Science.gov

Sample records for optimum loop shapes

  1. Rollercoaster Loop Shapes

    ERIC Educational Resources Information Center

    Pendrill, Ann-Marie

    2005-01-01

    Many modern rollercoasters feature loops. Although textbook loops are often circular, real rollercoaster loops are not. In this paper, we look into the mathematical description of various possible loop shapes, as well as their riding properties. We also discuss how a study of loop shapes can be used in physics education.

  2. Rollercoaster loop shapes

    NASA Astrophysics Data System (ADS)

    Pendrill, Ann-Marie

    2005-11-01

    Many modern rollercoasters feature loops. Although textbook loops are often circular, real rollercoaster loops are not. In this paper, we look into the mathematical description of various possible loop shapes, as well as their riding properties. We also discuss how a study of loop shapes can be used in physics education.

  3. Optimum Building Shapes for Energy Conservation

    ERIC Educational Resources Information Center

    Berkoz, Esher Balkan

    1977-01-01

    An approach to optimum building shape design is summarized that is based on local climate and is especially important for heat control in lower cost construction with temperature-responsive thermal characteristics. The study was supported by Istanbul Technical University. For journal availability see HE 508 931. (Author/LBH)

  4. Optimum shape of a blunt forebody in hypersonic flow

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Ting, L.

    1989-01-01

    The optimum shape of a blunt forebody attached to a symmetric wedge or cone is determined. The length of the forebody, its semi-thickness or base radius, the nose radius and the radius of the fillet joining the forebody to the wedge or cone are specified. The optimum shape is composed of simple curves. Thus experimental models can be built readily to investigate the utilization of aerodynamic heating for boundary layer control. The optimum shape based on the modified Newtonian theory can also serve as the preliminary shape for the numerical solution of the optimum shape using the governing equations for a compressible inviscid or viscous flow.

  5. Optimum performance of suppressed carrier receivers with Costas loop tracking

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Lindsey, W. C.

    1977-01-01

    The performance of suppressed carrier receivers with Costas loop tracking is optimized by proper choice of loop arm filter bandwidth. In particular, it is shown that for a variety of passive arm filter types, there exists, for a given data rate and data signal-to-noise ratio, an optimum filter bandwidth in the sense of minimizing the loop's squaring loss. For the linear theory case, this is equivalent to minimizing the loop's tracking jitter. When symbol synchronization is known, it is shown that by replacing the passive arm filters with active filters, i.e., integrate-and-dump circuits, one can achieve an improvement in carrier-to-noise ratio of as much as 4 to 6 dB depending on the passive arm filter type used for comparison and the value of data signal-to-noise ratio.

  6. A class of optimum digital phase locked loops for the DSN advanced receiver

    NASA Technical Reports Server (NTRS)

    Hurd, W. J.; Kumar, R.

    1985-01-01

    A class of optimum digital filters for digital phase locked loop of the deep space network advanced receiver is discussed. The filter minimizes a weighted combination of the variance of the random component of the phase error and the sum square of the deterministic dynamic component of phase error at the output of the numerically controlled oscillator (NCO). By varying the weighting coefficient over a suitable range of values, a wide set of filters are obtained such that, for any specified value of the equivalent loop-noise bandwidth, there corresponds a unique filter in this class. This filter thus has the property of having the best transient response over all possible filters of the same bandwidth and type. The optimum filters are also evaluated in terms of their gain margin for stability and their steady-state error performance.

  7. Optimum Shape Design Using Automatic Differentiation in Reverse Mode

    NASA Technical Reports Server (NTRS)

    Hafez, M.; Mohammadi, B.; Pironneau, O.

    1996-01-01

    This paper shows how to use automatic differentiation in reverse mode as a powerful tool in optimization procedures. It is also shown that for aerodynamic applications the gradients have to be as accurate as possible. In particular, the effect of having the exact gradient of he first or second order spatial discretization schemes is presented. We show that the loss of precision in the gradient affects not only the convergence, but also the final shape. Both two and three dimensional configurations of transonic and supersonic flows have been investigated. These cases involve up to several thousand control parameters.

  8. Pattern drilling exploration: Optimum pattern types and hole spacings when searching for elliptical shaped targets

    USGS Publications Warehouse

    Drew, L.J.

    1979-01-01

    In this study the selection of the optimum type of drilling pattern to be used when exploring for elliptical shaped targets is examined. The rhombic pattern is optimal when the targets are known to have a preferred orientation. Situations can also be found where a rectangular pattern is as efficient as the rhombic pattern. A triangular or square drilling pattern should be used when the orientations of the targets are unknown. The way in which the optimum hole spacing varies as a function of (1) the cost of drilling, (2) the value of the targets, (3) the shape of the targets, (4) the target occurrence probabilities was determined for several examples. Bayes' rule was used to show how target occurrence probabilities can be revised within a multistage pattern drilling scheme. ?? 1979 Plenum Publishing Corporation.

  9. Optimum bleeding rate of open loop ground source heat pump systems determined by hydrogeological modeling in Korea

    NASA Astrophysics Data System (ADS)

    Jeon, W. H.; Kim, N.; Lee, J. Y.

    2014-12-01

    This study aims to evaluate the influence of open loop ground source heat pump systems operation on hydrological conditions of aquifer. Test bed is located in Chuncheon, Korea. The step drawdown test was conducted in five stages for 300 minutes. The variation of groundwater levels by open loop ground source heat pump systems operation was estimated using Visual MODFLOW. Transmissivity ranged from 2.02×10-4 to 9.36×10-4, and storage coefficient ranged from 0.00067 to 0.021. The amount of optimum bleeding was calculated to be 240 m3/day. When bleeding will be 50, 90, 240 and 450 m3/day for 5 years, groundwater levels may decrease 1.84, 3.31, 8.89 and 17.0 m, respectively. If the amount of bleeding is 50 m3/day, the influence of bleeding will not reach the boundary regions of the Soyang River after 5 years. Regarding the open loop ground source heat pump system installed at the test bed, the amount of optimum bleeding in accordance with the stand are proposed by the government is 90 m3/day, which is 20% of the 450 m3/day circulation quantity of the system. However, if continuous bleeding of more than 90 m3/day occurs, then the radius of influence is expected to reach the boundary regions of the Soyang River after 5 years. These results indicate that amount of optimum bleeding differ in each open loop ground soured heat pump system. Therefore, the debate for the amount of optimum bleeding in open loop ground source heat pump systems is demanded. This work is supported by the Energy Efficiency and Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No.20123040110010).

  10. Quantitative Evaluation of Closed-Loop-Shaped Cardiomyocyte Network by Using Ring-Shaped Electrode

    NASA Astrophysics Data System (ADS)

    Nomura, Fumimasa; Kaneko, Tomoyuki; Hamada, Tomoyo; Hattori, Akihiro; Yasuda, Kenji

    2012-06-01

    Re-entry of excitation in the heart is one of the abnormal phenomena that causes lethal arrhythmia and is thought to be induced by the looped structure of the excitation conduction pathway. To evaluate the geometrical pattern dependence of electrophysiological results, we fabricated three models of cardiomyocyte networks and compared their beating frequencies (BFs), amplitudes of a depolarization peak, and field potential durations (FPDs). The set of different closed-loop-shaped network models from 3 to 8 mm in length showed the same BFs, amplitudes, and FPDs independent of their loop lengths, whereas the BFs and FPDs of 60 µm small clusters, and the FPDs of the 2 mm open-line-shaped network model were different from those of a closed-loop-shaped network model. These results indicate that the mm order larger size of clusters might create lower BFs, and the closed-loop-shaped model may generate longer FPDs. They also suggest the importance of spatial arrangement control of the cardoimyocyte community for reproducible measurement of electrophysiological properties of cardiomyocytes, especially control of the closed-loop formation, which might change the waveforms of FPDs depending on the difference in the geometry and conduction pathway of the cell network.

  11. Feedback Control Systems Loop Shaping Design with Practical Considerations

    NASA Technical Reports Server (NTRS)

    Kopsakis, George

    2007-01-01

    This paper describes loop shaping control design in feedback control systems, primarily from a practical stand point that considers design specifications. Classical feedback control design theory, for linear systems where the plant transfer function is known, has been around for a long time. But it s still a challenge of how to translate the theory into practical and methodical design techniques that simultaneously satisfy a variety of performance requirements such as transient response, stability, and disturbance attenuation while taking into account the capabilities of the plant and its actuation system. This paper briefly addresses some relevant theory, first in layman s terms, so that it becomes easily understood and then it embarks into a practical and systematic design approach incorporating loop shaping design coupled with lead-lag control compensation design. The emphasis is in generating simple but rather powerful design techniques that will allow even designers with a layman s knowledge in controls to develop effective feedback control designs.

  12. Optimum shape control of flexible beams by piezo-electric actuators

    NASA Technical Reports Server (NTRS)

    Baz, A.; Poh, S.

    1987-01-01

    The utilization of piezoelectric actuators in controlling the static deformation and shape of flexible beams is examined. An optimum design procedure is presented to enable the selection of the optimal location, thickness and excitation voltage of the piezoelectric actuators in a way that would minimize the deflection of the beam to which these actuators are bonded. Numerical examples are presented to illustrate the application of the developed optimization procedure in minimizing structural deformation of beams using ceramic and polymeric piezoelectric actuators bonded to the beams with a typical bonding agent. The obtained results emphasize the importance of the devised rational produce in designing beam-actuator systems with minimal elastic distortions.

  13. Practical Loop-Shaping Design of Feedback Control Systems

    NASA Technical Reports Server (NTRS)

    Kopasakis, George

    2010-01-01

    An improved methodology for designing feedback control systems has been developed based on systematically shaping the loop gain of the system to meet performance requirements such as stability margins, disturbance attenuation, and transient response, while taking into account the actuation system limitations such as actuation rates and range. Loop-shaping for controls design is not new, but past techniques do not directly address how to systematically design the controller to maximize its performance. As a result, classical feedback control systems are designed predominantly using ad hoc control design approaches such as proportional integral derivative (PID), normally satisfied when a workable solution is achieved, without a good understanding of how to maximize the effectiveness of the control design in terms of competing performance requirements, in relation to the limitations of the plant design. The conception of this improved methodology was motivated by challenges in designing control systems of the types needed for supersonic propulsion. But the methodology is generally applicable to any classical control-system design where the transfer function of the plant is known or can be evaluated. In the case of a supersonic aerospace vehicle, a major challenge is to design the system to attenuate anticipated external and internal disturbances, using such actuators as fuel injectors and valves, bypass doors, and ramps, all of which are subject to limitations in actuator response, rates, and ranges. Also, for supersonic vehicles, with long slim type of structures, coupling between the engine and the structural dynamics can produce undesirable effects that could adversely affect vehicle stability and ride quality. In order to design distributed controls that can suppress these potential adverse effects, within the full capabilities of the actuation system, it is important to employ a systematic control design methodology such as this that can maximize the

  14. Role of measurement voltage on hysteresis loop shape in Piezoresponse Force Microscopy

    SciTech Connect

    Kim, Yunseok; Yang, J.-C.; Chu, Ying Hao; Yu, Pu; Lu, X.; Jesse, Stephen; Kalinin, Sergei V

    2012-01-01

    The dependence of on-field and off-field hysteresis loop shape in Piezoresponse Force Microscopy (PFM) on driving voltage, Vac, is explored. A nontrivial dependence of hysteresis loop parameters on measurement conditions is observed. The strategies to distinguish between paraelectric and ferroelectric states with small coercive bias and separate reversible hysteretic and non-hysteretic behaviors are suggested. Generally, measurement of loop evolution with Vac is a necessary step to establish the veracity of PFM hysteresis measurements.

  15. Tectonic stress feedback loop explains U-shaped glacial valleys

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2014-03-01

    In the shadow of the Matterhorn, the broad form of the Matter Valley—like so many throughout the Alps—is interrupted by a deep U-shaped glacial trough. Carved into a landscape reflecting millennia of tectonic uplift and river erosion, growing evidence suggests the 100-meter-deep U-shaped groove was produced shortly after a shift toward major cycles of Alpine glaciation almost a million years ago. Subsequent glaciations may have therefore had little effect on the landscape.

  16. Optimum Structural Topology and Shape Design using Three Phase Hybrid GA and Artificial Density Method

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, C. V.; Singh, Nidur; Sehgal, D. K.

    2007-05-01

    In this paper an efficient GA based Three Phase Topology Optimization algorithm which is an improvement over the Two-Phase Method developed by the team at IIT Delhi is presented. The Solid Isotropic Material with Penalization approach is outlined and Sequential Linear Programming method with move limits is utilized for solving the compliance minimization and volume minimization problems with volume and displacement constraints respectively. The need for parametric studies with various penalty factors and initial starting constraints are emphasized. The availability of accurate constraint derivatives with minimal effort is a boon but as in any NLP problem with a large number of variables, the global nature of the optimum is somewhat suspect in SIMP based method. A detailed comparison of the performances of the two phase and three phase methods and the SIMP method is presented for problems of different size and general conclusions are drawn.

  17. Gain-scheduling Control of Rotary Inverted Pendulum by Weight Optimization and H∞ Loop Shaping Procedure

    NASA Astrophysics Data System (ADS)

    Yubai, Kazuhiro; Okuhara, Kazunori; Hirai, Junji

    Gain-scheduling control is one of effective methods for plants whose dynamics changes significantly according to its operating point. A frozen parameter method is known to be a practical gain-scheduling controller synthesis, which interpolates the controllers designed at the prespecified (frozen) operating points according to the current operation point. Hyde et al. proposed a gain-scheduling control that H∞ loop shaping procedure is adopted as a controller synthesis at each operating point. H∞ loop shaping procedure is based on loop shaping of an open loop characteristic by frequency weights and is known to be effective for plants with bad condition number. However, weight selection satisfying control specifications is hard job for a designer. This paper describes the design of a suboptimal weight and a controller by means of algorithm that maximizes the robust stability margin and shapes the open loop characteristic into the desired shape at each operating point. Moreover, we formulate a weight optimization problem as a generalized eigenvalue minimization problem, which reduces the designer's burden of weight selection. Finally, we realize robust and high performance control system by scheduling both weights and controllers. The effectiveness of the proposed control system is verified in terms of the achieved robust stability margin and experimental time responses of a rotary inverted pendulum which involves strong nonlinear dynamics.

  18. Assessment of optimum threshold and particle shape parameter for the image analysis of aggregate size distribution of concrete sections

    NASA Astrophysics Data System (ADS)

    Ozen, Murat; Guler, Murat

    2014-02-01

    Aggregate gradation is one of the key design parameters affecting the workability and strength properties of concrete mixtures. Estimating aggregate gradation from hardened concrete samples can offer valuable insights into the quality of mixtures in terms of the degree of segregation and the amount of deviation from the specified gradation limits. In this study, a methodology is introduced to determine the particle size distribution of aggregates from 2D cross sectional images of concrete samples. The samples used in the study were fabricated from six mix designs by varying the aggregate gradation, aggregate source and maximum aggregate size with five replicates of each design combination. Each sample was cut into three pieces using a diamond saw and then scanned to obtain the cross sectional images using a desktop flatbed scanner. An algorithm is proposed to determine the optimum threshold for the image analysis of the cross sections. A procedure was also suggested to determine a suitable particle shape parameter to be used in the analysis of aggregate size distribution within each cross section. Results of analyses indicated that the optimum threshold hence the pixel distribution functions may be different even for the cross sections of an identical concrete sample. Besides, the maximum ferret diameter is the most suitable shape parameter to estimate the size distribution of aggregates when computed based on the diagonal sieve opening. The outcome of this study can be of practical value for the practitioners to evaluate concrete in terms of the degree of segregation and the bounds of mixture's gradation achieved during manufacturing.

  19. A hybrid multi-loop genetic-algorithm/simplex/spatial-grid method for locating the optimum orientation of an adsorbed protein on a solid surface

    NASA Astrophysics Data System (ADS)

    Wei, Tao; Mu, Shengjing; Nakano, Aiichiro; Shing, Katherine

    2009-05-01

    Atomistic simulation of protein adsorption on a solid surface in aqueous environment is computationally demanding, therefore the determination of preferred protein orientations on the solid surface usually serves as an initial step in simulation studies. We have developed a hybrid multi-loop genetic-algorithm/simplex/spatial-grid method to search for low adsorption-energy orientations of a protein molecule on a solid surface. In this method, the surface and the protein molecule are treated as rigid bodies, whereas the bulk fluid is represented by spatial grids. For each grid point, an effective interaction region in the surface is defined by a cutoff distance, and the possible interaction energy between an atom at the grid point and the surface is calculated and recorded in a database. In searching for the optimum position and orientation, the protein molecule is translated and rotated as a rigid body with the configuration obtained from a previous Molecular Dynamic simulation. The orientation-dependent protein-surface interaction energy is obtained using the generated database of grid energies. The hybrid search procedure consists of two interlinked loops. In the first loop A, a genetic algorithm (GA) is applied to identify promising regions for the global energy minimum and a local optimizer with the derivative-free Nelder-Mead simplex method is used to search for the lowest-energy orientation within the identified regions. In the second loop B, a new population for GA is generated and competitive solution from loop A is improved. Switching between the two loops is adaptively controlled by the use of similarity analysis. We test the method for lysozyme adsorption on a hydrophobic hydrogen-terminated silicon (110) surface in implicit water (i.e., a continuum distance-dependent dielectric constant). The results show that the hybrid search method has faster convergence and better solution accuracy compared with the conventional genetic algorithm.

  20. IMC-PID design based on model matching approach and closed-loop shaping.

    PubMed

    Jin, Qi B; Liu, Q

    2014-03-01

    Motivated by the limitations of the conventional internal model control (IMC), this communication addresses the design of IMC-based PID in terms of the robust performance of the control system. The IMC controller form is obtained by solving an H-infinity problem based on the model matching approach, and the parameters are determined by closed-loop shaping. The shaping of the closed-loop transfer function is considered both for the set-point tracking and for the load disturbance rejection. The design procedure is formulated as a multi-objective optimization problem which is solved by a specific optimization algorithm. A nice feature of this design method is that it permits a clear tradeoff between robustness and performance. Simulation examples show that the proposed method is effective and has a wide applicability. PMID:24280534

  1. Shaping of looped miniaturized chalcogenide fiber sensing heads for mid-infrared sensing.

    PubMed

    Houizot, Patrick; Anne, Marie-Laure; Boussard-Plédel, Catherine; Loréal, Olivier; Tariel, Hugues; Lucas, Jacques; Bureau, Bruno

    2014-01-01

    Chalcogenide glass fibers are promising photonic tools to develop Fiber Evanescent Wave Spectroscopy (FEWS) optical sensors working in the mid-infrared region. Numerous pioneering works have already been carried out showing their efficiency, especially for bio-medical applications. Nevertheless, this technology remains confined to academic studies at the laboratory scale because chalcogenide glass fibers are difficult to shape to produce reliable, sensitive and compact sensors. In this paper, a new method for designing and fabricating a compact and robust sensing head with a selenide glass fiber is described. Compact looped sensing heads with diameter equal to 2 mm were thus shaped. This represents an outstanding achievement considering the brittleness of such uncoated fibers. FEWS experiments were implemented using alcoholic solutions as target samples showing that the sensitivity is higher than with the routinely used classical fiber. It is also shown that the best compromise in term of sensitivity is to fabricate a sensing head including two full loops. From a mechanical point of view, the breaking loads of the loop shaped head are also much higher than with classical fiber. Finally, this achievement paves the way for the use of mid-infrared technology during in situ and even in vivo medical operations. Indeed, is is now possible to slide a chalcogenide glass fiber in the operating channel of a standard 2.8 mm diameter catheter. PMID:25264953

  2. Automated Droplet Manipulation Using Closed-Loop Axisymmetric Drop Shape Analysis.

    PubMed

    Yu, Kyle; Yang, Jinlong; Zuo, Yi Y

    2016-05-17

    Droplet manipulation plays an important role in a wide range of scientific and industrial applications, such as synthesis of thin-film materials, control of interfacial reactions, and operation of digital microfluidics. Compared to micron-sized droplets, which are commonly considered as spherical beads, millimeter-sized droplets are generally deformable by gravity, thus introducing nonlinearity into control of droplet properties. Such a nonlinear drop shape effect is especially crucial for droplet manipulation, even for small droplets, at the presence of surfactants. In this paper, we have developed a novel closed-loop axisymmetric drop shape analysis (ADSA), integrated into a constrained drop surfactometer (CDS), for manipulating millimeter-sized droplets. The closed-loop ADSA generalizes applications of the traditional drop shape analysis from a surface tension measurement methodology to a sophisticated tool for manipulating droplets in real time. We have demonstrated the feasibility and advantages of the closed-loop ADSA in three applications, including control of drop volume by automatically compensating natural evaporation, precise control of surface area variations for high-fidelity biophysical simulations of natural pulmonary surfactant, and steady control of surface pressure for in situ Langmuir-Blodgett transfer from droplets. All these applications have demonstrated the accuracy, versatility, applicability, and automation of this new ADSA-based droplet manipulation technique. Combining with CDS, the closed-loop ADSA holds great promise for advancing droplet manipulation in a variety of material and surface science applications, such as thin-film fabrication, self-assembly, and biophysical study of pulmonary surfactant. PMID:27132978

  3. FREQ: A computational package for multivariable system loop-shaping procedures

    NASA Technical Reports Server (NTRS)

    Giesy, Daniel P.; Armstrong, Ernest S.

    1989-01-01

    Many approaches in the field of linear, multivariable time-invariant systems analysis and controller synthesis employ loop-sharing procedures wherein design parameters are chosen to shape frequency-response singular value plots of selected transfer matrices. A software package, FREQ, is documented for computing within on unified framework many of the most used multivariable transfer matrices for both continuous and discrete systems. The matrices are evaluated at user-selected frequency-response values, and singular values against frequency. Example computations are presented to demonstrate the use of the FREQ code.

  4. Node-Wise Topological Shape Optimum Design for Structural Reinforced Modeling of Michell-Type Concrete Deep Beams

    NASA Astrophysics Data System (ADS)

    Lee, Dongkyu; Park, Sungsoo; Shin, Soomi

    This study presents an associated structural design to continuous material topology optimization and a particular case of shape optimization using node-wise densities as design parameters. The generation of optimal shapes and topologies represented in this study is based on a three-dimensional density function bilinearly interpolated by element shape functions and nodal densities. The material interface between void and solid regions is described by a specific 0.5 cut-off level of continuous and smooth iso-lines of the nodal density function on a fixed mesh. This approach allows us to perform a simultaneous node-wise topology and shape optimization, which can be easily implemented by existing gradient-based optimization codes. Contrary to those of conventional material topology optimization methods, these optimal solutions are similar to ideal optimal solutions from analytical optimization techniques. Numerical examples for structural reinforced modeling of Michell-type concrete deep beams are used to demonstrate the efficiency and superiority of the resolutions of the present method.

  5. Closed-loop control of a shape memory alloy actuation system for variable area fan nozzle

    NASA Astrophysics Data System (ADS)

    Barooah, Prabir; Rey, Nancy

    2002-07-01

    Shape Memory Alloys have been used in a wide variety of actuation applications. A bundled shape memory alloy cable actuator, capable of providing large force and displacement has been developed by United Technologies Corporation (patents pending) for actuating a Variable Area fan Nozzle (VAN). The ability to control fan nozzle exit area is an enabling technology for the next generation turbofan engines. Performance benefits for VAN engines are estimated to be up to 9% in Thrust Specific Fuel Consumption (TSFC) compared to traditional fixed geometry designs. The advantage of SMA actuated VAN design is light weight and low complexity compared to conventionally actuated designs. To achieve the maximum efficiency from a VAN engine, the nozzle exit area has to be continuously varied for a certain period of time during climb, since the optimum nozzle exit area is a function of several flight variables (flight Mach number, altitude etc). Hence, the actuator had to be controlled to provide the time varying desired nozzle area. A new control algorithm was developed for this purpose, which produced the desired flap area by metering the resistive heating of the SMA actuator. Since no active cooling was used, reducing overshoot was a significant challenge of the controller. A full scale, 2 flap model of the VAN system was built, which was capable of simulating a 20% nozzle area variation, and tested under full scale aerodynamic load in NASA Langley Jet Exit Test facility. The controller met all the requirements of the actuation system and was able to drive the flap position to the desired position with less than 2% overshoot in step input tests. The controller is based on a adaptive algorithm formulation with logical switches that reduces its overshoot error. Although the effectiveness of the controller was demonstrated in full scale model tests, no theoretical results as to its stability and robustness has been derived. Stability of the controller will have to be investigated

  6. A study of optimum cowl shapes and flow port locations for minimum drag with effective engine cooling, volume 2

    NASA Technical Reports Server (NTRS)

    Fox, S. R.; Smetana, F. O.

    1980-01-01

    The listings, user's instructions, sample inputs, and sample outputs of two computer programs which are especially useful in obtaining an approximate solution of the viscous flow over an arbitrary nonlifting three dimensional body are provided. The first program performs a potential flow solution by a well known panel method and readjusts this initial solution to account for the effects of the boundary layer displacement thickness, a nonuniform but unidirectional onset flow field, and the presence of air intakes and exhausts. The second program is effectually a geometry package which allows the user to change or refine the shape of a body to satisfy particular needs without a significant amount of human intervention. An effort to reduce the cruise drag of light aircraft through an analytical study of the contributions to the drag arising from the engine cowl shape and the foward fuselage area and also that resulting from the cooling air mass flowing through intake and exhaust sites on the nacelle is presented. The programs may be effectively used to determine the appropriate body modifications or flow port locations to reduce the cruise drag as well as to provide sufficient air flow for cooling the engine.

  7. A study of optimum cowl shapes and flow port locations for minimum drag with effective engine cooling, volume 1

    NASA Technical Reports Server (NTRS)

    Fox, S. R.; Smetana, F. O.

    1980-01-01

    The contributions to the cruise drag of light aircraft arising from the shape of the engine cowl and the forward fuselage area and also that resulting from the cooling air mass flow through intake and exhaust sites on the nacelle were analyzed. The methods employed for the calculation of the potential flow about an arbitrary three dimensional body are described with modifications to include the effects of boundary layer displacement thickness, a nonuniform onset flow field (such as that due to a rotating propeller), and the presence of air intakes and exhausts. A simple, reliable, largely automated scheme to better define or change the shape of a body is also presented. A technique was developed which can yield physically acceptable skin friction and pressure drag coefficients for isolated light aircraft bodies. For test cases on a blunt nose Cessna 182 fuselage, the technique predicted drag reductions as much as 28.5% by body recontouring and proper placements and sizing of the cooling air intakes and exhausts.

  8. A novel device allowing for movement and trapping of particles within loop-shaped channels

    NASA Astrophysics Data System (ADS)

    Hahn, P.; Dual, J.

    2012-05-01

    Resonant excitation of a fluid cavity inside ultrasonic particle manipulation devices leads to standing waves inside the fluid. Acoustic radiation forces, caused by the nonlinear interaction between the time harmonic pressure field and a particle can be used to manipulate particles towards the nodal or anti-nodal planes of the acoustic pressure field. This allows the contactless handling of cells, bacteria or other particles, suggesting a wide range of applications in life science and medical engineering. Most ultrasonic manipulation devices described in the literature utilize reflections at fluid-structure interfaces which create the standing wave. At a given frequency, the nodal planes are fixed since their locations are governed by the geometry of the device. This reduces the suitability of the method for applications that require contactless particle transport over long distances or towards arbitrary positions. In order to overcome the described shortcoming, several methods have been proposed. In this work we introduce a new approach, leveraging circumferential resonances within a loop-shaped fluid waveguide in order to gain full one-dimensional control over the location of nodal planes. Limitations regarding the device geometry and the enclosure materials are discussed and it is described how the position or the velocity of nodal planes can be controlled via amplitude modulation applied on two transducers. Preliminary experimental results illustrate potential applications but they also reveal problems related to the current device design.

