Science.gov

Sample records for oral bacterial community

  1. The Oral Bacterial Communities of Children with Well-Controlled HIV Infection and without HIV Infection

    PubMed Central

    Goldberg, Brittany E.; Mongodin, Emmanuel F.; Jones, Cheron E.; Chung, Michelle; Fraser, Claire M.; Tate, Anupama; Zeichner, Steven L.

    2015-01-01

    The oral microbial community (microbiota) plays a critical role in human health and disease. Alterations in the oral microbiota may be associated with disorders such as gingivitis, periodontitis, childhood caries, alveolar osteitis, oral candidiasis and endodontic infections. In the immunosuppressed population, the spectrum of potential oral disease is even broader, encompassing candidiasis, necrotizing gingivitis, parotid gland enlargement, Kaposi’s sarcoma, oral warts and other diseases. Here, we used 454 pyrosequencing of bacterial 16S rRNA genes to examine the oral microbiome of saliva, mucosal and tooth samples from HIV-positive and negative children. Patient demographics and clinical characteristics were collected from a cross-section of patients undergoing routine dental care. Multiple specimens from different sampling sites in the mouth were collected for each patient. The goal of the study was to observe the potential diversity of the oral microbiota among individual patients, sample locations, HIV status and various dental characteristics. We found that there were significant differences in the microbiome among the enrolled patients, and between sampling locations. The analysis was complicated by uneven enrollment in the patient cohorts, with only five HIV-negative patients enrolled in the study and by the rapid improvement in the health of HIV-infected children between the time the study was conceived and completed. The generally good oral health of the HIV-negative patients limited the number of dental plaque samples that could be collected. We did not identify significant differences between well-controlled HIV-positive patients and HIV-negative controls, suggesting that well-controlled HIV-positive patients essentially harbor similar oral flora compared to patients without HIV. Nor were significant differences in the oral microbiota identified between different teeth or with different dental characteristics. Additional studies are needed to better

  2. The Oral Bacterial Communities of Children with Well-Controlled HIV Infection and without HIV Infection.

    PubMed

    Goldberg, Brittany E; Mongodin, Emmanuel F; Jones, Cheron E; Chung, Michelle; Fraser, Claire M; Tate, Anupama; Zeichner, Steven L

    2015-01-01

    The oral microbial community (microbiota) plays a critical role in human health and disease. Alterations in the oral microbiota may be associated with disorders such as gingivitis, periodontitis, childhood caries, alveolar osteitis, oral candidiasis and endodontic infections. In the immunosuppressed population, the spectrum of potential oral disease is even broader, encompassing candidiasis, necrotizing gingivitis, parotid gland enlargement, Kaposi's sarcoma, oral warts and other diseases. Here, we used 454 pyrosequencing of bacterial 16S rRNA genes to examine the oral microbiome of saliva, mucosal and tooth samples from HIV-positive and negative children. Patient demographics and clinical characteristics were collected from a cross-section of patients undergoing routine dental care. Multiple specimens from different sampling sites in the mouth were collected for each patient. The goal of the study was to observe the potential diversity of the oral microbiota among individual patients, sample locations, HIV status and various dental characteristics. We found that there were significant differences in the microbiome among the enrolled patients, and between sampling locations. The analysis was complicated by uneven enrollment in the patient cohorts, with only five HIV-negative patients enrolled in the study and by the rapid improvement in the health of HIV-infected children between the time the study was conceived and completed. The generally good oral health of the HIV-negative patients limited the number of dental plaque samples that could be collected. We did not identify significant differences between well-controlled HIV-positive patients and HIV-negative controls, suggesting that well-controlled HIV-positive patients essentially harbor similar oral flora compared to patients without HIV. Nor were significant differences in the oral microbiota identified between different teeth or with different dental characteristics. Additional studies are needed to better

  3. Bacterial community composition of chronic periodontitis and novel oral sampling sites for detecting disease indicators

    PubMed Central

    2014-01-01

    Background Periodontitis is an infectious and inflammatory disease of polymicrobial etiology that can lead to the destruction of bones and tissues that support the teeth. The management of chronic periodontitis (CP) relies heavily on elimination or at least control of known pathogenic consortia associated with the disease. Until now, microbial plaque obtained from the subgingival (SubG) sites has been the primary focus for bacterial community analysis using deep sequencing. In addition to the use of SubG plaque, here, we investigated whether plaque obtained from supragingival (SupG) and tongue dorsum sites can serve as alternatives for monitoring CP-associated bacterial biomarkers. Results Using SubG, SupG, and tongue plaque DNA from 11 healthy and 13 diseased subjects, we sequenced V3 regions (approximately 200 bases) of the 16S rRNA gene using Illumina sequencing. After quality filtering, approximately 4.1 million sequences were collapsed into operational taxonomic units (OTUs; sequence identity cutoff of >97%) that were classified to a total of 19 phyla spanning 114 genera. Bacterial community diversity and overall composition was not affected by health or disease, and multiresponse permutation procedure (MRPP) on Bray-Curtis distance measures only supported weakly distinct bacterial communities in SubG and tongue plaque depending on health or disease status (P < 0.05). Nonetheless, in SubG and tongue sites, the relative abundance of Firmicutes was increased significantly from health to disease and members of Synergistetes were found in higher abundance across all sites in disease. Taxa indicative of CP were identified in all three locations (for example, Treponema denticola, Porphyromonas gingivalis, Synergistes oral taxa 362 and 363). Conclusions For the first time, this study demonstrates that SupG and tongue dorsum plaque can serve as alternative sources for detecting and enumerating known and novel bacterial biomarkers of CP. This finding is clinically

  4. Oral Bacterial Communities in Individuals with Type 2 Diabetes Who Live in Southern Thailand

    PubMed Central

    Kampoo, Kanokporn; Teanpaisan, Rawee; Ledder, Ruth G.

    2014-01-01

    Type 2 diabetes mellitus is increasingly common in Thailand and elsewhere. In the present investigation, the bacteriological composition of saliva and supragingival plaque in Thai diabetics with and without active dental caries and in nondiabetics was determined by differential culture and eubacterial DNA profiling. Potential associations between fasting blood sugar and glycosylated hemoglobin (biomarkers of current and historical glucose control, respectively) with decayed, missing, and filled teeth and with salivary Streptococcus and Lactobacillus counts were also investigated. The incidence of active dental caries was greater in the Thai diabetics than in nondiabetics, and the numbers of total streptococci and lactobacilli were significantly higher in supragingival plaque from diabetics than in nondiabetics. Lactobacillus counts in the saliva and supragingival plaque of diabetics with active caries were significantly higher than those in diabetics without active caries. Oral eubacterial DNA profiles of diabetic versus nondiabetic individuals and of diabetics with active caries versus those without active caries could not be readily differentiated through cluster analysis or multidimensional scaling. The elevated caries incidence in the Thai diabetics was positively associated with numbers of bacteria of the acidogenic/acid-tolerant genera Streptococcus and Lactobacillus. Lactobacillus bacterial numbers were further elevated in diabetics with active caries, although salivary eubacterial DNA profiles were not significantly altered. PMID:24242241

  5. Application of substrate utilization patterns and terminal restriction fragment length polymorphism analysis to characterize the oral bacterial community of healthy subjects and patients with periodontitis

    PubMed Central

    DING, YI-JIAN; GE, CHAO-RONG; YAO, HUAI-YING

    2015-01-01

    Understanding the association between the bacterial community and oral health status is essential for the diagnosis and therapy of periodontal diseases. The aim of the present study was to apply three methods [conventional culture, substrate utilization using the MicroResp™ system and terminal restriction fragment length polymorphism (T-RFLP)] to investigate the oral bacterial community in saliva from 20 healthy subjects and 20 patients with periodontitis. The three methods all revealed that there was a systematic change in the microbial ecological characteristics associated with oral health status. Compared with the control group, the oral bacterial flora in the patients with chronic periodontitis had a greater culturable population and altered preferred carbon source and TRFLP patterns. TRFLP analysis was found to give more information and exhibit a higher sensitivity than the substrate utilization and conventional culture methods. In conclusion, TRFLP analysis is a potentially rapid method to assess the composition of the oral microbial community and for the diagnosis of chronic periodontitis. PMID:26136931

  6. Bacterial Communities: Interactions to Scale.

    PubMed

    Stubbendieck, Reed M; Vargas-Bautista, Carol; Straight, Paul D

    2016-01-01

    In the environment, bacteria live in complex multispecies communities. These communities span in scale from small, multicellular aggregates to billions or trillions of cells within the gastrointestinal tract of animals. The dynamics of bacterial communities are determined by pairwise interactions that occur between different species in the community. Though interactions occur between a few cells at a time, the outcomes of these interchanges have ramifications that ripple through many orders of magnitude, and ultimately affect the macroscopic world including the health of host organisms. In this review we cover how bacterial competition influences the structures of bacterial communities. We also emphasize methods and insights garnered from culture-dependent pairwise interaction studies, metagenomic analyses, and modeling experiments. Finally, we argue that the integration of multiple approaches will be instrumental to future understanding of the underlying dynamics of bacterial communities. PMID:27551280

  7. Bacterial Communities: Interactions to Scale

    PubMed Central

    Stubbendieck, Reed M.; Vargas-Bautista, Carol; Straight, Paul D.

    2016-01-01

    In the environment, bacteria live in complex multispecies communities. These communities span in scale from small, multicellular aggregates to billions or trillions of cells within the gastrointestinal tract of animals. The dynamics of bacterial communities are determined by pairwise interactions that occur between different species in the community. Though interactions occur between a few cells at a time, the outcomes of these interchanges have ramifications that ripple through many orders of magnitude, and ultimately affect the macroscopic world including the health of host organisms. In this review we cover how bacterial competition influences the structures of bacterial communities. We also emphasize methods and insights garnered from culture-dependent pairwise interaction studies, metagenomic analyses, and modeling experiments. Finally, we argue that the integration of multiple approaches will be instrumental to future understanding of the underlying dynamics of bacterial communities. PMID:27551280

  8. Metabolic and Community Synergy of Oral Bacteria in Colorectal Cancer

    PubMed Central

    Baxter, Nielson T.

    2016-01-01

    ABSTRACT The oral periodontopathic bacterium Fusobacterium nucleatum has been repeatedly associated with colorectal tumors. Molecular analysis has identified specific virulence factors that promote tumorigenesis in the colon. However, other oral community members, such as members of the Porphyromonas spp., are also found with F. nucleatum on colonic tumors, and thus, narrow studies of individual pathogens do not take community-wide virulence properties into account. A broader view of oral bacterial physiology and pathogenesis identifies two factors that could promote colonization and persistence of oral bacterial communities in the colon. The polymicrobial nature of oral biofilms and the asaccharolytic metabolism of many of these species make them well suited to life in the microenvironment of colonic lesions. Consideration of these two factors offers a novel perspective on the role of oral microbiota in the initiation, development, and treatment of colorectal cancer. PMID:27303740

  9. The bacterial microbiota in the oral mucosa of rural Amerindians.

    PubMed

    Contreras, Monica; Costello, Elizabeth K; Hidalgo, Glida; Magris, Magda; Knight, Rob; Dominguez-Bello, Maria G

    2010-11-01

    The oral microbiota plays an important role in buccal health and in diseases such as periodontitis and meningitis. The study of the human oral bacteria has so far focused on subjects from Western societies, while little is known about subjects from isolated communities. This work determined the composition of the oral mucosa microbiota from six Amazon Amerindians, and tested a sample preservation alternative to freezing. Paired oral swabs were taken from six adults of Guahibo ethnicity living in the community of Platanillal, Amazonas State, Venezuela. Replicate swabs were preserved in liquid nitrogen and in Aware Messenger fluid (Calypte). Buccal DNA was extracted, and the V2 region of the 16S rRNA gene was amplified and pyrosequenced. A total of 17 214 oral bacterial sequences were obtained from the six subjects; these were binned into 1034 OTUs from 10 phyla, 30 families and 51 genera. The oral mucosa was highly dominated by four phyla: Firmicutes (mostly the genera Streptococcus and Veillonella), Proteobacteria (mostly Neisseria), Bacterioidetes (Prevotella) and Actinobacteria (Micrococcineae). Although the microbiota were similar at the phylum level, the Amerindians shared only 62 % of the families and 23 % of the genera with non-Amerindians from previous studies, and had a lower richness of genera (51 vs 177 reported in non-Amerindians). The Amerindians carried unidentified members of the phyla Bacteroidetes, Firmicutes and Proteobacteria and their microbiota included soil bacteria Gp1 (Acidobacteriaceae) and Xylanibacter (Prevotellaceae), and the rare genus Phocoenobacter (Pasteurellaceae). Preserving buccal swabs in the Aware Messenger oral fluid collection device substantially altered the bacterial composition in comparison to freezing, and therefore this method cannot be used to preserve samples for the study of microbial communities. PMID:20847007

  10. Interspecies Interactions within Oral Microbial Communities

    PubMed Central

    Kuramitsu, Howard K.; He, Xuesong; Lux, Renate; Anderson, Maxwell H.; Shi, Wenyuan

    2007-01-01

    Summary: While reductionism has greatly advanced microbiology in the past 400 years, assembly of smaller pieces just could not explain the whole! Modern microbiologists are learning “system thinking” and “holism.” Such an approach is changing our understanding of microbial physiology and our ability to diagnose/treat microbial infections. This review uses oral microbial communities as a focal point to describe this new trend. With the common name “dental plaque,” oral microbial communities are some of the most complex microbial floras in the human body, consisting of more than 700 different bacterial species. For a very long time, oral microbiologists endeavored to use reductionism to identify the key genes or key pathogens responsible for oral microbial pathogenesis. The limitations of reductionism forced scientists to begin adopting new strategies using emerging concepts such as interspecies interaction, microbial community, biofilms, polymicrobial disease, etc. These new research directions indicate that the whole is much more than the simple sum of its parts, since the interactions between different parts resulted in many new physiological functions which cannot be observed with individual components. This review describes some of these interesting interspecies-interaction scenarios. PMID:18063722

  11. In Vitro Culture of Previously Uncultured Oral Bacterial Phylotypes

    PubMed Central

    Thompson, Hayley; Rybalka, Alexandra; Moazzez, Rebecca; Dewhirst, Floyd E.

    2015-01-01

    Around a third of oral bacteria cannot be grown using conventional bacteriological culture media. Community profiling targeting 16S rRNA and shotgun metagenomics methods have proved valuable in revealing the complexity of the oral bacterial community. Studies investigating the role of oral bacteria in health and disease require phenotypic characterizations that are possible only with live cultures. The aim of this study was to develop novel culture media and use an in vitro biofilm model to culture previously uncultured oral bacteria. Subgingival plaque samples collected from subjects with periodontitis were cultured on complex mucin-containing agar plates supplemented with proteose peptone (PPA), beef extract (BEA), or Gelysate (GA) as well as on fastidious anaerobe agar plus 5% horse blood (FAA). In vitro biofilms inoculated with the subgingival plaque samples and proteose peptone broth (PPB) as the growth medium were established using the Calgary biofilm device. Specific PCR primers were designed and validated for the previously uncultivated oral taxa Bacteroidetes bacteria HOT 365 and HOT 281, Lachnospiraceae bacteria HOT 100 and HOT 500, and Clostridiales bacterium HOT 093. All agar media were able to support the growth of 10 reference strains of oral bacteria. One previously uncultivated phylotype, Actinomyces sp. HOT 525, was cultivated on FAA. Of 93 previously uncultivated phylotypes found in the inocula, 26 were detected in in vitro-cultivated biofilms. Lachnospiraceae bacterium HOT 500 was successfully cultured from biofilm material harvested from PPA plates in coculture with Parvimonas micra or Veillonella dispar/parvula after colony hybridization-directed enrichment. The establishment of in vitro biofilms from oral inocula enables the cultivation of previously uncultured oral bacteria and provides source material for isolation in coculture. PMID:26407883

  12. Relationship between oral malodor and the global composition of indigenous bacterial populations in saliva.

    PubMed

    Takeshita, Toru; Suzuki, Nao; Nakano, Yoshio; Shimazaki, Yoshihiro; Yoneda, Masahiro; Hirofuji, Takao; Yamashita, Yoshihisa

    2010-05-01

    Oral malodor develops mostly from the metabolic activities of indigenous bacterial populations within the oral cavity, but whether healthy or oral malodor-related patterns of the global bacterial composition exist remains unclear. In this study, the bacterial compositions in the saliva of 240 subjects complaining of oral malodor were divided into groups based on terminal-restriction fragment length polymorphism (T-RFLP) profiles using hierarchical cluster analysis, and the patterns of the microbial community composition of those exhibiting higher and lower malodor were explored. Four types of bacterial community compositions were detected (clusters I, II, III, and IV). Two parameters for measuring oral malodor intensity (the concentration of volatile sulfur compounds in mouth air and the organoleptic score) were noticeably lower in cluster I than in the other clusters. Using multivariate analysis, the differences in the levels of oral malodor were significant after adjustment for potential confounding factors such as total bacterial count, mean periodontal pocket depth, and tongue coating score (P < 0.001). Among the four clusters with different proportions of indigenous members, the T-RFLP profiles of cluster I were implicated as the bacterial populations with higher proportions of Streptococcus, Granulicatella, Rothia, and Treponema species than those of the other clusters. These results clearly correlate the global composition of indigenous bacterial populations with the severity of oral malodor. PMID:20228112

  13. Development of a novel multi-triplex qPCR method for the assessment of bacterial community structure in oral populations.

    PubMed

    Ciric, Lena; Pratten, Jonathan; Wilson, Michael; Spratt, David

    2010-12-01

    Gingivitis and dental caries are two of the most predominant diseases in humans. Both conditions are easily treated with the removal of the plaque biofilm by brushing or the use of oral hygiene products. In both cases, pathogenic taxa found within the plaque biofilm are the causal agents of the disease. Actinomyces naeslundii, Fusobacterium nucleatum and Prevotalla intermedia have all been implicated in the development of gingivitis, while Streptococcus mutans is the main organism associated with dental caries. Many studies have so far focused on the use of culture methods to detect and enumerate the pathogenic taxa within plaque samples. However, these methods are both labour intensive and biased towards culturable taxa. In the present study, a novel high-throughput multi-triplex quantitative PCR method was developed with the aim to investigate the community dynamics associated with oral communities. Three triplex assays were designed targeting taxa associated with gingivitis and dental caries as well as oral health. Saliva samples collected from healthy individuals were used in order to validate the newly developed method. PMID:23766283

  14. Bacterial community development in experimental gingivitis.

    PubMed

    Kistler, James O; Booth, Veronica; Bradshaw, David J; Wade, William G

    2013-01-01

    Current knowledge of the microbial composition of dental plaque in early gingivitis is based largely on microscopy and cultural methods, which do not provide a comprehensive description of oral microbial communities. This study used 454-pyrosequencing of the V1-V3 region of 16S rRNA genes (approximately 500 bp), and bacterial culture, to characterize the composition of plaque during the transition from periodontal health to gingivitis. A total of 20 healthy volunteers abstained from oral hygiene for two weeks, allowing plaque to accumulate and gingivitis to develop. Plaque samples were analyzed at baseline, and after one and two weeks. In addition, plaque samples from 20 chronic periodontitis patients were analyzed for cross-sectional comparison to the experimental gingivitis cohort. All of the healthy volunteers developed gingivitis after two weeks. Pyrosequencing yielded a final total of 344,267 sequences after filtering, with a mean length of 354 bases, that were clustered into an average of 299 species-level Operational Taxonomic Units (OTUs) per sample. Principal coordinates analysis (PCoA) plots revealed significant shifts in the bacterial community structure of plaque as gingivitis was induced, and community diversity increased significantly after two weeks. Changes in the relative abundance of OTUs during the transition from health to gingivitis were correlated to bleeding on probing (BoP) scores and resulted in the identification of new health- and gingivitis-associated taxa. Comparison of the healthy volunteers to the periodontitis patients also confirmed the association of a number of putative periodontal pathogens with chronic periodontitis. Taxa associated with gingivitis included Fusobacterium nucleatum subsp. polymorphum, Lachnospiraceae [G-2] sp. HOT100, Lautropia sp. HOTA94, and Prevotella oulorum, whilst Rothia dentocariosa was associated with periodontal health. Further study of these taxa is warranted and may lead to new therapeutic approaches

  15. Epithelial barrier and oral bacterial infection.

    PubMed

    Groeger, Sabine E; Meyle, Joerg

    2015-10-01

    The oral epithelial barrier separates the host from the environment and provides the first line of defense against pathogens, exogenous substances and mechanical stress. It consists of underlying connective tissue and a stratified keratinized epithelium with a basement membrane, whose cells undergo terminal differentiation resulting in the formation of a mechanically resistant surface. Gingival keratinocytes are connected by various transmembrane proteins, such as tight junctions, adherens junctions and gap junctions, each of which has a specialized structure and specific functions. Periodontal pathogens are able to induce inflammatory responses that lead to attachment loss and periodontal destruction. A number of studies have demonstrated that the characteristics of pathogenic oral bacteria influence the expression and structural integrity of different cell-cell junctions. Tissue destruction can be mediated by host cells following stimulation with cytokines and bacterial products. Keratinocytes, the main cell type in gingival epithelial tissues, express a variety of proinflammatory cytokines and chemokines, including interleukin-1alpha, interleukin-1beta, interleukin-6, interleukin-8 and tumor necrosis factor-alpha. Furthermore, the inflammatory mediators that may be secreted by oral keratinocytes are vascular endothelial growth factor, prostaglandin E2 , interleukin-1 receptor antagonist and chemokine (C-C motif) ligand 2. The protein family of matrix metalloproteinases is able to degrade all types of extracellular matrix protein, and can process a number of bioactive molecules. Matrix metalloproteinase activities under inflammatory conditions are mostly deregulated and often increased, and those mainly relevant in periodontal disease are matrix metalloproteinases 1, 2, 3, 8, 9, 13 and 24. Viral infection may also influence the epithelial barrier. Studies show that the expression of HIV proteins in the mucosal epithelium is correlated with the disruption of

  16. 16S ribosomal RNA-based methods to monitor changes in the hindgut bacterial community of piglets after oral administration of Lactobacillus sobrius S1.

    PubMed

    Su, Yong; Yao, Wen; Perez-Gutierrez, Odette N; Smidt, Hauke; Zhu, Wei-Yun

    2008-04-01

    16S ribosomal RNA (rRNA) gene based PCR/denaturing gradient gel electrophoresis (DGGE) and real-time PCR were used to monitor the changes in the composition of microbiota in the hindgut of piglets after oral administration of Lactobacillus sobrius S1. Six litters of neonatal piglets were divided randomly into control group and treatment group. At 7, 9, and 11 days of age, piglets in the treatment group orally received a preparation of L. sobrius S1. At 7, 14, 21(weaning), 24, and 35 days of age, one piglet from each litter was sacrificed and digesta samples of hindgut were collected. DGGE analysis of 16S rRNA gene V6-V8 region for all bacteria showed that several populations present in the hindgut of piglets, represented by far-migrating bands, disappeared after weaning. Most of these bands corresponded to Lactobacillus spp. as revealed by sequence analysis. Quantitative real-time PCR specific for lactobacilli further demonstrated that the number of lactobacilli population tended to decrease after the piglets were weaned. Drastic changes of L. amylovorus and L. sobrius in total Lactobacillus populations were also observed in the colon of piglets around weaning, as monitored by 16S rRNA gene V2-V3 region based Lactobacillus-specific PCR-DGGE. Species-specific real-time PCR also revealed that the population of L. sobrius declined apparently in the colon of piglets after weaning. No remarkable changes in the overall microbial community in the hindgut were found between control and treatment groups. However, comparison of DGGE profiles between the two groups revealed a specific band related to Clostridium disporicum that was found in treatment group on day 14. On day 35, a specific band appeared only in the control group, representing a population most closely related to Streptococcus suis (99%). Real-time PCR showed that L. sobrius 16S rRNA gene copies in treatment group were relatively higher than in the control group (10(8.45) vs. 10(6.83)) on day 35, but no

  17. Spatial distribution of marine airborne bacterial communities.

    PubMed

    Seifried, Jasmin S; Wichels, Antje; Gerdts, Gunnar

    2015-06-01

    The spatial distribution of bacterial populations in marine bioaerosol samples was investigated during a cruise from the North Sea to the Baltic Sea via Skagerrak and Kattegat. The analysis of the sampled bacterial communities with a pyrosequencing approach revealed that the most abundant phyla were represented by the Proteobacteria (49.3%), Bacteroidetes (22.9%), Actinobacteria (16.3%), and Firmicutes (8.3%). Cyanobacteria were assigned to 1.5% of all bacterial reads. A core of 37 bacterial OTUs made up more than 75% of all bacterial sequences. The most abundant OTU was Sphingomonas sp. which comprised 17% of all bacterial sequences. The most abundant bacterial genera were attributed to distinctly different areas of origin, suggesting highly heterogeneous sources for bioaerosols of marine and coastal environments. Furthermore, the bacterial community was clearly affected by two environmental parameters - temperature as a function of wind direction and the sampling location itself. However, a comparison of the wind directions during the sampling and calculated backward trajectories underlined the need for more detailed information on environmental parameters for bioaerosol investigations. The current findings support the assumption of a bacterial core community in the atmosphere. They may be emitted from strong aerosolizing sources, probably being mixed and dispersed over long distances. PMID:25800495

  18. Spatial distribution of marine airborne bacterial communities

    PubMed Central

    Seifried, Jasmin S; Wichels, Antje; Gerdts, Gunnar

    2015-01-01

    The spatial distribution of bacterial populations in marine bioaerosol samples was investigated during a cruise from the North Sea to the Baltic Sea via Skagerrak and Kattegat. The analysis of the sampled bacterial communities with a pyrosequencing approach revealed that the most abundant phyla were represented by the Proteobacteria (49.3%), Bacteroidetes (22.9%), Actinobacteria (16.3%), and Firmicutes (8.3%). Cyanobacteria were assigned to 1.5% of all bacterial reads. A core of 37 bacterial OTUs made up more than 75% of all bacterial sequences. The most abundant OTU was Sphingomonas sp. which comprised 17% of all bacterial sequences. The most abundant bacterial genera were attributed to distinctly different areas of origin, suggesting highly heterogeneous sources for bioaerosols of marine and coastal environments. Furthermore, the bacterial community was clearly affected by two environmental parameters – temperature as a function of wind direction and the sampling location itself. However, a comparison of the wind directions during the sampling and calculated backward trajectories underlined the need for more detailed information on environmental parameters for bioaerosol investigations. The current findings support the assumption of a bacterial core community in the atmosphere. They may be emitted from strong aerosolizing sources, probably being mixed and dispersed over long distances. PMID:25800495

  19. Antibiotics promote aggregation within aquatic bacterial communities.

    PubMed

    Corno, Gianluca; Coci, Manuela; Giardina, Marco; Plechuk, Sonia; Campanile, Floriana; Stefani, Stefania

    2014-01-01

    The release of antibiotics (AB) into the environment poses several threats for human health due to potential development of AB-resistant natural bacteria. Even though the use of low-dose antibiotics has been promoted in health care and farming, significant amounts of AB are observed in aquatic environments. Knowledge on the impact of AB on natural bacterial communities is missing both in terms of spread and evolution of resistance mechanisms, and of modifications of community composition and productivity. New approaches are required to study the response of microbial communities rather than individual resistance genes. In this study a chemostat-based experiment with 4 coexisting bacterial strains has been performed to mimicking the response of a freshwater bacterial community to the presence of antibiotics in low and high doses. Bacterial abundance rapidly decreased by 75% in the presence of AB, independently of their concentration, and remained constant until the end of the experiment. The bacterial community was mainly dominated by Aeromonas hydrophila and Brevundimonas intermedia while the other two strains, Micrococcus luteus and Rhodococcus sp. never exceed 10%. Interestingly, the bacterial strains, which were isolated at the end of the experiment, were not AB-resistant, while reassembled communities composed of the 4 strains, isolated from treatments under AB stress, significantly raised their performance (growth rate, abundance) in the presence of AB compared to the communities reassembled with strains isolated from the treatment without AB. By investigating the phenotypic adaptations of the communities subjected to the different treatments, we found that the presence of AB significantly increased co-aggregation by 5-6 fold. These results represent the first observation of co-aggregation as a successful strategy of AB resistance based on phenotype in aquatic bacterial communities, and can represent a fundamental step in the understanding of the effects of AB

  20. Antibiotics promote aggregation within aquatic bacterial communities

    PubMed Central

    Corno, Gianluca; Coci, Manuela; Giardina, Marco; Plechuk, Sonia; Campanile, Floriana; Stefani, Stefania

    2014-01-01

    The release of antibiotics (AB) into the environment poses several threats for human health due to potential development of AB-resistant natural bacteria. Even though the use of low-dose antibiotics has been promoted in health care and farming, significant amounts of AB are observed in aquatic environments. Knowledge on the impact of AB on natural bacterial communities is missing both in terms of spread and evolution of resistance mechanisms, and of modifications of community composition and productivity. New approaches are required to study the response of microbial communities rather than individual resistance genes. In this study a chemostat-based experiment with 4 coexisting bacterial strains has been performed to mimicking the response of a freshwater bacterial community to the presence of antibiotics in low and high doses. Bacterial abundance rapidly decreased by 75% in the presence of AB, independently of their concentration, and remained constant until the end of the experiment. The bacterial community was mainly dominated by Aeromonas hydrophila and Brevundimonas intermedia while the other two strains, Micrococcus luteus and Rhodococcus sp. never exceed 10%. Interestingly, the bacterial strains, which were isolated at the end of the experiment, were not AB-resistant, while reassembled communities composed of the 4 strains, isolated from treatments under AB stress, significantly raised their performance (growth rate, abundance) in the presence of AB compared to the communities reassembled with strains isolated from the treatment without AB. By investigating the phenotypic adaptations of the communities subjected to the different treatments, we found that the presence of AB significantly increased co-aggregation by 5–6 fold. These results represent the first observation of co-aggregation as a successful strategy of AB resistance based on phenotype in aquatic bacterial communities, and can represent a fundamental step in the understanding of the effects of

  1. Bacterial communities associated with the lichen symbiosis.

    PubMed

    Bates, Scott T; Cropsey, Garrett W G; Caporaso, J Gregory; Knight, Rob; Fierer, Noah

    2011-02-01

    Lichens are commonly described as a mutualistic symbiosis between fungi and "algae" (Chlorophyta or Cyanobacteria); however, they also have internal bacterial communities. Recent research suggests that lichen-associated microbes are an integral component of lichen thalli and that the classical view of this symbiotic relationship should be expanded to include bacteria. However, we still have a limited understanding of the phylogenetic structure of these communities and their variability across lichen species. To address these knowledge gaps, we used bar-coded pyrosequencing to survey the bacterial communities associated with lichens. Bacterial sequences obtained from four lichen species at multiple locations on rock outcrops suggested that each lichen species harbored a distinct community and that all communities were dominated by Alphaproteobacteria. Across all samples, we recovered numerous bacterial phylotypes that were closely related to sequences isolated from lichens in prior investigations, including those from a lichen-associated Rhizobiales lineage (LAR1; putative N(2) fixers). LAR1-related phylotypes were relatively abundant and were found in all four lichen species, and many sequences closely related to other known N(2) fixers (e.g., Azospirillum, Bradyrhizobium, and Frankia) were recovered. Our findings confirm the presence of highly structured bacterial communities within lichens and provide additional evidence that these bacteria may serve distinct functional roles within lichen symbioses. PMID:21169444

  2. Jellyfish modulate bacterial dynamic and community structure.

    PubMed

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom-forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish-enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to 'jellyfish-associated' and 'free-living' bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into possible changes in

  3. Jellyfish Modulate Bacterial Dynamic and Community Structure

    PubMed Central

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom - forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish - enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to ‘jellyfish - associated’ and ‘free - living’ bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into

  4. Ethical considerations in community oral health.

    PubMed

    Naidoo, Sudeshni

    2015-05-01

    As the public's oral health care needs increase in complexity, there is renewed attention to the ethical dimensions of community oral health decision making and the development of public health ethics in teaching and research in dentistry. Despite their reduction globally, oral diseases persist with a particular distribution pattern that is a reflection of the increasingly widespread inequality in access to community oral health preventive and dental care. This is due to differences in the appropriateness, availability, accessibility, and acceptability of oral health education and the care provided. This article provides an overview of community oral health from an ethical perspective, including the importance of equity, human rights, and social justice in providing oral health care to the underserved. The need for a paradigm shift from highly technical and individualistic dental training curricula is discussed, together with the need to instill a holistic approach to ethical and social responsibility in new dental graduates. It concludes with some possible strategies, using the overarching principles of ethics and bioethics that are applicable to practice among vulnerable populations. PMID:25941240

  5. Defined spatial structure stabilizes a synthetic multispecies bacterial community

    PubMed Central

    Kim, Hyun Jung; Boedicker, James Q.; Choi, Jang Wook; Ismagilov, Rustem F.

    2008-01-01

    This paper shows that for microbial communities, “fences make good neighbors.” Communities of soil microorganisms perform critical functions: controlling climate, enhancing crop production, and remediation of environmental contamination. Microbial communities in the oral cavity and the gut are of high biomedical interest. Understanding and harnessing the function of these communities is difficult: artificial microbial communities in the laboratory become unstable because of “winner-takes-all” competition among species. We constructed a community of three different species of wild-type soil bacteria with syntrophic interactions using a microfluidic device to control spatial structure and chemical communication. We found that defined microscale spatial structure is both necessary and sufficient for the stable coexistence of interacting bacterial species in the synthetic community. A mathematical model describes how spatial structure can balance the competition and positive interactions within the community, even when the rates of production and consumption of nutrients by species are mismatched, by exploiting nonlinearities of these processes. These findings provide experimental and modeling evidence for a class of communities that require microscale spatial structure for stability, and these results predict that controlling spatial structure may enable harnessing the function of natural and synthetic multispecies communities in the laboratory. PMID:19011107

  6. Bacterial Biofilms as Complex Communities

    NASA Astrophysics Data System (ADS)

    Vlamakis, Hera

    2010-03-01

    Many microbial populations form surface-associated multicellular communities known as biofilms. These multicellular communities are encased in a self-produced extracellular matrix composed of polysaccharides and proteins. Division of labor is a key feature of these communities and different cells serve distinct functions. We have found that in biofilms of the bacterium Bacillus subtilis, different cell types including matrix-producing and sporulating cells coexist and localize to distinct regions within the structured community. We were interested in understanding how these different cell types arise. Using fluorescence reporters under the control of promoters that are specific for distinct cell types we were able to follow the dynamics of differentiation throughout biofilm development. We found that a series of extracellular signals leads to differentiation of distinct cell types during biofilm formation. In addition, we found that extracellular matrix functions as a differentiation signal for timely sporulation within a biofilm and mutants unable to produce matrix were delayed in sporulation. Our results indicate that within a biofilm, cell-cell signaling is directional in that one cell type produces a signal that is sensed by another distinct cell type. Furthermore, once differentiated, cells become resistant to the action of other signaling molecules making it possible to maintain distinct cell populations over prolonged periods.

  7. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    SciTech Connect

    Maltz, Lauren

    2015-08-25

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  8. Point detection of bacterial and viral pathogens using oral samples

    NASA Astrophysics Data System (ADS)

    Malamud, Daniel

    2008-04-01

    Oral samples, including saliva, offer an attractive alternative to serum or urine for diagnostic testing. This is particularly true for point-of-use detection systems. The various types of oral samples that have been reported in the literature are presented here along with the wide variety of analytes that have been measured in saliva and other oral samples. The paper focuses on utilizing point-detection of infectious disease agents, and presents work from our group on a rapid test for multiple bacterial and viral pathogens by monitoring a series of targets. It is thus possible in a single oral sample to identify multiple pathogens based on specific antigens, nucleic acids, and host antibodies to those pathogens. The value of such a technology for detecting agents of bioterrorism at remote sites is discussed.

  9. Intracranial bacterial infections of oral origin.

    PubMed

    Moazzam, Alan A; Rajagopal, Sowmya M; Sedghizadeh, Parish P; Zada, Gabriel; Habibian, Mina

    2015-05-01

    Brain abscesses are rare but potentially deadly complications of odontogenic infections. This phenomenon has been described mainly in the form of case reports, as large-scale studies are difficult to perform. We compiled a total of 60 previously published cases of such a complication to investigate the predisposing factors, microbiology, and clinical outcomes of intracranial abscesses of odontogenic origin. A systematic review of the literature using the PubMed database was performed. Men accounted for 82.1% of cases, and the mean age was 42.1 years. Caries with periapical involvement and periodontitis were the two most common intra-oral sources, and wisdom tooth extraction was the most common preceding dental procedure. In 56.4% of cases, there were obvious signs of dental disease prior to development of intracranial infection. Commonly implicated microorganisms included Streptococcus viridans (especially the anginosus group), Actinomyces, Peptostreptococcus, Prevotella, Fusobacterium, Aggregatibacter actinomycetemcomitans and Eikenella corrodens. There was an 8.3% mortality rate. Intracranial abscesses can form anywhere within the brain, and appear unrelated to the side of dental involvement. This suggests that hematogenous spread is the most likely route of dissemination. PMID:25800939

  10. Bacterial community analysis of Indonesian hot springs.

    PubMed

    Baker, G C; Gaffar, S; Cowan, D A; Suharto, A R

    2001-06-12

    We report the first attempts to describe thermophilic bacterial communities in Indonesia's thermal springs using molecular phylogenetic analyses. 16S rRNA genes from laboratory cultures and DNA directly amplified from three hot springs in West Java were sequenced. The 22 sequences obtained were assignable to the taxa Proteobacteria, Bacillus and Flavobacterium, including a number of clades not normally associated with thermophily. PMID:11410357

  11. Bacterial Community Diversity Harboured by Interacting Species.

    PubMed

    Bili, Mikaël; Cortesero, Anne Marie; Mougel, Christophe; Gauthier, Jean Pierre; Ermel, Gwennola; Simon, Jean Christophe; Outreman, Yannick; Terrat, Sébastien; Mahéo, Frédérique; Poinsot, Denis

    2016-01-01

    All animals are infected by microbial partners that can be passengers or residents and influence many biological traits of their hosts. Even if important factors that structure the composition and abundance of microbial communities within and among host individuals have been recently described, such as diet, developmental stage or phylogeny, few studies have conducted cross-taxonomic comparisons, especially on host species related by trophic relationships. Here, we describe and compare the microbial communities associated with the cabbage root fly Delia radicum and its three major parasitoids: the two staphylinid beetles Aleochara bilineata and A. bipustulata and the hymenopteran parasitoid Trybliographa rapae. For each species, two populations from Western France were sampled and microbial communities were described through culture independent methods (454 pyrosequencing). Each sample harbored at least 59 to 261 different bacterial phylotypes but was strongly dominated by one or two. Microbial communities differed markedly in terms of composition and abundance, being mainly influenced by phylogenetic proximity but also geography to a minor extent. Surprisingly, despite their strong trophic interaction, parasitoids shared a very low proportion of microbial partners with their insect host. Three vertically transmitted symbionts from the genus Wolbachia, Rickettsia, and Spiroplasma were found in this study. Among them, Wolbachia and Spiroplasma were found in both the cabbage fly and at least one of its parasitoids, which could result from horizontal transfers through trophic interactions. Phylogenetic analysis showed that this hypothesis may explain some but not all cases. More work is needed to understand the dynamics of symbiotic associations within trophic network and the effect of these bacterial communities on the fitness of their hosts. PMID:27258532

  12. Bacterial Community Diversity Harboured by Interacting Species

    PubMed Central

    Bili, Mikaël; Cortesero, Anne Marie; Mougel, Christophe; Gauthier, Jean Pierre; Ermel, Gwennola; Simon, Jean Christophe; Outreman, Yannick; Terrat, Sébastien; Mahéo, Frédérique; Poinsot, Denis

    2016-01-01

    All animals are infected by microbial partners that can be passengers or residents and influence many biological traits of their hosts. Even if important factors that structure the composition and abundance of microbial communities within and among host individuals have been recently described, such as diet, developmental stage or phylogeny, few studies have conducted cross-taxonomic comparisons, especially on host species related by trophic relationships. Here, we describe and compare the microbial communities associated with the cabbage root fly Delia radicum and its three major parasitoids: the two staphylinid beetles Aleochara bilineata and A. bipustulata and the hymenopteran parasitoid Trybliographa rapae. For each species, two populations from Western France were sampled and microbial communities were described through culture independent methods (454 pyrosequencing). Each sample harbored at least 59 to 261 different bacterial phylotypes but was strongly dominated by one or two. Microbial communities differed markedly in terms of composition and abundance, being mainly influenced by phylogenetic proximity but also geography to a minor extent. Surprisingly, despite their strong trophic interaction, parasitoids shared a very low proportion of microbial partners with their insect host. Three vertically transmitted symbionts from the genus Wolbachia, Rickettsia, and Spiroplasma were found in this study. Among them, Wolbachia and Spiroplasma were found in both the cabbage fly and at least one of its parasitoids, which could result from horizontal transfers through trophic interactions. Phylogenetic analysis showed that this hypothesis may explain some but not all cases. More work is needed to understand the dynamics of symbiotic associations within trophic network and the effect of these bacterial communities on the fitness of their hosts. PMID:27258532

  13. Bacterial communities in petroleum oil in stockpiles.

    PubMed

    Yoshida, Nobuyuki; Yagi, Kazuhiro; Sato, Daisuke; Watanabe, Noriko; Kuroishi, Takeshi; Nishimoto, Kana; Yanagida, Akira; Katsuragi, Tohoru; Kanagawa, Takahiro; Kurane, Ryuichiro; Tani, Yoshiki

    2005-02-01

    Bacterial communities in crude-oil samples from Japanese oil stockpiles were investigated by 16S rRNA gene cloning, followed by denaturing gradient gel electrophoresis (DGGE) analysis. 16S rRNA genes were successfully amplified by PCR after isooctane treatment from three kinds of crude-oil sample collected at four oil stockpiles in Japan. DGGE profiles showed that bacteria related to Ochrobactrum anthropi, Burkholderia cepacia, Stenotrophomonas maltophilia, Propionibacterium acnes, and Brevundimonas diminuta were frequently detected in most crude-oil samples. The bacterial communities differed in the sampling time and layer. Among the predominant bacteria detected in the crude oil, only three species were found for bacteria isolated on agar plates and were related to Burkholderia, Stenotrophomonas, and Propionibacterium, while Ochrobactrum sp. could not be isolated although this species seemed to be the most abundant bacterium in crude oil from the DGGE profiles. Using an archaea-specific primer set, methanogens were found in crude-oil sludge but not in crude-oil samples, indicating that methanogens might be involved in sludge formation in oil stockpiles. PMID:16233771

  14. Stress and the microbiome: linking glucocorticoids to bacterial community dynamics in wild red squirrels.

    PubMed

    Stothart, Mason R; Bobbie, Colleen B; Schulte-Hostedde, Albrecht I; Boonstra, Rudy; Palme, Rupert; Mykytczuk, Nadia C S; Newman, Amy E M

    2016-01-01

    Bacterial diversity within animals is emerging as an essential component of health, but it is unknown how stress may influence the microbiome. We quantify a proximate link between the oral microbiome and hypothalamic-pituitary-adrenal (HPA) axis activity using faecal glucocorticoid metabolites (FGM) in wild red squirrels (Tamiasciurus hudsonicus). Not only was bacterial diversity lower at higher levels of FGM, but also between capture periods a change in bacterial relative abundance was related to an increase in FGM. These linkages between the HPA axis and microbiome communities represent a powerful capacity for stress to have multi-dimensional effects on health. PMID:26740566

  15. The effect of arginine on oral biofilm communities.

    PubMed

    Nascimento, M M; Browngardt, C; Xiaohui, X; Klepac-Ceraj, V; Paster, B J; Burne, R A

    2014-02-01

    Alkali production by oral bacteria via the arginine deiminase system (ADS) increases the pH of oral biofilms and reduces the risk for development of carious lesions. This study tested the hypothesis that increased availability of arginine in the oral environment through an exogenous source enhances the ADS activity levels in saliva and dental plaque. Saliva and supra-gingival plaque samples were collected from 19 caries-free (CF) individuals (DMFT = 0) and 19 caries-active (CA) individuals (DMFT ≥ 2) before and after treatment, which comprised the use of a fluoride-free toothpaste containing 1.5% arginine, or a regular fluoride-containing toothpaste twice daily for 4 weeks. ADS activity was measured by quantification of ammonia produced from arginine by oral samples at baseline, after washout period, 4 weeks of treatment, and 2 weeks post-treatment. Higher ADS activity levels were observed in plaque samples from CF compared to those of CA individuals (P = 0.048) at baseline. The use of the arginine toothpaste significantly increased ADS activity in plaque of CA individuals (P = 0.026). The plaque microbial profiles of CA treated with the arginine toothpaste showed a shift in bacterial composition to a healthier community, more similar to that of CF individuals. Thus, an anti-caries effect may be expected from arginine-containing formulations due in large part to the enhancement of ADS activity levels and potential favorable modification to the composition of the oral microbiome. PMID:24289808

  16. Maternal Oral Bacterial Levels Predict Early Childhood Caries Development

    PubMed Central

    Chaffee, B.W.; Gansky, S.A.; Weintraub, J.A.; Featherstone, J.D.B.; Ramos-Gomez, F.J.

