Hyperbolic Orbits and the Planetary Flylby Anomaly
NASA Technical Reports Server (NTRS)
Wilson, T.L.; Blome, H.J.
2009-01-01
Space probes in the Solar System have experienced unexpected changes in velocity known as the flyby anomaly [1], as well as shifts in acceleration referred to as the Pioneer anomaly [2-4]. In the case of Earth flybys, ESA s Rosetta spacecraft experienced the flyby effect and NASA s Galileo and NEAR satellites did the same, although MESSENGER did not possibly due to a latitudinal property of gravity assists. Measurements indicate that both anomalies exist, and explanations have varied from the unconventional to suggestions that new physics in the form of dark matter might be the cause of both [5]. Although dark matter has been studied for over 30 years, there is as yet no strong experimental evidence supporting it [6]. The existence of dark matter will certainly have a significant impact upon ideas regarding the origin of the Solar System. Hence, the subject is very relevant to planetary science. We will point out here that one of the fundamental problems in science, including planetary physics, is consistency. Using the well-known virial theorem in astrophysics, it will be shown that present-day concepts of orbital mechanics and cosmology are not consistent for reasons having to do with the flyby anomaly. Therefore, the basic solution regarding the anomalies should begin with addressing the inconsistencies first before introducing new physics.
NASA Astrophysics Data System (ADS)
Ko, H.; Scheeres, D.
2014-09-01
Representing spacecraft orbit anomalies between two separate states is a challenging but an important problem in achieving space situational awareness for an active spacecraft. Incorporation of such a capability could play an essential role in analyzing satellite behaviors as well as trajectory estimation of the space object. A general way to deal with the anomaly problem is to add an estimated perturbing acceleration such as dynamic model compensation (DMC) into an orbit determination process based on pre- and post-anomaly tracking data. It is a time-consuming numerical process to find valid coefficients to compensate for unknown dynamics for the anomaly. Even if the orbit determination filter with DMC can crudely estimate an unknown acceleration, this approach does not consider any fundamental element of the unknown dynamics for a given anomaly. In this paper, a new way of representing a spacecraft anomaly using an interpolation technique with the Thrust-Fourier-Coefficients (TFCs) is introduced and several anomaly cases are studied using this interpolation method. It provides a very efficient way of reconstructing the fundamental elements of the dynamics for a given spacecraft anomaly. Any maneuver performed by a satellite transitioning between two arbitrary orbital states can be represented as an equivalent maneuver using an interpolation technique with the TFCs. Given unconnected orbit states between two epochs due to a spacecraft anomaly, it is possible to obtain a unique control law using the TFCs that is able to generate the desired secular behavior for the given orbital changes. This interpolation technique can capture the fundamental elements of combined unmodeled anomaly events. The interpolated orbit trajectory, using the TFCs compensating for a given anomaly, can be used to improve the quality of orbit fits through the anomaly period and therefore help to obtain a good orbit determination solution after the anomaly. Orbit Determination Toolbox (ODTBX
Orbital Anomalies in Goddard Spacecraft for Calendar Year 1994
NASA Technical Reports Server (NTRS)
Thomas, Walter B.
1996-01-01
This report summarizes and updates the annual on-orbit performance between January I and December 31, 1994, for spacecraft built by or managed by the Goddard Space Flight Center (GSFC). During 1994, GSFC had 27 active orbiting satellites and I Shuttle-launched and retrieved 'free flyer.' There were 310 reported anomalies among 21 satellites and one GSFC instrument (TOMS). GOES-8 accounted for 66 anomalies, and SAMPES reported 155 'anomalies'. Of the 155 anomalies reported for all but SAMPEX, only 4 affected the spacecraft missions 'substantially' or greater, that is, presented a loss of more than 33% of the total missions. The most frequent subsystem anomalies were Instrument/Payload(44), Timing Command and Control(40), and Attitude Control Systems(33). Of the non-SAMPEX anomalies, 29% had no effect on the missions and 28% caused subsystem or instrument degradation and, for another 28%, no anomaly effect on the mission could be determined. Fifty-three percent of non-SAMPEX anomalies could not be classified according to 'type'; the other most common types were 'systemic'(35), 'random'(19), and 'normal or expected operation'(15). Forty percent of the anomalies were not classified according to failure category; the remaining most frequent occurrences were 'design problems'(50) and 'other known problems'(35).
Automated anomaly detection for Orbiter High Temperature Reusable Surface Insulation
NASA Astrophysics Data System (ADS)
Cooper, Eric G.; Jones, Sharon M.; Goode, Plesent W.; Vazquez, Sixto L.
1992-11-01
The description, analysis, and experimental results of a method for identifying possible defects on High Temperature Reusable Surface Insulation (HRSI) of the Orbiter Thermal Protection System (TPS) is presented. Currently, a visual postflight inspection of Orbiter TPS is conducted to detect and classify defects as part of the Orbiter maintenance flow. The objective of the method is to automate the detection of defects by identifying anomalies between preflight and postflight images of TPS components. The initial version is intended to detect and label gross (greater than 0.1 inches in the smallest dimension) anomalies on HRSI components for subsequent classification by a human inspector. The approach is a modified Golden Template technique where the preflight image of a tile serves as the template against which the postflight image of the tile is compared. Candidate anomalies are selected as a result of the comparison and processed to identify true anomalies. The processing methods are developed and discussed, and the results of testing on actual and simulated tile images are presented. Solutions to the problems of brightness and spatial normalization, timely execution, and minimization of false positives are also discussed.
Orbital debris hazard insights from spacecraft anomalies studies
NASA Astrophysics Data System (ADS)
McKnight, Darren S.
2016-09-01
Since the dawning of the space age space operators have been tallying spacecraft anomalies and failures then using these insights to improve the space systems and operations. As space systems improved and their lifetimes increased, the anomaly and failure modes have multiplied. Primary triggers for space anomalies and failures include design issues, space environmental effects, and satellite operations. Attempts to correlate anomalies to the orbital debris environment have started as early as the mid-1990's. Early attempts showed tens of anomalies correlated well to altitudes where the cataloged debris population was the highest. However, due to the complexity of tracing debris impacts to mission anomalies, these analyses were found to be insufficient to prove causation. After the fragmentation of the Chinese Feng-Yun satellite in 2007, it was hypothesized that the nontrackable fragments causing anomalies in LEO would have increased significantly from this event. As a result, debris-induced anomalies should have gone up measurably in the vicinity of this breakup. Again, the analysis provided some subtle evidence of debris-induced anomalies but it was not convincing. The continued difficulty in linking debris flux to satellite anomalies and failures prompted the creation of a series of spacecraft anomalies and failure workshops to investigate the identified shortfalls. These gatherings have produced insights into why this process is not straightforward. Summaries of these studies and workshops are presented and observations made about how to create solutions for anomaly attribution, especially as it relates to debris-induced spacecraft anomalies and failures.
Analysis of spacecraft on-orbit anomalies and lifetimes
NASA Technical Reports Server (NTRS)
Bloomquist, C.; Graham, W.
1983-01-01
Analyses of the on-orbit performance of forty-four unmanned NASA spacecraft are presented. Included are detailed descriptions and classifications of over 600 anomalies; each anomalous incident represents one reported deviation from expected spacecraft performance. Charts depicting satellite lifetimes and the performance of their major subsystems are included. Engineering analyses to further investigate the kinds and frequencies of various classes of anomalies have been conducted. An improved method for charting spacecraft capability as a function of time on orbit is explored.
The intermediate anomaly. [satellite orbit integration
NASA Technical Reports Server (NTRS)
Nacozy, P.
1977-01-01
Time transformations of the equation dt = cr to the n ds, where s is a variable called the intermediate anomaly, are known to reduce global error in the solution of gravitational systems obtained by numerical integration. Attention is given to the Sundman time transformation, and its relation to equations of Keplerian elliptical motion.
K/S Lambert problem. [energy requirements for transfer orbits
NASA Technical Reports Server (NTRS)
Jezewski, D. J.
1975-01-01
The Lambert problem in orbital mechanics is formulated in Kustaanheimo/Stiefel variables. The problem is to determine the required energy and the value of the generalized eccentric anomaly such that a particle at the initial position vector will transfer to the final position vector in a physical time interval. The fictitious time solution results in two nonlinear equations in the two unknowns, energy and fictitious time. The generalized eccentric anomaly solution, however, results in only one nonlinear equation in the one unknown, the eccentric anomaly. This simplification is possible because the energy equation is separable in the eccentric anomaly formulation.
BRASILSAT A2: Ground and in-orbit anomalies
NASA Technical Reports Server (NTRS)
Azevedoferreira, Sergio Ricardo
1987-01-01
A description of the anomalies encountered during ground preparation for launch and in-orbit operation of Brasilsat A2 batteries is given. Processes used during recovery of these batteries and the improvement on main parameters are discussed, covering many cycles of reconditionings and behavior during September/86 eclipse charge/discharge cycles.
Risk Mitigation for Managing On-Orbit Anomalies
NASA Technical Reports Server (NTRS)
La, Jim
2010-01-01
This slide presentation reviews strategies for managing risk mitigation that occur with anomalies in on-orbit spacecraft. It reviews the risks associated with mission operations, a diagram of the method used to manage undesirable events that occur which is a closed loop fault analysis and until corrective action is successful. It also reviews the fish bone diagram which is used if greater detail is required and aids in eliminating possible failure factors.
Experimental and Computational Analysis of Shuttle Orbiter Hypersonic Trim Anomaly
NASA Technical Reports Server (NTRS)
Brauckmann, Gregory J.; Paulson, John W., Jr.; Weilmuenster, K. James
1995-01-01
During the high-Mach-number, high-altitude portion of the first entry of the Shuttle Orbiter, the vehicle exhibited a nose-up pitching moment relative to preflight prediction of approximately Delta Cm = 0.03. This trim anomaly has been postulated to be due to compressibility, viscous, and/or real-gas (lowered specific heat ratio gamma) effects on basic body pitching moment, body-flap effectiveness, or both. In order to assess the relative contribution of each of these effects, an experimental study was undertaken to examine the effects of Mach number, Reynolds number, and ratio of specific heats. Complementary computational solutions were obtained for wind-tunnel and flight conditions. The primary cause of the anomaly was determined to be lower pressures on the aft windward surface of the Orbiter than deduced from hypersonic wind-tunnel tests with ideal- or near-ideal-gas test flow. The lower pressure levels are a result of the lowering of the flowfield gamma due to high-temperature effects. This phenomenon was accurately simulated in a hypersonic wind tunnel using a heavy gas, which provided a lower, gamma, and was correctly predicted by Navier-Stokes computations using nonequilibrium chemistry.
NASA Technical Reports Server (NTRS)
Iona, Glenn; Butler, James; Guenther, Bruce; Graziani, Larissa; Johnson, Eric; Kennedy, Brian; Kent, Criag; Lambeck, Robert; Waluschka, Eugne; Xiong, Xiaoxiong
2012-01-01
A gradual, but persistent, decrease in the optical throughput was detected during the early commissioning phase for the Suomi National Polar-Orbiting Partnership (SNPP) Visible Infrared Imager Radiometer Suite (VIIRS) Near Infrared (NIR) bands. Its initial rate and unknown cause were coincidently coupled with a decrease in sensitivity in the same spectral wavelength of the Solar Diffuser Stability Monitor (SDSM) raising concerns about contamination or the possibility of a system-level satellite problem. An anomaly team was formed to investigate and provide recommendations before commissioning could resume. With few hard facts in hand, there was much speculation about possible causes and consequences of the degradation. Two different causes were determined as will be explained in this paper. This paper will describe the build and test history of VIIRS, why there were no indicators, even with hindsight, of an on-orbit problem, the appearance of the on-orbit anomaly, the initial work attempting to understand and determine the cause, the discovery of the root cause and what Test-As-You-Fly (TAYF) activities, can be done in the future to greatly reduce the likelihood of similar optical anomalies. These TAYF activities are captured in the lessons learned section of this paper.
NASA Astrophysics Data System (ADS)
Iona, Glenn; Butler, James; Guenther, Bruce; Graziani, Larissa; Johnson, Eric; Kennedy, Brian; Kent, Craig; Lambeck, Robert; Waluschka, Eugene; Xiong, Xiaoxiong
2012-09-01
A gradual, but persistent, decrease in the optical throughput was detected during the early commissioning phase for the Suomi National Polar-Orbiting Partnership (SNPP) Visible Infrared Imager Radiometer Suite (VIIRS) Near Infrared (NIR) bands. Its initial rate and unknown cause were coincidently coupled with a decrease in sensitivity in the same spectral wavelength of the Solar Diffuser Stability Monitor (SDSM) raising concerns about contamination or the possibility of a system-level satellite problem. An anomaly team was formed to investigate and provide recommendations before commissioning could resume. With few hard facts in hand, there was much speculation about possible causes and consequences of the degradation. Two different causes were determined as will be explained in this paper. This paper will describe the build and test history of VIIRS, why there were no indicators, even with hindsight, of an on-orbit problem, the appearance of the on-orbit anomaly, the initial work attempting to understand and determine the cause, the discovery of the root cause and what Test-As-You-Fly (TAYF) activities, can be done in the future to greatly reduce the likelihood of similar optical anomalies. These TAYF activities are captured in the "lessons learned" section of this paper.
Vigilance problems in orbiter processing
NASA Technical Reports Server (NTRS)
Swart, William W.; Safford, Robert R.; Kennedy, David B.; Yadi, Bert A.; Barth, Timothy S.
1993-01-01
A pilot experiment was done to determine what factors influence potential performance errors related to vigilance in Orbiter processing activities. The selected activities include post flight inspection for burned gap filler material and pre-rollout inspection for tile processing shim material. It was determined that the primary factors related to performance decrement were the color of the target and the difficulty of the target presentation.
Solving geologic problems resolving relevant anomalies
NASA Astrophysics Data System (ADS)
Chiappini, M.
2012-12-01
Remotely sensed data such as high resolution aeromagnetics can shed new light on the setting of tectonic and volcanic areas. This technique is, in fact, particularly suitable to study these areas due to the potential magnetic contrasts linked to volcanic structures. Furthermore, surveying poorly accessible sites with airborne geophysics can be expeditious and effective. The addition of new sensors on airborne platforms improves the efficiency of surveys and provides multi-source imaging. Also it is an aid to better resolving geophysical anomalies and/or surface features relevant to an effective geologic interpretation. The INGV Airborne Geophysics Science Team has investigated a large variety of active volcanoes and tectonic areas in different types of environment. One investigation revealed an unknown buried volcano in the Mediterranean Sea, developed along seismically active faults. Airborne magnetic data collected over Tenerife, Canary Islands, provided new evidence about the structure and growth of ocean island volcanoes. Other data sets delineate hidden tectonic and volcanic structures in Southern Tyrrhenian Sea, Italy. These examples and other newly acquired aeromagnetic data, integrated with additional airborne observations will be presented and discussed.
Practical method to identify orbital anomaly as spacecraft breakup in the geostationary region
NASA Astrophysics Data System (ADS)
Uetsuhara, Masahiko; Hanada, Toshiya
2013-09-01
Identifying spacecraft breakup events is an essential issue for better understanding of the current orbital debris environment. This paper proposes an observation planning approach to identify an orbital anomaly, which appears as a significant discontinuity in archived orbital history, as a spacecraft breakup. The proposed approach is applicable to orbital anomalies in the geostationary region. The proposed approach selects a spacecraft that experienced an orbital anomaly, and then predicts trajectories of possible fragments of the spacecraft at an observation epoch. This paper theoretically demonstrates that observation planning for the possible fragments can be conducted. To do this, long-term behaviors of the possible fragments are evaluated. It is concluded that intersections of their trajectories will converge into several corresponding regions in the celestial sphere even if the breakup epoch is not specified and it has uncertainty of the order of several weeks.
NASA Technical Reports Server (NTRS)
Sutter, James K.; Leidecker, Henning W.; Panda, Binayak; Piascik, Robert S.; Muirhead, Brian K.; Peeler, Debra
2009-01-01
The NESC eras requested by the NASA Jet Propulsion Laboratory (JPL) to conduct an independent review of the Mars Reconnaissance Orbiter (MRO) Thermal/Vacuum (T/V) Anomaly Assessment. Because the anomaly resulted in the surface contamination of the MRO, selected members of the Materials Super Problem Resolution Team (SPRT) and the NASA technical community having technical expertise relative to contamination issues were chosen for the independent review. The consultation consisted of a review of the MRO Project's reported response to the assessment findings, a detailed review of JPL technical assessment final report, and detailed discussions with the JPL assessment team relative to their findings.
Lageos orbit and the albedo problem
NASA Technical Reports Server (NTRS)
Rubincam, D. P.
1984-01-01
The objective was to obtain an analytic expression for the radiation pressure force on a satellite due to sunlight reflected from the Earth. The Lageos satellite undergoes unexplained along-track accelerations. These accelerations are believed to be due mainly to terrestrial radiation pressure. The effect of sunlight reflected off the surface of the Earth must thus be modeled to insure an accurate orbit for Lageos. An accurate orbit is necessary for carrying out Lageos' mission of measuring tectonic plate motion, polar motion, and Earth rotation. The present investigation focuses on a spherical harmonic approach to the problem. An equation for the force was obtained by assuming the Earth's surface reflects sunlight according to Lambert's law. The equation is an integral over the whole Earth's surface. Expressions occurring inside the integral are expressed in terms of spherical harmonics. The problem is thus reduced to integrating products of spherical harmonics.
Optimal solutions of unobservable orbit determination problems
NASA Astrophysics Data System (ADS)
Cicci, David A.; Tapley, Byron D.
1988-12-01
The method of data augmentation, in the form ofa priori covariance information on the reference solution, as a means to overcome the effects of ill-conditioning in orbit determination problems has been investigated. Specifically, for the case when ill-conditioning results from parameter non-observability and an appropriatea priori covariance is unknown, methods by which thea priori covariance is optimally chosen are presented. In problems where an inaccuratea priori covariance is provided, the optimal weighting of this data set is obtained. The feasibility of these ‘ridge-type’ solution methods is demonstrated by their application to a non-observable gravity field recovery simulation. In the simulation, both ‘ridge-type’ and conventional solutions are compared. Substantial improvement in the accuracy of the conventional solution is realized by the use of these ridge-type solution methods. The solution techniques presented in this study are applicable to observable, but ill-conditioned problems as well as the unobservable problems directly addressed. For the case of observable problems, the ridge-type solutions provide an improvement in the accuracy of the ordinary least squares solutions.
ERIC Educational Resources Information Center
Online-Offline, 1999
1999-01-01
This theme issue on anomalies includes Web sites, CD-ROMs and software, videos, books, and additional resources for elementary and junior high school students. Pertinent activities are suggested, and sidebars discuss UFOs, animal anomalies, and anomalies from nature; and resources covering unexplained phenonmenas like crop circles, Easter Island,…
Kanagalingam, Sivashakthi; Wyse, Emily; Merbs, Shannath L; Pearl, Monica Smith
2015-01-01
Venous-lymphatic anomalies (VLA) are rare and benign congenital lesions of the lymphatic system, composed of endothelial-lined lymphatic cysts. They are most frequently located in the region of the head and neck, and represent 4% of all orbital masses. In those patients with extensive orbital VLAs, a strong association with intracranial vascular anomalies has been reported. Factors known to suddenly increase the size of these lesions include upper respiratory tract infections or intralesional haemorrhage; however, complete spontaneous regression is rare. We report on the classic presentation of a patient with a fluctuating right orbital VLA in association with an intracranial cavernous malformation and intracranial developmental venous anomaly. PMID:26438679
Adiabatic chaos in the spin orbit problem
NASA Astrophysics Data System (ADS)
Benettin, Giancarlo; Guzzo, Massimiliano; Marini, Valerio
2008-05-01
We provide evidences that the angular momentum of a symmetric rigid body in a spin orbit resonance can perform large scale chaotic motions on time scales which increase polynomially with the inverse of the oblateness of the body. This kind of irregular precession appears as soon as the orbit of the center of mass is non-circular and the angular momentum of the body is far from the principal directions with minimum (maximum) moment of inertia. We also provide a quantitative explanation of these facts by using the theory of adiabatic invariants, and we provide numerical applications to the cases of the 1:1 and 1:2 spin orbit resonances.
NASA Astrophysics Data System (ADS)
Pimnoo, Ammarin
2016-07-01
Geo-Informatics and Space Technology Development Agency (GISTDA) has initiative THEOS-2 project after the THEOS-1 has been operated for more than 7 years which is over the lifetime already. THEOS-2 project requires not only the development of earth observation satellite(s), but also the development of the area-based decision making solution platform comprising of data, application systems, data processing and production system, IT infrastructure improvement and capacity building through development of satellites, engineering model, and infrastructures capable of supporting research in related fields. The developing satellites in THEOS-2 project are THAICHOTE-2 and THAICHOTE-3. This paper focuses the orbit design of THAICHOTE-2 & 3. It discusses the satellite orbit design for the second and third EOS of Thailand. In this paper, both THAICHOTE will be simulated in an equatorial orbit as a formation flying which will be compared the productive to THAICHOTE-1 (THEOS-1). We also consider a serious issue in equatorial orbit design, namely the issue of the geomagnetic field in the area of the eastern coast of South America, called the South Atlantic Magnetic Anomaly (SAMA). The high-energy particles of SAMA comprise a radiation environment which can travel through THAICHOTE-2 & 3 material and deposit kinetic energy. This process causes atomic displacement or leaves a stream of charged atoms in the incident particles' wake. It can cause damage to the satellite including reduction of power generated by solar arrays, failure of sensitive electronics, increased background noise in sensors, and exposure of the satellite devices to radiation. This paper demonstrates the loss of ionizing radiation damage and presents a technique to prevent damage from high-energy particles in the SAMA.
Frozen orbits in the J2 + J3 problem. [orbital mechanics
NASA Technical Reports Server (NTRS)
Kiedron, Krystyna; Cook, Richard
1992-01-01
An analytical derivation of frozen orbit eccentricities and their location over the range of possible orbital inclinations in the J2 + J3 problem is presented. A gravitational field with only J2 and J3 terms is considered, because the equation defining frozen orbits in this field is an algebraic equation of the third order and an analytical formula for roots of this equation exists. An equation for the frozen orbit eccentricity is derived in a convenient form using only two independent parameters: the inclination and a parameter which is the product of the ratio of the radius of the central body to the orbital semimajor axis and the ratio of the J2 and J3 coefficients. The equation is solved, and, on the basis of its roots, frozen orbits in the J2 + J3 problem are classified.
NASA Astrophysics Data System (ADS)
Schaefer, R. K.; Wolven, B. C.; Paxton, L.; Romeo, G.; Selby, C.; Hsieh, S. W.
2013-12-01
The South Atlantic Anomaly (SAA) is a region where the Earth's inner radiation belt dips down and bathes low earth orbit satellites with energetic charged particles sometimes causing problems for satellite operations. We will describe data from a series of UV spectrographic imagers (DMSP/SSUSI) that remain on through 4 daily SAA passages. Using spectrographic information, we are able to separate, study, and remove the detector counts due to energetic (~ 1 MeV and above) particle hits. We have made a model of the SAA at Defense Meteorological Satellite Program altitudes (~850 km), and we are able to monitor the intensity of the SAA over the long term (> a decade). Using this window into the inner radiation belt, we are able to see seasonal and solar cycle variations in intensity. In this talk we will describe the techniques, the model, and show results of our study, and and indicate directions for future development and usefulness of using SSUSI as an inner radiation belt particle intensity monitor. Nighttime 427 nm Photometer count rates as seen by SSUSI binned onto a 3 x 3 degree grid and accumulated over the year 2006. The classic shape of the South Atlantic Anomaly is clearly traced by the data.
