Sample records for oral epithelial cell

  1. [Frequency of oral squamous cell carcinoma and oral epithelial dysplasia in oral and oropharyngeal mucosa in Chile].

    PubMed

    Martínez, Carolina; Hernández, Marcela; Martínez, Benjamín; Adorno, Daniela

    2016-02-01

    Oral cancer in Chile corresponds approximately to 1.6% of all cancer cases. There are few studies about oral epithelial dysplasia and oral squamous cell carcinoma in the Chilean population. To determine the frequency of hyperkeratosis, mild, moderate and severe oral epithelial dysplasia, in situ carcinoma and squamous cell carcinoma of the oral and oropharyngeal mucosa in a registry of the Oral Pathology Reference Institute of the Faculty of Dentistry, Universidad de Chile, in a ten years period. Review of clinical records and pathological plates of 389 patients, obtained between 1990 and 2009. Cases were selected according to their pathological diagnosis, including hyperkeratosis, oral epithelial dysplasia, in situ carcinoma, squamous cell carcinoma and verrucous carcinoma. Forty four percent of cases were squamous cell carcinoma, followed by hyperkeratosis in 37% and mild epithelial dysplasia in 11%. Squamous cell carcinoma was more common in men aged over 50 years. Most of the potentially malignant disorders presented clinically as leukoplakia and squamous cell carcinoma were clinically recognized as cancer. In this study, men aged over 50 years are the highest risk group for oral cancer. Early diagnosis is deficient since most of these lesions were diagnosed when squamous cell carcinoma became invasive. Leukoplakia diagnosis is mostly associated with hyperkeratosis and epithelial dysplasia, therefore biopsy of these lesions is mandatory to improve early diagnosis.

  2. Invasion of Human Oral Epithelial Cells by Prevotella intermedia

    PubMed Central

    Dorn, Brian R.; Leung, K.-P.; Progulske-Fox, Ann

    1998-01-01

    Invasion of oral epithelial cells by pathogenic oral bacteria may represent an important virulence factor in the progression of periodontal disease. Here we report that a clinical isolate of Prevotella intermedia, strain 17, was found to invade a human oral epithelial cell line (KB), whereas P. intermedia 27, another clinical isolate, and P. intermedia 25611, the type strain, were not found to invade the cell line. Invasion was quantified by the recovery of viable bacteria following a standard antibiotic protection assay and observed by electron microscopy. Cytochalasin D, cycloheximide, monodansylcadaverine, and low temperature (4°C) inhibited the internalization of P. intermedia 17. Antibodies raised against P. intermedia type C fimbriae and against whole cells inhibited invasion, but the anti-type-C-fimbria antibody inhibited invasion to a greater extent than the anti-whole-cell antibody. This work provides evidence that at least one strain of P. intermedia can invade an oral epithelial cell line and that the type C fimbriae and a cytoskeletal rearrangement are required for this invasion. PMID:9826397

  3. Role of Candida albicans polymorphism in interactions with oral epithelial cells.

    PubMed

    Villar, C C; Kashleva, H; Dongari-Bagtzoglou, A

    2004-08-01

    Candida albicans is a polymorphic organism which undergoes morphologic transition between yeast, pseudohyphal and hyphal forms. The ability of C. albicans to change from yeast to filamentous types is a major virulence determinant of this organism. However, the exact role of hyphal transformation in establishing oral mucosal infection is still poorly understood. In this study we used mutants with defects in filamentation, as well as oral strains, which differ in their capacity to form true hyphae, to examine the role of hyphal transformation in the interactions of C. albicans with oral epithelial cells in vitro. These interactions included the ability of these strains to adhere to and injure epithelial cells, as well as their ability to trigger a proinflammatory cytokine response. We found that strains SC5314 and ATCC28366 formed true hyphae on epithelial cells, whereas strain ATCC32077 and the tup1/tup1 mutant formed only pseudohyphae. Double mutant efg1/efg1cph1/cph1 grew exclusively as blastospores. We also found that yeast and pseudohyphal strains showed reduced adherence capacity to oral keratinocytes and caused minimal cell damage. Moreover, we showed that both yeast and pseudohyphal forms have a strongly attenuated proinflammatory phenotype, since they failed to induce significant interleukin (IL)-1alpha and IL-8 responses by oral epithelial cells. Germination of C. albicans into true hyphae is particularly important in the interactions with oral epithelial cells in vitro.

  4. Bioactive interleukin-1alpha is cytolytically released from Candida albicans-infected oral epithelial cells.

    PubMed

    Dongari-Bagtzoglou, A; Kashleva, H; Villar, C Cunha

    2004-12-01

    Oral epithelial cells are primary targets of Candida albicans in the oropharynx and may regulate the inflammatory host response to this pathogen. This investigation studied the mechanisms underlying interleukin-1alpha (IL-1alpha) release by oral epithelial cells and the role of IL-1alpha in regulating the mucosal inflammatory response to C. albicans. Infected oral epithelial cells released processed IL-1alpha protein in culture supernatants. The IL-1alpha generated was stored intracellularly and was released upon cell lysis. This was further supported by the fact that different C. albicans strains induced variable IL-1alpha release, depending on their cytolytic activity. IL-1alpha from C. albicans-infected oral epithelial cells upregulated proinflammatory cytokine secretion (IL-8 and GM-CSF) in uninfected oral epithelial or stromal cells. Our studies suggest that production of IL-1alpha, IL-8 and GM-CSF may take place in the oral mucosa in response to lytic infection of epithelial cells with C. albicans. This process can act as an early innate immune surveillance system and may contribute to the clinicopathologic signs of infection in the oral mucosa.

  5. Candida albicans triggers interleukin-8 secretion by oral epithelial cells.

    PubMed

    Dongari-Bagtzoglou, A; Kashleva, H

    2003-04-01

    Oropharyngeal candidiasis is a frequent opportunistic infection associated with immunocompromised hosts. Candida albicans is the principal species responsible for this infection. Production of interleukin-8 (IL-8), by oral epithelial cells can be expected to play a major role in the recruitment and activation of professional phagocytes at the infected site. The purpose of this study was to determine whether C. albicans triggers secretion of IL-8 by oral epithelial cells in vitro and investigate mechanisms of host cell-fungal interactions that trigger such responses. Oral epithelial cell lines (SCC4, SCC15, and OKF6/TERT-2) as well as primary gingival epithelial cells were used. Epithelial cells were cocultured with C. albicans, strains SC5314, ATCC28366 or ATCC32077, for 24-48 hr, and supernatants were analyzed for IL-8 content by ELISA. A germination-deficient mutant (efg1/efg1 cph1/cph1), otherwise isogenic to strain SC5314, was used to assess the requirement for germination in triggering IL-8 responses. In order to ascertain whether direct contact of yeast with host cells is required to trigger cytokine production, epithelial cells were separated from yeast using cell culture inserts. To test whether IL-8 secretion is dependent on IL-1alpha activity, epithelial cells were challenged with viable C. albicans in the presence or absence of neutralizing anti-IL-1alpha antibody or IL-1ra, and IL-8 secretion was measured in the supernatants. All cell lines and primary cultures responded to C. albicans with an increase in IL-8 secretion. IL-8 responses were contact-dependent, strain-specific, required yeast viability and germination into hyphae, and were in part autoregulated by IL-1alpha. Copyright 2003 Elsevier Science Ltd.

  6. Potential Role for a Carbohydrate Moiety in Anti-Candida Activity of Human Oral Epithelial Cells

    PubMed Central

    Steele, Chad; Leigh, Janet; Swoboda, Rolf; Ozenci, Hatice; Fidel, Paul L.

    2001-01-01

    Candida albicans is both a commensal and a pathogen at the oral mucosa. Although an intricate network of host defense mechanisms are expected for protection against oropharyngeal candidiasis, anti-Candida host defense mechanisms at the oral mucosa are poorly understood. Our laboratory recently showed that primary epithelial cells from human oral mucosa, as well as an oral epithelial cell line, inhibit the growth of blastoconidia and/or hyphal phases of several Candida species in vitro with a requirement for cell contact and with no demonstrable role for soluble factors. In the present study, we show that oral epithelial cell-mediated anti-Candida activity is resistant to gamma-irradiation and is not mediated by phagocytosis, nitric oxide, hydrogen peroxide, and superoxide oxidative inhibitory pathways or by nonoxidative components such as soluble defensin and calprotectin peptides. In contrast, epithelial cell-mediated anti-Candida activity was sensitive to heat, paraformaldehyde fixation, and detergents, but these treatments were accompanied by a significant loss in epithelial cell viability. Treatments that removed existing membrane protein or lipid moieties in the presence or absence of protein synthesis inhibitors had no effect on epithelial cell inhibitory activity. In contrast, the epithelial cell-mediated anti-Candida activity was abrogated after treatment of the epithelial cells with periodic acid, suggesting a role for carbohydrates. Adherence of C. albicans to oral epithelial cells was unaffected, indicating that the carbohydrate moiety is exclusively associated with the growth inhibition activity. Subsequent studies that evaluated specific membrane carbohydrate moieties, however, showed no role for sulfated polysaccharides, sialic acid residues, or glucose- and mannose-containing carbohydrates. These results suggest that oral epithelial cell-mediated anti-Candida activity occurs exclusively with viable epithelial cells through contact with C. albicans by

  7. Crystalline structure of pulverized dental calculus induces cell death in oral epithelial cells.

    PubMed

    Ziauddin, S M; Yoshimura, A; Montenegro Raudales, J L; Ozaki, Y; Higuchi, K; Ukai, T; Kaneko, T; Miyazaki, T; Latz, E; Hara, Y

    2018-06-01

    Dental calculus is a mineralized deposit attached to the tooth surface. We have shown that cellular uptake of dental calculus triggers nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation, leading to the processing of the interleukin-1β precursor into its mature form in mouse and human phagocytes. The activation of the NLRP3 inflammasome also induced a lytic form of programmed cell death, pyroptosis, in these cells. However, the effects of dental calculus on other cell types in periodontal tissue have not been investigated. The aim of this study was to determine whether dental calculus can induce cell death in oral epithelial cells. HSC-2 human oral squamous carcinoma cells, HOMK107 human primary oral epithelial cells and immortalized mouse macrophages were exposed to dental calculus or 1 of its components, hydroxyapatite crystals. For inhibition assays, the cells were exposed to dental calculus in the presence or absence of cytochalasin D (endocytosis inhibitor), z-YVAD-fmk (caspase-1 inhibitor) or glyburide (NLRP3 inflammasome inhibitor). Cytotoxicity was determined by measuring lactate dehydrogenase (LDH) release and staining with propidium iodide. Tumor necrosis factor-α production was quantified by enzyme-linked immunosorbent assay. Oral epithelial barrier function was examined by permeability assay. Dental calculus induced cell death in HSC-2 cells, as judged by LDH release and propidium iodide staining. Dental calculus also induced LDH release from HOMK107 cells. Following heat treatment, dental calculus lost its capacity to induce tumor necrosis factor-α in mouse macrophages, but could induce LDH release in HSC-2 cells, indicating a major role of inorganic components in cell death. Hydroxyapatite crystals also induced cell death in both HSC-2 and HOMK107 cells, as judged by LDH release, indicating the capacity of crystal particles to induce cell death. Cell death induced by dental

  8. Expression of human telomerase reverse transcriptase protein in oral epithelial dysplasia and oral squamous cell carcinoma: An immunohistochemical study

    PubMed Central

    Raghunandan, Bangalore Nagarajachar; Sanjai, Karpagaselvi; Kumaraswamy, Jayalakshmi; Papaiah, Lokesh; Pandey, Bhavna; Jyothi, Bellur MadhavaRao

    2016-01-01

    Background: Telomerase is an RNA-dependent DNA polymerase that synthesizes TTAGGG telomeric DNA sequences and almost universally provides the molecular basis for unlimited proliferative potential. The telomeres become shorter with each cycle of replication and reach a critical limit; most cells die or enter stage of replicative senescence. Telomere length maintenance by telomerase is required for all the cells that exhibit limitless replicative potential. It has been postulated that reactivation of telomerase expression is necessary for the continuous proliferation of neoplastic cells to attain immortality. Use of immunohistochemistry (IHC) is a useful, reliable method of localizing the human telomerase reverse transcriptase (hTERT) protein in tissue sections which permits cellular localization. Although there exists a lot of information on telomerase in oral cancer, little is known about their expression in oral epithelial dysplasia and their progression to oral squamous cell carcinoma (OSCC) compared to normal oral mucosa. This study addresses this lacuna. Aims: To compare the expression of hTERT protein in oral epithelial dysplasia and OSCC with normal oral mucosa by Immunohistochemical method. Subjects and Methods: In this preliminary study, IHC was used to detect the expression of hTERT protein in OSCC (n = 20), oral epithelial dysplasia (n = 21) and normal oral mucosa (n = 10). The tissue localization of immunostain, cellular localization of immunostain, nature of stain, intensity of stain, percentage of cells stained with hTERT protein were studied. A total number of 100 cells were counted in each slide. Statistical Analysis: All the data were analyzed using SPSS software version 16.0. The tissue localization, cellular localization of cytoplasmic/nuclear/both of hTERT stain, staining intensity was compared across the groups using Pearson's Chi-square test. The mean percentage of cells stained for oral epithelial dysplasia, OSCC and normal oral mucosa were

  9. Oral epithelial stem cells – implications in normal development and cancer metastasis

    PubMed Central

    Papagerakis, Silvana; Pannone, Giuseppe; Zheng, Li; About, Imad; Taqi, Nawar; Nguyen, Nghia P.T.; Matossian, Margarite; McAlpin, Blake; Santoro, Angela; McHugh, Jonathan; Prince, Mark E.; Papagerakis, Petros

    2014-01-01

    Oral mucosa is continuously exposed to environmental forces and has to be constantly renewed. Accordingly, the oral mucosa epithelium contains a large reservoir of epithelial stem cells necessary for tissue homeostasis. Despite considerable scientific advances in stem cell behavior in a number of tissues, fewer studies have been devoted to the stem cells in the oral epithelium. Most of oral mucosa stem cells studies are focused on identifying cancer stem cells (CSC) in oral squamous cell carcinomas (OSCCs) among other head and neck cancers. OSCCs are the most prevalent epithelial tumors of the head and neck region, marked by their aggressiveness and invasiveness. Due to their highly tumorigenic properties, it has been suggested that CSC may be the critical population of cancer cells in the development of OSCC metastasis. This review presents a brief overview of epithelium stem cells with implications in oral health, and the clinical implications of the CSC concept in OSCC metastatic dissemination. PMID:24803391

  10. Granulocyte-macrophage colony-stimulating factor responses of oral epithelial cells to Candida albicans.

    PubMed

    Dongari-Bagtzoglou, A; Kashleva, H

    2003-06-01

    Candida albicans is the principal fungal species responsible for oropharyngeal candidiasis, the most frequent opportunistic infection associated with immune deficiencies. Cytokines, such as granulocyte-macrophage colony-stimulating factor (GM-CSF), are important in the generation of effective immunity to C. albicans. The purposes of this investigation were to determine whether C. albicans triggers secretion of GM-CSF by oral epithelial cells in vitro and to investigate mechanisms of host cell-fungal interactions that trigger such responses. Oral epithelial cell lines as well as primary oral mucosal epithelial cells were challenged with stationary phase viable C. albicans, added to human cell cultures at varying yeast:oral cell ratios. Yeast were allowed to germinate for up to 48 h and supernatants were analyzed for GM-CSF by ELISA. Fixed organisms, germination-deficient mutants and separation of yeast from epithelial cells using cell culture inserts were used to assess the effects of viability, germination and physical contact, respectively, on the GM-CSF responses of these cells. Two out of three cell lines and three out of six primary cultures responded to C. albicans with an increase in GM-CSF secretion. GM-CSF responses were contact-dependent, strain-dependent, required yeast viability and were optimal when the yeast germinated into hyphae.

  11. Secreted Oral Epithelial Cell Membrane Vesicles Induce Epstein-Barr Virus Reactivation in Latently Infected B Cells

    PubMed Central

    Lin, Zhen; Swan, Kenneth; Zhang, Xin; Cao, Subing; Brett, Zoe; Drury, Stacy; Fewell, Claire; Puetter, Adriane; Wang, Xia; Ferris, MaryBeth; Sullivan, Deborah E.; Li, Li

    2016-01-01

    ABSTRACT In the oral epithelium, peripheral stores of Epstein-Barr virus (EBV) are transmitted from infiltrating B cells to epithelial cells. Once the virus is transmitted to epithelial cells, the highly permissive nature of this cell type for lytic replication allows virus amplification and exchange to other hosts. Since the initial transfer of EBV from B cells to epithelial cells requires transitioning of the B-cell to a state that induces virus reactivation, we hypothesized that there might be epithelium-specific signals that allow the infiltrating B cells to sense the appropriate environment to initiate reactivation and begin this exchange process. We previously found that the epithelium-specific miR-200 family of microRNAs promotes EBV lytic replication. Here we show that there are high levels of miR-200 family members in oral and tonsillar epithelia and in saliva. Analysis of cultured oral epithelial cells (OKF6) showed that they actively secrete membrane vesicles (exosomes) that are enriched with miR-200 family members. Coculturing of EBV-positive B cells with OKF6 cells induced viral reactivation. Further, treatment of EBV-positive B cells with OKF6 cell-derived membrane vesicles promoted reactivation. Using a cell system that does not naturally express miR-200 family members, we found that enforced expression of a miR-200 family member produced membrane vesicles that were able to induce the lytic cascade in EBV-positive B cells. We propose that membrane vesicles secreted by oral and tonsillar epithelial cells may serve as a tissue-specific environmental cue that initiates reactivation in B cells, promoting the transfer of virus from peripheral B-cell stores to the oral epithelium to facilitate virus amplification and exchange to other hosts. IMPORTANCE Epstein-Barr virus (EBV) is an important human pathogen that is causally associated with several lymphomas and carcinomas. The switch from latency to the lytic cycle is critical for successful host infection

  12. Cranberry proanthocyanidins inhibit the adherence properties of Candida albicans and cytokine secretion by oral epithelial cells

    PubMed Central

    2012-01-01

    Background Oral candidiasis is a common fungal disease mainly caused by Candida albicans. The aim of this study was to investigate the effects of A-type cranberry proanthocyanidins (AC-PACs) on pathogenic properties of C. albicans as well as on the inflammatory response of oral epithelial cells induced by this oral pathogen. Methods Microplate dilution assays were performed to determine the effect of AC-PACs on C. albicans growth as well as biofilm formation stained with crystal violet. Adhesion of FITC-labeled C. albicans to oral epithelial cells and to acrylic resin disks was monitored by fluorometry. The effects of AC-PACs on C. albicans-induced cytokine secretion, nuclear factor-kappa B (NF-κB) p65 activation and kinase phosphorylation in oral epithelial cells were determined by immunological assays. Results Although AC-PACs did not affect growth of C. albicans, it prevented biofilm formation and reduced adherence of C. albicans to oral epithelial cells and saliva-coated acrylic resin discs. In addition, AC-PACs significantly decreased the secretion of IL-8 and IL-6 by oral epithelial cells stimulated with C. albicans. This anti-inflammatory effect was associated with reduced activation of NF-κB p65 and phosphorylation of specific signal intracellular kinases. Conclusion AC-PACs by affecting the adherence properties of C. albicans and attenuating the inflammatory response induced by this pathogen represent potential novel therapeutic agents for the prevention/treatment of oral candidiasis. PMID:22248145

  13. Two-layer tissue engineered urethra using oral epithelial and muscle derived cells.

    PubMed

    Mikami, Hiroshi; Kuwahara, Go; Nakamura, Nobuyuki; Yamato, Masayuki; Tanaka, Masatoshi; Kodama, Shohta

    2012-05-01

    We fabricated novel tissue engineered urethral grafts using autologously harvested oral cells. We report their viability in a canine model. Oral tissues were harvested by punch biopsy and divided into mucosal and muscle sections. Epithelial cells from mucosal sections were cultured as epithelial cell sheets. Simultaneously muscle derived cells were seeded on collagen mesh matrices to form muscle cell sheets. At 2 weeks the sheets were joined and tubularized to form 2-layer tissue engineered urethras, which were autologously grafted to surgically induced urethral defects in 10 dogs in the experimental group. Tissue engineered grafts were not applied to the induced urethral defect in control dogs. The dogs were followed 12 weeks postoperatively. Urethrogram and histological examination were done to evaluate the grafting outcome. We successfully fabricated 2-layer tissue engineered urethras in vitro and transplanted them in dogs in the experimental group. The 12-week complication-free rate was significantly higher in the experimental group than in controls. Urethrogram confirmed urethral patency without stricture in the complication-free group at 12 weeks. Histologically urethras in the transplant group showed a stratified epithelial layer overlying well differentiated submucosa. In contrast, urethras in controls showed severe fibrosis without epithelial layer formation. Two-layer tissue engineered urethras were engineered using cells harvested by minimally invasive oral punch biopsy. Results suggest that this technique can encourage regeneration of a functional urethra. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  14. JNK-associated scattered growth of YD-10B oral squamous carcinoma cells while maintaining the epithelial phenotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Gayoung; Kim, Hyun-Man

    Cell scattering of epithelial carcinoma cancer cells is one of the critical event in tumorigenesis. Cells losing epithelial cohesion detach from aggregated epithelial cell masses and may migrate to fatal organs through metastasis. The present study investigated the molecular mechanism by which squamous cell carcinoma cells grow scattered at the early phase of transformation while maintaining the epithelial phenotype. We studied YD-10B cells, which are established from human oral squamous cell carcinoma, because the cells grow scattered without the development of E-cadherin junctions (ECJs) under routine culture conditions despite the high expression of functional E-cadherin. The functionality of their E-cadherinmore » was demonstrated in that YD-10B cells developed ECJs, transiently or persistently, when they were cultured on substrates coated with a low amount of fibronectin or to confluence. The phosphorylation of JNK was up-regulated in YD-10B cells compared with that in human normal oral keratinocyte cells or human squamous cell carcinoma cells, which grew aggregated along with well-organized ECJs. The suppression of JNK activity induced the aggregated growth of YD-10B cells concomitant with the development of ECJs. These results indicate for the first time that inherently up-regulated JNK activity induces the scattered growth of the oral squamous cell carcinoma cells through down-regulating the development of ECJ despite the expression of functional E-cadherin, a hallmark of the epithelial phenotype. - Highlights: • JNK dissociates YD-10B oral squamous cell carcinoma cells. • JNK suppresses the development of E-cadherin junctions of oral carcinoma cells. • Suppression of JNK activity reverses the scattered growth of oral carcinoma cells.« less

  15. Chromosomal abnormalities in HPV-16-immortalized oral epithelial cells.

    PubMed

    Oda, D; Bigler, L; Mao, E J; Disteche, C M

    1996-09-01

    Human papilloma virus (HPV) type 16 has an established association with anogenital carcinoma, and to some extent with human oral squamous cell carcinoma. We hypothesize that HPV type 16 is capable of inducing chromosomal and cell cycle changes in cultured oral epithelial cells. Normal human oral epithelia] cells were immortalized with recombinant retrovirus containing the E6/E7 open reading frames of HPV type 16. These cells have been in culture for more than 350 passages and over 4 years. Flow cytometry demonstrated an average of 42% nuclear aneuploidy in HPV 16-immortalized cells; 16% in normal controls (probably tetrasomy). Cytogenetic analysis demonstrated significant progression of chromosomal abnormalities. Cells at early passage (p10) showed trisomy 20, with no other major changes. At passage 18, trisomy 1q and monosomy 13 were seen in addition to trisomy 20. At passage 61 there were two distinct cell populations ('a' and 'b'), with multiple chromosomal changes including trisomy 5q,14,20 in one line and 7p,9q,llq in the other. Both populations had monosomy 3p, with monosomy 8p in one population and monosomy 13 in the other. At passage 136, the cells were essentially identical to population 'b' of passage 61. At this passage, mutation of the p53 gene was detected at codon 273 of exon 8, with G to T conversion (Arg to Leu). This was absent in the normal cells from which this line was developed. Passage 262 contained the two major cell populations, each with a sub-group with additional chromosomal changes such as 10p monosomy. Cells from passages 217 and 305 were injected into nude mice a year apart. Both failed to produce tumors, as did normal cells. In conclusion, we present an HPV type 16-immortalized oral epithelial cell line (IHGK) with extensive and progressive chromosomal abnormalities, invasive growth in culture and yet no tumor formation in nude mice. We suggest that the question as to whether HPV alone can induce transformation is still open.

  16. Proteomic and Bioinformatic Profile of Primary Human Oral Epithelial Cells

    PubMed Central

    Ghosh, Santosh K.; Yohannes, Elizabeth; Bebek, Gurkan; Weinberg, Aaron; Jiang, Bin; Willard, Belinda; Chance, Mark R.; Kinter, Michael T.; McCormick, Thomas S.

    2012-01-01

    Wounding of the oral mucosa occurs frequently in a highly septic environment. Remarkably, these wounds heal quickly and the oral cavity, for the most part, remains healthy. Deciphering the normal human oral epithelial cell (NHOEC) proteome is critical for understanding the mechanism(s) of protection elicited when the mucosal barrier is intact, as well as when it is breached. Combining 2D gel electrophoresis with shotgun proteomics resulted in identification of 1662 NHOEC proteins. Proteome annotations were performed based on protein classes, molecular functions, disease association and membership in canonical and metabolic signaling pathways. Comparing the NHOEC proteome with a database of innate immunity-relevant interactions (InnateDB) identified 64 common proteins associated with innate immunity. Comparison with published salivary proteomes revealed that 738/1662 NHOEC proteins were common, suggesting that significant numbers of salivary proteins are of epithelial origin. Gene ontology analysis showed similarities in the distributions of NHOEC and saliva proteomes with regard to biological processes, and molecular functions. We also assessed the inter-individual variability of the NHOEC proteome and observed it to be comparable with other primary cells. The baseline proteome described in this study should serve as a resource for proteome studies of the oral mucosa, especially in relation to disease processes. PMID:23035736

  17. In situ immunohistochemical detection of intracellular Mycoplasma salivarium in the epithelial cells of oral leukoplakia

    PubMed Central

    Mizuki, Harumi; Kawamura, Takafumi; Nagasawa, Dai

    2015-01-01

    Background Mycoplasmas are the smallest free-living organisms; Mycoplasma salivarium and Mycoplasma orale are the most common species isolated from the oropharynx. Oral leukoplakia is the most prevalent potentially malignant disorder of the oral mucosa; its etiology has not been defined. Our previous study with DNA-binding fluorescent dye suggested the presence of mycoplasmas in the epithelial cells of leukoplakia tissue. Objective Our aim was to detect M. salivarium in the epithelial cells of leukoplakia by immunohistochemistry. Design We produced a polyclonal antibody (PAb) reactive to Mycoplasma by injecting a rabbit with M. salivarium cells (ATCC 23064) mixed with complete Freund's adjuvant and a monoclonal antibody specific to M. salivarium by injecting M. salivarium cells (ATCC 23557) mixed with complete Freund's adjuvant into the footpads of a rat. Then, we attempted to detect M. salivarium in the epithelium of leukoplakia tissues by immunohistochemistry. Results We obtained an antimycoplasma rabbit PAb reactive to all seven Mycoplasma species used in this study. Three hybridoma clones producing monoclonal antibodies specific to M. salivarium were obtained, and an M. salivarium-specific monoclonal antibody, designated 7-6H, was established. Immunohistochemistry with these antibodies revealed M. salivarium in the epithelial cells of leukoplakia with hyperplasia and hyperkeratosis on histology. PCR and sequencing verified the presence of M. salivariumDNA in the epithelial cells of leukoplakia. Conclusion Intracellular M. salivarium was identified in the epithelial cells of leukoplakia. PMID:25065471

  18. Immunohistochemical Expression of MCM-2 in Oral Epithelial Dysplasias.

    PubMed

    Zakaria, Samar H; Farag, Heba A; Khater, Dina S

    2016-03-17

    Oral cancer is one of the most frequent cancers in the world. It arises from epithelial dysplasia. Hence, identifying these lesions in an early stage could prevent their malignant transformation. The aim of the present work was to assess the cell proliferative activity of minichromosome maintenance protein (MCM-2) in oral epithelial dysplastic lesions and to correlate the results with different grades of epithelial dysplasia in an attempt to use MCM-2 in the early detection of malignancy. MCM-2 expression was determined by the nuclear count in a total of 30 oral epithelial dysplastic specimens roughly classified into 10 cases of mild, moderate, and severe dysplasia. Five cases of early invasive squamous-cell carcinomas and 5 cases of epithelial hyperplasia were also included. The MCM-2 immunostaining was found to increase gradually from mild to moderate to severe dysplasia and reached its maximum value in early invasive squamous cell carcinoma. MCM-2 is of prognostic value in cases of oral dysplasia that have a tendency to undergo malignant transformation.

  19. Hydrogen Peroxide Contributes to the Epithelial Cell Death Induced by the Oral Mitis Group of Streptococci

    PubMed Central

    Okahashi, Nobuo; Sumitomo, Tomoko; Nakata, Masanobu; Sakurai, Atsuo; Kuwata, Hirotaka; Kawabata, Shigetada

    2014-01-01

    Members of the mitis group of streptococci are normal inhabitants of the commensal flora of the oral cavity and upper respiratory tract of humans. Some mitis group species, such as Streptococcus oralis and Streptococcus sanguinis, are primary colonizers of the human oral cavity. Recently, we found that hydrogen peroxide (H2O2) produced by S. oralis is cytotoxic to human macrophages, suggesting that streptococcus-derived H2O2 may act as a cytotoxin. Since epithelial cells provide a physical barrier against pathogenic microbes, we investigated their susceptibility to infection by H2O2-producing streptococci in this study. Infection by S. oralis and S. sanguinis was found to stimulate cell death of Detroit 562, Calu-3 and HeLa epithelial cell lines at a multiplicity of infection greater than 100. Catalase, an enzyme that catalyzes the decomposition of H2O2, inhibited S. oralis cytotoxicity, and H2O2 alone was capable of eliciting epithelial cell death. Moreover, S. oralis mutants lacking the spxB gene encoding pyruvate oxidase, which are deficient in H2O2 production, exhibited reduced cytotoxicity toward Detroit 562 epithelial cells. In addition, enzyme-linked immunosorbent assays revealed that both S. oralis and H2O2 induced interleukin-6 production in Detroit 562 epithelial cells. These results suggest that streptococcal H2O2 is cytotoxic to epithelial cells, and promotes bacterial evasion of the host defense systems in the oral cavity and upper respiratory tracts. PMID:24498253

  20. IL-29 Enhances CXCL10 Production in TNF-α-stimulated Human Oral Epithelial Cells.

    PubMed

    Hosokawa, Yoshitaka; Hosokawa, Ikuko; Shindo, Satoru; Ozaki, Kazumi; Matsuo, Takashi

    2017-08-01

    Interleukin-29 (IL-29) is a cytokine belonging to the Type III interferon family. It was recently detected in the gingival crevicular fluid of periodontitis patients. However, the role of IL-29 in the pathogenesis of periodontal disease remains unknown. The aim of this study was to examine the effects of IL-29 on C-X-C motif chemokine ligand 10 (CXCL10) production in human oral epithelial cells. We measured CXCL10 production in TR146 cells, which is a human oral epithelial cell line, using an enzyme-linked immunosorbent assay. We used a Western blot analysis to detect IL-29 receptor expression and the phosphorylation levels of signal transduction molecules, including p38 mitogen-activated protein kinases (MAPK), signal transducer and activator of transcription 3 (STAT3), and nuclear factor (NF)- κB p65, in the TR146 cells. The TR146 cells expressed the IL-29 receptor. IL-29 induced CXCL10 production in the TR146 cells. IL-29 significantly enhanced CXCL10 production in tumor necrosis factor (TNF)-α-stimulated TR146 cells. The p38 MAPK, STAT3, and NF-κB pathways were found to be related to the IL-29-induced enhancement of CXCL10 production in TNF-α-stimulated TR146 cells. IL-29 promotes T helper 1-cell accumulation in periodontal lesions by inducing CXCL10 production in oral epithelial cells.

  1. Risk factors and etiopathogenesis of potentially premalignant oral epithelial lesions.

    PubMed

    Porter, Stephen; Gueiros, Luiz Alcino; Leão, Jair Carneiro; Fedele, Stefano

    2018-06-01

    Potentially malignant oral mucosal disease has some ability to give rise to malignancy of the oral epithelium, that is, oral squamous cell carcinoma (OSCC). The present article provides a succinct review of the possible or probable causes of potentially premalignant oral epithelial lesions. There is a focus upon studies that examined the causes or etiologic associations with clinically likely or histopathologically detectable oral epithelial dysplasia. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. A comparative study for selectivity of micronuclei in oral exfoliated epithelial cells

    PubMed Central

    Grover, S; Mujib, ABR; Jahagirdar, A; Telagi, N; Kulkarni, PG

    2012-01-01

    Background: Micronucleus (MN) represents small, additional nuclei formed by the exclusion of chromosome fragments or whole chromosomes lagging at mitosis. MN rates, therefore, indirectly reflect chromosome breakage or impairment of the mitotic apparatus. During the last few decades, micronuclei (“MNi”) in oral exfoliated epithelial cells are widely used as biomarkers of chromosomal damage, genome instability and cancer risk in humans. However, until now only little attention has been given to the effect of different staining procedures on the results of these MN assays. Aim: To compare the MNi frequencies in oral exfoliated epithelial cells using three different stains, i.e.,Feulgen stain, Papanicolaou stain (Pap) and hemotoxylin and eosin stain (H and E). Materials and Methods: Oral exfoliated cells from 45 cases of potentially malignant disorders (15 oral submucous fibrosis, 15 lichen planus and 15 leukoplakia) and 15 controls with healthy mucosa, were taken and MNi frequencies (No. of MNi/1000 cells) were compared using three different stains. Results: Mean MNi frequency in cases was found to be 3.8 with Feulgen stain, 16.8 with PAP and 25.9 with H and E. In controls, mean MNi frequency was 1.6 with Feulgen stain, 7.7 with PAP and 9.6 with H and E stain. Statistically significant value (P < 0.01) were observed when the three stains were compared together using Kruskal Walli's ANOVA test. Conclusion: Feulgen being a DNA-specific stain gave the least counts, although statistically significant results from the comparison of MNi frequency between cases and controls were obtained with all the three stains. PMID:23326025

  3. A comparative study for selectivity of micronuclei in oral exfoliated epithelial cells.

    PubMed

    Grover, S; Mujib, Abr; Jahagirdar, A; Telagi, N; Kulkarni, Pg

    2012-10-01

    Micronucleus (MN) represents small, additional nuclei formed by the exclusion of chromosome fragments or whole chromosomes lagging at mitosis. MN rates, therefore, indirectly reflect chromosome breakage or impairment of the mitotic apparatus. During the last few decades, micronuclei ("MNi") in oral exfoliated epithelial cells are widely used as biomarkers of chromosomal damage, genome instability and cancer risk in humans. However, until now only little attention has been given to the effect of different staining procedures on the results of these MN assays. To compare the MNi frequencies in oral exfoliated epithelial cells using three different stains, i.e.,Feulgen stain, Papanicolaou stain (Pap) and hemotoxylin and eosin stain (H and E). Oral exfoliated cells from 45 cases of potentially malignant disorders (15 oral submucous fibrosis, 15 lichen planus and 15 leukoplakia) and 15 controls with healthy mucosa, were taken and MNi frequencies (No. of MNi/1000 cells) were compared using three different stains. Mean MNi frequency in cases was found to be 3.8 with Feulgen stain, 16.8 with PAP and 25.9 with H and E. In controls, mean MNi frequency was 1.6 with Feulgen stain, 7.7 with PAP and 9.6 with H and E stain. Statistically significant value (P < 0.01) were observed when the three stains were compared together using Kruskal Walli's ANOVA test. Feulgen being a DNA-specific stain gave the least counts, although statistically significant results from the comparison of MNi frequency between cases and controls were obtained with all the three stains.

  4. GLUT-1 immunoexpression in oral epithelial dysplasia, oral squamous cell carcinoma, and verrucous carcinoma.

    PubMed

    Angadi, Vidya C; Angadi, Punnya V

    2015-06-01

    Glucose transporters, such as GLUT-1, mediate the important mechanisms involved in cellular glucose influx, allowing cells to proliferate and survive. The significance of GLUT-1 expression in oral epithelial dysplasia (OED) and oral squamous cell carcinoma (OSCC) has been less explored, and no study has investigated it in relation to verrucous carcinoma (VC). We evaluated 30 cases each of OED, OSCC, and VC, graded further on the basis of their differentiation, immunohistochemically for GLUT-1 expression, along with 10 specimens of normal oral mucosa (NOM) as controls. In OSCC, GLUT-1 expression increased with the degree of dysplasia and increasing grade (P < 0.001). The expression in VC was predominantly membranous and intense, resembling well differentiated OSCC. This increase of GLUT-1 expression in OSCC along with the degree of dysplasia and the histologic grade reflects the expanding glycolytic response to hypoxia. This is the first study to have revealed prominent GLUT-1 expression in VC, highlighting its inherent metabolic capacity.

  5. The role of epithelial-mesenchymal transition in squamous cell carcinoma of the oral cavity.

    PubMed

    Zidar, Nina; Boštjančič, Emanuela; Malgaj, Marija; Gale, Nina; Dovšak, Tadej; Didanovič, Vojko

    2018-02-01

    Epithelial-mesenchymal transition (EMT) has emerged as a possible mechanism of cancer metastasizing, but strong evidence for EMT involvement in human cancer is lacking. Our aim was to compare oral spindle cell carcinoma (SpCC) as an example of EMT with oral conventional squamous cell carcinoma (SCC) with and without nodal metastases to test the hypothesis that EMT contributes to metastasizing in oral SCC. Thirty cases of oral SCC with and without nodal metastasis and 15 cases of SpCC were included. Epithelial (cytokeratin, E-cadherin), mesenchymal (vimentin, N-cadherin), and stem cell markers (ALDH-1, CD44, Nanog, Sox-2) and transcription repressors (Snail, Slug, Twist) were analyzed immunohistochemically. We also analyzed the expression of microRNAs miR-141, miR-200 family, miR-205, and miR-429. SpCC exhibited loss of epithelial markers and expression of mesenchymal markers or coexpression of both up-regulation of transcription repressors and down-regulation of the investigated microRNAs. SCC showed only occasional focal expression of mesenchymal markers at the invasive front. No other differences were observed between SCC with and without nodal metastases except for a higher expression of ALDH-1 in SCC with metastases. Our results suggest that SpCC is an example of true EMT but do not support the hypothesis that EMT is involved in metastasizing of conventional SCC. Regarding oral SCC progression and metastasizing, we have been facing a shift from the initial enthusiasm for the EMT concept towards a more critical approach with "EMT-like" and "partial EMT" concepts. The real question, though, is, is there no EMT at all?

  6. SERS and integrative imaging upon internalization of quantum dots into human oral epithelial cells.

    PubMed

    Cepeda-Pérez, Elisa; López-Luke, Tzarara; Plascencia-Villa, Germán; Perez-Mayen, Leonardo; Ceja-Fdez, Andrea; Ponce, Arturo; Vivero-Escoto, Juan; de la Rosa, Elder

    2016-07-01

    CdTe quantum dots (QDs) are widely used in bio-applications due to their size and highly efficient optical properties. However internalization mechanisms thereof for the variety of freshly extracted, not cultivated human cells and their specific molecular interactions remains an open topic for discussion. In this study, we assess the internalization mechanism of CdTe quantum dots (3.3 nm) capped with thioglycolic acid using non cultivated oral epithelial cells obtained from healthy donors. Naked gold nanoparticles (40 nm) were successfully used as nanosensors for surface-enhanced Raman spectroscopy to efficiently identify characteristic Raman peaks, providing new evidence indicating that the first interactions of these QDs with epithelial cells occurred preferentially with aromatic rings and amine groups of amino acid residues and glycans from trans-membrane proteins and cytoskeleton. Using an integrative combination of advanced imaging techniques, including ultra-high resolution SEM, high resolution STEM coupled with EDX spectroscopy together with the results obtained by Raman spectroscopy, it was determined that thioglycolic acid capped CdTe QDs are efficiently internalized into freshly extracted oral epithelial cells only by facilitated diffusion, distributed into cytoplasm and even within the cell nucleus in three minutes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Cultivation and phenotypic characterization of rabbit epithelial cells expanded ex vivo from fresh and cryopreserved limbal and oral mucosal explants.

    PubMed

    Promprasit, Daranee; Bumroongkit, Kanokkan; Tocharus, Chainarong; Mevatee, Umnat; Tananuvat, Napaporn

    2015-03-01

    To compare the morphology of cultured rabbit epithelial sheets and the expression of stem cells with differentiated cell markers of cultivated epithelial cells from fresh and cryopreserved limbal and oral mucosal biopsies. Six New Zealand white rabbits were divided into two groups of three, from which limbal and oral mucosal biopsies were taken. Harvested tissues from each rabbit were brought to immediate cultivation, while another set of tissues was cryopreserved. Cultivation was performed by the explant culture technique using human amniotic membrane as a culture substrate, co-culturing with 3T3 fibroblasts and using the air-lifting method. Cells were cultured for three weeks; then cultured epithelial sheets were stained with hematoxylin-eosin and examined for expression patterns of p63, keratin 3 (K3) and connexin 43 (Cx43). Cryopreservation was carried out using the vitrification method. Tissues were preserved in liquid nitrogen using 25% dimethyl sulfoxide combined with 25% propylene glycol in Dulbecco's Modified Eagle's Medium containing 20% fetal bovine serum. After two months, the tissues were warmed, cultured and stained using the same processes as for fresh tissue cultures. Cultivation of fresh limbal and fresh oral mucosal tissues showed epithelial stratification, with two to five cell layers. Immunohistochemical staining showed p63-positive cells in basal and intermediate cell layers. K3 staining was observed in cells in the suprabasal layer, while expression of Cx43 was scattered throughout all layers of the epithelia. All culture sheets expressed p63, K3 and Cx43 with the exception of one sheet from the oral mucosal culture that was p63-negative. Cultured epithelial sheets from cryopreserved tissues showed results similar to those from fresh tissue culture. This study found that cells in cultivated fresh limbal and oral mucosal tissues had similar morphology to cells in cultivated cryopreserved limbal and oral mucosal tissues, both containing a

  8. Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells.

    PubMed

    Mehalick, Leslie A; Poulsen, Christopher; Fischer, Carol L; Lanzel, Emily A; Bates, Amber M; Walters, Katherine S; Cavanaugh, Joseph E; Guthmiller, Janet M; Johnson, Georgia K; Wertz, Philip W; Brogden, Kim A

    2015-12-01

    Long-chain bases, found in the oral cavity, have potent antimicrobial activity against oral pathogens. In an article associated with this dataset, Poulson and colleagues determined the cytotoxicities of long-chain bases (sphingosine, dihydrosphingosine, and phytosphingosine) for human oral gingival epithelial (GE) keratinocytes, oral gingival fibroblasts (GF), dendritic cells (DC), and squamous cell carcinoma (SCC) cell lines [1]. Poulson and colleagues found that GE keratinocytes were more resistant to long-chain bases as compared to GF, DC, and SCC cell lines [1]. In this study, we assess the susceptibility of DC to lower concentrations of long chain bases. 0.2-10.0 µM long-chain bases and GML were not cytotoxic to DC; 40.0-80.0 µM long-chain bases, but not GML, were cytotoxic for DC; and 80.0 µM long-chain bases were cytotoxic to DC and induced cellular damage and death in less than 20 mins. Overall, the LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections.

  9. Comparison of myofibroblasts expression in oral squamous cell carcinoma, verrucous carcinoma, high risk epithelial dysplasia, low risk epithelial dysplasia and normal oral mucosa.

    PubMed

    Chaudhary, Minal; Gadbail, Amol Ramchandra; Vidhale, Gaurav; Mankar Gadbail, Mugdha P; Gondivkar, Shailesh M; Gawande, Madhuri; Patil, Swati

    2012-09-01

    The aim was to evaluate and compare the presence of myofibroblasts in oral squamous cell carcinoma (OSCC), verrucous carcinoma (VC), high-risk epithelial dysplasia (HRED), low-risk epithelial dysplasia (LRED), and normal oral mucosa (NOM). The study consisted of 37 OSCC, 15 VC, 15 HRED, 15 LRED and 15 NOM. α-smooth muscle actin (α-SMA) antibody was used to identify myofibroblasts. The α-SMA expression was not observed in NOM and LRED. The α-SMA was expressed in 97.29% of OSCC, 86.66% of VC, 46.66 % of HRED. The α-SMA expression was significantly higher in OSCC than VC (p = 0.023) and HRED (p < 0.000). The α-SMA expression was significantly higher in VC than HRED (p = 0.043). Myofibroblastic expression, as highlighted by α-SMA, is undetectable in NOM and LRED but increases as the disease progresses from potentially malignant disorders, as HRED to VC to invasive OSCC. Thus, proliferation of myofibroblasts may be used as a stromal marker of oral premalignancy and malignancy.

  10. Magnolia officinalis L. Fortified Gum Improves Resistance of Oral Epithelial Cells Against Inflammation.

    PubMed

    Walker, Jessica; Imboeck, Julia Maria; Walker, Joel Michael; Maitra, Amarnath; Haririan, Hady; Rausch-Fan, Xiaohui; Dodds, Michael; Inui, Taichi; Somoza, Veronika

    2016-01-01

    Inflammatory diseases of the periodontal tissues are known health problems worldwide. Therefore, anti-inflammatory active compounds are used in oral care products to reduce long-term inflammation. In addition to inducing inflammation, pathogen attack leads to an increased production of reactive oxygen species (ROS), which may lead to oxidative damage of macromolecules. Magnolia officinalis L. bark extract (MBE) has been shown to possess antioxidant and anti-inflammatory potential in vitro. In the present study, the influence of MBE-fortified chewing gum on the resistance against lipopolysaccharide (LPS)-induced inflammation and oxidative stress of oral epithelial cells was investigated in a four-armed parallel designed human intervention trial with 40 healthy volunteers. Ex vivo stimulation of oral epithelial cells with LPS from Porphyromonas gingivalis for 6[Formula: see text]h increased the mRNA expression and release of the pro-inflammatory cytokines IL-1[Formula: see text], IL-[Formula: see text], IL-8, MIP-1[Formula: see text], and TNF[Formula: see text]. Chewing MBE-fortified gum for 10[Formula: see text]min reduced the ex vivo LPS-induced increase of IL-8 release by 43.8 [Formula: see text] 17.1% at the beginning of the intervention. In addition, after the two-week intervention with MBE-fortified chewing gum, LPS-stimulated TNF[Formula: see text] release was attenuated by 73.4 [Formula: see text] 12.0% compared to chewing regular control gum. This increased resistance against LPS-induced inflammation suggests that MBE possesses anti-inflammatory activity in vivo when added to chewing gum. In contrast, the conditions used to stimulate an immune response of oral epithelial cells failed to induce oxidative stress, measured by catalase activity, or oxidative DNA damage.

  11. Fusobacterium nucleatum binding to complement regulatory protein CD46 modulates the expression and secretion of cytokines and matrix metalloproteinases by oral epithelial cells.

    PubMed

    Mahtout, Hayette; Chandad, Fatiha; Rojo, Jose M; Grenier, Daniel

    2011-02-01

    Periodontitis is a chronic inflammatory disease that results in the destruction of the supporting tissues of the teeth. Gingival epithelial cells are an important mechanical barrier and participate in the host inflammatory response to periodontopathogens. The aim of the present study is to investigate the capacity of Fusobacterium nucleatum to bind to the complement regulatory protein CD46 expressed by oral epithelial cells and to determine the impact of the binding on the gene expression and protein secretion of interleukin (IL)-6, IL-8, and matrix metalloproteinase (MMP)-9 by oral epithelial cells. Binding of recombinant human CD46 to the surface of F. nucleatum was demonstrated by immunologic assays. After stimulation of oral epithelial cells with F. nucleatum, gene expression was determined by real-time polymerase chain reaction analysis while protein secretion was monitored by enzyme-linked immunosorbent assays. Heat and protease treatments of bacterial cells reduced CD46 binding. F. nucleatum-bound CD46 mediated the cleavage of C3b in the presence of factor I. Stimulating oral epithelial cells with F. nucleatum at a multiplicity of infection of 50 resulted in a significant upregulation of the gene expression and protein secretion of IL-6, IL-8, and MMP-9 by oral epithelial cells. However, pretreating the epithelial cells with an anti-CD46 polyclonal antibody attenuated the production of IL-6, IL-8, and MMP-9 in response to F. nucleatum. Such an inhibitory effect was not observed with non-specific antibodies. The present study demonstrates that F. nucleatum can bind the complement regulatory protein CD46. The interaction of F. nucleatum with epithelial cell surface CD46 may contribute to increasing the levels of proinflammatory mediators and MMPs in periodontal sites and consequently modulate tissue destruction.

  12. Vitamin D3 analog maxacalcitol (OCT) induces hCAP-18/LL-37 production in human oral epithelial cells.

    PubMed

    Tada, Hiroyuki; Shimizu, Takamitsu; Nagaoka, Isao; Takada, Haruhiko

    2016-01-01

    Maxacalcitol (22-oxacalcitriol: OCT) is a synthetic vitamin D3 analog with a limited calcemic effect. In this study, we investigated whether OCT increases the production of LL-37/CAP-18, a human cathelicidin antimicrobial peptide, in human gingival/oral epithelial cells. A human gingival epithelial cell line (Ca9-22) and human oral epithelial cell lines (HSC-2, HSC-3, and HSC-4) exhibited the enhanced expression of LL-37 mRNA upon stimulation with OCT as well as active metabolites of vitamins D3 and D2. Among the human epithelial cell lines, Ca9-22 exhibited the strongest response to these vitamin D-related compounds. OCT induced the higher production of CAP-18 (ng/mL order) until 6 days time-dependently in Ca9-22 cells in culture. The periodontal pathogen Porphyromonas gingivalis was killed by treatment with the LL-37 peptide. These findings suggest that OCT induces the production of hCAP-18/LL-37 in a manner similar to that induced by the active metabolite of vitamin D3.

  13. Proteomic Signatures of Human Oral Epithelial Cells in HIV-Infected Subjects

    PubMed Central

    Yohannes, Elizabeth; Ghosh, Santosh K.; Jiang, Bin; McCormick, Thomas S.; Weinberg, Aaron; Hill, Edward; Faddoul, Faddy; Chance, Mark R.

    2011-01-01

    The oral epithelium, the most abundant structural tissue lining the oral mucosa, is an important line of defense against infectious microorganisms. HIV infected subjects on highly active antiretroviral therapy (HAART) are susceptible to comorbid viral, bacterial and fungal infections in the oral cavity. To provide an assessment of the molecular alterations of oral epithelia potentially associated with susceptibility to comorbid infections in such subjects, we performed various proteomic studies on over twenty HIV infected and healthy subjects. In a discovery phase two Dimensional Difference Gel Electrophoresis (2-D DIGE) analyses of human oral gingival epithelial cell (HOEC) lysates were carried out; this identified 61 differentially expressed proteins between HIV-infected on HAART subjects and healthy controls. Down regulated proteins in HIV-infected subjects include proteins associated with maintenance of protein folding and pro- and anti-inflammatory responses (e.g., heat-shock proteins, Cryab, Calr, IL-1RA, and Galectin-3-binding protein) as well as proteins involved in redox homeostasis and detoxification (e.g., Gstp1, Prdx1, and Ero1). Up regulated proteins include: protein disulfide isomerases, proteins whose expression is negatively regulated by Hsp90 (e.g., Ndrg1), and proteins that maintain cellular integrity (e.g., Vimentin). In a verification phase, proteins identified in the protein profiling experiments and those inferred from Ingenuity Pathway Analysis were analyzed using Western blotting analysis on separate HOEC lysate samples, confirming many of the discovery findings. Additionally in HIV-infected patient samples Heat Shock Factor 1 is down regulated, which explains the reduced heat shock responses, while activation of the MAPK signal transduction cascade is observed. Overall, HAART therapy provides an incomplete immune recovery of the oral epithelial cells of the oral cavity for HIV-infected subjects, and the toxic side effects of HAART and

  14. Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells

    PubMed Central

    Mehalick, Leslie A.; Poulsen, Christopher; Fischer, Carol L.; Lanzel, Emily A.; Bates, Amber M.; Walters, Katherine S.; Cavanaugh, Joseph E.; Guthmiller, Janet M.; Johnson, Georgia K.; Wertz, Philip W.; Brogden, Kim A.

    2015-01-01

    Long-chain bases, found in the oral cavity, have potent antimicrobial activity against oral pathogens. In an article associated with this dataset, Poulson and colleagues determined the cytotoxicities of long-chain bases (sphingosine, dihydrosphingosine, and phytosphingosine) for human oral gingival epithelial (GE) keratinocytes, oral gingival fibroblasts (GF), dendritic cells (DC), and squamous cell carcinoma (SCC) cell lines [1]. Poulson and colleagues found that GE keratinocytes were more resistant to long-chain bases as compared to GF, DC, and SCC cell lines [1]. In this study, we assess the susceptibility of DC to lower concentrations of long chain bases. 0.2–10.0 µM long-chain bases and GML were not cytotoxic to DC; 40.0–80.0 µM long-chain bases, but not GML, were cytotoxic for DC; and 80.0 µM long-chain bases were cytotoxic to DC and induced cellular damage and death in less than 20 mins. Overall, the LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections. PMID:26550599

  15. Detection of Epstein-Barr virus genome and latent infection gene expression in normal epithelia, epithelial dysplasia, and squamous cell carcinoma of the oral cavity.

    PubMed

    Kikuchi, Kentaro; Noguchi, Yoshihiro; de Rivera, Michelle Wendoline Garcia-Niño; Hoshino, Miyako; Sakashita, Hideaki; Yamada, Tsutomu; Inoue, Harumi; Miyazaki, Yuji; Nozaki, Tadashige; González-López, Blanca Silvia; Ide, Fumio; Kusama, Kaoru

    2016-03-01

    A relationship between Epstein-Barr virus (EBV) infection and cancer of lymphoid and epithelial tissues such as Burkitt's lymphoma, Hodgkin's disease, nasopharyngeal carcinoma (NPC), gastric carcinoma, and oral cancer has been reported. EBV is transmitted orally and infects B cells and epithelial cells. However, it has remained uncertain whether EBV plays a role in carcinogenesis of oral mucosal tissue. In the present study, we detected the EBV genome and latent EBV gene expression in normal mucosal epithelia, epithelial dysplasia, and oral squamous cell carcinoma (OSCC) to clarify whether EBV is involved in carcinogenesis of the oral cavity. We examined 333 formalin-fixed, paraffin-embedded tissue samples (morphologically normal oral mucosa 30 samples, gingivitis 32, tonsillitis 17, oral epithelial dysplasia 83, OSCC 150, and NPC 21). EBV latent infection genes (EBNA-2, LMP-1) were detected not only in OSCC (50.2 %, 10.7 %) but also in severe epithelial dysplasia (66.7 %, 44.4 %), mild to moderate epithelial dysplasia (43.1 %, 18.5 %), gingivitis (78.1 %, 21.9 %), and normal mucosa (83.3 %, 23.3 %). Furthermore, the intensity of EBV latent infection gene expression (EBER, LMP-1) was significantly higher in severe epithelial dysplasia (94.4 %, 72.2 %) than in OSCC (34.7 %, 38.7 %). These results suggest that EBV latent infection genes and their increased expression in severe epithelial dysplasia might play an important role in the dysplasia-carcinoma sequence in the oral cavity.

  16. A Novel Peptide to Treat Oral Mucositis Blocks Endothelial and Epithelial Cell Apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Xiaoyan; Chen Peili; Sonis, Stephen T.

    2012-07-01

    Purpose: No effective agents currently exist to treat oral mucositis (OM) in patients receiving chemoradiation for the treatment of head-and-neck cancer. We identified a novel 21-amino acid peptide derived from antrum mucosal protein-18 that is cytoprotective, mitogenic, and motogenic in tissue culture and animal models of gastrointestinal epithelial cell injury. We examined whether administration of antrum mucosal protein peptide (AMP-p) could protect against and/or speed recovery from OM. Methods and Materials: OM was induced in established hamster models by a single dose of radiation, fractionated radiation, or fractionated radiation together with cisplatin to simulate conventional treatments of head-and-neck cancer. Results:more » Daily subcutaneous administration of AMP-p reduced the occurrence of ulceration and accelerated mucosal recovery in all three models. A delay in the onset of erythema after irradiation was observed, suggesting that a protective effect exists even before injury to mucosal epithelial cells occurs. To test this hypothesis, the effects of AMP-p on tumor necrosis factor-{alpha}-induced apoptosis were studied in an endothelial cell line (human dermal microvascular endothelial cells) as well as an epithelial cell line (human adult low-calcium, high-temperature keratinocytes; HaCaT) used to model the oral mucosa. AMP-p treatment, either before or after cell monolayers were exposed to tumor necrosis factor-{alpha}, protected against development of apoptosis in both cell types when assessed by annexin V and propidium iodide staining followed by flow cytometry or ligase-mediated polymerase chain reaction. Conclusions: These observations suggest that the ability of AMP-p to attenuate radiation-induced OM could be attributable, at least in part, to its antiapoptotic activity.« less

  17. Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells

    PubMed Central

    Poulsen, Christopher; Mehalick, Leslie A.; Fischer, Carol L.; Lanzel, Emily A.; Bates, Amber M.; Walters, Katherine S.; Cavanaugh, Joseph E.; Guthmiller, Janet M.; Johnson, Georgia K.; Wertz, Philip W.; Brogden, Kim A.

    2015-01-01

    Long-chain bases are present in the oral cavity. Previously we determined that sphingosine, dihydrosphingosine, and phytosphingosine have potent antimicrobial activity against oral pathogens. Here, we determined the cytotoxicities of long-chain bases for oral cells, an important step in considering their potential as antimicrobial agents for oral infections. This information would clearly help in establishing prophylactic or therapeutic doses. To assess this, human oral gingival epithelial (GE) keratinocytes, oral gingival fibroblasts (GF), and dendritic cells (DC) were exposed to 10.0-640.0 µM long-chain bases and glycerol monolaurate (GML). The effects of long-chain bases on cell metabolism (conversion of resazurin to resorufin), membrane permeability (uptake of propridium iodide or SYTOX-Green), release of cellular contents (LDH), and cell morphology (confocal microscopy) were all determined. GE keratinocytes were more resistant to long-chain bases as compared to GF and DC, which were more susceptible. For DC, 0.2 to 10.0 µM long-chain bases and GML were not cytotoxic; 40.0 to 80.0 µM long-chain bases, but not GML, were cytotoxic; and 80.0 µM long-chain bases induced cellular damage and death in less than 20 minutes. The LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections. PMID:26005054

  18. Differential cytotoxicity of long-chain bases for human oral gingival epithelial keratinocytes, oral fibroblasts, and dendritic cells.

    PubMed

    Poulsen, Christopher; Mehalick, Leslie A; Fischer, Carol L; Lanzel, Emily A; Bates, Amber M; Walters, Katherine S; Cavanaugh, Joseph E; Guthmiller, Janet M; Johnson, Georgia K; Wertz, Philip W; Brogden, Kim A

    2015-08-19

    Long-chain bases are present in the oral cavity. Previously we determined that sphingosine, dihydrosphingosine, and phytosphingosine have potent antimicrobial activity against oral pathogens. Here, we determined the cytotoxicities of long-chain bases for oral cells, an important step in considering their potential as antimicrobial agents for oral infections. This information would clearly help in establishing prophylactic or therapeutic doses. To assess this, human oral gingival epithelial (GE) keratinocytes, oral gingival fibroblasts (GF), and dendritic cells (DC) were exposed to 10.0-640.0 μM long-chain bases and glycerol monolaurate (GML). The effects of long-chain bases on cell metabolism (conversion of resazurin to resorufin), membrane permeability (uptake of propidium iodide or SYTOX-Green), release of cellular contents (LDH), and cell morphology (confocal microscopy) were all determined. GE keratinocytes were more resistant to long-chain bases as compared to GF and DC, which were more susceptible. For DC, 0.2-10.0 μM long-chain bases and GML were not cytotoxic; 40.0-80.0 μM long-chain bases, but not GML, were cytotoxic; and 80.0 μM long-chain bases induced cellular damage and death in less than 20 min. The LD50 of long-chain bases for GE keratinocytes, GF, and DC were considerably higher than their minimal inhibitory concentrations for oral pathogens, a finding important to pursuing their future potential in treating periodontal and oral infections. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. IL-17 Receptor Signaling in Oral Epithelial Cells Is Critical for Protection against Oropharyngeal Candidiasis.

    PubMed

    Conti, Heather R; Bruno, Vincent M; Childs, Erin E; Daugherty, Sean; Hunter, Joseph P; Mengesha, Bemnet G; Saevig, Danielle L; Hendricks, Matthew R; Coleman, Bianca M; Brane, Lucas; Solis, Norma; Cruz, J Agustin; Verma, Akash H; Garg, Abhishek V; Hise, Amy G; Richardson, Jonathan P; Naglik, Julian R; Filler, Scott G; Kolls, Jay K; Sinha, Satrajit; Gaffen, Sarah L

    2016-11-09

    Signaling through the IL-17 receptor (IL-17R) is required to prevent oropharyngeal candidiasis (OPC) in mice and humans. However, the IL-17-responsive cell type(s) that mediate protection are unknown. Using radiation chimeras, we were able to rule out a requirement for IL-17RA in the hematopoietic compartment. We saw remarkable concordance of IL-17-controlled gene expression in C. albicans-infected human oral epithelial cells (OECs) and in tongue tissue from mice with OPC. To interrogate the role of the IL-17R in OECs, we generated mice with conditional deletion of IL-17RA in superficial oral and esophageal epithelial cells (Il17ra ΔK13 ). Following oral Candida infection, Il17ra ΔK13 mice exhibited fungal loads and weight loss indistinguishable from Il17ra -/- mice. Susceptibility in Il17ra ΔK13 mice correlated with expression of the antimicrobial peptide β-defensin 3 (BD3, Defb3). Consistently, Defb3 -/- mice were susceptible to OPC. Thus, OECs dominantly control IL-17R-dependent responses to OPC through regulation of BD3 expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Enhancement of cancer stem-like and epithelial−mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: Reversal by targeting SNAIL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Cheng-Chia; School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan

    Cigarette smoking is one of the major risk factors in the development and further progression of tumorigenesis, including oral squamous cell carcinoma (OSCC). Recent studies suggest that interplay cancer stem-like cells (CSCs) and epithelial−mesenchymal transdifferentiation (EMT) properties are responsible for the tumor maintenance and metastasis in OSCC. The aim of the present study was to investigate the effects of long-term exposure with nicotine, a major component in cigarette, on CSCs and EMT characteristics. The possible reversal regulators were further explored in nicotine-induced CSCs and EMT properties in human oral epithelial (OE) cells. Long-term exposure with nicotine was demonstrated to up-regulatemore » ALDH1 population in normal gingival and primary OSCC OE cells dose-dependently. Moreover, long-term nicotine treatment was found to enhance the self-renewal sphere-forming ability and stemness gene signatures expression and EMT regulators in OE cells. The migration/cell invasiveness/anchorage independent growth and in vivo tumor growth by nude mice xenotransplantation assay was enhanced in long-term nicotine-stimulated OE cells. Knockdown of Snail in long-term nicotine-treated OE cells was found to reduce their CSCs properties. Therapeutic delivery of Si-Snail significantly blocked the xenograft tumorigenesis of long-term nicotine-treated OSCC cells and largely significantly improved the recipient survival. The present study demonstrated that the enrichment of CSCs coupled EMT property in oral epithelial cells induced by nicotine is critical for the development of OSCC tumorigenesis. Targeting Snail might offer a new strategy for the treatment of OSCC patients with smoking habit. -- Highlights: ► Sustained nicotine treatment induced CSCs properties of oral epithelial cells. ► Long-term nicotine treatment enhance EMT properties of oral epithelial cells. ► Long-term nicotine exposure increased tumorigenicity of oral epithelial cells. ► Si

  1. Ultrastructural analysis of oral exfoliated epithelial cells of tobacco smokers and betel nut chewers: A scanning electron microscopy study.

    PubMed

    Khan, Sameera Shamim; Shreedhar, Balasundari; Kamboj, Mala

    2016-01-01

    The study was undertaken to correlate epithelial surface pattern changes of oral exfoliated cells of tobacco smokers and betel nut chewers and also to compare them with patients of oral squamous cell carcinoma (OSCC) and healthy individuals. In this cross-sectional study, a total of fifty persons were included in the study, out of which thirty formed the study group (15 each tobacco smokers and betel nut chewers) and twenty formed the control group (ten each of OSCC patients - positive control and ten normal buccal mucosa - negative control). Their oral exfoliated cells were scraped, fixed, and studied under scanning electron microscope (SEM). The statistical analysis was determined using ANOVA, Tukey honestly significant difference, Chi-square test, and statistical SPASS software, P < 0.05. OSCC, Individual cell modifications, intercellular relationships and surface characteristics observed by scanning electron microscopy between OSCC, tobacco smokers, betel nut chewers compared to normal oral mucosa have been tabulated. In normal oral mucosa, cell surface morphology depends on the state of keratinization of the tissue. Thus, it could prove helpful in detecting any carcinomatous change at its incipient stage and also give an insight into the ultra-structural details of cellular differentiations in epithelial tissues.

  2. Syndecan-1 suppresses epithelial-mesenchymal transition and migration in human oral cancer cells.

    PubMed

    Wang, Xiaofeng; He, Jinting; Zhao, Xiaoming; Qi, Tianyang; Zhang, Tianfu; Kong, Chenfei

    2018-04-01

    Epithelial-mesenchymal transition (EMT) is one of the major processes that contribute to the occurrence of cancer metastasis. EMT has been associated with the development of oral cancer. Syndecan‑1 (SDC1) is a key cell‑surface adhesion molecule and its expression level inversely correlates with tumor differentiation and prognosis. In the present study, we aimed to determine the role of SDC1 in oral cancer progression and investigate the molecular mechanisms through which SDC1 regulates the EMT and invasiveness of oral cancer cells. We demonstrated that basal SDC1 expression levels were lower in four oral cancer cell lines (KB, Tca8113, ACC2 and CAL‑27), than in normal human periodontal ligament fibroblasts. Ectopic overexpression of SDC1 resulted in morphological transformation, decreased expression of EMT‑associated markers, as well as decreased migration, invasiveness and proliferation of oral cancer cells. In contrast, downregulation of the expression of SDC1 caused the opposite results. Furthermore, the knockdown of endogenous SDC1 activated the extracellular signal‑regulated kinase (ERK) cascade, upregulated the expression of Snail and inhibited the expression of E‑cadherin. In conclusion, our findings revealed that SDC1 suppressed EMT via the modulation of the ERK signaling pathway that, in turn, negatively affected the invasiveness of human oral cancer cells. Our results provided useful evidence about the potential use of SDC1 as a molecular target for therapeutic interventions in human oral cancer.

  3. Mangiferin inhibits lipopolysaccharide-induced production of interleukin-6 in human oral epithelial cells by suppressing toll-like receptor signaling.

    PubMed

    Li, Hao; Wang, Qi; Chen, Xinmin; Ding, Yi; Li, Wei

    2016-11-01

    Oral epithelial cells have currently been found to play an important role in inflammatory modulation in periodontitis. Mangiferin is a natural glucosylxanthone with anti-inflammatory activity. The aim of this study was to investigate the regulatory effect of mangiferin on lipopolysaccharide (LPS)-induced production of proinflammatory cytokine interleukin-6 (IL-6) in oral epithelial cells and the underlying mechanisms. The levels of LPS-induced IL-6 production in OKF6/TERT-2 oral keratinocytes were detected using enzyme-linked immunosorbent assay (ELISA). The expression of Toll-like receptor (TLR) 2 and TLR4 was determined using western blot analysis. And the phosphorylation of TLR downstream nuclear factor-κB (NF-κB), p38 mitogen-activated protein kinase (p38 MAPK) and c-Jun N-terminal kinase (JNK) was examined using cell-based protein phosphorylation ELISA kits. We found that mangiferin reduced LPS-upregulated IL-6 production in OKF6/TERT-2 cells. Additionally, mangiferin inhibited LPS-induced TLR2 and TLR4 overexpression, and suppressed the phosphorylation of NF-κB, p38 MAPK and JNK. Moreover, mangiferin repressed IL-6 production and TLR signaling activation in a dose-dependent manner after 24h treatment. Mangiferin decreases LPS-induced production of IL-6 in human oral epithelial cells by suppressing TLR signaling, and this glucosylxanthone may have potential for the treatment of periodontitis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Toll-like receptor 9 mediates oral bacteria-induced IL-8 expression in gingival epithelial cells.

    PubMed

    Kim, Youngsook; Jo, Ah-ram; Jang, Da Hyun; Cho, Yong-Joon; Chun, Jongsik; Min, Byung-Moo; Choi, Youngnim

    2012-07-01

    Previously, we reported that various oral bacteria regulate interleukin (IL)-8 production differently in gingival epithelial cells. The aim of this study was to characterize the pattern recognition receptor(s) that mediate bacteria-induced IL-8 expression. Among ligands that mimic bacterial components, only a Toll-like receptor (TLR) 9 ligand enhanced IL-8 expression as determined by ELISA. Both normal and immortalized human gingival epithelial (HOK-16B) cells expressed TLR9 intracellularly and showed enhanced IL-8 expression in response to CpG-oligonucleotide. The ability of eight strains of four oral bacterial species to induce IL-8 expression in HOK-16B cells, and their invasion capacity were examined in the absence or presence of 2% human serum. The ability of purified bacterial DNA (bDNA) to induce IL-8 was also examined. Six out of eight strains increased IL-8 production in the absence of serum. Usage of an endosomal acidification blocker or a TLR9 antagonist inhibited the IL-8 induction by two potent strains. In the presence of serum, many strains lost the ability to induce IL-8 and presented substantially reduced invasion capacity. The IL-8-inducing ability of bacteria in the absence or presence of serum showed a strong positive correlation with their invasion index. The IL-8-inducing ability of bacteria in the absence of human serum was also correlated with the immunostimulatory activity of its bDNA. The observed immunostimulatory activity of the bDNA could not be linked to its CpG motif content. In conclusion, oral bacteria induce IL-8 in gingival epithelial cells through TLR9 and the IL-8-inducing ability depends on the invasive capacity and immunostimulating DNA.

  5. Langerhans cells from human oral epithelium are more effective at stimulating allogeneic T cells in vitro than Langerhans cells from skin.

    PubMed

    Hasséus, B; Jontell, M; Bergenholtz, G; Dahlgren, U I

    2004-06-01

    This report is focused on the functional capacity of Langerhans cells (LC) in the epithelium of skin and oral mucosa, which both meet different antigenic challenges. The capacity of LC from human oral and skin epithelium to provide co-stimulatory signals to T cells in vitro was compared. LC in a crude suspension of oral epithelial cells had a significantly enhanced T cell co-stimulatory capacity compared to skin epithelial cells. This applied both to cultures with concanavalin A (con-A)-stimulated syngeneic T cells and to a mixed epithelial cell lymphocyte reaction involving allogeneic T cells. The co-stimulatory capacity of oral and skin epithelial cells was reduced by >70% if monoclonal antibodies against HLA-DR, -DP and -DQ were added to the cultures with allogeneic T cells, indicating the involvement of HLA class II expressing LC. Immunohistochemistry revealed that 6% of the epithelial cells were CD1a + LC in sections from both oral and skin epithelium. Interleukin (IL)-8 production was higher in cultures of oral epithelial cells and con-A stimulated T cells than in corresponding cultures with skin epithelial cells as accessory cells. The results suggest that LC in human oral epithelium are more efficient at stimulating T cells than those of skin.

  6. Volumetric imaging of oral epithelial neoplasia by MPM-SHGM: epithelial connective tissue interface (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pal, Rahul; Yang, Jinping; Qiu, Suimin; Resto, Vicente; McCammon, Susan; Vargas, Gracie

    2016-03-01

    The majority of oral cancers are comprised of oral squamous cell carcinoma in which neoplastic epithelial cells invade across the epithelial connective tissue interface (ECTI). Invasion is preceded by a multi-component process including epithelial hyperproliferation, loss of cell polarity, and remodeling of the extracellular matrix. Multiphoton Autofluorescence Microscopy (MPAM) and Second Harmonic Generation Microscopy (SHGM) show promise for revealing indicators of neoplasia. In particular, volumetric imaging by these methods can reveal aspects of the 3D microstructure that are not possible by other methods and which could both further our understanding of neoplastic transformation and be explored for development of diagnostic approaches in this disease having only 55% 5-year survival rate. MPAM-SHG were applied to reveal the 3D structure of the critical ECTI interface that plays an integral part toward invasion. Epithelial dysplasia was induced in an established hamster model. MPAM-SHGM was applied to lesion sites, using 780 nm excitation (450-600nm emission) for autofluroescence of cellular and extracellular components; 840 nm using 420 nm bandpass filter for SHG. The ECTI surface was identified as the interface at which SHG signal began following the epithelium and was modeled as a 3D surface using Matlab. ECTI surface area and cell features at sites of epithelial expansion where ECTI was altered were measured; Imaged sites were biopsied and processed for histology. ROC analysis using ECTI image metrics indicated the ability to delineate normal from neoplasia with high sensitivity and specificity and it is noteworthy that inflammation did not significantly alter diagnostic potential of MPAM-SHGM .

  7. HIV internalization into oral and genital epithelial cells by endocytosis and macropinocytosis leads to viral sequestration in the vesicles

    PubMed Central

    Yasen, Aizezi; Herrera, Rossana; Rosbe, Kristina; Lien, Kathy; Tugizov, Sharof M.

    2018-01-01

    Recently, we showed that HIV-1 is sequestered, i.e., trapped, in the intracellular vesicles of oral and genital epithelial cells. Here, we investigated the mechanisms of HIV-1 sequestration in vesicles of polarized tonsil, foreskin and cervical epithelial cells. HIV-1 internalization into epithelial cells is initiated by multiple entry pathways, including clathrin-, caveolin/lipid raft-associated endocytosis and macropinocytosis. Inhibition of HIV-1 attachment to galactosylceramide and heparan sulfate proteoglycans, and virus endocytosis and macropinocytosis reduced HIV-1 sequestration by 30–40%. T-cell immunoglobulin and mucin domain 1 (TIM-1) were expressed on the apical surface of polarized tonsil, cervical and foreskin epithelial cells. However, TIM-1-associated HIV-1 macropinocytosis and sequestration were detected mostly in tonsil epithelial cells. Sequestered HIV-1 was resistant to trypsin, pronase, and soluble CD4, indicating that the sequestered virus was intracellular. Inhibition of HIV-1 intraepithelial sequestration and elimination of vesicles containing virus in the mucosal epithelium may help in the prevention of HIV-1 mucosal transmission. PMID:29277006

  8. Nucleolar Organizer Regions of Oral Epithelial Cells in Crack Cocaine Users

    PubMed Central

    Carvalho de M. Thiele, Magna; Carlos Bohn, Joslei; Lima Chaiben, Cassiano; Trindade Grégio, Ana Maria; Ângela Naval Machado, Maria; Adilson Soares de Lima, Antonio

    2013-01-01

    Background: The health risks of crack cocaine smoking on the oral mucosa has not been widely researched and documented. Objective: The purpose of this study was to analyze the proliferative activity of oral epithelial cells exposed to crack cocaine smoke using silver nucleolar organizer region (AgNOR) staining. Methods: Oral smears were collected from clinically normal-appearing buccal mucosa by liquid-based exfoliative cytology of 60 individuals (30 crack cocaine users and 30 healthy controls matched for age and gender) and analyzed for cytomorphologic and cytomorphometric techniques. Results: Crack cocaine users consumed about 13.3 heat-stable rocks per day and the time consumption of the drug was of 5.2 (± 3.3) years. Mean values of AgNOR counting for case and control groups were 5.18 ± 1.83 and 3.38 ± 1.02 (P<0.05), respectively. AgNOR area and percentage of AgNOR-occupied nuclear area were increased in comparison with the control (P<0.05). There was no statistically significant difference in the mean values of the nuclear area between the groups (P>0.05). Conclusion: This study revealed that crack cocaine smoke increases the rate of cellular proliferation in cells of normal buccal mucosa. PMID:23567853

  9. Human Primary Epithelial Cells Acquire an Epithelial-Mesenchymal-Transition Phenotype during Long-Term Infection by the Oral Opportunistic Pathogen, Porphyromonas gingivalis

    PubMed Central

    Lee, Jungnam; Roberts, JoAnn S.; Atanasova, Kalina R.; Chowdhury, Nityananda; Han, Kyudong; Yilmaz, Özlem

    2017-01-01

    Porphyromonas gingivalis is a host-adapted oral pathogen associated with chronic periodontitis that successfully survives and persists in the oral epithelium. Recent studies have positively correlated periodontitis with increased risk and severity of oral squamous cell carcinoma (OSCC). Intriguingly, the presence of P. gingivalis enhances tumorigenic properties independently of periodontitis and has therefore been proposed as a potential etiological agent for OSCC. However, the initial host molecular changes induced by P. gingivalis infection which promote predisposition to cancerous transformation through EMT (epithelial-mesenchymal-transition), has never been studied in human primary cells which more closely mimic the physiological state of cells in vivo. In this study, we examine for the first time in primary oral epithelial cells (OECs) the expression and activation of key EMT mediators during long-term P. gingivalis infection in vitro. We examined the inactive phosphorylated state of glycogen synthase kinase-3 beta (p-GSK3β) over 120 h P. gingivalis infection and found p-GSK3β, an important EMT regulator, significantly increases over the course of infection (p < 0.01). Furthermore, we examined the expression of EMT-associated transcription factors, Slug, Snail, and Zeb1 and found significant increases (p < 0.01) over long-term P. gingivalis infection in protein and mRNA expression. Additionally, the protein expression of mesenchymal intermediate filament, Vimentin, was substantially increased over 120 h of P. gingivalis infection. Analysis of adhesion molecule E-cadherin showed a significant decrease (p < 0.05) in expression and a loss of membrane localization along with β-catenin in OECs. Matrix metalloproteinases (MMPs) 2, 7, and 9 are all markedly increased with long-term P. gingivalis infection. Finally, migration of P. gingivalis infected cells was evaluated using scratch assay in which primary OEC monolayers were wounded and treated with proliferation

  10. Frequency of micronucleus in oral epithelial cells after exposure to mate-tea in healthy humans

    PubMed Central

    Campagnoli, Eduardo B.; Milan, José R.; Reinheimer, Angélica; Masson, Maicon; Capella, Diogo L.

    2014-01-01

    Objectives: The aim of this study was to evaluate the possibility of technique simplification for cytology slides in order to evaluate the frequency of micronuclei (FMic) and conduct a experiment looking to know the FMic of oral epithelial cells of healthy volunteers exposed to mate tea (Ilex paraguarariensis). Material and Methods: This is a laboratorial and nonrandomized trial (quasi-experiment), where the nonusers subjects were exposed to mate-tea, consumed in the traditional way, two drinks, two times a day for a single week. Two cytology of exfoliated epithelial cells were obtained before and after the mate tea exposition. Results: The sample was composed by 10 volunteers. The age ranged from 18 to 33 years (Mean 23; SD5.5). The use of mate tea did not showed significant variation in the FMic (Wilcoxon Signed Ranks Test p= .24). Conclusions: The proposed technique simplification showed to be reliable, without losses when compared to the conventional technique and with the advantage of eliminate toxic substances, becoming simple and practical tool for research in dentistry. The acute exposure to mate tea did not induce an increase of FMic in exfoliated buccal cells of healthy nondrinkers and nonsmokers subjects and may not have genotoxic effect. More human studies are needed before a conclusion can be made on the oral carcinogenic risk of mate tea to humans. Key words:Micronucleus, Oral Cancer, Cytology, Mate tea, Ilex paraguariensis. PMID:24608213

  11. Characterization of transformation related genes in oral cancer cells.

    PubMed

    Chang, D D; Park, N H; Denny, C T; Nelson, S F; Pe, M

    1998-04-16

    A cDNA representational difference analysis (cDNA-RDA) and an arrayed filter technique were used to characterize transformation-related genes in oral cancer. From an initial comparison of normal oral epithelial cells and a human papilloma virus (HPV)-immortalized oral epithelial cell line, we obtained 384 differentially expressed gene fragments and arrayed them on a filter. Two hundred and twelve redundant clones were identified by three rounds of back hybridization. Sequence analysis of the remaining clones revealed 99 unique clones corresponding to 69 genes. The expression of these transformation related gene fragments in three nontumorigenic HPV-immortalized oral epithelial cell lines and three oral cancer cell lines were simultaneously monitored using a cDNA array hybridization. Although there was a considerable cell line-to-cell line variability in the expression of these clones, a reliable prediction of their expression could be made from the cDNA array hybridization. Our study demonstrates the utility of combining cDNA-RDA and arrayed filters in high-throughput gene expression difference analysis. The differentially expressed genes identified in this study should be informative in studying oral epithelial cell carcinogenesis.

  12. Differential immunohistochemical expression profiles of perlecan-binding growth factors in epithelial dysplasia, carcinoma in situ, and squamous cell carcinoma of the oral mucosa.

    PubMed

    Hasegawa, Mayumi; Cheng, Jun; Maruyama, Satoshi; Yamazaki, Manabu; Abé, Tatsuya; Babkair, Hamzah; Saito, Chikara; Saku, Takashi

    2016-05-01

    The intercellular deposit of perlecan, a basement-membrane type heparan sulfate proteoglycan, is considered to function as a growth factor reservoir and is enhanced in oral epithelial dysplasia and carcinoma in situ (CIS). However, it remains unknown which types of growth factors function in these perlecan-enriched epithelial conditions. The aim of this study was to determine immunohistochemically which growth factors were associated with perlecan in normal oral epithelia and in different epithelial lesions from dysplasia and CIS to squamous cell carcinoma (SCC). Eighty-one surgical tissue specimens of oral SCC containing different precancerous stages, along with ten of normal mucosa, were examined by immunohistochemistry for growth factors. In normal epithelia, perlecan and growth factors were not definitely expressed. In epithelial dysplasia, VEGF, SHH, KGF, Flt-1, and Flk-1were localized in the lower half of rete ridges (in concordance with perlecan, 33-100%), in which Ki-67 positive cells were densely packed. In CIS, perlecan and those growth factors/receptors were more strongly expressed in the cell proliferating zone (63-100%). In SCC, perlecan and KGF disappeared from carcinoma cells but emerged in the stromal space (65-100%), while VEGF, SHH, and VEGF receptors remained positive in SCC cells (0%). Immunofluorescence showed that the four growth factors were shown to be produced by three oral SCC cell lines and that their signals were partially overlapped with perlecan signals. The results indicate that perlecan and its binding growth factors are differentially expressed and function in specific manners before (dysplasia/CIS) and after (SCC) invasion of dysplasia/carcinoma cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Release of HIV-1 sequestered in the vesicles of oral and genital mucosal epithelial cells by epithelial-lymphocyte interaction

    PubMed Central

    Yasen, Aizezi; Herrera, Rossana; Rosbe, Kristina

    2017-01-01

    Oropharyngeal mucosal epithelia of fetuses/neonates/infants and the genital epithelia of adults play a critical role in HIV-1 mother-to-child transmission and sexual transmission of virus, respectively. To study the mechanisms of HIV-1 transmission through mucosal epithelium, we established polarized tonsil, cervical and foreskin epithelial cells. Analysis of HIV-1 transmission through epithelial cells showed that approximately 0.05% of initially inoculated virions transmigrated via epithelium. More than 90% of internalized virions were sequestered in the endosomes of epithelial cells, including multivesicular bodies (MVBs) and vacuoles. Intraepithelial HIV-1 remained infectious for 9 days without viral release. Release of sequestered intraepithelial HIV-1 was induced by the calcium ionophore ionomycin and by cytochalasin D, which increase intracellular calcium and disrupt the cortical actin of epithelial cells, respectively. Cocultivation of epithelial cells containing HIV-1 with activated peripheral blood mononuclear cells and CD4+ T lymphocytes led to the disruption of epithelial cortical actin and spread of virus from epithelial cells to lymphocytes. Treatment of epithelial cells with proinflammatory cytokines tumor necrosis factor-alpha and interferon gamma also induced reorganization of cortical actin and release of virus. Inhibition of MVB formation by small interfering RNA (siRNA)-mediated silencing of its critical protein hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) expression reduced viral sequestration in epithelial cells and its transmission from epithelial cells to lymphocytes by ~60–70%. Furthermore, inhibition of vacuole formation of epithelial cells by siRNA-inactivated rabankyrin-5 expression also significantly reduced HIV-1 sequestration in epithelial cells and spread of virus from epithelial cells to lymphocytes. Interaction of the intercellular adhesion molecule-1 of epithelial cells with the function-associated antigen-1

  14. Acquisition cancer stemness, mesenchymal transdifferentiation, and chemoresistance properties by chronic exposure of oral epithelial cells to arecoline.

    PubMed

    Wang, Tung Yuan; Peng, Chih-Yu; Lee, Shiuan-Shinn; Chou, Ming-Yung; Yu, Cheng-Chia; Chang, Yu-Chao

    2016-12-20

    Oral squamous cell carcinoma (OSCC), one of the most deadliest malignancies in the world, is caused primarily by areca nut chewing in Southeast Asia. The mechanisms by which areca nut participates in OSCC tumorigenesis are not well understood. In this study, we investigated the effects of low dose long-term arecoline (10 μg/mL, 90-days), a major areca nut alkaloid, on enhancement cancer stemness of human oral epithelial (OE) cells. OE cells with chronic arecoline exposure resulted in increased ALDH1 population, CD44 positivity, stemness-related transcription factors (Oct4, Nanog, and Sox2), epithelial-mesenchymal transdifferentiation (EMT) traits, chemoresistance, migration/invasiveness/anchorage independent growth and in vivo tumor growth as compared to their untreated controls. Mechanistically, ectopic miR-145 over-expression in chronic arecoline-exposed OE (AOE) cells inhibited the cancer stemness and xenografic. In AOE cells, luciferase reporter assays further revealed that miR-145 directly targets the 3' UTR regions of Oct4 and Sox2 and overexpression of Sox2/Oct4 effectively reversed miR-145-regulated cancer stemness-associated phenomenas. Additionally, clinical results further revealed that Sox2 and Oct4 expression was inversely correlated with miR-145 in the tissues of areca quid chewing-associated OSCC patients. This study hence attempts to provide novel insight into areca nut-induced oral carcinogenesis and new intervention for the treatment of OSCC patients, especially in areca nut users.

  15. Increased ICAM-1 Expression in Transformed Human Oral Epithelial Cells: Molecular Mechanism and Functional Role in Peripheral Blood Mononuclear Cell Adhesion and Lymphokine-Activated-Killer Cell Cytotoxicity

    PubMed Central

    Huang, George T.-J.; Zhang, Xinli; Park, No-Hee

    2012-01-01

    The intercellular adhesion molecule-1 (ICAM-1, CD54) serves as a counter-receptor for the β2-integrins, LFA-1 and Mac-1, which are expressed on leukocytes. Although expression of ICAM-1 on tumor cells has a role in tumor progression and development, information on ICAM-1 expression and its role in oral cancer has not been established. Normal human oral keratinocytes (NHOK), human papilloma virus (HPV)-immortalized human oral keratinocyte lines (HOK-16B, HOK-18A, and HOK-18C), and six human oral neoplastic cell lines (HOK-16B-BaP-T1, SCC-4, SCC-9, HEp-2, Tu-177 and 1483) were used to study ICAM-1 expression and its functional role in vitro. Our results demonstrated that NHOK express negligible levels of ICAM-1, whereas immortalized human oral keratinocytes and cancer cells express significantly higher levels of ICAM-1, except for HOK-16B-BaP-T1 and HEp-2. Altered mRNA half-lives did not fully account for the increased accumulation of ICAM-1 mRNA. Adhesion of peripheral blood mononuclear cells (PBMC) to epithelial cells correlated with cell surface ICAM-1 expression levels. This adhesion was inhibited by antibodies specific for either ICAM-1 or LFA-1/Mac-1, suggesting a role for these molecules in adhesion. In contrast, lymphokine-activated-killer (LAK) cell cytotoxic killing of epithelial cells did not correlate with ICAM-1 levels or with adhesion. Nonetheless, within each cell line, blocking of ICAM-1 or LFA-1/Mac-1 reduced LAK cells killing, suggesting that ICAM-1 is involved in mediating this killing. PMID:10938387

  16. Expression patterns of tight junction components induced by CD24 in an oral epithelial cell-culture model correlated to affected periodontal tissues.

    PubMed

    Ye, P; Yu, H; Simonian, M; Hunter, N

    2014-04-01

    Previously we demonstrated uniformly strong expression of CD24 in the epithelial attachment to the tooth and in the migrating epithelium of the periodontitis lesion. Titers of serum antibodies autoreactive with CD24 peptide correlated with reduced severity of periodontal disease. Ligation of CD24 expressed by oral epithelial cells induced formation of tight junctions that limited paracellular diffusion. In this study, we aimed to reveal that the lack of uniform expression of tight junction components in the pocket epithelium of periodontitis lesions is likely to contribute to increased paracellular permeability to bacterial products. This is proposed as a potential driver of the immunopathology of periodontitis. An epithelial culture model with close correspondence for expression patterns for tight junction components in periodontal epithelia was used. Immunohistochemical staining and confocal laser scanning microscopy were used to analyse patterns of expression of gingival epithelial tight junction components. The minimally inflamed gingival attachment was characterized by uniformly strong staining at cell contacts for the tight junction components zona occludens-1, zona occludens-2, occludin, junction adhesion molecule-A, claudin-4 and claudin-15. In contrast, the pocket epithelium of the periodontal lesion showed scattered, uneven staining for these components. This pattern correlated closely with that of unstimulated oral epithelial cells in culture. Following ligation of CD24 expressed by these cells, the pattern of tight junction component expression of the minimally inflamed gingival attachment developed rapidly. There was evidence for non-uniform and focal expression only of tight junction components in the pocket epithelium. In the cell-culture model, ligation of CD24 induced a tight junction expression profile equivalent to that observed for the minimally inflamed gingival attachment. Ligation of CD24 expressed by gingival epithelial cells by lectin

  17. Porphyromonas gingivalis-mediated shedding of extracellular matrix metalloproteinase inducer (EMMPRIN) by oral epithelial cells: a potential role in inflammatory periodontal disease.

    PubMed

    Feldman, Mark; La, Vu Dang; Lombardo Bedran, Telma Blanca; Palomari Spolidorio, Denise Madalena; Grenier, Daniel

    2011-12-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) or CD147 is a transmembrane glycoprotein expressed by various cell types, including oral epithelial cells. Recent studies have brought evidence that EMMPRIN plays a role in periodontitis. In the present study, we investigated the effect of Porphyromonas gingivalis, a major pathogen in chronic periodontitis, on the shedding of membrane-anchored EMMPRIN and on the expression of the EMMPRIN gene by oral epithelial cells. A potential contribution of shed EMMPRIN to the inflammatory process of periodontitis was analyzed by evaluating the effect of recombinant EMMPRIN on cytokine and matrix metalloproteinase (MMP) secretion by human gingival fibroblasts. ELISA and immunofluorescence analyses revealed that P. gingivalis mediated the shedding of epithelial cell-surface EMMPRIN in a dose- and time-dependent manner. Cysteine proteinase (gingipain)-deficient P. gingivalis mutants were used to demonstrate that both Arg- and Lys-gingipain activities are involved in EMMPRIN shedding. Real-time PCR showed that P. gingivalis had no significant effect on the expression of the EMMPRIN gene in epithelial cells. Recombinant EMMPRIN induced the secretion of IL-6 and MMP-3 by gingival fibroblasts, a phenomenon that appears to involve mitogen activated protein kinases. The present study brought to light a new mechanism by which P. gingivalis can promote the inflammatory response during periodontitis. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. Evaluation of micronuclear frequencies in both circulating lymphocytes and buccal epithelial cells of patients with oral lichen planus and oral lichenoid contact reactions.

    PubMed

    Saruhanoğlu, A; Ergun, S; Kaya, M; Warnakulasuriya, S; Erbağcı, M; Öztürk, Ş; Deniz, E; Özel, S; Çefle, K; Palanduz, Ş; Tanyeri, H

    2014-07-01

    The aim of this study was to evaluate the frequency of micronuclei (MNs) in both circulating lymphocytes and buccal epithelial cells of patients with oral lichenoid contact reactions (OLCRs) or with oral lichen planus (OLP) and compare their MN scores with those of healthy controls (HCs). The study group included 21 patients (mean age 51.3 ± 12.4; 6 males, 15 females) with OLCRs and 22 patients (mean age 47.6 ± 14.4; 4 males, 18 females) with OLP who were clinically diagnosed and histopathologically confirmed according to WHO diagnostic criteria (WHO Collaborating Centre for Oral Precancerous Lesions, 1978). All patients with OLCR demonstrated contact allergy to tested dental materials when evaluated by skin patch testing according to International Contact Dermatitis Research Group (ICDRG), while all OLP patients tested negative to patch testing. Seventeen individuals with no oral mucosal disorders (mean age 51.7 ± 11.3; 8 males, 9 females) were recruited to constitute the healthy control group. [Correction added on 30 May 2014, after first online publication: the term, 'mean age' has been added to the text in parenthesis throughout the Material and Methods section.] Clinical features including type of OLP, location, disease severity, presence of skin lesions, presence of systemic disease including any allergies and dental (periodontal) status were recorded. MN analyses were performed on peripheral blood lymphocytes and on smears of buccal epithelial cells of all three study groups. Most OLP and OLCR lesions were of reticular type (83%), and OLP lesions were distributed bilaterally on the buccal mucosa (90.5%). The medians of MN frequencies in buccal epithelial cells in OLP and OLCR groups were significantly higher when compared with HC group (P < 0.001). [Correction added on 30 May 2014, after first online publication: in the results, 2nd sentence, the word 'lymphocytes' has been removed.] There was no significant difference between OLP group (14

  19. Immunohistochemical Evaluation of Glucose Transporter Type 1 in Epithelial Dysplasia and Oral Squamous Cell Carcinoma.

