductivity, as well as the capacitance of EDLCs. Imidazolium- and pyridinium-based ionic liquids provide the highest cell capacitance, and ammonium-based ionic liquids offer potential windows much larger than imidazolium and pyridinium ionic liquids. Increasing the chain length of the alkyl substituents in 1-alkyl-3-methylimidazolium trifluoromethanesulfonimide does not widen the potential window of the ionic liquid. We identified the ionic liquids that maximize the specific energies of EDLCs through the combined effects of their potential windows and the double-layer capacitance. The highest specific energies are obtained with ionic liquid electrolytes that possess moderate electrochemical stability, small ionic volumes, low viscosity, and hence high conductivity, the best performing ionic liquid tested being 1-ethyl-3

  12. Aspergillus oryzae S2 alpha-amylase production under solid state fermentation: optimization of culture conditions.

    PubMed

    Sahnoun, Mouna; Kriaa, Mouna; Elgharbi, Fatma; Ayadi, Dorra-Zouari; Bejar, Samir; Kammoun, Radhouane

    2015-04-01

    Aspergillus oryzae S2 was assayed for alpha-amylase production under solid state fermentation (SSF). In addition to AmyA and AmyB already produced in monitored submerged culture, the strain was noted to produce new AmyB oligomeric forms, in particular a dominant tetrameric form named AmyC. The latter was purified to homogeneity through fractional acetone precipitation and size exclusion chromatography. SDS-PAGE and native PAGE analyses revealed that, purified AmyC was an approximately 172 kDa tetramer of four 42 kDa subunits. AmyC was also noted to display the same NH2-terminal amino acid sequence residues and approximately the same physico-chemical properties of AmyA and AmyB, to exhibit maximum activity at pH 5.6 and 60 °C, and to produce maltose and maltotriose as major starch hydrolysis end-products. Soyabean meal was the best substitute to yeast extract compared to fish powder waste and wheat gluten waste. AmyC production was optimized under SSF using statistical design methodology. Moisture content of 76.25%, C/N substrate ratio of 0.62, and inoculum size of 10(6.87) spores allowed maximum activity of 22118.34 U/g of dried substrate, which was 33 times higher than the one obtained before the application of the central composite design (CCD). PMID:25617840

  13. Optimal inductive and cultural conditions of Polygonum multiflorum transgenic hairy roots mediated with Agrobacterium rhizogenes R1601 and an analysis of their anthraquinone constituents

    PubMed Central

    Huang, Bing; Lin, Huanjie; Yan, Chuanyan; Qiu, Hongyan; Qiu, Lipeng; Yu, Rongmin

    2014-01-01

    Background: Polygonum multiflorum is an important medicinal plant. Hairy roots systems obtained by transforming plant tissues with the natural genetic engineer Agrobacterium rhizogenes can produce valuable biological active substances, which have immense potential in the pharmaceutical industry. Objective: To optimize the inductive and cultural conditions of P. multiflorum hairy roots and to identify the major active secondary metabolites in hairy roots. Materials and Methods: P. multiflorum hairy root were mediated with A. rhizogenes R1601 to induce hairy roots. Four combinations, including Murashige–Skoog (MS), 1/2 MS, B5, and White, were investigated to optimize the culture medium. MS medium was selected for the growth measurement. The qualitative and quantitative determinations of free anthraquinone in hairy roots were compared with the calli and aseptic plantlets using high-performance liquid chromatography. Results: The inductive rates of hairy roots by leaves were higher than for any other explants. The presence of agropine in the P. multiflorum hairy roots confirmed that they were indeed transgenic. MS medium was the most suitable of the four media for hairy root growth. Meanwhile, the growth kinetics and nutrient consumption results showed that the hairy roots displayed a sigmoidal growth curve and that their optimal inoculation time was 18-21 days. The determination of the anthraquinone constituents indicated that the rhein content of the hairy roots reached 2.495 μg g−1 and was 2.55-fold higher than that of natural plants. Conclusion: Transgenic hairy roots of P. multiflorum could be one of the most potent materials for industrial-scale production of bioactive anthraquinone constituents. PMID:24696550

  14. Ionic liquid-aqueous solution ultrasonic-assisted extraction of three kinds of alkaloids from Phellodendron amurense Rupr and optimize conditions use response surface.

    PubMed

    Wang, Wenchao; Li, Qingyong; Liu, Yuhui; Chen, Binbin

    2015-05-01

    In this paper, we chose diffident kinds of ionic liquids to optimal selection an optimal one to extract alkaloids from Phellodendron amurense Rupr. Four ionic liquids with diffident carbon chains or anions have been investigated and 1-butyl-3-methylimidazolium bromide with best productivity. Then, selections have been optimized in different conditions, including concentration of ionic liquid, time for ultrasonic treatment, ultrasonic power and solid-liquid ratio. Moreover, three conditions have been comprehensively assessment by response surface methodology, the optimal conditions were determined as follows ultrasonic power 100 W, extraction time 75 min and ratio of solvent to raw material 1:14. Under these conditions, the yield% (MIX) was 106.7% (extracted by heat reflux being defined 100%). Comparing with other methods, the advantages are saving conserving, time saving, high yield% and especially pollution-free. PMID:25443277

  15. Nanoemulsion liquid preconcentrates for raloxifene hydrochloride: optimization and in vivo appraisal

    PubMed Central

    Elsheikh, Manal A; Elnaggar, Yosra SR; Gohar, Eman Y; Abdallah, Ossama Y

    2012-01-01

    Raloxifene hydrochloride (RLX) is a selective estrogen-receptor modulator for treatment of osteoporosis and prevention of breast and endometrial cancer. By virtue of extensive presystemic clearance, RLX bioavailability is only 2%. The current study aimed to tailor and characterize RLX-loaded self-nanoemulsifying drug-delivery systems (SNEDDS) using bioactive excipients affecting drug metabolism. The potential of oral nanocarriers to enhance RLX delivery to endocrine target organs was assessed in fasted and fed female Wistar rats using high-performance liquid chromatography. RLX was loaded in the dissolved and dispersed status in the alkalinized (A-SNEDDS) and nonalkalinized (NA-SNEDDS) systems, respectively. Optimization and assessment relied on solubility studies, emulsification efficiency, phase diagrams, dilution robustness, cloud point, particle size, zeta potential (ZP), polydispersity index (PDI), and transmission electron microscopy. In vitro release was assessed using dialysis bag versus dissolution cup methods. NA-SNEDDS were developed with suitable globule size (38.49 ± 4.30 nm), ZP (31.70 ± 3.58 mV), PDI (0.31 ± 0.02), and cloud point (85°C). A-SNEDDS exhibited good globule size (35 ± 2.80 nm), adequate PDI (0.28 ± 0.06), and lower ZP magnitude (−21.20 ± 3.46 mV). Transmission electron microscopy revealed spherical globules and contended data of size analysis. Release studies demonstrated a nonsignificant enhancement of RLX release from NA-SNEDDS compared to drug suspension with the lowest release shown by A-SNEDDS. A conflicting result was elucidated from in vivo trial. A significant enhancement in RLX uptake by endocrine organs was observed after nanocarrier administration compared to RLX suspension. In vivo studies reflected a poor in vitro/in vivo correlation, recommended nanocarrier administration before meals, and did not reveal any advantage for drug loading in the solubilized form (A-SNEDDS). To conclude, NA-SNEDDS possessed superior in

  16. Application of multicriteria decision analysis in solvent type optimization for chlorophenols determination with a dispersive liquid-liquid microextraction.

    PubMed

    Bigus, Paulina; Namieśnik, Jacek; Tobiszewski, Marek

    2016-05-13

    This study presents a novel support tool for the optimization and development of analytical methods. The tool is based on multi-criteria decision analysis (MCDA), namely the Technique for Order of Preference by Similarity to the Ideal Solution (TOPSIS), that allows users to rank possible solutions according to their requirements. In this study, we performed rankings of pairs of eight extraction and three dispersive solvents used in DLLME for chlorophenols extraction from water samples. The first ranking involved sensitivity and precision of the method for each of the nine chlorophenols. The tool is a quantitative solution to the common analytical problem that the change of analytical performance results in better performance for some analytes and worse for others. The second ranking included the assessment of the greenness of each pair of solvents, based on toxicological, ecotoxicological and environmental persistence criteria. The third ranking was based on a combination of sensitivity, precision and greenness criteria. Heptane as an extraction solvent and acetone as a dispersive solvent were selected as the most appropriate ones. The TOPSIS tool is a successful, easy to implement, incorporation of green analytical chemistry values to analytical method optimization. PMID:27083262

  17. Optimizing Immobilized Enzyme Performance in Cell-Free Environments to Produce Liquid Fuels

    SciTech Connect

    Belfort, Georges; Grimaldi, Joseph J.

    2015-01-27

    Limitations on biofuel production using cell culture (Escherichia coli, Clostridium, Saccharomyces cerevisiae, brown microalgae, blue-green algae and others) include low product (alcohol) concentrations (≤0.2 vol%) due to feedback inhibition, instability of cells, and lack of economical product recovery processes. To overcome these challenges, an alternate simplified biofuel production scheme was tested based on a cell-free immobilized enzyme system. Using this cell free system, we were able to obtain about 2.6 times higher concentrations of iso-butanol using our non-optimized system as compared with live cell systems. This process involved two steps: (i) converts acid to aldehyde using keto-acid decarboxylase (KdcA), and (ii) produces alcohol from aldehyde using alcohol dehydrogenase (ADH) with a cofactor (NADH) conversion from inexpensive formate using a third enzyme, formate dehydrogenase (FDH). To increase stability and conversion efficiency with easy separations, the first two enzymes were immobilized onto methacrylate resin. Fusion proteins of labile KdcA (fKdcA) were expressed to stabilize the covalently immobilized KdcA. Covalently immobilized ADH exhibited long-term stability and efficient conversion of aldehyde to alcohol over multiple batch cycles without fusions. High conversion rates and low protein leaching were achieved by covalent immobilization of enzymes on methacrylate resin. The complete reaction scheme was demonstrated by immobilizing both ADH and fKdcA and using FDH free in solution. The new system without in situ removal of isobutanol achieved a 55% conversion of ketoisovaleric acid to isobutanol at a concentration of 0.5 % (v/v). Further increases in titer will require continuous removal of the isobutanol using our novel brush membrane system that exhibits a 1.5 fold increase in the separation factor of isobutanol from water versus that obtained for commercial silicone rubber membranes. These bio-inspired brush membranes are based on the

  18. Panax ginseng Adventitious Root Suspension Culture: Protocol for Biomass Production and Analysis of Ginsenosides by High Pressure Liquid Chromatography.

    PubMed

    Murthy, Hosakatte Niranjana; Paek, Kee Yoeup

    2016-01-01

    Panax ginseng C.A. Meyer (Korean ginseng) is a popular herbal medicine. It has been used in Chinese and Oriental medicines since thousands of years. Ginseng products are generally used as a tonic and an adaptogen to resist the adverse influence of a wide range of physical, chemical and biological factors, and to restore homeostasis. Ginsenosides or ginseng saponins are the principal active ingredients of ginseng. Since ginseng cultivation process is very slow and needs specific environment for field cultivation, cell and tissue cultures are sought as alternatives for the production of ginseng biomass and bioactive compounds. In this chapter, we focus on methods of induction of adventitious roots from ginseng roots, establishment of adventitious root suspension cultures using bioreactors, procedures for processing of adventitious roots, and analysis of ginsenosides by high pressure liquid chromatography. PMID:27108314

  19. Optimized and validated high-performance liquid chromatography method for the determination of deoxynivalenol and aflatoxins in cereals.

    PubMed

    Skendi, Adriana; Irakli, Maria N; Papageorgiou, Maria D

    2016-04-01

    A simple, sensitive and accurate analytical method was optimized and developed for the determination of deoxynivalenol and aflatoxins in cereals intended for human consumption using high-performance liquid chromatography with diode array and fluorescence detection and a photochemical reactor for enhanced detection. A response surface methodology, using a fractional central composite design, was carried out for optimization of the water percentage at the beginning of the run (X1, 80-90%), the level of acetonitrile at the end of gradient system (X2, 10-20%) with the water percentage fixed at 60%, and the flow rate (X3, 0.8-1.2 mL/min). The studied responses were the chromatographic peak area, the resolution factor and the time of analysis. Optimal chromatographic conditions were: X1 = 80%, X2 = 10%, and X3 = 1 mL/min. Following a double sample extraction with water and a mixture of methanol/water, mycotoxins were rapidly purified by an optimized solid-phase extraction protocol. The optimized method was further validated with respect to linearity (R(2) >0.9991), sensitivity, precision, and recovery (90-112%). The application to 23 commercial cereal samples from Greece showed contamination levels below the legally set limits, except for one maize sample. The main advantages of the developed method are the simplicity of operation and the low cost. PMID:26891772

  20. Flows of liquid and electrical current through monolayers of cultured bovine arterial endothelium.

    PubMed Central

    Turner, M R

    1992-01-01

    1. Monolayers of arterial endothelium on porous membranes were exposed to a constant pressure between 15 and 35 cmH2O. The rates of liquid flow per unit area (Jv/A) through the monolayers were monitored, together with the electrical resistance (Rm) of the endothelium. 2. At constant pressure, Jv/A decreased with an approximately exponential time course, towards a stable baseline value. This behaviour resembles the sealing previously described for cultured vascular endothelium. At 30-35 cmH2O and 37 degrees C, the mean (+/- S.E.M.) half-time (t1/2) of the decrease in Jv/A (the sealing t1/2) was 548 +/- 141 S (n = 5). The difference between the initial and baseline values of Jv/A was expressed as a fraction of the initial value. The mean (+/- S.E.M.) of this sealing fraction was 0.64 +/- 0.03 (n = 5). Mean (+/- S.E.M.) hydraulic permeability (Lp) was 23.9 +/- 6.4 x 10(-7) cm S-1 cmH2O-1 (n = 9), when measured after sealing. Endothelium appeared damaged after sealing at 30-35 cmH2O and 37 degrees C. 3. Sealing was also observed using glutaraldehyde-fixed endothelium at 30-33 cmH2O and 26-28 degrees C. There was no significant difference between the mean sealing t1/2 of these fixed monolayers, and that of unfixed endothelium at 30-35 cmH2O and 37 degrees C. However, mean sealing fraction was significantly larger for the fixed monolayers than for unfixed endothelium at 30-35 cmH2O and 37 degrees C. There were no significant difference between the post-sealing Lps of these fixed and unfixed monolayers, although the fixed monolayers appeared undamaged after sealing. 4. For unfixed endothelium, Rm was lower after sealing at 30-35 cmH2O and 37 degrees C than before pressure application. There was no significant difference between endothelial Rm before and after sealing, for glutaraldehyde-fixed monolayers. 5. Sealing was also observed at 0 degree C, using unfixed endothelium at 30 cmH2O. Mean sealing t1/2 was not significantly different from that of unfixed endothelium at

  1. How to Optimize the Use of Blood Cultures for the Diagnosis of Bloodstream Infections? A State-of-the Art

    PubMed Central

    Lamy, Brigitte; Dargère, Sylvie; Arendrup, Maiken C.; Parienti, Jean-Jacques; Tattevin, Pierre

    2016-01-01

    Bloodstream infection (BSI) is a major cause of death in developed countries and the detection of microorganisms is essential in managing patients. Despite major progress has been made to improve identification of microorganisms, blood culture (BC) remains the gold standard and the first line tool for detecting BSIs. Consensus guidelines are available to ensure optimal BSI procedures, but BC practices often deviate from the recommendations. This review provides an update on clinical and technical issues related to blood collection and to BC performance, with a special focus on the blood sample strategy to optimize the sensitivity and specificity of BCs. PMID:27242721

  2. Fast Filtration of Bacterial or Mammalian Suspension Cell Cultures for Optimal Metabolomics Results

    PubMed Central

    Bordag, Natalie; Janakiraman, Vijay; Nachtigall, Jonny; González Maldonado, Sandra; Bethan, Bianca; Laine, Jean-Philippe; Fux, Elie

    2016-01-01

    The metabolome offers real time detection of the adaptive, multi-parametric response of the organisms to environmental changes, pathophysiological stimuli or genetic modifications and thus rationalizes the optimization of cell cultures in bioprocessing. In bioprocessing the measurement of physiological intracellular metabolite levels is imperative for successful applications. However, a sampling method applicable to all cell types with little to no validation effort which simultaneously offers high recovery rates, high metabolite coverage and sufficient removal of extracellular contaminations is still missing. Here, quenching, centrifugation and fast filtration were compared and fast filtration in combination with a stabilizing washing solution was identified as the most promising sampling method. Different influencing factors such as filter type, vacuum pressure, washing solutions were comprehensively tested. The improved fast filtration method (MxP® FastQuench) followed by routine lipid/polar extraction delivers a broad metabolite coverage and recovery reflecting well physiological intracellular metabolite levels for different cell types, such as bacteria (Escherichia coli) as well as mammalian cells chinese hamster ovary (CHO) and mouse myeloma cells (NS0).The proposed MxP® FastQuench allows sampling, i.e. separation of cells from medium with washing and quenching, in less than 30 seconds and is robustly designed to be applicable to all cell types. The washing solution contains the carbon source respectively the 13C-labeled carbon source to avoid nutritional stress during sampling. This method is also compatible with automation which would further reduce sampling times and the variability of metabolite profiling data. PMID:27438065

  3. Optimal concentration of hyaluronan and plant protein in different culture systems for in vitro maturation of bovine oocytes.

    PubMed

    Opiela, Jolanta; Latasiewicz, Ewa; Smorag, Zdzisław

    2012-12-01

    With a view to search for optimal concentration of hyaluronan (HA) and plant protein (PP) in different culture systems for in vitro maturation of bovine oocytes, cumulus-oocyte complexes (COCs) were matured in vitro in 2 culture systems (first co-cultured with granulose cells and estrus calf serum (ECS) in 2 mL volume, second without co-culture where ECS was replaced by exogenous hormones and BSA or PP in 100 microL dose under mineral oil). Seven types of media were used; 3 in first system and 4 in second system. To evaluate HA and PP effect on oocytes after in vitro culture an estimation of meiosis stage and a level of DNA fragmentation was performed by TUNEL staining. The highest meiotic maturation (84%) was observed in oocytes cultured in medium enriched with ECS in co-culture with granulose cells (1st system). The lowest meiotic maturation was noted in medium with addition of BSA (43%). The addition of HA in the medium enriched with BSA significantly increased the rate of matured oocytes (67%) and also didn't affect the chromatin quality of individual oocytes. The addition of HA to the culture medium supplemented with a PP decreased the rate of matured oocytes to 54% but no statistical differences were noted. The results of the present study showed that HA supplementation didn't have a detrimental impact on oocyte chromatin integrity and improved bovine oocytes' meiotic maturation in medium supplemented only with BSA without co-culture of granulose cells. PMID:23986966

  4. Optimizing TiO2-based phosphopeptide enrichment for automated multidimensional liquid chromatography coupled to tandem mass spectrometry

    PubMed Central

    Cantin, Greg T.; Shock, Teresa R.; Park, Sung Kyu; Madhani, Hiten D.; Yates, John R.

    2008-01-01

    An automated online multidimensional liquid chromatography system coupled to ESI-based tandem mass spectrometry was used to assess the effectiveness of TiO2 in the enrichment of phosphopeptides from tryptic digests of protein mixtures. By monitoring the enrichment of phosphopeptides, an optimized set of loading, wash, and elution conditions were realized for TiO2. A comparison of TiO2 with other resins used for phosphopeptide enrichment, Fe(III)-IMAC and ZrO2, was also carried out using tryptic digests of both simple and moderately complex protein mixtures; where TiO2 was shown to be superior in performance. PMID:17523591

  5. Proliferation and colony-forming ability of peritoneal exudate cells in liquid culture.

    PubMed

    Stewart, C C; Lin, H S; Adles, C

    1975-05-01

    Peritoneal exudate cells, obtained from mice injected with thioglycollate medium and cultured in medium containing L-cell-conditioned medium, will proliferate in an exponential fashion for 18 days with a doubling time of 68 h. After a 2 h pulse of tritiated thymidine, labeled adherent cells increased to a maximum of 22-34% during the 1st and 2nd wk of culture. Increasing the cell concentration from 2 times 10-3 to 2 times 10-5 cells/culture reduced exponential growth to 10 days and the doubling time was increased to 81.6 h. Under these culture conditions, peritoneal exudate cells were shown to form colonies on the surface of culture dishes when plated at low density. The cells within the colony were shown to be macrophages using yeast and antibody-coated sheep erythrocytes as a test for phagocytic function. The plating efficiolonies arose from a single precursor cell. The adherent cell population contains the colony-forming precursors. These precursors can be stimulated to form colonies for at least 2 wk by the addition of conditioned medium to cultures at various times after plating. While very few colony-forming cells could be demonstrated in the unstimulated peritoneal lavage, their numbers begin to increase in the exudate 4 h after injection of thioglycollate medium and reach a maximum by day 3 and then decrease. Isolated colonies may be useful in studying the function of macrophages. PMID:1092793

  6. Application and optimization of microwave-assisted extraction and dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for sensitive determination of polyamines in turkey breast meat samples.

    PubMed

    Bashiry, Moein; Mohammadi, Abdorreza; Hosseini, Hedayat; Kamankesh, Marzieh; Aeenehvand, Saeed; Mohammadi, Zaniar

    2016-01-01

    A novel method based on microwave-assisted extraction and dispersive liquid-liquid microextraction (MAE-DLLME) followed by high-performance liquid chromatography (HPLC) was developed for the determination of three polyamines from turkey breast meat samples. Response surface methodology (RSM) based on central composite design (CCD) was used to optimize the effective factors in DLLME process. The optimum microextraction efficiency was obtained under optimized conditions. The calibration graphs of the proposed method were linear in the range of 20-200 ng g(-1), with the coefficient determination (R(2)) higher than 0.9914. The relative standard deviations were 6.72-7.30% (n = 7). The limits of detection were in the range of 0.8-1.4 ng g(-1). The recoveries of these compounds in spiked turkey breast meat samples were from 95% to 105%. The increased sensitivity in using the MAE-DLLME-HPLC-UV has been demonstrated. Compared with previous methods, the proposed method is an accurate, rapid and reliable sample-pretreatment method. PMID:26213091

  7. Optimized Nested Markov Chain Monte Carlo Sampling: Application to the Liquid Nitrogen Hugoniot Using Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Shaw, M. Sam; Coe, Joshua D.; Sewell, Thomas D.

    2009-06-01

    An optimized version of the Nested Markov Chain Monte Carlo sampling method is applied to the calculation of the Hugoniot for liquid nitrogen. The ``full'' system of interest is calculated using density functional theory (DFT) with a 6-31G* basis set for the configurational energies. The ``reference'' system is given by a model potential fit to the anisotropic pair interaction of two nitrogen molecules from DFT calculations. The EOS is sampled in the isobaric-isothermal (NPT) ensemble with a trial move constructed from many Monte Carlo steps in the reference system. The trial move is then accepted with a probability chosen to give the full system distribution. The P's and T's of the reference and full systems are chosen separately to optimize the computational time required to produce the full system EOS. The method is numerically very efficient and predicts a Hugoniot in excellent agreement with experimental data.

  8. Optimized Nested Markov Chain Monte Carlo Sampling: Application to the Liquid Nitrogen Hugoniot Using Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Shaw, M. Sam; Coe, Joshua D.; Sewell, Thomas D.

    2009-12-01

    An optimized version of the Nested Markov Chain Monte Carlo sampling method is applied to the calculation of the Hugoniot for liquid nitrogen. The "full" system of interest is calculated using density functional theory (DFT) with a 6-31G* basis set for the configurational energies. The "reference" system is given by a model potential fit to the anisotropic pair interaction of two nitrogen molecules from DFT calculations. The EOS is sampled in the isobaric-isothermal (NPT) ensemble with a trial move constructed from many Monte Carlo steps in the reference system. The trial move is then accepted with a probability chosen to give the full system distribution. The P's and T's of the reference and full systems are chosen separately to optimize the computational time required to produce the full system EOS. The method is numerically very efficient and predicts a Hugoniot in excellent agreement with experimental data.

  9. Optimizing Potentials for a Liquid Mixture: A New Force Field for a tert-Butanol and Water Solution

    PubMed Central

    2015-01-01

    A technology for optimization of potential parameters from condensed-phase simulations (POP) is discussed and illustrated. It is based on direct calculations of the derivatives of macroscopic observables with respect to the potential parameters. The derivatives are used in a local minimization scheme, comparing simulated and experimental data. In particular, we show that the Newton trust region protocol allows for more accurate and robust optimization. We apply the newly developed technology to study the liquid mixture of tert-butanol and water. We are able to obtain, after four iterations, the correct phase behavior and accurately predict the value of the Kirkwood Buff (KB) integrals. We further illustrate that a potential that is determined solely by KB information, or the pair correlation function, is not necessarily unique. PMID:25066823

  10. Optimizing potentials for a liquid mixture: a new force field for a tert-butanol and water solution.

    PubMed

    Di Pierro, Michele; Mugnai, Mauro L; Elber, Ron

    2015-01-22

    A technology for optimization of potential parameters from condensed-phase simulations (POP) is discussed and illustrated. It is based on direct calculations of the derivatives of macroscopic observables with respect to the potential parameters. The derivatives are used in a local minimization scheme, comparing simulated and experimental data. In particular, we show that the Newton trust region protocol allows for more accurate and robust optimization. We apply the newly developed technology to study the liquid mixture of tert-butanol and water. We are able to obtain, after four iterations, the correct phase behavior and accurately predict the value of the Kirkwood Buff (KB) integrals. We further illustrate that a potential that is determined solely by KB information, or the pair correlation function, is not necessarily unique. PMID:25066823

  11. Optimized nested Markov chain Monte Carlo sampling: application to the liquid nitrogen Hugoniot using density functional theory

    SciTech Connect

    Shaw, Milton Sam; Coe, Joshua D; Sewell, Thomas D

    2009-01-01

    An optimized version of the Nested Markov Chain Monte Carlo sampling method is applied to the calculation of the Hugoniot for liquid nitrogen. The 'full' system of interest is calculated using density functional theory (DFT) with a 6-31 G* basis set for the configurational energies. The 'reference' system is given by a model potential fit to the anisotropic pair interaction of two nitrogen molecules from DFT calculations. The EOS is sampled in the isobaric-isothermal (NPT) ensemble with a trial move constructed from many Monte Carlo steps in the reference system. The trial move is then accepted with a probability chosen to give the full system distribution. The P's and T's of the reference and full systems are chosen separately to optimize the computational time required to produce the full system EOS. The method is numerically very efficient and predicts a Hugoniot in excellent agreement with experimental data.

  12. Immuno-electron microscopy of primary cell cultures from genetically modified animals in liquid by atmospheric scanning electron microscopy.

    PubMed

    Kinoshita, Takaaki; Mori, Yosio; Hirano, Kazumi; Sugimoto, Shinya; Okuda, Ken-ichi; Matsumoto, Shunsuke; Namiki, Takeshi; Ebihara, Tatsuhiko; Kawata, Masaaki; Nishiyama, Hidetoshi; Sato, Mari; Suga, Mitsuo; Higashiyama, Kenichi; Sonomoto, Kenji; Mizunoe, Yoshimitsu; Nishihara, Shoko; Sato, Chikara

    2014-04-01

    High-throughput immuno-electron microscopy is required to capture the protein-protein interactions realizing physiological functions. Atmospheric scanning electron microscopy (ASEM) allows in situ correlative light and electron microscopy of samples in liquid in an open atmospheric environment. Cells are cultured in a few milliliters of medium directly in the ASEM dish, which can be coated and transferred to an incubator as required. Here, cells were imaged by optical or fluorescence microscopy, and at high resolution by gold-labeled immuno-ASEM, sometimes with additional metal staining. Axonal partitioning of neurons was correlated with specific cytoskeletal structures, including microtubules, using primary-culture neurons from wild type Drosophila, and the involvement of ankyrin in the formation of the intra-axonal segmentation boundary was studied using neurons from an ankyrin-deficient mutant. Rubella virus replication producing anti-double-stranded RNA was captured at the host cell's plasma membrane. Fas receptosome formation was associated with clathrin internalization near the surface of primitive endoderm cells. Positively charged Nanogold clearly revealed the cell outlines of primitive endoderm cells, and the cell division of lactic acid bacteria. Based on these experiments, ASEM promises to allow the study of protein interactions in various complexes in a natural environment of aqueous liquid in the near future. PMID:24564988

  13. Coaxial electrospray of liquid core-hydrogel shell microcapsules for encapsulation and miniaturized 3D culture of pluripotent stem cells

    PubMed Central

    Zhao, Shuting; Agarwal, Pranay; Rao, Wei; Huang, Haishui; Zhang, Renliang; Liu, Zhenguo; Yu, Jianhua; Weisleder, Noah; Zhang, Wujie; He, Xiaoming

    2014-01-01

    A novel coaxial electrospray technology is developed to generate microcapsules with a hydrogel shell of alginate and an aqueous liquid core of living cells using two aqueous fluids in one step. Approximately 50 murine embryonic stem (ES) cells encapsulated in the core with high viability (92.3 ± 2.9%) can proliferate to form a single ES cell aggregate of 128.9 ± 17.4 μm in each microcapsule within 7 days. Quantitative analyses of gene and protein expression indicate that ES cells cultured in the miniaturized 3D liquid core of the core-shell microcapsules have significantly higher pluripotency on average than the cells cultured on 2D substrate or in the conventional 3D alginate hydrogel microbeads without a core-shell architecture. The higher pluripotency is further suggested by their significantly higher capability of differentiation into beating cardiomyocytes and higher expression of cardiomyocyte specific gene markers on average after directed differentiation under the same conditions. Considering its wide availability, easiness to set up and operate, reusability, and high production rate, the novel coaxial electrospray technology together with the microcapsule system is of importance for mass production of ES cells with high pluripotency to facilitate translation of the emerging pluripotent stem cell-based regenerative medicine into the clinic. PMID:25036382

  14. Microwave-assisted of dispersive liquid-liquid microextraction and spectrophotometric determination of uranium after optimization based on Box-Behnken design and chemometrics methods

    NASA Astrophysics Data System (ADS)

    Niazi, Ali; Khorshidi, Neda; Ghaemmaghami, Pegah

    2015-01-01

    In this study an analytical procedure based on microwave-assisted dispersive liquid-liquid microextraction (MA-DLLME) and spectrophotometric coupled with chemometrics methods is proposed to determine uranium. In the proposed method, 4-(2-pyridylazo) resorcinol (PAR) is used as a chelating agent, and chloroform and ethanol are selected as extraction and dispersive solvent. The optimization strategy is carried out by using two level full factorial designs. Results of the two level full factorial design (24) based on an analysis of variance demonstrated that the pH, concentration of PAR, amount of dispersive and extraction solvents are statistically significant. Optimal condition for three variables: pH, concentration of PAR, amount of dispersive and extraction solvents are obtained by using Box-Behnken design. Under the optimum conditions, the calibration graphs are linear in the range of 20.0-350.0 ng mL-1 with detection limit of 6.7 ng mL-1 (3δB/slope) and the enrichment factor of this method for uranium reached at 135. The relative standard deviation (R.S.D.) is 1.64% (n = 7, c = 50 ng mL-1). The partial least squares (PLS) modeling was used for multivariate calibration of the spectrophotometric data. The orthogonal signal correction (OSC) was used for preprocessing of data matrices and the prediction results of model, with and without using OSC, were statistically compared. MA-DLLME-OSC-PLS method was presented for the first time in this study. The root mean squares error of prediction (RMSEP) for uranium determination using PLS and OSC-PLS models were 4.63 and 0.98, respectively. This procedure allows the determination of uranium synthesis and real samples such as waste water with good reliability of the determination.

  15. Microwave-assisted of dispersive liquid-liquid microextraction and spectrophotometric determination of uranium after optimization based on Box-Behnken design and chemometrics methods.

    PubMed

    Niazi, Ali; Khorshidi, Neda; Ghaemmaghami, Pegah

    2015-01-25

    In this study an analytical procedure based on microwave-assisted dispersive liquid-liquid microextraction (MA-DLLME) and spectrophotometric coupled with chemometrics methods is proposed to determine uranium. In the proposed method, 4-(2-pyridylazo) resorcinol (PAR) is used as a chelating agent, and chloroform and ethanol are selected as extraction and dispersive solvent. The optimization strategy is carried out by using two level full factorial designs. Results of the two level full factorial design (2(4)) based on an analysis of variance demonstrated that the pH, concentration of PAR, amount of dispersive and extraction solvents are statistically significant. Optimal condition for three variables: pH, concentration of PAR, amount of dispersive and extraction solvents are obtained by using Box-Behnken design. Under the optimum conditions, the calibration graphs are linear in the range of 20.0-350.0 ng mL(-1) with detection limit of 6.7 ng mL(-1) (3δB/slope) and the enrichment factor of this method for uranium reached at 135. The relative standard deviation (R.S.D.) is 1.64% (n=7, c=50 ng mL(-1)). The partial least squares (PLS) modeling was used for multivariate calibration of the spectrophotometric data. The orthogonal signal correction (OSC) was used for preprocessing of data matrices and the prediction results of model, with and without using OSC, were statistically compared. MA-DLLME-OSC-PLS method was presented for the first time in this study. The root mean squares error of prediction (RMSEP) for uranium determination using PLS and OSC-PLS models were 4.63 and 0.98, respectively. This procedure allows the determination of uranium synthesis and real samples such as waste water with good reliability of the determination. PMID:25062051

  16. Trade-off between learning and exploitation: the Pareto-optimal versus evolutionarily stable learning schedule in cumulative cultural evolution.

    PubMed

    Wakano, Joe Yuichiro; Miura, Chiaki

    2014-02-01

    Inheritance of culture is achieved by social learning and improvement is achieved by individual learning. To realize cumulative cultural evolution, social and individual learning should be performed in this order in one's life. However, it is not clear whether such a learning schedule can evolve by the maximization of individual fitness. Here we study optimal allocation of lifetime to learning and exploitation in a two-stage life history model under a constant environment. We show that the learning schedule by which high cultural level is achieved through cumulative cultural evolution is unlikely to evolve as a result of the maximization of individual fitness, if there exists a trade-off between the time spent in learning and the time spent in exploiting the knowledge that has been learned in earlier stages of one's life. Collapse of a fully developed culture is predicted by a game-theoretical analysis where individuals behave selfishly, e.g., less learning and more exploiting. The present study suggests that such factors as group selection, the ability of learning-while-working ("on the job training"), or environmental fluctuation might be important in the realization of rapid and cumulative cultural evolution that is observed in humans. PMID:24044982

  17. CFD analysis and optimization of a liquid lead-bismuth loop target for ISOL facilities

    NASA Astrophysics Data System (ADS)

    Houngbo, D.; Popescu, L.; Schuurmans, P.; Delonca, M.; Losito, R.; Maglioni, C.; Stora, T.; Bricault, P.; Vierendeels, J.

    2015-03-01

    In the context of the forthcoming next generation of Radioactive Ion Beams (RIBs) facilities based on an Isotope Separation On Line (ISOL) method, the development of production targets capable of dissipating the high power deposited by the primary beam is a major challenge. The concept of a high-power target based on a liquid Pb-Bi loop incorporating a heat-exchanger and a diffusion chamber was proposed within EURISOL DS and is being developed within the LIEBE1 This study shows that approximately 100 ms after the proton pulse the irradiated liquid-metal is entirely and uniformly evacuated from the irradiation volume and spread in a shower of small droplets (100-μm radii), in order to reduce the diffusion length of isotopes. Solutions to deal with the typical cavitation risk due to the presence of low-pressure zones in the liquid have also been found and simulated.

  18. Liquid organic foams for formulation optimization : an assessment of foam linear viscoelasticity and its temporal dependence.

    SciTech Connect

    Kropka, Jamie Michael; Celina, Mathias Christopher; Mondy, Lisa Ann

    2010-03-01

    Liquid foams are viscoelastic liquids, exhibiting a fast relaxation attributed to local bubble motions and a slow response due to structural evolution of the intrinsically unstable system. In this work, these processes are examined in unique organic foams that differ from the typically investigated aqueous systems in two major ways: the organic foams (1) posses a much higher continuous phase viscosity and (2) exhibit a coarsening response that involves coalescence of cells. The transient and dynamic relaxation responses of the organic foams are evaluated and discussed in relation to the response of aqueous foams. The change in the foam response with increasing gas fraction, from that of a Newtonian liquid to one that is strongly viscoelastic, is also presented. In addition, the temporal dependencies of the linear viscoelastic response are assessed in the context of the foam structural evolution. These foams and characterization techniques provide a basis for testing stabilization mechanisms in epoxy-based foams for encapsulation applications.

  19. Optimized ultrasonic assisted extraction-dispersive liquid-liquid microextraction coupled with gas chromatography for determination of essential oil of Oliveria decumbens Vent.

    PubMed

    Sereshti, Hassan; Izadmanesh, Yahya; Samadi, Soheila

    2011-07-22

    Ultrasonic assisted extraction-dispersive liquid-liquid microextraction (UAE-DLLME) coupled with gas chromatography (GC) was applied for extraction and determination of essential oil constituents of the plant Oliveria decumbens Vent. Scanning electron microscopy (SEM) was used to see the effect of ultrasonic radiation on the extraction efficiency. By comparison with hydrodistillation, UAE-DLLME is fast, low cost, simple, efficient and consuming small amount of plant materials (∼1.0 g). The effects of various parameters such as temperature, ultrasonication time, volume of disperser and extraction solvents were investigated by a full factorial design to identify significant variables and their interactions. The results demonstrated that temperature and ultrasonication time had no considerable effect on the results. In the next step, a central composite design (CCD) was performed to obtain the optimum levels of significant parameters. The obtained optimal conditions were: 0.45 mL for disperser solvent (acetonitrile) and 94.84 μL for extraction solvent (chlorobenzene). The limits of detection (LODs), linear dynamic range and determination coefficients (R(2)) were 0.2-29 ng mL(-1), 1-2100 ng mL(-1) and 0.995-0.998, respectively. The main components of the essential oil were: thymol (47.06%), carvacrol (23.31%), gamma-terpinene (18.94%), p-cymene (8.71%), limonene (0.76%) and myristicin (0.63%). PMID:21679955

  20. Optimization of a phase separation based magnetic-stirring salt-induced liquid-liquid microextraction method for determination of fluoroquinolones in food.

    PubMed

    Gao, Ming; Wang, Huili; Ma, Meiping; Zhang, Yuna; Yin, Xiaohan; Dahlgren, Randy A; Du, Dongli; Wang, Xuedong

    2015-05-15

    Herein, we developed a novel integrated apparatus to perform phase separation based on magnetic-stirring, salt-induced, liquid-liquid microextraction for determination of five fluoroquinolones in animal-based foods by HPLC analysis. The novel integrated apparatus consisted of three simple HDPE (high density polyethylene) parts that were used to separate the solvent from the aqueous solution prior to retrieving the extractant. The extraction parameters were optimized using the response surface method based on central composite design: 791 μL of acetone solvent, 2.5 g of Na2SO4, pH 1.7, 3.0 min of stir time, and 5.5 min centrifugation. The limits of detection were 0.07-0.53 μg kg(-1) and recoveries were 91.6-105.0% for the five fluoroquinolones from milk, eggs and honey. This method is easily constructed from inexpensive materials, extraction efficiency is high, and the approach is compatible with HPLC analysis. Thus, it has excellent prospects for sample pre-treatment and analysis of fluoroquinolones in animal-based foods. PMID:25577068

  1. Optimization and comprehensive characterization of a faithful tissue culture model of the benign and malignant human prostate.

    PubMed

    Maund, Sophia Lisette; Nolley, Rosalie; Peehl, Donna Mae

    2014-02-01

    Few preclinical models accurately depict normal human prostate tissue or primary prostate cancer (PCa). In vitro systems typically lack complex cellular interactions among structured prostatic epithelia and a stromal microenvironment, and genetic and molecular fidelity are concerns in both in vitro and in vivo models. 'Tissue slice cultures' (TSCs) provide realistic preclinical models of diverse tissues and organs, but have not been fully developed or widely utilized for prostate studies. Problems encountered include degeneration of differentiated secretory cells, basal cell hyperplasia, and poor survival of PCa. Here, we optimized, characterized, and applied a TSC model of primary human PCa and benign prostate tissue that overcomes many deficiencies of current in vitro models. Tissue cores from fresh prostatectomy specimens were precision-cut at 300 μm and incubated in a rotary culture apparatus. The ability of varied culture conditions to faithfully maintain benign and cancer cell and tissue structure and function over time was evaluated by immunohistological and biochemical assays. After optimization of the culture system, molecular and cellular responses to androgen ablation and to piperlongumine (PL), purported to specifically reduce androgen signaling in PCa, were investigated. Optimized culture conditions successfully maintained the structural and functional fidelity of both benign and PCa TSCs for 5 days. TSCs exhibited androgen dependence, appropriately undergoing ductal degeneration, reduced proliferation, and decreased prostate-specific antigen expression upon androgen ablation. Further, TSCs revealed cancer-specific reduction of androgen receptor and increased apoptosis upon treatment with PL, validating data from cell lines. We demonstrate a TSC model that authentically recapitulates the structural, cellular, and genetic characteristics of the benign and malignant human prostate, androgen dependence of the native tissue, and cancer-specific response

  2. Design optimization of liquid-phase flow patterns for microfabricated lung on a chip.

    PubMed

    Long, C; Finch, C; Esch, M; Anderson, W; Shuler, M; Hickman, J

    2012-06-01

    Microreactors experience significant deviations from plug flow due to the no-slip boundary condition at the walls of the chamber. The development of stagnation zones leads to widening of the residence time distribution at the outlet of the reactor. A hybrid design optimization process that combines modeling and experiments has been utilized to minimize the width of the residence time distribution in a microreactor. The process was used to optimize the design of a microfluidic system for an in vitro model of the lung alveolus. Circular chambers to accommodate commercial membrane supported cell constructs are a particularly challenging geometry in which to achieve a uniform residence time distribution. Iterative computational fluid dynamics (CFD) simulations were performed to optimize the microfluidic structures for two different types of chambers. The residence time distributions of the optimized chambers were significantly narrower than those of non-optimized chambers, indicating that the final chambers better approximate plug flow. Qualitative and quantitative visualization experiments with dye indicators demonstrated that the CFD results accurately predicted the residence time distributions within the bioreactors. The results demonstrate that such a hybrid optimization process can be used to design microreactors that approximate plug flow for in vitro tissue engineered systems. This technique has broad application for optimization of microfluidic body-on-a-chip systems for drug and toxin studies. PMID:22271245

  3. Improvement of zinc bioaccumulation and biomass yield in the mycelia and fruiting bodies of Pleurotus florida cultured on liquid media.

    PubMed

    Poursaeid, Nasser; Azadbakht, Abas; Balali, Gholam Reza

    2015-04-01

    The effect of different concentrations of zinc on the bioaccumulation of zinc and biomass yield in both mycelium and fruiting body of Pleurotus florida cultivated in liquid medium was studied. The results showed that the optimum yield of mycelia (11.33 ± 0.44 g/L) and fruiting bodies (7.70 ± 0.19 g/L) dry biomass was obtained in a liquid medium containing 100 mg/L of zinc. At a zinc concentration of 200 mg/L, the highest concentration of zinc in the mycelia and fruiting bodies reached 1.869 ± 0.115 and 0.151 ± 0.008 mg/g dry weight, respectively. The addition of zinc to the culture media significantly reduced zinc bioaccumulation factor in mycelia (from 24.64 ± 0.52 to 3.35 ± 0.24) and fruiting bodies (from 36.71 ± 0.30 to 0.49 ± 0.02) dry weight. Our findings indicated that the ability of zinc bioaccumulation in the mycelia is much higher than in the fruiting bodies. The fundamental information obtained in this study will be useful for the improvement of zinc bioaccumulation and biomass yield in mycelia and fruiting bodies of P. florida cultivated in liquid media to obtain maximum zinc-enriched biomass. PMID:25686560

  4. Optimal stock liquidation in a regime switching model with finite time horizon

    NASA Astrophysics Data System (ADS)

    Pemy, M.; Zhang, Q.

    2006-09-01

    This paper is concerned with a finite-horizon optimal selling rule. A set of geometric Brownian motions coupled by a finite-state Markov chain is used to characterize stock price movements. Given a fixed transaction fee, the optimal selling rule can be obtained by solving an optimal stopping problem. The corresponding value function is shown to be the unique viscosity solution to the associated HJB equations. Numerical solutions to these equations and their convergence are obtained. A numerical example is presented to illustrate the results.

  5. Acanthamoeba Encephalitis: Isolation of Genotype T1 in Mycobacterial Liquid Culture Medium

    PubMed Central

    Azzam, Rula; Badenoch, Paul R.; Francis, Michelle J.; Fernandez, Charles; Adamson, Penelope J.; Dendle, Claire; Woolley, Ian; Robson, Jenny; Korman, Tony M.

    2014-01-01

    We report a case of Acanthamoeba encephalitis diagnosed from an antemortem brain biopsy specimen, where the organism was first isolated in mycobacterial liquid medium and first identified by using a sequence generated by a commercial panfungal sequencing assay. We correlate susceptibility results with clinical outcome. PMID:25502534

  6. Production of microsclerotia by brazilian strains of metarhizium spp. using submerged liquid culture fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We investigated the potential production and desiccation tolerance of microsclerotia (MS) by Brazilian strains of Metarhizium. anisopliae [Ma], M. acridum [Mc] and M. robertsii [Mr]. These fungi were grown in a liquid medium containing 16 g carbon l-1 with a carbon:nitrogen ratio of 50:1. One hundre...

  7. Research on Gas-liquid Flow Rate Optimization in Foam Drilling

    NASA Astrophysics Data System (ADS)

    Gao, B. K.; Sun, D. G.; Jia, Z. G.; Huang, Z. Q.

    2010-03-01

    With the advantages of less gas consumption, higher carrying rocks ability, lower leakage and higher penetration rate, foam drilling is widely used today in petroleum industry. In the process of foam underbalanced drilling, the mixture of gas, liquid and cuttings flows upwards through the annular, so it is a typical gas-liquid-solid multi-phase flow. In order to protect the reservoir and avoid borehole wall collapsing during foam drilling, it is crucial to ensure that the bottom hole pressure is lower than the formation pressure and higher than the formation collapse pressure, and in the mean time, foam drilling fluid in the whole wellbore should be in the best foam quality stage in order to have sufficient capacity to carry cuttings. In this paper, main relations between bottom hole pressure and gas-liquid injecting rate are analyzed with the underbalanced multiphase flow models. And in order to obtain precise flow pattern and flow pressure, the whole well bore is spatial meshed and iterative method is used. So, a convenient safety window expressed by gas-liquid injecting rate is obtained instead of that by bottom hole pressure. Finally, a foam drilling example from a block in Yemen is presented; the drilling results show that this method is reliable and practical.