Orbital Anomalies of the Periodic Comets Brorsen, Finlay, and Schwassmann-Wachmann 2
NASA Astrophysics Data System (ADS)
Sekanina, Z.
1993-04-01
Activation of new discrete sources appears to be a common phenomenon on the nuclei of periodic comets. Some of these sources have life spans as short as 1-2 revolutions about the Sun or less, while others are much more persistent (enduring for dozens of revolutions or longer). One line of evidence for an episode of this kind is an orbital anomaly, a sudden redistribution of the momentum that is transferred to the nucleus by the sublimating mass. Such discontinuities in the orbital motion have been reported for a number of periodic comets, of which Brorsen, Finlay, and Schwassmann-Wachmann 2 are investigated in some detail in this paper. Since the "ignition" and/or deactivation of a discrete source also entail parallel changes in the comet's water production and light curves, the latter provide constraints on the activation/deactivation scenarios. Although no unique solution can be offered in any particular case, the best conditions for detecting such events generally occur when the nucleus rotation vector is near the orbital plane and normal to the Sun's direction at perihelion and when the activated/deactivated source is near one of the rotation poles. Especially for highly irregular nuclei, forced precession is a likely byproduct of such episodes and it may assist in activating additional sources by altering the insolation distribution over the nucleus surface.
NASA Technical Reports Server (NTRS)
Hood, L. L.
1982-01-01
A relatively high-amplitude magnetic anomaly directly detected with the Apollo 15 subsatellite magnetometer and centered near the crater Gerasimovich on the southeastern lunar far side is found to correlate with the location of a conspicuous Reiner Gamma-type swirl marking visible on a Zond 8 photograph. Examinations of available direct and indirect orbital magnetics measurements demonstrate that most strong anomalies occur in areas where morphologically similar markings are concentrated. Even though photogeologic studies indicate an impact-related origin for the swirls, both the swirls and their associated strong anomalies tend to exist preferentially in or near areas that have been seismically modified. Modeling of improved vector magnetic anomaly maps is used to infer 28 independent bulk directions of magnetization for relatively strong and isolated lunar magnetic anomaly sources.
NASA Astrophysics Data System (ADS)
Sekanina, Z.
1993-02-01
Isoline maps of the Style II nongravitational parameters A1 and A2 of periodic comets are presented for a baseline model as functions of the parameters of the inertially fixed spin vector and the source's location-dependent thrust angle. The parameters A1 and A2 for a collection of sources are equal to the sum of their values for the individual contributors, thus depending on the source distribution. The model is consistent with even the most extreme among detected perturbations, including instances of rapid temporal changes in A2 and the discontinuous orbital anomalies, which are interpreted as products of a sudden redistribution of the transferred momentum due to episodic activation of short-lived sources. It is argued that the lifetimes of active regions vary considerably from case to case, and forced precession of the nucleus strongly influences the comet's activity pattern.
NASA Astrophysics Data System (ADS)
Schaefer, R. K.; Paxton, L. J.; Selby, C.; Ogorzalek, B.; Romeo, G.; Wolven, B.; Hsieh, S.-Y.
2016-05-01
We present a new model of the South Atlantic Anomaly (SAA) particle flux intensity for low Earth orbit, based a new data set, i.e., particle noise pulses in an ultraviolet photomultiplier. The data set is unique in that it provides daily monitoring of the strength of the particle radiation at a fixed altitude and local time and provides a consistent set of observations across the deep solar minimum. The observations show the following: (1) a development over the decline of solar cycle 23 into a deep solar minimum and the subsequent rise of cycle 24, (2) the slow motion drift of the SAA centroid with time at the rate—longitude drift =0.36 ± 0.06°W/yr, and latitude drift =0.16 ± 0.09°N/yr, (3) a higher particle flux at solar minimum than at solar maximum, and (4) a yearly cyclical variation. These particle rates are deduced from electric noise pulses generated in the photometers when an energetic charged particle hits the detector and causes an electron to be liberated from the detector material. The model described here can be used to monitor and even spatially predict the changes in particle fluxes seen by instruments in contemporaneous low Earth orbits through the SAA.
On one classical problem in the radial orbit instability theory
NASA Astrophysics Data System (ADS)
Polyachenko, E. V.; Shukhman, I. G.
2016-02-01
Antonov's classical problem of stability of a collisionless sphere with a purely radial motion of stars is considered as a limit of the problem in which stars move in nearly radial orbits. We provide the proper limiting equations that take into account the singularity in the density distribution at the sphere center and give their solutions. We show that there is instability for even and odd spherical harmonics, with all unstable modes being not slow. The growth rates of aperiodic even modes increase indefinitely when approaching purely radial models. The physics of the radial orbit instability is discussed.
NASA Astrophysics Data System (ADS)
Eshagh, Mehdi; Ghorbannia, Morteza
2014-07-01
The spatial truncation error (STE) is a significant systematic error in the integral inversion of satellite gradiometric and orbital data to gravity anomalies at sea level. In order to reduce the effect of STE, a larger area than the desired one is considered in the inversion process, but the anomalies located in its central part are selected as the final results. The STE influences the variance of the results as well because the residual vector, which is contaminated with STE, is used for its estimation. The situation is even more complicated in variance component estimation because of its iterative nature. In this paper, we present a strategy to reduce the effect of STE on the a posteriori variance factor and the variance components for inversion of satellite orbital and gradiometric data to gravity anomalies at sea level. The idea is to define two windowing matrices for reducing this error from the estimated residuals and anomalies. Our simulation studies over Fennoscandia show that the differences between the 0.5°×0.5° gravity anomalies obtained from orbital data and an existing gravity model have standard deviation (STD) and root mean squared error (RMSE) of 10.9 and 12.1 mGal, respectively, and those obtained from gradiometric data have 7.9 and 10.1 in the same units. In the case that they are combined using windowed variance components the STD and RMSE become 6.1 and 8.4 mGal. Also, the mean value of the estimated RMSE after using the windowed variances is in agreement with the RMSE of the differences between the estimated anomalies and those obtained from the gravity model.
Mars Reconnaissance Orbiter In-flight Anomalies and Lessons Learned: An Update
NASA Technical Reports Server (NTRS)
Bayer, Todd J.
2008-01-01
The Mars Reconnaissance Orbiter mission has as its primary objectives: advance our understanding of the current Mars climate, the processes that have formed and modified the surface of the planet and the extent to which water has played a role in surface processes; identify sites of possible aqueous activity indicating environments that may have been or are conducive to biological activity; and thus identify and characterize sites for future landed missions; and provide forward and return relay services for current and future Mars landed assets. MRO's crucial role in the long term strategy for Mars exploration requires a high level of reliability during its 5.4 year mission. This requires an architecture which incorporates extensive redundancy and cross-strapping. Because of the distances and hence light-times involved, the spacecraft itself must be able to utilize this redundancy in responding to time-critical failures. For cases where fault protection is unable to recognize a potentially threatening condition, either due to known limitations or software flaws, intervention by ground operations is required. These aspects of MRO's design were discussed in a previous paper [Ref. 1]. This paper provides an update to the original paper, describing MRO's significant in-flight anomalies over the past year, with lessons learned for redundancy and fault protection architectures and for ground operations.
A review of problems and progress in studies of satellite magnetic anomalies
NASA Technical Reports Server (NTRS)
Mayhew, M. A.; Johnson, B. D.; Wasilewski, P. J.
1985-01-01
A review is conducted of studies performed during the Magsat project. The obtained data are considered, taking into account questions of data availability, aspects of orbit attitude determination, ionospheric noise, a field model, and an anomaly field presentation. Models for interpretation are discussed, giving attention to forward modeling, and equivalent layer inverse modeling. In an evaluation of rock property constraints, the magnetic bottom is discussed along with Curie points, metamorphism and magnetization, and the direction of magnetization.
Tethered body problems and relative motion orbit determination
NASA Technical Reports Server (NTRS)
Eades, J. B., Jr.; Wolf, H.
1972-01-01
Selected problems dealing with orbiting tethered body systems have been studied. In addition, a relative motion orbit determination program was developed. Results from these tasks are described and discussed. The expected tethered body motions were examined, analytically, to ascertain what influence would be played by the physical parameters of the tether, the gravity gradient and orbit eccentricity. After separating the motion modes these influences were determined; and, subsequently, the effects of oscillations and/or rotations, on tether force, were described. A study was undertaken, by examining tether motions, to see what type of control actions would be needed to accurately place a mass particle at a prescribed position relative to a main vehicle. Other applications for tethers were studied. Principally these were concerned with the producing of low-level gee forces by means of stabilized tether configurations; and, the initiation of free transfer trajectories from tether supported vehicle relative positions.
Baggie: A unique solution to an orbiter icing problem
NASA Technical Reports Server (NTRS)
Walkover, L. J.
1982-01-01
The orbiter icing problem, located in two lower surface mold line cavities, was solved. These two cavities are open during Shuttle ground operations and ascent, and are then closed after orbit insertion. If not protected, these cavities may be coated with ice, which may be detrimental to the adjacent thermal protection system (TPS) tiles if the ice breaks up during ascent, and may hinder the closing of the cavity doors if the ice does not break up. The problem of ice in these cavities was solved by the use of a passive mechanism called baggie, which is purge curtain used to enclose the cavity and is used in conjunction with gaseous nitrogen as the local purge gas. The baggie, the final solution, is unique in its simplicity, but its design and development were not. The final baggie design and its development testing are discussed. Also discussed are the baggie concepts and other solutions not used.
Fuel-optimal trajectories for aeroassisted coplanar orbital transfer problem
NASA Technical Reports Server (NTRS)
Naidu, Desineni Subbaramaiah; Hibey, Joseph L.; Charalambous, Charalambos D.
1990-01-01
The optimal control problem arising in coplanar orbital transfer employing aeroassist technology is addressed. The maneuver involves the transfer from high to low earth orbit via the atmosphere, with the object of minimizing the total fuel consumption. Simulations are carried out to obtain the fuel-optimal trajectories for flying the spacecraft through the atmosphere. A highlight is the application of an efficient multiple-shooting method for treating the nonlinear two-point boundary value problem resulting from the optimizaion procedure. The strategy for the atmospheric portion of the minimum-fuel transfer is to fly at the maximum lift-to-drag ratio L/D initially in order to recover from the downward plunge, and then to fly at a negative L/D to level off the flight so that the vehicle skips out of the atmosphere with a flight path angle near zero degrees.
Fuel-optimal trajectories for aeroassisted coplanar orbital transfer problem
NASA Astrophysics Data System (ADS)
Naidu, Desineni Subbaramaiah; Hibey, Joseph L.; Charalambous, Charalambos D.
1990-03-01
The optimal control problem arising in coplanar orbital transfer employing aeroassist technology is addressed. The maneuver involves the transfer from high to low earth orbit via the atmosphere, with the object of minimizing the total fuel consumption. Simulations are carried out to obtain the fuel-optimal trajectories for flying the spacecraft through the atmosphere. A highlight is the application of an efficient multiple-shooting method for treating the nonlinear two-point boundary value problem resulting from the optimizaion procedure. The strategy for the atmospheric portion of the minimum-fuel transfer is to fly at the maximum lift-to-drag ratio L/D initially in order to recover from the downward plunge, and then to fly at a negative L/D to level off the flight so that the vehicle skips out of the atmosphere with a flight path angle near zero degrees.
NASA Technical Reports Server (NTRS)
Srivastava, Ashok, N.; Akella, Ram; Diev, Vesselin; Kumaresan, Sakthi Preethi; McIntosh, Dawn M.; Pontikakis, Emmanuel D.; Xu, Zuobing; Zhang, Yi
2006-01-01
This paper describes the results of a significant research and development effort conducted at NASA Ames Research Center to develop new text mining techniques to discover anomalies in free-text reports regarding system health and safety of two aerospace systems. We discuss two problems of significant importance in the aviation industry. The first problem is that of automatic anomaly discovery about an aerospace system through the analysis of tens of thousands of free-text problem reports that are written about the system. The second problem that we address is that of automatic discovery of recurring anomalies, i.e., anomalies that may be described m different ways by different authors, at varying times and under varying conditions, but that are truly about the same part of the system. The intent of recurring anomaly identification is to determine project or system weakness or high-risk issues. The discovery of recurring anomalies is a key goal in building safe, reliable, and cost-effective aerospace systems. We address the anomaly discovery problem on thousands of free-text reports using two strategies: (1) as an unsupervised learning problem where an algorithm takes free-text reports as input and automatically groups them into different bins, where each bin corresponds to a different unknown anomaly category; and (2) as a supervised learning problem where the algorithm classifies the free-text reports into one of a number of known anomaly categories. We then discuss the application of these methods to the problem of discovering recurring anomalies. In fact the special nature of recurring anomalies (very small cluster sizes) requires incorporating new methods and measures to enhance the original approach for anomaly detection. ?& pant 0-
NASA Astrophysics Data System (ADS)
Sjöberg, Lars E.
2013-06-01
In this study, we show that the traditionally defined Bouguer gravity anomaly needs a correction to become `the no-topography gravity anomaly' and that the isostatic gravity anomaly is better defined by the latter anomaly plus a gravity anomaly compensation effect than by the Bouguer gravity anomaly plus a gravitational compensation effect. This is because only the new isostatic gravity anomaly completely removes and compensates for the topographic effect. F. A. Vening Meinesz' inverse problem in isostasy deals with solving for the Moho depth from the known external gravity field and mean Moho depth (known, e.g. from seismic reflection data) by a regional isostatic compensation using a flat Earth approximation. H. Moritz generalized the problem to that of a global compensation with a spherical mean Earth approximation. The problem can be formulated mathematically as that of solving a non-linear Fredholm integral equation. The solutions to these problems are based on the condition of isostatic balance of the isostatic gravity anomaly, and, theoretically, this assumption cannot be met by the old definition of the isostatic gravity anomaly. We show how the Moho geometry can be solved for the gravity anomaly, gravity disturbance and disturbing potential, etc., and, from a theoretical point of view, all these solutions are the same.
Binning of satellite magnetic anomalies
NASA Technical Reports Server (NTRS)
Goyal, H. K.; Vonfrese, R. R. B.; Hinze, W. J.
1985-01-01
Crustal magnetic anomaly signals over satellite orbits were simulated to investigate numerical averaging as an anomaly estimator. Averaging as an anomaly estimator involves significant problems concerning spatial and amplitude smoothing of the satellite magnetic observations. The results of simulations suggest that the error of numerical averaging constitutes a small and relatively minor component of the total error-budget of higher orbital anomaly estimates, whereas for lower orbital estimates numerical averaging error increases substantially. As an alternative to numerical averaging, least-squares collocation was investigated and observed to produce substantially more accurate anomaly estimates, particularly as the orbital elevation of prediction was decreased towards the crustal sources. In contrast to averaging, collocation is a significantly more resource-intensive procedure to apply because of the practical, but surmountable problems related to establishing and inverting the covariance matrix for accurate anomaly prediction. However, collocation may be much more effectively used to exploit the anomaly details contained in the lower orbital satellite magnetic data for geologic analysis.
NASA Astrophysics Data System (ADS)
Wise, Marcie A.; Saleh, Joseph H.; Haga, Rachel A.
2011-01-01
Choosing the "right" satellite platform for a given market and mission requirements is a major investment decision for a satellite operator. With a variety of platforms available on the market from different manufacturers, and multiple offerings from the same manufacturer, the down-selection process can be quite involved. In addition, because data for on-obit failures and anomalies per platform is unavailable, incomplete, or fragmented, it is difficult to compare options and make an informed choice with respect to the critical attribute of field reliability of different platforms. In this work, we first survey a large number of geosynchronous satellite platforms by the major satellite manufacturers, and we provide a brief overview of their technical characteristics, timeline of introduction, and number of units launched. We then analyze an extensive database of satellite failures and anomalies, and develop for each platform a "health scorecard" that includes all the minor and major anomalies, and complete failures—that is failure events of different severities—observed on-orbit for each platform. We identify the subsystems that drive these failure events and how much each subsystem contributes to these events for each platform. In addition, we provide the percentage of units in each platform which have experienced failure events, and, after calculating the total number of years logged on-orbit by each platform, we compute its corresponding average failure and anomaly rate. We conclude this work with a preliminary comparative analysis of the health scorecards of different platforms. The concept of a "health scorecard" here introduced provides a useful snapshot of the failure and anomaly track record of a spacecraft platform on orbit. As such, it constitutes a useful and transparent benchmark that can be used by satellite operators to inform their acquisition choices ("inform" not "base" as other considerations are factored in when comparing different spacecraft
Singular perturbation analysis of the atmospheric orbital plane change problem
NASA Technical Reports Server (NTRS)
Calise, A. J.
1988-01-01
A three-state model is presented for the aeroassisted orbital plane change problem. A further model order reduction to a single state model is examined using singular perturbation theory. The optimal solution for this single state model compares favorably with the exact numerical solution using a four-state model; however, a separate boundary layer solution is required to satisfy the terminal constraint on altitude. This, in general, involves the solution of a two-point boundary value problem, but for a two-state model. An approximation is introduced to obtain an analytical control solution for lift and bank angle. Included are numerical simulation results of a guidance law derived from this analysis, along with comparison to earlier work by other researchers.
Photometric anomalies in the Apollo landing sites as seen from the Lunar Reconnaissance Orbiter
NASA Astrophysics Data System (ADS)
Kaydash, Vadym; Shkuratov, Yuriy; Korokhin, Viktor; Videen, Gorden
2011-01-01
Phase-ratio imagery is a new tool of qualitative photometric analyses of the upper layer of the lunar regolith, which allows the identification of natural surface structure anomalies and artificially altered regolith. We apply phase-ratio imagery to analyze the Apollo-14, -15, and -17 landing sites. This reveals photometric anomalies of ˜170 × 120 m size that are characterized by lower values of the phase-function steepness, indicating a smoothing of the surface microstructure caused by the engine jets of the landing modules. Other photometric anomalies characterized by higher phase-function slopes are the result of regolith loosening by astronaut boots and the wheels of the Modular Equipment Transporter and the Lunar Roving Vehicle. We also provide a possible explanation for the high brightness of the wheel tracks seen in on-surface images acquired at very large phase angles.
NASA Technical Reports Server (NTRS)
Janin, G.; Bond, V. R.
1980-01-01
An independent variable different from the time for elliptic orbit integration is used. Such a time transformation provides an analytical step-size regulation along the orbit. An intermediate anomaly (an anomaly intermediate between the eccentric and the true anomaly) is suggested for optimum performances. A particular case of an intermediate anomaly (the elliptic anomaly) is defined, and its relation with the other anomalies is developed.
Broad search for unstable resonant orbits in the planar circular restricted three-body problem
NASA Astrophysics Data System (ADS)
Anderson, Rodney L.; Campagnola, Stefano; Lantoine, Gregory
2016-02-01
Unstable resonant orbits in the circular restricted three-body problem have increasingly been used for trajectory design using optimization and invariant manifold techniques. In this study, several methods for computing these unstable resonant orbits are explored including grid searches, flyby maps, and continuation. Families of orbits are computed focusing on orbits with multiple loops near the secondary in the Jupiter-Europa system, and their characteristics are explored. Different parameters such as period and stability are examined for each set of resonant orbits, and the continuation of several specific orbits is explored in more detail.
Subregions of Motion and Elliptic Halo Orbits in the Elliptic Restricted Three-Body Problem
NASA Technical Reports Server (NTRS)
Campagnola, Stefano; Lo, Martin; Newton, Paul
2008-01-01
In this paper we present regions of motion and periodic orbits in the spatial elliptic restricted three body problem (ER3BP). Periodic orbits and regions of motion are fundamental keys to understand any dynamical system; for this reason the Hill's surfaces or the families of halo orbits have been extensively studied in the frame of the circular restricted three body problem. It is our opinion that their natural extensions to the ER3BP have not been studied enough. We divide the position space into forbidden subregions, subregions of motion and low-velocity subregions.We use these notions to define necessary condition for a transfer trajectory in the ER3BP. Also we compute branches of elliptic halo orbits bifurcating from halo orbits in the circular restricted three body problem. The new periodic orbits have principal periods and stability properties different from those of the originating halo orbit.
NASA Technical Reports Server (NTRS)
Toft, Mark R.
1993-01-01
Two lots of NASA standard 50 A.H. Ni-Cd battery cells, manufactured by Gates Aerospace Batteries and built into batteries by McDonnell Douglas, have experienced significant performance problems. The two lots were used on the Compton Gamma Ray Observatory and the Upper Atmosphere Research Satellite. Both of these satellites are Low Earth Orbital (LEO) satellites containing batteries on a parallel bus charged to NASA standard V/T curves using a NASA standard power regulator. The following preliminary conclusions were reached: (1) several plate and cell parameters have migrated within their spec limits over the years (in some cases, from one extreme to the other); (2) several parametric relationships, not generally monitored and therefore not under specification control, have also migrated over the years; (3) many of these changes appear to have taken place as a natural consequence of changes in GE/GAB materials and processes; (4) several of these factors may be 'conspiring' to aggravate known cell failure mechanisms (factors such as heavier plate, less teflon and/or less-uniform teflon, and less electrolyte) but all are still in spec (where specs exist); (5) the weight of the evidence collected to characterize the anomalies and to characterize the negative electrode itself, strongly suggests that alterations to the structure, composition, uniformity, and efficiency of the negative electrode are at the heart of the battery performance problems currently being experienced; and (6) further investigation at all levels (plate, cell, battery, and system) continues to be warranted.
Orbits of Two-Body Problem From the Lenz Vector
ERIC Educational Resources Information Center
Caplan, S.; And Others
1978-01-01
Obtains the orbits with reference to the center of mass of two bodies under mutual universe square law interaction by use of the eccentricity vector which is equivalent to the Lenz vector within a numerical factor. (Author/SL)
Orbiting Debris: a Space Environmental Problem. Background Paper
NASA Technical Reports Server (NTRS)
1990-01-01
Artificial debris, deposited in a multitude of orbits about the Earth as the result of the exploration and use of the space environment, poses a growing hazard to future space operations. Unless nations sharply reduce the amount of orbital debris they produce, future space activites could suffer loss of capability, loss of income, and even loss of life as a result of collisions between spacecraft and debris. This background paper discusses the sources of debris and how they can be greatly reduced.
The Orbital Debris Problem and the Challenges for Environment Remediation
NASA Technical Reports Server (NTRS)
Liou, J.-C.
2013-01-01
Orbital debris scientists from major international space agencies, including JAXA and NASA, have worked together to predict the trend of the future environment. A summary presentation was given to the United Nations in February 2013. The orbital debris population in LEO will continue to increase. Catastrophic collisions will continue to occur every 5 to 9 years center dot To limit the growth of the future debris population and to better protect future spacecraft, active debris removal, should be considered.