    PubMed

    Pereira, Karuza Maria Alves; Feitosa, Sthefane Gomes; Lima, Ana Thayssa Tomaz; Luna, Ealber Carvalho Macedo; Cavalcante, Roberta Barroso; de Lima, Kenio Costa; Chaves, Filipe Nobre; Costa, Fábio Wildson Gurgel

    2016-01-01

    Oral squamous cell carcinoma (OSCC) is the most common malignancy of the oral cavity and some of these have been documented in association or preceded by oral epithelial dysplasia (OED). Aggressive cancers with fast growth have demonstrated overexpression of some glucose transporters (GLUTs). Thus, the aim of this study was to analyze the immunohistochemical expression of the glucose transporter, GLUT-1, in OEDs and OSCCs, seeking to better elucidate the biological behavior of neoplasias. Fifteen cases were selected this research of both lesions. Five areas were analyzed from each case by counting the percentage of positive cells at 400x magnification. Immunoreactivity of GLUT-1 was observed in 100% of the samples ranging from 54.2% to 86.2% for the OSCC and 73.9% to 97.4% for the OED. Statistical test revealed that there was greater overexpression of GLUT-1 in OED than the OSCC (p=0.01). It is believed the high expression of GLUT-1 may reflect the involvement of GLUT-1 in early stages of oral carcinogenesis.

  20. Effects of methyl gallate and gallic acid on the production of inflammatory mediators interleukin-6 and interleukin-8 by oral epithelial cells stimulated with Fusobacterium nucleatum.

    PubMed

    Kang, Mi-Sun; Jang, Hee-Sook; Oh, Jong-Suk; Yang, Kyu-Ho; Choi, Nam-Ki; Lim, Hoi-Soon; Kim, Seon-Mi

    2009-12-01

    Interactions between periodontal bacteria and human oral epithelial cells can lead to the activation and expression of a variety of inflammatory mediators in epithelial cells. Fusobacterium nucleatum is a filamentous human pathogen that is strongly associated with periodontal diseases. This study examined the effects of methyl gallate (MG) and gallic acid (GA) on the production of inflammatory mediators, interleukin (IL)-6 and IL-8, by oral epithelial cells stimulated by F. nucleatum. In a real-time reverse transcription-polymerase chain reaction and an enzyme-linked immunosorbent assay, live F. nucleatum induced high levels of gene expression and protein release of IL-6 and IL-8. The effects of MG and GA were examined by treating KB oral epithelial cells with MG and GA and stimulating them with F. nucleatum. MG and GA inhibited significantly the increases in the IL-6 and IL-8 gene and protein levels in a dose-dependent manner. These Compounds also inhibited the growth of F. nucleatum. No visible effects of MG and GA on the adhesion and invasion of KB cells by F. nucleatum were observed. In conclusion, both MG and GA inhibit IL-6 and IL-8 production from F. nucleatum-activated KB cells.

  1. The epithelial-mesenchymal interactions: insights into physiological and pathological aspects of oral tissues.

    PubMed

    Santosh, Arvind Babu Rajendra; Jones, Thaon Jon

    2014-03-17

    In the human biological system, the individual cells divide and form tissues and organs. These tissues are hetero-cellular. Basically any tissue consists of an epithelium and the connective tissue. The latter contains mainly mesenchymally-derived tissues with a diversified cell population. The cell continues to grow and differentiate in a pre-programmed manner using a messenger system. The epithelium and the mesenchymal portion of each tissue have two different origins and perform specific functions, but there is a well-defined interaction mechanism, which mediates between them. Epithelial mesenchymal interactions (EMIs) are part of this mechanism, which can be regarded as a biological conversation between epithelial and mesenchymal cell populations involved in the cellular differentiation of one or both cell populations. EMIs represent a process that is essential for cell growth, cell differentiation and cell multiplication. EMIs are associated with normal physiological processes in the oral cavity, such as odontogenesis, dentino-enamel junction formation, salivary gland development, palatogenesis, and also pathological processes, such as oral cancer. This paper focuses the role EMIs in odontogenesis, salivary gland development, palatogenesis and oral cancer.

  2. Comparison of staining of mitotic figures by haematoxylin and eosin-and crystal violet stains, in oral epithelial dysplasia and squamous cell carcinoma.

    PubMed

    Ankle, Madhuri R; Kale, Alka D; Charantimath, Seema

    2007-01-01

    Mitosis of cells gives rise to tissue integrity. Defects during mitosis bring about abnormalities. Excessive proliferation of cells due to increased mitosis is one such outcome, which is the hallmark in precancer and cancer. The localization of proliferating cells or their precursors may not be obvious and easy. Establishing an easy way to distinguish these mitotic cells will help in grading and understanding their biological potential. Although immunohistochemistry is an advanced method in use, the cost and time factor makes it less feasible for many laboratories. Selective histochemical stains like toluidine blue, giemsa and crystal violet have been used in tissues including the developing brain, neural tissue and skin. 1) To compare the staining of mitotic cells in haematoxylin and eosin with that in crystal violet. 2) To compare the number of mitotic figures present in normal oral mucosa, epithelial dysplasia and oral squamous cell carcinoma in crystal violet-stained sections with that in H and E-stained sections. Ten tissues of normal oral mucosa and 15 tissues each of oral epithelial dysplasia seen in tobacco-associated leukoplakia and squamous cell carcinoma were studied to evaluate the selectivity of 1% crystal violet for mitotic figures. The staining was compared with standard H and E staining. Statistical analysis was done using Mann-Whitney U test. A statistically significant increase in the mean mitotic count was observed in crystal violet-stained sections of epithelial dysplasia as compared to the H and E-stained sections (p=0.0327). A similar increase in the mitotic counts was noted in crystal violet-stained sections of oral squamous cell carcinoma as compared to the H and E-stained sections.(p=0.0443). No significant difference was found in the mitotic counts determined in dysplasia or carcinoma by either the crystal violet (p=0.4429) or the H and E-staining techniques (p=0.2717). One per cent crystal violet provides a definite advantage over the H

  3. Current Aspects on Oral Squamous Cell Carcinoma

    PubMed Central

    Markopoulos, Anastasios K

    2012-01-01

    Oral squamous cell carcinoma is the most common malignant epithelial neoplasm affecting the oral cavity. This article overviews the essential points of oral squamous cell carcinoma, highlighting its risk and genomic factors, the potential malignant disorders and the therapeutic approaches. It also emphasizes the importance of the early diagnosis. PMID:22930665

  4. β2 adrenergic agonist suppresses eosinophil-induced epithelial-to-mesenchymal transition of bronchial epithelial cells.

    PubMed

    Kainuma, Keigo; Kobayashi, Tetsu; D'Alessandro-Gabazza, Corina N; Toda, Masaaki; Yasuma, Taro; Nishihama, Kota; Fujimoto, Hajime; Kuwabara, Yu; Hosoki, Koa; Nagao, Mizuho; Fujisawa, Takao; Gabazza, Esteban C

    2017-05-02

    Epithelial-mesenchymal transition is currently recognized as an important mechanism for the increased number of myofibroblasts in cancer and fibrotic diseases. We have already reported that epithelial-mesenchymal transition is involved in airway remodeling induced by eosinophils. Procaterol is a selective and full β 2 adrenergic agonist that is used as a rescue of asthmatic attack inhaler form and orally as a controller. In this study, we evaluated whether procaterol can suppress epithelial-mesenchymal transition of airway epithelial cells induced by eosinophils. Epithelial-mesenchymal transition was assessed using a co-culture system of human bronchial epithelial cells and primary human eosinophils or an eosinophilic leukemia cell line. Procaterol significantly inhibited co-culture associated morphological changes of bronchial epithelial cells, decreased the expression of vimentin, and increased the expression of E-cadherin compared to control. Butoxamine, a specific β 2 -adrenergic antagonist, significantly blocked changes induced by procaterol. In addition, procaterol inhibited the expression of adhesion molecules induced during the interaction between eosinophils and bronchial epithelial cells, suggesting the involvement of adhesion molecules in the process of epithelial-mesenchymal transition. Forskolin, a cyclic adenosine monophosphate-promoting agent, exhibits similar inhibitory activity of procaterol. Overall, these observations support the beneficial effect of procaterol on airway remodeling frequently associated with chronic obstructive pulmonary diseases.

  5. The Spindle Cell Neoplasms of the Oral Cavity.

    PubMed

    Shamim, Thorakkal

    2015-01-01

    Spindle cell neoplasms are defined as neoplasms that consist of spindle-shaped cells in the histopathology. Spindle cell neoplasms can affect the oral cavity. In the oral cavity, the origin of the spindle cell neoplasms may be traced to epithelial, mesenchymal and odontogenic components. This article aims to review the spindle cell neoplasms of the oral cavity with emphasis on histopathology.

  6. The Spindle Cell Neoplasms of the Oral Cavity

    PubMed Central

    Shamim, Thorakkal

    2015-01-01

    Spindle cell neoplasms are defined as neoplasms that consist of spindle-shaped cells in the histopathology. Spindle cell neoplasms can affect the oral cavity. In the oral cavity, the origin of the spindle cell neoplasms may be traced to epithelial, mesenchymal and odontogenic components. This article aims to review the spindle cell neoplasms of the oral cavity with emphasis on histopathology. PMID:26351482

  7. Glucocorticoid receptors in bronchial epithelial cells in asthma.

    PubMed

    Vachier, I; Chiappara, G; Vignola, A M; Gagliardo, R; Altieri, E; Térouanne, B; Vic, P; Bousquet, J; Godard, P; Chanez, P

    1998-09-01

    The expression of the glucocorticoid receptor (GR) in untreated or in steroid-dependent asthmatic patients is poorly understood. We therefore studied GR mRNA and protein levels in bronchial biopsies obtained from seven untreated asthmatic patients, seven control volunteers, and seven patients with chronic bronchitis. We also studied in bronchial epithelial cells obtained by brushing from 13 untreated asthmatics, 18 steroid-dependent asthmatics, 11 control volunteers, and 12 patients with chronic bronchitis, GR and heat shock protein 90 kD (hsp90) mRNA as well as the immunoreactivity of GR, intercellular adhesion molecule (ICAM-1), and granulocyte macrophage-colony-stimulating factor (GM-CSF). GR mRNA and protein level was similar in all subject groups in both biopsies and bronchial epithelial cells. Hsp90 mRNA level was also similar in all subject groups. ICAM-1 expression was significantly increased in bronchial epithelial cells from untreated asthmatics, but ICAM-1 was not expressed in those from steroid-dependent asthmatic patients. GM-CSF expression was significantly increased in bronchial epithelial cells from untreated and steroid-dependent asthmatic patients. GR expression within the airways is unaltered by oral long-term steroid treatment in asthma, but the expression of some but not all specific markers for asthma is modified by oral steroid.

  8. EphA2 is an epithelial cell pattern recognition receptor for fungal β-glucans

    PubMed Central

    Swidergall, Marc; Solis, Norma V.; Lionakis, Michail S.; Filler, Scott G.

    2017-01-01

    Oral epithelial cells discriminate between pathogenic and non-pathogenic stimuli, and only induce an inflammatory response when they are exposed to high levels of a potentially harmful microorganism. The pattern recognition receptors (PRRs) in epithelial cells that mediate this differential response are poorly understood. Here, we demonstrate that the ephrin type-A receptor 2 (EphA2) is an oral epithelial cell PRR that binds to exposed β-glucans on the surface of the fungal pathogen Candida albicans. Binding of C. albicans to EphA2 on oral epithelial cells activates signal transducer and activator of transcription 3 (Stat3) and mitogen-activated protein kinase signaling in an inoculum-dependent manner, and is required for induction of a pro-inflammatory and antifungal response. EphA2−/− mice have impaired inflammatory responses and reduced IL-17 signaling during oropharyngeal candidiasis, resulting in more severe disease. Our study reveals that EphA2 functions as PRR for β-glucans that senses epithelial cell fungal burden and is required for the maximal mucosal inflammatory response to C. albicans. PMID:29133884

  9. Exfoliative cytology of oral epithelial cells from patients with type 2 diabetes: cytomorphometric analysis.

    PubMed

    Rivera, César; Núñez-de-Mendoza, Camila

    2013-01-01

    This research objective is to identify cytomorphometrical changes using exfoliative cytology (EC) and later Papanicolaou (Pap) staining, for oral epithelial cells of patients with type 2 diabetes (DM2) (n = 30), while being compared to patients without the disease (n = 30). Additionally, we investigated an association between cellular changes and salivary flow levels; relationship that until now has not been reported. Results show that the cell diameter and the nuclear-cytoplasmic ratio was significantly higher compared to those patients without the disease (p ≤ 0.001 Student and Welch test). Decreased salivary flow was significantly associated with increased cell diameter and nuclear-cytoplasmic ratio (p ≤ 0.001 ANOVA with Tukey test). Evidence and clinical observations show that DM2 and decreased salivary flow are related to detectable cytomorphometrical changes in exfoliated cells, which may extend the horizon of this cytological technique.

  10. Oral focal epithelial hyperplasia: report of 3 cases with human papillomavirus DNA sequencing analysis.

    PubMed

    Gültekin, S E; Tokman Yildirim, Benay; Sarisoy, S

    2011-01-01

    Focal epithelial hyperplasia (FEH), or Heck's disease, is a benign proliferative viral infection of the oral mucosa that is related to Human Papil-lomavirus (HPV), mainly subtypes 13 and 32. Although this condition is known to exist in numerous populations and ethnic groups, the reported cases among Caucasians are relatively rare. It presents as asymptomatic papules or nodules on the oral mucosa, gingiva, tongue, and lips. Histopathologically, it is characterized by parakeratosis, epithelial hyperplasia, focal acanthosis, fusion, and horizontal outgrowth of epithelial ridges and the cells named mitozoids. The purpose of this case report was to present 3 cases of focal epithelial hyperplasia in a pediatric age group. Histopathological and clinical features of cases are discussed and DNA sequencing analysis is reported in which HPV 13, HPV 32, and HPV 11 genomes are detected.

  11. Exfoliative cytology of oral epithelial cells from patients with type 2 diabetes: cytomorphometric analysis

    PubMed Central

    Rivera, César; Núñez-de-Mendoza, Camila

    2013-01-01

    This research objective is to identify cytomorphometrical changes using exfoliative cytology (EC) and later Papanicolaou (Pap) staining, for oral epithelial cells of patients with type 2 diabetes (DM2) (n = 30), while being compared to patients without the disease (n = 30). Additionally, we investigated an association between cellular changes and salivary flow levels; relationship that until now has not been reported. Results show that the cell diameter and the nuclear-cytoplasmic ratio was significantly higher compared to those patients without the disease (p ≤ 0.001 Student and Welch test). Decreased salivary flow was significantly associated with increased cell diameter and nuclear-cytoplasmic ratio (p ≤ 0.001 ANOVA with Tukey test). Evidence and clinical observations show that DM2 and decreased salivary flow are related to detectable cytomorphometrical changes in exfoliated cells, which may extend the horizon of this cytological technique. PMID:24040475

  12. Functional expression of BMP7 receptors in oral epithelial cells. Interleukin-17F production in response to BMP7.

    PubMed

    Nishio, Kensuke; Ozawa, Yasumasa; Ito, Hisanori; Kifune, Takashi; Narita, Tatsuya; Iinuma, Toshimitsu; Gionhaku, Nobuhito; Asano, Masatake

    2017-10-01

    Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-β (TGF-β) superfamily. Recently, BMP7 has been demonstrated to be produced by salivary glands and contribute to embryonic branching in mice. The BMP7 in saliva is thought to be delivered to the oral cavity and is expected to contact with stratified squamous epithelial cells which line the surface of oral mucosa. In this study, we attempted to investigate the effects of BMP7 on oral epithelial cells. The expression of BMP receptors was examined by reverse transcriptase-polymerase chain reaction (RT-PCR). OSCCs were stimulated with human recombinant BMP7 (hrBMP7) and the phosphorylation status of Smad1/5/8 was examined by western blotting. For microarray analysis, Ca9-22 cells were stimulated with 100 ng/mL of hrBMP7 and total RNA was extracted and subjected to real-time PCR. The 5'-untranslated region (5'-UTR) of IL-17 F gene was cloned to pGL4-basic vector and used for luciferase assay. Ca9-22 cells were pre-incubated with DM3189, a specific inhibitor of Smad1/5/8, for inhibition assay. All isoforms of type I and type II BMP receptors were expressed in both Ca9-22 and HSC3 cells and BMP7 stimulation resulted in the phosphorylation of Smad1/5/8 in both cell lines. The microarray analysis revealed the induction of interleukin-17 F (IL-17 F), netrin G2 (NTNG2) and hyaluronan synthase 1 (HAS1). Luciferase assay using the 5'-UTR of the IL-17 F gene revealed transcriptional regulation. Induced IL-17 F production was further confirmed at the protein level by ELISA. Smad1/5/8 inhibitor pretreatment decreased IL-17 F expression levels in the cells.

  13. Evaluation of mast cells, eosinophils, blood capillaries in oral lichen planus and oral lichenoid mucositis.

    PubMed

    Reddy, D Santhosh; Sivapathasundharam, B; Saraswathi, T R; SriRam, G

    2012-01-01

    Mast cells are granule containing secretory cells present in oral mucosal and connective tissue environment. Oral lichen planus and oral lichenoid lesions are commonly occurring oral diseases and have some similarity clinically and histologically. Both are characterized by an extensive sub epithelial infiltrate of T cells, together with mast cells, eosinophils and blood capillaries. In this study mast cell and eosinophil densities along with number of blood capillaries were studied to find out if they could aid in histopathological distinction between oral lichen planus and lichenoid mucositis. To enumerate mast cells and compare the status of Mast Cells (Intact or Degranulated) in Lichen planus, Lichenoid mucositis and normal buccal mucosa in tissue sections stained with Toluidine Blue, and also to enumerate Eosinophils and blood capillaries in tissue sections stained with H and E. The study group included 30 cases each of oral lichen planus and oral lichenoid mucositis. 10 cases of clinically normal oral buccal mucosa formed the control group. All the sections were stained with Toluidine blue and H and E separately. Histopathological analysis was done using binocular light microscope equipped with square ocular grid to standardize the field of evaluation. The result of the study showed. · Significant increase in number of mast cells in oral lichen planus and oral lichenoid mucositis compared to normal buccal mucosa. · Significant increase of intact mast cells suepithelially within the inflammatory cell infiltrate in oral lichen planus compared to oral lichenoid mucositis. · Significant increase of degranulated mast cells in oral lichenoid mucositis to oral lichen planus, and increase in number of eosinophil densities in oral lichenoid mucositis compared to oral lichen planus. · Significant increase in number of capillaries in oral lichenoid mucositis compared to oral lichen planus. The findings of increased number of intact mast cells sub epithelially in oral

  14. IL-27 Modulates Chemokine Production in TNF-α -Stimulated Human Oral Epithelial Cells.

    PubMed

    Hosokawa, Yoshitaka; Hosokawa, Ikuko; Ozaki, Kazumi; Matsuo, Takashi

    2017-01-01

    Interleukin-27 (IL-27) is a cytokine which belongs to the IL-12 family. However, the role of IL-27 in the pathogenesis of periodontal disease is uncertain. The aim of this study was to examine the effect of IL-27 on chemokine production in TNF-α-stimulated human oral epithelial cells (TR146). We measured chemokine production in TR146 by ELISA. We used western blot analysis to detect the phosphorylation levels of signal transduction molecules, including STAT1 and STAT3 in TR146. We used inhibitors to examine the role of STAT1 and STAT3 activation. IL-27 increased CXCR3 ligands production in TNF-α-stimulated TR146. Meanwhile, IL-27 suppressed IL-8 and CCL20 production induced by TNF-α. STAT1 phosphorylation level in IL-27 and TNF-α-stimulated TR146 was enhanced in comparison to TNF-α-stimulated TR146. STAT3 phosphorylation level in IL-27-treated TR146 did not change by TNF-α. Both STAT1 inhibitor and STAT3 inhibitor decreased CXCR3 ligands production. STAT1 inhibitor overrode the inhibitory effect of IL-27 on IL-8 and CCL20 production in TNF-α-stimulated TR146. Meanwhile, STAT3 inhibitor did not modulate IL-8 and CCL20 production. IL-27 might control leukocyte migration in periodontal lesion by modulating chemokine production from epithelial cells. © 2017 The Author(s). Published by S. Karger AG, Basel.

  15. Esterification of all-trans-retinol in normal human epithelial cell strains and carcinoma lines from oral cavity, skin and breast: reduced expression of lecithin:retinol acyltransferase in carcinoma lines.

    PubMed

    Guo, X; Ruiz, A; Rando, R R; Bok, D; Gudas, L J

    2000-11-01

    When exogenous [(3)H]retinol (vitamin A) was added to culture medium, normal human epithelial cells from the oral cavity, skin, lung and breast took up and esterified essentially all of the [(3)H]retinol within a few hours. As shown by [(3)H]retinol pulse-chase experiments, normal epithelial cells then slowly hydrolyzed the [(3)H]retinyl esters to [(3)H]retinol, some of which was then oxidized to [(3)H]retinoic acid (RA) over a period of several days. In contrast, cultured normal human fibroblasts and human umbilical vein endothelial cells (HUVEC) did not esterify significant amounts of [(3)H]retinol; this lack of [(3)H]retinol esterification was correlated with a lack of expression of lecithin:retinol acyltransferase (LRAT) transcripts in normal fibroblast and HUVEC strains. These results indicate that normal, differentiated cell types differ in their ability to esterify retinol. Human carcinoma cells (neoplastically transformed epithelial cells) of the oral cavity, skin and breast did not esterify much [(3)H]retinol and showed greatly reduced LRAT expression. Transcripts of the neutral, bile salt-independent retinyl ester hydrolase and the bile salt-dependent retinyl ester hydrolase were undetectable in all of the normal cell types, including the epithelial cells. These experiments suggest that retinoid-deficiency in the tumor cells could develop because of the lack of retinyl esters, a storage form of retinol.

  16. Oral focal epithelial hyperplasia: report of three cases.

    PubMed

    Ghalayani, Parichehr; Tavakoli, Payam; Eftekhari, Mehdi; Haghighi, Mohammad Akhondzadeh

    2015-01-01

    Focal epithelial hyperplasia or Heck's disease is an infrequent asymptomatic condition caused by human papillomavirus types 13 or 32 affecting the mucous membrane of the mouth and is commonly seen in young individuals. Firstly, it was described in Indians and Eskimos, but it exists in various populations. We present three cases of Heck's disease in an Afghan immigrant family group living in Iran that seem to have familial predominance. The disease was identified as oral focal epithelial hyperplasia on the basis of histopathologic and clinical findings. The lesions were reduced significantly after 4 months of good oral hygiene. Dentists should be familiar with the clinical manifestations of these types of lesions that affect the oral cavity. In fact, histopathologic assessment and clinical observation are necessary to establish the diagnosis.

  17. A novel immunocompetent murine model for Candida albicans-promoted oral epithelial dysplasia

    PubMed Central

    DWIVEDI, P. P.; MALLYA, S.; DONGARI-BAGTZOGLOU, A.

    2009-01-01

    Candida albicans is a common opportunistic pathogen found in the oral mucosa. Clinical observations indicate a significant positive association between oral Candida carriage or infection and oral epithelial dysplasia/neoplasia. The aim of this study was to test whether C. albicans is able to promote epithelial dysplasia or carcinoma in a mouse model of infection where a carcinogen (4 Nitroquinoline 1-oxide [4NQO]) was used as initiator of neoplasia. Mice were divided into four groups: group 1 received 4NQO alone; group 2 received 4NQO followed by C. albicans (ATCC 90234); group 3 received vehicle dimethyl sulfoxide (DMSO) followed by C. albicans and group 4 was untreated. Although 4NQO treated mice did not develop oral lesions, mice exposed to both 4NQO and C. albicans developed oral dysplastic lesions 19 weeks after exposure to 4NQO. Mice challenged with C. albicans only developed hyperplastic lesions. The expression of Ki-67 and p16, two cell-cycle associated proteins that are frequently deregulated in oral dysplasia/neoplasia, was also tested in these lesions. Ki-67 and p16 expression increased from normal to hyperplastic to dysplastic mucosa and was highest in the group exposed to both 4NQO and C. albicans. In conclusion, we showed that C. albicans plays a role in the promotion of oral dysplasia in a mouse model of infection when 4NQO was used as initiator of oral neoplasia. PMID:18608888

  18. Prognostic Potential of N-Cadherin in Oral Squamous Cell Carcinoma via Immunohistochemical Methods.

    PubMed

    Chandolia, Betina; Rajliwal, Jai Parkash; Bajpai, Manas; Arora, Manika

    2017-08-01

    To assess the prognostic potential for N-cadherin in oral squamous cell carcinoma and oral epithelial dysplasia. Across-sectional study, analytical study. Maharishi Markandeshwar College of Dental Science Research (MMCDSR), Ambala, India, from 2011 to 2014. Immunohistochemistry was used to observe the N-cadherin expression in 100 cases having epithelium with normal oral mucosa, oral epithelial dysplastic lesions and oral squamous cell carcinoma (OSCC). For statistical significance, SPSS 13.0 was used to calculate the data by Mann-Whitney and Kruskal-Wallis tests. In OSCC, N-cadherin expression was more evident than in oral epithelial dysplasia followed by the normal oral epithelium that did not show any dysplastic changes (p=0.001). Conversely, N-cadherin expression was not significant among the histological grade of OSCC. N-cadherin can be used as a potential biomarker for early diagnosis of OSCC. However, the N-cadherin expression did not show any correlation with the histological grade of OSCC.

  19. The administration of multipotent stromal cells at precancerous stage precludes tumor growth and epithelial dedifferentiation of oral squamous cell carcinoma.

    PubMed

    Bruna, Flavia; Arango-Rodríguez, Martha; Plaza, Anita; Espinoza, Iris; Conget, Paulette

    2017-01-01

    Multipotent stromal cells (MSCs) are envisioned as a powerful therapeutic tool. As they home into tumors, secrete trophic and vasculogenic factors, and suppress immune response their role in carcinogenesis is a matter of controversy. Worldwide oral squamous cell carcinoma (OSCC) is the fifth most common epithelial cancer. Our aim was to determine whether MSC administration at precancerous stage modifies the natural progression of OSCC. OSCC was induced in Syrian hamsters by topical application of DMBA in the buccal pouch. At papilloma stage, the vehicle or 3×10 6 allogenic bone marrow-derived MSCs were locally administered. Four weeks later, the lesions were studied according to: volume, stratification (histology), proliferation (Ki-67), apoptosis (Caspase 3 cleaved), vasculature (ASMA), inflammation (Leukocyte infiltrate), differentiation (CK1 and CK4) and gene expression profile (mRNA). Tumors found in individuals that received MSCs were smaller than those presented in the vehicle group (87±80 versus 54±62mm 3 , p<0.05). The rate of proliferation was two times lower and the apoptosis was 2.5 times higher in lesions treated with MSCs than in untreated ones. While the laters presented dedifferentiated cells, the former maintained differentiated cells (cytokeratin and gene expression profile similar to normal tissue). Thus, MSC administration at papilloma stage precludes tumor growth and epithelial dedifferentiation of OSCC. Copyright © 2016. Published by Elsevier B.V.

  20. Antimicrobial Barrier of an in vitro Oral Epithelial Model

    PubMed Central

    Kimball, Janet R.; Nittayananta, Wipawee; Klausner, Mitchell; Chung, Whasun O.; Dale, Beverly A.

    2008-01-01

    Objective Oral epithelia function as a microbial barrier and are actively involved in recognizing and responding to bacteria. Our goal was to examine a tissue engineered model of buccal epithelium for its response to oral bacteria and proinflammatory cytokines and compare the tissue responses with those of a submerged monolayer cell culture. Design The tissue model was characterized for keratin and β-defensin expression. Altered expression of β-defensins was evaluated by RT-PCR after exposure of the apical surface to oral bacteria and after exposure to TNF-α in the medium. These were compared to the response in traditional submerged oral epithelial cell culture. Results The buccal model showed expression of differentiation specific keratin 13, hBD1 and hBD3 in the upper half of the tissue; hBD2 was not detected. hBD1 mRNA was constitutively expressed, while hBD2 mRNA increased 2-fold after exposure of the apical surface to three oral bacteria tested and hBD3 mRNA increased in response to the non-pathogenic bacteria tested. In contrast, hBD2 mRNA increased 3–600 fold in response to bacteria in submerged cell culture. HBD2 mRNA increased over 100 fold in response to TNF-α in the tissue model and 50 fold in submerged cell culture. Thus, the tissue model is capable of upregulating hBD2, however, the minimal response to bacteria suggests that the tissue has an effective antimicrobial barrier due to its morphology, differentiation, and defensin expression. Conclusions The oral mucosal model is differentiated, expresses hBD1 and hBD3, and has an intact surface with a functional antimicrobial barrier. PMID:16815238

  1. Epithelial atrophy in oral submucous fibrosis is mediated by copper (II) and arecoline of areca nut

    PubMed Central

    Khan, Imran; Pant, Ila; Narra, Sivakrishna; Radhesh, Rekha; Ranganathan, Kannan; Rao, Somanahalli Girish; Kondaiah, Paturu

    2015-01-01

    Exposure of oral cavity to areca nut is associated with several pathological conditions including oral submucous fibrosis (OSF). Histopathologically OSF is characterized by epithelial atrophy, chronic inflammation, juxtaepithelial hyalinization, leading to fibrosis of submucosal tissue and affects 0.5% of the population in the Indian subcontinent. As the molecular mechanisms leading to atrophied epithelium and fibrosis are poorly understood, we studied areca nut actions on human keratinocyte and gingival fibroblast cells. Areca nut water extract (ANW) was cytotoxic to epithelial cells and had a pro-proliferative effect on fibroblasts. This opposite effect of ANW on epithelial and fibroblast cells was intriguing but reflects the OSF histopathology such as epithelial atrophy and proliferation of fibroblasts. We demonstrate that the pro-proliferative effects of ANW on fibroblasts are dependent on insulin-like growth factor signalling while the cytotoxic effects on keratinocytes are dependent on the generation of reactive oxygen species. Treatment of keratinocytes with arecoline which is a component of ANW along with copper resulted in enhanced cytotoxicity which becomes comparable to IC50 of ANW. Furthermore, studies using cyclic voltammetry, mass spectrometry and plasmid cleavage assay suggested that the presence of arecoline increases oxidation reduction potential of copper leading to enhanced cleavage of DNA which could generate an apoptotic response. Terminal deoxynucleotidyl transferase dUTP Nick End Labeling assay and Ki-67 index of OSF tissue sections suggested epithelial apoptosis, which could be responsible for the atrophy of OSF epithelium. PMID:26248978

  2. Phenotypic plasticity and epithelial-to-mesenchymal transition in the behaviour and therapeutic response of oral squamous cell carcinoma.

    PubMed

    Vig, Navin; Mackenzie, Ian C; Biddle, Adrian

    2015-10-01

    It is increasingly recognised that phenotypic plasticity, apparently driven by epigenetic mechanisms, plays a key role in tumour behaviour and markedly influences the important processes of therapeutic survival and metastasis. An important source of plasticity in malignancy is epithelial-to-mesenchymal transition (EMT), a common epigenetically controlled event that results in transition of malignant cells between different phenotypic states that confer motility and enhance survival. In this review, we discuss the importance of phenotypic plasticity and its contribution to cellular heterogeneity in oral squamous cell carcinoma with emphasis on aspects of drug resistance and EMT. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Tbx1 regulates oral epithelial adhesion and palatal development

    PubMed Central

    Funato, Noriko; Nakamura, Masataka; Richardson, James A.; Srivastava, Deepak; Yanagisawa, Hiromi

    2012-01-01

    Cleft palate, the most frequent congenital craniofacial birth defect, is a multifactorial condition induced by the interaction of genetic and environmental factors. In addition to complete cleft palate, a large number of human cases involve soft palate cleft and submucosal cleft palate. However, the etiology of these forms of cleft palate has not been well understood. T-box transcriptional factor (Tbx) family of transcriptional factors has distinct roles in a wide range of embryonic differentiation or response pathways. Here, we show that genetic disruption of Tbx1, a major candidate gene for the human congenital disorder 22q11.2 deletion syndrome (Velo-cardio-facial/DiGeorge syndrome), led to abnormal epithelial adhesion between the palate and mandible in mouse, resulting in various forms of cleft palate similar to human conditions. We found that hyperproliferative epithelium failed to undergo complete differentiation in Tbx1-null mice (Tbx1−/−). Inactivation of Tbx1 specifically in the keratinocyte lineage (Tbx1KCKO) resulted in an incomplete cleft palate confined to the anterior region of the palate. Interestingly, Tbx1 overexpression resulted in decreased cell growth and promoted cell-cycle arrest in MCF7 epithelial cells. These findings suggest that Tbx1 regulates the balance between proliferation and differentiation of keratinocytes and is essential for palatal fusion and oral mucosal differentiation. The impaired adhesion separation of the oral epithelium together with compromised palatal mesenchymal growth is an underlying cause for various forms of cleft palate phenotypes in Tbx1−/− mice. Our present study reveals new pathogenesis of incomplete and submucous cleft palate during mammalian palatogenesis. PMID:22371266

  4. Crystal violet stain as a selective stain for the assessment of mitotic figures in oral epithelial dysplasia and oral squamous cell carcinoma.

    PubMed

    Jadhav, Kiran B; Ahmed Mujib, B R; Gupta, Nidhi

    2012-01-01

    Assessment of mitotic figures (MFs) is routinely practiced as prognostic indicator in oral epithelial dysplasia (OED) and oral squamous cell carcinoma (OSCC), but identification of MFs poses a problem in terms of staining characteristics. To evaluate effectiveness of crystal violet stain for staining of MFs and its comparison with hematoxylin and eosin (H and E) stain. Study sample includes archival tissues embedded in paraffin blocks diagnosed as OED (n = 30) and OSCC (n = 30). The control group comprised of tissue specimen from oral mucosa of healthy volunteers (n = 30). Two serial sections of each tissue specimen were stained separately with H and E stain and 1% crystal violet stain. The stained sections were observed under microscope for identification and counting of MFs. Data obtained was statistically analyzed by using the Man-Whitney U test. A significant increase in number of MFs was observed in OED and OSCC in comparison with normal oral mucosa. There was a highly significant increase in number of MFs in crystal violet stained tissue sections when compared with H and E stain. Metaphase is the most commonly observed phase of mitosis in crystal violet stain when compared with H and E stain for all three groups. Crystal violet stain can be considered as selective stain for mitotic figures.

  5. In Vitro Studies on Erythrosine-Based Photodynamic Therapy of Malignant and Pre-Malignant Oral Epithelial Cells

    PubMed Central

    Garg, Abhishek D.; Bose, Muthiah; Ahmed, Mohammed I.; Bonass, William A.; Wood, Simon R.

    2012-01-01

    Photodynamic Therapy (PDT) involves the administration of a tumor localizing photosensitizing agent, which upon activation with light of an appropriate wavelength leads to the destruction of the tumor cells. The aim of the present study was to determine the efficacy of erythrosine as a photosensitizer for the PDT of oral malignancies. The drug uptake kinetics of erythrosine in malignant (H357) and pre-malignant (DOK) oral epithelial cells and their susceptibility to erythrosine-based PDT was studied along with the determination of the subcellular localization of erythrosine. This was followed by initial investigations into the mechanism of cell killing induced following PDT involving both high and low concentrations of erythrosine. The results showed that at 37°C the uptake of erythrosine by both DOK and H357 cells increased in an erythrosine dose dependent manner. However, the percentage of cell killing observed following PDT differed between the 2 cell lines; a maximum of ∼80% of DOK cell killing was achieved as compared to ∼60% killing for H357 cells. Both the DOK and H357 cell types exhibited predominantly mitochondrial accumulation of erythrosine, but the mitochondrial trans-membrane potential (ΔΨm) studies showed that the H357 cells were far more resistant to the changes in ΔΨm when compared to the DOK cells and this might be a factor in the apparent relative resistance of the H357 cells to PDT. Finally, cell death morphology and caspase activity analysis studies demonstrated the occurrence of extensive necrosis with high dose PDT in DOK cells, whereas apoptosis was observed at lower doses of PDT for both cell lines. For H357 cells, high dose PDT produced both apoptotic as well as necrotic responses. This is the first instance of erythrosine-based PDT's usage for cancer cell killing. PMID:22485174

  6. Stimulation of epithelial cell matrix metalloproteinase (MMP-2, -9, -13) and interleukin-8 secretion by fusobacteria.

    PubMed

    Gursoy, U K; Könönen, E; Uitto, V-J

    2008-10-01

    Bacterial pathogens involved in periodontal diseases exert their destructive effects primarily by stimulating the host cells to increase their secretion of proinflammatory cytokines and matrix metalloproteinases (MMPs). This study aimed to determine the epithelial cell matrix metalloproteinase and interleukin-8 (IL-8) secretion upon exposure to fusobacteria. Eight different oral and non-oral Fusobacterium strains were incubated with HaCaT epithelial cells. Gelatin zymography and Western blot analysis were performed to detect collagenase 3 (MMP-13), gelatinase A (MMP-2), gelatinase B (MMP-9), and IL-8 secretion by epithelial cells. All Fusobacterium strains, especially Fusobacterium necrophorum ATCC 25286, Fusobacterium nucleatum ATCC 25586, and Fusobacterium varium ATCC 51644, increased MMP-9 and MMP-13 secretion. Fusobacterium simiae ATCC 33568, and to a lesser extent F. nucleatum and F. necrophorum, increased epithelial MMP-2 secretion. F. nucleatum and F. necrophorum also increased IL-8 secretion. F. varium ATCC 27725, a strain that only weakly stimulated MMP production, strongly increased the IL-8 production, suggesting that their expression is differently regulated. We conclude that the pathogenic potential of fusobacteria may partly result from their ability to stimulate secretion of MMP-9, MMP-13, and IL-8 from epithelial cells.

  7. Intestinal Epithelial Cells Modulate Antigen-Presenting Cell Responses to Bacterial DNA

    PubMed Central

    Campeau, J. L.; Salim, S. Y.; Albert, E. J.; Hotte, N.

    2012-01-01

    Intestinal epithelial cells and antigen-presenting cells orchestrate mucosal innate immunity. This study investigated the role of bacterial DNA in modulating epithelial and bone marrow-derived antigen-presenting cells (BM-APCs) and subsequent T-lymphocyte responses. Murine MODE-K epithelial cells and BM-APCs were treated with DNA from either Bifidobacterium breve or Salmonella enterica serovar Dublin directly and under coculture conditions with CD4+ T cells. Apical stimulation of MODE-K cells with S. Dublin DNA enhanced secretion of cytokines from underlying BM-APCs and induced interleukin-17 (IL-17) and gamma interferon (IFN-γ) secretion from CD4+ T cells. Bacterial DNA isolated from either strain induced maturation and increased cytokine secretion from BM-APCs. Conditioned medium from S. Dublin-treated MODE-K cells elicited an increase in cytokine secretion similar to that seen for S. Dublin DNA. Treatment of conditioned medium from MODE-K cells with RNase and protease prevented the S. Dublin-induced increased cytokine secretion. Oral feeding of mice with B. breve DNA resulted in enhanced levels of colonic IL-10 and transforming growth factor β (TGFβ) compared with what was seen for mice treated with S. Dublin DNA. In contrast, feeding mice with S. Dublin DNA increased levels of colonic IL-17 and IL-12p70. T cells from S. Dublin DNA-treated mice secreted high levels of IL-12 and IFN-γ compared to controls and B. breve DNA-treated mice. These results demonstrate that intestinal epithelial cells are able to modulate subsequent antigen-presenting and T-cell responses to bacterial DNA with pathogenic but not commensal bacterial DNA inducing effector CD4+ T lymphocytes. PMID:22615241

  8. The effect of two fibre impregnation methods on the cytotoxicity of a glass and carbon fibre-reinforced acrylic resin denture base material on oral epithelial cells and fibroblasts.

    PubMed

    Sipahi, Cumhur; Ozen, Julide; Ural, A Ugur; Dalkiz, Mehmet; Beydemir, Bedri

    2006-09-01

    Acrylic resin dentures may have cytotoxic effects on oral soft tissues. However, there is sparse data about the cytotoxic effect of fibre-reinforced acrylic resin denture base materials. The purpose of this in vitro study was to determine the effect of two fibre impregnation methods on the cytotoxicity of a glass and carbon fibre-reinforced heat-polymerized acrylic resin denture base material on oral epithelial cells and fibroblasts. One hundred acrylic resin discs were assigned to five experimental groups (n = 20). One of the groups did not include any fibre. Two groups consisted of silane and monomer treated glass fibres (Vetrolex) impregnated into acrylic resin (QC-20) discs. The other two groups consisted of silane and monomer treated carbon fibres (Type Tenox J, HTA). Untreated cell culture was used as positive control. The human oral epithelial cell line and buccal fibroblast cultures were exposed to test specimens. The cytotoxicity of the test materials was determined by succinic dehydrogenase activity (MTT method) after 24 and 72 h exposures. Data were analysed with a statistical software program (SPSSFW, 9.0). A one-way analysis of variance (anova) test and Bonferroni test were used for the comparisons between the groups. All statistical tests were performed at the 0.95 confidence level (P < 0.05). After 24 and 72 h incubation, cell viability percentages of all experimental groups showed significant decrease according to the positive control cell culture. Fibroblastic cell viability percentages of silane and monomer treated fibre-reinforced groups were lower than the unreinforced group. Cell viability of monomer-treated groups displayed the lowest percentages. Elapsed incubation time decreased epithelial cell viability in silane-treated groups. Fibroblastic cell viability was not influenced by elapsed time except the unreinforced group.

  9. Genotoxicity in oral epithelial cells in children caused by nickel in metal crowns.

    PubMed

    Morán-Martínez, J; Monreal-de Luna, K D; Betancourt-Martínez, N D; Carranza-Rosales, P; Contreras-Martínez, J G; López-Meza, M C; Rodríguez-Villarreal, O

    2013-08-29

    The micronucleus (MN) assay evaluates the effects of low doses of genotoxic carcinogens and can detect structural lesions that survive mitotic cycles. The objective of this study was to determine both the genotoxicity of nickel (Ni) in buccal epithelial cells and the urinary excretion of Ni in children with metal crowns. This was a prospective longitudinal study based on 37 patients selected at the Facultad de Odontología de la Universidad Autónoma de Coahuila. MN assays were performed using buccal cells from the 37 patients, and Ni levels were determined from urine samples using inductively coupled plasma mass spectrometry at 1 (basal value), 15, and 45 days following the placement of crowns in each patient. Ni urinary excretion levels increased from 2.12 ± 1.23 to 3.86 ± 2.96 mg Ni/g creatinine (P < 0.05) and the frequency of exposed micronuclei increased from 4.67 ± 0.15 to 6.78 ± 0.167/1000 cells (P < 0.05) between 1 and 45 days post-crown placement. These results suggest that odontological exposure to metal crowns results in genotoxic damage at the cellular level of the oral mucosa and an increase in the urinary excretion of Ni within 45 days of exposure.

  10. Quantitative analysis of epithelial papillae in patients with oral lichen planus.

    PubMed

    López-Jornet, P; Camacho-Alonso, F; Molina-Miñano, F

    2009-06-01

    The oral mucosa is relatively vulnerable to pathological processes, and is often affected by autoimmune and malignant diseases. The oral epithelium is normally non-homogeneous, and joins to the connective tissue through interlocking of its downward projections in the form of papillae. This study aims to conduct a histomorphometric study of the epithelial papillae in patients with oral lichen planus (OLP). This study was based on 100 cheek mucosa biopsies from patients with OLP (66 white reticular and 34 atrophic-erosive) (13 males and 87 females, with a mean age of 54.95 +/- 13.64 years). A histological and morphometric evaluation was made, based on imaging analysis with MIP software 4.5 for studying the papillary structure in the patients with OLP. The mean epithelial thickness was 227.5 +/- 78.5 microm. The different papillary measures--BLS (distance from basal layer to epithelial surface), DPS (distance from dermal papilla top to epithelial surface), DPW (dermal papilla width), and DPD (interdermal papilla distance between two papillae)--yielded no statistically significant differences with respect to age, sex, smoking and clinical form. However, a significant correlation was observed in relation to papilla width and inflammatory infiltrate (P = 0.031). The application of this imaging system is useful for measuring variations in epithelial papillary architecture.

  11. Nasal epithelial cells as surrogates for bronchial epithelial cells in airway inflammation studies.

    PubMed

    McDougall, Catherine M; Blaylock, Morgan G; Douglas, J Graham; Brooker, Richard J; Helms, Peter J; Walsh, Garry M

    2008-11-01

    The nose is an attractive source of airway epithelial cells, particularly in populations in which bronchoscopy may not be possible. However, substituting nasal cells for bronchial epithelial cells in the study of airway inflammation depends upon comparability of responses, and evidence for this is lacking. Our objective was to determine whether nasal epithelial cell inflammatory mediator release and receptor expression reflect those of bronchial epithelial cells. Paired cultures of undifferentiated nasal and bronchial epithelial cells were obtained from brushings from 35 subjects, including 5 children. Cells were subject to morphologic and immunocytochemical assessment. Mediator release from resting and cytokine-stimulated cell monolayers was determined, as was cell surface receptor expression. Nasal and bronchial cells had identical epithelial morphology and uniform expression of cytokeratin 19. There were no differences in constitutive expression of CD44, intercellular adhesion molecule-1, alphavbeta3, and alphavbeta5. Despite significantly higher constitutive release of IL-8, IL-6, RANTES (regulated on activation, normal T cell expressed and secreted), and matrix metalloproteinase (MMP)-9 from nasal compared with bronchial cells, the increments in release of all studied mediators in response to stimulation with IL-1beta and TNF-alpha were similar, and there were significant positive correlations between nasal and bronchial cell secretion of IL-6, RANTES, vascular endothelial growth factor, monocyte chemoattractant protein-1, MMP-9, and tissue inhibitor of metalloproteinase-1. Despite differences in absolute mediator levels, the responses of nasal and bronchial epithelial cells to cytokine stimulation were similar, expression of relevant surface receptors was comparable, and there were significant correlations between nasal and bronchial cell mediator release. Therefore, nasal epithelial cultures constitute an accessible surrogate for studying lower airway

  12. Nasal Epithelial Cells as Surrogates for Bronchial Epithelial Cells in Airway Inflammation Studies

    PubMed Central

    McDougall, Catherine M.; Blaylock, Morgan G.; Douglas, J. Graham; Brooker, Richard J.; Helms, Peter J.; Walsh, Garry M.

    2008-01-01

    The nose is an attractive source of airway epithelial cells, particularly in populations in which bronchoscopy may not be possible. However, substituting nasal cells for bronchial epithelial cells in the study of airway inflammation depends upon comparability of responses, and evidence for this is lacking. Our objective was to determine whether nasal epithelial cell inflammatory mediator release and receptor expression reflect those of bronchial epithelial cells. Paired cultures of undifferentiated nasal and bronchial epithelial cells were obtained from brushings from 35 subjects, including 5 children. Cells were subject to morphologic and immunocytochemical assessment. Mediator release from resting and cytokine-stimulated cell monolayers was determined, as was cell surface receptor expression. Nasal and bronchial cells had identical epithelial morphology and uniform expression of cytokeratin 19. There were no differences in constitutive expression of CD44, intercellular adhesion molecule-1, αvβ3, and αvβ5. Despite significantly higher constitutive release of IL-8, IL-6, RANTES (regulated on activation, normal T cell expressed and secreted), and matrix metalloproteinase (MMP)-9 from nasal compared with bronchial cells, the increments in release of all studied mediators in response to stimulation with IL-1β and TNF-α were similar, and there were significant positive correlations between nasal and bronchial cell secretion of IL-6, RANTES, vascular endothelial growth factor, monocyte chemoattractant protein-1, MMP-9, and tissue inhibitor of metalloproteinase-1. Despite differences in absolute mediator levels, the responses of nasal and bronchial epithelial cells to cytokine stimulation were similar, expression of relevant surface receptors was comparable, and there were significant correlations between nasal and bronchial cell mediator release. Therefore, nasal epithelial cultures constitute an accessible surrogate for studying lower airway inflammation. PMID

  13. TCDD alters medial epithelial cell differentiation during palatogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, B.D.; Birnbaum, L.S.

    1989-06-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widely distributed, persistent environmental contaminant that is teratogenic in mice, where it induces hydronephrosis and cleft palate. The incidence of clefting has been shown to be dose dependent after exposure on either gestation Day (GD) 10 or 12, although the embryo is more susceptible on GD 12. TCDD-exposed palatal shelves meet but do not fuse, and programmed cell death of the medial epithelial cells is inhibited. The mechanism of action through which TCDD alters the program of medial cell development has not been examined in earlier studies, and it is not known whether the mechanism ismore » the same regardless of the dose or developmental stage of exposure. In this study, C57BL/6N mice, a strain sensitive to TCDD, were dosed orally on GD 10 or 12 with 0, 6, 12, 24, or 30 micrograms/kg body wt, in 10 ml corn oil/kg. Embryonic palatal shelves were examined on GD 14, 15, or 16. The degree of palatal closure, epithelial surface morphology, and cellular ultrastructure, the incorporation of (3H)TdR, the expression of EGF receptors, and the binding of 125I-EGF were assessed. After exposure on GD 10 or 12, TCDD altered the differentiation pathway of the medial epithelial cells. The palatal shelves were of normal size and overall morphology, but fusion of the medial epithelia of the opposing shelves did not occur. TCDD prevented programmed cell death of the medial peridermal cells. The expression of EGF receptors by medial cells continued through Day 16 and the receptors were able to bind ligand. The medial cells differentiated into a stratified, squamous, keratinizing epithelium. The shift in phenotype to an oral-like epithelium occurred after exposure on either GD 10 or 12. At the lower dose (6 micrograms/kg), fewer cleft palates were produced, but those shelves which did respond had a fully expressed shift in differentiation.« less

  14. Neuropilin 1 Receptor Is Up-Regulated in Dysplastic Epithelium and Oral Squamous Cell Carcinoma.

    PubMed

    Shahrabi-Farahani, Shokoufeh; Gallottini, Marina; Martins, Fabiana; Li, Erik; Mudge, Dayna R; Nakayama, Hironao; Hida, Kyoko; Panigrahy, Dipak; D'Amore, Patricia A; Bielenberg, Diane R

    2016-04-01

    Neuropilins are receptors for disparate ligands, including proangiogenic factors such as vascular endothelial growth factor and inhibitory class 3 semaphorin (SEMA3) family members. Differentiated cells in skin epithelium and cutaneous squamous cell carcinoma highly express the neuropilin-1 (NRP1) receptor. We examined the expression of NRP1 in human and mouse oral mucosa. NRP1 was significantly up-regulated in oral epithelial dysplasia and oral squamous cell carcinoma (OSCC). NRP1 receptor localized to the outer suprabasal epithelial layers in normal tongue, an expression pattern similar to the normal skin epidermis. However, dysplastic tongue epithelium and OSCC up-regulated NRP1 in basal and proliferating epithelial layers, a profile unseen in cutaneous squamous cell carcinoma. NRP1 up-regulation is observed in a mouse carcinogen-induced OSCC model and in human tongue OSCC biopsies. Human OSCC cell lines express NRP1 protein in vitro and in mouse tongue xenografts. Sites of capillary infiltration into orthotopic OSCC tumors correlate with high NRP1 expression. HSC3 xenografts, which express the highest NRP1 levels of the cell lines examined, showed massive intratumoral lymphangiogenesis. SEMA3A inhibited OSCC cell migration, suggesting that the NRP1 receptor was bioactive in OSCC. In conclusion, NRP1 is regulated in the oral epithelium and is selectively up-regulated during epithelial dysplasia. NRP1 may function as a reservoir to sequester proangiogenic ligands within the neoplastic compartment, thereby recruiting neovessels toward tumor cells. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Members of the Oral Microbiota Are Associated with IL-8 Release by Gingival Epithelial Cells in Healthy Individuals

    PubMed Central

    Schueller, Katharina; Riva, Alessandra; Pfeiffer, Stefanie; Berry, David; Somoza, Veronika

    2017-01-01

    The triggers for the onset of oral diseases are still poorly understood. The aim of this study was to characterize the oral bacterial community in healthy humans and its association with nutrition, oral hygiene habits, and the release of the inflammatory marker IL-8 from gingival epithelial cells (GECs) with and without stimulation by bacterial endotoxins to identify possible indicator operational taxonomic units (OTUs) associated with inflammatory marker status. GECs from 21 healthy participants (13 females, 8 males) were incubated with or without addition of bacterial lipopolysaccharides (LPSs), and the oral microbiota was profiled using 16S rRNA gene-targeted sequencing. The basal IL-8 release after 6 h was between 9.9 and 98.2 pg/ml, and bacterial communities were characteristic for healthy oral microbiota. The composition of the oral microbiota was associated with basal IL-8 levels, the intake of meat, tea, white wine, sweets and the use of chewing gum, as well as flossing habits, allergies, gender and body mass index. Additionally, eight OTUs were associated with high basal levels of IL-8 and GEC response to LPS, with high basal levels of IL-8, and 1 with low basal levels of IL8. The identification of indicator bacteria in healthy subjects with high levels of IL-8 release is of importance as they may be promising early warning indicators for the possible onset of oral diseases. PMID:28360899

  16. Cytomegalovirus Virions Shed in Urine Have a Reversible Block to Epithelial Cell Entry and Are Highly Resistant to Antibody Neutralization

    PubMed Central

    Cui, Xiaohong; Adler, Stuart P.; Schleiss, Mark R.; Demmler Harrison, Gail J.

    2017-01-01

    ABSTRACT Cytomegalovirus (CMV) causes sensorineural hearing loss and developmental disabilities in newborns when infections are acquired in utero. Pregnant women may acquire CMV from oral exposure to CMV in urine or saliva from young children. Neutralizing antibodies in maternal saliva have the potential to prevent maternal infection and, in turn, fetal infection. As CMV uses different viral glycoprotein complexes to enter different cell types, the first cells to be infected in the oral cavity could determine the type of antibodies needed to disrupt oral transmission. Antibodies targeting the pentameric complex (PC) should block CMV entry into epithelial cells but not into fibroblasts or Langerhans cells (which do not require the PC for entry), while antibodies targeting glycoprotein complexes gB or gH/gL would be needed to block entry into fibroblasts, Langerhans cells, or other cell types. To assess the potential for antibodies to disrupt oral acquisition, CMV from culture-positive urine samples (uCMV) was used to study cell tropisms and sensitivity to antibody neutralization. uCMV entered epithelial cells poorly compared with the entry into fibroblasts. CMV-hyperimmune globulin or monoclonal antibodies targeting gB, gH/gL, or the PC were incapable of blocking the entry of uCMV into either fibroblasts or epithelial cells. Both phenotypes were lost after one passage in cultured fibroblasts, suggestive of a nongenetic mechanism. These results suggest that uCMV virions have a reversible block to epithelial cell entry. Antibodies may be ineffective in preventing maternal oral CMV acquisition but may limit viral spread in blood or tissues, thereby reducing or preventing fetal infection and disease. PMID:28404573

  17. Aberrant expression of the tight junction molecules claudin-1 and zonula occludens-1 mediates cell growth and invasion in oral squamous cell carcinoma.

    PubMed

    Babkair, Hamzah; Yamazaki, Manabu; Uddin, Md Shihab; Maruyama, Satoshi; Abé, Tatsuya; Essa, Ahmed; Sumita, Yoshimasa; Ahsan, Md Shahidul; Swelam, Wael; Cheng, Jun; Saku, Takashi

    2016-11-01

    We reported that altered cell contact mediated by E-cadherin is an initial event in the pathogenesis of oral epithelial malignancies. To assess other effects of cell adhesion, we examined the expression levels of tight junction (TJ) molecules in oral carcinoma in situ (CIS) and squamous cell carcinoma (SCC). To identify changes in the expression of TJ molecules, we conducted an analysis of the immunohistochemical profiles of claudin-1 (CLDN-1) and zonula occludens-1 (ZO-1) in surgical specimens acquired from patients with oral SCC containing foci of epithelial dysplasia or from patients with CIS. We used immunofluorescence, Western blotting, reverse-transcription polymerase chain reaction, and RNA interference to evaluate the functions of CLDN-1 and ZO-1 in cultured oral SCC cells. TJ molecules were not detected in normal oral epithelial tissues but were expressed in SCC/CIS cells. ZO-1 was localized within the nucleus of proliferating cells. When CLDN-1 expression was inhibited by transfecting cells with specific small interference RNAs, SCC cells dissociated, and their ability to proliferate and invade Matrigel was inhibited. In contrast, although RNA interference-mediated inhibition of ZO-1 expression did not affect cell morphology, it inhibited cell proliferation and invasiveness. Our findings indicated that the detection of TJ molecules in the oral epithelia may serve as a marker for the malignant phenotype of cells in which CLDN-1 regulates proliferation and invasion. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. E-Cigarette Vapor Induces an Apoptotic Response in Human Gingival Epithelial Cells Through the Caspase-3 Pathway.

    PubMed

    Rouabhia, Mahmoud; Park, Hyun Jin; Semlali, Abdelhabib; Zakrzewski, Andrew; Chmielewski, Witold; Chakir, Jamila

    2017-06-01

    Electronic cigarettes represent an increasingly significant proportion of today's consumable tobacco products. E-cigarettes contain several chemicals which may promote oral diseases. The aim of this study was to investigate the effect of e-cigarette vapor on human gingival epithelial cells. Results show that e-cigarette vapor altered the morphology of cells from small cuboidal form to large undefined shapes. Both single and multiple exposures to e-cigarette vapor led to a bulky morphology with large faint nuclei and an enlarged cytoplasm. E-cigarette vapor also increased L-lactate dehydrogenase (LDH) activity in the targeted cells. This activity was greater with repeated exposures. Furthermore, e-cigarette vapor increased apoptotic/necrotic epithelial cell percentages compared to that observed in the control. Epithelial cell apoptosis was confirmed by TUNEL assay showing that exposure to e-cigarette vapor increased apoptotic cell numbers, particularly after two and three exposures. This negative effect involved the caspase-3 pathway, the activity of which was greater with repeated exposure and which decreased following the use of caspase-3 inhibitor. The adverse effects of e-cigarette vapor on gingival epithelial cells may lead to dysregulated gingival cell function and result in oral disease. J. Cell. Physiol. 232: 1539-1547, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Menadione (Vitamin K3) induces apoptosis of human oral cancer cells and reduces their metastatic potential by modulating the expression of epithelial to mesenchymal transition markers and inhibiting migration.

    PubMed

    Suresh, Shruthy; Raghu, Dinesh; Karunagaran, Devarajan

    2013-01-01

    Oral cancer is one of the most commonly occurring cancers worldwide, decreasing the patient's survival rate due to tumor recurrence and metastasis. Menadione (Vitamin K3) is known to exhibit cytotoxicity in various cancer cells but the present study focused on its effects on viability, apoptosis, epithelial to mesenchymal transition (EMT), anchorage independent growth and migration of oral cancer cells. The results show that menadione is more cytotoxic to SAS (oral squamous carcinoma) cells but not to non-tumorigenic HEK293 and HaCaT cells. Menadione treatment increased the expression of pro-apoptotic proteins, Bax and p53, with a concurrent decrease in anti-apoptotic proteins, Bcl-2 and p65. Menadione induced the expression of E-cadherin but reduced the expression of EMT markers, vimentin and fibronectin. Menadione also inhibited anchorage independent growth and migration in SAS cells. These findings reveal and confirm that menadione is a potential candidate in oral cancer therapy as it exhibits cytotoxic, antineoplastic and antimigratory effects besides effectively blocking EMT in oral cancer cells.

  20. Langerhans Cells and Their Role in Oral Mucosal Diseases

    PubMed Central

    Upadhyay, Juhi; Upadhyay, Ram B; Agrawal, Pankaj; Jaitley, Shweta; Shekhar, Rhitu

    2013-01-01

    Dendritic cells are arguably the most potent antigen-presenting cells and may be the only cells capable of initiating the adaptive immune response. The epithelial residents of dendritic cells are Langerhans cells, which serve as the “sentinels” of the mucosa, altering the immune system not only to pathogen entry but also of tolerance to self antigen and commensal microbes. Oral mucosal Langerhans cells are capable of engaging and internalizing a wide variety of pathogens and have been found responsive to nickel in patients with nickel allergies, oral Candida species, oral lichen planus, lichenoid drug eruptions, graft versus host diseases, periodontal diseases median rhomboid glossitis, human immunodeficiency virus infection, hairy leukoplakia of the tongue, and oral squamous cell carcinoma. Review focuses on the role of antigen-presenting cells in particular Langerhans cells to better understand the mechanisms underlying immune responses. In this review, comprehensive detail about mucosal diseases has been compiled using the PubMed database and through textbooks. PMID:24251267

  1. TWIST and p-Akt immunoexpression in normal oral epithelium oral dysplasia and in oral squamous cell carcinoma

    PubMed Central

    Yamamoto, Fernanda-Paula; Corrêa Pontes, Flávia-Sirotheau; Cury, Sérgio-Elias; Fonseca, Felipe-Paiva; Rebelo-Pontes, Hélder; Pinto-Júnior, Décio-dos Santos

    2012-01-01

    Objectives: The aim of this study was to evaluate the immunoexpression of TWIST and p-Akt proteins in oral leukoplakia (OL) and oral squamous cell carcinoma (OSCC), correlating their expressions with the histological features of the lesions. Study design: Immunohistochemical studies were carried out on 10 normal oral epithelium, 30 OL and 20 OSCC formalin-fixed, paraffin-embedded tissue samples. Immunoperoxidase reactions for TWIST and p-Akt proteins were applied on the specimens and the positivity of the reactions was calculated for 1000 epithelial cells. Results: Kruskal-Wallis and Dunn’s post tests revealed a significant difference in TWIST and p-Akt immunoexpression among normal oral mucosa, OL and OSCC. In addition, a significant positive correlation was found between TWIST and p-Akt expressions according to the Pearson’s correlation test. Conclusions: The results obtained in the current study suggest that TWIST and p-Akt may participate of the multi-step process of oral carcinogenesis since its early stages. Key words: Oral cancer, oral leukoplakia, dysplasia, immunohistochemistry. PMID:21743395

  2. One for all: A standardized protocol for ex vivo culture of limbal, conjunctival and oral mucosal epithelial cells into corneal lineage.

    PubMed

    Dhamodaran, Kamesh; Subramani, Murali; Matalia, Himanshu; Jayadev, Chaitra; Shetty, Rohit; Das, Debashish

    2016-04-01

    Autologous transplantation of ex vivo cultured cells the treatment of choice for patients with limbal stem cell deficiency. The most commonly used cell sources for transplantation limbal, conjunctival or oral mucosal tissue. Protocols vary for culturing each tissue type, and there are no comparative studies on transplantation outcomes using these different culture techniques. To overcome this limitation, we devised a simple protocol that can uniformly promote growth and differentiation of cells from a limbal, conjunctival or oral mucosal biopsy into the corneal lineage. Biopsies were cultured as explants on de-epithelialized human amniotic membrane in the presence of recombinant epidermal growth factor and insulin. Cultured cells were characterized using immunohistochemistry and quantitative reverse transcriptase polymerase chain reaction for stem/progenitor markers (ABCG2 and P63α) and differentiation markers (CK3, CK12, CK4, CK13, CK15 and CONNEXIN 43). Fluorescence-activated cell sorter analysis was performed for ABCG2. The results revealed that cells of all three biopsies differentiated into the corneal lineage. Positivity of CK3/12, CK4, CK12 and CONNEXIN 43 immunostaining and the relative mRNA expression of CK3, CK4, CK12, CK13, CK15 and CONNEXIN 43 could be detected in the cultured biopsies. Unlike tissue-specific protocols, our protocol can unequivocally promote differentiation of cells from a limbal, conjunctival or oral mucosal biopsy into the corneal lineage. This simple standardized protocol can be adapted for ocular surface reconstruction using stem cell transplantation. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  3. Immunohistochemical study of integrin α₅β₁, fibronectin, and Bcl-2 in normal oral mucosa, inflammatory fibroepithelial hyperplasia, oral epithelial dysplasia, and oral squamous cell carcinoma.

    PubMed

    Núñez, Manuel Antonio Gordón; de Matos, Felipe Rodrigues; Freitas, Roseana de Almeida; Galvão, Hébel Cavalcanti

    2013-07-01

    The objective of this study was to compare the immunoexpression of integrin α₅β₁, fibronectin, and the Bcl-2 protein in normal oral mucosa (NOM), inflammatory fibroepithelial hyperplasia (IFH), oral epithelial dysplasia (OED), and oral squamous cell carcinoma (OSCC). Eleven cases of NOM, 16 IFH, 20 OED, and 27 OSCC were selected for analysis of the immunoexpression of integrin α₅β₁, fibronectin, and bcl-2 protein. There was an association between the intensity and location of the integrin α₅β₁ expression, especially in the OSCC, that 48.1% of cases showed weak immunoreactivity and 40.7% in the suprabasal layer (P < 0.05). There was an association between the pattern and distribution of fibronectin expression in basement membrane, where 90% of NOM showed a pattern of linear continuous and 80% of OED exhibited focal distribution (P < 0.05). The fibronectin expression in connective tissue was predominantly intense with an association of staining pattern among the different specimens, where 37% of OSCC showed a reticular pattern (P < 0.05). There was an association of bcl-2 protein among the types of specimens, especially in IFH and OSCC, where 100% of the cases exhibited scores 1 of staining (P < 0.05). Within this context, the interaction of integrin α₅β₁ with its main ligand in the extracellular matrix, fibronectin, is suggested to influence the survival of tumor cells and to favor their proliferation by modulating apoptosis through the upregulation of antiapoptotic proteins or the suppression of apoptotic mediators.

  4. Image analysis assisted study of mitotic figures in oral epithelial dysplasia and squamous cell carcinoma using differential stains.

    PubMed

    Tandon, Ankita; Singh, Narendra Nath; Brave, V R; Sreedhar, Gadiputi

    2016-11-01

    Mitosis is a process of cell division resulting in two genetically equivalent daughter cells. Excessive proliferation of cells due to mitosis is the hallmark in pre cancer and cancer. This study was conducted to count the number of mitotic figures in normal oral mucosa, oral epithelial dysplasia and squamous cell carcinoma in both Hematoxylin and Eosin (H&E) and Crystal Violet stained sections. Also the overall number of mitotic figures with both stains were compared along with the evaluation of staining efficacy of both the stains. The present study was conducted on 20 specimens each of the three categories. These were further divided into two groups for staining with H&E and with 1% Crystal Violet respectively. Images were captured and analyzed using image analysis software Dewinter Biowizard 4.1. Comparison of mitotic figure count in three categories in sections stained with both stains showed statistically significant difference ( p  < 0.001). The mean number of mitotic figures seen in Crystal Violet reagent were significantly higher as seen in H&E stain ( p  < 0.001). The overall diagnostic efficacy of Crystal Violet was 87.6%. Crystal Violet scored over H&E stain and also helped to better appreciate metaphases in Squamous cell carcinoma and telophases in dysplasia. Number of mitotic figures progressively increase with the advancement of the pathology. Use of 1% Crystal Violet provides better appreciation of mitotic figures and can be employed as a selective stain in routine histopathology.

  5. Micronuclei: An essential biomarker in oral exfoliated cells for grading of oral squamous cell carcinoma.

    PubMed

    Jadhav, Kiran; Gupta, Nidhi; Ahmed, Mujib Br

    2011-01-01

    Micronuclei in exfoliated oral epithelial cells have been shown in some studies to correlate with severity of this genotoxic damage. This severity can be measured in terms of grading of the lesions. To correlate frequency of micronuclei (MN) in oral exfoliated cells in clinically diagnosed cases of oral squamous cell carcinoma (OSCC) followed by a histopathological grading. The study subjects consisted of clinically diagnosed cases of OSCC. Healthy subjects without any tobacco consumption habits formed the control group. The cytosmears from both groups were stained with rapid Papanicolaou stain. MN were identified according to the criteria given by Countryman and Heddle with some modifications. The frequency of MN was three to four times higher in patients with OSCC as compared to patients in the control group and the difference was found to be highly significant. In 75% cases, the cytological grade as determined by the frequency of micronuclei correlated with the histopathological grade and this observation was statistically significant. MN can be a candidate to serve as a biomarker for prediction of the grade of OSCC.

  6. Treatment of oral squamous cell carcinoma using anti-HER2 immunonanoshells

    PubMed Central

    Fekrazad, Reza; Hakimiha, Neda; Farokhi, Enice; Rasaee, Mohammad Javad; Ardestani, Mehdi Shafiee; Kalhori, Katayoun AM; Sheikholeslami, Farzaneh

    2011-01-01

    Background Worldwide, oral squamous cell carcinoma (potentially mediated by HER2) is recognized as the most commonly occurring malignant neoplasm of the oral cavity. Anti-HER2 nanobodies conjugated to gold-silica nanoshells and used as photothermal treatment for oral squamous cell carcinoma may provide a novel therapeutic alternative to current treatment for this disease. Methods KB epithelial or HeLaS3 cell cultures (controls) were exposed to these immunonanoshells, and plasmon resonance electron initiation specific to gold was employed to burn the tumor cells. Results Following this treatment, significant cell death occurred in the KB tumor cell cultures while there was no evidence of cellular damage or death in the HeLaS3 cell cultures. Conclusion These findings suggest that photothermal treatment of oral squamous cell carcinoma has considerable advantages. PMID:22131825

  7. Treatment of oral squamous cell carcinoma using anti-HER2 immunonanoshells.

    PubMed

    Fekrazad, Reza; Hakimiha, Neda; Farokhi, Enice; Rasaee, Mohammad Javad; Ardestani, Mehdi Shafiee; Kalhori, Katayoun A M; Sheikholeslami, Farzaneh

    2011-01-01

    Worldwide, oral squamous cell carcinoma (potentially mediated by HER2) is recognized as the most commonly occurring malignant neoplasm of the oral cavity. Anti-HER2 nanobodies conjugated to gold-silica nanoshells and used as photothermal treatment for oral squamous cell carcinoma may provide a novel therapeutic alternative to current treatment for this disease. KB epithelial or HeLaS3 cell cultures (controls) were exposed to these immunonanoshells, and plasmon resonance electron initiation specific to gold was employed to burn the tumor cells. Following this treatment, significant cell death occurred in the KB tumor cell cultures while there was no evidence of cellular damage or death in the HeLaS3 cell cultures. These findings suggest that photothermal treatment of oral squamous cell carcinoma has considerable advantages.

  8. Phenotypic Plasticity Determines Cancer Stem Cell Therapeutic Resistance in Oral Squamous Cell Carcinoma.

    PubMed

    Biddle, Adrian; Gammon, Luke; Liang, Xiao; Costea, Daniela Elena; Mackenzie, Ian C

    2016-02-01

    Cancer stem cells (CSCs) drive tumour spread and therapeutic resistance, and can undergo epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) to switch between epithelial and post-EMT sub-populations. Examining oral squamous cell carcinoma (OSCC), we now show that increased phenotypic plasticity, the ability to undergo EMT/MET, underlies increased CSC therapeutic resistance within both the epithelial and post-EMT sub-populations. The post-EMT CSCs that possess plasticity exhibit particularly enhanced therapeutic resistance and are defined by a CD44(high)EpCAM(low/-) CD24(+) cell surface marker profile. Treatment with TGFβ and retinoic acid (RA) enabled enrichment of this sub-population for therapeutic testing, through which the endoplasmic reticulum (ER) stressor and autophagy inhibitor Thapsigargin was shown to selectively target these cells. Demonstration of the link between phenotypic plasticity and therapeutic resistance, and development of an in vitro method for enrichment of a highly resistant CSC sub-population, provides an opportunity for the development of improved chemotherapeutic agents that can eliminate CSCs.

  9. Phenotypic Plasticity Determines Cancer Stem Cell Therapeutic Resistance in Oral Squamous Cell Carcinoma

    PubMed Central

    Biddle, Adrian; Gammon, Luke; Liang, Xiao; Costea, Daniela Elena; Mackenzie, Ian C.

    2016-01-01

    Cancer stem cells (CSCs) drive tumour spread and therapeutic resistance, and can undergo epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET) to switch between epithelial and post-EMT sub-populations. Examining oral squamous cell carcinoma (OSCC), we now show that increased phenotypic plasticity, the ability to undergo EMT/MET, underlies increased CSC therapeutic resistance within both the epithelial and post-EMT sub-populations. The post-EMT CSCs that possess plasticity exhibit particularly enhanced therapeutic resistance and are defined by a CD44highEpCAMlow/− CD24+ cell surface marker profile. Treatment with TGFβ and retinoic acid (RA) enabled enrichment of this sub-population for therapeutic testing, through which the endoplasmic reticulum (ER) stressor and autophagy inhibitor Thapsigargin was shown to selectively target these cells. Demonstration of the link between phenotypic plasticity and therapeutic resistance, and development of an in vitro method for enrichment of a highly resistant CSC sub-population, provides an opportunity for the development of improved chemotherapeutic agents that can eliminate CSCs. PMID:26981578

  10. Giardia's Epithelial Cell Interaction In Vitro: Mimicking Asymptomatic Infection?

    PubMed Central

    Kraft, Martin R.; Klotz, Christian; Bücker, Roland; Schulzke, Jörg-Dieter; Aebischer, Toni

    2017-01-01

    The protozoan parasite Giardia duodenalis is responsible for more than 280 million cases of gastrointestinal complaints (“giardiasis”) every year, worldwide. Infections are acquired orally, mostly via uptake of cysts in contaminated drinking water. After transformation into the trophozoite stage, parasites start to colonize the duodenum and upper jejunum where they attach to the intestinal epithelium and replicate vegetatively. Outcome of Giardia infections vary between individuals, from self-limiting to chronic, and asymptomatic to severely symptomatic infection, with unspecific gastrointestinal complaints. One proposed mechanism for pathogenesis is the breakdown of intestinal barrier function. This has been studied by analyzing trans-epithelial electric resistances (TEER) or by indicators of epithelial permeability using labeled sugar compounds in in vitro cell culture systems, mouse models or human biopsies and epidemiological studies. Here, we discuss the results obtained mainly with epithelial cell models to highlight contradictory findings. We relate published studies to our own findings that suggest a lack of barrier compromising activities of recent G. duodenalis isolates of assemblage A, B, and E in a Caco-2 model system. We propose that this epithelial cell model be viewed as mimicking asymptomatic infection. This view will likely lead to a more informative use of the model if emphasis is shifted from aiming to identify Giardia virulence factors to defining non-parasite factors that arguably appear to be more decisive for disease. PMID:29018775

  11. Nuclear factor κB and cyclooxygenase-2 immunoexpression in oral dysplasia and oral squamous cell carcinoma.

    PubMed

    Pontes, Hélder Antônio Rebelo; Pontes, Flávia Sirotheau Corrêa; Fonseca, Felipe Paiva; de Carvalho, Pedro Luiz; Pereira, Erika Martins; de Abreu, Michelle Carvalho; de Freitas Silva, Brunno Santos; dos Santos Pinto, Décio

    2013-02-01

    Oral leukoplakia is the main potentially malignant oral lesion, and oral squamous cell carcinoma accounts for more than 95% of all malignant neoplasms in the oral cavity. Therefore, the aim of this study was to verify the immunoexpression of nuclear factor κB (NF-κB) and cyclooxygenase-2 (COX-2) proteins in dysplastic oral lesions and oral squamous cell carcinoma. Immunohistochemical reactions were performed on 6 inflammatory fibrous hyperplasia, 28 oral leukoplakia, and 15 oral squamous cell carcinoma paraffin-embedded samples. Immunoperoxidase reaction for NF-κB and COX-2 was applied on the specimens, and the positivity of the reactions was calculated for 1000 epithelial cells. Using the analysis of variance and the Tukey post hoc statistical analyses, a significantly increased immunoexpression for NF-κB was observed when oral squamous cell carcinoma samples were compared with the other groups studied. However, using the Kruskal-Wallis and the Dunn post hoc tests, a statistically significant result for COX-2 expression was obtained only when the moderate dysplasia group was compared with the inflammatory fibrous hyperplasia group. Nuclear factor κB may participate in the malignant phenotype acquisition process of the oral squamous cell carcinoma in its late stages, whereas COX-2 may be involved in the early stages of oral carcinogenesis process. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Anti-inflammatory and protective effects of 2-methacryloyloxyethyl phosphorylcholine polymer on oral epithelial cells.

    PubMed

    Yumoto, Hiromichi; Hirota, Katsuhiko; Hirao, Kouji; Miyazaki, Tsuyoshi; Yamamoto, Nobuyuki; Miyamoto, Koji; Murakami, Keiji; Fujiwara, Natsumi; Matsuo, Takashi; Miyake, Yoichiro

    2015-02-01

    Periodontitis is a chronic inflammatory disease initiated by a microbial biofilm formed in the periodontal pocket. Gingival epithelium plays important roles as the first physical barrier to bacterial invasion and in orchestrating the innate immune reaction via toll-like receptors (TLRs), which recognize various bacterial products, and maintaining its function. Newly developed oral care products to inhibit bacterial adherence, subsequent inflammatory reaction and protect the gingival epithelium are expected. We previously reported that 2-methacryloyloxyethyl phosphorylcholine (MPC)-polymer coating decreased bacterial adhesion to human oral keratinocytes, RT-7, and mouth-rinsing with MPC-polymer inhibited the increase of oral bacteria. In this study, regarding the possibility of MPC-polymer application for preventing the adherence of periodontal pathogen, subsequent inflammatory reaction and protection of gingival epithelium, we examined the effects of MPC-polymer on the adherence of Porphyromonas gingivalis, major periodontitis-related pathogen, and TLR2 ligand to RT-7 and subsequent interleukin (IL)-8 production. MPC-polymer treatment significantly reduced P. gingivalis adherence by 44% and TLR2-mediated IL-8 production by blocking the binding of its specific-ligand in a concentration-dependent manner. Furthermore, MPC-polymer pretreatment protected RT-7 from injury by chemical irritants, cetylpyridinium chloride. These findings suggest that MPC-polymer is potentially useful for oral care to prevent oral infection and to maintain oral epithelial function. © 2014 Wiley Periodicals, Inc.

  13. In vivo detection of oral epithelial cancer using endogenous fluorescence lifetime imaging: a pilot human study (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jo, Javier A.; Hwang, Dae Yon; Palma, Jorge; Cheng, Shuna; Cuenca, Rodrigo; Malik, Bilal; Jabbour, Joey; Cheng, Lisa; Wright, John; Maitland, Kristen

    2016-03-01

    Endogenous fluorescence lifetime imaging (FLIM) provides direct access to the concomitant functional and biochemical changes accompanying tissue transition from benign to precancerous and cancerous. Since FLIM can noninvasively measure different and complementary biomarkers of precancer and cancer, we hypothesize that it will aid in clinically detecting early oral epithelial cancer. Our group has recently demonstrated the detection of benign from premalignant and malignant lesions based on endogenous multispectral FLIM in the hamster cheek-pouch model. Encouraged by these positive preliminary results, we have developed a handheld endoscope capable of acquiring multispectral FLIM images in real time from the oral mucosa. This novel FLIM endoscope is being used for imaging clinically suspicious pre-malignant and malignant lesions from patients before undergoing tissue biopsy for histopathological diagnosis of oral epithelial cancer. Our preliminary results thus far are already suggesting the potential of endogenous FLIM for distinguishing a variety of benign lesions from advanced dysplasia and squamous cell carcinoma (SCC). To the best of out knowledge, this is the first in vivo human study aiming to demonstrate the ability to predict the true malignancy of clinically suspicious lesions using endogenous FLIM. If successful, the resulting clinical tool will allow noninvasive real-time detection of epithelial precancerous and cancerous lesions in the oral mucosa and could potentially be used to assist at every step involved on the clinical management of oral cancer patients, from early screening and diagnosis, to treatment and monitoring of recurrence.

  14. TLR-Dependent Human Mucosal Epithelial Cell Responses to Microbial Pathogens

    PubMed Central

    McClure, Ryan; Massari, Paola

    2014-01-01

    Toll-like receptor (TLR) signaling represents one of the best studied pathways to implement defense mechanisms against invading microbes in human being as well as in animals. TLRs respond to specific microbial ligands and to danger signals produced by the host during infection, and initiate downstream cascades that activate both innate and adaptive immunity. TLRs are expressed by professional immune cells and by the large majority of non-hematopoietic cells, including epithelial cells. In epithelial tissues, TLR functions are particularly important because these sites are constantly exposed to microorganisms, due to their location at the host interface with the environment. While at these sites specific defense mechanisms and inflammatory responses are initiated via TLR signaling against pathogens, suppression or lack of TLR activation is also observed in response to the commensal microbiota. The mechanisms by which TLR signaling is regulated in mucosal epithelial cells include differential expression and levels of TLRs (and their signaling partners), their cellular localization and positioning within the tissue in a fashion that favors responses to pathogens while dampening responses to commensals and maintaining tissue homeostasis in physiologic conditions. In this review, the expression and activation of TLRs in mucosal epithelial cells of several sites of the human body are examined. Specifically, the oral cavity, the ear canal and eye, the airways, the gut, and the reproductive tract are discussed, along with how site-specific host defense mechanisms are implemented via TLR signaling. PMID:25161655

  15. Innate immunity in HIV-1 infection: epithelial and non-specific host factors of mucosal immunity- a workshop report.

    PubMed

    Nittayananta, W; Weinberg, A; Malamud, D; Moyes, D; Webster-Cyriaque, J; Ghosh, S

    2016-04-01

    The interplay between HIV-1 and epithelial cells represents a critical aspect in mucosal HIV-1 transmission. Epithelial cells lining the oral cavity cover subepithelial tissues, which contain virus-susceptible host cells including CD4(+) T lymphocytes, monocytes/macrophages, and dendritic cells. Oral epithelia are among the sites of first exposure to both cell-free and cell-associated virus HIV-1 through breast-feeding and oral-genital contact. However, oral mucosa is considered to be naturally resistant to HIV-1 transmission. Oral epithelial cells have been shown to play a crucial role in innate host defense. Nevertheless, it is not clear to what degree these local innate immune factors contribute to HIV-1 resistance of the oral mucosa. This review paper addressed the following issues that were discussed at the 7th World Workshop on Oral Health and Disease in AIDS held in Hyderabad, India, during November 6-9, 2014: (i) What is the fate of HIV-1 after interactions with oral epithelial cells?; (ii) What are the keratinocyte and other anti-HIV effector oral factors, and how do they contribute to mucosal protection?; (iii) How can HIV-1 interactions with oral epithelium affect activation and populations of local immune cells?; (iv) How can HIV-1 interactions alter functions of oral epithelial cells? © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Eosinophils Promote Epithelial to Mesenchymal Transition of Bronchial Epithelial Cells

    PubMed Central

    Toda, Masaaki; Miyake, Yasushi; Matsushima, Yuki; Matsumoto, Takahiro; Boveda-Ruiz, Daniel; Gil-Bernabe, Paloma; Nagao, Mizuho; Sugimoto, Mayumi; Hiraguchi, Yukiko; Tokuda, Reiko; Naito, Masahiro; Takagi, Takehiro; D'Alessandro-Gabazza, Corina N.; Suga, Shigeru; Kobayashi, Tetsu; Fujisawa, Takao; Taguchi, Osamu; Gabazza, Esteban C.

    2013-01-01

    Eosinophilic inflammation and remodeling of the airways including subepithelial fibrosis and myofibroblast hyperplasia are characteristic pathological findings of bronchial asthma. Epithelial to mesenchymal transition (EMT) plays a critical role in airway remodelling. In this study, we hypothesized that infiltrating eosinophils promote airway remodelling in bronchial asthma. To demonstrate this hypothesis we evaluated the effect of eosinophils on EMT by in vitro and in vivo studies. EMT was assessed in mice that received intra-tracheal instillation of mouse bone marrow derived eosinophils and in human bronchial epithelial cells co-cultured with eosinophils freshly purified from healthy individuals or with eosinophilic leukemia cell lines. Intra-tracheal instillation of eosinophils was associated with enhanced bronchial inflammation and fibrosis and increased lung concentration of growth factors. Mice instilled with eosinophils pre-treated with transforming growth factor(TGF)-β1 siRNA had decreased bronchial wall fibrosis compared to controls. EMT was induced in bronchial epithelial cells co-cultured with human eosinophils and it was associated with increased expression of TGF-β1 and Smad3 phosphorylation in the bronchial epithelial cells. Treatment with anti-TGF-β1 antibody blocked EMT in bronchial epithelial cells. Eosinophils induced EMT in bronchial epithelial cells, suggesting their contribution to the pathogenesis of airway remodelling. PMID:23700468

  17. Risk prediction for malignant conversion of oral epithelial dysplasia by hypoxia related protein expression.

    PubMed

    Zhang, Xianglan; Han, Seonhui; Han, Hye-Yeon; Ryu, Mi Heon; Kim, Ki-Yeol; Choi, Eun-Joo; Cha, In-Ho; Kim, Jin

    2013-08-01

    Increased aerobic glycolysis is a unique finding in cancers and hypoxia-related proteins are associated with aerobic glycolysis. Therefore, we aimed to investigate whether hypoxia-related proteins can be predictive markers for malignant conversion of oral premalignant lesions with epithelial dysplasia (OED). Expression of HIF-1α, Glut-1 and CA9 were detected in clinical samples of eight normal oral mucosa, 85 transitional areas of oral squamous cell carcinoma (OSCC) and 28 OED with or without malignant conversion using immunohistochemistry and were also comparatively detected in immortalised human oral keratinocyte (IHOK) and OSCC cell lines under hypoxia using immunoblotting. Sequential expression of HIF-1α, Glut-1 and CA9 was found both in transitional areas of OSCC and cell lines of IHOK and OSCC under hypoxia, supporting hypoxia-aerobic glycolysis-acidosis axis. Expression of all proteins showed significant association with malignant conversion of OED and CA9 was an independent risk factor of malignant transformation of OED. But the predictability of malignant transformation was improved when all three proteins were applied together. High expression of CA9 was an independent predictive marker of malignant conversion. Moreover, the combined application of these three proteins may be useful to assess the risk of malignant conversion of OED.

  18. Micronuclei: An essential biomarker in oral exfoliated cells for grading of oral squamous cell carcinoma

    PubMed Central

    Jadhav, Kiran; Gupta, Nidhi; Ahmed, Mujib BR

    2011-01-01

    Background: Micronuclei in exfoliated oral epithelial cells have been shown in some studies to correlate with severity of this genotoxic damage. This severity can be measured in terms of grading of the lesions. Aim: To correlate frequency of micronuclei (MN) in oral exfoliated cells in clinically diagnosed cases of oral squamous cell carcinoma (OSCC) followed by a histopathological grading. Materials and Methods: The study subjects consisted of clinically diagnosed cases of OSCC. Healthy subjects without any tobacco consumption habits formed the control group. The cytosmears from both groups were stained with rapid Papanicolaou stain. MN were identified according to the criteria given by Countryman and Heddle with some modifications. Results: The frequency of MN was three to four times higher in patients with OSCC as compared to patients in the control group and the difference was found to be highly significant. In 75% cases, the cytological grade as determined by the frequency of micronuclei correlated with the histopathological grade and this observation was statistically significant. Conclusions: MN can be a candidate to serve as a biomarker for prediction of the grade of OSCC. PMID:21552400

  19. Differential roles of kallikrein-related peptidase 6 in malignant transformation and ΔNp63β-mediated epithelial-mesenchymal transition of oral squamous cell carcinoma.

    PubMed

    Kaneko, Naoki; Kawano, Shintaro; Yasuda, Kaori; Hashiguchi, Yuma; Sakamoto, Taiki; Matsubara, Ryota; Goto, Yuichi; Jinno, Teppei; Maruse, Yasuyuki; Morioka, Masahiko; Hattori, Taichi; Tanaka, Shoichi; Tanaka, Hideaki; Kiyoshima, Tamotsu; Nakamura, Seiji

    2017-12-01

    We previously reported that epithelial-to-mesenchymal transition (EMT) was mediated by ΔNp63β in oral squamous cell carcinoma (OSCC). In this study, DNA microarray analyses were performed using ΔNp63β-overexpressing OSCC cells to identify genes associated with ΔNp63β-mediated EMT. Thereby, we focused on kallikrein-related peptidase (KLK) 6, most up-regulated following ΔNp63β-overexpression, that activates protease-activated receptors (PARs). In RT-PCR analyses, ΔNp63 was positively associated with KLK6 and PAR2 and negatively with PAR1 in OSCC cells. By ΔNp63 knockdown, KLK6 and PAR2 expression was decreased and PAR1 was increased. Furthermore, KLK6 knockdown led to enhancing migration and invasion, and inhibiting proliferation, suggesting EMT-phenotypes. Although, in the KLK6 or PAR2 knockdown cells, phosphorylation of ERK was reduced, it was restored in the KLK6 knockdown OSCC cells treated with recombinant KLK6 proteins. Immunohistochemistry showed ΔNp63, KLK6, and PAR2 were more strongly expressed in the epithelial dysplasia and central region of OSCC than normal oral epithelium, whereas PAR1 expression was undetectable. Interestingly, at the invasive front of OSCC, ΔNp63, KLK6, and PAR2 were reduced, but PAR1 was elevated. In addition, the OSCC patients with decreasing KLK6 expression at the invasive front had more unfavourable prognosis. These results suggested differential roles of KLK6 in malignant transformation and EMT; high ΔNp63β expression up-regulates KLK6-PAR2 and down-regulates PAR1, inducing malignant transformation in oral epithelium with stimulating proliferation through ERK signal activation. Moreover, KLK6-PAR2 expression is down-regulated and PAR1 is up-regulated when ΔNp63β expression is decreased, leading to EMT with enhancing migration and invasion through ERK signal reduction at the invasive front. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Expression of SRSF3 is Correlated with Carcinogenesis and Progression of Oral Squamous Cell Carcinoma.

    PubMed

    Peiqi, Liu; Zhaozhong, Guo; Yaotian, Yin; Jun, Jia; Jihua, Guo; Rong, Jia

    2016-01-01

    Oral squamous cell carcinoma (OSCC) is the most common malignancy of head and neck with high mortality rates. The mechanisms of initiation and development of OSCC remain largely unknown. Dysregulated alternative splicing of pre-mRNA has been associated with OSCC. Splicing factor SRSF3 is a proto-oncogene and overexpressed in multiple cancers. The aim of this study was to uncover the relationship between SRSF3 and carcinogenesis and progression of oral squamous cell carcinoma. The expression of SRSF3 in oral normal, dysplasia, or carcinoma tissues was analyzed by immunohistochemistry. The expression levels of EMT-related genes were quantified by real-time quantitative RT-PCR. The expression of SRSF3 in DMBA treated primary cultured oral epithelial cells were analyzed by western blot. SRSF3 is overexpressed in oral cancer and moderate or severe dysplasia tissues. Patients with high grade cancer or lymphatic metastasis showed up-regulated expression of SRSF3. Knockdown of SRSF3 repressed the expression of Snail and N-cadherin in vitro. Carcinogen DMBA treated primary cultured oral epithelial cells showed significantly increased SRSF3 level than in control cells. Our results suggested that SRSF3 is associated with the initiation and development of OSCC and may be a biomarker and therapeutic target of OSCC.

  1. Sodium Phenylbutyrate Inhibits Tumor Growth and the Epithelial-Mesenchymal Transition of Oral Squamous Cell Carcinoma In Vitro and In Vivo.

    PubMed

    Qian, Kun; Sun, Laiyu; Zhou, Guoqing; Ge, Haixia; Meng, Yue; Li, Jingfen; Li, Xiao; Fang, Xinqiang

    2018-05-01

    Sodium phenylbutyrate (SPB) as a salt of 4-phenylbutyric acid (4-PBA) has been reported to be an ammonia scavenger, histone deacetylase inhibitor, and an endoplasmic reticulum stress inhibitor in various diseases, including neurological diseases, inflammatory disorders, and carcinogenesis. Although phenylbutyrate showed effective antitumor properties in many cancers, its role in oral squamous cell carcinoma (OSCC) remains further characterized. Thus, the OSCC cell lines CAL27, HSC3, and SCC4 were treated with a series of doses of SPB for different times. The IC 50 of three cell lines for SPB was determined to be 4.0, 3.7, and 3.0 mM. The CCK-8 assay indicated that the treatment of SPB induced continuous inhibition of cell vitality of three cell lines. Apoptosis was assessed by Hoechst assay that showed that SPB could significantly promote cell apoptosis. Moreover, the apoptosis-related pathway was analyzed, and the results showed that the expression of antiapoptosis factor BCL-2 was downregulated by SPB but the cleavage of caspase-3 was increased. Meanwhile, it was found that SPB also impaired the migration and invasion of OSCC cells in vitro. Mechanistically, the transforming growth factor-β (TGFB) related epithelial-mesenchymal transition (EMT) was inhibited by SPB with decreased mesenchymal marker N-cadherin and increased epithelial marker E-cadherin. Furthermore, the antitumor effect of SPB in vivo was also demonstrated. The administration of SPB induced remarkably tumor regression with decreased tumor volume, and the TGFB level and EMT phenotype in vivo were also inhibited. These data demonstrated that the treatment of SPB could function as antitumor therapeutics for OSCC.