  8. Optimization of a fermented soy product formulation with a kefir culture and fiber using a simplex-centroid mixture design.

    PubMed

    Baú, Tahis Regina; Garcia, Sandra; Ida, Elza Iouko

    2013-12-01

    The objective of this work was to optimize a fermented soy product formulation with kefir and soy, oat and wheat fibers and to evaluate the fiber and product characteristics. A simplex-centroid mixture design was used for the optimization. Soymilk, soy, oat and wheat fiber mixtures, sucrose and anti-foaming agent were used for the formulation, followed by thermal treatment, cooling and the addition of flavoring. Fermentation was performed at 25 °C with a kefir culture until a pH of 4.5 was obtained. The products were cooled, homogenized and stored for analysis. From the mathematical models and variables response surface and desirability an optimal fermented product was formulated containing 3% (w/w) soy fiber. Compared with the other formulations, soy fermented product with 3% soy fiber had the best acidity, viscosity, syneresis, firmness and Lactococcus lactis count. PMID:23876105

  9. Culture.

    ERIC Educational Resources Information Center

    1997

    Twelve conference papers on cultural aspects of second language instruction include: "Towards True Multiculturalism: Ideas for Teachers" (Brian McVeigh); Comparing Cultures Through Critical Thinking: Development and Interpretations of Meaningful Observations" (Laurel D. Kamada); "Authority and Individualism in Japan and the USA" (Alisa Woodring);…

  10. Mushroom polysaccharides and lipids synthesized in liquid agitated and static cultures. Part II: study of Volvariella volvacea.

    PubMed

    Diamantopoulou, Panagiota; Papanikolaou, Seraphim; Katsarou, Eleni; Komaitis, Michael; Aggelis, George; Philippoussis, Antonios

    2012-08-01

    Volvariella volvacea strains were studied in relation with their ability to produce biomass, lipids and polysaccharides. Firstly, screening of four strains (AMLR 188, 190, 191 and 192) was performed in agar cultures, where the mycelial growth rate of the strains was measured, and in static liquid cultures, where the production of biomass, the biosynthesis of total cellular lipids and the consumption of glucose were monitored. For all strains, biomass production was significant (13-15 g l(-1)) and total lipid in dry weight (%, w/w) ranged from 3 to 12 %. Afterwards, a detailed kinetic analysis of mycelial biomass, extra- and intra- cellular polysaccharides (EPS, IPS, respectively) as well as lipid production by a V. volvacea selected strain was conducted in submerged static and agitated cultures. Maximum values of 15 g l(-1) biomass, ~1.0 g l(-1) EPS and 5.5 g l(-1) IPS were recorded. Agitation did not have severe impact on biomass, EPS and IPS production, but it increased total lipid in dry weight quantities. EPS, IPS and lipid in dry weight values decreased with time. Glucose was the major cellular carbohydrate detected. Total fatty acid analysis of cellular lipids was performed for all V. volvacea strains and linoleic acid (Δ9,12)C18:2 was predominant. Neutral lipids constituted the major fraction of cellular lipids, but their quantity decreased as fermentation proceeded. Phospholipids were the most saturated lipid fraction. PMID:22639358

  11. Optimization and Scale-up Culture of Human Endometrial Multipotent Mesenchymal Stromal Cells: Potential for Clinical Application

    PubMed Central

    Rajaraman, Gayathri; White, Jacinta; Tan, Ker Sin; Ulrich, Daniela; Rosamilia, Anna; Werkmeister, Jerome

    2013-01-01

    We have previously identified and purified multipotent mesenchymal stromal cell (MSC)-like cells in the highly regenerative endometrial lining of the human uterus (eMSC) as CD140b+CD146+ cells. Due to ease of accessibility with minimal morbidity via biopsy, we are proposing to use eMSC in cell-based therapies; however, culture conditions compliant with Good Manufacturing Practice have not been established for eMSC. The aim of this study was to optimize serum-free and xeno-free culture conditions for expansion of eMSC for potential clinical use. Real-time cell assessment (Xcelligence) and MTS viability assays were used to measure attachment and proliferation of freshly isolated, flow cytometry-sorted CD140b+CD146+ eMSC cultured in several commercially available and in-house serum-free and xeno-free media in combination with five attachment matrices (fibronectin, collagen, gelatin, laminin, and Cell Start-XF®). Comparisons were made with a standard serum-containing medium, DMEM/F-12/10% fetal bovine serum. Under all conditions examined, eMSC attachment and proliferation was greatest using a fibronectin matrix, with Lonza TP-SF® and our in-house DMEM/SF/FGF2/EGF serum-free xeno-product-containing medium similar to serum-containing medium. Hypoxia increased eMSC proliferation in the DMEM/SF/FGF2/EGF serum-free medium. Culture of eMSC for 7 days on a fibronectin matrix in DMEM/SF/FGF2/EGF serum-free media in 5% O2 maintained greater numbers of undifferentiated eMSC expressing CD140b, CD146, and W5C5 compared to culture under similar conditions in Lonza TP-SF medium. However, the percentage of cells expressing typical MSC phenotypic markers, CD29, CD44, CD73, and CD105, were similar for both media. EMSC showed greater expansion in 2D compared to 3D culture on fibronectin-coated microbeads using the optimized DMEM/SF/FGF2/EGF medium in 5% O2. In the optimized 2D culture conditions, eMSC retained CFU activity, multipotency, and MSC surface phenotype, representing the

  12. Optimization and scale-up culture of human endometrial multipotent mesenchymal stromal cells: potential for clinical application.

    PubMed

    Rajaraman, Gayathri; White, Jacinta; Tan, Ker Sin; Ulrich, Daniela; Rosamilia, Anna; Werkmeister, Jerome; Gargett, Caroline E

    2013-01-01

    We have previously identified and purified multipotent mesenchymal stromal cell (MSC)-like cells in the highly regenerative endometrial lining of the human uterus (eMSC) as CD140b⁺CD146⁺ cells. Due to ease of accessibility with minimal morbidity via biopsy, we are proposing to use eMSC in cell-based therapies; however, culture conditions compliant with Good Manufacturing Practice have not been established for eMSC. The aim of this study was to optimize serum-free and xeno-free culture conditions for expansion of eMSC for potential clinical use. Real-time cell assessment (Xcelligence) and MTS viability assays were used to measure attachment and proliferation of freshly isolated, flow cytometry-sorted CD140b⁺CD146⁺ eMSC cultured in several commercially available and in-house serum-free and xeno-free media in combination with five attachment matrices (fibronectin, collagen, gelatin, laminin, and Cell Start-XF®). Comparisons were made with a standard serum-containing medium, DMEM/F-12/10% fetal bovine serum. Under all conditions examined, eMSC attachment and proliferation was greatest using a fibronectin matrix, with Lonza TP-SF® and our in-house DMEM/SF/FGF2/EGF serum-free xeno-product-containing medium similar to serum-containing medium. Hypoxia increased eMSC proliferation in the DMEM/SF/FGF2/EGF serum-free medium. Culture of eMSC for 7 days on a fibronectin matrix in DMEM/SF/FGF2/EGF serum-free media in 5% O₂ maintained greater numbers of undifferentiated eMSC expressing CD140b, CD146, and W5C5 compared to culture under similar conditions in Lonza TP-SF medium. However, the percentage of cells expressing typical MSC phenotypic markers, CD29, CD44, CD73, and CD105, were similar for both media. EMSC showed greater expansion in 2D compared to 3D culture on fibronectin-coated microbeads using the optimized DMEM/SF/FGF2/EGF medium in 5% O₂. In the optimized 2D culture conditions, eMSC retained CFU activity, multipotency, and MSC surface phenotype

  13. Adolescent Autonomy-Relatedness and the Family in Cultural Context: What Is Optimal?

    ERIC Educational Resources Information Center

    Kagitcibasi, Cigdem

    2013-01-01

    This review examines self-family-culture links from a cultural and global perspective utilizing Kagitcibasi's Family Change Theory and Self Theory as general frameworks. These theories have the "autonomous-related self" at their point of intersection. Autonomy and relatedness dynamics is the key to understanding the self, and family…

  14. Using Peat Pellets in Liquid Media to Root Sunflower Tissue Culture Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Traditional plant breeding is often limited by the genetic diversity within a species. The use of biotechnology allows introducing into a plant, specific traits that come from the same or another plant species. In this paper, we focus on tissue culture of sunflower (Helianthus annus L., Asteraceae...

  15. Variation in Sodium Chloride Resistance of Cenococcum geophilum and Suillus granulatus Isolates in Liquid Culture

    PubMed Central

    Obase, Keisuke; Lee, Sun Keun; Lee, Sang Yong; Chun, Kun Woo

    2010-01-01

    We studied the resistance of Cenococcum geophilum and Suillus granulatus isolates to NaCl during growth under axenic culture conditions. C. geophilum isolates displayed variations in NaCl resistance; mycelial growth of most isolates was inhibited above 200mM. All isolates of S. granulatus were tolerant to high NaCl content. PMID:23956661

  16. Quantitation of megakaryocytopoiesis in liquid culture by enzymatic determination of acetylcholinesterase.

    PubMed

    Burstein, S A; Boyd, C N; Dale, G L

    1985-01-01

    A method has been developed to quantitate megakaryocytopoiesis in culture by measuring acetylcholinesterase synthesized in vitro. Murine marrow cells, treated with diisopropylfluorosphosphate (DFP) to inactivate initial acetylcholinesterase (AchE) present in megakaryocytes and contaminating blood, were set up in Iscove's medium supplemented with 15% DFP-treated horse serum +/- pokeweed mitogen-stimulated spleen cell conditioned medium (PWM-SCM) in 96-well microplates. Following the culture period, Triton X-100, dithiobisnitrobenzoic acid (DTNB), and acetylthiocholine iodide were added to each well. AchE synthesized in culture cleaved acetylthiocholine to thiocholine, which stochiometrically reduced the colorless indicator DTNB to a highly colored product. Thirty minutes following the addition of substrate, the plates were assayed for activity with a vertical recording photometer. When platelets, freshly prepared bone marrow cells, or cultured marrow were assayed by this method, a linear relationship was observed between optical density (OD) and the number of cells assayed. Moreover, a linear relationship between the number of AchE-positive megakaryocytes determined histochemically and AchE activity determined spectrophotometrically was observed. Red cells exhibited no activity. Inhibitor studies demonstrated that the activity measured was true AchE. Separation of marrow by density gradient centrifugation showed that the megakaryocyte enriched fraction contained all the AchE while the megakaryocyte depleted fraction contained none. From the data we conclude that this rapid, semiautomated method quantitates megakaryocytic AchE synthesis in culture, and that this method will be a useful assay system for the detection of factors that influence megakaryocytopoiesis. PMID:3965482

  17. Critical evaluation and optimization of the thermodynamic properties of liquid tin solutions

    NASA Astrophysics Data System (ADS)

    Heuzey, Marie-Claude; Pelton, Arthur D.

    1996-10-01

    Thermodynamic and phase equilibrium data for the following 18 elements in molten Sn were collected and critically evaluated: Al, Ca, Ce, Co, Cr, Cu, Fe, H, Mg, Mo, Na, Ni, O, P, S, Se, Si, and Ti. Binary and ternary data were optimized to give polynomial expressions for the excess Gibbs energies as functions of temperature and composition. For some solutes, the optimized expressions are valid over the entire composition range 0 ≤ XSn ≤ 1. In other cases, the expressions apply to Snrich solutions. Solute-solute interaction terms were estimated where data were not available. The optimized Gibbs energy expressions are also presented in the form of interaction parameters, and the equivalence between the polynomial and interaction parameter formalisms is discussed. Through the Kohler equation, or the modified interaction parameter formalism, the thermodynamic properties of the multicomponent solution of 18 elements in Sn can be calculated. The database is suitable for computer storage and manipulation.

  18. Biomaterials in co-culture systems: towards optimizing tissue integration and cell signaling within scaffolds.

    PubMed

    Battiston, Kyle G; Cheung, Jane W C; Jain, Devika; Santerre, J Paul

    2014-05-01

    Most natural tissues consist of multi-cellular systems made up of two or more cell types. However, some of these tissues may not regenerate themselves following tissue injury or disease without some form of intervention, such as from the use of tissue engineered constructs. Recent studies have increasingly used co-cultures in tissue engineering applications as these systems better model the natural tissues, both physically and biologically. This review aims to identify the challenges of using co-culture systems and to highlight different approaches with respect to the use of biomaterials in the use of such systems. The application of co-culture systems to stimulate a desired biological response and examples of studies within particular tissue engineering disciplines are summarized. A description of different analytical co-culture systems is also discussed and the role of biomaterials in the future of co-culture research are elaborated on. Understanding the complex cell-cell and cell-biomaterial interactions involved in co-culture systems will ultimately lead the field towards biomaterial concepts and designs with specific biochemical, electrical, and mechanical characteristics that are tailored towards the needs of distinct co-culture systems. PMID:24602569

  19. Lab on a chip-based hepatic sinusoidal system simulator for optimal primary hepatocyte culture.

    PubMed

    Choi, Yoon Young; Kim, Jaehyung; Lee, Sang-Hoon; Kim, Dong-Sik

    2016-08-01

    Primary hepatocyte cultures have been used in studies on liver disease, physiology, and pharmacology. While they are an important tool for in vitro liver studies, maintaining liver-specific characteristics of hepatocytes in vitro is difficult, as these cells rapidly lose their unique characteristics and functions. Portal flow is an important condition to preserve primary hepatocyte functions and liver regeneration in vivo. We have developed a microfluidic chip that does not require bulky peripheral devices or an external power source to investigate the relationship between hepatocyte functional maintenance and flow rates. In our culture system, two types of microfluidic devices were used as scaffolds: a monolayer- and a concave chamber-based device. Under flow conditions, our chips improved albumin and urea secretion rates after 13 days compared to that of the static chips. Reverse transcription polymerase chain reaction demonstrated that hepatocyte-specific gene expression was significantly higher at 13 days under flow conditions than when using static chips. For both two-dimensional and three-dimensional culture on the chips, flow resulted in the best performance of the hepatocyte culture in vitro. We demonstrated that flow improves the viability and efficiency of long-term culture of primary hepatocytes and plays a key role in hepatocyte function. These results suggest that this flow system has the potential for long-term hepatocyte cultures as well as a technique for three-dimensional culture. PMID:27334878

  20. Multivariable optimization of the micellar system for the ionic liquid-modified MEKC separation of phenolic acids.

    PubMed

    Liu, Lei; Wu, Bin; Liu, Ke; Li, Chao-Ran; Zhou, Xu; Li, Ping; Yang, Hua

    2016-07-15

    An ionic liquid (IL)-modified micellar electrokinetic chromatography (MEKC) method was proposed for the separation and determination of eight phenolic acids. In order to increase separation efficiency and selectivity, the micelle system consisting of aqueous mixtures of ILs, Tween 20 and borate was optimized using a D-optimal design. A 16-run experimental plan was carried out. The results indicated that the addition of ILs in background electrolyte could significantly alter the electrophoretic behavior and improve the resolution of target analytes. By evaluating the electropherograms obtained, a satisfactory separation condition for all analytes was achieved in 10min with optimized buffer composed of 0.70% (w/w) 1-butyl-3-methylimidazolium tetrafluoroborate, 8.1% (w/w) polyoxyethylene sorbitan monolaurate (Tween 20) and 10mM sodium borate at pH 9.2. Under these conditions, all calibration curves showed good linearity (r(2)>0.9969), and accuracy (recoveries ranging from 94.71 to 106.85%). Finally, the proposed method was successfully applied to determine the phenolic acids in a Chinese medicine compound, compound danshen dripping pills. PMID:27136281

  1. Shape optimization of a sheet swimming over a thin liquid layer

    SciTech Connect

    Wilkening, J.; Hosoi, A.E.

    2008-12-10

    Motivated by the propulsion mechanisms adopted by gastropods, annelids and other invertebrates, we consider shape optimization of a flexible sheet that moves by propagating deformation waves along its body. The self-propelled sheet is separated from a rigid substrate by a thin layer of viscous Newtonian fluid. We use a lubrication approximation to model the dynamics and derive the relevant Euler-Lagrange equations to simultaneously optimize swimming speed, efficiency and fluid loss. We find that as the parameters controlling these quantities approach critical values, the optimal solutions become singular in a self-similar fashion and sometimes leave the realm of validity of the lubrication model. We explore these singular limits by computing higher order corrections to the zeroth order theory and find that wave profiles that develop cusp-like singularities are appropriately penalized, yielding non-singular optimal solutions. These corrections are themselves validated by comparison with finite element solutions of the full Stokes equations, and, to the extent possible, using recent rigorous a-priori error bounds.

  2. Shape optimization of a sheet swimming over a thin liquid layer

    NASA Astrophysics Data System (ADS)

    Wilkening, Jon; Hosoi, A. E.

    Motivated by the propulsion mechanisms adopted by gastropods, annelids and other invertebrates, we consider shape optimization of a flexible sheet that moves by propagating deformation waves along its body. The self-propelled sheet is separated from a rigid substrate by a thin layer of viscous Newtonian fluid. We use a lubrication approximation to model the dynamics and derive the relevant Euler-Lagrange equations to simultaneously optimize swimming speed, efficiency and fluid loss. We find that as the parameters controlling these quantities approach critical values, the optimal solutions become singular in a self-similar fashion and sometimes leave the realm of validity of the lubrication model. We explore these singular limits by computing higher-order corrections to the zeroth order theory and find that wave profiles that develop cusp-like singularities are appropriately penalized, yielding non-singular optimal solutions. These corrections are themselves validated by comparison with finite element solutions of the full Stokes equations, and, to the extent possible, using recent rigorous a priori error bounds.

  3. Single Cell Protein Production by Saccharomyces cerevisiae Using an Optimized Culture Medium Composition in a Batch Submerged Bioprocess.

    PubMed

    Hezarjaribi, Mehrnoosh; Ardestani, Fatemeh; Ghorbani, Hamid Reza

    2016-08-01

    Saccharomyces cerevisiae PTCC5269 growth was evaluated to specify an optimum culture medium to reach the highest protein production. Experiment design was conducted using a fraction of the full factorial methodology, and signal to noise ratio was used for results analysis. Maximum cell of 8.84 log (CFU/mL) was resulted using optimized culture composed of 0.3, 0.15, 1, and 50 g L(-1) of ammonium sulfate, iron sulfate, glycine, and glucose, respectively at 300 rpm and 35 °C. Glycine concentration (39.32 % contribution) and glucose concentration (36.15 % contribution) were determined as the most effective factors on the biomass production, while Saccharomyces cerevisiae growth had showed the least dependence on ammonium sulfate (5.2 % contribution) and iron sulfate (19.28 % contribution). The most interaction was diagnosed between ammonium sulfate and iron sulfate concentrations with interaction severity index of 50.71 %, while the less one recorded for glycine and glucose concentration was equal to 8.12 %. An acceptable consistency of 84.26 % was obtained between optimum theoretical cell numbers determined by software of 8.91 log (CFU/mL), and experimentally measured one at optimal condition confirms the suitability of the applied method. High protein content of 44.6 % using optimum culture suggests that Saccharomyces cerevisiae is a good commercial case for single cell protein production. PMID:27090426

  4. Improving CO2 fixation efficiency by optimizing Chlorella PY-ZU1 culture conditions in sequential bioreactors.

    PubMed

    Cheng, Jun; Huang, Yun; Feng, Jia; Sun, Jing; Zhou, Junhu; Cen, Kefa

    2013-09-01

    To fix CO2 emissions efficiently from flue gas of coal-fired power plants, the culture medium, light intensity and bioreactors were comprehensively optimized in the process of CO2 fixation by Chlorella PY-ZU1. To make up for relative insufficiency of nutrients (except for the carbon source) resulting from continuous bubbling of 15% CO2, three chemicals were added into the culture to optimize the molar ratios of nitrogen to carbon, phosphorus to carbon, and magnesium to carbon in culture from 0.17 to 0.69, from 0.093 to 0.096, and from 0.018 to 0.030, respectively. Such adjustments led to a 1.25-fold increase in biomass (from 2.41 to 5.42 g L(-1)). By enhancing light intensity from 4500 to 6000 lux, the peak growth rate of Chlorella PY-ZU1 increased by 99% and reached to 0.95 g L(-1) day(-1). Use of a multi-stage sequential bioreactor notably improved the peak CO2 fixation efficiency to 85.6%. PMID:23891832

  5. Optimization of solid-phase extraction and liquid chromatography-tandem mass spectrometry for the determination of domoic acid in seawater, phytoplankton, and mammalian fluids and tissues.

    PubMed

    Wang, Zhihong; Maucher-Fuquay, Jennifer; Fire, Spencer E; Mikulski, Christina M; Haynes, Bennie; Doucette, Gregory J; Ramsdell, John S

    2012-02-17

    We previously reported a solid-phase extraction (SPE) method for determination of the neurotoxin domoic acid (DA) in both seawater and phytoplankton by liquid chromatography-tandem mass spectrometry (LC-MS/MS) with the purpose of sample desalting without DA pre-concentration. In the present study, we optimized the SPE procedure with seawater and phytoplankton samples directly acidified with aqueous formic acid without addition of organic solvents, which allowed sample desalting and also 20-fold pre-concentration of DA in seawater and phytoplankton samples. In order to reduce MS contamination, a diverter valve was installed between LC and MS to send the LC eluant to waste, except for the 6-min elution window bracketing the DA retention time, which was sent to the MS. Reduction of the MS turbo gas temperature also helped to maintain the long-term stability of MS signal. Recoveries exceeded 90% for the DA-negative seawater and the DA-positive cultured phytoplankton samples spiked with DA. The SPE method for DA extraction and sample clean-up in seawater was extended to mammalian fluids and tissues with modification in order to accommodate the fluid samples with limited available volumes and the tissue extracts in aqueous methanol. Recoveries of DA from DA-exposed laboratory mammalian samples (amniotic fluid, cerebrospinal fluid, plasma, placenta, and brain) were above 85%. Recoveries of DA from samples (urine, feces, intestinal contents, and gastric contents) collected from field stranded marine mammals showed large variations and were affected by the sample status. The optimized SPE-LC-MS method allows determination of DA at trace levels (low pg mL(-1)) in seawater with/without the presence of phytoplankton. The application of SPE clean-up to mammalian fluids and tissue extracts greatly reduced the LC column degradation and MS contamination, which allowed routine screening of marine mammalian samples for confirmation of DA exposure and determination of fluid and

  6. Quantitative detection of human spermatogonia for optimization of spermatogonial stem cell culture

    PubMed Central

    Zheng, Y.; Thomas, A.; Schmidt, C.M.; Dann, C.T.

    2014-01-01

    STUDY QUESTION Can human spermatogonia be detected in long-term primary testicular cell cultures using validated, germ cell-specific markers of spermatogonia? SUMMARY ANSWER Germ cell-specific markers of spermatogonia/spermatogonial stem cells (SSCs) are detected in early (1–2 weeks) but not late (> 6 weeks) primary testicular cell cultures; somatic cell markers are detected in late primary testicular cell cultures. WHAT IS KNOWN ALREADY The development of conditions for human SSC culture is critically dependent on the ability to define cell types unequivocally and to quantify spermatogonia/SSCs. Growth by somatic cells presents a major challenge in the establishment of SSC cultures and therefore markers that define spermatogonia/SSCs, but are not also expressed by testicular somatic cells, are essential for accurate characterization of SSC cultures. STUDY DESIGN, SIZE, DURATION Testicular tissue from eight organ donors with normal spermatogenesis was used for assay validation and establishing primary testicular cell cultures. PARTICIPANTS/MATERIALS, SETTING, METHODS Immunofluorescence analysis of normal human testicular tissue was used to validate antibodies (UTF1, SALL4, DAZL and VIM) and then the antibodies were used to demonstrate that primary testicular cells cultured in vitro for 1–2 weeks were composed of somatic cells and rare germ cells. Primary testicular cell cultures were further characterized by comparing to testicular somatic cell cultures using quantitative reverse transcriptase PCR (UTF1, FGFR3, ZBTB16, GPR125, DAZL, GATA4 and VIM) and flow cytometry (CD9 and SSEA4). MAIN RESULTS AND THE ROLE OF CHANCE UTF1, FGFR3, DAZL and ZBTB16 qRT–PCR and SSEA4 flow cytometry were validated for the sensitive, quantitative and specific detection of germ cells. In contrast, GPR125 mRNA and CD9 were found to be not specific to germ cells because they were also expressed in testicular somatic cell cultures. While the germ cell-specific markers were detected in

  7. The Protective Effect of Agaricus blazei Murrill, Submerged Culture Using the Optimized Medium Composition, on Alcohol-Induced Liver Injury

    PubMed Central

    Wang, Hang; Li, Gang; Zhang, Wenyu; Han, Chunchao; Xu, Xin; Li, Yong-Ping

    2014-01-01

    Agaricus blazei Murrill (ABM), an edible mushroom native to Brazil, is widely used for nonprescript and medicinal purposes. Alcohol liver disease (ALD) is considered as a leading cause for a liver injury in modern dietary life, which can be developed by a prolonged or large intake of alcohol. In this study, the medium composition of ABM was optimized using response surface methodology for maximum mycelial biomass and extracellular polysaccharide (EPS) production. The model predicts to gain a maximal mycelial biomass and extracellular polysaccharide at 1.047 g/100 mL, and 0.367 g/100 mL, respectively, when the potato is 29.88 g/100 mL, the glucose is 1.01 g/100 mL, and the bran is 1.02 g/100 mL. The verified experiments showed that the model was significantly consistent with the model prediction and that the trends of mycelial biomass and extracellular polysaccharide were predicted by artificial neural network. After that, the optimized medium was used for the submerged culture of ABM. Then, alcohol-induced liver injury in mice model was used to examine the protective effect of ABM cultured using the optimized medium on the liver. And the hepatic histopathological observations showed that ABM had a relatively significant role in mice model, which had alcoholic liver damage. PMID:25114908

  8. Optimization of culturing condition and medium composition for the production of alginate lyase by a marine Vibrio sp. YKW-34

    NASA Astrophysics Data System (ADS)

    Fu, Xiaoting; Lin, Hong; Kim, Sang Moo

    2008-02-01

    Carbohydrases secreted by marine Vibrio sp. YKW-34 with strong Laminaria cell wall degrading ability were screened, and among them alginate lyase was found to be dominant. The effects of medium composition and culturing condition on the production of alginate lyase by marine Vibrio sp. YKW-34 in flask were investigated in this study. In the culture medium of marine broth, no alginate lyase was produced. The activity of the alginate lyase, after being induced, reached 5 UmL-1. The best inoculum volume and inoculum age were 10% and 12 h, respectively. The optimal temperature for alginate lyase production was 25°C. The fermentation medium was composed of 0.5% of Laminaria powder and 0.2% of KNO3 with an initial acidity of pH 8.0. Alginate could induce alginate lyase production but not as efficiently as Laminaria powder did. The addition of fucoidan, cellulose and glucose had negative effect on the alginate lyase production. Other kinds of nitrogen sources, such as yeast extract, beef extract and peptone, had positive effect on the growth of the microorganism and negative effect on alginate lyase production. In addition, the time course of alginate lyase production under the optimized condition was described. The optimal harvest time was 48 h.

  9. Layered Plant-Growth Media for Optimizing Gaseous, Liquid and Nutrient Requirements: Modeling, Design and Monitoring

    NASA Astrophysics Data System (ADS)

    Heinse, R.; Jones, S. B.; Bingham, G.; Bugbee, B.

    2006-12-01

    Rigorous management of restricted root zones utilizing coarse-textured porous media greatly benefits from optimizing the gas-water balance within plant-growth media. Geophysical techniques can help to quantify root- zone parameters like water content, air-filled porosity, temperature and nutrient concentration to better address the root systems performance. The efficiency of plant growth amid high root densities and limited volumes is critically linked to maintaining a favorable water content/air-filled porosity balance while considering adequate fluxes to replenish water at decreasing hydraulic conductivities during uptake. Volumes adjacent to roots also need to be optimized to provide adequate nutrients throughout the plant's life cycle while avoiding excessive salt concentrations. Our objectives were to (1) design and model an optimized root zone system using optimized porous media layers, (2) verify our design by monitoring the water content distribution and tracking nutrient release and transport, and (3) mimic water and nutrient uptake using plants or wicks to draw water from the root system. We developed a unique root-zone system using layered Ottawa sands promoting vertically uniform water contents and air-filled porosities. Watering was achieved by maintaining a shallow saturated layer at the bottom of the column and allowing capillarity to draw water upward, where coarser particle sizes formed the bottom layers with finer particles sizes forming the layers above. The depth of each layer was designed to optimize water content based on measurements and modeling of the wetting water retention curves. Layer boundaries were chosen to retain saturation between 50 and 85 percent. The saturation distribution was verified by dual-probe heat-pulse water-content sensors. The nutrient experiment involved embedding slow release fertilizer in the porous media in order to detect variations in electrical resistivity versus time during the release, diffusion and uptake of

  10. Aerosol generation and characterization of multi-walled carbon nanotubes exposed to cells cultured at the air-liquid interface.

    PubMed

    Polk, William W; Sharma, Monita; Sayes, Christie M; Hotchkiss, Jon A; Clippinger, Amy J

    2016-01-01

    Aerosol generation and characterization are critical components in the assessment of the inhalation hazards of engineered nanomaterials (NMs). An extensive review was conducted on aerosol generation and exposure apparatus as part of an international expert workshop convened to discuss the design of an in vitro testing strategy to assess pulmonary toxicity following exposure to aerosolized particles. More specifically, this workshop focused on the design of an in vitro method to predict the development of pulmonary fibrosis in humans following exposure to multi-walled carbon nanotubes (MWCNTs). Aerosol generators, for dry or liquid particle suspension aerosolization, and exposure chambers, including both commercially available systems and those developed by independent researchers, were evaluated. Additionally, characterization methods that can be used and the time points at which characterization can be conducted in order to interpret in vitro exposure results were assessed. Summarized below is the information presented and discussed regarding the relevance of various aerosol generation and characterization techniques specific to aerosolized MWCNTs exposed to cells cultured at the air-liquid interface (ALI). The generation of MWCNT aerosols relevant to human exposures and their characterization throughout exposure in an ALI system is critical for extrapolation of in vitro results to toxicological outcomes in humans. PMID:27108236

  11. Optimize the Separation of Fluorinated Amphiles Using High-Performance Liquid Chromatography.

    PubMed

    Xia, Guiquan; Li, Yuqi; Li, Yu; Li, Xuefei; Zhang, Hua; Yu, Yihua Bruce; Jiang, Zhong-Xing

    2014-09-01

    Using the set of fluorinated amphiles that contain the same fluorocarbon moiety but differ in their fluorine content percentage F% (25-45%), the optimal condition for a F%-based separation of these analytes using reverse-phase chromatography was explored. It is found that optimal separation can be achieved by pairing a regular reverse-phase column (such as C8) with a fluorinated eluent (such as trifluoroethanol). Separation is further improved at higher chromatographic temperature with baseline separation achieved at 45°C. This result indicates that the separation of fluorocarbon-tagged molecules can be based on the fluorine content percentage rather than the number of fluorine atoms. PMID:25147409

  12. Optimization of process parameters for pilot-scale liquid-state bioconversion of sewage sludge by mixed fungal inoculation.

    PubMed

    Rahman, Roshanida A; Molla, Abul Hossain; Barghash, Hind F A; Fakhru'l-Razi, Ahmadun

    2016-01-01

    Liquid-state bioconversion (LSB) technique has great potential for application in bioremediation of sewage sludge. The purpose of this study is to determine the optimum level of LSB process of sewage sludge treatment by mixed fungal (Aspergillus niger and Penicillium corylophilum) inoculation in a pilot-scale bioreactor. The optimization of process factors was investigated using response surface methodology based on Box-Behnken design considering hydraulic retention time (HRT) and substrate influent concentration (S0) on nine responses for optimizing and fitted to the regression model. The optimum region was successfully depicted by optimized conditions, which was identified as the best fit for convenient multiple responses. The results from process verification were in close agreement with those obtained through predictions. Considering five runs of different conditions of HRT (low, medium and high 3.62, 6.13 and 8.27 days, respectively) with the range of S0 value (the highest 12.56 and the lowest 7.85 g L(-1)), it was monitored as the lower HRT was considered as the best option because it required minimum days of treatment than the others with influent concentration around 10 g L(-1). Therefore, optimum process factors of 3.62 days for HRT and 10.12 g L(-1) for S0 were identified as the best fit for LSB process and its performance was deviated by less than 5% in most of the cases compared to the predicted values. The recorded optimized results address a dynamic development in commercial-scale biological treatment of wastewater for safe and environment-friendly disposal in near future. PMID:26111620

  13. Improved detection of multiple environmental antibiotics through an optimized sample extraction strategy in liquid chromatography-mass spectrometry analysis.

    PubMed

    Yi, Xinzhu; Bayen, Stéphane; Kelly, Barry C; Li, Xu; Zhou, Zhi

    2015-12-01

    A solid-phase extraction/liquid chromatography/electrospray ionization/multi-stage mass spectrometry (SPE-LC-ESI-MS/MS) method was optimized in this study for sensitive and simultaneous detection of multiple antibiotics in urban surface waters and soils. Among the seven classes of tested antibiotics, extraction efficiencies of macrolides, lincosamide, chloramphenicol, and polyether antibiotics were significantly improved under optimized sample extraction pH. Instead of only using acidic extraction in many existing studies, the results indicated that antibiotics with low pK a values (<7) were extracted more efficiently under acidic conditions and antibiotics with high pK a values (>7) were extracted more efficiently under neutral conditions. The effects of pH were more obvious on polar compounds than those on non-polar compounds. Optimization of extraction pH resulted in significantly improved sample recovery and better detection limits. Compared with reported values in the literature, the average reduction of minimal detection limits obtained in this study was 87.6% in surface waters (0.06-2.28 ng/L) and 67.1% in soils (0.01-18.16 ng/g dry wt). This method was subsequently applied to detect antibiotics in environmental samples in a heavily populated urban city, and macrolides, sulfonamides, and lincomycin were frequently detected. Antibiotics with highest detected concentrations were sulfamethazine (82.5 ng/L) in surface waters and erythromycin (6.6 ng/g dry wt) in soils. The optimized sample extraction strategy can be used to improve the detection of a variety of antibiotics in environmental surface waters and soils. PMID:26449847

  14. Liquid Crystal Formulation and Optimization of Anti-Microbial Polyherbal Ointment.

    PubMed

    Choi, Jae-Hwan; Cho, Cheong-Weon; Kim, Jae-Hun; Park, Soo Hyun; Chang, Suhwan; Yu, Young-Beob

    2015-08-01

    We examined the formulation of liquid crystalline systems (LCS) including 5% TSE extracts and analyzed marker substances of the 5% TSE ointment by HPLC-DAD. The TSE extracts were evaluated for its anti-bacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. We found the extracts showed predominant activity against selected bacterial species. The result of the polarized light microscopy, differential scanning calorimetry (DSC), small-angle X-ray diffraction (SXRD), and rheology analysis indicated the presence of LCS structures with lamellar arrangement. DSC of the TSE formulas showed higher transition peak temperature at 60 °c for the phase. SXRD observation of the LCS formulas showed that the structures of the LCS formulas were in the lamellar liquid crystalline phase. Further, to ensure the quality and purity of the TSE ointment, HPLC analysis was performed by measuring the. content of 2 marker substances. The contents of marker substances in the TSE ointment were calculated as 0.078% (paeoniflorin) and 0.031% (glycyrrhizin), respectively. Taken altogether, our study report successful generation of LCS made of 5% TSE ointment and its antimicrobial activity. Moreover, the quantitation of the two active components enable a proper quality control of the TSE extracts, that is essential for the development of ointment products. PMID:26369133

  15. Optimizing immobilized enzyme performance in cell-free environments to produce liquid fuels.

    SciTech Connect

    Kumar, Sanat

    2015-02-05

    The overall goal of this project was to optimize enzyme performance for the production of bio-diesel fuel. Enzyme immobilization has attracted much attention as a means to increase productivity. Mesorporous silica materials have been known to be best suited for immobilizing enzymes. A major challenge is to ensure that the enzymatic activity is retained after immobilization. Two major factors which drive enzymatic deactivation are protein-surface and inter-protein interactions. Previously, we studied protein stability inside pores and how to optimize protein-surface interactions to minimize protein denaturation. In this work we studied eh effect of surface curvature and chemistry on inter-protein interactions. Our goal was to find suitable immobilization supports which minimize these inter-protein interactions. Our studies carried out in the frame work of Hydrophobic-Polar (HP) model showed that enzymes immobilized inside hydrophobic pores of optimal sizes are best suited to minimize these inter-protein interactions. Besides, this study is also of biological importance to understand the role of chaperonins in protein disaggregation. Both of these aspects profited immensely with collaborations with our experimental colleague, Prof. Georges Belfort (RPI), who performed the experimental analog of our theoretical works.

  16. Assay for inorganic pyrophosphate in chondrocyte culture using anion-exchange high-performance liquid chromatography and radioactive orthophosphate labeling

    SciTech Connect

    Prins, A.P.; Kiljan, E.; v.d. Stadt, R.J.; v.d. Korst, J.K.

    1986-02-01

    A method is described for determination of inorganic pyrophosphate (PPi) in cell culture medium and in rabbit articular chondrocytes grown in the presence of radioactive orthophosphate (/sup 32/Pi). Intra- and extracellular /sup 32/PPi formed was measured using high-performance liquid chromatographic (HPLC) separation of the PPi from orthophosphate (Pi) and other phosphate-containing compounds. The chromatographic separation on a weak anion-exchange column is based on the extent to which various phosphate compounds form complexes with Mg2+ at low pH and the rate at which such formation occurs. These complexes are eluted more readily than the uncomplexed compounds. Best results were obtained using a simultaneous gradient of Mg2+ ions and ionic strength. In this case separation of small amounts of PPi from a large excess of Pi was possible without prior removal of Pi or extraction of the PPi fraction. The assay is also useful for measurement of inorganic pyrophosphatase activity. The sensitivity of the assay depends on the specific activity of the added /sup 32/Pi and on the culture conditions, but is comparable with the most sensitive of the enzymatic assays. Sample preparation, particularly deproteinization, proved to be of importance. The losses of PPi which occur during procedures of this sort due to hydrolysis and coprecipitation were quantitated.

  17. Speciation of vanadium in oilsand coke and bacterial culture by high performance liquid chromatography inductively coupled plasma mass spectrometry.

    PubMed

    Li, X Sherry; Glasauer, Susan; Le, X Chris

    2007-10-17

    A simple and sensitive method for the speciation of vanadium(III), (IV), and (V) was developed by using high performance liquid chromatography and inductively coupled plasma mass spectrometry (HPLC-ICPMS). The EDTA-complexed vanadium species were separated on a strong anion exchange column with an eluent containing 2 mM EDTA, 3% acetonitrile, and 80 mM ammonium bicarbonate at pH 6. Each analysis was complete in 5 min. The detection limits were 0.6, 0.7 and 1.0 microg L(-1) for V(III), V(IV), and V(V), respectively. The method was applied to coke pore water samples from an oilsand processing/upgrading site in Fort McMurray, Alberta, Canada and to Shewanella putrefaciens CN32 bacterial cultures incubated with V(V). In the coke pore water samples, V(IV) and V(V) were found to be the major species. For the first time, V(III) was detected in the bacterial cultures incubated with V(V). PMID:17936102

  18. Optimization of porcine urothelial cell cultures: Best practices, recommendations, and threats.

    PubMed

    Pokrywczynska, Marta; Czapiewska, Monika; Jundzill, Arkadiusz; Bodnar, Magdalena; Balcerczyk, Daria; Kloskowski, Tomasz; Nowacki, Maciej; Marszalek, Andrzej; Drewa, Tomasz

    2016-07-01

    Many experimental approaches have been conducted in order to isolate urothelial cells from bladder tissue biopsies, but each method described has utilized different protocols and sources of bladder tissue. In this study, we compared the different methods of urothelial cell isolation available in literature together with standardized methods in order to obtain more unified results. Five methods for primary porcine urothelial culture establishment were compared: tissue explants and four enzymatic methods utilizing collagenase II, dispase II, combination of dispase II and trypsin, and trypsin alone. The average number of isolated cells, cell morphology, success of established culture, average number of cells from the first passage, expression of p63 and pancytokeratin and the characterization of urothelial cell growth, and aging were analyzed during the in vitro culture. The method utilizing dispase II was the most efficient and reproducible method for the isolation and culture of porcine urothelial cells when compared to the other tested methods. Urothelial cells obtained by this method grew considerably well and the cultures were established with high efficiency, which enabled us in obtaining a large quantity of cells with normal morphology. Contamination with fibroblasts in this method was the lowest. The utilization of a proper method for urothelial cell isolation is a critical step in the urinary tract regeneration when using tissue engineering techniques. In summary, this study demonstrated that by utilizing the described method with dispase II, a suitable number of cells was achieved, proving the method useful for tissue regeneration. PMID:27079486

  19. Optimization and characterization of a new lipopeptide biosurfactant produced by marine Brevibacterium aureum MSA13 in solid state culture.

    PubMed

    Seghal Kiran, G; Anto Thomas, T; Selvin, Joseph; Sabarathnam, B; Lipton, A P

    2010-04-01

    The biosurfactant production of a marine actinobacterium Brevibacterium aureum MSA13 was optimized using industrial and agro-industrial solid waste residues as substrates in solid state culture (SSC). Based on the optimization experiments, the biosurfactant production by MSA13 was increased to threefold over the original isolate under SSC conditions with pre-treated molasses as substrate and olive oil, acrylamide, FeCl(3) and inoculums size as critical control factors. The strain B. aureum MSA13 produced a new lipopeptide biosurfactant with a hydrophobic moiety of octadecanoic acid methyl ester and a peptide part predicted as a short sequence of four amino acids including pro-leu-gly-gly. The biosurfactant produced by the marine actinobacterium MSA13 can be used for the microbially enhanced oil recovery processes in the marine environments. PMID:19959354

  20. Mycobacterial DNA extraction for whole-genome sequencing from early positive liquid (MGIT) cultures.

    PubMed

    Votintseva, Antonina A; Pankhurst, Louise J; Anson, Luke W; Morgan, Marcus R; Gascoyne-Binzi, Deborah; Walker, Timothy M; Quan, T Phuong; Wyllie, David H; Del Ojo Elias, Carlos; Wilcox, Mark; Walker, A Sarah; Peto, Tim E A; Crook, Derrick W

    2015-04-01

    We developed a low-cost and reliable method of DNA extraction from as little as 1 ml of early positive mycobacterial growth indicator tube (MGIT) cultures that is suitable for whole-genome sequencing to identify mycobacterial species and predict antibiotic resistance in clinical samples. The DNA extraction method is based on ethanol precipitation supplemented by pretreatment steps with a MolYsis kit or saline wash for the removal of human DNA and a final DNA cleanup step with solid-phase reversible immobilization beads. The protocol yielded ≥0.2 ng/μl of DNA for 90% (MolYsis kit) and 83% (saline wash) of positive MGIT cultures. A total of 144 (94%) of the 154 samples sequenced on the MiSeq platform (Illumina) achieved the target of 1 million reads, with <5% of reads derived from human or nasopharyngeal flora for 88% and 91% of samples, respectively. A total of 59 (98%) of 60 samples that were identified by the national mycobacterial reference laboratory (NMRL) as Mycobacterium tuberculosis were successfully mapped to the H37Rv reference, with >90% coverage achieved. The DNA extraction protocol, therefore, will facilitate fast and accurate identification of mycobacterial species and resistance using a range of bioinformatics tools. PMID:25631807

  1. Optimization of protoporphyrin IX skin delivery for topical photodynamic therapy: Nanodispersions of liquid-crystalline phase as nanocarriers.

    PubMed

    Rossetti, Fábia Cristina; Depieri, Lívia Vieira; Praça, Fabíola Garcia; Del Ciampo, José Orestes; Fantini, Márcia C A; Pierre, Maria Bernadete Riemma; Tedesco, Antônio Cláudio; Bentley, Maria Vitória Lopes Badra

    2016-02-15

    Nanodispersions of liquid-crystalline phases (NLPs) composed of monoolein and oleic acid were chosen as nanocarriers to improve the topical retention of the photosensitizer protoporphyrin IX (PpIX) and thereby optimize photodynamic therapy (PDT) using this photosensitizer. The nanodispersions were characterized by polarized light microscopy, small-angle X-ray diffraction and dynamic light scattering. The stability and encapsulation efficiency (EE%) of the nanodispersions were also evaluated. In vitro and in vivo skin penetration studies were performed to determine the potential of the nanodispersions for cutaneous application. In addition, skin penetration and skin irritancy (in an animal model) after in vivo application were visualized by fluorescence light microscopy. The nanodispersion obtained was characterized as a monodisperse system (~150.0nm) of hexagonal liquid-crystalline phase, which provided a high encapsulation efficiency of PpIX (~88%) that remained stable over 90days of investigation. Skin penetration studies demonstrated that the nanodispersion enhanced PpIX skin uptake 11.8- and 3.3-fold (in vitro) and 23.6- and 20.8-fold (in vivo) compared to the PpIX skin uptake of control formulations, respectively. In addition, the hexagonal phase nanodispersion did not cause skin irritation after application for two consecutive days. Overall, the results show that the nanocarrier developed is suitable for use in topical PDT with PpIX. PMID:26657201

  2. Optimization of magnetic amplification by flow constraints in turbulent liquid sodium

    SciTech Connect

    Nornberg, M. D. Taylor, N. Z.; Forest, C. B.; Rahbarnia, K.; Kaplan, E.

    2014-05-15

    Direct measurements of the vector turbulent emf in a driven two-vortex flow of liquid sodium were performed in the Madison Dynamo Experiment [K. Rahbarnia et al., Astrophys. J. 759, 80 (2012)]. The measured turbulent emf is anti-parallel with the mean current and is almost entirely described by an enhanced resistivity, which increases the threshold for a kinematic dynamo. We have demonstrated that this enhanced resistivity can be mitigated by eliminating the largest-scale eddies through the introduction of baffles. By tailoring the flow to reduce large-scale components and control the helical pitch, we have reduced the power required to drive the impellers, doubled the magnetic flux generated by differential rotation, and increased the decay time of externally applied magnetic fields. Despite these improvements, the flows remain sub-critical to the dynamo instability due to the reemergence of turbulent fluctuations at high flow speeds.