Investigating On-Orbit Attitude Determination Anomalies for the Solar Dynamics Observatory Mission
NASA Technical Reports Server (NTRS)
Vess, Melissa F.; Starin, Scott R.; Chia-Kuo, Alice Liu
2011-01-01
The Solar Dynamics Observatory (SDO) was launched on February 11, 2010 from Kennedy Space Center on an Atlas V launch vehicle into a geosynchronous transfer orbit. SDO carries a suite of three scientific instruments, whose observations are intended to promote a more complete understanding of the Sun and its effects on the Earth's environment. After a successful launch, separation, and initial Sun acquisition, the launch and flight operations teams dove into a commissioning campaign that included, among other things, checkout and calibration of the fine attitude sensors and checkout of the Kalman filter (KF) and the spacecraft s inertial pointing and science control modes. In addition, initial calibration of the science instruments was also accomplished. During that process of KF and controller checkout, several interesting observations were noticed and investigated. The SDO fine attitude sensors consist of one Adcole Digital Sun Sensor (DSS), two Galileo Avionica (GA) quaternion-output Star Trackers (STs), and three Kearfott Two-Axis Rate Assemblies (hereafter called inertial reference units, or IRUs). Initial checkout of the fine attitude sensors indicated that all sensors appeared to be functioning properly. Initial calibration maneuvers were planned and executed to update scale factors, drift rate biases, and alignments of the IRUs. After updating the IRU parameters, the KF was initialized and quickly reached convergence. Over the next few hours, it became apparent that there was an oscillation in the sensor residuals and the KF estimation of the IRU bias. A concentrated investigation ensued to determine the cause of the oscillations, their effect on mission requirements, and how to mitigate them. The ensuing analysis determined that the oscillations seen were, in fact, due to an oscillation in the IRU biases. The low frequencies of the oscillations passed through the KF, were well within the controller bandwidth, and therefore the spacecraft was actually
NASA Astrophysics Data System (ADS)
García Yárnoz, Daniel; Scheeres, Daniel J.; McInnes, Colin R.
2015-04-01
The focus of this paper is on the exploration of the and - families of planar symmetric periodic orbits around minor bodies under the effect of solar radiation pressure (SRP). An extended Hill problem with SRP allows the study of spacecraft trajectories in the vicinity of asteroids orbiting the Sun. The evolution of the and - families is presented with SRP increasing from the classical Hill problem to levels characteristic of current and future planned missions to minor bodies, as well as one extreme case with very large SRP for a small asteroid. In addition, the implications of considering a spherical body are analysed, in terms of trajectories colliding with the asteroid and eclipses, which limits the feasibility of various family branches. Finally, the influence of SRP on the linear stability of feasible orbits is calculated.
Study of lunar gravity assist orbits in the restricted four-body problem
NASA Astrophysics Data System (ADS)
Qi, Yi; Xu, Shijie
2016-04-01
In this paper, the lunar gravity assist (LGA) orbits starting from the Earth are investigated in the Sun-Earth-Moon-spacecraft restricted four-body problem (RFBP). First of all, the sphere of influence of the Earth-Moon system (SOIEM) is derived. Numerical calculation displays that inside the SOIEM, the effect of the Sun on the LGA orbits is quite small, but outside the SOIEM, the Sun perturbation can remarkably influence the trend of the LGA orbit. To analyze the effect of the Sun, the RFBP outside the SOIEM is approximately replaced by a planar circular restricted three-body problem, where, in the latter case, the Sun and the Earth-Moon barycenter act as primaries. The stable manifolds associated with the libration point orbit and their Poincaré sections on the SOIEM are applied to investigating the LGA orbit. According to our research, the patched LGA orbits on the Poincaré sections can efficiently distinguish the transit LGA orbits from the non-transit LGA orbits under the RFBP. The former orbits can pass through the region around libration point away from the SOIEM, but the latter orbits will bounce back to the SOIEM. Besides, the stable transit probability is defined and analyzed. According to the variant requirement of the space mission, the results obtained can help us select the LGA orbit and the launch window.
Study of lunar gravity assist orbits in the restricted four-body problem
NASA Astrophysics Data System (ADS)
Qi, Yi; Xu, Shijie
2016-07-01
In this paper, the lunar gravity assist (LGA) orbits starting from the Earth are investigated in the Sun-Earth-Moon-spacecraft restricted four-body problem (RFBP). First of all, the sphere of influence of the Earth-Moon system (SOIEM) is derived. Numerical calculation displays that inside the SOIEM, the effect of the Sun on the LGA orbits is quite small, but outside the SOIEM, the Sun perturbation can remarkably influence the trend of the LGA orbit. To analyze the effect of the Sun, the RFBP outside the SOIEM is approximately replaced by a planar circular restricted three-body problem, where, in the latter case, the Sun and the Earth-Moon barycenter act as primaries. The stable manifolds associated with the libration point orbit and their Poincaré sections on the SOIEM are applied to investigating the LGA orbit. According to our research, the patched LGA orbits on the Poincaré sections can efficiently distinguish the transit LGA orbits from the non-transit LGA orbits under the RFBP. The former orbits can pass through the region around libration point away from the SOIEM, but the latter orbits will bounce back to the SOIEM. Besides, the stable transit probability is defined and analyzed. According to the variant requirement of the space mission, the results obtained can help us select the LGA orbit and the launch window.
H→γγ as a Triangle Anomaly: Possible Implications for the Hierarchy Problem
de Gouvea, Andre; Kile, Jennifer; Vega-Morales, Roberto
2013-06-24
The Standard Model calculation of H→γγ has the curious feature of being finite but regulator-dependent. While dimensional regularization yields a result which respects the electromagnetic Ward identities, additional terms which violate gauge invariance arise if the calculation is done setting d = 4. This discrepancy between the d=4 – ϵ and d = 4 results is recognized as a true ambiguity which must be resolved using physics input; as dimensional regularization respects gauge invariance, the d = 4 – ϵ calculation is accepted as the correct SM result. However, here we point out another possibility; working in analogy with the gauge chiral anomaly, we note that it is possible that the individual diagrams do violate the electromagnetic Ward identities, but that the gauge-invariance-violating terms cancel when all contributions to H→γγ, both from the SM and from new physics, are included. We thus examine the consequences of the hypothesis that the d = 4 calculation is valid, but that such a cancellation occurs. We work in general renormalizable gauge, thus avoiding issues with momentum routing ambiguities. We point out that the gauge-invariance-violating terms in d = 4 arise not just for the diagram containing a SM $W^{\\pm}$ boson, but also for general fermion and scalar loops, and relate these terms to a lack of shift invariance in Higgs tadpole diagrams. We then derive the analogue of "anomaly cancellation conditions", and find consequences for solutions to the hierarchy problem. In particular, we find that supersymmetry obeys these conditions, even if it is softly broken at an arbitrarily high scale.
NASA Technical Reports Server (NTRS)
1993-01-01
This report explains the procedural anomaly that occurred during the launch sequence of an Orbital Sciences Corporation Pegasus expendable launch vehicle, which was subsequently deployed successfully from an NB-52B airplane, on 9 Feb. 1993. The safety issues discussed in the report include command, control and communications responsibility, launch crew fatigue, launch interphone procedures, efficiency of launch constraints, and the lack of common launch documents. Safety recommendations concerning these issues were made to the Department of Transportation, the National Aeronautics and Space Administration, and the Orbital Sciences Corporation.
The iterative solution of the problem of orbit determination using Chebyshev series
NASA Technical Reports Server (NTRS)
Feagin, T.
1975-01-01
A method of orbit determination is investigated which employs Picard iteration and Chebyshev series. The method is applied to the problem of determining the orbit of an earth satellite from range and range-rate observations contaminated by noise. It is shown to be readily applicable and to possess linear convergence.
Mirage in the sky: Nonthermal dark matter, gravitino problem, and cosmic ray anomalies
Dutta, Bhaskar; Sinha, Kuver; Leblond, Louis
2009-08-01
Recent anomalies in cosmic rays could be due to dark matter annihilation in our galaxy. In order to get the required large cross section to explain the data while still obtaining the right relic density, we rely on a nonstandard thermal history between dark matter freeze out and big-bang nucleosynthesis. We show that through a reheating phase from the decay of a heavy moduli or even the gravitino, we can produce the right relic density of dark matter if its self-annihilation cross section is large enough. In addition to fitting the recent data, this scenario solves the cosmological moduli and gravitino problems. We illustrate this mechanism with a specific example in the context of U(1){sub B-L} extended minimal supersymmetric standard model where supersymmetry is broken via mirage mediation. These string motivated models naturally contain heavy moduli decaying to the gravitino, whose subsequent decay to the LSP can reheat the Universe at a low temperature. The right-handed sneutrino and the B-L gaugino can both be viable dark matter candidates with a large cross section. They are leptophilic because of B-L charges. We also show that it is possible to distinguish the nonthermal from the thermal scenario (using Sommerfeld enhancement) in direct detection experiments for certain regions of parameter space.
Approximate solutions to minimax optimal control problems for aeroassisted orbital transfer
NASA Technical Reports Server (NTRS)
Miele, A.; Basapur, V. K.
1984-01-01
The maneuver considered in the present investigation involves the coplanar transfer of a spacecraft from a high earth orbit (HEO) to a low earth orbit (LEO). HEO can be a geosynchronous earth orbit (GEO). The basic concept utilized involves the hybrid combination of propulsive maneuvers in space and aerodynamic maneuvers in the sensible atmosphere. The considered type of flight is also called synergetic space flight. With respect to the atmospheric part of the maneuver, trajectory control is achieved by means of lift modulation. The Bolza problem of optimal control is stated, and the first-order optimality conditions for this problem are given. The one-arc approach, the two-arc approach, and the three-subarc approach are discussed. Attention is given to the Chebyshev problem of optimal control, details concerning aeroassisted orbital transfer (AOT), AOT optimization problems, and numerical experiments.
Broad Search for Unstable Resonant Orbits in the Planar Circular Restricted Three-Body Problem
NASA Technical Reports Server (NTRS)
Anderson, Rodney L.; Campagnola, Stefano; Lantoine, Gregory
2013-01-01
Unstable resonant orbits in the circular restricted three-body problem have increasingly been used for trajectory design using optimization and invariant manifold techniques.In this study, several methods for computing these unstable resonant orbits are explored including flyby maps, continuation from two-body models, and grid searches. Families of orbits are computed focusing on the Jupiter-Europa system, and their characteristics are explored. Different parameters such as period and stability are examined for each set of resonantor bits, and the continuation of several specific orbits is explored in more detail.
NASA Technical Reports Server (NTRS)
Taylor, Patrick T.
2004-01-01
Bangui anomaly is the name given to one of the Earth s largest crustal magnetic anomalies and the largest over the African continent. It covers two-thirds of the Central African Republic and therefore the name derives from the capitol city-Bangui that is also near the center of this feature. From surface magnetic survey data Godivier and Le Donche (1962) were the first to describe this anomaly. Subsequently high-altitude world magnetic surveying by the U.S. Naval Oceanographic Office (Project Magnet) recorded a greater than 1000 nT dipolar, peak-to-trough anomaly with the major portion being negative (figure 1). Satellite observations (Cosmos 49) were first reported in 1964, these revealed a 40nT anomaly at 350 km altitude. Subsequently the higher altitude (417-499km) POGO (Polar Orbiting Geomagnetic Observatory) satellite data recorded peak-to-trough anomalies of 20 nT these data were added to Cosmos 49 measurements by Regan et al. (1975) for a regional satellite altitude map. In October 1979, with the launch of Magsat, a satellite designed to measure crustal magnetic anomalies, a more uniform satellite altitude magnetic map was obtained. These data, computed at 375 km altitude recorded a -22 nT anomaly (figure 2). This elliptically shaped anomaly is approximately 760 by 1000 km and is centered at 6%, 18%. The Bangui anomaly is composed of three segments; there are two positive anomalies lobes north and south of a large central negative field. This displays the classic pattern of a magnetic anomalous body being magnetized by induction in a zero inclination field. This is not surprising since the magnetic equator passes near the center of this body.
Engineering calculations for solving the orbital allotment problem
NASA Technical Reports Server (NTRS)
Reilly, C.; Walton, E. K.; Mount-Campbell, C.; Caldecott, R.; Aebker, E.; Mata, F.
1988-01-01
Four approaches for calculating downlink interferences for shaped-beam antennas are described. An investigation of alternative mixed-integer programming models for satellite synthesis is summarized. Plans for coordinating the various programs developed under this grant are outlined. Two procedures for ordering satellites to initialize the k-permutation algorithm are proposed. Results are presented for the k-permutation algorithms. Feasible solutions are found for 5 of the 6 problems considered. Finally, it is demonstrated that the k-permutation algorithm can be used to solve arc allotment problems.
The Orbital Debris Problem and the Challenges for Environment Remediation
NASA Technical Reports Server (NTRS)
Liou, J.-C.
2014-01-01
LEO debris population will continue to increase even with a good implementation of the commonly-adopted mitigation measures. The root-cause of the increase is catastrophic collisions involving large/massive intact objects (rocket bodies or spacecraft). The major mission-ending risks for most operational spacecraft, however, come from impacts with debris just above the threshold of the protection shields (5-mm to 1-cm). A solution-driven approach is to seek: Concepts for removal of massive intacts with high P(collision); Concepts capable of preventing collisions involving intacts; Concepts for removal of 5-mm to 1-cm debris; Enhanced impact protection shields for valuable space assets. Key questions for remediation consideration of orbital debris: What is the acceptable threat level? What are the mission objectives? What is the appropriate roadmap/timeframe for remediation? Support advanced technology development when an economically viable approach is identified. Address non-technical issues, such as policy, coordination, ownership, legal, and liability at the national and international levels.
A multi-satellite orbit determination problem in a parallel processing environment
NASA Technical Reports Server (NTRS)
Deakyne, M. S.; Anderle, R. J.
1988-01-01
The Engineering Orbit Analysis Unit at GE Valley Forge used an Intel Hypercube Parallel Processor to investigate the performance and gain experience of parallel processors with a multi-satellite orbit determination problem. A general study was selected in which major blocks of computation for the multi-satellite orbit computations were used as units to be assigned to the various processors on the Hypercube. Problems encountered or successes achieved in addressing the orbit determination problem would be more likely to be transferable to other parallel processors. The prime objective was to study the algorithm to allow processing of observations later in time than those employed in the state update. Expertise in ephemeris determination was exploited in addressing these problems and the facility used to bring a realism to the study which would highlight the problems which may not otherwise be anticipated. Secondary objectives were to gain experience of a non-trivial problem in a parallel processor environment, to explore the necessary interplay of serial and parallel sections of the algorithm in terms of timing studies, to explore the granularity (coarse vs. fine grain) to discover the granularity limit above which there would be a risk of starvation where the majority of nodes would be idle or under the limit where the overhead associated with splitting the problem may require more work and communication time than is useful.
Libration point orbits near small bodies in the elliptic restricted three-body problem
NASA Astrophysics Data System (ADS)
Mahajan, Bharat
In this study, the feasibility of using libration point orbits to explore small solar system bodies, including asteroids and comets, is considered. A novel design for a small body mission is proposed that makes use of libration point orbits as "parking" orbits. In considering a human exploration mission to asteroids or comets, these "parking" orbits may provide benefits including a safe vantage point for staging/observation, reduced perturbation effects from the nonuniform gravitational field of the body, fewer communication blackouts, ease of guidance and control of a lander on the surface, etc. Because small solar system bodies have extremely low mass ratios in the Sun-small body system, the existence of periodic orbits about the collinear libration points at a safe distance from the smaller primary was uncertain and is demonstrated for a range of small bodies. A two-level differential corrector along with periodicity constraints is proposed for use in computing periodic orbits in the vicinity of the small bodies with significant eccentricity in the Elliptic Restricted Three-Body Problem. Using this method, halo-like orbits are computed in the Sun-433 Eros and Sun-4 Vesta systems. The stability of these orbits is analyzed using Floquet theory. To overcome the effects of perturbations in these unstable orbits, a robust nonlinear station-keeping controller based on sliding mode control theory is proposed. The controller performance is validated in the presence of third-body perturbations from Jupiter, solar radiation pressure perturbations, tracking errors, orbit insertion errors and maneuver burn errors in the Sun-433 Eros and Sun- 4 Vesta systems. Simulation results are presented that show that the small body missions can be designed using libration point orbits with feasible station-keeping costs.
Repeat Ground Track Lunar Orbits in the Full-Potential Plus Third-Body Problem
NASA Technical Reports Server (NTRS)
Russell, Ryan P.; Lara, Martin
2006-01-01
A high degree and order Lunar gravitational field is superimposed on the Earth-Moon Restricted Three Body model to capture the dominating forces on a spacecraft in the vicinity of the Moon. For the synchronously rotating Moon, periodic orbits in this model map repeat ground tracks and represent higher order solutions to the frozen orbit problem. The near-circular, stable or near-stable solutions are found over a wide range of defining characteristics making them suitable for long-lifetime parking applications such as science orbits, crew exploration vehicle parking orbits, and global coverage constellation orbits. A full ephemeris is considered for selected orbits to evaluate the validity of the time-invariant, simplified model. Of the most promising results are the low-altitude families of near-circular, inclined orbits that maintain long-term stability despite the highly non-spherical Lunar gravity. The method is systematic and enables rapid design and analysis of long-life orbits around any tidally-locked celestial body with an arbitrarily high degree and order spherical harmonic gravity field. .
Minesaki, Yukitaka
2015-01-01
We propose the discrete-time restricted four-body problem (d-R4BP), which approximates the orbits of the restricted four-body problem (R4BP). The d-R4BP is given as a special case of the discrete-time chain regularization of the general N-body problem published in Minesaki. Moreover, we analytically prove that the d-R4BP yields the correct orbits corresponding to the elliptic relative equilibrium solutions of the R4BP when the three primaries form an equilateral triangle at any time. Such orbits include the orbit of a relative equilibrium solution already discovered by Baltagiannis and Papadakis. Until the proof in this work, there has been no discrete analog that preserves the orbits of elliptic relative equilibrium solutions in the R4BP. For a long time interval, the d-R4BP can precisely compute some stable periodic orbits in the Sun–Jupiter–Trojan asteroid–spacecraft system that cannot necessarily be reproduced by other generic integrators.
Two impulse trajectory optimization for the RAE-B orbit trim problem
NASA Technical Reports Server (NTRS)
Payne, M. H.; Pines, S.; Horsewood, J. L.
1972-01-01
The results are reported of work on an appropriate approach to the solution of the optimum two-impulse transfer problem between orbits of specified inclination. The task included a literature search to identify the current state of the art and a definition of the suggested approach for the specific application of a lunar orbit trim. The applications of the results to the problem are included. The formulation for a computer program developed under this task following a more conventional approach is also included.
Orbiter LH2 Feedline Flowliner Cracking Problem. Version 1.0
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Cragg, Clinton H.; Raju, Ivatury S.; Elliot, Kenny B.; Madaras, Eric I.; Piascik, Robert S.; Halford, Gary R.; Bonacuse, Peter J.; Sutliff, Daniel L.; Bakhle, Milind A.
2005-01-01
In May of 2002, three cracks were found in the downstream flowliner at the gimbal joint in the LH2 feedline at the interface with the Low Pressure Fuel Turbopump (LPFP) of Space Shuttle Main Engine (SSME) #1 of Orbiter OV-104. Subsequent inspections of the feedline flowliners in the other orbiters revealed the existence of 8 additional cracks. No cracks were found in the LO2 feedline flowliners. A solution to the cracking problem was developed and implemented on all orbiters. The solution included weld repair of all detectable cracks and the polishing of all slot edges to remove manufacturing discrepancies that could initiate new cracks. Using the results of a fracture mechanics analysis with a scatter factor of 4 on the predicted fatigue life, the orbiters were cleared for return to flight with a one-flight rationale requiring inspections after each flight. OV-104 flew mission STS-112 and OV-105 flew mission STS-113. The post-flight inspections did not find any cracks in the repaired flowliners. At the request of the Orbiter Program, the NESC conducted an assessment of the Orbiter LH2 Feedline Flowliner cracking problem with a team of subject matter experts from throughout NASA.
Solution of the flyby problem for large space debris at sun-synchronous orbits
NASA Astrophysics Data System (ADS)
Baranov, A. A.; Grishko, D. A.; Medvedevskikh, V. V.; Lapshin, V. V.
2016-05-01
the paper considers the flyby problem related to large space debris (LSD) objects at low earth orbits. The data on the overall dimensions of known last and upper stages of launch vehicles makes it possible to single out five compact groups of such objects from the NORAD catalog in the 500-2000 km altitude interval. The orbits of objects of each group have approximately the same inclinations. The features of the mutual distribution of the orbital planes of LSD objects in the group are shown in a portrait of the evolution of deviations of the right ascension of ascending nodes (RAAN). In the case of the first three groups (inclinations of 71°, 74°, and 81°), the straight lines of relative RAAN deviations of object orbits barely intersect each other. The fourth (83°) and fifth (97°-100°) LSD groups include a considerable number of objects whose orbits are described by straight lines (diagonals), which intersect other lines many times. The use of diagonals makes it possible to significantly reduce the temporal and total characteristic velocity expenditures required for object flybys, but it complicates determination of the flyby sequence. Diagonal solutions can be obtained using elements of graph theory. A solution to the flyby problem is presented for the case of group 5, formed of LSD objects at sun-synchronous orbits.
Non-singular orbital elements for special perturbations in the two-body problem
NASA Astrophysics Data System (ADS)
Baù, Giulio; Bombardelli, Claudio; Peláez, Jesús; Lorenzini, Enrico
2015-12-01
Seven spatial elements and a time element are proposed as the state variables of a new special perturbation method for the two-body problem. The new elements hold for zero eccentricity and inclination and for negative values of the total energy. They are developed by combining a spatial transformation into projective coordinates (as in the Burdet-Ferrándiz regularization) with a time transformation in which the exponent of the orbital radius is equal to one instead of two (as commonly done in the literature). By following this approach, we discover a new linearization of the two-body problem, from which the orbital elements can be generated by the variation of parameters method. The geometrical significance of the spatial quantities is revealed by a new intermediate frame which differs from a local vertical local horizontal frame by one rotation in the instantaneous orbital plane. Four elements parametrize the attitude in space of this frame, which in turn defines the orientation of the orbital plane and fixes the departure direction for the longitude of the propagated body. The remaining three elements determine the motion along the radial unit vector and the orbital longitude. The performance of the method, tested using a series of benchmark orbit propagation scenarios, is extremely good when compared to several regularized formulations, some of which have been modified and improved here for the first time.
Solar sail periodic orbits in the elliptic restricted three-body problem
NASA Astrophysics Data System (ADS)
Gong, Shengping; Li, Junfeng
2015-02-01
The periodic orbits of a solar sail in the elliptic restricted three-body problem are designed in this paper. The dynamical equation of a solar sail is derived in a non-uniformly rotating and pulsating coordinate frame, where out-of-plane artificial equilibria do not exist. Two families of displaced periodic orbits in the vicinity of the out-of-plane fixed points are generated by adjusting the solar sail parameters and the motion in the out-of-plane direction to satisfy the equilibrium equations. The analytical solutions to the linearized equations are obtained with average method. The stability of these orbits is studied, and the results indicate that they are always unstable. Finally, the controllability of these orbits is discussed and a typical time-varying linear quadratic regulator is used to stabilize the system.
Symbol sequences and orbits of the free-fall three-body problem
NASA Astrophysics Data System (ADS)
Tanikawa, Kiyotaka; Mikkola, Seppo
2015-12-01
Using the symbols and symbol sequences along the orbits introduced in our preceding work, we numerically study the orbital structure of the free-fall three-body problem. We confirm and re-interpret the results obtained by us before. We describe the overall structure of the plane. It turns out that the structures of the initial condition plane can be systematically obtained with symbol sequences. Then, we obtain the structure of two interesting local regions: the isosceles and collinear boundaries of the plane. We present sequences of triple collision orbits and periodic orbits on these boundaries. We additionally argue that stable and/or unstable manifolds of the two-body collision manifolds connect different triple collision manifolds.