  2. TRPV2 expression in rat oral mucosa.

    PubMed

    Shimohira, Daiji; Kido, Mizuho A; Danjo, Atsushi; Takao, Tomoka; Wang, Bing; Zhang, Jing-Qi; Yamaza, Takayoshi; Masuko, Sadahiko; Goto, Masaaki; Tanaka, Teruo

    2009-10-01

    The oral mucosa is a highly specialised, stratified epithelium that confers protection from infection and physical, chemical and thermal stimuli. The non-keratinised junctional epithelium surrounds each tooth like a collar and is easily attacked by foreign substances from the oral sulcus. We found that TRPV2, a temperature-gated channel, is highly expressed in junctional epithelial cells, but not in oral sulcular epithelial cells or oral epithelial cells. Dual or triple immunolabelling with immunocompetent cell markers also revealed TRPV2 expression in Langerhans cells and in dendritic cells and macrophages. Electron microscopy disclosed TRPV2 immunoreactivity in the unmyelinated and thinly myelinated axons within the connective tissue underlying the epithelium. TRPV2 labelling was also observed in venule endothelial cells. The electron-dense immunoreaction in junctional epithelial cells, macrophages and neural axons occurred on the plasma membrane, on invaginations of the plasma membrane and in vesicular structures. Because TRPV2 has been shown to respond to temperature, hypotonicity and mechanical stimuli, gingival cells expressing TRPV2 may act as sensor cells, detecting changes in the physical and chemical environment, and may play a role in subsequent defence mechanisms.

  3. EGF induces epithelial-mesenchymal transition and cancer stem-like cell properties in human oral cancer cells via promoting Warburg effect.

    PubMed

    Xu, Qilin; Zhang, Qunzhou; Ishida, Yasutaka; Hajjar, Souren; Tang, Xudong; Shi, Haoran; Dang, Chi V; Le, Anh D

    2017-02-07

    "Warburg effect", the enhanced glycolysis or aerobic glycolysis, confers cancer cells the ability to survive and proliferate even under stressed conditions. In this study, we explored the role of epidermal growth factor (EGF) in orchestrating Warburg effect, the epithelial-mesenchymal transition (EMT) process, and the acquisition of cancer stem-like cell properties in human oral squamous cell carcinoma (OSCC) cells. Our results showed that EGF induces EMT process in OSCC cells, which correlates with the acquisition of cancer stem-like properties, including the enrichment of CD44+/CD24- population of cancer cells and an increased expression of CSC-related genes, aldehyde dehydrogenase-1 (ALDH1) and Bmi-1. We also showed that EGF concomitantly enhanced L-lactate production, while blocking glycolysis by 2-deoxy-D-glucose (2-DG) robustly reversed EGF-induced EMT process and CSC-like properties in OSCC cells. Mechanistically, we demonstrated that EGF promoted EMT process and CSC generation through EGFR/PI3K/HIF-1α axis-orchestrated glycolysis. Using an orthotopic tumor model of human OSCC (UM-SCC1) injected in the tongue of BALB/c nude mice, we showed that treatment with 2-DG in vivo significantly inhibited the metastasis of tumor cells to the regional cervical lymph nodes and reduced the expression of ALDH1 and vimentin in both in situ tumors and tumor cell-invaded regional lymph nodes. Taken together, these findings have unveiled a new mechanism that EGF drives OSCC metastasis through induction of EMT process and CSC generation, which is driven by an enhanced glycolytic metabolic program in OSCC cells.

  4. A loss of profilin-1 in late-stage oral squamous cell carcinoma.

    PubMed

    Adami, Guy R; O'Callaghan, Thomas N; Kolokythas, Antonia; Cabay, Robert J; Zhou, Yalu; Schwartz, Joel L

    2017-08-01

    The genes for PFN1 and TMSB4 are both highly expressed in oral tissue and both encode actin monomer binding proteins thought to play a role in cell motility and possibly other crucial parts of tumor progression. Oral brush cytology of epithelium from oral squamous cell carcinoma (OSCC) was used to measure PFN1 and TMSB4 mRNA in OSCC, while immunohistochemical analysis of tissue was used to check protein levels. High but variable expression of mRNAs encoding these two proteins was observed suggesting they may contribute to tumor characteristics in a subset of OSCCs. Both proteins were highly expressed in normal appearing basal epithelium, in the cytoplasm, and perinuclear area, while expression was minimal in upper epithelial layers. In OSCCs, expression of these proteins varied. In tumors classified as later stage, based on size and/or lymph node involvement, PFN1 levels were lower in tumor epithelium. A control gene, KRT13, showed expression in normal differentiated basal and suprabasal oral mucosa epithelial cells and as reported was lost in OSCC cells. Loss of PFN1 in tumor cells has been associated with lymph node invasion and metastasis in other tumor types, strengthening the argument that the protein has the potential to be a tumor suppressor in late-stage OSCC. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Persistent Exposure to Porphyromonas gingivalis Promotes Proliferative and Invasion Capabilities, and Tumorigenic Properties of Human Immortalized Oral Epithelial Cells

    PubMed Central

    Geng, Fengxue; Liu, Junchao; Guo, Yan; Li, Chen; Wang, Hongyang; Wang, Hongyan; Zhao, Haijiao; Pan, Yaping

    2017-01-01

    Recent epidemiological studies revealed a significant association between oral squamous cell carcinoma (OSCC) and Porphyromonas gingivalis, a major pathogen of periodontal disease. As a keystone pathogen of periodontitis, P. gingivalis is known not only to damage local periodontal tissues, but also to evade the host immune system and eventually affect systemic health. However, its role in OSCC has yet to be defined. To explore the underlying effect of chronic P. gingivalis infection on OSCC and to identify relevant biomarkers as promising targets for therapy and prevention, we established a novel model by exposing human immortalized oral epithelial cells (HIOECs) to P. gingivalis at a low multiplicity of infection (MOI) for 5–23 weeks. The P. gingivalis infected HIOECs were monitored for tumor biological alteration by proliferation, wound healing, transwell invasion, and gelatin zymography assays. Microarray and proteomic analyses were performed on HIOECs infected with P. gingivalis for 15 weeks, and some selected data were validated by quantitative real-time PCR and (or) western blot on cells infected for 15 and 23 weeks. Persistent exposure to P. gingivalis caused cell morphological changes, increased proliferation ability with higher S phase fraction in the cell cycle, and promoted cell migratory and invasive properties. In combining results of bioinformatics analyses and validation assays, tumor-related genes such as NNMT, FLI1, GAS6, lncRNA CCAT1, PDCD1LG2, and CD274 may be considered as the key regulators in tumor-like transformation in response to long-time exposure of P. gingivalis. In addition, some useful clinical biomarkers and novel proteins were also presented. In conclusion, P. gingivalis could promote tumorigenic properties of HIOECs, indicating that chronic P. gingivalis infection may be considered as a potential risk factor for oral cancer. The key regulators detected from the present model might be used in monitoring the development of OSCC with

  6. Epithelial-mesenchymal transition abolishes the susceptibility of polarized epithelial cell lines to measles virus.

    PubMed

    Shirogane, Yuta; Takeda, Makoto; Tahara, Maino; Ikegame, Satoshi; Nakamura, Takanori; Yanagi, Yusuke

    2010-07-02

    Measles virus (MV), an enveloped negative-strand RNA virus, remains a major cause of morbidity and mortality in developing countries. MV predominantly infects immune cells by using signaling lymphocyte activation molecule (SLAM; also called CD150) as a receptor, but it also infects polarized epithelial cells, forming tight junctions in a SLAM-independent manner. Although the ability of MV to infect polarized epithelial cells is thought to be important for its transmission, the epithelial cell receptor for MV has not been identified. A transcriptional repressor, Snail, induces epithelial-mesenchymal transition (EMT), in which epithelial cells lose epithelial cell phenotypes, such as adherens and tight junctions. In this study, EMT was induced by expressing Snail in a lung adenocarcinoma cell line, II-18, which is highly susceptible to wild-type MV. Snail-expressing II-18 cells lost adherens and tight junctions. Microarray analysis confirmed the induction of EMT in II-18 cells and suggested a novel function of Snail in protein degradation and distribution. Importantly, wild-type MV no longer entered EMT-induced II-18 cells, suggesting that the epithelial cell receptor is down-regulated by the induction of EMT. Other polarized cell lines, NCI-H358 and HT-29, also lost susceptibility to wild-type MV when EMT was induced. However, the complete formation of tight junctions rather reduced MV entry into HT-29 cells. Taken together, these data suggest that the unidentified epithelial cell receptor for MV is involved in the formation of epithelial intercellular junctions.

  7. Silibinin meglumine, a water-soluble form of milk thistle silymarin, is an orally active anti-cancer agent that impedes the epithelial-to-mesenchymal transition (EMT) in EGFR-mutant non-small-cell lung carcinoma cells.

    PubMed

    Cufí, Sílvia; Bonavia, Rosa; Vazquez-Martin, Alejandro; Corominas-Faja, Bruna; Oliveras-Ferraros, Cristina; Cuyàs, Elisabet; Martin-Castillo, Begoña; Barrajón-Catalán, Enrique; Visa, Joana; Segura-Carretero, Antonio; Bosch-Barrera, Joaquim; Joven, Jorge; Micol, Vicente; Menendez, Javier A

    2013-10-01

    Silibinin is the primary active constituent of a crude extract (silymarin) from milk thistle plant (Silybum marianum) seeds. We explored the ability of an oral milk thistle extract formulation that was enriched with a water-soluble form of silibinin complexed with the amino-sugar meglumine to inhibit the growth of non-small-cell lung carcinoma (NSCLC) mouse xenografts. As a single agent, oral silibinin meglumine notably decreased the overall volumes of NSCLC tumors as efficiently as did the EGFR tyrosine kinase inhibitor (TKI) gefitinib. Concurrent treatment with silibinin meglumine impeded the regrowth of gefitinib-unresponsive tumors, resulting in drastic tumor growth prevention. Because the epithelial-to-mesenchymal transition (EMT) is required by a multiplicity of mechanisms of resistance to EGFR TKIs, we evaluated the ability of silibinin meglumine to impede the EMT in vitro and in vivo. Silibinin-meglumine efficiently prevented the loss of markers associated with a polarized epithelial phenotype as well as the de novo synthesis of proteins associated with the mesenchymal morphology of transitioning cells. Our current findings with this non-toxic, orally active, and water-soluble silibinin formulation might facilitate the design of clinical trials to test the administration of silibinin meglumine-containing injections, granules, or beverages in combination with EGFR TKIs in patients with EGFR-mutated NSCLC. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Growth and adherence of Staphylococcus aureus were enhanced through the PGE2 produced by the activated COX-2/PGE2 pathway of infected oral epithelial cells

    PubMed Central

    Wang, Yuxia; Ren, Biao; Zhou, Xuedong; Liu, Shiyu; Zhou, Yujie; Li, Bolei; Jiang, Yaling; Li, Mingyun; Feng, Mingye

    2017-01-01

    Staphylococcus aureus is a major pathogen of varieties of oral mucous infection. Prostaglandin E2 (PGE2) is a pro-inflammatory factor and Cyclooxygenase 2 (COX-2) is a critical enzyme of PGE2 biosynthesis. The purpose of this study is to investigate whether Staphylococcus aureus can increase PGE2 production of oral epithelial cells and how PGE2 functions in the growth and adherence of Staphylococcus aureus. mRNA levels of COX-2, fnbpA and fnbpB were estimated by quantitative PCR. PGE2 production was measured by Enzyme Linked Immunosorbent Assay (ELISA). The binding biomass of Staphylococcus aureus to human fibronectin was investigated by crystal violet staining and confocal laser scanning microscopy and the adherent force was measured by atomic force microscope (AFM). The COX-2 mRNA level and PGE2 production were increased by Staphylococcus aureus. PGE2 promoted the growth and biofilm formation of Staphylococcus aureus, enhanced the attachment of Staphylococcus aureus to the human fibronectin as well as to the HOK cells. The transcription of fnbpB was up-regulated by PGE2 in both early and middle exponential phase but not fnbpA. These results suggest that the activation of COX-2/PGE2 pathway in oral epithelial cell by Staphylococcus aureus can in turn facilitate the growth and the ability to adhere of the pathogen. These findings uncover a new function of PGE2 and may lead to the potential of COX-2/PGE2 targeting in the therapy of inflammation and cancer in both which the COX-2/PGE2 pathway were observed activated. PMID:28472126

  9. Growth and adherence of Staphylococcus aureus were enhanced through the PGE2 produced by the activated COX-2/PGE2 pathway of infected oral epithelial cells.

    PubMed

    Wang, Yuxia; Ren, Biao; Zhou, Xuedong; Liu, Shiyu; Zhou, Yujie; Li, Bolei; Jiang, Yaling; Li, Mingyun; Feng, Mingye; Cheng, Lei

    2017-01-01

    Staphylococcus aureus is a major pathogen of varieties of oral mucous infection. Prostaglandin E2 (PGE2) is a pro-inflammatory factor and Cyclooxygenase 2 (COX-2) is a critical enzyme of PGE2 biosynthesis. The purpose of this study is to investigate whether Staphylococcus aureus can increase PGE2 production of oral epithelial cells and how PGE2 functions in the growth and adherence of Staphylococcus aureus. mRNA levels of COX-2, fnbpA and fnbpB were estimated by quantitative PCR. PGE2 production was measured by Enzyme Linked Immunosorbent Assay (ELISA). The binding biomass of Staphylococcus aureus to human fibronectin was investigated by crystal violet staining and confocal laser scanning microscopy and the adherent force was measured by atomic force microscope (AFM). The COX-2 mRNA level and PGE2 production were increased by Staphylococcus aureus. PGE2 promoted the growth and biofilm formation of Staphylococcus aureus, enhanced the attachment of Staphylococcus aureus to the human fibronectin as well as to the HOK cells. The transcription of fnbpB was up-regulated by PGE2 in both early and middle exponential phase but not fnbpA. These results suggest that the activation of COX-2/PGE2 pathway in oral epithelial cell by Staphylococcus aureus can in turn facilitate the growth and the ability to adhere of the pathogen. These findings uncover a new function of PGE2 and may lead to the potential of COX-2/PGE2 targeting in the therapy of inflammation and cancer in both which the COX-2/PGE2 pathway were observed activated.

  10. Interspecies variations in oral epithelial cytokeratin expression

    PubMed Central

    BARRETT, A. W.; SELVARAJAH, S.; FRANEY, S.; WILLS, K.-A.; BERKOVITZ, B. K. B.

    1998-01-01

    The aim of this study was to determine the degree to which the epidermis and oral epithelium of species other than man express cytokeratin (CK) intermediate filaments, which are markers of epithelial differentiation. Fixed, wax-embedded samples of skin, buccal mucosa and gingiva from rhesus monkey, marmoset, cow, sheep, pig, ferret, hamster, axolotl and trout were tested for CK expression using a panel of antihuman CK antibodies and an immunoperoxidase procedure. Human skin and oral mucosa were also stained to act as positive control. The results showed that antihuman CK antibodies stained animal tissues, but the patterns of staining were not always identical to the established human CK profile. Of particular interest was the expression of CK18, typically only detected in ‘simple’ epithelium in man, in bovine, ferret and hamster stratified epithelium from different sites. However, there was evidence of variable anti-CK antibody cross-reactivity, both as a result of intrinsic variations in CK polypeptide structure and as artifacts of fixation. We conclude that some CK are conserved between species, but that biological variables, for example local functional requirements, and technical factors affect the results. These considerations need to be borne in mind in animal studies of epithelial differentiation employing CK immunohistochemistry. Biochemical characterisation is ultimately necessary to determine specific differences between human and animal CK. PMID:9827634

  11. Supernatants from oral epithelial cells and gingival fibroblasts modulate human immunodeficiency virus type 1 promoter activation induced by periodontopathogens in monocytes/macrophages.

    PubMed

    González, O A; Ebersole, J L; Huang, C B

    2010-04-01

    Bacterial and host cell products during coinfections of Human Immunodeficiency Virus type 1-positive (HIV-1(+)) patients regulate HIV-1 recrudescence in latently infected cells (e.g. T cells, monocytes/macrophages), impacting highly active antiretroviral therapy (HAART) failure and progression of acquired immunodeficiency syndrome. A high frequency of oral opportunistic infections (e.g. periodontitis) in HIV-1(+) patients has been demonstrated; however, their potential to impact HIV-1 exacerbation is unclear. We sought to determine the ability of supernatants derived from oral epithelial cells (OKF4) and human gingival fibroblasts (Gin-4) challenged with periodontal pathogens, to modulate the HIV-1 promoter activation in monocytes/macrophages. BF24 monocytes/macrophages transfected with the HIV-1 promoter driving the expression of chloramphenicol acetyltransferase (CAT) were stimulated with Porphyromonas gingivalis, Fusobacterium nucleatum, or Treponema denticola in the presence of supernatants from OKF4 or Gin4 cells either unstimulated or previously pulsed with bacteria. CAT levels were determined by enzyme-linked immunosorbent assay and cytokine production was evaluated by Luminex beadlyte assays. OKF4 and Gin4 supernatants enhanced HIV-1 promoter activation particularly related to F. nucleatum challenge. An additive effect was observed in HIV-1 promoter activation when monocytes/macrophages were simultaneously stimulated with gingival cell supernatants and bacterial extracts. OKF4 cells produced higher levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukins -6 and -8 in response to F. nucleatum and P. gingivalis. Preincubation of OKF4 supernatants with anti-GM-CSF reduced the additive effect in periodontopathogen-induced HIV-1 promoter activation. These results suggest that soluble mediators produced by gingival resident cells in response to periodontopathogens could contribute to HIV-1 promoter activation in monocytes

  12. Curcumin targets fibroblast–tumor cell interactions in oral squamous cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudás, József, E-mail: jozsef.dudas@i-med.ac.at; Fullár, Alexandra, E-mail: fullarsz@gmail.com; 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, 1085 Budapest

    Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of OSCC tumor cells. We hypothesized that Curcumin targets this dynamic mutual interaction between CAFs and tumor cells. Normal and 2 μM Curcumin-treated co-culture were performed for 4 days, followed by analysis of tumor cell invasivity, mRNA/protein expression of EMT-markers and mediators, activity measure of matrix metalloproteinase 9 (MMP-9), and western blot analysis of signal transduction in tumor cells and fibroblasts. In Curcumin-treated co-culture, in tumor cells, the levels of nuclear factormore » κB (NFκBα) and early response kinase (ERK)—decreased, in fibroblasts, integrin αv protein synthesis decreased compared to corresponding cells in normal co-culture. The signal modulatory changes induced by Curcumin caused decreased release of EMT-mediators in CAFs and reversal of EMT in tumor cells, which was associated with decreased invasion. These data confirm the palliative potential of Curcumin in clinical application. - Graphical abstract: Co-culture of periodontal ligament fibroblasts (PDLs) and SCC-25 oral squamous carcinoma cells (OSCC) results in conversion of PDLs into carcinoma-associated fibroblasts (CAFs) and induces epithelial-to mesenchymal transition (EMT) of tumor cells. Curcumin targets this dynamic mutual interaction between CAFs and tumor cells by inhibiting the production of EMT mediators in CAFs and by modification of intracellular signaling in tumor cells. This causes less invasivity and reversal of EMT in tumor cells. Highlights: ► Curcumin targets tumor–fibroblast interaction in head and neck cancer. ► Curcumin suppresses mediators of epithelial–mesenchymal transition. ► Curcumin decreases the invasivity of tumor cells.« less

  13. Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells

    PubMed Central

    Ando, Seijitsu; Otani, Hitomi; Yagi, Yasuhiro; Kawai, Kenzo; Araki, Hiromasa; Fukuhara, Shirou; Inagaki, Chiyoko

    2007-01-01

    Background Proteinase-activated receptors (PARs; PAR1–4) that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT) which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA) for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells). Results Stimulation of PAR with thrombin (1 U/ml) or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM) for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β). Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR) kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial-mesenchymal transition (EMT

  14. Oral Contraceptive Use and Reproductive Characteristics Affect Survival in Patients With Epithelial Ovarian Cancer

    PubMed Central

    Kolomeyevskaya, Nonna V.; Szender, J. Brian; Zirpoli, Gary; Minlikeeva, Albina; Friel, Grace; Cannioto, Rikki A.; Brightwell, Rachel M.; Grzankowski, Kassondra S.; Moysich, Kirsten B.

    2015-01-01

    Objectives Prognostic risk factors influencing survival in patients with epithelial ovarian cancer (EOC) include tumor stage, grade, histologic subtype, debulking, and platinum status. Little is known about the impact of hormonal milieu and reproductive factors before cancer diagnosis on clinical outcome. We sought to evaluate whether oral contraceptive (OC) use carries any prognostic significance on overall survival (OS) in patients with EOC. Methods Newly diagnosed patients with EOC, fallopian tube, and primary peritoneal cancers between 1982 and 1998 were prospectively evaluated with a comprehensive epidemiologic questionnaire. A retrospective chart review was performed to abstract clinicopathologic data, including OS. A Kaplan-Meier analysis was performed to compare survival across various exposures. A Cox regression model was used to compute adjusted hazards ratios (aHRs) and 95% confidence intervals (CIs). Results We identified 387 newly diagnosed cancers with evaluable information in this cohort. Decreased risk of death was observed in women who reported prior use of OC (aHR, 0.79; 95% CI, 0.58–1.09), previous pregnancy (aHR, 0.77; 95% CI, 0.57–1.04), or a live birth (aHR, 0.81; 95% CI, 0.60–1.08) after adjusting for age at diagnosis, stage, and histologic subtype. Oral contraceptive use was associated with a crude reduced risk of death (HR, 0.55; 95% CI, 0.42–0.72), with reported median OS of 81 months in OC users versus 46 months in nonusers. Patients who reported a single live birth experienced the largest potential survival advantage (aHR, 0.61; 95% CI, 0.39–0.94). Oral contraceptive use and prior pregnancy were associated with improved survival across all strata. Conclusions Oral contraceptive use may have lasting effects on epithelial ovarian tumor characteristics conferring favorable prognosis. Putative mechanisms that affect tumor biology include complex interactions between ovarian cells, host immune cells, and hormonal microenvironment

  15. Probiotic bacteria cell walls stimulate the activity of the intestinal epithelial cells and macrophage functionality.

    PubMed

    Lemme-Dumit, J M; Polti, M A; Perdigón, G; Galdeano, C Maldonado

    2018-01-29

    The effect of oral administration of probiotic bacteria cell walls (PBCWs) in the stimulation of the immune system in healthy BALB/c mice was evaluated. We focused our investigation mainly on intestinal epithelial cells (IECs) which are essential for coordinating an adequate mucosal immune response and on the functionality of macrophages. The probiotic bacteria and their cell walls were able to stimulate the IECs exhibiting an important activation and cytokine releases. Supplementation with PBCWs promoted macrophage activation from peritoneum and spleen, indicating that the PBCWs oral administration was able to improve the functionality of the macrophages. In addition, the PBCWs increased immunoglobulin A (IgA)-producing cells in the gut lamina propria in a similar way to probiotic bacteria, but this supplementation did not have an effect on the population of goblet cells in the small intestine epithelium. These results indicate that the probiotic bacteria and their cell walls have an important immunoregulatory effect on the IECs without altering the homeostatic environment but with an increase in IgA+ producing cells and in the innate immune cells, mainly those distant from the gut such as spleen and peritoneum. These findings about the capacity of the cell walls from probiotic bacteria to stimulate key cells, such as IECs and macrophages, and to improve the functioning of the immune system, suggest that those structures could be applied as a new oral adjuvant.

  16. Study of P21 Expression in Oral Lichen Planus and Oral Squamous Cell Carcinoma by Immunohistochemical Technique.

    PubMed

    Baghaei, Fahimeh; Shojaei, Setareh; Afshar-Moghaddam, Noushin; Zargaran, Massoumeh; Rastin, Verisheh; Nasr, Mohsen; Moghimbeigi, Abbas

    2015-09-01

    Lichen planus is a mucocutaneous disease that is relatively common in middle aged individuals. Some studies have shown that oral lichen planus has a potential to progress to squamous cell carcinoma.p21 is a cyclin-dependent kinase inhibitor that regulates the cell cycle, thus it acts as an inhibitor in cell proliferation. This study was aimed to evaluate and compare the immunostaining of p21 (as a proliferation inhibitory factor) in oral lichen planus (OLP) and oral squamous cell carcinoma (OSCC). In this descriptive cross-sectional study, p21expression was investigated in 24 samples of oral lichen planus (OLP), 24 samples of oral squamous cell carcinoma (OSCC) and 24 samples of oral epithelial hyperplasia (OEH) by employing immunohistochemical staining. The mean percentage of p21-positive cells in OSCC (54.5±6.6) was significantly higher than that in OLP (32.8±6.08) and OEH (9.4±3.8). Moreover, OLP samples expressed p21 significantly higher than the OEH. Kruskal Wallis test revealed a statistically significant difference between the groups regarding the intensity of staining (p< 0.001). According to the findings of this study, the expression of p21 might be related to the potential carcinogenic transformation of lichen planus to SCC. Therefore, continuous follow-up periods for OLP are recommended for diagnosis of the malignant transformations in early stages.

  17. CDDO-Me protects normal lung and breast epithelial cells but not cancer cells from radiation.

    PubMed

    El-Ashmawy, Mariam; Delgado, Oliver; Cardentey, Agnelio; Wright, Woodring E; Shay, Jerry W

    2014-01-01

    Although radiation therapy is commonly used for treatment for many human diseases including cancer, ionizing radiation produces reactive oxygen species that can damage both cancer and healthy cells. Synthetic triterpenoids, including CDDO-Me, act as anti-inflammatory and antioxidant modulators primarily by inducing the transcription factor Nrf2 to activate downstream genes containing antioxidant response elements (AREs). In the present series of experiments, we determined if CDDO-Me can be used as a radioprotector in normal non-cancerous human lung and breast epithelial cells, in comparison to lung and breast cancer cell lines. A panel of normal non-cancerous, partially cancer progressed, and cancer cell lines from both lung and breast tissue was exposed to gamma radiation with and without pre-treatment with CDDO-Me. CDDO-Me was an effective radioprotector when given ∼18 hours before radiation in epithelial cells (average dose modifying factor (DMF) = 1.3), and Nrf2 function was necessary for CDDO-Me to exert these radioprotective effects. CDDO-Me did not protect cancer lines tested from radiation-induced cytotoxicity, nor did it protect experimentally transformed human bronchial epithelial cells (HBECs) with progressive oncogenic manipulations. CDDO-Me also protected human lymphocytes against radiation-induced DNA damage. A therapeutic window exists in which CDDO-Me protects normal cells from radiation by activating the Nrf2 pathway, but does not protect experimentally transformed or cancer cell lines. This suggests that use of this oral available, non-toxic class of drug can protect non-cancerous healthy cells during radiotherapy, resulting in better outcomes and less toxicity for patients.

  18. CDDO-Me Protects Normal Lung and Breast Epithelial Cells but Not Cancer Cells from Radiation

    PubMed Central

    El-Ashmawy, Mariam; Delgado, Oliver; Cardentey, Agnelio; Wright, Woodring E.; Shay, Jerry W.

    2014-01-01

    Although radiation therapy is commonly used for treatment for many human diseases including cancer, ionizing radiation produces reactive oxygen species that can damage both cancer and healthy cells. Synthetic triterpenoids, including CDDO-Me, act as anti-inflammatory and antioxidant modulators primarily by inducing the transcription factor Nrf2 to activate downstream genes containing antioxidant response elements (AREs). In the present series of experiments, we determined if CDDO-Me can be used as a radioprotector in normal non-cancerous human lung and breast epithelial cells, in comparison to lung and breast cancer cell lines. A panel of normal non-cancerous, partially cancer progressed, and cancer cell lines from both lung and breast tissue was exposed to gamma radiation with and without pre-treatment with CDDO-Me. CDDO-Me was an effective radioprotector when given ∼18 hours before radiation in epithelial cells (average dose modifying factor (DMF) = 1.3), and Nrf2 function was necessary for CDDO-Me to exert these radioprotective effects. CDDO-Me did not protect cancer lines tested from radiation-induced cytotoxicity, nor did it protect experimentally transformed human bronchial epithelial cells (HBECs) with progressive oncogenic manipulations. CDDO-Me also protected human lymphocytes against radiation-induced DNA damage. A therapeutic window exists in which CDDO-Me protects normal cells from radiation by activating the Nrf2 pathway, but does not protect experimentally transformed or cancer cell lines. This suggests that use of this oral available, non-toxic class of drug can protect non-cancerous healthy cells during radiotherapy, resulting in better outcomes and less toxicity for patients. PMID:25536195

  19. Molecular profiling of tumour budding implicates TGFβ-mediated epithelial-mesenchymal transition as a therapeutic target in oral squamous cell carcinoma.

    PubMed

    Jensen, D H; Dabelsteen, E; Specht, L; Fiehn, A M K; Therkildsen, M H; Jønson, L; Vikesaa, J; Nielsen, F C; von Buchwald, C

    2015-08-01

    Although tumour budding is an adverse prognostic factor for many cancer types, the molecular mechanisms governing this phenomenon are incompletely understood. Therefore, understanding the molecular basis of tumour budding may provide new therapeutic and diagnostic options. We employ digital image analysis to demonstrate that the number of tumour buds in cytokeratin-stained sections correlates with patients having lymph node metastases at diagnosis. The tumour bud count was also a predictor of overall survival, independent of TNM stage. Tumour buds and paired central tumour areas were subsequently collected from oral squamous cell carcinoma (OSCC) specimens, using laser capture microdissection, and examined with RNA sequencing and miRNA-qPCR arrays. Compared with cells from the central parts of the tumours, budding cells exhibited a particular gene expression signature, comprising factors involved in epithelial-mesenchymal transition (EMT) and activated TGFβ signalling. Transcription factors ZEB1 and PRRX1 were up-regulated concomitantly with the decreased expression of mesenchymal-epithelial (MET) transcription factors (eg OVOL1) in addition to Krüppel-like factors and Grainyhead-like factors. Moreover, miR-200 family members were down-regulated in budding tumour cells. We used immunohistochemistry to validate five markers of the EMT/MET process in 199 OSCC tumours, as well as in situ hybridization in 20 OSCC samples. Given the strong relationship between tumour budding and the development of lymph node metastases and an adverse prognosis, therapeutics based on inhibiting the activation of TGFβ signalling may prove useful in the treatment of OSCC. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  20. Cell phone radiation effects on cytogenetic abnormalities of oral mucosal cells.

    PubMed

    Daroit, Natália Batista; Visioli, Fernanda; Magnusson, Alessandra Selinger; Vieira, Geila Radunz; Rados, Pantelis Varvaki

    2015-01-01

    The aim of this study was to evaluate the effects of exposure to cell phone electromagnetic radiation on the frequency of micronuclei, broken eggs cells, binucleated cells, and karyorrhexis in epithelial cells of the oral mucosa. The sample was composed of 60 cell phone users, who were non-smokers and non-drinkers, and had no clinically visible oral lesions. Cells were obtained from anatomical sites with the highest incidence of oral cancer: lower lip, border of the tongue, and floor of the mouth. The Feulgen reaction was used for quantification of nuclear anomalies in 1,000 cells/slide. A slightly increase in the number of micronucleated cells in the lower lip and in binucleated cells on the floor of the mouth was observed in individuals who used their phones > 60 minutes/week. The analysis also revealed an increased number of broken eggs in the tongue of individuals owning a cell phone for over eight years. Results suggest that exposure to electromagnetic waves emitted by cell phones can increase nuclear abnormalities in individuals who use a cell phone for more than 60 minutes per week and for over eight years. Based on the present findings, we suggest that exposure to electromagnetic radiation emitted by cell phones may interfere with the development of metanuclear anomalies. Therefore, it is demonstrated that, despite a significant increase in these anomalies, the radiation emitted by cell phones among frequent users is within acceptable physiological limits.

  1. Murine epithelial cells: isolation and culture.

    PubMed

    Davidson, Donald J; Gray, Michael A; Kilanowski, Fiona M; Tarran, Robert; Randell, Scott H; Sheppard, David N; Argent, Barry E; Dorin, Julia R

    2004-08-01

    We describe an air-liquid interface primary culture method for murine tracheal epithelial cells on semi-permeable membranes, forming polarized epithelia with a high transepithelial resistance, differentiation to ciliated and secretory cells, and physiologically appropriate expression of key genes and ion channels. We also describe the isolation of primary murine nasal epithelial cells for patch-clamp analysis, generating polarised cells with physiologically appropriate distribution and ion channel expression. These methods enable more physiologically relevant analysis of murine airway epithelial cells in vitro and ex vivo, better utilisation of transgenic mouse models of human pulmonary diseases, and have been approved by the European Working Group on CFTR expression.

  2. Evaluation of cell proliferation in malignant and potentially malignant oral lesions.

    PubMed

    Madan, Mani; Chandra, Shaleen; Raj, Vineet; Madan, Rohit

    2015-01-01

    To evaluate the cell proliferation rate by the expression of proliferating cell nuclear antigen (PCNA) and argyrophilic nucleolar organizing region (AgNOR) counts and to assess its usefulness as a marker for malignant potential in oral epithelial lesions. The study group included 30 cases of leukoplakia, 15 nondysplastic (NDL), 15 dysplastic (DL), 15 cases of oral squamous cell carcinoma (OSCC) and 5 cases of normal oral mucosa. Formalin fixed paraffin embedded tissues were subjected to immunohistochemical staining for PCNA and AgNOR technique. The PCNA labeling index (LI) and the AgNOR dots were evaluated for the entire sample. ANOVA, Tukey honestly significant difference, Pearson's correlation. In this study, the AgNOR count of OSCC was lower than the DL lesions moreover the AgNOR counts were found to be higher in normal mucosa as compared to the DL and the NDL epithelium. The study results also showed that the mean AgNOR count failed to distinguish between DL and NDL lesions. Overall we observed increased PCNA expression from normal epithelium to NDL to DL lesion. Based on the findings of the present study on oral epithelial precancerous and cancerous lesions we conclude that mean AgNOR count alone cannot be a valuable parameter to distinguish between the normal, NDL, DL epithelium and OSCC but, on the other hand, we found out that PCNA can be a useful biomarker for delineating normal epithelium from DL epithelium and OSCC.

  3. Excessive fluoride reduces Foxo1 expression in dental epithelial cells of the rat incisor.

    PubMed

    Gao, Jianghong; Ruan, Jianping; Gao, Liping

    2014-10-01

    Enamel fluorosis is characterized by hypomineralization, and forkhead box O1 (Foxo1) is essential for mouse enamel biomineralization. This study investigated the effect of fluoride on Foxo1 expression and its implications for enamel fluorosis. Mandibular incisors were extracted from Sprague Dawley rats treated for 3 months with water containing 0, 50, or 100 p.p.m. F⁻. Immunohistochemistry was used to localize and quantify FOXO1 expression in dental epithelial layer cells of the incisors. The effect of fluoride on expression of Foxo1, kallikrein-4 (Klk4), and amelotin (Amtn) mRNAs was analyzed by real-time RT-PCR, and western blotting was used to measure total and nuclear FOXO1 protein levels in mature dental epithelial cells. The results revealed that nuclear FOXO1 was mainly localized in the transition and the mature ameloblasts and exhibited weaker expression in the rats exposed to fluoride. In addition to the reduced levels of Foxo1, Klk4, and AmtnmRNAs, the protein levels of total and nuclearFOXO1 were decreased in the mature dental epithelial cells exposed to fluoride. Thus, excessive fluoride may have an effect on the expression levels of Foxo1 in dental epithelial cells and thereby affect hypomineralization of the enamel during fluorosis. © 2014 Eur J Oral Sci.

  4. 5-Fluorouracil-induced apoptosis in cultured oral cancer cells.

    PubMed

    Tong, D; Poot, M; Hu, D; Oda, D

    2000-03-01

    Chemotherapy is commonly used to treat advanced oral squamous cell carcinoma (SCC) and is known to kill cancer cells through apoptosis. Our hypothesis states that 5-fluorouracil (5FU) also kills cultured oral epithelial cells through programmed cell death or apoptosis. Cultured oral cancer cells were exposed to an optimum dose of 20 mg/ml of 5FU. Cells were analyzed for changes in cell cycle distribution and induction of cell death including apoptosis. Normal control, human papilloma virus-immortalized (PP), ATCC SCC cell line (CA1) and two primary oral SCC cell lines (CA3 and -4) were studied. Inhibition of apoptosis by a pan-caspase inhibitor was used. SYTO 11 flow cytometry showed increased apoptosis in all 5FU-treated cell cultures compared to untreated controls. The results show biological variation in apoptotic response. CA1 had the lowest apoptotic rate of the cancer cell lines at 1.5%. Next lowest was CA3, followed by CA4 and PP. In addition, alteration in the G1 and S phase fractions were found. Untreated CA1 showed 28% G1, 53% S compared to 43% G1, and 40% S of treated. We investigated the pathway of apoptosis using the pan-caspase inhibitor IDN-1529 by methylthiazolyl diphenyl tetrazolium bromide (MTT) colorimetric analysis. Results showed mild inhibition of cell death when cells were incubated with 50 microM IDN-1529 for 24 h. This suggests a probable caspase-dependent apoptotic pathway. In conclusion, our data suggest that 5FU induces oral cancer cell death through apoptosis and that biological variation exists between normal and cancer cells and between different types of cancer cells themselves. Our data indicate that cultures of a useful in vitro model for chemosensitivity assays are possible. Our results also suggest a caspase-dependent pathway for chemocytotoxicity in oral SCC.

  5. Comparison and evaluation of mitotic figures in oral epithelial dysplasia using crystal violet and Feulgen stain.

    PubMed

    Rao, Roopa S; Patil, Shankargouda; Agarwal, Anveeta

    2014-05-01

    Routine staining procedures often pose a problem in differentiating a mitotic cell from an apoptotic cell, deteriorating the reliability of histology grading. Although various new methods have been recommended for identifying mitotic figures (MFs) in tissues, the time factor and cost makes them less feasible. Thus, an attempt was made to evaluate the efficacy of crystal violet and Feulgen reaction in identifying MFs and also to see for any variation in the number of MFs in various grades of Epithelial dysplasia. 1. Using crystal violet and Feulgen stain in the identification and counting of MFs on diagnosed cases of epithelial dysplasia and thereby to evaluate their efficacy. 2. To evaluate the variation in the number of MFs in various grades of epithelial dysplasia. The study sample includes retrieval of 30 formalin fixed paraffin embedded tissue sections diagnosed for different grades of epithelial dysplasia (WHO grading system, 2005) from the archives, Department of Oral Pathology, MSRDC, Bengaluru. Ten tissue sections each of mild, moderate and severe epithelial dysplasia were stained with H&E, Feulgen and 1% crystal violet stains and the number of MFs were counted. Five cases of cervical carcinoma were taken as control. Stained sections were compared, and data obtained was statistically analyzed using the Kruskal-Wallis test. A significant increase in the number of MFs (p = 0.02) was observed in Feulgen stained sections as compared to H&E stain. Feulgen stain can be considered as a simple, reliable, cost-effective and reproducible method of staining MFs.

  6. LGN plays distinct roles in oral epithelial stratification, filiform papilla morphogenesis and hair follicle development

    PubMed Central

    Lough, Kendall J.; Patel, Jeet H.; Descovich, Carlos Patiño; Curtis, T. Anthony

    2016-01-01

    Oral epithelia protect against constant challenges by bacteria, viruses, toxins and injury while also contributing to the formation of ectodermal appendages such as teeth, salivary glands and lingual papillae. Despite increasing evidence that differentiation pathway genes are frequently mutated in oral cancers, comparatively little is known about the mechanisms that regulate normal oral epithelial development. Here, we characterize oral epithelial stratification and describe multiple distinct functions for the mitotic spindle orientation gene LGN (Gpsm2) in promoting differentiation and tissue patterning in the mouse oral cavity. Similar to its function in epidermis, apically localized LGN directs perpendicular divisions that promote stratification of the palatal, buccogingival and ventral tongue epithelia. Surprisingly, however, in dorsal tongue LGN is predominantly localized basally, circumferentially or bilaterally and promotes planar divisions. Loss of LGN disrupts the organization and morphogenesis of filiform papillae but appears to be dispensable for embryonic hair follicle development. Thus, LGN has crucial tissue-specific functions in patterning surface ectoderm and its appendages by controlling division orientation. PMID:27317810

  7. Inhibition of EV71 by curcumin in intestinal epithelial cells.

    PubMed

    Huang, Hsing-I; Chio, Chi-Chong; Lin, Jhao-Yin

    2018-01-01

    EV71 is a positive-sense single-stranded RNA virus that belongs to the Picornaviridae family. EV71 infection may cause various symptoms ranging from hand-foot-and-mouth disease to neurological pathological conditions such as aseptic meningitis, ataxia, and acute transverse myelitis. There is currently no effective treatment or vaccine available. Various compounds have been examined for their ability to restrict EV71 replication. However, most experiments have been performed in rhabdomyosarcoma or Vero cells. Since the gastrointestinal tract is the entry site for this pathogen, we anticipated that orally ingested agents may exert beneficial effects by decreasing virus replication in intestinal epithelial cells. In this study, curcumin (diferuloylmethane, C21H20O6), an active ingredient of turmeric (Curcuma longa Linn) with anti-cancer properties, was investigated for its anti-enterovirus activity. We demonstrate that curcumin treatment inhibits viral translation and increases host cell viability. Curcumin does not exert its anti-EV71 effects by modulating virus attachment or virus internal ribosome entry site (IRES) activity. Furthermore, curcumin-mediated regulation of mitogen-activated protein kinase (MAPK) signaling pathways is not involved. We found that protein kinase C delta (PKCδ) plays a role in virus translation in EV71-infected intestinal epithelial cells and that curcumin treatment decreases the phosphorylation of this enzyme. In addition, we show evidence that curcumin also limits viral translation in differentiated human intestinal epithelial cells. In summary, our data demonstrate the anti-EV71 properties of curcumin, suggesting that ingestion of this phytochemical may protect against enteroviral infections.

  8. Inhibition of EV71 by curcumin in intestinal epithelial cells

    PubMed Central

    Chio, Chi-Chong; Lin, Jhao-Yin

    2018-01-01

    EV71 is a positive-sense single-stranded RNA virus that belongs to the Picornaviridae family. EV71 infection may cause various symptoms ranging from hand-foot-and-mouth disease to neurological pathological conditions such as aseptic meningitis, ataxia, and acute transverse myelitis. There is currently no effective treatment or vaccine available. Various compounds have been examined for their ability to restrict EV71 replication. However, most experiments have been performed in rhabdomyosarcoma or Vero cells. Since the gastrointestinal tract is the entry site for this pathogen, we anticipated that orally ingested agents may exert beneficial effects by decreasing virus replication in intestinal epithelial cells. In this study, curcumin (diferuloylmethane, C21H20O6), an active ingredient of turmeric (Curcuma longa Linn) with anti-cancer properties, was investigated for its anti-enterovirus activity. We demonstrate that curcumin treatment inhibits viral translation and increases host cell viability. Curcumin does not exert its anti-EV71 effects by modulating virus attachment or virus internal ribosome entry site (IRES) activity. Furthermore, curcumin-mediated regulation of mitogen-activated protein kinase (MAPK) signaling pathways is not involved. We found that protein kinase C delta (PKCδ) plays a role in virus translation in EV71-infected intestinal epithelial cells and that curcumin treatment decreases the phosphorylation of this enzyme. In addition, we show evidence that curcumin also limits viral translation in differentiated human intestinal epithelial cells. In summary, our data demonstrate the anti-EV71 properties of curcumin, suggesting that ingestion of this phytochemical may protect against enteroviral infections. PMID:29370243

  9. The epithelial-mesenchymal transition generates cells with properties of stem cells.

    PubMed

    Mani, Sendurai A; Guo, Wenjun; Liao, Mai-Jing; Eaton, Elinor Ng; Ayyanan, Ayyakkannu; Zhou, Alicia Y; Brooks, Mary; Reinhard, Ferenc; Zhang, Cheng Cheng; Shipitsin, Michail; Campbell, Lauren L; Polyak, Kornelia; Brisken, Cathrin; Yang, Jing; Weinberg, Robert A

    2008-05-16

    The epithelial-mesenchymal transition (EMT) is a key developmental program that is often activated during cancer invasion and metastasis. We here report that the induction of an EMT in immortalized human mammary epithelial cells (HMLEs) results in the acquisition of mesenchymal traits and in the expression of stem-cell markers. Furthermore, we show that those cells have an increased ability to form mammospheres, a property associated with mammary epithelial stem cells. Independent of this, stem cell-like cells isolated from HMLE cultures form mammospheres and express markers similar to those of HMLEs that have undergone an EMT. Moreover, stem-like cells isolated either from mouse or human mammary glands or mammary carcinomas express EMT markers. Finally, transformed human mammary epithelial cells that have undergone an EMT form mammospheres, soft agar colonies, and tumors more efficiently. These findings illustrate a direct link between the EMT and the gain of epithelial stem cell properties.

  10. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells

    PubMed Central

    Celià-Terrassa, Toni; Meca-Cortés, Óscar; Mateo, Francesca; Martínez de Paz, Alexia; Rubio, Nuria; Arnal-Estapé, Anna; Ell, Brian J.; Bermudo, Raquel; Díaz, Alba; Guerra-Rebollo, Marta; Lozano, Juan José; Estarás, Conchi; Ulloa, Catalina; ρlvarez-Simón, Daniel; Milà, Jordi; Vilella, Ramón; Paciucci, Rosanna; Martínez-Balbás, Marian; García de Herreros, Antonio; Gomis, Roger R.; Kang, Yibin; Blanco, Jerónimo; Fernández, Pedro L.; Thomson, Timothy M.

    2012-01-01

    Malignant progression in cancer requires populations of tumor-initiating cells (TICs) endowed with unlimited self renewal, survival under stress, and establishment of distant metastases. Additionally, the acquisition of invasive properties driven by epithelial-mesenchymal transition (EMT) is critical for the evolution of neoplastic cells into fully metastatic populations. Here, we characterize 2 human cellular models derived from prostate and bladder cancer cell lines to better understand the relationship between TIC and EMT programs in local invasiveness and distant metastasis. The model tumor subpopulations that expressed a strong epithelial gene program were enriched in highly metastatic TICs, while a second subpopulation with stable mesenchymal traits was impoverished in TICs. Constitutive overexpression of the transcription factor Snai1 in the epithelial/TIC-enriched populations engaged a mesenchymal gene program and suppressed their self renewal and metastatic phenotypes. Conversely, knockdown of EMT factors in the mesenchymal-like prostate cancer cell subpopulation caused a gain in epithelial features and properties of TICs. Both tumor cell subpopulations cooperated so that the nonmetastatic mesenchymal-like prostate cancer subpopulation enhanced the in vitro invasiveness of the metastatic epithelial subpopulation and, in vivo, promoted the escape of the latter from primary implantation sites and accelerated their metastatic colonization. Our models provide new insights into how dynamic interactions among epithelial, self-renewal, and mesenchymal gene programs determine the plasticity of epithelial TICs. PMID:22505459

  11. Computer-assisted analysis of cell proliferation markers in oral lesions.

    PubMed

    Teresa, Debora Barreto; Neves, Karina Antunes; Neto, Carlos Benatti; Fregonezi, Paula Andrea Gabrielli; de Oliveira, Maria Rita Brancini; Zuanon, José Antonio Sampaio; Donadi, Eduardo Antonio; Mendes-Junior, Celso Teixeira; Soares, Christiane Pienna

    2007-01-01

    Abnormalities in any component of the cell cycle regulatory machine may result in oral cancer, and markers of cell proliferation have been used to determine the prognosis of tumor progression. The aim of this study was to determine whether silver-stained nucleolar organizer region (AgNOR) and Ki-67 measurements could improve the assessment of growth rates in oral lesions. Eighty-three oral biopsies were studied, 20 of which were classified as fibrous inflammatory hyperplasia (FIH), 40 as leukoplakia (LKP) and 23 as oral squamous cell carcinoma (OSCC). Within the LKP group, 22 out of 29 biopsies were diagnosed as non-dysplastic leukoplakia (LK) and 18 as dysplastic leukoplakia (DLK), presenting discrete, moderate and severe dysplasia. Ki-67 immunolabeling of the lesions increased steadily in the following order: FIH, DLK, LK and OSCC, indicating that Ki-67 is a good marker for predicting the proliferative fraction among benign, premalignant and malignant oral lesions. The median values of AgNOR parameters indicate that the morphometric index gives better results regarding the proliferative rate than the numerical one. A series of linear regressions between AgNOR parameters and Ki-67 showed positive associations. We conclude that a combination of Ki-67 and morphometric AgNOR analyses could be used as an aid in the determination of the proliferative status of oral epithelial cells in oral cancer.

  12. Raman spectroscopic analysis of oral squamous cell carcinoma and oral dysplasia in the high-wavenumber region

    NASA Astrophysics Data System (ADS)

    Carvalho, Luis Felipe C. S.; Bonnier, Franck; O'Callaghan, Kate; O'Sullivan, Jeff; Flint, Stephen; Neto, Lazaro P. M.; Soto, Cláudio A. T.; dos Santos, Laurita; Martin, Airton A.; Byrne, Hugh J.; Lyng, Fiona M.

    2015-06-01

    Raman spectroscopy can provide a molecular-level signature of the biochemical composition and structure of cells with excellent spatial resolution and could be useful to monitor changes in composition for early stage and non-invasive cancer diagnosis, both ex-vivo and in vivo. In particular, the fingerprint spectral region (400-1,800 cm-1) has been shown to be very promising for optical biopsy purposes. However, limitations to discrimination of dysplastic and inflammatory processes based on the fingerprint region still persist. In addition, the Raman spectral signal of dysplastic cells is one important source of misdiagnosis of normal versus pathological tissues. The high wavenumber region (2,800-3,600 cm-1) provides more specific information based on N-H, O-H and C-H vibrations and can be used to identify the subtle changes which could be important for discrimination of samples. In this study, we demonstrate the potential of the highwavenumber spectral region by collecting Raman spectra of nucleoli, nucleus and cytoplasm from oral epithelial cancer (SCC-4) and dysplastic (DOK) cell lines and from normal oral epithelial primary cells, in vitro, which were then analyzed by area under the curve as a method to discriminate the spectra. In this region, we will show the discriminatory potential of the CH vibrational modes of nucleic acids, proteins and lipids. This technique demonstrated more efficient discrimination than the fingerprint region when we compared the cell cultures.

  13. Role of medullary progenitor cells in epithelial cell migration and proliferation

    PubMed Central

    Chen, Dong; Chen, Zhiyong; Zhang, Yuning; Park, Chanyoung; Al-Omari, Ahmed

    2014-01-01

    This study is aimed at characterizing medullary interstitial progenitor cells and to examine their capacity to induce tubular epithelial cell migration and proliferation. We have isolated a progenitor cell side population from a primary medullary interstitial cell line. We show that the medullary progenitor cells (MPCs) express CD24, CD44, CXCR7, CXCR4, nestin, and PAX7. MPCs are CD34 negative, which indicates that they are not bone marrow-derived stem cells. MPCs survive >50 passages, and when grown in epithelial differentiation medium develop phenotypic characteristics of epithelial cells. Inner medulla collecting duct (IMCD3) cells treated with conditioned medium from MPCs show significantly accelerated cell proliferation and migration. Conditioned medium from PGE2-treated MPCs induce tubule formation in IMCD3 cells grown in 3D Matrigel. Moreover, most of the MPCs express the pericyte marker PDGFR-b. Our study shows that the medullary interstitium harbors a side population of progenitor cells that can differentiate to epithelial cells and can stimulate tubular epithelial cell migration and proliferation. The findings of this study suggest that medullary pericyte/progenitor cells may play a critical role in collecting duct cell injury repair. PMID:24808539

  14. Molecular markers associated with development and progression of potentially premalignant oral epithelial lesions: Current knowledge and future implications.

    PubMed

    Nikitakis, Nikolaos G; Pentenero, Monica; Georgaki, Maria; Poh, Catherine F; Peterson, Douglas E; Edwards, Paul; Lingen, Mark; Sauk, John J

    2018-06-01

    Identification and management of potentially premalignant oral epithelial lesions (PPOELs) at highest risk of malignant transformation holds great promise for successful secondary prevention of oral squamous cell carcinoma, potentially reducing oral cancer morbidity and mortality. However, to date, neither clinical nor histopathologic validated risk predictors that can reliably predict which PPOELs will definitively progress to malignancy have been identified. In addition, the management of PPOELs remains a major challenge. Arguably, progress in the prevention and treatment of oral premalignancy and cancer will require improved understanding of the underlying molecular mechanisms, facilitating the discovery of diagnostic, prognostic, and predictive markers, as well as the identification of novel targeted therapeutics. This review provides a synopsis of the molecular biomarkers that have been studied in PPOELs and have been correlated with the presence and grade of dysplasia and/or their propensity to undergo malignant transformation to oral squamous cell carcinoma. The emphasis is on highlighting new emerging research fields, particularly epigenetic events, including methylation and micro-RNA regulation. Several promising biomarkers are highlighted. Current limitations and challenges are discussed. Recommendations for future focused research areas, to validate and promote clinically useful applications, are offered. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Odontogenic epithelial stem cells: hidden sources.

    PubMed

    Padma Priya, Sivan; Higuchi, Akon; Abu Fanas, Salem; Pooi Ling, Mok; Kumari Neela, Vasantha; Sunil, P M; Saraswathi, T R; Murugan, Kadarkarai; Alarfaj, Abdullah A; Munusamy, Murugan A; Kumar, Suresh

    2015-12-01

    The ultimate goal of dental stem cell research is to construct a bioengineered tooth. Tooth formation occurs based on the well-organized reciprocal interaction of epithelial and mesenchymal cells. The dental mesenchymal stem cells are the best explored, but because the human odontogenic epithelium is lost after the completion of enamel formation, studies on these cells are scarce. The successful creation of a bioengineered tooth is achievable only when the odontogenic epithelium is reconstructed to produce a replica of natural enamel. This article discusses the untapped sources of odontogenic epithelial stem cells in humans, such as those present in the active dental lamina in postnatal life, in remnants of dental lamina (the gubernaculum cord), in the epithelial cell rests of Malassez, and in reduced enamel epithelium. The possible uses of these stem cells in regenerative medicine, not just for enamel formation, are discussed.

  16. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties

    PubMed Central

    Gudjonsson, Thorarinn; Villadsen, René; Nielsen, Helga Lind; Rønnov-Jessen, Lone; Bissell, Mina J.; Petersen, Ole William

    2002-01-01

    The epithelial compartment of the human breast comprises two distinct lineages: the luminal epithelial and the myoepithelial lineage. We have shown previously that a subset of the luminal epithelial cells could convert to myoepithelial cells in culture signifying the possible existence of a progenitor cell. We therefore set out to identify and isolate the putative precursor in the luminal epithelial compartment. Using cell surface markers and immunomagnetic sorting, we isolated two luminal epithelial cell populations from primary cultures of reduction mammoplasties. The major population coexpresses sialomucin (MUC+) and epithelial-specific antigen (ESA+) whereas the minor population has a suprabasal position and expresses epithelial specific antigen but no sialomucin (MUC−/ESA+). Two cell lines were further established by transduction of the E6/E7 genes from human papilloma virus type 16. Both cell lines maintained a luminal epithelial phenotype as evidenced by expression of the tight junction proteins, claudin-1 and occludin, and by generation of a high transepithelial electrical resistance on semipermeable filters. Whereas in clonal cultures, the MUC+/ESA+ epithelial cell line was luminal epithelial restricted in its differentiation repertoire, the suprabasal-derived MUC−/ESA+ epithelial cell line was able to generate itself as well as MUC+/ESA+ epithelial cells and Thy-1+/α-smooth muscle actin+ (ASMA+) myoepithelial cells. The MUC−/ESA+ epithelial cell line further differed from the MUC+/ESA+ epithelial cell line by the expression of keratin K19, a feature of a subpopulation of epithelial cells in terminal duct lobular units in vivo. Within a reconstituted basement membrane, the MUC+/ESA+ epithelial cell line formed acinus-like spheres. In contrast, the MUC−/ESA+ epithelial cell line formed elaborate branching structures resembling uncultured terminal duct lobular units both by morphology and marker expression. Similar structures were obtained by

  17. Antiadhesive Character of Mucin O-glycans at the Apical Surface of Corneal Epithelial Cells

    PubMed Central

    Sumiyoshi, Mika; Ricciuto, Jessica; Tisdale, Ann; Gipson, Ilene K.; Mantelli, Flavio; Argüeso, Pablo

    2008-01-01

    Purpose Prolonged contact of opposite mucosal surfaces, which occurs on the ocular surface, oral cavity, reproductive tract, and gut, requires a specialized apical cell surface that prevents adhesion. The purpose of this study was to evaluate the contribution of mucin O-glycans to the antiadhesive character of human corneal–limbal epithelial (HCLE) cells. Methods Mucin O-glycan biosynthesis in HCLE cells was disrupted by metabolic interference with benzyl-α-GalNAc. The cell surface mucin MUC16 and its carbohydrate epitope H185 were detected by immunofluorescence and Western blot. HCLE cell surface features were assessed by field emission scanning electron microscopy. Cell–cell adhesion assays were performed under static conditions and in a parallel plate laminar flow chamber. Results Benzyl-α-GalNAc disrupted the biosynthesis of O-glycans without affecting apomucin biosynthesis or cell surface morphology. Static adhesion assays showed that the apical surface of differentiated HCLE cells expressing MUC16 and H185 was more antiadhesive than undifferentiated HCLE cells, which lacked MUC16. Abrogation of mucin O-glycosylation in differentiated cultures with benzyl-α-GalNAc resulted in increased adhesion of applied corneal epithelial cells and corneal fibroblasts. The antiadhesive effect of mucin O-glycans was further demonstrated by fluorescence video microscopy in dynamic flow adhesion assays. Cationized ferritin labeling of the cell surface indicated that anionic repulsion did not contribute to the antiadhesive character of the apical surface. Conclusions These results indicate that epithelial O-glycans contribute to the antiadhesive properties of cell surface–associated mucins in corneal epithelial cells and suggest that alterations in mucin O-glycosylation are involved in the pathology of drying mucosal diseases (e.g., dry eye). PMID:18172093

  18. Epithelial-mesenchymal transition in breast epithelial cells treated with cadmium and the role of Snail.

    PubMed

    Wei, Zhengxi; Shan, Zhongguo; Shaikh, Zahir A

    2018-04-01

    Epidemiological and experimental studies have implicated cadmium (Cd) with breast cancer. In breast epithelial MCF10A and MDA-MB-231 cells, Cd has been shown to promote cell growth. The present study examined whether Cd also promotes epithelial-mesenchymal transition (EMT), a hallmark of cancer progression. Human breast epithelial cells consisting of non-cancerous MCF10A, non-metastatic HCC 1937 and HCC 38, and metastatic MDA-MB-231 were treated with 1 or 3 μM Cd for 4 weeks. The MCF10A epithelial cells switched to a more mesenchymal-like morphology, which was accompanied by a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal markers N-cadherin and vimentin. In both non-metastatic HCC 1937 and HCC 38 cells, treatment with Cd decreased the epithelial marker claudin-1. In addition, E-cadherin also decreased in the HCC 1937 cells. Even the mesenchymal-like MDA-MB-231 cells exhibited an increase in the mesenchymal marker vimentin. These changes indicated that prolonged treatment with Cd resulted in EMT in both normal and cancer-derived breast epithelial cells. Furthermore, both the MCF10A and MDA-MB-231 cells labeled with Zcad, a dual sensor for tracking EMT, demonstrated a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal marker ZEB-1. Treatment of cells with Cd significantly increased the level of Snail, a transcription factor involved in the regulation of EMT. However, the Cd-induced Snail expression was completely abolished by actinomycin D. Luciferase reporter assay indicated that the expression of Snail was regulated by Cd at the promotor level. Snail was essential for Cd-induced promotion of EMT in the MDA-MB-231 cells, as knockdown of Snail expression blocked Cd-induced cell migration. Together, these results indicate that Cd promotes EMT in breast epithelial cells and does so by modulating the transcription of Snail. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Evaluation of cell proliferation in malignant and potentially malignant oral lesions

    PubMed Central

    Madan, Mani; Chandra, Shaleen; Raj, Vineet; Madan, Rohit

    2015-01-01

    Aims: To evaluate the cell proliferation rate by the expression of proliferating cell nuclear antigen (PCNA) and argyrophilic nucleolar organizing region (AgNOR) counts and to assess its usefulness as a marker for malignant potential in oral epithelial lesions. Materials and Methods: The study group included 30 cases of leukoplakia, 15 nondysplastic (NDL), 15 dysplastic (DL), 15 cases of oral squamous cell carcinoma (OSCC) and 5 cases of normal oral mucosa. Formalin fixed paraffin embedded tissues were subjected to immunohistochemical staining for PCNA and AgNOR technique. The PCNA labeling index (LI) and the AgNOR dots were evaluated for the entire sample. Statistical Analysis Used: ANOVA, Tukey honestly significant difference, Pearson's correlation. Results: In this study, the AgNOR count of OSCC was lower than the DL lesions moreover the AgNOR counts were found to be higher in normal mucosa as compared to the DL and the NDL epithelium. The study results also showed that the mean AgNOR count failed to distinguish between DL and NDL lesions. Overall we observed increased PCNA expression from normal epithelium to NDL to DL lesion. Conclusions: Based on the findings of the present study on oral epithelial precancerous and cancerous lesions we conclude that mean AgNOR count alone cannot be a valuable parameter to distinguish between the normal, NDL, DL epithelium and OSCC but, on the other hand, we found out that PCNA can be a useful biomarker for delineating normal epithelium from DL epithelium and OSCC. PMID:26980956

  20. Myb permits multilineage airway epithelial cell differentiation

    PubMed Central

    Pan, Jie-hong; Adair-Kirk, Tracy L.; Patel, Anand C.; Huang, Tao; Yozamp, Nicholas S.; Xu, Jian; Reddy, E. Premkumar; Byers, Derek E.; Pierce, Richard A.; Holtzman, Michael J.; Brody, Steven L.

    2014-01-01

    The epithelium of the pulmonary airway is specially differentiated to provide defense against environmental insults, but also subject to dysregulated differentiation that results in lung disease. The current paradigm for airway epithelial differentiation is a one-step program whereby a p63+ basal epithelial progenitor cell generates a ciliated or secretory cell lineage, but the cue for this transition and whether there are intermediate steps is poorly defined. Here we identify transcription factor Myb as a key regulator that permits early multilineage differentiation of airway epithelial cells. Myb+ cells were identified as p63− and therefore distinct from basal progenitor cells, but were still negative for markers of differentiation. Myb RNAi treatment of primary-culture airway epithelial cells and Myb gene deletion in mice resulted in a p63− population with failed maturation of Foxj1+ ciliated cells, as well as Scbg1a1+ and Muc5ac+ secretory cells. Consistent with these findings, analysis of whole genome expression of Myb-deficient cells identified Myb-dependent programs for ciliated and secretory cell differentiation. Myb+ cells were rare in human airways but were increased in regions of ciliated cells and mucous cell hyperplasia in samples from subjects with chronic obstructive pulmonary disease. Together, the results show that a p63− Myb+ population of airway epithelial cells represents a distinct intermediate stage of differentiation that is required under normal conditions and may be heightened in airway disease. PMID:25103188

  1. Documentation of angiotensin II receptors in glomerular epithelial cells

    NASA Technical Reports Server (NTRS)

    Sharma, M.; Sharma, R.; Greene, A. S.; McCarthy, E. T.; Savin, V. J.; Cowley, A. W. (Principal Investigator)

    1998-01-01

    Angiotensin II decreases glomerular filtration rate, renal plasma flow, and glomerular capillary hydraulic conductivity. Although angiotensin II receptors have been demonstrated in mesangial cells and proximal tubule cells, the presence of angiotensin II receptors in glomerular epithelial cells has not previously been shown. Previously, we have reported that angiotensin II caused an accumulation of cAMP and a reorganization of the actin cytoskeleton in cultured glomerular epithelial cells. Current studies were conducted to verify the presence of angiotensin II receptors by immunological and non-peptide receptor ligand binding techniques and to ascertain the activation of intracellular signal transduction in glomerular epithelial cells in response to angiotensin II. Confluent monolayer cultures of glomerular epithelial cells were incubated with angiotensin II, with or without losartan and/or PD-123,319 in the medium. Membrane vesicle preparations were obtained by homogenization of washed cells followed by centrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane proteins followed by multiscreen immunoblotting was used to determine the presence of angiotensin II receptor type 1 (AT1) or type 2 (AT2). Angiotensin II-mediated signal transduction in glomerular epithelial cells was studied by measuring the levels of cAMP, using radioimmunoassay. Results obtained in these experiments showed the presence of both AT1 and AT2 receptor types in glomerular epithelial cells. Angiotensin II was found to cause an accumulation of cAMP in glomerular epithelial cells, which could be prevented only by simultaneous use of losartan and PD-123,319, antagonists for AT1 and AT2, respectively. The presence of both AT1 and AT2 receptors and an increase in cAMP indicate that glomerular epithelial cells respond to angiotensin II in a manner distinct from that of mesangial cells or proximal tubular epithelial cells. Our results suggest that glomerular epithelial

  2. Epithelial Cells in Urine: MedlinePlus Lab Test Information

    MedlinePlus

    ... page: https://medlineplus.gov/labtests/epithelialcellsinurine.html Epithelial Cells in Urine To use the sharing features on ... page, please enable JavaScript. What is an Epithelial Cells in Urine Test? Epithelial cells are a type ...

  3. Immortalized bovine mammary epithelial cells express stem cell markers and differentiate in vitro.

    PubMed

    Hu, Han; Zheng, Nan; Gao, Haina; Dai, Wenting; Zhang, Yangdong; Li, Songli; Wang, Jiaqi

    2016-08-01

    The bovine mammary epithelial cell is a secretory cell, and its cell number and secretory activity determine milk production. In this study, we immortalized a bovine mammary epithelial cell line by SV40 large T antigen gene using a retrovirus based on Chinese Holstein primary mammary epithelial cells (CMEC) cultured in vitro. An immortalized bovine mammary epithelial cell line surpassed the 50-passage mark and was designated the CMEC-H. The immortalized mammary epithelial cells grew in close contact with each other and exhibited the typical cobblestone morphology characteristic with obvious boundaries. The telomerase expression of CMEC-H has consistently demonstrated the presence of telomerase activity as an immortalized cell line, but the cell line never induced tumor formation in nude mice. CMEC-H expressed epithelial (cytokeratins CK7, CK8, CK18, and CK19), mesenchymal (vimentin), and stem/progenitor (CD44 and p63) cell markers. The induced expression of milk proteins, αS1 -casein, β-casein, κ-casein, and butyrophilin, indicated that CMEC-H maintained the synthesis function of the mammary epithelial cells. The established immortalized bovine mammary epithelial cell line CMEC-H is capable of self-renewal and differentiation and can serve as a valuable reagent for studying the physiological mechanism of the mammary gland. © 2016 International Federation for Cell Biology.

  4. Silk Film Topography Directs Collective Epithelial Cell Migration

    PubMed Central

    Rosenblatt, Mark I.

    2012-01-01

    The following study provides new insight into how surface topography dictates directed collective epithelial cell sheet growth through the guidance of individual cell movement. Collective cell behavior of migrating human corneal limbal-epithelial cell sheets were studied on highly biocompatible flat and micro-patterned silk film surfaces. The silk film edge topography guided the migratory direction of individual cells making up the collective epithelial sheet, which resulted in a 75% increase in total culture elongation. This was due to a 3-fold decrease in cell sheet migration rate efficiency for movement perpendicular to the topography edge. Individual cell migration direction is preferred in the parallel approach to the edge topography where localization of cytoskeletal proteins to the topography’s edge region is reduced, which results in the directed growth of the collective epithelial sheet. Findings indicate customized biomaterial surfaces may be created to direct both the migration rate and direction of tissue epithelialization. PMID:23185573

  5. Oral Treatment with Extract of Agaricus blazei Murill Enhanced Th1 Response through Intestinal Epithelial Cells and Suppressed OVA-Sensitized Allergy in Mice

    PubMed Central

    Bouike, Go; Nishitani, Yosuke; Shiomi, Hideyuki; Yoshida, Masaru; Azuma, Takeshi; Hashimoto, Takashi; Kanazawa, Kazuki; Mizuno, Masashi

    2011-01-01

    To clarify the mechanism of the antiallergic activity of Agaricus blazei Murill extract (ABME), the present paper used an in vivo allergy model and an in vitro intestinal gut model. During OVA sensitization, the serum IgE levels decreased significantly in ABME group. Interleukin (IL)-4 and -5 produced from OVA-restimulated splenocytes was significantly decreased, and anti-CD3ε/CD28 antibody treatment also reduced IL-10, -4, and -5 production and increased IFN-γ production in ABME group. These results suggest that oral administration of ABME improves Th1/Th2 balance. Moreover, a coculture system constructed of Caco-2 cells and splenocytes from OT-II mice or RAW 264.7 cells indicated that the significant increases in IFN-γ production by ABME treatment. Therefore, it was concluded that the antiallergic activity of ABME was due to the activation of macrophages by epithelial cells and the promotion of the differentiation of naïve T cells into Th1 cells in the immune. PMID:20953432

  6. Evaluation and Comparison of the Biopathology of Collagen and Inflammation in the Extracellular Matrix of Oral Epithelial Dysplasias and Inflammatory Fibrous Hyperplasia Using Picrosirius Red Stain and Polarising Microscopy: A Preliminary Study

    PubMed Central

    Varghese, Soma Susan; Sarojini, Sreenivasan Bargavan; George, Giju Baby; Vinod, Sankar; Mathew, Philips; Babu, Anulekh; Sebastian, Joseph

    2015-01-01

    Background: The role of tumour inflammation and the dysplastic epithelial-stromal interactions on the nature of collagen fibres in the extracellular matrix of dysplastic epithelium is not fully understood. The present study was aimed to evaluate and compare the inflammation and pathological stromal collagen (loosely packed thin disorganized collagen) present in mild, moderate and severe epithelial dysplasias with that of inflammatory fibrous hyperplasias. The basement membrane intactness of epithelial dysplasias was also evaluated to determine if dysplastic epithelial mesenchymal interaction has any role in the integrity of stromal collagen in epithelial dysplasia. Methods: Oral epithelial dysplasias, inflammatory fibrous hyperplasia and normal oral mucosal samples were used for the study. Packing, thickness and orientation of collagen fibres in mild, moderate and severe grades of oral epithelial dysplasias (n = 24), inflammatory fibrous hyperplasia (n = 8) and normal oral mucosal samples (n = 8) were analysed based on the polarisation of collagen fibres in picrosirius red polarising stain under polarising microscope. Results: All the grades of epithelial dysplasias showed greenish yellow birefringence confirming the presence of loosely arranged pathological collagen in the presence of moderate inflammation. All the cases of inflammatory fibrous hyperplasia showed red polarisation hue and moderate inflammation. A statistically significant difference was found in the packing and orientation of collagen when epithelial dysplasias and inflammatory fibrous hyperplasia were compared (P < 0.01). When the intactness of basement membrane integrity was compared in all the groups of epithelial dysplasia, a statistically significant result was obtained (P < 0.05). Conclusions: Presence of significant amount of loosely packed thin disoriented collagen even in mild epithelial dysplasia suggests that tumourigenic factors are released to connective tissue stroma much earlier than

  7. Evaluation and Comparison of the Biopathology of Collagen and Inflammation in the Extracellular Matrix of Oral Epithelial Dysplasias and Inflammatory Fibrous Hyperplasia Using Picrosirius Red Stain and Polarising Microscopy: A Preliminary Study.

    PubMed

    Varghese, Soma Susan; Sarojini, Sreenivasan Bargavan; George, Giju Baby; Vinod, Sankar; Mathew, Philips; Babu, Anulekh; Sebastian, Joseph

    2015-12-01

    The role of tumour inflammation and the dysplastic epithelial-stromal interactions on the nature of collagen fibres in the extracellular matrix of dysplastic epithelium is not fully understood. The present study was aimed to evaluate and compare the inflammation and pathological stromal collagen (loosely packed thin disorganized collagen) present in mild, moderate and severe epithelial dysplasias with that of inflammatory fibrous hyperplasias. The basement membrane intactness of epithelial dysplasias was also evaluated to determine if dysplastic epithelial mesenchymal interaction has any role in the integrity of stromal collagen in epithelial dysplasia. Oral epithelial dysplasias, inflammatory fibrous hyperplasia and normal oral mucosal samples were used for the study. Packing, thickness and orientation of collagen fibres in mild, moderate and severe grades of oral epithelial dysplasias (n = 24), inflammatory fibrous hyperplasia (n = 8) and normal oral mucosal samples (n = 8) were analysed based on the polarisation of collagen fibres in picrosirius red polarising stain under polarising microscope. All the grades of epithelial dysplasias showed greenish yellow birefringence confirming the presence of loosely arranged pathological collagen in the presence of moderate inflammation. All the cases of inflammatory fibrous hyperplasia showed red polarisation hue and moderate inflammation. A statistically significant difference was found in the packing and orientation of collagen when epithelial dysplasias and inflammatory fibrous hyperplasia were compared (P < 0.01). When the intactness of basement membrane integrity was compared in all the groups of epithelial dysplasia, a statistically significant result was obtained (P < 0.05). Presence of significant amount of loosely packed thin disoriented collagen even in mild epithelial dysplasia suggests that tumourigenic factors are released to connective tissue stroma much earlier than expected. Hence we suggest considering the

  8. Houttuynia cordata modulates oral innate immune mediators: potential role of herbal plant on oral health.

    PubMed

    Satthakarn, S; Chung, W O; Promsong, A; Nittayananta, W

    2015-05-01

    Epithelial cells play an active role in oral innate immunity by producing various immune mediators. Houttuynia cordata Thunb (H. cordata), a herbal plant found in Asia, possesses many activities. However, its impacts on oral innate immunity have never been reported. The aim of this study was to determine the effects of H. cordata extract on the expression of innate immune mediators produced by oral epithelial cells. Primary gingival epithelial cells (GECs) were treated with various concentrations of the extract for 18 h. The gene expression of hBD2, SLPI, cytokines, and chemokines was measured using quantitative real-time RT-PCR. The secreted proteins in the culture supernatants were detected by ELISA or Luminex assay. Cytotoxicity of the extract was assessed using CellTiter-Blue Assay. H. cordata significantly induced the expression of hBD2, SLPI, IL-8, and CCL20 in a dose-dependent manner without cytotoxicity. The secreted hBD2 and SLPI proteins were modulated, and the levels of IL-2, IL-6, IL-8, and IFN-γ were significantly induced by the extract. Our data indicated that H. cordata can modulate oral innate immune mediators. These findings may lead to the development of new topical agents from H. cordata for the prevention and treatment of immune-mediated oral diseases. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. A novel closed cell culture device for fabrication of corneal epithelial cell sheets.

    PubMed

    Nakajima, Ryota; Kobayashi, Toyoshige; Moriya, Noboru; Mizutani, Manabu; Kan, Kazutoshi; Nozaki, Takayuki; Saitoh, Kazuo; Yamato, Masayuki; Okano, Teruo; Takeda, Shizu

    2015-11-01

    Automation technology for cell sheet-based tissue engineering would need to optimize the cell sheet fabrication process, stabilize cell sheet quality and reduce biological contamination risks. Biological contamination must be avoided in clinical settings. A closed culture system provides a solution for this. In the present study, we developed a closed culture device called a cell cartridge, to be used in a closed cell culture system for fabricating corneal epithelial cell sheets. Rabbit limbal epithelial cells were cultured on the surface of a porous membrane with 3T3 feeder cells, which are separate from the epithelial cells in the cell cartridges and in the cell-culture inserts as a control. To fabricate the stratified cell sheets, five different thicknesses of the membranes which were welded to the cell cartridge, were examined. Multilayered corneal epithelial cell sheets were fabricated in cell cartridges that were welded to a 25 µm-thick gas-permeable membrane, which was similar to the results with the cell-culture inserts. However, stratification of corneal epithelial cell sheets did not occur with cell cartridges that were welded to 100-300 µm-thick gas-permeable membranes. The fabricated cell sheets were evaluated by histological analyses to examine the expression of corneal epithelial-specific markers. Immunohistochemical analyses showed that a putative stem cell marker, p63, a corneal epithelial differentiation maker, CK3, and a barrier function marker, Claudin-1, were expressed in the appropriate position in the cell sheets. These results suggest that the cell cartridge is effective for fabricating corneal epithelial cell sheets. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Epithelial-to-mesenchymal transition in penile squamous cell carcinoma.

    PubMed

    Masferrer, Emili; Ferrándiz-Pulido, Carla; Masferrer-Niubò, Magalí; Rodríguez-Rodríguez, Alfredo; Gil, Inmaculada; Pont, Antoni; Servitje, Octavi; García de Herreros, Antonio; Lloveras, Belen; García-Patos, Vicenç; Pujol, Ramon M; Toll, Agustí; Hernández-Muñoz, Inmaculada

    2015-02-01

    Epithelial-to-mesenchymal transition is a phenomenon in epithelial tumors that involves loss of intercellular adhesion, mesenchymal phenotype acquisition and enhanced migratory potential. While the epithelial-to-mesenchymal transition process has been extensively linked to metastatic progression of squamous cell carcinoma, studies of the role of epithelial-to-mesenchymal transition in squamous cell carcinoma containing high risk human papillomaviruses are scarce. Moreover, to our knowledge epithelial-to-mesenchymal transition involvement in human penile squamous cell carcinoma, which can arise through transforming HPV infections or independently of HPV, has not been investigated. We evaluated the presence of epithelial-to-mesenchymal transition markers and their relationship to HPV in penile squamous cell carcinoma. We assessed the expression of E-cadherin, vimentin and the epithelial-to-mesenchymal transition related transcription factors Twist, Zeb1 and Snail by immunohistochemical staining in 64 penile squamous cell carcinoma cases. HPV was detected by polymerase chain reaction amplification. Simultaneous loss of membranous E-cadherin expression and vimentin over expression were noted in 43.5% of penile squamous cell carcinoma cases. HPV was significantly associated with loss of membranous E-cadherin but not with epithelial-to-mesenchymal transition. Recurrence and mortality rates were significantly higher in cases showing epithelial-to-mesenchymal transition. Our findings indicate that in penile squamous cell carcinoma epithelial-to-mesenchymal transition is associated with poor prognosis but not with the presence of HPV. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. Epithelial cells as alternative human biomatrices for comet assay.

    PubMed

    Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara

    2014-01-01

    The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells) or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes. Over a 30 year period, the comet assay in epithelial cells has been little employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases.

  12. Epithelial cells as alternative human biomatrices for comet assay

    PubMed Central

    Rojas, Emilio; Lorenzo, Yolanda; Haug, Kristiane; Nicolaissen, Bjørn; Valverde, Mahara

    2014-01-01

    The comet assay is a valuable experimental tool aimed at mapping DNA damage in human cells in vivo for environmental and occupational monitoring, as well as for therapeutic purposes, such as storage prior to transplant, during tissue engineering, and in experimental ex vivo assays. Furthermore, due to its great versatility, the comet assay allows to explore the use of alternative cell types to assess DNA damage, such as epithelial cells. Epithelial cells, as specialized components of many organs, have the potential to serve as biomatrices that can be used to evaluate genotoxicity and may also serve as early effect biomarkers. Furthermore, 80% of solid cancers are of epithelial origin, which points to the importance of studying DNA damage in these tissues. Indeed, studies including comet assay in epithelial cells have either clear clinical applications (lens and corneal epithelial cells) or examine genotoxicity within human biomonitoring and in vitro studies. We here review improvements in determining DNA damage using the comet assay by employing lens, corneal, tear duct, buccal, and nasal epithelial cells. For some of these tissues invasive sampling procedures are needed. Desquamated epithelial cells must be obtained and dissociated prior to examination using the comet assay, and such procedures may induce varying amounts of DNA damage. Buccal epithelial cells require lysis enriched with proteinase K to obtain free nucleosomes. Over a 30 year period, the comet assay in epithelial cells has been little employed, however its use indicates that it could be an extraordinary tool not only for risk assessment, but also for diagnosis, prognosis of treatments and diseases. PMID:25506353

  13. Establishment of immortal swine kidney epithelial cells.

    PubMed

    Kwak, Sungwook; Jung, Ji-Eun; Jin, Xun; Kim, Sun-Myung; Kim, Tae-Kyung; Lee, Joong-Seob; Lee, Soo-Yeon; Pian, Xumin; You, Seungkwon; Kim, Hyunggee; Choi, Yun-Jaie

    2006-01-01

    Using normal swine kidney epithelial (SKE) cells that were shown to be senescent at passages 12 to 14, we have established one lifespan-extended cell line and two lifespan-extended cell lines by exogenous introduction of the human catalytic subunit of telomerase (hTERT) and simian virus 40 large T-antigen (SV40LT), all of which maintain epithelial morphology and express cytokeratin, a marker of epithelial cells. SV40LT- and hTERT-transduced immortal cell lines appeared to be smaller and exhibited more uniform morphology relative to primary and spontaneously immortalized SKE cells. We determined the in vitro lifespan of primary SKE cells using a standard 3T6 protocol. There were two steps of the proliferation barrier at 12 and 20, in which a majority of primary SKE cells appeared enlarged, flattened, vacuolated, and ss-galactosidase-positive, all phenotypical characteristics of senescent cells. Lifespan-extended SKE cells were eventually established from most of the cellular foci, which is indicative of spontaneous cellular conversion at passage 23. Beyond passage 25, the rate of population doubling of the established cells gradually increased. At passage 30, immortal cell lines grew faster than primary counterpart cells in 10% FBS-DMEM culture conditions, and only SV40LT-transduced immortal cells grew faster than primary and other SKE immortal cells in 0.5% FBS-DMEM. These lifespan-extended SKE cell lines failed to grow in an anchorage-independent manner in soft-agar dishes. Hence, three immortalized swine kidney epithelial cells that are not transformed would be valuable biological tools for virus propagation and basic kidney epithelial cell research.

  14. Comparative study of frequency of micronuclei in normal, potentially malignant diseases and oral squamous cell carcinoma.

    PubMed

    Sangle, Varsha Ajit; Bijjaragi, Shobha; Shah, Nishat; Kangane, Suresh; Ghule, Hrishikesh M; Rani, Sr Ashwini

    2016-01-01

    The assessment of micronuclei (MN) in exfoliated oral epithelial cells is a promising tool for the study of epithelial carcinogens and can be used to detect chromosome breakage or mitotic interference, thought to be relevant to carcinogenesis. To detect MN in exfoliated oral mucosal cells in individuals using various tobacco forms and also to detect frequency of MN in premalignant lesions and conditions (potentially malignant diseases [PMD's]) and oral squamous cell carcinoma (OSCC). To correlate frequency of MN in oral exfoliated cells in clinically diagnosed cases of OSCC followed by a histopathological grading. A total of 90 subjects (30 smokeless tobacco users, 30 smokers and 30 nontobacco users) consisted of clinically diagnosed cases of PMD's and OSCC were selected for the study. Cytosmears from the groups were stained with rapid Papanicolaou stain. MN was identified according to the Tolbert et al. criteria. MN cells were found to be significantly higher in smokeless tobacco users than in smokers. The frequency of MN was three to four times higher in patients with OSCC as compared to patients in PMD's (P < 0.0001). The frequency of MN correlated with the histopathological grade was statistically significant. MN index can be used as a biomarker/screening test among the high-risk groups particularly the smokeless tobacco users and PMD's. MN can be a candidate to serve as a biomarker for prediction of the grade of OSCC.

  15. Characterization of newly established bovine intestinal epithelial cell line.

    PubMed

    Miyazawa, Kohtaro; Hondo, Tetsuya; Kanaya, Takashi; Tanaka, Sachi; Takakura, Ikuro; Itani, Wataru; Rose, Michael T; Kitazawa, Haruki; Yamaguchi, Takahiro; Aso, Hisashi

    2010-01-01

    Membranous epithelial cells (M cells) of the follicle-associated epithelium in Peyer's patches have a high capacity for transcytosis of several viruses and microorganisms. Here, we report that we have successfully established a bovine intestinal epithelial cell line (BIE cells) and developed an in vitro M cell model. BIE cells have a cobblestone morphology and microvilli-like structures, and strongly express cell-to-cell junctional proteins and cytokeratin, which is a specific intermediate filament protein of epithelial cells. After co-culture with murine intestinal lymphocytes or treatment with supernatant from bovine PBMC cultured with IL-2, BIE cells acquired the ability of transcytosis. Therefore, BIE cells have typical characteristics of bovine intestinal epithelial cells and also have the ability to differentiate into an M cell like linage. In addition, our results indicate that contact between immune cells and epithelial cells may not be absolutely required for the differentiation of M cells. We think that BIE cells will be useful for studying the transport mechanisms of various pathogens and also the evaluation of drug delivery via M cells.

  16. Assessment of Bax and Bcl-2 Immunoexpression in Patients with Oral Lichen Planus and Oral Squamous Cell Carcinoma

    PubMed Central

    Nafarzadeh, Shima; Jafari, Sina; Bijani, Ali

    2013-01-01

    Lichen planus (LP) is a chronic inflammatory disease of probable immune-based etiology. The pathogenesis of LP is unclear, but apoptotic changes in epidermal (epithelial) cells have been reported. Destruction of the basal cell layer is observed and many changes in cell proliferation, cell repair and cell death occur in the injured mucosal epithelium. The aim of this study was to evaluate and compare the expression of bax and bcl-2 in oral lichen planus (OLP), well differentiated oral squamous cell carcinoma (WOSCC) and normal mucosa. Sixty one paraffin-embedded biopsy including 11 cases of WOSCC, 30 cases of OLP (n=15 erosive OLP [OLP-E], n=15 reticular OLP [OLP-R]) and 20 normal mucosa were entered in our research. We used immunohistochemistry staining method for assessing bax and bcl-2 expression in epithelial layers. The percentage of stained cells was estimated in 5 randomized microscopic fields and classified as (-): 0%, (+) :< 10%, (++): 10-25%, (+++): 26-50%, (++++): > 50% positive cells. The data were analyzed with Mann-Whitney, Chi Square, and Kruskal-Wallis tests. Significant differences in bax expression were observed among OLP, WOSCC compared to normal mucosa (P=0.008). No significant difference in bax expression between OLP-E and OLP-R compared to WOSCC was seen (P>0.05). Bcl-2 was negative for all OLP and normal mucosa samples, and weak positivity was observed in WOSCC samples. According to the findings of our study, it may be possible to correlate the difference of bax and bcl-2 expression levels among the mentioned lesions to the malignant potential of OLP. PMID:24551804

  17. Epithelial GM-CSF induction by Candida glabrata.

    PubMed

    Li, L; Dongari-Bagtzoglou, A

    2009-08-01

    The main cytokine induced by the interaction of oral epithelial cells with C. glabrata is granulocyte monocyte colony-stimulating factor (GM-CSF); however, the mechanisms regulating this response are unknown. Based on previously published information on the interactions of C. albicans with oral epithelial cells, we hypothesized that interaction with viable C. glabrata triggers GM-CSF synthesis via NF-kappaB activation. We found that C. glabrata-induced GM-CSF synthesis was adhesion-dependent, enhanced by endocytosis, and required fungal viability. NF-kappaB activation was noted during interaction of epithelial cells with C. glabrata, and pre-treatment with an NF-kappaB inhibitor partly inhibited GM-CSF synthesis. Blocking TLR4 with anti-TLR4 antibody did not inhibit GM-CSF production. In contrast, an anti-CDw17 antibody triggered significant inhibition of NF-kappaB activation and GM-CSF synthesis. beta-glucans did not stimulate GM-CSF synthesis, suggesting that the CDw17/NF-kappaB/GM-CSF pathway may be beta-glucan-independent. This study provides new insights into the mechanism of GM-CSF induction by C. glabrata.

  18. Mesenchymal precursor cells maintain the differentiation and proliferation potentials of breast epithelial cells

    PubMed Central

    2014-01-01

    Introduction Stromal-epithelial interactions play a fundamental role in tissue homeostasis, controlling cell proliferation and differentiation. Not surprisingly, aberrant stromal-epithelial interactions contribute to malignancies. Studies of the cellular and molecular mechanisms underlying these interactions require ex vivo experimental model systems that recapitulate the complexity of human tissue without compromising the differentiation and proliferation potentials of human primary cells. Methods We isolated and characterized human breast epithelial and mesenchymal precursors from reduction mammoplasty tissue and tagged them with lentiviral vectors. We assembled heterotypic co-cultures and compared mesenchymal and epithelial cells to cells in corresponding monocultures by analyzing growth, differentiation potentials, and gene expression profiles. Results We show that heterotypic culture of non-immortalized human primary breast epithelial and mesenchymal precursors maintains their proliferation and differentiation potentials and constrains their growth. We further describe the gene expression profiles of stromal and epithelial cells in co-cultures and monocultures and show increased expression of the tumor growth factor beta (TGFβ) family member inhibin beta A (INHBA) in mesenchymal cells grown as co-cultures compared with monocultures. Notably, overexpression of INHBA in mesenchymal cells increases colony formation potential of epithelial cells, suggesting that it contributes to the dynamic reciprocity between breast mesenchymal and epithelial cells. Conclusions The described heterotypic co-culture system will prove useful for further characterization of the molecular mechanisms mediating interactions between human normal or neoplastic breast epithelial cells and the stroma, and will provide a framework to test the relevance of the ever-increasing number of oncogenomic alterations identified in human breast cancer. PMID:24916766

  19. Human papillomavirus-32-associated focal epithelial hyperplasia accompanying HPV-16-positive papilloma-like lesions in oral mucosa.

    PubMed

    Liu, Na; Wang, Jiayi; Lei, Lei; Li, Yanzhong; Zhou, Min; Dan, Hongxia; Zeng, Xin; Chen, Qianming

    2013-05-01

    Human papillomavirus infection can cause a variety of benign or malignant oral lesions, and the various genotypes can cause distinct types of lesions. To our best knowledge, there has been no report of 2 different human papillomavirus-related oral lesions in different oral sites in the same patient before. This paper reported a patient with 2 different oral lesions which were clinically and histologically in accord with focal epithelial hyperplasia and oral papilloma, respectively. Using DNA extracted from these 2 different lesions, tissue blocks were tested for presence of human papillomavirus followed by specific polymerase chain reaction testing for 6, 11, 13, 16, 18, and 32 subtypes in order to confirm the clinical diagnosis. Finally, human papillomavirus-32-positive focal epithelial hyperplasia accompanying human papillomavirus-16-positive oral papilloma-like lesions were detected in different sites of the oral mucosa. Nucleotide sequence sequencing further confirmed the results. So in our clinical work, if the simultaneous occurrences of different human papillomavirus associated lesions are suspected, the multiple biopsies from different lesions and detection of human papillomavirus genotype are needed to confirm the diagnosis.

  20. Labeling and analysis of chicken taste buds using molecular markers in oral epithelial sheets

    PubMed Central

    Rajapaksha, Prasangi; Wang, Zhonghou; Venkatesan, Nandakumar; Tehrani, Kayvan F.; Payne, Jason; Swetenburg, Raymond L.; Kawabata, Fuminori; Tabata, Shoji; Mortensen, Luke J.; Stice, Steven L.; Beckstead, Robert; Liu, Hong-Xiang

    2016-01-01

    In chickens, the sensory organs for taste are the taste buds in the oral cavity, of which there are ~240–360 in total number as estimated by scanning electron microscopy (SEM). There is not an easy way to visualize all taste buds in chickens. Here, we report a highly efficient method for labeling chicken taste buds in oral epithelial sheets using the molecular markers Vimentin and α-Gustducin. Immediate tissue fixation following incubation with sub-epithelially injected proteases enabled us to peel off whole epithelial sheets, leaving the shape and integrity of the tissue intact. In the peeled epithelial sheets, taste buds labeled with antibodies against Vimentin and α-Gustducin were easily identified and counted under a light microscope and many more taste buds, patterned in rosette-like clusters, were found than previously reported with SEM. Broiler-type, female-line males have more taste buds than other groups and continue to increase the number of taste buds over stages after hatch. In addition to ovoid-shaped taste buds, big tube-shaped taste buds were observed in the chicken using 2-photon microscopy. Our protocol for labeling taste buds with molecular markers will factilitate future mechanistic studies on the development of chicken taste buds in association with their feeding behaviors. PMID:27853250

  1. Labeling and analysis of chicken taste buds using molecular markers in oral epithelial sheets.

    PubMed

    Rajapaksha, Prasangi; Wang, Zhonghou; Venkatesan, Nandakumar; Tehrani, Kayvan F; Payne, Jason; Swetenburg, Raymond L; Kawabata, Fuminori; Tabata, Shoji; Mortensen, Luke J; Stice, Steven L; Beckstead, Robert; Liu, Hong-Xiang

    2016-11-17

    In chickens, the sensory organs for taste are the taste buds in the oral cavity, of which there are ~240-360 in total number as estimated by scanning electron microscopy (SEM). There is not an easy way to visualize all taste buds in chickens. Here, we report a highly efficient method for labeling chicken taste buds in oral epithelial sheets using the molecular markers Vimentin and α-Gustducin. Immediate tissue fixation following incubation with sub-epithelially injected proteases enabled us to peel off whole epithelial sheets, leaving the shape and integrity of the tissue intact. In the peeled epithelial sheets, taste buds labeled with antibodies against Vimentin and α-Gustducin were easily identified and counted under a light microscope and many more taste buds, patterned in rosette-like clusters, were found than previously reported with SEM. Broiler-type, female-line males have more taste buds than other groups and continue to increase the number of taste buds over stages after hatch. In addition to ovoid-shaped taste buds, big tube-shaped taste buds were observed in the chicken using 2-photon microscopy. Our protocol for labeling taste buds with molecular markers will factilitate future mechanistic studies on the development of chicken taste buds in association with their feeding behaviors.