    2014-01-01

    Objective: To calculate the association of maternal salivary bacterial challenge (mutans streptococci [MS] and lactobacilli [LB]) from pregnancy through 24 months’ postpartum with child caries incidence (≥1 cavitated or restored teeth) at 36 months. Materials & Methods: Dental, salivary bacterial, sociodemographic, and behavioral measures were collected at three- to six-month intervals from a birth cohort of low-income Hispanic mother-child dyads (N = 243). We calculated the relative child caries incidence, adjusted for confounding, following higher maternal challenge of MS (>4500 colony-forming units per milliliter of saliva [CFU/mL]) and LB (>50 CFU/mL) based on multivariable models. Results: Salivary MS and LB levels were greater among mothers of caries-affected children versus caries-free children. Mothers with higher salivary MS challenge were more likely to have MS-positive children (>0 CFU/mL), but maternal LB challenge was not a statistically significant predictor of child LB-positive status. Adjusting for sociodemographics, feeding and care practices, and maternal dental status, higher maternal salivary challenge of both MS and LB over the study period predicted nearly double the child caries incidence versus lower MS and LB (cumulative incidence ratio: 1.9; 95% confidence interval: 1.1, 3.8). Conclusion: Maternal salivary bacterial challenge not only is associated with oral infection among children but also predicts increased early childhood caries occurrence. PMID:24356441

  17. Atmospheric cloud water contains a diverse bacterial community

    SciTech Connect

    Kourtev, P. S.; Hill, Kimberly A.; Shepson, Paul B.; Konopka, Allan

    2011-06-15

    Atmospheric cloud water contains an active microbial community which can impact climate, human health and ecosystem processes in terrestrial and aquatic systems. Most studies on the composition of microbial communities in clouds have been performed with orographic clouds that are typically in direct contact with the ground. We collected water samples from cumulus clouds above the upper U.S. Midwest. The cloud water was analyzed for the diversity of bacterial phylotypes by denaturing gradient gel electrophoresis (DGGE) and sequencing of 16S rRNA gene amplicons. DGGE analyses of bacterial communities detected 17e21 bands per sample. Sequencing confirmed the presence of a diverse bacterial community; sequences from seven bacterial phyla were retrieved. Cloud water bacterial communities appeared to be dominated by members of the cyanobacteria, proteobacteria, actinobacteria and firmicutes.

  18. Age, sun and substrate: triggers of bacterial communities in lichens.

    PubMed

    Cardinale, Massimiliano; Steinová, Jana; Rabensteiner, Johannes; Berg, Gabriele; Grube, Martin

    2012-02-01

    Bacterial communities colonize the surfaces of lichens in a biofilm-like manner. The overall structure of the bacterial communities harboured by the lichens shows similarities, in particular the dominance of not yet cultured Alphaproteobacteria. Parameters causing variation in abundance, composition and spatial organization of the lichen-associated bacterial communities are so far poorly understood. As a first step, we used a microscopic approach to test the significance of both lichen-intrinsic and extrinsic environmental factors on the bacterial communities associated with 11 lichen samples, belonging to six species. Some of these species have thalli with a distinct age gradient. A statistically significant effect can be attributed to the age of the thallus parts, which is an intrinsic factor: growing parts of the lichens host bacterial communities that significantly differ from those of the ageing portions of the thalli. The substrate type (rock, tree, understory) and (at a lower extent) the exposition to the sun also affected the bacterial communities. Interestingly, the abundance of bacterial cells in the lichens was also influenced by the same structure-triggering factors. No effect on the composition with main bacterial groups was attributed to different lichen species, differentiated thallus parts or thallus growth type. Our results are important for the experimental designs in lichen-bacterial ecology. PMID:23757225

  19. Oral iron acutely elevates bacterial growth in human serum

    PubMed Central

    Cross, James H.; Bradbury, Richard S.; Fulford, Anthony J.; Jallow, Amadou T.; Wegmüller, Rita; Prentice, Andrew M.; Cerami, Carla

    2015-01-01

    Iron deficiency is the most common nutrient deficiency worldwide and routine supplementation is standard policy for pregnant mothers and children in most low-income countries. However, iron lies at the center of host-pathogen competition for nutritional resources and recent trials of iron administration in African and Asian children have resulted in significant excesses of serious adverse events including hospitalizations and deaths. Increased rates of malaria, respiratory infections, severe diarrhea and febrile illnesses of unknown origin have all been reported, but the mechanisms are unclear. We here investigated the ex vivo growth characteristics of exemplar sentinel bacteria in adult sera collected before and 4 h after oral supplementation with 2 mg/kg iron as ferrous sulfate. Escherichia coli, Yersinia enterocolitica and Salmonella enterica serovar Typhimurium (all gram-negative bacteria) and Staphylococcus epidermidis (gram-positive) showed markedly elevated growth in serum collected after iron supplementation. Growth rates were very strongly correlated with transferrin saturation (p < 0.0001 in all cases). Growth of Staphylococcus aureus, which preferentially scavenges heme iron, was unaffected. These data suggest that even modest oral supplements with highly soluble (non-physiological) iron, as typically used in low-income settings, could promote bacteremia by accelerating early phase bacterial growth prior to the induction of immune defenses. PMID:26593732

  20. Bacterial Community Succession in Pine-Wood Decomposition

    PubMed Central

    Kielak, Anna M.; Scheublin, Tanja R.; Mendes, Lucas W.; van Veen, Johannes A.; Kuramae, Eiko E.

    2016-01-01

    Though bacteria and fungi are common inhabitants of decaying wood, little is known about the relationship between bacterial and fungal community dynamics during natural wood decay. Based on previous studies involving inoculated wood blocks, strong fungal selection on bacteria abundance and community composition was expected to occur during natural wood decay. Here, we focused on bacterial and fungal community compositions in pine wood samples collected from dead trees in different stages of decomposition. We showed that bacterial communities undergo less drastic changes than fungal communities during wood decay. Furthermore, we found that bacterial community assembly was a stochastic process at initial stage of wood decay and became more deterministic in later stages, likely due to environmental factors. Moreover, composition of bacterial communities did not respond to the changes in the major fungal species present in the wood but rather to the stage of decay reflected by the wood density. We concluded that the shifts in the bacterial communities were a result of the changes in wood properties during decomposition and largely independent of the composition of the wood-decaying fungal communities. PMID:26973611

  1. Dynamics of Bacterial Community Composition in the Malaria Mosquito's Epithelia

    PubMed Central

    Tchioffo, Majoline T.; Boissière, Anne; Abate, Luc; Nsango, Sandrine E.; Bayibéki, Albert N.; Awono-Ambéné, Parfait H.; Christen, Richard; Gimonneau, Geoffrey; Morlais, Isabelle

    2016-01-01

    The Anopheles midgut hosts diverse bacterial communities and represents a complex ecosystem. Several evidences indicate that mosquito midgut microbiota interferes with malaria parasite transmission. However, the bacterial composition of salivary glands and ovaries, two other biologically important tissues, has not been described so far. In this study, we investigated the dynamics of the bacterial communities in the mosquito tissues from emerging mosquitoes until 8 days after a blood meal containing Plasmodium falciparum gametocytes and described the temporal colonization of the mosquito epithelia. Bacterial communities were identified in the midgut, ovaries, and salivary glands of individual mosquitoes using pyrosequencing of the 16S rRNA gene. We found that the mosquito epithelia share a core microbiota, but some bacteria taxa were more associated with one or another tissue at a particular time point. The bacterial composition in the tissues of emerging mosquitoes varied according to the breeding site, indicating that some bacteria are acquired from the environment. Our results revealed temporal variations in the bacterial community structure, possibly as a result of the mosquito physiological changes. The abundance of Serratia significantly correlated with P. falciparum infection both in the midgut and salivary glands of malaria challenged mosquitoes, which suggests that interactions occur between microbes and parasites. These bacteria may represent promising targets for vector control strategies. Overall, this study points out the importance of characterizing bacterial communities in malaria mosquito vectors. PMID:26779155

  2. Determinants of bacterial communities in Canadian agroforestry systems.

    PubMed

    Banerjee, Samiran; Baah-Acheamfour, Mark; Carlyle, Cameron N; Bissett, Andrew; Richardson, Alan E; Siddique, Tariq; Bork, Edward W; Chang, Scott X

    2016-06-01

    Land-use change is one of the most important factors influencing soil microbial communities, which play a pivotal role in most biogeochemical and ecological processes. Using agroforestry systems as a model, this study examined the effects of land uses and edaphic properties on bacterial communities in three agroforestry types covering a 270 km soil-climate gradient in Alberta, Canada. Our results demonstrate that land-use patterns exert stronger effects on soil bacterial communities than soil zones in these agroforestry systems. Plots with trees in agroforestry systems promoted greater bacterial abundance and to some extent species richness, which was associated with more nutrient-rich soil resources. While Acidobacteria, Actinobacteria and Alphaproteobacteria were the dominant bacterial phyla and subphyla across land uses, Arthrobacter, Acidobacteria_Gp16, Burkholderia, Rhodanobacter and Rhizobium were the keystone taxa in these agroforestry systems. Soil pH and carbon contents emerged as the major determinants of bacterial community characteristics. We found non-random co-occurrence and modular patterns of soil bacterial communities, and these patterns were controlled by edaphic factors and not their taxonomy. Overall, this study highlights the drivers and co-occurrence patterns of soil microbial communities in agroforestry systems. PMID:26184386

  3. Environmental and anthropogenic controls over bacterial communities in wetland soils

    PubMed Central

    Hartman, Wyatt H.; Richardson, Curtis J.; Vilgalys, Rytas; Bruland, Gregory L.

    2008-01-01

    Soil bacteria regulate wetland biogeochemical processes, yet little is known about controls over their distribution and abundance. Bacteria in North Carolina swamps and bogs differ greatly from Florida Everglades fens, where communities studied were unexpectedly similar along a nutrient enrichment gradient. Bacterial composition and diversity corresponded strongly with soil pH, land use, and restoration status, but less to nutrient concentrations, and not with wetland type or soil carbon. Surprisingly, wetland restoration decreased bacterial diversity, a response opposite to that in terrestrial ecosystems. Community level patterns were underlain by responses of a few taxa, especially the Acidobacteria and Proteobacteria, suggesting promise for bacterial indicators of restoration and trophic status. PMID:19004771

  4. Treponema denticola chymotrypsin-like proteinase (CTLP) integrates spirochaetes within oral microbial communities

    PubMed Central

    Cogoni, Valentina; Morgan-Smith, Alex; Fenno, J. Christopher; Dymock, David

    2012-01-01

    Treponema denticola is found ubiquitously in the human oral cavity and is mainly associated with bacterial communities implicated in the establishment and development of periodontal disease. The ability to become integrated within biofilm communities is crucial to the growth and survival of oral bacteria, and involves inter-bacterial coaggregation, metabolic cooperation, and synergy against host defences. In this article we show that the chymotrypsin-like proteinase (CTLP), found within a high-molecular-mass complex on the cell surface, mediates adherence of T. denticola to other potential periodontal pathogens, Porphyromonas gingivalis, Fusobacterium nucleatum, Prevotella intermedia and Parvimonas micra. Proteolytic activity per se did not appear to be required for the interactions, and expression of the major outer-sheath protein (Msp) was not necessary, except for binding Parv. micra. Biofilms of densely packed cells and matrix, up to 40 µm in depth, were formed between T. denticola and P. gingivalis on salivary pellicle, with T. denticola cells enriched in the upper layers. Expression of CTLP, but not Msp, was critical for dual-species biofilm formation with P. gingivalis. T. denticola did not form dual-species biofilms with any of the other three periodontal bacterial species under various conditions. Synergy between T. denticola and P. gingivalis was also shown by increased inhibition of blood clotting, which was CTLP-dependent. The results demonstrate the critical role of CTLP in interactions of T. denticola with other oral micro-organisms, leading to synergy in microbial community development and host tissue pathogenesis. PMID:22313692

  5. Hydrocarbon pollutants shape bacterial community assembly of harbor sediments.

    PubMed

    Barbato, Marta; Mapelli, Francesca; Magagnini, Mirko; Chouaia, Bessem; Armeni, Monica; Marasco, Ramona; Crotti, Elena; Daffonchio, Daniele; Borin, Sara

    2016-03-15

    Petroleum pollution results in co-contamination by different classes of molecules, entailing the occurrence of marine sediments difficult to remediate, as in the case of the Ancona harbor (Mediterranean Sea, Italy). Autochthonous bioaugmentation (ABA), by exploiting the indigenous microbes of the environment to be treated, could represent a successful bioremediation strategy. In this perspective we aimed to i) identify the main drivers of the bacterial communities' richness in the sediments, ii) establish enrichment cultures with different hydrocarbon pollutants evaluating their effects on the bacterial communities' composition, and iii) obtain a collection of hydrocarbon degrading bacteria potentially exploitable in ABA. The correlation between the selection of different specialized bacterial populations and the type of pollutants was demonstrated by culture-independent analyses, and by establishing a collection of bacteria with different hydrocarbon degradation traits. Our observations indicate that pollution dictates the diversity of sediment bacterial communities and shapes the ABA potential in harbor sediments. PMID:26849913

  6. Metamorphosis of a Butterfly-Associated Bacterial Community

    PubMed Central

    Hammer, Tobin J.; McMillan, W. Owen; Fierer, Noah

    2014-01-01

    Butterflies are charismatic insects that have long been a focus of biological research. They are also habitats for microorganisms, yet these microbial symbionts are little-studied, despite their likely importance to butterfly ecology and evolution. In particular, the diversity and composition of the microbial communities inhabiting adult butterflies remain uncharacterized, and it is unknown how the larval (caterpillar) and adult microbiota compare. To address these knowledge gaps, we used Illumina sequencing of 16S rRNA genes from internal bacterial communities associated with multiple life stages of the neotropical butterfly Heliconius erato. We found that the leaf-chewing larvae and nectar- and pollen-feeding adults of H. erato contain markedly distinct bacterial communities, a pattern presumably rooted in their distinct diets. Larvae and adult butterflies host relatively small and similar numbers of bacterial phylotypes, but few are common to both stages. The larval microbiota clearly simplifies and reorganizes during metamorphosis; thus, structural changes in a butterfly's bacterial community parallel those in its own morphology. We furthermore identify specific bacterial taxa that may mediate larval and adult feeding biology in Heliconius and other butterflies. Although male and female Heliconius adults differ in reproductive physiology and degree of pollen feeding, bacterial communities associated with H. erato are not sexually dimorphic. Lastly, we show that captive and wild individuals host different microbiota, a finding that may have important implications for the relevance of experimental studies using captive butterflies. PMID:24466308

  7. Do Honeybees Shape the Bacterial Community Composition in Floral Nectar?

    PubMed Central

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Halpern, Malka

    2013-01-01

    Floral nectar is considered the most important reward animal-pollinated plants offer to attract pollinators. Here we explore whether honeybees, which act as pollinators, affect the composition of bacterial communities in the nectar. Nectar and honeybees were sampled from two plant species: Amygdalus communis and Citrus paradisi. To prevent the contact of nectar with pollinators, C. paradisi flowers were covered with net bags before blooming (covered flowers). Comparative analysis of bacterial communities in the nectar and on the honeybees was performed by the 454-pyrosequencing technique. No significant differences were found among bacterial communities in honeybees captured on the two different plant species. This resemblance may be due to the presence of dominant bacterial OTUs, closely related to the Arsenophonus genus. The bacterial communities of the nectar from the covered and uncovered C. paradisi flowers differed significantly; the bacterial communities on the honeybees differed significantly from those in the covered flowers’ nectar, but not from those in the uncovered flowers’ nectar. We conclude that the honeybees may introduce bacteria into the nectar and/or may be contaminated by bacteria introduced into the nectar by other sources such as other pollinators and nectar thieves. PMID:23844027

  8. Bacterial Community Affects Toxin Production by Gymnodinium catenatum

    PubMed Central

    Albinsson, Maria E.; Negri, Andrew P.; Blackburn, Susan I.; Bolch, Christopher J. S.

    2014-01-01

    The paralytic shellfish toxin (PST)-producing dinoflagellate Gymnodinium catenatum grows in association with a complex marine bacterial community that is both essential for growth and can alter culture growth dynamics. Using a bacterial community replacement approach, we examined the intracellular PST content, production rate, and profile of G. catenatum cultures grown with bacterial communities of differing complexity and composition. Clonal offspring were established from surface-sterilized resting cysts (produced by sexual crosses of strain GCDE06 and strain GCLV01) and grown with: 1) complex bacterial communities derived from each of the two parent cultures; 2) simplified bacterial communities composed of the G. catenatum-associated bacteria Marinobacter sp. strain DG879 or Alcanivorax sp. strain DG881; 3) a complex bacterial community associated with an untreated, unsterilized sexual cross of the parents. Toxin content (STX-equivalent per cell) of clonal offspring (134–197 fmol STX cell−1) was similar to the parent cultures (169–206 fmol STX cell−1), however cultures grown with single bacterial types contained less toxin (134–146 fmol STX cell−1) than offspring or parent cultures grown with more complex mixed bacterial communities (152–176 fmol STX cell−1). Specific toxin production rate (fmol STX day−1) was strongly correlated with culture growth rate. Net toxin production rate (fmol STX cell−1 day−1) did not differ among treatments, however, mean net toxin production rate of offspring was 8-fold lower than the parent cultures, suggesting that completion of the sexual lifecycle in laboratory cultures leads to reduced toxin production. The PST profiles of offspring cultures were most similar to parent GCDE06 with the exception of cultures grown with Marinobacter sp. DG879 which produced higher proportions of dcGTX2+3 and GC1+2, and lower proportions of C1+2 and C3+4. Our data demonstrate that the bacterial community can alter

  9. [Biofilms of the oral cavity. Formation, development and involvement in the onset of diseases related to bacterial plaque increase].

    PubMed

    Bortolaia, C; Sbordone, L

    2002-05-01

    Biofilm is defined as a community of bacteria intimately associated with each other and included within an exopolymer matrix: this biological unit exhibits its own properties, quite different in comparison with those showed by the single species in planktonic form. The oral cavity appears as an open ecosystem, with a dynamic balance between the entrance of microrganisms, colonisation modalities and host defences aimed to their removal: to avoid elimination, bacteria need to adhere to either hard dental surfaces or epithelial surfaces. The oral biofilm formation and development, and the inside selection of specific microrganisms have been correlated with the most common oral pathologies, such as dental caries, periodontal disease and peri-implantitis. Many of these bacteria are usual saprophytes of the oral environment, that, in particular situations, can overcome and express their virulence factors: to better understand the mechanisms of these pathologies it's necessary to know the complex interactions between all the bacterial species inside the biofilm and host tissues and responses. The present paper is a review of the most significant studies on the biofilm development modalities, their correlations with either health or illness of the oral cavity, the bacterial co-aggregation strategies and the biofilm response to antimicrobial agents. PMID:12070469

  10. Salivary bacterial fingerprints of established oral disease revealed by the Human Oral Microbe Identification using Next Generation Sequencing (HOMINGS) technique

    PubMed Central

    Belstrøm, Daniel; Paster, Bruce J.; Fiehn, Nils-Erik; Bardow, Allan; Holmstrup, Palle

    2016-01-01

    Background and objective The composition of the salivary microbiota, as determined using various molecular methods, has been reported to differentiate oral health from diseases. Thus, the purpose of this study was to utilize the newly developed molecular technique HOMINGS (Human Oral Microbe Identification using Next Generation Sequencing) for comparison of the salivary microbiota in patients with periodontitis, patients with dental caries, and orally healthy individuals. The hypothesis was that this method could add on to the existing knowledge on salivary bacterial profiles in oral health and disease. Design Stimulated saliva samples (n=30) were collected from 10 patients with untreated periodontitis, 10 patients with untreated dental caries, and 10 orally healthy individuals. Salivary microbiota was analyzed using HOMINGS and statistical analysis was performed using Kruskal–Wallis test with Benjamini–Hochberg's correction. Results From a total of 30 saliva samples, a mean number of probe targets of 205 (range 120–353) were identified, and a statistically significant higher mean number of targets was registered in samples from patients with periodontitis (mean 220, range 143–306) and dental caries (mean 221, range 165–353) as compared to orally healthy individuals (mean 174, range 120–260) (p=0.04 and p=0.04). Nine probe targets were identified with a different relative abundance between groups (p<0.05). Conclusions Cross-sectional comparison of salivary bacterial profiles by means of HOMINGS analysis showed that different salivary bacterial profiles were associated with oral health and disease. Future large-scale prospective studies are needed to evaluate if saliva-based screening for disease-associated oral bacterial profiles may be used for identification of patients at risk of acquiring periodontitis and dental caries. PMID:26782357

  11. Impact of disinfection on drinking water biofilm bacterial community.

    PubMed

    Mi, Zilong; Dai, Yu; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-11-01

    Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants (chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiSeq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination. PMID:26574105

  12. Bacterial Networks in Cells and Communities.

    PubMed

    Sourjik, Victor; Vorholt, Julia A

    2015-11-20

    Research on the bacterial regulatory networks is currently experiencing a true revival, driven by advances in methodology and by emergence of novel concepts. The biannual conference Bacterial Networks (BacNet15) held in May 2015, in Sant Feliu de Guíxols, Spain, covered progress in the studies of regulatory networks that control bacterial physiology, cell biology, stress responses, metabolism, collective behavior and evolution. It demonstrated how interdisciplinary approaches that combine molecular biology and biochemistry with the latest microscopy developments, whole cell (-omics) approaches and mathematical modeling can help understand design principles relevant in microbiology. It further showed how current biotechnology and medical microbiology could profit from our knowledge of and ability to engineer regulatory networks of bacteria. PMID:26506266

  13. Endophytic bacterial community of a Mediterranean marine angiosperm (Posidonia oceanica)

    PubMed Central

    Garcias-Bonet, Neus; Arrieta, Jesus M.; de Santana, Charles N.; Duarte, Carlos M.; Marbà, Núria

    2012-01-01

    Bacterial endophytes are crucial for the survival of many terrestrial plants, but little is known about the presence and importance of bacterial endophytes of marine plants. We conducted a survey of the endophytic bacterial community of the long-living Mediterranean marine angiosperm Posidonia oceanica in surface-sterilized tissues (roots, rhizomes, and leaves) by Denaturing Gradient Gel Electrophoresis (DGGE). A total of 26 Posidonia oceanica meadows around the Balearic Islands were sampled, and the band patterns obtained for each meadow were compared for the three sampled tissues. Endophytic bacterial sequences were detected in most of the samples analyzed. A total of 34 OTUs (Operational Taxonomic Units) were detected. The main OTUs of endophytic bacteria present in P. oceanica tissues belonged primarily to Proteobacteria (α, γ, and δ subclasses) and Bacteroidetes. The OTUs found in roots significantly differed from those of rhizomes and leaves. Moreover, some OTUs were found to be associated to each type of tissue. Bipartite network analysis revealed differences in the bacterial endophyte communities present on different islands. The results of this study provide a pioneering step toward the characterization of the endophytic bacterial community associated with tissues of a marine angiosperm and reveal the presence of bacterial endophytes that differed among locations and tissue types. PMID:23049528

  14. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments

    PubMed Central

    Rocha, Lidianne L.; Colares, Geórgia B.; Nogueira, Vanessa L. R.; Paes, Fernanda A.; Melo, Vânia M. M.

    2016-01-01

    We investigated the relationship among environmental variables, composition, and structure of bacterial communities in different habitats in a mangrove located nearby to an oil exploitation area, aiming to retrieve the natural pattern of bacterial communities in this ecosystem. The T-RFLP analysis showed a high diversity of bacterial populations and an increase in the bacterial richness from habitats closer to the sea and without vegetation (S1) to habitats covered by Avicennia schaueriana (S2) and Rhizophora mangle (S3). Environmental variables in S1 and S2 were more similar than in S3; however, when comparing the bacterial compositions, S2 and S3 shared more OTUs between them, suggesting that the presence of vegetation is an important factor in shaping these bacterial communities. In silico analyses of the fragments revealed a high diversity of the class Gammaproteobacteria in the 3 sites, although in general they presented quite different bacterial composition, which is probably shaped by the specificities of each habitat. This study shows that microhabitats inside of a mangrove ecosystem harbor diverse and distinct microbiota, reinforcing the need to conserve these ecosystems as a whole. PMID:26989418

  15. Opposing phylogenetic diversity gradients of plant and soil bacterial communities.

    PubMed

    Goberna, Marta; Navarro-Cano, Jose A; Verdú, Miguel

    2016-02-24

    Plants and soil microbes show parallel patterns of species-level diversity. Diverse plant communities release a wider range of organics that are consumed by more microbial species. We speculated, however, that diversity metrics accounting for the evolutionary distance across community members would reveal opposing patterns between plant and soil bacterial phylogenetic diversity. Plant phylogenetic diversity enhances plant productivity and thus expectedly soil fertility. This, in turn, might reduce bacterial phylogenetic diversity by favouring one (or a few) competitive bacterial clade. We collected topsoils in 15 semi-arid plant patches and adjacent low-cover areas configuring a plant phylodiversity gradient, pyrosequenced the 16S rRNA gene to identify bacterial taxa and analysed soil fertility parameters. Structural equation modelling showed positive effects of both plant richness and phylogenetic diversity on soil fertility. Fertility increased bacterial richness but reduced bacterial phylogenetic diversity. This might be attributed to the competitive dominance of a lineage based on its high relative fitness. This suggests biotic interactions as determinants of the soil bacterial community assembly, while emphasizing the need to use phylogeny-informed metrics to tease apart the processes underlying the patterns of diversity. PMID:26888037

  16. Successional Trajectories of Rhizosphere Bacterial Communities over Consecutive Seasons

    PubMed Central

    Shi, Shengjing; Nuccio, Erin; Herman, Donald J.; Rijkers, Ruud; Estera, Katerina; Li, Jiabao; da Rocha, Ulisses Nunes; He, Zhili; Pett-Ridge, Jennifer; Brodie, Eoin L.; Zhou, Jizhong

    2015-01-01

    ABSTRACT It is well known that rhizosphere microbiomes differ from those of surrounding soil, and yet we know little about how these root-associated microbial communities change through the growing season and between seasons. We analyzed the response of soil bacteria to roots of the common annual grass Avena fatua over two growing seasons using high-throughput sequencing of 16S rRNA genes. Over the two periods of growth, the rhizosphere bacterial communities followed consistent successional patterns as plants grew, although the starting communities were distinct. Succession in the rhizosphere was characterized by a significant decrease in both taxonomic and phylogenetic diversity relative to background soil communities, driven by reductions in both richness and evenness of the bacterial communities. Plant roots selectively stimulated the relative abundance of Alphaproteobacteria, Betaproteobacteria, and Bacteroidetes but reduced the abundance of Acidobacteria, Actinobacteria, and Firmicutes. Taxa that increased in relative abundance in the rhizosphere soil displayed phylogenetic clustering, suggesting some conservation and an evolutionary basis for the response of complex soil bacterial communities to the presence of plant roots. The reproducibility of rhizosphere succession and the apparent phylogenetic conservation of rhizosphere competence traits suggest adaptation of the indigenous bacterial community to this common grass over the many decades of its presence. PMID:26242625

  17. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome

    PubMed Central

    de Souza, Rafael Soares Correa; Okura, Vagner Katsumi; Armanhi, Jaderson Silveira Leite; Jorrín, Beatriz; Lozano, Núria; da Silva, Márcio José; González-Guerrero, Manuel; de Araújo, Laura Migliorini; Verza, Natália Cristina; Bagheri, Homayoun Chaichian; Imperial, Juan; Arruda, Paulo

    2016-01-01

    Plant microbiome and its manipulation herald a new era for plant biotechnology with the potential to benefit sustainable crop production. However, studies evaluating the diversity, structure and impact of the microbiota in economic important crops are still rare. Here we describe a comprehensive inventory of the structure and assemblage of the bacterial and fungal communities associated with sugarcane. Our analysis identified 23,811 bacterial OTUs and an unexpected 11,727 fungal OTUs inhabiting the endophytic and exophytic compartments of roots, shoots, and leaves. These communities originate primarily from native soil around plants and colonize plant organs in distinct patterns. The sample type is the primary driver of fungal community assemblage, and the organ compartment plays a major role in bacterial community assemblage. We identified core bacterial and fungal communities composed of less than 20% of the total microbial richness but accounting for over 90% of the total microbial relative abundance. The roots showed 89 core bacterial families, 19 of which accounted for 44% of the total relative abundance. Stalks are dominated by groups of yeasts that represent over 12% of total relative abundance. The core microbiome described here comprise groups whose biological role underlies important traits in plant growth and fermentative processes. PMID:27358031

  18. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome.

    PubMed

    de Souza, Rafael Soares Correa; Okura, Vagner Katsumi; Armanhi, Jaderson Silveira Leite; Jorrín, Beatriz; Lozano, Núria; da Silva, Márcio José; González-Guerrero, Manuel; de Araújo, Laura Migliorini; Verza, Natália Cristina; Bagheri, Homayoun Chaichian; Imperial, Juan; Arruda, Paulo

    2016-01-01

    Plant microbiome and its manipulation herald a new era for plant biotechnology with the potential to benefit sustainable crop production. However, studies evaluating the diversity, structure and impact of the microbiota in economic important crops are still rare. Here we describe a comprehensive inventory of the structure and assemblage of the bacterial and fungal communities associated with sugarcane. Our analysis identified 23,811 bacterial OTUs and an unexpected 11,727 fungal OTUs inhabiting the endophytic and exophytic compartments of roots, shoots, and leaves. These communities originate primarily from native soil around plants and colonize plant organs in distinct patterns. The sample type is the primary driver of fungal community assemblage, and the organ compartment plays a major role in bacterial community assemblage. We identified core bacterial and fungal communities composed of less than 20% of the total microbial richness but accounting for over 90% of the total microbial relative abundance. The roots showed 89 core bacterial families, 19 of which accounted for 44% of the total relative abundance. Stalks are dominated by groups of yeasts that represent over 12% of total relative abundance. The core microbiome described here comprise groups whose biological role underlies important traits in plant growth and fermentative processes. PMID:27358031

  19. Evidence for successional development in Antarctic hypolithic bacterial communities

    PubMed Central

    Makhalanyane, Thulani P; Valverde, Angel; Birkeland, Nils-Kåre; Cary, Stephen C; Marla Tuffin, I; Cowan, Don A

    2013-01-01

    Hypoliths (cryptic microbial assemblages that develop on the undersides of translucent rocks) are significant contributors to regional C and N budgets in both hot and cold deserts. Previous studies in the Dry Valleys of Eastern Antarctica have reported three morphologically distinct hypolithic community types: cyanobacteria dominated (type I), fungus dominated (type II) and moss dominated (type III). Here we present terminal-restriction fragment length polymorphism analyses to elucidate the bacterial community structure in hypolithons and the surrounding soils. We show clear and robust distinction in bacterial composition between bulk surface soils and hypolithons. Moreover, the bacterial assemblages were similar in types II and III hypolithons and clearly distinct from those found in type I. Through 16S rRNA gene 454 pyrosequencing, we show that Proteobacteria dominated all three types of hypolithic communities. As expected, Cyanobacteria were more abundant in type I hypolithons, whereas Actinobacteria were relatively more abundant in types II and III hypolithons, and were the dominant group in soils. Using a probabilistic dissimilarity metric and random sampling, we demonstrate that deterministic processes are more important in shaping the structure of the bacterial community found in types II and III hypolithons. Most notably, the data presented in this study suggest that hypolithic bacterial communities establish via a successional model, with the type I hypolithons acting as the basal development state. PMID:23765099

  20. Evidence for successional development in Antarctic hypolithic bacterial communities.

    PubMed

    Makhalanyane, Thulani P; Valverde, Angel; Birkeland, Nils-Kåre; Cary, Stephen C; Tuffin, I Marla; Cowan, Don A

    2013-11-01

    Hypoliths (cryptic microbial assemblages that develop on the undersides of translucent rocks) are significant contributors to regional C and N budgets in both hot and cold deserts. Previous studies in the Dry Valleys of Eastern Antarctica have reported three morphologically distinct hypolithic community types: cyanobacteria dominated (type I), fungus dominated (type II) and moss dominated (type III). Here we present terminal-restriction fragment length polymorphism analyses to elucidate the bacterial community structure in hypolithons and the surrounding soils. We show clear and robust distinction in bacterial composition between bulk surface soils and hypolithons. Moreover, the bacterial assemblages were similar in types II and III hypolithons and clearly distinct from those found in type I. Through 16S rRNA gene 454 pyrosequencing, we show that Proteobacteria dominated all three types of hypolithic communities. As expected, Cyanobacteria were more abundant in type I hypolithons, whereas Actinobacteria were relatively more abundant in types II and III hypolithons, and were the dominant group in soils. Using a probabilistic dissimilarity metric and random sampling, we demonstrate that deterministic processes are more important in shaping the structure of the bacterial community found in types II and III hypolithons. Most notably, the data presented in this study suggest that hypolithic bacterial communities establish via a successional model, with the type I hypolithons acting as the basal development state. PMID:23765099

  1. Successional trajectories of rhizosphere bacterial communities over consecutive seasons

    SciTech Connect

    Shi, Shengjing; Nuccio, Erin; Herman, Donald J.; Rijkers, Ruud; Estera, Katerina; Li, Jiabao; da Rocha, Ulisses Nunes; He, Zhili; Pett-Ridge, Jennifer; Brodie, Eoin L.; Zhou, Jizhong; Firestone, Mary

    2015-08-04

    It is well known that rhizosphere microbiomes differ from those of surrounding soil, and yet we know little about how these root-associated microbial communities change through the growing season and between seasons. We analyzed the response of soil bacteria to roots of the common annual grass Avena fatua over two growing seasons using high-throughput sequencing of 16S rRNA genes. Over the two periods of growth, the rhizosphere bacterial communities followed consistent successional patterns as plants grew, although the starting communities were distinct. Succession in the rhizosphere was characterized by a significant decrease in both taxonomic and phylogenetic diversity relative to background soil communities, driven by reductions in both richness and evenness of the bacterial communities. Plant roots selectively stimulated the relative abundance of Alphaproteobacteria, Betaproteobacteria, and Bacteroidetes but reduced the abundance of Acidobacteria, Actinobacteria, and Firmicutes. Taxa that increased in relative abundance in the rhizosphere soil displayed phylogenetic clustering, suggesting some conservation and an evolutionary basis for the response of complex soil bacterial communities to the presence of plant roots. The reproducibility of rhizosphere succession and the apparent phylogenetic conservation of rhizosphere competence traits suggest adaptation of the indigenous bacterial community to this common grass over the many decades of its presence. We document the successional patterns of rhizosphere bacterial communities associated with a “wild” annual grass, Avena fatua, which is commonly a dominant plant in Mediterranean-type annual grasslands around the world; the plant was grown in its grassland soil. Most studies documenting rhizosphere microbiomes address “domesticated” plants growing in soils to which they are introduced. Rhizosphere bacterial communities exhibited a pattern of temporal

  2. Successional trajectories of rhizosphere bacterial communities over consecutive seasons

    DOE PAGESBeta

    Shi, Shengjing; Nuccio, Erin; Herman, Donald J.; Rijkers, Ruud; Estera, Katerina; Li, Jiabao; da Rocha, Ulisses Nunes; He, Zhili; Pett-Ridge, Jennifer; Brodie, Eoin L.; et al

    2015-08-04

    It is well known that rhizosphere microbiomes differ from those of surrounding soil, and yet we know little about how these root-associated microbial communities change through the growing season and between seasons. We analyzed the response of soil bacteria to roots of the common annual grass Avena fatua over two growing seasons using high-throughput sequencing of 16S rRNA genes. Over the two periods of growth, the rhizosphere bacterial communities followed consistent successional patterns as plants grew, although the starting communities were distinct. Succession in the rhizosphere was characterized by a significant decrease in both taxonomic and phylogenetic diversity relative tomore » background soil communities, driven by reductions in both richness and evenness of the bacterial communities. Plant roots selectively stimulated the relative abundance of Alphaproteobacteria, Betaproteobacteria, and Bacteroidetes but reduced the abundance of Acidobacteria, Actinobacteria, and Firmicutes. Taxa that increased in relative abundance in the rhizosphere soil displayed phylogenetic clustering, suggesting some conservation and an evolutionary basis for the response of complex soil bacterial communities to the presence of plant roots. The reproducibility of rhizosphere succession and the apparent phylogenetic conservation of rhizosphere competence traits suggest adaptation of the indigenous bacterial community to this common grass over the many decades of its presence. We document the successional patterns of rhizosphere bacterial communities associated with a “wild” annual grass, Avena fatua, which is commonly a dominant plant in Mediterranean-type annual grasslands around the world; the plant was grown in its grassland soil. Most studies documenting rhizosphere microbiomes address “domesticated” plants growing in soils to which they are introduced. Rhizosphere bacterial communities exhibited a pattern of temporal succession that was consistent and repeatable

  3. Experimental sulfate amendment alters peatland bacterial community structure.

    PubMed

    Strickman, R J S; Fulthorpe, R R; Coleman Wasik, J K; Engstrom, D R; Mitchell, C P J

    2016-10-01

    As part of a long-term, peatland-scale sulfate addition experiment, the impact of varying sulfate deposition on bacterial community responses was assessed using 16S tag encoded pyrosequencing. In three separate areas of the peatland, sulfate manipulations included an eight year quadrupling of atmospheric sulfate deposition (experimental), a 3-year recovery to background deposition following 5years of elevated deposition (recovery), and a control area. Peat concentrations of methylmercury (MeHg), a bioaccumulative neurotoxin, were measured, the production of which is attributable to a growing list of microorganisms, including many sulfate-reducing Deltaproteobacteria. The total bacterial and Deltaproteobacterial community structures in the experimental treatment differed significantly from those in the control and recovery treatments that were either indistinguishable or very similar to one another. Notably, the relatively rapid return (within three years) of bacterial community structure in the recovery treatment to a state similar to the control, demonstrates significant resilience of the peatland bacterial community to changes in atmospheric sulfate deposition. Changes in MeHg accumulation between sulfate treatments correlated with changes in the Deltaproteobacterial community, suggesting that sulfate may affect MeHg production through changes in the community structure of this group. PMID:27267720

  4. Topographic diversity of fungal and bacterial communities in human skin.

    PubMed

    Findley, Keisha; Oh, Julia; Yang, Joy; Conlan, Sean; Deming, Clayton; Meyer, Jennifer A; Schoenfeld, Deborah; Nomicos, Effie; Park, Morgan; Kong, Heidi H; Segre, Julia A

    2013-06-20

    Traditional culture-based methods have incompletely defined the microbial landscape of common recalcitrant human fungal skin diseases, including athlete's foot and toenail infections. Skin protects humans from invasion by pathogenic microorganisms and provides a home for diverse commensal microbiota. Bacterial genomic sequence data have generated novel hypotheses about species and community structures underlying human disorders. However, microbial diversity is not limited to bacteria; microorganisms such as fungi also have major roles in microbial community stability, human health and disease. Genomic methodologies to identify fungal species and communities have been limited compared with those that are available for bacteria. Fungal evolution can be reconstructed with phylogenetic markers, including ribosomal RNA gene regions and other highly conserved genes. Here we sequenced and analysed fungal communities of 14 skin sites in 10 healthy adults. Eleven core-body and arm sites were dominated by fungi of the genus Malassezia, with only species-level classifications revealing fungal-community composition differences between sites. By contrast, three foot sites--plantar heel, toenail and toe web--showed high fungal diversity. Concurrent analysis of bacterial and fungal communities demonstrated that physiologic attributes and topography of skin differentially shape these two microbial communities. These results provide a framework for future investigation of the contribution of interactions between pathogenic and commensal fungal and bacterial communities to the maintainenace of human health and to disease pathogenesis. PMID:23698366

  5. 3D printing of microscopic bacterial communities

    PubMed Central

    Connell, Jodi L.; Ritschdorff, Eric T.; Whiteley, Marvin; Shear, Jason B.

    2013-01-01

    Bacteria communicate via short-range physical and chemical signals, interactions known to mediate quorum sensing, sporulation, and other adaptive phenotypes. Although most in vitro studies examine bacterial properties averaged over large populations, the levels of key molecular determinants of bacterial fitness and pathogenicity (e.g., oxygen, quorum-sensing signals) may vary over micrometer scales within small, dense cellular aggregates believed to play key roles in disease transmission. A detailed understanding of how cell–cell interactions contribute to pathogenicity in natural, complex environments will require a new level of control in constructing more relevant cellular models for assessing bacterial phenotypes. Here, we describe a microscopic three-dimensional (3D) printing strategy that enables multiple populations of bacteria to be organized within essentially any 3D geometry, including adjacent, nested, and free-floating colonies. In this laser-based lithographic technique, microscopic containers are formed around selected bacteria suspended in gelatin via focal cross-linking of polypeptide molecules. After excess reagent is removed, trapped bacteria are localized within sealed cavities formed by the cross-linked gelatin, a highly porous material that supports rapid growth of fully enclosed cellular populations and readily transmits numerous biologically active species, including polypeptides, antibiotics, and quorum-sensing signals. Using this approach, we show that a picoliter-volume aggregate of Staphylococcus aureus can display substantial resistance to β-lactam antibiotics by enclosure within a shell composed of Pseudomonas aeruginosa. PMID:24101503

  6. Architectural Design Drives the Biogeography of Indoor Bacterial Communities

    PubMed Central

    O’Connor, Timothy K.; Mhuireach, Gwynne; Northcutt, Dale; Kline, Jeff; Moriyama, Maxwell; Brown, G. Z.; Bohannan, Brendan J. M.; Green, Jessica L.