  9. Anisotropy and shape of hysteresis loop of frozen suspensions of iron oxide nanoparticles in water

    NASA Astrophysics Data System (ADS)

    Boekelheide, Zoe; Gruettner, Cordula; Dennis, Cindi

    2014-03-01

    Colloidal suspensions of nanoparticles in liquids have many uses in biomedical applications. We studied approximately 50 nm diameter iron oxide particles dispersed in H2O for magnetic nanoparticle hyperthermia cancer treatment. Interactions between nanoparticles have been indicated for increasing the heat output under application of an alternating magnetic field, as in hyperthermia. Interactions vary dynamically with an applied field as the nanoparticles reorient and rearrange within the liquid. Therefore, we studied the samples below the liquid freezing point in a range of magnetic field strengths to literally freeze in the effects of interactions. We found that the shape of the magnetic hysteresis loop is squarer (higher anisotropy) when the sample was cooled in a high field, and less square (lower anisotropy) when the sample was cooled in a low or zero field. The cause is most likely the formation of long chains of nanoparticles up to 500 μm, which we observe optically. This increase in anisotropy may indicate improved heating ability for these nanoparticles under an alternating magnetic field.

  10. Optimum rolling ratio for obtaining {001}<110> recrystallization texture in Ti-Nb-Al biomedical shape memory alloy.

    PubMed

    Inamura, T; Shimizu, R; Kim, H Y; Miyazaki, S; Hosoda, H

    2016-04-01

    The rolling rate (r) dependence of textures was investigated in the Ti-26Nb-3Al (mol%) alloy to reveal the conditions required to form the {001}<110> recrystallization texture, which is a desirable orientation for the β-titanium shape memory alloy. {001}<110> was the dominant cold-rolling texture when r=90% and it was transferred to the recrystallization texture without forming {112}<110>, which is detrimental for the isotropic mechanical properties of the rolled sheet. A further increase in r resulted in the formation of {112}<110> in both rolling and recrystallization textures. Therefore, r should be controlled to form only the {001}<110> rolling texture, because the {112}<110> texture can overwhelm the {001}<110> texture during recrystallization. PMID:26838877

  11. Investigation Into the Optimum Beam Shape and Fluence for Selective Ablation of Dental Calculus at lambda = 400 nm

    SciTech Connect

    Schoenly, J.E.; Seka. W.; Rechmann, P.

    2010-02-25

    A frequency-doubled Ti:sapphire laser is shown to selectively ablate dental calculus. The optimal transverse shape of the laser beam, including its variability under water-cooling, is determined for selective ablation of dental calculus. Intensity profiles under various water-cooling conditions were optically observed. The 400-nm laser was coupled into a multimode optical fiber using an f = 2.5-cm lens and light-shaping diffuser. Water-cooling was supplied coaxially around the fiber. Five human tooth samples (four with calculus and one pristine) were irradiated perpendicular to the tooth surface while the tooth was moved back and forth at 0.3 mm/second, varying between 20 and 180 iterations. The teeth were imaged before and after irradiation using light microscopy with a flashing blue light-emitting diode (LED). An environmental scanning electron microscope imaged each tooth after irradiation. High-order super-Gaussian intensity profiles are observed at the output of a fiber coiled around a 4-in. diameter drum. Super-Gaussian beams have a morehomogenous fluence distribution than Gaussian beams and have a higher energy efficiency for selective ablation. Coaxial water-cooling does not noticeably distort the intensity distribution within 1 mm from the optical fiber. In contrast, lasers focused to a Gaussian cross section (<=50-mm diameter) without fiber propagation and cooled by a water spray are heavily distorted and may lead to variable ablation. Calculus is preferentially ablated at high fluences (>= 2 J/cm^2); below this fluence, stalling occurs because of photo-bleaching of the calculus. Healthy dental hard tissue is not removed at fluences <=3 J/cm^2. Supplying laser light to a tooth using an optical fiber with coaxial water-cooling is determined to be the most appropriate method when selectively removing calculus with a frequency-doubled Ti:sapphire laser. Fluences over 2 J/cm^2 are required to remove calculus efficiently since photo-bleaching stalls calculus

  12. Radicular Pain due to Subsidence of the Nitinol Shape Memory Loop for Stabilization after Lumbar Decompressive Laminectomy.

    PubMed

    Son, Byung-Chul; Kim, Deog-Ryeong

    2015-01-01

    A number of dynamic stabilization systems have been used to overcome the problems associated with spinal fusion with rigid fixation recently and the demand for an ideal dynamic stabilization system is greater for younger patients with multisegment disc degeneration. Nitinol, a shape memory alloy of nickel and titanium, is flexible at low temperatures and regains its original shape when heated, and the Nitinol shape memory loop (SML) implant has been used as a posterior tension band mostly in decompressive laminectomy cases because the Nitinol implant has various characteristics such as high elasticity and a tensile force, flexibility, and biological compatibility. The reported short-term outcomes of the application of SMLs as posterior column supporters in cervical and lumbar decompressive laminectomies seem to be positive, and complications are minimal except for the rare occurrence of pullout and fracture of the SML. However, there was no report of neurological complications related to neural compression in spite of the use of the loop of SML in the epidural space. The authors report a case of delayed development of radiating pain caused by subsidence of the SML resulting epidural compression. PMID:25674347

  13. Radicular Pain due to Subsidence of the Nitinol Shape Memory Loop for Stabilization after Lumbar Decompressive Laminectomy

    PubMed Central

    Kim, Deog-ryeong

    2015-01-01

    A number of dynamic stabilization systems have been used to overcome the problems associated with spinal fusion with rigid fixation recently and the demand for an ideal dynamic stabilization system is greater for younger patients with multisegment disc degeneration. Nitinol, a shape memory alloy of nickel and titanium, is flexible at low temperatures and regains its original shape when heated, and the Nitinol shape memory loop (SML) implant has been used as a posterior tension band mostly in decompressive laminectomy cases because the Nitinol implant has various characteristics such as high elasticity and a tensile force, flexibility, and biological compatibility. The reported short-term outcomes of the application of SMLs as posterior column supporters in cervical and lumbar decompressive laminectomies seem to be positive, and complications are minimal except for the rare occurrence of pullout and fracture of the SML. However, there was no report of neurological complications related to neural compression in spite of the use of the loop of SML in the epidural space. The authors report a case of delayed development of radiating pain caused by subsidence of the SML resulting epidural compression. PMID:25674347

  14. Loop Shaping Control Design for a Supersonic Propulsion System Model Using Quantitative Feedback Theory (QFT) Specifications and Bounds

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Kopasakis, George

    2010-01-01

    This paper covers the propulsion system component modeling and controls development of an integrated mixed compression inlet and turbojet engine that will be used for an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. Using previously created nonlinear component-level propulsion system models, a linear integrated propulsion system model and loop shaping control design have been developed. The design includes both inlet normal shock position control and jet engine rotor speed control for a potential supersonic commercial transport. A preliminary investigation of the impacts of the aero-elastic effects on the incoming flow field to the propulsion system are discussed, however, the focus here is on developing a methodology for the propulsion controls design that prevents unstart in the inlet and minimizes the thrust oscillation experienced by the vehicle. Quantitative Feedback Theory (QFT) specifications and bounds, and aspects of classical loop shaping are used in the control design process. Model uncertainty is incorporated in the design to address possible error in the system identification mapping of the nonlinear component models into the integrated linear model.

  15. Influence of fourfold anisotropy form on hysteresis loop shape in ferromagnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Ehrmann, Andrea; Blachowicz, Tomasz

    2014-08-01

    The dependence of the form of different mathematical depictions of fourfold magnetic anisotropies has been examined, using a simple macro-spin model. Strong differences in longitudinal and transverse hysteresis loops occur due to deviations from the usual phenomenological model, such as using absolute value functions. The proposed possible models can help understanding measurements on sophisticated magnetic nanosystems, like exchange bias layered structures employed in magnetic hard disk heads or magnetic nano-particles, and support the development of solutions with specific magnetization reversal behavior needed in novel magneto-electronic devices.

  16. Influence of fourfold anisotropy form on hysteresis loop shape in ferromagnetic nanostructures

    SciTech Connect

    Ehrmann, Andrea; Blachowicz, Tomasz

    2014-08-15

    The dependence of the form of different mathematical depictions of fourfold magnetic anisotropies has been examined, using a simple macro-spin model. Strong differences in longitudinal and transverse hysteresis loops occur due to deviations from the usual phenomenological model, such as using absolute value functions. The proposed possible models can help understanding measurements on sophisticated magnetic nanosystems, like exchange bias layered structures employed in magnetic hard disk heads or magnetic nano-particles, and support the development of solutions with specific magnetization reversal behavior needed in novel magneto-electronic devices.

  17. Competing feedback loops shape IL-2 signaling between helper and regulatory T lymphocytes in cellular microenvironments

    PubMed Central

    Busse, Dorothea; de la Rosa, Maurus; Hobiger, Kirstin; Thurley, Kevin; Flossdorf, Michael; Scheffold, Alexander; Höfer, Thomas

    2010-01-01

    Cytokines are pleiotropic and readily diffusible messenger molecules, raising the question of how their action can be confined to specific target cells. The T cell cytokine interleukin-2 (IL-2) is essential for the homeostasis of regulatory T (Treg) cells that suppress (auto)immunity and stimulates immune responses mediated by conventional T cells. We combined mathematical modeling and experiments to dissect the dynamics of the IL-2 signaling network that links the prototypical IL-2 producers, conventional T helper (Th) cells, and Treg cells. We show how the IL-2-induced upregulation of high-affinity IL-2 receptors (IL-2R) establishes a positive feedback loop of IL-2 signaling. This feedback mediates a digital switch for the proliferation of Th cells and functions as an analog amplifier for the IL-2 uptake capacity of Treg cells. Unlike other positive feedbacks in cell signaling that augment signal propagation, the IL-2/IL-2R loop enhances the capture of the signal molecule and its degradation. Thus Treg and Th cells can compete for IL-2 and restrict its range of action through efficient cellular uptake. Depending on activation status and spatial localization of the cells, IL-2 may be consumed exclusively by Treg or Th cells, or be shared between them. In particular, a Treg cell can deprive a stimulated Th cell of its IL-2, but only when the cells are located in close proximity, within a few tens of micrometers. The present findings explain how IL-2 can play two disctinct roles in immune regulation and point to a hitherto largely unexplored spatiotemporal complexity of cytokine signaling. PMID:20133667

  18. Optimum design and criticality safety of a beam-shaping assembly with an accelerator-driven subcritical neutron multiplier for boron neutron capture therapies.

    PubMed

    Hiraga, F

    2015-12-01

    The beam-shaping assembly for boron neutron capture therapies with a compact accelerator-driven subcritical neutron multiplier was designed so that an epithermal neutron flux of 1.9×10(9) cm(-2) s(-1) at the treatment position was generated by 5 MeV protons in a beam current of 2 mA. Changes in the atomic density of (135)Xe in the nuclear fuel due to the operation of the beam-shaping assembly were estimated. The criticality safety of the beam-shaping assembly in terms of Xe poisoning is discussed. PMID:26235186

  19. Optimum Shape Design against Flutter of a Cantilevered Column with AN End-Mass of Finite Size Subjected to a Non-Conservative Load

    NASA Astrophysics Data System (ADS)

    LANGTHJEM, MIKAEL A.; SUGIYAMA, YOSHIHIKO

    1999-09-01

    Optimum design for dynamic stability of slender cantilevered columns subjected to a follower force, due to a rocket thrust, is investigated. The aim is to determine the tapering of the column which maximizes the critical value of the rocket thrust (at which flutter is initiated) under the constraint of constant length and volume of the column. The rocket thrust is assumed to be produced by a solid rocket motor mounted at the tip end of the column. The rocket motor is simplified as a massive ball with the same material density as the column. Based on experimental evidence [1, 2] it is argued that a mathematical model without damping gives the practical stability limit if internal and external damping is small and the rocket thrust acts only in a short interval of time. Optimum columns are determined for various sizes of the end-ball (rocket motor). For small sizes, the critical thrust can be significantly increased by optimization, about eight times. By practical (experimental realizable) values of the mass ratio μ=(mass of end-ball)/(mass of column) the critical thrust can only be increased 1·3-1·4 times which is similar to the case of a pure conservative (dead) end load. Also, it is found that the great sensitivity to small changes in design parameters, which significantly complicates optimization of the pure Beck's column, is not present for practical values of μ. It is argued then, that the ‘pure’ Beck's column should be considered as a theoretical limit case of vanishing end-mass.

  20. Optimum design of ninety degree bends

    NASA Technical Reports Server (NTRS)

    Modi, Vijay; Cabuk, Hayri; Huan, Jian-Chun; Quadracci, Richard

    1992-01-01

    An algorithm for the optimum design of an internal flow component to obtain the maximum pressure rise is presented. Maximum pressure rise in a duct with simultaneous turning and diffusion is shown to be related to the control of flow separation on the passage walls. Such a flow is usually associated with downstream conditions that are desirable in turbomachinery and propulsion applications to ensure low loss and stable performance. The algorithm requires the solution of an 'adjoint' problem in addition to the 'direct' equations governing the flow in a body, which in the present analysis are assumed to be the laminar Navier-Stokes equations. The theoretical framework and computational algorithms presented in this study are for the steady Navier-Stokes equations. A procedure is developed for the numerical solution of the adjoint equations. This procedure is coupled with a direct solver in a design iteration loop, that provides a new shape with a higher pressure rise. This procedure is first validated for the design of optimum plane diffusers in two-dimensional flow. The direct Navier-Stokes and the 'adjoint' equations are solved using a finite volume formulation for spatial discretization in an artificial compressibility framework. A simplified version of the above approach is then utilized to design ninety degree diffusing bends. Calculations were carried out for a mean radius ratio at inlet of 2.5 and Reynolds numbers varying from 100 to 500. While at this stage laminar flows is assumed, it is shown that a similar approach can be conceived for turbulent flows.

  1. Robust Voltage Stabilization in an Isolated Wind-Diesel Power System using PSO based-Fixed Structure H∞ Loop Shaping Control

    NASA Astrophysics Data System (ADS)

    Vachirasricirikul, Sitthidet; Ngamroo, Issarachai; Kaitwanidvilai, Somyot

    It is well known that the power system controller designed by H∞ control is complicated, high order and impractical. In power system applications, practical structures such as proportional integral derivative (PID) etc., are widely used, because of their simple structure, less number of tuning parameters and low-order. However, tuning of controller parameters to achieve a good performance and robustness is based on designer's experiences. To overcome this problem, this paper proposes a fixed structure robust H∞ loop shaping control to design Static Var Compensator (SVC) and Automatic Voltage Regulator (AVR) for robust stabilization of voltage fluctuation in an isolated wind-diesel hybrid power system. The structure of the robust controller of SVC and AVR is specified by a PID controller. In the system modeling, a normalized coprime factorization is applied to represent possible unstructured uncertainties in the power system such as variation of system parameters, generating and loading conditions etc. Based on the H∞ loop shaping, the performance and robust stability conditions are formulated as the optimization problem. The particle swarm optimization is applied to solve for PID control parameters of SVC and AVR simultaneously. Simulation studies confirm the control effect and robustness of the proposed control.

  2. False Lock Performance of I-Q Costas Loops for Pulse-Shaped Binary Phase Shift Keying

    NASA Astrophysics Data System (ADS)

    Simon, M. K.

    1997-07-01

    Communication between the Mars Pathinder spacecraft and the ground stations during the critical period of entry, descent, and landing required the development of a technique for and utilization of radio science open-loop instrumentation at the Deep Space Network. The signal carrier at X-band (8.43 GHz) was recorded with minimal gaps throughout this period when a complex sequence of events was being performed by the spacecraft. The carrier information was reconstructed and delivered to the Project in order to assess the engineering performance as well as possibly characterize the Martian upper atmosphere for future Mars missions. This article describes the technique, instrumentation, operations strategy, and signal processing task.

  3. Optimum propeller wind turbines

    NASA Astrophysics Data System (ADS)

    Sanderson, R. J.; Archer, R. D.

    1983-12-01

    The Prandtl-Betz-Theodorsen theory of heavily loaded airscrews has been adapted to the design of propeller windmills which are to be optimized for maximum power coefficient. It is shown that the simpler, light-loading, constant-area wake assumption can generate significantly different 'optimum' performance and geometry, and that it is therefore not appropriate to the design of propeller wind turbines when operating in their normal range of high-tip-speed-to-wind-speed ratio. Design curves for optimum power coefficient are presented and an example of the design of a typical two-blade optimum rotor is given.

  4. Feedback control of combustion instabilities from within limit cycle oscillations using H∞ loop-shaping and the ν-gap metric

    PubMed Central

    Morgans, Aimee S.

    2016-01-01

    Combustion instabilities arise owing to a two-way coupling between acoustic waves and unsteady heat release. Oscillation amplitudes successively grow, until nonlinear effects cause saturation into limit cycle oscillations. Feedback control, in which an actuator modifies some combustor input in response to a sensor measurement, can suppress combustion instabilities. Linear feedback controllers are typically designed, using linear combustor models. However, when activated from within limit cycle, the linear model is invalid, and such controllers are not guaranteed to stabilize. This work develops a feedback control strategy guaranteed to stabilize from within limit cycle oscillations. A low-order model of a simple combustor, exhibiting the essential features of more complex systems, is presented. Linear plane acoustic wave modelling is combined with a weakly nonlinear describing function for the flame. The latter is determined numerically using a level set approach. Its implication is that the open-loop transfer function (OLTF) needed for controller design varies with oscillation level. The difference between the mean and the rest of the OLTFs is characterized using the ν-gap metric, providing the minimum required ‘robustness margin’ for an H∞ loop-shaping controller. Such controllers are designed and achieve stability both for linear fluctuations and from within limit cycle oscillations. PMID:27493558

  5. Central safety factor and βN control on NSTX-U via beam power and plasma boundary shape modification, using TRANSP for closed loop simulations

    NASA Astrophysics Data System (ADS)

    Boyer, M. D.; Andre, R.; Gates, D. A.; Gerhardt, S.; Goumiri, I. R.; Menard, J.

    2015-05-01

    The high-performance operational goals of NSTX-U will require development of advanced feedback control algorithms, including control of βN and the safety factor profile. In this work, a novel approach to simultaneously controlling βN and the value of the safety factor on the magnetic axis, q0, through manipulation of the plasma boundary shape and total beam power, is proposed. Simulations of the proposed scheme show promising results and motivate future experimental implementation and eventual integration into a more complex current profile control scheme planned to include actuation of individual beam powers, density, and loop voltage. As part of this work, a flexible framework for closed loop simulations within the high-fidelity code TRANSP was developed. The framework, used here to identify control-design-oriented models and to tune and test the proposed controller, exploits many of the predictive capabilities of TRANSP and provides a means for performing control calculations based on user-supplied data (controller matrices, target waveforms, etc). The flexible framework should enable high-fidelity testing of a variety of control algorithms, thereby reducing the amount of expensive experimental time needed to implement new control algorithms on NSTX-U and other devices.

  6. The kissing-loop T-shaped structure translational enhancer of Pea enation mosaic virus can bind simultaneously to ribosomes and a 5' proximal hairpin.

    PubMed

    Gao, Feng; Gulay, Suna P; Kasprzak, Wojciech; Dinman, Jonathan D; Shapiro, Bruce A; Simon, Anne E

    2013-11-01

    The Pea enation mosaic virus (PEMV) 3' translational enhancer, known as the kissing-loop T-shaped structure (kl-TSS), binds to 40S subunits, 60S subunits, and 80S ribosomes, whereas the Turnip crinkle virus (TCV) TSS binds only to 60S subunits and 80S ribosomes. Using electrophoretic mobility gel shift assay (EMSA)-based competition assays, the kl-TSS was found to occupy a different site in the ribosome than the P-site-binding TCV TSS, suggesting that these two TSS employ different mechanisms for enhancing translation. The kl-TSS also engages in a stable, long-distance RNA-RNA kissing-loop interaction with a 12-bp 5'-coding-region hairpin that does not alter the structure of the kl-TSS as revealed by molecular dynamics simulations. Addition of the kl-TSS in trans to a luciferase reporter construct containing either wild-type or mutant 5' and 3' PEMV sequences suppressed translation, suggesting that the kl-TSS is required in cis to function, and both ribosome-binding and RNA interaction activities of the kl-TSS contributed to translational inhibition. Addition of the kl-TSS was more detrimental for translation than an adjacent eIF4E-binding 3' translational enhancer known as the PTE, suggesting that the PTE may support the ribosome-binding function of the kl-TSS. Results of in-line RNA structure probing, ribosome filter binding, and high-throughput selective 2'-hydroxyl acylation analyzed by primer extension (hSHAPE) of rRNAs within bound ribosomes suggest that kl-TSS binding to ribosomes and binding to the 5' hairpin are compatible activities. These results suggest a model whereby posttermination ribosomes/ribosomal subunits bind to the kl-TSS and are delivered to the 5' end of the genome via the associated RNA-RNA interaction, which enhances the rate of translation reinitiation. PMID:23986599

  7. Optimum constrained image restoration filters

    NASA Technical Reports Server (NTRS)

    Riemer, T. E.; Mcgillem, C. D.

    1974-01-01

    The filter was developed in Hilbert space by minimizing the radius of gyration of the overall or composite system point-spread function subject to constraints on the radius of gyration of the restoration filter point-spread function, the total noise power in the restored image, and the shape of the composite system frequency spectrum. An iterative technique is introduced which alters the shape of the optimum composite system point-spread function, producing a suboptimal restoration filter which suppresses undesirable secondary oscillations. Finally this technique is applied to multispectral scanner data obtained from the Earth Resources Technology Satellite to provide resolution enhancement. An experimental approach to the problems involving estimation of the effective scanner aperture and matching the ERTS data to available restoration functions is presented.

  8. An optimum world population.

    PubMed

    Willey, D

    2000-01-01

    The optimum population of the world is the one that is most likely to make the option of a good quality of life available to everyone everywhere, both now and in the future. Establishing a consensus about the size of such a population would be an important step towards achieving it. Estimates of an optimum involve three main steps. First, estimate the maximum (carrying capacity) assuming a specified lifestyle. The main criteria are the maintenance of biodiversity, the availability of freshwater, and the availability of land--for agriculture, forestry and artificial systems but above all for the conversion of energy. (In applying the criteria, there are always two questions to ask: 'What is the maximum amount of consumption that the biosphere can stand?' and 'What is an adequate share of such consumption per person?') Second, convert the maximum (two to three billion) into an optimum by applying a far wider range of criteria, including personal liberty, mobility, recreation and political representation. Third, consider just two criteria (economies of scale and technological innovation) in order to ensure that the optimum (one to two billion) has not fallen below the minimum (half to one billion). The estimates are so low because of the need for a huge increase in median per capita consumption if everyone is to have the option of an adequate material standard of living. Opinion-formers are likely not to take much notice of such estimates, but it is probable that minds will be concentrated by an energy shock some time during the next decade. Achieving an optimum world population will not solve the world's major problems, but it would make them solvable. PMID:10824524

  9. The Kissing-Loop T-Shaped Structure Translational Enhancer of Pea Enation Mosaic Virus Can Bind Simultaneously to Ribosomes and a 5′ Proximal Hairpin

    PubMed Central

    Gao, Feng; Gulay, Suna P.; Kasprzak, Wojciech; Dinman, Jonathan D.

    2013-01-01

    The Pea Enation Mosaic Virus (PEMV) 3′ translational enhancer, known as the kissing-loop T-shaped structure (kl-TSS), binds to 40S subunits, 60S subunits, and 80S ribosomes, whereas the Turnip crinkle virus (TCV) TSS binds only to 60S subunits and 80S ribosomes. Using electrophoretic mobility gel shift assay (EMSA)-based competition assays, the kl-TSS was found to occupy a different site in the ribosome than the P-site-binding TCV TSS, suggesting that these two TSS employ different mechanisms for enhancing translation. The kl-TSS also engages in a stable, long-distance RNA-RNA kissing-loop interaction with a 12-bp 5′-coding-region hairpin that does not alter the structure of the kl-TSS as revealed by molecular dynamics simulations. Addition of the kl-TSS in trans to a luciferase reporter construct containing either wild-type or mutant 5′ and 3′ PEMV sequences suppressed translation, suggesting that the kl-TSS is required in cis to function, and both ribosome-binding and RNA interaction activities of the kl-TSS contributed to translational inhibition. Addition of the kl-TSS was more detrimental for translation than an adjacent eIF4E-binding 3′ translational enhancer known as the PTE, suggesting that the PTE may support the ribosome-binding function of the kl-TSS. Results of in-line RNA structure probing, ribosome filter binding, and high-throughput selective 2′-hydroxyl acylation analyzed by primer extension (hSHAPE) of rRNAs within bound ribosomes suggest that kl-TSS binding to ribosomes and binding to the 5′ hairpin are compatible activities. These results suggest a model whereby posttermination ribosomes/ribosomal subunits bind to the kl-TSS and are delivered to the 5′ end of the genome via the associated RNA-RNA interaction, which enhances the rate of translation reinitiation. PMID:23986599

  10. Optimum connection management scheduling

    NASA Astrophysics Data System (ADS)

    Kadar, Ivan

    2000-08-01

    Connection Management plays a key role in both distributed 'local' network-centric and 'globally' connected info- centric systems. The role of Connection Management is to provide seamless demand-based sharing of the information products. For optimum distributed information fusion performance, these systems must minimize communications delays and maximize message throughput, and at the same time take into account relative-sensors-targets geometrical constraints and data pedigree. In order to achieve overall distributed 'network' effectiveness, these systems must be adaptive, and be able to distribute data s needed in real- time. A system concept will be described which provides optimum capacity-based information scheduling. A specific example, based on a satellite channel, is used to illustrate simulated performance results and their effects on fusion systems performance.

  11. Optimum shell design.

    NASA Technical Reports Server (NTRS)

    Salama, A. M.; Ross, R. G., Jr.

    1973-01-01

    Comparison of two methods, namely Nedler and Mead's (1965) simplex method and Davidon's (1959) variable metric method, for achieving optimum design in terms of minimum weight for rotational shells under certain constraints. The superiority of one of the methods over the other is shown to depend, among other things, upon the form of the function to be minimized, and whether or not it is continuous everywhere in values and derivatives.

  12. Optimum hovering wing planform.

    PubMed

    Nabawy, Mostafa R A; Crowther, William J

    2016-10-01

    Theoretical analysis is used to identify the optimum wing planform of a flapping/revolving wing in hover. This solution is of interest as a benchmark to which hovering wing geometries driven by broader multidisciplinary evolutionary or engineering constraints can be compared. Furthermore, useful insights into the aerodynamic performance of untwisted hovering wings are delivered. It is shown that profile power is minimised by using an untwisted elliptical planform whereas induced power is minimised by a more highly tapered planform similar to that of a hummingbird. PMID:27329340

  13. Regulative Loops, Step Loops and Task Loops

    ERIC Educational Resources Information Center

    VanLehn, Kurt

    2016-01-01

    This commentary suggests a generalization of the conception of the behavior of tutoring systems, which the target article characterized as having an outer loop that was executed once per task and an inner loop that was executed once per step of the task. A more general conception sees these two loops as instances of regulative loops, which…

  14. EXTREME-ULTRAVIOLET MULTI-WAVELENGTH OBSERVATIONS OF QUASI-PERIODIC PULSATIONS IN A SOLAR POST-FLARE CUSP-SHAPE LOOP WITH SDO/AIA

    SciTech Connect

    Su, J. T.; Shen, Y. D.; Liu, Y.

    2012-07-20

    We present extreme-ultraviolet multi-wavelength observations with the SDO/AIA instruments of quasi-periodic pulsations (QPPs) propagating along a cusp-shaped loop formed after an M2.2 flare on the Sun. Our motivation is to detect whether there were slow-mode magnetoacoustic waves propagating along its protruding flux tube. To this end, with fast Fourier transform we extract the short (<3 minutes) and long (>3 minutes) period components of the QPPs from time-space diagrams of the tube slices. We find that velocity differences did exist among the short/long-period components of different wavelengths, but only one event in the long-period ones showed they were greater than the measurement errors (e.g., 65 km s{sup -1}), which were 330 km s{sup -1} detected in 171 A, 590 km s{sup -1} in 211 A, and 180 km s{sup -1} in 304 A. The intensity modulation in all wavelengths is found to be very large, e.g., {approx}60% of the emission trend for an event in the 171 A passband, which would be an order of magnitude higher than the perturbation of the plasma density in the slow-mode magnetoacoustic waves. Moreover, only the QPPs with upward velocities of 50-300 km s{sup -1} are found in the tube, and the downward ones of several tens of kilometers are never unambiguously detected. Therefore, most of the QPP events under study were likely the episodic outflows along the tube, and the one with a supersonic speed of 590 km s{sup -1} may be a kink wave.