  3. Modeling optimal process conditions for UV-heat inactivation of foodborne pathogens in liquid foods.

    PubMed

    Gayán, Elisa; Serrano, María Jesús; Álvarez, Ignacio; Condón, Santiago

    2016-12-01

    The combination of ultraviolet radiation and heat (UV-H treatment) has been demonstrated as a promising strategy to overcome the limited UV germicidal effect in fruit juices. Nonetheless, there are so far no data regarding the efficacy of the combined process for the inactivation of bacterial foodborne pathogens in other liquid foods with different pH and composition. In this investigation, the optimum UV-H processing conditions for the inactivation of Escherichia coli, Salmonella Typhimurium, Listeria monocytogenes, and S. aureus in chicken and vegetable broth, in addition to juices, were determined. From these data models that accurately predict the most advantageous UV-H treatment temperature and the expected synergistic lethal effect from UV and heat resistance data separately were constructed. Equations demonstrated that the optimum UV-H treatment temperature mostly depended on heat resistance, whereas the maximum synergistic lethal effect also was affected by the UV resistance of the microorganism of concern in a particular food. PMID:27554141

  4. Retention prediction and separation optimization under multilinear gradient elution in liquid chromatography with Microsoft Excel macros.

    PubMed

    Fasoula, S; Zisi, Ch; Gika, H; Pappa-Louisi, A; Nikitas, P

    2015-05-22

    A package of Excel VBA macros have been developed for modeling multilinear gradient retention data obtained in single or double gradient elution mode by changing organic modifier(s) content and/or eluent pH. For this purpose, ten chromatographic models were used and four methods were adopted for their application. The methods were based on (a) the analytical expression of the retention time, provided that this expression is available, (b) the retention times estimated using the Nikitas-Pappa approach, (c) the stepwise approximation, and (d) a simple numerical approximation involving the trapezoid rule for integration of the fundamental equation for gradient elution. For all these methods, Excel VBA macros have been written and implemented using two different platforms; the fitting and the optimization platform. The fitting platform calculates not only the adjustable parameters of the chromatographic models, but also the significance of these parameters and furthermore predicts the analyte elution times. The optimization platform determines the gradient conditions that lead to the optimum separation of a mixture of analytes by using the Solver evolutionary mode, provided that proper constraints are set in order to obtain the optimum gradient profile in the minimum gradient time. The performance of the two platforms was tested using experimental and artificial data. It was found that using the proposed spreadsheets, fitting, prediction, and optimization can be performed easily and effectively under all conditions. Overall, the best performance is exhibited by the analytical and Nikitas-Pappa's methods, although the former cannot be used under all circumstances. PMID:25869801

  5. Elm tree (Ulmus parvifolia) bark bioprocessed with Mycelia of Shiitake (Lentinus edodes) mushrooms in liquid Culture: Composition and mechanism of protection against allergic asthma in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study investigated the antiasthma effect of a bioprocessed Ulmus parvifolia bark extract (BPUBE) from Lentinus edodes liquid mycelia culture against allergic asthma biomarkers in U266B1 leukemia cells and OVA-sensitized/challenged mice. BPUBE suppressed total IgE release from U266B1 cel...

  6. Liquid culture production of microsclerotia and submerged conidia by Trichoderma harzianum active against damping-off disease caused by Rhizoctonia solani.

    PubMed

    Kobori, Nilce N; Mascarin, Gabriel M; Jackson, Mark A; Schisler, David A

    2015-04-01

    Media and culturing protocols were identified that supported the formation of submerged conidia and microsclerotia (MS) by Trichoderma harzianum Rifai strain T-22 using liquid culture fermentation. Liquid media with a higher carbon concentration (36 g L(-1)) promoted MS formation at all C:N ratios tested. Hyphae aggregated to form MS after 2 d growth and after 7 d MS were fully melanized. This is the first report of MS formation by T. harzianum or any species of Trichoderma. Furthermore, submerged conidia formation was induced by liquid culture media, but yields, desiccation tolerance, and storage stability varied with C:N ratio and carbon rate. Air-dried MS granules (<4% moisture) retained excellent shelf life under cool and unrefrigerated storage conditions with no loss in conidial production. A low-cost complex nitrogen source based on cottonseed flour effectively supported high MS yields. Amending potting mix with dried MS formulations reduced or eliminated damping-off of melon seedlings caused by Rhizoctonia solani. Together, the results provide insights into the liquid culture production, stabilization process, and bioefficacy of the hitherto unreported MS of T. harzianum as a potential biofungicide for use in integrated management programs against soilborne diseases. PMID:25813507

  7. Combined column-mobile phase mixture statistical design optimization of high-performance liquid chromatographic analysis of multicomponent systems.

    PubMed

    Breitkreitz, Márcia C; Jardim, Isabel C S F; Bruns, Roy E

    2009-02-27

    A statistical approach for the simultaneous optimization of the mobile and stationary phases used in reversed-phase liquid chromatography is presented. Mixture designs using aqueous mixtures of acetonitrile (ACN), methanol (MeOH) and tetrahydrofuran (THF) organic modifiers were performed simultaneously with column type optimization, according to a split-plot design, to achieve the best separation of compounds in two sample sets: one containing 10 neutral compounds with similar retention factors and another containing 11 pesticides. Combined models were obtained by multiplying a linear model for column type, C8 or C18, by quadratic or special cubic mixture models. Instead of using an objective response function, combined models were built for elementary chromatographic criteria (retention factors, resolution and relative retention) of each solute or pair of solutes and, after their validation, the global separation was accomplished by means of Derringer's desirability functions. For neutral compounds a 37:12:8:43 (v/v/v/v) percentage mixture of ACN:MeOH:THF:H2O with the C18 column and for pesticides a 15:15:70 (v/v/v) ACN:THF:H2O mixture with the C8 column provide excellent resolution of all peaks. PMID:19167715

  8. Optimization of a 3D Dynamic Culturing System for In Vitro Modeling of Frontotemporal Neurodegeneration-Relevant Pathologic Features.

    PubMed

    Tunesi, Marta; Fusco, Federica; Fiordaliso, Fabio; Corbelli, Alessandro; Biella, Gloria; Raimondi, Manuela T

    2016-01-01

    Frontotemporal lobar degeneration (FTLD) is a severe neurodegenerative disorder that is diagnosed with increasing frequency in clinical setting. Currently, no therapy is available and in addition the molecular basis of the disease are far from being elucidated. Consequently, it is of pivotal importance to develop reliable and cost-effective in vitro models for basic research purposes and drug screening. To this respect, recent results in the field of Alzheimer's disease have suggested that a tridimensional (3D) environment is an added value to better model key pathologic features of the disease. Here, we have tried to add complexity to the 3D cell culturing concept by using a microfluidic bioreactor, where cells are cultured under a continuous flow of medium, thus mimicking the interstitial fluid movement that actually perfuses the body tissues, including the brain. We have implemented this model using a neuronal-like cell line (SH-SY5Y), a widely exploited cell model for neurodegenerative disorders that shows some basic features relevant for FTLD modeling, such as the release of the FTLD-related protein progranulin (PRGN) in specific vesicles (exosomes). We have efficiently seeded the cells on 3D scaffolds, optimized a disease-relevant oxidative stress experiment (by targeting mitochondrial function that is one of the possible FTLD-involved pathological mechanisms) and evaluated cell metabolic activity in dynamic culture in comparison to static conditions, finding that SH-SY5Y cells cultured in 3D scaffold are susceptible to the oxidative damage triggered by a mitochondrial-targeting toxin (6-OHDA) and that the same cells cultured in dynamic conditions kept their basic capacity to secrete PRGN in exosomes once recovered from the bioreactor and plated in standard 2D conditions. We think that a further improvement of our microfluidic system may help in providing a full device where assessing basic FTLD-related features (including PRGN dynamic secretion) that may be

  9. Statistical analysis of optimal culture conditions for Gluconacetobacter hansenii cellulose production

    SciTech Connect

    Hutchens, Stacy A; Leon, R. V.; O'Neill, Hugh Michael; Evans, Barbara R

    2007-01-01

    The purpose of this study was to analyze the effects of different culture parameters on Gluconacetobacter hansenii (ATCC 10821) to determine which conditions provided optimum cellulose growth. Five culture factors were investigated: carbon source, addition of ethanol, inoculation ratio, pH and temperature. JMP Software (SAS, Cary, NC, USA) was used to design this experiment using a fractional factorial design. After 22 days of static culture, the cellulose produced by the bacteria was harvested, purified and dried to compare the cellulose yields. The results were analyzed by fitting the data to a first-order model with two-factor interactions. The study confirmed that carbon source, addition of ethanol, and temperature were significant factors in the production of cellulose of this G. hansenii strain. While pH alone does not significantly affect average cellulose production, cellulose yields are affected by pH interaction with the carbon source. Culturing the bacteria on glucose at pH 6-5 produces more cellulose than at pH 5-5, while using mannitol at pH 5-5 produces more cellulose than at pH 6-5. The bacteria produced the most cellulose when cultured on mannitol, at pH 5-5, without ethanol, at 20 C. Inoculation ratio was not found to be a significant factor or involved in any significant two-factor interaction. These findings give insight into the conditions necessary to maximize cellulose production from this G. hansenii strain. In addition, this work demonstrates how the fractional factorial design can be used to test a large number of factors using an abbreviated set of experiments. Fitting a statistical model determined the significant factors as well as the significant two-factor interactions.

  10. Optimization of in vitro inhibition of HT-29 colon cancer cell cultures by Solanum tuberosum L. extracts.

    PubMed

    Zuber, T; Holm, D; Byrne, P; Ducreux, L; Taylor, M; Kaiser, M; Stushnoff, C

    2015-01-01

    Secondary metabolites in potato have been reported to possess bioactive properties, including growth inhibition of cancer cells. Because potatoes are widely consumed globally, potential health benefits may have broad application. Thus we investigated growth inhibition of HT-29 colon cancer cell cultures by extracts from 13 diverse genetic breeding clones. Extracts from three pigmented selections (CO97226-2R/R, CO97216-1P/P, CO04058-3RW/RW) inhibited growth of in vitro HT-29 cell cultures more effectively than other clones tested. While inhibition was highest from pigmented selections and pigmented tuber tissue sectors, not all pigmented breeding lines tested had appreciable inhibitory properties. Thus, inhibition was not uniquely linked to pigmentation. Immature tubers had the highest inhibitory properties, and in most cases mature tubers retained very low inhibition properties. Flowers and skins inhibited strongly at lower extract concentrations. An extract consisting of 7.2 mg mL⁻¹ cell culture medium was the lowest effective concentration. While raw tuber extracts inhibited most effectively, a few clones at higher concentrations retained inhibition after cooking. Heated whole tubers retained higher inhibition than heated aqueous extracts. While all aqueous extracts from the two tuber selections (CO97216-1P/P and CO97226-2R/R) inhibited HT-29 cell cultures, inhibition was significantly enhanced in purple pigmented tubers of CO97216-1P/P prepared cryogenically as liquid nitrogen powders compared to extracts from freeze dried samples. Upregulation of caspase-3 protease activity, indicative of apoptosis, was highest among the most inhibitory clone samples. The unique sectorial red pigment expressing selection (CO04058-3RW/RW) provided a model system that isolated expression in pigmented sectors, and thus eliminated developmental, environmental and genetic confounding. PMID:25338312

  11. Liquid-culture production of blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus using portable fermentation equipment.

    PubMed

    Jackson, Mark A; Payne, Angela R; Odelson, David A

    2004-05-01

    The production of fungal spores using on-site, non-sterile, portable fermentation equipment is technically constrained. Very little information is available on the production requirements, such as medium concentration, inoculum stabilization, required fermentation times, and maintenance of axenic growth. In this study, we developed a two-part, liquid concentrate of the production medium that remains stable and soluble at room temperature. We also examined inoculum stability and showed that freeze- or air-dried blastospore preparations were stable for 7 days after rehydration when stored at 4 degrees C. The use of a low-pH (pH 4), relatively rich complex medium provided a growth environment deleterious to bacterial growth yet conducive to rapid sporulation by Paecilomyces fumosoroseus. High concentrations of blastospores (7.9 x 10(8)/ml) of P. fumosoroseus were produced in a 40-h fermentation with very low levels of bacterial contamination when the fermentor was charged with a blastospore production medium with a starting pH of 4 and inoculated with blastospore concentrations greater than 1 x 10(6) spores/ml. These studies demonstrate that the use of disinfected, portable fermentation equipment has potential for on-site production of high concentrations of blastospores of the bioinsecticidal fungus P. fumosoroseus. PMID:15071762

  12. Isolation and analysis of differentially expressed genes during asexual sporulation in liquid static culture of Ganoderma lucidum by suppression subtractive hybridization.

    PubMed

    Xu, Jun-Wei; Zhao, Wei; Xu, Yi-Ning; Zhong, Jian-Jiang

    2012-04-01

    Ganoderma lucidum differentiates in liquid static culture by forming aerial mycelia and asexual spores, and this differentiation process is accompanied by higher production of anti-tumor compounds ganoderic acids. To gain an insight into the molecular events during asexual sporulation of G. lucidum, comparative transcriptome analysis using suppression subtractive hybridization (SSH) technique was performed to identify preferentially expressed genes in liquid static culture vs. in traditional shaking culture. After macroarray analysis of 1920 cDNAs from SSH library, 147 unigenes which exhibited high expression in static culture were identified. Among these sequences, putative translations of 88 unigenes possessed much similarity to known proteins involved in cell organization, signal transduction, cell metabolism, protein biosynthesis and transcription regulation; 13 had significant similarity to hypothetical proteins; the remaining 46 showed little or no similarity to GenBank sequences. RT-qPCR analysis confirmed increases in transcripts of selected genes under liquid static culture condition. The results of this study present the useful application of EST analysis on G. lucidum and provide preliminary indication of gene expression putatively involved in asexual sporulation process. PMID:21725848

  13. Selection and optimization of transfection enhancer additives for increased virus-like particle production in HEK293 suspension cell cultures.

    PubMed

    Cervera, Laura; Fuenmayor, Javier; González-Domínguez, Irene; Gutiérrez-Granados, Sonia; Segura, Maria Mercedes; Gòdia, Francesc

    2015-12-01

    The manufacturing of biopharmaceuticals in mammalian cells typically relies on the use of stable producer cell lines. However, in recent years, transient gene expression has emerged as a suitable technology for rapid production of biopharmaceuticals. Transient gene expression is particularly well suited for early developmental phases, where several potential therapeutic targets need to be produced and tested in vivo. As a relatively new bioprocessing modality, a number of opportunities exist for improving cell culture productivity upon transient transfection. For instance, several compounds have shown positive effects on transient gene expression. These transfection enhancers either facilitate entry of PEI/DNA transfection complexes into the cell or nucleus or increase levels of gene expression. In this work, the potential of combining transfection enhancers to increase Gag-based virus-like particle production levels upon transfection of suspension-growing HEK 293 cells is evaluated. Using Plackett-Burman design of experiments, it is first tested the effect of eight transfection enhancers: trichostatin A, valproic acid, sodium butyrate, dimethyl sulfoxide (DMSO), lithium acetate, caffeine, hydroxyurea, and nocodazole. An optimal combination of compounds exhibiting the highest effect on gene expression levels was subsequently identified using a surface response experimental design. The optimal consisted on the addition of 20 mM lithium acetate, 3.36 mM valproic acid, and 5.04 mM caffeine which increased VLP production levels 3.8-fold, while maintaining cell culture viability at 94%. PMID:26278533

  14. Optimization of hexadecylpyridinium chloride decontamination for culture of Mycobacterium avium subsp. paratuberculosis from milk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cows in advanced stages of Johne’s disease shed Mycobacterium avium subsp. paratuberculosis (MAP) into both their milk and feces, allowing for transmission of the bacteria between animals. The objective of this study was to formulate an optimized protocol for the isolation of MAP from milk and colos...

  15. Optimal liquid crystal display backlight dimming based on clustered contrast loss

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Woo; Lee, Kyu-Ho; Bae, Jin-Gon; Kim, Hyung-Geun; Kim, Jong-Ok

    2015-10-01

    We propose an image adaptive backlight dimming method that quantitatively measures the perceived image quality degradation in terms of brightness and contrast. Unlike conventional methods, the proposed adaptive dimming considers the spatial distribution characteristics of the clipped pixels via a new measure, clusterization, to effectively estimate the perceived contrast loss and prevent the clipping artifact (light saturation). The proposed adaptive dimming achieves an average 17.71% power reduction while keeping the image quality difference to a tolerably low amount, as shown by the subjective mean opinion score test results. Comparing the optimal backlight levels estimated by the proposed method with results from other methods, the proposed backlight dimming is closer to the ground truth backlight levels that are favored by human subjects.

  16. Optimization of the open-loop liquid crystal adaptive optics retinal imaging system

    NASA Astrophysics Data System (ADS)

    Kong, Ningning; Li, Chao; Xia, Mingliang; Li, Dayu; Qi, Yue; Xuan, Li

    2012-02-01

    An open-loop adaptive optics (AO) system for retinal imaging was constructed using a liquid crystal spatial light modulator (LC-SLM) as the wavefront compensator. Due to the dispersion of the LC-SLM, there was only one illumination source for both aberration detection and retinal imaging in this system. To increase the field of view (FOV) for retinal imaging, a modified mechanical shutter was integrated into the illumination channel to control the size of the illumination spot on the fundus. The AO loop was operated in a pulsing mode, and the fundus was illuminated twice by two laser impulses in a single AO correction loop. As a result, the FOV for retinal imaging was increased to 1.7-deg without compromising the aberration detection accuracy. The correction precision of the open-loop AO system was evaluated in a closed-loop configuration; the residual error is approximately 0.0909λ (root-mean-square, RMS), and the Strehl ratio ranges to 0.7217. Two subjects with differing rates of myopia (-3D and -5D) were tested. High-resolution images of capillaries and photoreceptors were obtained.

  17. Robust optimization for nonlinear time-delay dynamical system of dha regulon with cost sensitivity constraint in batch culture

    NASA Astrophysics Data System (ADS)

    Yuan, Jinlong; Zhang, Xu; Liu, Chongyang; Chang, Liang; Xie, Jun; Feng, Enmin; Yin, Hongchao; Xiu, Zhilong

    2016-09-01

    Time-delay dynamical systems, which depend on both the current state of the system and the state at delayed times, have been an active area of research in many real-world applications. In this paper, we consider a nonlinear time-delay dynamical system of dha-regulonwith unknown time-delays in batch culture of glycerol bioconversion to 1,3-propanediol induced by Klebsiella pneumonia. Some important properties and strong positive invariance are discussed. Because of the difficulty in accurately measuring the concentrations of intracellular substances and the absence of equilibrium points for the time-delay system, a quantitative biological robustness for the concentrations of intracellular substances is defined by penalizing a weighted sum of the expectation and variance of the relative deviation between system outputs before and after the time-delays are perturbed. Our goal is to determine optimal values of the time-delays. To this end, we formulate an optimization problem in which the time delays are decision variables and the cost function is to minimize the biological robustness. This optimization problem is subject to the time-delay system, parameter constraints, continuous state inequality constraints for ensuring that the concentrations of extracellular and intracellular substances lie within specified limits, a quality constraint to reflect operational requirements and a cost sensitivity constraint for ensuring that an acceptable level of the system performance is achieved. It is approximated as a sequence of nonlinear programming sub-problems through the application of constraint transcription and local smoothing approximation techniques. Due to the highly complex nature of this optimization problem, the computational cost is high. Thus, a parallel algorithm is proposed to solve these nonlinear programming sub-problems based on the filled function method. Finally, it is observed that the obtained optimal estimates for the time-delays are highly satisfactory

  18. Optimized exosome isolation protocol for cell culture supernatant and human plasma

    PubMed Central

    Lobb, Richard J.; Becker, Melanie; Wen Wen, Shu; Wong, Christina S. F.; Wiegmans, Adrian P.; Leimgruber, Antoine; Möller, Andreas

    2015-01-01

    Extracellular vesicles represent a rich source of novel biomarkers in the diagnosis and prognosis of disease. However, there is currently limited information elucidating the most efficient methods for obtaining high yields of pure exosomes, a subset of extracellular vesicles, from cell culture supernatant and complex biological fluids such as plasma. To this end, we comprehensively characterize a variety of exosome isolation protocols for their efficiency, yield and purity of isolated exosomes. Repeated ultracentrifugation steps can reduce the quality of exosome preparations leading to lower exosome yield. We show that concentration of cell culture conditioned media using ultrafiltration devices results in increased vesicle isolation when compared to traditional ultracentrifugation protocols. However, our data on using conditioned media isolated from the Non-Small-Cell Lung Cancer (NSCLC) SK-MES-1 cell line demonstrates that the choice of concentrating device can greatly impact the yield of isolated exosomes. We find that centrifuge-based concentrating methods are more appropriate than pressure-driven concentrating devices and allow the rapid isolation of exosomes from both NSCLC cell culture conditioned media and complex biological fluids. In fact to date, no protocol detailing exosome isolation utilizing current commercial methods from both cells and patient samples has been described. Utilizing tunable resistive pulse sensing and protein analysis, we provide a comparative analysis of 4 exosome isolation techniques, indicating their efficacy and preparation purity. Our results demonstrate that current precipitation protocols for the isolation of exosomes from cell culture conditioned media and plasma provide the least pure preparations of exosomes, whereas size exclusion isolation is comparable to density gradient purification of exosomes. We have identified current shortcomings in common extracellular vesicle isolation methods and provide a potential

  19. Optimization of culture conditions and medium composition for the marine algicidal bacterium Alteromonas sp. DH46 by uniform design

    NASA Astrophysics Data System (ADS)

    Lin, Jing; Zheng, Wei; Tian, Yun; Wang, Guizhong; Zheng, Tianling

    2013-09-01

    Harmful algal blooms (HABs) have led to extensive ecological and environmental issues and huge economic losses. Various HAB control techniques have been developed, and biological methods have been paid more attention. Algicidal bacteria is a general designation for bacteria which inhibit algal growth in a direct or indirect manner, and kill or damage the algal cells. A metabolite which is strongly toxic to the dinoflagellate Alexandrium tamarense was produced by strain DH46 of the alga-lysing bacterium Alteromonas sp. The culture conditions were optimized using a single-factor test method. Factors including carbon source, nitrogen source, temperature, initial pH value, rotational speed and salinity were studied. The results showed that the cultivation of the bacteria at 28°C and 180 r min-1 with initial pH 7 and 30 salt contcentration favored both the cell growth and the lysing effect of strain DH46. The optimal medium composition for strain DH46 was determined by means of uniform design experimentation, and the most important components influencing the cell density were tryptone, yeast extract, soluble starch, NaNO3 and MgSO4. When the following culture medium was used (tryptone 14.0g, yeast extract 1.63g, soluble starch 5.0 g, NaNO3 1.6 g, MgSO4 2.3 g in 1L), the largest bacterial dry weight (7.36 g L-1) was obtained, which was an enhancement of 107% compared to the initial medium; and the algal lysis rate was as high as 98.4% which increased nearly 10% after optimization.

  20. Optimization of fermentation parameters to study the behavior of selected lactic cultures on soy solid state fermentation.

    PubMed

    Rodríguez de Olmos, A; Bru, E; Garro, M S

    2015-03-01

    The use of solid fermentation substrate (SSF) has been appreciated by the demand for natural and healthy products. Lactic acid bacteria and bifidobacteria play a leading role in the production of novel functional foods and their behavior is practically unknown in these systems. Soy is an excellent substrate for the production of functional foods for their low cost and nutritional value. The aim of this work was to optimize different parameters involved in solid state fermentation (SSF) using selected lactic cultures to improve soybean substrate as a possible strategy for the elaboration of new soy food with enhanced functional and nutritional properties. Soy flour and selected lactic cultures were used under different conditions to optimize the soy SSF. The measured responses were bacterial growth, free amino acids and β-glucosidase activity, which were analyzed by applying response surface methodology. Based on the proposed statistical model, different fermentation conditions were raised by varying the moisture content (50-80%) of the soy substrate and temperature of incubation (31-43°C). The effect of inoculum amount was also investigated. These studies demonstrated the ability of selected strains (Lactobacillus paracasei subsp. paracasei and Bifidobacterium longum) to grow with strain-dependent behavior on the SSF system. β-Glucosidase activity was evident in both strains and L. paracasei subsp. paracasei was able to increase the free amino acids at the end of fermentation under assayed conditions. The used statistical model has allowed the optimization of fermentation parameters on soy SSF by selected lactic strains. Besides, the possibility to work with lower initial bacterial amounts to obtain results with significant technological impact was demonstrated. PMID:25498472

  1. A high-throughput method to measure the sensitivity of yeast cells to genotoxic agents in liquid cultures.

    PubMed

    Toussaint, Martin; Levasseur, Geneviève; Gervais-Bird, Julien; Wellinger, Raymund J; Elela, Sherif Abou; Conconi, Antonio

    2006-07-14

    The sensitivity of yeast Saccharomyces cerevisiae to DNA damaging agents is better represented when cells are grown in liquid media than on solid plates. However, systematic assessment of several strains that are grown in different conditions is a cumbersome undertaking. We report an assay to determine cell growth based on automatic measurements of optical densities of very small (100 microl) liquid cell cultures. Furthermore, an algorithm was elaborated to analyze large data files obtained from the cell growth curves, which are described by the growth rate--that starts at zero and accelerates to the maximal rate (mu(m))--and by the lag time (lambda). Cell dilution spot test for colony formation on solid media and the growth curve assay were used in parallel to analyze the phenotypes of cells after treatments with three different classes of DNA damaging agents (methyl methanesulfonate, bleomycin, and ultraviolet light). In these experiments the survival of the WT (wild type) and a number of DNA repair-deficient strains were compared. The results show that only the cell growth curve assay could uncover subtle phenotypes when WT cells, or mutant strains that are only weakly affected in DNA repair proficiency, were treated with low doses of cytotoxic compounds. The growth curve assay was also applied to establish whether histone acetyltransferases and deacetylases affect the resistance of yeast cells to UV irradiation. Out of 20 strains tested the sir2delta and rpd3delta cells were found to be more resistant than the WT, while gcn5delta and spt10delta cells were found to be more sensitive. This new protocol is sensitive, provides quantifiable data, offers increased screening capability and speed compared to the colony formation test. PMID:16713735

  2. Optimized Dispersive Liquid-Liquid Microextraction Method and High Performance Liquid Chromatography with Ultraviolet Detection for Simultaneous Determination of Sorbic and Benzoic Acids and Evaluation of Contamination of These Preservatives in Iranian Foods.

    PubMed

    Javanmardi, Fardin; Arefhosseini, Seyyed Rafie; Ansarin, Masood; Nemati, Mahboob

    2015-01-01

    A rapid, simple, and sensitive dispersive liquid-liquid microextraction procedure followed by HPLC-UV was applied to determine the benzoate and sorbate in foods. The method was optimized for some variables including extraction solvent type and volume, dispersing solvent type and volume, and the effects of salt and pH. Optimum conditions were determined as follows: sample volume, 5 mL; extraction solvent (chloroform) volume, 250 μL; disperser solvent (acetone) volume, 1.2 mL; NaCl amount, 0.75 g/5 mL at pH 4. Sixty samples were analyzed, including 15 doogh, 15 fruit juice, 15 cookie, and 15 tomato paste; benzoic acid was detected in 57 samples (95%) at levels up to 448.1 μg/mL and sorbic acid in 31 samples (51.6%) at levels up to 1369 μg/mL. Under the optimum experimental conditions, the LOD and LOQ were determined as 0.1 and 0.5 μg/mL for benzoate and 0.08 and 0.3 μg/mL for sorbate, respectively. The results showed that these preservatives are commonly used at high levels in yogurt drinks (dooghs) and cookies. Also, the concentration of benzoic acid that was detected in the tomato paste and fruit juice samples was low but may affect children and sensitive persons. PMID:26268979

  3. siRNA delivery into cultured primary human myoblasts--optimization of electroporation parameters and theoretical analysis.

    PubMed

    Lojk, Jasna; Mis, Katarina; Pirkmajer, Sergej; Pavlin, Mojca

    2015-12-01

    Introduction of genetic material into muscle tissue has been extensively researched, including isolation and in vitro expansion of primary myoblasts as a potential source of cells for skeletal and heart muscle tissue engineering applications. In this study, we optimized the electroporation protocol for introduction of short interfering ribonucleic acid (siRNA) against messenger RNA for Hypoxia Inducible Factor 1α (HIF-1α) into cultured primary human myoblasts. We established optimal pulsing protocol for siRNA electro transfection, and theoretically analyzed the effect of electric field and pulse duration on silencing efficiency and electrophoretic displacement of siRNA. Silencing of HIF-1α was determined with quantitative polymerase chain reaction and Western Blot. The most efficient silencing (71% knockdown) was achieved with 8 × 2 ms pulses, E = 0.6 kV/cm. Viability was determined immediately, 1 h and 48 h after electroporation. In general, there was a trade-off between efficient silencing and preserved viability. Electric field and pulse duration are crucial parameters for silencing, since both increase membrane permeabilization and electrophoretic transfer of siRNA. Short-term viability showed immediate toxicity of pulses due to membrane damage, while indirect effects on cell proliferation were observed after 48 h. Presented results are important for faster optimization of electroporation parameters for ex vivo electrotransfer of short RNA molecules into primary human myoblasts. PMID:26388450

  4. Statistical optimization of culture medium for production of exopolysaccharide from endophytic fungus Bionectria ochroleuca and its antitumor effect in vitro

    PubMed Central

    Li, Yun; Guo, Shoujun; Zhu, Hui

    2016-01-01

    Endophytic fungi have been recognized as possible useful sources of bioactive metabolites. However, exopolysaccharide (EPS) production from endophytic fungi and its antitumor activity have been less explored. In the present study, endophtic fungus Bionectria ochroleuca M21 was exploited for the production of EPS in submerged culture. Among tested medium components, glucose, yeast extract, MgSO4 and Tween80 were found to be effective and significant on EPS production. Response surface methodology (RSM) was employed to optimize medium composition. The results showed that the significant factors were glucose, yeast extract and Tween80. The optimal medium was observed at the composition of glucose 55.7 g/L, yeast extract 6.04 g/L, MgSO4 0.25g/L and Tween80 0.1 % (v/v). Using the optimized medium, EPS production was achieve at 2.65 ± 0.16 g/L after 4 days fermentation in a 5L bioreactor. Examination of cytotoxicity showed that the EPS from B. ochroleuca M21 did not have cytotoxic activity on human liver HL-7702 cells at concentration 0.025-1.6 mg/mL. In contrast, the EPS exhibited antiproliferative activities against cell lines of liver cancer (HepG2), gastric cancer (SGC-7901) and colon cancer (HT29) in a dose- and time-dependent manner in the concentration ranges of 0.1-0.45 mg/mL. PMID:27330527

  5. Optimization of culture parameters for tannery effluent bioremediation by Bacillus gala ctosidilyticus APBS5-3.

    PubMed

    Singh, Asha; Malaviya, Piyush

    2015-09-01

    Wastewaters produced by tanneries contain high concentration of hexavalent chromium [Cr(VI)] and organic pollutants. In the presentwork, tannery effluent remediation ability of a chromium resistant Bacillus galactosidilyticus strain APBS5-3, isolated from tannery effluent enriched soil, was evaluated. This strain was found to be resistant up to 800 ppm Cr(VI). Optimization of pH, carbon source, nitrogen source, inoculum concentration, agitation rate and incubation temperature was performed for efficient bioremediation of tannery effluent. Highest reduction of COD and Cr(VI) was found to be 63.1 and 41.8%, respectively and final O.D. (at 600 nm) and pH were found to be 1.222 and 8.54, respectively after 72 hr under optimized conditions. PMID:26521559

  6. Response surface optimization of culture medium for enhanced docosahexaenoic acid production by a Malaysian thraustochytrid

    PubMed Central

    Manikan, Vidyah; Kalil, Mohd Sahaid; Hamid, Aidil Abdul

    2015-01-01

    Docosahexaenoic acid (DHA, C22:6n-3) plays a vital role in the enhancement of human health, particularly for cognitive, neurological, and visual functions. Marine microalgae, such as members of the genus Aurantiochytrium, are rich in DHA and represent a promising source of omega-3 fatty acids. In this study, levels of glucose, yeast extract, sodium glutamate and sea salt were optimized for enhanced lipid and DHA production by a Malaysian isolate of thraustochytrid, Aurantiochytrium sp. SW1, using response surface methodology (RSM). The optimized medium contained 60 g/L glucose, 2 g/L yeast extract, 24 g/L sodium glutamate and 6 g/L sea salt. This combination produced 17.8 g/L biomass containing 53.9% lipid (9.6 g/L) which contained 44.07% DHA (4.23 g/L). The optimized medium was used in a scale-up run, where a 5 L bench-top bioreactor was employed to verify the applicability of the medium at larger scale. This produced 24.46 g/L biomass containing 38.43% lipid (9.4 g/L), of which 47.87% was DHA (4.5 g/L). The total amount of DHA produced was 25% higher than that produced in the original medium prior to optimization. This result suggests that Aurantiochytrium sp. SW1 could be developed for industrial application as a commercial DHA-producing microorganism. PMID:25721623

  7. Efficient, validated method for detection of mycobacterial growth in liquid culture media by use of bead beating, magnetic-particle-based nucleic acid isolation, and quantitative PCR.

    PubMed

    Plain, Karren M; Waldron, Anna M; Begg, Douglas J; de Silva, Kumudika; Purdie, Auriol C; Whittington, Richard J

    2015-04-01

    Pathogenic mycobacteria are difficult to culture, requiring specialized media and a long incubation time, and have complex and exceedingly robust cell walls. Mycobacterium avium subsp. paratuberculosis (MAP), the causative agent of Johne's disease, a chronic wasting disease of ruminants, is a typical example. Culture of MAP from the feces and intestinal tissues is a commonly used test for confirmation of infection. Liquid medium offers greater sensitivity than solid medium for detection of MAP; however, support for the BD Bactec 460 system commonly used for this purpose has been discontinued. We previously developed a new liquid culture medium, M7H9C, to replace it, with confirmation of growth reliant on PCR. Here, we report an efficient DNA isolation and quantitative PCR methodology for the specific detection and confirmation of MAP growth in liquid culture media containing egg yolk. The analytical sensitivity was at least 10(4)-fold higher than a commonly used method involving ethanol precipitation of DNA and conventional PCR; this may be partly due to the addition of a bead-beating step to manually disrupt the cell wall of the mycobacteria. The limit of detection, determined using pure cultures of two different MAP strains, was 100 to 1,000 MAP organisms/ml. The diagnostic accuracy was confirmed using a panel of cattle fecal (n=54) and sheep fecal and tissue (n=90) culture samples. This technique is directly relevant for diagnostic laboratories that perform MAP cultures but may also be applicable to the detection of other species, including M. avium and M. tuberculosis. PMID:25609725

  8. A novel method to optimize culture conditions for biomass and sporulation of the entomopathogenic fungus Beauveria bassiana IBC1201

    PubMed Central

    Gao, Li

    2011-01-01

    Biomass yields and sporulation of Beauveria bassiana was concerned on culture conditions, environmental factors and cultivation method. We optimized the best culture conditions for biomass yields of B. bassiana IBC1201 with the novel “two-stage” cultivation method as well as orthogonal matrix method. Firstly, we cultured spore suspension on the basal medium (sucrose 19.00 g, soy peptone 4.06 g, K2HPO4 1.00 g, KCl 0.50 g, MgSO4 0.50 g, FeSO4 0.10 g and 17.00 g Bactor) for the first stage culture of 4 days under room condition. Then, we transferred them to another defined medium (Cellobiose 9.52 g, urea 1.70 g, ZnSO4•7H2O 0.05 g/L, MnSO4•H2O 0.005 g/L, CaCl2 1.00 g/L, CuSO4•5H2O 0.05 g/L and 17.00 g Bactor) for more 4 days cultivation with the environmental factors combination of water potential -1.2 MPa /pH 3 /12 h light cycle/23 ℃ for biomass yields, and with the environmental factors combination of water potential -0.8 MPa /pH 3 /24 h light cycle/23 ℃ for spore yields. These results provided important information for mass production (including biomass and spore yields) of this great potential biocontrol fungus. PMID:24031792

  9. Evaluation and optimization for liquid-based preparation cytology in whole slide imaging

    PubMed Central

    Lee, Roy E.; McClintock, David S.; Laver, Nora M.; Yagi, Yukako

    2011-01-01

    Background: Cytology poses different obstacles in whole slide imaging compared to surgical pathology slides. A single focal plane suffices for most of the latter, but cytology slides are thicker, potentially requiring multiple focal planes for adequate diagnostic information. Multiple focal planes adversely impact scanning time per slide, evaluation times, and file sizes. In this pilot study, we evaluated and compared the multilayer stack method to the extended focus algorithm as an alternative which collapses multiple focal planes into a single image, retaining only focused areas from each plane. Materials and Methods: 10 SurePath® cervical cytology slides were scanned at three thickness settings: 18, 24, and 30 μm. Three scanners were used: (1) Hamamatsu Nanozoomer 2.0-HT, (2) 3DHISTECH Mirax scan, and (3) Bioimagene iScan Coreo Au. The Nanozoomer and iScan utilized multilayer stacking, while the Mirax files were composited by extended focus. Scan times and file sizes were recorded, and image quality compared. Results: The Nanozoomer stacks averaged 1.58 gb and around 25 min for each slide, while the iScan stacks ranged from 6.23 to 9.3 gb and took 34-50 min to scan. The Mirax images averaged 210 mb and took 13-20 min to scan. Multilayer stack image quality from both Nanozoomer and iScan was fairly comparable. The iScan revealed significant mechanical issues that did not correspond to user settings. The Mirax images showed worrisome loss of crisp focus detail, worsening with increasing focal planes and impacting assessment of nuclear contours and chromatin detail. Conclusions: The optimal number of focal planes remains unknown for cytology. Multilayer stacks require excessive scanning time, network bandwidth, and file storage. Extended focus was evaluated as an alternative, but significant image quality issues were revealed. Further large-scale studies are needed to assess their clinical impact. PMID:22059147

  10. Output-driven feedback system control platform optimizes combinatorial therapy of tuberculosis using a macrophage cell culture model.

    PubMed

    Silva, Aleidy; Lee, Bai-Yu; Clemens, Daniel L; Kee, Theodore; Ding, Xianting; Ho, Chih-Ming; Horwitz, Marcus A

    2016-04-12

    Tuberculosis (TB) remains a major global public health problem, and improved treatments are needed to shorten duration of therapy, decrease disease burden, improve compliance, and combat emergence of drug resistance. Ideally, the most effective regimen would be identified by a systematic and comprehensive combinatorial search of large numbers of TB drugs. However, optimization of regimens by standard methods is challenging, especially as the number of drugs increases, because of the extremely large number of drug-dose combinations requiring testing. Herein, we used an optimization platform, feedback system control (FSC) methodology, to identify improved drug-dose combinations for TB treatment using a fluorescence-based human macrophage cell culture model of TB, in which macrophages are infected with isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible green fluorescent protein (GFP)-expressing Mycobacterium tuberculosis (Mtb). On the basis of only a single screening test and three iterations, we identified highly efficacious three- and four-drug combinations. To verify the efficacy of these combinations, we further evaluated them using a methodologically independent assay for intramacrophage killing of Mtb; the optimized combinations showed greater efficacy than the current standard TB drug regimen. Surprisingly, all top three- and four-drug optimized regimens included the third-line drug clofazimine, and none included the first-line drugs isoniazid and rifampin, which had insignificant or antagonistic impacts on efficacy. Because top regimens also did not include a fluoroquinolone or aminoglycoside, they are potentially of use for treating many cases of multidrug- and extensively drug-resistant TB. Our study shows the power of an FSC platform to identify promising previously unidentified drug-dose combinations for treatment of TB. PMID:27035987

  11. Evidence for the involvement of nematocidal toxins of Purpureocillium lilacinum 6029 cultured on Karanja deoiled cake liquid medium.

    PubMed

    Sharma, Abhishek; Sharma, Satyawati; Mittal, Aditya; Naik, S N

    2016-05-01

    In present study, in vitro nematocidal bioassays, FT-IR and HPLC analysis were employed to demonstrate the involvement of toxins of Purpureocillium lilacinum in killing root-knot nematodes (Meloidogyne incognita). During growth study, maximum mycelial biomass (10.52 g/l) in de-oiled Karanja cake medium was achieved on 8th day while complete mortality of nematodes was obtained by 6th day filtrate (FKSM). Maximum production of crude nematocidal toxin was recorded on 7th day suggesting that the toxin production was paralleled with growth of the fungus. The median lethal concentration (LC50) determined for the crude toxin from 6th day to 10th day ranged from 89.41 to 43.21 ppm. The median lethal time (LT50) for the crude toxin of FKSM was found to be 1.46 h. This is the first report of implementing a comparative infra-red spectroscopy coupled with HPLC analysis to predict the presence of nematocidal toxin in the fungal filtrate cultured on Karanja deoiled cake liquid medium. PMID:27038952

  12. Inhibition of aflatoxin metabolism and growth of Aspergillus flavus in liquid culture by a DNA methylation inhibitor.

    PubMed

    Yang, Kunlong; Zhuang, Zhenhong; Zhang, Feng; Song, Fengqin; Zhong, Hong; Ran, Fanlei; Yu, Song; Xu, Gaopo; Lan, Faxiu; Wang, Shihua

    2015-01-01

    Aflatoxins (AFs) are a group of highly oxygenated polyketidese-derived toxins mainly produced by Aspergillus flavus and A. parasiticus, whose biosynthesis mechanisms are extremely sophisticated. Methylation is known as the major form of epigenetic regulation, which is correlated with gene expression. As the DNA methylation inhibitor 5-azacytidine (5-AC) blocks AF production, we studied AFB1 metabolism and morphological changes of A. flavus by treatment with 5-AC in liquid culture. The results show that 5-AC caused a decrease in AF production and concurrent changes in morphology. In addition, we isolated a non-aflatoxigenic mutant of A. flavus, showing a significant reduction in pigment production, after 5-AC treatment. This mutant showed significant reduction in the expression of genes in the AF biosynthesis pathway, and conidia formation. Furthermore, as AF biosynthesis and oxidative stress are intimately related events, we assessed the viability of A. flavus to oxidative stress after treatment with 5-AC, which showed that the mutant was more sensitive to the strong oxidant hydrogen peroxide. We found that the non-aflatoxigenic mutant showed a decrease in reactive oxygen species (ROS) and metabolites indicative of oxidative stress, which may be caused by the disruption of the defence system against excessive ROS formation after 5-AC treatment. These data indicate that 5-AC, as an inactivator of DNA methyltransferase, plays a very important role in AFB1 metabolism and the development of A. flavus, which might provide an effective strategy to pre- or post-harvest control of AFs. PMID:25312249

  13. Optimization of dispersive liquid-liquid microextraction based on the solidification of floating organic droplets using an orthogonal array design and its application for the determination of fungicide concentrations in environmental water samples.

    PubMed

    Yang, Xiaoling; Yang, Miyi; Hou, Bang; Li, Songqing; Zhang, Ying; Lu, Runhua; Zhang, Sanbing

    2014-08-01

    A dispersive liquid-liquid microextraction method based on the solidification of floating organic droplets was developed as a simple and sensitive method for the simultaneous determination of the concentrations of multiple fungicides (triazolone, chlorothalonil, cyprodinil, and trifloxystrobin) in water by high-performance liquid chromatography with variable-wavelength detection. After an approach varying one factor at a time was used, an orthogonal array design [L25 (5(5))] was employed to optimize the method and to determine the interactions between the parameters. The significance of the effects of the different factors was determined using analysis of variance. The results indicated that the extraction solvent volume significantly affects the efficiency of the extraction. Under optimal conditions, the relative standard deviation (n = 5) varied from 2.3 to 5.5% at 0.1 μg/mL for each analyte. Low limits of detection were obtained and ranged from 0.02 to 0.2 ng/mL. In addition, the proposed method was applied to the analysis of fungicides in real water samples. The results show that the dispersive liquid-liquid microextraction based on the solidification of floating organic droplets is a potential method for detecting fungicides in environmental water samples, with recoveries of the target analytes ranging from 70.1 to 102.5%. PMID:24824837

  14. Final report-passive safety optimization in liquid sodium-cooled reactors.

    SciTech Connect

    Cahalana, J. E.; Hahn, D.; Nuclear Engineering Division; Korea Atomic Energy Research Inst.

    2007-08-13

    This report summarizes the results of a three-year collaboration between Argonne National Laboratory (ANL) and the Korea Atomic Energy Research Institute (KAERI) to identify and quantify the performance of innovative design features in metallic-fueled, sodium-cooled fast reactor designs. The objective of the work was to establish the reliability and safety margin enhancements provided by design innovations offering significant potential for construction, maintenance, and operating cost reductions. The project goal was accomplished with a combination of advanced model development (Task 1), analysis of innovative design and safety features (Tasks 2 and 3), and planning of key safety experiments (Task 4). Task 1--Computational Methods for Analysis of Passive Safety Design Features: An advanced three-dimensional subassembly thermal-hydraulic model was developed jointly and implemented in ANL and KAERI computer codes. The objective of the model development effort was to provide a high-accuracy capability to predict fuel, cladding, coolant, and structural temperatures in reactor fuel subassemblies, and thereby reduce the uncertainties associated with lower fidelity models previously used for safety and design analysis. The project included model formulation, implementation, and verification by application to available reactor tests performed at EBR-II. Task 2--Comparative Analysis and Evaluation of Innovative Design Features: Integrated safety assessments of innovative liquid metal reactor designs were performed to quantify the performance of inherent safety features. The objective of the analysis effort was to identify the potential safety margin enhancements possible in a sodium-cooled, metal-fueled reactor design by use of passive safety mechanisms to mitigate low-probability accident consequences. The project included baseline analyses using state-of-the-art computational models and advanced analyses using the new model developed in Task 1. Task 3--Safety

  15. [Is it possible to "cancel" aging process of cell cultures under optimal conditions for cultivation?].