    2014-01-01

    Background Architectural design has the potential to influence the microbiology of the built environment, with implications for human health and well-being, but the impact of design on the microbial biogeography of buildings remains poorly understood. In this study we combined microbiological data with information on the function, form, and organization of spaces from a classroom and office building to understand how design choices influence the biogeography of the built environment microbiome. Results Sequencing of the bacterial 16S gene from dust samples revealed that indoor bacterial communities were extremely diverse, containing more than 32,750 OTUs (operational taxonomic units, 97% sequence similarity cutoff), but most communities were dominated by Proteobacteria, Firmicutes, and Deinococci. Architectural design characteristics related to space type, building arrangement, human use and movement, and ventilation source had a large influence on the structure of bacterial communities. Restrooms contained bacterial communities that were highly distinct from all other rooms, and spaces with high human occupant diversity and a high degree of connectedness to other spaces via ventilation or human movement contained a distinct set of bacterial taxa when compared to spaces with low occupant diversity and low connectedness. Within offices, the source of ventilation air had the greatest effect on bacterial community structure. Conclusions Our study indicates that humans have a guiding impact on the microbial biodiversity in buildings, both indirectly through the effects of architectural design on microbial community structure, and more directly through the effects of human occupancy and use patterns on the microbes found in different spaces and space types. The impact of design decisions in structuring the indoor microbiome offers the possibility to use ecological knowledge to shape our buildings in a way that will select for an indoor microbiome that promotes our

  7. Supraglacial bacterial community structures vary across the Greenland ice sheet.

    PubMed

    Cameron, Karen A; Stibal, Marek; Zarsky, Jakub D; Gözdereliler, Erkin; Schostag, Morten; Jacobsen, Carsten S

    2016-02-01

    The composition and spatial variability of microbial communities that reside within the extensive (>200 000 km(2)) biologically active area encompassing the Greenland ice sheet (GrIS) is hypothesized to be variable. We examined bacterial communities from cryoconite debris and surface ice across the GrIS, using sequence analysis and quantitative PCR of 16S rRNA genes from co-extracted DNA and RNA. Communities were found to differ across the ice sheet, with 82.8% of the total calculated variation attributed to spatial distribution on a scale of tens of kilometers separation. Amplicons related to Sphingobacteriaceae, Pseudanabaenaceae and WPS-2 accounted for the greatest portion of calculated dissimilarities. The bacterial communities of ice and cryoconite were moderately similar (global R = 0.360, P = 0.002) and the sampled surface type (ice versus cryoconite) did not contribute heavily towards community dissimilarities (2.3% of total variability calculated). The majority of dissimilarities found between cryoconite 16S rRNA gene amplicons from DNA and RNA was calculated to be the result of changes in three taxa, Pseudanabaenaceae, Sphingobacteriaceae and WPS-2, which together contributed towards 80.8 ± 12.6% of dissimilarities between samples. Bacterial communities across the GrIS are spatially variable active communities that are likely influenced by localized biological inputs and physicochemical conditions. PMID:26691594

  8. Role of intestinal bacterial flora in oral tolerance induction.

    PubMed

    Tanaka, K; Ishikawa, H

    2004-07-01

    In healthy individuals, the immune responses against foods cannot be induced. This phenomenon is known as oral tolerance. We observed that the oral tolerance was impaired in germfree mice, and that Th2-dependent antibodies such as IgE could be thus induced by an orally given antigen. As a result, the germfree mouse was considered to be a good animal model for allergic disorder. When germfree mice were mono-associated with such bacteria as E.coli and B. infantis, then oral tolerance was restored in these gnotobiotes to a level similar to that observed in SPF mice. Thus, these bacterias seemed to be important in oral tolerance induction. In addition, the probiotics using these bacteria may be a useful material for the treatment of allergic disorders. PMID:15168353

  9. The bacterial community of entomophilic nematodes and host beetles.

    PubMed

    Koneru, Sneha L; Salinas, Heilly; Flores, Gilberto E; Hong, Ray L

    2016-05-01

    Insects form the most species-rich lineage of Eukaryotes and each is a potential host for organisms from multiple phyla, including fungi, protozoa, mites, bacteria and nematodes. In particular, beetles are known to be associated with distinct bacterial communities and entomophilic nematodes. While entomopathogenic nematodes require symbiotic bacteria to kill and reproduce inside their insect hosts, the microbial ecology that facilitates other types of nematode-insect associations is largely unknown. To illuminate detailed patterns of the tritrophic beetle-nematode-bacteria relationship, we surveyed the nematode infestation profiles of scarab beetles in the greater Los Angeles area over a five-year period and found distinct nematode infestation patterns for certain beetle hosts. Over a single season, we characterized the bacterial communities of beetles and their associated nematodes using high-throughput sequencing of the 16S rRNA gene. We found significant differences in bacterial community composition among the five prevalent beetle host species, independent of geographical origin. Anaerobes Synergistaceae and sulphate-reducing Desulfovibrionaceae were most abundant in Amblonoxia beetles, while Enterobacteriaceae and Lachnospiraceae were common in Cyclocephala beetles. Unlike entomopathogenic nematodes that carry bacterial symbionts, insect-associated nematodes do not alter the beetles' native bacterial communities, nor do their microbiomes differ according to nematode or beetle host species. The conservation of Diplogastrid nematodes associations with Melolonthinae beetles and sulphate-reducing bacteria suggests a possible link between beetle-bacterial communities and their associated nematodes. Our results establish a starting point towards understanding the dynamic interactions between soil macroinvertebrates and their microbiota in a highly accessible urban environment. PMID:26992100

  10. Life in a Diverse Oral Community – Strategies for Oxidative Stress Survival

    PubMed Central

    Henry, Leroy G.; Boutrin, Marie-Claire; Aruni, Wilson; Robles, Antonette; Ximinies, Alexia; Fletcher, Hansel M.

    2015-01-01

    Background While the oral cavity harbors more than 680 bacterial species, the interaction and association of selected bacterial species play a role in periodontal diseases. Bacterial species including Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia, a consortium previously designated as the “red complex” is now being expanded to include other new emerging pathogens that are significantly associated with periodontal disease. Highlight In addition to novel mechanisms for oxidative resistance of individual species, community dynamics may lead to an overall strategy for survival in the inflammatory environment of the periodontal pocket. Complex systems controlled by response regulators protect against oxidative and nitrosative stress. Conclusion The combination of these multifaceted strategies would provide a comprehensive defense and support system against the repetitive host immune response to promote microbial persistence and disease. PMID:26744578

  11. Soil bacterial communities associated with natural and commercial Cyclopia spp.

    PubMed

    Postma, Anneke; Slabbert, Etienne; Postma, Ferdinand; Jacobs, Karin

    2016-03-01

    The commercially important plants in the genus Cyclopia spp. are indigenous to the Cape Floristic Region of South Africa and are used to manufacture an herbal tea known as honeybush tea. Growing in the low nutrient fynbos soils, these plants are highly dependent on symbiotic interactions with soil microorganisms for nutrient acquisition. The aim of this study was to investigate the soil bacterial communities associated with two commercially important Cyclopia species, namely C. subternata and C. longifolia. Specific interest was the differences between rhizosphere and bulk soil collected from natural sites and commercially grown plants. Samples were collected on two occasions to include a dry summer and wet winter season. Results showed that the dominant bacterial taxa associated with these plants included Acidobacteria, Actinobacteria, Bacteroidetes and Proteobacteria. Commercial and natural as well as rhizosphere and bulk soil samples were highly similar in bacterial diversity and species richness. Significant differences were detected in bacterial community structures and co-occurrence patterns between the wet and dry seasons. The results of this study improved our knowledge on what effect commercial Cyclopia plantations and seasonal changes can have on soil bacterial communities within the endemic fynbos biome. PMID:26850159

  12. Oral cavity contains distinct niches with dynamic microbial communities.

    PubMed

    Xu, Xin; He, Jinzhi; Xue, Jing; Wang, Yan; Li, Kun; Zhang, Keke; Guo, Qiang; Liu, Xianghong; Zhou, Yuan; Cheng, Lei; Li, Mingyun; Li, Yuqing; Li, Yan; Shi, Wenyuan; Zhou, Xuedong

    2015-03-01

    Microbes colonize human oral surfaces within hours after delivery. During postnatal development, physiological changes, such as the eruption of primary teeth and replacement of the primary dentition with permanent dentition, greatly alter the microbial habitats, which, in return, may lead to community composition shifts at different phases in people's lives. By profiling saliva, supragingival and mucosal plaque samples from healthy volunteers at different ages and dentition stages, we observed that the oral cavity is a highly heterogeneous ecological system containing distinct niches with significantly different microbial communities. More importantly, the phylogenetic microbial structure varies with ageing. In addition, only a few taxa were present across the whole populations, indicating a core oral microbiome should be defined based on age and oral niches. PMID:24800728

  13. Panamanian frog species host unique skin bacterial communities.

    PubMed

    Belden, Lisa K; Hughey, Myra C; Rebollar, Eria A; Umile, Thomas P; Loftus, Stephen C; Burzynski, Elizabeth A; Minbiole, Kevin P C; House, Leanna L; Jensen, Roderick V; Becker, Matthew H; Walke, Jenifer B; Medina, Daniel; Ibáñez, Roberto; Harris, Reid N

    2015-01-01

    Vertebrates, including amphibians, host diverse symbiotic microbes that contribute to host disease resistance. Globally, and especially in montane tropical systems, many amphibian species are threatened by a chytrid fungus, Batrachochytrium dendrobatidis (Bd), that causes a lethal skin disease. Bd therefore may be a strong selective agent on the diversity and function of the microbial communities inhabiting amphibian skin. In Panamá, amphibian population declines and the spread of Bd have been tracked. In 2012, we completed a field survey in Panamá to examine frog skin microbiota in the context of Bd infection. We focused on three frog species and collected two skin swabs per frog from a total of 136 frogs across four sites that varied from west to east in the time since Bd arrival. One swab was used to assess bacterial community structure using 16S rRNA amplicon sequencing and to determine Bd infection status, and one was used to assess metabolite diversity, as the bacterial production of anti-fungal metabolites is an important disease resistance function. The skin microbiota of the three Panamanian frog species differed in OTU (operational taxonomic unit, ~bacterial species) community composition and metabolite profiles, although the pattern was less strong for the metabolites. Comparisons between frog skin bacterial communities from Panamá and the US suggest broad similarities at the phylum level, but key differences at lower taxonomic levels. In our field survey in Panamá, across all four sites, only 35 individuals (~26%) were Bd infected. There was no clustering of OTUs or metabolite profiles based on Bd infection status and no clear pattern of west-east changes in OTUs or metabolite profiles across the four sites. Overall, our field survey data suggest that different bacterial communities might be producing broadly similar sets of metabolites across frog hosts and sites. Community structure and function may not be as tightly coupled in these skin symbiont

  14. Panamanian frog species host unique skin bacterial communities

    PubMed Central

    Belden, Lisa K.; Hughey, Myra C.; Rebollar, Eria A.; Umile, Thomas P.; Loftus, Stephen C.; Burzynski, Elizabeth A.; Minbiole, Kevin P. C.; House, Leanna L.; Jensen, Roderick V.; Becker, Matthew H.; Walke, Jenifer B.; Medina, Daniel; Ibáñez, Roberto; Harris, Reid N.

    2015-01-01

    Vertebrates, including amphibians, host diverse symbiotic microbes that contribute to host disease resistance. Globally, and especially in montane tropical systems, many amphibian species are threatened by a chytrid fungus, Batrachochytrium dendrobatidis (Bd), that causes a lethal skin disease. Bd therefore may be a strong selective agent on the diversity and function of the microbial communities inhabiting amphibian skin. In Panamá, amphibian population declines and the spread of Bd have been tracked. In 2012, we completed a field survey in Panamá to examine frog skin microbiota in the context of Bd infection. We focused on three frog species and collected two skin swabs per frog from a total of 136 frogs across four sites that varied from west to east in the time since Bd arrival. One swab was used to assess bacterial community structure using 16S rRNA amplicon sequencing and to determine Bd infection status, and one was used to assess metabolite diversity, as the bacterial production of anti-fungal metabolites is an important disease resistance function. The skin microbiota of the three Panamanian frog species differed in OTU (operational taxonomic unit, ~bacterial species) community composition and metabolite profiles, although the pattern was less strong for the metabolites. Comparisons between frog skin bacterial communities from Panamá and the US suggest broad similarities at the phylum level, but key differences at lower taxonomic levels. In our field survey in Panamá, across all four sites, only 35 individuals (~26%) were Bd infected. There was no clustering of OTUs or metabolite profiles based on Bd infection status and no clear pattern of west-east changes in OTUs or metabolite profiles across the four sites. Overall, our field survey data suggest that different bacterial communities might be producing broadly similar sets of metabolites across frog hosts and sites. Community structure and function may not be as tightly coupled in these skin symbiont

  15. Sediment Bacterial Communities Reflect the History of a Sea Basin

    PubMed Central

    Lyra, Christina; Sinkko, Hanna; Rantanen, Matias; Paulin, Lars; Kotilainen, Aarno

    2013-01-01

    How entire microbial communities are structured across stratified sediments from the historical standpoint is unknown. The Baltic Sea is an ideal research object for historical reconstruction, since it has experienced many fresh- and brackish water periods and is depleted of dissolved oxygen, which increases the sediment's preservation potential. We investigated the bacterial communities, chemical elements (e.g. Cr, Pb Na, P, Sr and U) and sediment composition in a stratified sediment core dated by radiocarbon and spanning 8000 years of Baltic Sea history, using up-to-date multivariate statistics. The communities were analysed by 16S rRNA gene terminal restriction fragment length polymorphism. The communities of the deep Early Litorina and surface Late Litorina Sea laminae were separated from the communities of the middle Litorina Sea laminae, which were associated with elevated concentrations of U and Sr trace elements, palaeo-oxygen and palaeosalinity proxies. Thus, the Litorina Sea laminae were characterized by past oxygen deficiency and salinity increase. The communities of the laminae, bioturbated and homogeneous sediments were differentiated, based on the same historical sea phases, with correct classifications of 90%. Palaeosalinity was one of the major parameters that separated the bacterial communities of the stratified sediments. A discontinuous spatial structure with a surprising increase in community heterogeneity was detected in Litorina Sea sediments from 388 to 422 cm deep, which suggests that a salinity maximum occurred in the central Gulf of Finland app. 6200–6600 years ago. The community heterogeneity decreased from the surface down to 306 cm, which reflected downcore mineralization. The plateau of the decrease was in the app. 2000-year-old sediment layers. Bacterial community data may be used as an additional tool in ocean-drilling projects, in which it is important to detect mineralization plateaus both to determine historically comparable

  16. Ion channels enable electrical communication within bacterial communities

    PubMed Central

    Prindle, Arthur; Liu, Jintao; Asally, Munehiro; Ly, San; Garcia-Ojalvo, Jordi; Süel, Gürol M.

    2016-01-01

    The study of bacterial ion channels has provided fundamental insights into the structural basis of neuronal signaling. However, the native role of ion channels in bacteria has remained elusive. Here we show that ion channels conduct long-range electrical signals within bacterial biofilm communities through spatially propagating waves of potassium. These waves result from a positive feedback loop, in which a metabolic trigger induces release of intracellular potassium, which in turn depolarizes neighboring cells. Propagating through the biofilm, this wave of depolarization coordinates metabolic states among cells in the interior and periphery of the biofilm. Deletion of the potassium channel abolishes this response. As predicted by a mathematical model, we further show that spatial propagation can be hindered by specific genetic perturbations to potassium channel gating. Together, these results demonstrate a function for ion channels in bacterial biofilms, and provide a prokaryotic paradigm for active, long-range electrical signaling in cellular communities. PMID:26503040

  17. Fungal and bacterial community structure downwind of a cattle feedyard

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soils provide a complex microhabitat for harboring a diverse group of microorganisms. The interaction of soil type, crop type, agroecosystem, and land management practices may all influence agricultural bacterial communities. In a previous study, we documented the long-term environmental impacts of ...

  18. Different bacterial communities in ectomycorrhizae and surrounding soil

    PubMed Central

    Vik, Unni; Logares, Ramiro; Blaalid, Rakel; Halvorsen, Rune; Carlsen, Tor; Bakke, Ingrid; Kolstø, Anne-Brit; Økstad, Ole Andreas; Kauserud, Håvard

    2013-01-01

    Several eukaryotic symbioses have shown to host a rich diversity of prokaryotes that interact with their hosts. Here, we study bacterial communities associated with ectomycorrhizal root systems of Bistorta vivipara compared to bacterial communities in bulk soil using pyrosequencing of 16S rRNA amplicons. A high richness of Operational Taxonomic Units (OTUs) was found in plant roots (3,571 OTUs) and surrounding soil (3,476 OTUs). The community composition differed markedly between these two environments. Actinobacteria, Armatimonadetes, Chloroflexi and OTUs unclassified at phylum level were significantly more abundant in plant roots than in soil. A large proportion of the OTUs, especially those in plant roots, presented low similarity to Sanger 16S rRNA reference sequences, suggesting novel bacterial diversity in ectomycorrhizae. Furthermore, the bacterial communities of the plant roots were spatially structured up to a distance of 60 cm, which may be explained by bacteria using fungal hyphae as a transport vector. The analyzed ectomycorrhizae presents a distinct microbiome, which likely influence the functioning of the plant-fungus symbiosis. PMID:24326907

  19. Marine bacterial communities are resistant to elevated carbon dioxide levels.

    PubMed

    Oliver, Anna E; Newbold, Lindsay K; Whiteley, Andrew S; van der Gast, Christopher J

    2014-12-01

    It is well established that the release of anthropogenic-derived CO2 into the atmosphere will be mainly absorbed by the oceans, with a concomitant drop in pH, a process termed ocean acidification. As such, there is considerable interest in how changes in increased CO2 and lower pH will affect marine biota, such as bacteria, which play central roles in oceanic biogeochemical processes. Set within an ecological framework, we investigated the direct effects of elevated CO2, contrasted with ambient conditions on the resistance and resilience of marine bacterial communities in a replicated temporal seawater mesocosm experiment. The results of the study strongly indicate that marine bacterial communities are highly resistant to the elevated CO2 and lower pH conditions imposed, as demonstrated from measures of turnover using taxa–time relationships and distance–decay relationships. In addition, no significant differences in community abundance, structure or composition were observed. Our results suggest that there are no direct effects on marine bacterial communities and that the bacterial fraction of microbial plankton holds enough flexibility and evolutionary capacity to withstand predicted future changes from elevated CO2 and subsequent ocean acidification. PMID:25756110

  20. Oral-derived bacterial flora defends its domain by recognizing and killing intruders--a molecular analysis using Escherichia coli as a model intestinal bacterium.

    PubMed

    He, Xuesong; Tian, Yan; Guo, Lihong; Lux, Renate; Zusman, David R; Shi, Wenyuan

    2010-10-01

    Within the same human gastrointestinal tract, substantial differences in the bacterial species that inhabit oral cavity and intestinal tract have been noted. Previous research primarily attributed the differences to the influences of host environments and nutritional availabilities ("host habitat" effect). Our recent study indicated that, other than the host habitat effect, an existing microbial community could impose a selective pressure on incoming foreign bacterial species independent of host-mediated selection ("community selection" effect). In this study, we employed in vitro microbial floras representing microorganisms that inhabit the oral cavities and intestinal tract of mice in combination with Escherichia coli as a model intestinal bacterium and demonstrated that E. coli displays a striking community preference. It thrived when introduced into the intestinal microbial community and survived poorly in the microbial flora of foreign origin (oral community). A more detailed examination of this phenomenon showed that the oral community produced oxygen-free radicals in the presence of wild-type E. coli while mutants deficient in lipopolysaccharides (LPS) did not trigger significant production of these cell-damaging agents. Furthermore, mutants of E. coli defective in the oxidative stress response experienced a more drastic reduction in viability when cocultivated with the oral flora, while the exogenous addition of the antioxidant vitamin C was able to rescue it. We concluded that the oral-derived microbial community senses the E. coli LPS and kills the bacterium with oxygen-free radicals. This study reveals a new mechanism of community invasion resistance employed by established microflora to defend their domains. PMID:20625713

  1. Site-specific mouth rinsing can improve oral odor by altering bacterial counts

    PubMed Central

    Alqumber, Mohammed A.; Arafa, Khaled A.

    2014-01-01

    Objectives: To determine whether site-specific mouth rinsing with oral disinfectants can improve oral odor beyond the traditional panoral mouth disinfection with mouth rinses by targeting specifically oral malodor implicated anaerobic bacteria Methods: Twenty healthy fasting subjects volunteered for a blinded prospective, descriptive correlational crossover cross-section clinical trial conducted during the month of Ramadan between July and August 2013 in Albaha province in Saudi Arabia involving the application of Listerine® Cool Mint® mouth rinse by either the traditional panoral rinsing method, or a site-specific disinfection method targeting the subgingival and supragingival plaque and the posterior third of the tongue dorsum, while avoiding the remaining locations within the oral cavity. The viable anaerobic and aerobic bacterial counts, volatile sulfur compounds (VSCs) levels, organoleptic assessment of oral odor, and the tongue-coating index were compared at baseline, one, 5, and 9 hours after the treatment. Results: The site-specific disinfection method reduced the VSCs and anaerobic bacterial loads while keeping the aerobic bacterial numbers higher than the traditional panoral rinsing method. Conclusion: Site-specific disinfection can more effectively maintain a healthy oral cavity by predominantly disinfecting the niches of anaerobic bacteria within the oral cavity. PMID:25399224

  2. Bacterial community diversity in municipal waste landfill sites.

    PubMed

    Song, Liyan; Wang, Yangqing; Tang, Wei; Lei, Yu

    2015-09-01

    Little is known about the bacterial diversity of landfills and how environmental factors impact the diversity. In this study, PCR-based 454 pyrosequencing was used to investigate the bacterial communities of ten landfill leachate samples from five landfill sites in China. A total of 137 K useable sequences from the V3-V6 regions of the 16S rRNA gene were retrieved from 205 K reads. These sequences revealed the presence of a large number of operational taxonomic units (OTUs) in the landfills (709-1599 OTUs per sample). The most predominant bacterial representatives in the landfills investigated, regardless of geographic area, included Gammaproteobacteria, Firmicutes, and Bacteroidetes. The phyla Fusobacteria and Tenericutes were also found for the first time to be predominant in the landfills. The phylum Fusobacteria predominated (51.5 and 48.8%) in two semi-arid landfills, and the phylum Tenericutes dominated (30.6%) at one humid, subtropical landfill. Further, a large number of Pseudomonas was detected in most samples, comprising the dominant group and accounting for 40.9 to 92.4% of the total abundance. Principal component analysis (PCA) and cluster analysis based on OTU abundance showed that the abundant taxa separated the bacterial community. Canonical correlation analysis (CCA) suggested that precipitation and landfilling age significantly impact on the bacterial community structure. The bacterial community function (e.g., cellulolytic bacteria, sulfate-reducing bacteria (SRB), sulfate-oxidizing bacteria, and xenobiotic organic compound (XOC)-degrading bacteria) was also diverse, but the pattern is unclear. PMID:25981996

  3. Bacterial Communities of Two Ubiquitous Great Barrier Reef Corals Reveals Both Site- and Species-Specificity of Common Bacterial Associates

    PubMed Central

    Kvennefors, E. Charlotte E.; Sampayo, Eugenia; Ridgway, Tyrone; Barnes, Andrew C.; Hoegh-Guldberg, Ove

    2010-01-01

    Background Coral-associated bacteria are increasingly considered to be important in coral health, and altered bacterial community structures have been linked to both coral disease and bleaching. Despite this, assessments of bacterial communities on corals rarely apply sufficient replication to adequately describe the natural variability. Replicated data such as these are crucial in determining potential roles of bacteria on coral. Methodology/Principal Findings Denaturing Gradient Gel Electrophoresis (DGGE) of the V3 region of the 16S ribosomal DNA was used in a highly replicated approach to analyse bacterial communities on both healthy and diseased corals. Although site-specific variations in the bacterial communities of healthy corals were present, host species-specific bacterial associates within a distinct cluster of gamma-proteobacteria could be identified, which are potentially linked to coral health. Corals affected by “White Syndrome” (WS) underwent pronounced changes in their bacterial communities in comparison to healthy colonies. However, the community structure and bacterial ribotypes identified in diseased corals did not support the previously suggested theory of a bacterial pathogen as the causative agent of the syndrome. Conclusions/Significance This is the first study to employ large numbers of replicated samples to assess the bacterial communities of healthy and diseased corals, and the first culture-independent assessment of bacterial communities on WS affected Acroporid corals on the GBR. Results indicate that a minimum of 6 replicate samples are required in order to draw inferences on species, spatial or health-related changes in community composition, as a set of clearly distinct bacterial community profiles exist in healthy corals. Coral bacterial communities may be both site and species specific. Furthermore, a cluster of gamma-proteobacterial ribotypes may represent a group of specific common coral and marine invertebrate associates

  4. Distinct bacterial communities dominate tropical and temperate zone leaf litter.

    PubMed

    Kim, Mincheol; Kim, Woo-Sung; Tripathi, Binu M; Adams, Jonathan

    2014-05-01

    Little is known of the bacterial community of tropical rainforest leaf litter and how it might differ from temperate forest leaf litter and from the soils underneath. We sampled leaf litter in a similarly advanced stage of decay, and for comparison, we also sampled the surface layer of soil, at three tropical forest sites in Malaysia and four temperate forest sites in South Korea. Illumina sequencing targeting partial bacterial 16S ribosomal ribonucleic acid (rRNA) gene revealed that the bacterial community composition of both temperate and tropical litter is quite distinct from the soils underneath. Litter in both temperate and tropical forest was dominated by Proteobacteria and Actinobacteria, while soil is dominated by Acidobacteria and, to a lesser extent, Proteobacteria. However, bacterial communities of temperate and tropical litter clustered separately from one another on an ordination. The soil bacterial community structures were also distinctive to each climatic zone, suggesting that there must be a climate-specific biogeographical pattern in bacterial community composition. The differences were also found in the level of diversity. The temperate litter has a higher operational taxonomic unit (OTU) diversity than the tropical litter, paralleling the trend in soil diversity. Overall, it is striking that the difference in community composition between the leaf litter and the soil a few centimeters underneath is about the same as that between leaf litter in tropical and temperate climates, thousands of kilometers apart. However, one substantial difference was that the leaf litter of two tropical forest sites, Meranti and Forest Research Institute Malaysia (FRIM), was overwhelmingly dominated by the single genus Burkholderia, at 37 and 23 % of reads, respectively. The 454 sequencing result showed that most Burkholderia species in tropical leaf litter belong to nonpathogenic "plant beneficial" lineages. The differences from the temperate zone in the bacterial

  5. Diversity of Bacterial Communities in Container Habitats of Mosquitoes

    PubMed Central

    Ponnusamy, Loganathan; Xu, Ning; Stav, Gil; Wesson, Dawn M.; Schal, Coby

    2010-01-01

    We investigated the bacterial diversity of microbial communities in water-filled, human-made and natural container habitats of the mosquitoes Aedes aegypti and Aedes albopictus in suburban landscapes of New Orleans, Louisiana in 2003. We collected water samples from three classes of containers, including tires (n=12), cemetery urns (n=23), and miscellaneous containers that included two tree holes (n=19). Total genomic DNA was extracted from water samples, and 16S ribosomal DNA fragments (operational taxonomic units, OTUs) were amplified by PCR and separated by denaturing gradient gel electrophoresis (DGGE). The bacterial communities in containers represented diverse DGGE-DNA banding patterns that were not related to the class of container or to the local spatial distribution of containers. Mean richness and evenness of OTUs were highest in water samples from tires. Bacterial phylotypes were identified by comparative sequence analysis of 90 16S rDNA DGGE band amplicons. The majority of sequences were placed in five major taxa: Alpha-, Beta- and Gammaproteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, and an unclassified group; Proteobacteria and Bacteroidetes were the predominant heterotrophic bacteria in containers. The bacterial communities in human-made containers consisted mainly of undescribed species, and a phylogenetic analysis based on 16S rRNA sequences suggested that species composition was independent of both container type and the spatial distribution of containers. Comparative PCR-based, cultivation-independent rRNA surveys of microbial communities associated with mosquito habitats can provide significant insight into community organization and dynamics of bacterial species. PMID:18373113

  6. Natural bacterial communities serve as quantitative geochemical biosensors

    SciTech Connect

    Smith, Mark B.; Rocha, Andrea M.; Smillie, Chris S.; Olesen, Scott W.; Paradis, Charles; Wu, Liyou; Campbell, James H.; Fortney, Julian L.; Mehlhorn, Tonia L.; Lowe, Kenneth A.; Earles, Jennifer E.; Phillips, Jana; Techtmann, Steve M.; Joyner, Dominique C.; Elias, Dwayne A.; Bailey, Kathryn L.; Hurt, Richard A.; Preheim, Sarah P.; Sanders, Matthew C.; Yang, Joy; Mueller, Marcella A.; Brooks, Scott; Watson, David B.; Zhang, Ping; He, Zhili; Dubinsky, Eric A.; Adams, Paul D.; Arkin, Adam P.; Fields, Matthew W.; Zhou, Jizhong; Alm, Eric J.; Hazen, Terry C.

    2015-05-12

    Biological sensors can be engineered to measure a wide range of environmental conditions. Here we show that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants, including uranium and nitrate at a nuclear waste site. In addition to contamination, sequence data from the 16S rRNA gene alone can quantitatively predict a rich catalogue of 26 geochemical features collected from 93 wells with highly differing geochemistry characteristics. We extend this approach to identify sites contaminated with hydrocarbons from the Deepwater Horizon oil spill, finding that altered bacterial communities encode a memory of prior contamination, even after the contaminants themselves have been fully degraded. We show that the bacterial strains that are most useful for detecting oil and uranium are known to interact with these substrates, indicating that this statistical approach uncovers ecologically meaningful interactions consistent with previous experimental observations. Future efforts should focus on evaluating the geographical generalizability of these associations. Taken as a whole, these results indicate that ubiquitous, natural bacterial communities can be used as in situ environmental sensors that respond to and capture perturbations caused by human impacts. These in situ biosensors rely on environmental selection rather than directed engineering, and so this approach could be rapidly deployed and scaled as sequencing technology continues to become faster, simpler, and less expensive. Here we show that DNA from natural bacterial communities can be used as a quantitative biosensor to accurately distinguish unpolluted sites from those contaminated with uranium, nitrate, or oil. These results indicate that bacterial communities can be used as environmental sensors that respond to and capture perturbations caused by human impacts.

  7. Natural bacterial communities serve as quantitative geochemical biosensors

    DOE PAGESBeta

    Smith, Mark B.; Rocha, Andrea M.; Smillie, Chris S.; Olesen, Scott W.; Paradis, Charles; Wu, Liyou; Campbell, James H.; Fortney, Julian L.; Mehlhorn, Tonia L.; Lowe, Kenneth A.; et al

    2015-05-12

    Biological sensors can be engineered to measure a wide range of environmental conditions. Here we show that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants, including uranium and nitrate at a nuclear waste site. In addition to contamination, sequence data from the 16S rRNA gene alone can quantitatively predict a rich catalogue of 26 geochemical features collected from 93 wells with highly differing geochemistry characteristics. We extend this approach to identify sites contaminated with hydrocarbons from the Deepwater Horizon oil spill, finding that altered bacterial communities encode a memory of prior contamination,more » even after the contaminants themselves have been fully degraded. We show that the bacterial strains that are most useful for detecting oil and uranium are known to interact with these substrates, indicating that this statistical approach uncovers ecologically meaningful interactions consistent with previous experimental observations. Future efforts should focus on evaluating the geographical generalizability of these associations. Taken as a whole, these results indicate that ubiquitous, natural bacterial communities can be used as in situ environmental sensors that respond to and capture perturbations caused by human impacts. These in situ biosensors rely on environmental selection rather than directed engineering, and so this approach could be rapidly deployed and scaled as sequencing technology continues to become faster, simpler, and less expensive. Here we show that DNA from natural bacterial communities can be used as a quantitative biosensor to accurately distinguish unpolluted sites from those contaminated with uranium, nitrate, or oil. These results indicate that bacterial communities can be used as environmental sensors that respond to and capture perturbations caused by human impacts.« less

  8. Suppression of Bacterial Blight by a Bacterial Community Isolated from the Guttation Fluids of Anthuriums†

    PubMed Central

    Fukui, R.; Fukui, H.; Alvarez, A. M.

    1999-01-01

    Growth and survival of Xanthomonas campestris pv. dieffenbachiae in guttation fluids (xylem sap exuded from leaf margins) of anthuriums were suppressed by several bacterial strains indigenous to leaves of various anthurium cultivars. Inhibition of growth was not observed in filter-sterilized guttation fluids and was restored to original levels only by reintroducing specific mixtures of bacteria into filter-sterilized guttation fluids. The inhibitory effect was related to the species in the bacterial community rather than to the total numbers of bacteria in the guttation fluids. One very effective bacterial community consisted of five species isolated from inhibitory guttation fluids of two susceptible anthurium cultivars. The individual strains in this community had no effect on the pathogen, but the mixture was inhibitory to X. campestris pv. dieffenbachiae in guttation fluids. The populations of the individual strains remained near the initial inoculum levels for at least 14 days. The effect of the five inhibitory strains on reducing disease in susceptible anthurium plants was tested by using a bioluminescent strain of X. campestris pv. dieffenbachiae to monitor the progression of disease in leaves nondestructively. Invasion of the pathogen through hydathodes at leaf margins was reduced by applying the strain mixture to the leaves. When the strain mixture was applied directly to wounds created on the leaf margins, the pathogen failed to invade through the wounds. This bacterial community has potential for biological control of anthurium blight. PMID:10049858

  9. Comparison of Bacterial Communities in Sands and Water at Beaches with Bacterial Water Quality Violations

    PubMed Central

    Halliday, Elizabeth; McLellan, Sandra L.; Amaral-Zettler, Linda A.; Sogin, Mitchell L.; Gast, Rebecca J.

    2014-01-01

    Recreational water quality, as measured by culturable fecal indicator bacteria (FIB), may be influenced by persistent populations of these bacteria in local sands or wrack, in addition to varied fecal inputs from human and/or animal sources. In this study, pyrosequencing was used to generate short sequence tags of the 16S hypervariable region ribosomal DNA from shallow water samples and from sand samples collected at the high tide line and at the intertidal water line at sites with and without FIB exceedance events. These data were used to examine the sand and water bacterial communities to assess the similarity between samples, and to determine the impact of water quality exceedance events on the community composition. Sequences belonging to a group of bacteria previously identified as alternative fecal indicators were also analyzed in relationship to water quality violation events. We found that sand and water samples hosted distinctly different overall bacterial communities, and there was greater similarity in the community composition between coastal water samples from two distant sites. The dissimilarity between high tide and intertidal sand bacterial communities, although more similar to each other than to water, corresponded to greater tidal range between the samples. Within the group of alternative fecal indicators greater similarity was observed within sand and water from the same site, likely reflecting the anthropogenic contribution at each beach. This study supports the growing evidence that community-based molecular tools can be leveraged to identify the sources and potential impact of fecal pollution in the environment, and furthermore suggests that a more diverse bacterial community in beach sand and water may reflect a less contaminated site and better water quality. PMID:24599478

  10. Use of 16S rRNA Gene Profiling by Terminal Restriction Fragment Length Polymorphism Analysis To Compare Bacterial Communities in Sputum and Mouthwash Samples from Patients with Cystic Fibrosis†

    PubMed Central

    Rogers, G. B.; Carroll, M. P.; Serisier, D. J.; Hockey, P. M.; Jones, G.; Kehagia, V.; Connett, G. J.; Bruce, K. D.

    2006-01-01

    The bacterial communities present in the oral cavity and the lungs of 19 adult cystic fibrosis (CF) patients were compared by using terminal restriction fragment length polymorphism analysis of 16S rRNA gene PCR products amplified from nucleic acids extracted directly from bacteria in clinical samples. Sputum samples were not found to be subject to profound contamination by oral cavity bacteria. Evidence of colonization of the CF lung by certain oral bacterial species was found. PMID:16825392

  11. Bacterial communities in the fruit bodies of ground basidiomycetes

    NASA Astrophysics Data System (ADS)

    Zagryadskaya, Yu. A.; Lysak, L. V.; Chernov, I. Yu.

    2015-06-01

    Fruit bodies of basidiomycetes at different stages of decomposition serve as specific habitats in forest biocenoses for bacteria and differ significantly with respect to the total bacterial population and abundance of particular bacterial genera. A significant increase in the total bacterial population estimated by the direct microscopic method with acridine orange staining and in the population of saprotrophic bacteria (inoculation of glucose peptone yeast agar) in fruit bodies of basidiomycetes Armillaria mellea and Coprinus comatus was recorded at the final stage of their decomposition in comparison with the initial stage. Gramnegative bacteria predominated in the tissues of fruit bodies at all the stages of decomposition and were represented at the final stage by the Aeromonas, Vibrio, and Pseudomonas genera (for fruit bodies of A. mellea) the Pseudomonas genus (for fruit bodies of C. comatus). The potential influence of bacterial communities in the fruit bodies of soil basidiomycetes on the formation of bacterial communities in the upper soil horizons in forest biocenoses is discussed. The loci connected with the development and decomposition of fruit bodies of basidiomycetes on the soil surface are promising for targeted search of Gram-negative bacteria, the important objects of biotechnology.

  12. The active bacterial community in a pristine confined aquifer

    NASA Astrophysics Data System (ADS)

    Flynn, Theodore M.; Sanford, Robert A.; Santo Domingo, Jorge W.; Ashbolt, Nicholas J.; Levine, Audrey D.; Bethke, Craig M.

    2012-09-01

    This study of the active bacteria residing in a pristine confined aquifer provides unexpected insights into the ecology of iron-reducing and sulfate-reducing bacteria in the subsurface. At 18 wells, we trapped the microbes that attached to aquifer sediment and used molecular techniques to examine the bacterial populations. We used multivariate statistics to compare the composition of bacterial communities among the wells with respect to the chemistry of the groundwater. We found groundwater at each well was considerably richer in ferrous iron than sulfide, indicating iron-reducing bacteria should, by established criteria, dominate the sulfate reducers. Our results show, however, that areas where groundwater contains more than a negligible amount of sulfate (>0.03 mM), populations related to sulfate reducers of the generaDesulfobacter and Desulfobulbus were of nearly equal abundance with putative iron reducers related to Geobacter, Geothrix, and Desulfuromonas. Whereas sulfate is a key discriminant of bacterial community structure, we observed no statistical relationship between the distribution of bacterial populations in this aquifer and the concentration of either ferrous iron or dissolved sulfide. These results call into question the validity of using the relative concentration of these two ions to predict the nature of bacterial activity in an aquifer. Sulfate reducers and iron reducers do not appear to be segregated into discrete zones in the aquifer, as would be predicted by the theory of competitive exclusion. Instead, we find the two groups coexist in the subsurface in what we suggest is a mutualistic relationship.

  13. Distinct Phyllosphere Bacterial Communities on Arabidopsis Wax Mutant Leaves

    PubMed Central

    Reisberg, Eva E.; Hildebrandt, Ulrich; Riederer, Markus; Hentschel, Ute

    2013-01-01

    The phyllosphere of plants is inhabited by diverse microorganisms, however, the factors shaping their community composition are not fully elucidated. The plant cuticle represents the initial contact surface between microorganisms and the plant. We thus aimed to investigate whether mutations in the cuticular wax biosynthesis would affect the diversity of the phyllosphere microbiota. A set of four Arabidopsis thaliana eceriferum mutants (cer1, cer6, cer9, cer16) and their respective wild type (Landsberg erecta) were subjected to an outdoor growth period and analysed towards this purpose. The chemical distinctness of the mutant wax phenotypes was confirmed by gas chromatographic measurements. Next generation amplicon pyrosequencing of the bacterial communities showed distinct community patterns. This observation was supported by denaturing gradient gel electrophoresis experiments. Microbial community analyses revealed bacterial phylotypes that were ubiquitously present on all plant lines (termed “core” community) while others were positively or negatively affected by the wax mutant phenotype (termed “plant line-specific“ community). We conclude from this study that plant cuticular wax composition can affect the community composition of phyllosphere bacteria. PMID:24223831

  14. Bacterial Community Analysis of Drinking Water Biofilms in Southern Sweden

    PubMed Central

    Lührig, Katharina; Canbäck, Björn; Paul, Catherine J.; Johansson, Tomas; Persson, Kenneth M.; Rådström, Peter

    2015-01-01

    Next-generation sequencing of the V1–V2 and V3 variable regions of the 16S rRNA gene generated a total of 674,116 reads that described six distinct bacterial biofilm communities from both water meters and pipes. A high degree of reproducibility was demonstrated for the experimental and analytical work-flow by analyzing the communities present in parallel water meters, the rare occurrence of biological replicates within a working drinking water distribution system. The communities observed in water meters from households that did not complain about their drinking water were defined by sequences representing Proteobacteria (82–87%), with 22–40% of all sequences being classified as Sphingomonadaceae. However, a water meter biofilm community from a household with consumer reports of red water and flowing water containing elevated levels of iron and manganese had fewer sequences representing Proteobacteria (44%); only 0.6% of all sequences were classified as Sphingomonadaceae; and, in contrast to the other water meter communities, markedly more sequences represented Nitrospira and Pedomicrobium. The biofilm communities in pipes were distinct from those in water meters, and contained sequences that were identified as Mycobacterium, Nocardia, Desulfovibrio, and Sulfuricurvum. The approach employed in the present study resolved the bacterial diversity present in these biofilm communities as well as the differences that occurred in biofilms within a single distribution system, and suggests that next-generation sequencing of 16S rRNA amplicons can show changes in bacterial biofilm communities associated with different water qualities. PMID:25739379

  15. Experimental warming effects on the bacterial community structure and diversity

    NASA Astrophysics Data System (ADS)

    Kim, W.; Han, S.; Adams, J.; Son, Y.

    2014-12-01

    The objective of this study is to investigate the responses of soil bacterial community to future temperature increase by conducting open-field warming experiment. We conducted an open-field experimental warming system using infra-red heater in 2011 and regulated the temperature of warmed plots by 3oC higher than that of control plots constantly. The seeds of Pinus densiflora, Abies holophylla, Abies koreana, Betula costata, Quercus variabilis, Fraxinus rhynchophylla, and Zelkova serrata were planted in each 1 m × 1 m plot (n=3) in April, 2012. We collected soil samples from the rhizosphere of 7 tree species. DNA was extracted and PCR-amplified for the bacterial 16S gene targeting V1-V3 region. The paired-end sequencing was performed at Beijing Genome Institute (BGI, Hong Kong, China) using 2× 100 bp Hiseq2000 (Illumina). This study aimed to answer the following prediction/hypothesis: 1) Experimental warming will change the structure of soil bacterial community, 2) There will be distinct 'indicator group' which response to warming treatment relatively more sensitive than other groups. 3) Warming treatment will enhance the microbial activity in terms of soil respiration. 4) The rhizoplane bacterial communities for each of 7 tree species will show different response pattern to warming treatment. Since the sequence data does not arrive before the submission deadline, therefore, we would like to present the results and discussions on December 2014, AGU Fall Meeting.

  16. The bacterial communities of Drosophila suzukii collected from undamaged cherries

    PubMed Central

    James, Pamela M.; Jospin, Guillaume; Lang, Jenna M.