Algebraic Approach to the Minimum-Cost Multi-Impulse Orbit-Transfer Problem
NASA Astrophysics Data System (ADS)
Avendaño, M.; Martín-Molina, V.; Martín-Morales, J.; Ortigas-Galindo, J.
2016-08-01
We present a purely algebraic formulation (i.e. polynomial equations only) of the minimum-cost multi-impulse orbit transfer problem without time constraints, while keeping all the variables with a precise physical meaning. We apply general algebraic techniques to solve these equations (resultants, Gr\\"obner bases, etc.) in several situations of practical interest of different degrees of generality. For instance, we provide a proof of the optimality of the Hohmann transfer for the minimum fuel 2-impulse circular to circular orbit transfer problem, and we provide a general formula for the optimal 2-impulse in-plane transfer between two rotated elliptical orbits under a mild symmetry assumption on the two points where the impulses are applied (which we conjecture that can be removed).
NASA Astrophysics Data System (ADS)
Bakker, Lennard F.; Ouyang, Tiancheng; Yan, Duokui; Simmons, Skyler; Roberts, Gareth E.
2010-10-01
We apply the analytic-numerical method of Roberts to determine the linear stability of time-reversible periodic simultaneous binary collision orbits in the symmetric collinear four-body problem with masses 1, m, m, 1, and also in a symmetric planar four-body problem with equal masses. In both problems, the assumed symmetries reduce the determination of linear stability to the numerical computation of a single real number. For the collinear problem, this verifies the earlier numerical results of Sweatman for linear stability with respect to collinear and symmetric perturbations.
DIRECT IMAGING IN THE HABITABLE ZONE AND THE PROBLEM OF ORBITAL MOTION
Males, Jared R.; Skemer, Andrew J.; Close, Laird M.
2013-07-01
High contrast imaging searches for exoplanets have been conducted on 2.4-10 m telescopes, typically at H band (1.6 {mu}m) and used exposure times of {approx}1 hr to search for planets with semi-major axes of {approx}> 10 AU. We are beginning to plan for surveys using extreme-AO systems on the next generation of 30 m class telescopes, where we hope to begin probing the habitable zones (HZs) of nearby stars. Here we highlight a heretofore ignorable problem in direct imaging: planets orbit their stars. Under the parameters of current surveys, orbital motion is negligible over the duration of a typical observation. However, this motion is not negligible when using large diameter telescopes to observe at relatively close stellar distances (1-10 pc), over the long exposure times (10-20 hr) necessary for direct detection of older planets in the HZ. We show that this motion will limit our achievable signal-to-noise ratio and degrade observational completeness. Even on current 8 m class telescopes, orbital motion will need to be accounted for in an attempt to detect HZ planets around the nearest Sun-like stars {alpha} Cen A and B, a binary system now known to harbor at least one planet. Here we derive some basic tools for analyzing this problem, and ultimately show that the prospects are good for de-orbiting a series of shorter exposures to correct for orbital motion.
NASA Astrophysics Data System (ADS)
Kishor, Ram
2016-07-01
We consider a generalized photogravitational Chermnykh-like problem and determine orbits in the basin of collinear equilibrium points. We suppose that bigger primary is radiating body; smaller primary is an oblate spheroid and a disk with power law density profile is rotating around the common center of mass of the system. We compute three types of orbits namely, periodic, hyperbolic and asymptotic orbit, of the infinitesimal body. Also, we analyse, effect of radiation pressure and oblateness and it is noticed that time period of the periodic orbits depends on these parameters. KEYWORDS: Chermnykh-like problem; Orbits; Radiation pressure; Oblateness; Disk; Collinear equilibrium points.
Analysis of optimal and near-optimal continuous-thrust transfer problems in general circular orbit
NASA Astrophysics Data System (ADS)
Kéchichian, Jean A.
2009-09-01
A pair of practical problems in optimal continuous-thrust transfer in general circular orbit is analyzed within the context of analytic averaging for rapid computations leading to near-optimal solutions. The first problem addresses the minimum-time transfer between inclined circular orbits by proposing an analytic solution based on a split-sequence strategy in which the equatorial inclination and node controls are done separately by optimally selecting the intermediate orbit size at the sequence switch point that results in the minimum-time transfer. The consideration of the equatorial inclination and node state variables besides the orbital velocity variable is needed to further account for the important J2 perturbation that precesses the orbit plane during the transfer, unlike the thrust-only case in which it is sufficient to consider the relative inclination and velocity variables thus reducing the dimensionality of the system equations. Further extensions of the split-sequence strategy with analytic J2 effect are thus possible for equal computational ease. The second problem addresses the maximization of the equatorial inclination in fixed time by adopting a particular thrust-averaging scheme that controls only the inclination and velocity variables, leaving the node at the mercy of the J2 precession, providing robust fast-converging codes that lead to efficient near-optimal solutions. Example transfers for both sets of problems are solved showing near-optimal features as far as transfer time is concerned, by directly comparing the solutions to "exact" purely numerical counterparts that rely on precision integration of the raw unaveraged system dynamics with continuously varying thrust vector orientation in three-dimensional space.
The Hubble Space Telescope attitude observer anomaly
NASA Astrophysics Data System (ADS)
Van Arsdall, Morgan M.; Ramsey, Patrick R.; Swain, Scott R.
2006-06-01
In mid-2004, the Hubble Space Telescope (HST) began experiencing occasional losses of lock during Fine Guidance Sensor (FGS) guide star acquisitions, threatening a potential loss of science. These failures were associated with an increasing disparity between the FGS-derived estimates of gyro bias calculated in orbit day and those calculated in orbit night. Early efforts to mitigate the operational effects of this Attitude Observer Anomaly (AOA) succeeded; however, the magnitude of the anomaly continued to increase at a linear rate and operational problems resumed in mid-2005. Continued analysis led to an additional on-orbit mitigation strategy that succeeded in reducing the AOA signature. Before the investigation could be completed, HST began operations under the life-extending Two Gyro Science mode. This eliminated both the operational effects of and the visibility into the AOA phenomenon. Possible causes of the anomaly at the vehicle system level included component hardware failures, flight software errors in control law processing, distortion of the telescope optical path, and deformation of vehicle structure. Although the mechanism of the AOA was not definitively identified, the Anomaly Review Board (ARB) chartered to investigate the anomaly concluded that the most likely root cause lies within one of HST's 6 rate-integrating gyroscopes. This paper provides a summary of the initial paths of investigation, the analysis and testing performed to attempt to isolate the source, and a review of the findings of the ARB. The possibility of future operational impacts and available methods of on-orbit mitigation are also addressed.
Lissajous and Halo Orbits in the Restricted Three-Body Problem
NASA Astrophysics Data System (ADS)
Celletti, Alessandra; Pucacco, Giuseppe; Stella, Danilo
2015-04-01
We study the dynamics near the collinear Lagrangian points of the spatial, circular, restricted three-body problem. Following a standard procedure, we reduce the system to the center manifold and we analyze the Lissajous orbits as well as the halo orbits, the latter ones arising from bifurcations of the planar Lyapunov family of periodic orbits. To obtain the Lissajous orbits, we perform a classical perturbation theory and we provide a formal approximate solution under suitable non-degeneracy and non-resonance conditions. As for the halo orbits, we construct a normal form adapted to the synchronous resonance: introducing a detuning, measuring the displacement from the resonance, and expanding the energy in series of the detuning, we are able to evaluate the energy level at which the bifurcation takes place. Except for a particular case, the analytical values obtained after a second order resonant perturbation theory are in very good agreement (in some cases up to the fourth decimal digit) with the numerical values found in the literature.
Minesaki, Yukitaka
2013-08-01
For the restricted three-body problem, we propose an accurate orbital integration scheme that retains all conserved quantities of the two-body problem with two primaries and approximately preserves the Jacobi integral. The scheme is obtained by taking the limit as mass approaches zero in the discrete-time general three-body problem. For a long time interval, the proposed scheme precisely reproduces various periodic orbits that cannot be accurately computed by other generic integrators.
NASA Technical Reports Server (NTRS)
Lara, Martin; Palacian, Jesus F.
2007-01-01
Frozen orbits of the Hill problem are determined in the double averaged problem, where short and long period terms are removed by means of Lie transforms. The computation of initial conditions of corresponding quasi periodic solutions in the non-averaged problem is straightforward for the perturbation method used provides the explicit equations of the transformation that connects the averaged and non-averaged models. A fourth order analytical theory reveals necessary for the accurate computation of quasi periodic, frozen orbits.
Symmetric periodic orbits of the many-body problem. Resonance and parade of planets.
NASA Astrophysics Data System (ADS)
Tkhai, V. N.
The motion of a mechanical system consisting of n+1 material points attracting one another according to Newton`s law is investigated. A reversible system of differential equations is derived for the motion of n points relative to the "main body". A small parameter is introduced. When this parameter is equated to zero, each of the n points is attracted by the "main body" only, and the generating system splits into n two-body problems. Two types of generating periodic orbits, symmetric about the fixed set M of an automorphism, are considered: (1) with both eccentricities and inclinations equal to zero; (2) with inclinations equal to zero. It is shown that such orbits can be continued to non-zero values of the small parameter, as a result of which the system has periodic solutions of the first and second kinds. All these orbits are resonant: the mean motions of the bodies relate to one another as integers. In addition, at times that are multiples of the half-period the bodies are situated along a straight line, thus forming a "parade of planets". The results also apply to a "Sun-planet-satellite" type system. In the general theoretical part of the paper two methods are proposed for solving the problem of extending symmetric periodic motions to non-zero parameter values, and an upper bound is estimated for the domain of continuability.
Trade space visualization applied to Lambert's Problem for elliptical insertion orbits
NASA Astrophysics Data System (ADS)
Spencer, David B.; Shank, Brian S.
2016-05-01
This paper investigates the solution of Lambert's Problem for targets in elliptical orbits. A mission design software framework to determine the optimal interplanetary trajectory and final capture orbit based on mission constraints and requirements between a departure and arrival body has been developed. Integration of a trade space visualization tool, such as the Applied Research Laboratory Trade Space Visualizer software permits a mission designer to visually inspect the multi-dimensional trade space and investigate regions of feasible trajectories. This analysis process can provide a mission designer with the capability to reduce the amount of time needed to design interplanetary trajectories by reducing the number of feasible solutions that would need to be investigated.
On the Optimization of the Inverse Problem for Bouguer Gravity Anomalies
NASA Astrophysics Data System (ADS)
Zamora, A.; Velasco, A. A.; Gutierrez, A. E.
2013-12-01
Inverse modeling of gravity data presents a very ill-posed mathematical problem, given that solutions are non-unique and small changes in parameters (position and density contrast of an anomalous body) can highly impact the resulting Earth's model. Although implementing 2- and 3-Dimensional gravitational inverse problems can determine the structural composition of the Earth, traditional inverse modeling approaches can be very unstable. A model of the shallow substructure is based on the density contrasts of anomalous bodies -with different densities with respect to a uniform region- or the boundaries between layers in a layered environment. We implement an interior-point method constrained optimization technique to improve the 2-D model of the Earth's structure through the use of known density constraints for transitional areas obtained from previous geological observations (e.g. core samples, seismic surveys, etc.). The proposed technique is applied to both synthetic data and gravitational data previously obtained from the Rio Grande Rift and the Cooper Flat Mine region located in Sierra County, New Mexico. We find improvements on the models obtained from this optimization scheme given that getting rid of geologically unacceptable models that would otherwise meet the required geophysical properties reduces the solution space.
The Near-Earth Orbital Debris Problem and the Challenges for Environment Remediation
NASA Technical Reports Server (NTRS)
Liou, Jer-Chyi
2012-01-01
The near-Earth space environment has been gradually polluted with orbital debris (OD) since the beginning of space activities 55 years ago. Although this problem has been known to the research community for decades, the public was, in general, unaware of the issue until the anti-satellite test conducted by China in 2007 and the collision between Cosmos 2251 and the operational Iridium 33 in 2009. The latter also underlined the potential of an ongoing collision cascade effect (the "Kessler Syndrome") in the low Earth orbit (LEO, the region below 2000 km altitude). Recent modeling results have indicated that mitigation measures commonly adopted by the international space community will be insufficient to stabilize the LEO debris population. To better limit the OD population increase, more aggressive actions must be considered. There are three options for OD environment remediation-removal of large/massive intact objects to address the root cause of the OD population growth problem, removal of 5-mm-to-1 cm debris to mitigate the main mission-ending threats for the majority of operational spacecraft, and prevention of major debris-generating collisions as a temporary means to slow down the OD population increase. The technology, engineering, and cost challenges to carry out any of these three options are monumental. It will require innovative ideas, game-changing technologies, and major collaborations at the international level to address the OD problem and preserve the near-Earth environment for future generations.
NASA Astrophysics Data System (ADS)
Dean, Timothy C.; Ventrice, Carl A.
1995-05-01
As a final report for phase 1 of the project, the researchers are submitting to the Tennessee Tech Office of Research the following two papers (reprinted in this report): 'Collision Line Broadening Effects on Spectrometric Data from the Optical Plume Anomaly System (OPAD),' presented at the 30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 27-29 June 1994, and 'Calculation of Collision Cross Sections for Atomic Line Broadening in the Plume of the Space Shuttle Main Engine (SSME),' presented at the IEEE Southeastcon '95, 26-29 March 1995. These papers fully state the problem and the progress made up to the end of NASA Fiscal Year 1994. The NASA OPAD system was devised to predict concentrations of anomalous species in the plume of the Space Shuttle Main Engine (SSME) through analysis of spectrometric data. The self absorption of the radiation of these plume anomalies is highly dependent on the line shape of the atomic transition of interest. The Collision Line Broadening paper discusses the methods used to predict line shapes of atomic transitions in the environment of a rocket plume. The Voigt profile is used as the line shape factor since both Doppler and collisional line broadening are significant. Methods used to determine the collisional cross sections are discussed and the results are given and compared with experimental data. These collisional cross sections are then incorporated into the current self absorbing radiative model and the predicted spectrum is compared to actual spectral data collected from the Stennis Space Center Diagnostic Test Facility rocket engine. The second paper included in this report investigates an analytical method for determining the cross sections for collision line broadening by molecular perturbers, using effective central force interaction potentials. These cross sections are determined for several atomic species with H2, one of the principal constituents of the SSME plume environment, and compared with experimental data.
NASA Technical Reports Server (NTRS)
Dean, Timothy C.; Ventrice, Carl A.
1995-01-01
As a final report for phase 1 of the project, the researchers are submitting to the Tennessee Tech Office of Research the following two papers (reprinted in this report): 'Collision Line Broadening Effects on Spectrometric Data from the Optical Plume Anomaly System (OPAD),' presented at the 30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 27-29 June 1994, and 'Calculation of Collision Cross Sections for Atomic Line Broadening in the Plume of the Space Shuttle Main Engine (SSME),' presented at the IEEE Southeastcon '95, 26-29 March 1995. These papers fully state the problem and the progress made up to the end of NASA Fiscal Year 1994. The NASA OPAD system was devised to predict concentrations of anomalous species in the plume of the Space Shuttle Main Engine (SSME) through analysis of spectrometric data. The self absorption of the radiation of these plume anomalies is highly dependent on the line shape of the atomic transition of interest. The Collision Line Broadening paper discusses the methods used to predict line shapes of atomic transitions in the environment of a rocket plume. The Voigt profile is used as the line shape factor since both Doppler and collisional line broadening are significant. Methods used to determine the collisional cross sections are discussed and the results are given and compared with experimental data. These collisional cross sections are then incorporated into the current self absorbing radiative model and the predicted spectrum is compared to actual spectral data collected from the Stennis Space Center Diagnostic Test Facility rocket engine. The second paper included in this report investigates an analytical method for determining the cross sections for collision line broadening by molecular perturbers, using effective central force interaction potentials. These cross sections are determined for several atomic species with H2, one of the principal constituents of the SSME plume environment, and compared with experimental data.
NASA Astrophysics Data System (ADS)
Giancotti, Marco; Campagnola, Stefano; Tsuda, Yuichi; Kawaguchi, Jun'ichiro
2014-11-01
This work studies periodic solutions applicable, as an extended phase, to the JAXA asteroid rendezvous mission Hayabusa 2 when it is close to target asteroid 1999 JU3. The motion of a spacecraft close to a small asteroid can be approximated with the equations of Hill's problem modified to account for the strong solar radiation pressure. The identification of families of periodic solutions in such systems is just starting and the field is largely unexplored. We find several periodic orbits using a grid search, then apply numerical continuation and bifurcation theory to a subset of these to explore the changes in the orbit families when the orbital energy is varied. This analysis gives information on their stability and bifurcations. We then compare the various families on the basis of the restrictions and requirements of the specific mission considered, such as the pointing of the solar panels and instruments. We also use information about their resilience against parameter errors and their ground tracks to identify one particularly promising type of solution.
Halo orbits around the collinear points of the restricted three-body problem
NASA Astrophysics Data System (ADS)
Ceccaroni, Marta; Celletti, Alessandra; Pucacco, Giuseppe
2016-03-01
We perform an analytical study of the bifurcation of the halo orbits around the collinear points L1, L2, L3 for the circular, spatial, restricted three-body problem. Following a standard procedure, we reduce to the center manifold constructing a normal form adapted to the synchronous resonance. Introducing a detuning, which measures the displacement from the resonance and expanding the energy in series of the detuning, we are able to evaluate the energy level at which the bifurcation takes place for arbitrary values of the mass ratio. In most cases, the analytical results thus obtained are in very good agreement with the numerical expectations, providing the bifurcation threshold with good accuracy. Care must be taken when dealing with L3 for small values of the mass-ratio between the primaries; in that case, the model of the system is a singular perturbation problem and the normal form method is not particularly suited to evaluate the bifurcation threshold.
NASA Astrophysics Data System (ADS)
Ren, Yuan; Shan, Jinjun
2012-12-01
Transit orbits are defined as the trajectories that can pass through the neck region of the zero velocity surface in the circular restricted three-body problem (CR3BP). The low-energy transfers in the CR3BP or between two CR3BPs are always through the instrumentality of the transit orbits. In this paper, the distribution of the transit orbits in the six-dimensional phase space is explored by using numerical methods. The necessary and sufficient condition of transition is introduced, which defines the distribution of the transit orbits by using the manifolds of the vertical and horizontal Lyapunov orbits and the transit cones. The relationship between the manifolds of the libration point orbits and the boundary of the transit orbits is discovered. By using this relationship, a fast algorithm for detecting the boundary of the transit orbits is developed. Moreover, this boundary is parametrized by using Fourier series, which makes easy to use the conclusions of this paper in future trajectory optimization and mission design. All the analyses in this paper are based on the Sun-Earth CR3BP, but the methods introduced here can be extended to any CR3BPs.
NASA Astrophysics Data System (ADS)
Veselovsky, I.
Two unsolved problems are addressed in this paper. 1)Simultaneous stereoscopic observations using the Solar Orbiter in combination with other vantage points from Earth and space would give an opportunity to clarify the origins of "problem storms", i.e. strong coronal mass ejections and sufficiently powerful geomagnetic perturbations without appreciable solar flares. At present time, it is not clear if "problem storms" arise because we do not see the opposite side of the Sun or because of specific physical properties of the energy releases in these cases when the available free energy in the solar atmosphere was erupted mostly with the ejection of mass from the solar corona without noticeable electromagnetic emissions in the white light, UV and X-rays ("dark" ejection). Theoretically, both cases are delimited by the dimensionless Ve parameter (kinetic energy/electromagnetic emission ratio), but this important quantity is not well known. What is the value of this governing parameter? 2)There are two different types of plasma motions during transients: flows along the magnetic field and electric drifts across this field. It is often assumed (but not proven) by many authors after T.G.Cowling, that electric fields are negligible and plasma can flow only along magnetic field lines. According to this view, the "opening" of the magnetic configuration ("reconnection") is a necessary ingredient of the coronal mass ejection (and flare) initiation process. On the other hand, laboratory plasma experiments, observations of the solar wind, manetospheric plasma motions and other astrophysical flows, pioneering works by H. Alfven and other theoretical investigations demonstrate the principal role of electric fields in the cosmic plasma dynamics both in open and closed magnetic field configurations. Non-potential inductive electric fields should be especially strong during the fast increase of the magnetic flux in the rapidly developing active regions and coronal holes. These
Electric-field effects on the closed orbits of the diamagnetic Kepler problem
NASA Astrophysics Data System (ADS)
Bleasdale, C.; Bruno-Alfonso, A.; Lewis, R. A.
2016-02-01
The nonrelativistic closed orbits of an electron interacting with a unit positive charge in the presence of homogeneous magnetic and electric fields are investigated. A simplified theoretical model is proposed utilizing appropriate initial conditions in semiparabolic coordinates for arbitrary magnetic- and electric-field alignments. The evolution of both the angular spectrum of orbits and the shape and duration of individual orbits, as the electric-field intensity and scaled energy are increased, is shown for the cases of both parallel and crossed fields. Orbit mixing in the high-field regime is investigated in the case of parallel fields, giving an indication of the system moving from the quasi-Landau chaotic regime to the electric-field-induced (Stark effect) regular regime. For crossed fields, it is shown that the Garton-Tomkins orbits lead to a pair of orbits that have opposite behaviors as a function of the electric-field intensity.
Transfer orbits to/from the Lagrangian points in the restricted four-body problem
NASA Astrophysics Data System (ADS)
Cabette, Regina Elaine Santos; Prado, Antonio F. B. A.
2008-12-01
The well-known Lagrangian points that appear in the planar restricted three-body problem are very important for astronautical applications. They are five points of equilibrium in the equations of motion, what means that a particle located at one of those points with zero velocity will remain there indefinitely. The collinear points ( L1, L2 and L3) are always unstable and the triangular points ( L4 and L5) are stable in the present case studied (Earth-Sun system). They are all very good points to locate a space-station, since they require a small amount of ΔV (and fuel), the control to be used, for station-keeping. The triangular points are especially good for this purpose, since they are stable equilibrium points. In this paper, the planar restricted four-body problem applied to the Sun-Earth-Moon-Spacecraft is combined with numerical integration and gradient methods to solve the two-point boundary value problem. This combination is applied to the search of families of transfer orbits between the Lagrangian points and the Earth, in the Earth-Sun system, with the minimum possible cost of the control used. So, the final goal of this paper is to find the magnitude of the two impulses to be applied in the spacecraft to complete the transfer: the first one when leaving/arriving at the Lagrangian point and the second one when arriving/living at the Earth. The dynamics given by the restricted four-body problem is used to obtain the trajectory of the spacecraft, but not the position of the equilibrium points. Their position is taken from the restricted three-body model. The goal to use this model is to evaluate the perturbation of the Sun in those important trajectories, in terms of fuel consumption and time of flight. The solutions will also show how to apply the impulses to accomplish the transfers under this force model. The results showed a large collection of transfers, and that there are initial conditions (position of the Sun with respect to the other bodies
The theory of secondary resonances in the spin-orbit problem
NASA Astrophysics Data System (ADS)
Gkolias, Ioannis; Celletti, Alessandra; Efthymiopoulos, Christos; Pucacco, Giuseppe
2016-06-01
We study the resonant dynamics in a simple one degree of freedom, time dependent Hamiltonian model describing spin-orbit interactions. The equations of motion admit periodic solutions associated with resonant motions, the most important being the synchronous one in which most evolved satellites of the Solar system, including the Moon, are observed. Such primary resonances can be surrounded by a chain of smaller islands which one refers to as secondary resonances. Here, we propose a novel canonical normalization procedure allowing to obtain a higher order normal form, by which we obtain analytical results on the stability of the primary resonances as well as on the bifurcation thresholds of the secondary resonances. The procedure makes use of the expansion in a parameter, called the detuning, measuring the shift from the exact secondary resonance. Also, we implement the so-called `book-keeping' method, i.e. the introduction of a suitable separation of the terms in orders of smallness in the normal form construction, which deals simultaneously with all the small parameters of the problem. Our analytical computation of the bifurcation curves is in excellent agreement with the results obtained by a numerical integration of the equations of motion, thus providing relevant information on the parameter regions where satellites can be found in a stable configuration.