  15. OPTIMUM PLASMA STATES FOR NEXT STEP TOKAMAKS

    SciTech Connect

    LIN-LIU,YR; STAMBAUGH,RD

    2002-11-01

    OAK A271 OPTIMUM PLASMA STATES FOR NEXT STEP TOKAMAKS. The dependence of the ideal ballooning {beta} limit on aspect ratio, A, and elongation {kappa} is systematically explored for nearly 100% bootstrap current driven tokamak equilibria in a wide range of the shape parameters (A = 1.2-7.0, {kappa} = 1.5-6.0 with triangularity {delta} = 0.5). The critical {beta}{sub N} is shown to be optimal at {kappa} = 3.0-4.0 for all A studied and increases as A decreases with a dependence close to A{sup -0.5}. The results obtained can be used as a theoretical basis for the choice of optimum aspect ratio and elongation of next step burning plasma tokamaks or tokamak reactors.

  16. RECONSTRUCTING THE LOCAL TWIST OF CORONAL MAGNETIC FIELDS AND THE THREE-DIMENSIONAL SHAPE OF THE FIELD LINES FROM CORONAL LOOPS IN EXTREME-ULTRAVIOLET AND X-RAY IMAGES

    SciTech Connect

    Malanushenko, A.; Longcope, D. W.; McKenzie, D. E.

    2009-12-20

    Nonlinear force-free fields are the most general case of force-free fields, but the hardest to model as well. There are numerous methods of computing such fields by extrapolating vector magnetograms from the photosphere, but very few attempts have so far made quantitative use of coronal morphology. We present a method to make such quantitative use of X-ray and EUV images of coronal loops. Each individual loop is fit to a field line of a linear force-free field, allowing the estimation of the field line's twist, three-dimensional geometry, and the field strength along it. We assess the validity of such a reconstruction since the actual corona is probably not a linear force-free field, and that the superposition of linear force-free fields is generally not itself a force-free field. To do so, we perform a series of tests on nonlinear force-free fields, described in Low and Lou. For model loops we project field lines onto the photosphere. We compare several results of the method with the original field, in particular the three-dimensional loop shapes, local twist (coronal alpha), distribution of twist in the model photosphere, and strength of the magnetic field. We find that (1) for these trial fields, the method reconstructs twist with a mean absolute deviation of at most 15% of the range of photospheric twist, (2) heights of the loops are reconstructed with a mean absolute deviation of at most 5% of the range of trial heights, and (3) the magnitude of non-potential contribution to a photospheric field is reconstructed with a mean absolute deviation of at most 10% of the maximal value.

  17. ''Optimum productivity'': a geneticist's view

    SciTech Connect

    Libby, W.J.

    1980-01-01

    Both ''optimum'' and ''productivity'' are explored in a social context with a long time dimension. Renewability, flexibility, and diversity are important concepts in long-term planning to achieve optimum productivity. Various possible genetic contributions, including complementary clones, quantitative genetic engineering, resistant trees and plantations, elimination of inbreeding, single-gene genetic engineering, and agri-forestry, are suggested for long-term sustained or increased productivity.

  18. Towards optimum demodulation of bandwidth-limited and low SNR square-wave subcarrier signals

    NASA Technical Reports Server (NTRS)

    Feria, Y.; Hurd, W.

    1995-01-01

    The optimum phase detector is presented for tracking square-wave subcarriers that have been bandwidth limited to a finite number of harmonics. The phase detector is optimum in the sense that the loop signal-to-noise ratio (SNR) is maximized and, hence, the rms phase tracking error is minimized. The optimum phase detector is easy to implement and achieves substantial improvement. Also presented are the optimum weights to combine the signals demodulated from each of the harmonics. The optimum weighting provides SNR improvement of 0.1 to 0.15 dB when the subcarrier loop SNR is low (15 dB) and the number of harmonics is high (8 to 16).

  19. Performance characteristics of aerodynamically optimum turbines for wind energy generators

    NASA Technical Reports Server (NTRS)

    Rohrbach, C.; Worobel, R.

    1975-01-01

    This paper presents a brief discussion of the aerodynamic methodology for wind energy generator turbines, an approach to the design of aerodynamically optimum wind turbines covering a broad range of design parameters, some insight on the effect on performance of nonoptimum blade shapes which may represent lower fabrication costs, the annual wind turbine energy for a family of optimum wind turbines, and areas of needed research. On the basis of the investigation, it is concluded that optimum wind turbines show high performance over a wide range of design velocity ratios; that structural requirements impose constraints on blade geometry; that variable pitch wind turbines provide excellent power regulation and that annual energy output is insensitive to design rpm and solidity of optimum wind turbines.

  20. Optimum placement of controls for static deformations of space structures

    NASA Technical Reports Server (NTRS)

    Haftka, R. T.

    1984-01-01

    Many large space structures, such as large antennas, have to maintain a fairly exact shape to operate satisfactorily. Such structures require active and passive controls to maintain their accurate shape under disturbances. The present paper is concerned with optimum placement of controls for correcting static deformations. Both force actuators and heaters are considered for controls. A formulation of design against the worst disturbance is derived. A beam example is employed to demonstrate the procedure.

  1. OPTIMUM FREQUENCY OF CALIBRATION MONITORING

    EPA Science Inventory

    The paper develops an algorithm by which to compute the optimal frequency of calibration monitoring to minimize the total cost of analyzing a set of samples and the required calibration standards. Optimum calibration monitoring is needed because of the high cost and calibration d...

  2. Optimum designs for superpressure balloons

    NASA Astrophysics Data System (ADS)

    Smith, M. S.; Rainwater, E. L.

    2004-01-01

    The elastica shape is now well known to be the best basic shape for superpressure balloon design. This shape, also known as the pumpkin, or natural shape for balloons, has been well understood since the early 1900s when it was applied to the determination of the shape of descending parachutes. The elastica shape was also investigated in the 1950s when high strength films were used to produce superpressure cylinder balloons. The need for uniform stress distribution in shells of early superpressure balloons led to a long period of the development of spherical superpressure balloons. Not until the late 1970s was the elastica shape revisited for the purpose of the producing superpressure balloons. This paper will review various development efforts in the field of superpressure design and will elaborate on the current state-of-the-art with suggestions for future developments.

  3. Central safety factor and β N control on NSTX-U via beam power and plasma boundary shape modification, using TRANSP for closed loop simulations

    SciTech Connect

    Boyer, M. D.; Andre, R.; Gates, D. A.; Gerhardt, S.; Goumiri, I. R.; Menard, J.

    2015-04-24

    The high-performance operational goals of NSTX-U will require development of advanced feedback control algorithms, including control of ßN and the safety factor profile. In this work, a novel approach to simultaneously controlling ßN and the value of the safety factor on the magnetic axis, q0, through manipulation of the plasma boundary shape and total beam power, is proposed. Simulations of the proposed scheme show promising results and motivate future experimental implementation and eventual integration into a more complex current profile control scheme planned to include actuation of individual beam powers, density, and loop voltage. As part of this work, a flexible framework for closed loop simulations within the high-fidelity code TRANSP was developed. The framework, used here to identify control-design-oriented models and to tune and test the proposed controller, exploits many of the predictive capabilities of TRANSP and provides a means for performing control calculations based on user-supplied data (controller matrices, target waveforms, etc.). The flexible framework should enable high-fidelity testing of a variety of control algorithms, thereby reducing the amount of expensive experimental time needed to implement new control algorithms on NSTX-U and other devices.

  4. Optimum conditions for adsorptive storage.

    PubMed

    Bhatia, Suresh K; Myers, Alan L

    2006-02-14

    The storage of gases in porous adsorbents, such as activated carbon and carbon nanotubes, is examined here thermodynamically from a systems viewpoint, considering the entire adsorption-desorption cycle. The results provide concrete objective criteria to guide the search for the "Holy Grail" adsorbent, for which the adsorptive delivery is maximized. It is shown that, for ambient temperature storage of hydrogen and delivery between 30 and 1.5 bar pressure, for the optimum adsorbent the adsorption enthalpy change is 15.1 kJ/mol. For carbons, for which the average enthalpy change is typically 5.8 kJ/mol, an optimum operating temperature of about 115 K is predicted. For methane, an optimum enthalpy change of 18.8 kJ/mol is found, with the optimum temperature for carbons being 254 K. It is also demonstrated that for maximum delivery of the gas the optimum adsorbent must be homogeneous, and that introduction of heterogeneity, such as by ball milling, irradiation, and other means, can only provide small increases in physisorption-related delivery for hydrogen. For methane, heterogeneity is always detrimental, at any value of average adsorption enthalpy change. These results are confirmed with the help of experimental data from the literature, as well as extensive Monte Carlo simulations conducted here using slit pore models of activated carbons as well as atomistic models of carbon nanotubes. The simulations also demonstrate that carbon nanotubes offer little or no advantage over activated carbons in terms of enhanced delivery, when used as storage media for either hydrogen or methane. PMID:16460092

  5. Optimum windmill-site matching

    SciTech Connect

    Salameh, Z.M.; Safari, I. )

    1992-12-01

    In this paper a methodology for the selection of the optimum windmill for a specific site is developed. The selection windmill for a specific site is developed. The selection is based on finding the capacity factors (CF) of the available windmills. This is done by using long term wind speed data recorded at different hours of the day for many years. This data is then used to generate mean wind speeds for a typical day in a month. Probability density functions for the mean wind speeds for the different hours of the day are generated with the manufacturer's specifications on windmills used to calculate the capacity factors for the windmills. The windmill with the highest average capacity factor for the specific site is the optimum one and to be recommended.

  6. Loop-to-loop coupling.

    SciTech Connect

    Warne, Larry Kevin; Lucero, Larry Martin; Langston, William L.; Salazar, Robert Austin; Coleman, Phillip Dale; Basilio, Lorena I.; Bacon, Larry Donald

    2012-05-01

    This report estimates inductively-coupled energy to a low-impedance load in a loop-to-loop arrangement. Both analytical models and full-wave numerical simulations are used and the resulting fields, coupled powers and energies are compared. The energies are simply estimated from the coupled powers through approximations to the energy theorem. The transmitter loop is taken to be either a circular geometry or a rectangular-loop (stripline-type) geometry that was used in an experimental setup. Simple magnetic field models are constructed and used to estimate the mutual inductance to the receiving loop, which is taken to be circular with one or several turns. Circuit elements are estimated and used to determine the coupled current and power (an equivalent antenna picture is also given). These results are compared to an electromagnetic simulation of the transmitter geometry. Simple approximate relations are also given to estimate coupled energy from the power. The effect of additional loads in the form of attached leads, forming transmission lines, are considered. The results are summarized in a set of susceptibility-type curves. Finally, we also consider drives to the cables themselves and the resulting common-to-differential mode currents in the load.

  7. Dynamic Aperture-based Solar Loop Segmentation

    NASA Technical Reports Server (NTRS)

    Lee, Jon Kwan; Newman, Timothy S.; Gary, G. Allen

    2006-01-01

    A new method to automatically segment arc-like loop structures from intensity images of the Sun's corona is introduced. The method constructively segments credible loop structures by exploiting the Gaussian-like shape of loop cross-sectional intensity profiles. The experimental results show that the method reasonably segments most of the well-defined loops in coronal images. The method is only the second published automated solar loop segmentation method. Its advantage over the other published method is that it operates independently of supplemental time specific data.

  8. Swarms: Optimum aggregations of spacecraft

    NASA Technical Reports Server (NTRS)

    Mayer, H. L.

    1980-01-01

    Swarms are aggregations of spacecraft or elements of a space system which are cooperative in function, but physically isolated or only loosely connected. For some missions the swarm configuration may be optimum compared to a group of completely independent spacecraft or a complex rigidly integrated spacecraft or space platform. General features of swarms are induced by considering an ensemble of 26 swarms, examples ranging from Earth centered swarms for commercial application to swarms for exploring minor planets. A concept for a low altitude swarm as a substitute for a space platform is proposed and a preliminary design studied. The salient design feature is the web of tethers holding the 30 km swarm in a rigid two dimensional array in the orbital plane. A mathematical discussion and tutorial in tether technology and in some aspects of the distribution of services (mass, energy, and information to swarm elements) are included.

  9. Shapes of Interacting RNA Complexes

    PubMed Central

    Fu, Benjamin M.M.

    2014-01-01

    Abstract Shapes of interacting RNA complexes are studied using a filtration via their topological genus. A shape of an RNA complex is obtained by (iteratively) collapsing stacks and eliminating hairpin loops. This shape projection preserves the topological core of the RNA complex, and for fixed topological genus there are only finitely many such shapes. Our main result is a new bijection that relates the shapes of RNA complexes with shapes of RNA structures. This allows for computing the shape polynomial of RNA complexes via the shape polynomial of RNA structures. We furthermore present a linear time uniform sampling algorithm for shapes of RNA complexes of fixed topological genus. PMID:25075750

  10. The optimum hypersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Trimmer, L. L.; Cary, A., Jr.; Voisinet, R. L. P.

    1986-01-01

    The capabilities of existing hypersonic wind tunnels in the U.S. are assessed to form a basis for recommendations for a new, costly facility which would provide data for modeling the hypervelocity aerodynamics envisioned for the new generation of aerospace vehicles now undergoing early studies. Attention is given to the regimes, both entry and aerodynamic, which the new vehicles will encounter, and the shortcomings of data generated for the Orbiter before flight are discussed. The features of foreign-gas, impulse, aeroballistic range, arc-heated and combustion-heated facilities are examined, noting that in any hypersonic wind tunnel the flow must be preheated to prevent liquefaction upon expansion in the test channel. The limitations of the existing facilities and the identification of the regimes which must be studied lead to a description of the characteristics of an optimum hypersonic wind tunnel, including the operations and productivity, the instrumentation, the nozzle design and the flow quality. Three different design approaches are described, each costing at least $100 million to achieve workability.

  11. NICMOS Optimum Coronagraphic Focus Determinaton

    NASA Astrophysics Data System (ADS)

    Schneider, Glenn

    1997-07-01

    This test will ascertain the optimum position of the PAM for maximizing the local contrast ratios in coronagraphic images. Because of the forward motion of the NICMOS optical bench and dewar, the nominal operational position for the PAM is set {for each camera} to achieve diffraction limited focus at the image plane formed at the detector. As a result of the forward motion of the camera 2 detector, hard images are no longer formed coincidentally at the field divider mirror surface {where the coronagraphic hole is located} and at the detector. This will lead to an increase in the diffracted energy in the wings of a PSF from a target placed inside of the coronagraphic hole as the image plane will fall behind the surface of the FDA mirror. The contrast in a coronagraphic image might be enhanced by placing the focus to form an image at either image planes {FDA or detector} or at a place in-between. This is highly dependent on scattering and must be ascertained by direct measurement.

  12. Optimum reentry trajectories of a lifting vehicle

    NASA Technical Reports Server (NTRS)

    Chern, J. S.; Vinh, N. X.

    1980-01-01

    Research results are presented of an investigation of the optimum maneuvers of advanced shuttle type spacecraft during reentry. The equations are formulated by means of modified Chapman variables resulting in a general set of equations for flight analysis which are exact for reentry and for flight in a vacuum. Four planar flight typical optimum manuevers are investigated. For three-dimensional flight the optimum trajectory for maximum cross range is discussed in detail. Techniques for calculating reentry footprints are presented.

  13. Efficient Tiled Loop Generation: D-Tiling

    NASA Astrophysics Data System (ADS)

    Kim, Daegon; Rajopadhye, Sanjay

    Tiling is an important loop optimization for exposing coarse-grained parallelism and enhancing data locality. Tiled loop generation from an arbitrarily shaped polyhedron is a well studied problem. Except for the special case of a rectangular iteration space, the tiled loop generation problem has been long believed to require heavy machinery such as Fourier-Motzkin elimination and projection, and hence to have an exponential complexity. In this paper we propose a simple and efficient tiled loop generation technique similar to that for a rectangular iteration space. In our technique, each loop bound is adjusted only once, syntactically and independently. Therefore, our algorithm runs linearly with the number of loop bounds. Despite its simplicity, we retain several advantages of recent tiled code generation schemes - unified generation for fixed, parameterized and hybrid tiled loops, scalability for multi-level tiled loop generation with the ability to separate full tiles at any levels, and compact code. We also explore various schemes for multi-level tiled loop generation. We formally prove the correctness of our scheme and experimentally validate that the efficiency of our technique is comparable to existing parameterized tiled loop generation approaches. Our experimental results also show that multi-level tiled loop generation schemes have an impact on performance of generated code. The fact that our scheme can be implemented without sophisticated machinery makes it well suited for autotuners and production compilers.

  14. Many Ways to Loop DNA

    PubMed Central

    Griffith, Jack D.

    2013-01-01

    In the 1960s, I developed methods for directly visualizing DNA and DNA-protein complexes using an electron microscope. This made it possible to examine the shape of DNA and to visualize proteins as they fold and loop DNA. Early applications included the first visualization of true nucleosomes and linkers and the demonstration that repeating tracts of adenines can cause a curvature in DNA. The binding of DNA repair proteins, including p53 and BRCA2, has been visualized at three- and four-way junctions in DNA. The trombone model of DNA replication was directly verified, and the looping of DNA at telomeres was discovered. PMID:24005675

  15. Aero-optimum hovering kinematics.

    PubMed

    Nabawy, Mostafa R A; Crowther, William J

    2015-08-01

    Hovering flight for flapping wing vehicles requires rapid and relatively complex reciprocating movement of a wing relative to a stationary surrounding fluid. This note develops a compact analytical aero-kinematic model that can be used for optimization of flapping wing kinematics against aerodynamic criteria of effectiveness (maximum lift) and efficiency (minimum power for a given amount of lift). It can also be used to make predictions of required flapping frequency for a given geometry and basic aerodynamic parameters. The kinematic treatment is based on a consolidation of an existing formulation that allows explicit derivation of flapping velocity for complex motions whereas the aerodynamic model is based on existing quasi-steady analysis. The combined aero-kinematic model provides novel explicit analytical expressions for both lift and power of a hovering wing in a compact form that enables exploration of a rich kinematic design space. Good agreement is found between model predictions of flapping frequency and observed results for a number of insects and optimal hovering kinematics identified using the model are consistent with results from studies using higher order computational models. For efficient flight, the flapping angle should vary using a triangular profile in time leading to a constant velocity flapping motion, whereas for maximum effectiveness the shape of variation should be sinusoidal. For both cases the wing pitching motion should be rectangular such that pitch change at stroke reversal is as rapid as possible. PMID:26248884

  16. Optimum hypersonic airfoil with power law shock waves

    SciTech Connect

    Wagner, B.A.

    1990-01-01

    In the present paper the flow field over a class of two-dimensional lifting surfaces is examined from the viewpoint of inviscid, hypersonic small-disturbance theory (HSDT). It is well known that a flow field in which the shock shape S(x) is similar to the body shape F(x) is only possible for F(x) = x{sup k} and the freestream Mach number M{sub {infinity}} = {infinity}. This self-similar flow has been studied for several decades as it represents one of the few existing exact solutions of the equations of HSDT. Detailed discussions are found for example in papers by Cole, Mirels, Chernyi and Gersten and Nicolai but they are limited to convex body shapes, that is, k {le} 1. The only study of concave body shapes was attempted by Sullivan where only special cases were considered. The method used here shows that similarity also exists for concave shapes and a complete solution of the flow field for any k > 2/3 is given. The effect of varying k on C{sub L}{sup 3/2}/C{sub D} is then determined and an optimum shape is found. Furthermore, a wider class of lifting surfaces is constructed using the streamlines of the basic flow field and analysed with respect to the effect on C{sub L}{sup 3/2}/C{sub D}. 9 refs., 3 figs.

  17. Water Stream "Loop-the-Loop"

    ERIC Educational Resources Information Center

    Jefimenko, Oleg

    1974-01-01

    Discusses the design of a modified loop-the-loop apparatus in which a water stream is used to illustrate centripetal forces and phenomena of high-velocity hydrodynamics. Included are some procedures of carrying out lecture demonstrations. (CC)

  18. Observations of loops and prominences

    NASA Technical Reports Server (NTRS)

    Strong, Keith T.

    1994-01-01

    We review recent observations by the Yohkoh-SXT (Soft X-ray Telescope) in collaboration with other spacecraft and ground-based observatories of coronal loops and prominences. These new results point to problems that SoHO will be able to address. With a unique combination of rapid-cadence digital imaging (greater than or equal to 32 s full-disk and greater than or equal to 2 s partial-frame images), high spatial resolution (greater than or equal to 2.5 arcsec pixels), high sensitivity (EM less than or equal to 10(exp 42) cm(exp -3)), a low-scatter mirror, and large dynamic range, SXT can observe a vast range of targets on the Sun. Over the first 21 months of Yohkoh operations SXT has taken over one million images of the corona and so is building up an invaluable long-term database on the large-scale corona and loop geometry. The most striking thing about the SXT images is the range of loop sizes and shapes. The active regions are a bright tangle of magnetic field lines, surrounded by a network of large-scale quiet-Sun loops stretching over distances in excess of 105 km. The cross-section of most loops seems to be constant. Loops displaying significant Gamma's are the exception, not the rule, implying the presence of widespread currents in the corona. All magnetic structures show changes. Time scales range from seconds to months. The question of how these structures are formed, become filled with hot plasma, and are maintained is still open. While we see the propagation of brightenings along the length of active-region loops and in X-ray jets with velocities of several hundred km/s, much higher velocities are seen in the quiet Sun. In XBP flares, for example, velocities of over 1000 km/s are common. Active-region loops seem to be in constant motion, moving slowly outward, carrying plasma with them. During flares, loops often produce localized brightenings at the base and later at the apex of the loop. Quiescent filaments and prominences have been observed regularly

  19. Optimum PWM waveform synthesis - a filtering approach

    SciTech Connect

    Divan, D.M.

    1985-09-01

    A fundamentally different approach is proposed for the synthesis of optimum pulsewidth modulated (PWM) waveforms for highpower inverter applications. Conventional optimum PWM waveform synthesis techniques which seek to control harmonic levels in the inverter output directly are seen to be equivalent to a filtering operation. Digital filter structures capable of processing PWM waveforms are examined and waveform synthesis strategies are proposed and verified experimentally. Finally, the design of a high-performance PWM waveform generator is detailed.

  20. Optimum structure of Whipple shield against hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Lee, M.

    2014-05-01

    Hypervelocity impact of a spherical aluminum projectile onto two spaced aluminum plates (Whipple shield) was simulated to estimate an optimum structure. The Smooth Particle Hydrodynamics (SPH) code which has a unique migration scheme from a rectangular coordinate to an axisymmetic coordinate was used. The ratio of the front plate thickness to sphere diameter varied from 0.06 to 0.48. The impact velocities considered here were 6.7 km/s. This is the procedure we explored. To guarantee the early stage simulation, the shapes of debris clouds were first compared with the previous experimental pictures, indicating a good agreement. Next, the debris cloud expansion angle was predicted and it shows a maximum value of 23 degree for thickness ratio of front bumper to sphere diameter of 0.23. A critical sphere diameter causing failure of rear wall was also examined while keeping the total thickness of two plates constant. There exists an optimum thickness ratio of front bumper to rear wall, which is identified as a function of the size combination of the impacting body, front and rear plates. The debris cloud expansion-correlated-optimum thickness ratio study provides a good insight on the hypervelocity impact onto spaced target system.

  1. Optimum Design of High-Speed Prop-Rotors

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; McCarthy, Thomas Robert

    1993-01-01

    An integrated multidisciplinary optimization procedure is developed for application to rotary wing aircraft design. The necessary disciplines such as dynamics, aerodynamics, aeroelasticity, and structures are coupled within a closed-loop optimization process. The procedure developed is applied to address two different problems. The first problem considers the optimization of a helicopter rotor blade and the second problem addresses the optimum design of a high-speed tilting proprotor. In the helicopter blade problem, the objective is to reduce the critical vibratory shear forces and moments at the blade root, without degrading rotor aerodynamic performance and aeroelastic stability. In the case of the high-speed proprotor, the goal is to maximize the propulsive efficiency in high-speed cruise without deteriorating the aeroelastic stability in cruise and the aerodynamic performance in hover. The problems studied involve multiple design objectives; therefore, the optimization problems are formulated using multiobjective design procedures. A comprehensive helicopter analysis code is used for the rotary wing aerodynamic, dynamic and aeroelastic stability analyses and an algorithm developed specifically for these purposes is used for the structural analysis. A nonlinear programming technique coupled with an approximate analysis procedure is used to perform the optimization. The optimum blade designs obtained in each case are compared to corresponding reference designs.

  2. Scale effect and optimum relations for sea surface planning

    NASA Technical Reports Server (NTRS)

    Sedov, L.

    1947-01-01

    From the general dimensional and mechanical similarity theory it follows that a condition of steady motion of a given shape\\bottom with constant speed on the surface of water is determined by four nondimensional parameters. By considering the various systems of independent parameters which are applied in theory and practice and special tests, there is determined their mutual relations and their suitability as planning characteristics. In studying the scale effect on the basis of the Prnndtl formula for the friction coefficient for a turbulent condition the order of magnitude is given of the error in applying the model data to full scale in the case of a single-step bottom For a bottom of complicated shape it is shown how from the test data of the hydrodynamic characteristics for one speed with various loads, or one load with various speeds, there may be obtained by simple computation with good approximation the hydrodynamic characteristics for a different speed or for a different load. (These considerations may be of use in solving certain problems on the stability of planning.) This permits extrapolating the curve of resistance against speed for large speeds inaccessible in the tank tests or for other loads which were not tested. The data obtained by computation are in good agreement with the test results. Problems regarding the optimum trim angle or the optimum width in the case of planning of a flat plate are considered from the point of view of the minimum resistance for a given load on the water and planning speeds. Formulas and graphs are given for the optimum value of the planning coefficient and the corresponding values of the trim angle and width of the flat plate.

  3. OPE for super loops

    NASA Astrophysics Data System (ADS)

    Sever, Amit; Vieira, Pedro; Wang, Tianheng

    2011-11-01

    We extend the Operator Product Expansion for Null Polygon Wilson loops to the Mason-Skinner-Caron-Huot super loop dual to non MHV gluon amplitudes. We explain how the known tree level amplitudes can be promoted into an infinite amount of data at any loop order in the OPE picture. As an application, we re-derive all one loop NMHV six gluon amplitudes by promoting their tree level expressions. We also present some new all loops predictions for these amplitudes.

  4. The preprocessed doacross loop

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.; Mirchandaney, Ravi

    1990-01-01

    Dependencies between loop iterations cannot always be characterized during program compilation. Doacross loops typically make use of a-priori knowledge of inter-iteration dependencies to carry out required synchronizations. A type of doacross loop is proposed that allows the scheduling of iterations of a loop among processors without advance knowledge of inter-iteration dependencies. The method proposed for loop iterations requires that parallelizable preprocessing and postprocessing steps be carried out during program execution.

  5. Fast flux locked loop

    DOEpatents

    Ganther, Jr., Kenneth R.; Snapp, Lowell D.

    2002-09-10

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  6. Study of optimum methods of optical communication

    NASA Technical Reports Server (NTRS)

    Harger, R. O.

    1972-01-01

    Optimum methods of optical communication accounting for the effects of the turbulent atmosphere and quantum mechanics, both by the semi-classical method and the full-fledged quantum theoretical model are described. A concerted effort to apply the techniques of communication theory to the novel problems of optical communication by a careful study of realistic models and their statistical descriptions, the finding of appropriate optimum structures and the calculation of their performance and, insofar as possible, comparing them to conventional and other suboptimal systems are discussed. In this unified way the bounds on performance and the structure of optimum communication systems for transmission of information, imaging, tracking, and estimation can be determined for optical channels.

  7. Optimum Suction Distribution for Transition Control

    NASA Technical Reports Server (NTRS)

    Balakumar, P.; Hall, P.