    2014-01-01

    Drosophila suzukii is an introduced pest insect that feeds on undamaged, attached fruit. This diet is distinct from the fallen, discomposing fruits utilized by most other species of Drosophila. Since the bacterial microbiota of Drosophila, and of many other animals, is affected by diet, we hypothesized that the bacteria associated with D. suzukii are distinct from that of other Drosophila. Using 16S rDNA PCR and Illumina sequencing, we characterized the bacterial communities of larval and adult D. suzukii collected from undamaged, attached cherries in California, USA. We find that the bacterial communities associated with these samples of D. suzukii contain a high frequency of Tatumella. Gluconobacter and Acetobacter, two taxa with known associations with Drosophila, were also found, although at lower frequency than Tatumella in four of the five samples examined. Sampling D. suzukii from different locations and/or while feeding on different fruits is needed to determine the generality of the results determined by these samples. Nevertheless this is, to our knowledge, the first study characterizing the bacterial communities of this ecologically unique and economically important species of Drosophila. PMID:25101226

  17. Bacterial Diversity in Oral Samples of Children in Niger with Acute Noma, Acute Necrotizing Gingivitis, and Healthy Controls

    PubMed Central

    Stadelmann, Benoît; Baratti-Mayer, Denise; Gizard, Yann; Mombelli, Andrea; Pittet, Didier; Schrenzel, Jacques

    2012-01-01

    Background Noma is a gangrenous disease that leads to severe disfigurement of the face with high morbidity and mortality, but its etiology remains unknown. Young children in developing countries are almost exclusively affected. The purpose of the study was to record and compare bacterial diversity in oral samples from children with or without acute noma or acute necrotizing gingivitis from a defined geographical region in Niger by culture-independent molecular methods. Methods and Principal Findings Gingival samples from 23 healthy children, nine children with acute necrotizing gingivitis, and 23 children with acute noma (both healthy and diseased oral sites) were amplified using “universal” PCR primers for the 16 S rRNA gene and pooled according to category (noma, healthy, or acute necrotizing gingivitis), gender, and site status (diseased or control site). Seven libraries were generated. A total of 1237 partial 16 S rRNA sequences representing 339 bacterial species or phylotypes at a 98–99% identity level were obtained. Analysis of bacterial composition and frequency showed that diseased (noma or acute necrotizing gingivitis) and healthy site bacterial communities are composed of similar bacteria, but differ in the prevalence of a limited group of phylotypes. Large increases in counts of Prevotella intermedia and members of the Peptostreptococcus genus are associated with disease. In contrast, no clear-cut differences were found between noma and non-noma libraries. Conclusions Similarities between acute necrotizing gingivitis and noma samples support the hypothesis that the disease could evolve from acute necrotizing gingivitis in certain children for reasons still to be elucidated. This study revealed oral microbiological patterns associated with noma and acute necrotizing gingivitis, but no evidence was found for a specific infection-triggering agent. PMID:22413030

  18. Foliar bacterial communities of trembling aspen in a common garden.

    PubMed

    Mason, Charles J; Pfammatter, Jesse A; Holeski, Liza M; Raffa, Kenneth F

    2015-02-01

    Microbial associations with plants are widely distributed and are structured by a number of biotic and physical factors. Among biotic factors, the host plant genotype may be integral to these plant-microbe interactions. Trees in the genus Populus have become models for studies in scaling effects of host plant genetics and in plant-microbe interactions. Using 454 pyrosequencing of the 16S rRNA gene, we assessed the foliar bacterial community of 7 genotypes of mature trembling aspen trees (Populus tremuloides Michx.) grown in a common garden. Trees were selected based on prior analyses showing clonal variation in their concentration of chemicals conferring resistance against insect herbivores. At broad taxonomic designations, the bacterial community of trembling aspen was similar across all plant genotypes. At a finer taxonomic scale, the foliage of these trees varied in their community composition, but there was no distinct pattern to colonization or abundance related to plant genotype. The most abundant operational taxonomic units (OTUs) were classified as Ralstonia, Bradyrhizobium, Pseudomonas, and Brucella. These OTUs varied across the common garden, but there was no significant effect of host plant genotype or spatial position on the abundance of these members. Our results suggest that aspen genotype is less important in the structuring of its foliar bacterial communities than are other, poorly understood processes. PMID:25602743

  19. Molecular survey of bacterial communities associated with bacterial chondronecrosis with osteomyelitis (BCO) in broilers.

    PubMed

    Jiang, Tieshan; Mandal, Rabindra K; Wideman, Robert F; Khatiwara, Anita; Pevzner, Igal; Min Kwon, Young

    2015-01-01

    Bacterial chondronecrosis with osteomyelitis (BCO) is recognized as an important cause of lameness in commercial broiler chickens (meat-type chickens). Relatively little is known about the microbial communities associated with BCO. This study was conducted to increase our understanding of the microbial factors associated with BCO using a culture-independent approach. Using Illumina sequencing of the hyper-variable region V6 in the 16S rRNA gene, we characterized the bacterial communities in 97 femoral or tibial heads from normal and lame broilers carefully selected to represent diverse variations in age, line, lesion type, floor type, clinical status and bone type. Our in-depth survey based on 14 million assembled sequence reads revealed that complex bacterial communities exist in all samples, including macroscopically normal bones from clinically healthy birds. Overall, Proteobacteria (mean 90.9%) comprised the most common phylum, followed by Firmicutes (6.1%) and Actinobacteria (2.6%), accounting for more than 99% of all reads. Statistical analyses demonstrated that there are differences in bacterial communities in different types of bones (femur vs. tibia), lesion types (macroscopically normal femora or tibiae vs. those with pathognomonic BCO lesions), and among individual birds. This analysis also showed that BCO samples overrepresented genera Staphylococcus, whose species have been frequently isolated in BCO samples in previous studies. Rarefaction analysis demonstrated the general tendency that increased severities of BCO lesions were associated with reduced species diversity in both femoral and tibial samples when compared to macroscopically normal samples. These observations suggest that certain bacterial subgroups are preferentially selected in association with the development of BCO lesions. Understanding the microbial species associated with BCO will identify opportunities for understanding and modulating the pathogenesis of this form of lameness in

  20. Molecular Survey of Bacterial Communities Associated with Bacterial Chondronecrosis with Osteomyelitis (BCO) in Broilers

    PubMed Central

    Jiang, Tieshan; Mandal, Rabindra K.; Wideman, Robert F.; Khatiwara, Anita; Pevzner, Igal; Min Kwon, Young

    2015-01-01

    Bacterial chondronecrosis with osteomyelitis (BCO) is recognized as an important cause of lameness in commercial broiler chickens (meat-type chickens). Relatively little is known about the microbial communities associated with BCO. This study was conducted to increase our understanding of the microbial factors associated with BCO using a culture-independent approach. Using Illumina sequencing of the hyper-variable region V6 in the 16S rRNA gene, we characterized the bacterial communities in 97 femoral or tibial heads from normal and lame broilers carefully selected to represent diverse variations in age, line, lesion type, floor type, clinical status and bone type. Our in-depth survey based on 14 million assembled sequence reads revealed that complex bacterial communities exist in all samples, including macroscopically normal bones from clinically healthy birds. Overall, Proteobacteria (mean 90.9%) comprised the most common phylum, followed by Firmicutes (6.1%) and Actinobacteria (2.6%), accounting for more than 99% of all reads. Statistical analyses demonstrated that there are differences in bacterial communities in different types of bones (femur vs. tibia), lesion types (macroscopically normal femora or tibiae vs. those with pathognomonic BCO lesions), and among individual birds. This analysis also showed that BCO samples overrepresented genera Staphylococcus, whose species have been frequently isolated in BCO samples in previous studies. Rarefaction analysis demonstrated the general tendency that increased severities of BCO lesions were associated with reduced species diversity in both femoral and tibial samples when compared to macroscopically normal samples. These observations suggest that certain bacterial subgroups are preferentially selected in association with the development of BCO lesions. Understanding the microbial species associated with BCO will identify opportunities for understanding and modulating the pathogenesis of this form of lameness in

  1. Oral Bacterial Deactivation Using a Low-Temperature Atmospheric Argon Plasma Brush

    PubMed Central

    Yang, Bo; Chen, Jierong; Yu, Qingsong; Li, Hao; Lin, Mengshi; Mustapha, Azlin; Hong, Liang; Wang, Yong

    2010-01-01

    Summary Objectives To study the plasma treatment effects on deactivation effectiveness of oral bacteria. Methods A low temperature atmospheric argon plasma brush were used to study the oral bacterial deactivation effects in terms of plasma conditions, plasma exposure time, and bacterial supporting media. Oral bacteria of Streptococcus mutans and Lactobacillus acidophilus with an initial bacterial population density between 1.0 × 108 and 5.0 × 108 cfu/ml were seeded on various media and their survivability with plasma exposure was examined. Scanning electron microscopy was used to examine the morphological changes of the plasma treated bacteria. Optical absorption was used to determine the leakage of intracellular proteins and DNAs of the plasma treated bacteria. Results The experimental data indicated that the argon atmospheric plasma brush was very effective in deactivating oral bacteria. The plasma exposure time for a 99.9999% cell reduction was less than 15 seconds for S. mutans and within 5 minutes for L. acidophilus. It was found that the plasma deactivation efficiency was also dependent on the bacterial supporting media. With plasma exposure, significant damages to bacterial cell structures were observed with both bacterium species. Leakage of intracellular proteins and DNAs after plasma exposure was observed through monitoring the absorbance peaks at wavelengths of 280nm and 260nm, respectively. Conclusion The experimental results from this study indicated that low temperature atmospheric plasma treatment was very effective in deactivation of oral bacteria and could be a promising technique in various dental clinical applications such as bacterial disinfection and caries early prevention, etc. PMID:20951184

  2. Bacterial diversity and community composition from seasurface to subseafloor.

    PubMed

    Walsh, Emily A; Kirkpatrick, John B; Rutherford, Scott D; Smith, David C; Sogin, Mitchell; D'Hondt, Steven

    2016-04-01

    We investigated compositional relationships between bacterial communities in the water column and those in deep-sea sediment at three environmentally distinct Pacific sites (two in the Equatorial Pacific and one in the North Pacific Gyre). Through pyrosequencing of the v4-v6 hypervariable regions of the 16S ribosomal RNA gene, we characterized 450,104 pyrotags representing 29,814 operational taxonomic units (OTUs, 97% similarity). Hierarchical clustering and non-metric multidimensional scaling partition the samples into four broad groups, regardless of geographic location: a photic-zone community, a subphotic community, a shallow sedimentary community and a subseafloor sedimentary community (⩾1.5 meters below seafloor). Abundance-weighted community compositions of water-column samples exhibit a similar trend with depth at all sites, with successive epipelagic, mesopelagic, bathypelagic and abyssopelagic communities. Taxonomic richness is generally highest in the water-column O2 minimum zone and lowest in the subseafloor sediment. OTUs represented by abundant tags in the subseafloor sediment are often present but represented by few tags in the water column, and represented by moderately abundant tags in the shallow sediment. In contrast, OTUs represented by abundant tags in the water are generally absent from the subseafloor sediment. These results are consistent with (i) dispersal of marine sedimentary bacteria via the ocean, and (ii) selection of the subseafloor sedimentary community from within the community present in shallow sediment. PMID:26430855

  3. Bacterial diversity and community composition from seasurface to subseafloor

    PubMed Central

    Walsh, Emily A; Kirkpatrick, John B; Rutherford, Scott D; Smith, David C; Sogin, Mitchell; D'Hondt, Steven

    2016-01-01

    We investigated compositional relationships between bacterial communities in the water column and those in deep-sea sediment at three environmentally distinct Pacific sites (two in the Equatorial Pacific and one in the North Pacific Gyre). Through pyrosequencing of the v4–v6 hypervariable regions of the 16S ribosomal RNA gene, we characterized 450 104 pyrotags representing 29 814 operational taxonomic units (OTUs, 97% similarity). Hierarchical clustering and non-metric multidimensional scaling partition the samples into four broad groups, regardless of geographic location: a photic-zone community, a subphotic community, a shallow sedimentary community and a subseafloor sedimentary community (⩾1.5 meters below seafloor). Abundance-weighted community compositions of water-column samples exhibit a similar trend with depth at all sites, with successive epipelagic, mesopelagic, bathypelagic and abyssopelagic communities. Taxonomic richness is generally highest in the water-column O2 minimum zone and lowest in the subseafloor sediment. OTUs represented by abundant tags in the subseafloor sediment are often present but represented by few tags in the water column, and represented by moderately abundant tags in the shallow sediment. In contrast, OTUs represented by abundant tags in the water are generally absent from the subseafloor sediment. These results are consistent with (i) dispersal of marine sedimentary bacteria via the ocean, and (ii) selection of the subseafloor sedimentary community from within the community present in shallow sediment. PMID:26430855

  4. Response of soil bacterial community to metal nanoparticles in biosolids.

    PubMed

    Shah, Vishal; Jones, Jamilee; Dickman, Jenifer; Greenman, Steven

    2014-06-15

    The increasing use of engineered nanoparticles (NPs) in industrial and household applications will very likely lead to the increased release of such materials into the public sewer systems. During the wastewater treatment process, some fraction of NPs would always be concentrated in the biosolids. When biosolids is applied on the agricultural land, NPs are introduced into the soil matrix. In the current study we investigate the influence of five different metal nanoparticles present in biosolids on soil microbial community as a function of time. Results indicate that ZnO and Zero Valent Cu NPs were not toxic to soil bacterial community. Biosolids mixed with Ag NPs and TiO2 (both anatase and rutile phase) in contrast changed the bacterial richness and composition in wavering pattern as a function of time. Based on the observations made in the study, we suggest caution when interpreting the toxicity of NPs based on single time point study. PMID:24801897

  5. Assessing the diversity of bacterial communities associated with plants

    PubMed Central

    Andreote, Fernando Dini; Azevedo, João Lúcio; Araújo, Welington Luiz

    2009-01-01

    Plant–bacteria interactions result from reciprocal recognition between both species. These interactions are responsible for essential biological processes in plant development and health status. Here, we present a review of the methodologies applied to investigate shifts in bacterial communities associated with plants. A description of techniques is made from initial isolations to culture-independent approaches focusing on quantitative Polymerase Chain Reaction in real time (qPCR), Denaturing Gradient Gel Electrophoresis (DGGE), clone library construction and analysis, the application of multivariate analyses to microbial ecology data and the upcoming high throughput methodologies such as microarrays and pyrosequencing. This review supplies information about the development of traditional methods and a general overview about the new insights into bacterial communities associated with plants. PMID:24031382

  6. Molecular Characterization of Epiphytic Bacterial Communities on Charophycean Green Algae

    PubMed Central

    Fisher, Madeline M.; Wilcox, Lee W.; Graham, Linda E.

    1998-01-01

    Epiphytic bacterial communities within the sheath material of three filamentous green algae, Desmidium grevillii, Hyalotheca dissiliens, and Spondylosium pulchrum (class Charophyceae, order Zygnematales), collected from a Sphagnum bog were characterized by PCR amplification, cloning, and sequencing of 16S ribosomal DNA. A total of 20 partial sequences and nine different sequence types were obtained, and one sequence type was recovered from the bacterial communities on all three algae. By phylogenetic analysis, the cloned sequences were placed into several major lineages of the Bacteria domain: the Flexibacter/Cytophaga/Bacteroides phylum and the α, β, and γ subdivisions of the phylum Proteobacteria. Analysis at the subphylum level revealed that the majority of our sequences were not closely affiliated with those of known, cultured taxa, although the estimated evolutionary distances between our sequences and their nearest neighbors were always less than 0.1 (i.e., greater than 90% similar). This result suggests that the majority of sequences obtained in this study represent as yet phenotypically undescribed bacterial species and that the range of bacterial-algal interactions that occur in nature has not yet been fully described. PMID:9797295

  7. Characterization of Coastal Urban Watershed Bacterial Communities Leads to Alternative Community-Based Indicators

    PubMed Central

    Wu, Cindy H.; Sercu, Bram; Van De Werfhorst, Laurie C.; Wong, Jakk; DeSantis, Todd Z.; Brodie, Eoin L.; Hazen, Terry C.; Holden, Patricia A.; Andersen, Gary L.

    2010-01-01

    Background Microbial communities in aquatic environments are spatially and temporally dynamic due to environmental fluctuations and varied external input sources. A large percentage of the urban watersheds in the United States are affected by fecal pollution, including human pathogens, thus warranting comprehensive monitoring. Methodology/Principal Findings Using a high-density microarray (PhyloChip), we examined water column bacterial community DNA extracted from two connecting urban watersheds, elucidating variable and stable bacterial subpopulations over a 3-day period and community composition profiles that were distinct to fecal and non-fecal sources. Two approaches were used for indication of fecal influence. The first approach utilized similarity of 503 operational taxonomic units (OTUs) common to all fecal samples analyzed in this study with the watershed samples as an index of fecal pollution. A majority of the 503 OTUs were found in the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The second approach incorporated relative richness of 4 bacterial classes (Bacilli, Bacteroidetes, Clostridia and α-proteobacteria) found to have the highest variance in fecal and non-fecal samples. The ratio of these 4 classes (BBC∶A) from the watershed samples demonstrated a trend where bacterial communities from gut and sewage sources had higher ratios than from sources not impacted by fecal material. This trend was also observed in the 124 bacterial communities from previously published and unpublished sequencing or PhyloChip- analyzed studies. Conclusions/Significance This study provided a detailed characterization of bacterial community variability during dry weather across a 3-day period in two urban watersheds. The comparative analysis of watershed community composition resulted in alternative community-based indicators that could be useful for assessing ecosystem health. PMID:20585654

  8. Characterization of coastal urban watershed bacterial communities leads to alternative community-based indicators

    SciTech Connect

    Wu, C.H.; Sercu, B.; Van De Werhorst, L.C.; Wong, J.; DeSantis, T.Z.; Brodie, E.L.; Hazen, T.C.; Holden, P.A.; Andersen, G.L.

    2010-03-01

    Microbial communities in aquatic environments are spatially and temporally dynamic due to environmental fluctuations and varied external input sources. A large percentage of the urban watersheds in the United States are affected by fecal pollution, including human pathogens, thus warranting comprehensive monitoring. Using a high-density microarray (PhyloChip), we examined water column bacterial community DNA extracted from two connecting urban watersheds, elucidating variable and stable bacterial subpopulations over a 3-day period and community composition profiles that were distinct to fecal and non-fecal sources. Two approaches were used for indication of fecal influence. The first approach utilized similarity of 503 operational taxonomic units (OTUs) common to all fecal samples analyzed in this study with the watershed samples as an index of fecal pollution. A majority of the 503 OTUs were found in the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. The second approach incorporated relative richness of 4 bacterial classes (Bacilli, Bacteroidetes, Clostridia and a-proteobacteria) found to have the highest variance in fecal and non-fecal samples. The ratio of these 4 classes (BBC:A) from the watershed samples demonstrated a trend where bacterial communities from gut and sewage sources had higher ratios than from sources not impacted by fecal material. This trend was also observed in the 124 bacterial communities from previously published and unpublished sequencing or PhyloChip- analyzed studies. This study provided a detailed characterization of bacterial community variability during dry weather across a 3-day period in two urban watersheds. The comparative analysis of watershed community composition resulted in alternative community-based indicators that could be useful for assessing ecosystem health.

  9. Clinical Implications of Oral Candidiasis: Host Tissue Damage and Disseminated Bacterial Disease

    PubMed Central

    Kong, Eric F.; Kucharíková, Sona; Peters, Brian M.; Shirtliff, Mark E.

    2014-01-01

    The clinical significance of polymicrobial interactions, particularly those between commensal species with high pathogenic potential, remains largely understudied. Although the dimorphic fungal species Candida albicans and the bacterium Staphylococcus aureus are common cocolonizers of humans, they are considered leading opportunistic pathogens. Oral candidiasis specifically, characterized by hyphal invasion of oral mucosal tissue, is the most common opportunistic infection in HIV+ and immunocompromised individuals. In this study, building on our previous findings, a mouse model was developed to investigate whether the onset of oral candidiasis predisposes the host to secondary staphylococcal infection. The findings demonstrated that in mice with oral candidiasis, subsequent exposure to S. aureus resulted in systemic bacterial infection with high morbidity and mortality. Histopathology and scanning electron microscopy of tongue tissue from moribund animals revealed massive C. albicans hyphal invasion coupled with S. aureus deep tissue infiltration. The crucial role of hyphae in the process was demonstrated using a non-hypha-producing and a noninvasive hypha-producing mutant strains of C. albicans. Further, in contrast to previous findings, S. aureus dissemination was aided but not contingent upon the presence of the Als3p hypha-specific adhesion. Importantly, impeding development of mucosal C. albicans infection by administering antifungal fluconazole therapy protected the animals from systemic bacterial disease. The combined findings from this study demonstrate that oral candidiasis may constitute a risk factor for disseminated bacterial disease warranting awareness in terms of therapeutic management of immunocompromised individuals. PMID:25422264

  10. Inactivating effects of the lactoperoxidase system on bacterial lyases involved in oral malodour production.

    PubMed

    Nakano, Manabu; Shin, Kouichirou; Wakabayashi, Hiroyuki; Yamauchi, Koji; Abe, Fumiaki; Hironaka, Shouji

    2015-10-01

    The main components of oral malodour have been identified as volatile sulfur compounds (VSCs), including hydrogen sulfide (H(2)S) and methyl mercaptan (CH(3)SH). The lactoperoxidase (LPO) system (consisting of LPO, glucose oxidase, glucose and thiocyanate) was previously shown to exhibit antimicrobial activities against some oral bacteria in vitro and suppressive effects on VSCs in mouth air in a clinical trial. Here, we examined the in vitro effects of the LPO system on the activities of the bacterial lyases involved in the production of VSCs by oral anaerobes. The exposure of crude bacterial extracts of Fusobacterium nucleatum and Porphyromonas gingivalis or purified methionine γ-lyase to the LPO system resulted in the inactivation of their lyase activities through l-cysteine and l-methionine, which was linked to the production of H(2)S and CH(3)SH, respectively. The exposure of living F. nucleatum and P. gingivalis cells to the LPO system resulted in the suppression of cell numbers and lyase activities. The inactivation of the crude bacterial extracts of F. nucleatum and purified methionine γ-lyase by the LPO system was partly recovered by the addition of DTT. Therefore, the LPO system may inactivate bacterial lyases including methionine γ-lyase by reacting with the free cysteine residues of lyases. These results suggested that the LPO system suppresses the production of VSCs not only through its antimicrobial effects, but also by its inactivating effects on the bacterial lyases of F. nucleatum and P. gingivalis. PMID:26242770

  11. Natural Bacterial Communities Serve as Quantitative Geochemical Biosensors

    PubMed Central

    Smith, Mark B.; Rocha, Andrea M.; Smillie, Chris S.; Olesen, Scott W.; Paradis, Charles; Wu, Liyou; Campbell, James H.; Fortney, Julian L.; Mehlhorn, Tonia L.; Lowe, Kenneth A.; Earles, Jennifer E.; Phillips, Jana; Techtmann, Steve M.; Joyner, Dominique C.; Elias, Dwayne A.; Bailey, Kathryn L.; Hurt, Richard A.; Preheim, Sarah P.; Sanders, Matthew C.; Yang, Joy; Mueller, Marcella A.; Brooks, Scott; Watson, David B.; Zhang, Ping; He, Zhili; Dubinsky, Eric A.; Adams, Paul D.; Arkin, Adam P.; Fields, Matthew W.; Zhou, Jizhong; Alm, Eric J.

    2015-01-01

    ABSTRACT Biological sensors can be engineered to measure a wide range of environmental conditions. Here we show that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants, including uranium and nitrate at a nuclear waste site. In addition to contamination, sequence data from the 16S rRNA gene alone can quantitatively predict a rich catalogue of 26 geochemical features collected from 93 wells with highly differing geochemistry characteristics. We extend this approach to identify sites contaminated with hydrocarbons from the Deepwater Horizon oil spill, finding that altered bacterial communities encode a memory of prior contamination, even after the contaminants themselves have been fully degraded. We show that the bacterial strains that are most useful for detecting oil and uranium are known to interact with these substrates, indicating that this statistical approach uncovers ecologically meaningful interactions consistent with previous experimental observations. Future efforts should focus on evaluating the geographical generalizability of these associations. Taken as a whole, these results indicate that ubiquitous, natural bacterial communities can be used as in situ environmental sensors that respond to and capture perturbations caused by human impacts. These in situ biosensors rely on environmental selection rather than directed engineering, and so this approach could be rapidly deployed and scaled as sequencing technology continues to become faster, simpler, and less expensive. PMID:25968645

  12. Changes in the bacterial community structure in stored wormbed leachate.

    PubMed

    Romero-Tepal, Elda M; Contreras-Blancas, Eduardo; Navarro-Noya, Yendi E; Ruíz-Valdiviezo, Víctor M; Luna-Guido, Marco; Gutiérrez-Miceli, Federico A; Dendooven, Luc

    2014-01-01

    Organic wastes, such as cow manure, are often composted with earthworms (vermicomposting) while excess water is drained and collected. This wormbed leachate is nutrient-rich and it has been extensively used to fertilize plants. However, it is derived partially from a not yet finished compost process and could exhibit phytotoxicity or contain potentially hazardous microorganisms. The bacterial community in wormbed leachate derived from vermicomposting of cow manure was studied by pyrosequencing the 16S rRNA gene. The fresh wormbed leachate was rich in Mollicutes, particularly the genus Acholeplasma which contain phytopathogen species. The abundance of the Mollicutes decreased when the leachate was stored, while that of the Rhizobiales and the genus Pseudomonas increased. The bacterial communities changed rapidly in the leachate during storage. The changes in ammonium, nitrate and inorganic carbon content of the wormbed leachate when stored were correlated to changes in the bacterial community structure. It was found that storage of the wormbed leachate might be required before it can be applied to crops as large proportions of potentially plant pathogens were found in the fresh leachate. PMID:24577291

  13. Buccal swabbing as a noninvasive method to determine bacterial, archaeal, and eukaryotic microbial community structures in the rumen.

    PubMed

    Kittelmann, Sandra; Kirk, Michelle R; Jonker, Arjan; McCulloch, Alan; Janssen, Peter H

    2015-11-01

    Analysis of rumen microbial community structure based on small-subunit rRNA marker genes in metagenomic DNA samples provides important insights into the dominant taxa present in the rumen and allows assessment of community differences between individuals or in response to treatments applied to ruminants. However, natural animal-to-animal variation in rumen microbial community composition can limit the power of a study considerably, especially when only subtle differences are expected between treatment groups. Thus, trials with large numbers of animals may be necessary to overcome this variation. Because ruminants pass large amounts of rumen material to their oral cavities when they chew their cud, oral samples may contain good representations of the rumen microbiota and be useful in lieu of rumen samples to study rumen microbial communities. We compared bacterial, archaeal, and eukaryotic community structures in DNAs extracted from buccal swabs to those in DNAs from samples collected directly from the rumen by use of a stomach tube for sheep on four different diets. After bioinformatic depletion of potential oral taxa from libraries of samples collected via buccal swabs, bacterial communities showed significant clustering by diet (R = 0.37; analysis of similarity [ANOSIM]) rather than by sampling method (R = 0.07). Archaeal, ciliate protozoal, and anaerobic fungal communities also showed significant clustering by diet rather than by sampling method, even without adjustment for potentially orally associated microorganisms. These findings indicate that buccal swabs may in future allow quick and noninvasive sampling for analysis of rumen microbial communities in large numbers of ruminants. PMID:26276109

  14. Buccal Swabbing as a Noninvasive Method To Determine Bacterial, Archaeal, and Eukaryotic Microbial Community Structures in the Rumen

    PubMed Central

    Kirk, Michelle R.; Jonker, Arjan; McCulloch, Alan

    2015-01-01

    Analysis of rumen microbial community structure based on small-subunit rRNA marker genes in metagenomic DNA samples provides important insights into the dominant taxa present in the rumen and allows assessment of community differences between individuals or in response to treatments applied to ruminants. However, natural animal-to-animal variation in rumen microbial community composition can limit the power of a study considerably, especially when only subtle differences are expected between treatment groups. Thus, trials with large numbers of animals may be necessary to overcome this variation. Because ruminants pass large amounts of rumen material to their oral cavities when they chew their cud, oral samples may contain good representations of the rumen microbiota and be useful in lieu of rumen samples to study rumen microbial communities. We compared bacterial, archaeal, and eukaryotic community structures in DNAs extracted from buccal swabs to those in DNAs from samples collected directly from the rumen by use of a stomach tube for sheep on four different diets. After bioinformatic depletion of potential oral taxa from libraries of samples collected via buccal swabs, bacterial communities showed significant clustering by diet (R = 0.37; analysis of similarity [ANOSIM]) rather than by sampling method (R = 0.07). Archaeal, ciliate protozoal, and anaerobic fungal communities also showed significant clustering by diet rather than by sampling method, even without adjustment for potentially orally associated microorganisms. These findings indicate that buccal swabs may in future allow quick and noninvasive sampling for analysis of rumen microbial communities in large numbers of ruminants. PMID:26276109

  15. Diversity of Human Vaginal Bacterial Communities and Associations with Clinically Defined Bacterial Vaginosis▿ †

    PubMed Central

    Oakley, Brian B.; Fiedler, Tina L.; Marrazzo, Jeanne M.; Fredricks, David N.

    2008-01-01

    Bacterial vaginosis (BV) is a common syndrome associated with numerous adverse health outcomes in women. Despite its medical importance, the etiology and microbial ecology of BV remain poorly understood. We used broad-range PCR to census the community structure of the healthy and BV-affected vaginal microbial ecosystems and synthesized current publicly available bacterial 16S rRNA gene sequence data from this environment. The community of vaginal bacteria detected in subjects with BV was much more taxon rich and diverse than in subjects without BV. At a 97% sequence similarity cutoff, the number of operational taxonomic units (OTUs) per patient in 28 subjects with BV was nearly three times greater than in 13 subjects without BV: 14.8 ± 0.7 versus 5.2 ± 0.75 (mean ± standard error). OTU-based analyses revealed previously hidden diversity for many vaginal bacteria that are currently poorly represented in GenBank. Our sequencing efforts yielded many novel phylotypes (123 of our sequences represented 38 OTUs not previously found in the vaginal ecosystem), including several novel BV-associated OTUs, such as those belonging to the Prevotella species complex, which remain severely underrepresented in the current NCBI database. Community composition was highly variable among subjects at a fine taxonomic scale, but at the phylum level, Actinobacteria and Bacteroidetes were strongly associated with BV. Our data describe a previously unrecognized extent of bacterial diversity in the vaginal ecosystem. The human vagina hosts many bacteria that are only distantly related to known species, and subjects with BV harbor particularly taxon-rich and diverse bacterial communities. PMID:18487399

  16. Bacterial Communities in Acidic and Circumneutral Streams †

    PubMed Central

    Palumbo, Anthony V.; Bogle, Mary Anna; Turner, Ralph R.; Elwood, Jerry W.; Mulholland, Patrick J.

    1987-01-01

    The relationship between pH and the abundance and activity of bacteria in streams was examined as part of a study of the effect of acidification on stream communities. Of the bacterial communities examined, the epilithic community appeared to be the most significantly affected by acidification. Microbial biomass, as quantified by measuring the ATP level, on rock surfaces was significantly correlated with pH. Also, bacterial production by the epilithic bacteria, indicated by incorporation of tritiated thymidine into DNA, was always higher at high-pH sites than at low-pH sites of the same stream order and elevation. Bacterioplankton concentrations varied between 0.53 × 105 and 9.42 × 105 cells · ml−1 in the first- to fourth-order streams examined. The bacterioplankton concentration in one sample from a spring was 0.17 × 105 cells · ml−1. Bacterioplankton concentrations were not correlated with pH but were significantly correlated with seston concentrations. The correlation with seston is a result of increases in particle-associated bacteria at high seston concentrations. The proportion of bacterioplankton attached to particles varied from 0 to 70%. Bacterial numbers and production in the sediments were significantly correlated with the organic content of the sediment rather than with the pH of the overlying water. Thus, reduced abundance and activity of bacteria as a result of acidification could be detected only for the relatively active community on rock surfaces; this community was exposed to the low pH because of the unbuffered nature of its environment. PMID:16347283

  17. Enhanced Mucosal Antibody Production and Protection against Respiratory Infections Following an Orally Administered Bacterial Extract

    PubMed Central

    Pasquali, Christian; Salami, Olawale; Taneja, Manisha; Gollwitzer, Eva S.; Trompette, Aurelien; Pattaroni, Céline; Yadava, Koshika; Bauer, Jacques; Marsland, Benjamin J.

    2014-01-01

    Secondary bacterial infections following influenza infection are a pressing problem facing respiratory medicine. Although antibiotic treatment has been highly successful over recent decades, fatalities due to secondary bacterial infections remain one of the leading causes of death associated with influenza. We have assessed whether administration of a bacterial extract alone is sufficient to potentiate immune responses and protect against primary infection with influenza, and secondary infections with either Streptococcus pneumoniae or Klebsiella pneumoniae in mice. We show that oral administration with the bacterial extract, OM-85, leads to a maturation of dendritic cells and B-cells characterized by increases in MHC II, CD86, and CD40, and a reduction in ICOSL. Improved immune responsiveness against influenza virus reduced the threshold of susceptibility to secondary bacterial infections, and thus protected the mice. The protection was associated with enhanced polyclonal B-cell activation and release of antibodies that were effective at neutralizing the virus. Taken together, these data show that oral administration of bacterial extracts provides sufficient mucosal immune stimulation to protect mice against a respiratory tract viral infection and associated sequelae. PMID:25593914

  18. Enhanced Mucosal Antibody Production and Protection against Respiratory Infections Following an Orally Administered Bacterial Extract.

    PubMed

    Pasquali, Christian; Salami, Olawale; Taneja, Manisha; Gollwitzer, Eva S; Trompette, Aurelien; Pattaroni, Céline; Yadava, Koshika; Bauer, Jacques; Marsland, Benjamin J

    2014-01-01

    Secondary bacterial infections following influenza infection are a pressing problem facing respiratory medicine. Although antibiotic treatment has been highly successful over recent decades, fatalities due to secondary bacterial infections remain one of the leading causes of death associated with influenza. We have assessed whether administration of a bacterial extract alone is sufficient to potentiate immune responses and protect against primary infection with influenza, and secondary infections with either Streptococcus pneumoniae or Klebsiella pneumoniae in mice. We show that oral administration with the bacterial extract, OM-85, leads to a maturation of dendritic cells and B-cells characterized by increases in MHC II, CD86, and CD40, and a reduction in ICOSL. Improved immune responsiveness against influenza virus reduced the threshold of susceptibility to secondary bacterial infections, and thus protected the mice. The protection was associated with enhanced polyclonal B-cell activation and release of antibodies that were effective at neutralizing the virus. Taken together, these data show that oral administration of bacterial extracts provides sufficient mucosal immune stimulation to protect mice against a respiratory tract viral infection and associated sequelae. PMID:25593914

  19. A Model for Community-Based Pediatric Oral Heath: Implementation of an Infant Oral Care Program

    PubMed Central

    Ramos-Gomez, Francisco J.

    2014-01-01

    The Affordable Care Act (ACA) mandates risk assessments, preventive care, and evaluations based on outcomes. ACA compliance will require easily accessible, cost-effective care models that are flexible and simple to establish. UCLA has developed an Infant Oral Care Program (IOCP) in partnership with community-based organizations that is an intervention model providing culturally competent perinatal and infant oral care for underserved, low-income, and/or minority children aged 0–5 and their caregivers. In collaboration with the Venice Family Clinic's Simms/Mann Health and Wellness Center, UCLA Pediatrics, Women, Infants, and Children (WIC), and Early Head Start and Head Start programs, the IOCP increases family-centered care access and promotes early utilization of dental services in nontraditional, primary care settings. Emphasizing disease prevention, management, and care that is sensitive to cultural, language, and oral health literacy challenges, IOCP patients achieve better oral health maintenance “in health” not in “disease modality”. IOCP uses interprofessional education to promote pediatric oral health across multiple disciplines and highlights the necessity for the “age-one visit”. This innovative clinical model facilitates early intervention and disease management. It sets a new standard of minimally invasive dental care that is widely available and prevention focused, with high retention rates due to strong collaborations with the community-based organizations serving these vulnerable, high-risk children. PMID:24587803

  20. Endosymbiont Dominated Bacterial Communities in a Dwarf Spider

    PubMed Central

    Vanthournout, Bram; Hendrickx, Frederik

    2015-01-01

    The microbial community of spiders is little known, with previous studies focussing primarily on the medical importance of spiders as vectors of pathogenic bacteria and on the screening of known cytoplasmic endosymbiont bacteria. These screening studies have been performed by means of specific primers that only amplify a selective set of endosymbionts, hampering the detection of unreported species in spiders. In order to have a more complete overview of the bacterial species that can be present in spiders, we applied a combination of a cloning assay, DGGE profiling and high-throughput sequencing on multiple individuals of the dwarf spider Oedothorax gibbosus. This revealed a co-infection of at least three known (Wolbachia, Rickettsia and Cardinium) and the detection of a previously unreported endosymbiont bacterium (Rhabdochlamydia) in spiders. 16S rRNA gene sequences of Rhabdochlamydia matched closely with those of Candidatus R. porcellionis, which is currently only reported as a pathogen from a woodlouse and with Candidatus R. crassificans reported from a cockroach. Remarkably, this bacterium appears to present in very high proportions in one of the two populations only, with all investigated females being infected. We also recovered Acinetobacter in high abundance in one individual. In total, more than 99% of approximately 4.5M high-throughput sequencing reads were restricted to these five bacterial species. In contrast to previously reported screening studies of terrestrial arthropods, our results suggest that the bacterial communities in this spider species are dominated by, or even restricted to endosymbiont bacteria. Given the high prevalence of endosymbiont species in spiders, this bacterial community pattern could be widespread in the Araneae order. PMID:25706947

  1. Oral community interactions of Filifactor alocis in vitro.

    PubMed

    Wang, Qian; Wright, Christopher J; Dingming, Huang; Uriarte, Silvia M; Lamont, Richard J

    2013-01-01

    Filifactor alocis is a gram positive anaerobe that is emerging as an important periodontal pathogen. In the oral cavity F. alocis colonizes polymicrobial biofilm communities; however, little is known regarding the nature of the interactions between F. alocis and other oral biofilm bacteria. Here we investigate the community interactions of two strains of F. alocis with Streptococcus gordonii, Fusobacterium nucleatum, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, organisms with differing pathogenic potential in the oral cavity. In an in vitro community development model, S. gordonii was antagonistic to the accumulation of F. alocis into a dual species community. In contrast, F. nucleatum and the type strain of F. alocis formed a synergistic partnership. Accumulation of a low passage isolate of F. alocis was also enhanced by F. nucleatum. In three species communities of S. gordonii, F. nucleatum and F. alocis, the antagonistic effects of S. gordonii superseded the synergistic effects of F. nucleatum toward F. alocis. The interaction between A. actinomycetemcomitans and F. alocis was strain specific and A. actinomycetemcomitans could either stimulate F. alocis accumulation or have no effect depending on the strain. P. gingivalis and F. alocis formed heterotypic communities with the amount of P. gingivalis greater than in the absence of F. alocis. However, while P. gingivalis benefited from the relationship, levels of F. alocis in the dual species community were lower compared to F. alocis alone. The inhibitory effect of P. gingivalis toward F. alocis was dependent, at least partially, on the presence of the Mfa1 fimbrial subunit. In addition, AI-2 production by P. gingivalis helped maintain levels of F. alocis. Collectively, these results show that the pattern of F. alocis colonization will be dictated by the spatial composition of microbial microenvironments, and that the organism may preferentially accumulate at sites rich in F. nucleatum. PMID

  2. Glyphosate effects on soil rhizosphere-associated bacterial communities.

    PubMed

    Newman, Molli M; Hoilett, Nigel; Lorenz, Nicola; Dick, Richard P; Liles, Mark R; Ramsier, Cliff; Kloepper, Joseph W

    2016-02-01

    Glyphosate is one of the most widely used herbicides in agriculture with predictions that 1.35 million metric tons will be used annually by 2017. With the advent of glyphosate tolerant (GT) cropping more than 10 years ago, there is now concern for non-target effects on soil microbial communities that has potential to negatively affect soil functions, plant health, and crop productivity. Although extensive research has been done on short-term response to glyphosate, relatively little information is available on long-term effects. Therefore, the overall objective was to investigate shifts in the rhizosphere bacterial community following long-term glyphosate application on GT corn and soybean in the greenhouse. In this study, rhizosphere soil was sampled from rhizoboxes following 4 growth periods, and bacterial community composition was compared between glyphosate treated and untreated rhizospheres using next-generation barcoded sequencing. In the presence or absence of glyphosate, corn and soybean rhizospheres were dominated by members of the phyla Proteobacteria, Acidobacteria, and Actinobacteria. Proteobacteria (particularly gammaproteobacteria) increased in relative abundance for both crops following glyphosate exposure, and the relative abundance of Acidobacteria decreased in response to glyphosate exposure. Given that some members of the Acidobacteria are involved in biogeochemical processes, a decrease in their abundance could lead to significant changes in nutrient status of the rhizosphere. Our results also highlight the need for applying culture-independent approaches in studying the effects of pesticides on the soil and rhizosphere microbial community. PMID:26580738

  3. Bacterial endophytic communities in the grapevine depend on pest management.

    PubMed

    Campisano, Andrea; Antonielli, Livio; Pancher, Michael; Yousaf, Sohail; Pindo, Massimo; Pertot, Ilaria

    2014-01-01

    Microbial plant endophytes are receiving ever-increasing attention as a result of compelling evidence regarding functional interaction with the host plant. Microbial communities in plants were recently reported to be influenced by numerous environmental and anthropogenic factors, including soil and pest management. In this study we used automated ribosomal intergenic spacer analysis (ARISA) fingerprinting and pyrosequencing of 16S rDNA to assess the effect of organic production and integrated pest management (IPM) on bacterial endophytic communities in two widespread grapevines cultivars (Merlot and Chardonnay). High levels of the dominant Ralstonia, Burkholderia and Pseudomonas genera were detected in all the samples We found differences in the composition of endophytic communities in grapevines cultivated using organic production and IPM. Operational taxonomic units (OTUs) assigned to the Mesorhizobium, Caulobacter and Staphylococcus genera were relatively more abundant in plants from organic vineyards, while Ralstonia, Burkholderia and Stenotrophomonas were more abundant in grapevines from IPM vineyards. Minor differences in bacterial endophytic communities were also found in the grapevines of the two cultivars. PMID:25387008

  4. Bacterial Endophytic Communities in the Grapevine Depend on Pest Management

    PubMed Central

    Campisano, Andrea; Antonielli, Livio; Pancher, Michael; Yousaf, Sohail; Pindo, Massimo; Pertot, Ilaria

    2014-01-01

    Microbial plant endophytes are receiving ever-increasing attention as a result of compelling evidence regarding functional interaction with the host plant. Microbial communities in plants were recently reported to be influenced by numerous environmental and anthropogenic factors, including soil and pest management. In this study we used automated ribosomal intergenic spacer analysis (ARISA) fingerprinting and pyrosequencing of 16S rDNA to assess the effect of organic production and integrated pest management (IPM) on bacterial endophytic communities in two widespread grapevines cultivars (Merlot and Chardonnay). High levels of the dominant Ralstonia, Burkholderia and Pseudomonas genera were detected in all the samples We found differences in the composition of endophytic communities in grapevines cultivated using organic production and IPM. Operational taxonomic units (OTUs) assigned to the Mesorhizobium, Caulobacter and Staphylococcus genera were relatively more abundant in plants from organic vineyards, while Ralstonia, Burkholderia and Stenotrophomonas were more abundant in grapevines from IPM vineyards. Minor differences in bacterial endophytic communities were also found in the grapevines of the two cultivars. PMID:25387008

  5. Deodorants and antiperspirants affect the axillary bacterial community.

    PubMed

    Callewaert, Chris; Hutapea, Prawira; Van de Wiele, Tom; Boon, Nico

    2014-10-01

    The use of underarm cosmetics is common practice in the Western society to obtain better body odor and/or to prevent excessive sweating. A survey indicated that 95 % of the young adult Belgians generally use an underarm deodorant or antiperspirant. The effect of deodorants and antiperspirants on the axillary bacterial community was examined on nine healthy subjects, who were restrained from using deodorant/antiperspirant for 1 month. Denaturing gradient gel electrophoresis was used to investigate the individual microbial dynamics. The microbial profiles were unique for every person. A stable bacterial community was seen when underarm cosmetics were applied on a daily basis and when no underarm cosmetics were applied. A distinct community difference was seen when the habits were changed from daily use to no use of deodorant/antiperspirant and vice versa. The richness was higher when deodorants and antiperspirants were applied. Especially when antiperspirants were applied, the microbiome showed an increase in diversity. Antiperspirant usage led toward an increase of Actinobacteria, which is an unfavorable situation with respect to body odor development. These initial results show that axillary cosmetics modify the microbial community and can stimulate odor-producing bacteria. PMID:25077920

  6. Illumina sequencing of the V4 hypervariable region 16S rRNA gene reveals extensive changes in bacterial communities in the cecum following carbohydrate oral infusion and development of early-stage acute laminitis in the horse.