    PubMed

    Bozhkov, A I; Kovaleva, M K; Menzianova, N G

    2011-01-01

    The characteristics of the cells epigenotypes Dunaliella viridis Teod. in the process of chronological and replicative aging were investigated. By 40th day of accumulative cultivation (which coincided with the stationary growth phase) DNA content in the cells of Dunaliella viridis increased 2 times, triacylglycerides 3 times, beta-carotene and carbonyl proteins 2 times, RNA content decreased in comparison with cells in exponential growth phase, i. e., the 40th day of growth of culture forms the age-related epigenotype. 4 received subcultures were being transplanted during 2 years in mid-logarithmic growth phase (subculture-10), early stationary phase of growth (subculture-20), in the mid-stationary growth phase (subculture-30), and late stationary growth phase (subculture-40). It is shown that epigenotype of subculture-10 remained unchanged over 2 years of cultivation, i. e., it does not manifest replicative aging. At the same time, the subculture-20, although long enough (at least 40 passages), maintained epigenotype characteristic of young cultures, and showed age-related changes. Pronounced age-dependent changes of epigenotype in the course of cultivation were identified for subculture-30, and subculture-40 was characterized by unstable epigenotype. Thus, cultivation conditions determine the intensity of replicative aging in Dunaliella viridis. PMID:21809617

  16. Optimization of culturing conditions for toxicity testing with the alga Oophila sp. (Chlorophyceae), an amphibian endosymbiont.

    PubMed

    Rodríguez-Gil, José Luis; Brain, Richard; Baxter, Leilan; Ruffell, Sarah; McConkey, Brendan; Solomon, Keith; Hanson, Mark

    2014-11-01

    Eggs of the yellow-spotted salamander (Ambystoma maculatum) have a symbiotic relationship with green algae. It has been suggested that contaminants that are preferentially toxic to algae, such as herbicides, may impair the symbiont and, hence, indirectly affect the development of the salamander embryo. To enable testing under near-standard conditions for first-tier toxicity screening, the authors isolated the alga from field-collected eggs and identified conditions providing exponential growth rates in the apparent asexual phase of the alga. This approach provided a uniform, single-species culture, facilitating assessment of common toxicity end points and comparison of sensitivity relative to other species. Sequencing of the 18s ribosomal DNA indicated that the isolated alga is closely related to the recently described Oophila amblystomatis but is more similar to other known Chlamydomonas species, suggesting possible biogeographical variability in the genetic identity of the algal symbiont. After a tiered approach to culturing method refinement, a modified Bristol's media with 1 mM NH4 (+) as nitrogen source was found to provide suitable conditions for toxicity testing at 18 °C and 200 µmol m(-2) s(-1) photosynthetically active radiation (PAR) on a 24-h light cycle. The validity of the approach was demonstrated with Zn(2+) as a reference toxicant. Overall, the present study shows that screening for direct effects of contaminants on the algal symbiont without the presence of the host salamander is possible under certain laboratory conditions. PMID:25113146

  17. Optimization of signal versus background in liquid xenon detectors used for dark matter direct detection experiments

    NASA Astrophysics Data System (ADS)

    D'Arcangelo, Francesca D.

    2010-02-01

    The discovery of cosmic acceleration twelve years ago implies that our universe is dominated by dark energy, which is either a tiny cosmological constant or a mysterious fluid with large negative pressure, or that Einstein's successful theory of gravity needs to be modified at large scales/low energies. Since then, independent evidence of a number of cosmological probes has firmly established the picture of a universe where dark energy (or the effective contribution from a modification of gravity) makes up about 72% of the total energy density. Whichever of the options mentioned above will turn out to be the right one, a satisfying explanation for cosmic acceleration will likely lead to important new insights in fundamental physics. The question of the physics behind cosmic acceleration is thus one of the most intriguing open questions in modern physics. In this thesis, we calculate current constraints on dark energy and study how to optimally use the cosmological tools at our disposal to learn about its nature. We will first present constraints from a host of recent data on the dark energy sound speed and equation of state for different dark energy models including early dark energy. We then study the observational properties of purely kinetic k-essence models and show how they can in principle be straightforwardly distinguished from quintessence models by their equation of state behavior. We next consider a large, representative set of dark energy and modified gravity models and show that they can be divided into a small set of observationally distinct classes. We also find that all non-early dark energy models we consider can be modeled extremely well by a simple linear equation of state form. We will then go on to discuss a number of alternative, model independent parametrizations of dark energy properties. Among other things, we find that principal component analysis is not as model-independent as one would like it to be and that assuming a fixed value for the

  18. Addition of formic acid or starter cultures to liquid feed. Effect on pH, microflora composition, organic acid concentration and ammonia concentration.

    PubMed

    Canibe, N; Miquel, N; Miettinen, H; Jensen, B B

    2001-01-01

    Some of the charateristics of good quality fermented liquid feed (FLF) are low pH, high numbers of lactic acid bacteria, and low numbers of enterobacteria. In order to test strategies to avoid a proliferation of enterobacteria during the initial phase of FLF elaboration, two in vitro studies were carried out. Addition of various doses of formic acid or two different starter cultures were tested. Adding 0.1% formic acid or L. plantarum VTT E-78076 to the liquid feed seemed to be addecuate ways of inhibiting the growth of enterobacteria, without depleting the growth of lactic acid bacteria. PMID:15954629

  19. Inhibition of Listeria monocytogenes and Escherichia coli O157:H7 in liquid broth medium and during processing of fermented sausage using autochthonous starter cultures.

    PubMed

    Pragalaki, T; Bloukas, J G; Kotzekidou, P

    2013-11-01

    The antimicrobial effect of two autochthonous starter cultures of Lactobacillus sakei was evaluated in vitro (in liquid broth medium) and in situ assays. The inactivation of foodborne pathogens Listeria monocytogenes (serotype 4ab No 10) and Escherichia coli O157:H7 ATCC 43888 was investigated during the production of fermented sausage according to a typical Greek recipe using L. sakei strains as starter cultures. The inactivation kinetics were modeled using GInaFiT, a freeware tool to assess microbial survival curves. By the end of the ripening period, the inhibition of L. monocytogenes was significant in treatments with L. sakei 8416 and L. sakei 4413 compared to the control treatment. A 2.2-log reduction of the population of E. coli O157:H7 resulted from the autochthonous starter culture L. sakei 4413 during sausage processing. The use of the autochthonous starter cultures constitutes an additional improvement to the microbial safety by reducing foodborne pathogens. PMID:23793080

  20. Molecular characterization of forest soil based Paenibacillus elgii and optimization of various culture conditions for its improved antimicrobial activity.

    PubMed

    Kumar, S N; Jacob, Jubi; Reshma, U R; Rajesh, R O; Kumar, B S D

    2015-01-01

    Microorganisms have provided a bounty of bioactive secondary metabolites with very exciting biological activities such as antibacterial, antifungal antiviral, and anticancer, etc. The present study aims at the optimization of culture conditions for improved antimicrobial production of Paenibacillus elgii obtained from Wayanad forest of Western Ghats region of Kerala, India. A bacterial strain isolated from the Western Ghats forest soil of Wayanad, Kerala, India was identified as P. elgii by 16S rRNA gene sequencing. P. elgii recorded significant board spectrum activity against all human and plant pathogenic microorganism tested except Candida albicans. It has been well known that even minor variations in the fermentation medium may impact not only the quantity of desired bioactive metabolites but also the general metabolic profile of the producing microorganisms. Thus, further studies were carried out to assess the impact of medium components on the antimicrobial production of P. elgii and to optimize an ideal fermentation medium to maximize its antimicrobial production. Out of three media [nutrient broth (NA), Luria broth (LB) and Trypticase soy broth (TSB)] used for fermentation, TSB medium recorded significant activity. Glucose and meat peptone were identified as the best carbon and nitrogen sources, which significantly affected the antibiotic production when supplemented with TSB medium. Next the effect of various fermentation conditions such as temperature, pH, and incubation time on the production of antimicrobial compounds was studied on TSB + glucose + meat peptone and an initial pH of 7 and a temperature of 30°C for 3 days were found to be optimum for maximum antimicrobial production. The results indicate that medium composition in the fermentation media along with cultural parameters plays a vital role in the enhanced production of antimicrobial substances. PMID:26539188

  1. Molecular characterization of forest soil based Paenibacillus elgii and optimization of various culture conditions for its improved antimicrobial activity

    PubMed Central

    Kumar, S. N.; Jacob, Jubi; Reshma, U. R.; Rajesh, R. O.; Kumar, B. S. D.

    2015-01-01

    Microorganisms have provided a bounty of bioactive secondary metabolites with very exciting biological activities such as antibacterial, antifungal antiviral, and anticancer, etc. The present study aims at the optimization of culture conditions for improved antimicrobial production of Paenibacillus elgii obtained from Wayanad forest of Western Ghats region of Kerala, India. A bacterial strain isolated from the Western Ghats forest soil of Wayanad, Kerala, India was identified as P. elgii by 16S rRNA gene sequencing. P. elgii recorded significant board spectrum activity against all human and plant pathogenic microorganism tested except Candida albicans. It has been well known that even minor variations in the fermentation medium may impact not only the quantity of desired bioactive metabolites but also the general metabolic profile of the producing microorganisms. Thus, further studies were carried out to assess the impact of medium components on the antimicrobial production of P. elgii and to optimize an ideal fermentation medium to maximize its antimicrobial production. Out of three media [nutrient broth (NA), Luria broth (LB) and Trypticase soy broth (TSB)] used for fermentation, TSB medium recorded significant activity. Glucose and meat peptone were identified as the best carbon and nitrogen sources, which significantly affected the antibiotic production when supplemented with TSB medium. Next the effect of various fermentation conditions such as temperature, pH, and incubation time on the production of antimicrobial compounds was studied on TSB + glucose + meat peptone and an initial pH of 7 and a temperature of 30°C for 3 days were found to be optimum for maximum antimicrobial production. The results indicate that medium composition in the fermentation media along with cultural parameters plays a vital role in the enhanced production of antimicrobial substances. PMID:26539188

  2. Optimized ultra performance liquid chromatography tandem high resolution mass spectrometry method for the quantification of paraquat in plasma and urine.

    PubMed

    Lu, Haihua; Yu, Jing; Wu, Linlin; Xing, Jingjing; Wang, Jun; Huang, Peipei; Zhang, Jinsong; Xiao, Hang; Gao, Rong

    2016-08-01

    A simple, sensitive and specific ultra performance liquid chromatography coupled to electrospray tandem high resolution mass spectrometry (UPLC-ESI-HRMS/MS) method has been developed and validated for quantification of paraquat in plasma and urine. The sample preparation was carried out by one-step protein precipitation with acetonitrile. The paraquat was separated with a HILIC column in 10min. Detection was performed using Q Exactive Orbitrap mass spectrometer by Targeted-MS/MS scan mode. Methodological parameters, such as ammonium formate concentration, formic acid concentration, spray voltage, capillary temperature, heater temperature and normalized collision energy were optimized to achieve the highest sensitivity. The calibration curve was linear over the concentration range of LOQ-1000ng/mL. LOD was 0.1 and 0.3ng/mL, LOQ was 0.3 and 0.8ng/mL for urine and plasma, respectively. The intra- and inter-day precisions were <7.97% and 4.78% for plasma and urine. The accuracies were within the range 93.51-100.90%. The plasma and urine matrices had negligible relative matrix effect in this study. This method was successfully applied to determine paraquat concentration in plasma samples with hemoperfusion from 5 suspected paraquat poisoning patients. PMID:27270261

  3. The Optimization of an Ionic Liquid-Based TALSPEAK-Like Process for Rare Earth Ions Separation

    SciTech Connect

    Dai, Sheng; Sun, Xiaoqi; Luo, Huimin

    2014-01-01

    Five new functionalized ionic liquids (FILs), tetraethylammonium di(2-ethylhexyl)phosphate ([N2222][DEHP]), tetraethylammonium bis(2,4,4-trimethylpentyl)phosphinite ([N2222][BTMPP]), tetraethylammonium bis(2,4,4-trimethylpentyl)dithiophosphinite ([N2222][BTMPDTP]), tetrahexylammonium di(2-ethylhexyl)phosphate ([N6666][DEHP]), and tetraoctylammonium di(2-ethylhexyl)phosphate ([N8888][DEHP]) were synthesized and characterized. These ILs along with two previously synthesized FILs ([N4444][DEHP] & [N1888][DEHP]) were used as ionic extractants and investigated for rare earth elements (REEs) separation in 1-decyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide/bis(perfluoroethanesulfonyl)imide ([C10mim][NTf2]/[BETI]). These FILs as ionic extractants were miscible with [C10mim][NTf2]/[BETI]. We herein report the applications of these FILs in an IL-based TALSPEAK-like process and the optimization of the process by adjusting the cations and anions of the FILs, concentrations of the FILs as ionic extractants in the IL phase, concentrations of diethylenetriamine pentaacetic acid (DTPA) in the aqueous phase, and acidities of the aqueous phase.

  4. Comparison of three liquid chromatographic methods with FDA optimized Monier-Williams method for determination of total sulfite in foods.

    PubMed

    Lawrence, J F; Chadha, R K; Ménard, C

    1990-01-01

    Three liquid chromatographic (LC) methods employing amperometric detection were compared with the collaboratively studied FDA optimized Monier-Williams distillation method for the determination of total sulfite in 5 food types. The foods included lemon juice, white wine, instant mashed potatoes, golden raisins, and onion flakes. Two of the LC methods (one employing headspace sampling and the other direct injection) used ion-exchange chromatography with a basic mobile phase (pH about 10.8) and a glassy carbon electrode; the third (employing direct injection) used ion-exclusion chromatography with an acidic mobile phase (pH about 2) and a platinum electrode. All 4 methods produced similar results for the wine, lemon juice, and raisins. Results were different for instant mashed potatoes and onion flakes. The headspace-LC method and direct ion-exclusion LC method, both of which employed an alkaline sample extraction, yielded significantly higher values for sulfite in instant potatoes than did the other 2 methods. A large interfering peak with both direct LC methods prevented quantitation of sulfite in the onion flakes. All methods can detect sulfite as low as about 1 microgram/g in 4 of 5 food types examined. PMID:2312516

  5. Optimization of a 3D Dynamic Culturing System for In Vitro Modeling of Frontotemporal Neurodegeneration-Relevant Pathologic Features

    PubMed Central

    Tunesi, Marta; Fusco, Federica; Fiordaliso, Fabio; Corbelli, Alessandro; Biella, Gloria; Raimondi, Manuela T.

    2016-01-01

    Frontotemporal lobar degeneration (FTLD) is a severe neurodegenerative disorder that is diagnosed with increasing frequency in clinical setting. Currently, no therapy is available and in addition the molecular basis of the disease are far from being elucidated. Consequently, it is of pivotal importance to develop reliable and cost-effective in vitro models for basic research purposes and drug screening. To this respect, recent results in the field of Alzheimer’s disease have suggested that a tridimensional (3D) environment is an added value to better model key pathologic features of the disease. Here, we have tried to add complexity to the 3D cell culturing concept by using a microfluidic bioreactor, where cells are cultured under a continuous flow of medium, thus mimicking the interstitial fluid movement that actually perfuses the body tissues, including the brain. We have implemented this model using a neuronal-like cell line (SH-SY5Y), a widely exploited cell model for neurodegenerative disorders that shows some basic features relevant for FTLD modeling, such as the release of the FTLD-related protein progranulin (PRGN) in specific vesicles (exosomes). We have efficiently seeded the cells on 3D scaffolds, optimized a disease-relevant oxidative stress experiment (by targeting mitochondrial function that is one of the possible FTLD-involved pathological mechanisms) and evaluated cell metabolic activity in dynamic culture in comparison to static conditions, finding that SH-SY5Y cells cultured in 3D scaffold are susceptible to the oxidative damage triggered by a mitochondrial-targeting toxin (6-OHDA) and that the same cells cultured in dynamic conditions kept their basic capacity to secrete PRGN in exosomes once recovered from the bioreactor and plated in standard 2D conditions. We think that a further improvement of our microfluidic system may help in providing a full device where assessing basic FTLD-related features (including PRGN dynamic secretion) that may

  6. Screening of phenylpyruvic acid producers and optimization of culture conditions in bench scale bioreactors.

    PubMed

    Coban, Hasan B; Demirci, Ali; Patterson, Paul H; Elias, Ryan J

    2014-11-01

    Alpha keto acids are deaminated forms of amino acids that have received significant attention as feed and food additives in the agriculture and medical industries. To date, their production has been commonly performed at shake-flask scale with low product concentrations. In this study, production of phenylpyruvic acid (PPA), which is the alpha keto acid of phenylalanine was investigated. First, various microorganisms were screened to select the most efficient producer. Thereafter, growth parameters (temperature, pH, and aeration) were optimized in bench scale bioreactors to maximize both PPA and biomass concentration in bench scale bioreactors, using response surface methodology. Among the four different microorganisms evaluated, Proteus vulgaris was the most productive strain for PPA production. Optimum temperature, pH, and aeration conditions were determined as 34.5 °C, 5.12, and 0.5 vvm for PPA production, whereas 36.9 °C, pH 6.87, and 0.96 vvm for the biomass production. Under these optimum conditions, PPA concentration was enhanced to 1,054 mg/L, which was almost three times higher than shake-flask fermentation concentrations. Moreover, P. vulgaris biomass was produced at 3.25 g/L under optimum conditions. Overall, this study demonstrated that optimization of growth parameters improved PPA production in 1-L working volume bench-scale bioreactors compared to previous studies in the literature and was a first step to scale up the production to industrial production. PMID:24861313

  7. Optimization of an accelerated solvent extraction dispersive liquid-liquid microextraction method for the separation and determination of essential oil from Ligusticum chuanxiong Hort by gas chromatography with mass spectrometry.

    PubMed

    Yang, Guang; Sun, Qiushi; Hu, Zhiyan; Liu, Hua; Zhou, Tingting; Fan, Guorong

    2015-10-01

    In this study, an accelerated solvent extraction dispersive liquid-liquid microextraction coupled with gas chromatography and mass spectrometry was established and employed for the extraction, concentration and analysis of essential oil constituents from Ligusticum chuanxiong Hort. Response surface methodology was performed to optimize the key parameters in accelerated solvent extraction on the extraction efficiency, and key parameters in dispersive liquid-liquid microextraction were discussed as well. Two representative constituents in Ligusticum chuanxiong Hort, (Z)-ligustilide and n-butylphthalide, were quantitatively analyzed. It was shown that the qualitative result of the accelerated solvent extraction dispersive liquid-liquid microextraction approach was in good agreement with that of hydro-distillation, whereas the proposed approach took far less extraction time (30 min), consumed less plant material (usually <1 g, 0.01 g for this study) and solvent (<20 mL) than the conventional system. To sum up, the proposed method could be recommended as a new approach in the extraction and analysis of essential oil. PMID:26304788

  8. Biological upgrading of coal liquids. Final report

    SciTech Connect

    1995-02-01

    A large number of bacterial enrichments have been developed for their ability to utilize nitrogen and sulfur in coal liquids and the model compound naphtha. These bacteria include the original aerobic bacteria isolated from natural sources which utilize heteroatom compounds in the presence of rich media, aerobic nitrogen-utilizing bacteria and denitrifying bacteria. The most promising isolates include Mix M, a mixture of aerobic bacteria; ER15, a pyridine-utilizing isolate; ERI6, an aniline-utilizing isolate and a sewage sludge isolate. Culture optimization experiments have led to these bacteria being able to remove up to 40 percent of the sulfur and nitrogen in naphtha and coal liquids in batch culture. Continuous culture experiments showed that the coal liquid is too toxic to the bacteria to be fed without dilution or extraction. Thus either semi-batch operation must be employed with continuous gas sparging into a batch of liquid, or acid extracted coal liquid must be employed in continuous reactor studies with continuous liquid flow. Isolate EN-1, a chemical waste isolate, removed 27 percent of the sulfur and 19 percent of the nitrogen in fed batch experiments. Isolate ERI5 removed 28 percent of the nitrogen in coal liquid in 10 days in fed batch culture. The sewage sludge isolate removed 22.5 percent of the sulfur and 6.5 percent of the nitrogen from extracted coal liquid in continuous culture, and Mix M removed 17.5 percent of the nitrogen from medium containing extracted coal liquid. An economic evaluation has been prepared for the removal of nitrogen heteroatom compounds from Wilsonville coal liquid using acid extraction followed by fermentation. Similar technology can be developed for sulfur removal. The evaluation indicates that the nitrogen heteroatom compounds can be removed for $0.09/lb of coal liquid treated.

  9. Heterogeneity in liquid shaken cultures of Aspergillus niger inoculated with melanised conidia or conidia of pigmentation mutants

    PubMed Central

    van Veluw, G.J.; Teertstra, W.R.; de Bekker, C.; Vinck, A.; van Beek, N.; Muller, W.H.; Arentshorst, M.; van der Mei, H.C.; Ram, A.F.J.; Dijksterhuis, J.; Wösten, H.A.B.

    2013-01-01

    Black pigmented conidia of Aspergillus niger give rise to micro-colonies when incubated in liquid shaken medium. These micro-colonies are heterogeneous with respect to gene expression and size. We here studied the biophysical properties of the conidia of a control strain and of strains in which the fwnA, olvA or brnA gene is inactivated. These strains form fawn-, olive-, and brown-coloured conidia, respectively. The ΔolvA strain produced larger conidia (3.8 μm) when compared to the other strains (3.2–3.3 μm). Moreover, the conidia of the ΔolvA strain were highly hydrophilic, whereas those of the other strains were hydrophobic. The zeta potential of the ΔolvA conidia in medium was also more negative when compared to the control strain. This was accompanied by the near absence of a rodlet layer of hydrophobins. Using the Complex Object Parametric Analyzer and Sorter it was shown that the ratio of individual hyphae and micro-colonies in liquid shaken cultures of the deletion strains was lower when compared to the control strain. The average size of the micro-colonies of the control strain was also smaller (628 μm) than that of the deletion strains (790–858 μm). The size distribution of the micro-colonies of the ΔfwnA strain was normally distributed, while that of the other strains could be explained by assuming a population of small and a population of large micro-colonies. In the last set of experiments it was shown that relative expression levels of gpdA, and AmyR and XlnR regulated genes correlate in individual hyphae at the periphery of micro-colonies. This indicates the existence of transcriptionally and translationally highly active and lowly active hyphae as was previously shown in macro-colonies. However, the existence of distinct populations of hyphae with high and low transcriptional and translational activity seems to be less robust when compared to macro-colonies grown on solid medium. PMID:23449476

  10. Effects of sodium sulfate on the freshwater microalga Chlamydomonas moewusii: implications for the optimization of algal culture media.

    PubMed

    Mera, Roi; Torres, Enrique; Abalde, Julio

    2016-02-01

    The study of the microalgal growth kinetics is an indispensable tool in all fields of phycology. Knowing the optimal nutrient concentration is an important issue that will help to develop efficient growth systems for these microorganisms. Although nitrogen and phosphorus are well studied for this purpose, sulfur seems to be less investigated. Sulfate is a primary sulfur source used by microalgae; moreover, the concentration of this compound is increasing in freshwater systems due to pollution. The aim of this study was to investigate the effects of different sodium sulfate concentrations in the culture medium on growth and growth kinetics of the freshwater microalga Chlamydomonas moewusii. Production of biomass, chl content, kinetic equations, and a mathematical model that describe the microalgal growth in relation with the concentration of sodium sulfate were obtained. The lowest concentration of sodium sulfate allowing optimal growth was 0.1 mM. Concentrations higher than 3 mM generated a toxic effect. This work demonstrates that this toxic effect was not directly due to the excess of sulfate ion but by the elevation of the ionic strength. An inhibition model was successfully used to simulate the relationship between specific growth rate and sodium sulfate in this microalga. PMID:26987090

  11. Use of prototype automated blood culture system and gas-liquid chromatography for the analysis of continuous ambulatory peritoneal dialysis associated infection.

    PubMed Central

    Catchpole, C R; Macrae, F; Brown, J D; Palmer, M; Healing, D E; Richards, N T; Elliott, T S

    1997-01-01

    AIMS: (1) To compare the recovery of organisms from continuous ambulatory peritoneal dialysis (CAPD) effluent fluid obtained from patients with clinical evidence of peritonitis, with an automated system (AS) and the Septichek blood culture system; (2) to evaluate the times to detection of organisms with the two systems; (3) to identify anaerobes from CAPD samples by extended anaerobic culture and gas-liquid chromatography (GLC). METHODS: 168 CAPD effluent fluid samples were studied, representing 157 episodes of peritonitis in 97 patients. CAPD samples were inoculated into two AS bottles-one anaerobic, one aerobic-and a Septichek bottle; samples were also examined for cell count, Gram stain, and direct culture. Culture bottles were then subcultured onto various media, and any organisms isolated were identified. After routine culture, GLC was performed on culture fluid in the anaerobic AS and Septichek bottles. When volatile fatty acids were detected, the broths were cultured anaerobically on specialised medium for a further five days. RESULTS: 147 organisms were isolated from the 168 samples: 96 (57%) yielded growth of significant organisms by direct culture, as compared to 129 (76.8%) by both AS and Septichek. There was no significant difference in isolation rates between AS and Septichek, but time to detection was more rapid with the AS system (p < 0.002). GLC showed volatile fatty acid in 15 specimens; of these, 14 subsequently grew anaerobic organisms. CONCLUSIONS: AS was comparable to Septichek for numbers of isolations. Speed to detection was faster with the AS, which may be an advantage in management of patients with CAPD peritonitis. GLC showed anaerobes in several cases which would not have been detected without prolonged anaerobic culture; thus anaerobic cultures are recommended for patients who are unresponsive to antimicrobials or who have evidence of bowel perforation. PMID:9155676

  12. Isolation, culture optimization and physico-chemical characterization of laccase enzyme from Pleurotus fossulatus.

    PubMed

    Chowdhury, P; Hari, R; Chakraborty, B; Mandal, B; Naskar, S; Das, Nirmalendu

    2014-01-15

    Pleurotus fossulatus (Cooke) Sace is member of oyster mushroom can produced extracellular laccase (benzenediol: oxygen oxidoreductase; EC 1.10.3.2) in submerged fermentation. To analyze the optimum production for laccase P. fossulatus was cultured both in stationary and shaking condition in different media. Partial purification of laccase was done after 0-80% ammonium sulphate precipitation, followed by DEAE (Diethylaminoethyl) Sephadex (A-50) anion exchange chromatography. Potato-sucrose peptone (PSP) medium and Potato-dextrose (PD) medium showed highest laccase production in shaking and stationary conditions, respectively. Though the time required for optimum laccase production in stationary condition was much more than the shaking condition but the amount of laccase was about 2.75t greater in former condition. The laccase produced in stationary condition was more stable than the enzyme produced in shaking condition. The partially purified enzyme showed highest affinity towards o-dianisidine than guaiacol and ABTS (2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) as evidenced by their K(m). The physico-chemical properties of the laccase suggested the significance of this enzyme in industrial applications. PMID:24783799

  13. Multiobjective optimization of the operation of a liquid-solid circulating fluidized bed ion-exchange system for continuous protein recovery.

    PubMed

    Mazumder, Jahirul; Zhu, Jingxu; Bassi, Amarjeet S; Ray, Ajay K

    2009-08-01

    Like most real-life processes, the operation of liquid-solid circulating fluidized bed (LSCFB) system for continuous protein recovery is associated with several objectives such as maximization of production rate and recovery of protein, and minimization of amount solid ion-exchange resin requirement, all of which need to be optimized simultaneously. In this article, multiobjective optimization of a LSCFB system for continuous protein recovery was carried out using an experimentally validated mathematical model to find the scope for further improvements in its operation. Elitist non-dominated sorting genetic algorithm with its jumping gene adaptation was used to solve a number of bi- and tri-objective function optimization problems. The optimization resulted in Pareto-optimal solution, which provides a broad range of non-dominated solutions due to conflicting behavior of the operating parameters on the system performance indicators. Significant improvements were achieved, for example, the production rate at optimal operation increased by 33%, using 11% less solid compared to reported experimental results for the same recovery level. The effects of operating variables on the optimal solutions are discussed in detail. The multiobjective optimization study reported here can be easily extended for the improvement of LSCFB system for other applications. PMID:19378264

  14. Optimization of culture media for large-scale lutein production by heterotrophic Chlorella vulgaris.

    PubMed

    Jeon, Jin Young; Kwon, Ji-Sue; Kang, Soon Tae; Kim, Bo-Ra; Jung, Yuchul; Han, Jae Gap; Park, Joon Hyun; Hwang, Jae Kwan

    2014-01-01

    Lutein is a carotenoid with a purported role in protecting eyes from oxidative stress, particularly the high-energy photons of blue light. Statistical optimization was performed to growth media that supports a higher production of lutein by heterotrophically cultivated Chlorella vulgaris. The effect of media composition of C. vulgaris on lutein was examined using fractional factorial design (FFD) and central composite design (CCD). The results indicated that the presence of magnesium sulfate, EDTA-2Na, and trace metal solution significantly affected lutein production. The optimum concentrations for lutein production were found to be 0.34 g/L, 0.06 g/L, and 0.4 mL/L for MgSO4 ·7H2 O, EDTA-2Na, and trace metal solution, respectively. These values were validated using a 5-L jar fermenter. Lutein concentration was increased by almost 80% (139.64 ± 12.88 mg/L to 252.75 ± 12.92 mg/L) after 4 days. Moreover, the lutein concentration was not reduced as the cultivation was scaled up to 25,000 L (260.55 ± 3.23 mg/L) and 240,000 L (263.13 ± 2.72 mg/L). These observations suggest C. vulgaris as a potential lutein source. PMID:24550199

  15. Utility of four strains of white-rot fungi for the detoxification of 2,4,6-trinitrotoluene in liquid culture

    SciTech Connect

    Donnelly, K.C.; Chen, J.C.; Huebner, H.J.; Brown, K.W.; Autenrieth, R.L.; Bonner, J.S.

    1997-06-01

    The purpose of this study was to investigate the potential of four different strains of white-rot fungi (Phanerochaete chrysosporium, Phanerochaete sordida, Phlebia brevispora, and Cyathus stercoreus) to degrade 2,4,6-trinitrotoluene (TNT) in liquid medium. Loss of TNT from the culture medium was determined using high-performance liquid chromatography (HPLC), while the mutagenicity of the medium residues were evaluated using the Salmonella/microsome bioassay. The data indicate that within 21 d of incubation, all fungi were able to reduce the TNT concentration in the liquid medium to below detection limits. In this study, P. sordida showed a relatively high growth rate and the fastest rate of TNT degradation. The fungal treatment also produced a significant reduction of TNT mutagenicity. Treatment with C. stercoreus, P. brevispora, P. sordida, and P. chrysosporium resulted in the elimination of 94%, 90%, 87%, and 67% of the initial TNT-amended medium mutagenicity, respectively. The data also demonstrate that during incubation, TNT was eliminated from the culture medium two to eight times faster than the reduction in mutagenic potential. These results suggest that TNT disappearance alone cannot be used as the sole criterion in TNT remediation. Chemical analysis revealed that the major metabolites in the initial transformation of TNT were the monoamino-dinitrotoluenes, which were also degraded by the selected white-rot fungi. The study demonstrated that the white-rot fungi are capable of metabolizing and detoxifying TNT under aerobic conditions in nonligninolytic liquid medium.

  16. Characterization of Nipah virus infection in a model of human airway epithelial cells cultured at an air-liquid interface.

    PubMed

    Escaffre, Olivier; Borisevich, Viktoriya; Vergara, Leoncio A; Wen, Julie W; Long, Dan; Rockx, Barry

    2016-05-01

    Nipah virus (NiV) is an emerging paramyxovirus that can cause lethal respiratory illness in humans. No vaccine/therapeutic is currently licensed for humans. Human-to-human transmission was previously reported during outbreaks and NiV could be isolated from respiratory secretions, but the proportion of cases in Malaysia exhibiting respiratory symptoms was significantly lower than that in Bangladesh. Previously, we showed that primary human basal respiratory epithelial cells are susceptible to both NiV-Malaysia (M) and -Bangladesh (B) strains causing robust pro-inflammatory responses. However, the cells of the human respiratory epithelium that NiV targets are unknown and their role in NiV transmission and NiV-related lung pathogenesis is still poorly understood. Here, we characterized NiV infection of the human respiratory epithelium using a model of the human tracheal/bronchial (B-ALI) and small airway (S-ALI) epithelium cultured at an air-liquid interface. We show that NiV-M and NiV-B infect ciliated and secretory cells in B/S-ALI, and that infection of S-ALI, but not B-ALI, results in disruption of the epithelium integrity and host responses recruiting human immune cells. Interestingly, NiV-B replicated more efficiently in B-ALI than did NiV-M. These results suggest that the human tracheal/bronchial epithelium is favourable to NiV replication and shedding, while inducing a limited host response. Our data suggest that the small airways epithelium is prone to inflammation and lesions as well as constituting a point of virus entry into the pulmonary vasculature. The use of relevant models of the human respiratory tract, such as B/S-ALI, is critical for understanding NiV-related lung pathogenesis and identifying the underlying mechanisms allowing human-to-human transmission. PMID:26932515

  17. Development and validation of a liquid medium (M7H9C) for routine culture of Mycobacterium avium subsp. paratuberculosis to replace modified Bactec 12B medium.

    PubMed

    Whittington, Richard J; Whittington, Ann-Michele; Waldron, Anna; Begg, Douglas J; de Silva, Kumi; Purdie, Auriol C; Plain, Karren M

    2013-12-01

    Liquid culture of Mycobacterium avium subsp. paratuberculosis from clinical samples, such as feces, is the most sensitive antemortem test for the diagnosis of Johne's disease in ruminants. In Australia, New Zealand, the United States, and some other countries, the Bactec 460 system with modified Bactec 12B medium (Becton, Dickinson) has been the most commonly used liquid culture system, but it was discontinued in 2012. In this study, a new liquid culture medium, M7H9C, was developed. It consists of a Middlebrook 7H9 medium base with added Casitone, albumin, dextrose, catalase, egg yolk, mycobactin J, and a cocktail of antibiotics. We found that polyoxyethylene stearate (POES) was not essential for the cultivation of M. avium subsp. paratuberculosis in either the Bactec 12B or the M7H9C medium. The limit of detection determined using pure cultures of the C and S strains of M. avium subsp. paratuberculosis was 7 bacilli per 50 μl inoculum in the two media. The new medium was validated using 784 fecal and tissue samples from sheep and cattle, >25% of which contained viable M. avium subsp. paratuberculosis. Discrepant results for the clinical samples between the two media were mostly associated with samples that contained <10 viable bacilli per gram, but these results were relatively uncommon, and the performances of the two media were not significantly different. M7H9C medium was less than half the cost of the Bactec 12B medium and did not require regular examination during incubation, but a confirmatory IS900 PCR test had to be performed on every culture after the predetermined incubation period. PMID:24048541

  18. Development and Validation of a Liquid Medium (M7H9C) for Routine Culture of Mycobacterium avium subsp. paratuberculosis To Replace Modified Bactec 12B Medium

    PubMed Central

    Whittington, Ann-Michele; Waldron, Anna; Begg, Douglas J.; de Silva, Kumi; Purdie, Auriol C.; Plain, Karren M.

    2013-01-01

    Liquid culture of Mycobacterium avium subsp. paratuberculosis from clinical samples, such as feces, is the most sensitive antemortem test for the diagnosis of Johne's disease in ruminants. In Australia, New Zealand, the United States, and some other countries, the Bactec 460 system with modified Bactec 12B medium (Becton, Dickinson) has been the most commonly used liquid culture system, but it was discontinued in 2012. In this study, a new liquid culture medium, M7H9C, was developed. It consists of a Middlebrook 7H9 medium base with added Casitone, albumin, dextrose, catalase, egg yolk, mycobactin J, and a cocktail of antibiotics. We found that polyoxyethylene stearate (POES) was not essential for the cultivation of M. avium subsp. paratuberculosis in either the Bactec 12B or the M7H9C medium. The limit of detection determined using pure cultures of the C and S strains of M. avium subsp. paratuberculosis was 7 bacilli per 50 μl inoculum in the two media. The new medium was validated using 784 fecal and tissue samples from sheep and cattle, >25% of which contained viable M. avium subsp. paratuberculosis. Discrepant results for the clinical samples between the two media were mostly associated with samples that contained <10 viable bacilli per gram, but these results were relatively uncommon, and the performances of the two media were not significantly different. M7H9C medium was less than half the cost of the Bactec 12B medium and did not require regular examination during incubation, but a confirmatory IS900 PCR test had to be performed on every culture after the predetermined incubation period. PMID:24048541

  19. Combination of culture, antigen and toxin detection, and cytotoxin neutralization assay for optimal Clostridium difficile diagnostic testing

    PubMed Central

    Alfa, Michelle J; Sepehri, Shadi

    2013-01-01

    BACKGROUND: There has been a growing interest in developing an appropriate laboratory diagnostic algorithm for Clostridium difficile, mainly as a result of increases in both the number and severity of cases of C difficile infection in the past decade. A C difficile diagnostic algorithm is necessary because diagnostic kits, mostly for the detection of toxins A and B or glutamate dehydrogenase (GDH) antigen, are not sufficient as stand-alone assays for optimal diagnosis of C difficile infection. In addition, conventional reference methods for C difficile detection (eg, toxigenic culture and cytotoxin neutralization [CTN] assays) are not routinely practiced in diagnostic laboratory settings. OBJECTIVE: To review the four-step algorithm used at Diagnostic Services of Manitoba sites for the laboratory diagnosis of toxigenic C difficile. RESULT: One year of retrospective C difficile data using the proposed algorithm was reported. Of 5695 stool samples tested, 9.1% (n=517) had toxigenic C difficile. Sixty per cent (310 of 517) of toxigenic C difficile stools were detected following the first two steps of the algorithm. CTN confirmation of GDH-positive, toxin A- and B-negative assays resulted in detection of an additional 37.7% (198 of 517) of toxigenic C difficile. Culture of the third specimen, from patients who had two previous negative specimens, detected an additional 2.32% (12 of 517) of toxigenic C difficile samples. DISCUSSION: Using GDH antigen as the screening and toxin A and B as confirmatory test for C difficile, 85% of specimens were reported negative or positive within 4 h. Without CTN confirmation for GDH antigen and toxin A and B discordant results, 37% (195 of 517) of toxigenic C difficile stools would have been missed. Following the algorithm, culture was needed for only 2.72% of all specimens submitted for C difficile testing. CONCLUSION: The overview of the data illustrated the significance of each stage of this four-step C difficile algorithm and

  20. Screening and optimization of low-cost medium for Pseudomonas putida Rs-198 culture using RSM

    PubMed Central

    Peng, Yanjie; He, Yanhui; Wu, Zhansheng; Lu, Jianjiang; Li, Chun

    2014-01-01

    The plant growth-promoting rhizobacterial strain Pseudomonas putida Rs-198 was isolated from salinized soils from Xinjiang Province. We optimized the composition of the low-cost medium of P. putida Rs-198 based on its bacterial concentration, as well as its phosphate-dissolving and indole acetic acid (IAA)-producing capabilities using the response surface methodology (RSM), and a mathematical model was developed to show the effect of each medium component and its interactions on phosphate dissolution and IAA production. The model predicted a maximum phosphate concentration in medium containing 63.23 mg/L inorganic phosphate with 49.22 g/L corn flour, 14.63 g/L soybean meal, 2.03 g/L K2HPO4, 0.19 g/L MnSO4 and 5.00 g/L NaCl. The maximum IAA concentration (18.73 mg/L) was predicted in medium containing 52.41 g/L corn flour, 15.82 g/L soybean meal, 2.40 g/L K2HPO4, 0.17 g/L MnSO4 and 5.00 g/L NaCl. These predicted values were also verified through experiments, with a cell density of 1013 cfu/mL, phosphate dissolution of 64.33 mg/L, and IAA concentration of 18.08 mg/L. The excellent correlation between predicted and measured values of each model justifies the validity of both the response models. The study aims to provide a basis for industrialized fermentation using P. putida Rs-198. PMID:25763026

  1. Optimization of cultural conditions for biosurfactant production by Pleurotus djamor in solid state fermentation.

    PubMed

    Velioglu, Zulfiye; Ozturk Urek, Raziye

    2015-11-01

    Being eco-friendly, less toxic, more biodegradable and biocompatible, biological surfactants have higher activity and stability compared to synthetic ones. In spite of the fact that there are abundant benefits of biosurfactants over the synthetic congeners, the problem related with the economical and large scale production proceeds. The utilization of several industrial wastes in the production media as substrates reduces the production cost. This current study aims optimization of biosurfactant production conditions by Pleurotus djamor, grown on sunflower seed shell, grape wastes or potato peels as renewable cheap substrates in solid state fermentation. After determination of the best substrate for biosurfactant production, we indicate optimum size and amount of solid substrate, volume of medium, temperature, pH and Fe(2+) concentrations on biosurfactant production. In optimum conditions, by reducing water surface tension to 28.82 ± 0.3 mN/m and having oil displacement diameter of 3.9 ± 0.3 cm, 10.205 ± 0.5 g/l biosurfactant was produced. Moreover, chemical composition of biosurfactant produced in optimum condition was determined by FTIR. Lastly, laboratory's large-scale production was carried out in optimum conditions in a tray bioreactor designed by us and 8.9 ± 0.5 g/l biosurfactant was produced with a significant surface activity (37.74 ± 0.3 mN/m). With its economical suggestions and applicability of laboratory's large-scale production, this work indicates the possibility of using low cost agro-industrial wastes as renewable substrates for biosurfactant production. Therefore, using economically produced biosurfactant will reduce cost in several applications such as bioremediation, oil recovery and biodegradation of toxic chemicals. PMID:25865657

  2. Optimization of a liquid chromatographic method for determination of malachite green and its metabolites in fish tissues

    USGS Publications Warehouse

    Plakas, S.M.; ELSaid, K.R.; Stehly, G.R.; Roybal, J.E.

    1995-01-01

    A liquid chromatographic (LC) method was adapted and optimized for the determination of malachite green and its metabolites in fish plasma and muscle, Residues in plasma were extracted with acetonitrile, the extract was evaporated to dryness, and residues were resolubilized for LC analysis, Residues in muscle were extracted with an acetonitrile-acetate buffer mixture, reextracted with acetonitrile, and partitioned into methylene chloride with final cleanup on alumina and propylsulfonic acid solid-phase extraction columns, Residue levels were determined by using an LC cyano column with a PbO2 postcolumn and visible detection (618 nm). Overall mean recoveries of parent malachite green (MG-C) and its major metabolite, leucomalachite green (MG-L), from plasma were 93 and 87%, respectively, at fortification levels ranging from 25 to 250 ppb, Overall mean recoveries of MG-C and MG-L from muscle were 85 and 95%, respectively, at fortification levels ranging from 5 to 100 ppb, Relative standard deviations (RSDs) of recoveries at all fortification levels ranged from 3.9 to 7.0% for plasma and from 2.1 to 5.2% for muscle, The method was applied to incurred residues in tissues sampled from catfish after waterborne exposure to [C-14]MG-C. Mean recoveries of total radioactive residues in plasma and muscle throughout the extraction and cleanup process were 88 and 87%, respectively, and corresponding RSDs for MG-C and MG-L were in the same range as those for fortified tissues, MG-L, was confirmed as the major metabolite of MG-C in catfish.

  3. Optimization of heat and mass transfers in counterflow corrugated-plate liquid-gas exchangers used in a greenhouse dehumidifier

    NASA Astrophysics Data System (ADS)

    Bentounes, N.; Jaffrin, A.

    1998-09-01

    Heat and mass transfers occuring in a counterflow direct contact liquid-gas exchanger determine the performance of a new greenhouse air dehumidifier designed at INRA. This prototype uses triethylene glycol (TEG) as the desiccant fluid which extracts water vapor from the air. The regeneration of the TEG desiccant fluid is then performed by direct contact with combustion gas from a high efficiency boiler equipped with a condensor. The heat and mass transfers between the thin film of diluted TEG and the hot gas were simulated by a model which uses correlation formula from the literature specifically relevant to the present cross-corrugated plates geometry. A simple set of analytical solutions is first derived, which explains why some possible processes can clearly be far from optimal. Then, more exact numerical calculations confirm that some undesirable water recondensations on the upper part of the exchanger were limiting the performance of this prototype. More suitable conditions were defined for the process, which lead to a new design of the apparatus. In this second prototype, a gas-gas exchanger provides dryer and cooler gas to the basis of the regenerators, while a warmer TEG is fed on the top. A whole range of operating conditions was experimented and measured parameters were compared with numerical simulations of this new configuration: recondensation did not occur any more. As a consequence, this second prototype was able to concentrate the desiccant fluid at the desired rate of 20 kg H_{2O}/hour, under temperature and humidity conditions which correspond to the dehumidification of a 1000 m2 greenhouse heated at night during the winter season.

  4. Application of conjoint liquid chromatography with monolithic disks for the simultaneous determination of immunoglobulin G and other proteins present in a cell culture medium.

    PubMed

    Ralla, Kathrin; Anton, Fabienne; Scheper, Thomas; Kasper, Cornelia

    2009-03-27

    The aim of this study was to develop a chromatographic method, as a substitute for enzyme-linked immunosorbent assays, for the rapid and simultaneous detection of IgG, insulin, and transferrin present in a cell culture medium. Conjoint liquid chromatography (conjoint LC) using monolithic disks was applied for this purpose. An anion-exchange disk was combined with a Protein G affinity disk in a preparative HPLC system. IgG bound to the Protein G disk, whereas transferrin and insulin were captured on the quaternary ammonium (QA) disk. Using this method, it was possible to simultaneously determine the concentrations of IgG, transferrin, and insulin in the cell culture medium. Thus, conjoint LC could be used for the rapid and simultaneous detection of different proteins present in a cell culture medium. PMID:18945433

  5. Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: The effects of visible-light irradiation and the liquid mixing process

    SciTech Connect

    Mokhtari, Narges; Daneshpajouh, Shahram; Seyedbagheri, Seyedali; Atashdehghan, Reza; Abdi, Khosro; Sarkar, Saeed; Minaian, Sara; Shahverdi, Hamid Reza; Shahverdi, Ahmad Reza

    2009-06-03

    This study has investigated different visible-light irradiation's effect on the formation of silver nanoparticles from silver nitrate using the culture supernatant of Klebsiella pneumonia. Our study shows that visible-light emission can significantly prompt the synthesis of silver nanoparticles. Also, the study experimentally investigated the liquid mixing process effect on silver nanoparticle synthesis by visible-light irradiation. This study successfully synthesized uniformly dispersed silver nanoparticles with a uniform size and shape in the range of 1-6 nm with an average size of 3 nm. Furthermore, the study investigated the mechanism of the reduction of silver ions by culture supernatant of K. pneumonia, and used X-ray diffraction to characterize silver chloride as an intermediate compound. Silver chloride was prepared synthetically and used as a substrate for the synthesis of silver nanoparticles by culture supernatant of K. pneumonia. The silver nanoparticles have been prepared from silver chloride during this investigation for the first time.