    1996-01-01

    The optimum suction distribution which gives the longest laminar region for a given total suction is computed. The goal here is to provide the designer with a method to find the best suction distribution subject to some overall constraint applied to the suction. We formulate the problem using the Lagrangian multiplier method with constraints. The resulting non-linear system of equations is solved using the Newton-Raphson technique. The computations are performed for a Blasius boundary layer on a flat-plate and crossflow cases. For the Blasius boundary layer, the optimum suction distribution peaks upstream of the maximum growth rate region and remains flat in the middle before it decreases to zero at the end of the transition point. For the stationary and travelling crossflow instability, the optimum suction peaks upstream of the maximum growth rate region and decreases gradually to zero.

  8. Optimum reentry trajectories of a lifting vehicle

    NASA Technical Reports Server (NTRS)

    Chern, J. S.; Vinh, N. X.

    1978-01-01

    The optimum maneuver of a space shuttle vehicle reentering a spherical, stationary, and locally exponential atmosphere was investigated. The use of Chapman's modified variables and a rescaled lift-drag polar leads to the formulation of a set of dimensionless equations of motion for flight analysis. The resulting equations are exact in the sense that they are also valid for flight in the vacuum. For planar flight several typical optimum maneuvers are investigated at different altitude ranges, low, moderate and very high. For three-dimensional flight, the procedure to solve the optimum trajectory for maximum cross range is discussed. Finally, using the equilibrium glide condition the maximum cross ranges for entry from circular speed, for several values of E*, and the footprint for E* = 1.5 are computed in this reduced problem.

  9. Optimum Electron Distributions for Space Charge Dominated Beams in Photoinjectors

    SciTech Connect

    Limborg-Deprey, C.; Bolton, P.R.; /SLAC

    2006-06-15

    The optimum photo-electron distribution from the cathode of an RF photoinjector producing a space charge dominated beam is a uniform distribution contained in an ellipsoid. For such a bunch distribution, the space charge forces are linear and the emittance growth induced by those forces is totally reversible and consequently can be compensated. With the appropriate tuning of the emittance compensation optics, the emittance, at the end of photoinjector beamline, for an ellipsoidal laser pulse, would only have two contributions, the cathode emittance and the RF emittance. For the peak currents of 50A and 100 A required from the SBand and L-Band RF gun photoinjectors discussed here, the RF emittance contribution is negligible. If such an ellipsoidal photo-electron distribution were available, the emittance at the end of the beamline could be reduced to the cathode emittance. Its value would be reduced by more than 40% from that obtained using cylindrical shape laser pulses. This potentially dramatic improvement warrants review of the challenges associated with the production of ellipsoidal photo-electrons. We assume the photo-electrons emission time to be short enough that the ellipsoidal electron pulse shape will come directly from the laser pulse. We shift the challenge to ellipsoidal laser pulse shaping. To expose limiting technical issues, we consider the generation of ellipsoidal laser pulse shape in terms of three different concepts.

  10. Optimum viewing distance for target acquisition

    NASA Astrophysics Data System (ADS)

    Holst, Gerald C.

    2015-05-01

    Human visual system (HVS) "resolution" (a.k.a. visual acuity) varies with illumination level, target characteristics, and target contrast. For signage, computer displays, cell phones, and TVs a viewing distance and display size are selected. Then the number of display pixels is chosen such that each pixel subtends 1 min-1. Resolution of low contrast targets is quite different. It is best described by Barten's contrast sensitivity function. Target acquisition models predict maximum range when the display pixel subtends 3.3 min-1. The optimum viewing distance is nearly independent of magnification. Noise increases the optimum viewing distance.

  11. Method for Determining Optimum Injector Inlet Geometry

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P. (Inventor); Myers, W. Neill (Inventor)

    2015-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The method calculates the tangential inlet area for each throttleable stage. The method also uses correlation between the tangential inlet areas and delta pressure values to calculate the spring displacement and variable inlet geometry of a liquid rocket engine swirl injector.

  12. DESIGN GUIDELINES FOR AN OPTIMUM SCRUBBER SYSTEM

    EPA Science Inventory

    The report gives results of a review of the performance and operating experience of existing utility scrubber systems and the state-of-the-art in design of scrubber components. It also gives guidelines for the design of the optimum wet scrubber system, based on this review. The U...

  13. Common Core: Teaching Optimum Topic Exploration (TOTE)

    ERIC Educational Resources Information Center

    Karge, Belinda Dunnick; Moore, Roxane Kushner

    2015-01-01

    The Common Core has become a household term and yet many educators do not understand what it means. This article explains the historical perspectives of the Common Core and gives guidance to teachers in application of Teaching Optimum Topic Exploration (TOTE) necessary for full implementation of the Common Core State Standards. An effective…

  14. Magnetic loop emergence within a granule

    NASA Astrophysics Data System (ADS)

    Gömöry, P.; Beck, C.; Balthasar, H.; Rybák, J.; Kučera, A.; Koza, J.; Wöhl, H.

    2010-02-01

    Aims: We investigate the temporal evolution of magnetic flux emerging within a granule in the quiet-Sun internetwork at disk center. Methods: We combined IR spectropolarimetry of high angular resolution performed in two Fe i lines at 1565 nm with speckle-reconstructed G-band imaging. We determined the magnetic field parameters by a LTE inversion of the full Stokes vector using the SIR code, and followed their evolution in time. To interpret the observations, we created a geometrical model of a rising loop in 3D. The relevant parameters of the loop were matched to the observations where possible. We then synthesized spectra from the 3D model for a comparison to the observations. Results: We found signatures of magnetic flux emergence within a growing granule. In the early phases, a horizontal magnetic field with a distinct linear polarization signal dominated the emerging flux. Later on, two patches of opposite circular polarization signal appeared symmetrically on either side of the linear polarization patch, indicating a small loop-like structure. The mean magnetic flux density of this loop was roughly 450 G, with a total magnetic flux of around 3 × 1017 Mx. During the ~12 min episode of loop occurrence, the spatial extent of the loop increased from about 1 to 2 arcsec. The middle part of the appearing feature was blueshifted during its occurrence, supporting the scenario of an emerging loop. There is also clear evidence for the interaction of one loop footpoint with a preexisting magnetic structure of opposite polarity. The temporal evolution of the observed spectra is reproduced to first order by the spectra derived from the geometrical model. During the phase of clearest visibility of the loop in the observations, the observed and synthetic spectra match quantitatively. Conclusions: The observed event can be explained as a case of flux emergence in the shape of a small-scale loop. The fast disappearance of the loop at the end could possibly be due to magnetic

  15. Blind loop syndrome

    MedlinePlus

    Blind loop syndrome occurs when digested food slows or stops moving through part of the intestines. This ... The name of this condition refers to the "blind loop" formed by part of the intestine that ...

  16. Refining mimicry: phenotypic variation tracks the local optimum.

    PubMed

    Mérot, Claire; Le Poul, Yann; Théry, Marc; Joron, Mathieu

    2016-07-01

    Müllerian mimicry between chemically defended preys is a textbook example of natural selection favouring phenotypic convergence onto a shared warning signal. Studies of mimicry have concentrated on deciphering the ecological and genetic underpinnings of dramatic switches in mimicry association, producing a well-known mosaic distribution of mimicry patterns across geography. However, little is known about the accuracy of resemblance between natural comimics when the local phenotypic optimum varies. In this study, using analyses of wing shape, pattern and hue, we quantify multimodal phenotypic similarity between butterfly comimics sharing the so-called postman pattern in different localities with varying species composition. We show that subtle but consistent variation between populations of the localized species, Heliconius timareta thelxinoe, enhance resemblance to the abundant comimics which drive the mimicry in each locality. Those results suggest that rarer comimics track the changes in the phenotypic optimum caused by gradual changes in the composition of the mimicry community, providing insights into the process by which intraspecific diversity of mimetic pattern may arise. Furthermore, our results suggest a multimodal evolution of similarity, with coordinated convergence in different features of the phenotype such as wing outline, pattern and hue. Finally, multilocus genotyping allows estimating local hybridization rates between H. timareta and comimic H. melpomene in different populations, raising the hypothesis that mimicry refinement between closely related comimics may be enhanced by adaptive introgression at loci modifying the accuracy of resemblance. PMID:27003742

  17. Response of an all digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Garodnick, J.; Greco, J.; Schilling, D. L.

    1974-01-01

    An all digital phase-locked loop (DPLL) is designed, analyzed, and tested. Three specific configurations are considered, generating first, second, and third order DPLL's; and it is found, using a computer simulation of a noise spike, and verified experimentally, that of these configurations the second-order system is optimum from the standpoint of threshold extension. This substantiates results obtained for analog PLL's.

  18. Rocket rendezvous at preassigned destinations with optimum entry trajectories

    NASA Astrophysics Data System (ADS)

    Nangia, A. K.

    Optimum entry rendezvous trajectories of commuter rockets between initial noncoaxial coplanar elliptic orbits and destination orbits in an inverse square gravitational field have been determined. Results are presented for an optimum entry rendezvous between earth and Mars. For a given interception angle, the results show that the launch angle for optimum entry rendezvous is smaller than that for the optimum exit rendezvous.

  19. Parametrization of optimum filter passbands for rotational Raman temperature measurements.

    PubMed

    Hammann, Eva; Behrendt, Andreas

    2015-11-30

    We revisit the methodology of rotational Raman temperature measurements covering both lidar and non-range-resolved measurements, e.g., for aircraft control. The results of detailed optimization calculations are presented for the commonly used extraction of signals from the anti-Stokes branch. Different background conditions and realistic shapes of the filter transmission curves are taken into account. Practical uncertainties of the central passbands and widths are discussed. We found a simple parametrization for the optimum filter passband shifts depending on the atmospheric temperature range of interest and the background. The approximation errors of this parametrization are smaller than 2% for temperatures between 200 and 300 K and smaller than 4% between 180 and 200 K. PMID:26698709

  20. An approach to optimum subsonic inlet design

    NASA Technical Reports Server (NTRS)

    Luidens, R. W.; Stockman, N. O.; Diedrich, J. H.

    1978-01-01

    Inlet operating requirements are compared with estimated inlet separation characteristics to identify the most critical inlet operating condition. This critical condition is taken to be the design point and is defined by the values of inlet mass flow, free-stream velocity and inlet angle of attack. Optimum flow distributions on the inlet surface were determined to be a high, flat top Mach number distribution on the inlet lip to turn the flow quickly into the inlet and a flat bottom skin-friction distribution on the diffuser wall to diffuse the flow rapidly and efficiently to the velocity required at the fan face. These optimum distributions are then modified to achieve other desirable flow characteristics. Example applications are given.

  1. An approach to optimum subsonic inlet design

    NASA Technical Reports Server (NTRS)

    Luidens, R. W.; Stockman, N. O.; Diedrich, J. H.

    1979-01-01

    The approach consists of comparing inlet operating requirements with estimated inlet separation characteristics to identify the most critical inlet operating condition. This critical condition is taken to be the design point and is defined by the values of inlet mass flow, free stream velocity, and inlet angle of attack. Optimum flow distributions on the inlet surface are determined to be a high, flat top Mach number distribution on the inlet lip to turn the flow quickly into the inlet and a low, flat bottom skin friction distribution on the diffuser wall to diffuse the flow rapidly and efficiently to the velocity required at the fan face. These optimum distributions are then modified to achieve other desirable flow characteristics. Example applications are given. Extension of the method is suggested.

  2. Boolean computation of optimum hitting sets

    SciTech Connect

    Hulme, B.L.; Baca, L.S.; Shiver, A.W.; Worrell, R.B.

    1984-04-01

    This report presents the results of computational experience in solving weighted hitting set problems by Boolean algebraic methods. The feasible solutions are obtained by Boolean formula manipulations, and the optimum solutions are obtained by comparing the weight sums of the feasible solutions. Both the algebra and the optimization can be accomplished using the SETS language. One application is to physical protection problems. 8 references, 2 tables.

  3. Active magnetic bearings for optimum turbomachinery design

    NASA Technical Reports Server (NTRS)

    Hustak, J.; Kirk, R. G.; Schoeneck, K. A.

    1985-01-01

    The design and shop test results are given for a high speed eight stage centrifugal compressor supported by active magnetic bearings. A brief summary of the rotor dynamics analysis is presented with specific attention given to design considerations for optimum rotor stability. The concerns for retrofit of magnetic bearings in existing machinery are discussed with supporting analysis of a four stage centrifugal compressor. Recommendations are given on design and analysis requirements for successful machinery operation of either retrofit or new design turbomachinery.

  4. Constrained optimum trajectories with specified range

    NASA Technical Reports Server (NTRS)

    Erzberger, H.; Lee, H.

    1980-01-01

    The characteristics of optimum fixed-range trajectories whose structure is constrained to climb, steady cruise, and descent segments are derived by application of optimal control theory. The performance function consists of the sum of fuel and time costs, referred to as direct operating costs (DOC). The state variable is range-to-go and the independent variable is energy. In this formulation a cruise segment always occurs at the optimum cruise energy for sufficiently large range. At short ranges (500 n. mi. and less) a cruise segment may also occur below the optimum cruise energy. The existence of such a cruise segment depends primarily on the fuel flow vs thrust characteristics and on thrust constraints. If thrust is a free control variable along with airspeed, it is shown that such cruise segments will not generally occur. If thrust is constrained to some maximum value in climb and to some minimum in descent, such cruise segments generally will occur. The performance difference between free thrust and constrained thrust trajectories has been determined in computer calculations for an example transport aircraft.

  5. Analysis of wasp-waisted hysteresis loops in magnetic rocks.

    PubMed

    Kharwanlang, R S; Shukla, Prabodh

    2012-01-01

    The random-field Ising model of hysteresis is generalized to dilute magnets and is solved on a Bethe lattice. Exact expressions for the major and minor hysteresis loops are obtained. In the strongly dilute limit the model provides a simple and useful understanding of the shapes of hysteresis loops in magnetic rock samples. PMID:22400529

  6. Mitotic chromosome compaction via active loop extrusion

    NASA Astrophysics Data System (ADS)

    Goloborodko, Anton; Imakaev, Maxim; Marko, John; Mirny, Leonid; MIT-Northwestern Team

    During cell division, two copies of each chromosome are segregated from each other and compacted more than hundred-fold into the canonical X-shaped structures. According to earlier microscopic observations and the recent Hi-C study, chromosomes are compacted into arrays of consecutive loops of ~100 kilobases. Mechanisms that lead to formation of such loop arrays are largely unknown. Here we propose that, during cell division, chromosomes can be compacted by enzymes that extrude loops on chromatin fibers. First, we use computer simulations and analytical modeling to show that a system of loop-extruding enzymes on a chromatin fiber self-organizes into an array of consecutive dynamic loops. Second, we model the process of loop extrusion in 3D and show that, coupled with the topo II strand-passing activity, it leads to robust compaction and segregation of sister chromatids. This mechanism of chromosomal condensation and segregation does not require additional proteins or specific DNA markup and is robust against variations in the number and properties of such loop extruding enzymes. Work at NU was supported by the NSF through Grants DMR-1206868 and MCB-1022117, and by the NIH through Grants GM105847 and CA193419. Work at MIT was supported by the NIH through Grants GM114190 R01HG003143.

  7. On the optimality of the MAP estimation loop for carrier phase tracking BPSK and QPSK signals

    NASA Technical Reports Server (NTRS)

    Simon, M. K.

    1979-01-01

    Starting with MAP estimation theory as a basis for optimally estimating carrier phase of BPSK and QPSK modulations, it is shown in this paper that the closed loop phase trackers, which are motivated by this approach, are indeed closed loop optimum in the minimum mean-square phase tracking jitter sense. The corresponding squaring loss performance of these so-called MAP estimation loops is compared with that of more practical implementations wherein the hyperbolic tangent nonlinearity is approximated by simpler functions.

  8. Optimum design calculations for detectors based on ZnSe(Те,О) scintillators

    NASA Astrophysics Data System (ADS)

    Katrunov, K.; Ryzhikov, V.; Gavrilyuk, V.; Naydenov, S.; Lysetska, O.; Litichevskyi, V.

    2013-06-01

    Light collection in scintillators ZnSe(X), where X is an isovalent dopant, was studied using Monte Carlo calculations. Optimum design was determined for detectors of "scintillator—Si-photodiode" type, which can involve either one scintillation element or scintillation layers of large area made of small-crystalline grains. The calculations were carried out both for determination of the optimum scintillator shape and for design optimization of light guides, on the surface of which the layer of small-crystalline grains is formed.

  9. Sensitivity of optimum solutions to problem parameters

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, J.; Barthelemy, J. F.; Ryan, K. M.

    1981-01-01

    Derivation of the sensitivity equations that yield the sensitivity derivatives directly, which avoids the costly and inaccurate perturb-and-reoptimize approach, is discussed and solvability of the equations is examined. The equations apply to optimum solutions obtained by direct search methods as well as those generated by procedures of the sequential unconstrained minimization technique class. Applications are discussed for the use of the sensitivity derivatives in extrapolation of the optimal objective function and design variable values for incremented parameters, optimization with multiple objectives, and decomposition of large optimization problems.

  10. Loops and trees

    NASA Astrophysics Data System (ADS)

    Caron-Huot, S.

    2011-05-01

    We investigate relations between loop and tree amplitudes in quantum field theory that involve putting on-shell some loop propagators. This generalizes the so-called Feynman tree theorem which is satisfied at 1-loop. Exploiting retarded boundary conditions, we give a generalization to ℓ-loop expressing the loops as integrals over the on-shell phase space of exactly ℓ particles. We argue that the corresponding integrand for ℓ > 2 does not involve the forward limit of any physical tree amplitude, except in planar gauge theories. In that case we explicitly construct the relevant physical amplitude. Beyond the planar limit, abandoning direct integral representations, we propose that loops continue to be determined implicitly by the forward limit of physical connected trees, and we formulate a precise conjecture along this line. Finally, we set up technology to compute forward amplitudes in supersymmetric theories, in which specific simplifications occur.

  11. Laminated BEAM loops

    NASA Astrophysics Data System (ADS)

    Danisch, Lee A.

    1996-10-01

    BEAM sensors include treated loops of optical fiber that modulate optical throughput with great sensitivity and linearity, in response to curvature of the loop out of its plane. This paper describes BEAM sensors that have two loops treated in opposed fashion, hermetically sealed in flexible laminations. The sensors include an integrated optoelectronics package that extracts curvature information from the treated portion of the loops while rejecting common mode errors. The laminated structure is used to sense various parameters including displacement, force, pressure, flow, and acceleration.

  12. Observational Evidence for Loop-Loop Interaction

    NASA Astrophysics Data System (ADS)

    Guiping, W.; Guangli, H.; Yuhua, T.; Aoao, X.

    2004-01-01

    Through analysis of the data including the hard x-ray(BASTE) microwave(NoRP) and magnetogram(MDI from SOHO) as well as the images of soft x-ray(YHKOH) and EIT(SOHO) on Apr. 151998 solar flare in the active region 8203(N30W12) we found: (1) there are similar quasi period oscillation in the profile of hard x-ray flux (25-5050-100keV) and microwave flux(1GHz) with duration of 85+/-25s every peak includes two sub-peak structures; (2) in the preheat phase of the flare active magnetic field changes apparently and a s-pole spot emerges ; (3) several EIT and soft x-ray loops exist and turn into bright . All of these may suggest that loop-loop interaction indeed exist. Through reconnection the electrons may be accelerated and the hard x-ray and microwave emission take place.

  13. Optimum interface properties for metal matrix composites

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Lerch, Bradley A.

    1989-01-01

    Due to the thermal expansion coefficient mismatch (CTE) between the fiber and the matrix, high residual sresses exist in metal matrix composite systems upon cool down from processing temperature to room temperature. An interface material can be placed between the fiber and the matrix to reduce the high tensile residual stresses in the matrix. A computer program was written to minimize the residual stress in the matrix subject to the interface material properties. The decision variables are the interface modulus, thickness and thermal expansion coefficient. The properties of the interface material are optimized such that the average distortion energy in the matrix and the interface is minimized. As a result, the only active variable is the thermal expansion coefficient. The optimum modulus of the interface is always the minimum allowable value and the interface thickness is always the maximum allowable value, independent of the fiber/matrix system. The optimum interface thermal expansion coefficient is always between the values of the fiber and the matrix. Using this analysis, a survey of materials was conducted for use as fiber coatings in some specific composite systems.

  14. Equilibrium Models of Coronal Loops That Involve Curvature and Buoyancy

    NASA Astrophysics Data System (ADS)

    Hindman, Bradley W.; Jain, Rekha

    2013-12-01

    We construct magnetostatic models of coronal loops in which the thermodynamics of the loop is fully consistent with the shape and geometry of the loop. This is achieved by treating the loop as a thin, compact, magnetic fibril that is a small departure from a force-free state. The density along the loop is related to the loop's curvature by requiring that the Lorentz force arising from this deviation is balanced by buoyancy. This equilibrium, coupled with hydrostatic balance and the ideal gas law, then connects the temperature of the loop with the curvature of the loop without resorting to a detailed treatment of heating and cooling. We present two example solutions: one with a spatially invariant magnetic Bond number (the dimensionless ratio of buoyancy to Lorentz forces) and the other with a constant radius of the curvature of the loop's axis. We find that the density and temperature profiles are quite sensitive to curvature variations along the loop, even for loops with similar aspect ratios.

  15. Equilibrium models of coronal loops that involve curvature and buoyancy

    SciTech Connect

    Hindman, Bradley W.; Jain, Rekha

    2013-12-01

    We construct magnetostatic models of coronal loops in which the thermodynamics of the loop is fully consistent with the shape and geometry of the loop. This is achieved by treating the loop as a thin, compact, magnetic fibril that is a small departure from a force-free state. The density along the loop is related to the loop's curvature by requiring that the Lorentz force arising from this deviation is balanced by buoyancy. This equilibrium, coupled with hydrostatic balance and the ideal gas law, then connects the temperature of the loop with the curvature of the loop without resorting to a detailed treatment of heating and cooling. We present two example solutions: one with a spatially invariant magnetic Bond number (the dimensionless ratio of buoyancy to Lorentz forces) and the other with a constant radius of the curvature of the loop's axis. We find that the density and temperature profiles are quite sensitive to curvature variations along the loop, even for loops with similar aspect ratios.

  16. PID controller auto-tuning based on process step response and damping optimum criterion.

    PubMed

    Pavković, Danijel; Polak, Siniša; Zorc, Davor

    2014-01-01

    This paper presents a novel method of PID controller tuning suitable for higher-order aperiodic processes and aimed at step response-based auto-tuning applications. The PID controller tuning is based on the identification of so-called n-th order lag (PTn) process model and application of damping optimum criterion, thus facilitating straightforward algebraic rules for the adjustment of both the closed-loop response speed and damping. The PTn model identification is based on the process step response, wherein the PTn model parameters are evaluated in a novel manner from the process step response equivalent dead-time and lag time constant. The effectiveness of the proposed PTn model parameter estimation procedure and the related damping optimum-based PID controller auto-tuning have been verified by means of extensive computer simulations. PMID:24035643

  17. Midpoint Shapes.

    ERIC Educational Resources Information Center

    Welchman, Rosamond; Urso, Josephine

    2000-01-01

    Emphasizes the importance of children exploring hands-on and minds-on mathematics. Presents a midpoint shape activity for students to explore the midpoint shape of familiar quadrilaterals, such as squares and rectangles. (KHR)

  18. Shape Changing Airfoil

    NASA Technical Reports Server (NTRS)

    Ott, Eric A.

    2005-01-01

    Scoping of shape changing airfoil concepts including both aerodynamic analysis and materials-related technology assessment effort was performed. Three general categories of potential components were considered-fan blades, booster and compressor blades, and stator airfoils. Based on perceived contributions to improving engine efficiency, the fan blade was chosen as the primary application for a more detailed assessment. A high-level aerodynamic assessment using a GE90-90B Block 4 engine cycle and fan blade geometry indicates that blade camber changes of approximately +/-4deg would be sufficient to result in fan efficiency improvements nearing 1 percent. Constraints related to flight safety and failed mode operation suggest that use of the baseline blade shape with actuation to the optimum cruise condition during a portion of the cycle would be likely required. Application of these conditions to the QAT fan blade and engine cycle was estimated to result in an overall fan efficiency gain of 0.4 percent.

  19. Optimum design of geodesically stiffened composite plates

    NASA Technical Reports Server (NTRS)

    Guerdal, Zafer; Phillips, John L.

    1988-01-01

    With the goal of tailorability in mind, the in-plane stiffness characteristics of a particular grid stiffened plate configuration under axial and shear loads have been studied. The contribution of the skin to the stiffener network and the resultant skin/rib interaction is analyzed. For the given plate geometry and loads, it is shown that an optimum configuration does exist. To achieve optimally designed practical plate configurations, buckling constraints need to be included in the design. Due to the complex geometry and loading of the plates, a simplified local buckling analysis of isolated stiffeners and triangular skin elements between the stiffeners is considered. Development of a stiffener buckling analysis represent stiffeners as shear deformable plate elements is presented.

  20. Optimum runway orientation relative to crosswinds

    NASA Technical Reports Server (NTRS)

    Falls, L. W.; Brown, S. C.

    1972-01-01

    Specific magnitudes of crosswinds may exist that could be constraints to the success of an aircraft mission such as the landing of the proposed space shuttle. A method is required to determine the orientation or azimuth of the proposed runway which will minimize the probability of certain critical crosswinds. Two procedures for obtaining the optimum runway orientation relative to minimizing a specified crosswind speed are described and illustrated with examples. The empirical procedure requires only hand calculations on an ordinary wind rose. The theoretical method utilizes wind statistics computed after the bivariate normal elliptical distribution is applied to a data sample of component winds. This method requires only the assumption that the wind components are bivariate normally distributed. This assumption seems to be reasonable. Studies are currently in progress for testing wind components for bivariate normality for various stations. The close agreement between the theoretical and empirical results for the example chosen substantiates the bivariate normal assumption.

  1. Optimum frequency assignment for satellite SCPC systems

    NASA Astrophysics Data System (ADS)

    Okinaka, H.; Yasuda, Y.; Hirata, Y.

    A technique for deriving a quasi-optimum solution for IM-minimum channel allocation for single-level SCPC systems is presented. Two types of IM products are considered as the dominant components in an RF band. The third order IM product is proportional to the product of the power of concerned carriers, allowing a weighting function to be defined for calculating the IM noise. An IM minimum channel allocation technique can then be used to reduce the IM noise occurring in the carrier slots through frequency assignment. The worst carrier is automatically deleted with an initial channel allocation and the process is iterated until the maximum noise reduction is obtained. The first two or three carriers are assigned to unused frequency slots with low noise. The method is also viable when dealing with a larger number of carriers.

  2. Structure and dynamics of DNA loops on nucleosomes studied with atomistic, microsecond-scale molecular dynamics

    PubMed Central

    Pasi, Marco; Lavery, Richard

    2016-01-01

    DNA loop formation on nucleosomes is strongly implicated in chromatin remodeling and occurs spontaneously in nucleosomes subjected to superhelical stress. The nature of such loops depends crucially on the balance between DNA deformation and DNA interaction with the nucleosome core. Currently, no high-resolution structural data on these loops exist. Although uniform rod models have been used to study loop size and shape, these models make assumptions concerning DNA mechanics and DNA–core binding. We present here atomic-scale molecular dynamics simulations for two different loop sizes. The results point to the key role of localized DNA kinking within the loops. Kinks enable the relaxation of DNA bending strain to be coupled with improved DNA–core interactions. Kinks lead to small, irregularly shaped loops that are asymmetrically positioned with respect to the nucleosome core. We also find that loop position can influence the dynamics of the DNA segments at the extremities of the nucleosome. PMID:27098037

  3. Structure and dynamics of DNA loops on nucleosomes studied with atomistic, microsecond-scale molecular dynamics.

    PubMed

    Pasi, Marco; Lavery, Richard

    2016-06-20

    DNA loop formation on nucleosomes is strongly implicated in chromatin remodeling and occurs spontaneously in nucleosomes subjected to superhelical stress. The nature of such loops depends crucially on the balance between DNA deformation and DNA interaction with the nucleosome core. Currently, no high-resolution structural data on these loops exist. Although uniform rod models have been used to study loop size and shape, these models make assumptions concerning DNA mechanics and DNA-core binding. We present here atomic-scale molecular dynamics simulations for two different loop sizes. The results point to the key role of localized DNA kinking within the loops. Kinks enable the relaxation of DNA bending strain to be coupled with improved DNA-core interactions. Kinks lead to small, irregularly shaped loops that are asymmetrically positioned with respect to the nucleosome core. We also find that loop position can influence the dynamics of the DNA segments at the extremities of the nucleosome. PMID:27098037

  4. An integrated optimum design approach for high speed prop rotors

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Mccarthy, Thomas R.