    PubMed

    Moreau, Michael M; Eades, Susan C; Reinemeyer, Craig R; Fugaro, Michael N; Onishi, Janet C

    2014-01-31

    In the equine carbohydrate overload model of acute laminitis, disease progression is associated with changes in bacteria found in the cecum. To date, research has focused on changes in specific Gram-positive bacteria in this portion of the intestinal tract. Metagenomic methods are now available making it possible to interrogate microbial communities using animal protocols that sufficiently power a study. In this study, the microbiota in cecal fluid collected from control, non-laminitic horses (n=8) and from horses with early-stage acute laminitis induced with either oligofructan (n=6) or cornstarch (n=6) were profiled. The microbiota were identified based on sequencing the V4 hypervariable region of the 16S rRNA gene. The results of the study show that the relative abundance of Lactobacillus sp. and Streptococcus sp. increased significantly (p<0.05) following OF and CS infusion. Other significant changes included an increase (p<0.05) in relative abundance of Veillonella sp. and Serratia sp., two potentially pathogenic, Gram-negative bacteria. Significant decreases in the relative abundance of presumptive normal flora were detected as well. Although changes in cecal microbiota described in this communication are from a pilot study, it is hypothesized that an overgrowth of pathogenic Gram-negative bacteria develops and contributes to enterocolitis, pyrexia and lameness in the carbohydrate overload model of acute laminitis. PMID:24355533

  7. Comparison of Bacterial Community Composition of Primary and Persistent Endodontic Infections Using Pyrosequencing

    PubMed Central

    Tzanetakis, Giorgos N.; Azcarate-Peril, Andrea M.; Zachaki, Sophia; Panopoulos, Panos; Kontakiotis, Evangelos G.; Madianos, Phoebus N.; Divaris, Kimon

    2015-01-01

    Introduction Elucidating the microbial ecology of endodontic infections (EI) is a necessary step in developing effective intra-canal antimicrobials. The aim of the present study was to investigate the bacterial composition of symptomatic and asymptomatic primary and persistent infections in a Greek population, using high throughput sequencing methods. Methods 16S amplicon pyrosequencing of 48 root canal bacterial samples was conducted and sequencing data were analyzed using an oral microbiome-specific (HOMD) and a generic (Greengenes; GG) database. Bacterial abundance and diversity were examined by EI type (primary or persistent) and statistical analysis was performed by using non-parametric and parametric tests accounting for clustered data. Results Bacteroidetes was the most abundant phylum in both infection groups. Significant, albeit weak associations of bacterial diversity were found, as measured by UniFrac distances with infection type (ANOSIM R=0.087, P=0.005) and symptoms (ANOSIM R=0.055, P=0.047). Persistent infections were significantly enriched for Proteobacteria and Tenericutes as compared to primary ones; at the genus level, significant differences were noted for 14 taxa, including increased enrichment of persistent infections for Lactobacillus, Streptococcus, and Sphingomonas. More but less-abundant phyla were identified using the GG database; among those, Cyanobacteria (0.018%) and Acidobacteria (0.007%) were significantly enriched among persistent infections. Persistent infections showed higher Phylogenetic Diversity (asymptomatic: PD=9.2, [standard error (se)=1.3]; symptomatic: PD=8.2, se=0.7) compared to primary infections (asymptomatic: PD=5.9, se=0.8; symptomatic: PD=7.4 se=1.0). Conclusions The present study revealed a high bacterial diversity of EI and suggests that persistent infections may have more diverse bacterial communities than primary infections. PMID:25906920

  8. Bacterial Communities Associated with Different Anthurium andraeanum L. Plant Tissues

    PubMed Central

    Sarria-Guzmán, Yohanna; Chávez-Romero, Yosef; Gómez-Acata, Selene; Montes-Molina, Joaquín Adolfo; Morales-Salazar, Eleacin; Dendooven, Luc; Navarro-Noya, Yendi E.

    2016-01-01

    Plant-associated microbes have specific beneficial functions and are considered key drivers for plant health. The bacterial community structure of healthy Anthurium andraeanum L. plants was studied by 16S rRNA gene pyrosequencing associated with different plant parts and the rhizosphere. A limited number of bacterial taxa, i.e., Sinorhizobium, Fimbriimonadales, and Gammaproteobacteria HTCC2089 were enriched in the A. andraeanum rhizosphere. Endophytes were more diverse in the roots than in the shoots, whereas all shoot endophytes were found in the roots. Streptomyces, Flavobacterium succinicans, and Asteroleplasma were only found in the roots, Variovorax paradoxus only in the stem, and Fimbriimonas 97%-OTUs only in the spathe, i.e., considered specialists, while Brevibacillus, Lachnospiraceae, Pseudomonas, and Pseudomonas pseudoalcaligenes were generalist and colonized all plant parts. The anaerobic diazotrophic bacteria Lachnospiraceae, Clostridium sp., and Clostridium bifermentans colonized the shoot system. Phylotypes belonging to Pseudomonas were detected in the rhizosphere and in the substrate (an equiproportional mixture of soil, cow manure, and peat), and dominated the endosphere. Pseudomonas included nine 97%-OTUs with different patterns of distribution and phylogenetic affiliations with different species. P. pseudoalcaligenes and P. putida dominated the shoots, but were also found in the roots and rhizosphere. P. fluorescens was present in all plant parts, while P. resinovorans, P. denitrificans, P. aeruginosa, and P. stutzeri were only detected in the substrate and rhizosphere. The composition of plant-associated bacterial communities is generally considered to be suitable as an indicator of plant health. PMID:27524305

  9. Bacterial Communities of Three Saline Meromictic Lakes in Central Asia

    PubMed Central

    Baatar, Bayanmunkh; Chiang, Pei-Wen; Rogozin, Denis Yu; Wu, Yu-Ting; Tseng, Ching-Hung; Yang, Cheng-Yu; Chiu, Hsiu-Hui; Oyuntsetseg, Bolormaa; Degermendzhy, Andrey G.; Tang, Sen-Lin

    2016-01-01

    Meromictic lakes located in landlocked steppes of central Asia (~2500 km inland) have unique geophysiochemical characteristics compared to other meromictic lakes. To characterize their bacteria and elucidate relationships between those bacteria and surrounding environments, water samples were collected from three saline meromictic lakes (Lakes Shira, Shunet and Oigon) in the border between Siberia and the West Mongolia, near the center of Asia. Based on in-depth tag pyrosequencing, bacterial communities were highly variable and dissimilar among lakes and between oxic and anoxic layers within individual lakes. Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria and Firmicutes were the most abundant phyla, whereas three genera of purple sulfur bacteria (a novel genus, Thiocapsa and Halochromatium) were predominant bacterial components in the anoxic layer of Lake Shira (~20.6% of relative abundance), Lake Shunet (~27.1%) and Lake Oigon (~9.25%), respectively. However, few known green sulfur bacteria were detected. Notably, 3.94% of all sequencing reads were classified into 19 candidate divisions, which was especially high (23.12%) in the anoxic layer of Lake Shunet. Furthermore, several hydro-parameters (temperature, pH, dissolved oxygen, H2S and salinity) were associated (P< 0.05) with variations in dominant bacterial groups. In conclusion, based on highly variable bacterial composition in water layers or lakes, we inferred that the meromictic ecosystem was characterized by high diversity and heterogenous niches. PMID:26934492

  10. Bacterial Communities of Three Saline Meromictic Lakes in Central Asia.

    PubMed

    Baatar, Bayanmunkh; Chiang, Pei-Wen; Rogozin, Denis Yu; Wu, Yu-Ting; Tseng, Ching-Hung; Yang, Cheng-Yu; Chiu, Hsiu-Hui; Oyuntsetseg, Bolormaa; Degermendzhy, Andrey G; Tang, Sen-Lin

    2016-01-01

    Meromictic lakes located in landlocked steppes of central Asia (~2500 km inland) have unique geophysiochemical characteristics compared to other meromictic lakes. To characterize their bacteria and elucidate relationships between those bacteria and surrounding environments, water samples were collected from three saline meromictic lakes (Lakes Shira, Shunet and Oigon) in the border between Siberia and the West Mongolia, near the center of Asia. Based on in-depth tag pyrosequencing, bacterial communities were highly variable and dissimilar among lakes and between oxic and anoxic layers within individual lakes. Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria and Firmicutes were the most abundant phyla, whereas three genera of purple sulfur bacteria (a novel genus, Thiocapsa and Halochromatium) were predominant bacterial components in the anoxic layer of Lake Shira (~20.6% of relative abundance), Lake Shunet (~27.1%) and Lake Oigon (~9.25%), respectively. However, few known green sulfur bacteria were detected. Notably, 3.94% of all sequencing reads were classified into 19 candidate divisions, which was especially high (23.12%) in the anoxic layer of Lake Shunet. Furthermore, several hydro-parameters (temperature, pH, dissolved oxygen, H2S and salinity) were associated (P< 0.05) with variations in dominant bacterial groups. In conclusion, based on highly variable bacterial composition in water layers or lakes, we inferred that the meromictic ecosystem was characterized by high diversity and heterogenous niches. PMID:26934492

  11. Bacterial community structure in aquifers corresponds to stratigraphy

    NASA Astrophysics Data System (ADS)

    Beyer, Andrea; Möller, Silke; Neumann, Stefan; Burow, Katja; Gutmann, Falko; Lindner, Julia; Müsse, Steffen; Kothe, Erika; Büchel, Georg

    2014-05-01

    So far, groundwater microbiology with respect to different host rocks has not been well described in the literature. However, factors influencing the communities would be of interest to provide a tool for mapping groundwater paths. The Thuringian Basin (Germany) studied here, contains formations of the Permian (Zechstein) and also Triassic period of Buntsandstein, Muschelkalk and Keuper, all of which can be found to crop out at the surface in different regions. We analyzed the bacterial community of nine natural springs and sixteen groundwater wells of the respective rock formations as well as core material from the Zechstein salts. For that we sampled in a mine 3 differnet salt rock samples (carnallitite, halite and sylvinitite). To validate the different approaches, similar rock formations were compared and a consistent microbial community for Buntsandstein could be verified. Similary, for Zechstein, the presence of halophiles was seen with cultivation, isolation directly from the rock material and also in groundwater with DNA-dependent approaches. A higher overlap between sandstone- and limestone-derived communities was visible as if compared to the salt formations. Principal component analysis confirmed formation specific patterns for Muschelkalk, Buntsandstein and Zechstein for the bacterial taxa present, with some overlaps. Bacilli and Gammaproteobacteria were the major groups, with the genera Pseudomonas, Marinomonas, Bacillus, Marinobacter and Pseudoalteromonas representing the communities. The bacteria are well adapted to their respective environment with survival strategies including a wide range of salinity which makes them suitable as tracers for fluid movement below the ground. The results indicate the usefulness and robustness of the approach taken here to investigate aquifer community structures in dependence of the stratigraphy of the groundwater reservoir.

  12. Individual growth detection of bacterial species in an in vitro oral polymicrobial biofilm model.

    PubMed

    Tabenski, L; Maisch, T; Santarelli, F; Hiller, K-A; Schmalz, G

    2014-11-01

    Most in vitro studies on the antibacterial effects of antiseptics have used planktonic bacteria in monocultures. However, this study design does not reflect the in vivo situation in oral cavities harboring different bacterial species that live in symbiotic relationships in biofilms. The aim of this study was to establish a simple in vitro polymicrobial model consisting of only three bacterial strains of different phases of oral biofilm formation to simulate in vivo oral conditions. Therefore, we studied the biofilm formation of Actinomyces naeslundii (An), Fusobacterium nucleatum (Fn), and Enterococcus faecalis (Ef) on 96-well tissue culture plates under static anaerobic conditions using artificial saliva according to the method established by Pratten et al. that was supplemented with 1 g l(-1) sucrose. Growth was separately determined for each bacterial strain after incubation periods of up to 72 h by means of quantitative real-time polymerase chain reaction and live/dead staining. Presence of an extracellular polymeric substance (EPS) was visualized by Concanavalin A staining. Increasing incubation times of up to 72 h showed adhesion and propagation of the bacterial strains with artificial saliva formulation. An and Ef had significantly higher growth rates than Fn. Live/dead staining showed a median of 49.9 % (range 46.0-53.0 %) of living bacteria after 72 h of incubation, and 3D fluorescence microscopy showed a three-dimensional structure containing EPS. An in vitro oral polymicrobial biofilm model was established to better simulate oral conditions and had the advantage of providing the well-controlled experimental conditions of in vitro testing. PMID:25119373

  13. Community dynamics of cellulose-adapted thermophilic bacterial consortia.

    PubMed

    Eichorst, Stephanie A; Varanasi, Patanjali; Stavila, Vatalie; Zemla, Marcin; Auer, Manfred; Singh, Seema; Simmons, Blake A; Singer, Steven W

    2013-09-01

    Enzymatic hydrolysis of cellulose is a key process in the global carbon cycle and the industrial conversion of biomass to biofuels. In natural environments, cellulose hydrolysis is predominately performed by microbial communities. However, detailed understanding of bacterial cellulose hydrolysis is primarily confined to a few model isolates. Developing models for cellulose hydrolysis by mixed microbial consortia will complement these isolate studies and may reveal new mechanisms for cellulose deconstruction. Microbial communities were adapted to microcrystalline cellulose under aerobic, thermophilic conditions using green waste compost as the inoculum to study cellulose hydrolysis in a microbial consortium. This adaptation selected for three dominant taxa--the Firmicutes, Bacteroidetes and Thermus. A high-resolution profile of community development during the enrichment demonstrated a community transition from Firmicutes to a novel Bacteroidetes population that clusters in the Chitinophagaceae family. A representative strain of this population, strain NYFB, was successfully isolated, and sequencing of a nearly full-length 16S rRNA gene demonstrated that it was only 86% identical compared with other validated strains in the phylum Bacteroidetes. Strain NYFB grew well on soluble polysaccharide substrates, but grew poorly on insoluble polysaccharide substrates. Similar communities were observed in companion thermophilic enrichments on insoluble wheat arabinoxylan, a hemicellulosic substrate, suggesting a common model for deconstruction of plant polysaccharides. Combining observations of community dynamics and the physiology of strain NYFB, a cooperative successional model for polysaccharide hydrolysis by the Firmicutes and Bacteroidetes in the thermophilic cellulolytic consortia is proposed. PMID:23763762

  14. Stability and change in estuarine biofilm bacterial community diversity.

    PubMed

    Moss, Joseph A; Nocker, Andreas; Lepo, Joe E; Snyder, Richard A

    2006-09-01

    Biofouling communities contribute significantly to aquatic ecosystem productivity and biogeochemical cycling. Our knowledge of the distribution, composition, and activities of these microbially dominated communities is limited compared to other components of estuarine ecosystems. This study investigated the temporal stability and change of the dominant phylogenetic groups of the domain Bacteria in estuarine biofilm communities. Glass slides were deployed monthly over 1 year for 7-day incubations during peak tidal periods in East Sabine Bay, Fla. Community profiling was achieved by using 16S rRNA genes and terminal restriction fragment length polymorphism (T-RFLP) of 16S rRNA genes in combination with ribotyping, cloning, and sequencing to evaluate diversity and to identify dominant microorganisms. Bacterial community profiles from biofilms grown near the benthos showed distinct periods of constancy within winter and summer sampling periods. Similar periods of stability were also seen in T-RFLP patterns from floating biofilms. Alternating dominance of phylogenetic groups between seasons appeared to be associated with seasonal changes in temperature, nutrient availability, and light. The community structure appeared to be stable during these periods despite changes in salinity and in dissolved oxygen. PMID:16957182

  15. Bacterial Community Structure Response to Petroleum Concentration in Groundwater

    NASA Astrophysics Data System (ADS)

    Kitts, C. L.; Wrighton, K. C.; Phillips, W. A.; Cano, R. J.; Lundegard, P. D.

    2004-12-01

    This study characterized the bacterial community present in groundwater samples from the Guadalupe Dunes Restoration Project on the central California coast. The purpose of the study was to determine the changes in bacterial community structure and function in response to variations in the concentration of dissolved phase total petroleum hydrocarbons (TPH) in groundwater plumes at the site. For the purpose of this study groundwater samples were collected at varying distance from TPH source zones in 10 different plumes. All samples were analyzed for ammonia, phosphate, TPH, methane, oxygen, carbon dioxide, nitrate, sulfate, and dissolved iron levels. Chemical analysis revealed that the groundwater chemistry varied between plumes and on a well-to-well basis within a plume. Principle component analyses (PCA) demonstrated that TPH degradation related parameters explained 28% of the variation in the groundwater chemistry. In addition to the physical and chemical analyses, four liters of each groundwater sample were filtered and bacterial DNA was isolated to determine the relationship between groundwater chemistry and bacterial community structure and function. Specific Polymerase Chain Reaction (PCR) primers were used to characterize populations of Eubacteria, and Archaea, as well as function genes for sulfate reducing, methanotrophic, and methanogenic bacteria. Terminal Restriction Fragment (TRF) Length Polymorphisms (or T-RFLP) were used to analyze community structure. Eubacterial and Archaeal groundwater communities were separated into distinct clusters which did not clearly reflect changes in groundwater chemical parameters unless individual plumes were analyzed separately. However, specific Eubacterial and Archaeal TRF peaks did correspond to known petroleum degrading organisms and methanogenic bacteria, respectively. Only one sample produced a positive result for the sulfite reductase gene (dsrAB), indicating that sulfate reduction may not be a dominant process at

  16. An oral cancer awareness intervention in community pharmacy.

    PubMed

    Rogers, S N; Lowe, D; Catleugh, M; Edwards, D

    2010-10-01

    We investigated the impact on 95 community pharmacies of an educational package on awareness of oral cancer, which consisted of a training evening, pharmacy protocol, and information for patients. Results of a questionnaire and the experience of a mystery shopper before the intervention and 6 months later were used to evaluate its effectiveness. Before the intervention 29% of pharmacies advised "my 60-year-old friend who has had an ulcer in his mouth for 4 weeks" to see a doctor or a dentist. Afterwards this rose to 45% with advice being confined to seeing a doctor. There was also a substantial reduction in advice being given to buy a product. The questionnaire showed that although responses between the baseline and follow up were similar regarding health behaviours and signs and symptoms in relation to oral cancer, more (74-89%) thought that drinking alcohol, and less (46-36%) thought that passive smoking increased the risk of oral cancer. There was also an increase in the number who thought that burning sensations (42-57%), white patches (52-76%), red patches (57-76%), speckled patches (46-68%), and a persistent ulcer (82-91%) might be signs or symptoms of oral cancer. The intervention was well received, and changes in knowledge and practice were evident, but the study showed that there is potential for much greater awareness of oral cancer amongst pharmacists and their staff. PMID:19959266

  17. Sediment bacterial communities associated with anaerobic biodegradation of bisphenol A.

    PubMed

    Yang, Yuyin; Wang, Zhao; He, Tao; Dai, Yu; Xie, Shuguang

    2015-07-01

    Bisphenol A (BPA) is one of the endocrine-disrupting chemicals that are ubiquitous in aquatic environments. Biodegradation is a major way to clean up the BPA pollution in sediments. However, information on the effective BPA biodegradation in anaerobic sediments is still lacking. The present study investigated the biodegradation potential of BPA in river sediment under nitrate- or sulfate-reducing conditions. After 120-day incubation, a high removal of BPA (93 or 89%) was found in sediment microcosms (amended with 50 mg kg(-1) BPA) under these two anaerobic conditions. Illumina MiSeq sequencing analysis indicated that Proteobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Gemmatimonadetes, and Actinobacteria were the major bacterial groups in BPA-degrading sediments. The shift in bacterial community structure could occur with BPA biodegradation. PMID:25501890

  18. Oral immunization with bacterial lysate against infection with Streptococcus pneumoniae in mice.

    PubMed

    van Daal, G J; de Jong, P T; Tenbrinck, R; Mouton, J W; Petzoldt, K; Bergmann, K C; Lachmann, B

    1990-01-01

    The protective effect of oral immunization against infection with Streptococcus pneumoniae was investigated in mice. Two bacterial lysates, one with an additional lysate of Candida albicans, were investigated. Intranasal inoculation of adult Balb-C mice with a S. pneumoniae type I strain resulted in a lethal infection, with deaths occurring from the 2nd until the 6th day after infection. Oral immunization resulted in a significant decrease in mortality rate (18-48% reduction). No significant difference in mortality rates was observed between the groups immunized with different lysates in the same concentrations. PMID:2095604

  19. Bacterial Communities Vary between Sinuses in Chronic Rhinosinusitis Patients

    PubMed Central

    Joss, Tom V.; Burke, Catherine M.; Hudson, Bernard J.; Darling, Aaron E.; Forer, Martin; Alber, Dagmar G.; Charles, Ian G.; Stow, Nicholas W.

    2016-01-01

    Chronic rhinosinusitis (CRS) is a common and potentially debilitating disease characterized by inflammation of the sinus mucosa for longer than 12 weeks. Bacterial colonization of the sinuses and its role in the pathogenesis of this disease is an ongoing area of research. Recent advances in culture-independent molecular techniques for bacterial identification have the potential to provide a more accurate and complete assessment of the sinus microbiome, however there is little concordance in results between studies, possibly due to differences in the sampling location and techniques. This study aimed to determine whether the microbial communities from one sinus could be considered representative of all sinuses, and examine differences between two commonly used methods for sample collection, swabs, and tissue biopsies. High-throughput DNA sequencing of the bacterial 16S rRNA gene was applied to both swab and tissue samples from multiple sinuses of 19 patients undergoing surgery for treatment of CRS. Results from swabs and tissue biopsies showed a high degree of similarity, indicating that swabbing is sufficient to recover the microbial community from the sinuses. Microbial communities from different sinuses within individual patients differed to varying degrees, demonstrating that it is possible for distinct microbiomes to exist simultaneously in different sinuses of the same patient. The sequencing results correlated well with culture-based pathogen identification conducted in parallel, although the culturing missed many species detected by sequencing. This finding has implications for future research into the sinus microbiome, which should take this heterogeneity into account by sampling patients from more than one sinus. PMID:26834708

  20. Bacterial communities of two parthenogenetic aphid species cocolonizing two host plants across the Hawaiian Islands.

    PubMed

    Jones, Ryan T; Bressan, Alberto; Greenwell, April M; Fierer, Noah

    2011-12-01

    Aphids (Hemiptera: Aphididae) have been the focus of several studies with respect to their interactions with inherited symbionts, but bacterial communities of most aphid species are still poorly characterized. In this research, we used bar-coded pyrosequencing to characterize bacterial communities in aphids. Specifically, we examined the diversity of bacteria in two obligately parthenogenetic aphid species (the melon aphid, Aphis gossypii, and the cardamom aphid, Pentalonia caladii) cocolonizing two plant species (taro, Colocasia esculenta, and ginger, Alpinia purpurata) across four Hawaiian Islands (Hawaii, Kauai, Maui, and Oahu). Results from this study revealed that heritable symbionts dominated the bacterial communities for both aphid species. The bacterial communities differed significantly between the two species, and A. gossypii harbored a more diverse bacterial community than P. caladii. The bacterial communities also differed across aphid populations sampled from the different islands; however, communities did not differ between aphids collected from the two host plants. PMID:21965398

  1. Secondary bacterial symbiont community in aphids responds to plant diversity.

    PubMed

    Zytynska, Sharon E; Meyer, Sebastian T; Sturm, Sarah; Ullmann, Wiebke; Mehrparvar, Mohsen; Weisser, Wolfgang W

    2016-03-01

    Biodiversity is important for ecosystem functioning and biotic interactions. In experimental grasslands, increasing plant species richness is known to increase the diversity of associated herbivores and their predators. If these interactions can also involve endosymbionts that reside within a plant or animal host is currently unknown. In plant-feeding aphids, secondary bacterial symbionts can have strong fitness effects on the host, e.g. resistance to natural enemies or fungal pathogens. We examined the secondary symbiont community in three species of aphid, each feeding on a unique host plant across experimental plots that varied in plant species richness. Aphids were collected in May and June, and the symbiont community identified using species-specific PCR assays. Aphis fabae aphids were found to host six different symbiont species with individual aphids co-hosting up to four symbionts. Uroleucon jaceae and Macrosiphum rosae hosted two and three symbiont species, respectively. We found that, at the aphid population level, increasing plant species richness increased the diversity of the aphid symbiont community, whereas at the individual aphid level, the opposite was found. These effects are potentially driven by varying selective pressures across different plant communities of varying diversities, mediated by defensive protection responses and a changing cost-benefit trade-off to the aphid for hosting multiple secondary symbionts. Our work extends documented effects of plant diversity beyond visible biotic interactions to changes in endosymbiont communities, with potentially far-reaching consequences to related ecosystem processes. PMID:26603858

  2. Spatiotemporal dynamics and determinants of planktonic bacterial and microeukaryotic communities in a Chinese subtropical river.

    PubMed

    Wang, Yongming; Liu, Lemian; Chen, Huihuang; Yang, Jun

    2015-11-01

    The spatiotemporal distribution of microbial diversity, community composition, and their major drivers are fundamental issues in microbial ecology. In this study, the planktonic bacterial and microeukaryotic communities of the Jiulong River were investigated across both wet and dry seasons by using denaturing gradient gel electrophoresis (DGGE). We found evidence of temporal change between wet and dry seasons and distinct spatial patterns of bacterial and microeukaryotic communities. Both bacterial and microeukaryotic communities were strongly correlated with temperature, NH4-N, PO4-P, and chlorophyll a, and these environmental factors were significant but incomplete predictors of microbial community composition. Local environmental factors combined with spatial and temporal factors strongly controlled both bacterial and microeukaryotic communities in complex ways, whereas the direct influence of spatial and temporal factors appeared to be relatively small. Path analysis revealed that the microeukaryotic community played key roles in shaping bacterial community composition, perhaps through grazing effects and multiple interactions. Both Betaproteobacteria and Actinobacteria were the most dominant and diverse taxa in bacterial communities, while the microeukaryotic communities were dominated by Ciliophora (zooplankton) and Chlorophyta (phytoplankton). Our results demonstrated that both bacterial and microeukaryotic communities along the Jiulong River displayed a distinct spatiotemporal pattern; however, microeukaryotic communities exhibited a stronger distance-decay relationship than bacterial communities and their spatial patterns were mostly driven by local environmental variables rather than season or spatial processes of the river. Therefore, we have provided baseline data to support further research on river microbial food webs and integrating different microbial groups into river models. PMID:26156239

  3. Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis

    PubMed Central

    Duran-Pinedo, Ana E; Chen, Tsute; Teles, Ricardo; Starr, Jacqueline R; Wang, Xiaoshan; Krishnan, Keerthana; Frias-Lopez, Jorge

    2014-01-01

    Despite increasing knowledge on phylogenetic composition of the human microbiome, our understanding of the in situ activities of the organisms in the community and their interactions with each other and with the environment remains limited. Characterizing gene expression profiles of the human microbiome is essential for linking the role of different members of the bacterial communities in health and disease. The oral microbiome is one of the most complex microbial communities in the human body and under certain circumstances, not completely understood, the healthy microbial community undergoes a transformation toward a pathogenic state that gives rise to periodontitis, a polymicrobial inflammatory disease. We report here the in situ genome-wide transcriptome of the subgingival microbiome in six periodontally healthy individuals and seven individuals with periodontitis. The overall picture of metabolic activities showed that iron acquisition, lipopolysaccharide synthesis and flagellar synthesis were major activities defining disease. Unexpectedly, the vast majority of virulence factors upregulated in subjects with periodontitis came from organisms that are not considered major periodontal pathogens. One of the organisms whose gene expression profile was characterized was the uncultured candidate division TM7, showing an upregulation of putative virulence factors in the diseased community. These data enhance understanding of the core activities that are characteristic of periodontal disease as well as the role that individual organisms in the subgingival community play in periodontitis. PMID:24599074

  4. Plant community and soil chemistry responses to long-term nitrogen inputs drive changes in alpine bacterial communities.

    PubMed

    Yuan, Xia; Knelman, Joseph E; Gasarch, Eve; Wang, Deli; Nemergut, Diana R; Seastedt, Timothy R

    2016-06-01

    Bacterial community composition and diversity was studied in alpine tundra soils across a plant species and moisture gradient in 20 y-old experimental plots with four nutrient addition regimes (control, nitrogen (N), phosphorus (P) or both nutrients). Different bacterial communities inhabited different alpine meadows, reflecting differences in moisture, nutrients and plant species. Bacterial community alpha-diversity metrics were strongly correlated with plant richness and the production of forbs. After meadow type, N addition proved the strongest determinant of bacterial community structure. Structural Equation Modeling demonstrated that tundra bacterial community responses to N addition occur via changes in plant community composition and soil pH resulting from N inputs, thus disentangling the influence of direct (resource availability) vs. indirect (changes in plant community structure and soil pH) N effects that have remained unexplored in past work examining bacterial responses to long-term N inputs in these vulnerable environments. Across meadow types, the relative influence of these indirect N effects on bacterial community structure varied. In explicitly evaluating the relative importance of direct and indirect effects of long-term N addition on bacterial communities, this study provides new mechanistic understandings of the interaction between plant and microbial community responses to N inputs amidst environmental change. PMID:27459784

  5. Distribution of bacterial communities across plateau freshwater lake and upslope soils.

    PubMed

    Chen, Yihui; Dai, Yu; Wang, Yilin; Wu, Zhen; Xie, Shuguang; Liu, Yong

    2016-05-01

    Microorganisms are involved in a variety of biogeochemical processes in natural environments. The differences between bacterial communities in freshwaters and upslope soils remain unclear. The present study investigated the bacterial distribution in a plateau freshwater lake, Erhai Lake (southwestern China), and its upslope soils. Illumina MiSeq sequencing illustrated high bacterial diversity in lake sediments and soils. Sediment and soil bacterial communities were mainly composed of Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi and Planctomycetes. However, a distinctive difference in bacterial community structure was found between soil and sediment ecosystems. Water content, nitrogen and pH affected the distribution of the bacterial community across Erhai Lake and its upslope soils. Moreover, the soil bacterial community might also be shaped by plant types. This work could provide some new insights into plateau aquatic and terrestrial microbial ecology. PMID:27155410

  6. Bacterial and archaeal communities in Lake Nyos (Cameroon, Central Africa)

    PubMed Central

    Tiodjio, Rosine E.; Sakatoku, Akihiro; Nakamura, Akihiro; Tanaka, Daisuke; Fantong, Wilson Y.; Tchakam, Kamtchueng B.; Tanyileke, Gregory; Ohba, Takeshi; Hell, Victor J.; Kusakabe, Minoru; Nakamura, Shogo; Ueda, Akira

    2014-01-01

    The aim of this study was to assess the microbial diversity associated with Lake Nyos, a lake with an unusual chemistry in Cameroon. Water samples were collected during the dry season on March 2013. Bacterial and archaeal communities were profiled using Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) approach of the 16S rRNA gene. The results indicate a stratification of both communities along the water column. Altogether, the physico-chemical data and microbial sequences suggest a close correspondence of the potential microbial functions to the physico-chemical pattern of the lake. We also obtained evidence of a rich microbial diversity likely to include several novel microorganisms of environmental importance in the large unexplored microbial reservoir of Lake Nyos. PMID:25141868

  7. Phylogenetic Comparisons of Bacterial Communities from Serpentine and Nonserpentine Soils▿

    PubMed Central

    Oline, David K.

    2006-01-01

    I present the results of a culture-independent survey of soil bacterial communities from serpentine soils and adjacent nonserpentine comparator soils using a variety of newly developed phylogenetically based statistical tools. The study design included site-based replication of the serpentine-to-nonserpentine community comparison over a regional scale (∼100 km) in Northern California and Southern Oregon by producing 16S rRNA clone libraries from pairs of samples taken on either side of the serepentine-nonserpentine edaphic boundary at three geographical sites. At the division level, the serpentine and nonserpentine communities were similar to each other and to previous data from forest soils. Comparisons of both richness and Shannon diversity produced no significant differences between any of the libraries, but the vast majority of phylogenetically based tests were significant, even with only 50 sequences per library. These results suggest that most samples were distinct, consisting of a collection of lineages generally not found in other samples. The pattern of results showed that serpentine communities tended to be more similar to each other than they were to nonserpentine communities, and these differences were at a lower taxonomic scale. Comparisons of two nonserpentine communities generally showed differences, and some results suggest that the geographical site may control community composition as well. These results show the power of phylogenetic tests to discern differences between 16S rRNA libraries compared to tests that discard DNA data to bin sequences into operational taxonomic units, and they stress the importance of replication at larger scales for inferences regarding microbial biogeography. PMID:16950906

  8. Phylogenetic comparisons of bacterial communities from serpentine and nonserpentine soils.

    PubMed

    Oline, David K

    2006-11-01

    I present the results of a culture-independent survey of soil bacterial communities from serpentine soils and adjacent nonserpentine comparator soils using a variety of newly developed phylogenetically based statistical tools. The study design included site-based replication of the serpentine-to-nonserpentine community comparison over a regional scale ( approximately 100 km) in Northern California and Southern Oregon by producing 16S rRNA clone libraries from pairs of samples taken on either side of the serepentine-nonserpentine edaphic boundary at three geographical sites. At the division level, the serpentine and nonserpentine communities were similar to each other and to previous data from forest soils. Comparisons of both richness and Shannon diversity produced no significant differences between any of the libraries, but the vast majority of phylogenetically based tests were significant, even with only 50 sequences per library. These results suggest that most samples were distinct, consisting of a collection of lineages generally not found in other samples. The pattern of results showed that serpentine communities tended to be more similar to each other than they were to nonserpentine communities, and these differences were at a lower taxonomic scale. Comparisons of two nonserpentine communities generally showed differences, and some results suggest that the geographical site may control community composition as well. These results show the power of phylogenetic tests to discern differences between 16S rRNA libraries compared to tests that discard DNA data to bin sequences into operational taxonomic units, and they stress the importance of replication at larger scales for inferences regarding microbial biogeography. PMID:16950906

  9. A comparison of the benthic bacterial communities within and surrounding Dreissena clusters in lakes.

    PubMed

    Lohner, Rachel N; Sigler, Von; Mayer, Christine M; Balogh, Csilla

    2007-10-01

    The impact of Dreissena (Dreissena polymorpha and D. bugensis) on the benthic bacterial community in lakes is largely unknown. Therefore, we quantified differences in the structure and activity of bacterial communities living in sediments (1) associated with Dreissena clusters, and (2) unassociated with established clusters (lake bottom sediments). Dreissena clusters and sediments were collected from locations in Lake Erie, Lake Ontario, and several inland lakes. Denaturing gradient gel electrophoresis (DGGE) analysis of the benthic bacterial community showed that the bacterial populations selected for by Dreissena represent a subset of the bottom communities and are geographically distinct. Community-level physiological profiling (CLPP) showed that overall bacterial activity and metabolic diversity were enhanced by the presence of clusters in all samples, with the exception of those harvested from the two Lake Erie sites. Therefore, Dreissena appears to affect both structure and metabolic function of the benthic bacterial community and may have yet unexplored ecosystem and food web consequences. PMID:17308984

  10. Pervasive Selection for Cooperative Cross-Feeding in Bacterial Communities

    PubMed Central

    Germerodt, Sebastian; Bohl, Katrin; Pande, Samay; Schröter, Anja; Kaleta, Christoph; Kost, Christian

    2016-01-01

    Bacterial communities are taxonomically highly diverse, yet the mechanisms that maintain this diversity remain poorly understood. We hypothesized that an obligate and mutual exchange of metabolites, as is very common among bacterial cells, could stabilize different genotypes within microbial communities. To test this, we developed a cellular automaton to model interactions among six empirically characterized genotypes that differ in their ability and propensity to produce amino acids. By systematically varying intrinsic (i.e. benefit-to-cost ratio) and extrinsic parameters (i.e. metabolite diffusion level, environmental amino acid availability), we show that obligate cross-feeding of essential metabolites is selected for under a broad range of conditions. In spatially structured environments, positive assortment among cross-feeders resulted in the formation of cooperative clusters, which limited exploitation by non-producing auxotrophs, yet allowed them to persist at the clusters’ periphery. Strikingly, cross-feeding helped to maintain genotypic diversity within populations, while amino acid supplementation to the environment decoupled obligate interactions and favored auxotrophic cells that saved amino acid production costs over metabolically autonomous prototrophs. Together, our results suggest that spatially structured environments and limited nutrient availabilities should facilitate the evolution of metabolic interactions, which can help to maintain genotypic diversity within natural microbial populations. PMID:27314840

  11. Pervasive Selection for Cooperative Cross-Feeding in Bacterial Communities.

    PubMed

    Germerodt, Sebastian; Bohl, Katrin; Lück, Anja; Pande, Samay; Schröter, Anja; Kaleta, Christoph; Schuster, Stefan; Kost, Christian

    2016-06-01

    Bacterial communities are taxonomically highly diverse, yet the mechanisms that maintain this diversity remain poorly understood. We hypothesized that an obligate and mutual exchange of metabolites, as is very common among bacterial cells, could stabilize different genotypes within microbial communities. To test this, we developed a cellular automaton to model interactions among six empirically characterized genotypes that differ in their ability and propensity to produce amino acids. By systematically varying intrinsic (i.e. benefit-to-cost ratio) and extrinsic parameters (i.e. metabolite diffusion level, environmental amino acid availability), we show that obligate cross-feeding of essential metabolites is selected for under a broad range of conditions. In spatially structured environments, positive assortment among cross-feeders resulted in the formation of cooperative clusters, which limited exploitation by non-producing auxotrophs, yet allowed them to persist at the clusters' periphery. Strikingly, cross-feeding helped to maintain genotypic diversity within populations, while amino acid supplementation to the environment decoupled obligate interactions and favored auxotrophic cells that saved amino acid production costs over metabolically autonomous prototrophs. Together, our results suggest that spatially structured environments and limited nutrient availabilities should facilitate the evolution of metabolic interactions, which can help to maintain genotypic diversity within natural microbial populations. PMID:27314840

  12. The structure and functions of bacterial communities in an agrocenosis

    NASA Astrophysics Data System (ADS)

    Dobrovol'skaya, T. G.; Khusnetdinova, K. A.; Manucharova, N. A.; Balabko, P. N.

    2016-01-01

    The most significant factor responsible for the specific taxonomic composition of the bacterial communities in the agrocenosis studied was found to be a part or organ of plants (leaves, flowers, roots, fruits). A stage of plant ontogeny also determines changes of taxa. In the course of the plant growth, eccrisotrophic bacteria are replaced by hydrolytic ones that belong to the group of cellulose-decomposing bacteria. Representatives of the proteobacteria genera that are difficult to identify by phenotypic methods were determined using molecular-biological methods. They were revealed only on oat leaves in the moist period. As the vetch-oat mixture was fertilized with BIOUD-1 (foliar application) in the phyllosphere of both oats and vetch, on all the plant organs, representatives of the Rhodococcus genus as dominants were isolated. This fact was related to the capability of bacteria to decompose the complex aromatic compounds that are ingredients of the fertilizers applied. Another positive effect for plants of the bacterial communities forming in agrocenoses is the presence of bacteria that are antagonists of phytopathogenic bacteria. Thus, in agrocenoses, some interrelationships promoting the growth and reproduction of plants are formed in crop plants and bacteria.

  13. Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure.

    PubMed

    de Steenhuijsen Piters, Wouter A A; Bogaert, Debby

    2016-01-01

    The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem-also called "microbiome"-is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1):e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting. PMID:26838716

  14. Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure

    PubMed Central

    de Steenhuijsen Piters, Wouter A. A.

    2016-01-01

    ABSTRACT The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem—also called “microbiome”—is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1):e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting. PMID:26838716

  15. Understanding the bacterial communities of hard cheese with blowing defect.

    PubMed

    Bassi, Daniela; Puglisi, Edoardo; Cocconcelli, Pier Sandro

    2015-12-01

    The environment of hard cheese encourages bacterial synergies and competitions along the ripening process, which might lead in defects such as clostridial blowing. In this study, Denaturing Gradient Gel Electrophoresis (DGGE), a quantitative Clostridium tyrobutyricum PCR and next-generation Illumina-based sequencing of 16S rRNA gene were applied to study 83 Grana Padano spoiled samples. The aim was to investigate the community of clostridia involved in spoilage, the ecological relationships with the other members of the cheese microbiota, and the effect of lysozyme. Three main genera were dominant in the analysed cheeses, Lactobacillus, Streptococcus and Clostridium, and the assignment at the species level was of 94.3% of 4,477,326 high quality sequences. C. tyrobutyricum and C. butyricum were the most prevalent clostridia. Hierarchical clustering based on the abundance of bacterial genera, revealed three main clusters: one characterized by the highest proportion of Clostridium, a second where Lactobacillus was predominant and the last, dominated by Streptococcus thermophilus. Ecological relationships among species were found: cheeses characterized by an high abundance of S. thermophilus and L. rhamnosus were spoiled by C. tyrobutyricum while, when L. delbrueckii was the most abundant Lactobacillus, C. butyricum was the dominant spoiling species. Lysozyme also shaped the bacterial community, reducing C. tyrobutyricum in favour of C. butyricum. Moreover, this preservative increased the proportion of L. delbrueckii and obligate heterofermentative lactobacilli and lowered L. helveticus and non-starter species, such as L. rhamnosus and L. casei. PMID:26338123

  16. Phylogenetically and Spatially Close Marine Sponges Harbour Divergent Bacterial Communities

    PubMed Central

    Hardoim, Cristiane C. P.; Esteves, Ana I. S.; Pires, Francisco R.; Gonçalves, Jorge M. S.; Cox, Cymon J.; Xavier, Joana R.; Costa, Rodrigo

    2012-01-01

    Recent studies have unravelled the diversity of sponge-associated bacteria that may play essential roles in sponge health and metabolism. Nevertheless, our understanding of this microbiota remains limited to a few host species found in restricted geographical localities, and the extent to which the sponge host determines the composition of its own microbiome remains a matter of debate. We address bacterial abundance and diversity of two temperate marine sponges belonging to the Irciniidae family - Sarcotragus spinosulus and Ircinia variabilis – in the Northeast Atlantic. Epifluorescence microscopy revealed that S. spinosulus hosted significantly more prokaryotic cells than I. variabilis and that prokaryotic abundance in both species was about 4 orders of magnitude higher than in seawater. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles of S. spinosulus and I. variabilis differed markedly from each other – with higher number of ribotypes observed in S. spinosulus – and from those of seawater. Four PCR-DGGE bands, two specific to S. spinosulus, one specific to I. variabilis, and one present in both sponge species, affiliated with an uncultured sponge-specific phylogenetic cluster in the order Acidimicrobiales (Actinobacteria). Two PCR-DGGE bands present exclusively in S. spinosulus fingerprints affiliated with one sponge-specific phylogenetic cluster in the phylum Chloroflexi and with sponge-derived sequences in the order Chromatiales (Gammaproteobacteria), respectively. One Alphaproteobacteria band specific to S. spinosulus was placed in an uncultured sponge-specific phylogenetic cluster with a close relationship to the genus Rhodovulum. Our results confirm the hypothesized host-specific composition of bacterial communities between phylogenetically and spatially close sponge species in the Irciniidae family, with S. spinosulus displaying higher bacterial community diversity and distinctiveness than I. variabilis. These

  17. Temporal variability in detritus resource maintains diversity of bacterial communities

    NASA Astrophysics Data System (ADS)

    Hiltunen, Teppo; Laakso, Jouni; Kaitala, Veijo; Suomalainen, Lotta-Riina; Pekkonen, Minna

    2008-05-01

    Competition theory generally predicts that diversity is maintained by temporal environmental fluctuations. One of the many suggested mechanisms for maintaining diversity in fluctuating environments is the gleaner-opportunist trade-off, whereby gleaner species have low threshold resource levels and low maximum growth rates in high resource concentration while opportunist species show opposite characteristics. We measured the growth rates of eight heterotrophic aquatic bacteria under different concentrations of chemically complex plant detritus resource. The growth rates revealed gleaner-opportunist trade-offs. The role of environmental variability in maintaining diversity was tested in a 28-day experiment with three different resource fluctuation regimes imposed on two four-species bacterial communities in microcosms. We recorded population densities with serial dilution plating and total biomass as turbidity. Changes in resource availability were measured from filter-sterilised medium by re-introducing the consumer species and recording short-term growth rates. The type of environmental variation had no effect on resource availability, which declined slowly during the experiment and differed in level between the communities. However, the slowly fluctuating environment had the highest Shannon diversity index, biomass, and coefficient of variation of biomass in both communities. We did not find a clear link between the gleaner-opportunist trade-off and diversity in fluctuating environments. Nevertheless, our results do not exclude this explanation and support the general view that temporal environmental variation maintains species diversity also in communities feeding chemically complex resource.