  2. Transcriptional Responses of Candida albicans to Epithelial and Endothelial Cells▿ †

    PubMed Central

    Park, Hyunsook; Liu, Yaoping; Solis, Norma; Spotkov, Joshua; Hamaker, Jessica; Blankenship, Jill R.; Yeaman, Michael R.; Mitchell, Aaron P.; Liu, Haoping; Filler, Scott G.

    2009-01-01

    Candida albicans interacts with oral epithelial cells during oropharyngeal candidiasis and with vascular endothelial cells when it disseminates hematogenously. We set out to identify C. albicans genes that govern interactions with these host cells in vitro. The transcriptional response of C. albicans to the FaDu oral epithelial cell line and primary endothelial cells was determined by microarray analysis. Contact with epithelial cells caused a decrease in transcript levels of genes related to protein synthesis and adhesion, whereas contact with endothelial cells did not significantly influence any specific functional category of genes. Many genes whose transcripts were increased in response to either host cell had not been previously characterized. We constructed mutants with homozygous insertions in 22 of these uncharacterized genes to investigate their function during host-pathogen interaction. By this approach, we found that YCK2, VPS51, and UEC1 are required for C. albicans to cause normal damage to epithelial cells and resist antimicrobial peptides. YCK2 is also necessary for maintenance of cell polarity. VPS51 is necessary for normal vacuole formation, resistance to multiple stressors, and induction of maximal endothelial cell damage. UEC1 encodes a unique protein that is required for resistance to cell membrane stress. Therefore, some C. albicans genes whose transcripts are increased upon contact with epithelial or endothelial cells are required for the organism to damage these cells and withstand the stresses that it likely encounters during growth in the oropharynx and bloodstream. PMID:19700637

  3. Intestinal epithelial cell-specific RARα depletion results in aberrant epithelial cell homeostasis and underdeveloped immune system.

    PubMed

    Jijon, H B; Suarez-Lopez, L; Diaz, O E; Das, S; De Calisto, J; Yaffe, M B; Pittet, M J; Mora, J R; Belkaid, Y; Xavier, R J; Villablanca, E J

    2018-05-01

    Retinoic acid (RA), a dietary vitamin A metabolite, is crucial in maintaining intestinal homeostasis. RA acts on intestinal leukocytes to modulate their lineage commitment and function. Although the role of RA has been characterized in immune cells, whether intestinal epithelial cells (IECs) rely on RA signaling to exert their immune-regulatory function has not been examined. Here we demonstrate that lack of RA receptor α (RARα) signaling in IECs results in deregulated epithelial lineage specification, leading to increased numbers of goblet cells and Paneth cells. Mechanistically, lack of RARα resulted in increased KLF4 + goblet cell precursors in the distal bowel, whereas RA treatment inhibited klf4 expression and goblet cell differentiation in zebrafish. These changes in secretory cells are associated with increased Reg3g, reduced luminal bacterial detection, and an underdeveloped intestinal immune system, as evidenced by an almost complete absence of lymphoid follicles and gut resident mononuclear phagocytes. This underdeveloped intestinal immune system shows a decreased ability to clear infection with Citrobacter rodentium. Collectively, our findings indicate that epithelial cell-intrinsic RARα signaling is critical to the global development of the intestinal immune system.

  4. Profiling human breast epithelial cells using single cell RNA sequencing identifies cell diversity.

    PubMed

    Nguyen, Quy H; Pervolarakis, Nicholas; Blake, Kerrigan; Ma, Dennis; Davis, Ryan Tevia; James, Nathan; Phung, Anh T; Willey, Elizabeth; Kumar, Raj; Jabart, Eric; Driver, Ian; Rock, Jason; Goga, Andrei; Khan, Seema A; Lawson, Devon A; Werb, Zena; Kessenbrock, Kai

    2018-05-23

    Breast cancer arises from breast epithelial cells that acquire genetic alterations leading to subsequent loss of tissue homeostasis. Several distinct epithelial subpopulations have been proposed, but complete understanding of the spectrum of heterogeneity and differentiation hierarchy in the human breast remains elusive. Here, we use single-cell mRNA sequencing (scRNAseq) to profile the transcriptomes of 25,790 primary human breast epithelial cells isolated from reduction mammoplasties of seven individuals. Unbiased clustering analysis reveals the existence of three distinct epithelial cell populations, one basal and two luminal cell types, which we identify as secretory L1- and hormone-responsive L2-type cells. Pseudotemporal reconstruction of differentiation trajectories produces one continuous lineage hierarchy that closely connects the basal lineage to the two differentiated luminal branches. Our comprehensive cell atlas provides insights into the cellular blueprint of the human breast epithelium and will form the foundation to understand how the system goes awry during breast cancer.

  5. Immunohistochemical study of p21 and Bcl-2 in leukoplakia, oral submucous fibrosis and oral squamous cell carcinoma.

    PubMed

    Sutariya, Rakesh V; Manjunatha, Bhari Sharanesha

    2016-11-01

    Oral Squamous cell carcinoma (OSCC) results from genetic damage, leading to uncontrolled cell proliferation of damaged cells and the cell death. In the course of its progression, visible changes are taking place at the cellular level (atypical) and the resultant at the tissue level (epithelial dysplasia). The Aim of the present study was to evaluate and compare the expressions of intensity of p21 and Bcl-2 in Leukoplakia, oralsubmucous fibrosis (OSMF) and oral squamous cell carcinoma. Total 60 cases, 30 cases of oral squamous cell carcinoma, 15 cases of oral submucous fibrosis and 15 cases of Leukoplakia were evaluated immunohistochemically for p21 and Bcl-2 expression. p21 showed positive expression in 13 (86.67%) cases out of 15 cases of OSMF, 12 (80%) cases of leukoplakia out of 15 cases and 24 (80%) cases out of 30 cases of OSCC. The Bcl-2 expression was positive in 13 (86.67%) cases of OSMF, all cases of Leukoplakia and 25 (83.33%) cases of OSCC. No statistical significance was noted in the expression of p21 and Bcl-2 positive expression between OSMF, Leukoplakia and OSCC. Statistical analysis for comparison of intensity of p21 expression in different grades of OSCC showed no significance. Statistical significance difference was found between the expressions of Bcl-2 in moderately and poorly differentiated SCC. The intensity of p21 and Bcl-2 expressions in different grades of OSCC indicates a key role in progression of oral neoplasia.

  6. Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone

    EPA Science Inventory

    The initial innate immune response to ozone (03) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived...

  7. [Primary culture of human normal epithelial cells].

    PubMed

    Tang, Yu; Xu, Wenji; Guo, Wanbei; Xie, Ming; Fang, Huilong; Chen, Chen; Zhou, Jun

    2017-11-28

    The traditional primary culture methods of human normal epithelial cells have disadvantages of low activity of cultured cells, the low cultivated rate and complicated operation. To solve these problems, researchers made many studies on culture process of human normal primary epithelial cell. In this paper, we mainly introduce some methods used in separation and purification of human normal epithelial cells, such as tissue separation method, enzyme digestion separation method, mechanical brushing method, red blood cell lysis method, percoll layered medium density gradient separation method. We also review some methods used in the culture and subculture, including serum-free medium combined with low mass fraction serum culture method, mouse tail collagen coating method, and glass culture bottle combined with plastic culture dish culture method. The biological characteristics of human normal epithelial cells, the methods of immunocytochemical staining, trypan blue exclusion are described. Moreover, the factors affecting the aseptic operation, the conditions of the extracellular environment, the conditions of the extracellular environment during culture, the number of differential adhesion, and the selection and dosage of additives are summarized.

  8. Characterization of cultivated murine lacrimal gland epithelial cells

    PubMed Central

    Kobayashi, Shinya; Kawashima, Motoko; Okada, Naoko; Mishima, Kenji; Saito, Ichiro; Ito, Masataka; Shimmura, Shigeto; Tsubota, Kazuo

    2012-01-01

    Purpose To date, mouse lacrimal gland epithelial cells have been cultured successfully but only in cases involving newborn mouse lacrimal glands. In this work, we attempted to cultivate and characterize adult mouse lacrimal gland epithelial cells. Methods Lacrimal glands were removed from newborn mice (C57B/6) and isolated lacrimal gland epithelial cells were seeded onto tissue culture treated or low adherent culture dishes in Cnt-07 culture medium with or without cholera toxin. Cultivated cells were characterized by immunostaining with pan-cytokeratin, α-smooth muscle actin, and lactoferrin antibodies. Lacrimal gland cells from 7-week-old green fluorescent protein (GFP) and non-GFP (C57B/6) mice were mixed and seeded onto uncoated dishes to assess sphere-forming efficiency. Cells were also seeded onto 3T3 cell feeder layers to assess colony forming efficiency. Results Lacrimal gland epithelial cells were selectively cultured with cholera toxin, and cell type was verified by pan-cytokeratin and α-smooth muscle actin immunostaining. Sphere formation from single cells of adult mice was observed using specific medium and low adherent culture dishes. These cells could also undergo colony formation on 3T3 feeder cells. Conclusions Adult mouse lacrimal gland epithelial cells were successfully cultivated in cholera toxin-containing medium, and were observed to form spheres from single cells. PMID:22665974

  9. Establishment and characterization of a telomerase immortalized human gingival epithelial cell line.

    PubMed

    Moffatt-Jauregui, C E; Robinson, B; de Moya, A V; Brockman, R D; Roman, A V; Cash, M N; Culp, D J; Lamont, R J

    2013-12-01

    Gingival keratinocytes are used in model systems to investigate the interaction between periodontal bacteria and the epithelium in the initial stages of the periodontal disease process. Primary gingival epithelial cells (GECs) have a finite lifespan in culture before they enter senescence and cease to replicate, while epithelial cells immortalized with viral proteins can exhibit chromosomal rearrangements. The aim of this study was to generate a telomerase immortalized human gingival epithelial cell line and compare its in vitro behaviour to that of human GECs. Human primary GECs were immortalized with a bmi1/hTERT combination to prevent cell cycle triggers of senescence and telomere shortening. The resultant cell-line, telomerase immortalized gingival keratinocytes (TIGKs), were compared to GECs for cell morphology, karyotype, growth and cytokeratin expression, and further characterized for replicative lifespan, expression of toll-like receptors and invasion by P. gingivalis. TIGKs showed morphologies, karyotype, proliferation rates and expression of characteristic cytokeratin proteins comparable to GECs. TIGKs underwent 36 passages without signs of senescence and expressed transcripts for toll-like receptors 1-6, 8 and 9. A subpopulation of cells underwent stratification after extended time in culture. The cytokeratin profiles of TIGK monolayers were consistent with basal cells. When allowed to stratify, cytokeratin profiles of TIGKs were consistent with suprabasal cells of the junctional epithelium. Further, TIGKs were comparable to GECs in previously reported levels and kinetics of invasion by wild-type P. gingivalis and an invasion defective ΔserB mutant. Results confirm bmi1/hTERT immortalization of primary GECs generated a robust cell line with similar characteristics to the parental cell type. TIGKs represent a valuable model system for the study of oral bacteria interactions with host gingival cells. © 2013 John Wiley & Sons A/S. Published by John Wiley

  10. Adherence of Lactobacillus crispatus to vaginal epithelial cells from women with or without a history of recurrent urinary tract infection.

    PubMed

    Kwok, Louisa; Stapleton, Ann E; Stamm, Walter E; Hillier, Sharon L; Wobbe, Cheryl L; Gupta, Kalpana

    2006-11-01

    Lactobacillus crispatus strain CTV-05 is a vaginal probiotic proposed for use in women with recurrent urinary tract infection to reduce vaginal colonization with Escherichia coli and the risk of urinary tract infection. However, the ability of this probiotic strain to adhere to the target mucosa, vaginal epithelial cells, has not been assessed in women with recurrent urinary tract infection. We measured the adherence of L. crispatus strain CTV-05 to vaginal epithelial cells collected from more than 100 premenopausal women with (cases) and without (controls) a history of recurrent urinary tract infection. We also examined the effects of relevant host factors on bacterial adherence. Bacterial adherence assays were performed by combining L. crispatus CTV-05 with exfoliated vaginal epithelial cells collected from 51 case women and 51 controls. L. crispatus CTV-05 adhered in high numbers to vaginal epithelial cells from women with recurrent urinary tract infection (mean adherence of 50.5 lactobacilli per vaginal epithelial cell) and controls (mean adherence of 39.4 lactobacilli per vaginal epithelial cell). Adherence was significantly higher using vaginal epithelial cells from women with a maternal history of urinary tract infection (p = 0.036) and a nonsecretor phenotype (p < 0.001), but was not significantly affected by recent spermicide use, oral contraceptive use, menstrual cycle phase or sexual activity. L. crispatus strain CTV-05 is highly adherent to vaginal epithelial cells collected from a large sample of premenopausal women with or without a history of recent recurrent urinary tract infection. These data strongly support further evaluation of this probiotic in clinical trials of women with recurrent urinary tract infection.

  11. Cell death at the intestinal epithelial front line.

    PubMed

    Delgado, Maria Eugenia; Grabinger, Thomas; Brunner, Thomas

    2016-07-01

    The intestinal epithelium represents the largest epithelial surface in our body. This single-cell-layer epithelium mediates important functions in the absorption of nutrients and in the maintenance of barrier function, preventing luminal microorganisms from invading the body. Due to its constant regeneration the intestinal epithelium is a tissue not only with very high proliferation rates but also with very prominent physiological and pathophysiological cell death induction. The normal physiological differentiation and maturation of intestinal epithelial cells leads to their shedding and apoptotic cell death within a few days, without disturbing the epithelial barrier integrity. In contrast excessive intestinal epithelial cell death induced by irradiation, drugs and inflammation severely impairs the vital functions of this tissue. In this review we discuss cell death processes in the intestinal epithelium in health and disease, with special emphasis on cell death triggered by the tumour necrosis factor receptor family. © 2015 FEBS.

  12. EDAC: Epithelial defence against cancer-cell competition between normal and transformed epithelial cells in mammals.

    PubMed

    Kajita, Mihoko; Fujita, Yasuyuki

    2015-07-01

    During embryonic development or under certain pathological conditions, viable but suboptimal cells are often eliminated from the cellular society through a process termed cell competition. Cell competition was originally identified in Drosophila where cells with different properties compete for survival; 'loser' cells are eliminated from tissues and consequently 'winner' cells become dominant. Recent studies have shown that cell competition also occurs in mammals. While apoptotic cell death is the major fate for losers in Drosophila, outcompeted cells show more variable phenotypes in mammals, such as cell death-independent apical extrusion and cellular senescence. Molecular mechanisms underlying these processes have been recently revealed. Especially, in epithelial tissues, normal cells sense and actively eliminate the neighbouring transformed cells via cytoskeletal proteins by the process named epithelial defence against cancer (EDAC). Here, we introduce this newly emerging research field: cell competition in mammals. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  13. Epithelial stem cells and intestinal cancer.

    PubMed

    Tan, Shawna; Barker, Nick

    2015-06-01

    The mammalian intestine is comprised of an epithelial layer that serves multiple functions in order to maintain digestive activity as well as intestinal homeostasis. This epithelial layer contains highly proliferative stem cells which facilitate its characteristic rapid regeneration. How these stem cells contribute to tissue repair and normal homeostasis are actively studied, and while we have a greater understanding of the molecular mechanisms and cellular locations that underlie stem cell regulation in this tissue, much still remains undiscovered. This review describes epithelial stem cells in both intestinal and non-intestinal tissues, as well as the strategies that have been used to further characterize the cells. Through a discussion of the current understanding of intestinal self-renewal and tissue regeneration in response to injury, we focus on how dysregulation of critical signaling pathways results in potentially oncogenic aberrations, and highlight issues that should be addressed in order for effective intestinal cancer therapies to be devised. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Dendritic cells in oral tolerance in the gut.

    PubMed

    Rescigno, Maria

    2011-09-01

    Oral tolerance is a process that allows generation of systemic unresponsiveness to food antigens. Hence if the same antigen is introduced systemically even under immunogenic conditions it does not induce immune responsiveness. Dendritic cells (DCs) have been identified as essential players in this process. DCs in the gut are located in a strategic position as they can interact directly with luminal antigens or indirectly after their transcytosis across epithelial cells. DCs can then migrate to associated lymphoid tissues to induce tolerance. Antigen presenting cells in the gut are specialized in function and have divided their labour so that there are cells capable to migrate to the draining mesenteric lymph node for induction of T regulatory cells, while other subsets are resident and are required to enforce tolerance locally in the gut after food antigen exposure. In this review, I shall summarize the characteristics of antigen presenting cells in the gut and their involvement in oral tolerance induction. In addition, I will also emphasize that tolerance to food allergens may be contributed by plasmacytoid DCs in the liver that participate to the elimination or anergy of allergen-specific CD8 T cells. Hence specialized functions are associated to different subsets of antigen presenting cells and different organs. © 2011 Blackwell Publishing Ltd.

  15. Leptin promotes wound healing in the oral mucosa.

    PubMed

    Umeki, Hirochika; Tokuyama, Reiko; Ide, Shinji; Okubo, Mitsuru; Tadokoro, Susumu; Tezuka, Mitsuki; Tatehara, Seiko; Satomura, Kazuhito

    2014-01-01

    Leptin, a 16 kDa circulating anti-obesity hormone, exhibits many physiological properties. Recently, leptin was isolated from saliva; however, its function in the oral cavity is still unclear. In this study, we investigated the physiological role of leptin in the oral cavity by focusing on its effect on wound healing in the oral mucosa. Immunohistochemical analysis was used to examine the expression of the leptin receptor (Ob-R) in human/rabbit oral mucosa. To investigate the effect of leptin on wound healing in the oral mucosa, chemical wounds were created in rabbit oral mucosa, and leptin was topically administered to the wound. The process of wound repair was histologically observed and quantitatively analyzed by measuring the area of ulceration and the duration required for complete healing. The effect of leptin on the proliferation, differentiation and migration of human oral mucosal epithelial cells (RT7 cells) was investigated using crystal violet staining, reverse transcription polymerase chain reaction (RT-PCR) and a wound healing assay, respectively. Ob-R was expressed in spinous/granular cells in the epithelial tissue and vascular endothelial cells in the subepithelial connective tissue of the oral mucosa. Topical administration of leptin significantly promoted wound healing and shortened the duration required for complete healing. Histological analysis of gingival tissue beneath the ulceration showed a denser distribution of blood vessels in the leptin-treated group. Although the proliferation and differentiation of RT7 cells were not affected by leptin, the migration of these cells was accelerated in the presence of leptin. Topically administered leptin was shown to promote wound healing in the oral mucosa by accelerating epithelial cell migration and enhancing angiogenesis around the wounded area. These results strongly suggest that topical administration of leptin may be useful as a treatment to promote wound healing in the oral mucosa.

  16. CUX1/Wnt signaling regulates Epithelial Mesenchymal Transition in EBV infected epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malizia, Andrea P.; Lacey, Noreen; Walls, Dermot

    Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix protein deposition. EBV, localised to alveolar epithelial cells of pulmonary fibrosis patients is associated with a poor prognosis. A strategy based on microarray-differential gene expression analysis to identify molecular drivers of EBV-associated lung fibrosis was utilized. Alveolar epithelial cells were infected with EBV to identify genes whose expression was altered following TGF{beta}1-mediated lytic phase. EBV lytic reactivation by TGF{beta}1 drives a selective alteration in CUX1 variant (a) (NCBI accession number NM{sub 1}81552) expression, inducing activation of non-canonicalmore » Wnt pathway mediators, implicating it in Epithelial Mesenchymal Transition (EMT), the molecular event underpinning scar production in tissue fibrosis. The role of EBV in EMT can be attenuated by antiviral strategies and inhibition of Wnt signaling by using All-Trans Retinoic Acids (ATRA). Activation of non-canonical Wnt signaling pathway by EBV in epithelial cells suggests a novel mechanism of EMT via CUX1 signaling. These data present a framework for further description of the link between infectious agents and fibrosis, a significant disease burden.« less

  17. Cytotoxicity of HBD3 for dendritic cells, normal human epidermal keratinocytes, hTERT keratinocytes, and primary oral gingival epithelial keratinocytes in cell culture conditions

    PubMed Central

    Leelakanok, Nattawut; Fischer, Carol L.; Bates, Amber M.; Guthmiller, Janet M.; Johnson, Georgia K.; Salem, Aliasger K.; Brogden, Kim A.; Brogden, Nicole K.

    2015-01-01

    Human β-defensin 3 (HBD3) is a prominent host defense peptide. In our recent work, we observed that HBD3 modulates pro-inflammatory agonist-induced chemokine and cytokine responses in human myeloid dendritic cells (DCs), often at 20.0 μM concentrations. Since HBD3 can be cytotoxic in some circumstances, it is necessary to assess its cytotoxicity for DCs, normal human epidermal keratinocytes (NHEKs), human telomerase reverse transcriptase (hTERT) keratinocytes, and primary oral gingival epithelial (GE) keratinocytes in different cell culture conditions. Cells, in serum free media with resazurin and in complete media with 10% fetal bovine serum and resazurin, were incubated with 5, 10, 20, and 40 μM HBD3. Cytotoxicity was determined by measuring metabolic conversion of resazurin to resorufin. The lethal dose 50 (LD50, mean μM ± std err) values were determined from the median fluorescent intensities of test concentrations compared to live and killed cell controls. The LD50 value range of HBD3 was 18.2–35.9 μM in serum-free media for DCs, NHEKs, hTERT keratinocytes, and GE keratinocytes, and > 40.0 μM in complete media. Thus, HBD3 was cytotoxic at higher concentrations, which must be considered in future studies of HBD3-modulated chemokine and cytokine responses in vitro. PMID:26367466

  18. Intercellular spreading of Porphyromonas gingivalis infection in primary gingival epithelial cells.

    PubMed

    Yilmaz, Ozlem; Verbeke, Philippe; Lamont, Richard J; Ojcius, David M

    2006-01-01

    Porphyromonas gingivalis, an important periodontal pathogen, is an effective colonizer of oral tissues. The organism successfully invades, multiplies in, and survives for extended periods in primary gingival epithelial cells (GECs). It is unknown whether P. gingivalis resides in the cytoplasm of infected cells throughout the infection or can spread to adjacent cells over time. We developed a technique based on flow cytofluorometry and fluorescence microscopy to study propagation of the organism at different stages of infection of GECs. Results showed that P. gingivalis spreads cell to cell and that the amount of spreading increases gradually over time. There was a very low level of propagation of bacteria to uninfected cells early in the infection (3 h postinfection), but there were 20-fold and 45-fold increases in the propagation rate after 24 h and 48 h, respectively, of infection. Immunofluorescence microscopy of infected cells suggested that intercellular translocation of P. gingivalis may be mediated through actin-based membrane protrusions, bypassing the need for release of bacteria into extracellular medium. Consistent with these observations, cytochalasin D treatment of infected cells resulted in significant inhibition of bacterial spreading. This study shows for the first time that P. gingivalis disseminates from cell to cell without passing through the extracellular space. This mechanism of spreading may allow P. gingivalis to colonize oral tissues without exposure to the humoral immune response.

  19. Immunolocalization of osteopontin in dysplasias and squamous cell carcinomas arising from oral epithelium.

    PubMed

    Aravind, Thara; Janardhanan, Mahija; Rakesh, S; Savithri, Vindhya; Unnikrishnan, U G

    2017-01-01

    Early detection of oral squamous cell carcinoma (OSCC) remains one of the most efficient ways to ensure patient survival and improved quality of life. Although specific biomarkers related to OSCC have been investigated, a useful biomarker that assesses the transition potential of potentially malignant lesion to OSCC remains to be found. Osteopontin (OPN) has been recognized as an important factor in tumorigenesis and their expression in OSCC have been investigated earlier. In the present study, evaluation of OPN expression in premalignant and malignant lesions has been carried out to assess their possible role as a biomarker in the early diagnosis and prognosis of OSCC. The objective of this study is to evaluate the role of OPN as a biomarker in the diagnosis and prognosis of OSCC. The study group consisted of archival paraffin-embedded blocks of ten cases each of varying grades of OSCC, oral epithelial dysplasias and epithelial hyperplasias. Sections were subjected to immunohistochemical staining for the biomarker OPN. A positive OPN expression was noticed in epithelial dysplasias and SCC arising from the oral epithelium. A progressive increase in the intensity of staining was seen with increasing grades of dysplasias and a decrease in OPN expression with an increase in grades was observed in OSCC. The expression of OPN in full thickness of epithelium in severe dysplasias, carcinoma in situ, and in the superficial epithelium of OSCC suggest the possibility of considering OPN expression in full epithelial thickness in dysplasias as an indicator for malignant transformation.

  20. Comparative study of frequency of micronuclei in normal, potentially malignant diseases and oral squamous cell carcinoma

    PubMed Central

    Sangle, Varsha Ajit; Bijjaragi, Shobha; Shah, Nishat; Kangane, Suresh; Ghule, Hrishikesh M.; Rani, SR Ashwini

    2016-01-01

    Context: The assessment of micronuclei (MN) in exfoliated oral epithelial cells is a promising tool for the study of epithelial carcinogens and can be used to detect chromosome breakage or mitotic interference, thought to be relevant to carcinogenesis. Aims: To detect MN in exfoliated oral mucosal cells in individuals using various tobacco forms and also to detect frequency of MN in premalignant lesions and conditions (potentially malignant diseases [PMD's]) and oral squamous cell carcinoma (OSCC). To correlate frequency of MN in oral exfoliated cells in clinically diagnosed cases of OSCC followed by a histopathological grading. Materials and Methods: A total of 90 subjects (30 smokeless tobacco users, 30 smokers and 30 nontobacco users) consisted of clinically diagnosed cases of PMD's and OSCC were selected for the study. Cytosmears from the groups were stained with rapid Papanicolaou stain. MN was identified according to the Tolbert et al. criteria. Results: MN cells were found to be significantly higher in smokeless tobacco users than in smokers. The frequency of MN was three to four times higher in patients with OSCC as compared to patients in PMD's (P < 0.0001). The frequency of MN correlated with the histopathological grade was statistically significant. Conclusion: MN index can be used as a biomarker/screening test among the high-risk groups particularly the smokeless tobacco users and PMD's. MN can be a candidate to serve as a biomarker for prediction of the grade of OSCC. PMID:27003966

  1. Nanomechanical signatures of oral submucous fibrosis in sub-epithelial connective tissue.

    PubMed

    Anura, Anji; Das, Debanjan; Pal, Mousumi; Paul, Ranjan Rashmi; Das, Soumen; Chatterjee, Jyotirmoy

    2017-01-01

    Oral sub-mucous fibrosis (OSF), a potentially malignant disorder, exhibits extensive remodeling of extra-cellular matrix in the form of sub-epithelial fibrosis which is a possible sequel of assaults from different oral habit related irritants. It has been assumed that micro/nanobio-mechanical imbalance experienced in the oral mucosa due to fibrosis may be deterministic for malignant potential (7-13%) of this pathosis. Present study explores changes in mechanobiological attributes of sub-epithelial connective tissue of OSF and the normal counterpart. The atomic force microscopy was employed to investigate tissue topography at micro/nano levels. It documented the presence of closely packed parallel arrangement of dense collagen fibers with wide variation in bandwidth and loss of D-space in OSF as compared to normal. The AFM based indentation revealed that sub-epithelium of OSF tissue has lost its flexibility with increased Young's modulus, stiffness, adhesiveness and reduced deformation of the juxta-epithealial connective tissue towards the deeper layer. These significant variations in nano-mechanical properties of the connective tissue indicated plausible impacts on patho-physiological microenvironment. Excessive deposition of collagen I and diminished expression of collagen III, fibronectin along with presence of α-SMA positive myofibroblast in OSF depicted its pathological basis and indicated the influence of altered ECM on this pathosis. The mechanobiological changes in OSF were corroborative with change in collagen composition recorded through immunohistochemistry and RT-PCR. The revelation of comparative nanomechanical profiles of normal oral mucosa and OSF in the backdrop of their structural and cardinal molecular attributes thus became pivotal for developing holistic pathobiological insight about possible connects for malignant transformation of this pre-cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Expression of E-cadherin and vimentin in oral squamous cell carcinoma

    PubMed Central

    Zhou, Jingping; Tao, Detao; Xu, Qing; Gao, Zhenlin; Tang, Daofang

    2015-01-01

    The aim of the study is to determine the levels of E-cadherin, vimentin expression in tumor tissues from patients with oral squamous cell carcinoma (OSCC), and the relationship between the expression of E-cadherin, vimentin and epithelial-mesenchymal transition, in order to explore its values for predicting the invasion and metastasis of oral squamous cell carcinoma, short survival of patients in many types of cancer. E-cadherin and vimentin expression of 10 benign and 42 OSCC tumor tissues was examined by immunohistochemical staining. E-cadherin is positively expressed in normal oral mucosa epithelium, but vimentin expression is not found in normal oral mucosa epithelia; the E-cadherin and vimentin were expressed in 26 of 42 (61.9%) and 16 of 42 (38.1%), respectively. No statistically difference was found for E-cadherin and vimentin expression in patients with different age, gender and tumor location, E-cadherin and vimentin expression was significantly associated with lymph node metastasis and tissue location (P < 0.05); E-cadherin expression was also significantly associated with tumor stage (P < 0.05); there are significantly difference between infiltrative margin and central area in patients with oral squamous cell carcinoma for E-cadherin and vimentin positive expression (P < 0.05). E-cadherin and vimentin positive expression was associated with tumor metastasis of oral squamous cell carcinoma. Our study preliminarily confirmed that EMT phenomenon is existed during the development of oral squamous cell carcinoma. Co-evaluation of E-cadherin and vimentin might be a valuable tool for predicting OSCC patient outcome. PMID:26045832

  3. Mesenchymal Stromal Cell-Derived Interleukin-6 Promotes Epithelial-Mesenchymal Transition and Acquisition of Epithelial Stem-Like Cell Properties in Ameloblastoma Epithelial Cells.

    PubMed

    Jiang, Chunmiao; Zhang, Qunzhou; Shanti, Rabie M; Shi, Shihong; Chang, Ting-Han; Carrasco, Lee; Alawi, Faizan; Le, Anh D

    2017-09-01

    Epithelial-mesenchymal transition (EMT), a biological process associated with cancer stem-like or cancer-initiating cell formation, contributes to the invasiveness, metastasis, drug resistance, and recurrence of the malignant tumors; it remains to be determined whether similar processes contribute to the pathogenesis and progression of ameloblastoma (AM), a benign but locally invasive odontogenic neoplasm. Here, we demonstrated that EMT- and stem cell-related genes were expressed in the epithelial islands of the most common histologic variant subtype, the follicular AM. Our results revealed elevated interleukin (IL)-6 signals that were differentially expressed in the stromal compartment of the follicular AM. To explore the stromal effect on tumor pathogenesis, we isolated and characterized both mesenchymal stromal cells (AM-MSCs) and epithelial cells (AM-EpiCs) from follicular AM and demonstrated that, in in vitro culture, AM-MSCs secreted a significantly higher level of IL-6 as compared to the counterpart AM-EpiCs. Furthermore, both in vitro and in vivo studies revealed that exogenous and AM-MSC-derived IL-6 induced the expression of EMT- and stem cell-related genes in AM-EpiCs, whereas such effects were significantly abrogated either by a specific inhibitor of STAT3 or ERK1/2, or by knockdown of Slug gene expression. These findings suggest that AM-MSC-derived IL-6 promotes tumor-stem like cell formation by inducing EMT process in AM-EpiCs through STAT3 and ERK1/2-mediated signaling pathways, implying a role in the etiology and progression of the benign but locally invasive neoplasm. Stem Cells 2017;35:2083-2094. © 2017 AlphaMed Press.

  4. Ciliary neurotrophic factor promotes the activation of corneal epithelial stem/progenitor cells and accelerates corneal epithelial wound healing.

    PubMed

    Zhou, Qingjun; Chen, Peng; Di, Guohu; Zhang, Yangyang; Wang, Yao; Qi, Xia; Duan, Haoyun; Xie, Lixin

    2015-05-01

    Ciliary neurotrophic factor (CNTF), a well-known neuroprotective cytokine, has been found to play an important role in neurogenesis and functional regulations of neural stem cells. As one of the most innervated tissue, however, the role of CNTF in cornea epithelium remains unclear. This study was to explore the roles and mechanisms of CNTF in the activation of corneal epithelial stem/progenitor cells and wound healing of both normal and diabetic mouse corneal epithelium. In mice subjecting to mechanical removal of corneal epithelium, the corneal epithelial stem/progenitor cell activation and wound healing were promoted by exogenous CNTF application, while delayed by CNTF neutralizing antibody. In cultured corneal epithelial stem/progenitor cells, CNTF enhanced the colony-forming efficiency, stimulated the mitogenic proliferation, and upregulated the expression levels of corneal epithelial stem/progenitor cell-associated transcription factors. Furthermore, the promotion of CNTF on the corneal epithelial stem/progenitor cell activation and wound healing was mediated by the activation of STAT3. Moreover, in diabetic mice, the content of CNTF in corneal epithelium decreased significantly when compared with that of normal mice, and the supplement of CNTF promoted the diabetic corneal epithelial wound healing, accompanied with the advanced activation of corneal epithelial stem/progenitor cells and the regeneration of corneal nerve fibers. Thus, the capability of expanding corneal epithelial stem/progenitor cells and promoting corneal epithelial wound healing and nerve regeneration indicates the potential application of CNTF in ameliorating limbal stem cell deficiency and treating diabetic keratopathy. © 2014 AlphaMed Press.

  5. Mechanical stretch triggers rapid epithelial cell division through Piezo1.

    PubMed

    Gudipaty, S A; Lindblom, J; Loftus, P D; Redd, M J; Edes, K; Davey, C F; Krishnegowda, V; Rosenblatt, J

    2017-03-02

    Despite acting as a barrier for the organs they encase, epithelial cells turn over at some of the fastest rates in the body. However, epithelial cell division must be tightly linked to cell death to preserve barrier function and prevent tumour formation. How does the number of dying cells match those dividing to maintain constant numbers? When epithelial cells become too crowded, they activate the stretch-activated channel Piezo1 to trigger extrusion of cells that later die. However, it is unclear how epithelial cell division is controlled to balance cell death at the steady state. Here we show that mammalian epithelial cell division occurs in regions of low cell density where cells are stretched. By experimentally stretching epithelia, we find that mechanical stretch itself rapidly stimulates cell division through activation of the Piezo1 channel. To stimulate cell division, stretch triggers cells that are paused in early G2 phase to activate calcium-dependent phosphorylation of ERK1/2, thereby activating the cyclin B transcription that is necessary to drive cells into mitosis. Although both epithelial cell division and cell extrusion require Piezo1 at the steady state, the type of mechanical force controls the outcome: stretch induces cell division, whereas crowding induces extrusion. How Piezo1-dependent calcium transients activate two opposing processes may depend on where and how Piezo1 is activated, as it accumulates in different subcellular sites with increasing cell density. In sparse epithelial regions in which cells divide, Piezo1 localizes to the plasma membrane and cytoplasm, whereas in dense regions in which cells extrude, it forms large cytoplasmic aggregates. Because Piezo1 senses both mechanical crowding and stretch, it may act as a homeostatic sensor to control epithelial cell numbers, triggering extrusion and apoptosis in crowded regions and cell division in sparse regions.

  6. Genetics and epithelial cell dysfunction in cystic fibrosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riordan, J.R.; Buchwald, M.

    1987-01-01

    This book examines the advances being made in the study of the physiology, cell biology, and molecular genetics of cystic fibrosis. Emphasis is placed on various areas of research that involve epithelial cells (e.g., the CF-specific phenotypes exhibited by epithelial cells, abnormalities in epithelium ion transport, chloride channel regulation in CF epithelial.) Coverage is presented on the current status of CF, including data on the incidence of the disease, its mode of inheritance, chromosomal localization, genetic heterogeneity, and screening and management.

  7. Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool.

    PubMed

    Mesa, Kailin R; Rompolas, Panteleimon; Zito, Giovanni; Myung, Peggy; Sun, Thomas Y; Brown, Samara; Gonzalez, David G; Blagoev, Krastan B; Haberman, Ann M; Greco, Valentina

    2015-06-04

    Tissue homeostasis is achieved through a balance of cell production (growth) and elimination (regression). In contrast to tissue growth, the cells and molecular signals required for tissue regression remain unknown. To investigate physiological tissue regression, we use the mouse hair follicle, which cycles stereotypically between phases of growth and regression while maintaining a pool of stem cells to perpetuate tissue regeneration. Here we show by intravital microscopy in live mice that the regression phase eliminates the majority of the epithelial cells by two distinct mechanisms: terminal differentiation of suprabasal cells and a spatial gradient of apoptosis of basal cells. Furthermore, we demonstrate that basal epithelial cells collectively act as phagocytes to clear dying epithelial neighbours. Through cellular and genetic ablation we show that epithelial cell death is extrinsically induced through transforming growth factor (TGF)-β activation and mesenchymal crosstalk. Strikingly, our data show that regression acts to reduce the stem cell pool, as inhibition of regression results in excess basal epithelial cells with regenerative abilities. This study identifies the cellular behaviours and molecular mechanisms of regression that counterbalance growth to maintain tissue homeostasis.

  8. A Role for Fibroblasts in Mediating the Effects of Tobacco-Induced Epithelial Cell Growth and Invasion

    PubMed Central

    Coppe, Jean-Philippe; Boysen, Megan; Ho Sun, Chung; Wong, Brian J.F.; Kang, Mo K.; Park, No-Hee; Desprez, Pierre-Yves; Campisi, Judith; Krtolica, Ana

    2009-01-01

    Cigarette smoke and smokeless tobacco extracts contain multiple carcinogenic compounds, but little is known about the mechanisms by which tumors develop and progress upon chronic exposure to carcinogens such as those present in tobacco products. Here, we examine the effects of smokeless tobacco extracts on human oral fibroblasts. We show that smokeless tobacco extracts elevated the levels of intracellular reactive oxygen, oxidative DNA damage, and DNA double-strand breaks in a dose-dependent manner. Extended exposure to extracts induced fibroblasts to undergo a senescence-like growth arrest, with striking accompanying changes in the secretory phenotype. Using cocultures of smokeless tobacco extracts–exposed fibroblasts and immortalized but nontumorigenic keratinocytes, we further show that factors secreted by extracts-modified fibroblasts increase the proliferation and invasiveness of partially transformed epithelial cells, but not their normal counterparts. In addition, smokeless tobacco extracts–exposed fibroblasts caused partially transformed keratinocytes to lose the expression of E-cadherin and ZO-1, as well as involucrin, changes that are indicative of compromised epithelial function and commonly associated with malignant progression. Together, our results suggest that fibroblasts may contribute to tumorigenesis indirectly by increasing epithelial cell aggressiveness. Thus, tobacco may not only initiate mutagenic changes in epithelial cells but also promote the growth and invasion of mutant cells by creating a procarcinogenic stromal environment. PMID:18644973

  9. Pre-existing Epithelial Diversity in Normal Human Livers: A Tissue-tethered Cytometric Analysis in Portal/Periportal Epithelial Cells

    PubMed Central

    Isse, Kumiko; Lesniak, Andrew; Grama, Kedar; Maier, John; Specht, Susan; Castillo-Rama, Marcela; Lunz, John; Roysam, Badrinath; Michalopoulos, George; Demetris, Anthony J.

    2012-01-01

    Routine light microscopy identifies two distinct epithelial cell populations in normal human livers: hepatocytes and biliary epithelial cells (BEC). Considerable epithelial diversity, however, arises during disease states when a variety of hepatocyte-BEC hybrid cells appear. This has been attributed to activation and differentiation of putative hepatic progenitor cells (HPC) residing in the Canals of Hering and/or metaplasia of pre-existing mature epithelial cells. A novel analytic approach consisting of multiplex labeling, high resolution whole slide imaging (WSI), and automated image analysis was used to determine if more complex epithelial cell phenotypes pre-existed in normal adult human livers, which might provide an alternative explanation for disease-induced epithelial diversity. “Virtually digested” WSI enabled quantitative cytometric analyses of individual cells displayed in a variety of formats (e.g. scatter plots) while still tethered to the WSI and tissue structure. We employed biomarkers specifically-associated with mature epithelial forms (HNF4α for hepatocytes, CK19 and HNF1β for BEC) and explored for the presence of cells with hybrid biomarker phenotypes. Results showed abundant hybrid cells in portal bile duct BEC, canals of Hering, and immediate periportal hepatocytes. These bi-potential cells likely serve as a reservoir for the epithelial diversity of ductular reactions, appearance of hepatocytes in bile ducts, and the rapid and fluid transition of BEC to hepatocytes, and vice versa. Conclusion Novel imaging and computational tools enable increased information extraction from tissue samples and quantify the considerable pre-existent hybrid epithelial diversity in normal human liver. This computationally-enabled tissue analysis approach offers much broader potential beyond the results presented here. PMID:23150208

  10. Cell reintegration: Stray epithelial cells make their way home.

    PubMed

    Wilson, Tyler J; Bergstralh, Dan T

    2017-06-01

    Ongoing work shows that misplaced epithelial cells have the capacity to reintegrate back into tissue layers. This movement appears to underlie tissue stability and may also control aspects of tissue structure. A recent study reveals that cell reintegration in at least one tissue, the Drosophila follicular epithelium, is based on adhesion molecules that line lateral cell surfaces. In this article we will review these observations, discuss their implications for epithelial tissue development and maintenance, and identify future directions for study. © 2017 WILEY Periodicals, Inc.

  11. 3-Deazaneplanocin A suppresses aggressive phenotype-related gene expression in an oral squamous cell carcinoma cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatta, Mitsutoki, E-mail: hatta@college.fdcnet.ac.jp; Naganuma, Kaori; Kato, Kenichi

    In tumor tissues, alterations of gene expression caused by aberrant epigenetic modifications confer phenotypic diversity on malignant cells. Although 3-deazaneplanocin A (DZNep) has been shown to reactivate tumor suppressor genes in several cancer cells, it remains unclear whether DZNep attenuates the malignant phenotypes of oral squamous cell carcinoma (OSCC) cells. In this study, we investigated the effect of DZNep on the expression of genes related to aggressive phenotypes, such as epithelial–mesenchymal transition, in OSCC cells. We found that DZNep reduced the cellular levels of polycomb group proteins (EZH2, SUZ12, BMI1, and RING1A) and the associated trimethylation of Lys27 on histonemore » H3 and monoubiquitination of Lys119 on histone H2A in the poorly differentiated OSCC cell line SAS. Immunocytochemical staining demonstrated that DZNep induced the reorganization of filamentous actin and the membrane localization of E-cadherin associated with cell–cell adhesions. We also found an inhibitory effect of DZNep on cell proliferation using a WST assay. Finally, quantitative RT-PCR analysis demonstrated that genes involved in the aggressive phenotypes (TWIST2, EGFR, ACTA2, TGFB1, WNT5B, and APLIN) were down-regulated, whereas epithelial phenotype genes (CDH1, CLDN4, IVL, and TGM1) were up-regulated in SAS cells treated with DZNep. Collectively, our findings suggest that DZNep reverses the aggressive characteristics of OSCC cells through the dynamic regulation of epithelial plasticity via the reprogramming of gene expression patterns. - Highlights: • DZNep reduced PcG proteins and associated histone modifications in OSCC cells. • DZNep enhanced cell–cell adhesion indicative of epithelial phenotype in OSCC cells. • DZNep suppressed the aggressive phenotype-related gene expression in OSCC cells. • DZNep activated the gene expression of epithelial markers in OSCC cells.« less

  12. Cytogenetic biomonitoring of peripheral blood and oral mucosa cells from car painters.

    PubMed

    Pereira da Silva, Victor Hugo; Gomes de Moura, Carolina Foot; Spadari-Bratfisch, Regina Célia; Araki Ribeiro, Daniel

    2012-09-01

    The aim of the present study was to comparatively evaluate genomic damage and cellular death in exfoliated oral mucosa cells and peripheral blood from car painters. A total of 24 car painters and 19 healthy controls (non-exposed individuals) were included in this setting. Individuals had epithelial cells from cheek mucosa (left and right side) mechanically exfoliated, placed in fixative and dropped in clean slides which were checked for the specific nuclear phenotypes. A total of 5 μL from peripheral blood was collected for the single cell gel (comet) assay. The results pointed out statistically significant differences (p < 0.05) of micronucleated oral mucosa cells from car painters. In addition, DNA damage was detected in peripheral blood cells by single cell gel (comet) assay. Nevertheless, exposure to car paints did not cause increases other nuclear alterations closely related to cytotoxicity such as karrhyorexis, pyknosis and karyolysis in buccal mucosa cells. In summary, the results of the present study suggest that car painters comprise a high risk group since paints can induce genotoxic and mutagenic effects in peripheral blood and oral mucosa cells, respectively.

  13. Epithelial stem cells are formed by small-particles released from particle-producing cells

    PubMed Central

    Kong, Wuyi; Zhu, Xiao Ping; Han, Xiu Juan; Nuo, Mu; Wang, Hong

    2017-01-01

    Recent spatiotemporal report demonstrated that epidermal stem cells have equal potential to divide or differentiate, with no asymmetric cell division observed. Therefore, how epithelial stem cells maintain lifelong stem-cell support still needs to be elucidated. In mouse blood and bone marrow, we found a group of large cells stained strongly for eosin and containing coiled-tubing-like structures. Many were tightly attached to each other to form large cellular clumps. After sectioning, these large cell-clumps were composed of not cells but numerous small particles, however with few small “naked” nuclei. The small particles were about 2 to 3 μm in diameter and stained dense red for eosin, so they may be rich in proteins. Besides the clumps composed of small particles, we identified clumps formed by fusion of the small particles and clumps of newly formed nucleated cells. These observations suggest that these small particles further fused and underwent cellularization. E-cadherin was expressed in particle-fusion areas, some “naked” nuclei and the newly formed nucleated cells, which suggests that these particles can form epithelial cells via fusion and nuclear remodeling. In addition, we observed similar-particle fusion before epithelial cellularization in mouse kidney ducts after kidney ischemia, which suggests that these particles can be released in the blood and carried to the target tissues for epithelial-cell regeneration. Oct4 and E-cadherin expressed in the cytoplasmic areas in cells that were rich in protein and mainly located in the center of the cellular clumps, suggesting that these newly formed cells have become tissue-specific epithelial stem cells. Our data provide evidence that these large particle-producing cells are the origin of epithelial stem cells. The epithelial stem cells are newly formed by particle fusion. PMID:28253358

  14. The Effect of Ozone on Colonic Epithelial Cells.

    PubMed

    Himuro, Hidetomo

    2018-05-21

    Due to its strong oxidation activity, ozone has been well known to kill bacteria and exert toxic effects on human tissues. At the same time, ozone is being used for the treatment of diseases such as inflammatory bowel disease in some European countries. However, the use of ozone for therapeutic purposes, despite its strong toxic effects, remains largely unexplored. Interestingly, we found that intrarectal administration of ozone gas induced transient colonic epithelial cell damage characterized by the impairment of cell survival pathways involved in DNA replication, cell cycle, and mismatch repair. However, the damaged cells were rapidly extruded from the epithelial layer, and appeared to immediately stimulate turnover of the epithelial layer in the colon. Therefore, it is possible that ozone gas is able to trigger damage-induced rapid regeneration of intestinal epithelial cells, and that this explains why ozone does not cause harmful or persistent damage in the colon.

  15. Efficient Immortalization of Primary Nasopharyngeal Epithelial Cells for EBV Infection Study

    PubMed Central

    Yip, Yim Ling; Pang, Pei Shin; Deng, Wen; Tsang, Chi Man; Zeng, Musheng; Hau, Pok Man; Man, Cornelia; Jin, Yuesheng; Yuen, Anthony Po Wing; Tsao, Sai Wah

    2013-01-01

    Nasopharyngeal carcinoma (NPC) is common among southern Chinese including the ethnic Cantonese population living in Hong Kong. Epstein-Barr virus (EBV) infection is detected in all undifferentiated type of NPC in this endemic region. Establishment of stable and latent EBV infection in premalignant nasopharyngeal epithelial cells is an early event in NPC development and may contribute to its pathogenesis. Immortalized primary nasopharyngeal epithelial cells represent an important tool for investigation of EBV infection and its tumorigenic potential in this special type of epithelial cells. However, the limited availability and small sizes of nasopharyngeal biopsies have seriously restricted the establishment of primary nasopharyngeal epithelial cells for immortalization. A reliable and effective method to immortalize primary nasopharyngeal epithelial cells will provide unrestricted materials for EBV infection studies. An earlier study has reported that Bmi-1 expression could immortalize primary nasopharyngeal epithelial cells. However, its efficiency and actions in immortalization have not been fully characterized. Our studies showed that Bmi-1 expression alone has limited ability to immortalize primary nasopharyngeal epithelial cells and additional events are often required for its immortalization action. We have identified some of the key events associated with the immortalization of primary nasopharyngeal epithelial cells. Efficient immortalization of nasopharyngeal epithelial cells could be reproducibly and efficiently achieved by the combined actions of Bmi-1 expression, activation of telomerase and silencing of p16 gene. Activation of MAPK signaling and gene expression downstream of Bmi-1 were detected in the immortalized nasopharyngeal epithelial cells and may play a role in immortalization. Furthermore, these newly immortalized nasopharyngeal epithelial cells are susceptible to EBV infection and supported a type II latent EBV infection program characteristic

  16. YAP regulates the expression of Hoxa1 and Hoxc13 in mouse and human oral and skin epithelial tissues.

    PubMed

    Liu, Ming; Zhao, Shuangyun; Lin, Qingjie; Wang, Xiu-Ping

    2015-04-01

    Yes-associated protein (YAP) is a Hippo signaling transcriptional coactivator that plays pivotal roles in stem cell proliferation, organ size control, and tumor development. The downstream targets of YAP have been shown to be highly context dependent. In this study, we used the embryonic mouse tooth germ as a tool to search for the downstream targets of YAP in ectoderm-derived tissues. Yap deficiency in the dental epithelium resulted in a small tooth germ with reduced epithelial cell proliferation. We compared the gene expression profiles of embryonic day 14.5 (E14.5) Yap conditional knockout and YAP transgenic mouse tooth germs using transcriptome sequencing (RNA-Seq) and further confirmed the differentially expressed genes using real-time PCR and in situ hybridization. We found that YAP regulates the expression of Hoxa1 and Hoxc13 in oral and dental epithelial tissues as well as in the epidermis of skin during embryonic and adult stages. Sphere formation assay suggested that Hoxa1 and Hoxc13 are functionally involved in YAP-regulated epithelial progenitor cell proliferation, and chromatin immunoprecipitation (ChIP) assay implies that YAP may regulate Hoxa1 and Hoxc13 expression through TEAD transcription factors. These results provide mechanistic insights into abnormal YAP activities in mice and humans. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Epithelial Label-Retaining Cells Are Absent during Tooth Cycling in Salmo salar and Polypterus senegalus.

    PubMed

    Vandenplas, Sam; Willems, Maxime; Witten, P Eckhard; Hansen, Tom; Fjelldal, Per Gunnar; Huysseune, Ann

    2016-01-01

    The Atlantic salmon (Salmo salar) and African bichir (Polypterus senegalus) are both actinopterygian fish species that continuously replace their teeth without the involvement of a successional dental lamina. Instead, they share the presence of a middle dental epithelium: an epithelial tier enclosed by inner and outer dental epithelium. It has been hypothesized that this tier could functionally substitute for a successional dental lamina and might be a potential niche to house epithelial stem cells involved in tooth cycling. Therefore, in this study we performed a BrdU pulse chase experiment on both species to (1) determine the localization and extent of proliferating cells in the dental epithelial layers, (2) describe cell dynamics and (3) investigate if label-retaining cells are present, suggestive for the putative presence of stem cells. Cells proliferate in the middle dental epithelium, outer dental epithelium and cervical loop at the lingual side of the dental organ to form a new tooth germ. Using long chase times, both in S. salar (eight weeks) and P. senegalus (eight weeks and twelve weeks), we could not reveal the presence of label-retaining cells in the dental organ. Immunostaining of P. senegalus dental organs for the transcription factor Sox2, often used as a stem cell marker, labelled cells in the zone of outer dental epithelium which grades into the oral epithelium (ODE transition zone) and the inner dental epithelium of a successor only. The location of Sox2 distribution does not provide evidence for epithelial stem cells in the dental organ and, more specifically, in the middle dental epithelium. Comparison of S. salar and P. senegalus reveals shared traits in tooth cycling and thus advances our understanding of the developmental mechanism that ensures lifelong replacement.

  18. Epithelial Label-Retaining Cells Are Absent during Tooth Cycling in Salmo salar and Polypterus senegalus

    PubMed Central

    Vandenplas, Sam; Willems, Maxime; Witten, P. Eckhard; Hansen, Tom; Fjelldal, Per Gunnar; Huysseune, Ann

    2016-01-01

    The Atlantic salmon (Salmo salar) and African bichir (Polypterus senegalus) are both actinopterygian fish species that continuously replace their teeth without the involvement of a successional dental lamina. Instead, they share the presence of a middle dental epithelium: an epithelial tier enclosed by inner and outer dental epithelium. It has been hypothesized that this tier could functionally substitute for a successional dental lamina and might be a potential niche to house epithelial stem cells involved in tooth cycling. Therefore, in this study we performed a BrdU pulse chase experiment on both species to (1) determine the localization and extent of proliferating cells in the dental epithelial layers, (2) describe cell dynamics and (3) investigate if label-retaining cells are present, suggestive for the putative presence of stem cells. Cells proliferate in the middle dental epithelium, outer dental epithelium and cervical loop at the lingual side of the dental organ to form a new tooth germ. Using long chase times, both in S. salar (eight weeks) and P. senegalus (eight weeks and twelve weeks), we could not reveal the presence of label-retaining cells in the dental organ. Immunostaining of P. senegalus dental organs for the transcription factor Sox2, often used as a stem cell marker, labelled cells in the zone of outer dental epithelium which grades into the oral epithelium (ODE transition zone) and the inner dental epithelium of a successor only. The location of Sox2 distribution does not provide evidence for epithelial stem cells in the dental organ and, more specifically, in the middle dental epithelium. Comparison of S. salar and P. senegalus reveals shared traits in tooth cycling and thus advances our understanding of the developmental mechanism that ensures lifelong replacement. PMID:27049953

  19. Epithelial dysplasia in oral lichen planus. A preliminary report of a Dutch-Hungarian study of 100 cases.

    PubMed

    De Jong, W F; Albrecht, M; Bánóczy, J; van der Waal, I

    1984-06-01

    In a combined study of the Free University, Amsterdam and the Semmelweis Medical University, Budapest, the presence of epithelial dysplasia was studied in 100 cases of oral lichen planus. The criteria of epithelial dysplasia which were used in this study correspond with those reported by the WHO Collaborating Centre for Oral Precancerous Lesions in 1978. In approximately 25% of all cases, moderate or at least mild dysplasia was observed. The number of dysplastic changes per section did not show any significant correlation with the clinical type, nor with age or sex. There were no marked differences between the Amsterdam and Budapest material. Long-term data on the follow-up were not available yet. No comment can therefore be given about the meaning of the finding of epithelial dysplasia in lichen planus being a sign of premalignancy or not.

  20. M2 polarization of macrophages facilitates arsenic-induced cell transformation of lung epithelial cells

    PubMed Central

    Li, Hui; Dai, Lu; Frank, Jacqueline A.; Peng, Shaojun; Wang, Siying; Chen, Gang

    2017-01-01

    The alterations in microenvironment upon chronic arsenic exposure may contribute to arsenic-induced lung carcinogenesis. Immune cells, such as macrophages, play an important role in mediating the microenvironment in the lungs. Macrophages carry out their functions after activation. There are two activation status for macrophages: classical (M1) or alternative (M2); the latter is associated with tumorigenesis. Our previous work showed that long-term arsenic exposure induces transformation of lung epithelial cells. However, the crosstalk between epithelial cells and macrophages upon arsenic exposure has not been investigated. In this study, using a co-culture system in which human lung epithelial cells are cultured with macrophages, we determined that long-term arsenic exposure polarizes macrophages towards M2 status through ROS generation. Co-culture with epithelial cells further enhanced the polarization of macrophages as well as transformation of epithelial cells, while blocking macrophage M2 polarization decreased the transformation. In addition, macrophage M2 polarization decreased autophagy activity, which may account for increased cell transformation of epithelial cells with co-culture of macrophages. PMID:28423485

  1. Niche induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool

    PubMed Central

    Mesa, Kailin R.; Rompolas, Panteleimon; Zito, Giovanni; Myung, Peggy; Sun, Thomas Yang; Brown, Samara; Gonzalez, David; Blagoev, Krastan B.; Haberman, Ann M.; Greco, Valentina

    2015-01-01

    Summary Tissue homeostasis is achieved through a balance of cell production (growth) and elimination (regression)1,2. Contrary to tissue growth, the cells and molecular signals required for tissue regression remain unknown. To investigate physiological tissue regression, we use the mouse hair follicle, which cycles stereotypically between phases of growth and regression while maintaining a pool of stem cells to perpetuate tissue regeneration3. Here we show by intravital microscopy in live mice4–6 that the regression phase eliminates the majority of the epithelial cells by two distinct mechanisms: terminal differentiation of suprabasal cells and a spatial gradient of apoptosis of basal cells. Furthermore, we demonstrate that basal epithelial cells collectively act as phagocytes to clear dying epithelial neighbors. Through cellular and genetic ablation we show that epithelial cell death is extrinsically induced through TGFβ activation and mesenchymal crosstalk. Strikingly, our data show that regression acts to reduce the stem cell pool as inhibition of regression results in excess basal epithelial cells with regenerative abilities. This study identifies the cellular behaviors and molecular mechanisms of regression that counterbalance growth to maintain tissue homeostasis. PMID:25849774

  2. Fabrication of corneal epithelial cell sheets maintaining colony-forming cells without feeder cells by oxygen-controlled method.

    PubMed

    Nakajima, Ryota; Takeda, Shizu

    2014-01-01

    The use of murine 3T3 feeder cells needs to be avoided when fabricating corneal epithelial cell sheets for use in treating ocular surface diseases. However, the expression level of the epithelial stem/progenitor cell marker, p63, is down-regulated in feeder-free culture systems. In this study, in order to fabricate corneal epithelial cell sheets that maintain colony-forming cells without using any feeder cells, we investigated the use of an oxygen-controlled method that was developed previously to fabricate cell sheets efficiently. Rabbit limbal epithelial cells were cultured under hypoxia (1-10% O2) and under normoxia during stratification after reaching confluence. Multilayered corneal epithelial cell sheets were fabricated using an oxygen-controlled method, and immunofluorescence analysis showed that cytokeratin 3 and p63 was expressed in appropriate localization in the cell sheets. The colony-forming efficiency of the cell sheets fabricated by the oxygen-controlled method without feeder cells was significantly higher than that of cell sheets fabricated under 20% O2 without feeder cells. These results indicate that the oxygen-controlled method has the potential to achieve a feeder-free culture system for fabricating corneal epithelial cell sheets for corneal regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Airway epithelial cell response to human metapneumovirus infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, X.; Liu, T.; Spetch, L.

    2007-11-10

    Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections (LRTIs) in infants, elderly and immunocompromised patients. In this study, we show that hMPV can infect in a similar manner epithelial cells representative of different tracts of the airways. hMPV-induced expression of chemokines IL-8 and RANTES in primary small alveolar epithelial cells (SAE) and in a human alveolar type II-like epithelial cell line (A549) was similar, suggesting that A549 cells can be used as a model to study lower airway epithelial cell responses to hMPV infection. A549 secreted a variety of CXC and CC chemokines, cytokines and typemore » I interferons, following hMPV infection. hMPV was also a strong inducer of transcription factors belonging to nuclear factor (NF)-{kappa}B, interferon regulatory factors (IRFs) and signal transducers and activators of transcription (STATs) families, which are known to orchestrate the expression of inflammatory and immunomodulatory mediators.« less

  4. Oral Administration of Probiotics Increases Paneth Cells and Intestinal Antimicrobial Activity.

    PubMed

    Cazorla, Silvia I; Maldonado-Galdeano, Carolina; Weill, Ricardo; De Paula, Juan; Perdigón, Gabriela D V

    2018-01-01

    The huge amount of intestinal bacteria represents a continuing threat to the intestinal barrier. To meet this challenge, gut epithelial cells produce antimicrobial peptides (AMP) that act at the forefront of innate immunity. We explore whether this antimicrobial activity and Paneth cells, the main intestinal cell responsible of AMP production, are influenced by probiotics administration, to avoid the imbalance of intestinal microbiota and preserve intestinal barrier. Administration of Lactobacillus casei CRL 431 (Lc 431) and L. paracasei CNCM I-1518 (Lp 1518) to 42 days old mice, increases the number of Paneth cells on small intestine, and the antimicrobial activity against the pathogens Staphylococcus aureus and Salmonella Typhimurium in the intestinal fluids. Specifically, strong damage of the bacterial cell with leakage of cytoplasmic content, and cellular fragmentation were observed in S. Typhimurium and S. aureus . Even more important, probiotics increase the antimicrobial activity of the intestinal fluids at the different ages, from weaning (21 days old) to old age (180 days old). Intestinal antimicrobial activity stimulated by oral probiotics, do not influence significantly the composition of total anaerobic bacteria, lactobacilli and enterobacteria in the large intestine, at any age analyzed. This result, together with the antimicrobial activity observed against the same probiotic bacteria; endorse the regular consumption of probiotics without adverse effect on the intestinal homeostasis in healthy individuals. We demonstrate that oral probiotics increase intestinal antimicrobial activity and Paneth cells in order to strengthen epithelial barrier against pathogens. This effect would be another important mechanism by which probiotics protect the host mainly against infectious diseases.

  5. Hypermethylated ZNF582 and PAX1 genes in mouth rinse samples as biomarkers for oral dysplasia and oral cancer detection.

    PubMed

    Cheng, Shih-Jung; Chang, Chi-Feng; Ko, Hui-Hsin; Lee, Jang-Jaer; Chen, Hsin-Ming; Wang, Huei-Jen; Lin, Hsiao-Shan; Chiang, Chun-Pin

    2018-02-01

    Effective biomarkers for oral cancer screening are important for early diagnosis and treatment of oral cancer. Oral epithelial cell samples collected by mouth rinse were obtained from 65 normal control subjects, 108 patients with oral potentially malignant disorders, and 94 patients with oral squamous cell carcinoma (OSCC). Methylation levels of zinc-finger protein 582 (ZNF582) and paired-box 1 (PAX1) genes were quantified by real-time methylation-specific polymerase chain reaction after bisulfite conversion. An abrupt increase in methylated ZNF582 (ZNF582 m ) and PAX1 (PAX1 m ) levels and positive rates from mild dysplasia to moderate/severe dysplasia, indicating that both ZNF582 m and PAX1 m are effective biomarkers for differentiating moderate dysplasia or worse (MODY+) oral lesions. When ZNF582 m /PAX1 m tests were used for identifying MODY+ oral lesions, the sensitivity, specificity, and odds ratio (OR) were 0.65/0.64, 0.75/0.82, and 5.6/8.0, respectively. Hypermethylated ZNF582 and PAX1 genes in oral epithelial cells collected by mouth rinse are effective biomarkers for the detection of oral dysplasia and oral cancer. © 2017 Wiley Periodicals, Inc.

  6. Multi-functionality and plasticity characterize epithelial cells in Hydra

    PubMed Central

    Buzgariu, W; Al Haddad, S; Tomczyk, S; Wenger, Y; Galliot, B

    2015-01-01

    Epithelial sheets, a synapomorphy of all metazoans but porifers, are present as 2 layers in cnidarians, ectoderm and endoderm, joined at their basal side by an extra-cellular matrix named mesoglea. In the Hydra polyp, epithelial cells of the body column are unipotent stem cells that continuously self-renew and concomitantly express their epitheliomuscular features. These multifunctional contractile cells maintain homeostasis by providing a protective physical barrier, by digesting nutrients, by selecting a stable microbiota, and by rapidly closing wounds. In addition, epithelial cells are highly plastic, supporting the adaptation of Hydra to physiological and environmental changes, such as long starvation periods where survival relies on a highly dynamic autophagy flux. Epithelial cells also play key roles in developmental processes as evidenced by the organizer activity they develop to promote budding and regeneration. We propose here an integrative view of the homeostatic and developmental aspects of epithelial plasticity in Hydra. PMID:26716072

  7. Role of Corneal Stromal Cells on Epithelial Cell Function during Wound Healing

    PubMed Central

    Kowtharapu, Bhavani S.; Murín, Radovan; Jünemann, Anselm G. M.; Stachs, Oliver

    2018-01-01

    Following injury, corneal stromal keratocytes transform into repair-phenotype of activated stromal fibroblasts (SFs) and participate in wound repair. Simultaneously, ongoing bi-directional communications between corneal stromal-epithelial cells also play a vital role in mediating the process of wound healing. Factors produced by stromal cells are known to induce proliferation, differentiation, and motility of corneal epithelial cells, which are also subsequently the main processes that occur during wound healing. In this context, the present study aims to investigate the effect of SFs conditioned medium (SFCM) on corneal epithelial cell function along with substance P (SP). Antibody microarrays were employed to profile differentially expressed cell surface markers and cytokines in the presence of SFCM and SP. Antibody microarray data revealed enhanced expression of the ITGB1 in corneal epithelial cells following stimulation with SP whereas SFCM induced abundant expression of IL-8, ITGB1, PD1L1, PECA1, IL-15, BDNF, ICAM1, CD8A, CD44 and NTF4. All these proteins have either direct or indirect roles in epithelial cell growth, movement and adhesion related signaling cascades during tissue regeneration. We also observed activation of MAPK signaling pathway along with increased expression of focal adhesion kinase (FAK), paxillin, vimentin, β-catenin and vasodilator-stimulated phosphoprotein (VASP) phosphorylation. Additionally, epithelial-to-mesenchymal transition (EMT) regulating transcription factors Slug and ZEB1 expression were enhanced in the presence of SFCM. SP enriched the expression of integrin subunits α4, α5, αV, β1 and β3 whereas SFCM increased α4, α5, αV, β1 and β5 integrin subunits. We also observed increased expression of Serpin E1 following SP and SFCM treatment. Wound healing scratch assay revealed enhanced migration of epithelial cells following the addition of SFCM. Taken together, we conclude that SFCM-mediated sustained activation of ZEB1

  8. CD8+ T cells induce thyroid epithelial cell hyperplasia and fibrosis.

    PubMed

    Yu, Shiguang; Fang, Yujiang; Sharav, Tumenjargal; Sharp, Gordon C; Braley-Mullen, Helen

    2011-02-15

    CD8(+) T cells can be important effector cells in autoimmune inflammation, generally because they can damage target cells by cytotoxicity. This study shows that activated CD8(+) T cells induce thyroid epithelial cell hyperplasia and proliferation and fibrosis in IFN-γ(-/-) NOD.H-2h4 SCID mice in the absence of CD4(+) T cells. Because CD8(+) T cells induce proliferation rather than cytotoxicity of target cells, these results describe a novel function for CD8(+) T cells in autoimmune disease. In contrast to the ability of purified CD8(+) T cells to induce thyrocyte proliferation, CD4(+) T cells or CD8 T cell-depleted splenocytes induced only mild thyroid lesions in SCID recipients. T cells in both spleens and thyroids highly produce TNF-α. TNF-α promotes proliferation of thyrocytes in vitro, and anti-TNF-α inhibits development of thyroid epithelial cell hyperplasia and proliferation in SCID recipients of IFN-γ(-/-) splenocytes. This suggests that targeting CD8(+) T cells and/or TNF-α may be effective for treating epithelial cell hyperplasia and fibrosis.

  9. Human induced pluripotent stem cell differentiation and direct transdifferentiation into corneal epithelial-like cells

    PubMed Central

    Cieślar-Pobuda, Artur; Rafat, Mehrdad; Knoflach, Viktoria; Skonieczna, Magdalena; Hudecki, Andrzej; Małecki, Andrzej; Urasińska, Elżbieta; Ghavami, Seaid; Łos, Marek J.

    2016-01-01

    The corneal epithelium is maintained by a small pool of tissue stem cells located at the limbus. Through certain injuries or diseases this pool of stem cells may get depleted. This leads to visual impairment. Standard treatment options include autologous or allogeneic limbal stem cell (LSC) transplantation, however graft rejection and chronic inflammation lowers the success rate over long time. Induced pluripotent stem (iPS) cells have opened new possibilities for treating various diseases with patient specific cells, eliminating the risk of immune rejection. In recent years, several protocols have been developed, aimed at the differentiation of iPS cells into the corneal epithelial lineage by mimicking the environmental niche of limbal stem cells. However, the risk of teratoma formation associated with the use of iPS cells hinders most applications from lab into clinics. Here we show that the differentiation of iPS cells into corneal epithelial cells results in the expression of corneal epithelial markers showing a successful differentiation, but the process is long and the level of gene expression for the pluripotency markers does not vanish completely. Therefore we set out to determine a direct transdifferentiation approach to circumvent the intermediate state of pluripotency (iPS-stage). The resulting cells, obtained by direct transdifferentiation of fibroblasts into limbal cells, exhibited corneal epithelial cell morphology and expressed corneal epithelial markers. Hence we shows for the first time a direct transdifferentiation of human dermal fibroblasts into the corneal epithelial lineage that may serve as source for corneal epithelial cells for transplantation approaches. PMID:27275539

  10. Epithelial-mesenchymal status influences how cells deposit fibrillin microfibrils.

    PubMed

    Baldwin, Andrew K; Cain, Stuart A; Lennon, Rachel; Godwin, Alan; Merry, Catherine L R; Kielty, Cay M

    2014-01-01

    Here, we show that epithelial-mesenchymal status influences how cells deposit extracellular matrix. Retinal pigmented epithelial (RPE) cells that expressed high levels of E-cadherin and had cell-cell junctions rich in zona occludens (ZO)-1, β-catenin and heparan sulfate, required syndecan-4 but not fibronectin or protein kinase C α (PKCα) to assemble extracellular matrix (fibrillin microfibrils and perlecan). In contrast, RPE cells that strongly expressed mesenchymal smooth muscle α-actin but little ZO-1 or E-cadherin, required fibronectin (like fibroblasts) and PKCα, but not syndecan-4. Integrins α5β1 and/or α8β1 and actomyosin tension were common requirements for microfibril deposition, as was heparan sulfate biosynthesis. TGFβ, which stimulates epithelial-mesenchymal transition, altered gene expression and overcame the dependency on syndecan-4 for microfibril deposition in epithelial RPE cells, whereas blocking cadherin interactions disrupted microfibril deposition. Renal podocytes had a transitional phenotype with pericellular β-catenin but little ZO-1; they required syndecan-4 and fibronectin for efficient microfibril deposition. Thus, epithelial-mesenchymal status modulates microfibril deposition.

  11. The Contribution of the Airway Epithelial Cell to Host Defense.

    PubMed

    Stanke, Frauke

    2015-01-01

    In the context of cystic fibrosis, the epithelial cell has been characterized in terms of its ion transport capabilities. The ability of an epithelial cell to initiate CFTR-mediated chloride and bicarbonate transport has been recognized early as a means to regulate the thickness of the epithelial lining fluid and recently as a means to regulate the pH, thereby determining critically whether or not host defense proteins such as mucins are able to fold appropriately. This review describes how the epithelial cell senses the presence of pathogens and inflammatory conditions, which, in turn, facilitates the activation of CFTR and thus directly promotes pathogens clearance and innate immune defense on the surface of the epithelial cell. This paper summarizes functional data that describes the effect of cytokines, chemokines, infectious agents, and inflammatory conditions on the ion transport properties of the epithelial cell and relates these key properties to the molecular pathology of cystic fibrosis. Recent findings on the role of cystic fibrosis modifier genes that underscore the role of the epithelial ion transport in host defense and inflammation are discussed.

  12. Immunolocalization of osteopontin in dysplasias and squamous cell carcinomas arising from oral epithelium

    PubMed Central

    Aravind, Thara; Janardhanan, Mahija; Rakesh, S; Savithri, Vindhya; Unnikrishnan, U G

    2017-01-01

    Background: Early detection of oral squamous cell carcinoma (OSCC) remains one of the most efficient ways to ensure patient survival and improved quality of life. Although specific biomarkers related to OSCC have been investigated, a useful biomarker that assesses the transition potential of potentially malignant lesion to OSCC remains to be found. Osteopontin (OPN) has been recognized as an important factor in tumorigenesis and their expression in OSCC have been investigated earlier. In the present study, evaluation of OPN expression in premalignant and malignant lesions has been carried out to assess their possible role as a biomarker in the early diagnosis and prognosis of OSCC. Objectives: The objective of this study is to evaluate the role of OPN as a biomarker in the diagnosis and prognosis of OSCC. Materials and Methods: The study group consisted of archival paraffin-embedded blocks of ten cases each of varying grades of OSCC, oral epithelial dysplasias and epithelial hyperplasias. Sections were subjected to immunohistochemical staining for the biomarker OPN. Results: A positive OPN expression was noticed in epithelial dysplasias and SCC arising from the oral epithelium. A progressive increase in the intensity of staining was seen with increasing grades of dysplasias and a decrease in OPN expression with an increase in grades was observed in OSCC. Conclusion: The expression of OPN in full thickness of epithelium in severe dysplasias, carcinoma in situ, and in the superficial epithelium of OSCC suggest the possibility of considering OPN expression in full epithelial thickness in dysplasias as an indicator for malignant transformation. PMID:28479681

  13. Canine corneal epithelial cells possess a sustained proliferative capacity and generate a spontaneously derived cell line.

    PubMed

    Morita, Maresuke; Fujita, Naoki; Abe, Momoko; Hayashimoto, Koji; Nakagawa, Takayuki; Nishimura, Ryohei; Tsuzuki, Keiko

    2018-06-01

    We have previously reported characteristics of canine corneal epithelial cells in vitro and found that canine corneal epithelial cells could maintain their proliferative capacity even after continuous culture without the use of feeder cells and growth promoting additives. The objective of this study was to elucidate proliferative characteristics of canine corneal epithelial cells independent of feeder cells and growth promoting additives, with the aim of developing a spontaneously derived corneal epithelial cell line. Canine and rabbit corneal epithelial cells were harvested from the limbus and cultured with, or without, feeder cells and growth promoting additives, and both were passaged continuously until growth arrest. Canine corneal epithelial cells could proliferate independently, and could be passaged more times than rabbit cells. A canine corneal epithelial cell line, cCEpi, which could be passaged more than 100 times without using feeder cells and growth promoting additives, was established. cCEpi cells maintained a cell morphology close to the primary culture and expressed p63, cytokeratin 15 (K15), and K3. Although changes in colony morphology, shortening of the population doubling time and a heteroploid karyotype were observed, cCEpi was not tumorigenic. Stratified cell sheets cultured from cCEpi were morphologically and immunohistologically similar to sheets cultivated from early passage cells. In conclusion, canine corneal epithelial cells can proliferate independent of feeder cells and growth promoting additives. cCEpi maintains properties similar to normal corneal epithelial cells and could be a useful source for studies in cellular biology and for developing novel therapies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Implantation of Induced Pluripotent Stem Cell-Derived Tracheal Epithelial Cells.

    PubMed

    Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Yoshie, Susumu; Nakamura, Ryosuke; Otsuki, Koshi; Murono, Shigeyuki; Omori, Koichi

    2017-07-01

    Compared with using autologous tissue, the use of artificial materials in the regeneration of tracheal defects is minimally invasive. However, this technique requires early epithelialization on the inner side of the artificial trachea. After differentiation from induced pluripotent stem cells (iPSCs), tracheal epithelial tissues may be used to produce artificial tracheas. Herein, we aimed to demonstrate that after differentiation from fluorescent protein-labeled iPSCs, tracheal epithelial tissues survived in nude rats with tracheal defects. Red fluorescent tdTomato protein was electroporated into mouse iPSCs to produce tdTomato-labeled iPSCs. Embryoid bodies derived from these iPSCs were then cultured in differentiation medium supplemented with growth factors, followed by culture on air-liquid interfaces for further differentiation into tracheal epithelium. The cells were implanted with artificial tracheas into nude rats with tracheal defects on day 26 of cultivation. On day 7 after implantation, the tracheas were exposed and examined histologically. Tracheal epithelial tissue derived from tdTomato-labeled iPSCs survived in the tracheal defects. Moreover, immunochemical analyses showed that differentiated tissues had epithelial structures similar to those of proximal tracheal tissues. After differentiation from iPSCs, tracheal epithelial tissues survived in rat bodies, warranting the use of iPSCs for epithelial regeneration in tracheal defects.

  15. Candida albicans yeast and hyphae are discriminated by MAPK signaling in vaginal epithelial cells.

    PubMed

    Moyes, David L; Murciano, Celia; Runglall, Manohursingh; Islam, Ayesha; Thavaraj, Selvam; Naglik, Julian R

    2011-01-01

    We previously reported that a bi-phasic innate immune MAPK response, constituting activation of the mitogen-activated protein kinase (MAPK) phosphatase MKP1 and c-Fos transcription factor, discriminates between the yeast and hyphal forms of Candida albicans in oral epithelial cells (ECs). Since the vast majority of mucosal Candida infections are vaginal, we sought to determine whether a similar bi-phasic MAPK-based immune response was activated by C. albicans in vaginal ECs. Here, we demonstrate that vaginal ECs orchestrate an innate response to C. albicans via NF-κB and MAPK signaling pathways. However, unlike in oral ECs, the first MAPK response, defined by c-Jun transcription factor activation, is delayed until 2 h in vaginal ECs but is still independent of hypha formation. The 'second' or 'late' MAPK response, constituting MKP1 and c-Fos transcription factor activation, is identical to oral ECs and is dependent upon both hypha formation and fungal burdens. NF-κB activation is immediate but independent of morphology. Furthermore, the proinflammatory response in vaginal ECs is different to oral ECs, with an absence of G-CSF and CCL20 and low level IL-6 production. Therefore, differences exist in how C. albicans activates signaling mechanisms in oral and vaginal ECs; however, the activation of MAPK-based pathways that discriminate between yeast and hyphal forms is retained between these mucosal sites. We conclude that this MAPK-based signaling pathway is a common mechanism enabling different human epithelial tissues to orchestrate innate immune responses specifically against C. albicans hyphae.

  16. The increase of microRNA-21 during lung fibrosis and its contribution to epithelial-mesenchymal transition in pulmonary epithelial cells.

    PubMed

    Yamada, Mitsuhiro; Kubo, Hiroshi; Ota, Chiharu; Takahashi, Toru; Tando, Yukiko; Suzuki, Takaya; Fujino, Naoya; Makiguchi, Tomonori; Takagi, Kiyoshi; Suzuki, Takashi; Ichinose, Masakazu

    2013-09-24

    The excess and persistent accumulation of fibroblasts due to aberrant tissue repair results in fibrotic diseases such as idiopathic pulmonary fibrosis. Recent reports have revealed significant changes in microRNAs during idiopathic pulmonary fibrosis and evidence in support of a role for microRNAs in myofibroblast differentiation and the epithelial-mesenchymal transition in the context of fibrosis. It has been reported that microRNA-21 is up-regulated in myofibroblasts during fibrosis and promotes transforming growth factor-beta signaling by inhibiting Smad7. However, expression changes in microRNA-21 and the role of microRNA-21 in epithelial-mesenchymal transition during lung fibrosis have not yet been defined. Lungs from saline- or bleomycin-treated C57BL/6 J mice and lung specimens from patients with idiopathic pulmonary fibrosis were analyzed. Enzymatic digestions were performed to isolate single lung cells. Lung epithelial cells were isolated by flow cytometric cell sorting. The expression of microRNA-21 was analyzed using both quantitative PCR and in situ hybridization. To induce epithelial-mesenchymal transition in culture, isolated mouse lung alveolar type II cells were cultured on fibronectin-coated chamber slides in the presence of transforming growth factor-β, thus generating conditions that enhance epithelial-mesenchymal transition. To investigate the role of microRNA-21 in epithelial-mesenchymal transition, we transfected cells with a microRNA-21 inhibitor. Total RNA was isolated from the freshly isolated and cultured cells. MicroRNA-21, as well as mRNAs of genes that are markers of alveolar epithelial or mesenchymal cell differentiation, were quantified using quantitative PCR. The lung epithelial cells isolated from the bleomycin-induced lung fibrosis model system had decreased expression of epithelial marker genes, whereas the expression of mesenchymal marker genes was increased. MicroRNA-21 was significantly upregulated in isolated lung epithelial

  17. The effect of mechanical extension stimulation combined with epithelial cell sorting on outcomes of implanted tissue-engineered muscular urethras.

    PubMed

    Fu, Qiang; Deng, Chen-Liang; Zhao, Ren-Yan; Wang, Ying; Cao, Yilin

    2014-01-01

    Urethral defects are common and frequent disorders and are difficult to treat. Simple natural or synthetic materials do not provide a satisfactory curative solution for long urethral defects, and urethroplasty with large areas of autologous tissues is limited and might interfere with wound healing. In this study, adipose-derived stem cells were used. These cells can be derived from a wide range of sources, have extensive expansion capability, and were combined with oral mucosal epithelial cells to solve the problem of finding seeding cell sources for producing the tissue-engineered urethras. We also used the synthetic biodegradable polymer poly-glycolic acid (PGA) as a scaffold material to overcome issues such as potential pathogen infections derived from natural materials (such as de-vascular stents or animal-derived collagen) and differing diameters. Furthermore, we used a bioreactor to construct a tissue-engineered epithelial-muscular lumen with a double-layer structure (the epithelial lining and the muscle layer). Through these steps, we used an epithelial-muscular lumen built in vitro to repair defects in a canine urethral defect model (1 cm). Canine urethral reconstruction was successfully achieved based on image analysis and histological techniques at different time points. This study provides a basis for the clinical application of tissue engineering of an epithelial-muscular lumen. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Proximal location of mouse prostate epithelial stem cells

    PubMed Central

    Tsujimura, Akira; Koikawa, Yasuhiro; Salm, Sarah; Takao, Tetsuya; Coetzee, Sandra; Moscatelli, David; Shapiro, Ellen; Lepor, Herbert; Sun, Tung-Tien; Wilson, E. Lynette

    2002-01-01

    Stem cells are believed to regulate normal prostatic homeostasis and to play a role in the etiology of prostate cancer and benign prostatic hyperplasia. We show here that the proximal region of mouse prostatic ducts is enriched in a subpopulation of epithelial cells that exhibit three important attributes of epithelial stem cells: they are slow cycling, possess a high in vitro proliferative potential, and can reconstitute highly branched glandular ductal structures in collagen gels. We propose a model of prostatic homeostasis in which mouse prostatic epithelial stem cells are concentrated in the proximal region of prostatic ducts while the transit-amplifying cells occupy the distal region of the ducts. This model can account for many biological differences between cells of the proximal and distal regions, and has implications for prostatic disease formation. PMID:12082083

  19. Characterization of rabbit limbal epithelial side population cells using RNA sequencing and single-cell qRT-PCR.

    PubMed

    Kameishi, Sumako; Umemoto, Terumasa; Matsuzaki, Yu; Fujita, Masako; Okano, Teruo; Kato, Takashi; Yamato, Masayuki

    2016-05-06

    Corneal epithelial stem cells reside in the limbus, a transitional zone between the cornea and conjunctiva, and are essential for maintaining homeostasis in the corneal epithelium. Although our previous studies demonstrated that rabbit limbal epithelial side population (SP) cells exhibit stem cell-like phenotypes with Hoechst 33342 staining, the different characteristics and/or populations of these cells remain unclear. Therefore, in this study, we determined the gene expression profiles of limbal epithelial SP cells by RNA sequencing using not only present public databases but also contigs that were created by de novo transcriptome assembly as references for mapping. Our transcriptome data indicated that limbal epithelial SP cells exhibited a stem cell-like phenotype compared with non-SP cells. Importantly, gene ontology analysis following RNA sequencing demonstrated that limbal epithelial SP cells exhibited significantly enhanced expression of mesenchymal/endothelial cell markers rather than epithelial cell markers. Furthermore, single-cell quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) demonstrated that the limbal epithelial SP population consisted of at least two immature cell populations with endothelial- or mesenchymal-like phenotypes. Therefore, our present results may propose the presence of a novel population of corneal epithelial stem cells distinct from conventional epithelial stem cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis

    PubMed Central

    Mizuno, Takako; Sridharan, Anusha; Du, Yina; Guo, Minzhe; Wikenheiser-Brokamp, Kathryn A.; Perl, Anne-Karina T.; Funari, Vincent A.; Gokey, Jason J.; Stripp, Barry R.; Whitsett, Jeffrey A.

    2016-01-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal interstitial lung disease characterized by airway remodeling, inflammation, alveolar destruction, and fibrosis. We utilized single-cell RNA sequencing (scRNA-seq) to identify epithelial cell types and associated biological processes involved in the pathogenesis of IPF. Transcriptomic analysis of normal human lung epithelial cells defined gene expression patterns associated with highly differentiated alveolar type 2 (AT2) cells, indicated by enrichment of RNAs critical for surfactant homeostasis. In contrast, scRNA-seq of IPF cells identified 3 distinct subsets of epithelial cell types with characteristics of conducting airway basal and goblet cells and an additional atypical transitional cell that contributes to pathological processes in IPF. Individual IPF cells frequently coexpressed alveolar type 1 (AT1), AT2, and conducting airway selective markers, demonstrating “indeterminate” states of differentiation not seen in normal lung development. Pathway analysis predicted aberrant activation of canonical signaling via TGF-β, HIPPO/YAP, P53, WNT, and AKT/PI3K. Immunofluorescence confocal microscopy identified the disruption of alveolar structure and loss of the normal proximal-peripheral differentiation of pulmonary epithelial cells. scRNA-seq analyses identified loss of normal epithelial cell identities and unique contributions of epithelial cells to the pathogenesis of IPF. The present study provides a rich data source to further explore lung health and disease. PMID:27942595

  1. Hypothyroidism affects differentially the cell size of epithelial cells among oviductal regions of rabbits.

    PubMed

    Anaya-Hernández, A; Rodríguez-Castelán, J; Nicolás, L; Martínez-Gómez, M; Jiménez-Estrada, I; Castelán, F; Cuevas, E

    2015-02-01

    Oviductal regions show particular histological characteristics and functions. Tubal pathologies and hypothyroidism are related to primary and secondary infertility. The impact of hypothyroidism on the histological characteristics of oviductal regions has been scarcely studied. Our aim was to analyse the histological characteristics of oviductal regions in control and hypothyroid rabbits. Hypothyroidism was induced by oral administration of methimazole (MMI) for 30 days. For both groups, serum concentrations of thyroid and gonadal hormones were determined. Sections of oviductal regions were stained with the Masson's trichrome technique to analyse both epithelial and smooth muscle layers. The percentage of proliferative epithelial cells (anti-Ki67) in diverse oviductal regions was also quantified. Data were compared with Student t-test, Mann-Whitney U-test, or Fischer's test. In comparison with the control group, the hypothyroid group showed: (i) a low concentration of T3 and T4, but a high level of TSH; (ii) similar values of serum estradiol, progesterone and testosterone; (iii) a large size of ciliated cells in the ampulla (AMP), isthmus (IST) and utero-tubal junction (UTJ); (iv) a large size of secretory cells in the IST region; (v) a low percentage of proliferative secretory cells in the fimbria-infundibulum (FIM-INF) region; and (vi) a similar thickness of the smooth muscle layer and the cross-sectional area in the AMP and IST regions. Modifications in the size of the oviductal epithelium in hypothyroid rabbits could be related to changes in the cell metabolism that may impact on the reproductive functions achieved by oviduct. © 2014 Blackwell Verlag GmbH.

  2. Protons Sensitize Epithelial Cells to Mesenchymal Transition

    PubMed Central

    Wang, Minli; Hada, Megumi; Saha, Janapriya; Sridharan, Deepa M.; Pluth, Janice M.; Cucinotta, Francis A.

    2012-01-01

    Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1)-mediated epithelial-mesenchymal transition (EMT), a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu) and hTERT- immortalized human esophageal epithelial cells (EPC) were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV) at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1) kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1. PMID:22844446

  3. Protons sensitize epithelial cells to mesenchymal transition.

    PubMed

    Wang, Minli; Hada, Megumi; Saha, Janapriya; Sridharan, Deepa M; Pluth, Janice M; Cucinotta, Francis A

    2012-01-01

    Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1)-mediated epithelial-mesenchymal transition (EMT), a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu) and hTERT- immortalized human esophageal epithelial cells (EPC) were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV) at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1) kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1.

  4. Sequestration of human cytomegalovirus by human renal and mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Twite, Nicolas; Andrei, Graciela; Kummert, Caroline

    2014-07-15

    Urine and breast milk represent the main routes of human cytomegalovirus (HCMV) transmission but the contribution of renal and mammary epithelial cells to viral excretion remains unclear. We observed that kidney and mammary epithelial cells were permissive to HCMV infection and expressed immediate early, early and late antigens within 72 h of infection. During the first 24 h after infection, high titers of infectious virus were measured associated to the cells and in culture supernatants, independently of de novo synthesis of virus progeny. This phenomenon was not observed in HCMV-infected fibroblasts and suggested the sequestration and the release of HCMVmore » by epithelial cells. This hypothesis was supported by confocal and electron microscopy analyses. The sequestration and progressive release of HCMV by kidney and mammary epithelial cells may play an important role in the excretion of the virus in urine and breast milk and may thereby contribute to HCMV transmission. - Highlights: • Primary renal and mammary epithelial cells are permissive to HCMV infection. • HCMV is sequestered by epithelial cells and this phenomenon does not require viral replication. • HCMV sequestration by epithelial cells is reduced by antibodies and IFN-γ.« less

  5. Cadherin-23 Mediates Heterotypic Cell-Cell Adhesion between Breast Cancer Epithelial Cells and Fibroblasts

    PubMed Central

    Apostolopoulou, Maria; Ligon, Lee

    2012-01-01

    In the early stages of breast cancer metastasis, epithelial cells penetrate the basement membrane and invade the surrounding stroma, where they encounter fibroblasts. Paracrine signaling between fibroblasts and epithelial tumor cells contributes to the metastatic cascade, but little is known about the role of adhesive contacts between these two cell types in metastasis. Here we show that MCF-7 breast cancer epithelial cells and normal breast fibroblasts form heterotypic adhesions when grown together in co-culture, as evidenced by adhesion assays. PCR and immunoblotting show that both cell types express multiple members of the cadherin superfamily, including the atypical cadherin, cadherin-23, when grown in isolation and in co-culture. Immunocytochemistry experiments show that cadherin-23 localizes to homotypic adhesions between MCF-7 cells and also to heterotypic adhesions between the epithelial cells and fibroblasts, and antibody inhibition and RNAi experiments show that cadherin-23 plays a role in mediating these adhesive interactions. Finally, we show that cadherin-23 is upregulated in breast cancer tissue samples, and we hypothesize that heterotypic adhesions mediated by this atypical cadherin may play a role in the early stages of metastasis. PMID:22413011

  6. Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers.

    PubMed

    Bergstralh, Dan T; Lovegrove, Holly E; St Johnston, Daniel

    2015-11-01

    Cells in simple epithelia orient their mitotic spindles in the plane of the epithelium so that both daughter cells are born within the epithelial sheet. This is assumed to be important to maintain epithelial integrity and prevent hyperplasia, because misaligned divisions give rise to cells outside the epithelium. Here we test this assumption in three types of Drosophila epithelium; the cuboidal follicle epithelium, the columnar early embryonic ectoderm, and the pseudostratified neuroepithelium. Ectopic expression of Inscuteable in these tissues reorients mitotic spindles, resulting in one daughter cell being born outside the epithelial layer. Live imaging reveals that these misplaced cells reintegrate into the tissue. Reducing the levels of the lateral homophilic adhesion molecules Neuroglian or Fasciclin 2 disrupts reintegration, giving rise to extra-epithelial cells, whereas disruption of adherens junctions has no effect. Thus, the reinsertion of misplaced cells seems to be driven by lateral adhesion, which pulls cells born outside the epithelial layer back into it. Our findings reveal a robust mechanism that protects epithelia against the consequences of misoriented divisions.

  7. Exfoliative cytology of the oral mucosa in burning mouth syndrome: a cytomorphological and cytomorphometric analysis.

    PubMed

    Wandeur, Talita; de Moura, Sérgio Adriane Bezerra; de Medeiros, Ana Miryam Costa; Machado, Maria Ângela Naval; Alanis, Luciana Reis de Azevedo; Grégio, Ana Maria Trindade; Trevilatto, Paula Cristina; de Lima, Antonio Adilson Soares

    2011-03-01

    The aim of this study was to evaluate oral epithelial cells by exfoliative cytology in burning mouth syndrome (BMS). Oral smears were collected from clinically normal-appearing mucosa by liquid-based exfoliative cytology in 40 individuals (20 BMS patients and 20 healthy controls matched for age and gender) and analysed for cytological and cytomorphometric techniques. Mean values of nuclear area (NA) for experimental and control groups were, respectively, 67.52 and 55.64 μm² (p < 0.05). Cytoplasmic area (CA) showed the following mean values: 1258.0 (experimental) and 2069.0 μm² (control). Nucleus-to-cytoplasm area ratio for the experimental group was 0.07, besides the control group was 0.03 (p < 0.05). Morphologically, oral smears exhibited normal epithelial cells in both experimental and control groups. There was a significant predominance of nucleated cells of the superficial layer in the smears of BMS patients (p = 0.00001). This study revealed that oral mucosa of BMS patients exhibited significant cytomorphometric changes in the oral epithelial cells. These changes probably are associated with epithelial atrophy and a deregulated maturation process that may contribute to the oral symptoms of pain and discomfort in BMS. © 2010 The Gerodontology Society and John Wiley & Sons A/S.