Orbital Divergence and Relaxation in the Gravitational N-Body Problem
NASA Astrophysics Data System (ADS)
Hut, P.; Heggie, D. C.
2002-12-01
One of the fundamental aspects of statistical behaviour in many-body systems is exponential divergence of neighbouring orbits, which is often discussed in terms of Liapounov exponents. Here we study this topic for the classical gravitational N-body problem. The application we have in mind is to old stellar systems such as globular star clusters, where N˜106, and so we concentrate on spherical, centrally concentrated systems with total energy E<0. Hitherto no connection has been made between the time scale for divergence (denoted here by t e ) and the time scale on which the energies of the particles evolve because of two-body encounters (i.e., the two-body relaxation time scale, t r ), even though both may be calculated by similar considerations. In this paper we give a simplified model showing that divergence in phase space is initially roughly exponential, on a timescale proportional to the crossing time (defined as a mean time for a star to cross from one side of the system to another). In this phase t e << t r , if N is not too small (i.e., N≫30). After several e-folding times, the model shows that the divergence slows down. Thereafter the divergence (measured by the energies of the bodies) varies with time as t 1/2, on a timescale nearly proportional to the familiar two-body relaxation timescale, i.e., t e ˜ t r in this phase. These conclusions are illustrated by numerical results.
NASA Astrophysics Data System (ADS)
Park, Sang-Young; Jo, Jung-Hyun; Lee, Byoung-Sun; Choi, Kyu-Hong
1988-12-01
Using the numerical solution in the plane restricted problem of three bodies, about 490 periodic orbits are computed numerically around the L5 of Sun-Jupiter and about 1600 periodic orbits also be done around the L5 of Earth-Moon system. As period increase, the energy and the shape of periodic orbits increase around the L5 of Sun-Jupiter system. But, in Earth-Moon system, the complex shapes and dents appear around the L5 and periodic orbits intersect one another in the place where dents are shown. And there is a region that three different periodic orbits exist with the same period in this region. The regions can exist around the L5 of Sun-Jupiter system where periodic orbit can be unstable by perturbation of other force besides the gravitational force of Jupiter. These regions which is close to L5 are a ¡ 5.29 AU. The Trojan asteroids that have a small eccentricity and inclination can not exist in this region.
Rehabilitation of orbital defect with silicone orbital prosthesis retained by dental implants
Guttal, Satyabodh Shesharaj; Desai, Jhanvi; Kudva, Adarsh; Patil, Basavaraj R
2016-01-01
Orbital defects can result from cancer, birth anomalies, or trauma leading to an onslaught of problems in the function and psyche of the patient. These defects are restored by surgical reconstruction and followed by placement of orbital prosthesis for cosmetic makeup. The use of dental implants in retaining orbital prosthesis improves patient acceptance of the prosthesis owing to better retention and stability than conventional adhesive retained prosthesis. This case report describes a custom-made magnetic retentive assembly anchored by a dental implant which offers the orbital prosthesis the simplicity of self-alignment and ease of use. PMID:26953033
NASA Astrophysics Data System (ADS)
Zotos, Euaggelos E.
2015-08-01
We numerically investigate the case of the planar circular restricted three-body problem where the more massive primary is an oblate spheroid. A thorough numerical analysis takes place in the configuration and the space in which we classify initial conditions of orbits into three categories: (i) bounded, (ii) escaping and (iii) collisional. Our results reveal that the oblateness coefficient has a huge impact on the character of orbits. Interpreting the collisional motion as leaking in the phase space we related our results to both chaotic scattering and the theory of leaking Hamiltonian systems. We successfully located the escape as well as the collisional basins and we managed to correlate them with the corresponding escape and collision times. We hope our contribution to be useful for a further understanding of the escape and collision properties of motion in this interesting version of the restricted three-body problem.
Astrometric solar system anomalies
Nieto, Michael Martin; Anderson, John D
2009-01-01
There are at least four unexplained anomalies connected with astrometric data. perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it often experiences a change in total orbital energy per unit mass. next, a secular change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm yr{sup -1}. The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions. Some astronomers and physicists are convinced this effect is of concern, but many others are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported unexplained increase that is significant at the three-sigma level. It is produent to suspect that all four anomalies have mundane explanations, or that one or more anomalies are a result of systematic error. Yet they might eventually be explained by new physics. For example, a slightly modified theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation for the excess precession of Mercury's perihelion.
NASA Astrophysics Data System (ADS)
Peng, Hao; Xu, Shijie
2015-11-01
The multi-revolution elliptic halo (ME-Halo) orbit is a kind of strictly periodic orbit existing in the elliptic restricted three-body problem (ERTBP) model. Its remarkable features include that it survives the eccentricity perturbation of the primaries, it has a long period commeasurable with the primary period and that its stability property varies greatly as the eccentricity. The authors utilized continuation methods together with the multi-segment optimization method to generate two groups of ME-Halo orbits, and then systematically investigated their stability evolution with respect to the eccentricity and the mass ratio of the primaries. These parameters show complicate impacts on the stability. Some ME-Halo orbits can possess more than one pairs of real eigenvalue, some have negative real eigenvalues or complex eigenvalues out of the unit circle. For certain parameters, continuation failures are observed to be accompanied by a series of eigenvalue collision and bifurcations. The results in this paper can help to understand the nonautonomous dynamic of the ERTBP and can further aid in understanding the dynamical environment for real-world applications and, thus, contribute to the trajectory development process.
NASA Astrophysics Data System (ADS)
Elshaboury, S. M.; Abouelmagd, Elbaz I.; Kalantonis, V. S.; Perdios, E. A.
2016-09-01
The restricted three-body problem when the primaries are triaxial rigid bodies is considered and its basic dynamical features are studied. In particular, the equilibrium points are identified as well as their stability is determined in the special case when the Euler angles of rotational motion are accordingly θi = ψi = π/2 and φi = π/2, i = 1, 2. It is found that three unstable collinear equilibrium points exist and two triangular such points which may be stable. Special attention has also been paid to the study of simple symmetric periodic orbits and 31 families consisting of such orbits have been determined. It has been found that only one of these families consists entirely of unstable members while the remaining families contain stable parts indicating that other families bifurcate from them. Finally, using the grid-search technique a global solution in the space of initial conditions is obtained which comprises simple and of higher multiplicities symmetric periodic orbits as well as escape and collision orbits.
Bagger, J.; Nemeschansky, D.; Yankielowicz, S.
1985-05-01
A new type of anomaly is discussed that afflicts certain non-linear sigma models with fermions. This anomaly is similar to the ordinary gauge and gravitational anomalies since it reflects a topological obstruction to the reparametrization invariance of the quantum effective action. Nonlinear sigma models are constructed based on homogeneous spaces G/H. Anomalies arising when the fermions are chiral are shown to be cancelled sometimes by Chern-Simons terms. Nonlinear sigma models are considered based on general Riemannian manifolds. 9 refs. (LEW)
NASA Astrophysics Data System (ADS)
Ryan, R.; Gross, L. A.
1995-05-01
The Space Shuttle main engine (SSME) alternate high-pressure liquid oxygen pump experienced synchronous vibration and ball bearing life problems that were program threatening. The success of the program hinged on the ability to solve these development problems. The design and solutions to these problems are engirded in the lessons learned and experiences from prior programs, technology programs, and the ability to properly conduct failure or anomaly investigations. The failure investigation determines the problem cause and is the basis for recommending design solutions. For a complex problem, a comprehensive solution requires that formal investigation procedures be used, including fault trees, resolution logic, and action items worked through a concurrent engineering-multidiscipline team. The normal tendency to use an intuitive, cut-and-try approach will usually prove to be costly, both in money and time and will reach a less than optimum, poorly understood answer. The SSME alternate high-pressure oxidizer turbopump development has had two complex problems critical to program success: (1) high synchronous vibrations and (2) excessive ball bearing wear. This paper will use these two problems as examples of this formal failure investigation approach. The results of the team's investigation provides insight into the complexity of the turbomachinery technical discipline interacting/sensitivities and the fine balance of competing investigations required to solve problems and guarantee program success. It is very important to the solution process that maximum use be made of the resources that both the contractor and Government can bring to the problem in a supporting and noncompeting way. There is no place for the not-invented-here attitude. The resources include, but are not limited to: (1) specially skilled professionals; (2) supporting technologies; (3) computational codes and capabilities; and (4) test and manufacturing facilities.
NASA Technical Reports Server (NTRS)
Ryan, R.; Gross, L. A.
1995-01-01
The Space Shuttle main engine (SSME) alternate high-pressure liquid oxygen pump experienced synchronous vibration and ball bearing life problems that were program threatening. The success of the program hinged on the ability to solve these development problems. The design and solutions to these problems are engirded in the lessons learned and experiences from prior programs, technology programs, and the ability to properly conduct failure or anomaly investigations. The failure investigation determines the problem cause and is the basis for recommending design solutions. For a complex problem, a comprehensive solution requires that formal investigation procedures be used, including fault trees, resolution logic, and action items worked through a concurrent engineering-multidiscipline team. The normal tendency to use an intuitive, cut-and-try approach will usually prove to be costly, both in money and time and will reach a less than optimum, poorly understood answer. The SSME alternate high-pressure oxidizer turbopump development has had two complex problems critical to program success: (1) high synchronous vibrations and (2) excessive ball bearing wear. This paper will use these two problems as examples of this formal failure investigation approach. The results of the team's investigation provides insight into the complexity of the turbomachinery technical discipline interacting/sensitivities and the fine balance of competing investigations required to solve problems and guarantee program success. It is very important to the solution process that maximum use be made of the resources that both the contractor and Government can bring to the problem in a supporting and noncompeting way. There is no place for the not-invented-here attitude. The resources include, but are not limited to: (1) specially skilled professionals; (2) supporting technologies; (3) computational codes and capabilities; and (4) test and manufacturing facilities.
MAGSAT scalar anomaly map of South America
NASA Technical Reports Server (NTRS)
Ridgway, J. R.; Hinze, W. J.; Braile, L. W.
1985-01-01
A scalar magnetic anomaly map was prepared for South America and adjacent marine areas directly from original MAGSAT orbits. The preparation of the map poses special problems, notably in the separation of external field and crustal anomalies, and in the reduction of data to a common altitude. External fields are manifested in a long-wavelength ring current effect, a medium-wavelength equatorial electrojet, and short-wavelength noise. The noise is reduced by selecting profiles from quiet periods, and since the electrojet is confined primarily to dusk profiles, its effect is minimized by drawing the data set from dawn profiles only. The ring current is corrected through the use of the standard ring current equation, augmented by further filtering with a Butterworth bandpass filter. Under the assumption that the time-variant ring current is best removed when a replication of redundant profiles is achieved, a test set of 25 groups of 3 nearly coincident orbits per group is set up for filtering with a range of long-wavelength cutoffs to determine which cutoff best replicates the residual profiles. Altitude differences are then normalized by an inversion of the profile data onto a grid of equivalent point dipoles, and recalculated at an altitude of 350 km. The resulting map, when compared to the 2 deg averaged map, shows more coherent anomalies, with notable differences in the region affected by the electrojet.
Space Weather, Cosmic Rays, and Satellite Anomalies
NASA Astrophysics Data System (ADS)
Lev, Dorman
Results are presented of the Satellite Anomaly Project, which aims to improve the methods of safeguarding satellites in the Earth’s magnetosphere from the negative effects of the space environment. Anomaly data from the USSR and Russian “Kosmos” series satellites in the period 1971-1999 are combined into one database, together with similar information on other spacecraft. This database contains, beyond the anomaly information, various characteristics of space weather: geomagnetic activity indices (Ap, AE and Dst), fluxes and fluencies of electrons and protons at different energies, high energy cosmic ray variations and other solar, interplanetary and solar wind data. A comparative analysis of the distribution of each of these parameters relative to satellite anomalies was carried out for the total number of anomalies (about 6000 events), and separately for high altitude orbit satellites ( 5000 events) and low altitude (about 800 events). No relation was found between low and high altitude satellite anomalies. Daily numbers of satellite anomalies, averaged by a superposed epoch method around sudden storm commencements and proton event onsets for high (>1500 km) and low (<1500 km) altitude orbits revealed a big difference in behavior. Satellites were divided into several groups according to their orbital characteristics (altitude and inclination). The relation of satellite anomalies to the environmental parameters was found to be different for various orbits, and this should be taken into account when developing anomaly frequency models. The preliminary anomaly frequency models are presented.
NASA Astrophysics Data System (ADS)
Barutello, Vivina; Jadanza, Riccardo D.; Portaluri, Alessandro
2016-01-01
It is well known that the linear stability of the Lagrangian elliptic solutions in the classical planar three-body problem depends on a mass parameter β and on the eccentricity e of the orbit. We consider only the circular case ( e = 0) but under the action of a broader family of singular potentials: α-homogeneous potentials, for α in (0, 2), and the logarithmic one. It turns out indeed that the Lagrangian circular orbit persists also in this more general setting. We discover a region of linear stability expressed in terms of the homogeneity parameter α and the mass parameter β, then we compute the Morse index of this orbit and of its iterates and we find that the boundary of the stability region is the envelope of a family of curves on which the Morse indices of the iterates jump. In order to conduct our analysis we rely on a Maslov-type index theory devised and developed by Y. Long, X. Hu and S. Sun; a key role is played by an appropriate index theorem and by some precise computations of suitable Maslov-type indices.
Satellite GN and C Anomaly Trends
NASA Technical Reports Server (NTRS)
Robertson, Brent; Stoneking, Eric
2003-01-01
On-orbit anomaly records for satellites launched from 1990 through 2001 are reviewed to determine recent trends of un-manned space mission critical failures. Anomalies categorized by subsystems show that Guidance, Navigation and Control (GN&C) subsystems have a high number of anomalies that result in a mission critical failure when compared to other subsystems. A mission critical failure is defined as a premature loss of a satellite or loss of its ability to perform its primary mission during its design life. The majority of anomalies are shown to occur early in the mission, usually within one year from launch. GN&C anomalies are categorized by cause and equipment type involved. A statistical analysis of the data is presented for all anomalies compared with the GN&C anomalies for various mission types, orbits and time periods. Conclusions and recommendations are presented for improving mission success and reliability.
Viktorov, A N; Novikova, N D; Polikarpov, N A; Gorshkova, V P; Konstantinova, S V
1995-01-01
The authors give considerations to one of the core hygienic problems arising in the process of long-term operation of orbital stations, i.e. ensuring microbial health of the milieu interior. Data pertaining the origin, interactions, and transformation of the microbial risk factors are analyzed as applied to this class of spacecraft. A concept of microbial health of the milieu interior including both medical and technological aspects relating to the reliability of space hardware is proposed. Based on the result of investigations in space flight, the developed criteria and indices of microbial health can be turned to practical use. The currently central tasks to be solved within the context of the problem and in view of the construction of international space station ALPHA are listed. PMID:8664877
Variational Proof of the Existence of the Super-Eight Orbit in the Four-Body Problem
NASA Astrophysics Data System (ADS)
Shibayama, Mitsuru
2014-10-01
Using the variational method, Chenciner and Montgomery (Ann Math 152:881-901, 2000) proved the existence of an eight-shaped periodic solution of the planar three-body problem with equal masses. Just after the discovery, Gerver numerically found a similar periodic solution called "super-eight" in the planar four-body problem with equal mass. In this paper we prove the existence of the super-eight orbit by using the variational method. The difficulty of the proof is to eliminate the possibility of collisions. In order to solve it, we apply the scaling technique established by Tanaka (Ann Inst H Poincaré Anal Non Linéaire 10:215-238, 1993), (Proc Am Math Soc 122:275-284, 1994) and investigate the asymptotic behavior of a binary collision.
Problems of rate chemistry in the flight regimes of aeroassisted orbital transfer vehicles
NASA Technical Reports Server (NTRS)
Park, C.
1984-01-01
The dissociating and ionizing nonequilibrium flows behind a normal shock wave are calculated for the density and vehicle regimes appropriate for aeroassisted orbital transfer vehicles; the departure of vibrational and electron temperatures from the gas temperature as well as viscous transport phenomena are accounted for. From the thermodynamic properties so determined, radiative power emission is calculated using an existing code. The resulting radiation characteristics are compared with the available experimental data. Chemical parameters are varied to investigate their effect on the radiation characteristics. It is concluded that the current knowledge of rate chemistry leads to a factor-of-4 uncertainty in nonequilibrium radiation intensities. The chemical parameters that must be studied to improve the accuracy are identified.
Problems of Rate Chemistry in the Flight Regimes of Aeroassisted Orbital Transfer Vehicles
NASA Technical Reports Server (NTRS)
Park, Chul
1985-01-01
The dissociating and ionizing nonequilibrium flows behind a normal shock wave are calculated for the density and vehicle regimes appropriate for aeroassisted orbital transfer vehicles; the departure of vibrational and electron temperatures from the gas temperature as well as viscous transport phenomena are accounted for. From the thermodynamic properties so determined, radiative power emission is calculated using an existing code. The resulting radiation characteristics are compared with the available experimental data. Chemical parameters are varied to Investigate their effect on the radiation characteristics. It is concluded that the current knowledge of rate chemistry leads to a factor-of-4 uncertainty In nonequilibrium radiation intensities. The chemical parameters that must be studied to Improve the accuracy are identified.
Lie group variational integrators for the full body problem in orbital mechanics
NASA Astrophysics Data System (ADS)
Lee, Taeyoung; Leok, Melvin; McClamroch, N. Harris
2007-06-01
Equations of motion, referred to as full body models, are developed to describe the dynamics of rigid bodies acting under their mutual gravitational potential. Continuous equations of motion and discrete equations of motion are derived using Hamilton’s principle. These equations are expressed in an inertial frame and in relative coordinates. The discrete equations of motion, referred to as a Lie group variational integrator, provide a geometrically exact and numerically efficient computational method for simulating full body dynamics in orbital mechanics; they are symplectic and momentum preserving, and they exhibit good energy behavior for exponentially long time periods. They are also efficient in only requiring a single evaluation of the gravity forces and moments per time step. The Lie group variational integrator also preserves the group structure without the use of local charts, reprojection, or constraints. Computational results are given for the dynamics of two rigid dumbbell bodies acting under their mutual gravity; these computational results demonstrate the superiority of the Lie group variational integrator compared with integrators that are not symplectic or do not preserve the Lie group structure.
INTELSAT 4 in orbit liquid slosh tests and problems in the theoretical analysis of the data
NASA Technical Reports Server (NTRS)
Slabinski, V. J.
1979-01-01
The destabilizing effect of the liquid on attitude nutation stability was determined from an extensive series of inorbit tests. The liquid slosh driving frequency ratio (rotor nutation frequency/rotor spin rate) was varied over the range of 0.58 to 0.70 for the tests by rotating the spacecraft antenna platform at different rates in inertial space. A rotor mounted accelerometer sensed the spacecraft nutation. The observed time constant for the nutation angle increase or decrease was corrected for the stabilizing contribution of the platform mounted pendulum dampers to yield the net destabilizing dedamping contribution from the liquid slosh. The in orbit tests show two unexpected maxima in the dedamping contribution at driving frequency ratios that vary with the propellant loading. The rotor nutation frequency at the maxima was about one-third of the lowest mode liquid slosh frequency given by ground test data for unspun tanks, and thus did not correspond to a simple resonance of the liquid. Ground tests with spinning systems produced the same maxima, but the phenomenon is not yet understood.
NASA Technical Reports Server (NTRS)
Matney, Mark
2006-01-01
One of the goals for NASA s Orbital Debris Program Office has been to accurately characterize the population of debris in the geosynchronous Earth orbit (GEO) environment. Most objects larger than about 1 meter in size are regularly tracked and catalogued by the US Space Surveillance System in the GEO regime. The consequence has been that most large intact GEO objects are tracked, but the vast majority of GEO debris fragments are not. Only in recent years have observations been dedicated to characterize the GEO debris population. NASA s efforts have concentrated on using wide field-of-view telescopes to make complete surveys of the GEO regime to better our statistical understanding of the GEO debris population. These telescopes operate in a staring mode, and only make limited short-arc measurements of the orbits. This information, while limited, allows the possibility of debiasing the observations and constructing statistical distributions of orbits in inclination and ascending node. Recent work suggests that we may be able to use statistical methods to estimate better orbit parameters despite the limited data. Both of these types of studies estimating statistical orbit distributions, and estimating accurate orbits using limited short-arc data have direct analogues in ongoing studies of near-Earth objects (NEO) such as asteroids and comets. This talk will describe the GEO study methods in use and being developed at NASA, and will discuss how such methods may or may not be applicable for NEO studies as well.
Orbiter global positioning system design and Ku-band problems investigation, exhibit B, revision 1
NASA Technical Reports Server (NTRS)
Chie, C. M.; Braun, W. R.
1981-01-01
The LinCom effort in supporting the JSC study of the use of the Global Positioning System (GPS) on the space shuttle and in Ku-band problem investigation is documented. LinCom was tasked to evaluate system implementation, performance, and integration aspects of the shuttle GPS and to provide independent technical assessment of reports submitted to JSC regarding integration studies, system studies and navigation analyses.
NASA Astrophysics Data System (ADS)
Fahr, Hans-Jörg; Siewert, Mark
2007-04-01
The question concerning the extent of the local spacetime has often been raised. At what circumsolar distance the well known Robertson-Walker spacetime of our expanding universe may become a valid approximation? Inside of that distance a local Schwarzschild metric, which permits to explain the Keplerian motions of planets within the frame of general relativity, must be applicable.We briefly analyze the historical answer to that question given by Einstein, Straus and their followers and show that till now this answer is unsatisfactory in many respects. We revisit the problem of local spacetime geometries in the light of their effects on local photon propagation in view of the radiopropagation phenomena detected with the NASA spaceprobes PIONEER-10/11, waiting for a satisfying answer for several decades now. Comparing radiosignals outgoing from the earth to the probe and ingoing again from the probe to the receiver on earth do show anomalous frequency shifts which presently find no explanation by anomalous non-Newtonian decelerations of these probes. Therefore we study cosmological conditions for the transfer of radiosignals between the earth and these distant probes based on time dependent local spacetime geometries. First we study the cosmological redshift of radiophotons during their propagation to the spaceprobe and show that this shift in fact explains the registered PIONEER phenomenon under the assumption that the full cosmological expansion of the universe also takes place locally. Though yielding the right magnitude, one finds that this assumption leads to a redshift instead of the observed blueshift. We then, however, show that theoretically motivated forms of time dependent local spacetime metrices in fact lead to a blueshift of the needed magnitude. The appropriate local space vacuole is characterized by a Schwarzschild metric of a central mass increasing with cosmic time. Though it is clear that further studies of this effect have to be carried out to
NASA Technical Reports Server (NTRS)
Boltz, F. W.