    1995-01-01

    The objective is to develop an optimization procedure for high-speed and civil tilt-rotors by coupling all of the necessary disciplines within a closed-loop optimization procedure. Both simplified and comprehensive analysis codes are used for the aerodynamic analyses. The structural properties are calculated using in-house developed algorithms for both isotropic and composite box beam sections. There are four major objectives of this study. (1) Aerodynamic optimization: The effects of blade aerodynamic characteristics on cruise and hover performance of prop-rotor aircraft are investigated using the classical blade element momentum approach with corrections for the high lift capability of rotors/propellers. (2) Coupled aerodynamic/structures optimization: A multilevel hybrid optimization technique is developed for the design of prop-rotor aircraft. The design problem is decomposed into a level for improved aerodynamics with continuous design variables and a level with discrete variables to investigate composite tailoring. The aerodynamic analysis is based on that developed in objective 1 and the structural analysis is performed using an in-house code which models a composite box beam. The results are compared to both a reference rotor and the optimum rotor found in the purely aerodynamic formulation. (3) Multipoint optimization: The multilevel optimization procedure of objective 2 is extended to a multipoint design problem. Hover, cruise, and take-off are the three flight conditions simultaneously maximized. (4) Coupled rotor/wing optimization: Using the comprehensive rotary wing code CAMRAD, an optimization procedure is developed for the coupled rotor/wing performance in high speed tilt-rotor aircraft. The developed procedure contains design variables which define the rotor and wing planforms.

  5. Thermal power loops

    NASA Technical Reports Server (NTRS)

    Gottschlich, Joseph M.; Richter, Robert

    1991-01-01

    The concept of a thermal power loop (TPL) to transport thermal power over relatively large distances is presented as an alternative to heat pipes and their derivatives. The TPL is compared to heat pipes, and capillary pumped loops with respect to size, weight, conservation of thermal potential, start-up, and 1-g testing capability. Test results from a proof of feasibility demonstrator at the NASA JPL are discussed. This analysis demonstrates that the development of specific thermal power loops will result in substantial weight and cost savings for many spacecraft.

  6. Natively Unstructured Loops Differ from Other Loops

    PubMed Central

    Schlessinger, Avner; Liu, Jinfeng; Rost, Burkhard

    2007-01-01

    Natively unstructured or disordered protein regions may increase the functional complexity of an organism; they are particularly abundant in eukaryotes and often evade structure determination. Many computational methods predict unstructured regions by training on outliers in otherwise well-ordered structures. Here, we introduce an approach that uses a neural network in a very different and novel way. We hypothesize that very long contiguous segments with nonregular secondary structure (NORS regions) differ significantly from regular, well-structured loops, and that a method detecting such features could predict natively unstructured regions. Training our new method, NORSnet, on predicted information rather than on experimental data yielded three major advantages: it removed the overlap between testing and training, it systematically covered entire proteomes, and it explicitly focused on one particular aspect of unstructured regions with a simple structural interpretation, namely that they are loops. Our hypothesis was correct: well-structured and unstructured loops differ so substantially that NORSnet succeeded in their distinction. Benchmarks on previously used and new experimental data of unstructured regions revealed that NORSnet performed very well. Although it was not the best single prediction method, NORSnet was sufficiently accurate to flag unstructured regions in proteins that were previously not annotated. In one application, NORSnet revealed previously undetected unstructured regions in putative targets for structural genomics and may thereby contribute to increasing structural coverage of large eukaryotic families. NORSnet found unstructured regions more often in domain boundaries than expected at random. In another application, we estimated that 50%–70% of all worm proteins observed to have more than seven protein–protein interaction partners have unstructured regions. The comparative analysis between NORSnet and DISOPRED2 suggested that long

  7. Introduction to Loop Heat Pipes

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2015-01-01

    This is the presentation file for the short course Introduction to Loop Heat Pipes, to be conducted at the 2015 Thermal Fluids and Analysis Workshop, August 3-7, 2015, Silver Spring, Maryland. This course will discuss operating principles and performance characteristics of a loop heat pipe. Topics include: 1) pressure profiles in the loop; 2) loop operating temperature; 3) operating temperature control; 4) loop startup; 4) loop shutdown; 5) loop transient behaviors; 6) sizing of loop components and determination of fluid inventory; 7) analytical modeling; 8) examples of flight applications; and 9) recent LHP developments.

  8. Improve filtration for optimum equipment reliability

    SciTech Connect

    Cervera, S.M.

    1996-01-01

    The introduction 20 years ago of the American Petroleum Institute Standard API-614 as a purchase specification for lubrication, shaft sealing and control oil systems, had a considerable impact and did much to improve system reliability at that time. Today, however, these recommendations regarding filter rating and flushing cleanliness are outdated. Much research in the tribology field correlates clearance size particulate contamination with accelerated component wear, fatigue and performance degradation. Some of these studies demonstrate that by decreasing the population of clearance size particulate in lubrication oils, component life increases exponentially. Knowing the dynamic clearances of a piece of machinery makes it possible, using the ISO 4406 Cleanliness Code, to determine what cleanliness level will minimize contamination-related component wear/fatigue and thus help optimize machinery performance and reliability. Data obtained by the author through random sampling of rotating equipment lube and seal oil systems indicate that the API-614 standard, as it pertains to filtration and flushing, is insufficient to ensure that particulate contamination is maintained to within the levels necessary to achieve optimum equipment reliability and safety, without increasing operating cost. Adopting and practicing the guidelines presented should result in the following benefits: (1) the frequency of bearing, oil pump, mechanical seal, fluid coupling, gearbox and hydraulic control valve failures would be minimized; (2) the mean time between planned maintenance (MTBPM) would be increased. The result will be a substantial increase in safety and cost savings to the operator.

  9. Optimum flight paths of turbojet aircraft

    NASA Technical Reports Server (NTRS)

    Miele, Angelo

    1955-01-01

    The climb of turbojet aircraft is analyzed and discussed including the accelerations. Three particular flight performances are examined: minimum time of climb, climb with minimum fuel consumption, and steepest climb. The theoretical results obtained from a previous study are put in a form that is suitable for application on the following simplifying assumptions: the Mach number is considered an independent variable instead of the velocity; the variations of the airplane mass due to fuel consumption are disregarded; the airplane polar is assumed to be parabolic; the path curvatures and the squares of the path angles are disregarded in the projection of the equation of motion on the normal to the path; lastly, an ideal turbojet with performance independent of the velocity is involved. The optimum Mach number for each flight condition is obtained from the solution of a sixth order equation in which the coefficients are functions of two fundamental parameters: the ratio of minimum drag in level flight to the thrust and the Mach number which represents the flight at constant altitude and maximum lift-drag ratio.

  10. Designing from minimum to optimum functionality

    NASA Astrophysics Data System (ADS)

    Bannova, Olga; Bell, Larry

    2011-04-01

    This paper discusses a multifaceted strategy to link NASA Minimal Functionality Habitable Element (MFHE) requirements to a compatible growth plan; leading forward to evolutionary, deployable habitats including outpost development stages. The discussion begins by reviewing fundamental geometric features inherent in small scale, vertical and horizontal, pressurized module configuration options to characterize applicability to meet stringent MFHE constraints. A proposed scenario to incorporate a vertical core MFHE concept into an expanded architecture to provide continuity of structural form and a logical path from "minimum" to "optimum" design of a habitable module. The paper describes how habitation and logistics accommodations could be pre-integrated into a common Hab/Log Module that serves both habitation and logistics functions. This is offered as a means to reduce unnecessary redundant development costs and to avoid EVA-intensive on-site adaptation and retrofitting requirements for augmented crew capacity. An evolutionary version of the hard shell Hab/Log design would have an expandable middle section to afford larger living and working accommodations. In conclusion, the paper illustrates that a number of cargo missions referenced for NASA's 4.0.0 Lunar Campaign Scenario could be eliminated altogether to expedite progress and reduce budgets. The plan concludes with a vertical growth geometry that provides versatile and efficient site development opportunities using a combination of hard Hab/Log modules and a hybrid expandable "CLAM" (Crew Lunar Accommodations Module) element.

  11. Optimum nutrition: thiamin, biotin and pantothenate.

    PubMed

    Bender, D A

    1999-05-01

    The metabolism of glucose is deranged in thiamin deficiency, but once any deficiency has been corrected there is no further effect of increased thiamin intake on the ability to metabolize glucose through either pyruvate dehydrogenase (EC 1.2.4.1) and the citric acid cycle, or the pentose phosphate pathway, in which transketolase (EC 2.2.1.1) is the thiamin-dependent step. It has been suggested that the Wernicke-Korsakoff syndrome is associated with a genetic variant of transketolase which requires a higher than normal concentration of thiamin diphosphate for activity. This finding would suggest that there may be a group of the population who have a higher than average requirement for thiamin, but the evidence is not convincing. There are no estimates of biotin requirements, but either coenzyme saturation of erythrocyte pyruvate carboxylase, or the excretion of 3-hydroxy-isovalerate (perhaps after a test dose of leucine) could be used to assess requirements in depletion-repletion studies. Biotin deficiency leads to impaired glucose tolerance, but it is unlikely that glucose tolerance could be used to assess optimum biotin status, since other more common factors affect glucose tolerance to a greater extent. Plasma triacylglycerol and nonesterified fatty acids are moderately elevated in pantothenic acid deficiency. However, this is unlikely to be useful in assessing pantothenate status, since again, other more common factors affect plasma lipids. To date there are no biochemical indices of adequate pantothenate nutrition, and no estimates of requirements. PMID:10466187

  12. Optimum deposition conditions of ultrasmooth silver nanolayers

    PubMed Central

    2014-01-01

    Reduction of surface plasmon-polariton losses due to their scattering on metal surface roughness still remains a challenge in the fabrication of plasmonic devices for nanooptics. To achieve smooth silver films, we study the dependence of surface roughness on the evaporation temperature in a physical vapor deposition process. At the deposition temperature range 90 to 500 K, the mismatch of thermal expansion coefficients of Ag, Ge wetting layer, and sapphire substrate does not deteriorate the metal surface. To avoid ice crystal formation on substrates, the working temperature of the whole physical vapor deposition process should exceed that of the sublimation at the evaporation pressure range. At optimum room temperature, the root-mean-square (RMS) surface roughness was successfully reduced to 0.2 nm for a 10-nm Ag layer on sapphire substrate with a 1-nm germanium wetting interlayer. Silver layers of 10- and 30-nm thickness were examined using an atomic force microscope (AFM), X-ray reflectometry (XRR), and two-dimensional X-ray diffraction (XRD2). PACS 63.22.Np Layered systems; 68. Surfaces and interfaces; thin films and nanosystems (structure and nonelectronic properties); 81.07.-b Nanoscale materials and structures: fabrication and characterization PMID:24685115

  13. Optimum coding techniques for MST radars

    NASA Technical Reports Server (NTRS)

    Sulzer, M. P.; Woodman, R. F.

    1986-01-01

    The optimum coding technique for MST (mesosphere stratosphere troposphere) radars is that which gives the lowest possible sidelobes in practice and can be implemented without too much computing power. Coding techniques are described in Farley (1985). A technique mentioned briefly there but not fully developed and not in general use is discussed here. This is decoding by means of a filter which is not matched to the transmitted waveform, in order to reduce sidelobes below the level obtained with a matched filter. This is the first part of the technique discussed here; the second part consists of measuring the transmitted waveform and using it as the basis for the decoding filter, thus reducing errors due to imperfections in the transmitter. There are two limitations to this technique. The first is a small loss in signal to noise ratio (SNR), which usually is not significant. The second problem is related to incomplete information received at the lowest ranges. An appendix shows a technique for handling this problem. Finally, it is shown that the use of complementary codes on transmission and nonmatched decoding gives the lowest possible sidelobe level and the minimum loss in SNR due to mismatch.

  14. Optimum harvest maturity for Leymus chinensis seed

    PubMed Central

    Lin, Jixiang; Wang, Yingnan; Qi, Mingming; Li, Xiaoyu; Yang, Chunxue; Wang, Yongcui

    2016-01-01

    ABSTRACT Timely harvest is critical to achieve maximum seed viability and vigour in agricultural production. However, little information exists concerning how to reap the best quality seeds of Leymus chinensis, which is the dominant and most promising grass species in the Songnen Grassland of Northern China. The objective of this study was to investigate and evaluate possible quality indices of the seeds at different days after peak anthesis. Seed quality at different development stages was assessed by the colours of the seed and lemmas, seed weight, moisture content, electrical conductivity of seed leachate and germination indices. Two consecutive years of experimental results showed that the maximum seed quality was recorded at 39 days after peak anthesis. At this date, the colours of the seed and lemmas reached heavy brown and yellow, respectively. The seed weight was highest and the moisture content and the electrical conductivity of seed leachate were lowest. In addition, the seed also reached its maximum germination percentage and energy at this stage, determined using a standard germination test (SGT) and accelerated ageing test (AAT). Thus, Leymus chinensis can be harvested at 39 days after peak anthesis based on the changes in parameters. Colour identification can be used as an additional indicator to provide a more rapid and reliable measure of optimum seed maturity; approximately 10 days after the colour of the lemmas reached yellow and the colour of the seed reached heavy brown, the seed of this species was suitable for harvest. PMID:27170257

  15. Optimum harvest maturity for Leymus chinensis seed.

    PubMed

    Lin, Jixiang; Wang, Yingnan; Qi, Mingming; Li, Xiaoyu; Yang, Chunxue; Wang, Yongcui; Mu, Chunsheng

    2016-01-01

    Timely harvest is critical to achieve maximum seed viability and vigour in agricultural production. However, little information exists concerning how to reap the best quality seeds of Leymus chinensis, which is the dominant and most promising grass species in the Songnen Grassland of Northern China. The objective of this study was to investigate and evaluate possible quality indices of the seeds at different days after peak anthesis. Seed quality at different development stages was assessed by the colours of the seed and lemmas, seed weight, moisture content, electrical conductivity of seed leachate and germination indices. Two consecutive years of experimental results showed that the maximum seed quality was recorded at 39 days after peak anthesis. At this date, the colours of the seed and lemmas reached heavy brown and yellow, respectively. The seed weight was highest and the moisture content and the electrical conductivity of seed leachate were lowest. In addition, the seed also reached its maximum germination percentage and energy at this stage, determined using a standard germination test (SGT) and accelerated ageing test (AAT). Thus, Leymus chinensis can be harvested at 39 days after peak anthesis based on the changes in parameters. Colour identification can be used as an additional indicator to provide a more rapid and reliable measure of optimum seed maturity; approximately 10 days after the colour of the lemmas reached yellow and the colour of the seed reached heavy brown, the seed of this species was suitable for harvest. PMID:27170257

  16. Demonstration of Automatically-Generated Adjoint Code for Use in Aerodynamic Shape Optimization

    NASA Technical Reports Server (NTRS)

    Green, Lawrence; Carle, Alan; Fagan, Mike

    1999-01-01

    Gradient-based optimization requires accurate derivatives of the objective function and constraints. These gradients may have previously been obtained by manual differentiation of analysis codes, symbolic manipulators, finite-difference approximations, or existing automatic differentiation (AD) tools such as ADIFOR (Automatic Differentiation in FORTRAN). Each of these methods has certain deficiencies, particularly when applied to complex, coupled analyses with many design variables. Recently, a new AD tool called ADJIFOR (Automatic Adjoint Generation in FORTRAN), based upon ADIFOR, was developed and demonstrated. Whereas ADIFOR implements forward-mode (direct) differentiation throughout an analysis program to obtain exact derivatives via the chain rule of calculus, ADJIFOR implements the reverse-mode counterpart of the chain rule to obtain exact adjoint form derivatives from FORTRAN code. Automatically-generated adjoint versions of the widely-used CFL3D computational fluid dynamics (CFD) code and an algebraic wing grid generation code were obtained with just a few hours processing time using the ADJIFOR tool. The codes were verified for accuracy and were shown to compute the exact gradient of the wing lift-to-drag ratio, with respect to any number of shape parameters, in about the time required for 7 to 20 function evaluations. The codes have now been executed on various computers with typical memory and disk space for problems with up to 129 x 65 x 33 grid points, and for hundreds to thousands of independent variables. These adjoint codes are now used in a gradient-based aerodynamic shape optimization problem for a swept, tapered wing. For each design iteration, the optimization package constructs an approximate, linear optimization problem, based upon the current objective function, constraints, and gradient values. The optimizer subroutines are called within a design loop employing the approximate linear problem until an optimum shape is found, the design loop

  17. Study on new optimum parameters in MT repeated survey

    NASA Astrophysics Data System (ADS)

    Zhang, Yun-Lin; Liu, Xiao-Ling; An, Hai-Jing; Jiang, Mei; Li, Zhi-Xiong; Si, Yu-Lan; Zhang, Wu-Si

    1994-11-01

    The first MT monitoring profile with initial shape both at home and abroad has been built in the northern margin of the Qinghai-Tibet Plateau. Based on MT data observed before and after the eight earthquakes of M=5 7 from 1988 to 1992, a new parameter-mean resistivitybar ρ has been introduced. The results show thatbar ρ indicates not only the major feature of decreasing-increasing and recovering to normal value, but also synchronism of phase or the variation in a large area, “lead or delay” among different small areas and the amplitude decreasing with the increase of the distance from the epicenter. Two characters mentioned above might correspond to reginal field precursor of the tectonic generating earthquake and field precursor of the tectonic kinematics. This paper analyses the errors of observed data and the cause of ρ variation. The MT profile optimum parameter system consists of parameterbar ρ , apparent resistivity ρ, twisting degree and the principal-axis azimuth which might provide quantitative criterion for the physical proces of the great destructive earthquake and moderate and short-term earthquake prediction.

  18. Wilson loops in supersymmetric gauge theories

    NASA Astrophysics Data System (ADS)

    Pestun, Vasily

    This thesis is devoted to several exact computations in four-dimensional supersymmetric gauge field theories. In the first part of the thesis we prove conjecture due to Erickson-Semenoff-Zarembo and Drukker-Gross which relates supersymmetric circular Wilson loop operators in the N = 4 supersymmetric Yang-Mills theory with a Gaussian matrix model. We also compute the partition function and give a new matrix model formula for the expectation value of a supersymmetric circular Wilson loop operator for the pure N = 2 and the N* = 2 supersymmetric Yang-Mills theory on a four-sphere. Circular supersymmetric Wilson loops in four-dimensional N = 2 superconformal gauge theory are treated similarly. In the second part we consider supersymmetric Wilson loops of arbitrary shape restricted to a two-dimensional sphere in the four-dimensional N = 4 supersymmetric Yang-Mills theory. We show that expectation value for these Wilson loops can be exactly computed using a two-dimensional theory closely related to the topological two-dimensional Higgs-Yang-Mills theory, or two-dimensional Yang-Mills theory for the complexified gauge group.

  19. Implementation of optimum solar electricity generating system

    NASA Astrophysics Data System (ADS)

    Singh, Balbir Singh Mahinder; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep; Karim, Samsul Ariffin A.

    2014-10-01

    Under the 10th Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  20. Implementation of optimum solar electricity generating system

    SciTech Connect

    Singh, Balbir Singh Mahinder Karim, Samsul Ariffin A.; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep

    2014-10-24

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  1. Optimum wavelengths for two color ranging

    NASA Technical Reports Server (NTRS)

    Degnan, John J.

    1993-01-01

    The range uncertainties associated with the refractive atmosphere can be mitigated by the technique of two color, or dual wavelength, ranging. The precision of the differential time of flight (DTOF) measurement depends on the atmospheric dispersion between the two wavelengths, the received pulsewidths and photoelectron counts, and on the amount of temporal averaging. In general, the transmitted wavelengths are not independently chosen but instead are generated via nonlinear optics techniques (harmonic crystals, Raman scattering, etc.) which also determine their relative pulsewidths. The mean received photoelectrons at each wavelength are calculated via the familiar radar link equation which contains several wavelength dependent parameters. By collecting the various wavelength dependent terms, one can define a wavelength figure of merit for a two color laser ranging system. In this paper, we apply the wavelength figure of merit to the case of an extremely clear atmosphere and draw several conclusions regarding the relative merits of fundamental-second harmonic, fundamental-third harmonic, second-third harmonic, and Raman two color systems. We find that, in spite of the larger dispersion between wavelengths, fundamental-third harmonic systems have the lowest figure of merit due to a combination of poor detector performance at the fundamental and poor atmospheric transmission at the third harmonic. The fundamental-second harmonic systems (approximately 700 nm and 350 nm) have the highest figure of merit, but second-third harmonic systems, using fundamental transmitters near 1000 nm, are a close second. Raman-shifted transmitters appear to offer no advantage over harmonic systems because of the relatively small wavelength separation that can be achieved in light gases such as hydrogen and the lack of good ultrashort pulse transmitters with an optimum fundamental wavelength near 400 nm.

  2. Schapiro Shapes

    ERIC Educational Resources Information Center

    O'Connell, Emily

    2009-01-01

    This article describes a lesson on Schapiro Shapes. Schapiro Shapes is based on the art of Miriam Schapiro, who created a number of works of figures in action. Using the basic concepts of this project, students learn to create their own figures and styles. (Contains 1 online resource.)

  3. Optimum rotationally symmetric shells for flywheel rotors

    SciTech Connect

    Blake, Henry W.

    2000-01-01

    A flywheel rim support formed from two shell halves. Each of the shell halves has a disc connected to the central shaft. A first shell element connects to the disc at an interface. A second shell element connects to the first shell element. The second shell element has a plurality of meridional slits. A cylindrical shell element connects to the second shell element. The cylindrical shell element connects to the inner surface of the flywheel rim. A flywheel rim support having a disc connected an outer diameter of a shaft. Two optimally shaped shell elements connect to the optimally shaped disc at an interface. The interface defines a discontinuity in a meridional slope of said support. A cylindrical shell element connects to the two shell elements. The cylindrical shell element has an outer surface for connecting to the inner surface of the flywheel rim. A flywheel rim casing includes an annular shell connected to the central shaft. The annular shell connects to the flywheel rim. A composite shell surrounds the shaft, annular shell and flywheel rim.

  4. Optimum target source term estimation for high energy electron accelerators

    NASA Astrophysics Data System (ADS)

    Nayak, M. K.; Sahu, T. K.; Nair, Haridas G.; Nandedkar, R. V.; Bandyopadhyay, Tapas; Tripathi, R. M.; Hannurkar, P. R.

    2016-05-01

    Optimum target for bremsstrahlung emission is defined as the thickness of the target material, which produces maximum bremsstrahlung yield, on interaction of electron with the target. The bremsstrahlung dose rate per unit electron beam power at a distance of 1 m from the target material gives the optimum target source term. In the present work, simulations were performed for three different electron energies, 450, 1000 and 2500 MeV using EGSnrc Monte-Carlo code to determine the optimum thickness. An empirical relation for optimum target as a function of electron energy and atomic number of the target materials is found out from results. Using the simulated optimum target thickness, experiments are conducted to determine the optimum target source term. For the experimental determination, two available electron energies, 450 MeV and 550 MeV from booster synchrotron of Indus facility is used. The optimum target source term for these two energies are also simulated. The experimental and simulated source term are found to be in very good agreement within ±3%. Based on the agreement of the simulated source term with the experimental source term at 450 MeV and 550 MeV, the same simulation methodology is used to simulate optimum target source term up to 2500 MeV. The paper describes the simulations and experiments carried out on optimum target bremsstrahlung source term and the results obtained.

  5. Optimum aerodynamic design via boundary control

    NASA Technical Reports Server (NTRS)

    Jameson, Antony

    1994-01-01

    These lectures describe the implementation of optimization techniques based on control theory for airfoil and wing design. In previous studies it was shown that control theory could be used to devise an effective optimization procedure for two-dimensional profiles in which the shape is determined by a conformal transformation from a unit circle, and the control is the mapping function. Recently the method has been implemented in an alternative formulation which does not depend on conformal mapping, so that it can more easily be extended to treat general configurations. The method has also been extended to treat the Euler equations, and results are presented for both two and three dimensional cases, including the optimization of a swept wing.

  6. Three-dimensional shape optimization using boundary element method

    NASA Astrophysics Data System (ADS)

    Yamazaki, Koetsu; Sakamoto, Jiro; Kitano, Masami

    1993-04-01

    A practical design sensitivity calculation technique of displacements and stresses for three-dimensional bodies based on the direct differentiation method of discrete boundary integral equations is formulated in detail. Then, the sensitivity calculation technique is applied to determine optimum shapes of minimum weight subjected to stress constraints, where an approximated subproblem is constructed repeatedly and solved sequentially by the mathematical programming method. The shape optimization technique suggested here is applied to determine optimum shapes of a cavity shape in a cube and a connecting rod.

  7. The Energy Landscape of Hyperstable LacI-DNA Loops

    NASA Astrophysics Data System (ADS)

    Kahn, Jason

    2009-03-01

    The Escherichia coli LacI protein represses transcription of the lac operon by blocking access to the promoter through binding at a promoter-proximal DNA operator. The affinity of tetrameric LacI (and therefore the repression efficiency) is enhanced by simultaneous binding to an auxiliary operator, forming a DNA loop. Hyperstable LacI-DNA loops were previously shown to be formed on DNA constructs that include a sequence-directed bend flanked by operators. Biochemical experiments showed that two such constructs (9C14 and 11C12) with different helical phasing between the operators and the DNA bend form different DNA loop shapes. The geometry and topology of the loops and the relevance of alternative conformations suggested by probable flexible linkers in LacI remain unclear. Bulk and single molecule fluorescence resonance energy transfer (SM-FRET, with D. English) experiments on a dual fluorophore-labeled 9C14-LacI loop demonstrate that it adopts a single, stable, rigid closed-form loop conformation. Here, we characterize the LacI-9C14 loop by SM-FRET as a function of inducer isopropyl-β,D-thiogalactoside (IPTG) concentration. Energy transfer measurements reveal partial but incomplete destabilization of loop formation by IPTG. Surprisingly, there is no change in the energy transfer efficiency of the remaining looped population. Models for the regulation of the lac operon often assume complete disruption of LacI-operator complexes upon inducer binding to LacI. Our work shows that even at saturating IPTG there is still a significant population of LacI-DNA complexes in a looped state, in accord with previous in vivo experiments that show incomplete induction (with J. Maher). Finally, we will report progress on characterizing the ``energy landscape'' for DNA looping upon systematic variation of the DNA linkers between the operators and the bending locus. Rod mechanics simulations (with N. Perkins) provide testable predictions on loop stability, topology, and FRET.

  8. Tension in active shapes.

    PubMed

    Papari, Giuseppe

    2014-01-01

    The concept of tension is introduced in the framework of active contours with prior shape information, and it is used to improve image segmentation. In particular, two properties of this new quantity are shown: 1) high values of the tension correspond to undesired equilibrium points of the cost function under minimization and 2) tension decreases if a curve is split into two or more parts. Based on these ideas, a tree is generated whose nodes are different local minima of the cost function. Deeper nodes in the tree are expected to correspond to lower values of the cost function. In this way, the search for the global optimum is reduced to visiting and pruning a binary tree. The proposed method has been applied to the problem of fish segmentation from low quality underwater images. Qualitative and quantitative comparison with existing algorithms based on the Euler–Lagrange diffusion equations shows the superiority of the proposed approach in avoiding undesired local minima. PMID:24235305

  9. Self-Stabilizing Storage Loops for Magnetic-Bubble Memories

    NASA Technical Reports Server (NTRS)

    Nelson, Gary L.