  8. Fibrin glue inhibits migration of ocular surface epithelial cells

    PubMed Central

    Yeung, A M; Faraj, L A; McIntosh, O D; Dhillon, V K; Dua, H S

    2016-01-01

    Purpose Fibrin glue has been used successfully in numerous ophthalmic surgical procedures. Recently, fibrin glue has been used in limbal stem cell transplantation to reduce both operative time and to negate the need for sutures. The aim of this study was to determine the effects of fibrin glue on epithelial cell migration in vitro. Methods Corneoscleral rims were split to retain the epithelial layer, Bowman's layer, and anterior stroma. Rims were cut into eight equal-sized pieces and were placed directly on culture plates or affixed with fibrin glue. Rims were maintained in culture for 25 days and epithelial cell growth was monitored. Cells were photographed to measure area or growth and immunofluorescence staining of explants for fibrin was performed. Results Explants that were glued demonstrated significantly delayed epithelial cell growth and migration as compared with explants without glue. By day 16, all fibrin glue had dissolved and coincided with onset of cell growth from glued explants. Cell growth commenced between days 3 and 4 for control explants without glue and around days 14–16 for explants with fibrin glue. Conclusions Fibrin glue delays epithelial cell migration by acting as a physical barrier and can potentially interfere with explant-derived limbal epithelial cell migration on to the corneal surface. We propose that glue should be used to attach the conjunctival frill of the limbal explant but care should be taken to ensure that the glue does not wrap around the explant if used to secure the explant as well. Strategic use of glue, to attach the recessed conjunctiva, can be advantageous in delaying conjunctival cell migration and reducing the need for sequential sector conjunctival epitheliectomy. PMID:27367746

  9. Paracrine influence of human perivascular cells on the proliferation of adenocarcinoma alveolar epithelial cells.

    PubMed

    Kim, Eunbi; Na, Sunghun; An, Borim; Yang, Se-Ran; Kim, Woo Jin; Ha, Kwon-Soo; Han, Eun-Taek; Park, Won Sun; Lee, Chang-Min; Lee, Ji Yoon; Lee, Seung-Joon; Hong, Seok-Ho

    2017-03-01

    Understanding the crosstalk mechanisms between perivascular cells (PVCs) and cancer cells might be beneficial in preventing cancer development and metastasis. In this study, we investigated the paracrine influence of PVCs derived from human umbilical cords on the proliferation of lung adenocarcinoma epithelial cells (A549) and erythroleukemia cells (TF-1α and K562) in vitro using Transwell® co-culture systems. PVCs promoted the proliferation of A549 cells without inducing morphological changes, but had no effect on the proliferation of TF-1α and K562 cells. To identify the factors secreted from PVCs, conditioned media harvested from PVC cultures were analyzed by antibody arrays. We identified a set of cytokines, including persephin (PSPN), a neurotrophic factor, and a key regulator of oral squamous cell carcinoma progression. Supplementation with PSPN significantly increased the proliferation of A549 cells. These results suggested that PVCs produced a differential effect on the proliferation of cancer cells in a cell-type dependent manner. Further, secretome analyses of PVCs and the elucidation of the molecular mechanisms could facilitate the discovery of therapeutic target(s) for lung cancer.

  10. Epithelial cell kinase-B61: an autocrine loop modulating intestinal epithelial migration and barrier function.

    PubMed

    Rosenberg, I M; Göke, M; Kanai, M; Reinecker, H C; Podolsky, D K

    1997-10-01

    Epithelial cell kinase (Eck) is a member of a large family of receptor tyrosine kinases whose functions remain largely unknown. Expression and regulation of Eck and its cognate ligand B61 were analyzed in the human colonic adenocarcinoma cell line Caco-2. Immunocytochemical staining demonstrated coexpression of Eck and B61 in the same cells, suggestive of an autocrine loop. Eck levels were maximal in preconfluent cells. In contrast, B61 levels were barely detectable in preconfluent cells and increased progressively after the cells reached confluence. Caco-2 cells cultured in the presence of added B61 showed a significant reduction in the levels of dipeptidyl peptidase and sucrase-isomaltase mRNA, markers of Caco-2 cell differentiation. Cytokines interleukin-1beta (IL-1beta), basic fibroblast growth factor, IL-2, epidermal growth factor, and transforming growth factor-beta modulated steady-state levels of Eck and B61 mRNA and regulated Eck activation as assessed by tyrosine phosphorylation. Functionally, stimulation of Eck by B61 resulted in increased proliferation, enhanced barrier function, and enhanced restitution of injured epithelial monolayers. These results suggest that the Eck-B61 interaction, a target of regulatory peptides, plays a role in intestinal epithelial cell development, migration, and barrier function, contributing to homeostasis and preservation of continuity of the epithelial barrier.

  11. Mechanobiology in Lung Epithelial Cells: Measurements, Perturbations, and Responses

    PubMed Central

    Waters, Christopher M.; Roan, Esra; Navajas, Daniel

    2015-01-01

    Epithelial cells of the lung are located at the interface between the environment and the organism and serve many important functions including barrier protection, fluid balance, clearance of particulate, initiation of immune responses, mucus and surfactant production, and repair following injury. Because of the complex structure of the lung and its cyclic deformation during the respiratory cycle, epithelial cells are exposed to continuously varying levels of mechanical stresses. While normal lung function is maintained under these conditions, changes in mechanical stresses can have profound effects on the function of epithelial cells and therefore the function of the organ. In this review, we will describe the types of stresses and strains in the lungs, how these are transmitted, and how these may vary in human disease or animal models. Many approaches have been developed to better understand how cells sense and respond to mechanical stresses, and we will discuss these approaches and how they have been used to study lung epithelial cells in culture. Understanding how cells sense and respond to changes in mechanical stresses will contribute to our understanding of the role of lung epithelial cells during normal function and development and how their function may change in diseases such as acute lung injury, asthma, emphysema, and fibrosis. PMID:23728969

  12. In vitro differentiation of human tooth germ stem cells into endothelial- and epithelial-like cells.

    PubMed

    Doğan, Ayşegül; Demirci, Selami; Şahin, Fikrettin

    2015-01-01

    Current clinical techniques in dental practice include stem cell and tissue engineering applications. Dental stem cells are promising primary cell source for mainly tooth tissue engineering. Interaction of mesenchymal stem cell with epithelial and endothelial cells is strictly required for an intact tooth morphogenesis. Therefore, it is important to investigate whether human tooth germ stem cells (hTGSCs) derived from wisdom tooth are suitable for endothelial and epithelial cell transformation in dental tissue regeneration approaches. Differentiation into endothelial and epithelial cell lineages were mimicked under defined conditions, confirmed by real time PCR, western blotting and immunocytochemical analysis by qualitative and quantitative methods. HUVECs and HaCaT cells were used as positive controls for the endothelial and epithelial differentiation assays, respectively. Immunocytochemical and western blotting analysis revealed that terminally differentiated cells expressed cell-lineage markers including CD31, VEGFR2, VE-Cadherin, vWF (endothelial cell markers), and cytokeratin (CK)-17, CK-19, EpCaM, vimentin (epithelial cell markers) in significant levels with respect to undifferentiated control cells. Moreover, high expression levels of VEGFR1, VEGFR2, VEGF, CK-18, and CK-19 genes were detected in differentiated endothelial and epithelial-like cells. Endothelial-like cells derived from hTGSCs were cultured on Matrigel, tube-like structure formations were followed as an indication for functional endothelial differentiation. hTGSCs successfully differentiate into various cell types with a broad range of functional abilities using an in vitro approach. These findings suggest that hTGSCs may serve a potential stem cell source for tissue engineering and cell therapy of epithelial and endothelial tissue. © 2014 International Federation for Cell Biology.

  13. Cigarette smoke suppresses Bik to cause epithelial cell hyperplasia and mucous cell metaplasia.

    PubMed

    Mebratu, Yohannes A; Schwalm, Kurt; Smith, Kevin R; Schuyler, Mark; Tesfaigzi, Yohannes

    2011-06-01

    Aberrant regulation of airway epithelial cell numbers in airways leads to increased mucous secretions in chronic lung diseases such as chronic bronchitis. Because the Bcl-2 family of proteins is crucial for airway epithelial homeostasis, identifying the players that reduce cigarette smoke (CS)-induced mucous cell metaplasia can help to develop effective therapies. To identify the Bcl-2 family of proteins that play a role in reducing CS-induced mucous cell metaplasia. We screened for dysregulated expression of the Bcl-2 family members. We identified Bik to be significantly reduced in bronchial brushings of patients with chronic epithelial cell hyperplasia compared with nondiseased control subjects. Reduced Bik but increased MUC5AC mRNA levels were also detected when normal human airway epithelial cells (HAECs) were exposed to CS or when autopsy tissues from former smokers with and without chronic bronchitis were compared. Similarly, exposure of C57Bl/6 mice to CS resulted in increased numbers of epithelial and mucous cells per millimeter of basal lamina, along with reduced Bik but increased Muc5ac expression, and this change was sustained even when mice were allowed to recover in filtered air for 8 weeks. Restoring Bik expression significantly suppressed CS-induced mucous cell metaplasia in differentiated primary HAEC cultures and in airways of mice in vivo. Bik blocked nuclear translocation of phospho-ERK1/2 to induce apoptosis of HAECs. The conserved Leu61 within Bik and ERK1/2 activation were essential to induce cell death in hyperplastic mucous cells. These studies show that CS suppresses Bik expression to block airway epithelia cell death and thereby increases epithelial cell hyperplasia in chronic bronchitis.

  14. Pre-cancer risk assessment in habitual smokers from DIC images of oral exfoliative cells using active contour and SVM analysis.

    PubMed

    Dey, Susmita; Sarkar, Ripon; Chatterjee, Kabita; Datta, Pallab; Barui, Ananya; Maity, Santi P

    2017-04-01

    Habitual smokers are known to be at higher risk for developing oral cancer, which is increasing at an alarming rate globally. Conventionally, oral cancer is associated with high mortality rates, although recent reports show the improved survival outcomes by early diagnosis of disease. An effective prediction system which will enable to identify the probability of cancer development amongst the habitual smokers, is thus expected to benefit sizable number of populations. Present work describes a non-invasive, integrated method for early detection of cellular abnormalities based on analysis of different cyto-morphological features of exfoliative oral epithelial cells. Differential interference contrast (DIC) microscopy provides a potential optical tool as this mode provides a pseudo three dimensional (3-D) image with detailed morphological and textural features obtained from noninvasive, label free epithelial cells. For segmentation of DIC images, gradient vector flow snake model active contour process has been adopted. To evaluate cellular abnormalities amongst habitual smokers, the selected morphological and textural features of epithelial cells are compared with the non-smoker (-ve control group) group and clinically diagnosed pre-cancer patients (+ve control group) using support vector machine (SVM) classifier. Accuracy of the developed SVM based classification has been found to be 86% with 80% sensitivity and 89% specificity in classifying the features from the volunteers having smoking habit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Erlotinib in Treating Patients With Advanced Non-Small Cell Lung Cancer, Ovarian Cancer, or Squamous Cell Carcinoma of the Head and Neck

    ClinicalTrials.gov

    2013-01-08

    Recurrent Non-small Cell Lung Cancer; Recurrent Ovarian Epithelial Cancer; Recurrent Squamous Cell Carcinoma of the Hypopharynx; Recurrent Squamous Cell Carcinoma of the Larynx; Recurrent Squamous Cell Carcinoma of the Lip and Oral Cavity; Recurrent Squamous Cell Carcinoma of the Nasopharynx; Recurrent Squamous Cell Carcinoma of the Oropharynx; Stage III Squamous Cell Carcinoma of the Hypopharynx; Stage III Squamous Cell Carcinoma of the Larynx; Stage III Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage III Squamous Cell Carcinoma of the Nasopharynx; Stage III Squamous Cell Carcinoma of the Oropharynx; Stage IIIA Non-small Cell Lung Cancer; Stage IIIA Ovarian Epithelial Cancer; Stage IIIB Non-small Cell Lung Cancer; Stage IIIB Ovarian Epithelial Cancer; Stage IIIC Ovarian Epithelial Cancer; Stage IV Non-small Cell Lung Cancer; Stage IV Ovarian Epithelial Cancer; Stage IV Squamous Cell Carcinoma of the Hypopharynx; Stage IV Squamous Cell Carcinoma of the Nasopharynx; Stage IVA Squamous Cell Carcinoma of the Larynx; Stage IVA Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVA Squamous Cell Carcinoma of the Oropharynx; Stage IVB Squamous Cell Carcinoma of the Larynx; Stage IVB Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVB Squamous Cell Carcinoma of the Oropharynx; Stage IVC Squamous Cell Carcinoma of the Larynx; Stage IVC Squamous Cell Carcinoma of the Lip and Oral Cavity; Stage IVC Squamous Cell Carcinoma of the Oropharynx

  16. Distinct effects of EGFR inhibitors on epithelial- and mesenchymal-like esophageal squamous cell carcinoma cells.

    PubMed

    Yoshioka, Masahiro; Ohashi, Shinya; Ida, Tomomi; Nakai, Yukie; Kikuchi, Osamu; Amanuma, Yusuke; Matsubara, Junichi; Yamada, Atsushi; Miyamoto, Shin'ichi; Natsuizaka, Mitsuteru; Nakagawa, Hiroshi; Chiba, Tsutomu; Seno, Hiroshi; Muto, Manabu

    2017-08-01

    Epidermal growth factor receptor (EGFR) plays a pivotal role in the pathophysiology of esophageal squamous cell carcinoma (ESCC). However, the clinical effects of EGFR inhibitors on ESCC are controversial. This study sought to identify the factors determining the therapeutic efficacy of EGFR inhibitors in ESCC cells. Immortalized-human esophageal epithelial cells (EPC2-hTERT), transformed-human esophageal epithelial cells (T-Epi and T-Mes), and ESCC cells (TE-1, TE-5, TE-8, TE-11, TE-11R, and HCE4) were treated with the EGFR inhibitors erlotinib or cetuximab. Inhibitory effects on cell growth were assessed by cell counting or cell-cycle analysis. The expression levels of genes and proteins such as involucrin and cytokeratin13 (a squamous differentiation marker), E-cadherin, and vimentin were evaluated by real-time polymerase chain reaction or western blotting. To examine whether mesenchymal phenotype influenced the effects of EGFR inhibitors, we treated T-Epi cells with TGF-β1 to establish a mesenchymal phenotype (mesenchymal T-Epi cells). We then compared the effects of EGFR inhibitors on parental T-Epi cells and mesenchymal T-Epi cells. TE-8 (mesenchymal-like ESCC cells)- or TE-11R (epithelial-like ESCC cells)-derived xenograft tumors in mice were treated with cetuximab, and the antitumor effects of EGFR inhibitors were evaluated. Cells were classified as epithelial-like or mesenchymal-like phenotypes, determined by the expression levels of E-cadherin and vimentin. Both erlotinib and cetuximab reduced cell growth and the ratio of cells in cell-cycle S phase in epithelial-like but not mesenchymal-like cells. Additionally, EGFR inhibitors induced squamous cell differentiation (defined as increased expression of involucrin and cytokeratin13) in epithelial-like but not mesenchymal-like cells. We found that EGFR inhibitors did not suppress the phosphorylation of EGFR in mesenchymal-like cells, while EGFR dephosphorylation was observed after treatment with EGFR

  17. Cancer-associated fibroblasts regulate keratinocyte cell-cell adhesion via TGF-β-dependent pathways in genotype-specific oral cancer.

    PubMed

    Cirillo, N; Hassona, Y; Celentano, A; Lim, K P; Manchella, S; Parkinson, E K; Prime, S S

    2017-01-01

    The interrelationship between malignant epithelium and the underlying stroma is of fundamental importance in tumour development and progression. In the present study, we used cancer-associated fibroblasts (CAFs) derived from genetically unstable oral squamous cell carcinomas (GU-OSCC), tumours that are characterized by the loss of genes such as TP53 and p16 INK4A and with extensive loss of heterozygosity, together with CAFs from their more genetically stable (GS) counterparts that have wild-type TP53 and p16 INK4A and minimal loss of heterozygosity (GS-OSCC). Using a systems biology approach to interpret the genome-wide transcriptional profile of the CAFs, we show that transforming growth factor-β (TGF-β) family members not only had biological relevance in silico but also distinguished GU-OSCC-derived CAFs from GS-OSCC CAFs and fibroblasts from normal oral mucosa. In view of the close association between TGF-β family members, we examined the expression of TGF-β1 and TGF-β2 in the different fibroblast subtypes and showed increased levels of active TGF-β1 and TGF-β2 in CAFs from GU-OSCC. CAFs from GU-OSCC, but not GS-OSCC or normal fibroblasts, induced epithelial-mesenchymal transition and down-regulated a broad spectrum of cell adhesion molecules resulting in epithelial dis-cohesion and invasion of target keratinocytes in vitro in a TGF-β-dependent manner. The results demonstrate that the TGF-β family of cytokines secreted by CAFs derived from genotype-specific oral cancer (GU-OSCC) promote, at least in part, the malignant phenotype by weakening intercellular epithelial adhesion. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Evaluating the use of optical coherence tomography for the detection of epithelial cancers in vitro

    NASA Astrophysics Data System (ADS)

    Smith, Louise E.; Hearnden, Vanessa; Lu, Zenghai; Smallwood, Rod; Hunter, Keith D.; Matcher, Stephen J.; Thornhill, Martin H.; Murdoch, Craig; MacNeil, Sheila

    2011-11-01

    Optical coherence tomography (OCT) is a noninvasive imaging methodology that is able to image tissue to depths of over 1 mm. Many epithelial conditions, such as melanoma and oral cancers, require an invasive biopsy for diagnosis. A noninvasive, real-time, point of care method of imaging depth-resolved epithelial structure could greatly improve early diagnosis and long-term monitoring in patients. Here, we have used tissue-engineered (TE) models of normal skin and oral mucosa to generate models of melanoma and oral cancer. We have used these to determine the ability of OCT to image epithelial differences in vitro. We report that while in vivo OCT gives reasonable depth information for both skin and oral mucosa, in vitro the information provided is less detailed but still useful. OCT can provide reassurance on the development of TE models of skin and oral mucosa as they develop in vitro. OCT was able to detect the gross alteration in the epithelium of skin and mucosal models generated with malignant cell lines but was less able to detect alteration in the epithelium of TE models that mimicked oral dysplasia or, in models where tumor cells had penetrated into the dermis.

  19. Separation and identification of selenotrisulfides in epithelial cell homogenates by LC-ICP-MS and LC-ESI-MS after incubation with selenite.

    PubMed

    Gabel-Jensen, Charlotte; Gammelgaard, Bente; Bendahl, Lars; Stürup, Stefan; Jøns, Ole

    2006-02-01

    To elucidate how selenite is metabolised in the intestine after oral intake, it was incubated with homogenized epithelial cells from pigs. When the metabolites were analysed by LC-ICP-MS, two major selenium metabolites were separated in the supernatant from the homogenate. These metabolites were formed instantly but disappeared within 15 min. No other selenium-containing compounds appeared during this time. Hence, the secondary reaction products were either volatilised or precipitated. To verify the identity of the compounds, a larger amount of selenite was incubated with epithelial cells. The presence of Cys-Se-SG and GS-Se-SG was verified by LC-ESI-MS. Selenotrisulfides were synthesized by reaction of L-cysteine and L-glutathione with sodium selenite. The reaction mixture contained three main products: selenodicysteine (Cys-Se-Cys), selenocysteine glutathione (Cys-Se-SG), and selenodiglutathione (GS-Se-SG). The two transient selenium compounds in the epithelial cell incubation mixture co-eluted with the synthesized Cys-Se-SG and GS-Se-SG, respectively. The identities of these compounds were verified by LC-ESI-MS. Hence, these selenium metabolites have now been identified by ESI-MS after isolation from epithelial cells.

  20. Effect of doxycycline on epithelial-mesenchymal transition via the p38/Smad pathway in respiratory epithelial cells.

    PubMed

    Shin, Jae-Min; Kang, Ju-Hyung; Lee, Seoung-Ae; Park, Il-Ho; Lee, Heung-Man

    2017-03-01

    Doxycycline has antibacterial and anti-inflammatory effects, and it also suppresses collagen biosynthesis. This study aimed to confirm the effects and mechanism of doxycycline on transforming growth factor (TGF) beta 1 induced epithelial-mesenchymal transition and cell migration in A549 and primary nasal epithelial cells. A 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide assay and phalloidin-fluorescein isothiocyanate staining were used to evaluate cytotoxicity and cellular morphologic changes. Western blot and immunofluorescence staining were used to determine the expression levels of E-cadherin, vimentin, alpha-smooth muscle actin, fibronectin, phosphorylated Smad2/3, and mitogen-activated protein kinases. Scratch and transwell migration assays were used to assess cellular migration ability. Doxycycline (0-10 μg/mL) had no significant cytotoxic effects in A549 and primary nasal epithelial cells. Increased expression of mesenchymal markers, including vimentin, alpha-smooth muscle actin, and fibronectin in TGF beta 1 induced A549 cells were downregulated by doxycycline treatment. In contrast, E-cadherin expression was upregulated in TGF beta 1 induced A549 cells. An in vitro cell migration assay showed that doxycycline also inhibited the ability of TGF beta 1 induced migration. Doxycycline treatment suppressed the activation of Smad2/3 and p38, whereas its inhibitory effects were similar to each element-specific inhibitor in A549 and primary nasal epithelial cells. Doxycycline inhibited TGF beta 1 induced epithelial-to-mesenchymal transition and migration by targeting Smad2/3 and p38 signal pathways in respiratory epithelial cells.

  1. Comparison of para-aminophenol cytotoxicity in rat renal epithelial cells and hepatocytes.

    PubMed

    Li, Ying; Bentzley, Catherine M; Tarloff, Joan B

    2005-04-01

    Several chemicals, including para-aminophenol (PAP), produce kidney damage in the absence of hepatic damage. Selective nephrotoxicity may be related to the ability of the kidney to reabsorb filtered water, thereby raising the intraluminal concentration of toxicants and exposing tubular epithelial cells to higher concentrations than would be present in other tissues. The present experiments tested the hypothesis that hepatocytes and renal epithelial cells exposed to equivalent concentrations of PAP would be equally susceptible to toxicity. Hepatocytes and renal epithelial cells were prepared by collagenase digestion of tissues obtained from female Sprague-Dawley rats. Toxicity was monitored using trypan blue exclusion, oxygen consumption and ATP content. We measured the rate of PAP clearance and formation of PAP-glutathione conjugate by HPLC. We found that renal epithelial cells accumulated trypan blue and showed declines in oxygen consumption and ATP content at significantly lower concentrations of PAP and at earlier time points than hepatocytes. The half-life of PAP in hepatocyte incubations was significantly shorter (0.71+/-0.07 h) than in renal epithelial cell incubations (1.33+/-0.23 h), suggesting that renal epithelial cells were exposed to PAP for longer time periods than hepatocytes. Renal epithelial cells formed significantly less glutathione conjugates of PAP (PAP-SG) than did hepatocytes, consistent with less efficient detoxification of reactive PAP intermediates by renal epithelial cells. Finally, hepatocytes contained significant more reduced glutathione (NPSH) than did renal epithelial cells, possibly explaining the enhanced formation of PAP-SG by this cell population. In conclusion, our data indicates that renal epithelial cells are intrinsically more susceptible to PAP cytotoxicity than are hepatocytes. This enhanced cytotoxicity may be due to longer exposure to PAP and/or reduced detoxification of reactive intermediates due to lower concentrations

  2. Does human endometrial LGR5 gene expression suggest the existence of another hormonally regulated epithelial stem cell niche?

    PubMed

    Tempest, N; Baker, A M; Wright, N A; Hapangama, D K

    2018-06-01

    Is human endometrial leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) gene expression limited to the postulated epithelial stem cell niche, stratum basalis glands, and is it hormonally regulated? LGR5 expressing cells are not limited to the postulated stem cell niche but LGR5 expression is hormonally regulated. The human endometrium is a highly regenerative tissue; however, endometrial epithelial stem cell markers are yet to be confirmed. LGR5 is a marker of stem cells in various epithelia. The study was conducted at a University Research Institute. Endometrial samples from 50 healthy women undergoing benign gynaecological surgery with no endometrial pathology at the Liverpool Women's hospital were included and analysed in the following six sub-categories; proliferative, secretory phases of menstrual cycle, postmenopausal, those using oral and local progestagens and samples for in vitro explant culture. In this study, we used the gold standard method, in situ hybridisation (ISH) along with qPCR and a systems biology approach to study the location of LGR5 gene expression in full thickness human endometrium and Fallopian tubes. The progesterone regulation of endometrial LGR5 was examined in vivo and in short-term cultured endometrial tissue explants in vitro. LGR5 expression was correlated with epithelial proliferation (Ki67), and expression of previously reported epithelia progenitor markers (SOX9 and SSEA-1) immunohistochemistry (IHC). LGR5 gene expression was significantly higher in the endometrial luminal epithelium than in all other epithelial compartments in the healthy human endometrium, including the endometrial stratum basalis (P < 0.05). The strongest SSEA-1 and SOX9 staining was observed in the stratum basalis glands, but the general trend of SOX9 and SSEA-1 expression followed the same cyclical pattern of expression as LGR5. Stratum functionalis epithelial Ki67-LI and LGR5 expression levels correlated significantly (r = 0.74, P = 0

  3. Isolation, separation, and characterization of epithelial and connective cells from rat palate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terranova, Victor Paul

    1979-01-01

    Epithelial and connective tissue cells were isolated from rat palate by sequential collagenase, hyaluronidase and trypsin digestion of the extracellular matrix. Differences between the two populations were noted with respect to total cell protein, total cell water, proline uptake and incorporation, percent collagen synthesized, effects of parathyroid hormone, metabolism of D-valine and cell density. Basal epithelial cells were subsequently separated from the heterogeneous epithelial cell population on shallow linear density gradients by velocity centrifugation. The type of collagen synthesized by the basal epithelial cells was compared to the type of collagen synthesized by the connective tissue cells by means ofmore » labeled amino acid incorporation ratios. Cells isolated from the epithelial and connective tissue were compared. From these studies it can be concluded that epithelial and connective tissue cells can be isolated from rat palate as viable and distinct populations with respect to the biochemical parameters examined. Furthermore, subpopulations can be separated and biochemically characterized.« less

  4. Rho GTPases and Regulation of Cell Migration and Polarization in Human Corneal Epithelial Cells

    PubMed Central

    Hou, Aihua; Toh, Li Xian; Gan, Kah Hui; Lee, Khee Jin Ryan; Manser, Edward; Tong, Louis

    2013-01-01

    Purpose Epithelial cell migration is required for regeneration of tissues and can be defective in a number of ocular surface diseases. This study aimed to determine the expression pattern of Rho family small G-proteins in human corneal epithelial cells to test their requirement in directional cell migration. Methods Rho family small G-protein expression was assessed by reverse transcription-polymerase chain reaction. Dominant-inhibitory constructs encoding Rho proteins or Rho protein targeting small interfering RNA were transfected into human corneal epithelial large T antigen cells, and wound closure rate were evaluated by scratch wounding assay, and a complementary non-traumatic cell migration assay. Immunofluorescence staining was performed to study cell polarization and to assess Cdc42 downstream effector. Results Cdc42, Chp, Rac1, RhoA, TC10 and TCL were expressed in human corneal epithelial cells. Among them, Cdc42 and TCL were found to significantly affect cell migration in monolayer scratch assays. These results were confirmed through the use of validated siRNAs directed to Cdc42 and TCL. Scramble siRNA transfected cells had high percentage of polarized cells than Cdc42 or TCL siRNA transfected cells at the wound edge. We showed that the Cdc42-specific effector p21-activated kinase 4 localized predominantly to cell-cell junctions in cell monolayers, but failed to translocate to the leading edge in Cdc42 siRNA transfected cells after monolayer wounding. Conclusion Rho proteins expressed in cultured human corneal epithelial cells, and Cdc42, TCL facilitate two-dimensional cell migration in-vitro. Although silencing of Cdc42 and TCL did not noticeably affect the appearance of cell adhesions at the leading edge, the slower migration of these cells indicates both GTP-binding proteins play important roles in promoting cell movement of human corneal epithelial cells. PMID:24130842

  5. Epithelial rotation is preceded by planar symmetry breaking of actomyosin and protects epithelial tissue from cell deformations.

    PubMed

    Viktorinová, Ivana; Henry, Ian; Tomancak, Pavel

    2017-11-01

    Symmetry breaking is involved in many developmental processes that form bodies and organs. One of them is the epithelial rotation of developing tubular and acinar organs. However, how epithelial cells move, how they break symmetry to define their common direction, and what function rotational epithelial motions have remains elusive. Here, we identify a dynamic actomyosin network that breaks symmetry at the basal surface of the Drosophila follicle epithelium of acinar-like primitive organs, called egg chambers, and may represent a candidate force-generation mechanism that underlies the unidirectional motion of this epithelial tissue. We provide evidence that the atypical cadherin Fat2, a key planar cell polarity regulator in Drosophila oogenesis, directs and orchestrates transmission of the intracellular actomyosin asymmetry cue onto a tissue plane in order to break planar actomyosin symmetry, facilitate epithelial rotation in the opposite direction, and direct the elongation of follicle cells. In contrast, loss of this rotational motion results in anisotropic non-muscle Myosin II pulses that are disorganized in plane and causes cell deformations in the epithelial tissue of Drosophila eggs. Our work demonstrates that atypical cadherins play an important role in the control of symmetry breaking of cellular mechanics in order to facilitate tissue motion and model epithelial tissue. We propose that their functions may be evolutionarily conserved in tubular/acinar vertebrate organs.

  6. Epithelial rotation is preceded by planar symmetry breaking of actomyosin and protects epithelial tissue from cell deformations

    PubMed Central

    Henry, Ian; Tomancak, Pavel

    2017-01-01

    Symmetry breaking is involved in many developmental processes that form bodies and organs. One of them is the epithelial rotation of developing tubular and acinar organs. However, how epithelial cells move, how they break symmetry to define their common direction, and what function rotational epithelial motions have remains elusive. Here, we identify a dynamic actomyosin network that breaks symmetry at the basal surface of the Drosophila follicle epithelium of acinar-like primitive organs, called egg chambers, and may represent a candidate force-generation mechanism that underlies the unidirectional motion of this epithelial tissue. We provide evidence that the atypical cadherin Fat2, a key planar cell polarity regulator in Drosophila oogenesis, directs and orchestrates transmission of the intracellular actomyosin asymmetry cue onto a tissue plane in order to break planar actomyosin symmetry, facilitate epithelial rotation in the opposite direction, and direct the elongation of follicle cells. In contrast, loss of this rotational motion results in anisotropic non-muscle Myosin II pulses that are disorganized in plane and causes cell deformations in the epithelial tissue of Drosophila eggs. Our work demonstrates that atypical cadherins play an important role in the control of symmetry breaking of cellular mechanics in order to facilitate tissue motion and model epithelial tissue. We propose that their functions may be evolutionarily conserved in tubular/acinar vertebrate organs. PMID:29176774

  7. Probiotics promote endocytic allergen degradation in gut epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Chun-Hua; Liu, Zhi-Qiang; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON

    Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barriermore » function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.« less

  8. Adhesion to the host cell surface is sufficient to mediate Listeria monocytogenes entry into epithelial cells

    PubMed Central

    Ortega, Fabian E.; Rengarajan, Michelle; Chavez, Natalie; Radhakrishnan, Prathima; Gloerich, Martijn; Bianchini, Julie; Siemers, Kathleen; Luckett, William S.; Lauer, Peter; Nelson, W. James; Theriot, Julie A.

    2017-01-01

    The intestinal epithelium is the first physiological barrier breached by the Gram-positive facultative pathogen Listeria monocytogenes during an in vivo infection. Listeria monocytogenes binds to the epithelial host cell receptor E-cadherin, which mediates a physical link between the bacterium and filamentous actin (F-actin). However, the importance of anchoring the bacterium to F-actin through E-cadherin for bacterial invasion has not been tested directly in epithelial cells. Here we demonstrate that depleting αE-catenin, which indirectly links E-cadherin to F-actin, did not decrease L. monocytogenes invasion of epithelial cells in tissue culture. Instead, invasion increased due to increased bacterial adhesion to epithelial monolayers with compromised cell–cell junctions. Furthermore, expression of a mutant E-cadherin lacking the intracellular domain was sufficient for efficient L. monocytogenes invasion of epithelial cells. Importantly, direct biotin-mediated binding of bacteria to surface lipids in the plasma membrane of host epithelial cells was sufficient for uptake. Our results indicate that the only requirement for L. monocytogenes invasion of epithelial cells is adhesion to the host cell surface, and that E-cadherin–mediated coupling of the bacterium to F-actin is not required. PMID:28877987

  9. Cigarette Smoke Suppresses Bik To Cause Epithelial Cell Hyperplasia and Mucous Cell Metaplasia

    PubMed Central

    Mebratu, Yohannes A.; Schwalm, Kurt; Smith, Kevin R.; Schuyler, Mark; Tesfaigzi, Yohannes

    2011-01-01

    Rationale: Aberrant regulation of airway epithelial cell numbers in airways leads to increased mucous secretions in chronic lung diseases such as chronic bronchitis. Because the Bcl-2 family of proteins is crucial for airway epithelial homeostasis, identifying the players that reduce cigarette smoke (CS)-induced mucous cell metaplasia can help to develop effective therapies. Objectives: To identify the Bcl-2 family of proteins that play a role in reducing CS-induced mucous cell metaplasia. Methods: We screened for dysregulated expression of the Bcl-2 family members. Measurements and Main Results: We identified Bik to be significantly reduced in bronchial brushings of patients with chronic epithelial cell hyperplasia compared with nondiseased control subjects. Reduced Bik but increased MUC5AC mRNA levels were also detected when normal human airway epithelial cells (HAECs) were exposed to CS or when autopsy tissues from former smokers with and without chronic bronchitis were compared. Similarly, exposure of C57Bl/6 mice to CS resulted in increased numbers of epithelial and mucous cells per millimeter of basal lamina, along with reduced Bik but increased Muc5ac expression, and this change was sustained even when mice were allowed to recover in filtered air for 8 weeks. Restoring Bik expression significantly suppressed CS-induced mucous cell metaplasia in differentiated primary HAEC cultures and in airways of mice in vivo. Bik blocked nuclear translocation of phospho-ERK1/2 to induce apoptosis of HAECs. The conserved Leu61 within Bik and ERK1/2 activation were essential to induce cell death in hyperplastic mucous cells. Conclusions: These studies show that CS suppresses Bik expression to block airway epithelia cell death and thereby increases epithelial cell hyperplasia in chronic bronchitis. PMID:21317312

  10. Histamine H4 receptor in oral lichen planus.

    PubMed

    Salem, A; Al-Samadi, A; Stegajev, V; Stark, H; Häyrinen-Immonen, R; Ainola, M; Hietanen, J; Konttinen, Y T

    2015-04-01

    Oral lichen planus (OLP) is an autoimmune disease characterized by a band-like T-cell infiltrate below the apoptotic epithelial cells and degenerated basement membrane. We tested the hypothesis that the high-affinity histamine H4 receptors (H4 Rs) are downregulated in OLP by high histamine concentrations and proinflammatory T-cell cytokines. Immunohistochemistry and immunofluorescence staining, image analysis and quantitative real-time polymerase chain reaction of tissue samples and cytokine-stimulated cultured SCC-25 and primary human oral keratinocytes. H4 R immunoreactivity was weak in OLP and characterized by mast cell (MC) hyperplasia and degranulation. In contrast to controls, H4 R immunostaining and MC counts were negatively correlated in OLP (P = 0.003). H4 R agonist at nanomolar levels led to a rapid internalization of H4 Rs, whereas high histamine concentration and interferon-γ decreased HRH4 -gene transcripts. Healthy oral epithelial cells are equipped with H4 R, which displays a uniform staining pattern in a MC-independent fashion. In contrast, in OLP, increased numbers of activated MCs associate with increasing loss of epithelial H4 R. Cell culture experiments suggest a rapid H4 R stimulation-dependent receptor internalization and a slow cytokine-driven decrease in H4 R synthesis. H4 R may be involved in the maintenance of healthy oral mucosa. In OLP, this maintenance might be impaired by MC degranulation and inflammatory cytokines. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Human airway epithelial cells investigated by atomic force microscopy: A hint to cystic fibrosis epithelial pathology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasalvia, Maria; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari; Castellani, Stefano

    The pathophysiology of cystic fibrosis (CF) airway disease stems from mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, leading to a chronic respiratory disease. Actin cytoskeleton is disorganized in CF airway epithelial cells, likely contributing to the CF-associated basic defects, i.e. defective chloride secretion and sodium/fluid hypersorption. In this work, we aimed to find whether this alteration could be pointed out by means of Atomic Force Microscopy (AFM) investigation, as roughness and Young's elastic module. Moreover, we also sought to determine whether disorganization of actin cytoskeleton is linked to hypersoption of apical fluid. Not only CFBE41o- (CFBE) cells, immortalizedmore » airway epithelial cells homozygous for the F508del CFTR allele, showed a different morphology in comparison with 16HBE14o- (16HBE) epithelial cells, wild-type for CFTR, but also they displayed a lack of stress fibers, suggestive of a disorganized actin cytoskeleton. AFM measurements showed that CFBE cells presented a higher membrane roughness and decreased rigidity as compared with 16HBE cells. CFBE overexpressing wtCFTR became more elongated than the parental CFBE cell line and presented actin stress fibers. CFBE cells absorbed more fluid from the apical compartment. Study of fluid absorption with the F-actin-depolymerizing agent Latrunculin B demonstrated that actin cytoskeletal disorganization increased fluid absorption, an effect observed at higher magnitude in 16HBE than in CFBE cells. For the first time, we demonstrate that actin cytoskeleton disorganization is reflected by AFM parameters in CF airway epithelial cells. Our data also strongly suggest that the lack of stress fibers is involved in at least one of the early step in CF pathophysiology at the levels of the airways, i.e. fluid hypersorption. - Highlights: • CF bronchial epithelial (CFBE) cells show a disorganized actin cytoskeleton. • CFBE cells present high roughness and low rigidity

  12. Multifocal Epithelial Hyperplasia of Oral Cavity Expressing HPV 16 Gene: A Rare Entity

    PubMed Central

    Prabhat, M. P. V.; Raja Lakshmi, Chintamaneni; Sai Madhavi, N.; Bhavana, Sujana Mulk; Sarat, Gummadapu; Ramamohan, Kodali

    2013-01-01

    Focal epithelial hyperplasia is a rare contagious disease caused by human papilloma virus. Usually HPV involves either cutaneous or mucosal surfaces, whereas concomitant mucocutaneous involvement is extremely rare. We report such a unique case of multifocal epithelial hyperplasia involving multiple sites of oral cavity along with skin lesions in a 65-year-old female. We also discuss the probable multifactorial etiology and variable clinical presentations of the lesions, including evidence of HPV 16 expression, as detected by polymerase chain reaction. The present report illustrates the need for careful examination and prompt diagnosis of the disease, as it might be associated with high risk genotypes such as HPV 16 and 18. PMID:24455323

  13. Endothelial induced EMT in breast epithelial cells with stem cell properties.

    PubMed

    Sigurdsson, Valgardur; Hilmarsdottir, Bylgja; Sigmundsdottir, Hekla; Fridriksdottir, Agla J R; Ringnér, Markus; Villadsen, Rene; Borg, Ake; Agnarsson, Bjarni A; Petersen, Ole William; Magnusson, Magnus K; Gudjonsson, Thorarinn

    2011-01-01

    Epithelial to mesenchymal transition (EMT) is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M) derived from D492, show reduced expression of keratins, a switch from E-Cadherin (E-Cad) to N-Cadherin (N-Cad) and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44(high)/CD24(low) ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D492 was partially blocked by inhibition of HGF signaling. Basal-like breast cancer, a vascular rich cancer with stem cell properties and adverse prognosis has been linked with EMT. We immunostained several basal-like breast cancer samples for endothelial and EMT markers. Cancer cells close to the vascular rich areas show no or decreased expression of E-Cad and increased N-Cad expression suggesting EMT. Collectively, we have shown in a 3D culture model that endothelial cells are potent inducers of EMT in breast epithelial cells with stem cell properties. Furthermore, we demonstrate that basal-like breast cancer contains cells with an EMT phenotype, most prominently close to vascular rich areas of these tumors. We conclude that endothelial cells are potent inducers of EMT and may play a role in progression of basal-like breast cancer.

  14. Endothelial Induced EMT in Breast Epithelial Cells with Stem Cell Properties

    PubMed Central

    Sigurdsson, Valgardur; Hilmarsdottir, Bylgja; Sigmundsdottir, Hekla; Fridriksdottir, Agla J. R.; Ringnér, Markus; Villadsen, Rene; Borg, Ake; Agnarsson, Bjarni A.; Petersen, Ole William; Magnusson, Magnus K.; Gudjonsson, Thorarinn

    2011-01-01

    Epithelial to mesenchymal transition (EMT) is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M) derived from D492, show reduced expression of keratins, a switch from E-Cadherin (E-Cad) to N-Cadherin (N-Cad) and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44high/CD24low ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D492 was partially blocked by inhibition of HGF signaling. Basal-like breast cancer, a vascular rich cancer with stem cell properties and adverse prognosis has been linked with EMT. We immunostained several basal-like breast cancer samples for endothelial and EMT markers. Cancer cells close to the vascular rich areas show no or decreased expression of E-Cad and increased N-Cad expression suggesting EMT. Collectively, we have shown in a 3D culture model that endothelial cells are potent inducers of EMT in breast epithelial cells with stem cell properties. Furthermore, we demonstrate that basal-like breast cancer contains cells with an EMT phenotype, most prominently close to vascular rich areas of these tumors. We conclude that endothelial cells are potent inducers of EMT and may play a role in progression of basal-like breast cancer. PMID:21915264

  15. ARP2, a novel pro-apoptotic protein expressed in epithelial prostate cancer LNCaP cells and epithelial ovary CHO transformed cells.

    PubMed

    Mas-Oliva, Jaime; Navarro-Vidal, Enrique; Tapia-Vieyra, Juana Virginia

    2014-01-01

    Neoplastic epithelial cells generate the most aggressive types of cancers such as those located in the lung, breast, colon, prostate and ovary. During advanced stages of prostate cancer, epithelial cells are associated to the appearance of androgen-independent tumors, an apoptotic-resistant phenotype that ultimately overgrows and promotes metastatic events. We have previously identified and electrophysiologically characterized a novel Ca(2+)-permeable channel activated during apoptosis in the androgen-independent prostate epithelial cancer cell line, LNCaP. In addition, we reported for the first time the cloning and characterization of this channel-like molecule named apoptosis regulated protein 2 (ARP2) associated to a lethal influx of Ca(2+) in Xenopus oocytes. In the present study, LNCaP cells and Chinese hamster ovary cells (CHO cell line) transfected with arp2-cDNA are induced to undergo apoptosis showing an important impact on cell viability and activation of caspases 3 and 7 when compared to serum deprived grown cells and ionomycin treated cells. The subcellular localization of ARP2 in CHO cells undergoing apoptosis was studied using confocal microscopy. While apoptosis progresses, ARP2 initially localized in the peri-nuclear region of cells migrates with time towards the plasma membrane region. Based on the present results and those of our previous studies, the fact that ARP2 constitutes a novel cation channel is supported. Therefore, ARP2 becomes a valuable target to modulate the influx and concentration of calcium in the cytoplasm of epithelial cancer cells showing an apoptotic-resistant phenotype during the onset of an apoptotic event.

  16. Coreceptors and Their Ligands in Epithelial γδ T Cell Biology

    PubMed Central

    Witherden, Deborah A.; Johnson, Margarete D.; Havran, Wendy L.

    2018-01-01

    Epithelial tissues line the body providing a protective barrier from the external environment. Maintenance of these epithelial barrier tissues critically relies on the presence of a functional resident T cell population. In some tissues, the resident T cell population is exclusively comprised of γδ T cells, while in others γδ T cells are found together with αβ T cells and other lymphocyte populations. Epithelial-resident γδ T cells function not only in the maintenance of the epithelium, but are also central to the repair process following damage from environmental and pathogenic insults. Key to their function is the crosstalk between γδ T cells and neighboring epithelial cells. This crosstalk relies on multiple receptor–ligand interactions through both the T cell receptor and accessory molecules leading to temporal and spatial regulation of cytokine, chemokine, growth factor, and extracellular matrix protein production. As antigens that activate epithelial γδ T cells are largely unknown and many classical costimulatory molecules and coreceptors are not used by these cells, efforts have focused on identification of novel coreceptors and ligands that mediate pivotal interactions between γδ T cells and their neighbors. In this review, we discuss recent advances in the understanding of functions for these coreceptors and their ligands in epithelial maintenance and repair processes. PMID:29686687

  17. Copper supplementation amplifies the anti-tumor effect of curcumin in oral cancer cells.

    PubMed

    Lee, Hui-Mei; Patel, Vyomesh; Shyur, Lie-Fen; Lee, Wai-Leng

    2016-11-15

    Oral cancer is the sixth most common cancer worldwide and 90% of oral malignancies are caused by oral squamous cell carcinoma (OSCC). Curcumin, a phytocompound derived from turmeric (Curcuma longa) was observed to have anti-cancer activity which can be developed as an alternative treatment option for OSCC. However, OSCC cells with various clinical-pathological features respond differentially to curcumin treatment. Intracellular copper levels have been reported to correlate with tumor pathogenesis and affect the sensitivity of cancer cells to cytotoxic chemotherapy. We hypothesized that intracellular copper levels may affect the sensitivity of oral cancer cells to curcumin. We analysed the correlation between intracellular copper levels and response to curcumin treatment in a panel of OSCC cell lines derived from oral cancer patients. Exogenous copper was supplemented in curcumin insensitive cell lines to observe the effect of copper on curcumin-mediated inhibition of cell viability and migration, as well as induction of oxidative stress and apoptosis. Protein markers of cell migration and oxidative stress were also analysed using Western blotting. Concentrations of curcumin which inhibited 50% OSCC cell viability (IC 50 ) was reduced up to 5 times in the presence of 250 µM copper. Increased copper level in curcumin-treated OSCC cells was accompanied by the induction of intracellular ROS and increased level of Nrf2 which regulates oxidative stress responses in cells. Supplemental copper also inhibited migration of curcumin-treated cells with enhanced level of E-cadherin and decreased vimentin, indications of suppressed epithelial-mesenchymal transition. Early apoptosis was observed in combined treatment but not in treatment with curcumin or copper alone. Supplement of copper significantly enhanced the inhibitory effect of curcumin treatment on migration and viability of oral cancer cells. Together, these findings provide molecular insight into the role of copper in

  18. Establishment and characterization of Asian oral cancer cell lines as in vitro models to study a disease prevalent in Asia.

    PubMed

    Hamid, Sharifah; Lim, Kue Peng; Zain, Rosnah Binti; Ismail, Siti Mazlipah; Lau, Shin Hin; Mustafa, Wan Mahadzir Wan; Abraham, M Thomas; Nam, Noor Akmar; Teo, Soo-Hwang; Cheong, Sok Ching

    2007-03-01

    We have established 3 cell lines ORL-48, -115 and -136 from surgically resected specimens obtained from untreated primary human oral squamous cell carcinomas of the oral cavity. The in vitro growth characteristics, epithelial origin, in vitro anchorage independency, human papilloma-virus (HPV) infection, microsatellite instability status, karyotype and the status of various cell cycle regulators and gatekeepers of these cell lines were investigated. All 3 cell lines grew as monolayers with doubling times ranging between 26.4 and 40.8 h and were immortal. Karyotyping confirmed that these cell lines were of human origin with multiple random losses and gains of entire chromosomes and regions of chromosomes. Immunohistochemistry staining of cytokeratins confirmed the epithelial origin of these cell lines, and the low degree of anchorage independency expressed by these cell lines suggests non-transformed phenotypes. Genetic analysis identified mutations in the p53 gene in all cell lines and hypermethylation of p16INK4a in ORL-48 and -136. Analysis of MDM2 and EGFR expression indicated MDM2 overexpression in ORL-48 and EGFR overexpression in ORL-136 in comparison to the protein levels in normal oral keratinocytes. Analysis of the BAT-26 polyadenine repeat sequence and MLH-1 and MSH-2 repair enzymes demonstrated that all 3 cell lines were microsatellite stable. The role of HPV in driving carcinogenesis in these tumours was negated by the absence of HPV. Finally, analysis of the tissues from which these cell lines were derived indicated that the cell lines were genetically representative of the tumours, and, therefore, are useful tools in the understanding of the molecular changes associated with oral cancers.

  19. Characterization of primary cultures of adult human epididymis epithelial cells.

    PubMed

    Leir, Shih-Hsing; Browne, James A; Eggener, Scott E; Harris, Ann

    2015-03-01

    To establish cultures of epithelial cells from all regions of the human epididymis to provide reagents for molecular approaches to functional studies of this epithelium. Experimental laboratory study. University research institute. Epididymis from seven patients undergoing orchiectomy for suspected testicular cancer without epididymal involvement. Human epididymis epithelial cells harvested from adult epididymis tissue. Establishment of a robust culture protocol for adult human epididymal epithelial cells. Cultures of caput, corpus, and cauda epithelial cells were established from epididymis tissue of seven donors. Cells were passaged up to eight times and maintained differentiation markers. They were also cryopreserved and recovered successfully. Androgen receptor, clusterin, and cysteine-rich secretory protein 1 were expressed in cultured cells, as shown by means of immunofluorescence, Western blot, and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). The distribution of other epididymis markers was also shown by means of qRT-PCR. Cultures developed transepithelial resistance (TER), which was androgen responsive in the caput but androgen insensitive in the corpus and cauda, where unstimulated TER values were much higher. The results demonstrate a robust in vitro culture system for differentiated epithelial cell types in the caput, corpus, and cauda of the human epididymis. These cells will be a valuable resource for molecular analysis of epididymis epithelial function, which has a pivotal role in male fertility. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. Stromal–epithelial cell interactions and alteration of branching morphogenesis in macromastic mammary glands

    PubMed Central

    Zhong, Aimei; Wang, Guohua; Yang, Jie; Xu, Qijun; Yuan, Quan; Yang, Yanqing; Xia, Yun; Guo, Ke; Horch, Raymund E; Sun, Jiaming

    2014-01-01

    True macromastia is a rare but disabling condition characterized by massive breast growth. The aetiology and pathogenic mechanisms for this disorder remain largely unexplored because of the lack of in vivo or in vitro models. Previous studies suggested that regulation of epithelial cell growth and development by oestrogen was dependent on paracrine growth factors from the stroma. In this study, a co-culture model containing epithelial and stromal cells was used to investigate the interactions of these cells in macromastia. Epithelial cell proliferation and branching morphogenesis were measured to assess the effect of macromastic stromal cells on epithelial cells. We analysed the cytokines secreted by stromal cells and identified molecules that were critical for effects on epithelial cells. Our results indicated a significant increase in cell proliferation and branching morphogenesis of macromastic and non-macromastic epithelial cells when co-cultured with macromastic stromal cells or in conditioned medium from macromastic stromal cells. Hepatocyte growth factor (HGF) is a key factor in epithelial–stromal interactions of macromastia-derived cell cultures. Blockade of HGF with neutralizing antibodies dramatically attenuated epithelial cell proliferation in conditioned medium from macromastic stromal cells. The epithelial–stromal cell co-culture model demonstrated reliability for studying interactions of mammary stromal and epithelial cells in macromastia. In this model, HGF secreted by macromastic stromal cells was found to play an important role in modifying the behaviour of co-cultured epithelial cells. This model allows further studies to investigate basic cellular and molecular mechanisms in tissue from patients with true breast hypertrophy. PMID:24720804

  1. Uranium induces oxidative stress in lung epithelial cells

    PubMed Central

    Periyakaruppan, Adaikkappan; Kumar, Felix; Sarkar, Shubhashish; Sharma, Chidananda S.

    2009-01-01

    Uranium compounds are widely used in the nuclear fuel cycle, antitank weapons, tank armor, and also as a pigment to color ceramics and glass. Effective management of waste uranium compounds is necessary to prevent exposure to avoid adverse health effects on the population. Health risks associated with uranium exposure includes kidney disease and respiratory disorders. In addition, several published results have shown uranium or depleted uranium causes DNA damage, mutagenicity, cancer and neurological defects. In the current study, uranium toxicity was evaluated in rat lung epithelial cells. The study shows uranium induces significant oxidative stress in rat lung epithelial cells followed by concomitant decrease in the antioxidant potential of the cells. Treatment with uranium to rat lung epithelial cells also decreased cell proliferation after 72 h in culture. The decrease in cell proliferation was attributed to loss of total glutathione and superoxide dismutase in the presence of uranium. Thus the results indicate the ineffectiveness of antioxidant system’s response to the oxidative stress induced by uranium in the cells. PMID:17124605

  2. Emergence of an apical epithelial cell surface in vivo

    PubMed Central

    Sedzinski, Jakub; Hannezo, Edouard; Tu, Fan; Biro, Maté; Wallingford, John B.

    2016-01-01

    Epithelial sheets are crucial components of all metazoan animals, enclosing organs and protecting the animal from its environment. Epithelial homeostasis poses unique challenges, as addition of new cells and loss of old cells must be achieved without disrupting the fluid-tight barrier and apicobasal polarity of the epithelium. Several studies have identified cell biological mechanisms underlying extrusion of cells from epithelia, but far less is known of the converse mechanism by which new cells are added. Here, we combine molecular, pharmacological and laser-dissection experiments with theoretical modelling to characterize forces driving emergence of an apical surface as single nascent cells are added to a vertebrate epithelium in vivo. We find that this process involves the interplay between cell-autonomous actin-generated pushing forces in the emerging cell and mechanical properties of neighboring cells. Our findings define the forces driving this cell behavior, contributing to a more comprehensive understanding of epithelial homeostasis. PMID:26766441

  3. Biostimulatory effects of low-level laser therapy on epithelial cells and gingival fibroblasts treated with zoledronic acid

    NASA Astrophysics Data System (ADS)

    Basso, F. G.; Pansani, T. N.; Turrioni, A. P. S.; Kurachi, C.; Bagnato, V. S.; Hebling, J.; de Souza Costa, C. A.

    2013-05-01

    Low-level laser therapy (LLLT) has been considered as an adjuvant treatment for bisphosphonate-related osteonecrosis, presenting positive clinical outcomes. However, there are no data regarding the effect of LLLT on oral tissue cells exposed to bisphosphonates. This study aimed to evaluate the effects of LLLT on epithelial cells and gingival fibroblasts exposed to a nitrogen-containing bisphosphonate—zoledronic acid (ZA). Cells were seeded in wells of 24-well plates, incubated for 48 h and then exposed to ZA at 5 μM for an additional 48 h. LLLT was performed with a diode laser prototype—LaserTABLE (InGaAsP—780 nm ± 3 nm, 25 mW), at selected energy doses of 0.5, 1.5, 3, 5, and 7 J cm-2 in three irradiation sessions, every 24 h. Cell metabolism, total protein production, gene expression of vascular endothelial growth factor (VEGF) and collagen type I (Col-I), and cell morphology were evaluated 24 h after the last irradiation. Data were statistically analyzed by Kruskal-Wallis and Mann-Whitney tests at 5% significance. Selected LLLT parameters increased the functions of epithelial cells and gingival fibroblasts treated with ZA. Gene expression of VEGF and Col-I was also increased. Specific parameters of LLLT biostimulated fibroblasts and epithelial cells treated with ZA. Analysis of these in vitro data may explain the positive in vivo effects of LLLT applied to osteonecrosis lesions.

  4. Histomorphometric Analysis of Angiogenesis using CD31 Immunomarker and Mast Cell Density in Oral Premalignant and Malignant Lesions: A Pilot Study.

    PubMed

    Jyothsna, M; Rammanohar, M; Kumar, Kiran

    2017-01-01

    Mast cells have been implicated in promoting angiogenesis in malignant tumors of lung, oesophagus and breast, but there are few studies on Oral Squamous Cell Carcinomas (OSCC). Most oral squamous cell carcinomas arise from pre-existing precancerous lesions exhibiting epithelial dysplasia. The present pilot study attempts to compare Mast Cell Density (MCD), Microvessel Density (MVD), Microvessel Area (MVA) histomorphometrically between normal buccal mucosa, severe epithelial dysplasia and OSCC and to correlate the role of mast cells and angiogenesis in tumor progression. The retrospective study was conducted on eight cases of OSCC, eight cases of severe epithelial dysplasia and five cases of normal buccal mucosa. Immunohistochemical staining with anti CD-31, to demonstrate angiogenesis and toluidine blue staining for mast cells were employed. MVA, MVD and MCD were calculated using the measurement tools of the image analysis software and compared between the groups. One way ANOVA (Analysis of Variance) was used for comparing the parameter for multiple groups followed by Games Howell test. To assess the relationship between micro vessel density and mast cell density, Karl Pearson's correlation was used. MCD and MVD increased with disease progression and were statistically higher in OSCC than in severe epithelial dysplasia and normal buccal mucosa (p<0.001). MVA increased from normal to severe dysplasia and decreased from dysplasia to OSCC, may be due to revascularization of tumor tissue. A positive correlation was observed between MCD and MVD in OSCC and dysplasia, though were not statistically significant. These findings suggest that mast cells may up regulate angiogenesis in OSCC. MCD and MVD may be used as indicators for disease progression.

  5. Cells of Origin of Epithelial Ovarian Cancers

    DTIC Science & Technology

    2015-09-01

    cells in oral squamous cell carcinomas by a novel pathway-based lineage tracing approach in a murine model. ! 13! Specific aims: 1. Determine...SUNDARESAN Lineage tracing and clonal analysis of oral cancer initiating cells The goal of this project is to study cancer stem cells /cancer initiating...whether oral cancer cells genetically marked based on their activities for stem cell -related pathways exhibit cancer stem cell properties in vivo by

  6. Extracellular galectin-1 enhances adhesion to and invasion of oral epithelial cells by Porphyromonas gingivalis.

    PubMed

    Tamai, Riyoko; Kobayashi-Sakamoto, Michiyo; Kiyoura, Yusuke

    2018-03-15

    Galectin-1 and galectin-3 are C-type lectin receptors that bind to lipopolysaccharide in the cell wall of gram-negative bacteria. In this study, we investigated the effects of galectin-1 and galectin-3 on adhesion to and invasion of the human gingival epithelial cell line Ca9-22 by Porphyromonas gingivalis, a periodontal pathogenic gram-negative bacterium. Recombinant galectin-1, but not galectin-3, enhanced P. gingivalis adhesion and invasion, although both galectins bound similarly to P. gingivalis. Flow cytometry also revealed that Ca9-22 cells express low levels of galectin-1 and moderate levels of galectin-3. Ca9-22 cells in which galectin-3 was knocked-down did not exhibit enhanced P. gingivalis adhesion and invasion. Similarly, specific antibodies to galectin-1 and galectin-3 did not inhibit P. gingivalis adhesion and invasion. These results suggest that soluble galectin-1, but not galectin-3, may exacerbate periodontal disease by enhancing the adhesion to and invasion of host cells by periodontal pathogenic bacteria.

  7. Effects of Weaning on Intestinal Upper Villus Epithelial Cells of Piglets

    PubMed Central

    Wang, Xiaocheng; Tan, Bie; Li, Tiejun; Yin, Yulong

    2016-01-01

    The intestinal upper villus epithelial cells represent the differentiated epithelial cells and play key role in digesting and absorbing lumenal nutrients. Weaning stress commonly results in a decrease in villus height and intestinal dysfunction in piglets. However, no study have been conducted to test the effects of weaning on the physiology and functions of upper villus epithelial cells. A total of 40 piglets from 8 litters were weaned at 14 days of age and one piglet from each litter was killed at 0 d (w0d), 1 d (w1d), 3 d (w3d), 5 d (w5d), and 7 d (w7d) after weaning, respectively. The upper villus epithelial cells in mid-jejunum were isolated using the distended intestinal sac method. The expression of proteins in upper villus epithelial cells was analyzed using the isobaric tags for relative and absolute quantification or Western blotting. The expression of proteins involved in energy metabolism, Golgi vesicle transport, protein amino acid glycosylation, secretion by cell, transmembrane transport, ion transport, nucleotide catabolic process, translational initiation, and epithelial cell differentiation and apoptosis, was mainly reduced during the post-weaning period, and these processes may be regulated by mTOR signaling pathway. These results indicated that weaning inhibited various cellular processes in jejunal upper villus epithelial cells, and provided potential new directions for exploring the effects of weaning on the functions of intestine and improving intestinal functions in weaning piglets. PMID:27022727

  8. Contraction and elongation: Mechanics underlying cell boundary deformations in epithelial tissue.

    PubMed

    Hara, Yusuke

    2017-06-01

    The cell-cell boundaries of epithelial cells form cellular frameworks at the apical side of tissues. Deformations in these boundaries, for example, boundary contraction and elongation, and the associated forces form the mechanical basis of epithelial tissue morphogenesis. In this review, using data from recent Drosophila studies on cell boundary contraction and elongation, I provide an overview of the mechanism underlying the bi-directional deformations in the epithelial cell boundary, that are sustained by biased accumulations of junctional and apico-medial non-muscle myosin II. Moreover, how the junctional tensions exist on cell boundaries in different boundary dynamics and morphologies are discussed. Finally, some future perspectives on how recent knowledge about single cell boundary-level mechanics will contribute to our understanding of epithelial tissue morphogenesis are discussed. © 2017 Japanese Society of Developmental Biologists.

  9. Quantification of epithelial cells in coculture with fibroblasts by fluorescence image analysis.

    PubMed

    Krtolica, Ana; Ortiz de Solorzano, Carlos; Lockett, Stephen; Campisi, Judith

    2002-10-01

    To demonstrate that senescent fibroblasts stimulate the proliferation and neoplastic transformation of premalignant epithelial cells (Krtolica et al.: Proc Natl Acad Sci USA 98:12072-12077, 2001), we developed methods to quantify the proliferation of epithelial cells cocultured with fibroblasts. We stained epithelial-fibroblast cocultures with the fluorescent DNA-intercalating dye 4,6-diamidino-2-phenylindole (DAPI), or expressed green fluorescent protein (GFP) in the epithelial cells, and then cultured them with fibroblasts. The cocultures were photographed under an inverted microscope with appropriate filters, and the fluorescent images were captured with a digital camera. We modified an image analysis program to selectively recognize the smaller, more intensely fluorescent epithelial cell nuclei in DAPI-stained cultures and used the program to quantify areas with DAPI fluorescence generated by epithelial nuclei or GFP fluorescence generated by epithelial cells in each field. Analysis of the image areas with DAPI and GFP fluorescences produced nearly identical quantification of epithelial cells in coculture with fibroblasts. We confirmed these results by manual counting. In addition, GFP labeling permitted kinetic studies of the same coculture over multiple time points. The image analysis-based quantification method we describe here is an easy and reliable way to monitor cells in coculture and should be useful for a variety of cell biological studies. Copyright 2002 Wiley-Liss, Inc.

  10. DA-6034 Induces [Ca(2+)]i Increase in Epithelial Cells.

    PubMed

    Yang, Yu-Mi; Park, Soonhong; Ji, Hyewon; Kim, Tae-Im; Kim, Eung Kweon; Kang, Kyung Koo; Shin, Dong Min

    2014-04-01

    DA-6034, a eupatilin derivative of flavonoid, has shown potent effects on the protection of gastric mucosa and induced the increases in fluid and glycoprotein secretion in human and rat corneal and conjunctival cells, suggesting that it might be considered as a drug for the treatment of dry eye. However, whether DA-6034 induces Ca(2+) signaling and its underlying mechanism in epithelial cells are not known. In the present study, we investigated the mechanism for actions of DA-6034 in Ca(2+) signaling pathways of the epithelial cells (conjunctival and corneal cells) from human donor eyes and mouse salivary gland epithelial cells. DA-6034 activated Ca(2+)-activated Cl(-) channels (CaCCs) and increased intracellular calcium concentrations ([Ca(2+)]i) in primary cultured human conjunctival cells. DA-6034 also increased [Ca(2+)]i in mouse salivary gland cells and human corneal epithelial cells. [Ca(2+)]i increase of DA-6034 was dependent on the Ca(2+) entry from extracellular and Ca(2+) release from internal Ca(2+) stores. Interestingly, these effects of DA-6034 were related to ryanodine receptors (RyRs) but not phospholipase C/inositol 1,4,5-triphosphate (IP3) pathway and lysosomal Ca(2+) stores. These results suggest that DA-6034 induces Ca(2+) signaling via extracellular Ca(2+) entry and RyRs-sensitive Ca(2+) release from internal Ca(2+) stores in epithelial cells.

  11. Leptin expression in human mammary epithelial cells and breast milk.

    PubMed

    Smith-Kirwin, S M; O'Connor, D M; De Johnston, J; Lancey, E D; Hassink, S G; Funanage, V L

    1998-05-01

    Leptin has recently been shown to be produced by the human placenta and potentially plays a role in fetal and neonatal growth. Many functions of the placenta are replaced by the mammary gland in terms of providing critical growth factors for the newborn. In this study, we show that leptin is produced by human mammary epithelial cells as revealed by RT/PCR analysis of total RNA from mammary gland and immunohistochemical staining of breast tissue, cultured mammary epithelial cells, and secretory epithelial cells present in human milk. We also verify that immunoreactive leptin is present in whole milk at 30- to 150-fold higher concentrations than skim milk. We propose that leptin is secreted by mammary epithelial cells in milk fat globules, which partition into the lipid portion of breast milk.

  12. Lateral adhesion drives reintegration of misplaced cells into epithelial monolayers

    PubMed Central

    St Johnston, Daniel

    2016-01-01

    Cells in simple epithelia orient their mitotic spindles in the plane of the epithelium so that both daughter cells are born within the epithelial sheet. This is assumed to be important to maintain epithelial integrity and prevent hyperplasia, because misaligned divisions give rise to cells outside the epithelium1,2. Here we test this assumption in three types of Drosophila epithelia; the cuboidal follicle epithelium, the columnar early embryonic ectoderm, and the pseudostratified neuroepithelium. Ectopic expression of Inscuteable in these tissues reorients mitotic spindles, resulting in one daughter cell being born outside of the epithelial layer. Live imaging reveals that these misplaced cells reintegrate into the tissue. Reducing the levels of the lateral homophilic adhesion molecules Neuroglian or Fasciclin 2 disrupts reintegration, giving rise to extra-epithelial cells, whereas disruption of adherens junctions has no effect. Thus, the reinsertion of misplaced cells appears to be driven by lateral adhesion, which pulls cells born outside the epithelia layer back into it. Our findings reveal a robust mechanism that protects epithelia against the consequences of misoriented divisions. PMID:26414404

  13. Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikuta, Kazuhiro; Masamune, Atsushi, E-mail: amasamune@med.tohoku.ac.jp; Watanabe, Takashi

    2010-12-17

    Research highlights: {yields} Recent studies have shown that pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. {yields} Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and scattered, fibroblast-like appearance. {yields} PSCs decreased the expression of epithelial markers but increased that of mesenchymal markers, along with increased migration. {yields} This study suggests epithelial-mesenchymal transition as a novel mechanism by which PSCs contribute to the aggressive behavior of pancreatic cancer cells. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There ismore » accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Because epithelial-mesenchymal transition (EMT) plays a critical role in the progression of pancreatic cancer, we hypothesized that PSCs promote EMT in pancreatic cancer cells. Panc-1 and SUIT-2 pancreatic cancer cells were indirectly co-cultured with human PSCs isolated from patients undergoing operation for pancreatic cancer. The expression of epithelial and mesenchymal markers was examined by real-time PCR and immunofluorescent staining. The migration of pancreatic cancer cells was examined by scratch and two-chamber assays. Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and a scattered, fibroblast-like appearance. The expression of E-cadherin, cytokeratin 19, and membrane-associated {beta}-catenin was decreased, whereas vimentin and Snail (Snai-1) expression was increased more in cancer cells co-cultured with PSCs than in mono-cultured cells. The migration of pancreatic cancer cells was increased by co-culture with PSCs. The PSC-induced decrease of E-cadherin expression was not

  14. Uterine epithelial cell proliferation and endometrial hyperplasia: evidence from a mouse model

    PubMed Central

    Gao, Yang; Li, Shu; Li, Qinglei

    2014-01-01

    In the uterus, epithelial cell proliferation changes during the estrous cycle and pregnancy. Uncontrolled epithelial cell proliferation results in implantation failure and/or cancer development. Transforming growth factor-β (TGF-β) signaling is a fundamental regulator of diverse biological processes and is indispensable for multiple reproductive functions. However, the in vivo role of TGF-β signaling in uterine epithelial cells remains poorly defined. We have shown that in the uterus, conditional deletion of the Type 1 receptor for TGF-β (Tgfbr1) using anti-Müllerian hormone receptor type 2 (Amhr2) Cre leads to myometrial defects. Here, we describe enhanced epithelial cell proliferation by immunostaining of Ki67 in the uteri of these mice. The aberration culminated in endometrial hyperplasia in aged females. To exclude the potential influence of ovarian steroid hormones, the proliferative status of uterine epithelial cells was assessed following ovariectomy. Increased uterine epithelial cell proliferation was also revealed in ovariectomized Tgfbr1 Amhr2-Cre conditional knockout mice. We further demonstrated that transcript levels for fibroblast growth factor 10 (Fgf10) were markedly up-regulated in Tgfbr1 Amhr2-Cre conditional knockout uteri. Consistently, treatment of primary uterine stromal cells with TGF-β1 significantly reduced Fgf10 mRNA expression. Thus, our findings suggest a potential involvement of TGFBR1-mediated signaling in the regulation of uterine epithelial cell proliferation, and provide genetic evidence supporting the role of uterine epithelial cell proliferation in the pathogenesis of endometrial hyperplasia. PMID:24770950

  15. Impaired airway epithelial cell responses from children with asthma to rhinoviral infection.

    PubMed

    Kicic, A; Stevens, P T; Sutanto, E N; Kicic-Starcevich, E; Ling, K-M; Looi, K; Martinovich, K M; Garratt, L W; Iosifidis, T; Shaw, N C; Buckley, A G; Rigby, P J; Lannigan, F J; Knight, D A; Stick, S M

    2016-11-01

    The airway epithelium forms an effective immune and physical barrier that is essential for protecting the lung from potentially harmful inhaled stimuli including viruses. Human rhinovirus (HRV) infection is a known trigger of asthma exacerbations, although the mechanism by which this occurs is not fully understood. To explore the relationship between apoptotic, innate immune and inflammatory responses to HRV infection in airway epithelial cells (AECs) obtained from children with asthma and non-asthmatic controls. In addition, to test the hypothesis that aberrant repair of epithelium from asthmatics is further dysregulated by HRV infection. Airway epithelial brushings were obtained from 39 asthmatic and 36 non-asthmatic children. Primary cultures were established and exposed to HRV1b and HRV14. Virus receptor number, virus replication and progeny release were determined. Epithelial cell apoptosis, IFN-β production, inflammatory cytokine release and epithelial wound repair and proliferation were also measured. Virus proliferation and release was greater in airway epithelial cells from asthmatics but this was not related to the number of virus receptors. In epithelial cells from asthmatic children, virus infection dampened apoptosis, reduced IFN-β production and increased inflammatory cytokine production. HRV1b infection also inhibited wound repair capacity of epithelial cells isolated from non-asthmatic children and exaggerated the defective repair response seen in epithelial cells from asthmatics. Addition of IFN-β restored apoptosis, suppressed virus replication and improved repair of airway epithelial cells from asthmatics but did not reduce inflammatory cytokine production. Collectively, HRV infection delays repair and inhibits apoptotic processes in epithelial cells from non-asthmatic and asthmatic children. The delayed repair is further exaggerated in cells from asthmatic children and is only partially reversed by exogenous IFN-β. © 2016 John Wiley & Sons

  16. Epithelial Cell Rests of Malassez Contain Unique Stem Cell Populations Capable of Undergoing Epithelial–Mesenchymal Transition

    PubMed Central

    Xiong, Jimin; Mrozik, Krzysztof; Gronthos, Stan

    2012-01-01

    The epithelial cell rests of Malassez (ERM) are odontogenic epithelial cells located within the periodontal ligament matrix. While their function is unknown, they may support tissue homeostasis and maintain periodontal ligament space or even contribute to periodontal regeneration. We investigated the notion that ERM contain a subpopulation of stem cells that could undergo epithelial–mesenchymal transition and differentiate into mesenchymal stem-like cells with multilineage potential. For this purpose, ERM collected from ovine incisors were subjected to different inductive conditions in vitro, previously developed for the characterization of bone marrow mesenchymal stromal/stem cells (BMSC). We found that ex vivo-expanded ERM expressed both epithelial (cytokeratin-8, E-cadherin, and epithelial membrane protein-1) and BMSC markers (CD44, CD29, and heat shock protein-90β). Integrin α6/CD49f could be used for the enrichment of clonogenic cell clusters [colony-forming units-epithelial cells (CFU-Epi)]. Integrin α6/CD49f-positive-selected epithelial cells demonstrated over 50- and 7-fold greater CFU-Epi than integrin α6/CD49f-negative cells and unfractionated cells, respectively. Importantly, ERM demonstrated stem cell-like properties in their differentiation capacity to form bone, fat, cartilage, and neural cells in vitro. When transplanted into immunocompromised mice, ERM generated bone, cementum-like and Sharpey's fiber-like structures. Additionally, gene expression studies showed that osteogenic induction of ERM triggered an epithelial–mesenchymal transition. In conclusion, ERM are unusual cells that display the morphological and phenotypic characteristics of ectoderm-derived epithelial cells; however, they also have the capacity to differentiate into a mesenchymal phenotype and thus represent a unique stem cell population within the periodontal ligament. PMID:22122577

  17. Differential Transmission of HIV Traversing Fetal Oral/Intestinal Epithelia and Adult Oral Epithelia

    PubMed Central

    Herrera, Rossana; Veluppillai, Piri; Greenspan, Deborah; Soros, Vanessa; Greene, Warner C.; Levy, Jay A.; Palefsky, Joel M.

    2012-01-01

    While human immunodeficiency virus (HIV) transmission through the adult oral route is rare, mother-to-child transmission (MTCT) through the neonatal/infant oral and/or gastrointestinal route is common. To study the mechanisms of cell-free and cell-associated HIV transmission across adult oral and neonatal/infant oral/intestinal epithelia, we established ex vivo organ tissue model systems of adult and fetal origin. Given the similarity of neonatal and fetal oral epithelia with respect to epithelial stratification and density of HIV-susceptible immune cells, we used fetal oral the epithelium as a model for neonatal/infant oral epithelium. We found that cell-free HIV traversed fetal oral and intestinal epithelia and infected HIV-susceptible CD4+ T lymphocytes, Langerhans/dendritic cells, and macrophages. To study the penetration of cell-associated virus into fetal oral and intestinal epithelia, HIV-infected macrophages and lymphocytes were added to the surfaces of fetal oral and intestinal epithelia. HIV-infected macrophages, but not lymphocytes, transmigrated across fetal oral epithelia. HIV-infected macrophages and, to a lesser extent, lymphocytes transmigrated across fetal intestinal epithelia. In contrast to the fetal oral/intestinal epithelia, cell-free HIV transmigration through adult oral epithelia was inefficient and virions did not infect intraepithelial and subepithelial HIV-susceptible cells. In addition, HIV-infected macrophages and lymphocytes did not transmigrate through intact adult oral epithelia. Transmigration of cell-free and cell-associated HIV across the fetal oral/intestinal mucosal epithelium may serve as an initial mechanism for HIV MTCT. PMID:22205732

  18. Brca1 regulates in vitro differentiation of mammary epithelial cells.

    PubMed

    Kubista, Marion; Rosner, Margit; Kubista, Ernst; Bernaschek, Gerhard; Hengstschläger, Markus

    2002-07-18

    Murine Brca1 is widely expressed during development in different tissues. Why alterations of BRCA1 lead specifically to breast and ovarian cancer is currently not clarified. Here we show that Brca1 protein expression is upregulated during mammary epithelial differentiation of HC11 cells, during differentiation of C2C12 myoblasts into myotubes and during neuronal differentiation of N1E-115 cells. Ectopic overexpression of BRCA1 and downregulation of endogenous Brca1 expression specifically affect the regulation of mammary epithelial cell differentiation. Accelerated mammary epithelial cell differentiation upon high ectopic BRCA1 expression is not a consequence of the anti-proliferative capacity of this tumor suppressor and independent of functional p53. Overexpression of the BRCA1 variant lacking the large central exon 11 has no effects on mammary epithelial cell differentiation. These data provide new insights into the cellular role of Brca1.

  19. Nicotine transport in lung and non-lung epithelial cells.

    PubMed

    Takano, Mikihisa; Kamei, Hidetaka; Nagahiro, Machi; Kawami, Masashi; Yumoto, Ryoko

    2017-11-01

    Nicotine is rapidly absorbed from the lung alveoli into systemic circulation during cigarette smoking. However, mechanism underlying nicotine transport in alveolar epithelial cells is not well understood to date. In the present study, we characterized nicotine uptake in lung epithelial cell lines A549 and NCI-H441 and in non-lung epithelial cell lines HepG2 and MCF-7. Characteristics of [ 3 H]nicotine uptake was studied using these cell lines. Nicotine uptake in A549 cells occurred in a time- and temperature-dependent manner and showed saturation kinetics, with a Km value of 0.31mM. Treatment with some organic cations such as diphenhydramine and pyrilamine inhibited nicotine uptake, whereas treatment with organic cations such as carnitine and tetraethylammonium did not affect nicotine uptake. Extracellular pH markedly affected nicotine uptake, with high nicotine uptake being observed at high pH up to 11.0. Modulation of intracellular pH with ammonium chloride also affected nicotine uptake. Treatment with valinomycin, a potassium ionophore, did not significantly affect nicotine uptake, indicating that nicotine uptake is an electroneutral process. For comparison, we assessed the characteristics of nicotine uptake in another lung epithelial cell line NCI-H441 and in non-lung epithelial cell lines HepG2 and MCF-7. Interestingly, these cell lines showed similar characteristics of nicotine uptake with respect to pH dependency and inhibition by various organic cations. The present findings suggest that a similar or the same pH-dependent transport system is involved in nicotine uptake in these cell lines. A novel molecular mechanism of nicotine transport is proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Characterizing mutagenesis in the hprt gene of rat alveolar epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Driscoll, K.E.; Deyo, L.C.; Howard, B.W.

    1995-12-31

    A clonal selection assay was developed for mutation in the hypoxanthine-guanine phosphoribosyl transferase (hprt) gene of rat alveolar epithelial cells. Studies were conducted to establish methods for isolation and long-term culture of rat alveolar epithelial cells. When isolated by pronase digestion purified on a Nycodenz gradient and cultured in media containing 7.5% fetal bovine serum (FBS), pituitary extract, EGF, insulin, and IGF-1, rat alveolar epithelial cells could be maintained in culture for several weeks with cell doubling times of 2-4 days. The rat alveolar epithelial cell cultures were exposed in vitro to the mutagens ethylnitrosourea (ENU) and H{sub 2}O{sub 2},more » and mutation in the hprt gene was selected for by culture in the presence of the toxic purine analog, 6-thioguanine (6TG). In vitro exposure to ENU or H{sub 2}O produced a dose-dependent increase in hprt mutation frequency in the alveolar epithelial cells. To determine if the assay system could be used to evaluate mutagenesis in alveolar type II cells after in vivo mutagen or carcinogen exposure, cells were isolated from rats treated previously with ENU or {alpha}-quartz. A significant increase in hprt mutation frequency was detected in alveolar epithelial cells obtained from rats exposed to ENU or {alpha}-quartz; the latter observation is the first demonstration that crystalline silica exposure is mutagenic in vivo. In summary, these studies show that rat alveolar epithelial cells isolated by pronase digestion and Nycodenz separation techniques and cultured in a defined media can be used in a clonal selection assay for mutation in the hprt gene. This assay demonstrates that ENU and H{sub 2}O{sub 2} in vitro and ENU and {alpha}-quartz in vivo are mutagenic for rat alveolar epithelial cells. This model should be useful for investigating the genotoxic effects of chemical and physical agents on an important lung cell target for neoplastic transformation. 41 refs., 4 figs., 3 tabs.« less

  1. Combusted but not smokeless tobacco products cause DNA damage in oral cavity cells.

    PubMed

    Gao, Hong; Prasad, G L; Zacharias, Wolfgang

    2014-05-01

    The aim of this work was to investigate genomic DNA damage in human oral cavity cells after exposure to different tobacco product preparations (TPPs). The oral carcinoma cell line 101A, gingival epithelial cells HGEC, and gingival fibroblasts HGF were exposed to TPM (total particulate matter from 3R4F cigarettes), ST/CAS (2S3 smokeless tobacco extract in complete artificial saliva), and NIC (nicotine). Treatments were for 24 h using TPM at its EC-50 doses, ST/CAS and NIC at doses with equi-nicotine units, and high doses for ST/CAS and NIC. Comet assays showed that TPM, but not ST/CAS or NIC, caused substantial DNA breaks in cells; only the high ST/CAS dose caused weak DNA damage. These results were confirmed by immunofluorescence for γ-H2AX protein. These data revealed that the combusted TPP caused substantial DNA damage in all cell types, whereas the two non-combusted TPPs exerted no or only minimal DNA damage. They support epidemiologic evidence on the relative risk associated with consumption of non-combusted versus combusted tobacco products, and help to understand potential genotoxic effects of such products on oral cavity cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Melanin dependent survival of Apergillus fumigatus conidia in lung epithelial cells.

    PubMed

    Amin, Shayista; Thywissen, Andreas; Heinekamp, Thorsten; Saluz, Hans Peter; Brakhage, Axel A

    2014-07-01

    Aspergillus fumigatus is the most important air-borne pathogenic fungus of humans. Upon inhalation of conidia, the fungus makes close contact with lung epithelial cells, which only possess low phagocytic activity. These cells are in particular interesting to address the question whether there is some form of persistence of conidia of A. fumigatus in the human host. Therefore, by also using uracil-auxotrophic mutant strains, we were able to investigate the interaction of A549 lung epithelial cells and A. fumigatus conidia in detail for long periods. Interestingly, unlike professional phagocytes, our study showed that the presence of conidial dihydroxynaphthalene (DHN) melanin enhanced the uptake of A. fumigatus conidia by epithelial cells when compared with non-pigmented pksP mutant conidia. Furthermore, conidia of A. fumigatus were able to survive within epithelial cells. This was due to the presence of DHN melanin in the cell wall of conidia, because melanised wild-type conidia showed a higher survival rate inside epithelial cells and led to inhibition of acidification of phagolysosomes. Both effects were not observed for white (non-melanised) conidia of the pksP mutant strain. Moreover, in contrast to pksP mutant conidia, melanised wild-type conidia were able to inhibit the extrinsic apoptotic pathway in A549 lung epithelial cells even for longer periods. The anti-apoptotic effect was not restricted to conidia, because both conidia-derived melanin ghosts (cell-free DHN melanin) and a different type of melanin, dihydroxyphenylalanine (DOPA) melanin, acted anti-apoptotically. Taken together, these data indicate the possibility of melanin-dependent persistence of conidia in lung epithelial cells. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. Interaction of the pathogenic mold Aspergillus fumigatus with lung epithelial cells

    PubMed Central

    Osherov, Nir

    2012-01-01

    Aspergillus fumigatus is an opportunistic environmental mold that can cause severe allergic responses in atopic individuals and poses a life-threatening risk for severely immunocompromised patients. Infection is caused by inhalation of fungal spores (conidia) into the lungs. The initial point of contact between the fungus and the host is a monolayer of lung epithelial cells. Understanding how these cells react to fungal contact is crucial to elucidating the pathobiology of Aspergillus-related disease states. The experimental systems, both in vitro and in vivo, used to study these interactions, are described. Distinction is made between bronchial and alveolar epithelial cells. The experimental findings suggest that lung epithelial cells are more than just “innocent bystanders” or a purely physical barrier against infection. They can be better described as an active extension of our innate immune system, operating as a surveillance mechanism that can specifically identify fungal spores and activate an offensive response to block infection. This response includes the internalization of adherent conidia and the release of cytokines, antimicrobial peptides, and reactive oxygen species. In the case of allergy, lung epithelial cells can dampen an over-reactive immune response by releasing anti-inflammatory compounds such as kinurenine. This review summarizes our current knowledge regarding the interaction of A. fumigatus with lung epithelial cells. A better understanding of the interactions between A. fumigatus and lung epithelial cells has therapeutic implications, as stimulation or inhibition of the epithelial response may alter disease outcome. PMID:23055997

  4. Establishment and Characterization of Immortalized Human Amniotic Epithelial Cells

    PubMed Central

    Zhou, Kaixuan; Koike, Chika; Yoshida, Toshiko; Okabe, Motonori; Fathy, Moustafa; Kyo, Satoru; Kiyono, Tohru; Saito, Shigeru

    2013-01-01

    Abstract Human amniotic epithelial cells (HAEs) have a low immunogenic profile and possess potent immunosuppressive properties. HAEs also have several characteristics similar to stem cells, and they are discarded after parturition. Thus, they could potentially be used in cell therapy with fewer ethical problems. HAEs have a short life, so our aim is to establish and characterize immortalized human amniotic epithelial cells (iHAEs). HAEs were introduced with viral oncogenes E6/E7 and with human telomerase reverse transcriptase (hTERT) to create iHAEs. These iHAEs have proliferated around 200 population doublings (PDs) for at least 12 months. High expression of stem cell markers (Oct 3/4, Nanog, Sox2, Klf4) and epithelial markers (CK5, CK18) were detected by immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR). These iHAEs were expanded in ultra-low-attachment dishes to form spheroids similarly to epithelial stem/precursor cells. High expression of mesenchymal (CD44, CD73, CD90, CD105) and somatic (CD24, CD29, CD271, Nestin) stem cell markers was detected by flow cytometry. The iHAEs showed adipogenic, osteogenic, neuronal, and cardiac differentiation abilities. In conclusion, the immortalization of HAEs with the characteristics of stem cells has been established, allowing these iHAEs to become useful for cell therapy and regenerative medicine. PMID:23298399

  5. Correlation of serum biomarkers (TSA & LSA) and epithelial dysplasia in early diagnosis of oral precancer and oral cancer.

    PubMed

    Sawhney, Hemant; Kumar, C Anand

    Oral cancer is currently the most frequent cause of cancer-related deaths, which is usually preceded by oral pre-cancerous lesions and conditions. Altered glycosylation of glycoconjugates, such as sialic acid, fucose, etc. are amongst the important molecular changes that accompany malignant transformation. The purpose of our study was to evaluate usefulness of serum Total Sialic Acid (TSA) and serum Lipid-Bound Sialic Acid (LSA) as markers of oral precancerous lesions and histopathologically correlating them with grades of epithelial dysplasia. Blood samples were collected from 50 patients with oral precancer (Leukoplakia & OSMF), 25 patients with untreated oral cancer and 25 healthy subjects. Serum sialic acid (total and lipid bound) levels were measured spectrophotometrically. Tissue samples from all the patients were evaluated for dysplasia. Serum levels of total and lipid bound sialic acid were significantly elevated in patients with oral precancer and cancer when compared with healthy subjects. Analysis of variance test documented that there is progressive rise in serum levels of sialic acid with the degree of dysplastic changes in oral precancer patients. We observed positive correlation between serum levels of the markers and the extent of malignant disease (TNM Clinical staging) as well as histopathological grades. The results suggested that serum levels of TSA and LSA progressively increases with grades of dysplasia in precancerous groups and cancer group, when compared with healthy controls. These glycoconjugates, especially LSA has the clinical utility in indicating a premalignant change.

  6. Cell competition with normal epithelial cells promotes apical extrusion of transformed cells through metabolic changes.

    PubMed

    Kon, Shunsuke; Ishibashi, Kojiro; Katoh, Hiroto; Kitamoto, Sho; Shirai, Takanobu; Tanaka, Shinya; Kajita, Mihoko; Ishikawa, Susumu; Yamauchi, Hajime; Yako, Yuta; Kamasaki, Tomoko; Matsumoto, Tomohiro; Watanabe, Hirotaka; Egami, Riku; Sasaki, Ayana; Nishikawa, Atsuko; Kameda, Ikumi; Maruyama, Takeshi; Narumi, Rika; Morita, Tomoko; Sasaki, Yoshiteru; Enoki, Ryosuke; Honma, Sato; Imamura, Hiromi; Oshima, Masanobu; Soga, Tomoyoshi; Miyazaki, Jun-Ichi; Duchen, Michael R; Nam, Jin-Min; Onodera, Yasuhito; Yoshioka, Shingo; Kikuta, Junichi; Ishii, Masaru; Imajo, Masamichi; Nishida, Eisuke; Fujioka, Yoichiro; Ohba, Yusuke; Sato, Toshiro; Fujita, Yasuyuki

    2017-05-01

    Recent studies have revealed that newly emerging transformed cells are often apically extruded from epithelial tissues. During this process, normal epithelial cells can recognize and actively eliminate transformed cells, a process called epithelial defence against cancer (EDAC). Here, we show that mitochondrial membrane potential is diminished in RasV12-transformed cells when they are surrounded by normal cells. In addition, glucose uptake is elevated, leading to higher lactate production. The mitochondrial dysfunction is driven by upregulation of pyruvate dehydrogenase kinase 4 (PDK4), which positively regulates elimination of RasV12-transformed cells. Furthermore, EDAC from the surrounding normal cells, involving filamin, drives the Warburg-effect-like metabolic alteration. Moreover, using a cell-competition mouse model, we demonstrate that PDK-mediated metabolic changes promote the elimination of RasV12-transformed cells from intestinal epithelia. These data indicate that non-cell-autonomous metabolic modulation is a crucial regulator for cell competition, shedding light on the unexplored events at the initial stage of carcinogenesis.

  7. Characterization of kidney epithelial cells from the Florida manatee, Trichechus manatus latirostris.

    PubMed

    Sweat JMDunigan, D D; Wright, S D

    2001-06-01

    The West-Indian manatee, Trichechus manatus latirostris, is a herbivorous marine mammal found in the coastal waters of Florida. Because of their endangered status, animal experimentation is not allowed. Therefore, a cell line was developed and characterized from tissue collected during necropsies of the manatees. A primary cell culture was established by isolating single cells from kidney tissue using both enzymatic and mechanical techniques. Primary manatee kidney (MK) cells were subcultured for characterization. These cells were morphologically similar to the cell lines of epithelial origin. An immunocytochemistry assay was used to localize the cytokeratin filaments common to cells of epithelial origin. At second passage, epithelial-like cells had an average population-doubling time of 48 h, had an optimum seeding density of 5 x 10(3) cells/cm2, and readily attached to plastic culture plates with a high level of seeding efficiency. Although the epithelial-like cells had a rapid growth rate during the first three passages, the cloning potential was low. These cells did not form colonies in agar medium, were serum dependent, had a limited life span of approximately nine passages, and possessed cell-contact inhibition. These data suggest that the cells were finite (noncontinuous growth), did not possess transformed properties, and were of epithelial origin. These cells are now referred to as MK epithelial cells.

  8. Interaction of chitin/chitosan with salivary and other epithelial cells-An overview.

    PubMed

    Patil, Sharvari Vijaykumar; Nanduri, Lalitha S Y

    2017-11-01

    Chitin and its deacetylated form, chitosan, have been widely used for tissue engineering of both epithelial and mesenchymal tissues. Epithelial cells characterised by their sheet-like tight cellular arrangement and polarised nature, constitute a major component in various organs and play a variety of roles including protection, secretion and maintenance of tissue homeostasis. Regeneration of damaged epithelial tissues has been studied using biomaterials such as chitin, chitosan, hyaluronan, gelatin and alginate. Chitin and chitosan are known to promote proliferation of various embryonic and adult epithelial cells. However it is not clearly understood how this activity is achieved or what are the mechanisms involved in the chitin/chitosan driven proliferation of epithelial cells. Mechanistic understanding of influence of chitin/chitosan on epithelial cells will guide us to develop more targeted regenerative scaffold/hydrogel systems. Therefore, current review attempts to elicit a mechanistic insight into how chitin and chitosan interact with salivary, mammary, skin, nasal, lung, intestinal and bladder epithelial cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Serratia marcescens internalization and replication in human bladder epithelial cells

    PubMed Central

    Hertle, Ralf; Schwarz, Heinz

    2004-01-01

    Background Serratia marcescens, a frequent agent of catheterization-associated bacteriuria, strongly adheres to human bladder epithelial cells in culture. The epithelium normally provides a barrier between lumal organisms and the interstitium; the tight adhesion of bacteria to the epithelial cells can lead to internalization and subsequent lysis. However, internalisation was not shown yet for S. marcescens strains. Methods Elektronmicroscopy and the common gentamycin protection assay was used to assess intracellular bacteria. Via site directed mutagenesis, an hemolytic negative isogenic Serratia strain was generated to point out the importance of hemolysin production. Results We identified an important bacterial factor mediating the internalization of S. marcescens, and lysis of epithelial cells, as the secreted cytolysin ShlA. Microtubule filaments and actin filaments were shown to be involved in internalization. However, cytolysis of eukaryotic cells by ShlA was an interfering factor, and therefore hemolytic-negative mutants were used in subsequent experiments. Isogenic hemolysin-negative mutant strains were still adhesive, but were no longer cytotoxic, did not disrupt the cell culture monolayer, and were no longer internalized by HEp-2 and RT112 bladder epithelial cells under the conditions used for the wild-type strain. After wild-type S. marcescens became intracellular, the infected epithelial cells were lysed by extended vacuolation induced by ShlA. In late stages of vacuolation, highly motile S. marcescens cells were observed in the vacuoles. S. marcescens was also able to replicate in cultured HEp-2 cells, and replication was not dependent on hemolysin production. Conclusion The results reported here showed that the pore-forming toxin ShlA triggers microtubule-dependent invasion and is the main factor inducing lysis of the epithelial cells to release the bacteria, and therefore plays a major role in the development of S. marcescens infections. PMID:15189566

  10. Fibrosis of Two: Epithelial Cell-Fibroblast Interactions in Pulmonary Fibrosis

    PubMed Central

    Sakai, Norihiko; Tager, Andrew M.