  6. Optimization of the GAFF force field to describe liquid crystal molecules: the path to a dramatic improvement in transition temperature predictions.

    PubMed

    Boyd, Nicola Jane; Wilson, Mark R

    2015-10-14

    The physical properties and phase transitions of thermotropic liquid crystals are highly sensitive to small changes in chemical structure. However, these changes are challenging to model, as both the phase diagram and mesophase properties obtained from fully atomistic simulations are strongly dependent on the force field model employed, and the current generation of chemical force fields has not proved accurate enough to provide reliable predictions of transition temperatures for many liquid crystals. This paper presents a strategy for improving the nematic clearing point, TNI, in atomistic simulations, by systematic optimization of the General Amber Force Field (GAFF) for key mesogenic fragments. We show that with careful optimization of the parameters describing a series of liquid crystal fragment molecules, it is possible to transfer these parameters to larger liquid crystal molecules and make accurate predictions for nematic mesophase formation. This new force field, GAFF-LCFF, is used to predict the nematic-isotropic clearing point to within 5 °C for the nematogen 1,3-benzenedicarboxylic acid,1,3-bis(4-butylphenyl)ester, an improvement of 60 °C over the standard GAFF force field. PMID:26343382

  7. Self-Regulation among Youth in Four Western Cultures: Is There an Adolescence-Specific Structure of the Selection-Optimization-Compensation (SOC) Model?

    ERIC Educational Resources Information Center

    Gestsdottir, Steinunn; Geldhof, G. John; Paus, Tomáš; Freund, Alexandra M.; Adalbjarnardottir, Sigrun; Lerner, Jacqueline V.; Lerner, Richard M.

    2015-01-01

    We address how to conceptualize and measure intentional self-regulation (ISR) among adolescents from four cultures by assessing whether ISR (conceptualized by the SOC model of Selection, Optimization, and Compensation) is represented by three factors (as with adult samples) or as one "adolescence-specific" factor. A total of 4,057 14-…

  8. The role of goal representations, cultural identity, and dispositional optimism in the depressive experiences of American Indian youth from a Northern Plains tribe.

    PubMed

    Tyser, Jason; Scott, Walter D; Readdy, Tucker; McCrea, Sean M

    2014-03-01

    American Indian researchers and scholars have emphasized the importance of identifying variables that promote resilience and protect against the development of psychopathology in American Indian youth. The present study examined the role of self-regulation, specifically goal characteristics (i.e., goal self-efficacy, goal specificity, intrinsic vs. extrinsic motivation, and goal conflict) and dispositional optimism, as well as cultural identity and self-reported academic grades in the depressive experiences of American Indian youth from a North American plains tribe. One hundred and sixty-four participants (53% female) completed measures of goal representations, cultural identity, dispositional optimism, academic performance, and depressive symptoms. Results supported a model in which higher goal self-efficacy, American Indian cultural identity, grade point average, and dispositional optimism each significantly predicted fewer depressive symptoms. Moreover, grade point average and goal self-efficacy had both direct and indirect (through dispositional optimism) relationships with depressive symptoms. Our findings underscore the importance of cognitive self-regulatory processes and cultural identity in the depressive experiences for these American Indian youth and may have implications for youth interventions attempting to increase resiliency and decrease risk for depressive symptoms. PMID:24150540

  9. Statistical optimization of influenza H1N1 production from batch cultures of suspension Vero cells (sVero).

    PubMed

    Paillet, Cristian; Forno, Guillermina; Soldano, Nicolas; Kratje, Ricardo; Etcheverrigaray, Marina

    2011-09-22

    Efficient vaccine production requires the growth of large quantities of virus produced with high yield from a safe host system. Human influenza vaccines are produced in embryonated chicken eggs. However, over the last decade many efforts have allowed the establishment of cell culture-derived vaccines. We generated a Vero cell line adapted to grow in suspension (sVero) in a serum-free medium and evaluated it for its potential as host cell for influenza vaccine production. Initially we studied the capacity of sVero cells to grow in the presence of incremental concentrations of trypsin. In comparison with adherent Vero cells (aVero), we found that sVero cells maintain their growth kinetics even with a three-fold increase in trypsin concentration. The influence of the conditions of infection on the yield of H1N1 produced in serum-free suspension cultures of sVero cells was investigated by a 2(2) full factorial experiment with center point. Each experiment tested the influence of the multiplicity of infection (m.o.i.) and trypsin concentration, on production yields at two levels, in four possible combinations of levels and conditions, plus a further combination in which each condition was set in the middle of its extreme levels. On the basis of software analysis, a combination of m.o.i. of 0.0066TCID(50%)/cell and trypsin concentration of 5μg/1.0×10(6) cells with a desirability of 0.737 was selected as the optimized condition for H1N1 production in sVero cells. Our results show the importance of proper selection of infection conditions for H1N1 production on sVero cells in serum-free medium. PMID:21756959

  10. Ultra-high performance liquid chromatographic determination of levofloxacin in human plasma and prostate tissue with use of experimental design optimization procedures.

    PubMed

    Szerkus, O; Jacyna, J; Wiczling, P; Gibas, A; Sieczkowski, M; Siluk, D; Matuszewski, M; Kaliszan, R; Markuszewski, M J

    2016-09-01

    Fluoroquinolones are considered as gold standard for the prevention of bacterial infections after transrectal ultrasound guided prostate biopsy. However, recent studies reported that fluoroquinolone- resistant bacterial strains are responsible for gradually increasing number of infections after transrectal prostate biopsy. In daily clinical practice, antibacterial efficacy is evaluated only in vitro, by measuring the reaction of bacteria with an antimicrobial agent in culture media (i.e. calculation of minimal inhibitory concentration). Such approach, however, has no relation to the treated tissue characteristics and might be highly misleading. Thus, the objective of this study was to develop, with the use of Design of Experiments approach, a reliable, specific and sensitive ultra-high performance liquid chromatography- diode array detection method for the quantitative analysis of levofloxacin in plasma and prostate tissue samples obtained from patients undergoing prostate biopsy. Moreover, correlation study between concentrations observed in plasma samples vs prostatic tissue samples was performed, resulting in better understanding, evaluation and optimization of the fluoroquinolone-based antimicrobial prophylaxis during transrectal ultrasound guided prostate biopsy. Box-Behnken design was employed to optimize chromatographic conditions of the isocratic elution program in order to obtain desirable retention time, peak symmetry and resolution of levofloxacine and ciprofloxacine (internal standard) peaks. Fractional Factorial design 2(4-1) with four center points was used for screening of significant factors affecting levofloxacin extraction from the prostatic tissue. Due to the limited number of tissue samples the prostatic sample preparation procedure was further optimized using Central Composite design. Design of Experiments approach was also utilized for evaluation of parameter robustness. The method was found linear over the range of 0.030-10μg/mL for human

  11. The "push-to-low" approach for optimization of high-density perfusion cultures of animal cells.

    PubMed

    Konstantinov, Konstantin; Goudar, Chetan; Ng, Maria; Meneses, Renato; Thrift, John; Chuppa, Sandy; Matanguihan, Cary; Michaels, Jim; Naveh, David

    2006-01-01

    High product titer is considered a strategic advantage of fed-batch over perfusion cultivation mode. The titer difference has been experimentally demonstrated and reported in the literature. However, the related theoretical aspects and strategies for optimization of perfusion processes with respect to their fed-batch counterparts have not been thoroughly explored. The present paper introduces a unified framework for comparison of fed-batch and perfusion cultures, and proposes directions for improvement of the latter. The comparison is based on the concept of "equivalent specific perfusion rate", a variable that conveniently bridges various cultivation modes. The analysis shows that development of economically competitive perfusion processes for production of stable proteins depends on our ability to dramatically reduce the dilution rate while keeping high cell density, i.e., operating at low specific perfusion rates. Under these conditions, titer increases significantly, approaching the range of fed-batch titers. However, as dilution rate is decreased, a limit is reached below which performance declines due to poor growth and viability, specific productivity, or product instability. To overcome these limitations, a strategy referred to as "push-to-low" optimization has been developed. This approach involves an iterative stepwise decrease of the specific perfusion rate, and is most suitable for production of stable proteins where increased residence time does not compromise apparent specific productivity or product quality. The push-to-low approach was successfully applied to the production of monoclonal antibody against tumor necrosis factor (TNF). The experimental results followed closely the theoretical prediction, providing a multifold increase in titer. Despite the medium improvement, reduction of the specific growth rate along with increased apoptosis was observed at low specific perfusion rates. This phenomenon could not be explained with limitation or

  12. Metabolome analysis of Saccharomyces cerevisiae and optimization of culture medium for S-adenosyl-L-methionine production.

    PubMed

    Hayakawa, Kenshi; Matsuda, Fumio; Shimizu, Hiroshi

    2016-12-01

    S-Adenosyl-L-methionine (SAM) is a fine chemical used as a nutritional supplement and a prescription drug. It is industrially produced using Saccharomyces cerevisiae owing to its high SAM content. To investigate the optimization of culture medium components for higher SAM production, metabolome analysis was conducted to compare the intracellular metabolite concentrations between Kyokai no. 6 (high SAM-producing) and laboratory yeast S288C (control) under different SAM production conditions. Metabolome analysis and the result of principal component analysis showed that the rate-limiting step for SAM production was ATP supply and the levels of degradation products of adenosine nucleotides were higher in Kyokai 6 strain than in the S288C strain under the L-methionine supplemented condition. Analysis of ATP accumulation showed that the levels of intracellular ATP in the Kyokai 6 strain were also higher compared to those in the S288C strain. Furthermore, as expected from metabolome analysis, the SAM content of Kyokai 6 strain cultivated in the medium without yeast extract increased by 2.5-fold compared to that in the additional condition, by increasing intracellular ATP level with inhibited cell growth. These results suggest that high SAM production is attributed to the enhanced ATP supply with L-methionine condition and high efficiency of intracellular ATP consumption. PMID:27277079

  13. Optimization of Culture Conditions for Some Identified Fungal Species and Stability Profile of α-Galactosidase Produced

    PubMed Central

    Chauhan, A. S.; Srivastava, N.; Kehri, H. K.; Sharma, B.

    2013-01-01

    Microbial α-galactosidase preparations have implications in medicine and in the modification of various agricultural products as well. In this paper, four isolated fungal strains such as AL-3, WF-3, WP-4 and CL-4 from rhizospheric soil identified as Penicillium glabrum (AL-3), Trichoderma evansii (WF-3), Lasiodiplodia theobromae (WP-4) and Penicillium flavus (CL-4) based on their morphology and microscopic examinations, are screened for their potential towards α-galactosidases production. The culture conditions have been optimized and supplemented with specific carbon substrates (1%, w/v) by using galactose-containing polysaccharides like guar gum (GG), soya casein (SC) and wheat straw (WS). All strains significantly released galactose from GG, showing maximum production of enzyme at 7th day of incubation in rotary shaker (120 rpm) that is 190.3, 174.5, 93.9 and 28.8 U/mL, respectively, followed by SC and WS. The enzyme activity was stable up to 7days at −20°C, then after it declines. This investigation reveals that AL-3 show optimum enzyme activity in guar gum media, whereas WF-3 exhibited greater enzyme stability. Results indicated that the secretion of proteins, enzyme and the stability of enzyme activity varied not only from one strain to another but also differed in their preferences of utilization of different substrates. PMID:23424684

  14. Enhancing isomaltulose production by recombinant Escherichia coli producing sucrose isomerase: culture medium optimization containing agricultural wastes and cell immobilization.

    PubMed

    Li, Sha; Xu, Hong; Yu, Jianguang; Wang, Yanyuan; Feng, Xiaohai; Ouyang, Pingkai

    2013-10-01

    Isomaltulose is a structural isomer of sucrose commercially used in food industries. In this work, recombinant Escherichia coli producing sucrose isomerase (SIase) was used to convert sucrose into isomaltulose. To develop an economical industrial medium, untreated cane molasses (10.63 g l⁻¹), yeast extract (25.93 g l⁻¹), and corn steep liquor (10.45 g l⁻¹) were used as main culture compositions for SIase production. The relatively high SIase activity (14.50 ± 0.11 U mg DCW⁻¹) was obtained by the recombinant cells. To the best of our knowledge, this is the first investigation on SIase production by engineered E. coli using untreated cane molasses. The recombinant E. coli cells expressing the SIase gene were immobilized in calcium alginate gel in order to improve the efficiency of recycling. The immobilization was most effective with 2 % (w/v) sodium alginate and 3 % (w/v) calcium chloride. The optimal initial biomass for immobilization was 20 % (w/v, wet wt.), with a hardening time of 8 h for cell immobilization. The immobilized E. coli cells exhibited good stability for 30 batches with the productivity of 0.45 g isomaltulose g pellet⁻¹ h⁻¹. A continuous isomaltulose formation process using a column reactor remained stable for 40 days with 83 ± 2 % isomaltulose yield, which would be beneficial for economical production of isomaltulose. PMID:23300051

  15. Evaluation of three real-time PCR assays for differential identification of Mycobacterium tuberculosis complex and nontuberculous mycobacteria species in liquid culture media.

    PubMed

    Jung, Yu Jung; Kim, Ji-Youn; Song, Dong Joon; Koh, Won-Jung; Huh, Hee Jae; Ki, Chang-Seok; Lee, Nam Yong

    2016-06-01

    We evaluated the analytical performance of M. tuberculosis complex (MTBC)/nontuberculous mycobacteria (NTM) PCR assays for differential identification of MTBC and NTM using culture-positive liquid media. Eighty-five type strains and 100 consecutive mycobacterial liquid media cultures (MGIT 960 system) were analyzed by a conventional PCR assay (MTB-ID(®) V3) and three real-time PCR assays (AdvanSure™ TB/NTM real-time PCR, AdvanSure; GENEDIA(®) MTB/NTM Detection Kit, Genedia; Real-Q MTB & NTM kit, Real-Q). The accuracy rates for reference strains were 89.4%, 100%, 98.8%, and 98.8% for the MTB-ID V3, AdvanSure, Genedia, and Real-Q assays, respectively. Cross-reactivity in the MTB-ID V3 assay was mainly attributable to non-mycobacterium Corynebacterineae species. The diagnostic performance was determined using clinical isolates grown in liquid media, and the overall sensitivities for all PCR assays were higher than 95%. In conclusion, the three real-time PCR assays showed better performance in discriminating mycobacterium species and non-mycobacterium Corynebacterineae species than the conventional PCR assay. PMID:27105774

  16. Determination of the structure factor of simple liquid metals from the pseudopotential theory and optimized random-phase approximation: Application to Al and Ga

    NASA Astrophysics Data System (ADS)

    Bretonnet, J. L.; Regnaut, C.

    1985-04-01

    We present the results of calculations of the static structure factor S(q) of liquid Al and Ga at the melting point. These calculations were motivated because many simple liquid metals exhibit structure anomalies taking the form of a shoulder on the main peak or even an asymmetry in the peak itself, while other liquid metals are correctly predicted by the standard models of liquid structure. Al and Ga have similar valence, electronic density, and size of their ionic radius; therefore, their pair potentials are somewhat similar. Despite this, their structure factors display most of the differences that can be observed among the variety of liquid metals. Starting from the Shaw optimized model potential [Phys. Rev. 174, 769 (1968)], a pair potential is constructed. A comparative examination of the electron-gas response function of Vashishta and Singwi [Phys. Rev. B 6, 875 (1972)] and of Ichimaru and Utsumi [Phys. Rev. B 24, 7385 (1981)] is carried out. Different depletion hole distributions are also used and full nonlocality is taken into account through effective masses. So S(q) is calculated by means of the optimized random-phase approximation. Particular attention is also devoted to the low-q region. By comparison with Monte Carlo computation, we show the limitation of various thermodynamic perturbation methods, such as the random-phase approximation or the soft-sphere model. The study of S(q) provides a stringent test of the model potential, where the electron-ion pseudopotential and the local-field correction are of prime importance, but where effective masses and depletion hole distribution may also have a role to play.

  17. Optimized Analytical Procedures for the Untargeted Metabolomic Profiling of Human Urine and Plasma by Combining Hydrophilic Interaction (HILIC) and Reverse-Phase Liquid Chromatography (RPLC)-Mass Spectrometry.

    PubMed

    Contrepois, Kévin; Jiang, Lihua; Snyder, Michael

    2015-06-01

    Profiling of body fluids is crucial for monitoring and discovering metabolic markers of health and disease and for providing insights into human physiology. Since human urine and plasma each contain an extreme diversity of metabolites, a single liquid chromatographic system when coupled to mass spectrometry (MS) is not sufficient to achieve reasonable metabolome coverage. Hydrophilic interaction liquid chromatography (HILIC) offers complementary information to reverse-phase liquid chromatography (RPLC) by retaining polar metabolites. With the objective of finding the optimal combined chromatographic solution to profile urine and plasma, we systematically investigated the performance of five HILIC columns with different chemistries operated at three different pH (acidic, neutral, basic) and five C18-silica RPLC columns. The zwitterionic column ZIC-HILIC operated at neutral pH provided optimal performance on a large set of hydrophilic metabolites. The RPLC columns Hypersil GOLD and Zorbax SB aq were proven to be best suited for the metabolic profiling of urine and plasma, respectively. Importantly, the optimized HILIC-MS method showed excellent intrabatch peak area reproducibility (CV < 12%) and good long-term interbatch (40 days) peak area reproducibility (CV < 22%) that were similar to those of RPLC-MS procedures. Finally, combining the optimal HILIC- and RPLC-MS approaches greatly expanded metabolome coverage with 44% and 108% new metabolic features detected compared with RPLC-MS alone for urine and plasma, respectively. The proposed combined LC-MS approaches improve the comprehensiveness of global metabolic profiling of body fluids and thus are valuable for monitoring and discovering metabolic changes associated with health and disease in clinical research studies. PMID:25787789

  18. Effects of 2',3'-dideoxynucleosides on proliferation and differentiation of human pluripotent progenitors in liquid culture and their effects on mitochondrial DNA synthesis.

    PubMed Central

    Faraj, A; Fowler, D A; Bridges, E G; Sommadossi, J P

    1994-01-01

    2',3'-Dideoxynucleosides (ddNs) including 3'-azido-3'-deoxythymidine (AZT), 3'-fluoro-3'-deoxythymidine (FLT), 3'-amino-3'-deoxythymidine (AMT), 2',3'-dideoxycytidine (ddC), and 2',3'-didehydro-3'-deoxythymidine (D4T) were tested for their effects on proliferation and differentiation of pluripotent progenitor cells (CD34+) purified from human bone marrow cells grown in liquid cultures. These highly purified progenitor cells undergo extensive proliferation during 14 days, with a marked differentiation during the last 7 days. These differentiated cells exhibit normal morphological features in response to specific hematopoietic growth factors of both erythroid and granulocyte-macrophage lineages, as demonstrated by flow cytometry cell phenotyping. The potencies of these ddNs in inhibiting proliferation of granulocyte-macrophage lineage cells were in the order FLT > AMT = ddC > AZT >> D4T, and the potencies in inhibiting proliferation of erythroid lineage cultures were in the order FLT > AMT > AZT > ddC >> D4T. The toxic effects of ddNs assessed in these liquid cultures were in agreement with data obtained by using semisolid cultures, demonstrating the consistency of these two in vitro hematopoietic systems toward ddN toxicity. ddC was toxic to CD34+ progenitor cells and/or cells in the early stages of differentiation, whereas the inhibitory effect of AZT on the erythroid lineage was predominantly observed on a more mature population of erythroid progenitors during the differentiation process. Slot blot analysis of granulocyte-macrophage cultures demonstrated that exposure to ddC and FLT was associated with a decrease in total mitochondrial DNA (mtDNA) content, suggesting that these two ddNs inhibit mtDNA synthesis. In contrast, no difference in the ratio of nuclear DNA to mtDNA was observed in cells exposed to toxic concentrations of AZT and AMT is not associated with an inhibition of mtDNA synthesis. This human pluripotent progenitor liquid culture system should

  19. Optimization of Ionic Liquid Based Simultaneous Ultrasonic- and Microwave-Assisted Extraction of Rutin and Quercetin from Leaves of Velvetleaf (Abutilon theophrasti) by Response Surface Methodology

    PubMed Central

    Zhao, Chunjian; Lu, Zhicheng; He, Xin; Li, Zhao; Shi, Kunming; Yang, Lei; Fu, Yujie; Zu, Yuangang

    2014-01-01

    An ionic liquids based simultaneous ultrasonic and microwave assisted extraction (ILs-UMAE) method has been proposed for the extraction of rutin (RU), quercetin (QU), from velvetleaf leaves. The influential parameters of the ILs-UMAE were optimized by the single factor and the central composite design (CCD) experiments. A 2.00 M 1-butyl-3-methylimidazolium bromide ([C4mim]Br) was used as the experimental ionic liquid, extraction temperature 60°C, extraction time 12 min, liquid-solid ratio 32 mL/g, microwave power of 534 W, and a fixed ultrasonic power of 50 W. Compared to conventional heating reflux extraction (HRE), the RU and QU extraction yields obtained by ILs-UMAE were, respectively, 5.49 mg/g and 0.27 mg/g, which increased, respectively, 2.01-fold and 2.34-fold with the recoveries that were in the range of 97.62–102.36% for RU and 97.33–102.21% for QU with RSDs lower than 3.2% under the optimized UMAE conditions. In addition, the shorter extraction time was used in ILs-UMAE, compared with HRE. Therefore, ILs-UMAE was a rapid and an efficient method for the extraction of RU and QU from the leaves of velvetleaf. PMID:25243207

  20. Statistical optimization of medium composition and culture condition for the production of recombinant anti-lipopolysaccharide factor of Eriocheir sinensis in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Jiang, Shan; Liu, Mei; Wang, Baojie; Jiang, Keyong; Wang, Lei

    2011-11-01

    Anti-lipopolysaccharide factors (ALFs) are important antimicrobial peptides that are isolated from some aquatic species. In a previous study, we isolated ALF genes from Chinese mitten crab, Eriocheir sinensis. In this study, we optimized the production of a recombinant ALF by expressing E. sinensis ALF genes in Escherichia coli maintained in shake-flasks. In particular, we focused on optimization of both the medium composition and the culture condition. Various medium components were analyzed by the Plackett-Burman design, and two significant screened factors, (NH4)2SO4 and KH2PO4, were further optimized via the central composite design (CCD). Based on the CCD analysis, we investigated the induction start-up time, the isopropylthio-D-galactoside (IPTG) concentration, the post-induction time, and the temperature by response surface methodology. We found that the highest level of ALF fusion protein was achieved in the medium containing 1.89 g/L (NH4)2SO4 and 3.18 g/L KH2PO4, with a cell optical density of 0.8 at 600 nm before induction, an IPTG concentration of 0.5 mmol/L, a post-induction temperature of 32.7°C, and a post-induction time of 4 h. Applying the whole optimization strategy using all optimal factors improved the target protein content from 6.1% (without optimization) to 13.2%. We further applied the optimized medium and conditions in high cell density cultivation, and determined that the soluble target protein constituted 10.5% of the total protein. Our identification of the economic medium composition, optimal culture conditions, and details of the fermentation process should facilitate the potential application of ALF for further research.

  1. Optimization of the Culture Medium Composition to Improve the Production of Hyoscyamine in Elicited Datura stramonium L. Hairy Roots Using the Response Surface Methodology (RSM)

    PubMed Central

    Ryad, Amdoun; Lakhdar, Khelifi; Majda, Khelifi-Slaoui; Samia, Amroune; Mark, Asch; Corinne, Assaf-Ducrocq; Eric, Gontier

    2010-01-01

    Traditionally, optimization in biological analyses has been carried out by monitoring the influence of one factor at a time; this technique is called one-variable-at-a-time. The disadvantage of this technique is that it does not include any interactive effects among the variables studied and requires a large number of experiments. Therefore, in recent years, the Response Surface Methodology (RSM) has become the most popular optimization method. It is an effective mathematical and statistical technique which has been widely used in optimization studies with minimal experimental trials where interactive factors may be involved. This present study follows on from our previous work, where RSM was used to optimize the B5 medium composition in [NO3−], [Ca2+] and sucrose to attain the best production of hyoscyamine (HS) from the hairy roots (HRs) of Datura stramonium elicited by Jasmonic Acid (JA). The present paper focuses on the use of the RSM in biological studies, such as plant material, to establish a predictive model with the planning of experiments, analysis of the model, diagnostics and adjustment for the accuracy of the model. With the RSM, only 20 experiments were necessary to determine optimal concentrations. The model could be employed to carry out interpolations and predict the response to elicitation. Applying this model, the optimization of the HS level was 212.7% for the elicited HRs of Datura stramonium, cultured in B5-OP medium (optimized), in comparison with elicited HRs cultured in B5 medium (control). The optimal concentrations, under experimental conditions, were determined to be: 79.1 mM [NO3−], 11.4 mM [Ca2+] and 42.9 mg/L of sucrose. PMID:21151467

  2. Sparging and agitation-induced injury of cultured animals cells: Do cell-to-bubble interactions in the bulk liquid injure cells?

    PubMed

    Michaels, J D; Mallik, A K; Papoutsakis, E T

    1996-08-20

    It has been established that the forces resulting from bubbles rupturing at the free air (gas)/liquid surface injure animal cells in agitated and/or sparged bioreactors. Although it has been suggested that bubble coalescence and breakup within agitated and sparged bioreactors (i.e., away from the free liquid surface) can be a source of cell injury as well, the evidence has been indirect. We have carried out experiments to examine this issue. The free air/liquid surface in a sparged and agitated bioractor was eliminated by completely filling the 2-L reactor and allowing sparged bubbles to escape through an outlet tube. Two identical bioreactors were run in parallel to make comparisons between cultures that were oxygenated via direct air sparging and the control culture in which silicone tubing was used for bubble-free oxygenation. Thus, cell damage from cell-to-bubble interactions due to processes (bubble coalescence and breakup) occurring in the bulk liquid could be isolated by eliminating damage due to bubbles rupturing at the free air/liquid surface of the bioreactor. We found that Chinese hamster ovary (CHO) cells grown in medium that does not contain shear-protecting additives can be agitated at rates up to 600 rpm without being damaged extensively by cell-to bubble interactions in the bulk of the bioreactor. We verified this using both batch and high-density perfusion cultures. We tested two impeller designs (pitched blade and Rushton) and found them not to affect cell damage under similar operational conditions. Sparger location (above vs. below the impeller) had no effect on cell damage at higher agitation rates but may affect the injury process at lower agitation intensities (here, below 250 rpm). In the absence of a headspace, we found less cell damage at higher agitation intensities (400 and 600 rpm), and we suggest that this nonintuitive finding derives from the important effect of bubble size and foam stability on the cell damage process. (c) 1996 John

  3. Theoretical searches and spectral computations of preferred conformations of various absolute configurations for a cyclodipeptide, cordycedipeptide A from the culture liquid of Cordyceps sinensis

    NASA Astrophysics Data System (ADS)

    Mang, Chao-Yong; Liu, Cai-Ping; Liu, Guang-Ming; Jiang, Bei; Lan, Hai; Wu, Ke-Chen; Yan, Ya; Li, Hai-Fei; Yang, Ming-Hui; Zhao, Yu

    2015-02-01

    A cyclic dipeptide often has the multiple configurations and the abundant conformations. The density functional theory (DFT) method is used to search the preferred conformation of the most probable configuration for cordycedipeptide A isolated from the culture liquid of Cordyceps sinensis. The time-dependent DFT approach is exploited to describe the profile of electronic circular dichroism (CD). The calculated results show that the most probable configuration is 3S6R7S, whose preferred conformation has a negative optical rotation and a positive lowest energy electronic CD band.

  4. Theoretical searches and spectral computations of preferred conformations of various absolute configurations for a cyclodipeptide, cordycedipeptide A from the culture liquid of Cordyceps sinensis.

    PubMed

    Mang, Chao-Yong; Liu, Cai-Ping; Liu, Guang-Ming; Jiang, Bei; Lan, Hai; Wu, Ke-Chen; Yan, Ya; Li, Hai-Fei; Yang, Ming-Hui; Zhao, Yu

    2015-02-01

    A cyclic dipeptide often has the multiple configurations and the abundant conformations. The density functional theory (DFT) method is used to search the preferred conformation of the most probable configuration for cordycedipeptide A isolated from the culture liquid of Cordyceps sinensis. The time-dependent DFT approach is exploited to describe the profile of electronic circular dichroism (CD). The calculated results show that the most probable configuration is 3S6R7S, whose preferred conformation has a negative optical rotation and a positive lowest energy electronic CD band. PMID:25459699

  5. Optimization of pressurized liquid extraction using a multivariate chemometric approach and comparison of solid-phase extraction cleanup steps for the determination of polycyclic aromatic hydrocarbons in mosses.

    PubMed

    Foan, L; Simon, V

    2012-09-21

    A factorial design was used to optimize the extraction of polycyclic aromatic hydrocarbons (PAHs) from mosses, plants used as biomonitors of air pollution. The analytical procedure consists of pressurized liquid extraction (PLE) followed by solid-phase extraction (SPE) cleanup, in association with analysis by high performance liquid chromatography coupled with fluorescence detection (HPLC-FLD). For method development, homogeneous samples were prepared with large quantities of the mosses Isothecium myosuroides Brid. and Hypnum cupressiforme Hedw., collected from a Spanish Nature Reserve. A factorial design was used to identify the optimal PLE operational conditions: 2 static cycles of 5 min at 80 °C. The analytical procedure performed with PLE showed similar recoveries (∼70%) and total PAH concentrations (∼200 ng g(-1)) as found using Soxtec extraction, with the advantage of reducing solvent consumption by 3 (30 mL against 100mL per sample), and taking a fifth of the time (24 samples extracted automatically in 8h against 2 samples in 3.5h). The performance of SPE normal phases (NH(2), Florisil, silica and activated aluminium) generally used for organic matrix cleanup was also compared. Florisil appeared to be the most selective phase and ensured the highest PAH recoveries. The optimal analytical procedure was validated with a reference material and applied to moss samples from a remote Spanish site in order to determine spatial and inter-species variability. PMID:22885040

  6. An optimized method for the determination of perfluorooctanoic acid, perfluorooctane sulfonate and other perfluorochemicals in different matrices using liquid chromatography/ion-trap mass spectrometry.

    PubMed

    Dolman, Sebastiaan; Pelzing, Matthias

    2011-07-15

    Perfluorochemicals (PFC's) are widely spread in the environment and have been detected in blood of wildlife and humans world-wide. Recently, various toxic effects of PFC's in laboratory rats have been demonstrated, resulting in increased government concerns regarding the presence of PFC's in the environment and the implications they have on human health. In the last decade, various analytical methods have been developed for the analysis of PFC's in different matrices whereby the majority of methods have utilised liquid chromatography coupled with mass spectrometry (LC-MS). Here we describe an optimized method for the quantitation of PFC's, including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), in food packaging, polytetrafluoroethylene (PTFE) sealant tape and drinking water. The method involved PFC's extraction via off-line SPE followed by separation using reversed-phase liquid chromatography on a Phenyl-Hexyl column coupled with ion-trap (IT) mass spectrometric detection. The optimized approach minimized ion-suppression effects commonly seen with conventional elution buffers, improving detection limits down to 25 pg/mL and allowed effective quantitation down to 50 pg/mL for PFOA and PFOS. The optimized LC-MS method detected PFOA and other PFC's in microwave popcorn packaging and PFOA in PTFE sealant tape in the low μg/kg. In all samples, PFOS was not detected. PMID:21700512

  7. Use of Response Surface Methodology to Optimize Culture Conditions for Hydrogen Production by an Anaerobic Bacterial Strain from Soluble Starch

    NASA Astrophysics Data System (ADS)

    Kieu, Hoa Thi Quynh; Nguyen, Yen Thi; Dang, Yen Thi; Nguyen, Binh Thanh

    2016-05-01

    Biohydrogen is a clean source of energy that produces no harmful byproducts during combustion, being a potential sustainable energy carrier for the future. Therefore, biohydrogen produced by anaerobic bacteria via dark fermentation has attracted attention worldwide as a renewable energy source. However, the hydrogen production capability of these bacteria depends on major factors such as substrate, iron-containing hydrogenase, reduction agent, pH, and temperature. In this study, the response surface methodology (RSM) with central composite design (CCD) was employed to improve the hydrogen production by an anaerobic bacterial strain isolated from animal waste in Phu Linh, Soc Son, Vietnam (PL strain). The hydrogen production process was investigated as a function of three critical factors: soluble starch concentration (8 g L-1 to 12 g L-1), ferrous iron concentration (100 mg L-1 to 200 mg L-1), and l-cysteine concentration (300 mg L-1 to 500 mg L-1). RSM analysis showed that all three factors significantly influenced hydrogen production. Among them, the ferrous iron concentration presented the greatest influence. The optimum hydrogen concentration of 1030 mL L-1 medium was obtained with 10 g L-1 soluble starch, 150 mg L-1 ferrous iron, and 400 mg L-1 l-cysteine after 48 h of anaerobic fermentation. The hydrogen concentration produced by the PL strain was doubled after using RSM. The obtained results indicate that RSM with CCD can be used as a technique to optimize culture conditions for enhancement of hydrogen production by the selected anaerobic bacterial strain. Hydrogen production from low-cost organic substrates such as soluble starch using anaerobic fermentation methods may be one of the most promising approaches.

  8. Development of three-dimensional lung multicellular spheroids in air- and liquid-interface culture for the evaluation of anticancer therapeutics

    PubMed Central

    MEENACH, SAMANTHA A.; TSORAS, ALEXANDRA N.; McGARRY, RONALD C.; MANSOUR, HEIDI M.; HILT, J. ZACH; ANDERSON, KIMBERLY W.

    2016-01-01

    Three-dimensional (3D) lung multicellular spheroids (MCS) in liquid-covered culture (LCC) and air-interface culture (AIC) conditions have both been developed for the evaluation of aerosol anticancer therapeutics in solution and aerosols, respectively. The MCS were formed by seeding lung cancer cells on top of collagen where they formed spheroids due to the prevalence of cell-to-cell interactions. LCC MCS were exposed to paclitaxel (PTX) in media whereas AIC MCS were exposed to dry powder PEGylated phospholipid aerosol microparticles containing paclitaxel. The difference in viability for 2D versus 3D culture for both LCC and AIC was evaluated along with the effects of the particles on lung epithelium via transepithelial electrical resistance (TEER) measurements. For LCC and AIC conditions, the 3D spheroids were more resistant to treatment with higher IC50 values for A549 and H358 cell lines. TEER results initially indicated a decrease in resistance upon drug or particle exposure, however, these values increased over the course of several days indicating the ability of the cells to recover. Overall, these studies offer a comprehensive in vitro evaluation of aerosol particles used in the treatment of lung cancer while introducing a new method for culturing lung cancer MCS in both LCC and AIC conditions. PMID:26846376

  9. A new method for identification of natural, artificial and in vitro cultured Calculus bovis using high-performance liquid chromatography-mass spectrometry

    PubMed Central

    Liu, Yonggang; Tan, Peng; Liu, Shanshan; Shi, Hang; Feng, Xin; Ma, Qun

    2015-01-01

    Objective: Calculus bovis have been widely used in Chinese herbology for the treatment of hyperpyrexia, convulsions, and epilepsy. Nowadays, due to the limited source and high market price, the substitutes, artificial and in vitro cultured Calculus bovis, are getting more and more commonly used. The adulteration phenomenon is serious. Therefore, it is crucial to establish a fast and simple method in discriminating the natural, artificial and in vitro cultured Calculus bovis. Bile acids, one of the main active constituents, are taken as an important indicator for evaluating the quality of Calculus bovis and the substitutes. Several techniques have been built to analyze bile acids in Calculus bovis. Whereas, as bile acids are with poor ultraviolet absorbance and high structural similarity, effective technology for identification and quality control is still lacking. Methods: In this study, high-performance liquid chromatography (HPLC) coupled with tandem mass spectrometry (LC/MS/MS) was applied in the analysis of bile acids, which effectively identified natural, artificial and in vitro cultured Calculus bovis and provide a new method for their quality control. Results: Natural, artificial and in vitro cultured Calculus bovis were differentiated by bile acids analysis. A new compound with protonated molecule at m/z 405 was found, which we called 3α, 12α-dihydroxy-7-oxo-5α-cholanic acid. This compound was discovered in in vitro cultured Calculus bovis, but almost not detected in natural and artificial Calculus bovis. A total of 13 constituents was identified. Among them, three bio-markers, including glycocholic acid, glycodeoxycholic acid and taurocholic acid (TCA) were detected in both natural and artificial Calculus bovis, but the density of TCA was different in two kinds of Calculus bovis. In addition, the characteristics of bile acids were illustrated. Conclusions: The HPLC coupled with tandem MS (LC/MS/MS) method was feasible, easy, rapid and accurate in

  10. Organic solvent-free air-assisted liquid-liquid microextraction for optimized extraction of illegal azo-based dyes and their main metabolite from spices, cosmetics and human bio-fluid samples in one step.

    PubMed

    Barfi, Behruz; Asghari, Alireza; Rajabi, Maryam; Sabzalian, Sedigheh

    2015-08-15

    Air-assisted liquid-liquid microextraction (AALLME) has unique capabilities to develop as an organic solvent-free and one-step microextraction method, applying ionic-liquids as extraction solvent and avoiding centrifugation step. Herein, a novel and simple eco-friendly method, termed one-step air-assisted liquid-liquid microextraction (OS-AALLME), was developed to extract some illegal azo-based dyes (including Sudan I to IV, and Orange G) from food and cosmetic products. A series of experiments were investigated to achieve the most favorable conditions (including extraction solvent: 77μL of 1-Hexyl-3-methylimidazolium hexafluorophosphate; sample pH 6.3, without salt addition; and extraction cycles: 25 during 100s of sonication) using a central composite design strategy. Under these conditions, limits of detection, linear dynamic ranges, enrichment factors and consumptive indices were in the range of 3.9-84.8ngmL(-1), 0.013-3.1μgmL(-1), 33-39, and 0.13-0.15, respectively. The results showed that -as well as its simplicity, fastness, and use of no hazardous disperser and extraction solvents- OS-AALLME is an enough sensitive and efficient method for the extraction of these dyes from complex matrices. After optimization and validation, OS-AALLME was applied to estimate the concentration of 1-amino-2-naphthol in human bio-fluids as a main reductive metabolite of selected dyes. Levels of 1-amino-2-naphthol in plasma and urinary excretion suggested that this compound may be used as a new potential biomarker of these dyes in human body. PMID:26149246

  11. Wavefront analysis and optimization from conventional liquid crystal displays for low-cost holographic optical tweezers and digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Weber, Andreas; Ortega Clavero, Valentin; Schröder, Werner

    2011-05-01

    In different study fields the manipulation and imaging of micro-sized particles is essential. The use of holographic optical tweezers (HOT) and digital holographic microscopy (DHM) facilitates this task in a non-mechanical way by providing the proper computer generated hologram and the required amount of light. Electrically addressed spatial light modulators (EASLM) found in holographic optical tweezers are typically of the reflective liquid crystal on silicon (LCoS) type which can achieve a phase shift of more than 2π but they are expensive. Similar components like transmissive twisted nematic liquid crystal displays (TN-LCD) are produced in large quantities, their optical characteristics improve rapidly and they are inexpensive. Under certain circumstances these devices can be used instead of expensive spatial light modulators. Consumer grade objectives are not always well corrected for spherical aberration. In that case conventional liquid crystal displays can also compensate these undesired optical effects. For this purpose software-corrected computer generated holograms are calculated. Procedures to analyze and compensate different parameters of a conventional low-cost liquid crystal display, e.g. phase shift evaluation and aberration correction of objectives by Zernike polynomials approximation are explained. The applied software compensation of the computer generated hologram has shown significant improvement of the focus quality. An important price reduction of holographic devices could be achieved by replacing special optical elements if correction algorithms for conventional liquid crystal displays are provided.

  12. Increased enzyme production under liquid culture conditions in the industrial fungus Aspergillus oryzae by disruption of the genes encoding cell wall α-1,3-glucan synthase.

    PubMed

    Miyazawa, Ken; Yoshimi, Akira; Zhang, Silai; Sano, Motoaki; Nakayama, Mayumi; Gomi, Katsuya; Abe, Keietsu

    2016-09-01

    Under liquid culture conditions, the hyphae of filamentous fungi aggregate to form pellets, which reduces cell density and fermentation productivity. Previously, we found that loss of α-1,3-glucan in the cell wall of the fungus Aspergillus nidulans increased hyphal dispersion. Therefore, here we constructed a mutant of the industrial fungus A. oryzae in which the three genes encoding α-1,3-glucan synthase were disrupted (tripleΔ). Although the hyphae of the tripleΔ mutant were not fully dispersed, the mutant strain did form smaller pellets than the wild-type strain. We next examined enzyme productivity under liquid culture conditions by transforming the cutinase-encoding gene cutL1 into A. oryzae wild-type and the tripleΔ mutant (i.e. wild-type-cutL1, tripleΔ-cutL1). A. oryzae tripleΔ-cutL1 formed smaller hyphal pellets and showed both greater biomass and increased CutL1 productivity compared with wild-type-cutL1, which might be attributable to a decrease in the number of tripleΔ-cutL1 cells under anaerobic conditions. PMID:27442340

  13. Numerical optimization of monofilamentary MgB2 wires with different metal sheath materials for liquid hydrogen level sensor

    NASA Astrophysics Data System (ADS)

    Kajikawa, Kazuhiro; Inoue, Takuro; Watanabe, Kazuki; Yamada, Yutaka; Aoki, Itsuo

    2014-01-01

    Thin wires required for a new type of superconducting level sensors are investigated in some virtual situations. The sensors are composed of an MgB2 wire with metal sheath and a non-superconducting wire, which are located in parallel and connected in series, to determine a level of liquid hydrogen in a container with higher reliability. The operations of the level sensors during refill and discharge of liquid hydrogen are simulated numerically by solving a one-dimensional heat balance equation. The wires have a metal material with almost constant dependence of resistivity on temperature such as cupronickel or stainless steel. The wire lengths are assumed to be 1 meter. By using the obtained numerical results, the optimum compositions of the MgB2 and non-superconducting wires are discussed for several parameters such as materials and volume fractions of metal sheaths, temperatures of pressurized liquid hydrogen, and conditions of evaporated gas.

  14. Optimization and characterization of an in vitro bovine mammary cell culture system to study regulation of milk protein synthesis and mammary differentiation

    SciTech Connect

    Talhouk, R.S.

    1988-01-01

    A long term bovine mammary cell culture system that maintains normal mammary cell function was established and optimized to study milk protein synthesis and secretion and mammary differentiation. This culture system used bovine mammary acini isolated from developing or lactating mammary gland by enzymatic dissociation, and cryopreserved until thawed and plated for growth in vitro for these studies. Cells in M199 with lactogenic hormones {plus minus} fetal calf serum (FCS) were cultured on plastic, 100ul and 500ul type I collagen, and Matrigel, or embedded within type I collagen. Cell morphology, cell number, and total TCA-precipitable {sup 35}S-labelled proteins were monitored. Milk protein ({alpha}{sub s,1}-casein, lactoferrin (LF), {alpha}-lactalbumin, and {beta}-lactoglobulin) secretion and intracellular levels were determined by an ELISA assay.

  15. The Optimization of Molecular Detection of Clinical Isolates of Brucella in Blood Cultures by eryD Transcriptase Gene for Confirmation of Culture-Negative Samples

    PubMed Central

    Tabibnejad, Mahsa; Alikhani, Mohammad Yousef; Arjomandzadegan, Mohammad; Hashemi, Seyed Hamid; Naseri, Zahra

    2016-01-01

    Background Brucellosis is a zoonosis disease which is widespread across the world. Objectives The aim of the present study is the evaluation of culture-negative blood samples. Materials and Methods A total of 100 patients with suspected brucellosis were included in this experimental study and given positive serological tests. Diagnosis was performed on patients with clinical symptoms of the disease, followed by the detection of a titer that was equal to or more than 1:160 (in endemic areas) by the standard tube agglutination method. Blood samples were cultured by a BACTEC 9050 system, and subsequently by Brucella agar. At the same time, DNA from all blood samples was extracted by Qiagen Kit Company (Qia Amp Mini Kit). A molecular assay of blood samples was carried out by detection of eryD transcriptase and bcsp 31 genes in specific double PCR reactions. The specificity of the primers was evaluated by DNA from pure and approved Brucella colonies found in the blood samples, by DNA from other bacteria, and by ordinary PCR. DNA extraction from the pure colonies was carried out by both Qiagen Kit and Chelex 100 methods; the two were compared. Results 39 cases (39%) had positive results when tested by the BACTEC system, and 61 cases (61%) became negative. 23 culture-positive blood samples were randomly selected for PCR reactions; all showed 491 bp for the eryD gene and 223 bp for the bcsp 31 gene. Interestingly, out of 14 culture-negative blood samples, 13 cases showed positive bonds in PCR. The specificity of the PCR method was equal to 100%. DNA extraction from pure cultures was done by both Chelex 100 and Qiagen Kit; these showed the same results for all samples. Conclusions The results prove that the presented double PCR method could be used to detect positive cases from culture-negative blood samples. The Chelex 100 method is simpler and safer than the use of Qiagen Kit for DNA extraction. PMID:27330831

  16. Recovery of culturable of Escherichia coli O157:H7 during operation of a liquid-based bioaerosol sampler

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Collection fluids used in liquid-based bioaerosol samplers can influence the viability of microorganisms. In this study we determined the recovery efficiency of vegetative E. coli O157:H7 cells that were spiked into low viscosity evaporating collection fluids during operation of a BioSampler™ for up...

  17. Optimization of modified carbon paste electrode with multiwalled carbon nanotube/ionic liquid/cauliflower-like gold nanostructures for simultaneous determination of ascorbic acid, dopamine and uric acid.

    PubMed

    Afraz, Ahmadreza; Rafati, Amir Abbas; Najafi, Mojgan

    2014-11-01

    We describe the modification of a carbon paste electrode (CPE) with multiwalled carbon nanotubes (MWCNTs) and an ionic liquid (IL). Electrochemical studies by using a D-optimal mixture design in Design-Expert software revealed an optimized composition of 60% graphite, 14.2% paraffin, 10.8% MWCNT and 15% IL. The optimal modified CPE shows good electrochemical properties that are well matched with model prediction parameters. In the next step, the optimized CPE was modified with gold nanostructures by applying a double-pulse electrochemical technique. The resulting electrode was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and electrochemical impedance spectroscopy. It gives three sharp and well-separated oxidation peaks for ascorbic acid (AA), dopamine (DA), and uric acid (UA). The sensor enables simultaneous determination of AA, DA and UA with linear responses from 0.3 to 285, 0.08 to 200, and 0.1 to 450 μM, respectively, and with 120, 30 and 30 nM detection limits (at an S/N of 3). The method was successfully applied to the determination of AA, DA, and UA in spiked samples of human serum and urine. PMID:25280680

  18. Optimization of a liquid chromatography ion mobility-mass spectrometry method for untargeted metabolomics using experimental design and multivariate data analysis.