    1987-01-01

    Adjacent, sinusoidal loops provide defect-tolerant, self-stabilizing structures. New technology consists of three components providing self-stabilizing structures. First, apertures positioned so bubbles propagate alternately into hexagonally related positions and directly opposed positions; addition of straight barriers by ion milling or implantation of garnet adds transverse stability but leaves longitudinally metastable postions. Second, modification of barrier to sinusoidal shape provides "energy wells" in longitudinal direction at opposed positions and eliminates metastability. Third, positioning and phasing of counterrotating storage loops, provide stable hexagonal support between adjacent loops.

  10. Wilson-loop instantons

    NASA Technical Reports Server (NTRS)

    Lee, Kimyeong; Holman, Richard; Kolb, Edward W.

    1987-01-01

    Wilson-loop symmetry breaking is considered on a space-time of the form M4 x K, where M4 is a four-dimensional space-time and K is an internal space with nontrivial and finite fundamental group. It is shown in a simple model that the different vacua obtained by breaking a non-Abelian gauge group by Wilson loops are separated in the space of gauge potentials by a finite energy barrier. An interpolating gauge configuration is then constructed between these vacua and shown to have minimum energy. Finally some implications of this construction are discussed.

  11. Automatic one-loop calculations with Sherpa+OpenLoops

    NASA Astrophysics Data System (ADS)

    Cascioli, F.; Höche, S.; Krauss, F.; Maierhöfer, P.; Pozzorini, S.; Siegert, F.

    2014-06-01

    We report on the OpenLoops generator for one-loop matrix elements and its application to four-lepton production in association with up to one jet. The open loops algorithm uses a numerical recursion to construct the numerator of one-loop Feynman diagrams as functions of the loop momentum. In combination with tensor integrals this results in a highly efficient and numerically stable matrix element generator. In order to obtain a fully automated setup for the simulation of next-to-leading order scattering processes we interfaced OpenLoops to the Sherpa Monte Carlo event generator.

  12. Quality control loop for 3D laser beam cutting

    NASA Astrophysics Data System (ADS)

    Spitznagel, Juergen

    1996-08-01

    Existing systems for computer integrated manufacturing are based on the principle of the process chain: The product runs through different production sections as design, work planning and manufacturing in a sequential order. The data generated by a production sequence are transferred via interface to the following production sequence. These tightly-packed production sequences leave little scope for responding to quality deviations. This deficit is highlighted particularly in 3D laser cutting processes. In order to achieve an optimum machining result, a series of preliminary tests is required. Quality control loops play an important role in restricting the scope of necessary testing to a minimum. The represented control loop contains a CAD- system to design the workpiece, an offline-programming system to develop working strategies and NC/RC-programs as well as a shop-floor oriented tool to record quality data of the workpiece. The systems are coupled by an integrated product model. The control loop feeds quality data back to Operations Planning in the form of rules for processing strategies and technological data, so that the quality of the production process is enhanced. It is intended to supply optimum process parameters, so that the number of preliminary tests can be reduced. On the other hand the control loop contributes quality enhancement measures which serve as rules for the designers.

  13. 50 CFR 600.310 - National Standard 1-Optimum Yield.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 12 2013-10-01 2013-10-01 false National Standard 1-Optimum Yield. 600.310 Section 600.310 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS National Standards § 600.310 National Standard 1—Optimum Yield....

  14. 50 CFR 600.310 - National Standard 1-Optimum Yield.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 12 2014-10-01 2014-10-01 false National Standard 1-Optimum Yield. 600.310 Section 600.310 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS National Standards § 600.310 National Standard 1—Optimum Yield....

  15. 50 CFR 600.310 - National Standard 1-Optimum Yield.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false National Standard 1-Optimum Yield. 600.310 Section 600.310 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS National Standards § 600.310 National Standard 1—Optimum Yield....

  16. 50 CFR 600.310 - National Standard 1-Optimum Yield.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false National Standard 1-Optimum Yield. 600.310 Section 600.310 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS National Standards § 600.310 National Standard 1—Optimum Yield....

  17. 50 CFR 600.310 - National Standard 1-Optimum Yield.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false National Standard 1-Optimum Yield. 600.310 Section 600.310 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MAGNUSON-STEVENS ACT PROVISIONS National Standards § 600.310 National Standard 1—Optimum Yield....

  18. Closed-loop operation with alternative dewatering technology

    SciTech Connect

    Halliday, W.S.; Bray, R.P.; Youens, J.W.

    1993-03-01

    The introduction of dewatering devices for closed-loop drilling-fluid circulating systems and reserve pits is derived from technology that has been used in the industrial- and sanitary-waste treatment industries for years. This paper describes an overview of the need for closed-loop systems and provides the optimum design layout, including the fit of a dewatering device, for a drilling location. The introduction of a nonconventional dewatering device, called a screw press/thickener, is reviewed. A case history describing use of this technology in a southern Louisiana inland-marsh-area well is analyzed for the technical and economic viability of operating in a closed-loop mode. Results from this effort include a viable alternative to hauling off waste fluids from drilling sites and the realization that use of this technology can be justified economically.

  19. Livermore Compiler Analysis Loop Suite

    Energy Science and Technology Software Center (ESTSC)

    2013-03-01

    LCALS is designed to evaluate compiler optimizations and performance of a variety of loop kernels and loop traversal software constructs. Some of the loop kernels are pulled directly from "Livermore Loops Coded in C", developed at LLNL (see item 11 below for details of earlier code versions). The older suites were used to evaluate floating-point performances of hardware platforms prior to porting larger application codes. The LCALS suite is geared toward assissing C++ compiler optimizationsmore » and platform performance related to SIMD vectorization, OpenMP threading, and advanced C++ language features. LCALS contains 20 of 24 loop kernels from the older Livermore Loop suites, plus various others representative of loops found in current production appkication codes at LLNL. The latter loops emphasize more diverse loop constructs and data access patterns than the others, such as multi-dimensional difference stencils. The loops are included in a configurable framework, which allows control of compilation, loop sampling for execution timing, which loops are run and their lengths. It generates timing statistics for analysis and comparing variants of individual loops. Also, it is easy to add loops to the suite as desired.« less

  20. Livermore Compiler Analysis Loop Suite

    SciTech Connect

    Hornung, R. D.

    2013-03-01

    LCALS is designed to evaluate compiler optimizations and performance of a variety of loop kernels and loop traversal software constructs. Some of the loop kernels are pulled directly from "Livermore Loops Coded in C", developed at LLNL (see item 11 below for details of earlier code versions). The older suites were used to evaluate floating-point performances of hardware platforms prior to porting larger application codes. The LCALS suite is geared toward assissing C++ compiler optimizations and platform performance related to SIMD vectorization, OpenMP threading, and advanced C++ language features. LCALS contains 20 of 24 loop kernels from the older Livermore Loop suites, plus various others representative of loops found in current production appkication codes at LLNL. The latter loops emphasize more diverse loop constructs and data access patterns than the others, such as multi-dimensional difference stencils. The loops are included in a configurable framework, which allows control of compilation, loop sampling for execution timing, which loops are run and their lengths. It generates timing statistics for analysis and comparing variants of individual loops. Also, it is easy to add loops to the suite as desired.

  1. Effect of Tire Material on the Prediction of Optimum Tire-Tread Sections

    NASA Astrophysics Data System (ADS)

    Nath, S. K. Deb; Reaz Ahmed, S.; Kim, S.-G.; Wong, C. H.

    2011-11-01

    The effect of tire material on the prediction of optimum shapes of tire treads is analyzed using the displacement potential based finite-difference technique. From the distribution of no-slip shearing stress along the contact surface of tire treads a relationship is established between the tire-tread sections and the frictional resistance required to keep the contact surface free from lateral slippage. Three different tire materials, such as natural rubber, original truck-tire rubber, and commercially available retreading tire-rubber, are considered for the present study. From the comparison of the calculated coefficient of friction with that available between the tire and road surface, optimum values of tire-tread sections are determined for three different tire materials, which ensure no lateral slippage of the contact surface on the road.

  2. A method for optimum heating and cooling boiler components of a complex shape

    NASA Astrophysics Data System (ADS)

    Duda, Piotr; Rząsa, Dariusz

    2015-06-01

    A numerical method for determining a transient fluid temperature is presented. The method is formulated to minimizethe total time of heating and cooling operation based on the assumption that maximum tensile and compressivetotal stresses in a solid can not exceed the allowable value during the entire process. The method can be used for any construction element of a simple or complicated geometry. In this method, material properties of solids can be assumed as constant or temperature dependent. The method will be implemented for the heating operationof an outlet header. This construction element is mounted in supercritical power plants. The outlet header is installed in the 460 MW power unit and it is designed for the working pressure of p w = 26.5 MPa and the steam working temperature of T w = 554°C. The results obtained from the proposed method will be compared with the calculations according to TRD 301 - German boiler code

  3. Loops: Twisting and Scaling

    NASA Astrophysics Data System (ADS)

    Walsh, R. W.

    2004-01-01

    Loop-like structures are the fundamental magnetic building blocks of the solar atmosphere. Recent space-based EUV and X-ray satellite observations (from Yohkoh SOHO and TRACE) have challenged the view that these features are simply static gravitationally stratified plasma pipes. Rather it is now surmised that each loop may consist of a bundle of fine plasma threads that are twisted around one another and can brighten independently. This invited review will outline the latest developments in ""untangling"" the topology of these features through three dimensional magnetohydrodynamic modelling and how their properties are being deduced through spectroscopic observations coupled to theoretical scaling laws. In particular recent interest has centred on how the observed thermal profile along loops can be employed as a tool to diagnose any localised energy input to the structure and hence constrain the presence of a particular coronal heating mechanism. The dynamic nature of loops will be highlighted and the implications of superior resolution plasma thread observations (whether spatial temporal or spectral) from future space missions (SolarB STEREO SDO and Solar Orbiter) will be discussed.

  4. RNA in the Loop

    PubMed Central

    Kung, Johnny T.Y.; Lee, Jeannie T.

    2013-01-01

    Long noncoding RNAs (lncRNAs) have been implicated in a variety of biological roles, particularly as cis or trans gene expression regulators. Reporting recently in Nature, Lai et al. (2013) show that a class of gene-activating lncRNAs combines two gene regulation paradigms: enhancer-directed chromosomal looping and RNA-mediated protein effector recruitment. PMID:23537627

  5. NETL - Chemical Looping Reactor

    SciTech Connect

    2013-07-24

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  6. NETL - Chemical Looping Reactor

    ScienceCinema

    None

    2014-06-26

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  7. Closing the Loop Sampler.

    ERIC Educational Resources Information Center

    California Integrated Waste Management Board, Sacramento.

    Closing the Loop (CTL) is a science curriculum designed to introduce students to integrated waste management through awareness. This document presents five lesson plans focusing on developing an understanding of natural resources, solid wastes, conservation, and the life of landfills. Contents include: (1) "What Are Natural Resources?"; (2)…

  8. FINE STRUCTURES AND OVERLYING LOOPS OF CONFINED SOLAR FLARES

    SciTech Connect

    Yang, Shuhong; Zhang, Jun; Xiang, Yongyuan

    2014-10-01

    Using the Hα observations from the New Vacuum Solar Telescope at the Fuxian Solar Observatory, we focus on the fine structures of three confined flares and the issue why all the three flares are confined instead of eruptive. All the three confined flares take place successively at the same location and have similar morphologies, so can be termed homologous confined flares. In the simultaneous images obtained by the Solar Dynamics Observatory, many large-scale coronal loops above the confined flares are clearly observed in multi-wavelengths. At the pre-flare stage, two dipoles emerge near the negative sunspot, and the dipolar patches are connected by small loops appearing as arch-shaped Hα fibrils. There exists a reconnection between the small loops, and thus the Hα fibrils change their configuration. The reconnection also occurs between a set of emerging Hα fibrils and a set of pre-existing large loops, which are rooted in the negative sunspot, a nearby positive patch, and some remote positive faculae, forming a typical three-legged structure. During the flare processes, the overlying loops, some of which are tracked by activated dark materials, do not break out. These direct observations may illustrate the physical mechanism of confined flares, i.e., magnetic reconnection between the emerging loops and the pre-existing loops triggers flares and the overlying loops prevent the flares from being eruptive.

  9. Shape control using sidewall imaging

    NASA Astrophysics Data System (ADS)

    Su, Bo; Oshana, Ramiel; Menaker, Mina; Barak, Yogev; Shi, Xuelong

    2000-06-01

    As gate widths shrink below 0.18 micrometer, the SPC (Statistical Process Control) based CD (Critical Dimension) control in lithography process becomes more difficult. Increasing requirements of a shrinking process window have called on the need for advanced CD control using a closed-loop feedback mechanism. This concept has been gaining momentum and shows promising advantages in shortening the time of feedback control. However, the current closed-loop feedback links only the average CD of a lot and the exposure dose (E), leaving out another critical lithography parameter -- stepper, or scanner, defocus (F). Up until now, F has been assumed constant while E has been shown to have one-to-one correlation with CD. Such an assumption is justified for feature sizes larger than 0.25 micrometer with a usable DOF (Depth Of Focus) of more than 1 micrometer. For 0.25 micrometer and below technologies, stepper defocus induces rapid feature profile, as well as CD, changes. Therefore, one parameter (exposure dose versus CD) feedback is not adequate enough to control CD in photolithography and a two-parameter (exposure dose and stepper defocus versus CD) feedback is needed. For stepper defocus variation, resist feature shape needs to be monitored in-line. We will present an innovative way of shape monitoring through sidewall imaging. The scanning beam is bent up to 5 degrees, so that a feature can be viewed from a tilted angle. Such tilted view greatly enhances edge resolution. Shape monitoring applications based on sidewall imaging will be presented. With both CD and shape are monitored in photolithography process, two critical parameters, i.e., exposure dose and defocus, can be easily controlled. Such shape control mechanism provides the base for two-parameter feedback loop.

  10. COLD TEST LOOP INTEGRATED TEST LOOP RESULTS

    SciTech Connect

    Abraham, TJ

    2003-10-22

    A testing facility (Cold Test Loop) was constructed and operated to demonstrate the efficacy of the Accelerated Waste Retrieval (AWR) Project's planned sluicing approach to the remediation of Silos 1 and 2 at the Fernald Environmental Management Project near Cincinnati, Ohio. The two silos contain almost 10,000 tons of radium-bearing low-level waste, which consists primarily of solids of raffinates from processing performed on ores from the Democratic Republic of Congo (commonly referred to as ''Belgium Congo ores'') for the recovery of uranium. These silos are 80 ft in diameter, 36 ft high to the center of the dome, and 26.75 ft to the top of the vertical side walls. The test facility contained two test systems, each designed for a specific purpose. The first system, the Integrated Test Loop (ITL), a near-full-scale plant including the actual equipment to be installed at the Fernald Site, was designed to demonstrate the sluicing operation and confirm the selection of a slurry pump, the optimal sluicing nozzle operation, and the preliminary design material balance. The second system, the Component Test Loop (CTL), was designed to evaluate many of the key individual components of the waste retrieval system over an extended run. The major results of the initial testing performed during July and August 2002 confirmed that the AWR approach to sluicing was feasible. The ITL testing confirmed the following: (1) The selected slurry pump (Hazleton 3-20 type SHW) performed well and is suitable for AWR application. However, the pump's motor should be upgraded to a 200-hp model and be driven by a 150-hp variable-frequency drive (VFD). A 200-hp VFD is not much more expensive and would allow the pump to operate at full speed. (2) The best nozzle performance was achieved by using 15/16-in. nozzles operated alternately. This configuration appeared to most effectively mine the surrogate. (3) The Solartron densitometer, which was tested as an alternative mass flow measurement

  11. Atlas based kinematic optimum design of the Stewart parallel manipulator

    NASA Astrophysics Data System (ADS)

    Shao, Zhufeng; Tang, Xiaoqiang; Wang, Liping; Sun, Dengfeng

    2015-01-01

    Optimum design is a key approach to make full use of potential advantages of a parallel manipulator. The optimum design of multi-parameter parallel manipulators(more than three design parameters), such as Stewart manipulator, relies on analysis based and algorithm based optimum design methods, which fall to be accurate or intuitive. To solve this problem and achieve both accurate and intuition, atlas based optimum design of a general Stewart parallel manipulator is established, with rational selection of design parameters. Based on the defined spherical usable workspace(SUW), primary kinematic performance indices of the Stewart manipulator, involving workspace and condition number are introduced and analyzed. Then, corresponding performance atlases are drawn with the established non-dimensional design space, and impact of joint distribution angles on the manipulator performance is analyzed and illustrated. At last, an example on atlas based optimum design of the Stewart manipulator is accomplished to illustrate the optimum design process, considering the end-effector posture. Deduced atlases can be flexibly applied to both quantitative and qualitative analysis to get the desired optimal design for the Stewart manipulator with respect to related performance requirements. Besides, the established optimum design method can be further applied to other multi-parameter parallel manipulators.

  12. Mutual inductance between piecewise-linear loops

    NASA Astrophysics Data System (ADS)

    Cristina Barroso, Ana; Silva, J. P.

    2013-11-01

    We consider a current-carrying wire loop made out of linear segments of arbitrary sizes and directions in three-dimensional space. We develop expressions to calculate its vector potential and magnetic field at all points in space. We then calculate the mutual inductance between two such (non-intersecting) piecewise-linear loops. As simple applications, we consider in detail the mutual inductance between two square wires of equal length that either lie in the same plane or lie in parallel horizontal planes with their centers on the same vertical axis. Our expressions can also be used to obtain approximations to the mutual inductance between wires of arbitrary three-dimensional shapes.

  13. Closed Loop Welding Controller for Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Bonaccorso, F.; Bruno, C.; Cantelli, L.; Longo, D.; Muscato, G.; Rapisarda, S.

    2011-12-01

    The aim of this paper is to investigate on the closed loop welding controller of a rapid manufacturing Shaped Metal Deposition (SMD) process. SMD was developed and patented by Rolls-Royce in order to produce mechanical parts directly from a CAD model. A simplified SMD plant has been set up in order to investigate the welding dynamics and parameters and to develop a SMD automatic controller. On the basis of the experience acquired, some basic control laws have been developed, and a closed loop controller has been implemented. This controller permits to find and to maintain the process stability condition, so that the final process results totally automatic. The control is performed adjusting the welding conditions on the basis of arc voltage information obtained from the welding machine during the deposition. The experimental results reported confirm the validity of the proposed strategy.

  14. Investigation of earthquake factor for optimum tuned mass dampers

    NASA Astrophysics Data System (ADS)

    Nigdeli, Sinan Melih; Bekdaş, Gebrail

    2012-09-01

    In this study the optimum parameters of tuned mass dampers (TMD) are investigated under earthquake excitations. An optimization strategy was carried out by using the Harmony Search (HS) algorithm. HS is a metaheuristic method which is inspired from the nature of musical performances. In addition to the HS algorithm, the results of the optimization objective are compared with the results of the other documented method and the corresponding results are eliminated. In that case, the best optimum results are obtained. During the optimization, the optimum TMD parameters were searched for single degree of freedom (SDOF) structure models with different periods. The optimization was done for different earthquakes separately and the results were compared.

  15. Inner mappings of Bruck loops

    NASA Astrophysics Data System (ADS)

    Kreuzer, Alexander

    1998-01-01

    K-loops have their origin in the theory of sharply 2-transitive groups. In this paper a proof is given that K-loops and Bruck loops are the same. For the proof it is necessary to show that in a (left) Bruck loop the left inner mappings L(b)L(a) L(ab)[minus sign]1 are automorphisms. This paper generalizes results of Glauberman [3], Kist [8] and Kreuzer [9].

  16. Loop Heat Pipes and Capillary Pumped Loops: An Applications Perspective

    NASA Technical Reports Server (NTRS)

    Butler, Dan; Ku, Jentung; Swanson, Theodore; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    Capillary pumped loops (CPLS) and loop heat pipes (LHPS) are versatile two-phase heat transfer devices which have recently gained increasing acceptance in space applications. Both systems work based on the same principles and have very similar designs. Nevertheless, some differences exist in the construction of the evaporator and the hydro-accumulator, and these differences lead to very distinct operating characteristics for each loop. This paper presents comparisons of the two loops from an applications perspective, and addresses their impact on spacecraft design, integration, and test. Some technical challenges and issues for both loops are also addressed.

  17. Closed-loop anesthesia.

    PubMed

    LE Guen, Morgan; Liu, Ngai; Chazot, Thierry; Fischler, Marc

    2016-05-01

    Automated anesthesia which may offer to the physician time to control hemodynamic and to supervise neurological outcome and which may offer to the patient safety and quality was until recently consider as a holy grail. But this field of research is now increasing in every component of general anesthesia (hypnosis, nociception, neuromuscular blockade) and literature describes some successful algorithms - single or multi closed-loop controller. The aim of these devices is to control a predefined target and to continuously titrate anesthetics whatever the patients' co morbidities and surgical events to reach this target. Literature contains many randomized trials comparing manual and automated anesthesia and shows feasibility and safety of this system. Automation could quickly concern other aspects of anesthesia as fluid management and this review proposes an overview of closed-loop systems in anesthesia. PMID:26554614

  18. Chemical Looping Combustion Kinetics

    SciTech Connect

    Edward Eyring; Gabor Konya

    2009-03-31

    One of the most promising methods of capturing CO{sub 2} emitted by coal-fired power plants for subsequent sequestration is chemical looping combustion (CLC). A powdered metal oxide such as NiO transfers oxygen directly to a fuel in a fuel reactor at high temperatures with no air present. Heat, water, and CO{sub 2} are released, and after H{sub 2}O condensation the CO{sub 2} (undiluted by N{sub 2}) is ready for sequestration, whereas the nickel metal is ready for reoxidation in the air reactor. In principle, these processes can be repeated endlessly with the original nickel metal/nickel oxide participating in a loop that admits fuel and rejects ash, heat, and water. Our project accumulated kinetic rate data at high temperatures and elevated pressures for the metal oxide reduction step and for the metal reoxidation step. These data will be used in computational modeling of CLC on the laboratory scale and presumably later on the plant scale. The oxygen carrier on which the research at Utah is focused is CuO/Cu{sub 2}O rather than nickel oxide because the copper system lends itself to use with solid fuels in an alternative to CLC called 'chemical looping with oxygen uncoupling' (CLOU).

  19. Loops of Jupiter

    NASA Astrophysics Data System (ADS)

    Opolski, Antoni

    2014-12-01

    Professor Antoni Opolski was actively interested in astronomy after his retirement in 1983. He especially liked to study the works of the famous astronomer Copernicus getting inspiration for his own work. Opolski started his work on planetary loops in 2011 continuing it to the end of 2012 . During this period calculations, drawings, tables, and basic descriptions of all the planets of the Solar System were created with the use of a piece of paper and a pencil only. In 2011 Antoni Opolski asked us to help him in editing the manuscript and preparing it for publication. We have been honored having the opportunity to work on articles on planetary loops with Antoni Opolski in his house for several months. In the middle of 2012 the detailed material on Jupiter was ready. However, professor Opolski improved the article by smoothing the text and preparing new, better drawings. Finally the article ''Loops of Jupiter'', written by the 99- year old astronomer, was published in the year of his 100th birthday.

  20. Verification of Loop Diagnostics

    NASA Technical Reports Server (NTRS)

    Winebarger, A.; Lionello, R.; Mok, Y.; Linker, J.; Mikic, Z.

    2014-01-01

    Many different techniques have been used to characterize the plasma in the solar corona: density-sensitive spectral line ratios are used to infer the density, the evolution of coronal structures in different passbands is used to infer the temperature evolution, and the simultaneous intensities measured in multiple passbands are used to determine the emission measure. All these analysis techniques assume that the intensity of the structures can be isolated through background subtraction. In this paper, we use simulated observations from a 3D hydrodynamic simulation of a coronal active region to verify these diagnostics. The density and temperature from the simulation are used to generate images in several passbands and spectral lines. We identify loop structures in the simulated images and calculate the loop background. We then determine the density, temperature and emission measure distribution as a function of time from the observations and compare with the true temperature and density of the loop. We find that the overall characteristics of the temperature, density, and emission measure are recovered by the analysis methods, but the details of the true temperature and density are not. For instance, the emission measure curves calculated from the simulated observations are much broader than the true emission measure distribution, though the average temperature evolution is similar. These differences are due, in part, to inadequate background subtraction, but also indicate a limitation of the analysis methods.

  1. Optimum testing of multiple hypotheses in quantum detection theory

    NASA Technical Reports Server (NTRS)

    Yuen, H. P.; Kennedy, R. S.; Lax, M.

    1975-01-01

    The problem of specifying the optimum quantum detector in multiple hypotheses testing is considered for application to optical communications. The quantum digital detection problem is formulated as a linear programming problem on an infinite-dimensional space. A necessary and sufficient condition is derived by the application of a general duality theorem specifying the optimum detector in terms of a set of linear operator equations and inequalities. Existence of the optimum quantum detector is also established. The optimality of commuting detection operators is discussed in some examples. The structure and performance of the optimal receiver are derived for the quantum detection of narrow-band coherent orthogonal and simplex signals. It is shown that modal photon counting is asymptotically optimum in the limit of a large signaling alphabet and that the capacity goes to infinity in the absence of a bandwidth limitation.

  2. 50 CFR 648.20 - Maximum optimum yield (OYs).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Measures for the Atlantic Mackerel, Squid, and Butterfish Fisheries § 648.20 Maximum optimum yield (OYs...) Mackerel—that quantity of mackerel that is less than or equal to the allowable biological catch (ABC) in...

  3. Three-dimensional shape optimization using the boundary element method

    NASA Astrophysics Data System (ADS)

    Yamazaki, Koetsu; Sakamoto, Jiro; Kitano, Masami

    1994-06-01

    A practical design sensitivity calculation technique of displacements and stresses for three-dimensional bodies based on the direct differentiation method of discrete boundary integral equations is formulated in detail. Then the sensitivity calculation technique is applied to determine optimum shapes of minimum weight subjected to stress constraints, where an approximated subproblem is constructed repeatedly and solved sequentially by the mathematical programming method. The shape optimization technique suggested here is applied to determine optimum shapes of a cavity in a cube and a connecting rod.

  4. Optimum filters for narrow-band frequency modulation.

    NASA Technical Reports Server (NTRS)

    Shelton, R. D.

    1972-01-01

    The results of a computer search for the optimum type of bandpass filter for low-index angle-modulated signals are reported. The bandpass filters are discussed in terms of their low-pass prototypes. Only filter functions with constant numerators are considered. The pole locations for the optimum filters of several cases are shown in a table. The results are fairly independent of modulation index and bandwidth.

  5. A comparison of methods for DPLL loop filter design

    NASA Technical Reports Server (NTRS)

    Aguirre, S.; Hurd, W. J.; Kumar, R.; Statman, J.

    1986-01-01

    Four design methodologies for loop filters for a class of digital phase-locked loops (DPLLs) are presented. The first design maps an optimum analog filter into the digital domain; the second approach designs a filter that minimizes in discrete time weighted combination of the variance of the phase error due to noise and the sum square of the deterministic phase error component; the third method uses Kalman filter estimation theory to design a filter composed of a least squares fading memory estimator and a predictor. The last design relies on classical theory, including rules for the design of compensators. Linear analysis is used throughout the article to compare different designs, and includes stability, steady state performance and transient behavior of the loops. Design methodology is not critical when the loop update rate can be made high relative to loop bandwidth, as the performance approaches that of continuous time. For low update rates, however, the miminization method is significantly superior to the other methods.

  6. Tracking performance of unbalanced QPSK demodulators. I - Biphase Costas loop with passive arm filters

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Alem, W. K.

    1978-01-01

    Unbalanced quadriphase-shift-keying (QPSK) is an attractive means for transmitting two digital data streams which in general have different average powers, data rates, and data formats. Previous analyses of the tracking performance of Costas loop demodulators of unbalanced QPSK have accounted only for the filtering effect produced by the loop's two arm filters on the equivalent additive noise perturbing the loop. When the bandwidth of these filters is selected on the basis of the order of the data rate, as is typical of optimum Costas loop design, the filtering degradations of the data modulations themselves and the cross-modulation noise produced by their multiplication in the loop often cannot be neglected. The purpose of this paper is to incorporate these additional filtering effects into the analysis. Many of the results obtained herein are in the form of closed-form expressions which can easily be evaluated numerically for design and performance prediction purposes.