1984-01-01
An algorithm is presented for efficient p-iterative solution of the Lambert/Gauss orbit-determination problem using second-order Newton iteration. The algorithm is based on a universal transformation of Kepler's time-of-flight equation and approximate inverse solutions of this equation for short-way and long-way flight paths. The approximate solutions provide both good starting values for iteration and simplified computation of the second-order term in the iteration formula. Numerical results are presented which indicate that in many cases of practical significance (except those having collinear position vectors) the algorithm produces at least eight significant digits of accuracy with just two or three steps of iteration.
NASA Technical Reports Server (NTRS)
Schubert, G.; Anderson, J. D.; Jacobson, R. A.; Lau, E. L.; Moore, W. B.; Palguta, J.
2004-01-01
Radio Doppler data from two Ganymede encounters (G1 and G2) on the first two orbits in the Galileo mission have been analyzed previously for gravity information . For a satellite in hydrostatic equilibrium, its gravitational field can be modeled adequately by a truncated spherical harmonic series of degree two. However, a fourth degree field is required in order to fit the second Galileo flyby (G2). This need for a higher degree field strongly suggests that Ganymede s gravitational field is perturbed by a gravity anomaly near the G2 closest approach point (79.29 latitude, 123.68 west longitude). In fact, a plot of the Doppler residuals , after removal of the best-fit model for the zero degree term (GM) and the second degree moments (J2 and C22), suggests that if an anomaly exists, it is located downtrack of the closest approach point, closer to the equator.
Feedback control of unstable periodic orbits in equivariant Hopf bifurcation problems.
Postlethwaite, C M; Brown, G; Silber, M
2013-09-28
Symmetry-breaking Hopf bifurcation problems arise naturally in studies of pattern formation. These equivariant Hopf bifurcations may generically result in multiple solution branches bifurcating simultaneously from a fully symmetric equilibrium state. The equivariant Hopf bifurcation theorem classifies these solution branches in terms of their symmetries, which may involve a combination of spatial transformations and temporal shifts. In this paper, we exploit these spatio-temporal symmetries to design non-invasive feedback controls to select and stabilize a targeted solution branch, in the event that it bifurcates unstably. The approach is an extension of the Pyragas delayed feedback method, as it was developed for the generic subcritical Hopf bifurcation problem. Restrictions on the types of groups where the proposed method works are given. After addition of the appropriately optimized feedback term, we are able to compute the stability of the targeted solution using standard bifurcation theory, and give an account of the parameter regimes in which stabilization is possible. We conclude by demonstrating our results with a numerical example involving symmetrically coupled identical nonlinear oscillators. PMID:23960225
ERIC Educational Resources Information Center
PENROSE, L.S.; SMITH, G.F.
BOTH CLINICAL AND PATHOLOGICAL ASPECTS AND MATHEMATICAL ELABORATIONS OF DOWN'S ANOMALY, KNOWN ALSO AS MONGOLISM, ARE PRESENTED IN THIS REFERENCE MANUAL FOR PROFESSIONAL PERSONNEL. INFORMATION PROVIDED CONCERNS (1) HISTORICAL STUDIES, (2) PHYSICAL SIGNS, (3) BONES AND MUSCLES, (4) MENTAL DEVELOPMENT, (5) DERMATOGLYPHS, (6) HEMATOLOGY, (7)…
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.
2011-01-01
The NASA Constellation Program is investigating and developing technologies to support human exploration of the Moon and Mars. The Component-Level Electronic-Assembly Repair (CLEAR) task is part of the Supportability Project managed by the Exploration Technology Development Program. CLEAR is aimed at enabling a flight crew to diagnose and repair electronic circuits in space yet minimize logistics spares, equipment, and crew time and training. For insight into actual space repair needs, in early 2008 the project examined the operational experience of the International Space Station (ISS) program. CLEAR examined the ISS on-orbit Problem Reporting and Corrective Action database for electrical and electronic system problems. The ISS has higher than predicted reliability yet, as expected, it has persistent problems. A goal was to identify which on-orbit electrical problems could be resolved by a component-level replacement. A further goal was to identify problems that could benefit from the additional diagnostic and test capability that a component-level repair capability could provide. The study indicated that many problems stem from a small set of root causes that also represent distinct component problems. The study also determined that there are certain recurring problems where the current telemetry instrumentation and built-in tests are unable to completely resolve the problem. As a result, the root cause is listed as unknown. Overall, roughly 42 percent of on-orbit electrical problems on ISS could be addressed with a component-level repair. Furthermore, 63 percent of on-orbit electrical problems on ISS could benefit from additional external diagnostic and test capability. These results indicate that in situ component-level repair in combination with diagnostic and test capability can be expected to increase system availability and reduce logistics. The CLEAR approach can increase the flight crew s ability to act decisively to resolve problems while reducing
Pioneer Venus Orbiter Ultraviolet Spectrometer: Operations and Data Analysis
NASA Technical Reports Server (NTRS)
Stewart, A. I. F.
1997-01-01
The Pioneer Venus spacecraft orbited Venus 5,055 times between 4th December 1978 and 6th October 1992, before entering Venus' atmosphere and burning up on the latter date. On 255 of these orbits, science operations were suspended because of superior conjunction (Venus' proximity to the Sun as seen from Earth). Of the remaining 4800 orbits, about 85% yielded good-quality OUVS science data; 15% were lost to various problems, including loss of uplink (commands) to and downlink (data) from the spacecraft, errors in commanding OUVS, and one or other of the two instrument anomalies mentioned below.
NASA Astrophysics Data System (ADS)
Haapala, Amanda F.; Howell, Kathleen C.
The Earth-Moon libration points are of interest for future missions and have been proposed for both storage of propellant and supplies for lunar missions and as locations to establish space-based facilities for human missions. Thus, further development of an available transport network in the vicinity of the Moon is valuable. In this investigation, a methodology to search for transfers between periodic lunar libration point orbits is developed, and a catalog of these transfers is established, assuming the dynamics associated with the Earth-Moon circular restricted three-body problem. Maneuver-free transfers, i.e. heteroclinic and homoclinic connections, are considered, as well as transfers that require relatively small levels of Δv. Considering the evolution of Earth-Moon transfers as the mass parameter is reduced, a relationship emerges between the available transfers in the Earth-Moon system and maneuver-free transfers that exist within the Hill three-body problem. The correlation between transfers in these systems is examined and offers insight into the existence of solutions within the catalog. To demonstrate the persistence of the catalog transfers in a higher-fidelity model, several solutions are transitioned to a Sun-Earth-Moon ephemeris model with the inclusion of solar radiation pressure and lunar gravity harmonics. The defining characteristics are preserved in the high-fidelity model, validating both the techniques employed for this investigation and the solutions computed within the catalog.
Satellite elevation magnetic anomaly maps
NASA Technical Reports Server (NTRS)
Braile, L. W.; Hinze, W. J. (Principal Investigator)
1982-01-01
The problem of inverting 2 deg average MAGSAT scalar anomalies for the region 80 W, 60 E longitude and 40 S, 70 N latitude was attempted on the LARS computer; however, the effort was aborted due to insufficient allocation of CPU-time. This problem is currently being resubmitted and should be implemented shortly for quantitative comparison with free-air gravity anomaly, geothermal, and tectonic data.
Geologic analysis of averaged magnetic satellite anomalies
NASA Technical Reports Server (NTRS)
Goyal, H. K.; Vonfrese, R. R. B.; Ridgway, J. R.; Hinze, W. J.
1985-01-01
To investigate relative advantages and limitations for quantitative geologic analysis of magnetic satellite scalar anomalies derived from arithmetic averaging of orbital profiles within equal-angle or equal-area parallelograms, the anomaly averaging process was simulated by orbital profiles computed from spherical-earth crustal magnetic anomaly modeling experiments using Gauss-Legendre quadrature integration. The results indicate that averaging can provide reasonable values at satellite elevations, where contributing error factors within a given parallelogram include the elevation distribution of the data, and orbital noise and geomagnetic field attributes. Various inversion schemes including the use of equivalent point dipoles are also investigated as an alternative to arithmetic averaging. Although inversion can provide improved spherical grid anomaly estimates, these procedures are problematic in practice where computer scaling difficulties frequently arise due to a combination of factors including large source-to-observation distances ( 400 km), high geographic latitudes, and low geomagnetic field inclinations.
Geometry of halo and Lissajous orbits in the circular restricted three-body problem with drag forces
NASA Astrophysics Data System (ADS)
Pal, Ashok Kumar; Kushvah, Badam Singh
2015-01-01
In this paper, we determine the effect of radiation pressure, Poynting-Robertson drag and solar wind drag on the Sun-(Earth-Moon) restricted three-body problem. Here, we take the larger body of the Sun as a larger primary, and the Earth+Moon as a smaller primary. With the help of the perturbation technique, we find the Lagrangian points, and see that the collinear points deviate from the axis joining the primaries, whereas the triangular points remain unchanged in their configuration. We also find that Lagrangian points move towards the Sun when radiation pressure increases. We have also analysed the stability of the triangular equilibrium points and have found that they are unstable because of the drag forces. Moreover, we have computed the halo orbits in the third-order approximation using the Lindstedt-Poincaré method and have found the effect of the drag forces. According to this prevalence, the Sun-(Earth-Moon) model is used to design the trajectory for spacecraft travelling under drag forces.
Composite pressure vessels for the Space Shuttle Orbiter
NASA Technical Reports Server (NTRS)
Ecord, G. M.
1977-01-01
During the development of the Space Shuttle Orbiter propulsion and environmental control subsystems it was recognized that use of composite pressure vessels with load sharing liners could provide significant weight savings for high pressure gas containment. A program is described which was undertaken to assess the utility for orbiter applications of titanium 6Al-4V and Inconel 718 liners overwrapped with Kevlar fibers. Vessel characteristics, design features and test results are presented along with brief descriptions of processes and nondestructive evaluation techniques. The resolutions of anomalies and development of design are also presented. Fracture control as applied to the orbiter composite vessels is briefly discussed. Five of the seven titanium lined vessels in the program experienced premature cyclic failures. These failures were shown to be primarily due to metallurgical anomalies rather than an inherent composite design problem. A nonfragmentary leakage mode of failure was demonstrated at operating pressures. The composite designs will be approximately 25 percent lighter than their all metal counterparts.
Orbital hemorrhage and eyelid ecchymosis in acute orbital myositis.
Reifler, D M; Leder, D; Rexford, T
1989-02-15
We examined two patients with acute orbital myositis associated with orbital hemorrhage and eyelid ecchymosis. Both patients were young women (aged 22 and 30 years) who had painful proptosis, diplopia, and computed tomographic evidence of single extraocular muscle involvement with spillover of inflammatory edema into the adjacent orbital fat. Patient 1 showed contralateral preseptal eyelid inflammation and did not suffer an orbital hemorrhage until after an episode of vomiting. In Patient 2, the diagnosis of occult orbital varix was initially considered but an orbital exploration and a biopsy specimen showed no vascular anomaly. Both patients were treated successfully with high-dose systemic corticosteroids. Some cases of idiopathic orbital inflammation may be related to preexisting vascular anomalies or orbital phlebitis. PMID:2913803
NASA Astrophysics Data System (ADS)
Gafarov, Albert A.
1993-01-01
Practically all space objects with onboard nuclear power sources stay in earth satellite orbits with an orbital lifetime long enough to reduce their radioactivity to levels presenting no danger for the Earth population. One of the reasons for orbit lifetime reduction can be collisions with other space objects in near-earth orbits. The possible consequence of collisions can be partial, or even complete, destruction of the spacecraft with an onboard nuclear power source; as well as delivery of additional impulse both to the spacecraft and its fragments. It is shown that collisions in orbit do not cause increase of radiation hazard for the Earth population if there is aerodynamic breakup of nuclear power sources into fragments of safe sizes during atmospheric reentry.
Submillimeter Wave Astronomy Satellite (SWAS) Launch and Early Orbit Support Experiences
NASA Technical Reports Server (NTRS)
Kirschner, S.; Sedlak, J.; Challa, M.; Nicholson, A.; Sande, C.; Rohrbaugh, D.
1999-01-01
The Submillimeter Wave Astronomy Satellite (SWAS) was successfully launched on December 6, 1998 at 00:58 UTC. The two year mission is the fourth in the series of Small Explorer (SMEX) missions. SWAS is dedicated to the study of star formation and interstellar chemistry. SWAS was injected into a 635 km by 650 km orbit with an inclination of nearly 70 deg by an Orbital Sciences Corporation Pegasus XL launch vehicle. The Flight Dynamics attitude and navigation teams supported all phases of the early mission. This support included orbit determination, attitude determination, real-time monitoring, and sensor calibration. This paper reports the main results and lessons learned concerning navigation, support software, star tracker performance, magnetometer and gyroscope calibrations, and anomaly resolution. This includes information on spacecraft tip-off rates, first-day navigation problems, target acquisition anomalies, star tracker anomalies, and significant sensor improvements due to calibration efforts.
Spacecraft environmental anomalies expert system
NASA Technical Reports Server (NTRS)
Koons, H. C.; Gorney, D. J.
1988-01-01
A microcomputer-based expert system is being developed at the Aerospace Corporation Space Sciences Laboratory to assist in the diagnosis of satellite anomalies caused by the space environment. The expert system is designed to address anomalies caused by surface charging, bulk charging, single event effects and total radiation dose. These effects depend on the orbit of the satellite, the local environment (which is highly variable), the satellite exposure time and the hardness of the circuits and components of the satellite. The expert system is a rule-based system that uses the Texas Instruments Personal Consultant Plus expert system shell. The completed expert system knowledge base will include 150 to 200 rules, as well as a spacecraft attributes database, an historical spacecraft anomalies database, and a space environment database which is updated in near real-time. Currently, the expert system is undergoing development and testing within the Aerospace Corporation Space Sciences Laboratory.
NASA Astrophysics Data System (ADS)
Zamaro, M.; Biggs, J. D.
2015-07-01
The Martian moon Phobos is becoming an appealing destination for future scientific missions. The orbital dynamics around this planetary satellite is particularly complex due to the unique combination of both small mass-ratio and length-scale of the Mars-Phobos couple: the resulting sphere of influence of the moon is very close to its surface, therefore both the classical two-body problem and circular restricted three-body problem (CR3BP) do not provide an accurate approximation to describe the spacecraft's dynamics in the vicinity of Phobos. The aim of this paper is to extend the model of the CR3BP to consider the orbital eccentricity and the highly-inhomogeneous gravity field of Phobos, by incorporating the gravity harmonics series expansion into an elliptic R3BP, named ER3BP-GH. Following this, the dynamical substitutes of the Libration Point Orbits (LPOs) are computed in this more realistic model of the relative dynamics around Phobos, combining methodologies from dynamical systems theory and numerical continuation techniques. Results obtained show that the structure of the periodic and quasi-periodic LPOs differs substantially from the classical case without harmonics. Several potential applications of these natural orbits are presented to enable unique low-cost operations in the proximity of Phobos, such as close-range observation, communication, and passive radiation shielding for human spaceflight. Furthermore, their invariant manifolds are demonstrated to provide high-performance natural landing and take-off pathways to and from Phobos' surface, and transfers from and to Martian orbits. These orbits could be exploited in upcoming and future space missions targeting the exploration of this Martian moon.
Gauge anomalies, gravitational anomalies, and superstrings
Bardeen, W.A.
1985-08-01
The structure of gauge and gravitational anomalies will be reviewed. The impact of these anomalies on the construction, consistency, and application of the new superstring theories will be discussed. 25 refs.
MAGSAT correlations with geoid anomalies. [magnetic anomalies in the western Gulf of Mexico
NASA Technical Reports Server (NTRS)
Bowin, C. O. (Principal Investigator)
1984-01-01
A digital data library of MAGSAT data is described and its applications and capabilities are reviewed. Polynomial trends were removed from each half-orbit in order to estimate and remove ring current effects from the data. The MAGSAT data in the Gulf of Mexico region was analyzed to define better the possible relation of the negative MAGSAT anomaly there to the negative residual geoid anomaly in the western Gulf of Mexico. Since the shape and location of the negative magnetic anomaly are variable depending upon the particular polynomial surface and curve orders used, no definitive conclusion as to the degree of correspondance between the residual geoid and MAGSAT lithosphere anomalies is offered.
ANOMALY STRUCTURE OF SUPERGRAVITY AND ANOMALY CANCELLATION
Butter, Daniel; Gaillard, Mary K.
2009-06-10
We display the full anomaly structure of supergravity, including new D-term contributions to the conformal anomaly. This expression has the super-Weyl and chiral U(1){sub K} transformation properties that are required for implementation of the Green-Schwarz mechanism for anomaly cancellation. We outline the procedure for full anomaly cancellation. Our results have implications for effective supergravity theories from the weakly coupled heterotic string theory.
NASA Astrophysics Data System (ADS)
Masago, Bruna Yukiko Pinheiro Lopes; Prado, A. F. B. A.; Chiaradia, Ana Paula Marins; Gomes, Vivian Martins
2016-02-01
Space missions to visit small bodies of the Solar System are important steps to improve our knowledge of the Solar System. Usually those bodies do not have well known characteristics, as their gravity field, which make the mission planning a difficult task. The present paper has the goal of studying orbits around the triple asteroid 2001SN263, a Near-Earth Asteroid (NEA). A mission to this system allows the exploration of three bodies in the same trip. The distances reached by the spacecraft from those three bodies have fundamental importance in the quality of their observations. Therefore, the present research has two main goals: (i) to develop a semi-analytical mathematical model, which is simple, but able to represent the main characteristics of that system; (ii) to use this model to find orbits for a spacecraft with the goal of remaining the maximum possible time near the three bodies of the system, without the need of space maneuvers. This model is called "Precessing Inclined Bi-Elliptical Problem with Radiation Pressure" (PIBEPRP). The use of this model allow us to find important natural orbits for the exploration of one, two or even the three bodies of the system. These trajectories can be used individually or combined in two or more parts using orbital maneuvers.
Statistical magnetic anomalies from satellite measurements for geologic analysis
NASA Technical Reports Server (NTRS)
Goyal, H. K.; Vonfrese, R. R. B.; Hinze, W. J.
1985-01-01
The errors of numerically averaging satellite magnetic anomaly data for geologic analysis are investigated using orbital anomaly simulations of crustal magnetic sources by Gauss-Legendre quadrature integration. These simulations suggest that numerical averaging errors constitute small and relatively minor contributions to the total error-budget of higher orbital estimates (approx. 400 km), whereas for lower orbital estimates the error of averaging may increase substantially. Least-squares collocation is also investigated as an alternative to numerical averaging and found to produce substantially more accurate anomaly estimates as the elevation of prediction is decreased towards the crustal sources.
NASA Technical Reports Server (NTRS)
Kessler, D. J. (Compiler); Su, S. Y. (Compiler)
1985-01-01
Earth orbital debris issues and recommended future activities are discussed. The workshop addressed the areas of environment definition, hazards to spacecraft, and space object management. It concluded that orbital debris is a potential problem for future space operations. However, before recommending any major efforts to control the environment, more data are required. The most significant required data are on the population of debris smaller than 4 cm in diameter. New damage criteria are also required. When these data are obtained, they can be combined with hypervelocity data to evaluate the hazards to future spacecraft. After these hazards are understood, then techniques to control the environment can be evaluated.
The Mars Rover Spirit FLASH anomaly
NASA Technical Reports Server (NTRS)
Reeves, Glenn E.; Neilson, Tracy C.
2005-01-01
The Mars Exploration Rover 'Spirit' suffered a debilitating anomaly that prevented communication with Earth for several anxious days. With the eyes of the world upon us, the anomaly team used each scrap of information, our knowledge of the system, and sheer determination to analyze and fix the problem, then return the vehicle to normal operation. This paper will discuss the Spirit FLASH anomaly, including the drama of the investigation, the root cause and the lessons learned from the experience.
The resolution of a magnetic anomaly map expected from GRM data
NASA Technical Reports Server (NTRS)
Strangway, D. W.; Arkani-Hamed, J.; Teskey, D. J.; Hood, P. J.
1985-01-01
Data from the MAGSAT mission were used to derive a global scalar magnetic anomaly map at an average altitude of about 400 km. It was possible to work with 2 data sets corresponding to dawn and dusk. The anomalies which were repeatable at dawn and at dusk was identified and the error limits of these anomalies were estimated. The repeatable anomalies were downward continued to about 10 km altitude. The anomalies over Canada were correlated quantitatively with bandpass filtered magnetic anomalies derived from aeromagnetic surveys. The close correlation indicates that the repeatable anomalies detected from orbit are due to geological causes. This correlation supports the geological significance of the global anomaly map.
Columbus Payloads Flow Rate Anomalies
NASA Technical Reports Server (NTRS)
Quaranta, Albino; Bufano, Gaetana; DePalo, Savino; Holt, James M.; Szigetvari, Zoltan; Palumberi, Sergio; Hinderer, S.
2011-01-01
The Columbus Active Thermal Control System (ATCS) is the main thermal bus for the pressurized racks working inside the European laboratory. One of the ATCS goals is to provide proper water flow rate to each payload (P/L) by controlling actively the pressure drop across the common plenum distribution piping. Overall flow measurement performed by the Water Pump Assembly (WPA) is the only flow rate monitor available at system level and is not part of the feedback control system. At rack activation the flow rate provided by the system is derived on ground by computing the WPA flow increase. With this approach, several anomalies were raised during these 3 years on-orbit, with the indication of low flow rate conditions on the European racks FSL, BioLab, EDR and EPM. This paper reviews the system and P/Ls calibration approach, the anomalies occurred, the engineering evaluation on the measurement approach and the accuracy improvements proposed, the on-orbit test under evaluation with NASA and finally discusses possible short and long term solutions in case of anomaly confirmation.
NASA Technical Reports Server (NTRS)
Murad, P. A.
1993-01-01
Tsien's method is extended to treat the orbital motion of a body undergoing accelerations and decelerations. A generalized solution is discussed for the generalized case where a body undergoes azimuthal and radial thrust and the problem is further simplified for azimuthal thrust alone. Judicious selection of thrust could generate either an elliptic or hyperbolic trajectory. This is unexpected especially when the body has only enough energy for a lower state trajectory. The methodology is extended treating the problem of vehicle thrust for orbiting a sphere and vehicle thrust within the classical restricted three-body problem. Results for the latter situation can produce hyperbolic trajectories through eigen value decomposition. Since eigen values for no-thrust can be imaginary, thrust can generate real eigen values to describe hyperbolic trajectories. Keplerian dynamics appears to represent but a small subset of a much larger non-Keplerian domain especially when thrust effects are considered. The need for high thrust long duration space-based propulsion systems for changing a trajectory's canonical form is clearly demonstrated.
Electrostatic charging of spacecraft in geosynchronous orbit
NASA Astrophysics Data System (ADS)
Sims, Andrew J.