    PubMed

    Tebani, Abdellah; Schmitz-Afonso, Isabelle; Rutledge, Douglas N; Gonzalez, Bruno J; Bekri, Soumeya; Afonso, Carlos

    2016-03-24

    High-resolution mass spectrometry coupled with pattern recognition techniques is an established tool to perform comprehensive metabolite profiling of biological datasets. This paves the way for new, powerful and innovative diagnostic approaches in the post-genomic era and molecular medicine. However, interpreting untargeted metabolomic data requires robust, reproducible and reliable analytical methods to translate results into biologically relevant and actionable knowledge. The analyses of biological samples were developed based on ultra-high performance liquid chromatography (UHPLC) coupled to ion mobility - mass spectrometry (IM-MS). A strategy for optimizing the analytical conditions for untargeted UHPLC-IM-MS methods is proposed using an experimental design approach. Optimization experiments were conducted through a screening process designed to identify the factors that have significant effects on the selected responses (total number of peaks and number of reliable peaks). For this purpose, full and fractional factorial designs were used while partial least squares regression was used for experimental design modeling and optimization of parameter values. The total number of peaks yielded the best predictive model and is used for optimization of parameters setting. PMID:26944989

  19. Multiobjective optimization strategy based on desirability functions used for the microemulsion liquid chromatographic separation and quantification of norfloxacin and tinidazole in plasma and formulations.

    PubMed

    Abou-Taleb, Noura Hemdan; El-Wasseef, Dalia Rashad; El-Sherbiny, Dina Tawfik; El-Ashry, Saadia Mohamed

    2015-03-01

    The aim of the present study was to optimize a microemulsion liquid chromatography method for the simultaneous determination of norfloxacin and tinidazole binary mixture using a chemometric protocol. Optimization experiments were conducted through a process of screening and optimization. A 2(7-4) fractional factorial design was used as screening design. While the location of optimum conditions was established by applying Derringer's desirability function. The optimal mobile phase composition was predicted to be: 3.5% w/v SDS, 10.03% v/v 1-propanol, 0.5% v/v 1-octanol, and 0.3% triethylamine in 0.02 M phosphoric acid at pH 6.5. The mobile phase was delivered isocratically at a flow rate of 1 mL/min with UV detection at 290 nm. Tinidazole and norfloxacin were eluted with retention times of 1.8 and 5.8 min, respectively. The calibration plots displayed good linear relationships in the concentration ranges of 0.5-50 and 0.75-75 μg/mL for norfloxacin and tinidazole, respectively. The method was successfully applied for determination of both drugs in pharmaceutical dosage forms and real human plasma. Where the accuracy was proved by the low values of % error and high values of recovery, also the relative standard deviation for the results did not exceed 1.5%, proving the precision of the method. PMID:25565679

  20. Effect of Sample Preparation on the Discrimination of Bacterial Isolates Cultured in Liquid Nutrient Media Using Laser-Induced Breakdown Spectroscopy (LIBS).

    PubMed

    Gamble, Gary R; Park, Bosoon; Yoon, Seung-Chul; Lawrence, Kurt C

    2016-03-01

    Laser-induced breakdown spectroscopy (LIBS) is used as the basis for discrimination between two genera of gram-negative bacteria and two genera of gram-positive bacteria representing pathogenic threats commonly found in poultry processing rinse waters. Because LIBS-based discrimination relies primarily upon the relative proportions of inorganic cell components including Na, K, Mg, and Ca, this study aims to determine the effects of trace mineral content and pH found in the water source used to isolate the bacteria upon the reliability of the resulting discriminant analysis. All four genera were cultured using tryptic soy agar (TSA) as the nutrient medium, and were grown under identical environmental conditions. The only variable introduced is the source water used to isolate the cultured bacteria. Cultures of each bacterium were produced using deionized (DI) water under two atmosphere conditions, reverse osmosis (RO) water, tap water, phosphate buffered saline (PBS) water, and TRIS buffered water. After 3 days of culture growth, the bacteria were centrifuged and washed three times in the same water source. Bacteria were then freeze dried, mixed with microcrystalline cellulose, and a pellet was made for LIBS analysis. Principal component analysis (PCA) was used to extract related variations in LIBS spectral data among the four bacteria genera and six water types used to isolate the bacteria, and Mahalanobis discriminant analysis (MDA) was used for classification. Results indicate not only that the four genera can be discriminated from each other in each water type, but that each genus can be discriminated by water type used for isolation. It is concluded that in order for LIBS to be a reliable and repeatable method for discrimination of bacteria grown in liquid nutrient media, care must be taken to insure that the water source used in purification of the culture be precisely controlled regarding pH, ionic strength, and proportionate amounts of mineral cations

  1. Optimization and partial characterization of culture conditions for the production of alkaline protease from Bacillus licheniformis P003.

    PubMed

    Sarker, Palash Kumar; Talukdar, Saimon Ahmad; Deb, Promita; Sayem, Sm Abu; Mohsina, Kaniz

    2013-01-01

    Proteolytic enzymes have occupied a pivotal position for their practical applications. The present study was carried out under shake flask conditions for the production of alkaline protease from Bacillus licheniformis P003 in basal medium containing glucose, peptone, K2HPO4, MgSO4 and Na2CO3 at pH 10. The effect of culture conditions and medium components for maximum production of alkaline protease was investigated using one factor constant at a time method along with its characterization. Maximum level of enzyme production was obtained after 48h of incubation with 2% inoculum size at 42°C, under continuous agitation at 150 rpm, in growth medium of pH 9. Highest enzyme production was obtained using 1% rice flour as carbon source and 0.8% beef extract as organic nitrogen source. Results indicated that single organic nitrogen source alone was more suitable than using in combinations and there was no significant positive effect of adding inorganic nitrogen sources in basal medium. After optimization of the parameters, enzyme production was increased about 20 fold than that of in basal medium. The crude enzyme was highly active at pH 10 and stable from pH 7-11. The enzyme showed highest activity (100%) at 50°C, and retained 78% relative activity at 70°C. Stability studies showed that the enzyme retained 75% of its initial activity after heating at 60°C for 1h. The enzyme retained about 66% and 46% of its initial activity after 28 days of storage at 4°C and room temperature (25°C) respectively. Mn(2+) and Mg(2+) increased the residual activity of the enzyme, whereas Fe(2+) moderately inhibited its residual activity. When pre-incubated with Tween-20, Tween-80, SDS and H2O2, each at 0.5% concentration, the enzyme showed increased residual activity. These characteristics may make the enzyme suitable for several industrial applications, especially in leather industries. PMID:24133650

  2. Optimization of magnetic stirring assisted dispersive liquid-liquid microextraction of rhodamine B and rhodamine 6G by response surface methodology: Application in water samples, soft drink, and cosmetic products.

    PubMed

    Ranjbari, Elias; Hadjmohammadi, Mohammad Reza

    2015-07-01

    An exact, rapid and efficient method for the extraction of rhodamine B (RB) and rhodamine 6G (RG) as well as their determination in three different matrices was developed using magnetic stirring assisted dispersive liquid-liquid microextraction (MSA-DLLME) and HPLC-Vis. 1-Octanol and acetone were selected as the extraction and dispersing solvents, respectively. The potentially variables were the volume of extraction and disperser solvents, pH of sample solution, salt effect, temperature, stirring rate and vortex time in the optimization process. A methodology based on fractional factorial design (2(7)(-2)) was carried out to choose the significant variables for the optimization. Then, the significant factors (extraction solvent volume, pH of sample solution, temperature, stirring rate) were optimized using a central composite design (CCD). A quadratic model between dependent and independent variables was built. Under the optimum conditions (extraction solvent volume=1050µL, pH=2, temperature=35°C and stirring rate=1500rpm), the calibration curves showed high levels of linearity (R(2)=0.9999) for RB and RG in the ranges of 5-1000ngmL(-1) and 7.5-1000ngmL(-1), respectively. The obtained extraction recoveries for 100ngmL(-1) of RB and RG standard solutions were 100% and 97%, and preconcentration factors were 48 and 46, respectively. While the limit of detection was 1.15ngmL(-1) for RB, it was 1.23ngmL(-1) for RG. Finally, the MSA-DLLME method was successfully applied for preconcentration and trace determination of RB and RG in different matrices of environmental waters, soft drink and cosmetic products. PMID:25882429

  3. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    DOE PAGESBeta

    Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; Johnson, M. L.; Rustan, G. E.; Quirinale, D. G.; Kreyssig, A.; Lokshin, K. A.; Neuefeind, J. C.; An, Ke; et al

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. But, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elasticmore » and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. Furthermore, to demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr64Ni36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample ( 100 mg).« less

  4. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    SciTech Connect

    Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; Johnson, M. L.; Rustan, G. E.; Quirinale, D. G.; Kreyssig, A.; Lokshin, K. A.; Neuefeind, J. C.; An, Ke; Wang, Xun-Li; Goldman, A. I.; Egami, T.; Kelton, K. F.

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. But, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. Furthermore, to demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr64Ni36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample ( 100 mg).

  5. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source

    NASA Astrophysics Data System (ADS)

    Mauro, N. A.; Vogt, A. J.; Derendorf, K. S.; Johnson, M. L.; Rustan, G. E.; Quirinale, D. G.; Kreyssig, A.; Lokshin, K. A.; Neuefeind, J. C.; An, Ke; Wang, Xun-Li; Goldman, A. I.; Egami, T.; Kelton, K. F.

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. However, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. To demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr64Ni36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample (˜100 mg).

  6. Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source.

    PubMed

    Mauro, N A; Vogt, A J; Derendorf, K S; Johnson, M L; Rustan, G E; Quirinale, D G; Kreyssig, A; Lokshin, K A; Neuefeind, J C; An, Ke; Wang, Xun-Li; Goldman, A I; Egami, T; Kelton, K F

    2016-01-01

    Neutron diffraction studies of metallic liquids provide valuable information about inherent topological and chemical ordering on multiple length scales as well as insight into dynamical processes at the level of a few atoms. However, there exist very few facilities in the world that allow such studies to be made of reactive metallic liquids in a containerless environment, and these are designed for use at reactor-based neutron sources. We present an electrostatic levitation facility, NESL (for Neutron ElectroStatic Levitator), which takes advantage of the enhanced capabilities and increased neutron flux available at spallation neutron sources (SNSs). NESL enables high quality elastic and inelastic neutron scattering experiments to be made of reactive metallic and other liquids in the equilibrium and supercooled temperature regime. The apparatus is comprised of a high vacuum chamber, external and internal neutron collimation optics, and a sample exchange mechanism that allows up to 30 samples to be processed between chamber openings. Two heating lasers allow excellent sample temperature homogeneity, even for samples approaching 500 mg, and an automated temperature control system allows isothermal measurements to be conducted for times approaching 2 h in the liquid state, with variations in the average sample temperature of less than 0.5%. To demonstrate the capabilities of the facility for elastic scattering studies of liquids, a high quality total structure factor for Zr64Ni36 measured slightly above the liquidus temperature is presented from experiments conducted on the nanoscale-ordered materials diffractometer (NOMAD) beam line at the SNS after only 30 min of acquisition time for a small sample (∼100 mg). PMID:26827330

  7. Cr(VI) transport via a supported ionic liquid membrane containing CYPHOS IL101 as carrier: system analysis and optimization through experimental design strategies.

    PubMed

    Rodríguez de San Miguel, Eduardo; Vital, Xóchitl; de Gyves, Josefina

    2014-05-30

    Chromium(VI) transport through a supported liquid membrane (SLM) system containing the commercial ionic liquid CYPHOS IL101 as carrier was studied. A reducing stripping phase was used as a mean to increase recovery and to simultaneously transform Cr(VI) into a less toxic residue for disposal or reuse. General functions which describe the time-depending evolution of the metal fractions in the cell compartments were defined and used in data evaluation. An experimental design strategy, using factorial and central-composite design matrices, was applied to assess the influence of the extractant, NaOH and citrate concentrations in the different phases, while a desirability function scheme allowed the synchronized optimization of depletion and recovery of the analyte. The mechanism for chromium permeation was analyzed and discussed to contribute to the understanding of the transfer process. The influence of metal concentration was evaluated as well. The presence of different interfering ions (Ca(2+), Al(3+), NO3(-), SO4(2-), and Cl(-)) at several Cr(VI): interfering ion ratios was studied through the use of a Plackett and Burman experimental design matrix. Under optimized conditions 90% of recovery was obtained from a feed solution containing 7mgL(-1) of Cr(VI) in 0.01moldm(-3) HCl medium after 5h of pertraction. PMID:24751491

  8. Impact of ultrasound on solid-liquid extraction of phenolic compounds from maritime pine sawdust waste. Kinetics, optimization and large scale experiments.

    PubMed

    Meullemiestre, A; Petitcolas, E; Maache-Rezzoug, Z; Chemat, F; Rezzoug, S A

    2016-01-01

    Maritime pine sawdust, a by-product from industry of wood transformation, has been investigated as a potential source of polyphenols which were extracted by ultrasound-assisted maceration (UAM). UAM was optimized for enhancing extraction efficiency of polyphenols and reducing time-consuming. In a first time, a preliminary study was carried out to optimize the solid/liquid ratio (6g of dry material per mL) and the particle size (0.26 cm(2)) by conventional maceration (CVM). Under these conditions, the optimum conditions for polyphenols extraction by UAM, obtained by response surface methodology, were 0.67 W/cm(2) for the ultrasonic intensity (UI), 40°C for the processing temperature (T) and 43 min for the sonication time (t). UAM was compared with CVM, the results showed that the quantity of polyphenols was improved by 40% (342.4 and 233.5mg of catechin equivalent per 100g of dry basis, respectively for UAM and CVM). A multistage cross-current extraction procedure allowed evaluating the real impact of UAM on the solid-liquid extraction enhancement. The potential industrialization of this procedure was implemented through a transition from a lab sonicated reactor (3 L) to a large scale one with 30 L volume. PMID:26384903

  9. Simple and Versatile Turbidimetric Monitoring of Bacterial Growth in Liquid Cultures Using a Customized 3D Printed Culture Tube Holder and a Miniaturized Spectrophotometer: Application to Facultative and Strictly Anaerobic Bacteria

    PubMed Central

    Maia, Margarida R. G.; Marques, Sara; Cabrita, Ana R. J.; Wallace, R. John; Thompson, Gertrude; Fonseca, António J. M.; Oliveira, Hugo M.

    2016-01-01

    Here we introduce a novel strategy for turbidimetric monitoring of bacterial growth in liquid culture. The instrumentation comprises a light source, a customized 3D printed culture tube holder and a miniaturized spectrophotometer, connected through optical cables. Due to its small footprint and the possibility to operate with external light, bacterial growth was directly monitored from culture tubes in a simple and versatile fashion. This new portable measurement technique was used to monitor the growth of facultative (Escherichia coli ATCC/25922, and Staphylococcus aureus ATCC/29213) and strictly (Butyrivibrio fibrisolvens JW11, Butyrivibrio proteoclasticus P18, and Propionibacterium acnes DSMZ 1897) anaerobic bacteria. For E. coli and S. aureus, the growth rates calculated from normalized optical density values were compared with those ones obtained using a benchtop spectrophotometer without significant differences (P = 0.256). For the strictly anaerobic species, a high precision (relative standard deviation < 3.5%) was observed between replicates up to 48 h. Regarding its potential for customization, this manifold could accommodate further developments for customized turbidimetric monitoring, such as the use of light-emitting diodes as a light source or flow cells.

  10. Optimization of a Differential Ion Mobility Spectrometry-Tandem Mass Spectrometry Method for High-Throughput Analysis of Nicotine and Related Compounds: Application to Electronic Cigarette Refill Liquids.

    PubMed

    Regueiro, Jorge; Giri, Anupam; Wenzl, Thomas

    2016-06-21

    Fast market penetration of electronic cigarettes is leading to an exponentially growing number of electronic refill liquids with different nicotine contents and an endless list of flavors. Therefore, rapid and simple methods allowing a fast screening of these products are necessary to detect harmful substances which can negatively impact the health of consumers. In this regard, the present work explores the capabilities of differential ion mobility spectrometry coupled to tandem mass spectrometry for high-throughput analysis of nicotine and 11 related compounds in commercial refill liquids for electronic cigarettes. The influence of main factors affecting the ion mobility separation, such as modifier types and concentration, separation voltage, and temperature, was systematically investigated. Despite small molecular weight differences among the studied compounds, a good separation was achieved in the ion mobility cell under the optimized conditions, which involved the use of ethanol as a polar gas-phase chemical modifier. Indeed, differential ion mobility was able to resolve (resolution >4) nicotine from its structural isomer anabasine without the use of any chromatographic separation. The quantitative performance of the proposed method was then evaluated, showing satisfactory precision (RSD ≤ 16%) and recoveries ranging from 85 to 100% for nicotine, and from 84 to 126% for the rest of the target analytes. Several commercial electronic cigarette refill liquids were analyzed to demonstrate the applicability of the method. In some cases, significant differences were found between labeled and measured levels of nicotine. Anatabine, cotinine, myosmine, and nornicotine were also found in some of the analyzed samples. PMID:27173877

  11. Determination of malondialdehyde by liquid chromatography as the 2,4-dinitrophenylhydrazone derivative: a marker for oxidative stress in cell cultures of human hepatoma HepG2.

    PubMed

    Mateos, Raquel; Goya, Luis; Bravo, Laura

    2004-06-01

    Malondialdehyde (MDA) is considered a presumptive biomarker for lipid peroxidation in live organisms and cultured cells. The present study adapts an accurate and reproducible method to measure MDA by high-performance liquid chromatography (HPLC) as its 2,4-dinitrophenylhydrazone derivative in human hepatoma HepG2 cells in culture. Since MDA is assumed to increase in conditions of cellular oxidative stress, two compounds that induce pharmacological oxidative stress in cell cultures, hydrogen peroxide (H(2)O(2)) and tert-butyl hydroperoxide (t-BOOH), have been used in HepG2 cells. The results report a significant increase in the content of MDA derivative after treatment with 200 and 500microM t-BOOH for 3h, while H(2)O(2) in doses up to 500microM failed to evoke a similar response, indicating a stronger lipid peroxidation of t-BOOH to HepG2 cells than H(2)O(2). Thus, MDA can be used as a reliable biomarker for cellular oxidative stress in human hepatoma HepG2. PMID:15113537

  12. Characterization of the Early Events Leading to Totipotency in an Arabidopsis Protoplast Liquid Culture by Temporal Transcript Profiling[W][OPEN

    PubMed Central

    Chupeau, Marie-Christine; Granier, Fabienne; Pichon, Olivier; Renou, Jean-Pierre; Gaudin, Valérie; Chupeau, Yves

    2013-01-01

    The molecular mechanisms underlying plant cell totipotency are largely unknown. Here, we present a protocol for the efficient regeneration of plants from Arabidopsis thaliana protoplasts. The specific liquid medium used in our study leads to a high rate of reentry into the cell cycle of most cell types, providing a powerful system to study dedifferentiation/regeneration processes in independent somatic cells. To identify the early events in the establishment of totipotency, we monitored the genome-wide transcript profiles of plantlets and protoplast-derived cells (PdCs) during the first week of culture. Plant cells rapidly dedifferentiated. Then, we observed the reinitiation and reorientation of protein synthesis, accompanied by the reinitiation of cell division and de novo cell wall synthesis. Marked changes in the expression of chromatin-associated genes, especially of those in the histone variant family, were observed during protoplast culture. Surprisingly, the epigenetic status of PdCs and well-established cell cultures differed, with PdCs exhibiting rare reactivated transposons and epigenetic changes. The differentially expressed genes identified in this study are interesting candidates for investigating the molecular mechanisms underlying plant cell plasticity and totipotency. One of these genes, the plant-specific transcription factor ABERRANT LATERAL ROOT FORMATION4, is required for the initiation of protoplast division. PMID:23903317

  13. Optimizing Culture Medium Composition to Improve Oligodendrocyte Progenitor Cell Yields In Vitro from Subventricular Zone-Derived Neural Progenitor Cell Neurospheres

    PubMed Central

    Franco, Paula G.; Pasquini, Juana M.; Silvestroff, Lucas

    2015-01-01

    Neural Stem and Progenitor Cells (NSC/NPC) are gathering tangible recognition for their uses in cell therapy and cell replacement therapies for human disease, as well as a model system to continue research on overall neural developmental processes in vitro. The Subventricular Zone is one of the largest NSC/NPC niches in the developing mammalian Central Nervous System, and persists through to adulthood. Oligodendrocyte progenitor cell (OPC) enriched cultures are usefull tools for in vitro studies as well as for cell replacement therapies for treating demyelination diseases. We used Subventricular Zone-derived NSC/NPC primary cultures from newborn mice and compared the effects of different growth factor combinations on cell proliferation and OPC yield. The Platelet Derived Growth Factor-AA and BB homodimers had a positive and significant impact on OPC generation. Furthermore, heparin addition to the culture media contributed to further increase overall culture yields. The OPC generated by this protocol were able to mature into Myelin Basic Protein-expressing cells and to interact with neurons in an in vitro co-culture system. As a whole, we describe an optimized in vitro method for increasing OPC. PMID:25837625

  14. Optimization of a NH4PF6-enhanced, non-organic solvent, dual microextraction method for determination of phthalate metabolites in urine by high performance liquid chromatography.

    PubMed

    Wu, Jia; Ye, Zhihan; Li, Xiaolong; Wang, Xuedong; Luo, Fangjun; Sheng, Bo; Li, Yiwei; Lyu, Jianxin

    2016-03-01

    In conventional ionic liquid-based dispersive liquid-liquid microextraction (IL-DLLME) procedures, most of the IL disperser remains in the aqueous phase resulting in low recovery for moderately and weakly polar analytes due to the "carry-over effect". Herein, we successfully developed a "NH4PF6-enhanced, non-organic solvent, dual microextraction" method (ANSDM) for pretreatment of phthalate (PAE) metabolites with weak to moderate polarity. This method utilized in situ reaction of NH4PF6 as an ion-exchange reagent and disperser to realize two microextractions after using [C8MIM]PF6 as an extraction solvent and [C4MIM]BF4 as a disperser for conventional DLLME. Single-factor experiments, a two-level full factorial experimental design and central composite design were applied for optimizing operational parameters using 3D response surfaces and contour lines. Under optimized conditions, the newly developed method provided high extraction recoveries (93.8-99.1%) and low LODs (ca. 0.3μgL(-1)) for three phthalate metabolites in human urine. The primary advantages of the ANSDM method include: (1) integration of in situ reaction and conventional DLLME techniques to effectively extract both weak and moderately polar pollutants simultaneously; (2) non-organic solvent use in the microextraction procedure making the process safer and more environmental friendly; and (3) a time-saving, simple operation that is fully compatibility with HPLC analysis. To the best of our knowledge, our group is the first to develop the "non-organic solvent, dual microextraction" method and it has great potential as a sample pre-treatment technique for organic pollutants with weak to moderate polarity in biological and environmental matrices. PMID:26852090

  15. Optimization of biological and instrumental detection of explosives and ignitable liquid residues including canines, SPME/ITMS and GC/MSn

    NASA Astrophysics Data System (ADS)

    Furton, Kenneth G.; Harper, Ross J.; Perr, Jeannette M.; Almirall, Jose R.

    2003-09-01

    A comprehensive study and comparison is underway using biological detectors and instrumental methods for the rapid detection of ignitable liquid residues (ILR) and high explosives. Headspace solid phase microextraction (SPME) has been demonstrated to be an effective sampling method helping to identify active odor signature chemicals used by detector dogs to locate forensic specimens as well as a rapid pre-concentration technique prior to instrumental detection. Common ignitable liquids and common military and industrial explosives have been studied including trinitrotoluene, tetryl, RDX, HMX, EGDN, PETN and nitroglycerine. This study focuses on identifying volatile odor signature chemicals present, which can be used to enhance the level and reliability of detection of ILR and explosives by canines and instrumental methods. While most instrumental methods currently in use focus on particles and on parent organic compounds, which are often involatile, characteristic volatile organics are generally also present and can be exploited to enhance detection particularly for well-concealed devices. Specific examples include the volatile odor chemicals 2-ethyl-1-hexanol and cyclohexanone, which are readily available in the headspace of the high explosive composition C-4; whereas, the active chemical cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) is not. The analysis and identification of these headspace 'fingerprint' organics is followed by double-blind dog trials of the individual components using certified teams in an attempt to isolate and understand the target compounds to which dogs are sensitive. Studies to compare commonly used training aids with the actual target explosive have also been undertaken to determine their suitability and effectiveness. The optimization of solid phase microextraction (SPME) combined with ion trap mobility spectrometry (ITMS) and gas chromatography/mass spectrometry/mass spectrometry (GC/MSn) is detailed including interface development

  16. Evidence of increased keratinocyte proliferation in air-liquid interface cultures of non-bullous congenital ichthyosiform erythroderma.

    PubMed

    Amsellem, C; Haftek, M; Hoyo, E; Thivolet, J; Schmitt, D

    1993-08-01

    Modern pharmacological and dermatological research requires the use of appropriate in vitro models which permit a faithful reproduction of various aspects of the in situ situation. The air-exposed culture of keratinocytes on dead de-epidermized dermis is one of the best models of in vitro epidermal differentiation known at the moment. In this study, we verified the model's validity for the reproduction of a hyperproliferative genodermatosis: non-bullous congenital ichthyosiform erythroderma. We used subcultured epidermal keratinocytes originating from normal and ichthyotic patients. Light and electron microscopy of pathological cultures disclosed, on day 14, a terminally differentiated epidermis with a marked granular layer and hyperkeratosis which, however, was not dramatically different from the normal controls. On day 25, the normal cultures displayed an even more pronounced hyperkeratosis and hypergranulosis, whereas the reconstructed epidermis of pathological origin presented a considerable reduction of the viable non-keratinized compartment and a focal parakeratosis. Indirect immunofluorescence revealed the expression of several differentiation markers which were not observed in the immersed culture models (e.g. the desmosome- and differentiation-related antigens KM48 and G36-19). Abundant keratohyalin granules were stained with AKH1 antibody and observed even in the deep epidermal layers, but no profilaggrin-filaggrin conversion could be detected biochemically.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7506468

  17. Production of therapeutically relevant indolizidine alkaloids in Securinega suffruticosa in vitro shoots maintained in liquid culture systems.

    PubMed

    Raj, Danuta; Kokotkiewicz, Adam; Luczkiewicz, Maria

    2015-02-01

    Microshoot cultures of the Chinese medicinal plant Securinega suffruticosa (Pall.) Rehd. were established and evaluated for the presence of therapeutically relevant indolizidine alkaloids securinine (S) and allosecurinine (AS). The cultures were maintained in shake flasks (SFs) and a bubble column bioreactor (BCB) using the modified Murashige's shoot multiplication medium supplemented with 1.0 mg l(-1) benzyladenine (BA), 3.0 mg l(-1) 2-isopentenyladenine (2iP), and 0.3 mg l(-1) 1-naphthaleneacetic acid (NAA). The influence of light and medium supplementation strategies with biosynthesis precursor (lysine (LY)) and nutrient formulations (casein hydrolysate (CH) and coconut water (CW)) on biomass growth and alkaloid production were investigated. SF cultures grown in the presence of light yielded up to 6.02 mg g(-1) dry weight (DW) S and 3.70 mg g(-1) DW AS, corresponding to the respective productivities of 98.39 and 60.21 mg l(-1). Among feeding experiments, CW supplementation proved most effective for SF-grown shoots, increasing biomass yield and AS productivity by 52 and 44 %, respectively. Maximum concentrations of securinine (3.25 mg g(-1) DW) and allosecurinine (3.41 mg g(-1) DW) in BCB cultures were achieved in the case of 1.0 g l(-1) LY supplementation. These values corresponded to the productivities of 42.64 and 44.47 mg per bioreactor, respectively. PMID:25413794

  18. Glucose concentration alters dissolved oxygen levels in liquid cultures of Beauveria bassiana and affects formation and bioefficacy of blastospores

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beauveria bassiana is a ubiquitous dimorphic entomopathogenic fungus commonly used for controlling numerous insect pests worldwide. The goal of the present study was to optimize the production of B. bassiana to achieve high yields of the preferred morphology, a yeast-like blastospore, rather than my...

  19. Optimization of apolipoprotein-B-100 sequence coverage by liquid chromatography-tandem mass spectrometry for the future study of its posttranslational modifications.

    PubMed

    Delporte, Cédric; Van Antwerpen, Pierre; Zouaoui Boudjeltia, Karim; Noyon, Caroline; Abts, Frédéric; Métral, Frédéric; Vanhamme, Luc; Reyé, Florence; Rousseau, Alexandre; Vanhaeverbeek, Michel; Ducobu, Jean; Nève, Jean

    2011-04-01

    Proteomic applications have been increasingly used to study posttranslational modifications of proteins (PTMs). For the purpose of identifying and localizing specific but unknown PTMs on huge proteins, improving their sequence coverage is fundamental. Using liquid chromatography coupled to mass spectrometry (LC-MS/MS), peptide mapping of the native apolipoprotein-B-100 was performed to further document the effects of oxidation. Apolipoprotein-B-100 is the main protein of low-density lipoprotein particles and its oxidation could play a role in atherogenesis. Because it is one of the largest human proteins, the sequence recovery rate of apolipoprotein-B-100 only reached 1% when conventional analysis parameters were used. The different steps of the peptide mapping process-from protein treatment to data analysis-were therefore reappraised and optimized. These optimizations allowed a protein sequence recovery rate of 79%, a rate which has never been achieved previously for such a large human protein. The key points for improving peptide mapping were optimization of the data analysis software; peptide separation by LC; sample preparation; and MS acquisition. The new protocol has allowed us to increase by a factor of 4 the detection of modified peptides in apolipoprotein-B-100. This approach could easily be transferred to any study of PTMs using LC-MS/MS. PMID:21129357

  20. Time-Series Integrated “Omic” Analyses to Elucidate Short-Term Stress-Induced Responses in Plant Liquid Cultures

    PubMed Central

    Quackenbush, John; Klapa, Maria I.

    2014-01-01

    The research that aims at furthering our understanding of plant primary metabolism has intensified during the last decade. The presented study validated a systems biology methodological framework for the analysis of stress-induced molecular interaction networks in the context of plant primary metabolism, as these are expressed during the first hours of the stress treatment. The framework involves the application of time-series integrated full-genome transcriptomic and polar metabolomic analyses on plant liquid cultures. The latter were selected as the model system for this type of analysis, because they provide a well-controlled growth environment, ensuring that the observed plant response is due only to the applied perturbation. An enhanced gas chromatography–mass spectrometry (GC– MS) metabolomic data correction strategy and a new algorithm for the significance analysis of time-series “omic” data are used to extract information about the plant's transcriptional and metabolic response to the applied stress from the acquired datasets; in this article, it is the first time that these are applied for the analysis of a large biological dataset from a complex eukaryotic system. The case-study involved Arabidopsis thaliana liquid cultures subjected for 30 h to elevated (1%) CO2 stress. The advantages and validity of the methodological framework are discussed in the context of the known A. thaliana or plant, in general, physiology under the particular stress. Of note, the ability of the methodology to capture dynamic aspects of the observed molecular response allowed for 9 and 24 h of treatment to be indicated as corresponding to shifts in both the transcriptional and metabolic activity; analysis of the pathways through which these activity changes are manifested provides insight to regulatory processes. PMID:18958862

  1. Response surface methodology based on central composite design as a chemometric tool for optimization of dispersive-solidification liquid-liquid microextraction for speciation of inorganic arsenic in environmental water samples.

    PubMed

    Asadollahzadeh, Mehdi; Tavakoli, Hamed; Torab-Mostaedi, Meisam; Hosseini, Ghaffar; Hemmati, Alireza

    2014-06-01

    Dispersive-solidification liquid-liquid microextraction (DSLLME) coupled with electrothermal atomic absorption spectrometry (ETAAS) was developed for preconcentration and determination of inorganic arsenic (III, V) in water samples. At pH=1, As(III) formed complex with ammonium pyrrolidine dithiocarbamate (APDC) and extracted into the fine droplets of 1-dodecanol (extraction solvent) which were dispersed with ethanol (disperser solvent) into the water sample solution. After extraction, the organic phase was separated by centrifugation, and was solidified by transferring into an ice bath. The solidified solvent was transferred to a conical vial and melted quickly at room temperature. As(III) was determined in the melted organic phase while As(V) remained in the aqueous layer. Total inorganic As was determined after the reduction of the pentavalent forms of arsenic with sodium thiosulphate and potassium iodide. As(V) was calculated by difference between the concentration of total inorganic As and As(III). The variable of interest in the DSLLME method, such as the volume of extraction solvent and disperser solvent, pH, concentration of APDC (chelating agent), extraction time and salt effect, was optimized with the aid of chemometric approaches. First, in screening experiments, fractional factorial design (FFD) was used for selecting the variables which significantly affected the extraction procedure. Afterwards, the significant variables were optimized using response surface methodology (RSM) based on central composite design (CCD). In the optimum conditions, the proposed method has been successfully applied to the determination of inorganic arsenic in different environmental water samples and certified reference material (NIST RSM 1643e). PMID:24725860

  2. Ionic-liquid-based hollow-fiber liquid-phase microextraction method combined with hybrid artificial neural network-genetic algorithm for speciation and optimized determination of ferro and ferric in environmental water samples.

    PubMed

    Saeidi, Iman; Barfi, Behruz; Asghari, Alireza; Gharahbagh, Abdorreza Alavi; Barfi, Azadeh; Peyrovi, Moazameh; Afsharzadeh, Maryam; Hojatinasab, Mostafa

    2015-10-01

    A novel and environmentally friendly ionic-liquid-based hollow-fiber liquid-phase microextraction method combined with a hybrid artificial neural network (ANN)-genetic algorithm (GA) strategy was developed for ferro and ferric ions speciation as model analytes. Different parameters such as type and volume of extraction solvent, amounts of chelating agent, volume and pH of sample, ionic strength, stirring rate, and extraction time were investigated. Much more effective parameters were firstly examined based on one-variable-at-a-time design, and obtained results were used to construct an independent model for each parameter. The models were then applied to achieve the best and minimum numbers of candidate points as inputs for the ANN process. The maximum extraction efficiencies were achieved after 9 min using 22.0 μL of 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]) as the acceptor phase and 10 mL of sample at pH = 7.0 containing 64.0 μg L(-1) of benzohydroxamic acid (BHA) as the complexing agent, after the GA process. Once optimized, analytical performance of the method was studied in terms of linearity (1.3-316 μg L(-1), R (2) = 0.999), accuracy (recovery = 90.1-92.3%), and precision (relative standard deviation (RSD) <3.1). Finally, the method was successfully applied to speciate the iron species in the environmental and wastewater samples. PMID:26383736

  3. Optimization of two methods for the analysis of hydrogen peroxide: high performance liquid chromatography with fluorescence detection and high performance liquid chromatography with electrochemical detection in direct current mode.

    PubMed

    Tarvin, Megan; McCord, Bruce; Mount, Kelly; Sherlach, Katy; Miller, Mark L

    2010-11-26

    Two complementary methods were optimized for the separation and detection of trace levels of hydrogen peroxide. The first method utilized reversed-phase high-performance liquid chromatography with fluorescence detection (HPLC-FD). With this approach, hydrogen peroxide was detected based upon its participation in the hemin-catalyzed oxidation of p-hydroxyphenylacetic acid to yield the fluorescent dimer. The second method utilized high performance liquid chromatography with electrochemical detection (HPLC-ED). With this approach, hydrogen peroxide was detected based upon its oxidation at a gold working electrode at an applied potential of 400 mV vs. hydrogen reference electrode (Pd/H(2)). Both methods were linear across the range of 15-300 μM, and the electrochemical method was linear across a wider range of 7.4-15,000 μM. The limit of detection for hydrogen peroxide was 6 μM by HPLC/FD, and 0.6 μM by HPLC/ED. A series of organic peroxides and inorganic ions were evaluated for their potential to interfere with the detection of hydrogen peroxide. Studies investigating the recovery of hydrogen peroxide with three different extraction protocols were also performed. Post-blast debris from the detonation of a mixture of concentrated hydrogen peroxide with nitromethane was analyzed on both systems. Hydrogen peroxide residues were successfully detected on this post-blast debris. PMID:21030031

  4. Optimization of the basal medium for improving production and secretion of taxanes from suspension cell culture of Taxus baccata L

    PubMed Central

    2012-01-01

    Background and purpose of the study Taxol is one of the most effective anticancer drugs that isolated from Taxus sp. due to the slow growth of Taxus trees and low concentration of Taxol in the tissues, the biotechnological approaches especially plant cell culture have been considered to produce Taxol in commercial scale. Methods We investigated the effects of basal medium type used in culture media on production of Taxol and other taxane compounds from cell suspension culture of T. baccata L. Briefly, five commonly basal media including Gamborg, Murashige and Skoog, Woody Plant, Schenk and Hildebrandt, and Driver and Kuniyuki medium were used for preparing separate suspension culture media. The intra- and extra-cellular yields of taxanes were analyzed by using HPLC after 21 days period of culturing. Results The yields of taxanes were significantly different for the cultures prepared by different basal media. Moreover, the effects of basal medium on the yield of products differed for varius taxane compounds. Maximum yields of Baccatin III (10.03 mgl-1) and 10-deacetyl baccatin III (4.2 mgl-1) were achieved from the DKW basal media, but the yield of Taxol was maximum (16.58 mgl-1) in the WPM basal media. Furthermore, the secretion of taxanes from the cells into medium was also considerably affected by the type of basal medium. The maximum extra-cellular yield of Taxol (7.81 mgl-1), Baccatin III (5.0 mgl-1), and 10-deacetyl baccatin III (1.45 mgl-1) were also obtained by using DKW basal medium that were significantly higher than those obtained from other culture media. PMID:23352123

  5. Optimization and scale-up of cell culture and purification processes for production of an adenovirus-vectored tuberculosis vaccine candidate.

    PubMed

    Shen, Chun Fang; Jacob, Danielle; Zhu, Tao; Bernier, Alice; Shao, Zhongqi; Yu, Xuefeng; Patel, Mehul; Lanthier, Stephane; Kamen, Amine

    2016-06-17

    Tuberculosis (TB) is the second leading cause of death by infectious disease worldwide. The only available TB vaccine is the Bacille Calmette-Guerin (BCG). However, parenterally administered Mycobacterium bovis BCG vaccine confers only limited immune protection from pulmonary tuberculosis in humans. There is a need for developing effective boosting vaccination strategies. AdAg85A, an adenoviral vector expressing the mycobacterial protein Ag85A, is a new tuberculosis vaccine candidate, and has shown promising results in pre-clinical studies and phase I trial. This adenovirus vectored vaccine is produced using HEK 293 cell culture. Here we report on the optimization of cell culture conditions, scale-up of production and purification of the AdAg85A at different scales. Four commercial serum-free media were evaluated under various conditions for supporting the growth of HEK293 cell and production of AdAg85A. A culturing strategy was employed to take advantages of two culture media with respective strengths in supporting the cell growth and virus production, which enabled to maintain virus productivity at higher cell densities and resulted in more than two folds of increases in culture titer. The production of AdAg85A was successfully scaled up and validated at 60L bioreactor under the optimal conditions. The AdAg85A generated from the 3L and 60L bioreactor runs was purified through several purification steps. More than 98% of total cellular proteins was removed, over 60% of viral particles was recovered after the purification process, and purity of AdAg85A was similar to that of the ATCC VR-1516 Ad5 standard. Vaccination of mice with the purified AdAg85A demonstrated a very good level of Ag85A-specific antibody responses. The optimized production and purification conditions were transferred to a GMP facility for manufacturing of AdAg85A for generation of clinical grade material to support clinical trials. PMID:27154390

  6. The optimal period of Ca-EDTA treatment for parthenogenetic activation of porcine oocytes during maturation culture

    PubMed Central

    MORITA, Yasuhiro; TANIGUCHI, Masayasu; TANIHARA, Fuminori; ITO, Aya; NAMULA, Zhao; DO, Lanh Thi Kim; TAKAGI, Mitsuhiro; TAKEMOTO, Tatsuya; OTOI, Takeshige

    2016-01-01

    The changes triggered by sperm-induced activation of oocytes, which are required for normal oocyte development, can be mediated by other agents, thereby inducing the parthenogenesis. In this study, we exposed porcine oocytes to 1 mM Ca-EDTA, a metal-ion chelator, at various intervals during 48 hr of in vitro maturation to determine the optimum period of Ca-EDTA treatment for parthenogenetic activation. When the oocytes were cultured with or without Ca-EDTA from 36 hr (post-12), 24 hr (post-24), 12 hr (post-36) and 0 hr (post-48) after the start of maturation culture, the blastocyst formation rates were significantly higher (P<0.05) in the post-24, post-36 and post-48 groups (3.3%, 4.0% and 2.6%, respectively) than those in the control group without treatment (0%). Furthermore, when the oocytes were cultured with Ca-EDTA for 0 hr (control), 12 hr (pre-12), 24 hr (pre-24), 36 hr (pre-36) and 48 hr (pre-48) from the start of maturation culture, the oocytes formed blastocysts only in the pre-36 and pre-48 groups (0.4% or 0.8%, respectively). Pronuclei (<66.7%) were observed only when the periods of Ca-EDTA treatment were more than 12 hr during maturation culture. In the control group, no pronuclei were detected. Our findings demonstrate that porcine immature oocytes can be parthenogenetically activated by Ca-EDTA treatment for at least 24 hr to 36 hr during maturation culture, leading to pronucleus formation followed by the formation of blastocysts. PMID:26947170

  7. Mycotoxin production in liquid culture and on plants infected with Alternaria spp. isolated from rocket and cabbage.

    PubMed

    Siciliano, Ilenia; Ortu, Giuseppe; Gilardi, Giovanna; Gullino, Maria Lodovica; Garibaldi, Angelo

    2015-03-01

    Fungi belonging to the genus Alternaria are common pathogens of fruit and vegetables with some species able to produce secondary metabolites dangerous to human health. Twenty-eight Alternaria isolates from rocket and cabbage were investigated for their mycotoxin production. Five different Alternaria toxins were extracted from synthetic liquid media and from plant material (cabbage, cultivated rocket, cauliflower). A modified Czapek-Dox medium was used for the in vitro assay. Under these conditions, more than 80% of the isolates showed the ability to produce at least one mycotoxin, generally with higher levels for tenuazonic acid. However, the same isolates analyzed in vivo seemed to lose their ability to produce tenuazonic acid. For the other mycotoxins; alternariol, alternariol monomethyl ether, altenuene and tentoxin a good correlation between in vitro and in vivo production was observed. In vitro assay is a useful tool to predict the possible mycotoxin contamination under field and greenhouse conditions. PMID:25751147

  8. Optimization of Cell Adhesion on Mg Based Implant Materials by Pre-Incubation under Cell Culture Conditions

    PubMed Central

    Willumeit, Regine; Möhring, Anneke; Feyerabend, Frank

    2014-01-01

    Magnesium based implants could revolutionize applications where orthopedic implants such as nails, screws or bone plates are used because they are load bearing and degrade over time. This prevents a second surgery to remove conventional implants. To improve the biocompatibility we studied here if and for how long a pre-incubation of the material under cell culture conditions is favorable for cell attachment and proliferation. For two materials, Mg and Mg10Gd1Nd, we could show that 6 h pre-incubation are already enough to form a natural protective layer suitable for cell culture. PMID:24857908

  9. Glucose concentration alters dissolved oxygen levels in liquid cultures of Beauveria bassiana and affects formation and bioefficacy of blastospores.

    PubMed

    Mascarin, Gabriel Moura; Jackson, Mark A; Kobori, Nilce Naomi; Behle, Robert W; Dunlap, Christopher A; Delalibera Júnior, Ítalo

    2015-08-01

    The filamentous fungus Beauveria bassiana is an economically important pathogen of numerous arthropod pests and is able to grow in submerged culture as filaments (mycelia) or as budding yeast-like blastospores. In this study, we evaluated the effect of dissolved oxygen and high glucose concentrations on blastospore production by submerged cultures of two isolates of B. bassiana, ESALQ1432 and GHA. Results showed that maintaining adequate dissolved oxygen levels coupled with high glucose concentrations enhanced blastospore yields by both isolates. High glucose concentrations increased the osmotic pressure of the media and coincided with higher dissolved oxygen levels and increased production of significantly smaller blastospores compared with blastospores produced in media with lower concentrations of glucose. The desiccation tolerance of blastospores dried to less than 2.6 % moisture was not affected by the glucose concentration of the medium but was isolate dependent. Blastospores of isolate ESALQ1432 produced in media containing 140 g glucose L(-1) showed greater virulence toward whitefly nymphs (Bemisia tabaci) as compared with blastospores produced in media containing 40 g glucose L(-1). These results suggest a synergistic effect between glucose concentration and oxygen availability on changing morphology and enhancing the yield and efficacy of blastospores of B. bassiana, thereby facilitating the development of a cost-effective production method for this blastospore-based bioinsecticide. PMID:25947245

  10. Optimization of Sample Preparation for the Identification and Quantification of Saxitoxin in Proficiency Test Mussel Sample using Liquid Chromatography-Tandem Mass Spectrometry

    PubMed Central

    Harju, Kirsi; Rapinoja, Marja-Leena; Avondet, Marc-André; Arnold, Werner; Schär, Martin; Burrell, Stephen; Luginbühl, Werner; Vanninen, Paula

    2015-01-01

    Saxitoxin (STX) and some selected paralytic shellfish poisoning (PSP) analogues in mussel samples were identified and quantified with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Sample extraction and purification methods of mussel sample were optimized for LC-MS/MS analysis. The developed method was applied to the analysis of the homogenized mussel samples in the proficiency test (PT) within the EQuATox project (Establishment of Quality Assurance for the Detection of Biological Toxins of Potential Bioterrorism Risk). Ten laboratories from eight countries participated in the STX PT. Identification of PSP toxins in naturally contaminated mussel samples was performed by comparison of product ion spectra and retention times with those of reference standards. The quantitative results were obtained with LC-MS/MS by spiking reference standards in toxic mussel extracts. The results were within the z-score of ±1 when compared to the results measured with the official AOAC (Association of Official Analytical Chemists) method 2005.06, pre-column oxidation high-performance liquid chromatography with fluorescence detection (HPLC-FLD). PMID:26610567

  11. Optimization of Sample Preparation for the Identification and Quantification of Saxitoxin in Proficiency Test Mussel Sample using Liquid Chromatography-Tandem Mass Spectrometry.