  7. Modeling the optimum conditions for the formation of defect-free CVD graphene on copper melt

    NASA Astrophysics Data System (ADS)

    Alekseev, N. I.

    2014-09-01

    The nucleation and growth of nuclei of graphene (graphene islets) on the surfaces of copper melts during catalytic CVD, i.e., the catalytic decomposition of a gas-phase carbon support, is considered. It is shown that on a copper melt the optimum combination of conditions for the preservation of islets with almost perfect hexagonal shape and the necessary conditions of the CVD-process are reached at the same time. The average distance between the islets and the dimensionless parameter that determines changes in the shape of islets is calculated. The maximum rate of decomposition of the carbon support at which this parameter simultaneously promotes the growth of defect-free islets and the maximum possible rate of growth of the graphene monolayer is determined.

  8. A Moral Experience Feedback Loop: Modeling a System of Moral Self-Cultivation in Everyday Life

    ERIC Educational Resources Information Center

    Sherblom, Stephen A.

    2015-01-01

    This "systems thinking" model illustrates a common feedback loop by which people engage the moral world and continually reshape their moral sensibility. The model highlights seven processes that collectively form this feedback loop: beginning with (1) one's current moral sensibility which shapes processes of (2) perception, (3)…

  9. Elastic Rod Model of a DNA Loop in the Lac Operon

    NASA Astrophysics Data System (ADS)

    Balaeff, Alexander; Mahadevan, L.; Schulten, Klaus

    1999-12-01

    We use the theory of elasticity to compute the shape of the DNA loop bridging the gap in the crystal structure of the lac repressor-DNA complex. The Kirchhoff system of equations with boundary conditions derived from the crystal structure is solved using a continuation method. This approach can be applied effectively to find coarse-grained conformational minima of DNA loops.

  10. The Role of Entropic Effects on DNA Loop Formation

    NASA Astrophysics Data System (ADS)

    Wilson, David; Tkachenko, Alexei; Lillian, Todd; Perkins, Noel; Meiners, Jens Christian

    2009-03-01

    The formation of protein mediated DNA loops often regulates gene expression. Typically, a protein is simultaneously bound to two DNA operator sites. An example is the lactose repressor which binds to the Lac operon of E. coli. We characterize the mechanics of this system by calculating the free energy cost of loop formation. We construct a Hamiltonian that describes the change in DNA bending energy due to linear perturbations about the looped and open states, starting from a non-linear mechanical rod model that determines the shape and bending energy of the inter-operator DNA loop while capturing the intrinsic curvature and sequence-dependent elasticity of the DNA. The crystal structure of the LacI protein provides the boundary conditions for the DNA. We then calculate normal modes of the open and closed loops to account for the thermal fluctuations. The ratio of determinants of the two Hamiltonians yields the partition function, and the enthalphic and entropic cost of looping. This calculation goes beyond standard elastic energy models because it fully accounts for the substantial entropic differences between the two states. It also includes effects of sequence dependent curvature and stiffness and allows anisotropic variations in persistence length. From the free energy we then calculate the J-factor and ratio of loop lifetimes.

  11. A Generalized Theory of DNA Looping and Cyclization

    NASA Astrophysics Data System (ADS)

    Wilson, David; Lillian, Todd; Perkins, Noel; Tkachenko, Alexei; Meiners, Jens-Christian

    2010-03-01

    We have developed a semi-analytic method for calculating the Stockmayer Jacobson J-factor for protein mediated DNA loops. The formation of DNA loops on the order of a few persistence lengths is a key component in many biological regulatory functions. The binding of LacI protein within the Lac Operon of E.coli serves as the canonical example for loop regulated transcription. We use a non-linear rod model to determine the equilibrium shape of the inter-operator DNA loop under prescribed binding constraints while taking sequence-dependent curvature and elasticity into account. Then we construct a Hamiltonian that describes thermal fluctuations about the open and looped equilibrium states, yielding the entropic and enthalpic costs of loop formation. Our work demonstrates that even for short sequences of the order one persistence length, entropic terms contribute substantially to the J factor. We also show that entropic considerations are able to determine the most favorable binding topology. The J factor can be used to compare the relative loop lifetimes of various DNA sequences, making it a useful tool in sequence design. A corollary of this work is the computation of an effective torsional persistence length, which demonstrates how torsion bending coupling in a constrained geometry affects the conversion of writhe to twist.

  12. Conformational Changes in a Hyperthermostable Glycoside Hydrolase: Enzymatic Activity Is a Consequence of the Loop Dynamics and Protonation Balance

    PubMed Central

    de Oliveira, Leandro C.; da Silva, Viviam M.; Colussi, Francieli; Cabral, Aline D.; de Oliveira Neto, Mario; Squina, Fabio M.; Garcia, Wanius

    2015-01-01

    Endo-β-1, 4-mannanase from Thermotoga petrophila (TpMan) is a modular hyperthermostable enzyme involved in the degradation of mannan-containing polysaccharides. The degradation of these polysaccharides represents a key step for several industrial applications. Here, as part of a continuing investigation of TpMan, the region corresponding to the GH5 domain (TpManGH5) was characterized as a function of pH and temperature. The results indicated that the enzymatic activity of the TpManGH5 is pH-dependent, with its optimum activity occurring at pH 6. At pH 8, the studies demonstrated that TpManGH5 is a molecule with a nearly spherical tightly packed core displaying negligible flexibility in solution, and with size and shape very similar to crystal structure. However, TpManGH5 experiences an increase in radius of gyration in acidic conditions suggesting expansion of the molecule. Furthermore, at acidic pH values, TpManGH5 showed a less globular shape, probably due to a loop region slightly more expanded and flexible in solution (residues Y88 to A105). In addition, molecular dynamics simulations indicated that conformational changes caused by pH variation did not change the core of the TpManGH5, which means that only the above mentioned loop region presents high degree of fluctuations. The results also suggested that conformational changes of the loop region may facilitate polysaccharide and enzyme interaction. Finally, at pH 6 the results indicated that TpManGH5 is slightly more flexible at 65°C when compared to the same enzyme at 20°C. The biophysical characterization presented here is well correlated with the enzymatic activity and provide new insight into the structural basis for the temperature and pH-dependent activity of the TpManGH5. Also, the data suggest a loop region that provides a starting point for a rational design of biotechnological desired features. PMID:25723179

  13. Conformational changes in a hyperthermostable glycoside hydrolase: enzymatic activity is a consequence of the loop dynamics and protonation balance.

    PubMed

    de Oliveira, Leandro C; da Silva, Viviam M; Colussi, Francieli; Cabral, Aline D; de Oliveira Neto, Mario; Squina, Fabio M; Garcia, Wanius

    2015-01-01

    Endo-β-1, 4-mannanase from Thermotoga petrophila (TpMan) is a modular hyperthermostable enzyme involved in the degradation of mannan-containing polysaccharides. The degradation of these polysaccharides represents a key step for several industrial applications. Here, as part of a continuing investigation of TpMan, the region corresponding to the GH5 domain (TpManGH5) was characterized as a function of pH and temperature. The results indicated that the enzymatic activity of the TpManGH5 is pH-dependent, with its optimum activity occurring at pH 6. At pH 8, the studies demonstrated that TpManGH5 is a molecule with a nearly spherical tightly packed core displaying negligible flexibility in solution, and with size and shape very similar to crystal structure. However, TpManGH5 experiences an increase in radius of gyration in acidic conditions suggesting expansion of the molecule. Furthermore, at acidic pH values, TpManGH5 showed a less globular shape, probably due to a loop region slightly more expanded and flexible in solution (residues Y88 to A105). In addition, molecular dynamics simulations indicated that conformational changes caused by pH variation did not change the core of the TpManGH5, which means that only the above mentioned loop region presents high degree of fluctuations. The results also suggested that conformational changes of the loop region may facilitate polysaccharide and enzyme interaction. Finally, at pH 6 the results indicated that TpManGH5 is slightly more flexible at 65°C when compared to the same enzyme at 20°C. The biophysical characterization presented here is well correlated with the enzymatic activity and provide new insight into the structural basis for the temperature and pH-dependent activity of the TpManGH5. Also, the data suggest a loop region that provides a starting point for a rational design of biotechnological desired features. PMID:25723179

  14. Coupled dual loop absorption heat pump

    DOEpatents

    Sarkisian, Paul H.; Reimann, Robert C.; Biermann, Wendell J.

    1985-01-01

    A coupled dual loop absorption system which utilizes two separate complete loops. Each individual loop operates at three temperatures and two pressures. This low temperature loop absorber and condenser are thermally coupled to the high temperature loop evaporator, and the high temperature loop condenser and absorber are thermally coupled to the low temperature generator.

  15. Closing the loop.

    PubMed

    Dassau, E; Atlas, E; Phillip, M

    2011-02-01

    Closed-loop algorithms can be found in every aspect of everyday modern life. Automation and control are used constantly to provide safety and to improve quality of life. Closed-loop systems and algorithms can be found in home appliances, automobiles, aviation and more. Can one imagine nowadays driving a car without ABS, cruise control or even anti-sliding control? Similar principles of automation and control can be used in the management of diabetes mellitus (DM). The idea of an algorithmic/technological way to control glycaemia is not new and has been researched for more than four decades. However, recent improvements in both glucose-sensing technology and insulin delivery together with advanced control and systems engineering made this dream of an artificial pancreas possible. The artificial pancreas may be the next big step in the treatment of DM since the use of insulin analogues. An artificial pancreas can be described as internal or external devices that use continuous glucose measurements to automatically manage exogenous insulin delivery with or without other hormones in an attempt to restore glucose regulation in individuals with DM using a control algorithm. This device as described can be internal or external; can use different types of control algorithms with bi-hormonal or uni-hormonal design; and can utilise different ways to administer them. The different designs and implementations have transitioned recently from in silico simulations to clinical evaluation stage with practical applications in mind. This may mark the beginning of a new era in diabetes management with the introduction of semi-closed-loop systems that can prevent or minimise nocturnal hypoglycaemia, to hybrid systems that will manage blood glucose (BG) levels with minimal user intervention to finally fully automated systems that will take the user out of the loop. More and more clinical trials will be needed for the artificial pancreas to become a reality but initial encouraging

  16. Optimum orientation versus orientation averaging description of cluster radioactivity

    NASA Astrophysics Data System (ADS)

    Seif, W. M.; Ismail, M.; Refaie, A. I.; Amer, Laila H.

    2016-07-01

    While the optimum-orientation concept is frequently used in studies on cluster decays involving deformed nuclei, the orientation-averaging concept is used in most alpha decay studies. We investigate the different decay stages in both the optimum-orientation and the orientation-averaging pictures of the cluster decay process. For decays of 232,233,234U and 236,238Pu isotopes, the quantum knocking frequency and penetration probability based on the Wentzel–Kramers–Brillouin approximation are used to find the decay width. The obtained decay width and the experimental half-life are employed to estimate the clusters preformation probability. We found that the orientation-averaged decay width is one or two orders of magnitude less than its value along the non-compact optimum orientation. Correspondingly, the extracted preformation probability based on the averaged decay width increases with the same orders of magnitude compared to its value obtained considering the optimum orientation. The cluster preformation probabilities estimated by the two considered schemes are in more or less comparable agreement with the Blendowske–Walliser (BW) formula based on the preformation probability of α ({S}α {{a}{{v}}{{e}}}) obtained from the orientation-averaging scheme. All the results, including the optimum-orientation ones, deviate substantially from the BW law based on {S}α {{o}{{p}}{{t}}} that was estimated from the optimum-orientation scheme. To account for the nuclear deformations, it is more relevant to calculate the decay width by averaging over the different possible orientations of the participating deformed nuclei, rather than considering the corresponding non-compact optimum orientation.

  17. Oscillation of Newly Formed Loops after Magnetic Reconnection in the Solar Chromosphere

    NASA Astrophysics Data System (ADS)

    Yang, Shuhong; Xiang, Yongyuan

    2016-03-01

    With the high spatial and temporal resolution Hα images from the New Vacuum Solar Telescope, we focus on two groups of loops with an X-shaped configuration in the dynamic chromosphere. We find that the anti-directed loops approach each other and reconnect continually. The connectivity of the loops is changed and new loops are formed and stack together. The stacked loops are sharply bent, implying that they are greatly impacted by the magnetic tension force. When another reconnection process takes place, one new loop is formed and stacks with the previously formed ones. Meanwhile, the stacked loops retract suddenly and move toward the balance position, performing an overshoot movement, which led to an oscillation with an average period of about 45 s. The oscillation of newly formed loops after magnetic reconnection in the chromosphere is observed for the first time. We suggest that the stability of the stacked loops is destroyed due to the attachment of the last new loop and then suddenly retract under the effect of magnetic tension. Because of the retraction, another lower loop is pushed outward and performs an oscillation with a period of about 25 s. The different oscillation periods may be due to their difference in three parameters, i.e., loop length, plasma density, and magnetic field strength.

  18. Accelerating the loop expansion

    SciTech Connect

    Ingermanson, R.

    1986-07-29

    This thesis introduces a new non-perturbative technique into quantum field theory. To illustrate the method, I analyze the much-studied phi/sup 4/ theory in two dimensions. As a prelude, I first show that the Hartree approximation is easy to obtain from the calculation of the one-loop effective potential by a simple modification of the propagator that does not affect the perturbative renormalization procedure. A further modification then susggests itself, which has the same nice property, and which automatically yields a convex effective potential. I then show that both of these modifications extend naturally to higher orders in the derivative expansion of the effective action and to higher orders in the loop-expansion. The net effect is to re-sum the perturbation series for the effective action as a systematic ''accelerated'' non-perturbative expansion. Each term in the accelerated expansion corresponds to an infinite number of terms in the original series. Each term can be computed explicitly, albeit numerically. Many numerical graphs of the various approximations to the first two terms in the derivative expansion are given. I discuss the reliability of the results and the problem of spontaneous symmetry-breaking, as well as some potential applications to more interesting field theories. 40 refs.

  19. Ekpyrotic loop quantum cosmology

    SciTech Connect

    Wilson-Ewing, Edward

    2013-08-01

    We consider the ekpyrotic paradigm in the context of loop quantum cosmology. In loop quantum cosmology the classical big-bang singularity is resolved due to quantum gravity effects, and so the contracting ekpyrotic branch of the universe and its later expanding phase are connected by a smooth bounce. Thus, it is possible to explicitly determine the evolution of scalar perturbations, from the contracting ekpyrotic phase through the bounce and to the post-bounce expanding epoch. The possibilities of having either one or two scalar fields have been suggested for the ekpyrotic universe, and both cases will be considered here. In the case of a single scalar field, the constant mode of the curvature perturbations after the bounce is found to have a blue spectrum. On the other hand, for the two scalar field ekpyrotic model where scale-invariant entropy perturbations source additional terms in the curvature perturbations, the power spectrum in the post-bounce expanding cosmology is shown to be nearly scale-invariant and so agrees with observations.

  20. The double loop mattress suture

    PubMed Central

    Biddlestone, John; Samuel, Madan; Creagh, Terry; Ahmad, Tariq

    2014-01-01

    An interrupted stitch type with favorable tissue characteristics will reduce local wound complications. We describe a novel high-strength, low-tension repair for the interrupted closure of skin, cartilage, and muscle, the double loop mattress stitch, and compare it experimentally with other interrupted closure methods. The performance of the double loop mattress technique in porcine cartilage and skeletal muscle is compared with the simple, mattress, and loop mattress interrupted sutures in both a novel porcine loading chamber and mechanical model. Wound apposition is assessed by electron microscopy. The performance of the double loop mattress in vivo was confirmed using a series of 805 pediatric laparotomies/laparoscopies. The double loop mattress suture is 3.5 times stronger than the loop mattress in muscle and 1.6 times stronger in cartilage (p ≤ 0.001). Additionally, the double loop mattress reduces tissue tension by 66% compared with just 53% for the loop mattress (p ≤ 0.001). Wound gapping is equal, and wound eversion appears significantly improved (p ≤ 0.001) compared with the loop mattress in vitro. In vivo, the double loop mattress performs as well as the loop mattress and significantly better than the mattress stitch in assessments of wound eversion and dehiscence. There were no episodes of stitch extrusion in our series of patients. The mechanical advantage of its intrinsic pulley arrangement gives the double loop mattress its favorable properties. Wound dehiscence is reduced because this stitch type is stronger and exerts less tension on the tissue than the mattress stitch. We advocate the use of this novel stitch wherever a high-strength, low-tension repair is required. These properties will enhance wound repair, and its application will be useful to surgeons of all disciplines. PMID:24698436

  1. Digital Parallel Processor Array for Optimum Path Planning

    NASA Technical Reports Server (NTRS)

    Kremeny, Sabrina E. (Inventor); Fossum, Eric R. (Inventor); Nixon, Robert H. (Inventor)

    1996-01-01

    The invention computes the optimum path across a terrain or topology represented by an array of parallel processor cells interconnected between neighboring cells by links extending along different directions to the neighboring cells. Such an array is preferably implemented as a high-speed integrated circuit. The computation of the optimum path is accomplished by, in each cell, receiving stimulus signals from neighboring cells along corresponding directions, determining and storing the identity of a direction along which the first stimulus signal is received, broadcasting a subsequent stimulus signal to the neighboring cells after a predetermined delay time, whereby stimulus signals propagate throughout the array from a starting one of the cells. After propagation of the stimulus signal throughout the array, a master processor traces back from a selected destination cell to the starting cell along an optimum path of the cells in accordance with the identity of the directions stored in each of the cells.

  2. Optimum irradiance distribution of concentrated sunlight for photovoltaic energy conversion

    NASA Astrophysics Data System (ADS)

    Benítez, Pablo; Mohedano, Rubén

    1999-04-01

    The irradiance distribution on a concentration photovoltaic cell that produces maximum conversion efficiency has been found with the tools of Variational Calculus. The analysis is two dimensional and can be applied to a comb-like double busbar solar cell illuminated by a line-focus concentrator. The optimum distribution is, in general, nonuniform, and depends on the internal parameters of the solar cell: the higher the contribution of the grid to the global cell series resistance, the lower the uniformity of the optimum irradiance distribution. In practical cases, the efficiency for uniform illumination is close to that of the optimum, but in the latter the irradiance close to the busbar may be noticeable higher than the average.

  3. Determining the Optimum Number of Increments in Composite Sampling

    SciTech Connect

    Hathaway, John E.; Schaalje, G Bruce; Gilbert, Richard O.; Pulsipher, Brent A.; Matzke, Brett D.

    2008-09-30

    Composite sampling can be more cost effective than simple random sampling. This paper considers how to determine the optimum number of increments to use in composite sampling. Composite sampling can be more cost effective than simple random sampling. This paper considers how to determine the optimum number of increments to use in composite sampling. Composite sampling terminology and theory are outlined and a method is developed which accounts for different sources of variation in compositing and data analysis. This method is used to define and understand the process of determining the optimum number of increments that should be used in forming a composite. The blending variance is shown to have a smaller range of possible values than previously reported when estimating the number of increments in a composite sample. Accounting for differing levels of the blending variance significantly affects the estimated number of increments.

  4. Optimum climb and descent trajectories for airline missions

    NASA Technical Reports Server (NTRS)

    Erzberger, H.

    1981-01-01

    The characteristics of optimum fixed-range trajectories whose structure is constrained to climb, steady cruise, and descent segments are derived by application of optimal control theory. The performance function consists of the sum of fuel and time costs, referred to as direct operating cost (DOC). The state variable is range to go and the independent variable is energy. In this formulation a cruise segment always occurs at the optimum cruise energy for sufficiently large range. At short ranges (400 n. mi. and less), a cruise segment may also occur below the optimum cruise energy. The existence of such a cruise segment depends primarily on the fuel flow vs thrust characteristics and on thrust constraints. If thrust is a free control variable along with airspeed, it is shown that such cruise segments will not generally occur. If thrust is constrained to some maximum value in climb and to some minimum in descent, such cruise segments generally will occur.

  5. Heating Profiles of Coronal Loops

    NASA Astrophysics Data System (ADS)

    Plowman, Joseph; Kankelborg, Charles C.; Martens, Petrus C.

    2016-05-01

    We analyze the temperature and density profiles of coronal loops, as a function of their length, using data from SDO/AIA and Hinode/EIS. The analysis considers the location of the heating along the loop's length, and we conduct a more throrough investigation of our previous preliminary result that heating is concentrated near the loop footpoints. The work now features a larger selection of coronal loops, compared to our previous presentations, and examines their scale-height temperatures to ascertain the extent to which they are hydrostatic.

  6. Modeling of compact loop antennas

    SciTech Connect

    Baity, F.W.

    1987-01-01

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak (CIT).

  7. Loop Heat Pipe Startup Behaviors

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2016-01-01

    A loop heat pipe must start successfully before it can commence its service. The startup transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe startup behaviors. Topics include the four startup scenarios, the initial fluid distribution between the evaporator and reservoir that determines the startup scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power startup, and methods to enhance the startup success. Also addressed are the pressure spike and pressure surge during the startup transient, and repeated cycles of loop startup and shutdown under certain conditions.

  8. Unstable anisotropic loop quantum cosmology

    SciTech Connect

    Nelson, William; Sakellariadou, Mairi

    2009-09-15

    We study stability conditions of the full Hamiltonian constraint equation describing the quantum dynamics of the diagonal Bianchi I model in the context of loop quantum cosmology. Our analysis has shown robust evidence of an instability in the explicit implementation of the difference equation, implying important consequences for the correspondence between the full loop quantum gravity theory and loop quantum cosmology. As a result, one may question the choice of the quantization approach, the model of lattice refinement, and/or the role of the ambiguity parameters; all these should, in principle, be dictated by the full loop quantum gravity theory.

  9. Modeling of compact loop antennas

    NASA Astrophysics Data System (ADS)

    Baity, F. W.

    A general compact loop antenna model which treats all elements of the antenna as lossy transmission lines has been developed. In addition to capacitively-tuned resonant double loop (RDL) antennas the model treats stub-tuned resonant double loop antennas. Calculations using the model have been compared with measurements on full-scale mockups of resonant double loop antennas for ATF and TFTR in order to refine the transmission line parameters. Results from the model are presented for RDL antenna designs for ATF, TFTR, Tore Supra, and for the Compact Ignition Tokamak (CIT).

  10. Equilibrium Shaping

    NASA Astrophysics Data System (ADS)

    Izzo, Dario; Petazzi, Lorenzo

    2006-08-01

    We present a satellite path planning technique able to make identical spacecraft aquire a given configuration. The technique exploits a behaviour-based approach to achieve an autonomous and distributed control over the relative geometry making use of limited sensorial information. A desired velocity is defined for each satellite as a sum of different contributions coming from generic high level behaviours: forcing the final desired configuration the behaviours are further defined by an inverse dynamic calculation dubbed Equilibrium Shaping. We show how considering only three different kind of behaviours it is possible to acquire a number of interesting formations and we set down the theoretical framework to find the entire set. We find that allowing a limited amount of communication the technique may be used also to form complex lattice structures. Several control feedbacks able to track the desired velocities are introduced and discussed. Our results suggest that sliding mode control is particularly appropriate in connection with the developed technique.

  11. Optimizing coherent anti-Stokes Raman scattering by genetic algorithm controlled pulse shaping

    NASA Astrophysics Data System (ADS)

    Yang, Wenlong; Sokolov, Alexei

    2010-10-01

    The hybrid coherent anti-Stokes Raman scattering (CARS) has been successful applied to fast chemical sensitive detections. As the development of femto-second pulse shaping techniques, it is of great interest to find the optimum pulse shapes for CARS. The optimum pulse shapes should minimize the non-resonant four wave mixing (NRFWM) background and maximize the CARS signal. A genetic algorithm (GA) is developed to make a heuristic searching for optimized pulse shapes, which give the best signal the background ratio. The GA is shown to be able to rediscover the hybrid CARS scheme and find optimized pulse shapes for customized applications by itself.

  12. Photometric Error Analysis. IX: Optimum Use of Photomultipliers.

    PubMed

    Young, A T

    1969-12-01

    A critical study of photomultipliers leads to the following conclusions: (1) the dark current observed in tubes with alkali-antimonide cathodes at room temperature is primarily due to gas ions, not thermionic emission; (2) deviation from idealized (simple Poisson) pulse-height distributions is primarily due to secondary electron loss, particularly in venetian blind multipliers; (3) pulse-counting provides better signal-to-noise ratio than any other simple detection scheme, and is not far from optimum detection in most cases. However, dc methods can approach pulse-counting quite closely if digital readout is used. A convenient method for determining optimum discriminator levels is presented, with examples. PMID:20076054

  13. Theory of optimum radio reception methods in random noise

    NASA Astrophysics Data System (ADS)

    Gutkin, L. S.

    1982-09-01

    The theory of optimum methods of reception of signals on the background of random noise, widely used in development of any radioelectronic systems and devices based on reception and transmission of information (radar and radio controlled, radio communications, radio telemetry, radio astronomy, television, and other systems), as well as electroacoustical and wire communications sytems, is presented. Optimum linear and nonlinear filtration, binary and comples signal detection and discrimination, estimation of signal parameters, receiver synthesis for incomplete a priori data, special features of synthesis with respect to certain quality indicators, and other problems are examined.

  14. A first course in optimum design of yacht sails

    NASA Astrophysics Data System (ADS)

    Sugimoto, Takeshi

    1993-03-01

    The optimum sail geometry is analytically obtained for the case of maximizing the thrust under equality and inequality constraints on the lift and the heeling moment. A single mainsail is assumed to be set close-hauled in uniform wind and upright on the flat sea surface. The governing parameters are the mast height and the gap between the sail foot and the sea surface. The lifting line theory is applied to analyze the aerodynamic forces acting on a sail. The design method consists of the variational principle and a feasibility study. Almost triangular sails are found to be optimum. Their advantages are discussed.

  15. Optimum high temperature strength of two-dimensional nanocomposites

    SciTech Connect

    Monclús, M. A.; Molina-Aldareguía, J. M.; Polcar, T.; Llorca, J.

    2013-11-01

    High-temperature nanoindentation was used to reveal nano-layer size effects on the hardness of two-dimensional metallic nanocomposites. We report the existence of a critical layer thickness at which strength achieves optimal thermal stability. Transmission electron microscopy and theoretical bicrystal calculations show that this optimum arises due to a transition from thermally activated glide within the layers to dislocation transmission across the layers. We demonstrate experimentally that the atomic-scale properties of the interfaces profoundly affect this critical transition. The strong implications are that interfaces can be tuned to achieve an optimum in high temperature strength in layered nanocomposite structures.

  16. Aerodynamic optimum design of transonic turbine cascades using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Li, Jun; Feng, Zhenping; Chang, Jianzhong; Shen, Zuda

    1997-06-01

    This paper presents an aerodynamic optimum design method for transonic turbine cascades based on the Genetic Algorithms coupled to the inviscid flow Euler solver and the boundary-layer calculation. The Genetic Algorithms control the evolution of a population of cascades towards an optimum design. The fitness value of each string is evaluated using the flow solver. The design procedure has been developed and the behavior of the genetic algorithms has been tested. The objective functions of the design examples are the minimum mean-square deviation between the aimed pressure and computed pressure and the minimum amount of user expertise.

  17. The research on the optimum working conditions of photoconductive antenna

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Dai, Yang; Zhang, Like; Yang, Lei; Yan, Zhijin; Chen, Suguo; Hou, Lei

    2015-11-01

    The photoconductive antenna (PCA) is one of the most common devices to generate terahertz (THz) wave, whose radiation efficiency is largely determined by the working conditions. In order to improve the power of THz wave, the influence of pump laser and bias voltage on the intensity of the THz wave radiated by PCA was studied through experiment and the optimum working conditions of PCA was obtained through the theoretical analysis, these are the maximum safe voltage and saturated laser energy. Only under the optimum conditions can the signal-to-noise ratio(SNR)of THz wave radiated by PCA be the highest and the PCA would not breakdown.

  18. Optimum control forces for multibody systems with intermittent motion

    NASA Technical Reports Server (NTRS)

    Ider, Sitki Kemal; Amirouche, F. M. L.