1992-12-01
This Memorandum is a study of the spacecraft charging phenomenon applicable to satellites in geosynchronous orbit. Differential charging of spacecraft surfaces can induce electrostatic discharges which may manifest themselves as 'operational anomalies' or permanent damage to surface features such as solar cells and thermal control surfaces. Understanding of the problem is achieved via laboratory experiments, analysis of data from spacecraft instrumentation, and by numerical simulation. Long-term statistical studies are presented for the location of plasma boundaries at geostationary altitude and for the occurrence frequency and intensity of geomagnetic substorms which permit the probability of severe charging conditions to be predicted for future missions. Laboratory experiments are used to demonstrate the importance of bulk and surface conductivity of dielectric materials to the charging process and a sensitivity analysis is employed to investigate the detailed interaction between the plasma environment and spacecraft surface materials. Finally, a study and simulation of charging events observed in geosynchronous orbit is presented.
Measuring anomaly with algorithmic entropy
NASA Astrophysics Data System (ADS)
Solano, Wanda M.
Anomaly detection refers to the identification of observations that are considered outside of normal. Since they are unknown to the system prior to training and rare, the anomaly detection problem is particularly challenging. Model based techniques require large quantities of existing data are to build the model. Statistically based techniques result in the use of statistical metrics or thresholds for determining whether a particular observation is anomalous. I propose a novel approach to anomaly detection using wavelet based algorithmic entropy that does not require modeling or large amounts of data. My method embodies the concept of information distance that rests on the fact that data encodes information. This distance is large when little information is shared, and small when there is greater information sharing. I compare my approach with several techniques in the literature using data obtained from testing of NASA's Space Shuttle Main Engines (SSME)
Trace anomaly driven inflation
NASA Astrophysics Data System (ADS)
Hawking, S. W.; Hertog, T.; Reall, H. S.
2001-04-01
This paper investigates Starobinsky's model of inflation driven by the trace anomaly of conformally coupled matter fields. This model does not suffer from the problem of contrived initial conditions that occurs in most models of inflation driven by a scalar field. The universe can be nucleated semiclassically by a cosmological instanton that is much larger than the Planck scale provided there are sufficiently many matter fields. There are two cosmological instantons: the four sphere and a new ``double bubble'' solution. This paper considers a universe nucleated by the four sphere. The AdS/CFT correspondence is used to calculate the correlation function for scalar and tensor metric perturbations during the ensuing de Sitter phase. The analytic structure of the scalar and tensor propagators is discussed in detail. Observational constraints on the model are discussed. Quantum loops of matter fields are shown to strongly suppress short scale metric perturbations, which implies that short distance modifications of gravity would probably not be observable in the cosmic microwave background. This is probably true for any model of inflation provided there are sufficiently many matter fields. This point is illustrated by a comparison of anomaly driven inflation in four dimensions and in a Randall-Sundrum brane-world model.
MAGSAT satellite magnetic anomaly map over South America
NASA Technical Reports Server (NTRS)
Ridgway, J. R.
1985-01-01
A scalar magnetic anomaly map was prepared for South America and adjacent marine areas directly from original MAGSAT orbits. Special problems associated with the separation of external field and crustal anomalies, and the reduction of data to a common altitude are addressed. External fields are manifested in a long-wavelength ring current effect, a medium-wavelength equatorial electrojet, and short-wavelength noise. The noise is reduced by selecting profiles from quiet periods (Kp or = 3), and the effect of the electrojet is minimized by drawing the data set from dawn profiles only. The ring current is corrected through the use of a standard equation, augmented by further digital band-pass filtering. Profiles thus filtered differ primarily in amplitude due solely to satellite altitude differences. These differences are normalized by an inversion of the profile data onto a grid of equivalent point dipoles, and recalculated at an altitude of 350 km. The low altitudes in the study area cause instability in the inversion, necessitating separate inversions of several sub-areas which are subsequently merged. Crustal anomalies reduced-to-the-pole exhibit marked correlations to known tectonic features.
Satellite anomaly assessments: operations, history, databasing, and current product development
NASA Astrophysics Data System (ADS)
Quigley, S.
2003-04-01
The current operational process for assessing space environmental effects on satellite anomalies in near-real time has a history of significant constraints. It has been troubled by lacks in: personnel experience, applicable data and model availability, consistency, automation, and database sharing. In an effort to alleviate such problems, the Air Force Research Laboratory, in-conjunction with the Space and Missile Systems Center's Technology Applications Division, has initiated the process of developing an all-inclusive satellite operations environment product that would automate the various aspects of satellite anomaly post-assessment, "nowcasting" (or warning), and forecasting. It will include satellite-specific, hazardous region-specific, and orbit-specific processes and related output products. Satellite charging, single event upsets, communications effects, and drag are considered with a suite of real-time data and state-of-the-art models that specify and forecast the radiation belts, ionosphere, neutral atmosphere, and more. Focused on radiation belt effects, each aspect of our current satellite anomaly assessment process and products will be presented, along with future development considerations, concerns, and solicitations.
2016-07-26
Lymphatic Malformation; Generalized Lymphatic Anomaly (GLA); Central Conducting Lymphatic Anomaly; CLOVES Syndrome; Gorham-Stout Disease ("Disappearing Bone Disease"); Blue Rubber Bleb Nevus Syndrome; Kaposiform Lymphangiomatosis; Kaposiform Hemangioendothelioma/Tufted Angioma; Klippel-Trenaunay Syndrome; Lymphangiomatosis
NASA Astrophysics Data System (ADS)
Xu, Shenglong; Li, Yi; Wu, Congjun
2015-04-01
The microscopic mechanism of itinerant ferromagnetism is a long-standing problem due to the lack of nonperturbative methods to handle strong magnetic fluctuations of itinerant electrons. We nonpertubatively study thermodynamic properties and magnetic phase transitions of a two-dimensional multiorbital Hubbard model exhibiting ferromagnetic ground states. Quantum Monte Carlo simulations are employed, which are proved in a wide density region free of the sign problem usually suffered by simulations for fermions. Both Hund's coupling and electron itinerancy are essential for establishing the ferromagnetic coherence. No local magnetic moments exist in the system as a priori; nevertheless, the spin channel remains incoherent showing the Curie-Weiss-type spin magnetic susceptibility down to very low temperatures at which the charge channel is already coherent, exhibiting a weakly temperature-dependent compressibility. For the SU(2) invariant systems, the spin susceptibility further grows exponentially as approaching zero temperature in two dimensions. In the paramagnetic phase close to the Curie temperature, the momentum space Fermi distributions exhibit strong resemblance to those in the fully polarized state. The long-range ferromagnetic ordering appears when the symmetry is reduced to the Ising class, and the Curie temperature is accurately determined. These simulations provide helpful guidance to searching for novel ferromagnetic materials in both strongly correlated d -orbital transition-metal oxide layers and the p -orbital ultracold atom optical lattice systems.
Magnetosheath Flow Anomalies in 3-D
NASA Technical Reports Server (NTRS)
Vaisberg, O. L.; Burch, J. L.; Smirnov, V. N.; Avanov, L. A.; Moore, T. E.; Waite, J. H., Jr.; Skalsky, A. A.; Borodkova, N. L.; Coffey, V. N.; Gallagher, D. L.; Rose, M. Franklin (Technical Monitor)
2000-01-01
Measurements of the plasma and magnetic field with high temporal resolution on the Interball Tail probe reveal many flow anomalies in the magnetosheath. They are usually seen as flow direction and number density variations, accompanied by magnetic field discontinuities. Large flow anomalies with number density variations of factor of 2 or more and velocity variations of 100 km/s or more are seen with periodicity of about I per hour. The cases of flow anomalies following in succession are also observed, and suggest their decay while propagating through the magnetosheath. Some magnetospheric disturbances observed in the outer magnetosphere after the satellite has crossed the magnetopause on the inbound orbit suggest their association with magnetosheath flow anomalies observed in the magnetosheath prior to magnetopause crossing.
Analysis of spacecraft anomalies
NASA Technical Reports Server (NTRS)
Bloomquist, C. E.; Graham, W. C.
1976-01-01
The anomalies from 316 spacecraft covering the entire U.S. space program were analyzed to determine if there were any experimental or technological programs which could be implemented to remove the anomalies from future space activity. Thirty specific categories of anomalies were found to cover nearly 85 percent of all observed anomalies. Thirteen experiments were defined to deal with 17 of these categories; nine additional experiments were identified to deal with other classes of observed and anticipated anomalies. Preliminary analyses indicate that all 22 experimental programs are both technically feasible and economically viable.
NASA Technical Reports Server (NTRS)
Senent, Juan
2011-01-01
The first part of the paper presents some closed-form solutions to the optimal two-impulse transfer between fixed position and velocity vectors on Keplerian orbits when some constraints are imposed on the magnitude of the initial and final impulses. Additionally, a numerically-stable gradient-free algorithm with guaranteed convergence is presented for the minimum delta-v two-impulse transfer. In the second part of the paper, cooperative bargaining theory is used to solve some two-impulse transfer problems when the initial and final impulses are carried by different vehicles or when the goal is to minimize the delta-v and the time-of-flight at the same time.
Numerical anomalies mimicking physical effects
NASA Astrophysics Data System (ADS)
Menikoff, R.
Numerical simulations of flows with shock waves typically use finite-difference shock-capturing algorithms. These algorithms give a shock a numerical width in order to generate the entropy increase that must occur across a shock wave. For algorithms in conservation form, steady-state shock waves are insensitive to the numerical dissipation because of the Hugoniot jump conditions. However, localized numerical errors occur when shock waves interact. Examples are the 'excess wall heating' in the Noh problem (shock reflected from rigid wall), errors when a shock impacts a material interface or an abrupt change in mesh spacing, and the start-up error from initializing a shock as a discontinuity. This class of anomalies can be explained by the entropy generation that occurs in the transient flow when a shock profile is formed or changed. The entropy error is localized spatially but under mesh refinement does not decrease in magnitude. Similar effects have been observed in shock tube experiments with partly dispersed shock waves. In this case, the shock has a physical width due to a relaxation process. An entropy anomaly from a transient shock interaction is inherent in the structure of the conservation equations for fluid flow. The anomaly can be expected to occur whenever heat conduction can be neglected and a shock wave has a non-zero width, whether the width is physical or numerical. Thus, the numerical anomaly from an artificial shock width mimics a real physical effect.
Indulski, J A; Kowalski, Z
1990-01-01
In highly developed countries the prophylactic medical examinations to evaluate health effects of exposure and general health condition of the workers started early in the past. Nowadays, there is an increasing trend of developing new methods for early detection of occupational and work--related diseases. Thus the individuals oversensitive to the agents of the working environment could be prevented from exposure. However, the gap between the capacities that the new methods offer theoretically and their actual application in the prophylactic examinations still remains quite large. Part I of the present study has been devoted to three essential problems of public concern which have been specified in the paper's subtitles. PMID:2131393
[Kimmerle's anomaly and stroke].
Barsukov, S F; Antonov, G I
1992-10-01
The anomaly of cranio-vertebral area can frequently be the reason of acute cerebrovascular disorders in vertebro-basilar field. The frequent C1 pathology in the Kimmerle's anomaly. The anatomic studies has shown that 30% of people had this type of anomaly. This pathology can lead to severe vascular diseases of cerebrum because of the squeezing effect upon vertebral arteries in the zone of osteal ponticulus of the rear arch of atlas. PMID:1481402
Konstantinov, Igor E.
2009-01-01
Taussig-Bing anomaly is a rare congenital heart malformation that was first described in 1949 by Helen B. Taussig (1898–1986) and Richard J. Bing (1909–). Although substantial improvement has since been achieved in surgical results of the repair of the anomaly, management of the Taussig-Bing anomaly remains challenging. A history of the original description of the anomaly, the life stories of the individuals who first described it, and the current outcomes of its surgical management are reviewed herein. PMID:20069085
Continental and oceanic magnetic anomalies: Enhancement through GRM
NASA Technical Reports Server (NTRS)
Vonfrese, R. R. B.; Hinze, W. J.
1985-01-01
In contrast to the POGO and MAGSAT satellites, the Geopotential Research Mission (GRM) satellite system will orbit at a minimum elevation to provide significantly better resolved lithospheric magnetic anomalies for more detailed and improved geologic analysis. In addition, GRM will measure corresponding gravity anomalies to enhance our understanding of the gravity field for vast regions of the Earth which are largely inaccessible to more conventional surface mapping. Crustal studies will greatly benefit from the dual data sets as modeling has shown that lithospheric sources of long wavelength magnetic anomalies frequently involve density variations which may produce detectable gravity anomalies at satellite elevations. Furthermore, GRM will provide an important replication of lithospheric magnetic anomalies as an aid to identifying and extracting these anomalies from satellite magnetic measurements. The potential benefits to the study of the origin and characterization of the continents and oceans, that may result from the increased GRM resolution are examined.
Generating unaveraged equations of motion in common orbital elements
NASA Astrophysics Data System (ADS)
Veras, Dimitri
2014-05-01
Cartesian equations of motion must be converted or integrated in order to impart information about the evolution of orbital elements such as the semimajor axis, eccentricity, inclination, longitude of ascending node, argument of pericentre and true anomaly. Alternatively, equations of motion in terms of only these orbital elements can reveal aspects of the motion simply by inspection. I advertise a quick method to generate such equations for perturbed two-body problems, where the perturbation may be arbitrarily large, and where no averaging is involved. I use the method to generate complete unaveraged equations from perturbations due to Poynting-Robertson drag, general relativity, mass loss, Galactic tides, and additional massive bodies under the guise of the general restricted few-body problem.
NASA Astrophysics Data System (ADS)
Bozkaya, Uǧur
2011-12-01
In this research, orbital-optimized third-order Møller-Plesset perturbation theory (OMP3) and its spin-component and spin-opposite scaled variants (SCS-OMP3 and SOS-OMP3) are introduced. Using a Lagrangian-based approach, an efficient, quadratically convergent algorithm for variational optimization of the molecular orbitals (MOs) for third-order Møller-Plesset perturbation theory (MP3) is presented. Explicit equations for response density matrices, the MO gradient, and Hessian are reported in spin-orbital form. The OMP3, SCS-OMP3, and SOS-OMP3 approaches are compared with the second-order Møller-Plesset perturbation theory (MP2), MP3, coupled-cluster doubles (CCD), optimized-doubles (OD), and coupled-cluster singles and doubles (CCSD) methods. All these methods are applied to the O4 +, O3, and seven diatomic molecules. Results demonstrate that the OMP3 and its variants provide significantly better vibrational frequencies than MP3, CCSD, and OD for the molecules where the symmetry-breaking problems are observed. For O4 +, the OMP3 prediction, 1343 cm-1, for ω6 (b3u) mode, where symmetry-breaking appears, is even better than presumably more reliable methods such as Brueckner doubles (BD), 1194 cm-1, and OD, 1193 cm-1, methods (the experimental value is 1320 cm-1). For O3, the predictions of SCS-OMP3 (1143 cm-1) and SOS-OMP3 (1165 cm-1) are remarkably better than the more robust OD method (1282 cm-1); the experimental value is 1089 cm-1. For the seven diatomics, again the SCS-OMP3 and SOS-OMP3 methods provide the lowest average errors, |Δωe| = 44 and |Δωe| = 35 cm-1, respectively, while for OD, |Δωe| = 161 cm-1and CCSD |Δωe| = 106 cm-1. Hence, the OMP3 and especially its spin-scaled variants perform much better than the MP3, CCSD, and more robust OD approaches for considered test cases. Therefore, considering both the computational cost and the reliability, SCS-OMP3 and SOS-OMP3 appear to be the best methods for the symmetry-breaking cases, based on
Anomaly Detection for Discrete Sequences: A Survey
Chandola, Varun; Banerjee, Arindam; Kumar, Vipin
2012-01-01
This survey attempts to provide a comprehensive and structured overview of the existing research for the problem of detecting anomalies in discrete/symbolic sequences. The objective is to provide a global understanding of the sequence anomaly detection problem and how existing techniques relate to each other. The key contribution of this survey is the classification of the existing research into three distinct categories, based on the problem formulation that they are trying to solve. These problem formulations are: 1) identifying anomalous sequences with respect to a database of normal sequences; 2) identifying an anomalous subsequence within a long sequence; and 3) identifying a pattern in a sequence whose frequency of occurrence is anomalous. We show how each of these problem formulations is characteristically distinct from each other and discuss their relevance in various application domains. We review techniques from many disparate and disconnected application domains that address each of these formulations. Within each problem formulation, we group techniques into categories based on the nature of the underlying algorithm. For each category, we provide a basic anomaly detection technique, and show how the existing techniques are variants of the basic technique. This approach shows how different techniques within a category are related or different from each other. Our categorization reveals new variants and combinations that have not been investigated before for anomaly detection. We also provide a discussion of relative strengths and weaknesses of different techniques. We show how techniques developed for one problem formulation can be adapted to solve a different formulation, thereby providing several novel adaptations to solve the different problem formulations. We also highlight the applicability of the techniques that handle discrete sequences to other related areas such as online anomaly detection and time series anomaly detection.
Competing Orders and Anomalies.
Moon, Eun-Gook
2016-01-01
A conservation law is one of the most fundamental properties in nature, but a certain class of conservation "laws" could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the 't Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed. PMID:27499184
Competing Orders and Anomalies
Moon, Eun-Gook
2016-01-01
A conservation law is one of the most fundamental properties in nature, but a certain class of conservation “laws” could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the ’t Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed. PMID:27499184
Competing Orders and Anomalies
NASA Astrophysics Data System (ADS)
Moon, Eun-Gook
2016-08-01
A conservation law is one of the most fundamental properties in nature, but a certain class of conservation “laws” could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the ’t Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed.
The mineralogy of global magnetic anomalies
NASA Technical Reports Server (NTRS)
Haggerty, S. E. (Principal Investigator)
1982-01-01
The Curie Balance was brought to operational stage and is producing data of a preliminary nature. Substantial problems experienced in the assembly and initial operation of the instrument were, for the most part, rectified, but certain problems still exist. Relationships between the geology and the gravity and MAGSAT anomalies of West Africa are reexamined in the context of a partial reconstruction of Gondwanaland.
Survey of Anomaly Detection Methods
Ng, B
2006-10-12
This survey defines the problem of anomaly detection and provides an overview of existing methods. The methods are categorized into two general classes: generative and discriminative. A generative approach involves building a model that represents the joint distribution of the input features and the output labels of system behavior (e.g., normal or anomalous) then applies the model to formulate a decision rule for detecting anomalies. On the other hand, a discriminative approach aims directly to find the decision rule, with the smallest error rate, that distinguishes between normal and anomalous behavior. For each approach, we will give an overview of popular techniques and provide references to state-of-the-art applications.
Model selection for anomaly detection
NASA Astrophysics Data System (ADS)
Burnaev, E.; Erofeev, P.; Smolyakov, D.
2015-12-01
Anomaly detection based on one-class classification algorithms is broadly used in many applied domains like image processing (e.g. detection of whether a patient is "cancerous" or "healthy" from mammography image), network intrusion detection, etc. Performance of an anomaly detection algorithm crucially depends on a kernel, used to measure similarity in a feature space. The standard approaches (e.g. cross-validation) for kernel selection, used in two-class classification problems, can not be used directly due to the specific nature of a data (absence of a second, abnormal, class data). In this paper we generalize several kernel selection methods from binary-class case to the case of one-class classification and perform extensive comparison of these approaches using both synthetic and real-world data.
The dynamic Allan Variance IV: characterization of atomic clock anomalies.
Galleani, Lorenzo; Tavella, Patrizia
2015-05-01
The number of applications where precise clocks play a key role is steadily increasing, satellite navigation being the main example. Precise clock anomalies are hence critical events, and their characterization is a fundamental problem. When an anomaly occurs, the clock stability changes with time, and this variation can be characterized with the dynamic Allan variance (DAVAR). We obtain the DAVAR for a series of common clock anomalies, namely, a sinusoidal term, a phase jump, a frequency jump, and a sudden change in the clock noise variance. These anomalies are particularly common in space clocks. Our analytic results clarify how the clock stability changes during these anomalies. PMID:25965674
Gravitational anomalies in the solar system?
NASA Astrophysics Data System (ADS)
Iorio, Lorenzo
2015-02-01
Mindful of the anomalous perihelion precession of Mercury discovered by Le Verrier in the second half of the nineteenth century and its successful explanation by Einstein with his General Theory of Relativity in the early years of the twentieth century, discrepancies among observed effects in our Solar system and their theoretical predictions on the basis of the currently accepted laws of gravitation applied to known matter-energy distributions have the potential of paving the way for remarkable advances in fundamental physics. This is particularly important now more than ever, given that most of the universe seems to be made of unknown substances dubbed Dark Matter and Dark Energy. Should this not be directly the case, Solar system's anomalies could anyhow lead to advancements in either cumulative science, as shown to us by the discovery of Neptune in the first half of the nineteenth century, and technology itself. Moreover, investigations in one of such directions can serendipitously enrich the other one as well. The current status of some alleged gravitational anomalies in the Solar system is critically reviewed. They are: (a) Possible anomalous advances of planetary perihelia. (b) Unexplained orbital residuals of a recently discovered moon of Uranus (Mab). (c) The lingering unexplained secular increase of the eccentricity of the orbit of the Moon. (d) The so-called Faint Young Sun Paradox. (e) The secular decrease of the mass parameter of the Sun. (f) The Flyby Anomaly. (g) The Pioneer Anomaly. (h) The anomalous secular increase of the astronomical unit.
NASA Technical Reports Server (NTRS)
Jordan, J. F.; Boggs, D. H.; Born, G. H.; Christensen, E. J.; Ferrari, A. J.; Green, D. W.; Hylkema, R. K.; Mohan, S. N.; Reinbold, S. J.; Sievers, G. L.
1973-01-01
A historic account of the activities of the Satellite OD Group during the MM'71 mission is given along with an assessment of the accuracy of the determined orbit of the Mariner 9 spacecraft. Preflight study results are reviewed, and the major error sources described. Tracking and data fitting strategy actually used in the real time operations is itemized, and Deep Space Network data available for orbit fitting during the mission and the auxiliary information used by the navigation team are described. A detailed orbit fitting history of the first four revolutions of the satellite orbit of Mariner 9 is presented, with emphasis on the convergence problems and the delivered solution for the first orbit trim maneuver. Also included are a solution accuracy summary, the history of the spacecraft orbit osculating elements, the results of verifying the radio solutions with TV imaging data, and a summary of the normal points generated for the relativity experiment.
Gell, Jennifer S
2003-11-01
The reproductive organs in both males and females consist of gonads, internal ductal structures, and external genitalia. Normal sexual differentiation is dependent on the genetic sex determined by the presence or absence of the Y chromosome at fertilization. Testes develop under the influence of the Y chromosome and ovaries develop when no Y chromosome is present. In the absence of testes and their normal hormonal products, sexual differentiation proceeds along the female pathway, resulting in a normal female phenotype. Anatomic gynecologic anomalies occur when there is failure of normal embryologic ductal development. These anomalies include congenital absence of the vagina as well as defects in lateral and vertical fusion of the Müllerian ducts. Treatment of müllerian anomalies begins with the correct identification of the anomaly and an understanding of the embryologic origin. This includes evaluation for other associated anomalies such as renal or skeletal abnormalities. After correct identification, treatment options include nonsurgical as well as surgical intervention. This chapter serves to review the embryology and development of the reproductive system and to describe common genital tract anomalies. Details of surgical or nonsurgical correction of these anomalies are presented. PMID:14724770
Forbidden tangential orbit transfers between intersecting Keplerian orbits
NASA Technical Reports Server (NTRS)
Burns, Rowland E.