    2013-01-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive and ultimately fatal accumulation of fibroblasts and extracellular matrix in the lung that distorts its architecture and compromises its function. IPF is now thought to result from wound-healing processes that, although initiated to protect the host from injurious environmental stimuli, lead to pathological fibrosis due to these processes becoming aberrant or over-exuberant. Although the environmental stimuli that trigger IPF remain to be identified, recent evidence suggests that they initially injure the alveolar epithelium. Repetitive cycles of epithelial injury and resultant alveolar epithelial cell death provoke the migration, proliferation, activation and myofibroblast differentiation of fibroblasts, causing the accumulation of these cells and the extracellular matrix that they synthesize. In turn, these activated fibroblasts induce further alveolar epithelial cell injury and death, thereby creating a vicious cycle of pro-fibrotic epithelial cell-fibroblast interactions. Though other cell types certainly make important contributions, we focus here on the “pas de deux” (steps of two), or perhaps more appropriate to IPF pathogenesis, the “folie à deux” (madness of two) of epithelial cells and fibroblasts that drives the progression of pulmonary fibrosis. We describe the signaling molecules that mediate the interactions of these cell types in their “fibrosis of two”, including transforming growth factor-β, connective tissue growth factor, sonic hedgehog, prostaglandin E2, angiotensin II and reactive oxygen species. PMID:23499992

  11. Cell confinement controls centrosome positioning and lumen initiation during epithelial morphogenesis

    PubMed Central

    Rodríguez-Fraticelli, Alejo E.; Auzan, Muriel; Alonso, Miguel A.; Bornens, Michel

    2012-01-01

    Epithelial organ morphogenesis involves sequential acquisition of apicobasal polarity by epithelial cells and development of a functional lumen. In vivo, cells perceive signals from components of the extracellular matrix (ECM), such as laminin and collagens, as well as sense physical conditions, such as matrix stiffness and cell confinement. Alteration of the mechanical properties of the ECM has been shown to promote cell migration and invasion in cancer cells, but the effects on epithelial morphogenesis have not been characterized. We analyzed the effects of cell confinement on lumen morphogenesis using a novel, micropatterned, three-dimensional (3D) Madin-Darby canine kidney cell culture method. We show that cell confinement, by controlling cell spreading, limits peripheral actin contractility and promotes centrosome positioning and lumen initiation after the first cell division. In addition, peripheral actin contractility is mediated by master kinase Par-4/LKB1 via the RhoA–Rho kinase–myosin II pathway, and inhibition of this pathway restores lumen initiation in minimally confined cells. We conclude that cell confinement controls nuclear–centrosomal orientation and lumen initiation during 3D epithelial morphogenesis. PMID:22965908

  12. Myosin-X functions in polarized epithelial cells

    PubMed Central

    Liu, Katy C.; Jacobs, Damon T.; Dunn, Brian D.; Fanning, Alan S.; Cheney, Richard E.

    2012-01-01

    Myosin-X (Myo10) is an unconventional myosin that localizes to the tips of filopodia and has critical functions in filopodia. Although Myo10 has been studied primarily in nonpolarized, fibroblast-like cells, Myo10 is expressed in vivo in many epithelia-rich tissues, such as kidney. In this study, we investigate the localization and functions of Myo10 in polarized epithelial cells, using Madin-Darby canine kidney II cells as a model system. Calcium-switch experiments demonstrate that, during junction assembly, green fluorescent protein–Myo10 localizes to lateral membrane cell–cell contacts and to filopodia-like structures imaged by total internal reflection fluorescence on the basal surface. Knockdown of Myo10 leads to delayed recruitment of E-cadherin and ZO-1 to junctions, as well as a delay in tight junction barrier formation, as indicated by a delay in the development of peak transepithelial electrical resistance (TER). Although Myo10 knockdown cells eventually mature into monolayers with normal TER, these monolayers do exhibit increased paracellular permeability to fluorescent dextrans. Importantly, knockdown of Myo10 leads to mitotic spindle misorientation, and in three-dimensional culture, Myo10 knockdown cysts exhibit defects in lumen formation. Together these results reveal that Myo10 functions in polarized epithelial cells in junction formation, regulation of paracellular permeability, and epithelial morphogenesis. PMID:22419816

  13. Loss of γ-cytoplasmic actin triggers myofibroblast transition of human epithelial cells

    PubMed Central

    Lechuga, Susana; Baranwal, Somesh; Li, Chao; Naydenov, Nayden G.; Kuemmerle, John F.; Dugina, Vera; Chaponnier, Christine; Ivanov, Andrei I.

    2014-01-01

    Transdifferentiation of epithelial cells into mesenchymal cells and myofibroblasts plays an important role in tumor progression and tissue fibrosis. Such epithelial plasticity is accompanied by dramatic reorganizations of the actin cytoskeleton, although mechanisms underlying cytoskeletal effects on epithelial transdifferentiation remain poorly understood. In the present study, we observed that selective siRNA-mediated knockdown of γ-cytoplasmic actin (γ-CYA), but not β-cytoplasmic actin, induced epithelial-to-myofibroblast transition (EMyT) of different epithelial cells. The EMyT manifested by increased expression of α-smooth muscle actin and other contractile proteins, along with inhibition of genes responsible for cell proliferation. Induction of EMyT in γ-CYA–depleted cells depended on activation of serum response factor and its cofactors, myocardial-related transcriptional factors A and B. Loss of γ-CYA stimulated formin-mediated actin polymerization and activation of Rho GTPase, which appear to be essential for EMyT induction. Our findings demonstrate a previously unanticipated, unique role of γ-CYA in regulating epithelial phenotype and suppression of EMyT that may be essential for cell differentiation and tissue fibrosis. PMID:25143399

  14. Cell proliferation and p53 expression in pseudoepitheliomatous hyperplasia of oral paracoccidioidomycosis.

    PubMed

    Kaminagakura, E; Bonan, P R F; Lopes, M A; Almeida, O P

    2006-09-01

    Paracoccidioidomycosis (PCMycosis) is a systemic mycosis frequently found in many regions of Latin America. Microscopically, it is characterised by granulomatous inflammation and pseudoepitheliomatous hyperplasia (PEH). This work describes the proliferation index and p53 expression by immunohistochemistry in PEH of PCMycosis, normal oral mucosa (NOM) and mild oral epithelial dysplasia (ED). Ki67 positive cells were present in the basal and parabasal layers in NOM and PEH, while in ED it was also observed in the spinous layer. Percentage of ki67 positive cells was 7.7, 28.2 and 46.0 in NOM, PEH and ED respectively. p53 was negative in NOM and in PEH it was expressed by few cells in the basal layer of only three cases. However, it was expressed in all cases of ED, in basal and parabasal layers. Although histologically PEH mimics well-differentiated squamous cell carcinoma, its proliferative pattern and p53 expression are more similar to NOM than to dysplasia. These findings, confirm PEH as a reactive process probably associated with the underlying chronic inflammation.

  15. Human Rhinovirus Infection of Epithelial Cells Modulates Airway Smooth Muscle Migration.

    PubMed

    Shariff, Sami; Shelfoon, Christopher; Holden, Neil S; Traves, Suzanne L; Wiehler, Shahina; Kooi, Cora; Proud, David; Leigh, Richard

    2017-06-01

    Airway remodeling, a characteristic feature of asthma, begins in early life. Recurrent human rhinovirus (HRV) infections are a potential inciting stimulus for remodeling. One component of airway remodeling is an increase in airway smooth muscle cell (ASMC) mass with a greater proximity of the ASMCs to the airway epithelium. We asked whether human bronchial epithelial cells infected with HRV produced mediators that are chemotactic for ASMCs. ASMC migration was investigated using the modified Boyden Chamber and the xCELLigence Real-Time Cell Analyzer (ACEA Biosciences Inc., San Diego, CA). Multiplex bead analysis was used to measure HRV-induced epithelial chemokine release. The chemotactic effects of CCL5, CXCL8, and CXCL10 were also examined. Supernatants from HRV-infected epithelial cells caused ASMC chemotaxis. Pretreatment of ASMCs with pertussis toxin abrogated chemotaxis, as did treatment with formoterol, forskolin, or 8-bromo-cAMP. CCL5, CXCL8, and CXCL10 were the most up-regulated chemokines produced by HRV-infected airway epithelial cells. When recombinant CCL5, CXCL8, and CXCL10 were used at levels found in epithelial supernatants, they induced ASMC chemotaxis similar to that seen with epithelial cell supernatants. When examined individually, CCL5 was the most effective chemokine in causing ASMC migration, and treatment of supernatant from HRV-infected epithelial cells with anti-CCL5 antibodies significantly attenuated ASMC migration. These findings suggest that HRV-induced CCL5 can induce ASMC chemotaxis and thus may contribute to the pathogenesis of airway remodeling in patients with asthma.

  16. Observing planar cell polarity in multiciliated mouse airway epithelial cells.

    PubMed

    Vladar, Eszter K; Lee, Yin Loon; Stearns, Tim; Axelrod, Jeffrey D

    2015-01-01

    The concerted movement of cilia propels inhaled contaminants out of the lungs, safeguarding the respiratory system from toxins, pathogens, pollutants, and allergens. Motile cilia on the multiciliated cells (MCCs) of the airway epithelium are physically oriented along the tissue axis for directional motility, which depends on the planar cell polarity (PCP) signaling pathway. The MCCs of the mouse respiratory epithelium have emerged as an important model for the study of motile ciliogenesis and the PCP signaling mechanism. Unlike other motile ciliated or planar polarized tissues, airway epithelial cells are relatively easily accessible and primary cultures faithfully model many of the essential features of the in vivo tissue. There is growing interest in understanding how cells acquire and polarize motile cilia due to the impact of mucociliary clearance on respiratory health. Here, we present methods for observing and quantifying the planar polarized orientation of motile cilia both in vivo and in primary culture airway epithelial cells. We describe how to acquire and evaluate electron and light microscopy images of ciliary ultrastructural features that reveal planar polarized orientation. Furthermore, we describe the immunofluorescence localization of PCP pathway components as a simple readout for airway epithelial planar polarization and ciliary orientation. These methods can be adapted to observe ciliary orientation in other multi- and monociliated cells and to detect PCP pathway activity in any tissue or cell type. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Alveolar epithelial cells undergo epithelial-mesenchymal transition in acute interstitial pneumonia: a case report

    PubMed Central

    2014-01-01

    Background Acute interstitial pneumonia is a rare interstitial lung disease that rapidly progresses to respiratory failure or death. Several studies showed that myofibroblast plays an important role in the evolution of diffuse alveolar damage, which is the typical feature of acute interstitial pneumonia. However, no evidence exists whether alveolar epithelial cells are an additional source of myofibroblasts via epithelial-mesenchymal transition in acute interstitial pneumonia. Case presentation In this report, we present a case of acute interstitial pneumonia in a previously healthy 28-year-old non-smoking woman. Chest high-resolution computed tomography scan showed bilateral and diffusely ground-glass opacification. The biopsy was performed on the fifth day of her hospitalization, and results showed manifestation of acute exudative phase of diffuse alveolar damage characterized by hyaline membrane formation. On the basis of the preliminary diagnosis of acute interstitial pneumonia, high-dose glucocorticoid was used. However, this drug showed poor clinical response and could improve the patient’s symptoms only during the early phase. The patient eventually died of respiratory dysfunction. Histological findings in autopsy were consistent with the late form of acute interstitial pneumonia. Conclusions The results in this study revealed that alveolar epithelial cells underwent epithelial-mesenchymal transition and may be an important origin of myofibroblasts in the progression of acute interstitial pneumonia. Conducting research on the transformation of alveolar epithelial cells into myofibroblasts in the lung tissue of patients with acute interstitial pneumonia may be beneficial for the treatment of this disease. However, to our knowledge, no research has been conducted on this topic. PMID:24755111

  18. Micronuclei and other nuclear anomalies in normal human buccal mucosa cells of oral cancer patients undergoing radiotherapy: a field effect.

    PubMed

    Tak, A; Metgud, R; Astekar, M; Tak, M

    2014-08-01

    We evaluated micronuclei and other nuclear anomalies in exfoliated epithelial cells of the oral cavity on the side opposite the lesion targeted by radiotherapy and correlated them with radiation doses. Buccal smears were obtained from oral cancer patients undergoing radiotherapy with a cumulative dose of at least 1000 rad for 3 weeks and from controls matched for age, gender and habits. The exfoliated cells from the mucosa were collected using a cytobrush; smears were prepared, fixed in 80% methanol and stained using the Feulgen plus fast green method. The mean number of micronuclei and other nuclear anomalies/1000 cells was significantly greater in patients undergoing radiotherapy treatment, but the differences were not significant compared to radiation doses. It appears that radiotherapy has a potent clastogenic effect on buccal mucosal cells of oral cancer patients.

  19. Actinic cheilitis: epithelial expression of COX-2 and its association with mast cell tryptase and PAR-2.

    PubMed

    Rojas, I Gina; Martínez, Alejandra; Brethauer, Ursula; Grez, Patricia; Yefi, Roger; Luza, Sandra; Marchesani, Francisco J

    2009-03-01

    Cyclooxygenase-2 (COX-2) is overexpressed in various types of human malignancies, including oral cancers. Recent studies have shown that mast cell-derived protease tryptase can induce COX-2 expression by the cleavage of proteinase-activated receptor-2 (PAR-2). Actinic cheilitis (AC) is a premalignant form of lip cancer characterized by an increased density of tryptase-positive mast cells. To investigate the possible contribution of tryptase to COX-2 overexpression during early lip carcinogenesis, normal lip (n=24) and AC (n=45) biopsies were processed for COX-2, PAR-2 and tryptase detection, using RT-PCR and immunohistochemistry. Expression scores were obtained for each marker and tested for statistical significance using Mann-Whitney and Spearmann's correlation tests as well as multivariate logistic regression analysis. Increased epithelial co-expression of COX-2 and PAR-2, as well as, elevated subepithelial density of tryptase-positive mast cells were found in AC as compared to normal lip (P<0.001). COX-2 overexpression was found to be a significant predictor of AC (P<0.034, forward stepwise, Wald), and to be correlated with both tryptase-positive mast cells and PAR-2 expression (P<0.01). The results suggest that epithelial COX-2 overexpression is a key event in AC, which is associated with increased tryptase-positive mast cells and PAR-2. Therefore, tryptase may contribute to COX-2 up-regulation by epithelial PAR-2 activation during early lip carcinogenesis.

  20. Soluble Proteins Produced by Probiotic Bacteria Regulate Intestinal Epithelial Cell Survival and Growth

    PubMed Central

    YAN, FANG; CAO, HANWEI; COVER, TIMOTHY L.; WHITEHEAD, ROBERT; WASHINGTON, M. KAY; POLK, D. BRENT

    2011-01-01

    Background & Aims Increased inflammatory cytokine levels and intestinal epithelial cell apoptosis leading to disruption of epithelial integrity are major pathologic factors in inflammatory bowel diseases. The probiotic bacterium Lactobacillus rhamnosus GG (LGG) and factors recovered from LGG broth culture supernatant (LGG-s) prevent cytokine-induced apoptosis in human and mouse intestinal epithelial cells by regulating signaling pathways. Here, we purify and characterize 2 secreted LGG proteins that regulate intestinal epithelial cell antiapoptotic and proliferation responses. Methods LGG proteins were purified from LGG-s, analyzed, and used to generate polyclonal antibodies for immunodepletion of respective proteins from LGG-conditioned cell culture media (CM). Mouse colon epithelial cells and cultured colon explants were treated with purified proteins in the absence or presence of tumor necrosis factor (TNF). Akt activation, proliferation, tissue injury, apoptosis, and caspase-3 activation were determined. Results We purified 2 novel proteins, p75 (75 kilodaltons) and p40 (40 kilodaltons), from LGG-s. Each of these purified protein preparations activated Akt, inhibited cytokine-induced epithelial cell apoptosis, and promoted cell growth in human and mouse colon epithelial cells and cultured mouse colon explants. TNF-induced colon epithelial damage was significantly reduced by p75 and p40. Immunodepletion of p75 and p40 from LGG-CM reversed LGG-CM activation of Akt and its inhibitory effects on cytokine-induced apoptosis and loss of intestinal epithelial cells. Conclusions p75 and p40 are the first probiotic bacterial proteins demonstrated to promote intestinal epithelial homeostasis through specific signaling pathways. These findings suggest that probiotic bacterial components may be useful for preventing cytokine-mediated gastrointestinal diseases. PMID:17258729

  1. Uterine epithelial cell proliferation and endometrial hyperplasia: evidence from a mouse model.

    PubMed

    Gao, Yang; Li, Shu; Li, Qinglei

    2014-08-01

    In the uterus, epithelial cell proliferation changes during the estrous cycle and pregnancy. Uncontrolled epithelial cell proliferation results in implantation failure and/or cancer development. Transforming growth factor-β (TGF-β) signaling is a fundamental regulator of diverse biological processes and is indispensable for multiple reproductive functions. However, the in vivo role of TGF-β signaling in uterine epithelial cells remains poorly defined. We have shown that in the uterus, conditional deletion of the Type 1 receptor for TGF-β (Tgfbr1) using anti-Müllerian hormone receptor type 2 (Amhr2) Cre leads to myometrial defects. Here, we describe enhanced epithelial cell proliferation by immunostaining of Ki67 in the uteri of these mice. The aberration culminated in endometrial hyperplasia in aged females. To exclude the potential influence of ovarian steroid hormones, the proliferative status of uterine epithelial cells was assessed following ovariectomy. Increased uterine epithelial cell proliferation was also revealed in ovariectomized Tgfbr1 Amhr2-Cre conditional knockout mice. We further demonstrated that transcript levels for fibroblast growth factor 10 (Fgf10) were markedly up-regulated in Tgfbr1 Amhr2-Cre conditional knockout uteri. Consistently, treatment of primary uterine stromal cells with TGF-β1 significantly reduced Fgf10 mRNA expression. Thus, our findings suggest a potential involvement of TGFBR1-mediated signaling in the regulation of uterine epithelial cell proliferation, and provide genetic evidence supporting the role of uterine epithelial cell proliferation in the pathogenesis of endometrial hyperplasia. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770

    PubMed Central

    Van Goor, Fredrick; Hadida, Sabine; Grootenhuis, Peter D. J.; Burton, Bill; Cao, Dong; Neuberger, Tim; Turnbull, Amanda; Singh, Ashvani; Joubran, John; Hazlewood, Anna; Zhou, Jinglan; McCartney, Jason; Arumugam, Vijayalaksmi; Decker, Caroline; Yang, Jennifer; Young, Chris; Olson, Eric R.; Wine, Jeffery J.; Frizzell, Raymond A.; Ashlock, Melissa; Negulescu, Paul

    2009-01-01

    Cystic fibrosis (CF) is a fatal genetic disease caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR), a protein kinase A (PKA)-activated epithelial anion channel involved in salt and fluid transport in multiple organs, including the lung. Most CF mutations either reduce the number of CFTR channels at the cell surface (e.g., synthesis or processing mutations) or impair channel function (e.g., gating or conductance mutations) or both. There are currently no approved therapies that target CFTR. Here we describe the in vitro pharmacology of VX-770, an orally bioavailable CFTR potentiator in clinical development for the treatment of CF. In recombinant cells VX-770 increased CFTR channel open probability (Po) in both the F508del processing mutation and the G551D gating mutation. VX-770 also increased Cl− secretion in cultured human CF bronchial epithelia (HBE) carrying the G551D gating mutation on one allele and the F508del processing mutation on the other allele by ≈10-fold, to ≈50% of that observed in HBE isolated from individuals without CF. Furthermore, VX-770 reduced excessive Na+ and fluid absorption to prevent dehydration of the apical surface and increased cilia beating in these epithelial cultures. These results support the hypothesis that pharmacological agents that restore or increase CFTR function can rescue epithelial cell function in human CF airway. PMID:19846789

  3. Ion pump sorting in polarized renal epithelial cells.

    PubMed

    Caplan, M J

    2001-08-01

    The plasma membranes of renal epithelial cells are divided into distinct apical and basolateral domains, which contain different inventories of ion transport proteins. Without this polarity vectorial ion and fluid transport would not be possible. Little is known of the signals and mechanisms that renal epithelial cells use to establish and maintain polarized distributions of their ion transport proteins. Analysis of ion pump sorting reveals that multiple complex signals participate in determining and regulating these proteins' subcellular localizations.

  4. Continuous tooth replacement: the possible involvement of epithelial stem cells.

    PubMed

    Huysseune, Ann; Thesleff, Irma

    2004-06-01

    Epithelial stem cells have been identified in integumental structures such as hairs and continuously growing teeth of various rodents, and in the gut. Here we propose the involvement of epithelial stem cells in the continuous tooth replacement that characterizes non-mammalian vertebrates, as exemplified by the zebrafish. Arguments are based on morphological observations of tooth renewal in the zebrafish and on the similarities between molecular control of hair and tooth formation. Dissection of the molecular cascades underlying the regulation of the epithelial stem cell niche might open perspectives for new regenerative treatment strategies in clinical dentistry. Copyright 2004 Wiley Periodicals, Inc.

  5. MARCKS-related protein regulates cytoskeletal organization at cell-cell and cell-substrate contacts in epithelial cells.

    PubMed

    Van Itallie, Christina M; Tietgens, Amber Jean; Aponte, Angel; Gucek, Marjan; Cartagena-Rivera, Alexander X; Chadwick, Richard S; Anderson, James M

    2018-02-02

    Treatment of epithelial cells with interferon-γ and TNF-α (IFN/TNF) results in increased paracellular permeability. To identify relevant proteins mediating barrier disruption, we performed proximity-dependent biotinylation (BioID) of occludin and found that tagging of MARCKS-related protein (MRP; also known as MARCKSL1) increased ∼20-fold following IFN/TNF administration. GFP-MRP was focused at the lateral cell membrane and its overexpression potentiated the physiological response of the tight junction barrier to cytokines. However, deletion of MRP did not abrogate the cytokine responses, suggesting that MRP is not required in the occludin-dependent IFN/TNF response. Instead, our results reveal a key role for MRP in epithelial cells in control of multiple actin-based structures, likely by regulation of integrin signaling. Changes in focal adhesion organization and basal actin stress fibers in MRP-knockout (KO) cells were reminiscent of those seen in FAK-KO cells. In addition, we found alterations in cell-cell interactions in MRP-KO cells associated with increased junctional tension, suggesting that MRP may play a role in focal adhesion-adherens junction cross talk. Together, our results are consistent with a key role for MRP in cytoskeletal organization of cell contacts in epithelial cells. © 2018. Published by The Company of Biologists Ltd.

  6. Obesity Suppresses Cell-Competition-Mediated Apical Elimination of RasV12-Transformed Cells from Epithelial Tissues.

    PubMed

    Sasaki, Ayana; Nagatake, Takahiro; Egami, Riku; Gu, Guoqiang; Takigawa, Ichigaku; Ikeda, Wataru; Nakatani, Tomoya; Kunisawa, Jun; Fujita, Yasuyuki

    2018-04-24

    Recent studies have revealed that newly emerging transformed cells are often eliminated from epithelial tissues via cell competition with the surrounding normal epithelial cells. This cancer preventive phenomenon is termed epithelial defense against cancer (EDAC). However, it remains largely unknown whether and how EDAC is diminished during carcinogenesis. In this study, using a cell competition mouse model, we show that high-fat diet (HFD) feeding substantially attenuates the frequency of apical elimination of RasV12-transformed cells from intestinal and pancreatic epithelia. This process involves both lipid metabolism and chronic inflammation. Furthermore, aspirin treatment significantly facilitates eradication of transformed cells from the epithelial tissues in HFD-fed mice. Thus, our work demonstrates that obesity can profoundly influence competitive interaction between normal and transformed cells, providing insights into cell competition and cancer preventive medicine. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Immune receptors CD40 and CD86 in oral keratinocytes and implications for oral lichen planus.

    PubMed

    Marshall, Alison; Celentano, Antonio; Cirillo, Nicola; Mirams, Michiko; McCullough, Michael; Porter, Stephen

    2017-01-01

    Lichen planus (LP) is a chronic T-cell-mediated mucocutaneous inflammatory disease that targets stratified epithelia, including those lining the oral cavity. The intraoral variant of LP (OLP) is associated with interferon (IFN)-γ production by infiltrating T lymphocytes; however, the role of epithelial cells in the etiopathogenesis OLP is not completely understood. There is however a growing body of evidence regarding the involvement of epithelial-derived cytokines, immune receptors, and costimulatory molecules in the pathobiological processes that promote and sustain OLP. In the present study, we used a reverse transcriptase-polymerase chain reaction assay to assess whether CD40-a receptor found mainly on antigen presenting cells-and the costimulatory molecule CD86 were expressed in oral keratinocytes (three strains of primary normal oral keratinocytes and the H357 cell line) in the presence or absence of IFN-γ. To further characterize the involvement of CD40 in OLP, expression and distribution of receptor and ligand (CD40/CD154) in tissues from OLP were evaluated by immunohistochemistry. The present results are the first to show that both CD40 and CD86 are constitutively expressed at low levels in oral keratinocytes and that their expression was enhanced by IFN-γ stimulation. The intensity of CD40 staining in OLP tissues was strong. Taken together, the results strongly suggest that CD40 and CD86 play a role in the pathophysiology of oral inflammatory diseases such as OLP.

  8. Catechin supplemented in a FOS diet induces weight loss by altering cecal microbiota and gene expression of colonic epithelial cells.

    PubMed

    Luo, Jianming; Han, Lulu; Liu, Liu; Gao, Lijuan; Xue, Bin; Wang, Yong; Ou, Shiyi; Miller, Michael; Peng, Xichun

    2018-05-23

    Our previous study showed that catechin controlled rats' body weights and changed gut microbiota composition when supplemented into a high-fructo-oligosaccharide (FOS) diet. This experiment is devised to further confirm the relationship between specific bacteria in the colon and body weight gain, and to investigate how specific bacteria impact body weight by changing the expression of colonic epithelial cells. Forty obese rats were divided into four groups: three catechin-supplemented groups with a high-FOS diet (100, 400, and 700 mg kg-1 d-1 catechin, orally administered) and one group with a high-FOS diet only. Food consumption and body weights were recorded each week. After one month of treatment, rats' cecal content and colonic epithelial cells were individually collected and analyzed with MiSeq and gene expression profiling techniques, respectively. Results identified some specific bacteria at the genus level-including the increased Parabacteroides sp., Prevotella sp., Robinsoniella sp., [Ruminococcus], Phascolarctobacterium sp. and an unknown genus of YS2, and the decreased Lachnospira sp., Oscillospira sp., Ruminococcus sp., an unknown genus of Peptococcaceae and an unknown genus of Clostridiales in rats' cecum-and eight genes-including one downregulated Pla2g2a and seven upregulated genes: Apoa1, Apoa4, Aabr07073400.1, Fabp4, Pik3r5, Dgat2 and Ptgs2 of colonic epithelial cells-that were due to the consumption of catechin. Consequently, various biological functions in connection with energy metabolism in colonic epithelial cells were altered, including fat digestion and absorption and the regulation of lipolysis in adipocytes. In conclusion, catechin induces host weight loss by altering gut microbiota and gene expression and function in colonic epithelial cells.

  9. Asbestos exposure induces alveolar epithelial cell plasticity through MAPK/Erk signaling.

    PubMed

    Tamminen, Jenni A; Myllärniemi, Marjukka; Hyytiäinen, Marko; Keski-Oja, Jorma; Koli, Katri

    2012-07-01

    The inhalation of asbestos fibers is considered to be highly harmful, and lead to fibrotic and/or malignant disease. Epithelial-to-mesenchymal transition (EMT) is a common pathogenic mechanism in asbestos associated fibrotic (asbestosis) and malignant lung diseases. The characterization of molecular pathways contributing to EMT may provide new possibilities for prognostic and therapeutic applications. The role of asbestos as an inducer of EMT has not been previously characterized. We exposed cultured human lung epithelial cells to crocidolite asbestos and analyzed alterations in the expression of epithelial and mesenchymal marker proteins and cell morphology. Asbestos was found to induce downregulation of E-cadherin protein levels in A549 lung carcinoma cells in 2-dimensional (2D) and 3D cultures. Similar findings were made in primary small airway epithelial cells cultured in 3D conditions where the cells retained alveolar type II cell phenotype. A549 cells also exhibited loss of cell-cell contacts, actin reorganization and expression of α-smooth muscle actin (α-SMA) in 2D cultures. These phenotypic changes were not associated with increased transforming growth factor (TGF)-β signaling activity. MAPK/Erk signaling pathway was found to mediate asbestos-induced downregulation of E-cadherin and alterations in cell morphology. Our results suggest that asbestos can induce epithelial plasticity, which can be interfered by blocking the MAPK/Erk kinase activity. Copyright © 2012 Wiley Periodicals, Inc.

  10. Cigarette Smoke Modulates Repair and Innate Immunity following Injury to Airway Epithelial Cells.

    PubMed

    Amatngalim, Gimano D; Broekman, Winifred; Daniel, Nadia M; van der Vlugt, Luciën E P M; van Schadewijk, Annemarie; Taube, Christian; Hiemstra, Pieter S

    2016-01-01

    Cigarette smoking is the main risk factor associated with chronic obstructive pulmonary disease (COPD), and contributes to COPD development and progression by causing epithelial injury and inflammation. Whereas it is known that cigarette smoke (CS) may affect the innate immune function of airway epithelial cells and epithelial repair, this has so far not been explored in an integrated design using mucociliary differentiated airway epithelial cells. In this study, we examined the effect of whole CS exposure on wound repair and the innate immune activity of mucociliary differentiated primary bronchial epithelial cells, upon injury induced by disruption of epithelial barrier integrity or by mechanical wounding. Upon mechanical injury CS caused a delayed recovery in the epithelial barrier integrity and wound closure. Furthermore CS enhanced innate immune responses, as demonstrated by increased expression of the antimicrobial protein RNase 7. These differential effects on epithelial repair and innate immunity were both mediated by CS-induced oxidative stress. Overall, our findings demonstrate modulation of wound repair and innate immune responses of injured airway epithelial cells that may contribute to COPD development and progression.

  11. Moderate plasma activated media suppresses proliferation and migration of MDCK epithelial cells

    NASA Astrophysics Data System (ADS)

    Mohades, Soheila; Laroussi, Mounir; Maruthamuthu, Venkat

    2017-05-01

    Low-temperature plasma has been shown to have diverse biomedical uses, including its applications in cancer and wound healing. One recent approach in treating mammalian cells with plasma is through the use of plasma activated media (PAM), which is produced by exposing cell culture media to plasma. While the adverse effects of PAM treatment on cancerous epithelial cell lines have been recently studied, much less is known about the interaction of PAM with normal epithelial cells. In this paper, non-cancerous canine kidney MDCK (Madin-Darby Canine Kidney) epithelial cells were treated by PAM and time-lapse microscopy was used to directly monitor their proliferation and random migration upon treatment. While longer durations of PAM treatment led to cell death, we found that moderate levels of PAM treatment inhibited proliferation in these epithelial cells. We also found that PAM treatment reduced random cell migration within epithelial islands. Immunofluorescence staining showed that while there were no major changes in the actin/adhesion apparatus, there was a significant change in the nuclear localization of proliferation marker Ki-67, consistent with our time-lapse results.

  12. The bovine endometrial epithelial cells promote the differentiation of trophoblast stem-like cells to binucleate trophoblast cells.

    PubMed

    Li, Xiawei; Li, Zhiying; Hou, Dongxia; Zhao, Yuhang; Wang, Chen; Li, Xueling

    2016-12-01

    Endometrial epithelial cells (EECs) cultured in vitro are valuable tools for investigating embryo implantation and trophoblast differentiation. In this study, we have established the bovine EECs and trophoblast stem-like (TS) coculture system, and used it to investigate the binucleate cell formation of ungulates. The EECs was derived from the uterine horn ipsilateral to the corpus luteum by using collagenase I and deoxyribonuclease I, which exhibited typical epithelial morphology and were expressing bovine uterine epithelial marker such as IFNAR1, IFNAR2, Erα, PGR, ESR1 and KRT18. The cells immunostained positively by epithelial and trophectoderm marker cytokeratin 18 (KRT18) and stromal marker vimentin antibodies, and the KRT18 positive cells reached 99 %. The EECs can be cultured for up to 20 passages in vitro with no significant morphology changes and uterine epithelial marker gene expression alteration. The bTS cells were established in a dual inhibitor system and exhibited typical trophoblast stem cell characteristics. When bTS cells were cultured with EECs, the bTS cells adhered to the EECs as adhering to feeder cells. Binucleate cells began appearing on day 4 of coculture and reached approximately 18.47 % of the differentiated cells. Quantitative real-time PCR or immunofluorescence analyses were performed on bTS cells cocultured at day 6 and day 12. The results showed that the expression level of KRT18 was down-regulated while the expression level of trophoblast differentiation marker MASH2, HAND1, GCM1 and CDX2 was up-regulated in bTS cells. In conclusion, bovine EECs can be obtained from the uterine horn ipsilateral to the corpus luteum via treatment with collagenase I and deoxyribonuclease I, and the EECs-bTS cells coculture system presents an ideal tool for studying the differentiation of bTS cells to trophoblast binucleate cells.

  13. Progesterone-induced miR-133a inhibits the proliferation of endometrial epithelial cells.

    PubMed

    Pan, J-L; Yuan, D-Z; Zhao, Y-B; Nie, L; Lei, Y; Liu, M; Long, Y; Zhang, J-H; Blok, L J; Burger, C W; Yue, L-M

    2017-03-01

    This study aimed to understand the role of miR-133a in progesterone actions, explore the regulative mechanism of the progesterone receptor, and investigate the effects of miR-133a on the progesterone-inhibited proliferation of mouse endometrial epithelial cells. The expression of miR-133a induced by progesterone was detected by quantitative real-time PCR both in vivo and in vitro. Ishikawa subcell lines stably transfected with progesterone receptor subtypes were used to determine the receptor mechanism of progesterone inducing miR-133a. Specific miR-133a mimics or inhibitors were transfected into mouse uteri and primary cultured endometrial epithelial cells to overexpress or downregulate the miR-133a. The roles of miR-133a in the cell cycle and proliferation of endometrial epithelial cells were analysed by flow cytometry and Edu incorporation analysis. The protein levels of cyclinD2 in uterine tissue sections and primary cultured endometrial epithelial cells were determined by immunohistochemistry and Western blot analysis. Progesterone could induce miR-133a expression in a PRB-dependent manner in endometrial epithelial cells. miR-133a inhibited endometrial epithelial cell proliferation by arresting cell cycle at the G 1 -S transition. Moreover, miR-133a acted as an inhibitor in downregulating cyclinD2 in endometrial epithelial cells. We showed for the first time that progesterone-induced miR-133a inhibited the proliferation of endometrial epithelial cells by downregulating cyclinD2. Our research indicated an important mechanism for progesterone inhibiting the proliferation of endometrial epithelial cells by inducing special miRNAs to inhibit positive regulatory proteins in the cell cycle. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  14. Pili of oral Streptococcus sanguinis bind to fibronectin and contribute to cell adhesion.

    PubMed

    Okahashi, Nobuo; Nakata, Masanobu; Sakurai, Atsuo; Terao, Yutaka; Hoshino, Tomonori; Yamaguchi, Masaya; Isoda, Ryutaro; Sumitomo, Tomoko; Nakano, Kazuhiko; Kawabata, Shigetada; Ooshima, Takashi

    2010-01-08

    Streptococcus sanguinis is a predominant bacterium in the human oral cavity and occasionally causes infective endocarditis. We identified a unique cell surface polymeric structure named pili in this species and investigated its functions in regard to its potential virulence. Pili of S. sanguinis strain SK36 were shown to be composed of three distinctive pilus proteins (PilA, PilB, and PilC), and a pili-deficient mutant demonstrated reduced bacterial adherence to HeLa and human oral epithelial cells. PilC showed a binding ability to fibronectin, suggesting that pili are involved in colonization by this species. In addition, ATCC10556, a standard S. sanguinis strain, was unable to produce pili due to defective pilus genes, which indicates a diversity of pilus expression among various S. sanguinis strains. Copyright 2009 Elsevier Inc. All rights reserved.

  15. Overexpression of angiopoietin 2 promotes the formation of oral squamous cell carcinoma by increasing epithelial-mesenchymal transition-induced angiogenesis.

    PubMed

    Li, C; Li, Q; Cai, Y; He, Y; Lan, X; Wang, W; Liu, J; Wang, S; Zhu, G; Fan, J; Zhou, Y; Sun, R

    2016-09-01

    Oral squamous cell carcinoma (OSCC) is the most common cancer of the head and neck and is associated with a high rate of lymph node metastasis. The initial step in the metastasis and transition of tumors is epithelial-mesenchymal transition (EMT)-induced angiogenesis, which can be mediated by angiopoietin 2 (ANG2), a key regulatory factor in angiogenesis. In the present study, immunohistochemistry and real-time quantitative reverse transcriptase (qRT-PCR) were used to measure the expression of ANG2 in OSCC tissues. Plasmids encoding ANG2 mRNA were used for increased ANG2 expression in the OSCC cell line TCA8113. The short interfering RNA (siRNA)-targeting ANG2 mRNA sequences were used to inhibit ANG2 expression in TCA8113 cells. Subsequently, transwell assays were performed to examine the effects of ANG2 on TCA8113 cell migration and invasion. Furthermore, in vivo assays were performed to assess the effect of ANG2 on tumor growth. Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays and immunohistochemistry were used to examine cell apoptosis and angiogenesis in tumor tissues, respectively. Finally, western blot analysis was performed to evaluate tumor formation-related proteins in OSCC tissues. We found that protein expression of ANG2 was remarkably upregulated in OSCC tissues. Overexpression of ANG2 increased the migration and invasion of TCA8113 cells by regulating EMT. Further investigations showed that overexpression of ANG2 increased tumor growth in nude mice, and angiogenesis of OSCC tissues increased in the presence of ANG2 overexpression. Overexpression of ANG2 also reduced cell apoptosis in tumor tissue cells. Finally, we found that overexpression of ANG2 resulted in changes in the expression of tumor formation-related proteins including vimentin, E-cadherin, Bim, PUMA, Bcl-2, Bax, Cyclin D1, PCNA and CD31. Our findings show that ANG2 has an important role in the migration and invasion of OSCC. More importantly, further

  16. Decreased eIF3e/Int6 expression causes epithelial-to-mesenchymal transition in breast epithelial cells.

    PubMed

    Gillis, L D; Lewis, S M

    2013-08-01

    eIF3e/Int6 is a component of the multi-subunit eIF3 complex, which binds directly to the 40S ribosome to facilitate ribosome recruitment to mRNA and hence protein synthesis. Reduced expression of eIF3e/Int6 has been found in up to 37% of human breast cancers, and expression of a truncated mutant version of the mouse eIF3e/Int6 protein leads to malignant transformation of normal mammary cells. These findings suggest that eIF3e/Int6 is a tumor suppressor; however, a recent study has reported that a reduction of eIF3e/Int6 expression in breast cancer cells leads to reduced translation of oncogenes, suggesting that eIF3e/Int6 may in fact have an oncogenic role in breast cancer. To gain a better understanding of the role of eIF3e/Int6 in breast cancer, we have examined the effects of decreased eIF3e/Int6 expression in an immortalized breast epithelial cell line, MCF-10A. Surprisingly, we find that decreased expression of eIF3e/Int6 causes breast epithelial cells to undergo epithelial-to-mesenchymal transition (EMT). We show that EMT induced by a decrease in eIF3e/Int6 expression imparts invasive and migratory properties to breast epithelial cells, suggesting that regulation of EMT by eIF3e/Int6 may have an important role in breast cancer metastasis. Furthermore, we show that reduced eIF3e/Int6 expression in breast epithelial cells causes a specific increase in the expression of the key EMT regulators Snail1 and Zeb2, which occurs at both the transcriptional and post-transcriptional levels. Together, our data indicate a novel role of eIF3e/Int6 in the regulation of EMT in breast epithelial cells and support a tumor suppressor role of eIF3e/Int6.

  17. Basolateral membrane K+ channels in renal epithelial cells

    PubMed Central

    Devor, Daniel C.

    2012-01-01

    The major function of epithelial tissues is to maintain proper ion, solute, and water homeostasis. The tubule of the renal nephron has an amazingly simple structure, lined by epithelial cells, yet the segments (i.e., proximal tubule vs. collecting duct) of the nephron have unique transport functions. The functional differences are because epithelial cells are polarized and thus possess different patterns (distributions) of membrane transport proteins in the apical and basolateral membranes of the cell. K+ channels play critical roles in normal physiology. Over 90 different genes for K+ channels have been identified in the human genome. Epithelial K+ channels can be located within either or both the apical and basolateral membranes of the cell. One of the primary functions of basolateral K+ channels is to recycle K+ across the basolateral membrane for proper function of the Na+-K+-ATPase, among other functions. Mutations of these channels can cause significant disease. The focus of this review is to provide an overview of the basolateral K+ channels of the nephron, providing potential physiological functions and pathophysiology of these channels, where appropriate. We have taken a “K+ channel gene family” approach in presenting the representative basolateral K+ channels of the nephron. The basolateral K+ channels of the renal epithelia are represented by members of the KCNK, KCNJ, KCNQ, KCNE, and SLO gene families. PMID:22338089

  18. Comparison of culture media for ex vivo cultivation of limbal epithelial progenitor cells

    PubMed Central

    Loureiro, Renata Ruoco; Cristovam, Priscila Cardoso; Martins, Caio Marques; Covre, Joyce Luciana; Sobrinho, Juliana Aparecida; Ricardo, José Reinaldo da Silva; Hazarbassanov, Rossen Myhailov; Höfling-Lima, Ana Luisa; Belfort, Rubens; Nishi, Mauro

    2013-01-01

    Purpose To compare the effectiveness of three culture media for growth, proliferation, differentiation, and viability of ex vivo cultured limbal epithelial progenitor cells. Methods Limbal epithelial progenitor cell cultures were established from ten human corneal rims and grew on plastic wells in three culture media: supplemental hormonal epithelial medium (SHEM), keratinocyte serum-free medium (KSFM), and Epilife. The performance of culturing limbal epithelial progenitor cells in each medium was evaluated according to the following parameters: growth area of epithelial migration; immunocytochemistry for adenosine 5′-triphosphate-binding cassette member 2 (ABCG2), p63, Ki67, cytokeratin 3 (CK3), and vimentin (VMT) and real-time reverse transcription polymerase chain reaction (RT–PCR) for CK3, ABCG2, and p63, and cell viability using Hoechst staining. Results Limbal epithelial progenitor cells cultivated in SHEM showed a tendency to faster migration, compared to KSFM and Epilife. Immunocytochemical analysis showed that proliferated cells in the SHEM had lower expression for markers related to progenitor epithelial cells (ABCG2) and putative progenitor cells (p63), and a higher percentage of positive cells for differentiated epithelium (CK3) when compared to KSFM and Epilife. In PCR analysis, ABCG2 expression was statistically higher for Epilife compared to SHEM. Expression of p63 was statistically higher for Epilife compared to SHEM and KSFM. However, CK3 expression was statistically lower for KSFM compared to SHEM. Conclusions Based on our findings, we concluded that cells cultured in KSFM and Epilife media presented a higher percentage of limbal epithelial progenitor cells, compared to SHEM. PMID:23378720

  19. Epithelial tricellular junctions act as interphase cell shape sensors to orient mitosis

    PubMed Central

    Bosveld, Floris; Markova, Olga; Guirao, Boris; Martin, Charlotte; Wang, Zhimin; Pierre, Anaëlle; Balakireva, Maria; Gaugue, Isabelle; Ainslie, Anna; Christophorou, Nicolas; Lubensky, David K.; Minc, Nicolas; Bellaïche, Yohanns

    2017-01-01

    The orientation of cell division along the interphase cell long-axis, the century old Hertwig’s rule, has profound roles in tissue proliferation, morphogenesis, architecture and mechanics1,2. In epithelial tissues, the shape of the interphase cell is influenced by cell adhesion, mechanical stress, neighbour topology, and planar polarity pathways3–12. At mitosis, epithelial cells usually round up to ensure faithful chromosome segregation and to promote morphogenesis1. The mechanisms underlying interphase cell shape sensing in tissues are therefore unknown. We found that in Drosophila epithelia, tricellular junctions (TCJ) localize microtubule force generators, orienting cell division via the Dynein associated protein Mud independently of the classical Pins/Gαi pathway. Moreover, as cells round up during mitosis, TCJs serve as spatial landmarks, encoding information about interphase cell shape anisotropy to orient division in the rounded mitotic cell. Finally, experimental and simulation data show that shape and mechanical strain sensing by the TCJ emerge from a general geometric property of TCJ distributions in epithelial tissues. Thus, in addition to their function as epithelial barrier structures, TCJs serve as polarity cues promoting geometry and mechanical sensing in epithelial tissues. PMID:26886796

  20. Lactobacillus acidophilus contributes to a healthy environment for vaginal epithelial cells.

    PubMed

    Pi, Woojin; Ryu, Jae-Sook; Roh, Jaesook

    2011-09-01

    Lactobacillus species in the female genital tract are thought to act as a barrier to infection. Several studies have demonstrated that lactobacilli can adhere to vaginal epithelial cells. However, little is known about how the adherence of lactobacilli to vaginal epithelial cells affects the acidity, cell viability, or proliferation of the lactobacilli themselves or those of vaginal epithelial cells. Lactobacillus acidophilus was co-cultured with immortalized human vaginal epithelial cells (MS74 cell line), and the growth of L. acidophilus and the acidity of the culture medium were measured. MS74 cell density and viability were also assessed by counting cell numbers and observing the cell attachment state. L. acidophilus showed exponential growth for the first 6 hr until 9 hr, and the pH was maintained close to 4.0-5.0 at 24 hr after culture, consistent with previous studies. The growth curve of L. acidophilus or the pH values were relatively unaffected by co-culture with MS74 cells, confirming that L. acidophilus maintains a low pH in the presence of MS74 cells. This co-culture model could therefore potentially be used to mimic vaginal conditions for future in vitro studies. On the other hand, MS74 cells co-cultured with L. acidophilus more firmly attached to the culture plate, and a higher number of cells were present compared to cells cultured in the absence of L. acidophilus. These results indicate that L. acidophilus increases MS74 cell proliferation and viability, suggesting that lactobacilli may contribute to the healthy environment for vaginal epithelial cells.

  1. Essentials of oral cancer

    PubMed Central

    Rivera, César

    2015-01-01

    Oral cancer is one of the 10 most common cancers in the world, with a delayed clinical detection, poor prognosis, without specific biomarkers for the disease and expensive therapeutic alternatives. This review aims to present the fundamental aspects of this cancer, focused on squamous cell carcinoma of the oral cavity (OSCC), moving from its definition and epidemiological aspects, addressing the oral carcinogenesis, oral potentially malignant disorders, epithelial precursor lesions and experimental methods for its study, therapies and future challenges. Oral cancer is a preventable disease, risk factors and natural history is already being known, where biomedical sciences and dentistry in particular are likely to improve their poor clinical indicators. PMID:26617944

  2. Essentials of oral cancer.

    PubMed

    Rivera, César

    2015-01-01

    Oral cancer is one of the 10 most common cancers in the world, with a delayed clinical detection, poor prognosis, without specific biomarkers for the disease and expensive therapeutic alternatives. This review aims to present the fundamental aspects of this cancer, focused on squamous cell carcinoma of the oral cavity (OSCC), moving from its definition and epidemiological aspects, addressing the oral carcinogenesis, oral potentially malignant disorders, epithelial precursor lesions and experimental methods for its study, therapies and future challenges. Oral cancer is a preventable disease, risk factors and natural history is already being known, where biomedical sciences and dentistry in particular are likely to improve their poor clinical indicators.

  3. Generation of Mouse Lung Epithelial Cells.

    PubMed

    Kasinski, Andrea L; Slack, Frank J

    2013-08-05

    Although in vivo models are excellent for assessing various facets of whole organism physiology, pathology, and overall response to treatments, evaluating basic cellular functions, and molecular events in mammalian model systems is challenging. It is therefore advantageous to perform these studies in a refined and less costly setting. One approach involves utilizing cells derived from the model under evaluation. The approach to generate such cells varies based on the cell of origin and often the genetics of the cell. Here we describe the steps involved in generating epithelial cells from the lungs of Kras LSL-G12D/+ ; p53 LSL-R172/+ mice (Kasinski and Slack, 2012). These mice develop aggressive lung adenocarcinoma following cre-recombinase dependent removal of a stop cassette in the transgenes and subsequent expression of Kra -G12D and p53 R172 . While this protocol may be useful for the generation of epithelial lines from other genetic backgrounds, it should be noted that the Kras; p53 cell line generated here is capable of proliferating in culture without any additional genetic manipulation that is often needed for less aggressive backgrounds.

  4. Epstein-Barr Virus Infection of Polarized Epithelial Cells via the Basolateral Surface by Memory B Cell-Mediated Transfer Infection

    PubMed Central

    Shannon-Lowe, Claire; Rowe, Martin

    2011-01-01

    Epstein Barr virus (EBV) exhibits a distinct tropism for both B cells and epithelial cells. The virus persists as a latent infection of memory B cells in healthy individuals, but a role for infection of normal epithelial is also likely. Infection of B cells is initiated by the interaction of the major EBV glycoprotein gp350 with CD21 on the B cell surface. Fusion is triggered by the interaction of the EBV glycoprotein, gp42 with HLA class II, and is thereafter mediated by the core fusion complex, gH/gL/gp42. In contrast, direct infection of CD21-negative epithelial cells is inefficient, but efficient infection can be achieved by a process called transfer infection. In this study, we characterise the molecular interactions involved in the three stages of transfer infection of epithelial cells: (i) CD21-mediated co-capping of EBV and integrins on B cells, and activation of the adhesion molecules, (ii) conjugate formation between EBV-loaded B cells and epithelial cells via the capped adhesion molecules, and (iii) interaction of EBV glycoproteins with epithelial cells, with subsequent fusion and uptake of virions. Infection of epithelial cells required the EBV gH and gL glycoproteins, but not gp42. Using an in vitro model of normal polarized epithelia, we demonstrated that polarization of the EBV receptor(s) and adhesion molecules restricted transfer infection to the basolateral surface. Furthermore, the adhesions between EBV-loaded B cells and the basolateral surface of epithelial cells included CD11b on the B cell interacting with heparan sulphate moieties of CD44v3 and LEEP-CAM on epithelial cells. Consequently, transfer infection was efficiently mediated via CD11b-positive memory B cells but not by CD11b–negative naïve B cells. Together, these findings have important implications for understanding the mechanisms of EBV infection of normal and pre-malignant epithelial cells in vivo. PMID:21573183

  5. Novel materials to enhance corneal epithelial cell migration on keratoprosthesis.

    PubMed

    Karkhaneh, Akbar; Mirzadeh, Hamid; Ghaffariyeh, Alireza; Ebrahimi, Abdolali; Honarpisheh, Nazafarin; Hosseinzadeh, Masud; Heidari, Mohammad Hossein

    2011-03-01

    To introduce a new modification for silicone optical core Keratoprosthesis. Using mixtures of 2-hydroxyethyl methacrylate and acrylic acid polydimethylsiloxane (PDMS) films were modified with two-step oxygen plasma treatment, and then type I collagen was immobilised onto this modified surfaces. Both the biocompatibility of the modified films and cell behaviour on the surface of these films were investigated by in vitro tests, and formation of epithelial cell layer was evaluated by implantation of the modified films in the corneas of 10 rabbits. In vitro studies indicated that the number of attached and proliferated cells onto modified PDMS in comparison with the unmodified PDMS significantly increased. Histological studies showed that corneal epithelial cells migrated on the anterior surface of the modified films after 1week. The corneal epithelial cell formed an incomplete monolayer cellular sheet after 10days. A complete epithelialisation on the modified surface was formed after 21days. The epithelial layer persisted on the anterior surface of implant after 1-month and 3-month follow-up. This method may have potential use in silicone optical core Keratoprosthesis.

  6. Morphometric computer-assisted image analysis of epithelial cells in different grades of oral squamous cell carcinoma.

    PubMed

    Ananjan, Chatterjee; Jyothi, Mahadesh; Laxmidevi, B L; Gopinathan, Pillai Arun; Nazir, Salroo Humaira; Pradeep, L

    2018-01-01

    Oral squamous cell carcinoma (OSCC) accounts 94% of all malignant lesions in the oral cavity. In the assessment of OSCC, nowadays the WHO grading system has been followed widely but due to its subjectivity, investigators applied the sophisticated technique of computer-assisted image analysis in the grading of carcinoma in larynx, lungs, esophagus, and cervix to make it more objective. Access, analyze, and compare the cellular area (CA); cytoplasmic area (Cyt A); nuclear area (NA); nuclear perimeter (NP); nuclear form factor (NF); and nuclear-cytoplasmic ratio (N/C) of the cells in different grades of OSCC. Fifty OSCC cases were obtained and stained with hematoxylin and eosin which were graded according to the WHO classification. The sections were subjected to morphometric analysis to analyze all the morphometric parameters in different grades of OSCC and subjected to one-way ANOVA statistical analysis. CA and Cyt A decreased from normal mucosa with dedifferentiation of OSCC. The NA and NP increased in carcinoma group when compared to normal mucosa but decreased with dedifferentiation of OSCC (P < 0.05). NF had no significance with normal mucosa and different grades of OSCC (P > 0.05), while N/C ratio increased from normal mucosa through increasing grades of OSCC, reaching the highest value in poorly differentiated squamous cell carcinoma (P < 0.05). Both cellular and nuclear variables provide a more accurate indication of tumor aggressiveness than any single parameter. Morphometric analysis can be a reliable tool to determine objectively the degree of malignancy at the invasive tumor front.

  7. Comparative study of cell alterations in oral lichen planus and epidermoid carcinoma of the mouth mucosa.

    PubMed

    Sousa, Fernando Augusto Cervantes Garcia de; Paradella, Thaís Cachuté; Brandão, Adriana Aigotti Haberbeck; Rosa, Luiz Eduardo Blumer

    2009-01-01

    Currently, much is discussed regarding the pre-malignant nature of mouth mucosa lichen planus. The present study aims at analyzing the alterations found in the epithelial cells present in the oral cavity lichen planus, comparing them to those found in epidermoid carcinoma. Histological cross-sections of oral lichen planus and epidermoid carcinoma, dyed by hematoxylineosin, were analyzed through light microscopy. The most frequently found alterations in oral lichen planus were: an increase in the nucleus/cytoplasm relation (93.33%), nucleus membrane thickness (86.67%) and bi-nucleus or multinucleous (86.67%). The Student t test (alpha=5%) revealed a statistically significant difference between the average number of cell alterations in oral lichen planus (5.87+/-1.57) and in epidermoid carcinoma (7.60+/-1.81). As to the types of alterations, the chi-squared test also revealed statistically significant differences among the lesions assessed in relation to the following cell alterations: nuclear excess chromatism, atypical mitoses, cellular pleomorphism and abnormal cell differentiation (p<0.05). Despite the fact that in some cases, some pathologists may make mistakes in the histopathological diagnosis of oral lichen planus, the results obtained in this study show that the alterations present in oral lichen planus differ considerably from those seen in epidermoid carcinoma, thus showing how distinct these two diseases are.

  8. Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche.

    PubMed

    Davis, Hayley; Irshad, Shazia; Bansal, Mukesh; Rafferty, Hannah; Boitsova, Tatjana; Bardella, Chiara; Jaeger, Emma; Lewis, Annabelle; Freeman-Mills, Luke; Giner, Francesc Castro; Rodenas-Cuadrado, Pedro; Mallappa, Sreelakshmi; Clark, Susan; Thomas, Huw; Jeffery, Rosemary; Poulsom, Richard; Rodriguez-Justo, Manuel; Novelli, Marco; Chetty, Runjan; Silver, Andrew; Sansom, Owen James; Greten, Florian R; Wang, Lai Mun; East, James Edward; Tomlinson, Ian; Leedham, Simon John

    2015-01-01

    Hereditary mixed polyposis syndrome (HMPS) is characterized by the development of mixed-morphology colorectal tumors and is caused by a 40-kb genetic duplication that results in aberrant epithelial expression of the gene encoding mesenchymal bone morphogenetic protein antagonist, GREM1. Here we use HMPS tissue and a mouse model of the disease to show that epithelial GREM1 disrupts homeostatic intestinal morphogen gradients, altering cell fate that is normally determined by position along the vertical epithelial axis. This promotes the persistence and/or reacquisition of stem cell properties in Lgr5-negative progenitor cells that have exited the stem cell niche. These cells form ectopic crypts, proliferate, accumulate somatic mutations and can initiate intestinal neoplasia, indicating that the crypt base stem cell is not the sole cell of origin of colorectal cancer. Furthermore, we show that epithelial expression of GREM1 also occurs in traditional serrated adenomas, sporadic premalignant lesions with a hitherto unknown pathogenesis, and these lesions can be considered the sporadic equivalents of HMPS polyps.

  9. Ductal cancers of the pancreas frequently express markers of gastrointestinal epithelial cells.

    PubMed

    Sessa, F; Bonato, M; Frigerio, B; Capella, C; Solcia, E; Prat, M; Bara, J; Samloff, I M

    1990-06-01

    It has been found by immunohistochemical staining that antigens normally found in gastric and/or intestinal epithelial cells are expressed in most differentiated duct cell carcinomas of the pancreas. Among 88 such tumors, 93% and 92%, respectively, expressed M1 and cathepsin E, markers of gastric surface-foveolar epithelial cells, 51% expressed pepsinogen II, a marker of gastroduodenal mucopeptic cells, 48% expressed CAR-5, a marker of colorectal epithelial cells, and 35% expressed M3SI, a marker of small intestinal goblet cells. Most of the tumors also expressed normal pancreatic duct antigens; 97% expressed DU-PAN-2, and 59% expressed N-terminus gastrin-releasing peptide. In agreement with these findings, electron microscopy revealed malignant cells with fine structural features of gastric foveolar cells, gastric mucopeptic cells, intestinal goblet cells, intestinal columnar cells, pancreatic duct epithelial cells, and cells with features of more than one cell type. Normal pancreatic duct epithelium did not express any marker of gastrointestinal epithelial cells, whereas such benign lesions as mucinous cell hypertrophy and papillary hyperplasia commonly expressed gut-type antigens but rarely expressed pancreatic duct cell markers. By contrast, lesions characterized by atypical papillary hyperplasia commonly expressed both gastric and pancreatic duct cell markers. Metaplastic pyloric-type glands expressed pepsinogen II and, except for their expression of cathepsin E, were indistinguishable from normal pyloric glands. In marked contrast, the immunohistochemical and ultrastructural features of 14 ductuloacinar cell tumors were those of cells lining terminal ductules, centroacinar cells, and/or acinar cells; none expressed any gut-type antigen. The results indicate that gastrointestinal differentiation is common in both benign and malignant lesions of pancreatic duct epithelium and suggest that duct cell carcinomas are histogenetically related to gastric- and

  10. Characterization of immortalized human mammary epithelial cell line HMEC 2.6.

    PubMed

    Joshi, Pooja S; Modur, Vishnu; Cheng, JiMing; Robinson, Kathy; Rao, Krishna

    2017-10-01

    Primary human mammary epithelial cells have a limited life span which makes it difficult to study them in vitro for most purposes. To overcome this problem, we have developed a cell line that was immortalized using defined genetic elements, and we have characterized this immortalized non-tumorigenic human mammary epithelial cell line to establish it as a potential model system. human mammary epithelial cells were obtained from a healthy individual undergoing reduction mammoplasty at SIU School of Medicine. The cells were transduced with CDK4R24C followed by transduction with human telomerase reverse transcriptase. Post all manipulation, the cells displayed a normal cell cycle phase distribution and were near diploid in nature, which was confirmed by flow cytometry and karyotyping. In vitro studies showed that the cells were anchorage dependent and were non-invasive in nature. The cell line expressed basal epithelial markers such as cytokeratin 7, CD10, and p63 and was negative for the expression of estrogen receptor and progesterone receptor. Upon G-band karyotyping, the cell line displayed the presence of a few cytogenic abnormalities, including trisomy 20 and trisomy 7, which are also commonly present in other immortalized mammary cell lines. Furthermore, the benign nature of these cells was confirmed by multiple in vitro and in vivo experiments. Therefore, we think that this cell line could serve as a good model to understand the molecular mechanisms involved in the development and progression of breast cancer and to also assess the effect of novel therapeutics on human mammary epithelial cells.

  11. Zinc transport by respiratory epithelial cells and interaction with iron homeostasis.

    PubMed

    Deng, Zhongping; Dailey, Lisa A; Soukup, Joleen; Stonehuerner, Jacqueline; Richards, Judy D; Callaghan, Kimberly D; Yang, Funmei; Ghio, Andrew J

    2009-10-01

    Despite recurrent exposure to zinc through inhalation of ambient air pollution particles, relatively little information is known about the homeostasis of this metal in respiratory epithelial cells. We describe zinc uptake and release by respiratory epithelial cells and test the postulate that Zn(2+) transport interacts with iron homeostasis in these same cells. Zn(2+) uptake after 4 and 8 h of exposure to zinc sulfate was concentration- and time-dependent. A majority of Zn(2+) release occurred in the 4 h immediately following cell exposure to ZnSO(4). Regarding metal importers, mRNA for Zip1 and Zip2 showed no change after respiratory epithelial cell exposure to zinc while mRNA for divalent metal transporter (DMT)1 increased. Western blot assay for DMT1 protein supported an elevated expression of this transport protein following zinc exposure. RT-PCR confirmed mRNA for the metal exporters ZnT1 and ZnT4 with the former increasing after ZnSO(4). Cell concentrations of ferritin increased with zinc exposure while oxidative stress, measured as lipid peroxides, was decreased supporting an anti-oxidant function for Zn(2+). Increased DMT1 expression, following pre-incubations of respiratory epithelial cells with TNF-alpha, IFN-gamma, and endotoxin, was associated with significantly decreased intracellular zinc transport. Finally, incubations of respiratory epithelial cells with both zinc sulfate and ferric ammonium citrate resulted in elevated intracellular concentrations of both metals. We conclude that exposure to zinc increases iron uptake by respiratory epithelial cells. Elevations in cell iron can possibly affect an increased expression of DMT1 and ferritin which function to diminish oxidative stress. Comparable to other metal exposures, changes in iron homeostasis may contribute to the biological effects of zinc in specific cells and tissues.

  12. Urokinase and the intestinal mucosa: evidence for a role in epithelial cell turnover

    PubMed Central

    Gibson, P; Birchall, I; Rosella, O; Albert, V; Finch, C; Barkla, D; Young, G

    1998-01-01

    Background—The functions of urokinase in intestinal epithelia are unknown. 
Aims—To determine the relation of urokinase expressed by intestinal epithelial cells to their position in the crypt-villus/surface axis and of mucosal urokinase activity to epithelial proliferative kinetics in the distal colon. 
Methods—Urokinase expression was examined immunohistochemically in human intestinal mucosa. Urokinase activity was measured colorimetrically in epithelial cells isolated sequentially from the crypt-villus axis of the rat small intestine. In separate experiments, urokinase activity and epithelial kinetics (measured stathmokinetically) were measured in homogenates of distal colonic mucosa of 14 groups of eight rats fed diets known to alter epithelial turnover. 
Results—From the crypt base, an ascending gradient of expression and activity of urokinase was associated with the epithelial cells. Median mucosal urokinase activities in each of the dietary groups of rats correlated positively with autologous median number of metaphase arrests per crypt (r=0.68; p<0.005) and per 100 crypt cells (r=0.75; p<0.001), but not with crypt column height. 
Conclusions—Localisation of an enzyme capable of leading to digestion of cell substratum in the region where cells are loosely attached to their basement membrane, and the association of its activity with indexes of cell turnover, suggest a role for urokinase in facilitating epithelial cell loss in the intestine. 

 Keywords: urokinase; intestinal epithelium; colon; epithelial proliferation PMID:9824347

  13. Clathrin-mediated endocytosis and transcytosis of enterotoxigenic Escherichia coli F4 fimbriae in porcine intestinal epithelial cells.

    PubMed

    Rasschaert, Kristien; Devriendt, Bert; Favoreel, Herman; Goddeeris, Bruno M; Cox, Eric

    2010-10-15

    Enterotoxigenic Escherichia coli (ETEC) cause severe diarrhea in neonatal and recently weaned piglets. Previously, we demonstrated that oral immunization of F4 receptor positive piglets with purified F4 fimbriae induces a protective F4-specific intestinal immune response. However, in F4 receptor negative animals no F4-specific immune response can be elicited, indicating that the induction of an F4-specific mucosal immune response upon oral immunisation is receptor-dependent. Although F4 fimbriae undergo transcytosis across the intestinal epithelium in vivo, the endocytosis pathways used remain unknown. In the present study, we characterized the internalization of F4 fimbriae in the porcine intestinal epithelial cell line IPEC-J2. The results in the present study demonstrate that F4 fimbriae are internalized through a clathrin-dependent pathway. Furthermore, our results suggest that F4 fimbriae are transcytosed across differentiated IPEC-J2 cells. This receptor-dependent transcytosis of F4 fimbriae may explain the immunogenicity of these fimbriae upon oral administration in vivo. (c) 2010 Elsevier B.V. All rights reserved.

  14. Distinct signaling pathways leading to the induction of human β-defensin 2 by stimulating an electrolyticaly-generated acid functional water and double strand RNA in oral epithelial cells.

    PubMed

    Gojoubori, Takahiro; Nishio, Yukina; Asano, Masatake; Nishida, Tetsuya; Komiyama, Kazuo; Ito, Koichi

    2014-04-01

    Defensins, a major family of cationic antimicrobial peptides, play important roles in innate immunity. In the present study, we investigated whether double-stranded RNA (dsRNA), a by-product of RNA virus replication, can induce human β-defensins-2 (hBD-2) expression in oral epithelial cells (OECs). We also examined the hBD-2-inducible activity of acid-electrolyzed functional water (FW). The results indicated that both dsRNA- and FW-induced hBD-2 expression in OECs. The induction efficiency was much higher for FW than for dsRNA. FW-induced production of hBD-2 was clearly observed by immunofluorescence staining. A luciferase assay was performed with 1.2 kb of the 5'-untranslated region (5'-UTR) of the hBD-2 gene. The results indicated that the nuclear factor-kappa B (NF-κB)-binding site proximal to the translation initiation site was indispensable for dsRNA-stimulated hBD-2 expression, but not in the case of FW. Moreover, FW-stimulated hBD-2 expression did not depend on NF-κB activity; instead, FW inhibited NF-κB activity. Pretreatment of the cells with specific inhibitors against NF-κB further confirmed NF-κB-independent hBD-2 induction by FW. In analogy to the results for intestinal epithelial cells (IECs), the dsRNA signal, but not FW, was sensed by toll-like receptor 3 (TLR3) in OECs. These results suggested that hBD-2 expression induced by dsRNA and FW is regulated by distinct mechanisms in OECs.

  15. Estradiol Increases Mucus Synthesis in Bronchial Epithelial Cells

    PubMed Central

    Tam, Anthony; Wadsworth, Samuel; Dorscheid, Delbert; Man, Shu-Fan Paul; Sin, Don D.

    2014-01-01

    Airway epithelial mucus hypersecretion and mucus plugging are prominent pathologic features of chronic inflammatory conditions of the airway (e.g. asthma and cystic fibrosis) and in most of these conditions, women have worse prognosis compared with male patients. We thus investigated the effects of estradiol on mucus expression in primary normal human bronchial epithelial cells from female donors grown at an air liquid interface (ALI). Treatment with estradiol in physiological ranges for 2 weeks caused a concentration-dependent increase in the number of PAS-positive cells (confirmed to be goblet cells by MUC5AC immunostaining) in ALI cultures, and this action was attenuated by estrogen receptor beta (ER-β) antagonist. Protein microarray data showed that nuclear factor of activated T-cell (NFAT) in the nuclear fraction of NHBE cells was increased with estradiol treatment. Estradiol increased NFATc1 mRNA and protein in ALI cultures. In a human airway epithelial (1HAE0) cell line, NFATc1 was required for the regulation of MUC5AC mRNA and protein. Estradiol also induced post-translational modification of mucins by increasing total fucose residues and fucosyltransferase (FUT-4, -5, -6) mRNA expression. Together, these data indicate a novel mechanism by which estradiol increases mucus synthesis in the human bronchial epithelium. PMID:24964096

  16. IL-23 secreted by bronchial epithelial cells contributes to allergic sensitization in asthma model: role of IL-23 secreted by bronchial epithelial cells.

    PubMed

    Lee, Hyun Seung; Park, Da-Eun; Lee, Ji-Won; Chang, Yuna; Kim, Hye Young; Song, Woo-Jung; Kang, Hye-Ryun; Park, Heung-Woo; Chang, Yoon-Seok; Cho, Sang-Heon

    2017-01-01

    IL-23 has been postulated to be a critical mediator contributing to various inflammatory diseases. Dermatophagoides pteronyssinus (Der p) is one of the most common inhalant allergens. However, the role of IL-23 in Der p-induced mouse asthma model is not well understood, particularly with regard to the development of allergic sensitization in the airways. The objective of this study was to evaluate roles of IL-23 in Der p sensitization and asthma development. BALB/c mice were repeatedly administered Der p intranasally to develop Der p allergic sensitization and asthma. After Der p local administration, changes in IL-23 expression were examined in lung tissues and primary epithelial cells. Anti-IL-23p19 antibody was given during the Der p sensitization period, and its effects were examined. Effects of anti-IL-23p19 antibody at bronchial epithelial levels were also examined in vitro. The expression of IL-23 at bronchial epithelial layers was increased after Der p local administration in mouse. In Der p-induced mouse models, anti-IL-23p19 antibody treatment during allergen sensitization significantly diminished Der p allergic sensitization and several features of allergic asthma including the production of Th2 cytokines and the population of type 2 innate lymphoid cells in lungs. The activation of dendritic cells in lung-draining lymph nodes was also reduced by anti-IL-23 treatment. In murine lung alveolar type II-like epithelial cell line (MLE-12) cells, IL-23 blockade prevented cytokine responses to Der p stimulation, such as IL-1α, granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-33, and also bone marrow-derived dendritic cell activation. In conclusion, IL-23 is another important bronchial epithelial cell-driven cytokine which may contribute to the development of house dust mite allergic sensitization and asthma. Copyright © 2017 the American Physiological Society.

  17. Y-27632, a ROCK Inhibitor, Promoted Limbal Epithelial Cell Proliferation and Corneal Wound Healing.

    PubMed

    Sun, Chi-Chin; Chiu, Hsiao-Ting; Lin, Yi-Fang; Lee, Kuo-Ying; Pang, Jong-Hwei Su

    2015-01-01

    Transplantation of ex vivo cultured limbal epithelial cells is proven effective in restoring limbal stem cell deficiency. The present study aimed to investigate the promoting effect of Y-27632 on limbal epithelial cell proliferation. Limbal explants isolated from human donor eyes were expanded three weeks on culture dishes and outgrowth of epithelial cells was subsequently subcultured for in vitro experiments. In the presence of Y-27632, the ex vivo limbal outgrowth was accelerated, particularly the cells with epithelial cell-like morphology. Y-27632 dose-dependently promoted the proliferation of in vitro cultured human limbal epithelial cells as examined by phase contrast microscopy and luminescent cell-viability assay 30 hours after the treatment. The colony forming efficacy determined 7 days after the treatment was enhanced by Y-27632 also in a dose-dependent manner. The number of p63- or Ki67-positive cells was dose-dependently increased in Y-27632-treated cultures as detected by immunofluorescent staining and western blotanalysis. Cell cycle analysis by flow cytometric method revealed an increase in S-phase proliferating cells. The epithelial woundclosure rate was shown to be faster in experimental group received topical treatment withY-27632 than the sham control using a rat corneal wounding model. These resultsdemonstrate that Y-27632 can promote both the ex vivo and in vitro proliferation oflimbal epithelial cell proliferation. The in vivo enhanced epithelial wound healingfurther implies that the Y-27632 may act as a new strategy for treating limbal stem cell deficiency.

  18. Characterization of an immortalized human vaginal epithelial cell line.

    PubMed

    Rajan, N; Pruden, D L; Kaznari, H; Cao, Q; Anderson, B E; Duncan, J L; Schaeffer, A J

    2000-02-01

    Adherence of type 1 piliated Escherichia coli to vaginal mucosa plays a major role in the pathogenesis of ascending urinary tract infections (UTIs) in women. Progress in understanding the mechanism of adherence to the vaginal surface could be enhanced by the utilization of well-characterized vaginal epithelial cells. The objective of this study was to immortalize vaginal epithelial cells and study their bacterial adherence properties. Primary vaginal cells were obtained from a normal post-menopausal woman, immortalized by infection with E6/E7 genes from human papillomavirus 16 (HPV 16) and cultured in serum free keratinocyte growth factor medium. Positive immunostaining with a pool of antibodies to cytokeratins 1, 5, 10 and 14 (K1, K5, K10 and K14) and to K13 confirmed the epithelial origin of these cells. The immortalized cells showed binding of type 1 piliated E. coli in a pili specific and mannose sensitive manner. This model system should facilitate studies on the interaction of pathogens with vaginal mucosal cells, an essential step in the progression of ascending UTIs in women.

  19. Thrombin-induced contraction in alveolar epithelial cells probed by traction microscopy.

    PubMed

    Gavara, Núria; Sunyer, Raimon; Roca-Cusachs, Pere; Farré, Ramon; Rotger, Mar; Navajas, Daniel

    2006-08-01

    Contractile tension of alveolar epithelial cells plays a major role in the force balance that regulates the structural integrity of the alveolar barrier. The aim of this work was to study thrombin-induced contractile forces of alveolar epithelial cells. A549 alveolar epithelial cells were challenged with thrombin, and time course of contractile forces was measured by traction microscopy. The cells exhibited basal contraction with total force magnitude 55.0 +/- 12.0 nN (mean +/- SE, n = 12). Traction forces were exerted predominantly at the cell periphery and pointed to the cell center. Thrombin (1 U/ml) induced a fast and sustained 2.5-fold increase in traction forces, which maintained peripheral and centripetal distribution. Actin fluorescent staining revealed F-actin polymerization and enhancement of peripheral actin rim. Disruption of actin cytoskeleton with cytochalasin D (5 microM, 30 min) and inhibition of myosin light chain kinase with ML-7 (10 microM, 30 min) and Rho kinase with Y-27632 (10 microM, 30 min) markedly depressed basal contractile tone and abolished thrombin-induced cell contraction. Therefore, the contractile response of alveolar epithelial cells to the inflammatory agonist thrombin was mediated by actin cytoskeleton remodeling and actomyosin activation through myosin light chain kinase and Rho kinase signaling pathways. Thrombin-induced contractile tension might further impair alveolar epithelial barrier integrity in the injured lung.

  20. Lymphangioma circumscriptum, angiokeratoma, or superficial vascular ectasia with epithelial hyperplasia?

    PubMed

    Katsoulas, Nikolaos; Tosios, Konstantinos I; Argyris, Prokopios; Koutlas, Ioannis G; Sklavounou, Alexandra

    2014-08-01

    We report a case of lymphangioma circumscriptum (cavernous lymphangioma with epithelial hyperplasia) in a 12-year-old girl, presenting as a papillary tumor on the right dorsal side of her tongue. Microscopic examination found cavernous vascular channels lined by a single layer of CD31(+), podoplanin-positive, CD34(-) endothelial cells that occupied the papillary lamina propria and were accompanied by epithelial hyperplasia. A review of the literature on oral vascular tumors with epithelial hyperplasia, namely, lymphangioma circumscriptum and angiokeratoma, provided information that draws into question the use of these terms. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Emodin suppresses TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells through Notch signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Rundi; Chen, Ruilin; Cao, Yu

    Pulmonary fibrosis is characterized by the destruction of lung tissue architecture and the formation of fibrous foci, currently has no satisfactory treatment. Emodin is a component of Chinese herb that has been reported to be medicament on pancreatic fibrosis and liver fibrosis. However, its role in pulmonary fibrosis has not been established yet. In the present study, we investigated the hypothesis that Emodin plays an inhibitory role in TGF-β1 induced epithelial-mesenchymal transition (EMT) of alveolar epithelial cell, and Emodin exerts its effect through the Notch signaling pathway. Emodin inhibits the proliferation of Rat alveolar type II epithelial cells RLE-6TN inmore » a concentration-dependent manner; reduces the expression of Collagen I, α-SMA and Vimentin, promotes the expression of E-cadherin. Moreover, Emodin could regulate the expression patterns of the Notch signaling pathway-related factors and reduce the Notch-1 nucleus translocation. Knockdown of Notch-1 enhances the inhibitory effect of Emodin on TGF-β1-induced EMT in RLE-6TN cells. In conclusion, the data of the present study suggests that Emodin suppresses TGF-β1-induced EMT in alveolar epithelial cells through Notch signaling pathway and shows the potential to be effective in the treatment of pulmonary fibrosis. - Highlights: • Emodin inhibits TGF-β1-induced EMT in alveolar epithelial cells. • Emodin regulates the expression patterns of the Notch signaling pathway-related factors. • Emodin inhibits TGF-β1-induced Notch-1 nucleus translocation and activation.« less

  2. Development of human epithelial cell systems for radiation risk assessment

    NASA Astrophysics Data System (ADS)

    Yang, C. H.; Craise, L. M.

    1994-10-01

    The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-LET radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic transformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells.

  3. Generation of Alveolar Epithelial Spheroids via Isolated Progenitor Cells from Human Pluripotent Stem Cells

    PubMed Central

    Gotoh, Shimpei; Ito, Isao; Nagasaki, Tadao; Yamamoto, Yuki; Konishi, Satoshi; Korogi, Yohei; Matsumoto, Hisako; Muro, Shigeo; Hirai, Toyohiro; Funato, Michinori; Mae, Shin-Ichi; Toyoda, Taro; Sato-Otsubo, Aiko; Ogawa, Seishi; Osafune, Kenji; Mishima, Michiaki

    2014-01-01

    Summary No methods for isolating induced alveolar epithelial progenitor cells (AEPCs) from human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have been reported. Based on a study of the stepwise induction of alveolar epithelial cells (AECs), we identified carboxypeptidase M (CPM) as a surface marker of NKX2-1+ “ventralized” anterior foregut endoderm cells (VAFECs) in vitro and in fetal human and murine lungs. Using SFTPC-GFP reporter hPSCs and a 3D coculture system with fetal human lung fibroblasts, we showed that CPM+ cells isolated from VAFECs differentiate into AECs, demonstrating that CPM is a marker of AEPCs. Moreover, 3D coculture differentiation of CPM+ cells formed spheroids with lamellar-body-like structures and an increased expression of surfactant proteins compared with 2D differentiation. Methods to induce and isolate AEPCs using CPM and consequently generate alveolar epithelial spheroids would aid human pulmonary disease modeling and regenerative medicine. PMID:25241738

  4. Inhibition of PTP1B disrupts cell-cell adhesion and induces anoikis in breast epithelial cells.

    PubMed

    Hilmarsdottir, Bylgja; Briem, Eirikur; Halldorsson, Skarphedinn; Kricker, Jennifer; Ingthorsson, Sævar; Gustafsdottir, Sigrun; Mælandsmo, Gunhild M; Magnusson, Magnus K; Gudjonsson, Thorarinn

    2017-05-11

    Protein tyrosine phosphatase 1B (PTP1B) is a well-known inhibitor of insulin signaling pathways and inhibitors against PTP1B are being developed as promising drug candidates for treatment of obesity. PTP1B has also been linked to breast cancer both as a tumor suppressor and as an oncogene. Furthermore, PTP1B has been shown to be a regulator of cell adhesion and migration in normal and cancer cells. In this study, we analyzed the PTP1B expression in normal breast tissue, primary breast cells and the breast epithelial cell line D492. In normal breast tissue and primary breast cells, PTP1B is widely expressed in both epithelial and stromal cells, with highest expression in myoepithelial cells and fibroblasts. PTP1B is widely expressed in branching structures generated by D492 when cultured in 3D reconstituted basement membrane (3D rBM). Inhibition of PTP1B in D492 and another mammary epithelial cell line HMLE resulted in reduced cell proliferation and induction of anoikis. These changes were seen when cells were cultured both in monolayer and in 3D rBM. PTP1B inhibition affected cell attachment, expression of cell adhesion proteins and actin polymerization. Moreover, epithelial to mesenchymal transition (EMT) sensitized cells to PTP1B inhibition. A mesenchymal sublines of D492 and HMLE (D492M and HMLEmes) were more sensitive to PTP1B inhibition than D492 and HMLE. Reversion of D492M to an epithelial state using miR-200c-141 restored resistance to detachment induced by PTP1B inhibition. In conclusion, we have shown that PTP1B is widely expressed in the human breast gland with highest expression in myoepithelial cells and fibroblasts. Inhibition of PTP1B in D492 and HMLE affects cell-cell adhesion and induces anoikis-like effects. Finally, cells with an EMT phenotype are more sensitive to PTP1B inhibitors making PTP1B a potential candidate for further studies as a target for drug development in cancer involving the EMT phenotype.

  5. Establishment and characterization of a lactating dairy goat mammary gland epithelial cell line.

    PubMed

    Tong, Hui-Li; Li, Qing-Zhang; Gao, Xue-Jun; Yin, De-Yun

    2012-03-01

    To study milk synthesis in dairy goat mammary gland, we had established an in vitro lactating dairy goat mammary epithelial cell (DGMEC) line. Mammary tissues of Guan Zhong dairy goats at 35 d of lactation were dispersed and cultured in a medium containing epithelial growth factor, insulin-like growth factor-1, insulin transferrin serum, and fetal bovine serum. Epithelial cells were enriched by digesting with 0.25% trypsin repeatedly to remove fibroblast cells and were identified as epithelial origin by staining with antibody against cytokeratine 18. The DGMECs displayed monolayer, cobble-stone, epithelial-like morphology, and formed alveoli-like structures and island monolayer aggregates which were the typical characteristics of mammary epithelial cells. A one-half logarithmically growth curve and cytoplasmic lipid droplets in these cells were observed. In this paper, we also studied the lactating function of DGMECs. Results showed that DGMECs could secrete lactose and β-casein. Lactating function of the cells had no obvious change after 48 h treated by insulin, while prolactin could obviously raise the secretion of milk proteins and lactose.

  6. Yersinia enterocolitica-Induced Interleukin-8 Secretion by Human Intestinal Epithelial Cells Depends on Cell Differentiation

    PubMed Central

    Schulte, Ralf; Autenrieth, Ingo B.

    1998-01-01

    In response to bacterial entry epithelial cells up-regulate expression and secretion of various proinflammatory cytokines, including interleukin-8 (IL-8). We studied Yersinia enterocolitica O:8-induced IL-8 secretion by intestinal epithelial cells as a function of cell differentiation. For this purpose, human T84 intestinal epithelial cells were grown on permeable supports, which led to the formation of tight monolayers of polarized intestinal epithelial cells. To analyze IL-8 secretion as a function of cell differentiation, T84 monolayers were infected from the apical or basolateral side at different stages of differentiation. Both virulent (plasmid-carrying) and nonvirulent (plasmid-cured) Y. enterocolitica strains invaded nondifferentiated T84 cells from the apical side. Yersinia invasion into T84 cells was followed by secretion of IL-8. After polarized differentiation of T84 cells Y. enterocolitica was no longer able to invade from the apical side or to induce IL-8 secretion by T84 cells. However, Y. enterocolitica invaded and induced IL-8 secretion by polarized T84 cells after infection from the basolateral side. Basolateral invasion required the presence of the Yersinia invasion locus, inv, suggesting β1 integrin-mediated cell invasion. After basolateral infection, Yersinia-induced IL-8 secretion was not strictly dependent on cell invasion. Thus, although the plasmid-carrying Y. enterocolitica strain did not significantly invade T84 cells, it induced significant IL-8 secretion. Taken together, these data show that Yersinia-triggered IL-8 secretion by intestinal epithelial cells depends on cell differentiation and might be induced by invasion as well as by basolateral adhesion, suggesting that invasion is not essential for triggering IL-8 production. Whether IL-8 secretion is involved in the pathogenesis of Yersinia-induced abscess formation in Peyer’s patch tissue remains to be shown. PMID:9488416

  7. A role for the substance P/NK-1 receptor complex in cell proliferation and apoptosis in oral lichen planus.

    PubMed

    González Moles, M A; Esteban, F; Ruiz-Avila, I; Gil Montoya, J A; Brener, S; Bascones-Martínez, A; Muñoz, M

    2009-03-01

    To determine whether substance P (SP) and NK-1 receptor (NK-1R) are expressed in oral lichen planus (OLP) and are related to cell proliferation and apoptosis in this disease. Tissue samples from 50 OLP patients and 26 healthy controls were studied. Immunohistochemistry was performed with anti-SP, anti-NK-1R, anti-ki-67 and anti-caspase-3 monoclonal antibodies and the clinical and pathological data of the OLP patients were evaluated. With the exception of NK-1R expression in epithelial cell membrane and cytoplasm, all markers were more frequently present in OLP patients than in controls (P < 0.05). Higher cytoplasmatic expression of NK-1R was associated with higher epithelial expression of caspase-3 (P < 0.05). Higher epithelial expression of NK-1R and SP was associated with higher suprabasal and basal epithelial expression of ki-67 (P < 0.05 and P < 0.005, respectively). Actions of the SP/NK-1R complex may contribute to the immune disorder underlying OLP and trigger stimuli to induce cell proliferation. These results indicate that this complex might play a role in the malignant transformation of OLP.

  8. Generation of SV40-transformed rabbit tracheal-epithelial-cell-derived blastocyst by somatic cell nuclear transfer

    PubMed Central

    de Semir, D.; Maurisse, R.; Du, F.; Xu, J.; Yang, X.; Illek, B.; Gruenert, D. C.

    2013-01-01

    The prospect of developing large animal models for the study of inherited diseases, such as cystic fibrosis (CF), through somatic cell nuclear transfer (SCNT) has opened up new opportunities for enhancing our understanding of disease pathology and for identifying new therapies. Thus, the development of species-specific in vitro cell systems that will provide broader insight into organ- and cell-type-specific functions relevant to the pathology of the disease is crucial. Studies have been undertaken to establish transformed rabbit airway epithelial cell lines that display differentiated features characteristic of the primary airway epithelium. This study describes the successful establishment and characterization of two SV40-transformed rabbit tracheal epithelial cell lines. These cell lines, 5RTEo- and 9RTEo-, express the CF transmembrane conductance regulator (CFTR) gene, retain epithelial-specific differentiated morphology and show CFTR-based cAMP-dependent Cl− ion transport across the apical membrane of a confluent monolayer. Immunocytochemical analysis indicates the presence of airway cytokeratins and tight-junction proteins in the 9RTEo- cell line after multiple generations. However, the tight junctions appear to diminish in their efficacy in both cell lines after at least 100 generations. Initial SCNT studies with the 9RTEo- cells have revealed that SV40-transformed rabbit airway epithelial donor cells can be used to generate blastocysts. These cell systems provide valuable models for studying the developmental and metabolic modulation of CFTR gene expression and rabbit airway epithelial cell biology. PMID:22234514

  9. Curcumin inhibits interferon-γ signaling in colonic epithelial cells

    PubMed Central

    Midura-Kiela, Monica T.; Radhakrishnan, Vijayababu M.; Larmonier, Claire B.; Laubitz, Daniel; Ghishan, Fayez K.

    2012-01-01

    Curcumin (diferulolylmethane) is an anti-inflammatory phenolic compound found effective in preclinical models of inflammatory bowel diseases (IBD) and in ulcerative colitis patients. Pharmacokinetics of curcumin and its poor systemic bioavailability suggest that it targets preferentially intestinal epithelial cells. The intestinal epithelium, an essential component of the gut innate defense mechanisms, is profoundly affected by IFN-γ, which can disrupt the epithelial barrier function, prevent epithelial cell migration and wound healing, and prime epithelial cells to express major histocompatibility complex class II (MHC-II) molecules and to serve as nonprofessional antigen-presenting cells. In this report we demonstrate that curcumin inhibits IFN-γ signaling in human and mouse colonocytes. Curcumin inhibited IFN-γ-induced gene transcription, including CII-TA, MHC-II genes (HLA-DRα, HLA-DPα1, HLA-DRβ1), and T cell chemokines (CXCL9, 10, and 11). Acutely, curcumin inhibited Stat1 binding to the GAS cis-element, prevented Stat1 nuclear translocation, and reduced Jak1 phosphorylation and phosphorylation of Stat1 at Tyr701. Longer exposure to curcumin led to endocytic internalization of IFNγRα followed by lysosomal fusion and degradation. In summary, curcumin acts as an IFN-γ signaling inhibitor in colonocytes with biphasic mechanisms of action, a phenomenon that may partially account for the beneficial effects of curcumin in experimental colitis and in human IBD. PMID:22038826

  10. Macrophage phenotypic subtypes diametrically regulate epithelial-mesenchymal plasticity in breast cancer cells.

    PubMed

    Yang, Min; Ma, Bo; Shao, Hanshuang; Clark, Amanda M; Wells, Alan

    2016-07-07

    Metastatic progression of breast cancer involves phenotypic plasticity of the carcinoma cells moving between epithelial and mesenchymal behaviors. During metastatic seeding and dormancy, even highly aggressive carcinoma cells take on an E-cadherin-positive epithelial phenotype that is absent from the emergent, lethal metastatic outgrowths. These phenotypes are linked to the metastatic microenvironment, though the specific cells and induction signals are still to be deciphered. Recent evidence suggests that macrophages impact tumor progression, and may alter the balance between cancer cell EMT and MErT in the metastatic microenvironment. Here we explore the role of M1/M2 macrophages in epithelial-mesenchymal plasticity of breast cancer cells by coculturing epithelial and mesenchymal cells lines with macrophages. We found that after polarizing the THP-1 human monocyte cell line, the M1 and M2-types were stable and maintained when co-cultured with breast cancer cells. Surprisingly, M2 macrophages may conferred a growth advantage to the epithelial MCF-7 cells, with these cells being driven to a partial mesenchymal phenotypic as indicated by spindle morphology. Notably, E-cadherin protein expression is significantly decreased in MCF-7 cells co-cultured with M2 macrophages. M0 and M1 macrophages had no effect on the MCF-7 epithelial phenotype. However, the M1 macrophages impacted the highly aggressive mesenchymal-like MDA-MB-231 breast cancer cells to take on a quiescent, epithelial phenotype with re-expression of E-cadherin. The M2 macrophages if anything exacerbated the mesenchymal phenotype of the MDA-MB-231 cells. Our findings demonstrate M2 macrophages might impart outgrowth and M1 macrophages may contribute to dormancy behaviors in metastatic breast cancer cells. Thus EMT and MErT are regulated by selected macrophage phenotype in the liver metastatic microenvironment. These results indicate macrophage could be a potential therapeutic target for limiting death due

  11. In-vivo nonlinear optical microscopy (NLOM) of epithelial-connective tissue interface (ECTI) reveals quantitative measures of neoplasia in hamster oral mucosa.

    PubMed

    Pal, Rahul; Yang, Jinping; Ortiz, Daniel; Qiu, Suimin; Resto, Vicente; McCammon, Susan; Vargas, Gracie

    2015-01-01

    The epithelial-connective tissue interface (ECTI) plays an integral role in epithelial neoplasia, including oral squamous cell carcinoma (OSCC). This interface undergoes significant alterations due to hyperproliferating epithelium that supports the transformation of normal epithelium to precancers and cancer. We present a method based on nonlinear optical microscopy to directly assess the ECTI and quantify dysplastic alterations using a hamster model for oral carcinogenesis. Neoplastic and non-neoplastic normal mucosa were imaged in-vivo by both multiphoton autofluorescence microscopy (MPAM) and second harmonic generation microscopy (SHGM) to obtain cross-sectional reconstructions of the oral epithelium and lamina propria. Imaged sites were biopsied and processed for histopathological grading and measurement of ECTI parameters. An ECTI shape parameter was calculated based on deviation from the linear geometry (ΔLinearity) seen in normal mucosa was measured using MPAM-SHGM and histology. The ECTI was readily visible in MPAM-SHGM and quantitative shape analysis showed ECTI deformation in dysplasia but not in normal mucosa. ΔLinearity was significantly (p < 0.01) higher in dysplasia (0.41±0.24) than normal (0.11±0.04) as measured in MPAM-SHGM and results were confirmed in histology which showed similar trends in ΔLinearity. Increase in ΔLinearity was also statistically significant for different grades of dysplasia. In-vivo ΔLinearity measurement alone from microscopy discriminated dysplasia from normal tissue with 87.9% sensitivity and 97.6% specificity, while calculations from histology provided 96.4% sensitivity and 85.7% specificity. Among other quantifiable architectural changes, a progressive statistically significant increase in epithelial thickness was seen with increasing grade of dysplasia. MPAM-SHGM provides new noninvasive ways for direct characterization of ECTI which may be used in preclinical studies to investigate the role of this interface in

  12. Apoptosis resistance in epithelial tumors is mediated by tumor-cell-derived interleukin-4.

    PubMed

    Todaro, M; Lombardo, Y; Francipane, M G; Alea, M Perez; Cammareri, P; Iovino, F; Di Stefano, A B; Di Bernardo, C; Agrusa, A; Condorelli, G; Walczak, H; Stassi, G

    2008-04-01

    We investigated the mechanisms involved in the resistance to cell death observed in epithelial cancers. Here, we identify that primary epithelial cancer cells from colon, breast and lung carcinomas express high levels of the antiapoptotic proteins PED, cFLIP, Bcl-xL and Bcl-2. These cancer cells produced interleukin-4 (IL-4), which amplified the expression levels of these antiapoptotic proteins and prevented cell death induced upon exposure to TRAIL or other drug agents. IL-4 blockade resulted in a significant decrease in the growth rate of epithelial cancer cells and sensitized them, both in vitro and in vivo, to apoptosis induction by TRAIL and chemotherapy via downregulation of the antiapoptotic factors PED, cFLIP, Bcl-xL and Bcl-2. Furthermore, we provide evidence that exogenous IL-4 was able to upregulate the expression levels of these antiapoptotic proteins and potently stabilized the growth of normal epithelial cells rendering them apoptosis resistant. In conclusion, IL-4 acts as an autocrine survival factor in epithelial cells. Our results indicate that inhibition of IL-4/IL-4R signaling may serve as a novel treatment for epithelial cancers.