    1989-01-01

    The objective is to address the continuity of motion when a dynamical system is suddenly subjected to constraint conditions. Motion discontinuity due to the initial constraint violation is avoided by prior control forces that adjust the motion and yield velocity and acceleration consistent at the point of application of the constraint. The optimum control forces are determined for a specified control interval. The method proposed provides an optimum adjustment of the system's motion and assures that the stresses developed at the system components are kept within acceptable limits. The procedures developed will be illustrated making use of inequality constraints applied to obstacle avoidance problems in robotics.

  19. Optimum subsonic, high-angle-of-attack nacelles

    NASA Technical Reports Server (NTRS)

    Luidens, R. W.; Stockman, N. O.; Diedrich, J. H.

    1979-01-01

    The optimum design of nacelles that operate over a wide range of aerodynamic conditions and their inlets is described. For low speed operation the optimum internal surface velocity distributions and skin friction distributions are described for three categories of inlets: those with BLC, and those with blow in door slots and retractable slats. At cruise speed the effect of factors that reduce the nacelle external surface area and the local skin friction is illustrated. These factors are cruise Mach number, inlet throat size, fan-face Mach number, and nacelle contour. The interrelation of these cruise speed factors with the design requirements for good low speed performance is discussed.

  20. Loop-the-Loop: Bringing Theory into Practice

    ERIC Educational Resources Information Center

    Suwonjandee, N.; Asavapibhop, B.

    2012-01-01

    During the Thai high-school physics teacher training programme, we used an aluminum loop-the-loop system built by the Institute for the Promotion of Teaching Science and Technology (IPST) to demonstrate a circular motion and investigate the concept of the conservation of mechanical energy. There were 27 high-school teachers from three provinces,…

  1. Vortex loops and Majoranas

    SciTech Connect

    Chesi, Stefano; Jaffe, Arthur; Loss, Daniel; Pedrocchi, Fabio L.

    2013-11-15

    We investigate the role that vortex loops play in characterizing eigenstates of interacting Majoranas. We give some general results and then focus on ladder Hamiltonian examples as a test of further ideas. Two methods yield exact results: (i) A mapping of certain spin Hamiltonians to quartic interactions of Majoranas shows that the spectra of these two examples coincide. (ii) In cases with reflection-symmetric Hamiltonians, we use reflection positivity for Majoranas to characterize vortices in the ground states. Two additional methods suggest wider applicability of these results: (iii) Numerical evidence suggests similar behavior for certain systems without reflection symmetry. (iv) A perturbative analysis also suggests similar behavior without the assumption of reflection symmetry.

  2. Dynamic PID loop control

    SciTech Connect

    Pei, L.; Klebaner, A.; Theilacker, J.; Soyars, W.; Martinez, A.; Bossert, R.; DeGraff, B.; Darve, C.; /Fermilab

    2011-06-01

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.

  3. Uranyl Nitrate Flow Loop

    SciTech Connect

    Ladd-Lively, Jennifer L

    2008-10-01

    The objectives of the work discussed in this report were to: (1) develop a flow loop that would simulate the purified uranium-bearing aqueous stream exiting the solvent extraction process in a natural uranium conversion plant (NUCP); (2) develop a test plan that would simulate normal operation and disturbances that could be anticipated in an NUCP; (3) use the flow loop to test commercially available flowmeters for use as safeguards monitors; and (4) recommend a flowmeter for production-scale testing at an NUCP. There has been interest in safeguarding conversion plants because the intermediate products [uranium dioxide (UO{sub 2}), uranium tetrafluoride (UF{sub 4}), and uranium hexafluoride (UF{sub 6})] are all suitable uranium feedstocks for producing special nuclear materials. Furthermore, if safeguards are not applied virtually any nuclear weapons program can obtain these feedstocks without detection by the International Atomic Energy Agency (IAEA). Historically, IAEA had not implemented safeguards until the purified UF{sub 6} product was declared as feedstock for enrichment plants. H. A. Elayat et al. provide a basic definition of a safeguards system: 'The function of a safeguards system on a chemical conversion plant is in general terms to verify that no useful nuclear material is being diverted to use in a nuclear weapons program'. The IAEA now considers all highly purified uranium compounds as candidates for safeguarding. DOE is currently interested in 'developing instruments, tools, strategies, and methods that could be of use to the IAEA in the application of safeguards' for materials found in the front end of the nuclear fuel cycle-prior to the production of the uranium hexafluoride or oxides that have been the traditional starting point for IAEA safeguards. Several national laboratories, including Oak Ridge, Los Alamos, Lawrence Livermore, and Brookhaven, have been involved in developing tools or techniques for safeguarding conversion plants. This study

  4. Minor hysteresis loops model based on exponential parameters scaling of the modified Jiles-Atherton model

    NASA Astrophysics Data System (ADS)

    Hamimid, M.; Mimoune, S. M.; Feliachi, M.

    2012-07-01

    In this present work, the minor hysteresis loops model based on parameters scaling of the modified Jiles-Atherton model is evaluated by using judicious expressions. These expressions give the minor hysteresis loops parameters as a function of the major hysteresis loop ones. They have exponential form and are obtained by parameters identification using the stochastic optimization method “simulated annealing”. The main parameters influencing the data fitting are three parameters, the pinning parameter k, the mean filed parameter α and the parameter which characterizes the shape of anhysteretic magnetization curve a. To validate this model, calculated minor hysteresis loops are compared with measured ones and good agreements are obtained.

  5. Loop-the-Loop: An Easy Experiment, A Challenging Explanation

    NASA Astrophysics Data System (ADS)

    Asavapibhop, B.; Suwonjandee, N.

    2010-07-01

    A loop-the-loop built by the Institute for the Promotion of Teaching Science and Technology (IPST) was used in Thai high school teachers training program to demonstrate a circular motion and investigate the concept of the conservation of mechanical energy. We took videos using high speed camera to record the motions of a spherical steel ball moving down the aluminum inclined track at different released positions. The ball then moved into the circular loop and underwent a projectile motion upon leaving the track. We then asked the teachers to predict the landing position of the ball if we changed the height of the whole loop-the-loop system. We also analyzed the videos using Tracker, a video analysis software. It turned out that most teachers did not realize the effect of the friction between the ball and the track and could not obtain the correct relationship hence their predictions were inconsistent with the actual landing positions of the ball.

  6. Inversion of arbitrary segmented loop source TEM data over a layered earth

    NASA Astrophysics Data System (ADS)

    Li, Hai; Xue, Guo-qiang; Zhao, pan; Zhou, Nan-nan; Zhong, Hua-sen

    2016-05-01

    The loop source TEM method has been widely used in the detection of a mined out area in China. In the cases that the laying of traditional rectangle or square transmitting loop is limited due to the presence of obstacle on the path of the loop, the changing of the shape of the transmitting loop to bypass the obstacle is a labor saving solution. A numeric integration scheme is proposed to calculate the response and Jacobian of the segmented loop source from that of an electric dipole source. The comparison of forward response between the segmented loop and square loop shows the effect of loop geometry on the decay curves. In order to interpret the data from an irregular source loop, this paper presents an inversion scheme that incorporate the effect of loop geometry. The proposed inversion scheme is validated on the synthetic data, and then applied to the field data. The result reveals that the developed inversion scheme is capable of interpreting the segmented loop source TEM field data.

  7. On the Role of Intrinsic and Extrinsic Forces in Early Cardiac S-looping

    PubMed Central

    Ramasubramanian, Ashok; Chu-LaGraff, Quynh B.; Buma, Takashi; Chico, Kevin T.; Carnes, Meagan E.; Burnett, Kyra R.; Bradner, Sarah A.; Gordon, Shaun S.

    2014-01-01

    Background Looping is a crucial phase during heart development when the initially straight heart tube is transformed into a shape that more closely resembles the mature heart. Although the genetic and biochemical pathways of cardiac looping are well-studied, the biophysical mechanisms that actually effect the looping process remain poorly understood. Using a combined experimental (chick embryo) and computational (finite element modeling) approach, we study the forces driving early s-looping when the primitive ventricle moves to its definitive position inferior to the common atrium. Results New results from our study indicate that the primitive heart has no intrinsic ability to form an s-loop and that extrinsic forces are necessary to effect early s-looping. They support previous studies that established an important role for cervical flexure in causing early cardiac s-looping. Our results also show that forces applied by the splanchnopleure cannot be ignored during early s-looping and shed light on the role of cardiac jelly. Using available experimental data and computer modeling, we successfully developed and tested a hypothesis for the force mechanisms driving s-loop formation. Conclusions Forces external to the primitive heart tube are necessary in the later stages of cardiac looping. Experimental and model results support our proposed hypothesis for forces driving early s-looping. PMID:23553909

  8. Studying DNA Looping by Single-Molecule FRET

    PubMed Central

    Le, Tung T.; Kim, Harold D.

    2014-01-01

    Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can also affect the apparent looping rate through mechanisms such as nonspecific binding. Here, we show how to measure dsDNA looping kinetics without ligase by detecting transient DNA loop formation by FRET (Fluorescence Resonance Energy Transfer). dsDNA molecules are constructed using a simple PCR-based protocol with a FRET pair and a biotin linker. The looping probability density known as the J factor is extracted from the looping rate and the annealing rate between two disconnected sticky ends. By testing two dsDNAs with different intrinsic curvatures, we show that the J factor is sensitive to the intrinsic shape of the dsDNA. PMID:24998459

  9. Optimum Design of Aerospace Structural Components Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Berke, L.; Patnaik, S. N.; Murthy, P. L. N.

    1993-01-01

    The application of artificial neural networks to capture structural design expertise is demonstrated. The principal advantage of a trained neural network is that it requires a trivial computational effort to produce an acceptable new design. For the class of problems addressed, the development of a conventional expert system would be extremely difficult. In the present effort, a structural optimization code with multiple nonlinear programming algorithms and an artificial neural network code NETS were used. A set of optimum designs for a ring and two aircraft wings for static and dynamic constraints were generated using the optimization codes. The optimum design data were processed to obtain input and output pairs, which were used to develop a trained artificial neural network using the code NETS. Optimum designs for new design conditions were predicted using the trained network. Neural net prediction of optimum designs was found to be satisfactory for the majority of the output design parameters. However, results from the present study indicate that caution must be exercised to ensure that all design variables are within selected error bounds.

  10. Determination of optimum load for a solar cell

    SciTech Connect

    Kothari, L.S.; Mathur, P.C.; Kapoor, A.; Saxena, P.; Sharma, R.P.

    1982-08-01

    An expression for load for maximum power transfer from a real solar cell, having resistive and current leakage losses, has been obtained using Lagrange's method of undetermined multipliers for solving the transcendental current-voltage relationship. The theoretical results are compared with the experimental measurements of the optimum load for p-n junction solar cells for various illumination levels.

  11. The Optimum Conditions of Foreign Languages in Primary Education

    ERIC Educational Resources Information Center

    Giannikas, Christina Nicole

    2014-01-01

    The aim of the paper is to review the primary language learning situation in Europe and shed light on the benefits it carries. Early language learning is the biggest policy development in education and has developed in rapid speed over the past 30 years; this article considers the effects and advantages of the optimum condition of an early start,…

  12. An Application of Calculus: Optimum Parabolic Path Problem

    ERIC Educational Resources Information Center

    Atasever, Merve; Pakdemirli, Mehmet; Yurtsever, Hasan Ali

    2009-01-01

    A practical and technological application of calculus problem is posed to motivate freshman students or junior high school students. A variable coefficient of friction is used in modelling air friction. The case in which the coefficient of friction is a decreasing function of altitude is considered. The optimum parabolic path for a flying object…

  13. Optimum position for wells producing at constant wellbore pressure

    SciTech Connect

    Camacho-Velazquez, R.; Rodriguez de la Garza, F.; Galindo-Nava, A.; Prats, M.

    1994-12-31

    This paper deals with the determination of the optimum position of several wells, producing at constant different wellbore pressures from a two-dimensional closed-boundary reservoirs, to maximize the cumulative production or the total flow rate. To achieve this objective they authors use an improved version of the analytical solution recently proposed by Rodriguez and Cinco-Ley and an optimization algorithm based on a quasi-Newton procedure with line search. At each iteration the algorithm approximates the negative of the objective function by a cuadratic relation derived from a Taylor series. The improvement of rodriguez and Cinco`s solution is attained in four ways. First, an approximation is obtained, which works better at earlier times (before the boundary dominated period starts) than the previous solution. Second, the infinite sums that are present in the solution are expressed in a condensed form, which is relevant for reducing the computer time when the optimization algorithm is used. Third, the solution is modified to take into account the possibility of having wells starting to produce at different times. This point allows them to deal with the problem of getting the optimum position for an infill drilling program. Last, the solution is extended to include the possibility of changing the value of wellbore pressure or being able to stimulate any of the wells at any time. When the wells are producing at different wellbore pressures it is found that the optimum position is a function of time, otherwise the optimum position is fixed.

  14. Optimum conditions for the turkey lymphocyte transformation test.

    PubMed

    Barta, O; Barta, V; Domermuth, C H; Pierson, F W

    1992-01-01

    Optimum conditions for turkey lymphocyte transformation tests were determined. Thrice-washed turkey buffy-coat cells obtained after slow centrifugation (40 x g, 10 minutes) responded well to mitogenic stimulation. Turkey lymphocytes isolated on Ficoll-containing separation media largely lost their ability to respond to mitogens. Maximum responses were obtained with 2 x 10(7) lymphoid cells/ml. Responses to the mitogens were greatest when bovine fetal serum was used at a 2.5% concentration or pooled turkey serum and autologous plasma were used at a 1.25% concentration. Higher concentrations of turkey serum or plasma decreased the responses when sub-optimum doses of concanavalin-A (Con A) or phytohemagglutinin-P (PHA-P) were used. Serum-free cultures gave higher stimulation indices than cultures with serum only when sub-optimum doses of Con A or PHA-P were used. Optimum mitogen concentrations varied with individual birds, timing of the culture, temperature of incubation, and serum concentration in the cultures. Responses were usually greatest with final concentrations of 5 micrograms Con A/ml, 10 micrograms PHA-P/ml, and 20 micrograms pokeweed mitogen (PWM)/ml and when the cultures were incubated in 96-well microplates at 40 C in humidified air with 5% CO2 for 40-42 hours with pulsing with 3H-thymidine during the final 16 hours of incubation. PMID:1627110

  15. Optimum Onager: The Classical Mechanics of a Classical Siege Engine

    ERIC Educational Resources Information Center

    Denny, Mark

    2009-01-01

    The onager is a throwing weapon of classical antiquity, familiar to both the ancient Greeks and Romans. Here we analyze the dynamics of onager operation and derive the optimum angle for launching a projectile to its maximum range. There is plenty of scope for further considerations about increasing onager range, and so by thinking about how this…

  16. On the Optimum Predictive Potential of Change Measure.

    ERIC Educational Resources Information Center

    Gupta, J. K.; And Others

    1988-01-01

    How the validity of gain scores varies with the standard deviations of pretest and posttest scores and the correlation between the two are analyzed. Earlier findings that under realistic testing conditions difference scores can have excellent predictive value are supported. Conditions under which gain scores have optimum validity are specified.…

  17. COPTRAN - A method of optimum communication systems design

    NASA Technical Reports Server (NTRS)

    Brinkman, K. L.; Pratt, W. K.; Stokes, L. S.; Weber, J. W.

    1970-01-01

    Single set of mathematical expressions describes system cost and probability of error of data transmission in terms of four basic parameters in the link equation. A Lagrange multiplier sets up equations whose solutions yield the optimum values for system design considerations and weight and cost values.

  18. RCD+: Fast loop modeling server.

    PubMed

    López-Blanco, José Ramón; Canosa-Valls, Alejandro Jesús; Li, Yaohang; Chacón, Pablo

    2016-07-01

    Modeling loops is a critical and challenging step in protein modeling and prediction. We have developed a quick online service (http://rcd.chaconlab.org) for ab initio loop modeling combining a coarse-grained conformational search with a full-atom refinement. Our original Random Coordinate Descent (RCD) loop closure algorithm has been greatly improved to enrich the sampling distribution towards near-native conformations. These improvements include a new workflow optimization, MPI-parallelization and fast backbone angle sampling based on neighbor-dependent Ramachandran probability distributions. The server starts by efficiently searching the vast conformational space from only the loop sequence information and the environment atomic coordinates. The generated closed loop models are subsequently ranked using a fast distance-orientation dependent energy filter. Top ranked loops are refined with the Rosetta energy function to obtain accurate all-atom predictions that can be interactively inspected in an user-friendly web interface. Using standard benchmarks, the average root mean squared deviation (RMSD) is 0.8 and 1.4 Å for 8 and 12 residues loops, respectively, in the challenging modeling scenario in where the side chains of the loop environment are fully remodeled. These results are not only very competitive compared to those obtained with public state of the art methods, but also they are obtained ∼10-fold faster. PMID:27151199

  19. RCD+: Fast loop modeling server

    PubMed Central

    López-Blanco, José Ramón; Canosa-Valls, Alejandro Jesús; Li, Yaohang; Chacón, Pablo

    2016-01-01

    Modeling loops is a critical and challenging step in protein modeling and prediction. We have developed a quick online service (http://rcd.chaconlab.org) for ab initio loop modeling combining a coarse-grained conformational search with a full-atom refinement. Our original Random Coordinate Descent (RCD) loop closure algorithm has been greatly improved to enrich the sampling distribution towards near-native conformations. These improvements include a new workflow optimization, MPI-parallelization and fast backbone angle sampling based on neighbor-dependent Ramachandran probability distributions. The server starts by efficiently searching the vast conformational space from only the loop sequence information and the environment atomic coordinates. The generated closed loop models are subsequently ranked using a fast distance-orientation dependent energy filter. Top ranked loops are refined with the Rosetta energy function to obtain accurate all-atom predictions that can be interactively inspected in an user-friendly web interface. Using standard benchmarks, the average root mean squared deviation (RMSD) is 0.8 and 1.4 Å for 8 and 12 residues loops, respectively, in the challenging modeling scenario in where the side chains of the loop environment are fully remodeled. These results are not only very competitive compared to those obtained with public state of the art methods, but also they are obtained ∼10-fold faster. PMID:27151199

  20. Closed-form solution for loop transfer recovery via reduced-order observers

    NASA Technical Reports Server (NTRS)

    Bacon, Barton J.

    1989-01-01

    A well-known property of the reduced-order observer is exploited to obtain the controller solution of the loop transfer recovery problem. In that problem, the controller is sought that generates some desired loop shape at the plant's input or output channels. Past approaches to this problem have typically yielded controllers generating loop shapes that only converge pointwise to the desired loop shape. In the proposed approach, however, the solution (at the input) is obtained directly when the plant's first Markov parameter is full rank. In the more general case when the plant's first Markov parameter is not full rank, the solution is obtained in an analogous manner by appending a special set of input and output signals to the original set. A dual form of the reduced-order observer is shown to yield the LTR solution at the output channel.

  1. Wilson Loop Diagrams and Positroids

    NASA Astrophysics Data System (ADS)

    Agarwala, Susama; Marin-Amat, Eloi

    2016-07-01

    In this paper, we study a new application of the positive Grassmannian to Wilson loop diagrams (or MHV diagrams) for scattering amplitudes in N= 4 Super Yang-Mill theory (N = 4 SYM). There has been much interest in studying this theory via the positive Grassmannians using BCFW recursion. This is the first attempt to study MHV diagrams for planar Wilson loop calculations (or planar amplitudes) in terms of positive Grassmannians. We codify Wilson loop diagrams completely in terms of matroids. This allows us to apply the combinatorial tools in matroid theory used to identify positroids (non-negative Grassmannians) to Wilson loop diagrams. In doing so, we find that certain non-planar Wilson loop diagrams define positive Grassmannians. While non-planar diagrams do not have physical meaning, this finding suggests that they may have value as an algebraic tool, and deserve further investigation.

  2. Higher dimensional loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Zhang, Xiangdong

    2016-07-01

    Loop quantum cosmology (LQC) is the symmetric sector of loop quantum gravity. In this paper, we generalize the structure of loop quantum cosmology to the theories with arbitrary spacetime dimensions. The isotropic and homogeneous cosmological model in n+1 dimensions is quantized by the loop quantization method. Interestingly, we find that the underlying quantum theories are divided into two qualitatively different sectors according to spacetime dimensions. The effective Hamiltonian and modified dynamical equations of n+1 dimensional LQC are obtained. Moreover, our results indicate that the classical big bang singularity is resolved in arbitrary spacetime dimensions by a quantum bounce. We also briefly discuss the similarities and differences between the n+1 dimensional model and the 3+1 dimensional one. Our model serves as a first example of higher dimensional loop quantum cosmology and offers the possibility to investigate quantum gravity effects in higher dimensional cosmology.

  3. Loop-bed combustion apparatus

    DOEpatents

    Shang, Jer-Yu; Mei, Joseph S.; Slagle, Frank D.; Notestein, John E.

    1984-01-01

    The present invention is directed to a combustion apparatus in the configuration of a oblong annulus defining a closed loop. Particulate coal together with a sulfur sorbent such as sulfur or dolomite is introduced into the closed loop, ignited, and propelled at a high rate of speed around the loop. Flue gas is withdrawn from a location in the closed loop in close proximity to an area in the loop where centrifugal force imposed upon the larger particulate material maintains these particulates at a location spaced from the flue gas outlet. Only flue gas and smaller particulates resulting from the combustion and innerparticle grinding are discharged from the combustor. This structural arrangement provides increased combustion efficiency due to the essentially complete combustion of the coal particulates as well as increased sulfur absorption due to the innerparticle grinding of the sorbent which provides greater particle surface area.

  4. Loop Heat Pipe Startup Behaviors

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2014-01-01

    A loop heat pipe must start successfully before it can commence its service. The start-up transient represents one of the most complex phenomena in the loop heat pipe operation. This paper discusses various aspects of loop heat pipe start-up behaviors. Topics include the four start-up scenarios, the initial fluid distribution between the evaporator and reservoir that determines the start-up scenario, factors that affect the fluid distribution between the evaporator and reservoir, difficulties encountered during the low power start-up, and methods to enhance the start-up success. Also addressed are the thermodynamic constraint between the evaporator and reservoir in the loop heat pipe operation, the superheat requirement for nucleate boiling, pressure spike and pressure surge during the start-up transient, and repeated cycles of loop start-up andshutdown under certain conditions.

  5. Optimum design for pipe-support allocation against seismic loading

    SciTech Connect

    Hara, Fumio; Iwasaki, Akira

    1996-12-01

    This paper deals with the optimum design methodology of a piping system subjected to a seismic design loading to reduce its dynamic response by selecting the location of pipe supports and whereby reducing the number of pipe supports to be used. The author employs the Genetic Algorithm for obtaining a reasonably optimum solution of the pipe support location, support capacity and number of supports. The design condition specified by the support location, support capacity and the number of supports to be used is encored by an integer number string for each of the support allocation candidates and they prepare many strings for expressing various kinds of pipe-support allocation state. Corresponding to each string, the authors evaluate the seismic response of the piping system to the design seismic excitation and apply the Genetic Algorithm to select the next generation candidates of support allocation to improve the seismic design performance specified by a weighted linear combination of seismic response magnitude, support capacity and the number of supports needed. Continuing this selection process, they find a reasonably optimum solution to the seismic design problem. They examine the feasibility of this optimum design method by investigating the optimum solution for 5, 7 and 10 degree-of-freedom models of piping system, and find that this method can offer one a theoretically feasible solution to the problem. They will be, thus, liberated from the severe uncertainty of damping value when the pipe support guaranties the design capacity of damping. Finally, they discuss the usefulness of the Genetic Algorithm for the seismic design problem of piping systems and some sensitive points when it will be applied to actual design problems.

  6. Superordinate Shape Classification Using Natural Shape Statistics

    ERIC Educational Resources Information Center

    Wilder, John; Feldman, Jacob; Singh, Manish

    2011-01-01

    This paper investigates the classification of shapes into broad natural categories such as "animal" or "leaf". We asked whether such coarse classifications can be achieved by a simple statistical classification of the shape skeleton. We surveyed databases of natural shapes, extracting shape skeletons and tabulating their parameters within each…

  7. Assessing catchment connectivity using hysteretic loops

    NASA Astrophysics Data System (ADS)

    Keesstra, Saskia; Masselink, Rens; Goni, Mikel; Campo, Miguel Angel; Gimenez, Rafael; Casali, Javier; Seeger, Manuel

    2015-04-01

    Sediment connectivity is a concept which can explain the origin, pathways and sinks of sediments within landscapes. This information is valuable for land managers to be able to take appropriate action at the correct place. Hysteresis between sediment and water discharge can give important information about the sources , pathways and conditions of sediment that arrives at the outlet of a catchment. "Hysteresis" happens when the sediment concentration associated with a certain flow rate is different depending on the direction in which the analysis is performed -towards the increase or towards the diminution of the flow. This phenomenon to some extent reflects the way in which the runoff generation processes are conjugated with those of the production and transport of sediments, hence the usefulness of hysteresis as a diagnostic hydrological parameter. However, the complexity of the phenomena and factors which determine hysteresis make its interpretation uncertain or, at the very least, problematic. Many types of hysteretic loops have been described as well as the cause for the shape of the loop, mainly describing the origin of the sediments. In this study, several measures to objectively classify hysteretic loops in an automated way were developed. These were consecutively used to classify several hundreds of loops from several agricultural catchments in Northern Spain. The data set for this study comes from four experimental watersheds in Navarre (Spain), owned and maintained by the Government of Navarre. These experimental watersheds have been monitored and studied since 1996 (La Tejería and Latxaga) and 2001 (Oskotz "principal", Op, and Oskotz "woodland", Ow). La Tejería and Latxaga watersheds, located in the Central Western part of Navarre, are roughly similar to each other regarding size (approximately 200 ha), geology (marls and sandstones), soils (fine texture topsoil), climate (humid sub Mediterranean) and land use (80-90% cultivated with winter grain crops

  8. Emittance measurements for optimum operation of the J-PARC RF-driven H- ion source

    NASA Astrophysics Data System (ADS)

    Ueno, A.; Ohkoshi, K.; Ikegami, K.; Takagi, A.; Yamazaki, S.; Oguri, H.

    2015-04-01

    In order to satisfy the Japan Proton Accelerator Research Complex (J-PARC) second stage requirements of an H- ion beam of 60mA within normalized emittances of 1.5πmm•mrad both horizontally and vertically, a flat top beam duty factor of 1.25% (500μs×25Hz) and a life-time of longer than 1month, the J-PARC cesiated RF-driven H- ion source was developed by using an internal-antenna developed at the Spallation Neutron Source (SNS). The transverse emittances of the source were measured with various conditions to find out the optimum operation conditions minimizing the horizontal and vertical rms normalized emittances. The transverse emittances were most effectively reduced by operating the source with the plasma electrode temperature lower than 70°C. The optimum value of the cesium (Cs) density around the beam hole of the plasma electrode seems to be proportional to the plasma electrode temperature. The fine control of the Cs density is indispensable, since the emittances seem to increase proportionally to the excessiveness of the Cs density. Furthermore, the source should be operated with the Cs density beyond a threshold value, since the plasma meniscus shape and the ellipse parameters of the transverse emittances seem to be changed step-function-likely on the threshold Cs value.

  9. Digital phase-locked loop

    NASA Technical Reports Server (NTRS)

    Cliff, R. A. (Inventor)

    1975-01-01

    An digital phase-locked loop is provided for deriving a loop output signal from an accumulator output terminal. A phase detecting exclusive OR gate is fed by the loop digital input and output signals. The output of the phase detector is a bi-level digital signal having a duty cycle indicative of the relative phase of the input and output signals. The accumulator is incremented at a first rate in response to a first output level of the phase detector and at a second rate in response to a second output level of the phase detector.

  10. Optimum Design of High Speed Prop-Rotors

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi

    1992-01-01

    The objective of this research is to develop optimization procedures to provide design trends in high speed prop-rotors. The necessary disciplinary couplings are all considered within a closed loop optimization process. The procedures involve the consideration of blade aeroelastic, aerodynamic performance, structural and dynamic design requirements. Further, since the design involves consideration of several different objectives, multiobjective function formulation techniques are developed.