    PubMed

    Harju, Kirsi; Rapinoja, Marja-Leena; Avondet, Marc-André; Arnold, Werner; Schär, Martin; Burrell, Stephen; Luginbühl, Werner; Vanninen, Paula

    2015-12-01

    Saxitoxin (STX) and some selected paralytic shellfish poisoning (PSP) analogues in mussel samples were identified and quantified with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Sample extraction and purification methods of mussel sample were optimized for LC-MS/MS analysis. The developed method was applied to the analysis of the homogenized mussel samples in the proficiency test (PT) within the EQuATox project (Establishment of Quality Assurance for the Detection of Biological Toxins of Potential Bioterrorism Risk). Ten laboratories from eight countries participated in the STX PT. Identification of PSP toxins in naturally contaminated mussel samples was performed by comparison of product ion spectra and retention times with those of reference standards. The quantitative results were obtained with LC-MS/MS by spiking reference standards in toxic mussel extracts. The results were within the z-score of ±1 when compared to the results measured with the official AOAC (Association of Official Analytical Chemists) method 2005.06, pre-column oxidation high-performance liquid chromatography with fluorescence detection (HPLC-FLD). PMID:26610567

  12. Simulation-based optimization of dual-phase vacuum extraction to remove nonaqueous phase liquids in subsurface

    NASA Astrophysics Data System (ADS)

    Qin, X. S.; Huang, G. H.; Zeng, G. M.; Chakma, A.

    2008-04-01

    An integrated simulation-optimization system was developed for supporting decisions of the dual phase vacuum extraction (DPVE) processes. The system coupled a DPVE process simulator, a multivariate regression tool and a nonlinear optimization model into a general framework. A stepwise-cluster-analysis technique was provided for establishing a DPVE process forecasting system for describing the relationships between remediation actions and system responses (i.e., total extracted volume of oil/water, elevation distribution of water table, and specific volume of oil). The forecasting system was then embedded into a multiobjective optimization framework, where the objectives were to minimize the operation cost and maximize the remediation efficiency. The constraints include environmental, hydraulic and technical restrictions to the DPVE processes. A case study was conducted for a petroleum-contaminated site in western Canada. The results from the stepwise cluster analysis indicated that the generated cluster trees could be used for predicting system responses of the DPVE process, given inputs of the operating conditions. The prediction accuracies of the generated cluster trees were verified using randomly generated data sets. The optimum operating conditions could vary significantly under different cost-efficiency targets. When a stricter environmental target (i.e., the amount of pollutants in subsurface) was concerned, a higher system cost had to be paid; when the cost became a critical factor, the performance of contaminant removal would have to be compromised. The developed system could be used to analyze tradeoffs between system cost and process efficiency in the DPVE operations; it could also support the formulation of an on-site process-control system with vacuum levels and extraction rates being the main control variables.

  13. Enhanced production of α-amylase by Penicillium chrysogenum in liquid culture by modifying the process parameters.

    PubMed

    Dar, Gowhar H; Kamili, Azra N; Nazir, Ruqeya; Bandh, Suhaib A; Jan, Tariq R; Chishti, Mohammad Z

    2015-11-01

    In this paper, we have assessed the role of changing physicochemical parameters and substrate types on the production of α-amylase enzyme from Penicillium chrysogenum, with a view to determining the optimal conditions required for its maximum production. The findings of this research revealed that, at pH 6 using linseed oil cake as substratum, α-amylase enzyme production was maximum (550.0 U/mL), when the fungi was incubated for 6 days at 30 °C in 0.1 M acetate buffer. Further, reasonably good production of the α-amylase enzyme was also observed at pH 9 with all the experimented carbon sources as substrates. Moreover, statistical analysis, using analysis of variance (ANOVA) carried out to study the impact of different studied parameters on the α-amylase enzyme production revealed that incubation period of 6-18 days is highly significant (p = 0.01) factor in amylotic activity of the P. chrysogenum. Under the researched out optimal conditions, P. chrysogenum is an economically viable option for the industrial and biotechnological production of α-amylase enzyme. PMID:26220910

  14. Producing biodiesel from cotton seed oil using Rhizopus oryzae ATTC #34612 whole cell biocatalysts: Culture media and cultivation period optimization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of culture medium composition and cultivation time on biodiesel production by Rhizopus oryzae ATCC #34612 whole cell catalysts, immobilized on novel rigid polyethylene biomass supports, was investigated. Supplementation of the medium with carbon sources led to higher lipase activity and i...

  15. A polysaccharide isolated from the liquid culture of Lentinus edodes (shiitake) mushroom mycelia containing black rice bran protects mice against Salmonellosis through up-regulation of the Th1 immune reaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study investigated the antibacterial effect of a bioprocessed polysaccharide (BPP) isolated from Lentinus edodes liquid mycelial culture supplemented with black rice bran against murine salmonellosis. BPP was not bactericidal in vitro, but did, however stimulate uptake of the bacteria i...

  16. Immunoaffinity enrichment and liquid chromatography-selected reaction monitoring mass spectrometry for quantitation of carbonic anhydrase 12 in cultured renal carcinoma cells

    PubMed Central

    Rafalko, Agnes; Iliopoulos, Othon; Fusaro, Vincent A.; Hancock, William; Hincapie, Marina

    2010-01-01

    Liquid chromatography-selected reaction monitoring (LC-SRM) is a highly specific and sensitive mass spectrometry (MS) technique that is widely being applied to selectively qualify and validate candidate markers within complex biological samples. However, in order for LC-SRM methods to take on these attributes, target-specific optimization of sample processing is required, in order to reduce analyte complexity, prior to LC-SRM. In this study, we have developed a targeted platform consisting of protein immunoaffinity enrichment on magnetic beads and LC-SRM for measuring carbonic anhydrase 12 (CA12) protein in a renal cell carcinoma (RCC) cell line (PRC3), a candidate biomarker for RCC whose expression at the protein level has not been previously reported. Sample processing and LC-SRM assay were optimized for signature peptides selected as surrogate markers of CA12 protein. Using LC-SRM coupled with stable isotope dilution, we achieved limits of quantitation in the low fmol range sufficient for measuring clinically relevant biomarkers with good intra- and inter-assay accuracy and precision (≤17%). Our results show that using a quantitative immunoaffinity capture approach provides specific, accurate, and robust assays amenable to high-throughput verification of potential biomarkers. PMID:20936840

  17. Immunoaffinity enrichment and liquid chromatography-selected reaction monitoring mass spectrometry for quantitation of carbonic anhydrase 12 in cultured renal carcinoma cells.

    PubMed

    Rafalko, Agnes; Iliopoulos, Othon; Fusaro, Vincent A; Hancock, William; Hincapie, Marina

    2010-11-01

    Liquid chromatography-selected reaction monitoring (LC-SRM) is a highly specific and sensitive mass spectrometry (MS) technique that is widely being applied to selectively qualify and validate candidate markers within complex biological samples. However, in order for LC-SRM methods to take on these attributes, target-specific optimization of sample processing is required, in order to reduce analyte complexity, prior to LC-SRM. In this study, we have developed a targeted platform consisting of protein immunoaffinity enrichment on magnetic beads and LC-SRM for measuring carbonic anhydrase 12 (CA12) protein in a renal cell carcinoma (RCC) cell line (PRC3), a candidate biomarker for RCC whose expression at the protein level has not been previously reported. Sample processing and LC-SRM assay were optimized for signature peptides selected as surrogate markers of CA12 protein. Using LC-SRM coupled with stable isotope dilution, we achieved limits of quantitation in the low fmol range sufficient for measuring clinically relevant biomarkers with good intra- and interassay accuracy and precision (≤17%). Our results show that using a quantitative immunoaffinity capture approach provides specific, accurate, and robust assays amenable to high-throughput verification of potential biomarkers. PMID:20936840

  18. Sample preparation for beta-exotoxin determination in Bacillus thuringiensis cultures by reversed-phase high-performance liquid chromatography.

    PubMed

    Gohar, M; Perchat, S

    2001-11-01

    Beta-exotoxin is a nucleotide analogue produced by the entomopathogenic bacterium Bacillus thuringiensis. We have defined two new HPLC procedures for quantification of this exotoxin in culture supernatants of B. thuringiensis grown in poor or rich medium. The sample is prepared either by precipitation in solvent or by solid-phase extraction. Solvent precipitation is achieved treating the sample with acetone and acetonitrile. Solid-phase extraction is performed with a C18 and an anion-exchange cartridge. Reversed-phase HPLC with gradient elution of the prepared samples gives a limit of quantitation of 2 microg/ml for samples prepared by solvent precipitation and of 0.3 microg/ml for samples prepared by solid-phase extraction. PMID:11673902

  19. Optimization of Culture Conditions for Production of the Anti-Leukemic Glutaminase Free L-Asparaginase by Newly Isolated Streptomyces olivaceus NEAE-119 Using Response Surface Methodology.

    PubMed

    El-Naggar, Noura El-Ahmady; Moawad, Hassan; El-Shweihy, Nancy M; El-Ewasy, Sara M

    2015-01-01

    Among the antitumor drugs, bacterial enzyme L-asparaginase has been employed as the most effective chemotherapeutic agent in pediatric oncotherapy especially for acute lymphoblastic leukemia. Glutaminase free L-asparaginase producing actinomycetes were isolated from soil samples collected from Egypt. Among them, a potential culture, strain NEAE-119, was selected and identified on the basis of morphological, cultural, physiological, and biochemical properties together with 16S rRNA sequence as Streptomyces olivaceus NEAE-119 and sequencing product (1509 bp) was deposited in the GenBank database under accession number KJ200342. The optimization of different process parameters for L-asparaginase production by Streptomyces olivaceus NEAE-119 using Plackett-Burman experimental design and response surface methodology was carried out. Fifteen variables (temperature, pH, incubation time, inoculum size, inoculum age, agitation speed, dextrose, starch, L-asparagine, KNO3, yeast extract, K2HPO4, MgSO4·7H2O, NaCl, and FeSO4·7H2O) were screened using Plackett-Burman experimental design. The most positive significant independent variables affecting enzyme production (temperature, inoculum age, and agitation speed) were further optimized by the face-centered central composite design-response surface methodology. PMID:26180806

  20. Optimization of Culture Conditions for Production of the Anti-Leukemic Glutaminase Free L-Asparaginase by Newly Isolated Streptomyces olivaceus NEAE-119 Using Response Surface Methodology

    PubMed Central

    El-Naggar, Noura El-Ahmady; Moawad, Hassan; El-Shweihy, Nancy M.; El-Ewasy, Sara M.

    2015-01-01

    Among the antitumor drugs, bacterial enzyme L-asparaginase has been employed as the most effective chemotherapeutic agent in pediatric oncotherapy especially for acute lymphoblastic leukemia. Glutaminase free L-asparaginase producing actinomycetes were isolated from soil samples collected from Egypt. Among them, a potential culture, strain NEAE-119, was selected and identified on the basis of morphological, cultural, physiological, and biochemical properties together with 16S rRNA sequence as Streptomyces olivaceus NEAE-119 and sequencing product (1509 bp) was deposited in the GenBank database under accession number KJ200342. The optimization of different process parameters for L-asparaginase production by Streptomyces olivaceus NEAE-119 using Plackett-Burman experimental design and response surface methodology was carried out. Fifteen variables (temperature, pH, incubation time, inoculum size, inoculum age, agitation speed, dextrose, starch, L-asparagine, KNO3, yeast extract, K2HPO4, MgSO4·7H2O, NaCl, and FeSO4·7H2O) were screened using Plackett-Burman experimental design. The most positive significant independent variables affecting enzyme production (temperature, inoculum age, and agitation speed) were further optimized by the face-centered central composite design-response surface methodology. PMID:26180806

  1. Isolation, Identification and Optimal Culture Conditions of Streptomyces albidoflavus C247 Producing Antifungal Agents against Rhizoctonia solani AG2-2

    PubMed Central

    Islam, Md. Rezuanul; Jeong, Yong Tae; Ryu, Yeon Ju; Song, Chi Hyun

    2009-01-01

    Streptomyces albidoflavus C247 was isolated from the soil of the Gyeongsan golf course in Korea. Physiological, biochemical and 16S rDNA gene sequence analysis strongly suggested that the isolate belonged to Streptomyces albidoflavus. Preliminary screening revealed that the isolate was active against fungi and bacteria. Self-directing optimization was employed to determine the best combination of parameters such as carbon and nitrogen source, pH and temperature. Nutritional and culture conditions for the production of antibiotics by this organism under shake-flask conditions were also optimized. Maltose (5%) and soytone (5%) were found to be the best carbon and nitrogen sources for the production of antibiotics by S. albidoflavus C247. Additionally, 62.89% mycelial growth inhibition was achieved when the organism was cultured at 30℃ and pH 6.5. Ethyl acetate (EtOAc) was the best extraction solvent for the isolation of the antibiotics, and 100 µg/ml of EtOAc extract was found to inhibit 60.27% of the mycelial growth of Rhizoctonia solani AG2-2(IV) when the poison plate diffusion method was conducted. PMID:23983519

  2. Mathematical modeling of liquid-junction photovoltaic cells. I - Governing equations. II - Effect of system parameters on current-potential curves. III - Optimization of cell configurations

    NASA Astrophysics Data System (ADS)

    Orazem, M. E.; Newman, J.

    1984-11-01

    An analytical model was developed for liquid-junction solar cells and used as a guide for simulation testing of a prototype n-GaAs cell with a Se2(-2_/Se(-2) redox couple. The model explicitly characterized the semiconductor, electrolyte, and semiconductor-electrolyte interface using transport equations for the first two components and a microscopic mode for the interface. Interfacial sites in the semiconductor-electrolyte interface were identified as recombination centers. The model, when applied to predicting the performance of a GaAs solar cell with an 0.8MK2Se, 0.1MK2Se2, and KOH electrolytes revealed performance-limiting interfacial reactions, dopant concentrations semiconductor thicknesses, illumination directions, and light absorptance by the semiconductor. A subsequent simulation of an optimized cell in two illumination situations, from the electrolyte and current-collector sides, verified a near-optimized (15.3-17.2 percent efficiency). Finally, the economics of mass production of the cells were discussed.

  3. Optimization of an analytical methodology for the simultaneous determination of different classes of ultraviolet filters in cosmetics by pressurized liquid extraction-gas chromatography tandem mass spectrometry.

    PubMed

    Vila, Marlene; Lamas, J Pablo; Garcia-Jares, Carmen; Dagnac, Thierry; Llompart, Maria

    2015-07-31

    A methodology based on pressurized liquid extraction (PLE) followed by gas chromatography-tandem mass spectrometry (GC-MS/MS) has been developed for the simultaneous analysis of different classes of UV filters including methoxycinnamates, benzophenones, salicylates, p-aminobenzoic acid derivatives, and others in cosmetic products. The extractions were carried out in 1mL extraction cells and the amount of sample extracted was only 100mg. The experimental conditions, including the acetylation of the PLE extracts to improve GC performance, were optimized by means of experimental design tools. The two main factors affecting the PLE procedure such as solvent type and extraction temperature were assessed. The use of a matrix matched approach consisting of the addition of 10μL of diluted commercial cosmetic oil avoided matrix effects. Good linearity (R(2)>0.9970), quantitative recoveries (>80% for most of compounds, excluding three banned benzophenones) and satisfactory precision (RSD<10% in most cases) were achieved under the optimal conditions. The validated methodology was successfully applied to the analysis of different types of cosmetic formulations including sunscreens, hair products, nail polish, and lipsticks, amongst others. PMID:26091782

  4. Quality by design based optimization of a high performance liquid chromatography method for assay determination of low concentration preservatives in complex nasal formulations.

    PubMed

    Zakrajšek, Jure; Stojić, Vladimir; Bohanec, Simona; Urleb, Uroš

    2015-01-01

    The effects of seven different chromatographic parameters and five sample preparation parameters in a high performance liquid chromatography (HPLC) method for assay determination of benzalkonium chloride (BKC) in a nasal formulation were evaluated using two fractional factorial experimental designs. The design space of the analytical method was modeled using Umetrics Modde software and the optimal method conditions were predicted. The optimum HPLC chromatographic conditions were obtained using a Luna CN column (150 x 4.6 mm, 3 µm). The results show that mobile phase pH, amount of acetonitrile in the mobile phase and column temperature are the most important factors in obtaining good separation of BKC homologs from an interfering peak. In the sample preparation step, the use of an aqueous solution for dissolving the samples was the most important factor since it eliminated the interfering effect of the active compound. The optimal method was validated for linearity, accuracy and precision. The use of experimental designs enables obtaining the maximum amount of information with the least possible number of experiments. Such designs are an economical manner in evaluating a variety of different factors and their interactions. PMID:25830962

  5. Design and optimization of ultrasound assisted extraction of curcumin as an effective alternative for conventional solid liquid extraction of natural products.

    PubMed

    Mandal, Vivekananda; Dewanjee, Saikat; Sahu, Ranabir; Mandal, Subhash C

    2009-01-01

    The first step in the qualitative and quantitative analysis of medicinal plant constituents is the extraction step. Ideally, an extraction procedure should be exhaustive with respect to the constituents to be analyzed, rapid, simple, and for routine analysis amenable to automation. Usually, the traditional techniques require long extraction times, with more consumption of energy resources and organic solvent, have low efficiency and are often unsafe for thermolabile botanicals. The Taguchi based optimization technique was adapted for the process optimization of ultrasound assisted extraction (UAE) of Curcuma longa to identify the effect of four major factors namely, extraction time, solvent viscosity, grinding degree and solvent volume on the percentage extraction of curcumin. The reproducibility and recovery of the method was also investigated. The efficiency of the new extraction method was then compared with conventional solid liquid extraction procedures. Using this novel method, long hours of conventional Soxhlet extraction were cut down to 70 minutes of UAE with greater reproducibility and recovery. The study clearly shows that this method can be effectively utilized for cutting down long extraction time of botanicals to just a few minutes without the aid of heat. PMID:19370883

  6. High-level Expression and Purification of Active Human FGF-2 in Escherichia coli by Codon and Culture Condition Optimization

    PubMed Central

    Soleyman, Mohammad Reza; Khalili, Mostafa; Khansarinejad, Behzad; Baazm, Maryam

    2016-01-01

    Background: Basic fibroblast growth factor (bFGF) is a member of a highly conserved superfamily of proteins that are involved in cell proliferation, differentiation, and migration. Objectives: The objective of this study was to overexpress and purify the high-level active human bFGF in Escherichia coli (E. coli). Materials and Methods: This experimental study was conducted in the Islamic Republic of Iran. After codon optimization and gene synthesis, the optimized FGF-2 gene was subcloned into plasmid pET-32a. pET32-FGF-2 was transformed into E. coli BL21 for expression. The cultivation parameters were optimized to produce a high yield of FGF-2. Results: The optimal conditions were determined as follows: cultivation at 37°C in TB medium, with 1 mM isopropyl-β-D-thiogalactopyranoside (IPTG), followed by post-induction expression for 6 h. Under the abovementioned conditions, the expression volumetric productivity of FGF-2 reached 1.48 g/L. Conclusions: A fusion tag from the pET32 expression plasmid permits the recovery of the recombinant fusion FGF-2 from E. coli, without affecting its biological activity. PMID:27175305

  7. Enabling School Structure, Collective Responsibility, and a Culture of Academic Optimism: Toward a Robust Model of School Performance in Taiwan

    ERIC Educational Resources Information Center

    Wu, Jason H.; Hoy, Wayne K.; Tarter, C. John

    2013-01-01

    Purpose: The purpose of this research is twofold: to test a theory of academic optimism in Taiwan elementary schools and to expand the theory by adding new variables, collective responsibility and enabling school structure, to the model. Design/methodology/approach: Structural equation modeling was used to test, refine, and expand an…

  8. Optimized methods for targeted peptide-based quantification of human uridine 5'-diphosphate-glucuronosyltransferases in biological specimens using liquid chromatography-tandem mass spectrometry.

    PubMed

    Sato, Yuichiro; Nagata, Masanori; Tetsuka, Kazuhiro; Tamura, Kouichi; Miyashita, Aiji; Kawamura, Akio; Usui, Takashi

    2014-05-01

    The aim of this study was to optimize methods for quantifying 13 uridine 5'-diphosphate-glucuronosyltransferase (UGT) isoforms (UGT1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B10, 2B15, and 2B17) in human liver, intestinal, and kidney microsomes, and in recombinant human UGT-expressing insect cell membranes (rhUGTs) by targeted peptide-based quantification using liquid chromatography-tandem mass spectrometry. Production of targeted peptides was compared by combining three denaturing agents (urea, sodium deoxycholate, and octyl glucoside) and three denaturing temperatures (37°C, 60°C, and 95°C) followed by tryptic digestion for 2-20 hours. Denaturing conditions and digestion times yielding high production efficiency varied markedly among isoforms and specimens, indicating the importance of specific optimization. Each UGT isoform was quantified using the methods found to be optimal. The expression of 10 (1A1, 1A3, 1A4, 1A6, 1A9, 2B4, 2B7, 2B10, 2B15, and 2B17), 6 (1A1, 1A3, 1A4, 1A10, 2B7, and 2B17), and 3 (1A6, 1A9, and 2B7) isoforms was detected in human liver, intestinal, and kidney microsomes, respectively, and levels were reproducible using multiple protocols. All isoforms were quantified in rhUGTs. Determining the levels of UGTs in human tissue specimens and those in rhUGTs is important for estimating the contribution of glucuronidation to body clearance based on in vitro-in vivo extrapolation. PMID:24595681

  9. Optimal extraction and fingerprinting of carotenoids by accelerated solvent extraction and liquid chromatography with tandem mass spectrometry.

    PubMed

    Saha, Supradip; Walia, Suresh; Kundu, Aditi; Sharma, Khushbu; Paul, Ranjit Kumar

    2015-06-15

    Accelerated solvent extraction (ASE) is applied for the extraction of carotenoids from orange carrot and the extraction parameters were optimized. Two carotenoids, lutein and β-carotene, are selected as the validation process. Hildebrand solubility parameters and dielectric constant of solvents were taken into consideration in selecting solvent mixture. The effects of various experimental parameters, such as temperature, static time, drying agent etc., on the ASE extraction efficiency are investigated systematically. Interactions among the variables were also studied. Furthermore, two carotenoids were analyzed and characterized by LC-ESI MS. The study concluded that Hildebrand solubility parameter approach may be applicable for less polar bioactive molecules like carotenoids. The properties of solvent and extraction temperature are found to be the most important parameters affecting the ASE extraction efficiency of thermolabile natural compounds. PMID:25660899

  10. An all-at-once factorial method to optimize dip-pen deposition of liquid protein inks

    NASA Astrophysics Data System (ADS)

    Henning, A. K.; Rozhok, S.; Fragala, J.; Shile, R.; Ouyang, K.

    2013-03-01

    An all-at-once factorial method is presented, which optimizes protein ink deposition using microfabricated pens by identifying the pen design which writes the greatest number of uniform-size spots or droplets without re-inking. Pen features associated with capillary ink transport are varied according to statistical design-of-experiment (SDOE) principles, and evaluated using a special 1D pen array of twelve pens. Variable parameter pens are bracketed by control pens. Each pen array element embodies one component of the SDOE matrix. All parameters are evaluated simultaneously with a single droplet writing pass. Results can also be evaluated simultaneously, leading to rapid choice of those pen parameters which deliver the greatest number of printed features having the smallest coefficient of variation.

  11. Optimizing the culture environment in the IVF laboratory: impact of pH and buffer capacity on gamete and embryo quality.

    PubMed

    Swain, Jason E

    2010-07-01

    Supplying and maintaining appropriate culture conditions is critical to minimize stress imposed upon gametes and embryos and to optimize the in-vitro environment. One parameter that requires close scrutiny in this endeavour is pH. Though embryos have a limited ability to regulate their internal pH (pH(i)), oocytes lack robust mechanisms. Thus, careful attention to external pH (pH(e)) of culture media is imperative in IVF. Ability to withstand deviations in hydrogen ion concentration varies depending on culture conditions, as well as laboratory procedures. Cryopreserved--thaw--thawed embryos, as well as denuded oocytes, are especially susceptible to perturbations in pH(e). Therefore, proper setting, monitoring and stabilizing of pH(e) during IVF laboratory procedures is a crucial component of a rigorous quality control programme. Here, importance of both pH(i) and pH(e) in respect to gamete and embryo quality are discussed. Furthermore, factors influencing selection of pH(e), as well as emerging methods to stabilize pH(e) in the IVF laboratory are detailed. PMID:20570214

  12. Assessing the optimal liquid volume to be sprayed on isolated olive trees according to their canopy volumes.

    PubMed

    Miranda-Fuentes, A; Llorens, J; Rodríguez-Lizana, A; Cuenca, A; Gil, E; Blanco-Roldán, G L; Gil-Ribes, J A

    2016-10-15

    The application of pesticides to traditional and intensive olive orchards in Southern Spain has led to environmental problems. More specifically, the lack of an accurate, useful criterion to regulate the spray volume in relation to canopy characteristics has led to spray drift and runoff, which are threats to local ecosystems. The aim of this study was to determine the optimal relationship between canopy volume and the spray application volume, called specific spray volume, CV, through laboratory and field trials. In the laboratory trial, 6 specific spray volumes (0.05, 0.08, 0.10, 0.12, 0.15, and 0.20Lm(-3)) were tested in a specially designed structure containing small, live olive trees in order to simulate an intensive plantation system. The model aimed to evaluate the coverage of pesticide application on water sensitive paper (WSP) collectors. In the field trial, the three laboratory specific spray volumes that gave the best coverage values were tested on live, intensively managed trees, whose crown volume was manually measured. Food dye E-102 was used to determine the spray deposition on artificial targets (10×10cm absorbent paper pieces), and WSP was used to evaluate spray coverage. The spray penetration and deposit homogeneity inside the canopy were also evaluated. Weather conditions during the field trial were monitored with a weather station. The results of the laboratory trial showed that the three best specific spray volumes were 0.08, 0.10, and 0.12Lm(-3), resulting in mean coverage values of approximately 30%. The ANOVA of the field trial results showed that the 0.12Lm(-3) was the optimal specific spray volume for isolated olive trees. This specific spray volume gave the highest mean deposits, the best efficiency (as measured by the greatest normalized deposit), the most favourable penetration and homogeneity, and the highest coverage values. PMID:27300563

  13. An optimized capillary electrophoresis method for the simultaneous analysis of biomass degradation products in ionic liquid containing samples.

    PubMed

    Aid, Tiina; Paist, Loore; Lopp, Margus; Kaljurand, Mihkel; Vaher, Merike

    2016-05-20

    An indirect capillary electrophoresis method for a quantitative determination of mono-, di- and oligosaccharides was developed to investigate biomass degradation, the isomerization of glucose into fructose and conversion of fructose to 5-hydroxymethylfurfural (5-HMF) in ionic liquids (ILs). Three chromophores, namely 2,6-pyridinedicarboxylic acid (PDC), maleic acid and phthalic acid, were used to perform indirect detection. The electroosmotic flow (EOF) was reversed to reduce analysis time, using 1-tetradecyl-3-methylimidazolium chloride (C14MImCl). The simultaneous separation of the underivatized mono-, di- and oligosaccharides was performed using four cellodextrin oligomers (cellotriose, cellotetraose, cellopentaose, cellohexaose), eight carbohydrates (xylose, fructose, glucose, galactose, lactose, cellobiose, raffinose, sucrose), two organic acids (acetic acid, levulinic acid) and 5-HMF. The best performance was obtained using background electrolyte (BGE) composed of 138.2mM NaOH, 40mM maleic acid and 5mMC14MImCl, the applied voltage was -21.7kV. The linear ranges for analyzed compounds were following: organic acids, raffinose and sucrose from 0.20 to 7mM, cellodextrin oligomers from 0.25 to 5mM, other analyzed carbohydrates from 0.25 to 7mM and 5-HMF from 0.05 to 7mM. The relative standard deviations (RSD) of peak areas varied from 3.47 to 9.62% during a 5-day analysis period and 0.58-5.29% during one day. PMID:27095128

  14. Towards Optimal Spectral and Spatial Documentation of Cultural Heritage. Cosch - AN Interdisciplinary Action in the Cost Framework

    NASA Astrophysics Data System (ADS)

    Boochs, F.; Bentkowska-Kafel, A.; Degringy, C.; Hautta-Kasari, M.; Rizvic, S.; Sitnik, R.; Tremeau, A.

    2013-07-01

    This paper introduces the aims and early activities of Colour and Space in Cultural Heritage (COSCH), an interdisciplinary European network of experts in the latest optical measuring techniques and electronic imaging applied to documentation of artefacts. COSCH is a forum open to organisations, institutions and companies interested in collaboration within the emerging field of precise spectral and spatial imaging techniques, in physical and chemical sciences applied to cultural heritage objects, as well as in research and applications to conservation and art-historical analysis of such objects. COSCH started in November 2012. Funded by COST, an intergovernmental framework for European Cooperation in Science and Technology, COSCH networking activities enable knowledge exchange and coordination of nationally-funded research on a European level with occasional contribution of experts from other countries. Funding has been made available for four years (2012-2016). Participation is open to researchers across a wide range of disciplines, including computer scientists and museum professionals, art historians and academics in heritage-related fields. COSCH is a trans-domain Action (TD1201) of the COST Domain Materials, Physics and Nanosciences (MPNS) which facilitates and promotes innovation in material science. The work of COSCH is defined in the Memorandum of Understanding between the COST Office and the Chairman of COSCH. The Memorandum is available from http://www.cost.eu/domains_actions/mpns/Actions/TD1201 alongside the latest progress report and other documents. The scientific work draws on earlier and current research of the participants and is organised around the following areas: spectral and spatial object documentation; algorithms and procedures; analysis and restoration of surfaces and objects of material culture; visualisation of cultural heritage objects and its dissemination

  15. Optimization of in situ hybridization for detection of viral genomes in cultured cells on 96-microwell plates: a cytomegalovirus model.

    PubMed Central

    Mougin, C; Bassignot, A; Coaquette, A; Bourgeois, A; Lab, M

    1991-01-01

    In situ hybridization (ISH) for identification of infectious replicative cytomegalovirus (CMV) in cell culture microplates (96 microwells) infected by clinical specimens was tested by using a biotin-labeled DNA probe and an avidin-alkaline phosphatase conjugate. A total of 395 specimens were examined by using ISH and a monoclonal antibody (MAb) specific for an early antigen of CMV. Of 47 specimens that gave a positive signal for CMV by ISH, 33 were confirmed virus positive by MAb staining. Of 141 blood samples tested, 4.96% were positive by ISH, and 0.7% were positive by the MAb technique. ISH shows 40% more sensitivity than MAb staining. This technique should be widely applicable for the specific identification of viral isolates (e.g., herpesvirus, myxovirus, paramyxovirus, and enterovirus) in cell culture 96-microwell microplates, thereby making it feasible to screen a larger number of samples than is possible with classical methods using conventional culture tubes, shell vials, or 24-well plates. Images PMID:1662228

  16. Optimization and comparison of two different 3D culture methods to prepare cell aggregates as a bioink for organ printing.

    PubMed

    Imani, Rana; Hojjati Emami, Shahriar; Fakhrzadeh, Hossein; Baheiraei, Nafiseh; Sharifi, Ali M

    2012-04-01

    The ultimate goal of tissue engineering is to design and fabricate functional human tissues that are similar to natural cells and are capable of regeneration. Preparation of cell aggregates is one of the important steps in 3D tissue engineering technology, particularly in organ printing. Two simple methods, hanging drop (HD) and conical tube (CT) were utilized to prepare cell aggregates. The size and viability of the aggregates obtained at different initial cell densities and pre-culture duration were compared. The proliferative ability of the cell aggregates and their ability to spread in culture plates were also investigated. In both methods, the optimum average size of the aggregates was less than 500 microm. CT aggregates were smaller than HD aggregates. 5,000 cells per drop HD aggregates showed a marked ability to attach and spread on the culture surface. The proliferative ability reduced when the initial cell density was increased. Comparing these methods, we found that the HD method having better size controlling ability as well as enhanced ability to maintain higher rates of viability, spreading, and proliferation. In conclusion, smaller HD aggregates might be a suitable choice as building blocks for making bioink particles in bioprinting technique. PMID:23173303

  17. Advances in cell culture process development: tools and techniques for improving cell line development and process optimization.

    PubMed

    Sharfstein, Susan T

    2008-01-01

    At the 234th National Meeting of the American Chemical Society, held in Boston, MA, August 19-23, 2007, the ACS BIOT division held two oral sessions on Cell Culture Process Development. In addition, a number of posters were presented in this area. The critical issues facing cell culture process development today are how to effectively respond to the increase in product demands and decreased process timelines while maintaining robust process performance and product quality and responding to the Quality by Design initiative promulgated by the Food and Drug Administration. Two main areas were addressed in the presentations: first, to understand the effects of process conditions on productivity and product quality, and second, to achieve improved production cell lines. A variety of techniques to achieve these goals were presented, including automated flow cytometric analysis, a high-throughput cell analysis and selection method, transcriptional and epigenetic techniques for analysis of cell lines and cell culture systems, and novel techniques for glycoform analysis. PMID:18426245

  18. Mushroom polysaccharides and lipids synthesized in liquid agitated and static cultures. Part I: screening various mushroom species.

    PubMed

    Diamantopoulou, Panagiota; Papanikolaou, Seraphim; Kapoti, Maria; Komaitis, Michael; Aggelis, George; Philippoussis, Antonios

    2012-06-01

    The effect of four synthetic media containing glucose (initial concentration 30 g l(-1)) on mycelial growth, exopolysaccharides (EPS) and cellular lipids production was examined in 11 mushroom species after 12 and 16 days of culture in static- and shake-flasks. Fatty acid analysis of cellular lipids produced was also performed. Agitation had a positive effect on biomass production, glucose consumption and lipid biosynthesis. Media that favoured the production of biomass were not suitable for EPS biosynthesis and vice versa. Biomass values varied from ~1.0 g l(-1) (Lentinula edodes) to ~19 g l(-1) (Pleurotus ostreatus), while the highest EPS quantity achieved ranged between 1.6 and 1.8 g l(-1) (for Ganoderma lucidum and L. edodes, respectively). Quantities of total cellular lipids varied between 2.5 and 18.5 % w/w, in dry mycelial mass for the fungi tested. Lipid in dry weight values were influenced by the medium composition. Cellular lipids presented noticeable quantities of poly-unsaturated fatty acids like linoleic acid. Compared to most of the mushrooms tested, lipids of Volvariella volvacea were more saturated. The ability of several mushroom species of our study to produce in notable quantities the above-mentioned added-value compounds renders these fungi worthy for further investigations. PMID:22573010

  19. Membrane damage and active but nonculturable state in liquid cultures of Escherichia coli treated with an atmospheric pressure plasma jet.

    PubMed

    Dolezalova, Eva; Lukes, Petr

    2015-06-01

    Electrical discharge plasmas can efficiently inactivate various microorganisms. Inactivation mechanisms caused by plasma, however, are not fully understood because of the complexity of both the plasma and biological systems. We investigated plasma-induced inactivation of Escherichia coli in water and mechanisms by which plasma affects bacterial cell membrane integrity. Atmospheric pressure argon plasma jet generated at ambient air in direct contact with bacterial suspension was used as a plasma source. We determined significantly lower counts of E. coli after treatment by plasma when they were assayed using a conventional cultivation technique than using a fluorescence-based LIVE/DEAD staining method, which indicated that bacteria may have entered the viable-but-nonculturable state (VBNC). We did not achieve resuscitation of these non-culturable cells, however, we detected their metabolic activity through the analysis of cellular mRNA, which suggests that cells may have been rather in the active-but-nonculturable state (ABNC). We hypothesize that peroxidation of cell membrane lipids by the reactive species produced by plasma was an important pathway of bacterial inactivation. Amount of malondialdehyde and membrane permeability of E. coli to propidium iodide increased with increasing bacterial inactivation by plasma. Membrane damage was also demonstrated by detection of free DNA in plasma-treated water. PMID:25212700

  20. Parametric Optimization of Cultural Conditions for Carboxymethyl Cellulase Production Using Pretreated Rice Straw by Bacillus sp. 313SI under Stationary and Shaking Conditions

    PubMed Central

    Mittal, Arpana; Bhuwal, Anish Kumari; Singh, Gulab; Yadav, Anita; Aggarwal, Neeraj Kumar

    2014-01-01

    Carboxymethyl cellulase (CMCase) provides a key opportunity for achieving tremendous benefits of utilizing rice straw as cellulosic biomass. Out of total 80 microbial isolates from different ecological niches one bacterial strain, identified as Bacillus sp. 313SI, was selected for CMCase production under stationary as well as shaking conditions of growth. During two-stage pretreatment, rice straw was first treated with 0.5 M KOH to remove lignin followed by treatment with 0.1 N H2SO4 for removal of hemicellulose. The maximum carboxymethyl cellulase activity of 3.08 U/mL was obtained using 1% (w/v) pretreated rice straw with 1% (v/v) inoculum, pH 8.0 at 35°C after 60 h of growth under stationary conditions, while the same was obtained as 4.15 U/mL using 0.75% (w/v) pretreated substrate with 0.4% (v/v) inoculum, pH 8.0 at 30°C, under shaking conditions of growth for 48 h. For maximum titre of CMCase carboxymethyl cellulose was optimized as the best carbon source under both cultural conditions while ammonium sulphate and ammonium nitrate were optimized as the best nitrogen sources under stationary and shaking conditions, respectively. The present study provides the useful data about the optimized conditions for CMCase production by Bacillus sp. 313SI from pretreated rice straw. PMID:24868469

  1. Optimization of pressurized liquid extraction and purification conditions for gas chromatography-mass spectrometry determination of UV filters in sludge.

    PubMed

    Negreira, N; Rodríguez, I; Rubí, E; Cela, R

    2011-01-14

    This work presents an effective sample preparation method for the determination of eight UV filter compounds, belonging to different chemical classes, in freeze-dried sludge samples. Pressurized liquid extraction (PLE) and gas chromatography-mass spectrometry (GC-MS) were selected as extraction and determination techniques, respectively. Normal-phase, reversed-phase and anionic exchange materials were tested as clean-up sorbents to reduce the complexity of raw PLE extracts. Under final working conditions, graphitized carbon (0.5 g) was used as in-cell purification sorbent for the retention of co-extracted pigments. Thereafter, a solid-phase extraction cartridge, containing 0.5 g of primary secondary amine (PSA) bonded silica, was employed for off-line removal of other interferences, mainly fatty acids, overlapping the chromatographic peaks of some UV filters. Extractions were performed with a n-hexane:dichloromethane (80:20, v:v) solution at 75°C, using a single extraction cycle of 5 min at 1500 psi. Flush volume and purge time were set at 100% and 2 min, respectively. Considering 0.5 g of sample and 1 mL as the final volume of the purified extract, the developed method provided recoveries between 73% and 112%, with limits of quantification (LOQs) from 17 to 61 ng g(-1) and a linear response range up to 10 μg g(-1). Total solvent consumption remained around 30 mL per sample. The analysis of non-spiked samples confirmed the sorption of significant amounts of several UV filters in sludge with average concentrations above 0.6 μg g(-1) for 3-(4-methylbenzylidene) camphor (4-MBC), 2-ethylhexyl-p-methoxycinnamate (EHMC) and octocrylene (OC). PMID:21144528

  2. Greater enhancement of Bacillus subtilis spore yields in submerged cultures by optimization of medium composition through statistical experimental designs.

    PubMed

    Chen, Zhen-Min; Li, Qing; Liu, Hua-Mei; Yu, Na; Xie, Tian-Jian; Yang, Ming-Yuan; Shen, Ping; Chen, Xiang-Dong

    2010-02-01

    Bacillus subtilis spore preparations are promising probiotics and biocontrol agents, which can be used in plants, animals, and humans. The aim of this work was to optimize the nutritional conditions using a statistical approach for the production of B. subtilis (WHK-Z12) spores. Our preliminary experiments show that corn starch, corn flour, and wheat bran were the best carbon sources. Using Plackett-Burman design, corn steep liquor, soybean flour, and yeast extract were found to be the best nitrogen source ingredients for enhancing spore production and were studied for further optimization using central composite design. The key medium components in our optimization medium were 16.18 g/l of corn steep liquor, 17.53 g/l of soybean flour, and 8.14 g/l of yeast extract. The improved medium produced spores as high as 1.52 +/- 0.06 x 10(10) spores/ml under flask cultivation conditions, and 1.56 +/- 0.07 x 10(10) spores/ml could be achieved in a 30-l fermenter after 40 h of cultivation. To the best of our knowledge, these results compared favorably to the documented spore yields produced by B. subtilis strains. PMID:19697022

  3. Life history trait analysis of the entomopathogenic nematode Steinernema feltiae provides the basis for prediction of dauer juvenile yields in monoxenic liquid culture.

    PubMed

    Addis, Temesgen; Teshome, Asmamaw; Strauch, Olaf; Ehlers, Ralf-Udo

    2016-05-01

    Entomopathogenic nematodes (Steinernema spp.) are used in integrated pest management to control insect pests in cryptic environments. The nematodes are mass produced in monoxenic liquid culture with their symbiotic bacteria Xenorhabdus spp. For a better understanding of nematode population dynamics, the life history traits (LHTs) of the entomopathogenic nematode Steinernema feltiae were assessed at 25 °C by observing single pairs of male and female nematodes using a hanging drop technique. To investigate the influence of different food supplies on nematode reproduction, the LHTs were assessed with a daily supply of 5 ×, 10 × and 20 × 10(9) cells ml(-1) of the nematode's bacterial symbiont Xenorhabdus bovienii in semi-solid nematode growth gelrite (NGG) medium. Increasing bacterial density had a significant positive influence on the average number of offspring produced, which ranged from 359 to 813 per female. The intrinsic rate of natural increase r m, which ranges from 1.10 to 1.19 day(-1), was neither influenced by the bacterial density, nor was the mean generation time T (5.12-5.25 days) and population doubling time (PDT) (0.64-0.59 days). The average lifespan of reproductive females, which ranged from 6.7 to 7.3 days, was positively correlated with bacterial density. A positive correlation between female body volume and bacterial density was recorded (R = 0.67) as well as a significant positive correlation between female body size and offspring production (R = 0.89) in hanging drops. Whether these data can be used to predict nematode yields in liquid culture was tested. The total female body volume calculated as the average female body volume × total number of parental females per millilitre 3 days after nematode inoculation was positively correlated (R = 0.72) with nematode yields. The total female body volume on process day 3 is thus a good indicator for the estimation of nematode yield at the end of the process (12-15 days post dauer

  4. Differentiation of human CD14+ monocytes: an experimental investigation of the optimal culture medium and evidence of a lack of differentiation along the endothelial line

    PubMed Central

    Safi, Wajima; Kuehnl, Andreas; Nüssler, Andreas; Eckstein, Hans-Henning; Pelisek, Jaroslav

    2016-01-01

    The aim of this study was to determine the optimal culturing media for human CD14+ monocytes and to evaluate whether these cells are capable of differentiating into vascular endothelial cells. Human monocytes isolated from peripheral blood were cultured for 1, 3, 7, 10 or 14 days in different media containing either 10% fetal bovine serum (FBS), 10% autologous donor serum (Auto), 10% FBS with interleukin-3 and macrophage colony stimulating factor (FBS-WF) or 10% Auto and the same growth factors (AU-WF). The cells were differentiated using endothelial cell conditioning medium (EC). Viability was measured using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, and the cells were characterized by histology, immunohistochemistry and western blot analysis. Monocytes treated with Auto, FBS-WF or AU-WF medium generated a significant higher yield of vital cells after 7 days in culture compared with FBS-only medium (mean difference (MD)=0.318, P=0.01; MD=1.83, P=0.04; or MD=0.271, P=0.01 and MD=0.318, P=0.102). All tested media led to the differentiation of monocytes into macrophages, identified by CD68, especially in the FBS-WF medium (MD=+18.3% P=0.04). Differentiation into ECs caused a significant decrease in cell viability in all media. Endothelial cell markers, including CD31, CD144, VEGF, VEGF-R2 and CD34, could not be detected. Autologous serum significantly increases the yield of monocyte-derived cells with a higher effectiveness than commonly used FBS-only serum. There is no further benefit in culturing monocytes longer than 7 days. The cultivation of monocytes in the tested media leads preferentially to differentiation into macrophages. Differentiation into endothelial cells did not take place. PMID:27080367

  5. Enzymatic properties of the glycine D-alanine [corrected] aminopeptidase of Aspergillus oryzae and its activity profiles in liquid-cultured mycelia and solid-state rice culture (rice koji).

    PubMed

    Marui, Junichiro; Matsushita-Morita, Mayumi; Tada, Sawaki; Hattori, Ryota; Suzuki, Satoshi; Amano, Hitoshi; Ishida, Hiroki; Yamagata, Youhei; Takeuchi, Michio; Kusumoto, Ken-Ichi

    2012-01-01

    The gdaA gene encoding S12 family glycine-D-alanine aminopeptidase (GdaA) was found in the industrial fungus Aspergillus oryzae. GdaA shares 43% amino acid sequence identity with the D-aminopeptidase of the Gram-negative bacterium Ochrobactrum anthropi. GdaA purified from an A. oryzae gdaA-overexpressing strain exhibited high D-stereospecificity and efficiently released N-terminal glycine and D-alanine of substrates in a highly specific manner. The optimum pH and temperature were 8 to 9 and 40°C, respectively. This enzyme was stable under alkaline conditions at pH 8 to 11 and relatively resistant to acidic conditions until pH 5.0. The chelating reagent EDTA, serine protease inhibitors such as AEBSF, benzamidine, TPCK, and TLCK, and the thiol enzyme inhibitor PCMB inhibited the enzyme. The aminopeptidase inhibitor bestatin did not affect the activity. GdaA was largely responsible for intracellular glycine and D-alanine aminopeptidase activities in A. oryzae during stationary-phase growth in liquid media. In addition, the activity increased in response to the depletion of nitrogen or carbon sources in the growth media, although the GdaA-independent glycine aminopeptidase activity highly increased simultaneously. Aminopeptidases of A. oryzae attract attention because the enzymatic release of a variety of amino acids and peptides is important for the enhancement of the palatability of fermented foods. GdaA activity was found in extracts of a solid-state rice culture of A. oryzae (rice koji), which is widely used as a starter culture for Japanese traditional fermented foods, and was largely responsible for the glycine and D-alanine aminopeptidase activity detected at a pH range of 6 to 9. PMID:22005737

  6. Comparative Iron Oxide Nanoparticle Cellular Dosimetry and Response in Mice by the Inhalation and Liquid Cell Culture Exposure Routes

    SciTech Connect

    Teeguarden, Justin G.; Mikheev, Vladimir B.; Minard, Kevin R.; Forsythe, William C.; Wang, Wei; Sharma, Gaurav; Karin, Norman J.; Tilton, Susan C.; Waters, Katrina M.; Asgharian, Bahman; Price, Owen; Pounds, Joel G.; Thrall, Brian D.