  13. Lung epithelial stem cells and their niches: Fgf10 takes center stage.

    PubMed

    Volckaert, Thomas; De Langhe, Stijn

    2014-01-01

    Throughout life adult animals crucially depend on stem cell populations to maintain and repair their tissues to ensure life-long organ function. Stem cells are characterized by their capacity to extensively self-renew and give rise to one or more differentiated cell types. These powerful stem cell properties are key to meet the changing demand for tissue replacement during normal lung homeostasis and regeneration after lung injury. Great strides have been made over the last few years to identify and characterize lung epithelial stem cells as well as their lineage relationships. Unfortunately, knowledge on what regulates the behavior and fate specification of lung epithelial stem cells is still limited, but involves communication with their microenvironment or niche, a local tissue environment that hosts and influences the behaviors or characteristics of stem cells and that comprises other cell types and extracellular matrix. As such, an intimate and dynamic epithelial-mesenchymal cross-talk, which is also essential during lung development, is required for normal homeostasis and to mount an appropriate regenerative response after lung injury. Fibroblast growth factor 10 (Fgf10) signaling in particular seems to be a well-conserved signaling pathway governing epithelial-mesenchymal interactions during lung development as well as between different adult lung epithelial stem cells and their niches. On the other hand, disruption of these reciprocal interactions leads to a dysfunctional epithelial stem cell-niche unit, which may culminate in chronic lung diseases such as chronic obstructive pulmonary disease (COPD), chronic asthma and idiopathic pulmonary fibrosis (IPF).

  14. Separation of malignant human breast cancer epithelial cells from healthy epithelial cells using an advanced dielectrophoresis-activated cell sorter (DACS).

    PubMed

    An, Jaemin; Lee, Jangwon; Lee, Sang Ho; Park, Jungyul; Kim, Byungkyu

    2009-06-01

    In this paper, we successfully separated malignant human breast cancer epithelial cells (MCF 7) from healthy breast cells (MCF 10A) and analyzed the main parameters that influence the separation efficiency with an advanced dielectrophoresis (DEP)-activated cell sorter (DACS). Using the efficient DACS, the malignant cancer cells (MCF 7) were isolated successfully by noninvasive methods from normal cells with similar cell size distributions (MCF 10A), depending on differences between their material properties such as conductivity and permittivity, because our system was able to discern the subtle differences in the properties by generating continuously changed electrical field gradients. In order to evaluate the separation performance without considering size variations, the cells collected from each outlet were divided into size-dependent groups and counted statistically. Following that, the quantitative relative ratio of numbers between MCF 7 and MCF 10A cells in each size-dependent group separated by the DEP were compared according to applied frequencies in the range 48, 51, and 53 MHz with an applied amplitude of 8 V(pp). Finally, under the applied voltage of 48 MHz-8 V(pp) and a flow rate of 290 microm/s, MCF 7 and MCF 10A cells were separated with a maximum efficiency of 86.67% and 98.73% respectively. Therefore, our suggested system shows it can be used for detection and separation of cancerous epithelial cells from noncancerous cells in clinical applications.

  15. The status of intercellular junctions in established lens epithelial cell lines.

    PubMed

    Dave, Alpana; Craig, Jamie E; Sharma, Shiwani

    2012-01-01

    Cataract is the major cause of vision-related disability worldwide. Mutations in the crystallin genes are the most common known cause of inherited congenital cataract. Mutations in the genes associated with intercellular contacts, such as Nance-Horan Syndrome (NHS) and Ephrin type A receptor-2 (EPHA2), are other recognized causes of congenital cataract. The EPHA2 gene has been also associated with age-related cataract, suggesting that intercellular junctions are important in not only lens development, but also in maintaining lens transparency. The purpose of this study was to analyze the expression and localization of the key cell junction and cytoskeletal proteins, and of NHS and EPHA2, in established lens epithelial cell lines to determine their suitability as model epithelial systems for the functional investigation of genes involved in intercellular contacts and implicated in cataract. The expression and subcellular localization of occludin and zona occludens protein-1 (ZO-1), which are associated with tight junctions; E-cadherin, which is associated with adherence junctions; and the cytoskeletal actin were analyzed in monolayers of a human lens epithelial cell line (SRA 01/04) and a mouse lens epithelial cell line (αTN4). In addition, the expression and subcellular localization of the NHS and EPHA2 proteins were analyzed in these cell lines. Protein or mRNA expression was respectively determined by western blotting or reverse transcription-polymerase chain reaction (RT-PCR), and localization was determined by immunofluorescence labeling. Human SRA 01/04 and mouse αTN4 lens epithelial cells expressed either the proteins of interest or their encoding mRNA. Occludin, ZO-1, and NHS proteins localized to the cellular periphery, whereas E-cadherin, actin, and EPHA2 localized in the cytoplasm in these cell lines. The human SRA 01/04 and mouse αTN4 lens epithelial cells express the key junctional proteins. The localization patterns of these proteins suggest that

  16. Study of some invasiveness markers as pathogenic factors in oral pseudoepitheliomatous hyperplasia.

    PubMed

    Pascu, Roxana Maria; Mărgăritescu, Claudiu; CrăiŢoiu, Monica Mihaela; Florescu, Alma Maria; Croitoru, Ileana Cristiana; Bobic, Adelina Gabriela; Pătru, Ciprian LaurenŢiu; Mălăescu, Gheorghe Dan; CrăiŢoiu, Ştefania

    2016-01-01

    Pseudoepitheliomatous hyperplasia is a benign reactivated epithelial lesion secondary to another pathology, whose incidence is difficult to establish. There still exist controversies regarding the origin and pathogenesis of these lesions. For this purpose, we performed an immuno-histochemical study upon 20 cases of oral pseudoepitheliomatous hyperplasia associated with inflammatory and neoplastic conditions, investigating a series of markers with a possible pathogenic potential in developing this type of lesions. Thus, the immunoreactivity study for β-catenin showed the presence of a membrane reactivity in all the stratum spinosum and a predominantly cytoplasmatic reactivity, more rarely a nuclear one, in the cells of the basal stratum cells, especially in the epithelial apices that descend deeply in the chorion. Instead, in the case of vimentin, the reactivity was present only in the epithelial apices, especially in the peripheral cells, in comparison to the central ones, and especially in the cases where the epithelial apices descended deeply in the sublesional chorion. Moreover, we observed that the MMP9 reactivity in pseudoepitheliomatous hyperplasia lesions was present in the cells at the epithelium-chorion interface and especially in the epithelial apices that descend deeply into the chorion, and also in the epithelial chorion and networks. The study for CXCR4 immuno-reactivity showed a good reactivity in almost all layers of this hyperplastic lesion, with a maximum reactivity especially inside the epithelial apices that descend deeply in the sublesional chorion. Such an immunoprofile suggests the ability of the oral epithelial cells to undergo an epithelial mesenchymal transition process, thus acquiring mesenchymal characteristics through which it deeply migrates in the subadjacent chorion and contributes to the formation of epithelial apices in pseudoepitheliomatous hyperplasia. Moreover, the invasive ability of these lesions is also given by the average

  17. Serratia marcescens is injurious to intestinal epithelial cells.

    PubMed

    Ochieng, John B; Boisen, Nadia; Lindsay, Brianna; Santiago, Araceli; Ouma, Collins; Ombok, Maurice; Fields, Barry; Stine, O Colin; Nataro, James P

    2014-01-01

    Diarrhea causes substantial morbidity and mortality in children in low-income countries. Although numerous pathogens cause diarrhea, the etiology of many episodes remains unknown. Serratia marcescens is incriminated in hospital-associated infections, and HIV/AIDS associated diarrhea. We have recently found that Serratia spp. may be found more commonly in the stools of patients with diarrhea than in asymptomatic control children. We therefore investigated the possible enteric pathogenicity of S. marcescens in vitro employing a polarized human colonic epithelial cell (T84) monolayer. Infected monolayers were assayed for bacterial invasion, transepithelial electrical resistance (TEER), cytotoxicity, interleukin-8 (IL-8) release and morphological changes by scanning electron microscopy. We observed significantly greater epithelial cell invasion by S. marcescens compared to Escherichia coli strain HS (p = 0.0038 respectively). Cell invasion was accompanied by reduction in TEER and secretion of IL-8. Lactate dehydrogenase (LDH) extracellular concentration rapidly increased within a few hours of exposure of the monolayer to S. marcescens. Scanning electron microscopy of S. marcescens-infected monolayers demonstrated destruction of microvilli and vacuolization. Our results suggest that S. marcescens interacts with intestinal epithelial cells in culture and induces dramatic alterations similar to those produced by known enteric pathogens.

  18. Amphiregulin suppresses epithelial cell apoptosis in lipopolysaccharide-induced lung injury in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogata-Suetsugu, Saiko; Yanagihara, Toyoshi; Hamada, Naoki

    Background and objective: As a member of the epidermal growth factor family, amphiregulin contributes to the regulation of cell proliferation. Amphiregulin was reported to be upregulated in damaged lung tissues in patients with chronic obstructive pulmonary disease and asthma and in lung epithelial cells in a ventilator-associated lung injury model. In this study, we investigated the effect of amphiregulin on lipopolysaccharide (LPS)-induced acute lung injury in mice. Methods: Acute lung injury was induced by intranasal instillation of LPS in female C57BL/6 mice, and the mice were given intraperitoneal injections of recombinant amphiregulin or phosphate-buffered saline 6 and 0.5 h before andmore » 3 h after LPS instillation. The effect of amphiregulin on apoptosis and apoptotic pathways in a murine lung alveolar type II epithelial cell line (LA-4 cells) were examined using flow cytometry and western blotting, respectively. Results: Recombinant amphiregulin suppressed epithelial cell apoptosis in LPS-induced lung injury in mice. Western blotting revealed that amphiregulin suppressed epithelial cell apoptosis by inhibiting caspase-8 activity. Conclusion: Amphiregulin signaling may be a therapeutic target for LPS-induced lung injury treatment through its prevention of epithelial cell apoptosis. - Highlights: • Amphiregulin suppresses epithelial cell apoptosis in LPS-induced lung injury in mice. • The mechanism relies on inhibiting caspase-8 activity. • Amphiregulin signaling may be a therapeutic target for LPS-induced lung injury.« less

  19. Ex vivo gut culture for studying differentiation and migration of small intestinal epithelial cells

    PubMed Central

    Fu, Xing; Du, Min

    2018-01-01

    Epithelial cultures are commonly used for studying gut health. However, due to the absence of mesenchymal cells and gut structure, epithelial culture systems including recently developed three-dimensional organoid culture cannot accurately represent in vivo gut development, which requires intense cross-regulation of the epithelial layer with the underlying mesenchymal tissue. In addition, organoid culture is costly. To overcome this, a new culture system was developed using mouse embryonic small intestine. Cultured intestine showed spontaneous peristalsis, indicating the maintenance of the normal gut physiological structure. During 10 days of ex vivo culture, epithelial cells moved along the gut surface and differentiated into different epithelial cell types, including enterocytes, Paneth cells, goblet cells and enteroendocrine cells. We further used the established ex vivo system to examine the role of AMP-activated protein kinase (AMPK) on gut epithelial health. Tamoxifen-induced AMPKα1 knockout vastly impaired epithelial migration and differentiation of the developing ex vivo gut, showing the crucial regulatory function of AMPK α1 in intestinal health. PMID:29643147

  20. CCAAT/enhancer binding protein beta (C/EBPβ) isoform balance as a regulator of epithelial-mesenchymal transition in mouse mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, Yuka; Hagiwara, Natsumi; Radisky, Derek C.

    2014-09-10

    Activation of the epithelial-mesenchymal transition (EMT) program promotes cell invasion and metastasis, and is reversed through mesenchymal-epithelial transition (MET) after formation of distant metastases. Here, we show that an imbalance of gene products encoded by the transcriptional factor C/EBPβ, LAP (liver-enriched activating protein) and LIP (liver-enriched inhibitory protein), can regulate both EMT- and MET-like phenotypic changes in mouse mammary epithelial cells. By using tetracycline repressive LIP expression constructs, we found that SCp2 cells, a clonal epithelial line of COMMA1-D cells, expressed EMT markers, lost the ability to undergo alveolar-like morphogenesis in 3D Matrigel, and acquired properties of benign adenoma cells.more » Conversely, we found that inducible expression of LAP in SCg6 cells, a clonal fibroblastic line of COMMA1-D cells, began to express epithelial keratins with suppression of proliferation. The overexpression of the C/EBPβ gene products in these COMMA1-D derivatives was suppressed by long-term cultivation on tissue culture plastic, but gene expression was maintained in cells grown on Matrigel or exposed to proteasome inhibitors. Thus, imbalances of C/EBPβ gene products in mouse mammary epithelial cells, which are affected by contact with basement membrane, are defined as a potential regulator of metastatic potential. - Highlights: • We created a temporal imbalance of C/EBPβ gene products in the mammary model cells. • The temporal up-regulation of LIP protein induced EMT-like cell behaviors. • The temporal up-regulation of LAP protein induced MET-like cell behaviors. • Excess amount of C/EBPβ gene products were eliminated by proteasomal-degradation. • Basement membrane components attenuated proteasome-triggered protein elimination.« less

  1. The Interplay between Entamoeba and Enteropathogenic Bacteria Modulates Epithelial Cell Damage

    PubMed Central

    Galván-Moroyoqui, José Manuel; Domínguez-Robles, M. del Carmen; Franco, Elizabeth; Meza, Isaura

    2008-01-01

    Background Mixed intestinal infections with Entamoeba histolytica, Entamoeba dispar and bacteria with exacerbated manifestations of disease are common in regions where amoebiasis is endemic. However, amoeba–bacteria interactions remain largely unexamined. Methodology Trophozoites of E. histolytica and E. dispar were co-cultured with enteropathogenic bacteria strains Escherichia coli (EPEC), Shigella dysenteriae and a commensal Escherichia coli. Amoebae that phagocytosed bacteria were tested for a cytopathic effect on epithelial cell monolayers. Cysteine proteinase activity, adhesion and cell surface concentration of Gal/GalNAc lectin were analyzed in amoebae showing increased virulence. Structural and functional changes and induction of IL-8 expression were determined in epithelial cells before and after exposure to bacteria. Chemotaxis of amoebae and neutrophils to human IL-8 and conditioned culture media from epithelial cells exposed to bacteria was quantified. Principal Findings E. histolytica digested phagocytosed bacteria, although S. dysenteriae retained 70% viability after ingestion. Phagocytosis of pathogenic bacteria augmented the cytopathic effect of E. histolytica and increased expression of Gal/GalNAc lectin on the amoebic surface and increased cysteine proteinase activity. E. dispar remained avirulent. Adhesion of amoebae and damage to cells exposed to bacteria were increased. Additional increases were observed if amoebae had phagocytosed bacteria. Co-culture of epithelial cells with enteropathogenic bacteria disrupted monolayer permeability and induced expression of IL-8. Media from these co-cultures and human recombinant IL-8 were similarly chemotactic for neutrophils and E. histolytica. Conclusions Epithelial monolayers exposed to enteropathogenic bacteria become more susceptible to E. histolytica damage. At the same time, phagocytosis of pathogenic bacteria by amoebae further increased epithelial cell damage. Significance The in vitro system

  2. Oral keratinocytes support non-replicative infection and transfer of harbored HIV-1 to permissive cells.

    PubMed

    Vacharaksa, Anjalee; Asrani, Anil C; Gebhard, Kristin H; Fasching, Claudine E; Giacaman, Rodrigo A; Janoff, Edward N; Ross, Karen F; Herzberg, Mark C

    2008-07-17

    Oral keratinocytes on the mucosal surface are frequently exposed to HIV-1 through contact with infected sexual partners or nursing mothers. To determine the plausibility that oral keratinocytes are primary targets of HIV-1, we tested the hypothesis that HIV-1 infects oral keratinocytes in a restricted manner. To study the fate of HIV-1, immortalized oral keratinocytes (OKF6/TERT-2; TERT-2 cells) were characterized for the fate of HIV-specific RNA and DNA. At 6 h post inoculation with X4 or R5-tropic HIV-1, HIV-1gag RNA was detected maximally within TERT-2 cells. Reverse transcriptase activity in TERT-2 cells was confirmed by VSV-G-mediated infection with HIV-NL4-3Deltaenv-EGFP. AZT inhibited EGFP expression in a dose-dependent manner, suggesting that viral replication can be supported if receptors are bypassed. Within 3 h post inoculation, integrated HIV-1 DNA was detected in TERT-2 cell nuclei and persisted after subculture. Multiply spliced and unspliced HIV-1 mRNAs were not detectable up to 72 h post inoculation, suggesting that HIV replication may abort and that infection is non-productive. Within 48 h post inoculation, however, virus harbored by CD4 negative TERT-2 cells trans infected co-cultured peripheral blood mononuclear cells (PBMCs) or MOLT4 cells (CD4+ CCR5+) by direct cell-to-cell transfer or by releasing low levels of infectious virions. Primary tonsil epithelial cells also trans infected HIV-1 to permissive cells in a donor-specific manner. Oral keratinocytes appear, therefore, to support stable non-replicative integration, while harboring and transmitting infectious X4- or R5-tropic HIV-1 to permissive cells for up to 48 h.

  3. Reduced Epithelial Na+/H+ Exchange Drives Gut Microbial Dysbiosis and Promotes Inflammatory Response in T Cell-Mediated Murine Colitis

    PubMed Central

    Midura-Kiela, Monica T.; Ramalingam, Rajalakshmy; Larmonier, Claire B.; Chase, John H.; Caporaso, J. Gregory; Besselsen, David G.; Ghishan, Fayez K.; Kiela, Pawel R.

    2016-01-01

    Inflammatory bowel diseases (IBD) are associated with functional inhibition of epithelial Na+/H+ exchange. In mice, a selective disruption of NHE3 (Slc9a3), a major apical Na+/H+ exchanger, also promotes IBD-like symptoms and gut microbial dysbiosis. We hypothesized that disruption of Na+/H+ exchange is necessary for the development of dysbiosis, which promotes an exacerbated mucosal inflammatory response. Therefore, we performed a temporal analysis of gut microbiota composition, and mucosal immune response to adoptive T cell transfer was evaluated in Rag2-/- and NHE3-/-/Rag2-/- (DKO) mice with and without broad-spectrum antibiotics. Microbiome (16S profiling), colonic histology, T cell and neutrophil infiltration, mucosal inflammatory tone, and epithelial permeability were analyzed. In adoptive T cell transfer colitis model, Slc9a3 status was the most significant determinant of gut microbial community. In DKO mice, NHE3-deficiency and dysbiosis were associated with dramatically accelerated and exacerbated disease, with rapid body weight loss, increased mucosal T cell and neutrophil influx, increased mucosal cytokine expression, increased permeability, and expansion of CD25-FoxP3+ Tregs; this enhanced susceptibility was alleviated by oral broad-spectrum antibiotics. Based on these results and our previous work, we postulate that epithelial electrolyte homeostasis is an important modulator in the progression of colitis, acting through remodeling of the gut microbial community. PMID:27050757

  4. Development of human epithelial cell systems for radiation risk assessment

    NASA Technical Reports Server (NTRS)

    Yang, C. H.; Craise, L. M.

    1994-01-01

    The most important health effect of space radiation for astronauts is cancer induction. For radiation risk assessment, an understanding of carcinogenic effect of heavy ions in human cells is most essential. In our laboratory, we have successfully developed a human mammary epithelial cell system for studying the neoplastic transformation in vitro. Growth variants were obtained from heavy ion irradiated immortal mammary cell line. These cloned growth variants can grow in regular tissue culture media and maintain anchorage dependent growth and density inhibition property. Upon further irradiation with high-Linear Energy Transfer (LET) radiation, transformed foci were found. Experimental results from these studies suggest that multiexposure of radiation is required to induce neoplastic tranformation of human epithelial cells. This multihits requirement may be due to high genomic stability of human cells. These growth variants can be useful model systems for space flight experiments to determine the carcinogenic effect of space radiation in human epithelial cells.

  5. Cholinergic epithelial cell with chemosensory traits in murine thymic medulla.

    PubMed

    Panneck, Alexandra Regina; Rafiq, Amir; Schütz, Burkhard; Soultanova, Aichurek; Deckmann, Klaus; Chubanov, Vladimir; Gudermann, Thomas; Weihe, Eberhard; Krasteva-Christ, Gabriela; Grau, Veronika; del Rey, Adriana; Kummer, Wolfgang

    2014-12-01

    Specialized epithelial cells with a tuft of apical microvilli ("brush cells") sense luminal content and initiate protective reflexes in response to potentially harmful substances. They utilize the canonical taste transduction cascade to detect "bitter" substances such as bacterial quorum-sensing molecules. In the respiratory tract, most of these cells are cholinergic and are approached by cholinoceptive sensory nerve fibers. Utilizing two different reporter mouse strains for the expression of choline acetyltransferase (ChAT), we observed intense labeling of a subset of thymic medullary cells. ChAT expression was confirmed by in situ hybridization. These cells showed expression of villin, a brush cell marker protein, and ultrastructurally exhibited lateral microvilli. They did not express neuroendocrine (chromogranin A, PGP9.5) or thymocyte (CD3) markers but rather thymic epithelial (CK8, CK18) markers and were immunoreactive for components of the taste transduction cascade such as Gα-gustducin, transient receptor potential melastatin-like subtype 5 channel (TRPM5), and phospholipase Cβ2. Reverse transcription and polymerase chain reaction confirmed the expression of Gα-gustducin, TRPM5, and phospholipase Cβ2. Thymic "cholinergic chemosensory cells" were often in direct contact with medullary epithelial cells expressing the nicotinic acetylcholine receptor subunit α3. These cells have recently been identified as terminally differentiated epithelial cells (Hassall's corpuscle-like structures in mice). Contacts with nerve fibers (identified by PGP9.5 and CGRP antibodies), however, were not observed. Our data identify, in the thymus, a previously unrecognized presumptive chemosensitive cell that probably utilizes acetylcholine for paracrine signaling. This cell might participate in intrathymic infection-sensing mechanisms.

  6. CCL20, (gamma)(delta) T cells, and IL-22 in corneal epithelial healing

    USDA-ARS?s Scientific Manuscript database

    After corneal epithelial abrasion, leukocytes and platelets rapidly enter the corneal stroma, and CCR6 (+) IL-17(+) gamma delta T cells migrate into the epithelium. Gamma delta T-cell-deficient (TCRd(-/-)) mice have significantly reduced inflammation and epithelial wound healing. Epithelial CCL20 mR...

  7. Emodin suppresses TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells through Notch signaling pathway.

    PubMed

    Gao, Rundi; Chen, Ruilin; Cao, Yu; Wang, Yuan; Song, Kang; Zhang, Ya; Yang, Junchao

    2017-03-01

    Pulmonary fibrosis is characterized by the destruction of lung tissue architecture and the formation of fibrous foci, currently has no satisfactory treatment. Emodin is a component of Chinese herb that has been reported to be medicament on pancreatic fibrosis and liver fibrosis. However, its role in pulmonary fibrosis has not been established yet. In the present study, we investigated the hypothesis that Emodin plays an inhibitory role in TGF-β1 induced epithelial-mesenchymal transition (EMT) of alveolar epithelial cell, and Emodin exerts its effect through the Notch signaling pathway. Emodin inhibits the proliferation of Rat alveolar type II epithelial cells RLE-6TN in a concentration-dependent manner; reduces the expression of Collagen I, α-SMA and Vimentin, promotes the expression of E-cadherin. Moreover, Emodin could regulate the expression patterns of the Notch signaling pathway-related factors and reduce the Notch-1 nucleus translocation. Knockdown of Notch-1 enhances the inhibitory effect of Emodin on TGF-β1-induced EMT in RLE-6TN cells. In conclusion, the data of the present study suggests that Emodin suppresses TGF-β1-induced EMT in alveolar epithelial cells through Notch signaling pathway and shows the potential to be effective in the treatment of pulmonary fibrosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. A Nasal Epithelial Receptor for Staphylococcus aureus WTA Governs Adhesion to Epithelial Cells and Modulates Nasal Colonization

    PubMed Central

    Faulstich, Manuela; Grau, Timo; Severin, Yannik; Unger, Clemens; Hoffmann, Wolfgang H.; Rudel, Thomas; Autenrieth, Ingo B.; Weidenmaier, Christopher

    2014-01-01

    Nasal colonization is a major risk factor for S. aureus infections. The mechanisms responsible for colonization are still not well understood and involve several factors on the host and the bacterial side. One key factor is the cell wall teichoic acid (WTA) of S. aureus, which governs direct interactions with nasal epithelial surfaces. We report here the first receptor for the cell wall glycopolymer WTA on nasal epithelial cells. In several assay systems this type F-scavenger receptor, termed SREC-I, bound WTA in a charge dependent manner and mediated adhesion to nasal epithelial cells in vitro. The impact of WTA and SREC-I interaction on epithelial adhesion was especially pronounced under shear stress, which resembles the conditions found in the nasal cavity. Most importantly, we demonstrate here a key role of the WTA-receptor interaction in a cotton rat model of nasal colonization. When we inhibited WTA mediated adhesion with a SREC-I antibody, nasal colonization in the animal model was strongly reduced at the early onset of colonization. More importantly, colonization stayed low over an extended period of 6 days. Therefore we propose targeting of this glycopolymer-receptor interaction as a novel strategy to prevent or control S. aureus nasal colonization. PMID:24788600

  9. Use of scanning electron microscopy to monitor nanofibre/cell interaction in digestive epithelial cells.

    PubMed

    Millaku, Agron; Drobne, Damjana; Torkar, Matjaz; Novak, Sara; Remškar, Maja; Pipan-Tkalec, Živa

    2013-09-15

    We provide data obtained by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) on the interaction of ingested tungsten nanofibers with epithelial cells of the digestive tubes of a test organism Porcellio scaber. Conventional toxicity endpoints including feeding behaviour, weight loss and mortality were also measured in each investigated animal. No toxicity was detected in any of exposed animals after 14 days of feeding on tungsten nanofiber dosed food, but when nanofibers enter the digestive system they can react with epithelial cells of the digestive tubes, becoming physically inserted into the cells. In this way, nanofibers can injure the epithelial cells of digestive gland tubes when they are ingested with food. Our SEM data suggest that peristaltic forces may have an important role, not predicted by in vitro experiments, in the interactions of nanomaterials with digestive intestinal cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Bone Marrow Cells Expressing Clara Cell Secretory Protein Increase Epithelial Repair After Ablation of Pulmonary Clara Cells

    PubMed Central

    Bustos, Martha L; Mura, Marco; Marcus, Paula; Hwang, David; Ludkovski, Olga; Wong, Amy P; Waddell, Thomas K

    2013-01-01

    We have previously reported a subpopulation of bone marrow cells (BMC) that express Clara cell secretory protein (CCSP), generally felt to be specific to lung Clara cells. Ablation of lung Clara cells has been reported using a transgenic mouse that expresses thymidine kinase under control of the CCSP promoter. Treatment with ganciclovir results in permanent elimination of CCSP+ cells, failure of airway regeneration, and death. To determine if transtracheal delivery of wild-type bone marrow CCSP+ cells is beneficial after ablation of lung CCSP+ cells, transgenic mice were treated with ganciclovir followed by transtracheal administration of CCSP+ or CCSP− BMC. Compared with mice administered CCSP− cells, mice treated with CCSP+ cells had more donor cells lining the airway epithelium, where they expressed epithelial markers including CCSP. Although donor CCSP+ cells did not substantially repopulate the airway, their administration resulted in increased host ciliated cells, better preservation of airway epithelium, reduction of inflammatory cells, and an increase in animal survival time. Administration of CCSP+ BMC is beneficial after permanent ablation of lung Clara cells by increasing bronchial epithelial repair. Therefore, CCSP+ BMC could be important for treatment of lung diseases where airways re-epithelialization is compromised. PMID:23609017

  11. Rhinovirus disrupts the barrier function of polarized airway epithelial cells.

    PubMed

    Sajjan, Umadevi; Wang, Qiong; Zhao, Ying; Gruenert, Dieter C; Hershenson, Marc B

    2008-12-15

    Secondary bacterial infection following rhinovirus (RV) infection has been recognized in chronic obstructive pulmonary disease. We sought to understand mechanisms by which RV infection facilitates secondary bacterial infection. Primary human airway epithelial cells grown at air-liquid interface and human bronchial epithelial (16HBE14o-) cells grown as polarized monolayers were infected apically with RV. Transmigration of bacteria (nontypeable Haemophilus influenzae and others) was assessed by colony counting and transmission electron microscopy. Transepithelial resistance (R(T)) was measured by using a voltmeter. The distribution of zona occludins (ZO)-1 was determined by immunohistochemistry and immunoblotting. Epithelial cells infected with RV showed 2-log more bound bacteria than sham-infected cultures, and bacteria were recovered from the basolateral media of RV- but not sham-infected cells. Infection of polarized airway epithelial cell cultures with RV for 24 hours caused a significant decrease in R(T) without causing cell death or apoptosis. Ultraviolet-treated RV did not decrease R(T), suggesting a requirement for viral replication. Reduced R(T) was associated with increased paracellular permeability, as determined by flux of fluorescein isothiocyanate (FITC)-inulin. Neutralizing antibodies to tumor necrosis factor (TNF)-alpha, IFN-gamma and IL-1beta reversed corresponding cytokine-induced reductions in R(T) but not that induced by RV, indicating that the RV effect is independent of these proinflammatory cytokines. Confocal microscopy and immunoblotting revealed the loss of ZO-1 from tight junction complexes in RV-infected cells. Intranasal inoculation of mice with RV1B also caused the loss of ZO-1 from the bronchial epithelium tight junctions in vivo. RV facilitates binding, translocation, and persistence of bacteria by disrupting airway epithelial barrier function.

  12. Bacterial Fimbriae and Their Peptides Activate Human Gingival Epithelial Cells through Toll-Like Receptor 2

    PubMed Central

    Asai, Yasuyuki; Ohyama, Yoshinori; Gen, Keika; Ogawa, Tomohiko

    2001-01-01

    Gingival epithelial cells are a central component of the barrier between oral microflora and internal tissues. Host responses to periodontopathic bacteria and surface components containing fimbriae are thought to be important in the development and progression of periodontal diseases. To elucidate this mechanism, we established immortalized human gingival epithelial cells (HGEC) that were transfected with human papillomavirus. HGEC predominantly expressed Toll-like receptor (TLR) 2, but not TLR4 or CD14. They also induced interleukin-8 (IL-8) production when stimulated with Porphyromonas gingivalis fimbriae and Staphylococcus aureus peptidoglycan, but not Escherichia coli-type synthetic lipid A. Furthermore, an active synthetic peptide composed of residues 69 to 73 (ALTTE) of the fimbrial subunit protein, derived from P. gingivalis and similar to a common component of cell wall peptidoglycans in parasitic bacteria, N-acetylmuramyl-l-alanyl-d-isoglutamine (MDP), significantly induced IL-8 production and NF-κB activation in HGEC, and these cytokine-producing activities were augmented by a complex of soluble CD14 and lipopolysaccharide-binding protein (LBP). IL-8 production in HGEC stimulated with these bacterial components was clearly inhibited by mouse monoclonal antibody to human TLR2. These findings suggest that P. gingivalis fimbrial protein and its active peptide are capable of activating HGEC through TLR2. PMID:11705912

  13. [Wood smoke condensate induced epithelial-mesenchymal transition in human airway epithelial cells].

    PubMed

    Li, Wenxi; Zou, Weifeng; Li, Bing; Ran, Pixin

    2014-01-01

    To observe the detrimental effects of wood smoke condensate (WSC) exposure on human bronchial epithelial cells (HBEC), and to explore the expression of epithelial-mesenchymal transition (EMT) markers in HBEC exposed to WSC. HBEC were exposed respectively to 5, 10, 20, 40 and 50 mg/L of WSC /CSC for 7 days, with control groups only in cell culture medium at the same time, then the total cytoactivity was detected by cell counting kit-8. After observing the cellular morphology of WSC-stimulated HBEC. Western blot and immunofluorescence method were used to evaluate the expression levels of type I collagen, vimentin, E-cad and MMP-9 in HBEC exposed to WSC (10 mg/L) and cigarette smoke condensate (CSC) (10 mg/L) for 7 days. Statistical evaluation of the continuous data was performed by ANOVA. Independent-Samples t-test for between-group comparisons. After 7 days of exposure to WSC, HBEC manifested a morphological characteristic of loss of cell-cell contact and elongated shape. The level of E-cad was decreased in WSC exposure groups (Western blot: 0.30 ± 0.05, F = 22.07, P < 0.05) compared with the groups without WSC exposure (Western blot: 0.59 ± 0.08, F = 22.07, P < 0.05). In contrast, an upregulation in expression of type I collagen (Western blot: 0.58 ± 0.04 vs 0.26 ± 0.02, F = 119.72, P < 0.05) and MMP-9 (0.56 ± 0.08 vs 0.19 ± 0.03, F = 21.79, P < 0.05) was observed in the presence of WSC, compared with the control groups. Immunofluorescence analysis showed that after a 7-day exposure to WSC in these cells, the E-cad protein was lost whereas type I collagen, vimentin and MMP-9 were acquired. Both Western blot and immunofluorescence analysis showed no difference in expression levels of E-cad, type I collagen, vimentin and MMP-9 between WSC and CSC exposure groups. WSC exposure could induce EMT-like process in human airway epithelial cells.

  14. Romo1 expression contributes to oxidative stress-induced death of lung epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Jung Ar; Chung, Jin Sil; Cho, Sang-Ho

    Highlights: •Romo1 mediates oxidative stress-induced mitochondrial ROS production. •Romo1 induction by oxidative stress plays an important role in oxidative stress-induced apoptosis. •Romo1 overexpression correlates with epithelial cell death in patients with IPF. -- Abstract: Oxidant-mediated death of lung epithelial cells due to cigarette smoking plays an important role in pathogenesis in lung diseases such as idiopathic pulmonary fibrosis (IPF). However, the exact mechanism by which oxidants induce epithelial cell death is not fully understood. Reactive oxygen species (ROS) modulator 1 (Romo1) is localized in the mitochondria and mediates mitochondrial ROS production through complex III of the mitochondrial electron transport chain.more » Here, we show that Romo1 mediates mitochondrial ROS production and apoptosis induced by oxidative stress in lung epithelial cells. Hydrogen peroxide (H{sub 2}O{sub 2}) treatment increased Romo1 expression, and Romo1 knockdown suppressed the cellular ROS levels and cell death triggered by H{sub 2}O{sub 2} treatment. In immunohistochemical staining of lung tissues from patients with IPF, Romo1 was mainly localized in hyperplastic alveolar and bronchial epithelial cells. Romo1 overexpression was detected in 14 of 18 patients with IPF. TUNEL-positive alveolar epithelial cells were also detected in most patients with IPF but not in normal controls. These findings suggest that Romo1 mediates apoptosis induced by oxidative stress in lung epithelial cells.« less

  15. Morphometric analysis of suprabasal cells in oral white lesions.

    PubMed Central

    Shabana, A H; el-Labban, N G; Lee, K W; Kramer, I R

    1989-01-01

    Surgical specimens from the cheek mucosa of 73 patients with white lesions were studied to determine various morphometric parameters that would help differentiate between the various types of oral mucosal white lesions that carry a risk of malignant change. Four cell types were represented: traumatic keratosis, leucoplakia, candidal leucoplakia and lichen planus, in addition to a control group of normal mucosa. The shape and size of the epithelial cells in two cell compartments, parabasal and spinous, were investigated by an interactive image analysis system (IBAS-1). The results showed an increase in the cell size in the parabasal cell compartment of all the white lesions compared with the normal mucosa. In the spinous cell compartment there was an increase in the cell size in lichen planus and traumatic keratosis; leucoplakia and candidal leucoplakia showed a slight decrease in cell size compared with the normal mucosa. Attempts to discriminate between the four groups of white lesions showed that these parameters can provide a high level of separation between lichen planus and the three other groups, but not between leucoplakia, candidal leucoplakia, and traumatic keratosis. PMID:2703543

  16. Wnt Signaling in Adult Epithelial Stem Cells and Cancer.

    PubMed

    Tan, Si Hui; Barker, Nick

    2018-01-01

    Wnt/β-catenin signaling is integral to the homeostasis and regeneration of many epithelial tissues due to its critical role in adult stem cell regulation. It is also implicated in many epithelial cancers, with mutations in core pathway components frequently present in patient tumors. In this chapter, we discuss the roles of Wnt/β-catenin signaling and Wnt-regulated stem cells in homeostatic, regenerative and cancer contexts of the intestines, stomach, skin, and liver. We also examine the sources of Wnt ligands that form part of the stem cell niche. Despite the diversity in characteristics of various tissue stem cells, the role(s) of Wnt/β-catenin signaling is generally coherent in maintaining stem cell fate and/or promoting proliferation. It is also likely to play similar roles in cancer stem cells, making the pathway a salient therapeutic target for cancer. While promising progress is being made in the field, deeper understanding of the functions and signaling mechanisms of the pathway in individual epithelial tissues will expedite efforts to modulate Wnt/β-catenin signaling in cancer treatment and tissue regeneration. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. A novel method for isolation of epithelial cells from ovine esophagus for tissue engineering.

    PubMed

    Macheiner, Tanja; Kuess, Anna; Dye, Julian; Saxena, Amulya K

    2014-01-01

    The yield of a critical number of basal epithelial cells with high mitotic rates from native tissue is a challenge in the field of tissue engineering. There are many protocols that use enzymatic methods for isolation of epithelial cells with unsatisfactory results for tissue engineering. This study aimed to develop a protocol for isolating a sufficient number of epithelial cells with a high Proliferating Index from ovine esophagus for tissue engineering applications. Esophageal mucosa was pretreated with dispase-collagenase solution and plated on collagen-coated culture dishes. Distinction of the various types of epithelial cells and developmental stages was done with specific primary antibodies to Cytokeratins and to Proliferating Cell Nuclear Antigen (PCNA). Up to approximately 8100 epithelial cells/mm2 of mucosa tissue were found after one week of migration. Cytokeratin 14 (CK 14) was positive identified in cells even after 83 days. At the same time the Proliferating Index was 71%. Our protocol for isolation of basal epithelial cells was successful to yield sufficient numbers of cells predominantly with proliferative character and without noteworthy negative enzymatic affection. The results at this study offer the possibility of generation critical cell numbers for tissue engineering applications.

  18. Expression of a fms-related oncogene in carcinogen-induced neoplastic epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, C.; Nettesheim, P.; Barrett, J.C.

    1987-04-01

    Following carcinogen exposure in vitro, normal rat tracheal epithelial cells are transformed in a multistage process in which the cultured cells become immortal and ultimately, neoplastic. Five cell lines derived from tumors produced by neoplastically transformed rat tracheal epithelial cells were examined for the expression of 11 cellular oncogenes previously implicated in pulmonary or epithelial carcinogenesis. RNA homologous to fms was expressed at a level 5-19 times higher than normal tracheal epithelial cells in three of five of the tumor-derived lines. All three lines expressing high levels of fms-related RNA gave rise to invasive tumors of epithelial origin when injectedmore » into nude mice. Increased expression of the fms-related mRNA was not due to gene amplification, and no gene rearrangement was detected by Southern analyses. RNA blot analysis using a 3' v-fms probe detected a 9.5-kilobase message in the three tumor-derived lines, whereas both normal rat aveolar macrophages and the human choriocarcinoma line BeWo expressed a fms transcript of approx. = 4 kilobases. The authors conclude from these data that the gene expressed as a 9.5-kilobase transcript in these neoplastic epithelial cells is a member of a fms-related gene family but may be distinct from the gene that encodes the macrophage colony-stimulating factor (CSF-1) receptor.« less

  19. Mitochondria are targets for the antituberculosis drug rifampicin in cultured epithelial cells.

    PubMed

    Erokhina, M V; Kurynina, A V; Onishchenko, G E

    2013-10-01

    Rifampicin is a widely used drug for antituberculosis therapy. Its target is the bacterial RNA polymerase. After entry into the human or mammalian organism, rifampicin is accumulated in cells of epithelial origin (kidneys, liver, lungs) where it induces apoptosis, necrosis, and fibrosis. The purpose of this study was to determine the intracellular mechanisms leading to rifampicin-induced pathological changes and cell death. We analyzed the survival and state of the chondriome of cultured epithelial cells of the SPEV line under the influence of rifampicin. Our data show that the drug induces pronounced pathological changes in the network and ultrastructure of mitochondria, and their dysfunction results in excessive production of reactive oxygen species and release of cytochrome c. These data suggest the initiation of the mitochondrial pathway of apoptosis. Simultaneously, we observed inhibition of cell proliferation and changes in morphology of the epithelial cells toward fibroblast-like appearance, which could indicate induction of epithelial-mesenchymal transition. Thus, mitochondria are the main potential target for rifampicin in cells of epithelial origin. We suggest that similar mechanisms of pathological changes can be induced in vivo in organs and tissues accumulating rifampicin during chemotherapy of bacterial infectious diseases.

  20. Physiology and pathophysiology of apoptosis in epithelial cells of the liver, pancreas, and intestine.

    PubMed

    Jones, B A; Gores, G J

    1997-12-01

    Cell death of gastrointestinal epithelial cells occurs by a process referred to as apoptosis. In this review, we succinctly define apoptosis and summarize the role of apoptosis in the physiology and pathophysiology of epithelial cells in the liver, pancreas, and small and large intestine. The physiological mediators regulating apoptosis in gastrointestinal epithelial cells, when known, are discussed. Selected pathophysiological consequences of excessive apoptosis and inhibition of apoptosis are used to illustrate the significance of apoptosis in disease processes. These examples demonstrate that excessive apoptosis may result in epithelial cell atrophy, injury, and dysfunction, whereas inhibition of apoptosis results in hyperplasia and promotes malignant transformation. The specific cellular mechanisms responsible for dysregulation of epithelial cell apoptosis during pathophysiological disturbances are emphasized. Potential future areas of physiological research regarding apoptosis in gastrointestinal epithelia are highlighted when appropriate.

  1. Pulmonary epithelial cancer cells and their exosomes metabolize myeloid cell-derived leukotriene C4 to leukotriene D4[S

    PubMed Central

    Lukic, Ana; Ji, Jie; Idborg, Helena; Samuelsson, Bengt; Palmberg, Lena

    2016-01-01

    Leukotrienes (LTs) play major roles in lung immune responses, and LTD4 is the most potent agonist for cysteinyl LT1, leading to bronchoconstriction and tissue remodeling. Here, we studied LT crosstalk between myeloid cells and pulmonary epithelial cells. Monocytic cells (Mono Mac 6 cell line, primary dendritic cells) and eosinophils produced primarily LTC4. In coincubations of these myeloid cells and epithelial cells, LTD4 became a prominent product. LTC4 released from the myeloid cells was further transformed by the epithelial cells in a transcellular manner. Formation of LTD4 was rapid when catalyzed by γ-glutamyl transpeptidase (GGT)1 in the A549 epithelial lung cancer cell line, but considerably slower when catalyzed by GGT5 in primary bronchial epithelial cells. When A549 cells were cultured in the presence of IL-1β, GGT1 expression increased about 2-fold. Also exosomes from A549 cells contained GGT1 and augmented LTD4 formation. Serine-borate complex (SBC), an inhibitor of GGT, inhibited conversion of LTC4 to LTD4. Unexpectedly, SBC also upregulated translocation of 5-lipoxygenase (LO) to the nucleus in Mono Mac 6 cells, and 5-LO activity. Our results demonstrate an active role for epithelial cells in biosynthesis of LTD4, which may be of particular relevance in the lung. PMID:27436590

  2. Caveolin-1 expression in oral lichen planus, dysplastic lesions and squamous cell carcinoma.

    PubMed

    Jaafari-Ashkavandi, Zohreh; Aslani, Ehsan

    2017-07-01

    Caveolin-1(Cav-1), the main part of caveolae structure, is supposed to play a role in pathogenesis of many human tumors. Since oral lichen planus (OLP) is considered as a potential premalignant disease, this study evaluated Cav-1 expression in OLP in comparison with benign hyperkeratosis, dysplastic epithelium and oral squamous cell carcinoma (OSCC), to investigate its possible role in pathogenesis and malignant transformation of OLP. In this cross-sectional retrospective study, immunohistochemical expression of Cav-1 in the epithelial component and stroma was evaluated in 81 samples, including 12 cases of hyperkeratosis, 24 OLP, 22 epithelial dysplasia, and 23 OSCC samples. Correlations between Cav-1 expression and clinicopathological variables were evaluated statistically. Positive Cav-1 staining was found in 58% of OLP, 91% of hyperkeratosis, 100% of epithelial dysplasia, and 95% of OSCC samples. OSCC showed the highest Cav-1 expression and OLP had the lowest (P=0.001). The intensity of staining was significantly increased in stepwise manner from OLP to OSCC (P=0.001). Expression of Cav-1 was related to the grade of samples in OSCC and dysplastic samples (P=0.04). Based on the findings, it was concluded that Cav-1 may play a role in the pathogenesis of OLP and carcinogenesis of SCC, but its role in malignant transformation of OLP is not confirmed. Further studies are needed to evaluate its potential therapeutic function in OLP and SCC. Copyright © 2017 Elsevier GmbH. All rights reserved.

  3. Cell membrane-anchored MUC4 promotes tumorigenicity in epithelial carcinomas

    PubMed Central

    Xia, Pengpeng; Choi, Agnes Hakyung; Deng, Zengping; Yang, Yuqian; Zhao, Jing; Wang, Yiting; Hardwidge, Philip R.; Zhu, Guoqiang

    2017-01-01

    The cell surface membrane-bound mucin protein MUC4 promotes tumorigenicity, aggressive behavior, and poor outcomes in various types of epithelial carcinomas, including pancreatic, breast, colon, ovarian, and prostate cancer. This review summarizes the theories and findings regarding MUC4 function, and its role in epithelial carcinogenesis. Based on these insights, we developed an outline of the processes and mechanisms by which MUC4 critically supports the propagation and survival of cancer cells in various epithelial organs. MUC4 may therefore be a useful prognostic and diagnostic tool that improves our ability to eradicate various forms of cancer. PMID:27829225

  4. Cell membrane-anchored MUC4 promotes tumorigenicity in epithelial carcinomas.

    PubMed

    Xia, Pengpeng; Choi, Agnes Hakyung; Deng, Zengping; Yang, Yuqian; Zhao, Jing; Wang, Yiting; Hardwidge, Philip R; Zhu, Guoqiang

    2017-02-21

    The cell surface membrane-bound mucin protein MUC4 promotes tumorigenicity, aggressive behavior, and poor outcomes in various types of epithelial carcinomas, including pancreatic, breast, colon, ovarian, and prostate cancer. This review summarizes the theories and findings regarding MUC4 function, and its role in epithelial carcinogenesis. Based on these insights, we developed an outline of the processes and mechanisms by which MUC4 critically supports the propagation and survival of cancer cells in various epithelial organs. MUC4 may therefore be a useful prognostic and diagnostic tool that improves our ability to eradicate various forms of cancer.

  5. Telomerase-immortalized non-malignant human prostate epithelial cells retain the properties of multipotent stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Hongzhen; Zhou Jianjun; Miki, Jun

    2008-01-01

    Understanding prostate stem cells may provide insight into the origin of prostate cancer. Primary cells have been cultured from human prostate tissue but they usually survive only 15-20 population doublings before undergoing senescence. We report here that RC-170N/h/clone 7 cells, a clonal cell line from hTERT-immortalized primary non-malignant tissue-derived human prostate epithelial cell line (RC170N/h), retain multipotent stem cell properties. The RC-170N/h/clone 7 cells expressed a human embryonic stem cell marker, Oct-4, and potential prostate epithelial stem cell markers, CD133, integrin {alpha}2{beta}1{sup hi} and CD44. The RC-170N/h/clone 7 cells proliferated in KGM and Dulbecco's Modified Eagle Medium with 10% fetalmore » bovine serum and 5 {mu}g/ml insulin (DMEM + 10% FBS + Ins.) medium, and differentiated into epithelial stem cells that expressed epithelial cell markers, including CK5/14, CD44, p63 and cytokeratin 18 (CK18); as well as the mesenchymal cell markers, vimentin, desmin; the neuron and neuroendocrine cell marker, chromogranin A. Furthermore the RC170 N/h/clone 7 cells differentiated into multi tissues when transplanted into the sub-renal capsule and subcutaneously of NOD-SCID mice. The results indicate that RC170N/h/clone 7 cells retain the properties of multipotent stem cells and will be useful as a novel cell model for studying the mechanisms of human prostate stem cell differentiation and transformation.« less

  6. Loss of γ-cytoplasmic actin triggers myofibroblast transition of human epithelial cells.

    PubMed

    Lechuga, Susana; Baranwal, Somesh; Li, Chao; Naydenov, Nayden G; Kuemmerle, John F; Dugina, Vera; Chaponnier, Christine; Ivanov, Andrei I

    2014-10-15

    Transdifferentiation of epithelial cells into mesenchymal cells and myofibroblasts plays an important role in tumor progression and tissue fibrosis. Such epithelial plasticity is accompanied by dramatic reorganizations of the actin cytoskeleton, although mechanisms underlying cytoskeletal effects on epithelial transdifferentiation remain poorly understood. In the present study, we observed that selective siRNA-mediated knockdown of γ-cytoplasmic actin (γ-CYA), but not β-cytoplasmic actin, induced epithelial-to-myofibroblast transition (EMyT) of different epithelial cells. The EMyT manifested by increased expression of α-smooth muscle actin and other contractile proteins, along with inhibition of genes responsible for cell proliferation. Induction of EMyT in γ-CYA-depleted cells depended on activation of serum response factor and its cofactors, myocardial-related transcriptional factors A and B. Loss of γ-CYA stimulated formin-mediated actin polymerization and activation of Rho GTPase, which appear to be essential for EMyT induction. Our findings demonstrate a previously unanticipated, unique role of γ-CYA in regulating epithelial phenotype and suppression of EMyT that may be essential for cell differentiation and tissue fibrosis. © 2014 Lechuga, Baranwal, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Cytokine Expression and Production by Purified Helicobacter pylori Urease in Human Gastric Epithelial Cells

    PubMed Central

    Tanahashi, Toshihito; Kita, Masakazu; Kodama, Tadashi; Yamaoka, Yoshio; Sawai, Naoki; Ohno, Tomoyuki; Mitsufuji, Shoji; Wei, Ya-Ping; Kashima, Kei; Imanishi, Jiro

    2000-01-01

    Cytokines have been proposed to play an important role in Helicobacter pylori-associated gastroduodenal diseases, but the exact mechanism of the cytokine induction remains unclear. H. pylori urease, a major component of the soluble proteins extracted from bacterial cells, is considered to be one of the virulence factors for the inflammation in the gastric mucosa that is produced in H. pylori infection. However, the response of human gastric epithelial cells to the stimulation of urease has not been investigated. In the present study, we used human gastric epithelial cells in a primary culture system and examined whether H. pylori urease stimulates the gastric epithelial cells to induce proinflammatory cytokines by reverse transcription-PCR and enzyme-linked immunosorbent assay. First, by using peripheral blood mononuclear cells (PBMC) and a gastric cancer cell line (MKN-45 cells), we confirmed the ability of purified H. pylori urease to induce the production of proinflammatory cytokines. Furthermore, we demonstrated that the human gastric epithelial cells produced interleukin-6 (IL-6) and tumor necrosis factor alpha, but not IL-8, following stimulation with purified urease. The patterns of cytokine induction differed among human PBMC, MKN-45 cells, and human gastric epithelial cells. These results suggest that the human gastric epithelial cells contribute to the induction of proinflammatory cytokines by the stimulation of H. pylori urease, indicating that the epithelial cells were involved in the mucosal inflammation that accompanied H. pylori infection. PMID:10639431

  8. Androgen Receptor Expression in Epithelial and Stromal Cells of Prostatic Carcinoma and Benign Prostatic Hyperplasia.

    PubMed

    Filipovski, Vanja; Kubelka-Sabit, Katerina; Jasar, Dzengis; Janevska, Vesna

    2017-08-15

    Prostatic carcinoma (PCa) derives from prostatic epithelial cells. However stromal microenvironment, associated with malignant epithelium, also plays a role in prostatic carcinogenesis. Alterations in prostatic stromal cells contribute to the loss of growth control in epithelial cells that lead to progression of PCa. To analyse the differences between Androgen Receptor (AR) expression in both epithelial and stromal cells in PCa and the surrounding benign prostatic hyperplasia (BPH) and to compare the results with tumour grade. Samples from 70 cases of radical prostatectomy specimens were used. The expression and intensity of the signal for AR was analysed in the epithelial and stromal cells of PCa and BPH, and the data was quantified using histological score (H-score). AR showed significantly lower expression in both epithelial and stromal cells of PCa compared to BPH. In PCa a significant positive correlation of AR expression was found between stromal and epithelial cells of PCa. AR expression showed a correlation between the stromal cells of PCa and tumour grade. AR expression is reduced in epithelial and stromal cells of PCa. Expression of AR in stromal cells of PCa significantly correlates with tumour grade.

  9. Evaluating alternative stem cell hypotheses for adult corneal epithelial maintenance

    PubMed Central

    West, John D; Dorà, Natalie J; Collinson, J Martin

    2015-01-01

    In this review we evaluate evidence for three different hypotheses that explain how the corneal epithelium is maintained. The limbal epithelial stem cell (LESC) hypothesis is most widely accepted. This proposes that stem cells in the basal layer of the limbal epithelium, at the periphery of the cornea, maintain themselves and also produce transient (or transit) amplifying cells (TACs). TACs then move centripetally to the centre of the cornea in the basal layer of the corneal epithelium and also replenish cells in the overlying suprabasal layers. The LESCs maintain the corneal epithelium during normal homeostasis and become more active to repair significant wounds. Second, the corneal epithelial stem cell (CESC) hypothesis postulates that, during normal homeostasis, stem cells distributed throughout the basal corneal epithelium, maintain the tissue. According to this hypothesis, LESCs are present in the limbus but are only active during wound healing. We also consider a third possibility, that the corneal epithelium is maintained during normal homeostasis by proliferation of basal corneal epithelial cells without any input from stem cells. After reviewing the published evidence, we conclude that the LESC and CESC hypotheses are consistent with more of the evidence than the third hypothesis, so we do not consider this further. The LESC and CESC hypotheses each have difficulty accounting for one main type of evidence so we evaluate the two key lines of evidence that discriminate between them. Finally, we discuss how lineage-tracing experiments have begun to resolve the debate in favour of the LESC hypothesis. Nevertheless, it also seems likely that some basal corneal epithelial cells can act as long-term progenitors if limbal stem cell function is compromised. Thus, this aspect of the CESC hypothesis may have a lasting impact on our understanding of corneal epithelial maintenance, even if it is eventually shown that stem cells are restricted to the limbus as proposed

  10. Increased Abundance of M Cells in the Gut Epithelium Dramatically Enhances Oral Prion Disease Susceptibility.

    PubMed

    Donaldson, David S; Sehgal, Anuj; Rios, Daniel; Williams, Ifor R; Mabbott, Neil A

    2016-12-01

    Many natural prion diseases of humans and animals are considered to be acquired through oral consumption of contaminated food or pasture. Determining the route by which prions establish host infection will identify the important factors that influence oral prion disease susceptibility and to which intervention strategies can be developed. After exposure, the early accumulation and replication of prions within small intestinal Peyer's patches is essential for the efficient spread of disease to the brain. To replicate within Peyer's patches, the prions must first cross the gut epithelium. M cells are specialised epithelial cells within the epithelia covering Peyer's patches that transcytose particulate antigens and microorganisms. M cell-development is dependent upon RANKL-RANK-signalling, and mice in which RANK is deleted only in the gut epithelium completely lack M cells. In the specific absence of M cells in these mice, the accumulation of prions within Peyer's patches and the spread of disease to the brain was blocked, demonstrating a critical role for M cells in the initial transfer of prions across the gut epithelium in order to establish host infection. Since pathogens, inflammatory stimuli and aging can modify M cell-density in the gut, these factors may also influence oral prion disease susceptibility. Mice were therefore treated with RANKL to enhance M cell density in the gut. We show that prion uptake from the gut lumen was enhanced in RANKL-treated mice, resulting in shortened survival times and increased disease susceptibility, equivalent to a 10-fold higher infectious titre of prions. Together these data demonstrate that M cells are the critical gatekeepers of oral prion infection, whose density in the gut epithelium directly limits or enhances disease susceptibility. Our data suggest that factors which alter M cell-density in the gut epithelium may be important risk factors which influence host susceptibility to orally acquired prion diseases.

  11. Growth of Normal Mouse Vaginal Epithelial Cells in and on Collagen Gels

    NASA Astrophysics Data System (ADS)

    Iguchi, Taisen; Uchima, Francis-Dean A.; Ostrander, Patricia L.; Bern, Howard A.

    1983-06-01

    Sustained growth in primary culture of vaginal epithelial cells from ovariectomized adult BALB/cCrg1 mice embedded within or seeded on collagen gel matrix was achieved in a serum-free medium composed of Ham's F-12 medium/Dulbecco's modified Eagle's medium, 1:1 (vol/vol), supplemented with insulin, bovine serum albumin fraction V, epidermal growth factor, cholera toxin, and transferrin. Three-dimensional growth of vaginal epithelial cells occurred inside the collagen gel matrix. Cell numbers increased 4- to 8-fold in collagen gel and about 4-fold on collagen gel after 9-10 days in culture. The effect of 17β -estradiol (0.00018-180 nM in gel or 0.018-180 nM on gel) and diethylstilbestrol (DES; 0.0186-186 nM in gel) on the growth of vaginal epithelial cells was examined. The addition of estrogen did not enhance the growth of vaginal epithelial cells during this time period either in the complete medium or in a suboptimal medium. Cultures on floating collagen gels in the serum-free medium are composed of 1-3 cell layers with superficial cornification. Estrogen does not appear to be a direct mitogen for vaginal epithelial cells, at least in this system.

  12. Lactobacillus casei Strain Shirota Enhances the In Vitro Antiproliferative Effect of Geniposide in Human Oral Squamous Carcinoma HSC-3 Cells.

    PubMed

    Qian, Yu; Song, Jia-Le; Sun, Peng; Yi, Ruokun; Liu, Honglin; Feng, Xia; Park, Kun-Young; Zhao, Xin

    2018-05-03

    This study investigated the enhanced antiproliferative effect of Lactobacillus casei strain Shirota (LcS) on geniposide actions in human oral squamous carcinoma HSC-3 cells. An MTT assay, flow cytometry, qPCR assay, western blot and HPLC were used for this study. The concentration of 1.0 × 10⁶ CFU/mL of LcS had no effect on the HOK normal oral epithelial cells and HSC-3 cancer cells. The 25 and 50 µg/mL geniposide concentrations also had no impact on HOK normal oral epithelial cells, but they had remarkable inhibitory effects on the growth of HSC-3 cancer cells, which are enhanced in the presence of LcS. By the flow cytometry assay, the LcS-geniposide-H (1.0 × 10⁶ CFU/mL LcS and 50 µg/mL geniposide)-treated HSC-3 cancer cells had the largest number of cells undergoing apoptosis compared to cells treated with other combinationsand obviously more than cells treated with only geniposide-H (50 µg/mL geniposide). Geniposide-H could increase the mRNA and protein expressions of caspase-3, caspase-8, caspase-9, Bax, p53, p21, IκB-α, Fas, FasL, TIMP-1, and TIMP-2 as well as decrease those of Bcl-2, Bcl-xL, HIAP-1, HIAP-2, NF-κB, COX-2, iNOS, MMP-2, and MMP-9 compared to other groups of cells, and LcS further enhanced these changes, with results that are greater than for the cells treated with only a high concentration of geniposide. The results of this study show thatLcS enhanced the antiproliferative effect of geniposide in HSC-3 cancer cells.

  13. Diagnosis of colorectal cancer using Raman spectroscopy of laser-trapped single living epithelial cells

    NASA Astrophysics Data System (ADS)

    Chen, Kun; Qin, Yejun; Zheng, Feng; Sun, Menghong; Shi, Daren

    2006-07-01

    A single-cell diagnostic technique for epithelial cancers is developed by utilizing laser trapping and Raman spectroscopy to differentiate cancerous and normal epithelial cells. Single-cell suspensions were prepared from surgically removed human colorectal tissues following standard primary culture protocols and examined in a near-infrared laser-trapping Raman spectroscopy system, where living epithelial cells were investigated one by one. A diagnostic model was built on the spectral data obtained from 8 patients and validated by the data from 2 new patients. Our technique has potential applications from epithelial cancer diagnosis to the study of cell dynamics of carcinogenesis.

  14. The fate of epithelial cells in the human large intestine.

    PubMed

    Barkla, D H; Gibson, P R

    1999-08-01

    One hundred and forty biopsies of the colon and rectum, collected during routine colonoscopies of 51 patients aged 19 to 74 years, were examined using light microscopy and transmission and scanning electron microscopy. The results indicated that surface epithelial cells undergo apoptosis, passing through fenestrations in the basement membrane to where they enter the lamina propria and are taken up by macrophages; and it is hypothesized that apoptotic cells are carried through the fenestrations on a current of fluid. The study also found that epithelial cells positioned over the crypts are better attached and more robust than those more distant from the crypt opening; and it is further hypothesized that, after reaching the top of the crypts, some goblet cells cease secreting mucus and pass onto the surface compartment of absorptive cells. An unexpected finding was that the lower regions of the crypts commonly contain isolated necrotic colonocytes. Apoptotic cells were rarely observed in the crypt epithelium. The findings of this study support the "recycling" model of epithelial cell death in the surface compartment of the human colon.

  15. Genotoxic effects of camphorquinone and DMT on human oral and intestinal cells.

    PubMed

    Wessels, Miriam; Rimkus, Julia; Leyhausen, Gabriele; Volk, Joachim; Geurtsen, Werner

    2015-10-01

    Released components of oral biomaterials can leach into the oral cavity and may subsequently reach the gastrointestinal tract. Camphorquinone (CQ) is the most common used photoinitiator in resinous restorative materials and is often combined with the co-initiator N,N-dimethyl-p-toluidine (DMT). It has been shown that CQ exerts cytotoxic effects, at least partially due to the generation of reactive oxygen species (ROS). Objective of this study was to examine the cytotoxic and genotoxic potential of CQ in human oral keratinocytes (OKF6/TERT2) and immortalized epithelial colorectal adenocarcinoma cells (Caco-2). Furthermore, the effects of visible-light irradiation and the co-initiator DMT were investigated as well as the generation of ROS, the potential protective effect of glutathione (GSH) and a recovery period of CQ-treated Caco-2 cells. The alkaline comet assay was used to determine DNA damage. Additionally, an enzyme modified comet assay was applied, which detects 7,8-dihydro-8-oxoguanine (8-oxoguanine), a reliable marker for oxidative stress. Our data revealed that high concentrations of CQ induced DNA lesions in OKF6/TERT2 cells. This DNA damage is at least partly caused by the generation of 8-oxoguanine. In addition, CQ and DMT increased ROS formation and induced DNA damage in Caco-2 cells. CQ-treatment resulted in generation of 8-oxoguanine. The antioxidant GSH efficiently prevented CQ-associated DNA damage. Furthermore, a recovery following CQ-treatment significantly reduced DNA damage. We conclude that CQ-induced DNA damage is caused by oxidative stress in oral and intestinal cells. These lesions can be prevented and possibly repaired by GSH-treatment and recovery of cells after the photoinitiator is removed from cultures. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. A Noninvasive Test for MicroRNA Expression in Oral Squamous Cell Carcinoma.

    PubMed

    Gissi, Davide B; Morandi, Luca; Gabusi, Andrea; Tarsitano, Achille; Marchetti, Claudio; Cura, Francesca; Palmieri, Annalisa; Montebugnoli, Lucio; Asioli, Sofia; Foschini, Maria P; Scapoli, Luca

    2018-06-16

    MicroRNAs have recently been proposed as non-invasive biomarkers in Oral Squamous Cell Carcinoma (OSCC). The aim of this study was to analyze the expression of a panel of miRNAs in epithelial cells collected by oral brushing from OSCCs from regenerative areas after OSCC surgical resection and from their respective normal distant mucosa. Oral brushing specimens were collected from 24 healthy donors, 14 OSCC patients with specimens from tumour and normal distant mucosa, and from 13 patients who had OSCC resection, with samples from regenerative areas after OSCC resection and normal distant mucosa. Expression levels of eight targets (miR-21, miR-375, miR-345, miR-181b, miR-146a, miR-649, miR-518b, and miR-191) were evaluated by real-time Polymerase Chain Reaction (PCR). A highly significant between-group difference was found for miR-21 (F = 6.58, p < 0.001), miR-146a (F = 6.974, p < 0.001), and miR-191 (F = 17.07, p < 0.001). The major difference was observed between samples from healthy donors and from OSCC brushing, whereas no significant differences were observed between areas infiltrated by OSCC and their respective normal distant mucosa. Furthermore, altered expression of miR-146a and miR-191 was also observed in regenerative areas after OSCC resection. Oral brushing could be proposed as a noninvasive method to study microRNA expression in oral mucosa in OSCC patients.

  17. Biological length scale topography enhances cell-substratum adhesion of human corneal epithelial cells

    PubMed Central

    Karuri, Nancy W.; Liliensiek, Sara; Teixeira, Ana I.; Abrams, George; Campbell, Sean; Nealey, Paul F.; Murphy, Christopher J.

    2006-01-01

    Summary The basement membrane possesses a rich 3-dimensional nanoscale topography that provides a physical stimulus, which may modulate cell-substratum adhesion. We have investigated the strength of cell-substratum adhesion on nanoscale topographic features of a similar scale to that of the native basement membrane. SV40 human corneal epithelial cells were challenged by well-defined fluid shear, and cell detachment was monitored. We created silicon substrata with uniform grooves and ridges having pitch dimensions of 400-4000 nm using X-ray lithography. F-actin labeling of cells that had been incubated for 24 hours revealed that the percentage of aligned and elongated cells on the patterned surfaces was the same regardless of pitch dimension. In contrast, at the highest fluid shear, a biphasic trend in cell adhesion was observed with cells being most adherent to the smaller features. The 400 nm pitch had the highest percentage of adherent cells at the end of the adhesion assay. The effect of substratum topography was lost for the largest features evaluated, the 4000 nm pitch. Qualitative and quantitative analyses of the cells during and after flow indicated that the aligned and elongated cells on the 400 nm pitch were more tightly adhered compared to aligned cells on the larger patterns. Selected experiments with primary cultured human corneal epithelial cells produced similar results to the SV40 human corneal epithelial cells. These findings have relevance to interpretation of cell-biomaterial interactions in tissue engineering and prosthetic design. PMID:15226393

  18. Airway epithelial stem cells and the pathophysiology of chronic obstructive pulmonary disease.

    PubMed

    Randell, Scott H

    2006-11-01

    Characteristic pathologic changes in chronic obstructive pulmonary disease (COPD) include an increased fractional volume of bronchiolar epithelial cells, fibrous thickening of the airway wall, and luminal inflammatory mucus exudates, which are positively correlated with airflow limitation and disease severity. The mechanisms driving general epithelial expansion, mucous secretory cell hyperplasia, and mucus accumulation must relate to the effects of initial toxic exposures on patterns of epithelial stem and progenitor cell proliferation and differentiation, eventually resulting in a self-perpetuating, and difficult to reverse, cycle of injury and repair. In this review, current concepts in stem cell biology and progenitor-progeny relationships related to COPD are discussed, focusing on the factors, pathways, and mechanisms leading to mucous secretory cell hyperplasia and mucus accumulation in the airways. A better understanding of alterations in airway epithelial phenotype in COPD will provide a logical basis for novel therapeutic approaches.

  19. COMPARISON OF PM-INDUCED GENE EXPRESSION PROFILES BETWEEN BRONCHIAL EPITHELIAL CELLS AND NASAL EPITHELIAL CELLS IN HUMAN

    EPA Science Inventory

    Epidemiologic studies have linked exposures to particulate matter (PM) and increased pulmonary mortality and morbidity. Bronchial epithelial cells (BEC) are the primary target of PM. PM exposure induces a wide array of biological responses in BEC. Primary human BEC, however, need...

  20. Exposure of differentiated airway epithelial cells to volatile smoke in vitro.

    PubMed

    Beisswenger, Christoph; Platz, Juliane; Seifart, Carola; Vogelmeier, Claus; Bals, Robert

    2004-01-01

    Cigarette smoke (CS) is the predominant pathogenetic factor in the development of chronic bronchitis and chronic obstructive pulmonary disease. The knowledge about the cellular and molecular mechanisms underlying the smoke-induced inflammation in epithelial cells is limited. The aim of this study was to develop an in vitro model to monitor the effects of volatile CS on differentiated airway epithelial cells. The airway epithelial cell line MM-39 and primary human bronchial epithelial cells were cultivated as air-liquid interface cultures and exposed directly to volatile CS. We used two types of exposure models, one using ambient air, the other using humidified and warm air. Cytokine levels were measured by quantitative PCR and ELISA. Phosphorylation of p38 MAP kinase was assessed by Western blot analysis. To reduce the smoke-induced inflammation, antisense oligonucleotides directed against the p65 subunit of NF-kappaB were applied. Exposure of epithelia to cold and dry air resulted in a significant inflammatory response. In contrast, exposure to humidified warm air did not elicit a cellular response. Stimulation with CS resulted in upregulation of mRNA for IL-6 and IL-8 and protein release. Exposure to CS combined with heat-inactivated bacteria synergistically increased levels of the cytokines. Reactions of differentiated epithelial cells to smoke are mediated by the MAP kinase p38 and the transcription factor NF-kappaB. We developed an exposure model to examine the consequences of direct exposure of differentiated airway epithelial cells to volatile CS. The model enables to measure the cellular reactions to smoke exposure and to determine the outcome of therapeutic interventions. Copyright 2004 S. Karger AG, Basel

  1. Endogenous Sheet-Averaged Tension Within a Large Epithelial Cell Colony.

    PubMed

    Dumbali, Sandeep P; Mei, Lanju; Qian, Shizhi; Maruthamuthu, Venkat

    2017-10-01

    Epithelial cells form quasi-two-dimensional sheets that function as contractile media to effect tissue shape changes during development and homeostasis. Endogenously generated intrasheet tension is a driver of such changes, but has predominantly been measured in the presence of directional migration. The nature of epithelial cell-generated forces transmitted over supracellular distances, in the absence of directional migration, is thus largely unclear. In this report, we consider large epithelial cell colonies which are archetypical multicell collectives with extensive cell-cell contacts but with a symmetric (circular) boundary. Using the traction force imbalance method (TFIM) (traction force microscopy combined with physical force balance), we first show that one can determine the colony-level endogenous sheet forces exerted at the midline by one half of the colony on the other half with no prior assumptions on the uniformity of the mechanical properties of the cell sheet. Importantly, we find that this colony-level sheet force exhibits large variations with orientation-the difference between the maximum and minimum sheet force is comparable to the average sheet force itself. Furthermore, the sheet force at the colony midline is largely tensile but the shear component exhibits significantly more variation with orientation. We thus show that even an unperturbed epithelial colony with a symmetric boundary shows significant directional variation in the endogenous sheet tension and shear forces that subsist at the colony level.

  2. Characterization of a continuous feline mammary epithelial cell line susceptible to feline epitheliotropic viruses.

    PubMed

    Pesavento, Patricia; Liu, Hongwei; Ossiboff, Robert J; Stucker, Karla M; Heymer, Anna; Millon, Lee; Wood, Jason; van der List, Deborah; Parker, John S L

    2009-04-01

    Mucosal epithelial cells are the primary targets for many common viral pathogens of cats. Viral infection of epithelia can damage or disrupt the epithelial barrier that protects underlying tissues. In vitro cell culture systems are an effective means to study how viruses infect and disrupt epithelial barriers, however no true continuous or immortalized feline epithelial cell culture lines are available. A continuous cell culture of feline mammary epithelial cells (FMEC UCD-04-2) that forms tight junctions with high transepithelial electrical resistance (>2000Omegacm(-1)) 3-4 days after reaching confluence was characterized. In addition, it was shown that FMECs are susceptible to infection with feline calicivirus (FCV), feline herpesvirus (FHV-1), feline coronavirus (FeCoV), and feline panleukopenia virus (FPV). These cells will be useful for studies of feline viral disease and for in vitro studies of feline epithelia.

  3. Neoplastic transformation of human thyroid epithelial cells by ionizing radiation

    NASA Astrophysics Data System (ADS)

    Herceg, Zdenko

    Neoplastic transformation of human thyroid epithelial cells has been investigated following exposure to ionizing radiation in vitro. The effects of radiation type, irradiation regime, and postirradiation passaging were examined using a human thyroid epithelial cell line, designated HToriS, which was previously immortalized with SV40 genome. Exponentially growing HToriS cells were irradiated with graded doses of 137 Cs gamma- and 238pu alpha-irradiation. Cells were irradiated with either a single or multiple doses of 0.5, 1, 2, 3, or 4 Gy gamma-radiation, or single doses of 0.125, 0.25, 0.5, 1, or 1.5 Gy gamma-radiation. Following passaging, the cells were transplanted into the athymic nude mice, and the animals were screened for tumour formation. Statistically significant increases in tumour incidence were obtained with both gamma- and alpha-irradiation and with both single and multiple irradiation regimes as compared with the un-irradiated group. Regardless of radiation type and or radiation regime there appears to be a trend, with increasing doses of radiation, in which tumour incidence increases and reaches a maximum, after which the tumour incidence decreases. Tumours were characterized by histopathological examination as undifferentiated carcinomas. Investigation of expression time following irradiation demonstrated that post-irradiation passaging, generally regarded as a critical step for expression of radiation-induced DNA damage, was not a prerequisite for the neoplastic conversion of irradiated cells with this system. Cell lines were established from the tumours and their identification and characterization carried out. All cell lines established were determined to be derived from the parent HTori3 cells by DNA fingerprinting, karyotype analysis, cytokeratin staining, and SV40 large T-antigen staining. Tumorigenicity of the cell lines was confirmed by retransplantation. Comparison of the morphology in vitro showed that the tumour cell lines retained the

  4. Curcumin suppresses AGEs induced apoptosis in tubular epithelial cells via protective autophagy

    PubMed Central

    Wei, Ying; Gao, Jiaqi; Qin, Lingling; Xu, Yunling; Shi, Haoxia; Qu, Lingxia; Liu, Yongqiao; Xu, Tunhai; Liu, Tonghua

    2017-01-01

    Renal tubular cell apoptosis and tubular dysfunction is an important process underlying diabetic nephropathy (DN). Understanding the mechanisms underlying renal tubular epithelial cell survival is important for the prevention of kidney damage associated with glucotoxicity. Curcumin has been demonstrated to possess potent anti-apoptotic properties. However, the roles of curcumin in renal epithelial cells are yet to be defined. The present study investigated advanced glycation or glycoxidation end-product (AGE)-induced toxicity in renal tubular epithelial cells via several complementary assays, including cell viability, cell apoptosis and cell autophagy in the NRK-52E rat kidney tubular epithelial cell line. The extent of apoptosis was significantly increased in the NRK-52E cells following treatment with AGEs. The results also indicated that curcumin reversed this effect by promoting autophagy through the phosphoinositide 3-kinase/AKT serine/threonine kinase signaling pathway. These conclusions suggested that curcumin exerts a renoprotective effect in the presence of AGEs, at least in part by activating autophagy in NRK-52E cells. Collectively, these findings indicate that curcumin not only exerts renoprotective effects, however may also act as a novel therapeutic strategy for the treatment of diabetic nephropathy. PMID:29285156

  5. Characteristics and EGFP expression of goat mammary gland epithelial cells.

    PubMed

    Zheng, Y-M; He, X-Y; Zhang, Y

    2010-12-01

    The aims of this study were (i) to establish a goat mammary gland epithelial (GMGE) cell line, and (ii) to determine if these GMGE cells could be maintained long-term in culture by continuous subculturing following transfection with a reporter gene, enhanced green fluorescence protein (EGFP). Primary culture of GMGE cells was achieved by outgrowth of migrating cells from the fragments of the mammary gland tissue of a lactating goat. The passage 16 GMGE cells were transfected with EGFP gene using lipofection. The expression of Cell keratins of epithelial cells in GMGE cells was test by immunofluorescence. Βeta-Casein gene mRNA was test for GMGE cells by RT-PCR. The results showed that when grown at low density on a plastic substratum, the GMGE cells formed islands, and when grown to confluency, the cells formed a monolayer and aggregated with the characteristic cobble-stone morphology of epithelial cells. GMGE cells could form dome-like structure which looked like nipple, and the lumen-like structures formed among the cells. Several blister-like structures appeared in the appearance of the cells. The GMGE cells contained different cell types, majority of the cells were short shuttle-like or polygon which were beehive-like. A part of cells were round and flat, a small number of cells were elongated. Some of the GMGE cells contained milk drops. The cell nuclei were round which had 2-4 obvious cores. The expression of Cell keratins demonstrated the property of epithelial cells in GMGE cells by immunofluorescence. The GMGE cells could express transcript encoding a Βeta-Casein protein. EGFP gene was successfully transferred into the GMGE cells, and the transfected cells could be maintained long-term in culture by continuous subculturing. In conclusion, we have established a EGFP gene transfected GMGE (ET-GMGE) cell line and maintained it long-term in culture by continuous subculturing. © 2010 Blackwell Verlag GmbH.

  6. Generation of Epithelial Cell Populations from Human Pluripotent Stem Cells Using a Small-Molecule Inhibitor of Src Family Kinases.

    PubMed

    Selekman, Joshua A; Lian, Xiaojun; Palecek, Sean P

    2016-01-01

    Human pluripotent stem cells (hPSCs), under the right conditions, can be engineered to generate populations of any somatic cell type. Knowledge of what mechanisms govern differentiation towards a particular lineage is often quite useful for efficiently producing somatic cell populations from hPSCs. Here, we have outlined a strategy for deriving populations of simple epithelial cells, as well as more mature epidermal keratinocyte progenitors, from hPSCs by exploiting a mechanism previously shown to direct epithelial differentiation of hPSCs. Specifically, we describe how to direct epithelial differentiation of hPSCs using an Src family kinase inhibitor, SU6656, which has been shown to modulate β-catenin translocation to the cell membrane and thus promote epithelial differentiation. The differentiation platform outlined here produces cells with the ability to terminally differentiate to epidermal keratinocytes in culture through a stable simple epithelial cell intermediate that can be expanded in culture for numerous (>10) passages.

  7. The status of intercellular junctions in established lens epithelial cell lines

    PubMed Central

    Dave, Alpana; Craig, Jamie E.

    2012-01-01

    Purpose Cataract is the major cause of vision-related disability worldwide. Mutations in the crystallin genes are the most common known cause of inherited congenital cataract. Mutations in the genes associated with intercellular contacts, such as Nance-Horan Syndrome (NHS) and Ephrin type A receptor-2 (EPHA2), are other recognized causes of congenital cataract. The EPHA2 gene has been also associated with age-related cataract, suggesting that intercellular junctions are important in not only lens development, but also in maintaining lens transparency. The purpose of this study was to analyze the expression and localization of the key cell junction and cytoskeletal proteins, and of NHS and EPHA2, in established lens epithelial cell lines to determine their suitability as model epithelial systems for the functional investigation of genes involved in intercellular contacts and implicated in cataract. Methods The expression and subcellular localization of occludin and zona occludens protein-1 (ZO-1), which are associated with tight junctions; E-cadherin, which is associated with adherence junctions; and the cytoskeletal actin were analyzed in monolayers of a human lens epithelial cell line (SRA 01/04) and a mouse lens epithelial cell line (αTN4). In addition, the expression and subcellular localization of the NHS and EPHA2 proteins were analyzed in these cell lines. Protein or mRNA expression was respectively determined by western blotting or reverse transcription-polymerase chain reaction (RT–PCR), and localization was determined by immunofluorescence labeling. Results Human SRA 01/04 and mouse αTN4 lens epithelial cells expressed either the proteins of interest or their encoding mRNA. Occludin, ZO-1, and NHS proteins localized to the cellular periphery, whereas E-cadherin, actin, and EPHA2 localized in the cytoplasm in these cell lines. Conclusions The human SRA 01/04 and mouse αTN4 lens epithelial cells express the key junctional proteins. The localization

  8. Active Vertex Model for cell-resolution description of epithelial tissue mechanics

    PubMed Central

    Barton, Daniel L.; Henkes, Silke

    2017-01-01

    We introduce an Active Vertex Model (AVM) for cell-resolution studies of the mechanics of confluent epithelial tissues consisting of tens of thousands of cells, with a level of detail inaccessible to similar methods. The AVM combines the Vertex Model for confluent epithelial tissues with active matter dynamics. This introduces a natural description of the cell motion and accounts for motion patterns observed on multiple scales. Furthermore, cell contacts are generated dynamically from positions of cell centres. This not only enables efficient numerical implementation, but provides a natural description of the T1 transition events responsible for local tissue rearrangements. The AVM also includes cell alignment, cell-specific mechanical properties, cell growth, division and apoptosis. In addition, the AVM introduces a flexible, dynamically changing boundary of the epithelial sheet allowing for studies of phenomena such as the fingering instability or wound healing. We illustrate these capabilities with a number of case studies. PMID:28665934

  9. Active Vertex Model for cell-resolution description of epithelial tissue mechanics.

    PubMed

    Barton, Daniel L; Henkes, Silke; Weijer, Cornelis J; Sknepnek, Rastko

    2017-06-01

    We introduce an Active Vertex Model (AVM) for cell-resolution studies of the mechanics of confluent epithelial tissues consisting of tens of thousands of cells, with a level of detail inaccessible to similar methods. The AVM combines the Vertex Model for confluent epithelial tissues with active matter dynamics. This introduces a natural description of the cell motion and accounts for motion patterns observed on multiple scales. Furthermore, cell contacts are generated dynamically from positions of cell centres. This not only enables efficient numerical implementation, but provides a natural description of the T1 transition events responsible for local tissue rearrangements. The AVM also includes cell alignment, cell-specific mechanical properties, cell growth, division and apoptosis. In addition, the AVM introduces a flexible, dynamically changing boundary of the epithelial sheet allowing for studies of phenomena such as the fingering instability or wound healing. We illustrate these capabilities with a number of case studies.

  10. Serratia marcescens is injurious to intestinal epithelial cells

    PubMed Central

    Ochieng, John B; Boisen, Nadia; Lindsay, Brianna; Santiago, Araceli; Ouma, Collins; Ombok, Maurice; Fields, Barry; Stine, O Colin; Nataro, James P

    2014-01-01

    Diarrhea causes substantial morbidity and mortality in children in low-income countries. Although numerous pathogens cause diarrhea, the etiology of many episodes remains unknown. Serratia marcescens is incriminated in hospital-associated infections, and HIV/AIDS associated diarrhea. We have recently found that Serratia spp. may be found more commonly in the stools of patients with diarrhea than in asymptomatic control children. We therefore investigated the possible enteric pathogenicity of S. marcescens in vitro employing a polarized human colonic epithelial cell (T84) monolayer. Infected monolayers were assayed for bacterial invasion, transepithelial electrical resistance (TEER), cytotoxicity, interleukin-8 (IL-8) release and morphological changes by scanning electron microscopy. We observed significantly greater epithelial cell invasion by S. marcescens compared to Escherichia coli strain HS (p = 0.0038 respectively). Cell invasion was accompanied by reduction in TEER and secretion of IL-8. Lactate dehydrogenase (LDH) extracellular concentration rapidly increased within a few hours of exposure of the monolayer to S. marcescens. Scanning electron microscopy of S. marcescens-infected monolayers demonstrated destruction of microvilli and vacuolization. Our results suggest that S. marcescens interacts with intestinal epithelial cells in culture and induces dramatic alterations similar to those produced by known enteric pathogens. PMID:25426769

  11. E-cigarettes and flavorings induce inflammatory and pro-senescence responses in oral epithelial cells and periodontal fibroblasts.

    PubMed

    Sundar, Isaac K; Javed, Fawad; Romanos, Georgios E; Rahman, Irfan

    2016-11-22

    Electronic-cigarettes (e-cigs) represent a significant and increasing proportion of tobacco product consumption, which may pose an oral health concern. Oxidative/carbonyl stress via protein carbonylation is an important factor in causing inflammation and DNA damage. This results in stress-induced premature senescence (a state of irreversible growth arrest which re-enforces chronic inflammation) in gingival epithelium, which may contribute to the pathogenesis of oral diseases. We show that e-cigs with flavorings cause increased oxidative/carbonyl stress and inflammatory cytokine release in human periodontal ligament fibroblasts, Human Gingival Epithelium Progenitors pooled (HGEPp), and epigingival 3D epithelium. We further show increased levels of prostaglandin-E2 and cycloxygenase-2 are associated with upregulation of the receptor for advanced glycation end products (RAGE) by e-cig exposure-mediated carbonyl stress in gingival epithelium/tissue. Further, e-cigs cause increased oxidative/carbonyl and inflammatory responses, and DNA damage along with histone deacetylase 2 (HDAC2) reduction via RAGE-dependent mechanisms in gingival epithelium. A greater response is elicited by flavored e-cigs. Increased oxidative stress, pro-inflammatory and pro-senescence responses (DNA damage and HDAC2 reduction) can result in dysregulated repair due to proinflammatory and pro-senescence responses in periodontal cells. These data highlight the pathologic role of e-cig aerosol and its flavoring to cells and tissues of the oral cavity in compromised oral health.

  12. Polarity, cell division, and out-of-equilibrium dynamics control the growth of epithelial structures

    PubMed Central

    Cerruti, Benedetta; Puliafito, Alberto; Shewan, Annette M.; Yu, Wei; Combes, Alexander N.; Little, Melissa H.; Chianale, Federica; Primo, Luca; Serini, Guido; Mostov, Keith E.; Celani, Antonio

    2013-01-01

    The growth of a well-formed epithelial structure is governed by mechanical constraints, cellular apico-basal polarity, and spatially controlled cell division. Here we compared the predictions of a mathematical model of epithelial growth with the morphological analysis of 3D epithelial structures. In both in vitro cyst models and in developing epithelial structures in vivo, epithelial growth could take place close to or far from mechanical equilibrium, and was determined by the hierarchy of time-scales of cell division, cell–cell rearrangements, and lumen dynamics. Equilibrium properties could be inferred by the analysis of cell–cell contact topologies, and the nonequilibrium phenotype was altered by inhibiting ROCK activity. The occurrence of an aberrant multilumen phenotype was linked to fast nonequilibrium growth, even when geometric control of cell division was correctly enforced. We predicted and verified experimentally that slowing down cell division partially rescued a multilumen phenotype induced by altered polarity. These results improve our understanding of the development of epithelial organs and, ultimately, of carcinogenesis. PMID:24145168

  13. Bovine TLR2 and TLR4 mediate Cryptosporidium parvum recognition in bovine intestinal epithelial cells.

    PubMed

    Yang, Zhengtao; Fu, Yunhe; Gong, Pengtao; Zheng, Jingtong; Liu, Li; Yu, Yuqiang; Li, Jianhua; Li, He; Yang, Ju; Zhang, Xichen

    2015-08-01

    Cryptosporidium parvum (C. parvum) is an intestinal parasite that causes diarrhea in neonatal calves. It results in significant morbidity of neonatal calves and economic losses for producers worldwide. Innate resistance against C. parvum is thought to depend on engagement of pattern recognition receptors. However, the role of innate responses to C. parvum has not been elucidated in bovine. The aim of this study was to evaluate the role of TLRs in host-cell responses during C. parvum infection of cultured bovine intestinal epithelial cells. The expressions of TLRs in bovine intestinal epithelial cells were detected by qRT-PCR. To determine which, if any, TLRs may play a role in the response of bovine intestinal epithelial cells to C. parvum, the cells were stimulated with C. parvum and the expression of TLRs were tested by qRT-PCR. The expression of NF-κB was detected by western blotting. Further analyses were carried out in bovine TLRs transfected HEK293 cells and by TLRs-DN transfected bovine intestinal epithelial cells. The results showed that bovine intestinal epithelial cells expressed all known TLRs. The expression of TLR2 and TLR4 were up-regulated when bovine intestinal epithelial cells were treated with C. parvum. Meanwhile, C. parvum induced IL-8 production in TLR2 or TLR4/MD-2 transfected HEK293 cells. Moreover, C. parvum induced NF-κB activation and cytokine expression in bovine intestinal epithelial cells. The induction of NF-κB activation and cytokine expression by C. parvum were reduced in TLR2-DN and TLR4-DN transfected cells. The results showed that bovine intestinal epithelial cells expressed all known TLRs, and bovine intestinal epithelial cells recognized and responded to C. parvum via TLR2 and TLR4. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Evidence of K+ channel function in epithelial cell migration, proliferation, and repair

    PubMed Central

    Girault, Alban

    2013-01-01

    Efficient repair of epithelial tissue, which is frequently exposed to insults, is necessary to maintain its functional integrity. It is therefore necessary to better understand the biological and molecular determinants of tissue regeneration and to develop new strategies to promote epithelial repair. Interestingly, a growing body of evidence indicates that many members of the large and widely expressed family of K+ channels are involved in regulation of cell migration and proliferation, key processes of epithelial repair. First, we briefly summarize the complex mechanisms, including cell migration, proliferation, and differentiation, engaged after epithelial injury. We then present evidence implicating K+ channels in the regulation of these key repair processes. We also describe the mechanisms whereby K+ channels may control epithelial repair processes. In particular, changes in membrane potential, K+ concentration, cell volume, intracellular Ca2+, and signaling pathways following modulation of K+ channel activity, as well as physical interaction of K+ channels with the cytoskeleton or integrins are presented. Finally, we discuss the challenges to efficient, specific, and safe targeting of K+ channels for therapeutic applications to improve epithelial repair in vivo. PMID:24196531

  15. Intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verhaeghe, Catherine; Tabruyn, Sebastien P.; Oury, Cecile

    Cystic fibrosis is a common genetic disorder characterized by a severe lung inflammation and fibrosis leading to the patient's death. Enhanced angiogenesis in cystic fibrosis (CF) tissue has been suggested, probably caused by the process of inflammation, as similarly described in asthma and chronic bronchitis. The present study demonstrates an intrinsic pro-angiogenic status of cystic fibrosis airway epithelial cells. Microarray experiments showed that CF airway epithelial cells expressed several angiogenic factors such as VEGF-A, VEGF-C, bFGF, and PLGF at higher levels than control cells. These data were confirmed by real-time quantitative PCR and, at the protein level, by ELISA. Conditionedmore » media of these cystic fibrosis cells were able to induce proliferation, migration and sprouting of cultured primary endothelial cells. This report describes for the first time that cystic fibrosis epithelial cells have an intrinsic angiogenic activity. Since excess of angiogenesis is correlated with more severe pulmonary disease, our results could lead to the development of new therapeutic applications.« less

  16. Expression of matrix metalloproteinases (MMP-1 and -2) and their inhibitors (TIMP-1, -2 and -3) in oral lichen planus, dysplasia, squamous cell carcinoma and lymph node metastasis.

    PubMed Central

    Sutinen, M.; Kainulainen, T.; Hurskainen, T.; Vesterlund, E.; Alexander, J. P.; Overall, C. M.; Sorsa, T.; Salo, T.