  18. Associations between bacterial communities of house dust and infant gut

    SciTech Connect

    Konya, T.; Koster, B.; Maughan, H.; Escobar, M.; Azad, M.B.; Guttman, D.S.; Sears, M.R.; Becker, A.B.; Brook, J.R.; Takaro, T.K.; Kozyrskyj, A.L.; Scott, J.A.

    2014-05-01

    The human gut is host to a diverse and abundant community of bacteria that influence health and disease susceptibility. This community develops in infancy, and its composition is strongly influenced by environmental factors, notably perinatal anthropogenic exposures such as delivery mode (Cesarean vs. vaginal) and feeding method (breast vs. formula); however, the built environment as a possible source of exposure has not been considered. Here we report on a preliminary investigation of the associations between bacteria in house dust and the nascent fecal microbiota from 20 subjects from the Canadian Healthy Infant Longitudinal Development (CHILD) Study using high-throughput sequence analysis of portions of the 16S rRNA gene. Despite significant differences between the dust and fecal microbiota revealed by Nonmetric Multidimensional Scaling (NMDS) analysis, permutation analysis confirmed that 14 bacterial OTUs representing the classes Actinobacteria (3), Bacilli (3), Clostridia (6) and Gammaproteobacteria (2) co-occurred at a significantly higher frequency in matched dust–stool pairs than in randomly permuted pairs, indicating an association between these dust and stool communities. These associations could indicate a role for the indoor environment in shaping the nascent gut microbiota, but future studies will be needed to confirm that our findings do not solely reflect a reverse pathway. Although pet ownership was strongly associated with the presence of certain genera in the dust for dogs (Agrococcus, Carnobacterium, Exiguobacterium, Herbaspirillum, Leifsonia and Neisseria) and cats (Escherichia), no clear patterns were observed in the NMDS-resolved stool community profiles as a function of pet ownership.

  19. Microbial communities of urban stormwater sediments: the phylogenetic structure of bacterial communities varies with porosity.

    PubMed

    Badin, Anne-Laure; Mustafa, Tarfa; Bertrand, Cédric; Monier, Armelle; Delolme, Cécile; Geremia, Roberto A; Bedell, Jean-Philippe

    2012-08-01

    This study focuses on the distribution of bacterial and fungal communities within the microstructure of a multi-contaminated sedimentary layer resulting from urban stormwater infiltration. Fractionation was performed on the basis of differential porosity and aggregate grain size, resulting in five fractions: leachable fitting macroporosity, < 10, 10-160, 160-1000 μm fitting aggregates, > 1000 μm. Amounts of both bacterial and fungal biomasses are greater in the < 10 μm and leachable fractions. The aggregates contain numerous bacteria but very low amounts of fungal biomass. Single-strand conformational polymorphism molecular profiles highlighted the differences between bacterial and fungal communities of the leachable fraction and those of the aggregates. Random Sanger sequencing of ssu clones revealed that these differences were mainly because of the presence of Epsilonproteobacteria and Firmicutes in the leachable fractions, while the aggregates contained more Cyanobacteria. The Cyanobacteria phylotypes in the aggregates were dominated by the sequences related to Microcoleus vaginatus while the leachable fractions presented the sequences of chloroplastic origin. Therefore, more than 50% of the phylotypes observed were related to Proteobacteria while 40% were related to Cyanobacteria and Bacteroidetes. Preferential distribution of clades in almost all the phyla or classes detected was observed. This study provides insight into the identities of dominant members of the bacterial communities of urban sediments. Microcoleus vaginatus appeared to predominate in pioneer soils. PMID:22404135

  20. Community level physiological profiles of bacterial communities inhabiting uranium mining impacted sites.

    PubMed

    Kenarova, Anelia; Radeva, Galina; Traykov, Ivan; Boteva, Silvena

    2014-02-01

    Bacterial activity and physiological diversity were characterized in mining and milling impacted soils collected from three abandoned uranium mine sites, Senokos, Buhovo and Sliven, using bacterial dehydrogenase activity and Biolog (EcoPlate) tests. The elemental composition of soils revealed high levels of uranium and heavy metals (sum of technogenic coefficients of contamination; TCC(sum) pollution as follows: Sliven (uranium - 374 mg/kg; TCC(sum) - 23.40) >Buhovo (uranium - 139.20mg/kg; TCC(sum) - 3.93) >Senokos (uranium - 23.01 mg/kg; TCC(sum) - 0.86). The physiological profiles of the bacterial community level were site specific, and indicated intensive utilization of polyols, carbohydrates and carboxylic acids in low and medium polluted environments, and i-erithrytol and 2-hydroxy-benzoic acid in the highly polluted environment of Sliven waste pile. Enzymes which take part in the biodegradation of recalcitrant substances were more resistant to pollution than these from the pathways of the easily degradable carbon sources. The Shannon index indicated that the physiological diversity of bacteria was site specific but not in line with the levels of pollution. A general tendency of increasing the importance of the number of utilizable substrates to bacterial physiological diversity was observed at less polluted sites, whereas in highly polluted sites the evenness of substrate utilization rate was more significant. Dehydrogenase activity was highest in Senokos upper soil layer and positively correlated (p<0.01) with the soil organic matter content. The bacterial activity (EcoPlate) and physiological diversity (Shannon index) correlated significantly and negatively with As, Cu, Zn, Pb and U, and Co, Cr, Ni and Mn, respectively. We concluded that the observed site specific shifts in bacterial communities were complex due to both the environmental peculiarities and the bacterial tolerance to the relevant level of pollution, rather than a strong indication of uranium

  1. Highly Heterogeneous Soil Bacterial Communities around Terra Nova Bay of Northern Victoria Land, Antarctica

    PubMed Central

    Lim, Hyoun Soo; Hong, Soon Gyu; Kim, Ji Hee; Lee, Joohan; Choi, Taejin; Ahn, Tae Seok; Kim, Ok-Sun

    2015-01-01

    Given the diminished role of biotic interactions in soils of continental Antarctica, abiotic factors are believed to play a dominant role in structuring of microbial communities. However, many ice-free regions remain unexplored, and it is unclear which environmental gradients are primarily responsible for the variations among bacterial communities. In this study, we investigated the soil bacterial community around Terra Nova Bay of Victoria Land by pyrosequencing and determined which environmental variables govern the bacterial community structure at the local scale. Six bacterial phyla, Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, Cyanobacteria, and Bacteroidetes, were dominant, but their relative abundance varied greatly across locations. Bacterial community structures were affected little by spatial distance, but structured more strongly by site, which was in accordance with the soil physicochemical compositions. At both the phylum and species levels, bacterial community structure was explained primarily by pH and water content, while certain earth elements and trace metals also played important roles in shaping community variation. The higher heterogeneity of the bacterial community structure found at this site indicates how soil bacterial communities have adapted to different compositions of edaphic variables under extreme environmental conditions. Taken together, these findings greatly advance our understanding of the adaption of soil bacterial populations to this harsh environment. PMID:25799273

  2. Biogeographic congruency among bacterial communities from terrestrial sulfidic springs

    PubMed Central

    Headd, Brendan; Engel, Annette S.

    2014-01-01

    Terrestrial sulfidic springs support diverse microbial communities by serving as stable conduits for geochemically diverse and nutrient-rich subsurface waters. Microorganisms that colonize terrestrial springs likely originate from groundwater, but may also be sourced from the surface. As such, the biogeographic distribution of microbial communities inhabiting sulfidic springs should be controlled by a combination of spring geochemistry and surface and subsurface transport mechanisms, and not necessarily geographic proximity to other springs. We examined the bacterial diversity of seven springs to test the hypothesis that occurrence of taxonomically similar microbes, important to the sulfur cycle, at each spring is controlled by geochemistry. Complementary Sanger sequencing and 454 pyrosequencing of 16S rRNA genes retrieved five proteobacterial classes, and Bacteroidetes, Chlorobi, Chloroflexi, and Firmicutes phyla from all springs, which suggested the potential for a core sulfidic spring microbiome. Among the putative sulfide-oxidizing groups (Epsilonproteobacteria and Gammaproteobacteria), up to 83% of the sequences from geochemically similar springs clustered together. Abundant populations of Hydrogenimonas-like or Sulfurovum-like spp. (Epsilonproteobacteria) occurred with abundant Thiothrix and Thiofaba spp. (Gammaproteobacteria), but Arcobacter-like and Sulfurimonas spp. (Epsilonproteobacteria) occurred with less abundant gammaproteobacterial populations. These distribution patterns confirmed that geochemistry rather than biogeography regulates bacterial dominance at each spring. Potential biogeographic controls were related to paleogeologic sedimentation patterns that could control long-term microbial transport mechanisms that link surface and subsurface environments. Knowing the composition of a core sulfidic spring microbial community could provide a way to monitor diversity changes if a system is threatened by anthropogenic processes or climate change. PMID

  3. L-Arginine Destabilizes Oral Multi-Species Biofilm Communities Developed in Human Saliva

    PubMed Central

    Kolderman, Ethan; Bettampadi, Deepti; Samarian, Derek; Dowd, Scot E.; Foxman, Betsy; Jakubovics, Nicholas S.; Rickard, Alexander H.

    2015-01-01

    The amino acid L-arginine inhibits bacterial coaggregation, is involved in cell-cell signaling, and alters bacterial metabolism in a broad range of species present in the human oral cavity. Given the range of effects of L-arginine on bacteria, we hypothesized that L-arginine might alter multi-species oral biofilm development and cause developed multi-species biofilms to disassemble. Because of these potential biofilm-destabilizing effects, we also hypothesized that L-arginine might enhance the efficacy of antimicrobials that normally cannot rapidly penetrate biofilms. A static microplate biofilm system and a controlled-flow microfluidic system were used to develop multi-species oral biofilms derived from pooled unfiltered cell-containing saliva (CCS) in pooled filter-sterilized cell-free saliva (CFS) at 37oC. The addition of pH neutral L-arginine monohydrochloride (LAHCl) to CFS was found to exert negligible antimicrobial effects but significantly altered biofilm architecture in a concentration-dependent manner. Under controlled flow, the biovolume of biofilms (μm3/μm2) developed in saliva containing 100-500 mM LAHCl were up to two orders of magnitude less than when developed without LAHCI. Culture-independent community analysis demonstrated that 500 mM LAHCl substantially altered biofilm species composition: the proportion of Streptococcus and Veillonella species increased and the proportion of Gram-negative bacteria such as Neisseria and Aggregatibacter species was reduced. Adding LAHCl to pre-formed biofilms also reduced biovolume, presumably by altering cell-cell interactions and causing cell detachment. Furthermore, supplementing 0.01% cetylpyridinium chloride (CPC), an antimicrobial commonly used for the treatment of dental plaque, with 500 mM LAHCl resulted in greater penetration of CPC into the biofilms and significantly greater killing compared to a non-supplemented 0.01% CPC solution. Collectively, this work demonstrates that LAHCl moderates multi

  4. L-arginine destabilizes oral multi-species biofilm communities developed in human saliva.

    PubMed

    Kolderman, Ethan; Bettampadi, Deepti; Samarian, Derek; Dowd, Scot E; Foxman, Betsy; Jakubovics, Nicholas S; Rickard, Alexander H

    2015-01-01

    The amino acid L-arginine inhibits bacterial coaggregation, is involved in cell-cell signaling, and alters bacterial metabolism in a broad range of species present in the human oral cavity. Given the range of effects of L-arginine on bacteria, we hypothesized that L-arginine might alter multi-species oral biofilm development and cause developed multi-species biofilms to disassemble. Because of these potential biofilm-destabilizing effects, we also hypothesized that L-arginine might enhance the efficacy of antimicrobials that normally cannot rapidly penetrate biofilms. A static microplate biofilm system and a controlled-flow microfluidic system were used to develop multi-species oral biofilms derived from pooled unfiltered cell-containing saliva (CCS) in pooled filter-sterilized cell-free saliva (CFS) at 37° C. The addition of pH neutral L-arginine monohydrochloride (LAHCl) to CFS was found to exert negligible antimicrobial effects but significantly altered biofilm architecture in a concentration-dependent manner. Under controlled flow, the biovolume of biofilms (μm(3)/μm(2)) developed in saliva containing 100-500 mM LAHCl were up to two orders of magnitude less than when developed without LAHCI. Culture-independent community analysis demonstrated that 500 mM LAHCl substantially altered biofilm species composition: the proportion of Streptococcus and Veillonella species increased and the proportion of Gram-negative bacteria such as Neisseria and Aggregatibacter species was reduced. Adding LAHCl to pre-formed biofilms also reduced biovolume, presumably by altering cell-cell interactions and causing cell detachment. Furthermore, supplementing 0.01% cetylpyridinium chloride (CPC), an antimicrobial commonly used for the treatment of dental plaque, with 500 mM LAHCl resulted in greater penetration of CPC into the biofilms and significantly greater killing compared to a non-supplemented 0.01% CPC solution. Collectively, this work demonstrates that LAHCl moderates multi

  5. Impact of oil on bacterial community structure in bioturbated sediments.

    PubMed

    Stauffert, Magalie; Cravo-Laureau, Cristiana; Jézéquel, Ronan; Barantal, Sandra; Cuny, Philippe; Gilbert, Franck; Cagnon, Christine; Militon, Cécile; Amouroux, David; Mahdaoui, Fatima; Bouyssiere, Brice; Stora, Georges; Merlin, François-Xavier; Duran, Robert

    2013-01-01

    Oil spills threaten coastlines where biological processes supply essential ecosystem services. Therefore, it is crucial to understand how oil influences the microbial communities in sediments that play key roles in ecosystem functioning. Ecosystems such as sediments are characterized by intensive bioturbation due to burrowing macrofauna that may modify the microbial metabolisms. It is thus essential to consider the bioturbation when determining the impact of oil on microbial communities. In this study, an experimental laboratory device maintaining pristine collected mudflat sediments in microcosms closer to true environmental conditions--with tidal cycles and natural seawater--was used to simulate an oil spill under bioturbation conditions. Different conditions were applied to the microcosms including an addition of: standardized oil (Blend Arabian Light crude oil, 25.6 mg.g⁻¹ wet sediment), the common burrowing organism Hediste (Nereis) diversicolor and both the oil and H. diversicolor. The addition of H. diversicolor and its associated bioturbation did not affect the removal of petroleum hydrocarbons. After 270 days, 60% of hydrocarbons had been removed in all microcosms irrespective of the H. diversicolor addition. However, 16S-rRNA gene and 16S-cDNA T-RFLP and RT-PCR-amplicon libraries analysis showed an effect of the condition on the bacterial community structure, composition, and dynamics, supported by PerMANOVA analysis. The 16S-cDNA libraries from microcosms where H. diversicolor was added (oiled and un-oiled) showed a marked dominance of sequences related to Gammaproteobacteria. However, in the oiled-library sequences associated to Deltaproteobacteria and Bacteroidetes were also highly represented. The 16S-cDNA libraries from oiled-microcosms (with and without H. diversicolor addition) revealed two distinct microbial communities characterized by different phylotypes associated to known hydrocarbonoclastic bacteria and dominated by Gammaproteobacteria

  6. Enhanced bacterial decomposition with increasing addition of autochthonous to allochthonous carbon without any effect on bacterial community composition

    NASA Astrophysics Data System (ADS)

    Attermeyer, K.; Hornick, T.; Kayler, Z. E.; Bahr, A.; Zwirnmann, E.; Grossart, H.-P.; Premke, K.

    2014-03-01

    Dissolved organic carbon (DOC) concentrations - mainly of terrestrial origin - are increasing worldwide in inland waters. Heterotrophic bacteria are the main consumers of DOC and thus determine DOC temporal dynamics and availability for higher trophic levels. Our aim was to study bacterial carbon (C) turnover with respect to DOC quantity and chemical quality using both allochthonous and autochthonous DOC sources. We incubated a natural bacterial community with allochthonous C (13C-labeled beech leachate) and increased concentrations and pulses (intermittent occurrence of organic matter input) of autochthonous C (phytoplankton lysate). We then determined bacterial C consumption, activities, and community composition together with the C flow through bacteria using stable C isotopes. The chemical analysis of single sources revealed differences in aromaticity and low- and high-molecular-weight substance fractions (LMWS and HMWS, respectively) between allochthonous and autochthonous C sources. Both DOC sources (allochthonous and autochthonous DOC) were metabolized at a high bacterial growth efficiency (BGE) around 50%. In treatments with mixed sources, rising concentrations of added autochthonous DOC resulted in a further, significant increase in bacterial DOC consumption of up to 68% when nutrients were not limiting. This rise was accompanied by a decrease in the humic substance (HS) fraction and an increase in bacterial biomass. Changes in DOC concentration and consumption in mixed treatments did not affect bacterial community composition (BCC), but BCC differed in single vs. mixed incubations. Our study highlights that DOC quantity affects bacterial C consumption but not BCC in nutrient-rich aquatic systems. BCC shifted when a mixture of allochthonous and autochthonous C was provided simultaneously to the bacterial community. Our results indicate that chemical quality rather than source of DOC per se (allochthonous vs. autochthonous) determines bacterial DOC turnover.

  7. Assessing the Unseen Bacterial Diversity in Microbial Communities

    PubMed Central

    Caro-Quintero, Alejandro; Ochman, Howard

    2015-01-01

    For both historical and technical reasons, 16S ribosomal RNA has been the most common molecular marker used to analyze the contents of microbial communities. However, its slow rate of evolution hinders the resolution of closely related bacteria—individual 16S-phylotypes, particularly when clustered at 97% sequence identity, conceal vast amounts of species- and strain-level variation. Protein-coding genes, which evolve more quickly, are useful for differentiating among more recently diverged lineages, but their application is complicated by difficulties in designing low-redundancy primers that amplify homologous regions from distantly related taxa. Given the now-common practice of multiplexing hundreds of samples, adopting new genes usually entails the synthesis of large sets of barcoded primers. To circumvent problems associated with use of protein-coding genes to survey microbial communities, we develop an approach—termed phyloTAGs—that offers an automatic solution for primer design and can be easily adapted to target different taxonomic groups and/or different protein-coding regions. We applied this method to analyze diversity within the gorilla gut microbiome and recovered hundreds of strains that went undetected after deep-sequencing of 16S rDNA amplicons. PhyloTAGs provides a powerful way to recover the fine-level diversity within microbial communities and to study stability and dynamics of bacterial populations. PMID:26615218

  8. Assessing the Unseen Bacterial Diversity in Microbial Communities.

    PubMed

    Caro-Quintero, Alejandro; Ochman, Howard

    2015-12-01

    For both historical and technical reasons, 16S ribosomal RNA has been the most common molecular marker used to analyze the contents of microbial communities. However, its slow rate of evolution hinders the resolution of closely related bacteria--individual 16S-phylotypes, particularly when clustered at 97% sequence identity, conceal vast amounts of species- and strain-level variation. Protein-coding genes, which evolve more quickly, are useful for differentiating among more recently diverged lineages, but their application is complicated by difficulties in designing low-redundancy primers that amplify homologous regions from distantly related taxa. Given the now-common practice of multiplexing hundreds of samples, adopting new genes usually entails the synthesis of large sets of barcoded primers. To circumvent problems associated with use of protein-coding genes to survey microbial communities, we develop an approach--termed phyloTAGs--that offers an automatic solution for primer design and can be easily adapted to target different taxonomic groups and/or different protein-coding regions. We applied this method to analyze diversity within the gorilla gut microbiome and recovered hundreds of strains that went undetected after deep-sequencing of 16S rDNA amplicons. PhyloTAGs provides a powerful way to recover the fine-level diversity within microbial communities and to study stability and dynamics of bacterial populations. PMID:26615218

  9. Initial community and environment determine the response of bacterial communities to dispersant and oil contamination.

    PubMed

    Ortmann, Alice C; Lu, YueHan

    2015-01-15

    Bioremediation of seawater by natural bacterial communities is one potential response to coastal oil spills, but the success of the approach may vary, depending on geographical location, oil composition and the timing of spill. The short term response of coastal bacteria to dispersant, oil and dispersed oil was characterized using 16S rRNA gene tags in two mesocosm experiments conducted two months apart. Despite differences in the amount of oil-derived alkanes across the treatments and experiments, increases in the contributions of hydrocarbon degrading taxa and decreases in common estuarine bacteria were observed in response to dispersant and/or oil. Between the two experiments, the direction and rates of changes in particulate alkane concentrations differed, as did the magnitude of the bacterial response to oil and/or dispersant. Together, our data underscore large variability in bacterial responses to hydrocarbon pollutants, implying that bioremediation success varies with starting biological and environmental conditions. PMID:25487088

  10. The oral microbial community of gingivitis and lumpy jaw in captive macropods.

    PubMed

    Antiabong, John F; Boardman, Wayne; Moore, Robert B; Brown, Melissa H; Ball, Andrew S

    2013-12-01

    Gingivitis and lumpy jaw are diseases of polymicrobial aetiology. Although Fusobacterium necrophorum has been associated with these diseases in macropods, little is known about other organisms associated with these diseases in this animal species. PCR-DGGE analysis revealed the potential pathogens associated with gingivitis and lumpy jaw in macropods. PCR-DGGE profile comparison between the healthy and disease groups indicated a shift in the oral bacterial community structures with similarity coefficients of 48% and 35% for gingivitis and lumpy jaw respectively. Moreover, gingivitis was associated with increase in bacterial diversity (Shannon index = 2.87; PL curve = 45%) while lumpy jaw resulted in a decline in bacterial diversity (Shannon index = 2.47; PL curve = 74%). This study suggest that the establishment of gingivitis and lumpy jaw diseases follows the ecological plaque hypothesis. This forms the basis for an expanded investigation in an epidemiological scale and suggests the need for the appropriate choice of antimicrobial agent(s) and for the effective management and control of polymicrobial diseases. PMID:24012349

  11. Changes in northern Gulf of Mexico sediment bacterial and archaeal communities exposed to hypoxia

    EPA Science Inventory

    Biogeochemical changes in marine sediments during coastal water hypoxia are well described, but less is known about underlying changes in microbial communities. Bacterial and archaeal communities in Louisiana continental shelf (LCS) hypoxic zone sediments were characterized by py...

  12. Bacterial community in Haemaphysalis ticks of domesticated animals from the Orang Asli communities in Malaysia.

    PubMed

    Khoo, Jing-Jing; Chen, Fezshin; Kho, Kai Ling; Ahmad Shanizza, Azzy Iyzati; Lim, Fang-Shiang; Tan, Kim-Kee; Chang, Li-Yen; AbuBakar, Sazaly

    2016-07-01

    Ticks are vectors in the transmission of many important infectious diseases in human and animals. Ticks can be readily found in the semi-forested areas such as the settlements of the indigenous people in Malaysia, the Orang Asli. There is still minimal information available on the bacterial agents associated with ticks found in Malaysia. We performed a survey of the bacterial communities associated with ticks collected from domestic animals found in two Orang Asli villages in Malaysia. We collected 62 ticks, microscopically and molecularly identified as related to Haemaphysalis wellingtoni, Haemaphysalis hystricis and Haemaphysalis bispinosa. Bacterial 16s rRNA hypervariable region (V6) amplicon libraries prepared from the tick samples were sequenced on the Ion Torrent PGM platform. We detected a total of 392 possible bacterial genera after pooling and sequencing 20 samples, indicating a diverse bacterial community profile. Dominant taxa include the potential tick endosymbiont, Coxiella. Other dominant taxa include the tick-associated pathogen, Rickettsia, and environmental bacteria such as Bacillus, Mycobacterium, Sphingomonas and Pseudomonas. Other known tick-associated bacteria were also detected, including Anaplasma, Ehrlichia, Rickettsiella and Wolbachia, albeit at very low abundance. Specific PCR was performed on selected samples to identify Rickettsia and Coxiella. Sequence of Rickettsia felis, which causes spotted fever in human and cats, was identified in one sample. Coxiella endosymbionts were detected in three samples. This study provides the baseline knowledge of the microbiome of ticks in Malaysia, focusing on tick-associated bacteria affecting the Orang Asli communities. The role of the herein found Coxiella and Rickettsia in tick physiology or disease transmission merits further investigation. PMID:27132518

  13. Impacts of Grazing Intensity and Plant Community Composition on Soil Bacterial Community Diversity in a Steppe Grassland.

    PubMed

    Qu, Tong-Bao; Du, Wei-Chao; Yuan, Xia; Yang, Zhi-Ming; Liu, Dong-Bo; Wang, De-Li; Yu, Li-Jun

    2016-01-01

    Soil bacteria play a key role in the ecological and evolutionary responses of agricultural ecosystems. Domestic herbivore grazing is known to influence soil bacterial community. However, the effects of grazing and its major driving factors on soil bacterial community remain unknown for different plant community compositions under increasing grazing intensity. Thus, to investigate soil bacterial community diversity under five plant community compositions (Grass; Leymus chinensis; Forb; L. chinensis & Forb; and Legume), we performed a four-year field experiment with different grazing intensity treatments (no grazing; light grazing, 4 sheep·ha-1; and heavy grazing, 6 sheep·ha-1) in a grassland in China. Total DNA was obtained from soil samples collected from the plots in August, and polymerase chain reaction (PCR) analysis and denaturing gradient gel electrophoresis (DGGE) fingerprinting were used to investigate soil bacterial community. The results showed that light grazing significantly increased indices of soil bacterial community diversity for the Forb and Legume groups but not the Grass and L. chinensis groups. Heavy grazing significantly reduced these soil bacterial diversity indices, except for the Pielou evenness index in the Legume group. Further analyses revealed that the soil N/P ratio, electrical conductivity (EC), total nitrogen (TN) and pH were the major environmental factors affecting the soil bacterial community. Our study suggests that the soil bacterial community diversity was influenced by grazing intensity and plant community composition in a meadow steppe. The present study provides a baseline assessment of the soil bacterial community diversity in a temperate meadow steppe. PMID:27467221

  14. Impacts of Grazing Intensity and Plant Community Composition on Soil Bacterial Community Diversity in a Steppe Grassland

    PubMed Central

    Qu, Tong-bao; Du, Wei-chao; Yuan, Xia; Yang, Zhi-ming; Liu, Dong-bo; Wang, De-li; Yu, Li-jun

    2016-01-01

    Soil bacteria play a key role in the ecological and evolutionary responses of agricultural ecosystems. Domestic herbivore grazing is known to influence soil bacterial community. However, the effects of grazing and its major driving factors on soil bacterial community remain unknown for different plant community compositions under increasing grazing intensity. Thus, to investigate soil bacterial community diversity under five plant community compositions (Grass; Leymus chinensis; Forb; L. chinensis & Forb; and Legume), we performed a four-year field experiment with different grazing intensity treatments (no grazing; light grazing, 4 sheep·ha−1; and heavy grazing, 6 sheep·ha−1) in a grassland in China. Total DNA was obtained from soil samples collected from the plots in August, and polymerase chain reaction (PCR) analysis and denaturing gradient gel electrophoresis (DGGE) fingerprinting were used to investigate soil bacterial community. The results showed that light grazing significantly increased indices of soil bacterial community diversity for the Forb and Legume groups but not the Grass and L. chinensis groups. Heavy grazing significantly reduced these soil bacterial diversity indices, except for the Pielou evenness index in the Legume group. Further analyses revealed that the soil N/P ratio, electrical conductivity (EC), total nitrogen (TN) and pH were the major environmental factors affecting the soil bacterial community. Our study suggests that the soil bacterial community diversity was influenced by grazing intensity and plant community composition in a meadow steppe. The present study provides a baseline assessment of the soil bacterial community diversity in a temperate meadow steppe. PMID:27467221

  15. Altamira cave Paleolithic paintings harbor partly unknown bacterial communities.

    PubMed

    Schabereiter-Gurtner, Claudia; Saiz-Jimenez, Cesareo; Piñar, Guadalupe; Lubitz, Werner; Rölleke, Sabine

    2002-05-21

    Since it has been reported that microorganisms can affect painting pigments, Paleolithic painting microbiology deserves attention. The present study is the first report on the bacterial colonization of the valuable Paleolithic paintings in the famous Altamira cave (Spain). One sample taken from a painting area in the Polychromes Hall was analyzed culture-independently. This was the first time microbiologists were allowed to take sample material directly from Altamira paintings. Identification methods included PCR amplification of 16S rRNA genes (16S rDNA) and community fingerprinting by denaturing gradient gel electrophoresis (DGGE). The applied approach gave insight into a great bacterial taxonomic diversity, and allowed the detection of unexpected and unknown bacteria with potential effects on the conservation of the painting. Regarding the number of 29 visible DGGE bands in the community fingerprint, the numbers of analyzed clones described about 72% of the phylogenetic diversity present in the sample. Thirty-eight percent of the sequences analyzed were phylogenetically most closely related to cultivated bacteria, while the majority (62%) were most closely related to environmental 16S rDNA clones. Bacteria identified in Altamira were related with sequence similarities between 84.8 and 99.4% to members of the cosmopolitan Proteobacteria (52.3%), to members of the Acidobacterium division (23.8%), Cytophaga/Flexibacter/Bacteroides phylum (9.5%), green non-sulfur bacteria (4.8%), Planctomycetales (4.8%) and Actinobacteria (4.8%). The high number of clones most closely related to environmental 16S rDNA clones showed the broad spectrum of unknown and yet to be cultivated bacteria in Altamira cave. PMID:12052543

  16. Community mental health nursing in Alberta, Canada: an oral history.

    PubMed

    Boschma, Geertje

    2012-01-01

    Community mental health nurses had a central role in the construction of new rehabilitative practices and community mental health services in the 1960s and 1970s. The purpose of this article is, first, to explore how nurses understood and created their new role and identity in the turbulent context of deinstitutionalization. The development of after care services for patients discharged from Alberta Hospital in Ponoka (AH-Ponoka), a large mental institution in Calgary, in the Canadian province of Alberta, will be used as a case study. I specifically focus on the establishment of outpatient services in a new psychiatric department at Foothills General Hospital in Calgary. Second, I examine how deinstitutionalization itself shaped community mental health nurses' work. Oral history interviews with nurses and other mental health professionals, who had a central role in this transformation process, provide a unique lens through which to explore this social change. The article concludes that new rehabilitative, community-based mental health services can better be understood as a transformation of former institutional practices rather than as a definite break with them. PMID:22360000

  17. The energy–diversity relationship of complex bacterial communities in Arctic deep-sea sediments

    PubMed Central

    Bienhold, Christina; Boetius, Antje; Ramette, Alban

    2012-01-01

    The availability of nutrients and energy is a main driver of biodiversity for plant and animal communities in terrestrial and marine ecosystems, but we are only beginning to understand whether and how energy–diversity relationships may be extended to complex natural bacterial communities. Here, we analyzed the link between phytodetritus input, diversity and activity of bacterial communities of the Siberian continental margin (37–3427 m water depth). Community structure and functions, such as enzymatic activity, oxygen consumption and carbon remineralization rates, were highly related to each other, and with energy availability. Bacterial richness substantially increased with increasing sediment pigment content, suggesting a positive energy–diversity relationship in oligotrophic regions. Richness leveled off, forming a plateau, when mesotrophic sites were included, suggesting that bacterial communities and other benthic fauna may be structured by similar mechanisms. Dominant bacterial taxa showed strong positive or negative relationships with phytodetritus input and allowed us to identify candidate bioindicator taxa. Contrasting responses of individual taxa to changes in phytodetritus input also suggest varying ecological strategies among bacterial groups along the energy gradient. Our results imply that environmental changes affecting primary productivity and particle export from the surface ocean will not only affect bacterial community structure but also bacterial functions in Arctic deep-sea sediment, and that sediment bacterial communities can record shifts in the whole ocean ecosystem functioning. PMID:22071347

  18. Salinity and Bacterial Diversity: To What Extent Does the Concentration of Salt Affect the Bacterial Community in a Saline Soil?

    PubMed Central

    Canfora, Loredana; Bacci, Giovanni; Pinzari, Flavia; Lo Papa, Giuseppe; Dazzi, Carmelo; Benedetti, Anna

    2014-01-01

    In this study, the evaluation of soil characteristics was coupled with a pyrosequencing analysis of the V2-V3 16S rRNA gene region in order to investigate the bacterial community structure and diversity in the A horizon of a natural saline soil located in Sicily (Italy). The main aim of the research was to assess the organisation and diversity of microbial taxa using a spatial scale that revealed physical and chemical heterogeneity of the habitat under investigation. The results provided information on the type of distribution of different bacterial groups as a function of spatial gradients of soil salinity and pH. The analysis of bacterial 16S rRNA showed differences in bacterial composition and diversity due to a variable salt concentration in the soil. The bacterial community showed a statistically significant spatial variability. Some bacterial phyla appeared spread in the whole area, whatever the salinity gradient. It emerged therefore that a patchy saline soil can not contain just a single microbial community selected to withstand extreme osmotic phenomena, but many communities that can be variously correlated to one or more environmental parameters. Sequences have been deposited to the SRA database and can be accessed on ID Project PRJNA241061. PMID:25188357

  19. Effects of a chlorhexidine gluconate-containing mouthwash on the vitality and antimicrobial susceptibility of in vitro oral bacterial ecosystems.

    PubMed

    McBain, Andrew J; Bartolo, Robert G; Catrenich, Carl E; Charbonneau, Duane; Ledder, Ruth G; Gilbert, Peter

    2003-08-01

    Oral bacterial microcosms, established using saliva inocula from three individuals, were maintained under a feast-famine regime within constant-depth film fermenters. Steady-state communities were exposed four times daily, postfeeding, to a chlorhexidine (CHX) gluconate-containing mouthwash (CHXM) diluted to 0.06% (wt/vol) antimicrobial content. The microcosms were characterized by heterotrophic plate counts and PCR-denaturing gradient gel electrophoresis (DGGE). CHXM caused significant decreases in both total anaerobe and total aerobe/facultative anaerobe counts (P < 0.05), together with lesser decreases in gram-negative anaerobes. The degree of streptococcal and actinomycete inhibition varied considerably among individuals. DGGE showed that CHXM exposure caused considerable decreases in microbial diversity, including marked reductions in Prevotella sp. and Selenomonas infelix. Pure-culture studies of 10 oral bacteria (eight genera) showed that Actinomyces naeslundii, Veillonella dispar, Prevotella nigrescens, and the streptococci were highly susceptible to CHX, while Lactobacillus rhamnosus, Fusobacterium nucleatum, and Neisseria subflava were the least susceptible. Determination of the MICs of triclosan, CHX, erythromycin, penicillin V, vancomycin, and metronidazole for microcosm isolates, before and after 5 days of CHXM exposure, showed that CHXM exposure altered the distribution of isolates toward those that were less susceptible to CHX (P < 0.05). Changes in susceptibility distributions for the other test agents were not statistically significant. In conclusion, population changes in plaque microcosms following repeated exposure to CHXM represented an inhibition of the most susceptible flora with a clonal expansion of less susceptible species. PMID:12902270

  20. Effects of a Chlorhexidine Gluconate-Containing Mouthwash on the Vitality and Antimicrobial Susceptibility of In Vitro Oral Bacterial Ecosystems

    PubMed Central

    McBain, Andrew J.; Bartolo, Robert G.; Catrenich, Carl E.; Charbonneau, Duane; Ledder, Ruth G.; Gilbert, Peter

    2003-01-01

    Oral bacterial microcosms, established using saliva inocula from three individuals, were maintained under a feast-famine regime within constant-depth film fermenters. Steady-state communities were exposed four times daily, postfeeding, to a chlorhexidine (CHX) gluconate-containing mouthwash (CHXM) diluted to 0.06% (wt/vol) antimicrobial content. The microcosms were characterized by heterotrophic plate counts and PCR-denaturing gradient gel electrophoresis (DGGE). CHXM caused significant decreases in both total anaerobe and total aerobe/facultative anaerobe counts (P < 0.05), together with lesser decreases in gram-negative anaerobes. The degree of streptococcal and actinomycete inhibition varied considerably among individuals. DGGE showed that CHXM exposure caused considerable decreases in microbial diversity, including marked reductions in Prevotella sp. and Selenomonas infelix. Pure-culture studies of 10 oral bacteria (eight genera) showed that Actinomyces naeslundii, Veillonella dispar, Prevotella nigrescens, and the streptococci were highly susceptible to CHX, while Lactobacillus rhamnosus, Fusobacterium nucleatum, and Neisseria subflava were the least susceptible. Determination of the MICs of triclosan, CHX, erythromycin, penicillin V, vancomycin, and metronidazole for microcosm isolates, before and after 5 days of CHXM exposure, showed that CHXM exposure altered the distribution of isolates toward those that were less susceptible to CHX (P < 0.05). Changes in susceptibility distributions for the other test agents were not statistically significant. In conclusion, population changes in plaque microcosms following repeated exposure to CHXM represented an inhibition of the most susceptible flora with a clonal expansion of less susceptible species. PMID:12902270

  1. Bacterial communities in Arctic first-year drift ice during the winter/spring transition.

    PubMed

    Eronen-Rasimus, Eeva; Piiparinen, Jonna; Karkman, Antti; Lyra, Christina; Gerland, Sebastian; Kaartokallio, Hermanni

    2016-08-01

    Horizontal and vertical variability of first-year drift-ice bacterial communities was investigated along a North-South transect in the Fram Strait during the winter/spring transition. Two different developmental stages were captured along the transect based on the prevailing environmental conditions and the differences in bacterial community composition. The differences in the bacterial communities were likely driven by the changes in sea-ice algal biomass (2.6-5.6 fold differences in chl-a concentrations). Copiotrophic genera common in late spring/summer sea ice, such as Polaribacter, Octadecabacter and Glaciecola, dominated the bacterial communities, supporting the conclusion that the increase in the sea-ice algal biomass was possibly reflected in the sea-ice bacterial communities. Of the dominating bacterial genera, Polaribacter seemed to benefit the most from the increase in algal biomass, since they covered approximately 39% of the total community at the southernmost stations with higher (>6 μg l(-1) ) chl-a concentrations and only 9% at the northernmost station with lower chl-a concentrations (<6 μg l(-1) ). The sea-ice bacterial communities also varied between the ice horizons at all three stations and thus we recommend that for future studies multiple ice horizons be sampled to cover the variability in sea-ice bacterial communities in spring. PMID:27264318

  2. Restructuring of endophytic bacterial communities in grapevine yellows-diseased and recovered Vitis vinifera L. plants.

    PubMed

    Bulgari, Daniela; Casati, Paola; Crepaldi, Paola; Daffonchio, Daniele; Quaglino, Fabio; Brusetti, Lorenzo; Bianco, Piero Attilio

    2011-07-01

    Length heterogeneity-PCR assays, combined with statistical analyses, highlighted that the endophytic bacterial community associated with healthy grapevines was characterized by a greater diversity than that present in diseased and recovered plants. The findings suggest that phytoplasmas can restructure the bacterial community by selecting endophytic strains that could elicit a plant defense response. PMID:21622794

  3. Defining the healthy "core microbiome" of oral microbial communities

    PubMed Central

    2009-01-01

    reads (99.8%) belonged to the shared higher taxa. Conclusions We obtained the first insight into the diversity and uniqueness of individual oral microbiomes at a resolution of next-generation sequencing. We showed that a major proportion of bacterial sequences of unrelated healthy individuals is identical, supporting the concept of a core microbiome at health. PMID:20003481

  4. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health

    PubMed Central

    Wei, Zhong; Yang, Tianjie; Friman, Ville-Petri; Xu, Yangchun; Shen, Qirong; Jousset, Alexandre

    2015-01-01

    Host-associated bacterial communities can function as an important line of defence against pathogens in animals and plants. Empirical evidence and theoretical predictions suggest that species-rich communities are more resistant to pathogen invasions. Yet, the underlying mechanisms are unclear. Here, we experimentally test how the underlying resource competition networks of resident bacterial communities affect invasion resistance to the plant pathogen Ralstonia solanacearum in microcosms and in tomato plant rhizosphere. We find that bipartite resource competition networks are better predictors of invasion resistance compared with resident community diversity. Specifically, communities with a combination of stabilizing configurations (low nestedness and high connectance), and a clear niche overlap with the pathogen, reduce pathogen invasion success, constrain pathogen growth within invaded communities and have lower levels of diseased plants in greenhouse experiments. Bacterial resource competition network characteristics can thus be important in explaining positive diversity–invasion resistance relationships in bacterial rhizosphere communities. PMID:26400552

  5. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health.

    PubMed

    Wei, Zhong; Yang, Tianjie; Friman, Ville-Petri; Xu, Yangchun; Shen, Qirong; Jousset, Alexandre

    2015-01-01

    Host-associated bacterial communities can function as an important line of defence against pathogens in animals and plants. Empirical evidence and theoretical predictions suggest that species-rich communities are more resistant to pathogen invasions. Yet, the underlying mechanisms are unclear. Here, we experimentally test how the underlying resource competition networks of resident bacterial communities affect invasion resistance to the plant pathogen Ralstonia solanacearum in microcosms and in tomato plant rhizosphere. We find that bipartite resource competition networks are better predictors of invasion resistance compared with resident community diversity. Specifically, communities with a combination of stabilizing configurations (low nestedness and high connectance), and a clear niche overlap with the pathogen, reduce pathogen invasion success, constrain pathogen growth within invaded communities and have lower levels of diseased plants in greenhouse experiments. Bacterial resource competition network characteristics can thus be important in explaining positive diversity-invasion resistance relationships in bacterial rhizosphere communities. PMID:26400552

  6. Proteomics of Fusobacterium nucleatum within a model developing oral microbial community

    PubMed Central

    Hendrickson, Erik L; Wang, Tiansong; Beck, David A C; Dickinson, Brittany C; Wright, Christopher J; J Lamont, Richard; Hackett, Murray

    2014-01-01

    Fusobacterium nucleatum is a common oral organism that can provide adhesive and metabolic support to developing periodontal bacterial communities. It is within the context of these communities that disease occurs. We have previously reported whole cell proteomics analyses of Porphyromonas gingivalis and Streptococcus gordonii in early-stage communities with each other and with F. nucleatum, modeled using 18 h pellets. Here, we report the adaptation of F. nucleatum to the same experimental conditions as measured by differential protein expression. About 1210 F. nucleatum proteins were detected in single species F. nucleatum control samples, 1192 in communities with P. gingivalis, 1224 with S. gordonii, and 1135 with all three species. Quantitative comparisons among the proteomes revealed important changes in all mixed samples with distinct responses to P. gingivalis or S. gordonii alone and in combination. The results were inspected manually and an ontology analysis conducted using DAVID (Database for annotation, visualization, and integrated discovery). Extensive changes were detected in energy metabolism. All multispecies comparisons showed reductions in amino acid fermentation and a shift toward butanoate as a metabolic byproduct, although the two organism model community with S. gordonii showed increases in alanine, threonine, methionine, and cysteine pathways, and in the three species samples there were increases in lysine and methionine. The communities with P. gingivalis or all three organisms showed reduced glycolysis proteins, but F. nucleatum paired with S. gordonii displayed increased glycolysis/gluconeogenesis proteins. The S. gordonii containing two organism model also showed increases in the ethanolamine pathway while the three species sample showed decreases relative to the F. nucleatum single organism control. All of the nascent model communities displayed reduced translation, lipopolysaccharide, and cell wall biosynthesis, DNA replication and DNA

  7. Differences in Bacterial Community Structure in Two Color Morphs of the Hawaiian Reef Coral Montipora capitata.

    PubMed

    Shore-Maggio, Amanda; Runyon, Christina M; Ushijima, Blake; Aeby, Greta S; Callahan, Sean M

    2015-10-01

    Corals harbor diverse bacterial associations that contribute to the health of the host. Using 16S rRNA pyrosequencing, we compared the bacterial communities of red and orange morphs of the Hawaiian coral Montipora capitata. Although both color morphs shared dominant bacterial genera, weighted and unweighted UniFrac analyses showed distinct bacterial communities. A single operational taxonomic unit (OTU), classified as Vibrio, represented the largest driver of differences between the color morphs. This OTU comprised 35.4% (±5.5%) of the orange morph bacterial community yet comprised 1.1% (±0.6%) of the red morph bacterial community. Cultivable bacteria from the two color morphs were also compared and tested for antibacterial activity. Cultured isolates represented 14 genera (7% of the total genera identified from sequencing data), and all but two cultured isolates had a matching OTU from the sequencing data. Half of the isolates tested (8 out of 16) displayed antibacterial activity against other cultured isolates but not against two known bacterial pathogens of M. capitata. The results from this study demonstrate that the specificity of coral-bacterial associations extends beyond the level of coral species. In addition, culture-dependent methods captured bacterial diversity that was representative of both rare and abundant members of the associated bacterial community, as characterized by culture-independent methods. PMID:26253663

  8. Differences in Bacterial Community Structure in Two Color Morphs of the Hawaiian Reef Coral Montipora capitata

    PubMed Central

    Shore-Maggio, Amanda; Runyon, Christina M.; Ushijima, Blake; Aeby, Greta S.