    2014-01-01

    testing the rapidly growing number of nanomaterials requires large scale use of in vitro systems under the presumption that these systems are sufficiently predictive or descriptive of responses in in vivo systems for effective use in hazard ranking. We hypothesized that improved relationships between in vitro and in vivo models of experimental toxicology for nanomaterials would result from placing response data in vitro and in vivo on the same dose scale, the amount of material associated with cells (target cell dose). Methods: Balb/c mice were exposed nose-only to an aerosol of 12.8 nm (68.6 nm CMD, 19.9 mg/m3, 4 hours) super paramagnetic iron oxide particles, target cell doses were calculated and biomarkers of response anchored with histological evidence were identified by global transcriptomics. Representative murine epithelial and macrophage cell types were exposed in vitro to the same material in liquid suspension for four hours and levels nanoparticle regulated cytokine transcripts identified in vivo were quantified as a function of measured nanoparticle cellular dose. Results. Target tissue doses of 0.009-0.4 μg SPIO/cm2 lung led to an inflammatory response in the alveolar region characterized by interstitial inflammation and macrophage infiltration. In vitro, higher target tissue doses of ~1.2-4 μg SPIO/ cm2 of cells were required to induce transcriptional regulation of markers of inflammation, CXCL2 CCL3, in C10 lung epithelial cells. Estimated in vivo macrophage SPIO nanoparticle doses ranged from 1-100 pg/cell, and induction of inflammatory markers was observed in vitro in macrophages at doses of 8-35 pg/cell. Conclusions: Application of target tissue dosimetry revealed good correspondence between target cell doses triggering inflammatory processes in vitro and in vivo in the alveolar macrophage population, but not in the epithelial cells of the alveolar region. These findings demonstrate the potential for target tissue dosimetry to enable the more

  7. Use of a feline respiratory epithelial cell culture system grown at the air-liquid interface to characterize the innate immune response following feline herpesvirus 1 infection.

    PubMed

    Nelli, Rahul K; Maes, Roger; Kiupel, Matti; Hussey, Gisela Soboll

    2016-03-01

    Infection with feline herpesvirus-1 (FHV-1) accounts for 50% of viral upper respiratory diseases in domestic cats and is a significant cause of ocular diseases. Despite the clinical significance and high prevalence of FHV-1 infection, currently available vaccines cannot completely protect cats from infection and lifelong latency. FHV-1 infects via the mucous membranes and replicates in respiratory epithelial cells, but very little is known about the early innate immunity at this site. To address questions about immunity to FHV-1, feline respiratory epithelial cells cultured at air-liquid interface (ALI-FRECs) were established by collecting respiratory tracts from 6 healthy cats after euthanasia. Cells were isolated, cultured and characterized histologically and immunologically before infection with FHV-1. The expression of Toll-like receptors (TLRs), cytokine and chemokine responses were measured by real time PCR. ALI-FRECs morphologically resembled the natural airways of cats with multilayered columnar epithelial cells and cilia. Immunological properties of the natural airways were maintained in ALI-FRECs, as evidenced by the expression of TLRs, cytokines, chemokines, interferons, beta-defensins, and other regulatory genes. Furthermore, ALI-FRECs were able to support infection and replication of FHV-1, as well as modulate transcriptional regulation of various immune genes in response to infection. IL-1β and TNFα were increased in ALI-FRECs by 24hpi, whereas expression levels of IFN-α and TLR9 were not increased until 36hpi. In contrast, TLR3, GM-CSF and TGF-1β expression was down-regulated at 36hpi. The data presented show the development of a system ideal for investigating the molecular pathogenesis and immunity of FHV-1 or other respiratory pathogens. PMID:26795546

  8. Optimization, Composition, and Antioxidant Activities of Exo- and Intracellular Polysaccharides in Submerged Culture of Cordyceps gracilis (Grev.) Durieu & Mont.

    PubMed

    Sharma, Sapan Kumar; Gautam, Nandini; Atri, Narender Singh

    2015-01-01

    Under present experiments, EPS and IPS production, monosaccharide composition, and antioxidant activities of C. gracilis were studied for the first time under submerged culture conditions. Effect of different factors on polysaccharides production was studied by orthogonal experiments using one-factor-at-a-time method. Incubation of culture in the medium with capacity 200 mL (675.12 ± 5.01 and 385.20 ± 5.01 mg/L), rotation speed 150 rpm (324.62 ± 3.32 and 254.62 ± 4.62 mg/L), 6-day culture incubation time (445.24 ± 1.11, 216.60 ± 1.71 mg/L), pH 6.0 (374.81 ± 2.52 and 219.45 ± 2.59 mg/L), and temperature 23°C (405.24 ± 1.11 and 215.60 ± 1.71 mg/L) produced higher EPS and IPS, respectively. Maximum EPS and IPS production was observed in the medium supplemented with glucose as a carbon source (464.82 ± 2.12 and 264.42 ± 2.62 mg/L) and yeast extract as a nitrogen source (465.21 ± 3.11 and 245.17 ± 3.24 mg/L), respectively. Carbon to nitrogen ratio for maximum EPS and IPS production was observed as 10 : 1 (395.29 ± 2.15 and 235.62 ± 1.40 mg/L), respectively. Glucose was found to be the major monosaccharide (62.15 ± 7.33%). Both EPS and IPS of C. gracilis showed significant DPPH radical scavenging activity, ABTS radical scavenging activity, reducing power, and iron chelating activity. PMID:25878715

  9. Optimized culturing and nucleic acid-based methods for the detection of Salmonella enterica in poultry environments.

    PubMed

    Schultz, J; Jarquin, R; Ricke, S C; Hanning, I

    2012-11-01

    The main objective of this trial was to set up a series of assays following quantified inoculation of Salmonella samples in 2 initial enrichment methods to ultimately determine the most effective and fastest detection method for recovery of Salmonella in a poultry environment matrix. Samples were randomly split into 2 different containers containing either buffered peptone water (BPW) + yeast extract, or tetrathionate broth (TT) with added iodine and Brilliant Green solution 0.1%. A frozen stock Salmonella culture was thawed and serially diluted 10-fold to inoculate 100 µL of the dilution into the enriched samples. The samples were incubated at 42 and 37°C, respectively, for 24 h and secondarily enriched in modified semi-solid Rappaport Vassiliadis (MSRV) incubated at 42°C. All samples then were reincubated under the same conditions. After secondary enrichment, the samples were streaked onto Chromogenic agar/ XLT4 bi-plates and incubated under the same conditions. After initial inoculation and each 24-h incubation, a portion of the enriched samples was analyzed using a real-time PCR assay. The results of this trial indicate that recovery of Salmonella in a culture-based assay may be enhanced by up to 3 logs by using the TT as the initial enrichment media compared with BPW. The incorporation of MSRV as a secondary cultural selective media after the TT gave the best recovery of Salmonella. These data indicate that considerable time can be saved by using TT as an initial media for Salmonella recovery. PMID:23091129

  10. Optimization for speed and sensitivity in capillary high performance liquid chromatography. The importance of column diameter in online monitoring of serotonin by microdialysis.

    PubMed

    Zhang, Jing; Liu, Yansheng; Jaquins-Gerstl, Andrea; Shu, Zhan; Michael, Adrian C; Weber, Stephen G

    2012-08-17

    The speed of a separation defines the best time resolution possible in online measurements using chromatography. The desired time resolution multiplied by the flow rate of the stream of analyte being sampled defines the maximum volume of sample per injection. The best concentration sensitivity in chromatography is obtained by injecting the largest volume of sample that is consistent with achieving a satisfactory separation, and thus measurement accuracy. Taking these facts together, it is easy to understand that separation speed and concentration sensitivity are linked in this type of measurement. To address the problem of how to achieve the best sensitivity and shortest measurement time simultaneously, we have combined recent approaches to the optimization of the separation itself with an analysis of method sensitivity. This analysis leads to the column diameter becoming an important parameter in the optimization process. We use these ideas in one particular problem presented by online microdialysis sampling/liquid chromatography/electrochemical detection for measuring concentrations of serotonin in the dialysate. In this case the problem becomes the optimization of conditions to yield maximum signal for a given sample volume under the highest speed conditions with a certain required number of theoretical plates. It turns out that the observed concentration sensitivity at an electrochemical detector can be regulated by temperature, particle size, injection volume/column diameter, and void time. The theory was successfully used for optimization of neurotransmitter serotonin measurement by capillary HPLC when sampling from a microdialysis flow stream. The final conditions are: 150 μm i.d., 3.1cm long columns with 1.7 μm particle diameter working at a flow rate of 12 μL/min, an injection volume of 500 nL, and a temperature of 343 K. The retention time for serotonin is 22.7s, the analysis time is about 36 s (which allows for determination of 3-methoxytyramine), and

  11. Culture of the hydrocarbon producing microalga Botryococcus braunii strain Showa: optimal CO2, salinity, temperature, and irradiance conditions.

    PubMed

    Yoshimura, Takeshi; Okada, Shigeru; Honda, Masaki

    2013-04-01

    Specific growth rates and hydrocarbon contents of Botryococcus braunii strain Showa were measured under a wide range of CO2, salinity, temperature, and irradiance conditions. The bubbling CO2 concentration of 0.2-5% and no addition of salinity were favorable conditions for growth. The strain cannot grow at 5°C and above 35°C under any irradiance levels. Maximum specific growth rate of 0.5 day(-1) (doubling time of 1.4 days), the highest value reported for B. braunii in the past studies, was observed at 30°C and 850 μmol photons m(-2) s(-1). Since hydrocarbon productivity, shown as the product of hydrocarbon content and specific growth rate, increased with the increasing specific growth rate, we conclude that more efficient hydrocarbon production by the mass culture of strain Showa can be achieved by maintaining higher specific growth rate based on the culture conditions presented in this study. PMID:23428820

  12. Optimization and validation of a reversed-phase high performance liquid chromatography method for the measurement of bovine liver methylmalonyl-coenzyme a mutase activity

    PubMed Central

    2013-01-01

    Background Methylmalonyl-CoA mutase (MCM) is an adenosylcobalamin-dependent enzyme that catalyses the interconversion of (2R)-methylmalonyl-CoA to succinyl-CoA. In humans, a deficit in activity of MCM, due to an impairment of intracellular formation of adenosylcobalamin and methylcobalamin results in a wide spectrum of clinical manifestations ranging from moderate to fatal. Consequently, MCM is the subject of abundant literature. However, there is a lack of consensus on the reliable method to monitor its activity. This metabolic pathway is highly solicited in ruminants because it is essential for the utilization of propionate formed during ruminal fermentation. In lactating dairy cows, propionate is the major substrate for glucose formation. In present study, a reversed-phase high performance liquid chromatography (RP-HPLC) was optimized and validated to evaluate MCM activity in bovine liver. The major aim of the study was to describe the conditions to optimize reproducibility of the method and to determine stability of the enzyme and its product during storage and processing of samples. Results Specificity of the method was good, as there was no interfering peak from liver extract at the retention times corresponding to methylmalonyl-CoA or succinyl-CoA. Repeatability of the method was improved as compared to previous RP-HPLC published data. Using 66 μg of protein, intra-assay coefficient of variation (CV) of specific activities, ranged from 0.90 to 8.05% and the CV inter-day was 7.40%. Storage and processing conditions (frozen homogenate of fresh tissue vs. fresh homogenate of tissue snapped in liquid nitrogen) did not alter the enzyme activity. The analyte was also stable in liver crude extract for three frozen/thawed cycles when stored at -20°C and thawed to room temperature. Conclusions The improved method provides a way for studying the effects of stages of lactation, diet composition, and physiology in cattle on MCM activity over long periods of time

  13. How Various Sources of Uncertainty Affect Retrieval Uncertainty in the Optimal Estimation Framework Using a Non-precipitating Liquid Clouds Example

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Mace, G. G.; Turner, D. D.; Posselt, D. J.

    2014-12-01

    Optimal estimation (OE) is a commonly used inverse method in the geosciences. In a Bayesian context, a set of measurements (y) is related to the state vector to be retrieved (x) by the forward model F(x). Assuming Gaussian statistics, OE returns an optimal solution and its associated uncertainty by minimizing the cost function that consists of the state vector-a priori state difference weighted by the a priori uncertainty and the measurement-forward model difference weighted by the uncertainties of observation and forward model. OE algorithms are easy to implement and are finding increasing use within communities attempting to derive, for instance, cloud and precipitation microphysical properties from remote sensing data. However, even though OE algorithms are simple to implement, obtaining rigorous uncertainty estimates from them is a significant challenge. Our objective with this work is to illustrate the growth of retrieval uncertainty within the OE framework due to various sources using simple real world examples of non-precipitating liquid clouds. Within the OE retrieval, several sources of uncertainties contribute to the overall retrieval uncertainty (Sx), including the measurement uncertainty (Sy), the uncertainties in a priori information (Sa) and uncertainties in the forward model due to imperfectly known parameters (Sb). In this study, two examples are given to demonstrate how uncertainties in Sy, Sa and Sb affect the ultimate retrieval uncertainty Sx. We apply OE technique to retrieve cloud liquid water content (LWC) and total number from measurements of radar reflectivity and extinction obtained in 2005 Marine Stratus/Stratocumulus Experiment (MASE). In the first example, the forward model is assumed perfect, which means all parameters are certain and Sb is zero. Then we perturb Sy and Sa separately and observe the response of Sx. We find the observation error Sy contributes significantly to the retrieval uncertainty under the assumption of "perfect

  14. An ultrasensitive LC-MS/MS method with liquid phase extraction to determine paclitaxel in both cell culture medium and lysate promising quantification of drug nanocarriers release in vitro.

    PubMed

    Baati, Tarek; Schembri, Thérèse; Villard, Claude; Correard, Florian; Braguer, Diane; Estève, Marie-Anne

    2015-11-10

    The quantification of paclitaxel, a chemotherapy drug used to treat different types of cancers, has been performed from complete cell culture medium and cell lysate samples using a simple liquid-liquid extraction procedure in conjunction with liquid chromatography tandem mass spectrometry (LC-MS/MS). A simple sample preparation using methanol and acetic acid as a weaker acid was applied to avoid paclitaxel destruction and to achieve recovery exceeding 80 % from both matrices spiked with paclitaxel and docetaxel used as internal standard. This rapid, simple, selective and sensitive method enabled the quantification of paclitaxel within the linear range of 1-250nM in culture medium and 5-250nM in cell lysate. The lower limit of quantification was achieved in cell culture medium and cell lysates at 0.2 and 1pmol, respectively. This method was successfully applied to human non-small cell lung carcinoma cells (A549 cells) in order to quantify the amount of paclitaxel in both cell culture medium and lysate after incubation with 5, 50 and 100nM of paclitaxel. This ultra-sensitive method promises the quantification of ultra-low concentrations of paclitaxel released from any nanocarriers, allowing the determination of the kinetic profile of drug release, which is an essential parameter to validate the use of nanocarriers for drug delivery in cancer therapy. PMID:26263058

  15. FPLC and liquid-chromatography mass spectrometry identify candidate necrosis-inducing proteins from culture filtrates of the fungal wheat pathogen Zymoseptoria tritici.

    PubMed

    Ben M'Barek, Sarrah; Cordewener, Jan H G; Tabib Ghaffary, Seyed M; van der Lee, Theo A J; Liu, Zhaohui; Mirzadi Gohari, Amir; Mehrabi, Rahim; America, Antoine H P; Robert, Olivier; Friesen, Timothy L; Hamza, Sonia; Stergiopoulos, Ioannis; de Wit, Pierre J G M; Kema, Gerrit H J

    2015-06-01

    Culture filtrates (CFs) of the fungal wheat pathogen Zymoseptoria tritici were assayed for necrosis-inducing activity after infiltration in leaves of various wheat cultivars. Active fractions were partially purified and characterized. The necrosis-inducing factors in CFs are proteinaceous, heat stable and their necrosis-inducing activity is temperature and light dependent. The in planta activity of CFs was tested by a time series of proteinase K (PK) co-infiltrations, which was unable to affect activity 30min after CF infiltrations. This suggests that the necrosis inducing proteins (NIPs) are either absent from the apoplast and likely actively transported into mesophyll cells or protected from the protease by association with a receptor. Alternatively, plant cell death signaling pathways might be fully engaged during the first 30min and cannot be reversed even after PK treatment. Further fractionation of the CFs with the highest necrosis-inducing activity involved fast performance liquid chromatography, SDS-PAGE and mass spectrometry. This revealed that most of the proteins present in the fractions have not been described before. The two most prominent ZtNIP encoding candidates were heterologously expressed in Pichia pastoris and subsequent infiltration assays showed their differential activity in a range of wheat cultivars. PMID:26092790

  16. Measurement of angiotensin metabolites in organ bath and cell culture experiments by liquid chromatography - electrospray ionization - mass spectrometry (LC-ESI-MS).

    PubMed

    Bujak-Gizycka, B; Madej, J; Wołkow, P P; Olszanecki, R; Drabik, L; Rutowski, J; Korbut, R

    2007-09-01

    The metabolism of renin-angiotensin system (RAS) is more complicated than previously expected and understanding the biological phenomena regulated by variety of angiotensin metabolites requires their precise and possibly comprehensive quantitation. Physiological concentrations of angiotensins (Ang) in biological fluids are low, therefore their accurate measurements require very sensitive and specific analytical methods. In this study we developed an accurate and reproducible method of quantitation of angiotensin metabolites through coupling of liquid chromatography and electrospray ionization - mass spectrometry (LC-ESI-MS). With this method main angiotensin metabolites (Ang I, II, III, IV, 1-9, 1-7, 1-5) can be reliably measured in organ bath of rat tissues (aorta, renal artery, periaortal adipose tissue) and in medium of cultured endothelial cells (EA.hy926), exposed to Ang I for 15 minutes, in the absence or in the presence of angiotensin converting enzyme inhibitor, perindoprilat. Presented LC-ESI-MS method proved to be a quick and reliable solution to comprehensive analysis of angiotensin metabolism in biological samples. PMID:17928648

  17. Improving the productivity of 19,20-epoxy-cytochalasin Q in Xylaria sp. sof11 with culture condition optimization.

    PubMed

    Zhang, Yun; Cai, Jin; Huang, Lei; Xu, Zhinan; Yang, Xiuliang; Li, Jiangtao; Zhu, Xiangcheng

    2016-07-01

    19,20-Epoxy-cytochalasin Q (B5A) is a cytochalasin with a wide range of biological activities, which can be produced by Xylaria sp. sof11, a strain isolated from the seafloor of the northern South China Sea. Since the low titer of B5A has greatly limited its further studies, we have systematically conducted the fermentative optimization for B5A production in this article. The effects of major medium components, including the carbon and organic nitrogen sources, as well as of the concentration of sea salt, were respectively investigated through single-factor experiments. As a result, sucrose and fish meal were determined to be the key factors affecting the production of B5A. Then three important variables, sucrose, fish meal, and filling volume, were screened out by the Plackett-Burman (PB) design. The optimal level of these variables was further confirmed by response surface analysis. The final formulated medium was set as 35.2 g/L sucrose and 18.0 g/L fish meal, with filling volume of 34.6 mL, which could afford 440.3 mg/L production of B5A, approximately 4.4-fold higher than that in the original medium. The significantly improved productivity of B5A will facilitate the subsequent mechanistic and clinical studies of B5A. PMID:26444437

  18. Optimization of ultrasound-assisted extraction of anthocyanins in red raspberries and identification of anthocyanins in extract using high-performance liquid chromatography-mass spectrometry.

    PubMed

    Chen, Fang; Sun, Yangzhao; Zhao, Guanghua; Liao, Xiaojun; Hu, Xiaosong; Wu, Jihong; Wang, Zhengfu

    2007-09-01

    Anthocyanins (Acys) are naturally occurring compounds that impart color to fruit, vegetables and plants. The extraction of Acys from red raspberry (Rubus idaeus L. var. Heritage) by ultrasound-assisted process (UAP) was studied. A central composite rotate design (CCRD) was used to obtain the optimal conditions of ultrasound-assisted extraction (UAE), and the effects of operating conditions, such as the ratio of solvents to materials, ultrasonic power and extraction time, on the extraction yield of Acys were studied through response surface methodology (RSM). The optimized conditions of UAE were as follows: ratio of solvents to materials was 4:1 (ml/g), extraction time was 200s, and ultrasonic power was 400 W. Under these conditions 34.5 mg of Acys from 100g of fresh fruits (T(Acy), expressed as cyanidin-3-glucoside), approximately 78.13% of the total red pigments, could be obtained by UAE. The Acys compositions of extracts were identified by high-performance liquid chromatography-mass spectrometry (HPLC-MS), 12 kinds of Acys had been detected and eight kinds of Acys were characterized. Result indicated that cyanidin-3-sophoroside, cyanidin-3-(2(G)-glucosylrutinoside), cyanidin-3-sambubioside, cyanidin-3-rutinoside, cyanidin-3-xylosylrutinoside, cyanidin-3-(2(G)-glucosylrutinoside), and cyanidin-3-rutinoside were main components in extracts. In addition, in comparison with the conventional solvent extraction, UAE is more efficient and rapid to extract Acys from red raspberry, due to the strong disruption of fruit tissue structure under ultrasonic acoustic cavitation, which had been observed with the scanning electron microscopy (SEM). However, the Acys compositions in extracts by both methods were similar, which were investigated using HPLC profile. PMID:17321780

  19. Optimization and single-laboratory validation of a method for the determination of flavonolignans in milk thistle seeds by high-performance liquid chromatography with ultraviolet detection.

    PubMed

    Mudge, Elizabeth; Paley, Lori; Schieber, Andreas; Brown, Paula N

    2015-10-01

    Seeds of milk thistle, Silybum marianum (L.) Gaertn., are used for treatment and prevention of liver disorders and were identified as a high priority ingredient requiring a validated analytical method. An AOAC International expert panel reviewed existing methods and made recommendations concerning method optimization prior to validation. A series of extraction and separation studies were undertaken on the selected method for determining flavonolignans from milk thistle seeds and finished products to address the review panel recommendations. Once optimized, a single-laboratory validation study was conducted. The method was assessed for repeatability, accuracy, selectivity, LOD, LOQ, analyte stability, and linearity. Flavonolignan content ranged from 1.40 to 52.86% in raw materials and dry finished products and ranged from 36.16 to 1570.7 μg/mL in liquid tinctures. Repeatability for the individual flavonolignans in raw materials and finished products ranged from 1.03 to 9.88% RSDr, with HorRat values between 0.21 and 1.55. Calibration curves for all flavonolignan concentrations had correlation coefficients of >99.8%. The LODs for the flavonolignans ranged from 0.20 to 0.48 μg/mL at 288 nm. Based on the results of this single-laboratory validation, this method is suitable for the quantitation of the six major flavonolignans in milk thistle raw materials and finished products, as well as multicomponent products containing dandelion, schizandra berry, and artichoke extracts. It is recommended that this method be adopted as First Action Official Method status by AOAC International. PMID:26229030

  20. Response surface methodology for the optimization of keratinase production in culture medium containing feathers produced by Kocuria rosea.

    PubMed

    Bernal, C; Diaz, I; Coello, N

    2006-05-01

    A 43-fold increase in keratinase production by Kocuria rosea was achieved in batch fermentation using response surface methodology. Factorial designs were used to select the components of a culture medium that showed a significant effect on keratinase production. An orthogonal-central composite experimental design was performed, with only two (feathers and magnesium) from nine initial compounds being further analyzed by response surface methodology. An optimum keratinase production of 14 886.9 U/mg was obtained with the following medium composition (per litre): NH4Cl, 0.3 g; NaCl, 0.3 g; K2HPO4, 3.2 g; KH2PO4, 4.0 g; MgSO4.6H2O, 0.5 g; yeast extract, 0.1 g; and finely milled feathers, 30 g. The medium was shaken at 400 r/min with an incubation period of 14 h at 40 degrees C. PMID:16699569

  1. Optimization of culture conditions to produce high yields of active Acetobacter sp. CCTCC M209061 cells for anti-Prelog reduction of prochiral ketones

    PubMed Central

    2011-01-01

    Background Chiral alcohols are widely used in the synthesis of chiral pharmaceuticals, flavors and functional materials and appropriate whole-cell biocatalysts offer a highly enantioselective, minimally polluting route to these valuable compounds. The recently isolated strain Acetobacter sp. CCTCC M209061 showed exclusive anti-Prelog stereoselectivity for the reduction of prochiral ketones, but the low biomass has limited its commercialization and industrial applications. To tackle this problem, the effects of medium components and culture conditions on the strain's growth and reduction activity were explored. Results By using a one-at-a-time method and a central composite rotatable design (CCRD), the optimal medium and culture conditions were found to be as follows: glucose 8.26 g/L, fructose 2.50 g/L, soy peptone 83.92 g/L, MnSO4·H2O 0.088 g/L, pH 5.70, 30°C and 10% (v/v) inoculum. Under the above-mentioned conditions, the biomass after 30 h cultivation reached 1.10 ± 0.03 g/L, which was 9.5-fold higher than that obtained with basic medium. Also, the reduction activity towards 4'-chloroacetophenone was markedly enhanced to 39.49 ± 0.96 μmol/min/g from 29.34 ± 0.65 μmol/min/g, with the product e.e. being above 99%. Comparable improvements were also seen with the enantioselective bioreduction of 4-(trimethylsilyl)-3-butyn-2-one to the key pharmaceutical precursor (R) - 4-(trimethylsilyl)-3-butyn-2-ol. Conclusions The biomass and reduction activity of Acetobacter sp. CCTCC M209061 can be greatly enhanced through the optimization strategy. This facilitates use of the strain in the anti-Prelog stereoselective reduction of prochiral ketones to enantiopure chiral alcohols as building blocks for many industries. PMID:22099947

  2. Optimization of modified dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the simultaneous preconcentration and determination of nitrazepam and midazolam drugs: An experimental design.

    PubMed

    Goudarzi, Nasser; Farsimadan, Sahar; Chamjangali, Mansour Arab; Bagherian, Ghadam Ali

    2015-05-01

    A simple, sensitive, and rapid microextraction method, namely, ultrasound-assisted surfactant-enhanced emulsification microextraction based on the solidification of floating organic droplet method coupled with high-performance liquid chromatography was developed for the simultaneous preconcentration and determination of nitrazepam and midazolam. The significant parameters affecting the extraction efficiency were considered using Plackett-Burman design as a screening method. To obtain the optimum conditions with consideration of the selected significant variables, a Box-Behnken design was used. The microextraction procedure was performed using 29.1 μL of 1-undecanol, 1.36% (w/v) of NaCl, 10.0 μL of sodium dodecyl sulfate (25.0 μg mL(-1)), and 1.0 μL of Tween80 (25.0 μg mL(-1)) as an emulsifier in an extraction time of 20.0 min at pH 7.88. In order to investigate the validation of the developed method, some validation parameters including the linear dynamic range, repeatability, limit of detection, and recoveries were studied under the optimum conditions. The detection limits of the method were 0.017 and 0.086 ng mL(-1) for nitrazepam and midazolam, respectively. The extraction recovery percentages for the drugs studied were above 91.0 with acceptable relative standard deviation. The proposed methodology was successfully applied for the determination of these drugs in a number of human serum samples. PMID:25755221

  3. Strain and culture medium optimization for production enhancement of prodiginines from marine-derived Streptomyces sp. GQQ-10

    NASA Astrophysics Data System (ADS)

    Li, Xueping; Zhang, Guojian; Zhu, Tianjiao; Li, Dehai; Gu, Qianqun

    2012-09-01

    A mutant (GQQ-M6) of a Sponge-Derived streptomyces sp. GQQ-10 obtained by UV-induced mutation was used for producing prodiginines (PGs). Single factor experiments and orthogonal array design (OAD) methods were employed for medium optimization. In the single factor method, the effects of soluble starch, glucose, soybean flour, yeast extract and sodium acetate on PGs production were investigated individually. In the subsequent OAD experiments, the concentrations of these 5 key nutritional components combined with salinity were further adjusted. The mutant strain GQQ-M6 gave a 2.2-fold higher PGs production than that of the parent strain; OAD experiments offered a PGs yield of 61mg L-1, which was 10 times higher than that of the initial GQQ-10 strain under the original cultivation mode.

  4. Liquid Chromatography-Mass Spectrometry Metabolic and Lipidomic Sample Preparation Workflow for Suspension-Cultured Mammalian Cells using Jurkat T lymphocyte Cells

    PubMed Central

    Ulmer, Candice Z.; Yost, Richard A.; Chen, Jing; Mathews, Clayton E.; Garrett, Timothy J.

    2015-01-01

    Metabolomics is the comprehensive study of metabolism as it pertains to an organism or biological system. Lipidomics, a subset discipline of metabolomics, encompasses the study of cellular lipid functions: including pathways, networks, and interactions. The abundance of metabolites and lipids, along with their contribution to health and disease, makes metabolomics a valuable tool for biomarker research. Disease biomarker identification requires a reproducible, sensitive, and accurate analytical platform. Although transcriptomic and proteomic areas have well-established protocols for sample preparation and data processing, the metabolomics field is still developing comparable standardized conventions. Furthermore, of the few comparative LC-MS metabolomic studies that have been applied to mammalian cell cultures, most are targeted to adherent cell lines. The purpose of this work was to optimize a sample preparation workflow for the cellular metabolomic analysis of suspension-cultured mammalian cells using commercially available Jurkat T lymphocytes as a model system. The current investigation evaluated commonly used sample preparation techniques for reproducibility, accuracy, and applicability to untargeted biomarker discovery. Results show ammoniated cell rinsing solutions to be an effective means to remove extracellular components present in the media without causing ion suppression or affecting the integrity of the cellular membrane. Additionally, a novel workflow was designed to allow for the combined analysis of metabolites and lipids from mammalian suspension cells from a single cell pellet. The Folch lipid extraction protocol was coupled to an 80% MeOH metabolite isolation to ensure high extraction efficiency for phospholipids and triacylglycerides. While the workflow was tailored to cells in suspension, it could also be applied to adherent cell lines. PMID:26401069

  5. [Characterization of a Cl. Perfringens type D strain, isolated in the field and optimization of epsilon toxin biosynthesis in a cell culture].

    PubMed

    Maaroufi, A; Metoui, W; Rahmouni, S; Ghram, A

    2000-01-01

    A field strain of cl. perfringens, named Dt001, was isolated from kidney of ovine enterotoemia case. The isolate characterized as Cl. perfringens, type D was based on its cultural and biochemical characters and its factors of virulence. The strain was very toxinogenic and well adapted to culture conditions of biofermentation when the parameters related to ptt, incubation time, substrat ... were optimized. Thus, the use of carbon source as polymer (destrine), the continuous control of pH allowed improvement of the rate of biosynthesis of Epsilon toxine by 10 times. The study of the immunogenicity of the isolate showed that preparations of anacultures were more immunogenic then those of anatoxine type. The fact that the two forms of epsilon antigens (protoxin and active toxin) show similar immune response in rabbits, indicates that the proteolytic action of trypsin is limited only to the toxic sites and does not affect the immunogenic epsitopes of the toxin. It also suggests a molecular organization of epsilon toxin in which the immunogenic epsitopes and the toxin sites are apart. The biotechnological performances and the immunogenicity and toxinogenical of the Dt001 isolate are in favor of its possible use as a component of an inactivated vaccine against enterotoxenia. PMID:14658231

  6. Validated and optimized high-performance liquid chromatographic determination of tizoxanide, the main active metabolite of nitazoxanide in human urine, plasma and breast milk.

    PubMed

    Hadad, Ghada M; Abdel Salam, Randa A; Emara, Samy

    2012-07-01

    A high-performance liquid chromatographic method was optimized and validated for the determination of desacetyl nitazoxanide (tizoxanide), the main active metabolite of nitazoxanide in human plasma, urine and breast milk. The proposed method used a CN column with mobile phase consisting of acetonitrile-12mM ammonium acetate-diethylamine in the ratio of 30:70:0.1 (v/v/v) and buffered at pH 4.0 with acetic acid, with a flow rate of 1.5 mL/min. Quantitation was achieved with UV detection at 260 nm using nifuroxazide as internal standard. A simplified direct injection of urine samples without extraction in addition to the urinary excretion pattern were calculated using the proposed method. Also, the effectiveness of protein precipitation and a clean-up procedure were investigated for biological plasma and human breast milk samples. The validation study of the proposed method was successfully carried out in an assay range between 0.2 and 20 µg/mL. PMID:22525879

  7. Optimization of an improved analytical method for the determination of 1-nitropyrene in milligram diesel soot samples by high-performance liquid chromatography-mass spectrometry.

    PubMed

    Barreto, R P; Albuquerque, F C; Netto, Annibal D Pereira

    2007-09-01

    A method for determination of nitrated polycyclic aromatic hydrocarbons (NPAHs) in diesel soot by high-performance liquid chromatography-mass spectrometry with atmospheric pressure chemical ionization (APCI) and detection by ion-trap following ultrasonic extraction is described. The determination of 1-nitropyrene that it is the predominant NPAH in diesel soot was emphasized. Vaporization and drying temperatures of the APCI interface, electronic parameters of the MS detector and the analytical conditions in reversed-phase HPLC were optimized. The patterns of fragmentation of representative NPAHs were evaluated by single and multiple fragmentation steps and negative ionization led to the largest signals. The transition (247-->217) was employed for quantitative analysis of 1-nitropyrene. Calibration curves were linear between 1 and 15 microgL(-1) with correlation coefficients better than 0.999. Typical detection limit (DL) of 0.2 microgL(-1) was obtained. Samples of diesel soot and of the reference material (SRM-2975, NIST, USA) were extracted with methylene chloride. Recoveries were estimated by analysis of SRM 2975 and were between 82 and 105%. DL for 1-nitropyrene was better than 1.5 mg kg(-1), but the inclusion of an evaporation step in the sample processing procedure lowered the DL. The application of the method to diesel soot samples from bench motors showed levels

  8. Optimization of pressurized liquid extraction (PLE) for rapid determination of mineral oil saturated (MOSH) and aromatic hydrocarbons (MOAH) in cardboard and paper intended for food contact.

    PubMed

    Moret, Sabrina; Sander, Maren; Purcaro, Giorgia; Scolaro, Marianna; Barp, Laura; Conte, Lanfranco S

    2013-10-15

    Packaging can represent a primary source of food contamination with mineral oil saturated hydrocarbons (MOSH) and aromatic hydrocarbons (MOAH), especially when recycled cardboard or mineral oil based printing inks are used. A pressurized liquid extraction (PLE) method, followed by on-line LC-GC analysis, has been optimized for rapid mineral oil determination in cardboard and paper samples. The proposed method involves extraction with hexane (2 cycles) at 60°C for 5 min, and allows for the processing of up to 6 samples in parallel with minimal sample manipulation and solvent consumption. It gave good repeatability (coefficient of variation lower than 5%) and practically quantitative extraction yield (less than 2% of the total contamination found in a third separate cycle). The method was applied to different cardboards and paper materials intended for food contact. Results obtained were similar to those obtained by applying classical solvent extraction with hexane/ethanol 1:1 (v/v) as described by Lorenzini et al. [20]. PMID:24054587

  9. Optimization of a high-performance liquid chromatography method for the analysis of complex polyphenol mixtures and application for sainfoin extracts (Onobrychis viciifolia).

    PubMed

    Regos, Ionela; Treutter, Dieter

    2010-10-01

    A pentafluorophenylpropyl (PFP) stationary phase was tested for the simultaneous determination of several classes of phenolic compounds. The chromatographic results were compared with those obtained by using a bifunctional phase constituted of octadecyl and phenylpropyl bonded silica and three conventional C18 columns. The elution gradient was optimized with 5% formic acid and sodium acetate in combination with acetic acid as additives and methanol as solvents. For these evaluations, a complex phenolic extract of Onobrychis viciifolia (sainfoin) and test mixtures containing 54 standard substances including 2 simple phenolic compounds, 1 amino acid, 4 hydroxybenzoic acids (HBA), 6 hydroxycinnamic acids (HCA), 3 flavan-3-ols, 9 anthocyanins, 2 dihydroflavonols, 1 chalcone, 4 flavones, 1 isoflavone and 21 flavonols have been assayed. The perfluorinated column showed good resolution for the studied phenolic compounds which have the following elution order: HBA, HCA, flavan-3-ols, anthocyanins, dihydroflavonols, flavones, flavonols and isoflavones. Compared with other columns, it provides longer elution ranges for HBA, HCA and flavan-3-ols and increased retention times for all compound classes except anthocyanins which were similarly retained on a C18 column. Its selectivity is different from C18 and bifunctional phases. A high-performance liquid chromatography (HPLC) method with diode array detection (DAD) and post-column derivatization with p-dimethyl-aminocinnamic aldehyde (DMACA) has been validated for the analysis of individual phenolic compounds from a sainfoin plant extract (O. viciifolia). PMID:20817190

  10. Biological upgrading of coal liquids

    SciTech Connect

    Not Available

    1992-01-01

    The objective of this project is to develop a simple biological process for the removal of nitrogen, oxygen, and sulfur heteroatoms from coal liquids, and simultaneously reducing aromaticity. Microorganisms, employing biocatalysts, are known to degrade aromatic heteroatom compounds in nature to NH[sub 3], SO[sub 4], and CO[sub 2]. Preliminary experiments in the ERI laboratories to determine the feasibility of biological removal of N, 0, and S from coal and shale oil liquids have shown up to 20 percent nitrogen removal, 40 percent sulfur removal, and 100 percent oxygen removal in a simple one stage incubation. This project will screen known bacteria and develop isolates for N, 0, and S removal and aromaticity reduction. The performance of the best of these cultures will be optimized for complete heteroatom removal in a single step go up. An outline of the protocol used to select pure cultures and isolates for their suitability in degrading heteroatom compounds is presented. Also shown is a listing of nine model compounds to be used in culture comparison and selection studies. Preliminary results with isolate ERI4 shows that the bacterium grows on phenol as its sole carbon source and rapidly depletes the compound from the medium. Similar results are shown for ERI5, which grows on pyridine as its sole carbon and nitrogen source and rapidly removes the compound from the medium.

  11. Optimal Culture Incubation Time in Orthopedic Device-Associated Infections: a Retrospective Analysis of Prolonged 14-Day Incubation

    PubMed Central

    Wahl, Peter; Fracheboud, Dominique; Gautier, Emanuel

    2014-01-01

    Accurate diagnosis of orthopedic device-associated infections can be challenging. Culture of tissue biopsy specimens is often considered the gold standard; however, there is currently no consensus on the ideal incubation time for specimens. The aim of our study was to assess the yield of a 14-day incubation protocol for tissue biopsy specimens from revision surgery (joint replacements and internal fixation devices) in a general orthopedic and trauma surgery setting. Medical records were reviewed retrospectively in order to identify cases of infection according to predefined diagnostic criteria. From August 2009 to March 2012, 499 tissue biopsy specimens were sampled from 117 cases. In 70 cases (59.8%), at least one sample showed microbiological growth. Among them, 58 cases (82.9%) were considered infections and 12 cases (17.1%) were classified as contaminations. The median time to positivity in the cases of infection was 1 day (range, 1 to 10 days), compared to 6 days (range, 1 to 11 days) in the cases of contamination (P < 0.001). Fifty-six (96.6%) of the infection cases were diagnosed within 7 days of incubation. In conclusion, the results of our study show that the incubation of tissue biopsy specimens beyond 7 days is not productive in a general orthopedic and trauma surgery setting. Prolonged 14-day incubation might be of interest in particular situations, however, in which the prevalence of slow-growing microorganisms and anaerobes is higher. PMID:24153117

  12. An optimized approach for enrichment of glycoproteins from cell culture lysates using native multi-lectin affinity chromatography.

    PubMed

    Lee, Ling Y; Hincapie, Marina; Packer, Nicolle; Baker, Mark S; Hancock, William S; Fanayan, Susan

    2012-09-01

    Lectins are capable of recognizing specific glycan structures and serve as invaluable tools for the separation of glycosylated proteins from nonglycosylated proteins in biological samples. We report on the optimization of native multi-lectin affinity chromatography, combining three lectins, namely, concanavalin A, jacalin, and wheat germ agglutinin for fractionation of cellular glycoproteins from MCF-7 breast cancer lysate. We evaluated several conditions for optimum recovery of total proteins and glycoproteins such as low pH and saccharide elution buffers, and the inclusion of detergents in binding and elution buffers. Optimum recovery was observed with overnight incubation of cell lysate with lectins at 4°C, and inclusion of detergent in binding and saccharide elution buffers. Total protein and bound recoveries were 80 and 9%, respectively. Importantly, we found that high saccharide strength elution buffers were not necessary to release bound glycoproteins. This study demonstrates that multi-lectin affinity chromatography can be extended to total cell lysate to investigate the cellular glycoproteome. PMID:22997032

  13. Development of a Highly Sensitive Cell-Based Assay for Detecting Botulinum Neurotoxin Type A through Neural Culture Media Optimization.

    PubMed

    Hong, Won S; Pezzi, Hannah M; Schuster, Andrea R; Berry, Scott M; Sung, Kyung E; Beebe, David J

    2016-01-01

    Botulinum neurotoxin (BoNT) is the most lethal naturally produced neurotoxin. Due to the extreme toxicity, BoNTs are implicated in bioterrorism, while the specific mechanism of action and long-lasting effect was found to be medically applicable in treating various neurological disorders. Therefore, for both public and patient safety, a highly sensitive, physiologic, and specific assay is needed. In this paper, we show a method for achieving a highly sensitive cell-based assay for BoNT/A detection using the motor neuron-like continuous cell line NG108-15. To achieve high sensitivity, we performed a media optimization study evaluating three commercially available neural supplements in combination with retinoic acid, purmorphamine, transforming growth factor β1 (TGFβ1), and ganglioside GT1b. We found nonlinear combinatorial effects on BoNT/A detection sensitivity, achieving an EC50 of 7.4 U ± 1.5 SD (or ~7.9 pM). The achieved detection sensitivity is comparable to that of assays that used primary and stem cell-derived neurons as well as the mouse lethality assay. PMID:26420788

  14. Hollow fiber-based liquid phase microextraction with factorial design optimization and gas chromatography-tandem mass spectrometry for determination of cannabinoids in human hair.

    PubMed

    Emídio, Elissandro Soares; de Menezes Prata, Vanessa; de Santana, Fernando José Malagueño; Dórea, Haroldo Silveira

    2010-08-15

    A new method, based on hollow fiber liquid-phase microextraction (HF-LPME) and gas chromatography-tandem mass spectrometry (GC-MSMS), was developed for determination of Delta(9)-tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabinol (CBN) in samples of human hair. Since hair is a solid matrix, the samples were subjected to alkaline digestion using NaOH. The aqueous solutions obtained were extracted using a 6cm polypropylene fiber (600microm i.d., 200microm wall thickness, 0.2microm pore size) for each extraction. A 2(5-1) fractional factorial design for screening, and a central composite design for optimization of significant variables, was applied during development of the extraction method. The variables evaluated were the type of extraction solvent, pH, stirring speed, extraction time, and acceptor phase volume. The optimized conditions for the proposed extraction procedure were 10mg of hair sample; 20microL of butyl acetate; aqueous (pH 14) donor phase containing 6.8% NaCl; 600rpm stirring speed; 20min extraction time. A linear response was obtained in the ranges 1-500pgmg(-1) (CBD and CBN) and 20-500pgmg(-1) (THC), with regression coefficients >0.99. Precision, determined as the relative standard deviation, was 3.3-8.9% (intra-day) and 4.4-13.7% (inter-day). Absolute recoveries varied in the ranges 4.4-4.8% (CBD), 7.6-8.9% (THC) and 7.7-8.2% (CBN). Limits of detection (LOD, S/N=3) and quantification (LOQ, S/N=10) were 0.5-15pgmg(-1) and 1-20pgmg(-1), respectively. The method was successfully used to determine CBD, THC and CBN in hair samples from patients in a drug dependency rehabilitation center. Concentrations varied in the ranges 1-18pgmg(-1) (CBD), 20-232pgmg(-1) (THC) and 9-107pgmg(-1) (CBN), confirming the suitability of the method for monitoring studies. PMID:20655815

  15. [Optimization of sample pretreatment method for the determination of typical artificial sweeteners in soil by high performance liquid chromatography-tandem mass spectrometry].

    PubMed

    Feng, Biting; Gan, Zhiwei; Hu, Hongwei; Sun, Hongwen

    2014-09-01

    The sample pretreatment method for the determination of four typical artificial sweeteners (ASs) including sucralose, saccharin, cyclamate, and acesulfame in soil by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was optimized. Different conditions of extraction, including four extractants (methanol, acetonitrile, acetone, deionized water), three kinds of ionic strength of sodium acetate solution (0.001, 0.01, 0.1 mol/L), four pH values (3, 4, 5 and 6) of 0.01 mol/L acetate-sodium acetate solution, four set durations of extraction (20, 40, 60, 120 min) and number of extraction times (1, 2, 3, 4 times) were compared. The optimal sample pretreatment method was finally set up. The sam- ples were extracted twice with 25 mL 0.01 mol/L sodium acetate solution (pH 4) for 20 min per cycle. The extracts were combined and then purified and concentrated by CNW Poly-Sery PWAX cartridges with methanol containing 1 mmol/L tris (hydroxymethyl) amino methane (Tris) and 5% (v/v) ammonia hydroxide as eluent. The analytes were determined by HPLC-MS/MS. The recoveries were obtained by spiked soil with the four artificial sweeteners at 1, 10, 100 μg/kg (dry weight), separately. The average recoveries of the analytes ranged from 86.5% to 105%. The intra-day and inter-day precisions expressed as relative standard deviations (RSDs) were in the range of 2.56%-5.94% and 3.99%-6.53%, respectively. Good linearities (r2 > 0.995) were observed between 1-100 μg/kg (dry weight) for all the compounds. The limits of detection were 0.01-0.21 kg/kg and the limits of quantification were 0.03-0.70 μg/kg for the analytes. The four artificial sweeteners were determined in soil samples from farmland contaminated by wastewater in Tianjin. This method is rapid, reliable, and suitable for the investigation of artificial sweeteners in soil. PMID:25752083

  16. Development,