    1998-01-01

    Although matrix metalloproteinases (MMPs) are among the potential key mediators of cancer invasion, their involvement in premalignant lesions and conditions is not clarified. Therefore, we studied, using in situ hybridization, immunohistochemistry and zymography the expression and distribution of MMP-1 and -2, and their tissue inhibitors (TIMPs -1, -2 and -3) in oral squamous cell carcinomas (SCC) and lymph node metastases as well as in oral lichen planus, epithelial dysplasias and normal buccal mucosa. In oral SCC and lymph node metastasis, MMP-1 mRNA was detected in fibroblastic cells of tumoral stroma. In two out of ten carcinomas studied, the peripheral cells of neoplastic islands were also positive. MMP-2 mRNA expression was noted in fibroblasts surrounding the carcinoma cells, and no signal in carcinoma cells was detected. A clear TIMP-3 mRNA expression was seen in stromal cells surrounding the neoplastic islands in all SCCs and lymph node metastases studied. TIMP-1 mRNA was detected in some stromal cells surrounding the neoplastic islands, whereas the mRNA expression for TIMP-2 was negligible. On the other hand, expression of MMPs and TIMPs was consistently low in oral epithelial dysplasias, lichen planus and normal mucosa. In certain epithelial dysplasias and lichen planus, MMP-1 and -2 mRNA expressions were detected in few fibroblasts under the basement membrane zone, but normal mucosa was completely negative. In SCC and lymph node metastasis, a detectable immunostaining for MMP-1 in stromal cells and in some carcinoma cells was observed. MMP-2 immunoreactivity was detected in the peripheral cell layer in neoplastic islands and in some fibroblast-like cells of tumoral stroma. Immunostaining for TIMP-3 was detected in stromal cells surrounding the neoplastic islands. A weak positive staining for TIMP-1 was located in tumoral stroma, whereas the immunostaining for TIMP-2 was negative. Using zymography, elevated levels of MMP-2 and MMP-9 were observed in

  17. Modeling Alveolar Epithelial Cell Behavior In Spatially Designed Hydrogel Microenvironments

    NASA Astrophysics Data System (ADS)

    Lewis, Katherine Jean Reeder

    The alveolar epithelium consists of two cell phenotypes, elongated alveolar type I cells (AT1) and rounded alveolar type II cells (ATII), and exists in a complex three-dimensional environment as a polarized cell layer attached to a thin basement membrane and enclosing a roughly spherical lumen. Closely surrounding the alveolar cysts are capillary endothelial cells as well as interstitial pulmonary fibroblasts. Many factors are thought to influence alveolar epithelial cell differentiation during lung development and wound repair, including physical and biochemical signals from the extracellular matrix (ECM), and paracrine signals from the surrounding mesenchyme. In particular, disrupted signaling between the alveolar epithelium and local fibroblasts has been implicated in the progression of several pulmonary diseases. However, given the complexity of alveolar tissue architecture and the multitude of signaling pathways involved, designing appropriate experimental platforms for this biological system has been difficult. In order to isolate key factors regulating cellular behavior, the researcher ideally should have control over biophysical properties of the ECM, as well as the ability to organize multiple cell types within the scaffold. This thesis aimed to develop a 3D synthetic hydrogel platform to control alveolar epithelial cyst formation, which could then be used to explore how extracellular cues influence cell behavior in a tissue-relevant cellular arrangement. To accomplish this, a poly(ethylene glycol) (PEG) hydrogel network containing enzymatically-degradable crosslinks and bioadhesive pendant peptides was employed as a base material for encapsulating primary alveolar epithelial cells. First, an array of microwells of various cross-sectional shapes was photopatterned into a PEG gel containing photo-labile crosslinks, and primary ATII cells were seeded into the wells to examine the role of geometric confinement on differentiation and multicellular arrangement

  18. Mesenchymal Stem Cells Promote Diabetic Corneal Epithelial Wound Healing Through TSG-6-Dependent Stem Cell Activation and Macrophage Switch.

    PubMed

    Di, Guohu; Du, Xianli; Qi, Xia; Zhao, Xiaowen; Duan, Haoyun; Li, Suxia; Xie, Lixin; Zhou, Qingjun

    2017-08-01

    To explore the role and mechanism of bone marrow-derived mesenchymal stem cells (BM-MSCs) in corneal epithelial wound healing in type 1 diabetic mice. Diabetic mice were treated with subconjunctival injections of BM-MSCs or recombinant tumor necrosis factor-α-stimulated gene/protein-6 (TSG-6). The corneal epithelial wound healing rate was examined by fluorescein staining. The mRNA and protein expression levels of TSG-6 were measured by quantitative RT-PCR and Western blot. The infiltrations of leukocytes and macrophages were analyzed by flow cytometry and immunofluoresence staining. The effect of TSG-6 was further evaluated in cultured limbal epithelial stem/progenitor cells, macrophages, and diabetic mice by short hairpin RNA (shRNA) knockdown. Local MSC transplantation significantly promoted diabetic corneal epithelial wound healing, accompanied by elevated corneal TSG-6 expression, increased corneal epithelial cell proliferation, and attenuated inflammatory response. Moreover, in cultured human limbal epithelial stem/progenitor cells, TSG-6 enhanced the colony-forming efficiency, stimulated mitogenic proliferation, and upregulated the expression level of ΔNp63. Furthermore, in diabetic mouse cornea and in vitro macrophage culture, TSG-6 alleviated leukocyte infiltration and promoted the polarization of recruited macrophages to anti-inflammatory M2 phenotypes with increased phagocytotic capacity. In addition, the promotion of epithelial stem/progenitor cell activation and macrophage polarization by MSC transplantation was largely abrogated by shRNA knockdown of TSG-6. This study provided the first evidence of TSG-6 secreted by MSCs promoting corneal epithelial wound healing in diabetic mice through activating corneal epithelial stem/progenitor cells and accelerating M2 macrophage polarization.

  19. Robust cell tracking in epithelial tissues through identification of maximum common subgraphs.

    PubMed

    Kursawe, Jochen; Bardenet, Rémi; Zartman, Jeremiah J; Baker, Ruth E; Fletcher, Alexander G

    2016-11-01

    Tracking of cells in live-imaging microscopy videos of epithelial sheets is a powerful tool for investigating fundamental processes in embryonic development. Characterizing cell growth, proliferation, intercalation and apoptosis in epithelia helps us to understand how morphogenetic processes such as tissue invagination and extension are locally regulated and controlled. Accurate cell tracking requires correctly resolving cells entering or leaving the field of view between frames, cell neighbour exchanges, cell removals and cell divisions. However, current tracking methods for epithelial sheets are not robust to large morphogenetic deformations and require significant manual interventions. Here, we present a novel algorithm for epithelial cell tracking, exploiting the graph-theoretic concept of a 'maximum common subgraph' to track cells between frames of a video. Our algorithm does not require the adjustment of tissue-specific parameters, and scales in sub-quadratic time with tissue size. It does not rely on precise positional information, permitting large cell movements between frames and enabling tracking in datasets acquired at low temporal resolution due to experimental constraints such as phototoxicity. To demonstrate the method, we perform tracking on the Drosophila embryonic epidermis and compare cell-cell rearrangements to previous studies in other tissues. Our implementation is open source and generally applicable to epithelial tissues. © 2016 The Authors.

  20. Migration of guinea pig airway epithelial cells in response to bombesin analogues.

    PubMed

    Kim, J S; McKinnis, V S; White, S R

    1997-03-01

    Bombesin-like peptides within neuroepithelial cells elicit proliferation of normal and malignant airway epithelial cells. It is not clear that these peptides also elicit epithelial cell migration, a necessary component of airway repair after injury. We studied the effects of the bombesin analogues, gastrin releasing peptide (GRP) and neuromedin B (NMB), on guinea pig tracheal epithelial cell (GPTEC) migration. Primary GPTEC were allowed to migrate through 8-microm-pore gelatin-coated filters for 6 h in a chemotaxis chamber, after which the number of migrated cells per 10 high power fields (10 hpf) were counted. Both neuropeptides elicited migration of GPTEC: 24.8 +/- 4.5 cells for 10(-11) M NMB (P < 0.001 versus control, n = 4) and 16.8 +/- 1.2 cells for 10(-12) M GRP (P < 0.001 versus control, n = 8). Migration was attenuated substantially by a bombesin receptor antagonist. To investigate further the relationship of migration through a filter to the repair of a damaged epithelium, we studied the repair of epithelial cells by video microscopy. A 0.3- to 0.5-microm2 wound was created in a confluent monolayer of GPTEC, and wound closure was followed over 24 h. There was no significant acceleration in the rate of repair of GRP- or NMB-stimulated monolayers compared to control. These data demonstrate that GRP and NMB elicit migration of airway epithelial cells but may not play a significant role in the early repair of the airway epithelium in culture.

  1. Three-dimensional telomere architecture of esophageal squamous cell carcinoma: comparison of tumor and normal epithelial cells.

    PubMed

    Sunpaweravong, S; Sunpaweravong, P; Sathitruangsak, C; Mai, S

    2016-05-01

    Telomeres are repetitive nucleotide sequences (TTAGGG)n located at the ends of chromosomes that function to preserve chromosomal integrity and prevent terminal end-to-end fusions. Telomere loss or dysfunction results in breakage-bridge-fusion cycles, aneuploidy, gene amplification and chromosomal rearrangements, which can lead to genomic instability and promote carcinogenesis. Evaluating the hypothesis that changes in telomeres contribute to the development of esophageal squamous cell carcinoma (ESCC) and to determine whether there are differences between young and old patients, we compared the three-dimensional (3D) nuclear telomere architecture in ESCC tumor cells with that of normal epithelial cells obtained from the same patient. Patients were equally divided by age into two groups, one comprising those less than 45 years of age and the other consisting of those over 80 years of age. Tumor and normal epithelial cells located at least 10 cm from the border of the tumor were biopsied in ESCC patients. Hematoxylin and eosin staining was performed for each sample to confirm and identify the cancer and normal epithelial cells. This study was based on quantitative 3D fluorescence in situ hybridization (Q-FISH), 3D imaging and 3D analysis of paraffin-embedded slides. The 3D telomere architecture data were computer analyzed using 100 nuclei per slide. The following were the main parameters compared: the number of signals (number of telomeres), signal intensity (telomere length), number of telomere aggregates, and nuclear volume. Tumor and normal epithelial samples from 16 patients were compared. The normal epithelial cells had more telomere signals and higher intensities than the tumor cells, with P-values of P < 0.0001 and P = 0.0078, respectively. There were no statistically significant differences in the numbers of telomere aggregates or the nuclear volumes between the tumor and normal epithelial cells. Secondary analyses examined the effects of age on 3D telomere

  2. Cytoplasmic accumulation of activated leukocyte cell adhesion molecule is a predictor of disease progression and reduced survival in oral cancer patients.

    PubMed

    Sawhney, Meenakshi; Matta, Ajay; Macha, Muzafar A; Kaur, Jatinder; DattaGupta, Siddhartha; Shukla, Nootan K; Ralhan, Ranju

    2009-05-01

    Activated leukocyte cell adhesion molecule (ALCAM) has been proposed to function as a cell surface sensor for cell density, controlling the transition between local cell proliferation and tissue invasion in cancer progression. Herein, we determined ALCAM expression in 107 oral squamous cell carcinomas (OSCCs), 78 oral lesions (58 hyperplasias and 20 dysplasias) and 30 histologically normal oral tissues using immunohistochemistry and correlated with clinicopathological parameters. Significant increase in ALCAM immunopositivity was observed from normal oral mucosa, hyperplasia, dysplasia to OSCCs (p(trend) < 0.001). Increased ALCAM expression was observed in cytoplasm of epithelial cells as early as in hyperplasia (p = 0.001, OR = 3.8). Sixty-five of 107 (61%) OSCCs showed significant overexpression of ALCAM protein in cytoplasm/membrane of tumor cells (p = 0.043; OR = 3.3) in comparison with the normal oral tissues. Among OSCCs, cytoplasmic ALCAM was associated with advanced tumor size, tumor stage and tobacco consumption. Importantly, cytoplasmic ALCAM was an independent predictor of poor prognosis of OSCCs in multivariate analysis (p = 0.012, OR = 6.2). In an attempt to understand the molecular basis of cytoplasmic localization of ALCAM, 14-3-3 zeta and 14-3-3 sigma were identified as its novel binding partners in oral cancer cells. In conclusion, increased expression of ALCAM is an early event in oral tumorigenesis; its cytoplasmic accumulation in tumor cells is a predictor of poor prognosis of OSCCs, underscoring its potential as a candidate prognostic marker for oral cancer. (c) 2008 Wiley-Liss, Inc.

  3. 3D Bioprinted Artificial Trachea with Epithelial Cells and Chondrogenic-Differentiated Bone Marrow-Derived Mesenchymal Stem Cells.

    PubMed

    Bae, Sang-Woo; Lee, Kang-Woog; Park, Jae-Hyun; Lee, JunHee; Jung, Cho-Rok; Yu, JunJie; Kim, Hwi-Yool; Kim, Dae-Hyun

    2018-05-31

    Tracheal resection has limited applicability. Although various tracheal replacement strategies were performed using artificial prosthesis, synthetic stents and tissue transplantation, the best method in tracheal reconstruction remains to be identified. Recent advances in tissue engineering enabled 3D bioprinting using various biocompatible materials including living cells, thereby making the product clinically applicable. Moreover, clinical interest in mesenchymal stem cell has dramatically increased. Here, rabbit bone marrow-derived mesenchymal stem cells (bMSC) and rabbit respiratory epithelial cells were cultured. The chondrogenic differentiation level of bMSC cultured in regular media (MSC) and that in chondrogenic media (d-MSC) were compared. Dual cell-containing artificial trachea were manufactured using a 3D bioprinting method with epithelial cells and undifferentiated bMSC (MSC group, n = 6) or with epithelial cells and chondrogenic-differentiated bMSC (d-MSC group, n = 6). d-MSC showed a relatively higher level of glycosaminoglycan (GAG) accumulation and chondrogenic marker gene expression than MSC in vitro. Neo-epithelialization and neo-vascularization were observed in all groups in vivo but neo-cartilage formation was only noted in d-MSC. The epithelial cells in the 3D bioprinted artificial trachea were effective in respiratory epithelium regeneration. Chondrogenic-differentiated bMSC had more neo-cartilage formation potential in a short period. Nevertheless, the cartilage formation was observed only in a localized area.

  4. Three-dimensional epithelial tissues generated from human embryonic stem cells.

    PubMed

    Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A

    2009-11-01

    The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.

  5. Robust cell tracking in epithelial tissues through identification of maximum common subgraphs

    PubMed Central

    Bardenet, Rémi; Zartman, Jeremiah J.; Baker, Ruth E.

    2016-01-01

    Tracking of cells in live-imaging microscopy videos of epithelial sheets is a powerful tool for investigating fundamental processes in embryonic development. Characterizing cell growth, proliferation, intercalation and apoptosis in epithelia helps us to understand how morphogenetic processes such as tissue invagination and extension are locally regulated and controlled. Accurate cell tracking requires correctly resolving cells entering or leaving the field of view between frames, cell neighbour exchanges, cell removals and cell divisions. However, current tracking methods for epithelial sheets are not robust to large morphogenetic deformations and require significant manual interventions. Here, we present a novel algorithm for epithelial cell tracking, exploiting the graph-theoretic concept of a ‘maximum common subgraph’ to track cells between frames of a video. Our algorithm does not require the adjustment of tissue-specific parameters, and scales in sub-quadratic time with tissue size. It does not rely on precise positional information, permitting large cell movements between frames and enabling tracking in datasets acquired at low temporal resolution due to experimental constraints such as phototoxicity. To demonstrate the method, we perform tracking on the Drosophila embryonic epidermis and compare cell–cell rearrangements to previous studies in other tissues. Our implementation is open source and generally applicable to epithelial tissues. PMID:28334699

  6. From cells to tissue: A continuum model of epithelial mechanics

    NASA Astrophysics Data System (ADS)

    Ishihara, Shuji; Marcq, Philippe; Sugimura, Kaoru

    2017-08-01

    A two-dimensional continuum model of epithelial tissue mechanics was formulated using cellular-level mechanical ingredients and cell morphogenetic processes, including cellular shape changes and cellular rearrangements. This model incorporates stress and deformation tensors, which can be compared with experimental data. Focusing on the interplay between cell shape changes and cell rearrangements, we elucidated dynamical behavior underlying passive relaxation, active contraction-elongation, and tissue shear flow, including a mechanism for contraction-elongation, whereby tissue flows perpendicularly to the axis of cell elongation. This study provides an integrated scheme for the understanding of the orchestration of morphogenetic processes in individual cells to achieve epithelial tissue morphogenesis.

  7. Cancer stem cell markers in patterning differentiation and in prognosis of oral squamous cell carcinoma.

    PubMed

    Mohanta, Simple; Siddappa, Gangotri; Valiyaveedan, Sindhu Govindan; Dodda Thimmasandra Ramanjanappa, Ravindra; Das, Debashish; Pandian, Ramanan; Khora, Samanta Sekhar; Kuriakose, Moni Abraham; Suresh, Amritha

    2017-06-01

    Differentiation is a major histological parameter determining tumor aggressiveness and prognosis of the patient; cancer stem cells with their slow dividing and undifferentiated nature might be one of the factors determining the same. This study aims to correlate cancer stem cell markers (CD44 and CD147) with tumor differentiation and evaluate their subsequent effect on prognosis. Immunohistochemical analysis in treatment naïve oral cancer patients (n = 53) indicated that the expression of CD147 was associated with poorly differentiated squamous cell carcinoma and moderately differentiated squamous cell carcinoma (p < 0.01). Furthermore, co-expression analysis showed that 45% each of moderately differentiated squamous cell carcinoma and poorly differentiated squamous cell carcinoma patients were CD44 high /CD147 high as compared to only 10% of patients with well-differentiated squamous cell carcinoma. A three-way analysis indicated that differentiation correlated with recurrence and survival (p < 0.05) in only the patients with CD44 high /CD147 high cohort. Subsequently, relevance of these cancer stem cell markers in patterning the differentiation characteristics was evaluated in oral squamous cell carcinoma cell lines originating from different grades of oral cancer. Flowcytometry-based analysis indicated an increase in CD44 + /CD147 + cells in cell lines of poorly differentiated squamous cell carcinoma (94.35 ± 1.14%, p < 0.001) and moderately differentiated squamous cell carcinoma origin (93.49 ± 0.47%, p < 0.001) as compared to cell line of well-differentiated squamous cell carcinoma origin (23.12% ± 0.49%). Expression profiling indicated higher expression of cancer stem cell and epithelial-mesenchymal transition markers in SCC029B (poorly differentiated squamous cell carcinoma originated; p ≤ 0.001), which was further translated into increased spheroid formation, migration, and invasion (p < 0.001) as compared to cell line of well-differentiated squamous

  8. [BIOCOMPATIBILITY OF POLY-LACTIDE-CO-GLYCOLIDE/COLLAGEN TYPE I SCAFFOLD WITH RAT VAGINAL EPITHELIAL CELLS].

    PubMed

    Li, Yachai; Huang, Xianghua; Zhang, Mingle; Li, Yanan; Chen, Yexing; Jia, Jingfei

    2015-09-01

    To explore the biocompatibility of the poly-lactide-co-glycolide (PLGA)/collagen type I scaffold with rat vaginal epithelial cells, and the feasibility of using PLGA/collagen type I as scaffold to reconstruct vagina by the tissue engineering. PLGA/collagen type I scaffold was prepared with PLGA covered polylysine and collagen type I. The vaginal epithelial cells of Sprague Dawley rat of 10-12 weeks old were cultured by enzyme digestion method. The vaginal epithelial cells of passage 2 were cultured in the leaching liquor of scaffold for 48 hours to detect its cytotoxicity by MTT. The vaginal epithelial cells were inoculated on the PLGA/collagen type I scaffold (experimental group) and PLGA scaffold (control group) to calculate the cell adhesion rate. Epithelial cells-scaffold complexes were implanted subcutaneously on the rat back. At 2, 4, and 8 weeks after implantation, the epithelial cells-scaffold complexes were harvested to observe the cell growth by HE staining and immunohistochemical analysis. The epithelial cells-scaffold complexes were transplanted to reconstruct vagina in 6 rats with vaginal defect. After 3 and 6 months, the vaginal length was measured and the appearance was observed. The neovagina tissues were harvested for histological evaluation after 6 months. The epithelial cells grew and proliferated well in the leaching liquor of PLGA/collagen type I scaffold, and the cytotoxicity was at grade 1. The cell adhesion rate on the PLGA/collagen type I scaffold was 71.8%±9.2%, which significantly higher than that on the PLGA scaffold (63.4%±5.7%) (t=2.195, P=0.005). The epithelial cells could grow and adhere to the PLGA/collagen type I scaffolds. At 2 weeks after implanted subcutaneously, the epithelial cells grew and proliferated in the pores of scaffolds, and the fibroblasts were observed. At 4 weeks, 1-3 layers epithelium formed on the surface of scaffold. At 8 weeks, the epithelial cells increased and arranged regularly, which formed the membrane

  9. Renal epithelial cells can release ATP by vesicular fusion

    PubMed Central

    Bjaelde, Randi G.; Arnadottir, Sigrid S.; Overgaard, Morten T.; Leipziger, Jens; Praetorius, Helle A.

    2013-01-01

    Renal epithelial cells have the ability to release nucleotides as paracrine factors. In the intercalated cells of the collecting duct, ATP is released by connexin30 (cx30), which is selectively expressed in this cell type. However, ATP is released by virtually all renal epithelia and the aim of the present study was to identify possible alternative nucleotide release pathways in a renal epithelial cell model. We used MDCK (type1) cells to screen for various potential ATP release pathways. In these cells, inhibition of the vesicular H+-ATPases (bafilomycin) reduced both the spontaneous and hypotonically (80%)-induced nucleotide release. Interference with vesicular fusion using N-ethylamide markedly reduced the spontaneous nucleotide release, as did interference with trafficking from the endoplasmic reticulum to the Golgi apparatus (brefeldin A1) and vesicular transport (nocodazole). These findings were substantiated using a siRNA directed against SNAP-23, which significantly reduced spontaneous ATP release. Inhibition of pannexin and connexins did not affect the spontaneous ATP release in this cell type, which consists of ~90% principal cells. TIRF-microscopy of either fluorescently-labeled ATP (MANT-ATP) or quinacrine-loaded vesicles, revealed that spontaneous release of single vesicles could be promoted by either hypoosmolality (50%) or ionomycin. This vesicular release decreased the overall cellular fluorescence by 5.8 and 7.6% respectively. In summary, this study supports the notion that spontaneous and induced ATP release can occur via exocytosis in renal epithelial cells. PMID:24065923

  10. Primary Airway Epithelial Cell Gene Editing Using CRISPR-Cas9.

    PubMed

    Everman, Jamie L; Rios, Cydney; Seibold, Max A

    2018-01-01

    The adaptation of the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR associated endonuclease 9 (CRISPR-Cas9) machinery from prokaryotic organisms has resulted in a gene editing system that is highly versatile, easily constructed, and can be leveraged to generate human cells knocked out (KO) for a specific gene. While standard transfection techniques can be used for the introduction of CRISPR-Cas9 expression cassettes to many cell types, delivery by this method is not efficient in many primary cell types, including primary human airway epithelial cells (AECs). More efficient delivery in AECs can be achieved through lentiviral-mediated transduction, allowing the CRISPR-Cas9 system to be integrated into the genome of the cell, resulting in stable expression of the nuclease machinery and increasing editing rates. In parallel, advancements have been made in the culture, expansion, selection, and differentiation of AECs, which allow the robust generation of a bulk edited AEC population from transduced cells. Applying these methods, we detail here our latest protocol to generate mucociliary epithelial cultures knocked out for a specific gene from donor-isolated primary human basal airway epithelial cells. This protocol includes methods to: (1) design and generate lentivirus which targets a specific gene for KO with CRISPR-Cas9 machinery, (2) efficiently transduce AECs, (3) culture and select for a bulk edited AEC population, (4) molecularly screen AECs for Cas9 cutting and specific sequence edits, and (5) further expand and differentiate edited cells to a mucociliary airway epithelial culture. The AEC knockouts generated using this protocol provide an excellent primary cell model system with which to characterize the function of genes involved in airway dysfunction and disease.

  11. γδ T cells in homeostasis and host defence of epithelial barrier tissues.

    PubMed

    Nielsen, Morten M; Witherden, Deborah A; Havran, Wendy L

    2017-12-01

    Epithelial surfaces line the body and provide a crucial interface between the body and the external environment. Tissue-resident epithelial γδ T cells represent a major T cell population in the epithelial tissues and are ideally positioned to carry out barrier surveillance and aid in tissue homeostasis and repair. In this Review, we focus on the intraepithelial γδ T cell compartment of the two largest epithelial tissues in the body - namely, the epidermis and the intestine - and provide a comprehensive overview of the crucial contributions of intraepithelial γδ T cells to tissue integrity and repair, host homeostasis and protection in the context of the symbiotic relationship with the microbiome and during pathogen clearance. Finally, we describe epithelium-specific butyrophilin-like molecules and briefly review their emerging role in selectively shaping and regulating epidermal and intestinal γδ T cell repertoires.

  12. Transport of lipid nano-droplets through MDCK epithelial cell monolayer.

    PubMed

    Khatri, Pulkit; Shao, Jun

    2017-05-01

    This study aims to investigate the transport of lipid nano-droplets through MDCK epithelial cell monolayer. Nanoemulsions of self-nano-emulsifying drug delivery systems (SNEDDS) labeled with radioactive C18 triglyceride were developed. The effect of droplet size and lipid composition on the transport was investigated. The results showed that the lipid nano-droplet transport through MDCK cell monolayer was as high as 2.5%. The transport of lipid nano-droplets was higher for nanoemulsions of medium chain glycerides than the long chain glycerides. The transport was reduced by more than half when the average lipid nano-droplet size increased from 38nm to 261nm. The droplet size measurement verified the existence of lipid nano-droplets in the receiver chamber only when the nanoemulsions were added to the donor chamber but not when the surfactant or saline solution was added. Cryo-TEM images confirmed the presence of lipid nano-droplets in both donor and receiver chamber at the end of transport study. In conclusion, lipid nano-droplets can be transported through the cell monolayer. This finding may help to further explore the oral and other non-invasive delivery of macromolecules loaded inside SNEDDS. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. CTCF-Mediated and Pax6-Associated Gene Expression in Corneal Epithelial Cell-Specific Differentiation

    PubMed Central

    Tsui, Shanli; Wang, Jie; Wang, Ling; Dai, Wei; Lu, Luo

    2016-01-01

    Background The purpose of the study is to elicit the epigenetic mechanism involving CCCTC binding factor (CTCF)-mediated chromatin remodeling that regulates PAX6 gene interaction with differentiation-associated genes to control corneal epithelial differentiation. Methods Cell cycle progression and specific keratin expressions were measured to monitor changes of differentiation-induced primary human limbal stem/progenitor (HLS/P), human corneal epithelial (HCE) and human telomerase-immortalized corneal epithelial (HTCE) cells. PAX6-interactive and differentiation-associated genes in chromatin remodeling mediated by the epigenetic factor CTCF were detected by circular chromosome conformation capture (4C) and ChIP (Chromatin immunoprecipitation)-on-chip approaches, and verified by FISH (Fluorescent in situ hybridization). Furthermore, CTCF activities were altered by CTCF-shRNA to study the effect of CTCF on mediating interaction of Pax6 and differentiation-associated genes in corneal epithelial cell fate. Results Our results demonstrated that differentiation-induced human corneal epithelial cells expressed typical corneal epithelial characteristics including morphological changes, increased keratin12 expression and G0/G1 accumulations. Expressions of CTCF and PAX6 were suppressed and elevated following the process of differentiation, respectively. During corneal epithelial cell differentiation, differentiation-induced RCN1 and ADAM17 were found interacting with PAX6 in the process of CTCF-mediated chromatin remodeling detected by 4C and verified by ChIP-on-chip and FISH. Diminished CTCF mRNA with CTCF-shRNA in HTCE cells weakened the interaction of PAX6 gene in controlling RCN1/ADAM17 and enhanced early onset of the genes in cell differentiation. Conclusion Our results explain how epigenetic factor CTCF-mediated chromatin remodeling regulates interactions between eye-specific PAX6 and those genes that are induced/associated with cell differentiation to modulate

  14. RSV-encoded NS2 promotes epithelial cell shedding and distal airway obstruction

    PubMed Central

    Liesman, Rachael M.; Buchholz, Ursula J.; Luongo, Cindy L.; Yang, Lijuan; Proia, Alan D.; DeVincenzo, John P.; Collins, Peter L.; Pickles, Raymond J.

    2014-01-01

    Respiratory syncytial virus (RSV) infection is the major cause of bronchiolitis in young children. The factors that contribute to the increased propensity of RSV-induced distal airway disease compared with other commonly encountered respiratory viruses remain unclear. Here, we identified the RSV-encoded nonstructural 2 (NS2) protein as a viral genetic determinant for initiating RSV-induced distal airway obstruction. Infection of human cartilaginous airway epithelium (HAE) and a hamster model of disease with recombinant respiratory viruses revealed that NS2 promotes shedding of infected epithelial cells, resulting in two consequences of virus infection. First, epithelial cell shedding accelerated the reduction of virus titers, presumably by clearing virus-infected cells from airway mucosa. Second, epithelial cells shedding into the narrow-diameter bronchiolar airway lumens resulted in rapid accumulation of detached, pleomorphic epithelial cells, leading to acute distal airway obstruction. Together, these data indicate that RSV infection of the airway epithelium, via the action of NS2, promotes epithelial cell shedding, which not only accelerates viral clearance but also contributes to acute obstruction of the distal airways. Our results identify RSV NS2 as a contributing factor for the enhanced propensity of RSV to cause severe airway disease in young children and suggest NS2 as a potential therapeutic target for reducing the severity of distal airway disease. PMID:24713657

  15. Establishment and characterization of three immortal bovine muscular epithelial cell lines.

    PubMed

    Jin, Xun; Lee, Joong-Seob; Kwak, Sungwook; Lee, Soo-Yeon; Jung, Ji-Eun; Kim, Tae-Kyung; Xu, Chenxiong; Hong, Zhongshan; Li, Zhehu; Kim, Sun-Myung; Pian, Xumin; Lee, Dong-Hee; Yoon, Jong-Taek; You, Seungkwon; Choi, Yun-Jaie; Kim, Huunggee

    2006-02-28

    We have established three immortal bovine muscular epithelial (BME) cell lines, one spontaneously immortalized (BMES), the second SV40LT-mediated (BMEV) and the third hTERT-mediated (BMET). The morphology of the three immortal cell lines was similar to that of early passage primary BME cells. Each of the immortal cell lines made cytokeratin, a typical epithelial marker. BMET grew faster than the other immortal lines and the BME cells, in 10% FBS-DMEM medium, whereas neither the primary cells nor the three immortal cell lines grew in 0.5% FBS-DMEM. The primary BME cells and the immortal cell lines, with the exception of BMES, made increasing amounts of p53 protein when treated with doxorubicin, a DNA damaging agent. On the other hand, almost half of the cells in populations of the three immortal cell lines may lack p16(INK4a) regulatory function, compared to primary BME cells that were growth arrested by enforced expression of p16(INK4a). In soft-agar assays, the primary cells and immortal cell lines proved to be less transformed in phenotype than HeLa cells. The three immortal epithelial-type cell lines reported here are the first cell lines established from muscle tissue of bovine or other species.

  16. Cystic fibrosis epithelial cells are primed for apoptosis as a result of increased Fas (CD95).

    PubMed

    Chen, Qiwei; Pandi, Sudha Priya Soundara; Kerrigan, Lauren; McElvaney, Noel G; Greene, Catherine M; Elborn, J Stuart; Taggart, Clifford C; Weldon, Sinéad

    2018-02-24

    Previous work suggests that apoptosis is dysfunctional in cystic fibrosis (CF) airways with conflicting results. We evaluated the relationship between dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) and apoptosis in CF airway epithelial cells. Apoptosis and associated caspase activity were analysed in non-CF and CF tracheal and bronchial epithelial cell lines. Basal levels of apoptosis and activity of caspase-3 and caspase-8 were significantly increased in CF epithelial cells compared to controls, suggesting involvement of extrinsic apoptosis signalling, which is mediated by the activation of death receptors, such as Fas (CD95). Increased levels of Fas were observed in CF epithelial cells and bronchial brushings from CF patients compared to non-CF controls. Neutralisation of Fas significantly inhibited caspase-3 activity in CF epithelial cells compared to untreated cells. In addition, activation of Fas significantly increased caspase-3 activity and apoptosis in CF epithelial cells compared to control cells. Overall, these results suggest that CF airway epithelial cells are more sensitive to apoptosis via increased levels of Fas and subsequent activation of the Fas death receptor pathway, which may be associated with dysfunctional CFTR. Copyright © 2018 European Cystic Fibrosis Society. All rights reserved.

  17. Cytotoxicity and Induction of Inflammation by Pepsin in Acid in Bronchial Epithelial Cells

    PubMed Central

    Bathoorn, Erik; Daly, Paul; Gaiser, Birgit; Sternad, Karl; Poland, Craig; MacNee, William; Drost, Ellen M.

    2011-01-01

    Introduction. Gastroesophageal reflux has been associated with chronic inflammatory diseases and may be a cause of airway remodelling. Aspiration of gastric fluids may cause damage to airway epithelial cells, not only because acidity is toxic to bronchial epithelial cells, but also since it contains digestive enzymes, such as pepsin. Aim. To study whether pepsin enhances cytotoxicity and inflammation in airway epithelial cells, and whether this is pH-dependent. Methods. Human bronchial epithelial cells were exposed to increasing pepsin concentrations in varying acidic milieus, and cell proliferation and cytokine release were assessed. Results. Cell survival was decreased by pepsin exposure depending on its concentration (F = 17.4) and pH level of the medium (F = 6.5) (both P < 0.01). Pepsin-induced interleukin-8 release was greater at lower pH (F = 5.1; P < 0.01). Interleukin-6 induction by pepsin was greater at pH 1.5 compared to pH 2.5 (mean difference 434%; P = 0.03). Conclusion. Pepsin is cytotoxic to bronchial epithelial cells and induces inflammation in addition to acid alone, dependent on the level of acidity. Future studies should assess whether chronic aspiration causes airway remodelling in chronic inflammatory lung diseases. PMID:21785693

  18. Trichostatin A inhibits radiation-induced epithelial-to-mesenchymal transition in the alveolar epithelial cells

    PubMed Central

    Nagarajan, Devipriya; Wang, Lei; Zhao, Weiling; Han, Xiaochen

    2017-01-01

    Radiation-induced pneumonitis and fibrosis are major complications following thoracic radiotherapy. Epithelial-to-mesenchymal transition (EMT) plays an important role in tissue injury leading to organ fibrosis, including lung. Our previous studies have reported that radiation can induce EMT in the type II alveolar epithelial cells in both in vitro and in vivo. HDAC inhibitors are a new family of anti-cancer agents currently being used in several clinical trials. In addition to their intrinsic anti-tumor properties, HDAC inhibition is also important in other human diseases, including fibrosis and radiation-induced damage. In this study, we evaluated the effect of Trichostatin A (TSA), a HDAC inhibitor, on radiation-induced EMT in type II alveolar epithelial cells (RLE-6TN). Pre-treatment of RLE-6TN cells with TSA inhibited radiation-induced EMT-like morphological alterations including elevated protein level of α-SMA and Snail, reduction of E-cadherin expression, enhanced phosphorylation of GSK3β and ERK1/2, increased generation of ROS. Radiation enhanced the protein level of TGF-β1, which was blocked by N-acetylcysteine, an antioxidant. Treating cells with SB-431542, TGF-β1 type I receptor inhibitor, diminished radiation-induced alterations in the protein levels of p-GSK-3β, Snail-1 and α-SMA, suggesting a regulatory role of TGF-β1 in EMT. Pre-incubation of cells with TSA showed significant decrease in the level of TGF-β1 compared to radiation control. Collectively, these results demonstrate that i] radiation-induced EMT in RLE-6TN cells is mediated by ROS/MEK/ERK and ROS/TGF-β1 signaling pathways and ii] the inhibitory role of TSA in radiation-induced EMT appears to be due, at least in part, to its action of blocking ROS and TGF-β1 signaling. PMID:29254201

  19. Immunosuppression Induced by Chronic Inflammation and the Progression to Oral Squamous Cell Carcinoma

    PubMed Central

    Sun, Yujuan; Liu, Nan; Guan, Xiaobing; Wu, Hongru

    2016-01-01

    Oral squamous cell carcinoma (OSCC) is an aggressive, invasive malignancy of epithelial origin. The progression from premalignant lesions—oral leukoplakia (OLK) and oral lichen planus (OLP)—to OSCC involves complex inflammatory processes that have not been elucidated. We investigated the roles of inflammatory mediators and infiltrating immunocytes in the pathogenic progression of OLK and OLP to OSCC. The occurrence of regulatory T-cells (Tregs) and tumor-associated macrophages (TAMs) and the expression of anti-inflammatory cytokines and proinflammatory cytokines were investigated in OLK, OLP, and OSCC tissues. Immunohistochemical staining of CD4, FOXP3, CD68, TGF-β1, IL-10, IL-4, IFN-γ, and MCP-1 showed that the occurrence of Tregs and TAMs increased in parallel with disease progression in OLK and OSCC. IL-10 gradually increased during the early stages of OLK and in OSCC. Infiltrating IL-4+ macrophages were seen with increasing frequency in OLK tissue during the progression of oral dysplasia. Fewer TGF-β1+ macrophages were seen in OSCC than in OLK and OLP. The expression of IFN-γ decreased gradually with the OLK development and had the lowest expression in OSCC. MCP-1 expression did not change significantly during the development of OSCC. The results suggested that the immunosuppression induced by chronic inflammation promotes tumorigenesis in OSCC, rather than initiating it. PMID:28053372

  20. Inflammatory responses of stromal fibroblasts to inflammatory epithelial cells are involved in the pathogenesis of bovine mastitis.

    PubMed

    Zhang, Wenyao; Li, Xuezhong; Xu, Tong; Ma, Mengru; Zhang, Yong; Gao, Ming-Qing

    2016-11-15

    Hypernomic secretion of epithelial cytokines has several effects on stromal cells. The contributions of inflammatory epithelial cells to stromal fibroblasts in bovine mammary glands with mastitis remain poorly understood. Here, we established an inflammatory epithelial cell model of bovine mastitis with gram-negative lipopolysaccharide (LPS) and gram-positive lipoteichoic acid (LTA) bacterial cell wall components. We characterized immune responses of mammary stromal fibroblasts induced by inflammatory epithelial cells. Our results showed that inflammatory epithelial cells affected stromal fibroblast characteristics by increasing inflammatory mediator expression, elevating extracellular matrix protein deposition, decreasing proliferation capacity, and enhancing migration ability. The changes in stromal fibroblast proliferation and migration abilities were mediated by signal molecules, such as WNT signal pathway components. LPS- and LTA-induced inflammatory epithelial cells triggered different immune responses in stromal fibroblasts. Thus, in mastitis, bovine mammary gland stromal fibroblasts were affected by inflammatory epithelial cells and displayed inflammation-specific changes, suggesting that fibroblasts play crucial roles in bovine mastitis. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells.

    PubMed

    Pietz, Grzegorz; De, Rituparna; Hedberg, Maria; Sjöberg, Veronika; Sandström, Olof; Hernell, Olle; Hammarström, Sten; Hammarström, Marie-Louise

    2017-01-01

    Celiac disease is a chronic inflammatory disease of the small intestine mucosa due to permanent intolerance to dietary gluten. The aim was to elucidate the role of small intestinal epithelial cells in the immunopathology of celiac disease in particular the influence of celiac disease-associated bacteria. Duodenal biopsies were collected from children with active celiac disease, treated celiac disease, and clinical controls. Intestinal epithelial cells were purified and analyzed for gene expression changes at the mRNA and protein levels. Two in vitro models for human intestinal epithelium, small intestinal enteroids and polarized tight monolayers, were utilized to assess how interferon-γ, interleukin-17A, celiac disease-associated bacteria and gluten influence intestinal epithelial cells. More than 25 defense-related genes, including IRF1, SPINK4, ITLN1, OAS2, CIITA, HLA-DMB, HLA-DOB, PSMB9, TAP1, BTN3A1, and CX3CL1, were significantly upregulated in intestinal epithelial cells at active celiac disease. Of these genes, 70% were upregulated by interferon-γ via the IRF1 pathway. Most interestingly, IRF1 was also upregulated by celiac disease-associated bacteria. The NLRP6/8 inflammasome yielding CASP1 and biologically active interleukin-18, which induces interferon-γ in intraepithelial lymphocytes, was expressed in intestinal epithelial cells. A key factor in the epithelial reaction in celiac disease appears to be over-expression of IRF1 that could be inherent and/or due to presence of undesirable microbes that act directly on IRF1. Dual activation of IRF1 and IRF1-regulated genes, both directly and via the interleukin-18 dependent inflammasome would drastically enhance the inflammatory response and lead to the pathological situation seen in active celiac disease.

  2. Immunopathology of childhood celiac disease—Key role of intestinal epithelial cells

    PubMed Central

    Hedberg, Maria; Sjöberg, Veronika; Sandström, Olof; Hernell, Olle; Hammarström, Sten

    2017-01-01

    Background & Aims Celiac disease is a chronic inflammatory disease of the small intestine mucosa due to permanent intolerance to dietary gluten. The aim was to elucidate the role of small intestinal epithelial cells in the immunopathology of celiac disease in particular the influence of celiac disease-associated bacteria. Methods Duodenal biopsies were collected from children with active celiac disease, treated celiac disease, and clinical controls. Intestinal epithelial cells were purified and analyzed for gene expression changes at the mRNA and protein levels. Two in vitro models for human intestinal epithelium, small intestinal enteroids and polarized tight monolayers, were utilized to assess how interferon-γ, interleukin-17A, celiac disease-associated bacteria and gluten influence intestinal epithelial cells. Results More than 25 defense-related genes, including IRF1, SPINK4, ITLN1, OAS2, CIITA, HLA-DMB, HLA-DOB, PSMB9, TAP1, BTN3A1, and CX3CL1, were significantly upregulated in intestinal epithelial cells at active celiac disease. Of these genes, 70% were upregulated by interferon-γ via the IRF1 pathway. Most interestingly, IRF1 was also upregulated by celiac disease-associated bacteria. The NLRP6/8 inflammasome yielding CASP1 and biologically active interleukin-18, which induces interferon-γ in intraepithelial lymphocytes, was expressed in intestinal epithelial cells. Conclusion A key factor in the epithelial reaction in celiac disease appears to be over-expression of IRF1 that could be inherent and/or due to presence of undesirable microbes that act directly on IRF1. Dual activation of IRF1 and IRF1-regulated genes, both directly and via the interleukin-18 dependent inflammasome would drastically enhance the inflammatory response and lead to the pathological situation seen in active celiac disease. PMID:28934294

  3. DOK, a cell line established from human dysplastic oral mucosa, shows a partially transformed non-malignant phenotype.

    PubMed

    Chang, S E; Foster, S; Betts, D; Marnock, W E

    1992-12-02

    There are many reports of cell lines being established from human oral squamous-cell carcinomas but apparently none of cell lines from dysplastic or "pre-malignant" oral mucosa. We describe here the isolation and characterization of a cell line, DOK (dysplastic oral keratinocyte), from a piece of dorsal tongue showing epithelial dysplasia. The tissue was obtained from a 57-year-old man who was a heavy smoker prior to the appearance of a white patch on his tongue. Eleven years later a squamous-cell carcinoma developed at the site and was excised. Subsequently the remaining dysplasia was removed, and it was from a piece of this that the primary cell cultures which eventually gave rise to DOK were initiated. The DOK line has been single-cell cloned and is apparently immortal. It grows in the absence of 3T3 feeder cells, is anchorage-dependent for growth and is non-tumorigenic in nude mice. The keratin profile of the cells shows a striking similarity to that of the original tongue dysplasia. The karyotype of DOK is aneuploid and complex. By PCR and oligonucleotide hybridization on dot blots, codons 12, 13 and 61 of Ha-ras, Ki-ras and N-ras in DNA extracted from DOK cells were shown to be normal. Immunohistochemistry showed no abnormal, i.e., elevated expression of the onco-suppressor protein p53. Because of its origin and partially transformed phenotype, DOK presents an opportunity to study whether specific carcinogens associated with tobacco and areca nut can cause malignant transformation of oral keratinocytes in vitro.

  4. Long-term culture and partial characterization of dog gallbladder epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oda, D.; Lee, S.P.; Hayashi, A.

    1991-05-01

    We describe the successful isolation and maintenance of primary cultures of dog gallbladder epithelial cells. The surgically removed gallbladder was treated with trypsin/EDTA for 45 minutes and epithelial cells were collected and resuspended in Eagle's minimum essential medium with 10% fetal calf serum, and plated on Vitrogen-coated culture dishes. Each gallbladder yielded approximately 12 to 15 x 10{sup 6} columnar epithelial cells, greater than 95% of which were viable by trypan blue exclusion. In culture, cells maintained their polarity. They were arranged and grew in small and tight clusters that coalesced at confluency. When examined using transmission electron microscopy, prominentmore » and numerous microville were identified on the apical portion of the plasma membrane. Cells were connected by well-formed desmosomes. Scanning electron microscopy revealed clusters of polyhedral cells with numerous papillary projections. Immunohistochemical studies demonstrated uniform staining of cells to keratin 35BH11 and AE1. Histochemical studies were positive for gamma-glutamyl transpeptidase and negative for glucose-6-phosphatase and albumin. Cells incorporated ({sup 3}H)uridine into intracellular proteins and ({sup 14}C)glucosamine into tissue and secreted mucous glycoproteins linearly over 2 to 24 hours. Flow cytometry studies demonstrated a consistent and reproducible number of cells (10 to 12%) at S-phase. However, the number of cells at S-phase was dramatically reduced to almost negligible as cells reached confluency. This method of culturing primary dog gallbladder epithelial cells is highly reproducible and reliable. These cells preserve their state of differentiation, polarity, histochemical and immunohistochemical profile, morphologic, and metabolic integrity with repeated passaging or after being frozen.« less

  5. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesitymore » has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.« less

  6. Cyclic Dinucleotides in Oral Bacteria and in Oral Biofilms.

    PubMed

    Gürsoy, Ulvi K; Gürsoy, Mervi; Könönen, Eija; Sintim, Herman O

    2017-01-01

    Oral cavity acts as a reservoir of bacterial pathogens for systemic infections and several oral microorganisms have been linked to systemic diseases. Quorum sensing and cyclic dinucleotides, two "decision-making" signaling systems, communicate to regulate physiological process in bacteria. Discovery of cyclic dinucleotides has a long history, but the progress in our understanding of how cyclic dinucleotides regulate bacterial lifestyle is relatively new. Oral microorganisms form some of the most intricate biofilms, yet c-di-GMP, and c-di-AMP signaling have been rarely studied in oral biofilms. Recent studies demonstrated that, with the aid of bacterial messenger molecules and their analogs, it is possible to activate host innate and adaptive immune responses and epithelial integrity with a dose that is relevant to inhibit bacterial virulence mechanisms, such as fimbriae and exopolysaccharide production, biofilm formation, and host cell invasion. The aim of this perspective article is to present available information on cyclic dinucleotides in oral bacteria and in oral biofilms. Moreover, technologies that can be used to detect cyclic dinucleotides in oral biofilms are described. Finally, directions for future research are highlighted.

  7. Intrinsic Lens Forming Potential of Mouse Lens Epithelial versus Newt Iris Pigment Epithelial Cells in Three-Dimensional Culture

    PubMed Central

    Nakamura, Kenta; Tsonis, Panagiotis A.

    2014-01-01

    Adult newts (Notophthalmus viridescens) are capable of complete lens regeneration that is mediated through dorsal iris pigment epithelial (IPE) cells transdifferentiation. In contrast, higher vertebrates such as mice demonstrate only limited lens regeneration in the presence of an intact lens capsule with remaining lens epithelial cells. To compare the intrinsic lens regeneration potential of newt IPE versus mouse lens epithelial cells (MLE), we have established a novel culture method that uses cell aggregation before culture in growth factor-reduced Matrigel™. Dorsal newt IPE aggregates demonstrated complete lens formation within 1 to 2 weeks of Matrigel culture without basic fibroblast growth factor (bFGF) supplementation, including the establishment of a peripheral cuboidal epithelial cell layer, and the appearance of central lens fibers that were positive for αA-crystallin. In contrast, the lens-forming potential of MLE cell aggregates cultured in Matrigel was incomplete and resulted in the formation of defined-size lentoids with partial optical transparency. While the peripheral cell layers of MLE aggregates were nucleated, cells in the center of aggregates demonstrated a nonapoptotic nuclear loss over a time period of 3 weeks that was representative of lens fiber formation. Matrigel culture supplementation with bFGF resulted in higher transparent bigger-size MLE aggregates that demonstrated increased appearance of βB1-crystallin expression. Our study demonstrates that bFGF is not required for induction of newt IPE aggregate-dependent lens formation in Matrigel, while the addition of bFGF seems to be beneficial for the formation of MLE aggregate-derived lens-like structures. In conclusion, the three-dimensional aggregate culture of IPE and MLE in Matrigel allows to a higher extent than older models the indepth study of the intrinsic lens-forming potential and the corresponding identification of lentogenic factors. PMID:23672748

  8. Differentiation of a murine intestinal epithelial cell line (MIE) toward the M cell lineage.

    PubMed

    Kanaya, Takashi; Miyazawa, Kohtaro; Takakura, Ikuro; Itani, Wataru; Watanabe, Kouichi; Ohwada, Shyuichi; Kitazawa, Haruki; Rose, Michael T; McConochie, Huw R; Okano, Hideyuki; Yamaguchi, Takahiro; Aso, Hisashi

    2008-08-01

    M cells are a kind of intestinal epithelial cell in the follicle-associated epithelium of Peyer's patches. These cells can transport antigens and microorganisms into underlying lymphoid tissues. Despite the important role of M cells in mucosal immune responses, the origin and mechanisms of differentiation as well as cell death of M cells remain unclear. To clarify the mechanism of M cell differentiation, we established a novel murine intestinal epithelial cell line (MIE) from the C57BL/6 mouse. MIE cells grow rapidly and have a cobblestone morphology, which is a typical feature of intestinal epithelial cells. Additionally, they express cytokeratin, villin, cell-cell junctional proteins, and alkaline phosphatase activity and can form microvilli. Their expression of Musashi-1 antigen indicates that they may be close to intestinal stem cells or transit-amplifying cells. MIE cells are able to differentiate into the M cell lineage following coculture with intestinal lymphocytes, but not with Peyer's patch lymphocytes (PPL). However, PPL costimulated with anti-CD3/CD28 MAbs caused MIE cells to display typical features of M cells, such as transcytosis activity, the disorganization of microvilli, and the expression of M cell markers. This transcytosis activity of MIE cells was not induced by T cells isolated from PPL costimulated with the same MAbs and was reduced by the depletion of the T cell population from PPL. A mixture of T cells treated with MAbs and B cells both from PPL led MIE cells to differentiate into M cells. We report here that MIE cells have the potential ability to differentiate into M cells and that this differentiation required activated T cells and B cells.

  9. Standardized limbal epithelial stem cell graft generation and transplantation.

    PubMed

    Zakaria, Nadia; Koppen, Carina; Van Tendeloo, Viggo; Berneman, Zwi; Hopkinson, Andrew; Tassignon, Marie-José

    2010-10-01

    To describe a standardized, xenogenic-free protocol for the manufacture of limbal epithelial stem cell grafts and a "no touch" surgical technique for its standardized transplantation. Antwerp University Hospital, Antwerp, Belgium. The limbo-amnion composite graft is generated by cultivating limbal epithelial stem cells on a standardized (thermolysin treated and spongy layer removed) amniotic membrane, stretched within an interlockable amnion ring. The cells are cultured in CnT-20 medium with the addition of 1% human AB serum for a period of 2 weeks. Fibrin glue is applied to the surgically prepared recipient's cornea and in one fluid motion, the composite graft within the amnion ring construct is transferred from culture and positioned onto the graft bed. The required size is cut out at the level of the limbus by means of a trephine and/or microsurgical scissors. The lightweight, plastic interlockable ring offered stability to the graft during culture, transport, and transplantation. The use of the standardized amniotic membrane, within the amnion ring construct, improves reproducibility of the results and therefore heralds elective surgery. Rapid transplantation of a wrinkle-free graft, using a sutureless, “no touch" technique was achieved and this allowed precise tailoring of the graft to the recipient bed. This is the first time a standardized, clinical grade protocol has been described for manufacturing limbal epithelial grafts with an efficient surgical technique that prevents postsurgical graft shrinkage and improves corneal integration. The quick, sutureless, and manipulation-free technique ensured transplantation of viable, proliferating limbal epithelial stem cells.

  10. Cultivate Primary Nasal Epithelial Cells from Children and Reprogram into Induced Pluripotent Stem Cells

    PubMed Central

    Ulm, Ashley; Mayhew, Christopher N.; Debley, Jason; Khurana Hershey, Gurjit K.; Ji, Hong

    2016-01-01

    Nasal epithelial cells (NECs) are the part of the airways that respond to air pollutants and are the first cells infected with respiratory viruses. They are also involved in many airway diseases through their innate immune response and interaction with immune and airway stromal cells. NECs are of particular interest for studies in children due to their accessibility during clinical visits. Human induced pluripotent stem cells (iPSCs) have been generated from multiple cell types and are a powerful tool for modeling human development and disease, as well as for their potential applications in regenerative medicine. This is the first protocol to lay out methods for successful generation of iPSCs from NECs derived from pediatric participants for research purposes. It describes how to obtain nasal epithelial cells from children, how to generate primary NEC cultures from these samples, and how to reprogram primary NECs into well-characterized iPSCs. Nasal mucosa samples are useful in epidemiological studies related to the effects of air pollution in children, and provide an important tool for studying airway disease. Primary nasal cells and iPSCs derived from them can be a tool for providing unlimited material for patient-specific research in diverse areas of airway epithelial biology, including asthma and COPD research. PMID:27022951

  11. Cultivate Primary Nasal Epithelial Cells from Children and Reprogram into Induced Pluripotent Stem Cells.

    PubMed

    Ulm, Ashley; Mayhew, Christopher N; Debley, Jason; Khurana Hershey, Gurjit K; Ji, Hong

    2016-03-10

    Nasal epithelial cells (NECs) are the part of the airways that respond to air pollutants and are the first cells infected with respiratory viruses. They are also involved in many airway diseases through their innate immune response and interaction with immune and airway stromal cells. NECs are of particular interest for studies in children due to their accessibility during clinical visits. Human induced pluripotent stem cells (iPSCs) have been generated from multiple cell types and are a powerful tool for modeling human development and disease, as well as for their potential applications in regenerative medicine. This is the first protocol to lay out methods for successful generation of iPSCs from NECs derived from pediatric participants for research purposes. It describes how to obtain nasal epithelial cells from children, how to generate primary NEC cultures from these samples, and how to reprogram primary NECs into well-characterized iPSCs. Nasal mucosa samples are useful in epidemiological studies related to the effects of air pollution in children, and provide an important tool for studying airway disease. Primary nasal cells and iPSCs derived from them can be a tool for providing unlimited material for patient-specific research in diverse areas of airway epithelial biology, including asthma and COPD research.

  12. Angiotensin-converting enzyme in epithelial and neuroepithelial cells.

    PubMed

    Defendini, R; Zimmerman, E A; Weare, J A; Alhenc-Gelas, F; Erdös, E G

    1983-07-01

    Angiotensin-converting enzyme (CE) occurs in three types of cell: endothelial, epithelial, and neuroepithelial. In all three, it appears to be bound to plasma membrane. With antisera to the human enzyme, CE is demonstrated in paraffin sections on the apical surface of epithelial cells in the proximal tubule of the kidney, the mucosa of the small intestine, the syncytial trophoblast of the placenta, and the choroid plexus. Epithelial CE is characteristically found on microvillous surfaces in contact with an effluent, well placed to act on substrate in flux. In the brain, CE occurs in nerve fibers and terminals, mainly mesiobasally and in basal ganglia. Mesiobasal CE coincides with other components of the renin-angiotensin system (RAS) in the choroid/ventricular fluid, the subfornical organ, and the magnocellular neurosecretory system of the hypothalamus. Extrapyramidal CE, however, may not be related to the RAS. In the substantia nigra and the globus pallidus, the enzyme has the same cellular distribution as two putative neuromodulators, substance P and enkephalin, the latter a known substrate of CE.

  13. Effects of peptides on proliferative activity of retinal and pigmented epithelial cells.

    PubMed

    Khavinson, V Kh; Zemchikhina, V N; Trofimova, S V; Malinin, V V

    2003-06-01

    We studied the effects of Retinalamin (polypeptide preparation isolated from the retina) and a synthetic peptide Epithalon (Ala-Glu-Asp-Gly) on proliferative activity of retinal and pigmented epithelial cells. Experiments showed that Retinalamin and Epithalon (in certain concentrations) tissue-specifically stimulated proliferation of retinal and pigmented epithelial cell in culture.

  14. Feasibility of obtaining breast epithelial cells from healthy women for studies of cellular proliferation.

    PubMed

    Miller, N A; Thomas, M; Martin, L J; Hedley, D W; Michal, S; Boyd, N F

    1997-05-01

    Increased dietary fat intake and rate of breast epithelial cell proliferation have each been associated with the development of breast cancer. The goal of this study was to measure the effect of a low fat, high carbohydrate diet on the rate of breast epithelial cell proliferation in women at high risk for breast cancer. Women were recruited from the intervention and control groups of a randomized low fat dietary intervention trial, breast epithelial cells were obtained by fine needle aspiration, and cell proliferation was assessed in these samples using immunofluorescent detection of Ki-67 and PCNA. The effects of needle size and study group on cell yield and cytologic features of the cells were also examined. Fifty three women (20 in the intervention group and 33 in the control group) underwent the biopsy procedure. Slides from 38 subjects were stained for Ki-67 and from 14 subjects for PCNA. No cell proliferation (fluorescence) was detected for either Ki-67 or PCNA in any of the slides. Epithelial cell yield and number of stromal fragments were greater with a larger needle size. Numbers of stromal fragments and bipolar naked nuclei were greater in the low fat as compared to the control group but no differences in epithelial cell yield were observed between the two groups. This study confirms that fine needle aspiration biopsy is a feasible method of obtaining epithelial cells from women without discrete breast masses, but suggests that cell proliferation cannot be assessed using Ki-67 and PCNA in such samples.

  15. Time-and Concentration-Dependent Cytotoxicity of Ricin in Human Lung Epithelial Cells

    DTIC Science & Technology

    2007-07-01

    lectin, ricin communis agglutinin, which is not directly cytotoxic but does have an affinity for red blood cells and can lead to agglutination and...Time- and Concentration-Dependent Cytotoxicity of Ricin in Human Lung Epithelial Cells Sharmaine Ramasamy and David Proll Human...Disease Control (CDC) Select Agent List. Using human small airway epithelial cells , this is the first study to investigate the time- and dose-dependent

  16. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium.

    PubMed

    Smith, I M; Baker, A; Arneborg, N; Jespersen, L

    2015-11-01

    The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function. In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability of four nonpathogenic yeast species to modulate transepithelial electrical resistance (TER) across a monolayer of differentiated human colonocytes (Caco-2 cells). Further, we assessed yeast modulation of a Salmonella Typhimurium-induced epithelial cell barrier function insult. Our findings demonstrate distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study demonstrates distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Further, our data demonstrate significant yeast-mediated modulation of Salmonella Typhimurium-induced epithelial cell barrier disruption and identify Kluyveromyces marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study is the first to demonstrate significant non-Saccharomyces yeast

  17. Regulation of a Rho-associated kinase expression during the corneal epithelial cell cycle.

    PubMed

    Anderson, S C; SundarRaj, N

    2001-04-01

    It has been recognized that an increased expression of the Rho-associated kinase (ROCK-I), a downstream target of Rho (a Ras-related small guanosine triphosphatase [GTPase]), is associated with limbal-to-corneal epithelial transition. The purpose of the present study was to determine whether the expression of ROCK-I is regulated during the cell cycle of corneal epithelial cells. Rabbit corneal epithelial cells in culture were subjected to different culture conditions to enrich them in the G0, G1, and S phases of the cell cycle. Indirect immunofluorescence staining and western blot techniques were used for analyzing the changes in the relative intracellular concentrations of ROCK-I. Northern blot analysis of the isolated cellular RNA was performed to estimate the relative concentrations of ROCK-I mRNA. Serum deprivation did not cause all the corneal epithelial cells in culture to be arrested in the G0 phase of the cell cycle. However, the cells could be arrested in G0 by treating them with culture medium supplemented with transforming growth factor (TGF)-beta1. The relative concentration of ROCK-I in the G0-arrested cells was higher than in the corresponding control untreated cultures. G0-arrested cells were induced to enter G1, followed by the S phase of the cell cycle, by refeeding them with the medium devoid of TGF-beta1. The total intracellular concentration of ROCK-I significantly decreased during the G1 phase of the cell cycle and increased again during the S phase. The decrease in intracellular ROCK-I during the G1 phase was confirmed by arresting the cells in G1 with isoleucine deprivation and thymidine-mimosine treatments. ROCK-I mRNA levels were also found to be decreased during the G1 phase of the cell cycle. The levels of ROCK-I in the corneal epithelial cells were significantly lower in the G1 phase than those in the S and G0 phases of the cell cycle. Therefore, a Rho signaling pathway(s) involving ROCK-I may be regulated during the corneal epithelial

  18. ELF5 in epithelial ovarian carcinoma tissues and biological behavior in ovarian carcinoma cells.

    PubMed

    Yan, Hongchao; Qiu, Linglin; Xie, Xiaolei; Yang, He; Liu, Yongli; Lin, Xiaoman; Huang, Hongxiang

    2017-03-01

    The expression of E74-like factor 5 (ELF5) in epithelial ovarian carcinoma tissues and its effects on biological behavior in ovarian carcinoma cells were assessed in search for a new approach for gene treatment of epithelial ovarian carcinoma. RT-PCR technology was applied to detect the expression of ELF5 mRNA in epithelial ovarian carcinoma (n=49), borderline ovarian epithelial tumor (n=19), benign ovarian epithelial tumor (n=31) and normal ovarian tissues (n=40). Then, we transfected recombinant plasmid pcDNA3.1‑ELF5+EGFP into human ovarian carcinoma SKOV3 cells (recombinant plasmid group) in vitro and screened out stably transfected cells to conduct multiplication culture. Western blot analysis was performed to detect the expression of ELF5 protein in the different groups. Flow cytometry was employed to detect cell apoptosis and cycles. ELF5 mRNA in epithelial ovarian carcinoma and borderline ovarian epithelial tumor tissues were significantly lower (P<0.05) than those in benign ovarian epithelial tumor and normal ovarian tissues. ELF5 protein expression in the cells of recombinant plasmid group was significantly higher compared with empty plasmid and blank control groups. The capacity of cell reproductive recombinant plasmid group at each time point decreased (P<0.05). Flow cytometry detection showed that 67.03% of cells in recombinant plasmid group was blocked in G0/G1 phase (P<0.05), compared with empty plasmid group (37.17%) and blank control group (38.24%). Apoptotic rate of recombinant plasmid group was significantly lower (31.4±1.9%; P<0.05), compared with that of empty plasmid group (9.1±2.2%) and blank control group (8.7±1.5%), and the differences were statistically significant. In conclusion, ELF5 interfered with cell cycle of human ovarian carcinoma SKOV3 cells and promoted apoptosis of human ovarian carcinoma SKOV3 cells inhibiting their growth and invasive capacity; and thus providing a new approach to gene treatment of ovarian carcinoma.

  19. Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside of the crypt base stem cell niche

    PubMed Central

    Bansal, Mukesh; Rafferty, Hannah; Boitsova, Tatjana; Bardella, Chiara; Jaeger, Emma; Lewis, Annabelle; Freeman-Mills, Luke; Giner, Francesc Castro; Rodenas-Cuadrado, Pedro; Mallappa, Sreelakshmi; Clark, Susan; Thomas, Huw; Jeffery, Rosemary; Poulsom, Richard; Rodriguez-Justo, Manuel; Novelli, Marco; Chetty, Runjan; Silver, Andrew; Sansom, Owen James; Greten, Florian R; Wang, Lai Mun; East, James Edward; Tomlinson, Ian; Leedham, Simon John

    2015-01-01

    Hereditary mixed polyposis syndrome (HMPS) is characterised by the development of mixed morphology colorectal tumours and is caused by a 40 kb duplication that results in aberrant epithelial expression of the mesenchymal Bone Morphogenetic Protein antagonist, GREM1. Here we use HMPS tissue and a mouse model of the disease to show that epithelial GREM1 disrupts homeostatic intestinal morphogen gradients, altering cell-fate, that is normally determined by position along the vertical epithelial axis. This promotes the persistence and/or reacquisition of stem-cell properties in Lgr5 negative (non-expressing) progenitor cells that have exited the stem-cell niche. These cells form ectopic crypts, proliferate, accumulate somatic mutations and can initiate intestinal neoplasia, indicating that the crypt base stem-cell is not the sole cell-of-origin of colorectal cancer. Furthermore, we show that epithelial expression of GREM1 also occurs in traditional serrated adenomas, sporadic pre-malignant lesions with a hitherto unknown pathogenesis and these lesions can be considered the sporadic equivalents of HMPS polyps. PMID:25419707

  20. Human Urinary Epithelial Cells as a Source of Engraftable Hepatocyte-Like Cells Using Stem Cell Technology.

    PubMed

    Sauer, Vanessa; Tchaikovskaya, Tatyana; Wang, Xia; Li, Yanfeng; Zhang, Wei; Tar, Krisztina; Polgar, Zsuzsanna; Ding, Jianqiang; Guha, Chandan; Fox, Ira J; Roy-Chowdhury, Namita; Roy-Chowdhury, Jayanta

    2016-12-13

    Although several types of somatic cells have been reprogrammed into induced pluripotent stem cells (iPSCs) and then differentiated to hepatocyte-like cells (iHeps), the method for generating such cells from renal tubular epithelial cells shed in human urine and transplanting them into animal livers has not been described systematically. We report reprogramming of human urinary epithelial cells into iPSCs and subsequent hepatic differentiation, followed by a detailed characterization of the newly generated iHeps. The epithelial cells were reprogrammed into iPSCs by delivering the pluripotency factors OCT3/4, SOX2, KLF4, and MYC using methods that do not involve transgene integration, such as nucleofection of episomal (oriP/EBNA-1) plasmids or infection with recombinant Sendai viruses. After characterization of stable iPSC lines, a three-step differentiation toward hepatocytes was performed. The iHeps expressed a large number of hepatocyte-preferred genes, including nuclear receptors that regulate genes involved in cholesterol homeostasis, bile acid transport, and detoxification. MicroRNA profile of the iHeps largely paralleled that of primary human hepatocytes. The iHeps engrafted into the livers of Scid mice transgenic for mutant human SERPINA1 after intrasplenic injection. Thus, urine is a readily available source for generating human iHeps that could be potentially useful for disease modeling, pharmacological development, and regenerative medicine.

  1. Intratumoral bidirectional transitions between epithelial and mesenchymal cells in triple-negative breast cancer.

    PubMed

    Yamamoto, Mizuki; Sakane, Kota; Tominaga, Kana; Gotoh, Noriko; Niwa, Takayoshi; Kikuchi, Yasuko; Tada, Keiichiro; Goshima, Naoki; Semba, Kentaro; Inoue, Jun-Ichiro

    2017-06-01

    Epithelial-mesenchymal transition (EMT) and its reverse process, mesenchymal-epithelial transition MET, are crucial in several stages of cancer metastasis. Epithelial-mesenchymal transition allows cancer cells to move to proximal blood vessels for intravasation. However, because EMT and MET processes are dynamic, mesenchymal cancer cells are likely to undergo MET transiently and subsequently re-undergo EMT to restart the metastatic process. Therefore, spatiotemporally coordinated mutual regulation between EMT and MET could occur during metastasis. To elucidate such regulation, we chose HCC38, a human triple-negative breast cancer cell line, because HCC38 is composed of epithelial and mesenchymal populations at a fixed ratio even though mesenchymal cells proliferate significantly more slowly than epithelial cells. We purified epithelial and mesenchymal cells from Venus-labeled and unlabeled HCC38 cells and mixed them at various ratios to follow EMT and MET. Using this system, we found that the efficiency of EMT is approximately an order of magnitude higher than that of MET and that the two populations significantly enhance the transition of cells from the other population to their own. In addition, knockdown of Zinc finger E-box-binding homeobox 1 (ZEB1) or Zinc finger protein SNAI2 (SLUG) significantly suppressed EMT but promoted partial MET, indicating that ZEB1 and SLUG are crucial to EMT and MET. We also show that primary breast cancer cells underwent EMT that correlated with changes in expression profiles of genes determining EMT status and breast cancer subtype. These changes were very similar to those observed in EMT in HCC38 cells. Consequently, we propose HCC38 as a suitable model to analyze EMT-MET dynamics that could affect the development of triple-negative breast cancer. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  2. Phenotypic characterization of collagen gel embedded primary human breast epithelial cells in athymic nude mice.

    PubMed

    Yang, J; Guzman, R C; Popnikolov, N; Bandyopadhyay, G K; Christov, K; Collins, G; Nandi, S

    1994-06-30

    We have developed a method to characterize the phenotypes and tumorigenicity of dissociated human breast epithelial cells. The dissociated cells were first embedded in collagen gels and subsequently transplanted subcutaneously in vivo in athymic nude mice. The transplantation of dissociated epithelial cells from reduction mammoplasties, presumed to be normal, always resulted in normal histomorphology. Epithelial cells were arranged as short tubular structures consisting of lumina surrounded by epithelial cells with an occasional more complex branching structure. These outgrowths were surrounded by intact basement membrane and were embedded in collagen gel that, at termination, contained collagenous stroma with fibroblasts and blood vessels. In contrast, transplantation of dissociated breast epithelial cells from breast cancer specimens resulted in outgrowths with an invasive pattern infiltrating the collagen gel as well as frank invasion into vascular space, nerves and muscles. These observations were made long before the subsequent palpable stage which resulted if left in the mouse for a long enough time. The dissociated human breast epithelial cells thus retained their intrinsic property to undergo morphogenesis to reflect their original phenotype when placed in a suitable environment, the collagen gel.

  3. Role of Mast Cells in Oral Lichen Planus and Oral Lichenoid Reactions.

    PubMed

    Ramalingam, Suganya; Malathi, Narasimhan; Thamizhchelvan, Harikrishnan; Sangeetha, Narasimhan; Rajan, Sharada T

    2018-01-01

    Oral lichen planus (OLP) is a chronic T cell mediated disease of oral mucosa, skin, and its appendages with a prevalence of 0.5 to 2.6% worldwide. Oral lichenoid reactions (OLR) are a group of lesions with diverse aetiologies but have clinical and histological features similar to OLP, thereby posing a great challenge in differentiating both lesions. Mast cells are multifunctional immune cells that play a major role in the pathogenesis of lichen planus by release of certain chemical mediators. Increased mast cell densities with significant percentage of degranulation have been observed as a consistent finding in pathogenesis of oral lichen planus. The current study was aimed at quantifying the mast cells in histopathological sections of OLP and OLR thereby aiding a means of distinguishing these lesions. The study group involved 21 cases of oral lichen planus, 21 cases of oral lichenoid reactions, and 10 control specimens of normal buccal mucosa. All the cases were stained with Toluidine Blue and routine haematoxylin and eosin and the mast cells were quantified. The results were analyzed using the Kruskal-Wallis test and an intergroup analysis was performed using Mann-Whitney U test. The number of mast cells showed an increased value in oral lichen planus when compared to oral lichenoid reaction and thus an estimation of mast cells count could aid in distinguishing OLP from OLR histopathologically.

  4. Silencing of Kv4.1 potassium channels inhibits cell proliferation of tumorigenic human mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Soo Hwa; Choi, Changsun; Hong, Seong-Geun

    2009-06-26

    Potassium channel activity has been shown to facilitate cell proliferation in cancer cells. In the present study, the role of Kv4.1 channels in immortal and tumorigenic human mammary epithelial cells was investigated. Kv4.1 protein expression was positively correlated with tumorigenicity. Moreover, transfection with siRNAs targeting Kv4.1 mRNA suppressed proliferation of tumorigenic mammary epithelial cells. Experiments using mRNA isolated from human breast cancer tissues revealed that the level of Kv4.1 mRNA expression varied depending on the stage of the tumor. Kv4.1 protein expression increased during stages T2 and T3 compared to normal tissue. These results demonstrated that Kv4.1 plays a rolemore » in proliferation of tumorigenic human mammary epithelial cells. In addition, elevated Kv4.1 expression may be useful as a diagnostic marker for staging mammary tumors and selective blockers of Kv4.1 may serve to suppress tumor cell proliferation.« less

  5. Rebamipide increases the mucin-like glycoprotein production in corneal epithelial cells.

    PubMed

    Takeji, Yasuhiro; Urashima, Hiroki; Aoki, Akihiro; Shinohara, Hisashi

    2012-06-01

    Dry eye is a multifactorial disease of tears and the ocular surface due to tear deficiency or excessive tear evaporation. Tear film instability is due to a disturbance in ocular surface mucin leading to a dysfunction of mucin, resulting in dry eye. In this study, we examined the effect of rebamipide, an anti-ulcer agent, on glycoconjugate production, as an indicator of mucin-like glycoprotein in cultured corneal epithelial cells. Further, we investigated the effect of rebamipide on the gene expression of membrane-associated mucins. Confluent cultured human corneal epithelial cells were incubated with rebamipide for 24 h. The glycoconjugate content in the supernatant and the cell extracts was measured by wheat germ agglutinin-enzyme-linked lectin assay combined gel-filtration method. In the experiment on mucin gene expression, cultured human corneal epithelial cells were collected at 0, 3, 6, and 12 h after administration of rebamipide. Real-time quantitative polymerase chain reaction was used to analyze the quantity of MUC1, MUC 4, and MUC16 gene expression. Rebamipide significantly increased the glycoconjugate contents in the supernatant and cell extract. In the mucin gene expression in the cells, rebamipide increased MUC1 and MUC4 gene expression, but did not increase MUC16 gene expression. Rebamipide promoted glycoconjugate, which has a property as a mucin-like glycoprotein, in human corneal epithelial cells. The increased production was mediated by MUC1 and MUC4 gene expression.

  6. Cell adhesion molecules, the extracellular matrix and oral squamous carcinoma.

    PubMed

    Lyons, A J; Jones, J

    2007-08-01

    Carcinomas are characterized by invasion of malignant cells into the underlying connective tissue and migration of malignant cells to form metastases at distant sites. These processes require alterations in cell-cell and cell-extracellular matrix interactions. As cell adhesion molecules play a role in cell-cell and cell-extracellular matrix adhesion and interactions they are involved in the process of tumour invasion and metastases. In epithelial tissues, receptors of the integrin family mediate adhesion to the adjacent matrix whereas cadherins largely mediate intercellular adhesion. These and other cell adhesion molecules such as intercellular adhesion molecule-1, CD44, dystroglycans and selectins, are involved and undergo changes in carcinomas, which provide possible targets for anti-cancer drug treatments. In the extracellular matrix that is associated with tumours, laminin 5, oncofetal fibronectin and tenascin C appear. The degree of expression of some of these moieties indicates prognosis in oral cancer and offer targets for antibody-directed radiotherapy. Metalloproteases which degrade the extracellular matrix are increased in carcinomas, and their activity is necessary for tumour angiogenesis and consequent invasion and metastases. Metalloprotease inhibitors have begun to produce decreases in mortality in clinical trials. This report provides a brief overview of our current understanding of cell adhesion molecules, the extracellular matrix, tumour invasion and metastasis.

  7. Activated ERK1/2 increases CD44 in glomerular parietal epithelial cells leading to matrix expansion

    PubMed Central

    Roeder, Sebastian S.; Barnes, Taylor J.; Lee, Jonathan S.; Kato, India; Eng, Diana G.; Kaverina, Natalya V.; Sunseri, Maria W.; Daniel, Christoph; Amann, Kerstin; Pippin, Jeffrey W.; Shankland, Stuart J.

    2017-01-01

    The glycoprotein CD44 is barely detected in normal mouse and human glomeruli, but is increased in glomerular parietal epithelial cells following podocyte injury in focal segmental glomerulosclerosis (FSGS). To determine the biological role and regulation of CD44 in these cells, we employed an in vivo and in vitro approach. Experimental FSGS was induced in CD44 knockout and wildtype mice with a cytotoxic podocyte antibody. Albuminuria, focal and global glomerulosclerosis (periodic acid-Schiff stain) and collagen IV staining were lower in CD44 knockout compared with wild type mice with FSGS. Parietal epithelial cells had lower migration from Bowman’s capsule to the glomerular tuft in CD44 knockout mice with disease compared with wild type mice. In cultured murine parietal epithelial cells, overexpressing CD44 with a retroviral vector encoding CD44 was accompanied by significantly increased collagen IV expression and parietal epithelial cells migration. Because our results showed de novo co-staining for activated ERK1/2 (pERK) in parietal epithelial cells in experimental FSGS, and also in biopsies from patients with FSGS, two in vitro strategies were employed to prove that pERK regulated CD44 levels. First, mouse parietal epithelial cells were infected with a retroviral vector for the upstream kinase MEK-DD to increase pERK, which was accompanied by increased CD44 levels. Second, in CD44 overexpressing parietal epithelial cells, decreasing pERK with U0126 was accompanied by reduced CD44. Finally, parietal epithelial cell migration was higher in cells with increased and reduced in cells with decreased pERK. Thus, pERK is a regulator of CD44 expression and increased CD44 expression leads to a pro-sclerotic and migratory parietal epithelial cells phenotype. PMID:27998643

  8. Tight junction-based epithelial microenvironment and cell proliferation.

    PubMed

    Tsukita, S; Yamazaki, Y; Katsuno, T; Tamura, A; Tsukita, S

    2008-11-24

    Belt-like tight junctions (TJs), referred to as zonula occludens, have long been regarded as a specialized differentiation of epithelial cell membranes. They are required for cell adhesion and paracellular barrier functions, and are now thought to be partly involved in fence functions and in cell polarization. Recently, the molecular bases of TJs have gradually been unveiled. TJs are constructed by TJ strands, whose basic frameworks are composed of integral membrane proteins with four transmembrane domains, designated claudins. The claudin family is supposedly composed of at least 24 members in mice and humans. Other types of integral membrane proteins with four transmembrane domains, namely occludin and tricellulin, as well as the single transmembrane proteins, JAMs (junctional adhesion molecules) and CAR (coxsackie and adenovirus receptor), are associated with TJ strands, and the high-level organization of TJ strands is likely to be established by membrane-anchored scaffolding proteins, such as ZO-1/2. Recent functional analyses of claudins in cell cultures and in mice have suggested that claudin-based TJs may have pivotal functions in the regulation of the epithelial microenvironment, which is critical for various biological functions such as control of cell proliferation. These represent the dawn of 'Barriology' (defined by Shoichiro Tsukita as the science of barriers in multicellular organisms). Taken together with recent reports regarding changes in claudin expression levels, understanding the regulation of the TJ-based microenvironment system will provide new insights into the regulation of polarization in the respect of epithelial microenvironment system and new viewpoints for developing anticancer strategies.

  9. Increased Abundance of M Cells in the Gut Epithelium Dramatically Enhances Oral Prion Disease Susceptibility

    PubMed Central

    Sehgal, Anuj; Rios, Daniel

    2016-01-01

    Many natural prion diseases of humans and animals are considered to be acquired through oral consumption of contaminated food or pasture. Determining the route by which prions establish host infection will identify the important factors that influence oral prion disease susceptibility and to which intervention strategies can be developed. After exposure, the early accumulation and replication of prions within small intestinal Peyer’s patches is essential for the efficient spread of disease to the brain. To replicate within Peyer’s patches, the prions must first cross the gut epithelium. M cells are specialised epithelial cells within the epithelia covering Peyer’s patches that transcytose particulate antigens and microorganisms. M cell-development is dependent upon RANKL-RANK-signalling, and mice in which RANK is deleted only in the gut epithelium completely lack M cells. In the specific absence of M cells in these mice, the accumulation of prions within Peyer’s patches and the spread of disease to the brain was blocked, demonstrating a critical role for M cells in the initial transfer of prions across the gut epithelium in order to establish host infection. Since pathogens, inflammatory stimuli and aging can modify M cell-density in the gut, these factors may also influence oral prion disease susceptibility. Mice were therefore treated with RANKL to enhance M cell density in the gut. We show that prion uptake from the gut lumen was enhanced in RANKL-treated mice, resulting in shortened survival times and increased disease susceptibility, equivalent to a 10-fold higher infectious titre of prions. Together these data demonstrate that M cells are the critical gatekeepers of oral prion infection, whose density in the gut epithelium directly limits or enhances disease susceptibility. Our data suggest that factors which alter M cell-density in the gut epithelium may be important risk factors which influence host susceptibility to orally acquired prion diseases

  10. Effects of 25-hydroxyvitamin D3 on cathelicidin production and antibacterial function of human oral keratinocytes.

    PubMed

    Wang, Qi; Zhang, Wu; Li, Hao; Aprecio, Raydolf; Wu, Wan; Lin, Yiqiao; Li, Yiming

    2013-01-01

    Vitamin D and its metabolites have been recognized as key determinants in innate immune modulation. In this study, we investigated the regulation of antibacterial functions of oral keratinocyte cells by 25-hydroxyvitamin D3 (25VD3). OKF6/TERT2 cells, an immortalized human oral keratinocyte cell line, were transfected with or without 24-hydroxylase small interfering RNA (siRNA) and incubated with different amounts of 25VD3. These epithelial cells expressed high levels of inactivating 24-hydroxylase (CYP24A1) and relatively low levels of activating 1α-hydroxylase (CYP27B1) in the presence of 25VD3. 25VD3 influenced the expression of vitamin D-driven genes and cathelicidin in a dose-related manner. SiRNA specific to 24-hydroxylase augmented the cathelicidin production and subseqently influenced the antibacterial activity on multispecies of oral pathogens. These observations suggest that 25VD3 is capable of stimulating cathelicidin production and modulating antibacterial function upon CYP24A1 knochdown in oral epithelial cells, and indicate novel mechanisms that 25VD3 may enhance antibacterial ability in oral keratinocytes. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. TLR3-mediated NF-{kappa}B signaling in human esophageal epithelial cells.

    PubMed

    Lim, Diana M; Narasimhan, Sneha; Michaylira, Carmen Z; Wang, Mei-Lun

    2009-12-01

    Despite its position at the front line against ingested pathogens, very little is presently known about the role of the esophageal epithelium in host innate immune defense. As a key player in the innate immune response, Toll-like receptor (TLR) signaling has not been well characterized in human esophageal epithelial cells. In the present study, we investigated the inflammatory response and signaling pathways activated by TLR stimulation of human esophageal cells in vitro. Using quantitative RT-PCR, we profiled the expression pattern of human TLRs 1-10 in primary esophageal keratinocytes (EPC2), immortalized nontransformed esophageal keratinocytes (EPC2-hTERT), and normal human esophageal mucosal biopsies and found that TLRs 1, 2, 3, and 5 were expressed both in vivo and in vitro. Using the cytokine IL-8 as a physiological read out of the inflammatory response, we found that TLR3 is the most functional of the expressed TLRs in both primary and immortalized esophageal epithelial cell lines in response to its synthetic ligand polyinosinic polycytidylic acid [poly(I:C)]. Through reporter gene studies, we show that poly(I:C)-induced NF-kappaB activation is critical for the transactivation of the IL-8 promoter in vitro and that nuclear translocation of NF-kappaB occurs at an early time point following poly(I:C) stimulation of esophageal epithelial cells. Importantly, we also show that poly(I:C) stimulation induces the NF-kappaB-dependent esophageal epithelial expression of TLR2, leading to enhanced epithelial responsiveness of EPC2-hTERT cells to TLR2 ligand stimulation, suggesting an important regulatory role for TLR3-mediated NF-kappaB signaling in the innate immune response of esophageal epithelial cells. Our findings demonstrate for the first time that TLR3 is highly functional in the human esophageal epithelium and that TLR3-mediated NF-kappaB signaling may play an important regulatory role in esophageal epithelial homeostasis.

  12. Evaluation of ABCG2 and p63 expression in canine cornea and cultivated corneal epithelial cells.

    PubMed

    Morita, Maresuke; Fujita, Naoki; Takahashi, Ayaka; Nam, Eun Ryel; Yui, Sho; Chung, Cheng Shu; Kawahara, Naoya; Lin, Hsing Yi; Tsuzuki, Keiko; Nakagawa, Takayuki; Nishimura, Ryohei

    2015-01-01

    To examine the expressions of ABCG2 and p63 in canine corneal epithelia and to evaluate their significance in corneal regeneration. Canine corneal and limbal epithelial cells were obtained from five healthy beagle dogs. We analyzed the morphological properties of cultivated limbal and corneal epithelial cells. We compared the expressions of ABCG2 and p63 in the limbus and central cornea by immunohistochemistry and real-time quantitative PCR. We analyzed the expression of these markers in cultivated cells by immunocytochemistry and real-time quantitative PCR. The limbal epithelial cells were smaller and proliferated more rapidly than the corneal epithelial cells in primary cultures. The corneal cells failed to be subcultured, whereas the limbal cells could be subcultured with increasing cell size. ABCG2 was localized in the basal layer of the limbal epithelium, and p63 was widely detected in the entire corneal epithelia. ABCG2 expression was significantly higher, and p63 was slightly higher in the limbus compared with the central cornea. ABCG2 was detected only in limbal cells in primary culture, not in corneal cells or passaged limbal cells. p63 was detected in both limbal and corneal cells and decreased gradually in the limbal cells with the cell passages. ABCG2 was localized in canine limbal epithelial cells, and p63 was widely expressed in canine corneal epithelia. ABCG2 and p63 could prove to be useful markers in dogs for putative corneal epithelial stem cells and for corneal epithelial cell proliferation, respectively. © 2014 American College of Veterinary Ophthalmologists.

  13. Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts.

    PubMed

    Kabiri, Zahra; Greicius, Gediminas; Madan, Babita; Biechele, Steffen; Zhong, Zhendong; Zaribafzadeh, Hamed; Edison; Aliyev, Jamal; Wu, Yonghui; Bunte, Ralph; Williams, Bart O; Rossant, Janet; Virshup, David M

    2014-06-01

    Wnt/β-catenin signaling supports intestinal homeostasis by regulating proliferation in the crypt. Multiple Wnts are expressed in Paneth cells as well as other intestinal epithelial and stromal cells. Ex vivo, Wnts secreted by Paneth cells can support intestinal stem cells when Wnt signaling is enhanced with supplemental R-Spondin 1 (RSPO1). However, in vivo, the source of Wnts in the stem cell niche is less clear. Genetic ablation of Porcn, an endoplasmic reticulum resident O-acyltransferase that is essential for the secretion and activity of all vertebrate Wnts, confirmed the role of intestinal epithelial Wnts in ex vivo culture. Unexpectedly, mice lacking epithelial Wnt activity (Porcn(Del)/Villin-Cre mice) had normal intestinal proliferation and differentiation, as well as successful regeneration after radiation injury, indicating that epithelial Wnts are dispensable for these processes. Consistent with a key role for stroma in the crypt niche, intestinal stromal cells endogenously expressing Wnts and Rspo3 support the growth of Porcn(Del) organoids ex vivo without RSPO1 supplementation. Conversely, increasing pharmacologic PORCN inhibition, affecting both stroma and epithelium, reduced Lgr5 intestinal stem cells, inhibited recovery from radiation injury, and at the highest dose fully blocked intestinal proliferation. We conclude that epithelial Wnts are dispensable and that stromal production of Wnts can fully support normal murine intestinal homeostasis.

  14. Modulation of Mammary Stromal Cell Lactate Dynamics by Ambient Glucose and Epithelial Factors.

    PubMed

    Tobar, Nicolas; Porras, Omar; Smith, Patricio C; Barros, L Felipe; Martínez, Jorge

    2017-01-01

    Hyperglycemia is a risk factor for a variety of human cancers. Increased access to glucose and that tumor metabolize glucose by a glycolytic process even in the presence of oxygen (Warburg effect), provide a framework to analyze a particular set of metabolic adaptation mechanisms that may explain this phenomenon. In the present work, using a mammary stromal cell line derived from healthy tissue that was subjected to a long-term culture in low (5 mM) or high (25 mM) glucose, we analyzed kinetic parameters of lactate transport using a FRET biosensor. Our results indicate that the glucose pre-culture and soluble epithelial factors constitute a stimulus for lactate stromal production, factors that also modify the kinetic parameters and the monocarboxylate transporters expression in stromal cells. We also observed a vectorial flux of lactate from stroma to epithelial cells in a co-culture setting and found that the uptake of lactate by epithelial cells correlates with the degree of malignancy. Glucose preconditioning of the stromal cell stimulated epithelial motility. Our findings suggest that lactate generated by stromal cells in the high glucose condition stimulate epithelial migration. Overall, our results support the notion that glucose not only provides a substrate for tumor nutrition but also behaves as a signal promoting malignancy. J. Cell. Physiol. 232: 136-144, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Gene-expression profiles of epithelial cells treated with EMD in vitro: analysis using complementary DNA arrays.

    PubMed

    Kapferer, I; Schmidt, S; Gstir, R; Durstberger, G; Huber, L A; Vietor, I

    2011-02-01

    During surgical periodontal treatment, EMD is topically applied in order to facilitate regeneration of the periodontal ligament, acellular cementum and alveolar bone. Suppresion of epithelial down-growth is essential for successful periodontal regeneration; however, the underlying mechanisms of how EMD influences epithelial wound healing are poorly understood. In the present study, the effects of EMD on gene-expression profiling in an epithelial cell line (HSC-2) model were investigated. Gene-expression modifications, determined using a comparative genome-wide expression-profiling strategy, were independently validated by quantitative real-time RT-PCR. Additionally, cell cycle, cell growth and in vitro wound-healing assays were conducted. A set of 43 EMD-regulated genes was defined, which may be responsible for the reduced epithelial down-growth upon EMD application. Gene ontology analysis revealed genes that could be attributed to pathways of locomotion, developmental processes and associated processes such as regulation of cell size and cell growth. Additionally, eight regulated genes have previously been reported to take part in the process of epithelial-to-mesenchymal transition. Several independent experimental assays revealed significant inhibition of cell migration, growth and cell cycle by EMD. The set of EMD-regulated genes identified in this study offers the opportunity to clarify mechanisms underlying the effects of EMD on epithelial cells. Reduced epithelial repopulation of the dental root upon periodontal surgery may be the consequence of reduced migration and cell growth, as well as epithelial-to-mesenchymal transition. © 2010 John Wiley & Sons A/S.

  16. Initiation of oncogenic transformation in human mammary epithelial cells by charged particles

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Georgy, K. A.; Craise, L. M.; Durante, M.

    1997-01-01

    Experimental studies have shown that high linear-energy transfer (LET) charged particles can be more effective than x-rays and gamma-rays in inducing oncogenic transformation in cultured cells and tumors in animals. Based on these results, experiments were designed and performed with an immortal human mammary epithelial cell line (H184B5), and several clones transformed by heavy ions were obtained. Cell fusion experiments were subsequently done, and results indicate that the transforming gene(s) is recessive. Chromosome analysis with fluorescence in situ hybridization (FISH) techniques also showed additional translocations in transformed human mammary epithelial cells. In addition, studies with these cell lines indicate that heavy ions can effectively induce deletion, break, and dicentrics. Deletion of tumor suppressor gene(s) and/or formation of translocation through DNA double strand breaks is a likely mechanism for the initiation of oncogenic transformation in human mammary epithelial cells.

  17. Comparative study of β-catenin and CD44 immunoexpression in oral lichen planus and squamous cell carcinoma.

    PubMed

    Zargaran, Massoumeh; Baghaei, Fahimeh; Moghimbeigi, Abbas

    2018-04-24

    Dysfunction of adhesion molecules is believed to play an early and important role in developing cancer. Accordingly, this study aims to compare beta-catenin (β-catenin) and CD44 expression in oral lichen planus (OLP) as a condition with malignant potential and oral squamous cell carcinoma (OSCC). β-Catenin and CD44 expression were evaluated in 15 patients with epithelial hyperplasia (group A), 20 OLP (group B), and 20 OSCC (group C) by immunohistochemistry. Quantitative and semi-quantitative evaluations revealed β-catenin, and CD44 membranous expression had significant differences among the three groups. Expression of these markers in the OSCC group decreased significantly compared to that of the OLP. Also, nuclear/cytoplasmic expression of β-catenin was significantly different among the three groups, considering that nuclear expression was not observed in any of the epithelial hyperplasia and OLP samples. According to the findings of this study, β-catenin and CD44 can differentiate between behavior of OLP and OSCC, while the precancerous nature of OLP and malignant transformation potential of it are not suggested. © 2018 The International Society of Dermatology.

  18. The Human Airway Epithelial Basal Cell Transcriptome

    PubMed Central

    Wang, Rui; Zwick, Rachel K.; Ferris, Barbara; Witover, Bradley; Salit, Jacqueline; Crystal, Ronald G.

    2011-01-01

    Background The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. Methodology/Principal Findings Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the “human airway basal cell signature” as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. Conclusion/Significance The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem

  19. Cytotoxic effects of octenidine mouth rinse on human fibroblasts and epithelial cells - an in vitro study.

    PubMed

    Schmidt, J; Zyba, V; Jung, K; Rinke, S; Haak, R; Mausberg, R F; Ziebolz, D

    2016-01-01

    This study compared the cytotoxicity of a new octenidine mouth rinse (MR) against gingival fibroblasts and epithelial cells with different established MRs. The following MRs were used: Octenidol (OCT), Chlorhexidine 0.2% (CHX), Listerine (LIS), Meridol (MER), Betaisodona (BET); and control (medium only). Human primary gingiva fibroblasts and human primary nasal epithelial cells were cultivated in cell-specific media (2 × 10(5) cells/ml) and treated with MR for 1, 5, and 15 min. Each test was performed 12 times. Metabolism activity was measured using a cytotoxicity assay. A cellometer analyzed cell viability, cell number, and cell diameter. The data were analyzed by two-way analysis of variance with subsequent Dunnett's test and additional t-tests. The cytotoxic effects of all MRs on fibroblasts and epithelial cells compared to the control depended on the contact time (p < 0.001). OCT and BET showed less influence on cell metabolism in fibroblasts than other MRs. OCT also demonstrated comparable but not significant results in epithelial cells (p > 0.005). Cell numbers of both cell types at all contact times revealed that OCT showed a less negative effect (p > 0.005), especially for epithelial cells compared to CHX after 15 min (p < 0.005). OCT and BET showed the best results for viability in fibroblasts (p > 0.005), but MER showed less influence than OCT in epithelial cells (p < 0.005). OCT is a potential alternative to CHX regarding cytotoxicity because of its lower cell-toxic effect against fibroblasts and epithelial cells.

  20. NK cells are necessary for recovery of corneal CD11c+ dendritic cells after epithelial abrasion injury

    USDA-ARS?s Scientific Manuscript database

    Mechanisms controlling CD11c(+) MHCII(+) DCs during corneal epithelial wound healing were investigated in a murine model of corneal abrasion. Selective depletion of NKp46(+) CD3- NK cells that normally migrate into the cornea after epithelial abrasion resulted in >85% reduction of the epithelial CD1...