    2015-01-01

    Corals harbor diverse bacterial associations that contribute to the health of the host. Using 16S rRNA pyrosequencing, we compared the bacterial communities of red and orange morphs of the Hawaiian coral Montipora capitata. Although both color morphs shared dominant bacterial genera, weighted and unweighted UniFrac analyses showed distinct bacterial communities. A single operational taxonomic unit (OTU), classified as Vibrio, represented the largest driver of differences between the color morphs. This OTU comprised 35.4% (±5.5%) of the orange morph bacterial community yet comprised 1.1% (±0.6%) of the red morph bacterial community. Cultivable bacteria from the two color morphs were also compared and tested for antibacterial activity. Cultured isolates represented 14 genera (7% of the total genera identified from sequencing data), and all but two cultured isolates had a matching OTU from the sequencing data. Half of the isolates tested (8 out of 16) displayed antibacterial activity against other cultured isolates but not against two known bacterial pathogens of M. capitata. The results from this study demonstrate that the specificity of coral-bacterial associations extends beyond the level of coral species. In addition, culture-dependent methods captured bacterial diversity that was representative of both rare and abundant members of the associated bacterial community, as characterized by culture-independent methods. PMID:26253663

  9. Bioturbating shrimp alter the structure and diversity of bacterial communities in coastal marine sediments.

    PubMed

    Laverock, Bonnie; Smith, Cindy J; Tait, Karen; Osborn, A Mark; Widdicombe, Steve; Gilbert, Jack A

    2010-12-01

    Bioturbation is a key process in coastal sediments, influencing microbially driven cycling of nutrients as well as the physical characteristics of the sediment. However, little is known about the distribution, diversity and function of the microbial communities that inhabit the burrows of infaunal macroorganisms. In this study, terminal-restriction fragment length polymorphism analysis was used to investigate variation in the structure of bacterial communities in sediment bioturbated by the burrowing shrimp Upogebia deltaura or Callianassa subterranea. Analyses of 229 sediment samples revealed significant differences between bacterial communities inhabiting shrimp burrows and those inhabiting ambient surface and subsurface sediments. Bacterial communities in burrows from both shrimp species were more similar to those in surface-ambient than subsurface-ambient sediment (R=0.258, P<0.001). The presence of shrimp was also associated with changes in bacterial community structure in surrounding surface sediment, when compared with sediments uninhabited by shrimp. Bacterial community structure varied with burrow depth, and also between individual burrows, suggesting that the shrimp's burrow construction, irrigation and maintenance behaviour affect the distribution of bacteria within shrimp burrows. Subsequent sequence analysis of bacterial 16S rRNA genes from surface sediments revealed differences in the relative abundance of bacterial taxa between shrimp-inhabited and uninhabited sediments; shrimp-inhabited sediment contained a higher proportion of proteobacterial sequences, including in particular a twofold increase in Gammaproteobacteria. Chao1 and ACE diversity estimates showed that taxon richness within surface bacterial communities in shrimp-inhabited sediment was at least threefold higher than that in uninhabited sediment. This study shows that bioturbation can result in significant structural and compositional changes in sediment bacterial communities, increasing

  10. Amazonian dark Earth and plant species from the Amazon region contribute to shape rhizosphere bacterial communities.

    PubMed

    Barbosa Lima, Amanda; Cannavan, Fabiana Souza; Navarrete, Acacio Aparecido; Teixeira, Wenceslau Geraldes; Kuramae, Eiko Eurya; Tsai, Siu Mui

    2015-05-01

    Amazonian Dark Earths (ADE) or Terra Preta de Índio formed in the past by pre-Columbian populations are highly sustained fertile soils supported by microbial communities that differ from those extant in adjacent soils. These soils are found in the Amazon region and are considered as a model soil when compared to the surrounding and background soils. The aim of this study was to assess the effects of ADE and its surrounding soil on the rhizosphere bacterial communities of two leguminous plant species that frequently occur in the Amazon region in forest sites (Mimosa debilis) and open areas (Senna alata). Bacterial community structure was evaluated using terminal restriction fragment length polymorphism (T-RFLP) and bacterial community composition by V4 16S rRNA gene region pyrosequencing. T-RFLP analysis showed effect of soil types and plant species on rhizosphere bacterial community structure. Differential abundance of bacterial phyla, such as Acidobacteria, Actinobacteria, Verrucomicrobia, and Firmicutes, revealed that soil type contributes to shape the bacterial communities. Furthermore, bacterial phyla such as Firmicutes and Nitrospira were mostly influenced by plant species. Plant roots influenced several soil chemical properties, especially when plants were grown in ADE. These results showed that differences observed in rhizosphere bacterial community structure and composition can be influenced by plant species and soil fertility due to variation in soil attributes. PMID:25103911

  11. Changes in intestinal bacterial communities are closely associated with shrimp disease severity.

    PubMed

    Xiong, Jinbo; Wang, Kai; Wu, Jinfeng; Qiuqian, Linglin; Yang, Kunjie; Qian, Yunxia; Zhang, Demin

    2015-08-01

    Increasing evidence has revealed a close association between intestinal bacterial communities and human health. However, given that host phylogeny shapes the composition of intestinal microbiota, it is unclear whether changes in intestinal microbiota structure in relation to shrimp health status. In this study, we collected shrimp and seawater samples from ponds with healthy and diseased shrimps to understand variations in bacterial communities among habitats (water and intestine) and/or health status. The bacterial communities were clustered according to the original habitat and health status. Habitat and health status constrained 14.6 and 7.7 % of the variation in bacterial communities, respectively. Changes in shrimp intestinal bacterial communities occurred in parallel with changes in disease severity, reflecting the transition from a healthy to a diseased state. This pattern was further evidenced by 38 bacterial families that were significantly different in abundance between healthy and diseased shrimps; moderate changes were observed in shrimps with sub-optimal health. In addition, within a given bacterial family, the patterns of enrichment or decrease were consistent with the known functions of those bacteria. Furthermore, the identified 119 indicator taxa exhibited a discriminative pattern similar to the variation in the community as a whole. Overall, this study suggests that changes in intestinal bacterial communities are closely associated with the severity of shrimp disease and that indicator taxa can be used to evaluate shrimp health status. PMID:25947250

  12. Metagenomic analysis of bacterial communities on Dokdo Island.

    PubMed

    Kim, Ye-Eun; Yoon, Hyeokjun; Kim, Miae; Nam, Yoon-Jong; Kim, Hyun; Seo, Yeonggyo; Lee, Gyeong-Min; Ja Kim, Young; Kong, Won-Sik; Kim, Jong-Guk; Seu, Young-Bae

    2014-01-01

    Dokdo, located east of the mainland of South Korea, is a volcanic island designated as a natural monument of South Korea due to its ecological value. Dokdo is divided into Dongdo and Seodo, islands with geological differences. The soil bacterial communities on Dokdo (Dongdo and Seodo) were analyzed using the pyrosequencing method. There were 1,693 and 1,408 operational taxonomic units (OTU) from Dongdo and Seodo, respectively. The statistical analyses (rarefaction curves as well as Chao1, Shannon, and Simpson indices) showed that bacterial diversity was slightly higher in Dongdo than Seodo. From results of a BLASTN search against the EzTaxon-e database, the validated reads (obtained after sequence preprocessing) were almost all classified at the phylum level. From the phylum level down to the species level, the number of classified reads considerably decreased due to the absence of information concerning unculturable or unidentified bacteria to date. Among the 36 phyla identified, three phyla (Proteobacteria, Actinobacteria and Acidobacteria) accounted for around 74.64%. The taxonomic composition was similar at the higher ranks (family and above) between Dongdo and Seodo, but a little different at the genus level. There were also various differences in the relative abundance of taxonomic ranks between Dongdo and Seodo. In particular, the proportion of the genus Acidobacterium (of the phylum Acidobacteria) was about six times higher in Seodo than Dongdo. In addition, the percentage of the genus Mycobacterium (of the phylum Actinobacteria) was nearly three times higher in Seodo than Dongdo, and the proportion of the genus Gaiella was about 3.7 times higher in Dongdo than Seodo. Overall, through the metagenomic analysis, the number of species identified in Dongdo and Seodo was 1,239 and 1,055, respectively. This information on the numerous culturable and unculturable bacteria is expected to help in the screening of new species in Dokdo. PMID:24859864

  13. Gut bacterial communities across tadpole ecomorphs in two diverse tropical anuran faunas.

    PubMed

    Vences, Miguel; Lyra, Mariana L; Kueneman, Jordan G; Bletz, Molly C; Archer, Holly M; Canitz, Julia; Handreck, Svenja; Randrianiaina, Roger-Daniel; Struck, Ulrich; Bhuju, Sabin; Jarek, Michael; Geffers, Robert; McKenzie, Valerie J; Tebbe, Christoph C; Haddad, Célio F B; Glos, Julian

    2016-04-01

    Animal-associated microbial communities can play major roles in the physiology, development, ecology, and evolution of their hosts, but the study of their diversity has yet focused on a limited number of host species. In this study, we used high-throughput sequencing of partial sequences of the bacterial 16S rRNA gene to assess the diversity of the gut-inhabiting bacterial communities of 212 specimens of tropical anuran amphibians from Brazil and Madagascar. The core gut-associated bacterial communities among tadpoles from two different continents strongly overlapped, with eight highly represented operational taxonomic units (OTUs) in common. In contrast, the core communities of adults and tadpoles from Brazil were less similar with only one shared OTU. This suggests a community turnover at metamorphosis. Bacterial diversity was higher in tadpoles compared to adults. Distinct differences in composition and diversity occurred among gut bacterial communities of conspecific tadpoles from different water bodies and after experimental fasting for 8 days, demonstrating the influence of both environmental factors and food on the community structure. Communities from syntopic tadpoles clustered by host species both in Madagascar and Brazil, and the Malagasy tadpoles also had species-specific isotope signatures. We recommend future studies to analyze the turnover of anuran gut bacterial communities at metamorphosis, compare the tadpole core communities with those of other aquatic organisms, and assess the possible function of the gut microbiota as a reservoir for protective bacteria on the amphibian skin. PMID:26924012

  14. Spatial and temporal variability of bacterial communities within a combined sewer system.

    PubMed

    Jensen, Henriette Stokbro; Sekar, Raju; Shepherd, Will J; Osborn, Andrew M; Tait, Simon; Biggs, Catherine A

    2016-08-01

    This study describes the temporal and spatial variability of bacterial communities within a combined sewer system in England. Sampling was conducted over 9 months in a sewer system with intensive monitoring of hydraulic conditions. The bacterial communities were characterized by 16S rRNA gene-targeted terminal restriction fragment length polymorphism analysis. These data were related to the hydraulic data as well as the sample type, location, and time. Temporal and spatial variation was observed between and within wastewater communities and biofilm communities. The bacterial communities in biofilm were distinctly different from the communities in wastewater and exhibited greater spatial variation, while the wastewater communities exhibited variability between different months of sampling. This study highlights the variation of bacterial communities between biofilm and wastewater, and has shown both spatial and temporal variations in bacterial communities in combined sewers. The temporal variation is of interest for in-sewer processes, for example, sewer odor generation, as field measurements for these processes are often carried out over short durations and may therefore not capture the influence of this temporal variation of the bacterial communities. PMID:27063341

  15. Divergent responses of viral and bacterial communities in the gut microbiome to dietary disturbances in mice.

    PubMed

    Howe, Adina; Ringus, Daina L; Williams, Ryan J; Choo, Zi-Ning; Greenwald, Stephanie M; Owens, Sarah M; Coleman, Maureen L; Meyer, Folker; Chang, Eugene B

    2016-05-01

    To improve our understanding of the stability of mammalian intestinal communities, we characterized the responses of both bacterial and viral communities in murine fecal samples to dietary changes between high- and low-fat (LF) diets. Targeted DNA extraction methods for bacteria, virus-like particles and induced prophages were used to generate bacterial and viral metagenomes as well as 16S ribosomal RNA amplicons. Gut microbiome communities from two cohorts of C57BL/6 mice were characterized in a 6-week diet perturbation study in response to high fiber, LF and high-refined sugar, milkfat (MF) diets. The resulting metagenomes from induced bacterial prophages and extracellular viruses showed significant overlap, supporting a largely temperate viral lifestyle within these gut microbiomes. The resistance of baseline communities to dietary disturbances was evaluated, and we observed contrasting responses of baseline LF and MF bacterial and viral communities. In contrast to baseline LF viral communities and bacterial communities in both diet treatments, baseline MF viral communities were sensitive to dietary disturbances as reflected in their non-recovery during the washout period. The contrasting responses of bacterial and viral communities suggest that these communities can respond to perturbations independently of each other and highlight the potentially unique role of viruses in gut health. PMID:26473721

  16. Gut bacterial communities across tadpole ecomorphs in two diverse tropical anuran faunas

    NASA Astrophysics Data System (ADS)

    Vences, Miguel; Lyra, Mariana L.; Kueneman, Jordan G.; Bletz, Molly C.; Archer, Holly M.; Canitz, Julia; Handreck, Svenja; Randrianiaina, Roger-Daniel; Struck, Ulrich; Bhuju, Sabin; Jarek, Michael; Geffers, Robert; McKenzie, Valerie J.; Tebbe, Christoph C.; Haddad, Célio F. B.; Glos, Julian

    2016-04-01

    Animal-associated microbial communities can play major roles in the physiology, development, ecology, and evolution of their hosts, but the study of their diversity has yet focused on a limited number of host species. In this study, we used high-throughput sequencing of partial sequences of the bacterial 16S rRNA gene to assess the diversity of the gut-inhabiting bacterial communities of 212 specimens of tropical anuran amphibians from Brazil and Madagascar. The core gut-associated bacterial communities among tadpoles from two different continents strongly overlapped, with eight highly represented operational taxonomic units (OTUs) in common. In contrast, the core communities of adults and tadpoles from Brazil were less similar with only one shared OTU. This suggests a community turnover at metamorphosis. Bacterial diversity was higher in tadpoles compared to adults. Distinct differences in composition and diversity occurred among gut bacterial communities of conspecific tadpoles from different water bodies and after experimental fasting for 8 days, demonstrating the influence of both environmental factors and food on the community structure. Communities from syntopic tadpoles clustered by host species both in Madagascar and Brazil, and the Malagasy tadpoles also had species-specific isotope signatures. We recommend future studies to analyze the turnover of anuran gut bacterial communities at metamorphosis, compare the tadpole core communities with those of other aquatic organisms, and assess the possible function of the gut microbiota as a reservoir for protective bacteria on the amphibian skin.

  17. Assessment of Bacterial Community Assembly Patterns and Processes in Pig Manure Slurry

    PubMed Central

    Kumari, Priyanka; Choi, Hong L.; Sudiarto, Sartika I. A.

    2015-01-01

    The bacterial community assembly patterns and processes are poorly understood in pig manure slurry. We collected pig manure slurry samples during the winter and summer seasons from eight commercial pig farms in South Korea. The V3 region of 16S rRNA genes was PCR amplified and sequenced using paired-end Illumina technology for in-depth characterization of bacterial community. Firmicutes, Bacteroidetes, Proteobacteria, Spirochaetes, and Tenericutes were the predominant bacterial phyla present in slurry samples. Bacterial taxonomic community composition was not influenced by the season; however, phylogenetic community composition was affected by seasonal variations. The community composition and diversity patterns were strongly influenced by pH. The bacterial diversity indices showed a unimodal relationship with pH. Phylogenetic signals were detected over only short phylogenetic distances, revealing that closely related bacterial operational taxonomic units (OTUs) tend to co-occur in the same environment; hence, they are ecologically similar. Across all samples, a niche-based process, through strong environmental filtering imposed by pH, primarily governed bacterial community assembly; however, in samples close to the neutral pH range, the role of environmental filtering was decreased due to neutral community assembly. In summary, pH emerged as the major physico-chemical variable in pig manure slurry that regulates the relative importance of niche-based and neutral processes in shaping the community assembly of bacteria. PMID:26422375

  18. Immune response in the lungs following oral immunization with bacterial lysates of respiratory pathogens.

    PubMed Central

    Ruedl, C; Frühwirth, M; Wick, G; Wolf, H

    1994-01-01

    We have investigated the local immune response of the BALB/c mouse respiratory tract after oral immunization with a bacterial lysate of seven common respiratory pathogens. After two immunization on five consecutive days, we examined the immunoglobulin (immunoglobulin G [IgG], IgM, and IgA) secretion rates of cells isolated from the lungs and compared them with those of spleen cells of orally immunized and nonimmunized animals by using a new test system based on time-resolved fluorescence. The procedure followed the principle of the classical ELISPOT test with nitrocellulose-bottomed microtiter plates, but europium (Eu3+)-linked streptavidin rather than enzyme-conjugated streptavidin was used, with the advantage of quantifying secreted immunoglobulins instead of detecting single antibody-secreting cells. Lymphocytes isolated from the lungs of treated animals revealed significant increases in total and antigen-specific IgA synthesis compared with the rates of the controls, whereas IgG and IgM production rates showed no remarkable differences. In addition, the sera of treated mice revealed higher antigen-specific IgA titers but not increased IgM and IgG levels. We conclude that priming the gut-associated lymphoid tissue with bacterial antigens of pneumotropic microorganisms can elicit an enhanced IgA response in a distant mucosal effector site, such as the respiratory tract, according to the concept of a common mucosa-associated immune system. PMID:7496936

  19. Functional profiling and distribution of the forest soil bacterial communities along the soil mycorrhizosphere continuum.

    PubMed

    Uroz, S; Courty, P E; Pierrat, J C; Peter, M; Buée, M; Turpault, M P; Garbaye, J; Frey-Klett, P

    2013-08-01

    An ectomycorrhiza is a multitrophic association between a tree root, an ectomycorrhizal fungus, free-living fungi and the associated bacterial communities. Enzymatic activities of ectomycorrhizal root tips are therefore result of the contribution from different partners of the symbiotic organ. However, the functional potential of the fungus-associated bacterial communities remains unknown. In this study, a collection of 80 bacterial strains randomly selected and isolated from a soil-ectomycorrhiza continuum (oak-Scleroderma citrinum ectomycorrhizas, the ectomycorrhizosphere and the surrounding bulk soil) were characterized. All the bacterial isolates were identified by partial 16S rRNA gene sequences as members of the genera Burkholderia, Collimonas, Dyella, Mesorhizobium, Pseudomonas, Rhizobium and Sphingomonas. The bacterial strains were then assayed for β-xylosidase, β-glucosidase, N-acetyl-hexosaminidase, β-glucuronidase, cellobiohydrolase, phosphomonoesterase, leucine-aminopeptidase and laccase activities, chitin solubilization and auxin production. Using these bioassays, we demonstrated significant differences in the functional distribution of the bacterial communities living in the different compartments of the soil-ectomycorrhiza continuum. The surrounding bulk soil was significantly enriched in bacterial isolates capable of hydrolysing cellobiose and N-acetylglucosamine. In contrast, the ectomycorrhizosphere appeared significantly enriched in bacterial isolates capable of hydrolysing glucopyranoside and chitin. Notably, chitinase and laccase activities were found only in bacterial isolates belonging to the Collimonas and Pseudomonas genera. Overall, the results suggest that the ectomycorrhizal fungi favour specific bacterial communities with contrasting functional characteristics from the surrounding soil. PMID:23455431

  20. Identifying Low pH Active and Lactate-Utilizing Taxa within Oral Microbiome Communities from Healthy Children Using Stable Isotope Probing Techniques

    SciTech Connect

    McLean, Jeffrey S.; Fansler, Sarah J.; Majors, Paul D.; Mcateer, Kathleen; Allen, Lisa Z.; Shirtliff, Mark E.; Lux, Renate; Shi, Wenyuan

    2012-03-05

    Many human microbial infectious diseases including dental caries are polymicrobial in nature and how these complex multi-species communities evolve from a healthy to a diseased state is not well understood. Although many health- or disease-associated oral microbes have been characterized in vitro, their physiology in vivo in the presence of the complex oral microbiome is difficult to determine with current approaches. In addition, about half of these oral species remain uncultivated to date and little is known except their 16S rRNA sequence. Lacking culture-based physiological analyses, the functional roles of uncultivated microorganisms will remain enigmatic despite their apparent disease correlation. To start addressing these knowledge gaps, we applied a novel combination of in vivo Magnetic Resonance Spectroscopy (MRS) with RNA and DNA based Stable Isotope Probing (SIP) to oral plaque communities from healthy children for temporal monitoring of carbohydrate utilization, organic acid production and identification of metabolically active and inactive bacterial species.

  1. Partitioning of Bacterial Communities between Seawater and Healthy, Black Band Diseased, and Dead Coral Surfaces

    PubMed Central

    Frias-Lopez, Jorge; Zerkle, Aubrey L.; Bonheyo, George T.; Fouke, Bruce W.

    2002-01-01

    Distinct partitioning has been observed in the composition and diversity of bacterial communities inhabiting the surface and overlying seawater of three coral species infected with black band disease (BBD) on the southern Caribbean island of Curaçao, Netherlands Antilles. PCR amplification and sequencing of bacterial 16S rRNA genes (rDNA) with universally conserved primers have identified over 524 unique bacterial sequences affiliated with 12 bacterial divisions. The molecular sequences exhibited less than 5% similarity in bacterial community composition between seawater and the healthy, black band diseased, and dead coral surfaces. The BBD bacterial mat rapidly migrates across and kills the coral tissue. Clone libraries constructed from the BBD mat were comprised of eight bacterial divisions and 13% unknowns. Several sequences representing bacteria previously found in other marine and terrestrial organisms (including humans) were isolated from the infected coral surfaces, including Clostridium spp., Arcobacter spp., Campylobacter spp., Cytophaga fermentans, Cytophaga columnaris, and Trichodesmium tenue. PMID:11976091

  2. Bacterial Communities in Polluted Seabed Sediments: A Molecular Biology Assay in Leghorn Harbor

    PubMed Central

    Verni, Franco; Petroni, Giulio

    2013-01-01

    Seabed sediments of commercial ports are often characterized by high pollution levels. Differences in number and distribution of bacteria in such areas can be related to distribution of pollutants in the port and to sediment conditions. In this study, the bacterial communities of five sites from Leghorn Harbor seabed were characterized, and the main bacterial groups were identified. T-RFLP was used for all samples; two 16S rRNA libraries and in silico digestion of clones were used to identify fingerprint profiles. Library data, phylogenetic analysis, and T-RFLP coupled with in silico digestion of the obtained sequences evidenced the dominance of Proteobacteria and the high percentage of Bacteroidetes in all sites. The approach highlighted similar bacterial communities between samples coming from the five sites, suggesting a modest differentiation among bacterial communities of different harbor seabed sediments and hence the capacity of bacterial communities to adapt to different levels and types of pollution. PMID:24227997

  3. The green alga Dicytosphaeria ocellata and its organic extracts alter natural bacterial biofilm communities.

    PubMed

    Sneed, Jennifer M; Pohnert, Georg

    2011-04-01

    Surfaces immersed in the marine environment are under intense fouling pressure by a number of invertebrates and algae. The regulation of this fouling can often be attributed to the bacterial biofilm that quickly develops on the surface of any available substratum in the ocean. The bacterial community composition on the surface of the green alga Dictyosphaeria ocellata was investigated and compared to those found on two other green algae, Batophora oerstedii and Cladophoropsis macromeres, and on a reference surface from three sites along the Florida Keys. Although the bacterial community composition of D. ocellata was not consistent across the sites, it was significantly different from the other algae and the reference surface at two of the three sites tested. Methanol extracts of D. ocellata significantly affected the abundance of bacteria and composition of the bacterial community on Phytagel™ plates when compared to solvent controls, suggesting that the alga regulates the bacterial community by producing active metabolites. PMID:21512919

  4. Pyrosequencing-based analysis of the bacterial community in Korean traditional seafood, ojingeo jeotgal.

    PubMed

    Jung, Jaejoon; Choi, Sungjong; Jeon, Che Ok; Park, Woojun

    2013-10-28

    Jeotgal fermentation is dependent upon a diverse microbial community, although a detailed understanding of its microbial composition is limited to a relatively small number of jeotgal. Pyrosequencing-based bacterial community analysis was performed in fermented squid, ojingeo jeotgal. Leuconostoc was identified as the predominant bacterial genus, with Bacillus and Staphylococcus also accounting for a large proportion of the bacterial community. Phylogenetic analysis with 16S rRNA genes of Leuconostoc type species indicated that L. citreum- and L. holzapfelii-like strains could be the major Leuconostoc strains in jeotgal. High concentrations of NaCl were thought to be an important factor determining the makeup of the bacterial community in the fermented squid; however, a genomic survey with osmotic stress-related genes suggests the existence of more complex factors selecting the dominant bacterial species in fermented squid. PMID:23851268

  5. Pyrosequencing based profiling of the bacterial community in the Chilika Lake, the largest lagoon of India

    PubMed Central

    Pramanik, Arnab; Basak, Pijush; Banerjee, Satabdi; Sengupta, Sanghamitra; Chattopadhyay, Dhrubajyoti; Bhattacharyya, Maitree

    2015-01-01

    Brackish water lake is the most extraordinary reservoir for bacterial community with an adaptability of tolerance to saline stress. In the present study, metagenomic approach was implemented utilising 454-pyrosequencing platform to gain deeper insights into the bacterial diversity profile of the soil sediment of Chilika Lake, Odisha, India. Metagenome contained 68,150 sequences with 31,896,430 bp and 56.79% G + C content. Metagenome sequences data are now available at NCBI under the Sequence Read Archive (SRA) database with accession no. SRX753382. Bacterial community metagenome sequences were analysed by MG-RAST server representing the presence of 16,212 species belonging to 45 different phyla. The dominating phyla were Proteobacteria, Chloroflexi, Firmicutes, Acidobacteria, Actinobacteria, Bacteroidetes and Planctomycetes. The analysis of bacterial community datasets obtained from two different saline soil sediments revealed significant differences in bacterial community composition and diversity value providing better understanding of the ecosystem dynamics of Chilika Lake. PMID:26484193

  6. Co-habiting amphibian species harbor unique skin bacterial communities in wild populations

    PubMed Central

    McKenzie, Valerie J; Bowers, Robert M; Fierer, Noah; Knight, Rob; Lauber, Christian L

    2012-01-01

    Although all plant and animal species harbor microbial symbionts, we know surprisingly little about the specificity of microbial communities to their hosts. Few studies have compared the microbiomes of different species of animals, and fewer still have examined animals in the wild. We sampled four pond habitats in Colorado, USA, where multiple amphibian species were present. In total, 32 amphibian individuals were sampled from three different species including northern leopard frogs (Lithobates pipiens), western chorus frogs (Pseudacris triseriata) and tiger salamanders (Ambystoma tigrinum). We compared the diversity and composition of the bacterial communities on the skin of the collected individuals via barcoded pyrosequencing of the 16S rRNA gene. Dominant bacterial phyla included Acidobacteria, Actinobacteria, Bacteriodetes, Cyanobacteria, Firmicutes and Proteobacteria. In total, we found members of 18 bacterial phyla, comparable to the taxonomic diversity typically found on human skin. Levels of bacterial diversity varied strongly across species: L. pipiens had the highest diversity; A. tigrinum the lowest. Host species was a highly significant predictor of bacterial community similarity, and co-habitation within the same pond was not significant, highlighting that the skin-associated bacterial communities do not simply reflect those bacterial communities found in their surrounding environments. Innate species differences thus appear to regulate the structure of skin bacterial communities on amphibians. In light of recent discoveries that some bacteria on amphibian skin have antifungal activity, our finding suggests that host-specific bacteria may have a role in the species-specific resistance to fungal pathogens. PMID:21955991

  7. Diversity of bacterial community during spring phytoplankton blooms in the central Yellow Sea.

    PubMed

    Liu, Min; Dong, Yi; Zhang, Wuchang; Sun, Jun; Zhou, Feng; Ren, Jingling; Bao, Shixiang; Xiao, Tian

    2013-05-01

    Bacterial community diversity and the effects of environmental factors on bacterial community composition during 2 spring phytoplankton blooms in the central Yellow Sea were investigated by using denaturing gradient gel electrophoresis (DGGE) and multivariate statistical analysis. The Shannon-Weaver indices (H') of bacterial diversity from samples at station B23 were higher than those at station B20. Cluster analysis based on DGGE band patterns indicated temporal variations of bacterial community at the 2 bloom stations but a vertical distribution pattern only at station B20. The predominant bacterial groups were affiliated with Alphaproteobacteria, Gammaproteobacteria, Cytophaga-Flavobacterium-Bacteroides, Deltaproteobacteria, and Actinobacteria. The effects of environmental factors on bacterial community were analyzed by canonical correspondence analysis. Bacterial community structures were significantly affected by silicate at station B20 and by Paralia sulcata and Heterocapsa spp. at station B23. From the results, phytoplankton species composition had a significant effect on bacterial community structure during phytoplankton blooms in the central Yellow Sea. PMID:23647345

  8. Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges

    PubMed Central

    Schmitt, Susanne; Tsai, Peter; Bell, James; Fromont, Jane; Ilan, Micha; Lindquist, Niels; Perez, Thierry; Rodrigo, Allen; Schupp, Peter J; Vacelet, Jean; Webster, Nicole; Hentschel, Ute; Taylor, Michael W

    2012-01-01

    Marine sponges are well known for their associations with highly diverse, yet very specific and often highly similar microbiota. The aim of this study was to identify potential bacterial sub-populations in relation to sponge phylogeny and sampling sites and to define the core bacterial community. 16S ribosomal RNA gene amplicon pyrosequencing was applied to 32 sponge species from eight locations around the world's oceans, thereby generating 2567 operational taxonomic units (OTUs at the 97% sequence similarity level) in total and up to 364 different OTUs per sponge species. The taxonomic richness detected in this study comprised 25 bacterial phyla with Proteobacteria, Chloroflexi and Poribacteria being most diverse in sponges. Among these phyla were nine candidate phyla, six of them found for the first time in sponges. Similarity comparison of bacterial communities revealed no correlation with host phylogeny but a tropical sub-population in that tropical sponges have more similar bacterial communities to each other than to subtropical sponges. A minimal core bacterial community consisting of very few OTUs (97%, 95% and 90%) was found. These microbes have a global distribution and are probably acquired via environmental transmission. In contrast, a large species-specific bacterial community was detected, which is represented by OTUs present in only a single sponge species. The species-specific bacterial community is probably mainly vertically transmitted. It is proposed that different sponges contain different bacterial species, however, these bacteria are still closely related to each other explaining the observed similarity of bacterial communities in sponges in this and previous studies. This global analysis represents the most comprehensive study of bacterial symbionts in sponges to date and provides novel insights into the complex structure of these unique associations. PMID:21993395

  9. Quantum dot conjugates for SEM of bacterial communities

    NASA Astrophysics Data System (ADS)

    Nadeau, Jay; Mielke, Randall; Clarke, Samuel

    2009-05-01

    Biologically compatible quantum dot (QD) nanoparticles are hybrid inorganic-organic materials with increasing popularity as fluorescent probes for studying biological specimens. QDs have several advantageous optical features compared to fluorescent dyes and they are electron-dense, allowing for correlated fluorescence and electron microscopic imaging. Despite these features, widespread use of QDs as biological probes has generally been limited by the complex chemistry required for their synthesis and the conjugation. In this work, we show that easily prepared quantum dot (QD) probes provide excellent contrast for fluorescent confocal and environmental scanning electron microscopy (ESEM) analysis of pure microbial cultures and microbial communities. Two conjugation strategies were employed in order to specifically target the QDs to bacterial cell surfaces. The first was biotinylation of the bacteria followed by labeling with commercially available QDs incorporating the high-affinity partner for biotin (QD-streptavidin). Second, we designed a novel QD probe for Gram negative bacteria: QD-polymyxin B (PMB), which binds to lipopolysaccharide (LPS) in the Gram negative cell wall. Pure cultures of Gram positive and Gram negative strains were used to illustrate that QDs impart electron density and irradiation stability to the cells, and so no other preparation apart from QD labeling is required. The techniques were then extended to a set of recently characterized microbial communities of perennial cold springs in the Canadian High Arctic, which live in close association with unusual sulfur crystals. Using correlated confocal and and ESEM, we were able to image these organisms in living samples and illustrate their relationship to the minerals.

  10. Evaluating and optimizing oral formulations of live bacterial vaccines using a gastro-small intestine model.

    PubMed

    de Barros, João M S; Costabile, Adele; Charalampopoulos, Dimitrios; Khutoryanskiy, Vitaliy V; Edwards, Alexander D

    2016-05-01

    Gastrointestinal (GI) models that mimic physiological conditions in vitro are important tools for developing and optimizing biopharmaceutical formulations. Oral administration of live attenuated bacterial vaccines (LBV) can safely and effectively promote mucosal immunity but new formulations are required that provide controlled release of optimal numbers of viable bacterial cells, which must survive gastrointestinal transit overcoming various antimicrobial barriers. Here, we use a gastro-small intestine gut model of human GI conditions to study the survival and release kinetics of two oral LBV formulations: the licensed typhoid fever vaccine Vivotif comprising enteric coated capsules; and an experimental formulation of the model vaccine Salmonella Typhimurium SL3261 dried directly onto cast enteric polymer films and laminated to form a polymer film laminate (PFL). Neither formulation released significant numbers of viable cells when tested in the complete gastro-small intestine model. The poor performance in delivering viable cells could be attributed to a combination of acid and bile toxicity plus incomplete release of cells for Vivotif capsules, and to bile toxicity alone for PFL. To achieve effective protection from intestinal bile in addition to effective acid resistance, bile adsorbent resins were incorporated into the PFL to produce a new formulation, termed BR-PFL. Efficient and complete release of 4.4×10(7) live cells per dose was achieved from BR-PFL at distal intestinal pH, with release kinetics controlled by the composition of the enteric polymer film, and no loss in viability observed in any stage of the GI model. Use of this in vitro GI model thereby allowed rational design of an oral LBV formulation to maximize viable cell release. PMID:26969261

  11. Comparison of soil bacterial communities under diverse agricultural land management and crop production practices.

    PubMed

    Wu, Tiehang; Chellemi, Dan O; Graham, Jim H; Martin, Kendall J; Rosskopf, Erin N

    2008-02-01

    The composition and structure of bacterial communities were examined in soil subjected to a range of diverse agricultural land management and crop production practices. Length heterogeneity polymerase chain reaction (LH-PCR) of bacterial DNA extracted from soil was used to generate amplicon profiles that were analyzed with univariate and multivariate statistical methods. Five land management programs were initiated in July 2000: conventional, organic, continuous removal of vegetation (disk fallow), undisturbed (weed fallow), and bahiagrass pasture (Paspalum notatum var Argentine). Similar levels in the diversity of bacterial 16S rDNA amplicons were detected in soil samples collected from organically and conventionally managed plots 3 and 4 years after initiation of land management programs, whereas significantly lower levels of diversity were observed in samples collected from bahiagrass pasture. Differences in diversity were attributed to effects on how the relative abundance of individual amplicons were distributed (evenness) and not on the total numbers of bacterial 16S rDNA amplicons detected (richness). Similar levels of diversity were detected among all land management programs in soil samples collected after successive years of tomato (Lycopersicon esculentum) cultivation. A different trend was observed after a multivariate examination of the similarities in genetic composition among soil bacterial communities. After 3 years of land management, similarities in genetic composition of soil bacterial communities were observed in plots where disturbance was minimized (bahiagrass and weed fallow). The genetic compositions in plots managed organically were similar to each other and distinct from bacterial communities in other land management programs. After successive years of tomato cultivation and damage from two major hurricanes, only the composition of soil bacterial communities within organically managed plots continued to maintain a high degree of similarity

  12. A comparative study of oral single dose of metronidazole, tinidazole, secnidazole and ornidazole in bacterial vaginosis

    PubMed Central

    Thulkar, Jyoti; Kriplani, Alka; Agarwal, Nutan

    2012-01-01

    Objective: To compare the cure rates of oral single dose of metronidazole (2 g), tinidazole (2 g), secnidazole (2 g), and ornidazole (1.5 g) in cases of bacterial vaginosis. Materials and Methods: This was a prospective, comparative, randomized clinical trial on 344 Indian women (86 women in each group) who attended a gynecology outpatient department with complaint of abnormal vaginal discharge or who had abnormal vaginal discharge on Gynecological examination but they did not complaint of it. For diagnosis and cure rate of bacterial vaginosis, Amsel's criteria were used. Statistical analysis was done by Chi-square test of proportions. The cure rate was compared considering metronidazole cure rate as gold standard. Results: At 1 week, the cure rate of tinidazole and ornidazole was 100% and at 4 weeks, it was 97.7% for both drugs (P<0.001). Secnidazole had cure rate of 80.2% at 4 weeks (P=NS). Metronidazole showed a cure rate of 77.9% at 4 weeks, which is the lowest of all four drugs. Conclusion: Tinidazole and ornidazole have better cure rate as compared to metronidazole in cases of bacterial vaginosis. PMID:22529484

  13. Bacterial community analysis of Tatsoi cultivated by hydroponics.

    PubMed

    Koo, Ok K; Kim, Hun; Kim, Hyun J; Baker, Christopher A; Ricke, Steven C

    2016-07-01

    Tatsoi (Brassica narinosa) is a popular Asian salad green that is mostly consumed as a source of fresh produce. The purpose of this study was to assess the microbial diversity of Tatsoi cultivated in a hydroponic system and of its ecosystem. Tatsoi leaves, nutrient solution, and perlite/earth samples from a trickle feed system (TFS) and an ebb-and-flow system (EFS) were collected and their microbial communities were analyzed by pyrosequencing analysis. The results showed that most bacteria in the leaves from the TFS contained genus Sporosarcina (99.6%), while Rhizobium (60.4%) was dominant in the leaves from the EFS. Genus Paucibacter (18.21%) and Pelomonas (12.37%) were the most abundant microbiota in the nutrient solution samples of the TFS. In the EFS, the nutrient solution samples contained mostly genus Rhodococcus and Acinetobacter. Potential microbial transfer between the leaves and the ecosystem was observed in the EFS, while samples in the TFS were found to share only one species between the leaves, nutrient solution, and earth. Together, these results show that the bacterial populations in Tatsoi and in its ecosystem are highly diverse based on the cultivation system. PMID:27070460

  14. Transcriptomic analysis of a marine bacterial community enriched with dimethylsulfoniopropionate.

    PubMed

    Vila-Costa, Maria; Rinta-Kanto, Johanna M; Sun, Shulei; Sharma, Shalabh; Poretsky, Rachel; Moran, Mary Ann

    2010-11-01

    Dimethylsulfoniopropionate (DMSP) is an important source of reduced sulfur and carbon for marine microbial communities, as well as the precursor of the climate-active gas dimethylsulfide (DMS). In this study, we used metatranscriptomic sequencing to analyze gene expression profiles of a bacterial assemblage from surface waters at the Bermuda Atlantic Time-series Study (BATS) station with and without a short-term enrichment of DMSP (25 nM for 30 min). An average of 303 143 reads were obtained per treatment using 454 pyrosequencing technology, of which 51% were potential protein-encoding sequences. Transcripts from Gammaproteobacteria and Bacteroidetes increased in relative abundance on DMSP addition, yet there was little change in the contribution of two bacterioplankton groups whose cultured members harbor known DMSP degradation genes, Roseobacter and SAR11. The DMSP addition led to an enrichment of transcripts supporting heterotrophic activity, and a depletion of those encoding light-related energy generation. Genes for the degradation of C3 compounds were significantly overrepresented after DMSP addition, likely reflecting the metabolism of the C3 component of DMSP. Mapping these transcripts to known biochemical pathways indicated that both acetyl-CoA and succinyl-CoA may be common entry points of this moiety into the tricarboxylic acid cycle. In a short time frame (30 min) in the extremely oligotrophic Sargasso Sea, different gene expression patterns suggest the use of DMSP by a diversity of marine bacterioplankton as both carbon and sulfur sources. PMID:20463763

  15. Using in situ bacterial communities to monitor contaminants in river sediments.

    PubMed

    Xie, Yuwei; Wang, Jizhong; Wu, Yaketon; Ren, Chen; Song, Chao; Yang, Jianghua; Yu, Hongxia; Giesy, John P; Zhang, Xiaowei

    2016-05-01

    Bacterial communities in sediments of human-impacted rivers are exposed to multiple anthropogenic contaminants and eventually lead to biodiversity lost and ecological functions disable. Nanfei River of Anhui province has been contaminated by pollutants from industrial and/or agricultural sources. This study was conducted to investigate the structure of in situ sediment bacterial communities in Nanfei River and to examine the correlation between the different taxonomic components and contaminant concentrations. The bacterial communities were dominated by Proteobacteria, Bacteroidetes and Chloroflexi. Both the profiles of environmental predictors and the composition of microbial communities differed among agriculture, industrial and confluence regions. There were significant associations between bacterial community phylogenies and the measured contaminants in the sediments. Nutrients (TN and TP) and two metals (Cd and Zn) were negatively correlated with the essential "core" of the bacterial interaction network (Betaproteobacteria and Deltaproteobacteria). Metals (Fe, Ni and Zn) and nutrients (TN and TP) had higher impact on bacterial community compositions than PAHs, OPs and PRTs according to the correlation and network analyses. Furthermore, several sensitive candidate genera were identified as potential bioindicators to monitor key contaminants by species contaminant correlation analysis. Overall, in situ bacterial communities could provide a useful tool for monitoring and assessing ecological stressors in freshwater sediments. PMID:26866572

  16. Soil phosphorus depletion and shifts in plant communities change bacterial community structure in a long-term grassland management trial.

    PubMed

    Adair, Karen L; Wratten, Steve; Lear, Gavin

    2013-06-01

    Agricultural systems rely on healthy soils and their sustainability requires understanding the long-term impacts of agricultural practices on soils, including microbial communities. We examined the impact of 17 years of land management on soil bacterial communities in a New Zealand randomized-block pasture trial. Significant variation in bacterial community structure related to mowing and plant biomass removal, while nitrogen fertilizer had no effect. Changes in soil chemistry and legume abundance described 52% of the observed variation in the bacterial community structure. Legumes (Trifolium species) were absent in unmanaged plots but increased in abundance with management intensity; 11% of the variation in soil bacterial community structure was attributed to this shift in the plant community. Olsen P explained 10% of the observed heterogeneity, which is likely due to persistent biomass removal resulting in P limitation; Olsen P was significantly lower in plots with biomass removed (14 mg kg(-1) ± 1.3SE) compared with plots that were not mown, or where biomass was left after mowing (32 mg kg(-1) ± 1.6SE). Our results suggest that removal of plant biomass and associated phosphorus, as well as shifts in the plant community, have greater long-term impacts on soil bacterial community structure than application of nitrogen fertilizers. PMID:23754721

  17. 16S rRNA survey revealed complex bacterial communities and evidence of bacterial interference on human adenoids.

    PubMed

    Ren, Tiantian; Glatt, Dominique Ulrike; Nguyen, Tam Nhu; Allen, Emma Kaitlynn; Early, Stephen V; Sale, Michele; Winther, Birgit; Wu, Martin

    2013-02-01

    Adenoid microbiota plays an important role in the development of various infectious and non-infectious diseases of the upper airways, such as otitis media, adenotonsillitis, rhinosinusitis and adenoid hypertrophy. Studies have suggested that adenoids could act as a potential reservoir of opportunistic pathogens. However, previous bacterial surveys of adenoids were mainly culture based and therefore might only provide an incomplete and potentially biased assessment of the microbial diversity. To develop an in-depth and comprehensive understanding of the adenoid microbial communities and test the 'pathogen reservoir hypothesis', we carried out a 16S rRNA based, culture-independent survey of bacterial communities on 67 human adenoids removed by surgery. Our survey revealed highly diverse adenoid bacterial communities distinct from those of other body habitats. Despite large interpersonal variations, adenoid microbiota shared a core set of taxa and can be classified into at least five major types based on its bacterial species composition. Our results support the 'pathogen reservoir hypothesis' as we found common pathogens of otitis media to be both prevalent and abundant. Co-occurrence analyses revealed evidence consistent with the bacterial interference theory in that multiple common pathogens showed 'non-coexistence' relationships with non-pathogenic members of the commensal microflora. PMID:23113966

  18. Bacterial Community Profiling of Plastic Litter in the Belgian Part of the North Sea.

    PubMed

    De Tender, Caroline A; Devriese, Lisa I; Haegeman, Annelies; Maes, Sara; Ruttink, Tom; Dawyndt, Peter

    2015-08-18

    Bacterial colonization of marine plastic litter (MPL) is known for over four decades. Still, only a few studies on the plastic colonization process and its influencing factors are reported. In this study, seafloor MPL was sampled at different locations across the Belgian part of the North Sea to study bacterial community structure using 16S metabarcoding. These marine plastic bacterial communities were compared with those of sediment and seawater, and resin pellets sampled on the beach, to investigate the origin and uniqueness of plastic bacterial communities. Plastics display great variation of bacterial community composition, while each showed significant differences from those of sediment and seawater, indicating that plastics represent a distinct environmental niche. Various environmental factors correlate with the diversity of MPL bacterial composition across plastics. In addition, intrinsic plastic-related factors such as pigment content may contribute to the differences in bacterial colonization. Furthermore, the differential abundance of known primary and secondary colonizers across the various plastics may indicate different stages of bacterial colonization, and may confound comparisons of free-floating plastics. Our studies provide insights in the factors that shape plastic bacterial colonization and shed light on the possible role of plastic as transport vehicle for bacteria through the aquatic environment. PMID:26204244

  19. Moonmilk deposits originate from specific bacterial communities in Altamira Cave (Spain).

    PubMed

    Portillo, Maria C; Gonzalez, Juan M

    2011-01-01

    The influence of bacterial communities on the formation of carbonate deposits such as moonmilk was investigated in Altamira Cave (Spain). The study focuses on the relationship between the bacterial communities at moonmilk deposits and those forming white colonizations, which develop sporadically throughout the cave. Using molecular fingerprinting of the metabolically active bacterial communities detected through RNA analyses, the development of white colonizations and moonmilk deposits showed similar bacterial profiles. White colonizations were able to raise the pH as a result of their metabolism (reaching in situ pH values above 8.5), which was proportional to the nutrient supply. Bacterial activity was analyzed by nanorespirometry showing higher metabolic activity from bacterial colonizations than uncolonized areas. Once carbonate deposits were formed, bacterial activity decreased drastically (down to 5.7% of the white colonization activity). This study reports on a specific type of bacterial community leading to moonmilk deposit formation in a cave environment as a result of bacterial metabolism. The consequence of this process is a macroscopic phenomenon of visible carbonate depositions and accumulation in cave environments. PMID:20717660

  20. Bacterial community structure and soil properties of a subarctic tundra soil in Council, Alaska

    PubMed Central

    Kim, Hye Min; Jung, Ji Young; Yergeau, Etienne; Hwang, Chung Yeon; Hinzman, Larry; Nam, Sungjin; Hong, Soon Gyu; Kim, Ok-Sun; Chun, Jongsik; Lee, Yoo Kyung

    2014-01-01

    The subarctic region is highly responsive and vulnerable to climate change. Understanding the structure of subarctic soil microbial communities is essential for predicting the response of the subarctic soil environment to climate change. To determine the composition of the bacterial community and its relationship with soil properties, we investigated the bacterial community structure and properties of surface soil from the moist acidic tussock tundra in Council, Alaska. We collected 70 soil samples with 25-m intervals between sampling points from 0–10 cm to 10–20 cm depths. The bacterial community was analyzed by pyrosequencing of 16S rRNA genes, and the following soil properties were analyzed: soil moisture content (MC), pH, total carbon (TC), total nitrogen (TN), and inorganic nitrogen ( and ). The community compositions of the two different depths showed that Alphaproteobacteria decreased with soil depth. Among the soil properties measured, soil pH was the most significant factor correlating with bacterial community in both upper and lower-layer soils. Bacterial community similarity based on jackknifed unweighted unifrac distance showed greater similarity across horizontal layers than through the vertical depth. This study showed that soil depth and pH were the most important soil properties determining bacterial community structure of the subarctic tundra soil in Council, Alaska. PMID:24893754

  1. Bacterial community structure is indicative of chemical inputs in the Upper Mississippi River

    PubMed Central

    Staley, Christopher; Gould, Trevor J.; Wang, Ping; Phillips, Jane; Cotner, James B.; Sadowsky, Michael J.

    2014-01-01

    Local and regional associations between bacterial communities and nutrient and chemical concentrations were assessed in the Upper Mississippi River in Minnesota to determine if community structure was associated with discrete types of chemical inputs associated with different land cover. Bacterial communities were characterized by Illumina sequencing of the V6 region of 16S rDNA and compared to >40 chemical and nutrient concentrations. Local bacterial community structure was shaped primarily by associations among bacterial orders. However, order abundances were correlated regionally with nutrient and chemical concentrations, and were also related to major land coverage types. Total organic carbon and total dissolved solids were among the primary abiotic factors associated with local community composition and co-varied with land cover. Escherichia coli concentration was poorly related to community composition or nutrient concentrations. Abundances of 14 bacterial orders were related to land coverage type, and seven showed significant differences in abundance (P ≤ 0.046) between forested or anthropogenically-impacted sites. This study identifies specific bacterial orders that were associated with chemicals and nutrients derived from specific land cover types and may be useful in assessing water quality. Results of this study reveal the need to investigate community dynamics at both the local and regional scales and to identify shifts in taxonomic community structure that may be useful in determining sources of pollution in the Upper Mississippi River. PMID:25339945

  2. Molecular ecological analysis of planktonic bacterial communities in constructed wetlands invaded by Culex (Diptera: Culicidae) mosquitoes.

    PubMed

    Popko, David A; Han, Suk-Kyun; Lanoil, Brian; Walton, William E

    2006-11-01

    The succession of the planktonic bacterial community during the colonization by Culex (Diptera: Culicidae) mosquitoes of 0.1-ha treatment wetlands was studied using denaturing gradient gel electrophoresis (DGGE) methodology. Relationships between apparent bacterial diversity and ecological factors (water quality, total bacterial counts, and immature mosquito abundance) were determined during a 1-mo flooding period. Analysis of DGGE banding patterns indicated that days postflooding and temporal changes in water quality were the primary and secondary determinants, respectively, of diversity in bacterial communities. Lower levels of diversity were associated with later postflood stages and increases in ammoniacal nitrogen concentration and total bacterial counts. Diversity was therefore most similar for bacteria present on the same sampling date at wetland locations with similar flooding regimes and water quality, suggesting that wastewater input was the driving force shaping bacterial communities. Comparatively small changes in bacterial diversity were connected to natural processes as water flowed through the wetlands. Greater immature mosquito abundance coincided with less diverse communities composed of greater total numbers of bacteria. Five individual DGGE bands were directly associated with fluctuations in mosquito production, and an additional 16 bands were associated with hydrological aspects of the environment during the rise and fall of mosquito populations. A marked decline in mosquito numbers 21 d after inundation may have masked associations of bacterial communities and mosquito recruitment into the sparsely vegetated wetlands. DGGE was an effective tool for the characterization of bacteria in mosquito habitat in our study, and its potential application in mosquito ecology is discussed. PMID:17162947

  3. Fluorescence in situ hybridization and spectral imaging of coral-associated bacterial communities.

    PubMed

    Ainsworth, T D; Fine, M; Blackall, L L; Hoegh-Guldberg, O

    2006-04-01

    Microbial communities play important roles in the functioning of coral reef communities. However, extensive autofluorescence of coral tissues and endosymbionts limits the application of standard fluorescence in situ hybridization (FISH) techniques for the identification of the coral-associated bacterial communities. This study overcomes these limitations by combining FISH and spectral imaging. PMID:16598010

  4. A longitudinal assessment of changes in bacterial community composition associated with the development of periodontal disease in dogs.

    PubMed

    Wallis, Corrin; Marshall, Mark; Colyer, Alison; O'Flynn, Ciaran; Deusch, Oliver; Harris, Stephen

    2015-12-31

    Periodontal disease is the most widespread oral disease in dogs. Whilst the involvement of bacteria in the aetiology of periodontitis is well established the role of individual species and their complex interactions with the host is not well understood. The objective of this research was therefore to perform a longitudinal study in dogs to identify the changes that occur in subgingival bacterial communities during the transition from mild gingivitis to the early stages of periodontitis (<25% attachment loss). Subgingival plaque samples were collected from individual teeth of 52 miniature schnauzer dogs every six weeks for up to 60 weeks. The microbial composition of plaque samples was determined using 454-pyrosequencing of the 16S rDNA. A group of aerobic Gram negative species, including Bergeyella zoohelcum COT-186, Moraxella sp. COT-017, Pasteurellaceae sp. COT-080, and Neisseria shayeganii COT-090 decreased in proportion as teeth progressed to mild periodontitis. In contrast, there was less evidence that increases in the proportion of individual species were associated with the onset of periodontitis, although a number of species (particularly members of the Firmicutes) became more abundant as gingivitis severity increased. There were small increases in Shannon diversity, suggesting that plaque community membership remains relatively stable but that bacterial proportions change during progression into periodontitis. This is the first study to demonstrate the temporal dynamics of the canine oral microbiota; it showed that periodontitis results from a microbial succession predominantly characterised by a reduction of previously abundant, health associated taxa. PMID:26507828

  5. Characterization of Bacterial Communities in Deep-Sea Hydrothermal Vents from Three Oceanic Regions.

    PubMed

    He, Tianliang; Zhang, Xiaobo

    2016-04-01

    Deep-sea hydrothermal vents are considered to be one of the most spectacular ecosystems on Earth. Microorganisms form the basis of the food chain in vents controlling the vent communities. However, the diversity of bacterial communities in deep-sea hydrothermal vents from different oceans remains largely unknown. In this study, the pyrosequencing of 16S rRNA gene was used to characterize the bacterial communities of the venting sulfide, seawater, and tubeworm trophosome from East Pacific Rise, South Atlantic Ridge, and Southwest Indian Ridge, respectively. A total of 23,767 operational taxonomic units (OTUs) were assigned into 42 different phyla. Although Proteobacteria, Actinobacteria, and Bacteroidetes were the predominant phyla in all vents, differences of bacterial diversity were observed among different vents from three oceanic regions. The sulfides of East Pacific Rise possessed the most diverse bacterial communities. The bacterial diversities of venting seawater were much lower than those of vent sulfides. The symbiotic bacteria of tubeworm Ridgeia piscesae were included in the bacterial community of vent sulfides, suggesting their significant ecological functions as the primary producers in the deep-sea hydrothermal vent ecosystems. Therefore, our study presented a comprehensive view of bacterial communities in deep-sea hydrothermal vents from different oceans. PMID:26626941

  6. Bacterial communities associated with four ctenophore genera from the German Bight (North Sea).

    PubMed

    Hao, Wenjin; Gerdts, Gunnar; Peplies, Jörg; Wichels, Antje

    2015-01-01

    Intense research has been conducted on jellyfish and ctenophores in recent years. They are increasingly recognized as key elements in the marine ecosystem that serve as critical indicators and drivers of ecosystem performance and change. However, the bacterial community associated with ctenophores is still poorly investigated. Based on automated ribosomal intergenic spacer analysis (ARISA) and 16S ribosomal RNA gene amplicon pyrosequencing, we investigated bacterial communities associated with the frequently occurring ctenophore species Mnemiopsis leidyi, Beroe sp., Bolinopsis infundibulum and Pleurobrachia pileus at Helgoland Roads in the German Bight (North Sea). We observed significant differences between the associated bacterial communities of the different ctenophore species based on ARISA patterns. With respect to bacterial taxa, all ctenophore species were dominated by Proteobacteria as revealed by pyrosequencing. Mnemiopsis leidyi and P. pileus mainly harboured Gammaproteobacteria, with Marinomonas as the dominant phylotype of M. leidyi. By contrast, Pseudoalteromonas and Psychrobacter were the most abundant Gammaproteobacteria in P. pileus. Beroe sp. was mainly dominated by Alphaproteobacteria, particularly by the genus Thalassospira. For B. infundibulum, the bacterial community was composed of Alphaproteobacteria and Gammaproteobacteria in equal parts, which consisted of the genera Thalassospira and Marinomonas. In addition, the bacterial communities associated with M. leidyi display a clear variation over time that needs further investigation. Our results indicate that the bacterial communities associated with ctenophores are highly species- specific. PMID:25764531

  7. pH affects bacterial community composition in soils across the Huashan Watershed, China.

    PubMed

    Huang, Rui; Zhao, Dayong; Zeng, Jin; Shen, Feng; Cao, Xinyi; Jiang, Cuiling; Huang, Feng; Feng, Jingwei; Yu, Zhongbo; Wu, Qinglong L

    2016-09-01

    To investigate soil bacterial richness and diversity and to determine the correlations between bacterial communities and soil properties, 8 soil samples were collected from the Huashan watershed in Anhui, China. Subsequently, 454 high-throughput pyrosequencing and bioinformatics analyses were performed to examine the soil bacterial community compositions. The operational taxonomic unit richness of the bacterial community ranged from 3664 to 5899, and the diversity indices, including Chao1, Shannon-Wiener, and Faith's phylogenetic diversity ranged from 7751 to 15 204, 7.386 to 8.327, and 415.77 to 679.11, respectively. The 2 most dominant phyla in the soil samples were Actinobacteria and Proteobacteria. The richness and diversity of the bacterial community were positively correlated with soil pH. The Mantel test revealed that the soil pH was the dominant factor influencing the bacterial community. The positive modular structure of co-occurrence patterns at the genus level was discovered by network analysis. The results obtained in this study provide useful information that enhances our understanding of the effects of soil properties on the bacterial communities. PMID:27374919

  8. Effects of Host Plant Factors on the Bacterial Communities Associated with Two Whitefly Sibling Species

    PubMed Central

    Su, Ming-Ming; Guo, Lei; Tao, Yun-Li; Zhang, You-Jun; Wan, Fang-Hao; Chu, Dong

    2016-01-01

    Background Although discrepancy in the specific traits and ecological characteristics of Bemisia tabaci between species are partially attributed to the B. tabaci-associated bacteria, the factors that affect the diversity of B. tabaci-associated bacteria are not well-understood. We used the metagenomic approach to characterize the B. tabaci-associated bacterial community because the approach is an effective tool to identify the bacteria. Methodology and Results To investigate the effects of the host plant and a virus, tomato yellow leaf curl virus (TYLCV), on the bacterial communities of B. tabaci sibling species B and Q, we analyzed the bacterial communities associated with whitefly B and Q collected from healthy cotton, healthy tomato, and TYLCV-infected tomato. The analysis used miseq-based sequencing of a variable region of the bacterial 16S rDNA gene. For the bacteria associated with B. tabaci, we found that the influence of the host plant species was greater than that of the whitefly cryptic species. With further analysis of host plants infected with the TYLCV, the virus had no significant effects on the B. tabaci-associated bacterial community. Conclusions The effects of different plant hosts and TYLCV-infection on the diversity of B. tabaci-associated bacterial communities were successfully analyzed in this study. To explain why B. tabaci sibling species with different host ranges differ in performance, the analysis of the bacterial community may be essential to the explanation. PMID:27008327

  9. The Fungal Biome of the Oral Cavity.

    PubMed

    Chandra, Jyotsna; Retuerto, Mauricio; Mukherjee, Pranab K; Ghannoum, Mahmoud

    2016-01-01

    Organisms residing in the oral cavity (oral microbiota) contribute to health and disease, and influence diseases like gingivitis, periodontitis, and oral candidiasis (the most common oral complication of HIV-infection). These organisms are also associated with cancer and other systemic diseases including upper respiratory infections. There is limited knowledge regarding how oral microbes interact together and influence the host immune system. Characterizing the oral microbial community (oral microbiota) in health and disease represents a critical step in gaining insight into various members of this community. While most of the studies characterizing oral microbiota have focused on bacterial community, there are few encouraging studies characterizing the oral mycobiome (the fungal component of the oral microbiota). Our group recently characterized the oral mycobiome in health and disease focusing on HIV. In this chapter we will describe the methods used by our group for characterization of the oral mycobiome. PMID:26519069

  10. Bacterial Ghosts as an Oral Vaccine: a Single Dose of Escherichia coli O157:H7 Bacterial Ghosts Protects Mice against Lethal Challenge

    PubMed Central

    Mayr, Ulrike Beate; Haller, Christoph; Haidinger, Wolfgang; Atrasheuskaya, Alena; Bukin, Eugenij; Lubitz, Werner; Ignatyev, Georgy

    2005-01-01

    Enterohemorrhagic Escherichia coli (EHEC) is a bacterial pathogen that is associated with several life-threatening diseases for humans. The combination of protein E-mediated cell lysis to produce EHEC ghosts and staphylococcal nuclease A to degrade DNA was used for the development of an oral EHEC vaccine. The lack of genetic material in the oral EHEC bacterial-ghost vaccine abolished any hazard of horizontal gene transfer of resistance genes or pathogenic islands to resident gut flora. Intragastric immunization of mice with EHEC ghosts without the addition of any adjuvant induced cellular and humoral immunity. Immunized mice challenged at day 55 showed 86% protection against lethal challenge with a heterologous EHEC strain after single-dose oral immunization and 93.3% protection after one booster at day 28, whereas the controls showed 26.7% and 30% survival, respectively. These results indicate that it is possible to develop an efficacious single-dose oral EHEC bacterial-ghost vaccine. PMID:16040994

  11. Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth

    PubMed Central

    Singh, Mangal; Awasthi, Ashutosh; Soni, Sumit K.; Singh, Rakshapal; Verma, Rajesh K.; Kalra, Alok

    2015-01-01

    An assessment of roles of rhizospheric microbial diversity in plant growth is helpful in understanding plant-microbe interactions. Using random combinations of rhizospheric bacterial species at different richness levels, we analysed the contribution of species richness, compositions, interactions and identity on soil microbial respiration and plant biomass. We showed that bacterial inoculation in plant rhizosphere enhanced microbial respiration and plant biomass with complementary relationships among bacterial species. Plant growth was found to increase linearly with inoculation of rhizospheric bacterial communities with increasing levels of species or plant growth promoting trait diversity. However, inoculation of diverse bacterial communities having single plant growth promoting trait, i.e., nitrogen fixation could not enhance plant growth over inoculation of single bacteria. Our results indicate that bacterial diversity in rhizosphere affect ecosystem functioning through complementary relationship among plant growth promoting traits and may play significant roles in delivering microbial services to plants. PMID:26503744

  12. Identification and ecology of bacterial communities associated with necroses of three cactus species.

    PubMed

    Foster, J L; Fogleman, J C

    1993-01-01

    To compare the bacterial communities residing in necrotic tissues of columnar cacti of the Sonoran Desert, isolates from 39 organ pipe, 19 saguaro, and 16 senita cacti were obtained. The isolates were clustered into 28 conspecific groups on the basis of their fatty acid profiles. The distributions of the individual bacterial isolates varied among cactus species. Seven of the 28 species groups were unique to a particular cactus species, whereas 8 species groups were found in all three cacti. The effective number of bacterial species for each cactus species was positively correlated with both the chemical complexity and glucose concentration of the plant tissues. The effective number of bacterial species and bacterial distribution patterns were compared with those known for communities of cactophilic yeasts. The observed bacterial distribution patterns are most likely due to differences in the chemical compositions of the three cactus species. PMID:8439142

  13. Bacterial diversity in saliva and oral health-related conditions: the Hisayama Study

    NASA Astrophysics Data System (ADS)

    Takeshita, Toru; Kageyama, Shinya; Furuta, Michiko; Tsuboi, Hidenori; Takeuchi, Kenji; Shibata, Yukie; Shimazaki, Yoshihiro; Akifusa, Sumio; Ninomiya, Toshiharu; Kiyohara, Yutaka; Yamashita, Yoshihisa

    2016-02-01

    This population-based study determined the salivary microbiota composition of 2,343 adult residents of Hisayama town, Japan, using 16S rRNA gene next-generation high-throughput sequencing. Of 550 identified species-level operational taxonomic units (OTUs), 72 were common, in ≥75% of all individuals, as well as in ≥75% of the individuals in the lowest quintile of phylogenetic diversity (PD). These “core” OTUs constituted 90.9 ± 6.1% of each microbiome. The relative abundance profiles of 22 of the core OTUs with mean relative abundances ≥1% were stratified into community type I and community type II by partitioning around medoids clustering. Multiple regression analysis revealed that a lower PD was associated with better conditions for oral health, including a lower plaque index, absence of decayed teeth, less gingival bleeding, shallower periodontal pockets and not smoking, and was also associated with tooth loss. By contrast, multiple Poisson regression analysis demonstrated that community type II, as characterized by a higher ratio of the nine dominant core OTUs, including Neisseria flavescens, was implicated in younger age, lower body mass index, fewer teeth with caries experience, and not smoking. Our large-scale data analyses reveal variation in the salivary microbiome among Japanese adults and oral health-related conditions associated with the salivary microbiome.

  14. Bacterial diversity in saliva and oral health-related conditions: the Hisayama Study

    PubMed Central

    Takeshita, Toru; Kageyama, Shinya; Furuta, Michiko; Tsuboi, Hidenori; Takeuchi, Kenji; Shibata, Yukie; Shimazaki, Yoshihiro; Akifusa, Sumio; Ninomiya, Toshiharu; Kiyohara, Yutaka; Yamashita, Yoshihisa

    2016-01-01

    This population-based study determined the salivary microbiota composition of 2,343 adult residents of Hisayama town, Japan, using 16S rRNA gene next-generation high-throughput sequencing. Of 550 identified species-level operational taxonomic units (OTUs), 72 were common, in ≥75% of all individuals, as well as in ≥75% of the individuals in the lowest quintile of phylogenetic diversity (PD). These “core” OTUs constituted 90.9 ± 6.1% of each microbiome. The relative abundance profiles of 22 of the core OTUs with mean relative abundances ≥1% were stratified into community type I and community type II by partitioning around medoids clustering. Multiple regression analysis revealed that a lower PD was associated with better conditions for oral health, including a lower plaque index, absence of decayed teeth, less gingival bleeding, shallower periodontal pockets and not smoking, and was also associated with tooth loss. By contrast, multiple Poisson regression analysis demonstrated that community type II, as characterized by a higher ratio of the nine dominant core OTUs, including Neisseria flavescens, was implicated in younger age, lower body mass index, fewer teeth with caries experience, and not smoking. Our large-scale data analyses reveal variation in the salivary microbiome among Japanese adults and oral health-related conditions associated with the salivary microbiome. PMID:26907866

  15. Diversity and Abundance of the Bacterial Community of the Red Macroalga Porphyra umbilicalis: Did Bacterial Farmers Produce Macroalgae?

    PubMed Central

    Miranda, Lilibeth N.; Hutchison, Keith; Grossman, Arthur R.; Brawley, Susan H.

    2013-01-01

    Macroalgae harbor microbial communities whose bacterial biodiversity remains largely uncharacterized. The goals of this study were 1) to examine the composition of the bacterial community associated with Porphyra umbilicalis Kützing from Schoodic Point, ME, 2) determine whether there are seasonal trends in species diversity but a core group of bacteria that are always present, and 3) to determine how the microbial community associated with a laboratory strain (P.um.1) established in the presence of antibiotics has changed. P. umbilicalis blades (n = 5, fall 2010; n = 5, winter 2011; n = 2, clonal P.um.1) were analyzed by pyrosequencing over two variable regions of the 16 S rDNA (V5–V6 and V8; 147,880 total reads). The bacterial taxa present were classified at an 80% confidence threshold into eight phyla (Bacteroidetes, Proteobacteria, Planctomycetes, Chloroflexi, Actinobacteria, Deinococcus-Thermus, Firmicutes, and the candidate division TM7). The Bacteroidetes comprised the majority of bacterial sequences on both field and lab blades, but the Proteobacteria (Alphaproteobacteria, Gammaproteobacteria) were also abundant. Sphingobacteria (Bacteroidetes) and Flavobacteria (Bacteroidetes) had inverse abundances on natural versus P.um.1 blades. Bacterial communities were richer and more diverse on blades sampled in fall compared to winter. Significant differences were observed between microbial communities among all three groups of blades examined. Only two OTUs were found on all 12 blades, and only one of these, belonging to the Saprospiraceae (Bacteroidetes), was abundant. Lewinella (as 66 OTUs) was found on all field blades and was the most abundant genus. Bacteria from the Bacteroidetes, Proteobacteria and Planctomycetes that are known to digest the galactan sulfates of red algal cell walls were well-represented. Some of these taxa likely provide essential morphogenetic and beneficial nutritive factors to P. umbilicalis and may have had unexpected

  16. Temporal dynamics of sediment bacterial communities in monospecific stands of Juncus maritimus and Spartina maritima.

    PubMed

    Cleary, D F R; Polónia, A R M; Sousa, A I; Lillebø, A I; Queiroga, H; Gomes, N C M

    2016-09-01

    In the present study, we used 16S rRNA barcoded pyrosequencing to investigate to what extent monospecific stands of different salt marsh plant species (Juncus maritimus and Spartina maritima), sampling site and temporal variation affect sediment bacterial communities. We also used a bioinformatics tool, PICRUSt, to predict metagenome gene functional content. Our results showed that bacterial community composition from monospecific stands of both plant species varied temporally, but both host plant species maintained compositionally distinct communities of bacteria. Juncus sediment was characterised by higher abundances of Alphaproteobacteria, Myxococcales, Rhodospirillales, NB1-j and Ignavibacteriales, while Spartina sediment was characterised by higher abundances of Anaerolineae, Synechococcophycidae, Desulfobacterales, SHA-20 and Rhodobacterales. The differences in composition and higher taxon abundance between the sediment bacterial communities of stands of both plant species may be expected to affect overall metabolic diversity. In line with this expectation, there were also differences in the predicted enrichment of selected metabolic pathways. In particular, bacterial communities of Juncus sediment were predicted to be enriched for pathways related to the degradation of various (xenobiotic) compounds. Bacterial communities of Spartina sediment in turn were predicted to be enriched for pathways related to the biosynthesis of various bioactive compounds. Our study highlights the differences in composition and predicted functions of sediment-associated bacterial communities from two different salt marsh plant species. Loss of salt marsh habitat may thus be expected to both adversely affect microbial diversity and ecosystem functioning and have consequences for environmental processes such as nutrient cycling and pollutant remediation. PMID:27061465

  17. Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan Plateau.

    PubMed

    Yuan, Yanli; Si, Guicai; Wang, Jian; Luo, Tianxiang; Zhang, Gengxin

    2014-01-01

    The Tibetan Plateau, 'the third pole', is a region that is very sensitive to climate change. A better understanding of response of soil microorganisms to climate warming is important to predict soil organic matter preservation in future scenario. We selected a typically altitudinal gradient (4400 m-5200 m a.s.l) along south-facing slope of Nyainqentanglha Mountains on central Tibetan Plateau. Bacterial communities were investigated using terminal restriction fragment length polymorphism analysis (T-RFLP) combined with sequencing methods. Acidobacteria and Proteobacteria were dominant bacteria in this alpine soil. Redundancy analysis revealed that soil bacterial communities were significantly different along the large altitudinal gradient, although the dominant environmental driving factors varied at different soil depth. Specifically, our results showed that precipitation and soil NH4 + were dominant environmental factors that influence bacterial communities at 0-5 cm depth along the altitudinal gradients, whereas pH was a major influential factor at 5-20 cm soil. In this semi-arid region, precipitation rather than temperature was a main driving force on soil bacterial communities as well as on plant communities. We speculate that an increase in temperature might not significantly change soil bacterial community structures along the large altitudinal gradient, whereas precipitation change would play a more important role in affecting soil bacterial communities. PMID:23991911

  18. Comparison of bacterial communities of conventional and A-stage activated sludge systems

    PubMed Central

    Gonzalez-Martinez, Alejandro; Rodriguez-Sanchez, Alejandro; Lotti, Tommaso; Garcia-Ruiz, Maria-Jesus; Osorio, Francisco; Gonzalez-Lopez, Jesus; van Loosdrecht, Mark C. M.

    2016-01-01

    The bacterial community structure of 10 different wastewater treatment systems and their influents has been investigated through pyrosequencing, yielding a total of 283486 reads. These bioreactors had different technological configurations: conventional activated sludge (CAS) systems and very highly loaded A-stage systems. A-stage processes are proposed as the first step in an energy producing municipal wastewater treatment process. Pyrosequencing analysis indicated that bacterial community structure of all influents was similar. Also the bacterial community of all CAS bioreactors was similar. Bacterial community structure of A-stage bioreactors showed a more case-specific pattern. A core of genera was consistently found for all influents, all CAS bioreactors and all A-stage bioreactors, respectively, showing that different geographical locations in The Netherlands and Spain did not affect the functional bacterial communities in these technologies. The ecological roles of these bacteria were discussed. Influents and A-stage bioreactors shared several core genera, while none of these were shared with CAS bioreactors communities. This difference is thought to reside in the different operational conditions of the two technologies. This study shows that bacterial community structure of CAS and A-stage bioreactors are mostly driven by solids retention time (SRT) and hydraulic retention time (HRT), as suggested by multivariate redundancy analysis. PMID:26728449

  19. Large scale distribution of bacterial communities in the upper Paraná River floodplain

    PubMed Central

    Chiaramonte, Josiane Barros; Roberto, Maria do Carmo; Pagioro, Thomaz Aurélio

    2014-01-01

    A bacterial community has a central role in nutrient cycle in aquatic habitats. Therefore, it is important to analyze how this community is distributed throughout different locations. Thirty-six different sites in the upper Paraná River floodplain were surveyed to determine the influence of environmental variable in bacterial community composition. The sites are classified as rivers, channels, and floodplain lakes connected or unconnected to the main river channel. The bacterial community structure was analyzed by fluorescent in situ hybridization (FISH) technique, based on frequency of the main domains Bacteria and Archaea, and subdivisions of the phylum Proteobacteria (Alpha-proteobacteria, Beta-proteobacteria, Gamma-proteobacteria) and the Cytophaga-Flavobacterium cluster. It has been demonstrated that the bacterial community differed in density and frequency of the studied groups. And these differences responded to distinct characteristics of the three main rivers of the floodplain as well as to the classification of the environments found in this floodplain. We conclude that dissimilarities in the bacterial community structure are related to environmental heterogeneity, and the limnological variables that most predicted bacterial communities in the upper Paraná River floodplain was total and ammoniacal nitrogen, orthophosphate and chlorophyll-a. PMID:25763022

  20. Profiling of root canal bacterial communities associated with chronic apical periodontitis from Brazilian and Norwegian subjects.

    PubMed

    Siqueira, José F; Rôças, Isabela N; Debelian, Gilberto J; Carmo, Flávia L; Paiva, Simone S M; Alves, Flávio R F; Rosado, Alexandre S

    2008-12-01

    The aim of this study was to compare the bacterial community profiles of the root canal microbiota associated with chronic apical periodontitis from Brazilian and Norwegian patients using the denaturing gradient gel electrophoresis (DGGE) and the ribosomal intergenic spacer analysis (RISA) approaches. DNA extracted from root canal samples was subjected to polymerase chain reaction using primers appropriate for further DGGE or RISA analysis. The resulting banding patterns representative of the bacterial community structures in samples from the two locations were compared. DGGE and RISA fingerprints showed a great interindividual variability in the bacterial community profiles, irrespective of the geographic location of the patient. However, similarities among the bacterial community DGGE profiles revealed the existence of a geography-related pattern. PMID:19026873

  1. Description of Drinking Water Bacterial Communities Using 16S rRNA Gene Sequence Analyses

    EPA Science Inventory

    Descriptions of bacterial communities inhabiting water distribution systems (WDS) have mainly been accomplished using culture-based approaches. Due to the inherent selective nature of culture-based approaches, the majority of bacteria inhabiting WDS remain uncharacterized. The go...

  2. Changes in bacterial and eukaryotic communities during sewage decomposition in Mississippi River water

    EPA Science Inventory

    Microbial decay processes are one of the mechanisms whereby sewage contamination is reduced in the environment. This decomposition process involves a highly complex array of bacterial and eukaryotic communities from both sewage and ambient waters. However, relatively little is kn...

  3. [Impact of biocontrol agent Bacillus subtilis on bacterial communities in tobacco rhizospheric soil].

    PubMed

    You, Cai; Zhang, Li-Meng; Ji, Si-Gui; Gao, Jia-Ming; Zhang, Cheng-Sheng; Kong, Fan-Yu

    2014-11-01

    The impact of inoculation with the biocontrol agent Bacillus subtilis on bacterial communities and bacterial diversity in rhizospheric soil of Nicotiana tabacum was assessed by constructing a 16S rRNA gene clone library and conducting amplified ribosomal DNA restriction analysis (ARDRA). The bacterial diversity was evaluated by coverage value (C), Shannon index (H), Pielou evenness index (E) and Margalef richness index (R). Phylogenetic analysis revealed that the inoculation significantly affected the composition of bacterial communities in tobacco rhizospheric soil. A total of twelve bacterial groups including Acidobacteria, Proteobacteria (including α-, β-, δ-, γ-Proteobacteria) , Planctomycetes, Firmicutes, Nitrospirae, Gemmatimonadetes, Actinobacteria, Chloroflexi and Bacteroidetes were detected to be shared by inoculated soil and control soil. The community composition and proportions of different bacteria in the communities showed significant variations between the two samples. The dominant bacteria were Acidobacteria (27.1%) and Proteobacteria (26.5%) in control soil, while in the inoculated soil Proteobacteria (38.0%) and Acidobacteria (29.6%) were dominant. B. subtilis inoculation increased the numbers of γ-Proteobacteria and α-Proteobacteria but reduced the numbers of bacterial groups such as β-Proteobacteria, Planctomycetes, Firmicutes. Diversity analysis showed that bacterial diversity was rich for both soil samples, and soil bacterial Shannon index and Margalef richness index were promoted after inoculation. PMID:25898632

  4. Blocking primers reduce co-amplification of plant DNA when studying bacterial endophyte communities.

    PubMed

    Arenz, Brett E; Schlatter, Dan C; Bradeen, James M; Kinkel, Linda L

    2015-10-01

    A blocking primer set based on the technique described by Vestheim and Jarman (2008) was developed to reduce amplification of non-target plant DNA when conducting metagenomic studies on bacterial endophyte communities. Bacterial amplification efficiency was increased 300-fold compared to standard PCR in an Illumina-based study of Sorghastrum nutans leaves. PMID:26159909

  5. Comparison of soil bacterial communities under diverse agricultural land management and crop production practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The composition and structure of bacterial communities was examined in soil subjected to a range of diverse agricultural land management and crop production practices. Length heterogeneity polymerase chain reaction (LH-PCR) of bacterial DNA extracted from soil was used to generate amplicon profile...

  6. Resource niche overlap promotes stability of bacterial community metabolism in experimental microcosms.

    PubMed

    Hunting, Ellard R; Vijver, Martina G; van der Geest, Harm G; Mulder, Christian; Kraak, Michiel H S; Breure, Anton M; Admiraal, Wim

    2015-01-01

    Decomposition of organic matter is an important ecosystem process governed in part by bacteria. The process of decomposition is expected to benefit from interspecific bacterial interactions such as resource partitioning and facilitation. However, the relative importance of resource niche breadth (metabolic diversity) and resource niche overlap (functional redundancy) on decomposition and the temporal stability of ecosystem processes received little scientific attention. Therefore, this study aims to evaluate the effect of an increase in bacterial community resemblance on both decomposition and the stability of bacterial metabolism in aquatic sediments. To this end, we performed laboratory microcosm experiments in which we examined the influence of bacterial consortia differing in number and composition of species on bacterial activity (Electron Transport System Activity, ETSA), dissolved organic carbon production and wavelet transformed measurements of redox potential (Eh). Single substrate affinities of the individual bacterial species were determined in order to calculate the metabolic diversity of the microbial community. Results presented here indicate that bacterial activity and organic matter decomposition increase with widening of the resource niche breadth, and that metabolic stability increases with increasing overlap in bacterial resource niches, hinting that resource niche overlap can promote the stability of bacterial community metabolism. PMID:25759686

  7. Comparative pyrosequencing analysis of bacterial community change in biofilm formed on seawater reverse osmosis membrane.

    PubMed

    Kim, In S; Lee, Jinwook; Kima, Sung-Jo; Yu, Hye-Weon; Jang, Am

    2014-01-01

    The change in bacterial community structure induced by bacterial competition and succession was investigated during seawater reverse osmosis (SWRO) in order to elucidate a possible link between the bacterial consortium on SWRO membranes and biofouling. To date, there has been no definitive characterization of the microbial diversity in SWRO in terms of distinguishing time-dependent changes in the richness or abundance of bacterial species. For bacterial succession within biofilms on the membrane surface, SWRO using a cross-flow filtration membrane test unit was operated for 5 and 100h, respectively. As results of the pyrosequencing analysis, bacterial communities differed considerably among seawater and the 5 and 100 h samples. From a total of 33,876 pyrosequences (using a 95% sequence similarity), there were less than 1% of shared species, confirming the influence of the operational time factor and lack of similarity of these communities. During SWRO operation, the abundance of Pseudomonas stutzeri BBSPN3 (GU594474) belonging to gamma-Proteobacteria suggest that biofouling of SWRO membrane might be driven by the dominant influence of a specific species. In addition, among the bacterial competition of five bacterial species (Pseudomonas aeruginosa, Bacillus sp., Rhodobacter sp., Flavobacterium sp., and Mycobacterium sp.) competing for bacterial colonization on the SWRO membrane surfaces, it was exhibited that Bacillus sp. was the most dominant. The dominant influences ofPseudomonas sp. and Bacillus sp. on biofouling during actual SWRO is decisive depending on higher removal efficiency of the seawater pretreatment. PMID:24600849

  8. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra

    PubMed Central

    Shen, Congcong; Ni, Yingying; Liang, Wenju; Wang, Jianjun; Chu, Haiyan

    2015-01-01

    The elevational diversity pattern for microorganisms has received great attention recently but is still understudied, and phylogenetic relatedness is rarely studied for microbial elevational distributions. Using a bar-coded pyrosequencing technique, we examined the biodiversity patterns for soil bacterial communities of tundra ecosystem along 2000–2500 m elevations on Changbai Mountain in China. Bacterial taxonomic richness displayed a linear decreasing trend with increasing elevation. Phylogenetic diversity and mean nearest taxon distance (MNTD) exhibited a unimodal pattern with elevation. Bacterial communities were more phylogenetically clustered than expected by chance at all elevations based on the standardized effect size of MNTD metric. The bacterial communities differed dramatically among elevations, and the community composition was significantly correlated with soil total carbon (TC), total nitrogen, C:N ratio, and dissolved organic carbon. Multiple ordinary least squares regression analysis showed that the observed biodiversity patterns strongly correlated with soil TC and C:N ratio. Taken together, this is the first time that a significant bacterial diversity pattern has been observed across a small-scale elevational gradient. Our results indicated that soil carbon and nitrogen contents were the critical environmental factors affecting bacterial elevational distribution in Changbai Mountain tundra. This suggested that ecological niche-based environmental filtering processes related to soil carbon and nitrogen contents could play a dominant role in structuring bacterial communities along the elevational gradient. PMID:26217308

  9. Bacterial communities and their association with the bio-drying of sewage sludge.

    PubMed

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Yu, Jie

    2016-03-01

    Bio-drying is a technology that aims to remove water from a material using the microbial heat originating from organic matter degradation. However, the evolution of bacterial communities that are associated with the drying process has not been researched systematically. This study was performed to investigate the variations of bacterial communities and the relationships among bacterial communities, water evaporation, water generation, and organic matter degradation during the bio-drying of sewage sludge. High-throughput pyrosequencing was used to analyze the bacterial communities, while water evaporation and water generation were determined based on an in situ water vapor monitoring device. The values of water evaporation, water generation, and volatile solids degradation were 412.9 g kg(-1) sewage sludge bio-drying material (SSBM), 65.0 g kg(-1) SSBM, and 70.2 g kg(-1) SSBM, respectively. Rarefaction curves and diversity indices showed that bacterial diversity plummeted after the temperature of the bio-drying pile dramatically increased on d 2, which coincided with a remarkable increase of water evaporation on d 2. Bacterial diversity increased when the pile cooled. During the thermophilic phase, in which Acinetobacter and Bacillus were the dominant genera, the rates of water evaporation, water generation, and VS degradation peaked. These results implied that the elevated temperature reshaped the bacterial communities, which played a key role in water evaporation, and the high temperature also contributed to the effective elimination of pathogens. PMID:26724438

  10. Variations in Bacterial Community in a Temperate Lake Associated with an Agricultural Watershed.

    PubMed

    Song, Liyan; Li, Lei

    2016-08-01

    Terrestrially derived carbon and nutrients are washed into lakes, providing nutritional drivers for both microbial heterotrophy and phototrophy. Changes in the quantity and diversity of carbon and nutrients exported from watersheds in response to alterations in long-term land use have led to a need for evaluation of the linkage between watershed-exported carbon and nutrients and bacterial community structure in watershed associated lakes. To learn more about these interactions, we investigated Muskrat Lake in Michigan, which has a well-defined moderately sized watershed dominated by agriculture. We measured the water chemistry, characterized the dissolved organic carbon, and determined the structure of the bacterial communities at the inlet and center of this lake (five depths per site) over the summer and fall of 2008. The lake had temporal and rain event-based fluctuations in water chemistry, as well as temporal and rain event-dependent shifts in bacterial communities as measured by terminal restriction fragment length polymorphism. Agricultural watershed inputs were observed in the lake during and after rain events. Terminal restriction fragment length polymorphism and 454 pyrosequencing of the bacterial communities indicated that there were differences over time and that the dominant phylotypes shifted between summer and late fall. Some populations (e.g., Polynucleobacter and Mycobacterium) increased during fall, while others (e.g., Gemmatimonas) diminished. Redundancy and partitioning analyses showed that water chemistry is highly correlated with variations in the bacterial community of the lake, which explained 34 % of the variations in the bacterial community. Dissolved organic carbon had the greatest effects on variations in the Muskrat Lake bacterial community (2 %). The results of this study provide information that will enable a better understanding of the interaction between the bacterial community of lakes and changes in chemical properties as a