1990-01-01
The classical problem of tangential impulse transfer between coplanar Keplerian orbits is addressed. A completely analytic solution which does not rely on sequential calculation is obtained and this solution is used to demonstrate that certain initially chosen angles can produce singularities in the parameters of the transfer orbit. A necessary and sufficient condition for such singularities is that the initial and final orbits intersect.
Behavioral economics without anomalies.
Rachlin, H
1995-01-01
Behavioral economics is often conceived as the study of anomalies superimposed on a rational system. As research has progressed, anomalies have multiplied until little is left of rationality. Another conception of behavioral economics is based on the axiom that value is always maximized. It incorporates so-called anomalies either as conflicts between temporal patterns of behavior and the individual acts comprising those patterns or as outcomes of nonexponential time discounting. This second conception of behavioral economics is both empirically based and internally consistent. PMID:8551195
Design and Implementation of an Anomaly Detector
Bagherjeiran, A; Cantu-Paz, E; Kamath, C
2005-07-11
This paper describes the design and implementation of a general-purpose anomaly detector for streaming data. Based on a survey of similar work from the literature, a basic anomaly detector builds a model on normal data, compares this model to incoming data, and uses a threshold to determine when the incoming data represent an anomaly. Models compactly represent the data but still allow for effective comparison. Comparison methods determine the distance between two models of data or the distance between a model and a point. Threshold selection is a largely neglected problem in the literature, but the current implementation includes two methods to estimate thresholds from normal data. With these components, a user can construct a variety of anomaly detection schemes. The implementation contains several methods from the literature. Three separate experiments tested the performance of the components on two well-known and one completely artificial dataset. The results indicate that the implementation works and can reproduce results from previous experiments.
Isotopic anomalies from neutron reactions during explosive carbon burning
NASA Technical Reports Server (NTRS)
Lee, T.; Schramm, D. N.; Wefel, J. P.; Blake, J. B.
1979-01-01
The heavy isotopic anomalies observed recently in the fractionation and unknown nuclear inclusions from the Allende meteorite are explained by neutron reactions during the explosive carbon burning (ECB). This model produces heavy anomalies in the same zone where Al-26 and O-16 are produced, thus reducing the number of source zones required for the isotopic anomalies. Unlike the classical r-process, the ECB n-process avoids the problem with the Sr anomaly and may resolve the problem of conflicting time scales between Al-26 and the r-process isotopes I-129 and Pu-244. Experimental studies of Zr and Ce isotopic composition are proposed to test this model.
Detection of Low Temperature Volcanogenic Thermal Anomalies with ASTER
NASA Astrophysics Data System (ADS)
Pieri, D. C.; Baxter, S.
2009-12-01
Predicting volcanic eruptions is a thorny problem, as volcanoes typically exhibit idiosyncratic waxing and/or waning pre-eruption emission, geodetic, and seismic behavior. It is no surprise that increasing our accuracy and precision in eruption prediction depends on assessing the time-progressions of all relevant precursor geophysical, geochemical, and geological phenomena, and on more frequently observing volcanoes when they become restless. The ASTER instrument on the NASA Terra Earth Observing System satellite in low earth orbit provides important capabilities in the area of detection of volcanogenic anomalies such as thermal precursors and increased passive gas emissions. Its unique high spatial resolution multi-spectral thermal IR imaging data (90m/pixel; 5 bands in the 8-12um region), bore-sighted with visible and near-IR imaging data, and combined with off-nadir pointing and stereo-photogrammetric capabilities make ASTER a potentially important volcanic precursor detection tool. We are utilizing the JPL ASTER Volcano Archive (http://ava.jpl.nasa.gov) to systematically examine 80,000+ ASTER volcano images to analyze (a) thermal emission baseline behavior for over 1500 volcanoes worldwide, (b) the form and magnitude of time-dependent thermal emission variability for these volcanoes, and (c) the spatio-temporal limits of detection of pre-eruption temporal changes in thermal emission in the context of eruption precursor behavior. We are creating and analyzing a catalog of the magnitude, frequency, and distribution of volcano thermal signatures worldwide as observed from ASTER since 2000 at 90m/pixel. Of particular interest as eruption precursors are small low contrast thermal anomalies of low apparent absolute temperature (e.g., melt-water lakes, fumaroles, geysers, grossly sub-pixel hotspots), for which the signal-to-noise ratio may be marginal (e.g., scene confusion due to clouds, water and water vapor, fumarolic emissions, variegated ground emissivity, and
GEOS 3 data processing for the recovery of geoid undulations and gravity anomalies
NASA Technical Reports Server (NTRS)
Rapp, R. H.
1979-01-01
The paper discusses the analysis of GEOS 3 altimeter data for the determination of geoid heights and point and mean gravity anomalies. Methods are presented for determining the mean anomalies and mean undulations from the GEOS 3 altimeter data available by the end of September 1977 without having a complete set of precise orbits. The editing of the data is extensive to remove questionable data, although no filtering of the data is carried out. An adjustment process is carried out to eliminate orbit error and altimeter bias. Representative point anomaly values are computed to investigate anomaly behavior across the Bonin Trench and over the Patton seamounts.
Anomalies and entanglement entropy
NASA Astrophysics Data System (ADS)
Nishioka, Tatsuma; Yarom, Amos
2016-03-01
We initiate a systematic study of entanglement and Rényi entropies in the presence of gauge and gravitational anomalies in even-dimensional quantum field theories. We argue that the mixed and gravitational anomalies are sensitive to boosts and obtain a closed form expression for their behavior under such transformations. Explicit constructions exhibiting the dependence of entanglement entropy on boosts is provided for theories on spacetimes with non-trivial magnetic fluxes and (or) non-vanishing Pontryagin classes.
Padmanabhan, Arjun; Thomas, Abin Varghese
2016-01-01
Although diaphragmatic anomalies such as an eventration and hiatus hernia are commonly encountered in incidental chest X-ray imaging, the presence of concomitant multiple anomalies is extremely rare. This is all the more true in adults. Herein, we present the case of a 75-year-old female, while undergoing a routine chest X-ray imaging, was found to have eventration of right hemidiaphragm along with a hiatus hernia as well. PMID:27625457
Padmanabhan, Arjun; Thomas, Abin Varghese
2016-01-01
Although diaphragmatic anomalies such as an eventration and hiatus hernia are commonly encountered in incidental chest X-ray imaging, the presence of concomitant multiple anomalies is extremely rare. This is all the more true in adults. Herein, we present the case of a 75-year-old female, while undergoing a routine chest X-ray imaging, was found to have eventration of right hemidiaphragm along with a hiatus hernia as well.
NASA Technical Reports Server (NTRS)
Bergeron, R. P.
1980-01-01
Orbital transfer vehicle propulsion options for SPS include both chemical (COTV) and electrical (EOTV) options. The proposed EOTV construction method is similar to that of the SPS and, by the addition of a transmitting antenna, may serve as a demonstration or precursor satellite option. The results of the studies led to the selection of a single stage COTV for crew and priority cargo transfer. An EOTV concept is favored for cargo transfer because of the more favorable orbital burden factor over chemical systems. The gallium arsenide solar array is favored over the silicon array because of its self annealing characteristics of radiation damage encountered during multiple transitions through the Van Allen radiation belt. Transportation system operations are depicted. A heavy lift launch vehicle (HLLV) delivers cargo and propellants to LEO, which are transferred to a dedicated EOTV by means of an intraorbit transfer vehicle (IOTV) for subsequent transfer to GEO. The space shuttle is used for crew transfer from Earth to LEO. At the LEO base, the crew module is removed from the shuttle cargo bay and mated to a COTV for transfer to GEO. Upon arrival at GEO, the SPS construction cargo is transferred from the EOTV to the SPS construction base by IOTV. Crew consumables and resupply propellants are transported to GEO by the EOTV. Transportation requirements are dominated by the vast quantity of materials to be transported to LEO and GEO.
NASA Technical Reports Server (NTRS)
Haxby, W. F.; Turcotte, D. L.
1978-01-01
In regions of slowly varying lateral density changes, the gravity and geoid anomalies may be expressed as power series expansions in topography. Geoid anomalies in isostatically compensated regions can be directly related to the local dipole moment of the density-depth distribution. This relationship is used to obtain theoretical geoid anomalies for different models of isostatic compensation. The classical Pratt and Airy models give geoid height-elevation relationships differing in functional form but predicting geoid anomalies of comparable magnitude. The thermal cooling model explaining ocean floor subsidence away from mid-ocean ridges predicts a linear age-geoid height relationship of 0.16 m/m.y. Geos 3 altimetry profiles were examined to test these theoretical relationships. A profile over the mid-Atlantic ridge is closely matched by the geoid curve derived from the thermal cooling model. The observed geoid anomaly over the Atlantic margin of North America can be explained by Airy compensation. The relation between geoid anomaly and bathymetry across the Bermuda Swell is consistent with Pratt compensation with a 100-km depth of compensation.
Earth Radiation Budget Experiment (ERBE) scanner instrument anomaly investigation
NASA Technical Reports Server (NTRS)
Watson, N. D.; Miller, J. B.; Taylor, L. V.; Lovell, J. B.; Cox, J. W.; Fedors, J. C.; Kopia, L. P.; Holloway, R. M.; Bradley, O. H.
1985-01-01
The results of an ad-hoc committee investigation of in-Earth orbit operational anomalies noted on two identical Earth Radiation Budget Experiment (ERBE) Scanner instruments on two different spacecraft busses is presented. The anomalies are attributed to the bearings and the lubrication scheme for the bearings. A detailed discussion of the pertinent instrument operations, the approach of the investigation team and the current status of the instruments now in Earth orbit is included. The team considered operational changes for these instruments, rework possibilities for the one instrument which is waiting to be launched, and preferable lubrication considerations for specific space operational requirements similar to those for the ERBE scanner bearings.
... Haemophilus influenzae B) vaccine. The bacteria Staphylococcus aureus , Streptococcus pneumoniae , and beta-hemolytic streptococci may also cause orbital cellulitis. Orbital cellulitis infections in children may get worse very quickly and can lead ...
... Names Idiopathic orbital inflammatory syndrome (IOIS) Images Skull anatomy References Goodlick TA, Kay MD, Glaser JS, Tse DT, Chang WJ. Orbital disease and neuro-ophthalmology. In: Tasman W, Jaeger EA, eds. Duaneâ€™s ...
Kepler does not orbit the Earth, rather it orbits the Sun in concert with the Earth, slowly drifting away from Earth. Every 61 Earth years, Kepler and Earth will pass by each other. Throughout the ...
Orbital preservation in maxillectomy.
Stern, S J; Goepfert, H; Clayman, G; Byers, R; Wolf, P
1993-07-01
Twenty-eight previously untreated patients with squamous carcinoma of the maxillary sinus underwent maxillectomy with preservation of the orbital contents at the M. D. Anderson Cancer Center between 1971 and 1986. Eighteen patients had part or all of the orbital floor resected; nine patients were treated with radiotherapy, and nine had surgery only. Only 3 of 18 patients in this group (17%) retained significant function in the ipsilateral eye. Furthermore, local recurrence in this group was common (44%), regardless of whether postoperative radiotherapy was used. Ten patients retained the bony orbital floor; if the radiation fields did not include the eye, problems were minimal. Strong consideration should be given to orbital exenteration at the time of surgery, when the orbital floor is resected--especially if postoperative radiation fields will include the eye. PMID:8336956
NASA Technical Reports Server (NTRS)
Dursch, Harry; Spear, Steve
1991-01-01
Spacecraft mechanisms are required to operate in the space environment for extended periods of time. A significant concern to the spacecraft designer is the possibility of metal to metal coldwelding or significant increases in friction. Coldwelding can occur between atomically clean metal surfaces when carefully prepared in a vacuum chamber on earth. The question is whether coldwelding occurs in orbit service conditions. The results of the System Special Investigation Group's (SIG's) investigation into whether coldwelding had occurred on any Long Duration Exposure Facility (LDEF) hardware are presented. The results of a literature search into previous ground based anomalies is also presented. Results show that even though there have been no documented on-orbit coldwelding related failures, precautions should be taken to ensure that coldwelding does not occur in the space environment and that seizure does not occur in the prelaunch or launch environment.
Gravity anomaly detection: Apollo/Soyuz
NASA Technical Reports Server (NTRS)
Vonbun, F. O.; Kahn, W. D.; Bryan, J. W.; Schmid, P. E.; Wells, W. T.; Conrad, D. T.
1976-01-01
The Goddard Apollo-Soyuz Geodynamics Experiment is described. It was performed to demonstrate the feasibility of tracking and recovering high frequency components of the earth's gravity field by utilizing a synchronous orbiting tracking station such as ATS-6. Gravity anomalies of 5 MGLS or larger having wavelengths of 300 to 1000 kilometers on the earth's surface are important for geologic studies of the upper layers of the earth's crust. Short wavelength Earth's gravity anomalies were detected from space. Two prime areas of data collection were selected for the experiment: (1) the center of the African continent and (2) the Indian Ocean Depression centered at 5% north latitude and 75% east longitude. Preliminary results show that the detectability objective of the experiment was met in both areas as well as at several additional anomalous areas around the globe. Gravity anomalies of the Karakoram and Himalayan mountain ranges, ocean trenches, as well as the Diamantina Depth, can be seen. Maps outlining the anomalies discovered are shown.
Automated Network Anomaly Detection with Learning, Control and Mitigation
ERIC Educational Resources Information Center
Ippoliti, Dennis
2014-01-01
Anomaly detection is a challenging problem that has been researched within a variety of application domains. In network intrusion detection, anomaly based techniques are particularly attractive because of their ability to identify previously unknown attacks without the need to be programmed with the specific signatures of every possible attack.…
Andersen, Jens O.; Leganger, Lars E.; Strickland, Michael; Su, Nan
2011-10-15
In this brief report we compare the predictions of a recent next-to-next-to-leading order hard-thermal-loop perturbation theory (HTLpt) calculation of the QCD trace anomaly to available lattice data. We focus on the trace anomaly scaled by T{sup 2} in two cases: N{sub f}=0 and N{sub f}=3. When using the canonical value of {mu}=2{pi}T for the renormalization scale, we find that for Yang-Mills theory (N{sub f}=0) agreement between HTLpt and lattice data for the T{sup 2}-scaled trace anomaly begins at temperatures on the order of 8T{sub c}, while treating the subtracted piece as an interaction term when including quarks (N{sub f}=3) agreement begins already at temperatures above 2T{sub c}. In both cases we find that at very high temperatures the T{sup 2}-scaled trace anomaly increases with temperature in accordance with the predictions of HTLpt.
NASA Astrophysics Data System (ADS)
Leibovitz, Jacques
2007-04-01
Scientists continue their attempts to model the observed Pioneer anomaly (PA) as an artifact of measurement or of equipment operation. Scientists also explore ``new physics'' as a possible explanation, but they have eliminated dark matter (DM). Here, the main arguments used to eliminate DM are refuted and then the anomaly is modeled by application of Newton laws to the observed macroscopic properties of DM. Around a central mass M, the modeling predicts a DM distribution that produces the PA at short distances (R smaller than 188 AU) from a star like the Sun, and a flat rotation curve at sufficiently large distances from the center of a galaxy. Below about 188 AU from the Sun, the modeling predicts that the anomaly may be expressed as PA = 8.3E-8 [R̂(-2)] -- 1 cm (s)̂(-2). It shows that the anomaly remains fairly constant down to 5 AU, decreases significantly from 5 AU to 1 AU where it becomes zero and changes sign below a distance of 1 AU, then increases rapidly in magnitude as R decreases in that range. Verifiable tests are proposed. Some related topics for future research are proposed.
Symon, K.
1987-11-01
There are various reasons for preferring local (e.g., three bump) orbit correction methods to global corrections. One is the difficulty of solving the mN equations for the required mN correcting bumps, where N is the number of superperiods and m is the number of bumps per superperiod. The latter is not a valid reason for avoiding global corrections, since, we can take advantage of the superperiod symmetry to reduce the mN simultaneous equations to N separate problems, each involving only m simultaneous equations. Previously, I have shown how to solve the general problem when the machine contains unknown magnet errors of known probability distribution; we made measurements of known precision of the orbit displacements at a set of points, and we wish to apply correcting bumps to minimize the weighted rms orbit deviations. In this report, we will consider two simpler problems, using similar methods. We consider the case when we make M beam position measurements per superperiod, and we wish to apply an equal number M of orbit correcting bumps to reduce the measured position errors to zero. We also consider the problem when the number of correcting bumps is less than the number of measurements, and we wish to minimize the weighted rms position errors. We will see that the latter problem involves solving equations of a different form, but involving the same matrices as the former problem.
On-orbit coldwelding: Fact or friction?
NASA Technical Reports Server (NTRS)
Dursch, Harry; Spear, Steve
1992-01-01
A study into the potential of on-orbit coldwelding occurring was completed. No instances of cold welding were found during deintegration and subsequent testing and analysis of LDEF hardware. This finding generated wide interest and indicated the need to review previous on-orbit coldwelding experiments and on-orbit spacecraft anomalies to determine whether the absence of coldwelding on LDEF was to be expected. Results show that even though there have been no documented cases of significant on-orbit coldwelding events occurring, precautions should be taken to ensure that neither coldwelding nor galling occurs in the space or prelaunch environment.
Mouriaux, F; Coffin-Pichonnet, S; Robert, P-Y; Abad, S; Martin-Silva, N
2014-12-01
Orbital inflammation is a generic term encompassing inflammatory pathologies affecting all structures within the orbit : anterior (involvement up to the posterior aspect of the globe), diffuse (involvement of intra- and/or extraconal fat), apical (involvement of the posterior orbit), myositis (involvement of only the extraocular muscles), dacryoadenitis (involvement of the lacrimal gland). We distinguish between specific inflammation and non-specific inflammation, commonly referred to as idiopathic inflammation. Specific orbital inflammation corresponds to a secondary localization of a "generalized" disease (systemic or auto-immune). Idiopathic orbital inflammation corresponds to uniquely orbital inflammation without generalized disease, and thus an unknown etiology. At the top of the differential diagnosis for specific or idiopathic orbital inflammation are malignant tumors, represented most commonly in the adult by lympho-proliferative syndromes and metastases. Treatment of specific orbital inflammation begins with treatment of the underlying disease. For idiopathic orbital inflammation, treatment (most often corticosteroids) is indicated above all in cases of visual loss due to optic neuropathy, in the presence of pain or oculomotor palsy. PMID:25455557
Statistical Anomaly Detection for Monitoring of Human Dynamics
NASA Astrophysics Data System (ADS)
Kamiya, K.; Fuse, T.
2015-05-01
Understanding of human dynamics has drawn attention to various areas. Due to the wide spread of positioning technologies that use GPS or public Wi-Fi, location information can be obtained with high spatial-temporal resolution as well as at low cost. By collecting set of individual location information in real time, monitoring of human dynamics is recently considered possible and is expected to lead to dynamic traffic control in the future. Although this monitoring focuses on detecting anomalous states of human dynamics, anomaly detection methods are developed ad hoc and not fully systematized. This research aims to define an anomaly detection problem of the human dynamics monitoring with gridded population data and develop an anomaly detection method based on the definition. According to the result of a review we have comprehensively conducted, we discussed the characteristics of the anomaly detection of human dynamics monitoring and categorized our problem to a semi-supervised anomaly detection problem that detects contextual anomalies behind time-series data. We developed an anomaly detection method based on a sticky HDP-HMM, which is able to estimate the number of hidden states according to input data. Results of the experiment with synthetic data showed that our proposed method has good fundamental performance with respect to the detection rate. Through the experiment with real gridded population data, an anomaly was detected when and where an actual social event had occurred.
Detecting data anomalies methods in distributed systems
NASA Astrophysics Data System (ADS)
Mosiej, Lukasz
2009-06-01
Distributed systems became most popular systems in big companies. Nowadays many telecommunications companies want to hold large volumes of data about all customers. Obviously, those data cannot be stored in single database because of many technical difficulties, such as data access efficiency, security reasons, etc. On the other hand there is no need to hold all data in one place, because companies already have dedicated systems to perform specific tasks. In the distributed systems there is a redundancy of data and each system holds only interesting data in appropriate form. Data updated in one system should be also updated in the rest of systems, which hold that data. There are technical problems to update those data in all systems in transactional way. This article is about data anomalies in distributed systems. Avail data anomalies detection methods are shown. Furthermore, a new initial concept of new data anomalies detection methods is described on the last section.
Satellite anomalies caused by disturbed space weather
NASA Astrophysics Data System (ADS)
Allen, J. H.
2003-04-01
Seven types of satellite anomalies are discussed and examples are given from historical reports. Types of anomalies and their causes are: o Single Event Upsets (SEU) caused by penetrating energetic ions; o Deep dielectric ("bulk") charging (DDC) by high-energy electrons; o Surface charging by thermal electrons causing electrostatic discharge (ESD) and Phantom Commands (PC); o Magnetopause crossing events (MPE) that reverse ambient fields at geostationary satellite altitudes; o dB/dT of field-aligned currents causing satellite tumbling at lower altitudes; o Optical effects of high-energy ions on star-trackers and limb sensors; and o Power panel degradation from high-energy ions. Recent and older events are considered, in part because the problems recur even though technology has changed to take them into account and awareness of the conditions causing them seems widespread. Systematic anomaly reporting is requested to increase the significance of records collected for particular events.
Statistical prediction of satellite magnetic anomalies
NASA Technical Reports Server (NTRS)
Goyal, H. K.; Von Frese, R. R. B.; Hinze, W. J.; Ravat, D. N.
1990-01-01
Computationally rapid statistical procedures are presented for satellite altitude normalizations and the gridding of magnetic anomaly data, as an alternative to the more commonly used but computationally expensive equivalent-source inversion procedures. The statistical predictions of Magsat observations over South America have demonstrated the great computational advantages of collocation over equivalent source inversion in gridding magnetic anomally data; in general, three-dimensional collocation is an efficient and cost-effective approach for obtaining altitude-normalized anomally grids from orbital or arbitrarily distributed data.
Lessons Learned from the Space Shuttle Engine Cutoff System (ECO) Anomalies
NASA Technical Reports Server (NTRS)
Martinez, Hugo E.; Welzyn, Ken
2011-01-01
The Space Shuttle Orbiter's main engine cutoff (ECO) system first failed ground checkout in April, 2005 during a first tanking test prior to Return-to-Flight. Despite significant troubleshooting and investigative efforts that followed, the root cause could not be found and intermittent anomalies continued to plague the Program. By implementing hardware upgrades, enhancing monitoring capability, and relaxing the launch rules, the Shuttle fleet was allowed to continue flying in spite of these unexplained failures. Root cause was finally determined following the launch attempts of STS-122 in December, 2007 when the anomalies repeated, which allowed drag-on instrumentation to pinpoint the fault (the ET feedthrough connector). The suspect hardware was removed and provided additional evidence towards root cause determination. Corrective action was implemented and the system has performed successfully since then. This white paper presents the lessons learned from the entire experience, beginning with the anomalies since Return-to-Flight through discovery and correction of the problem. To put these lessons in better perspective for the reader, an overview of the ECO system is presented first. Next, a chronological account of the failures and associated investigation activities is discussed. Root cause and corrective action are summarized, followed by the lessons learned.
NASA Technical Reports Server (NTRS)
Lee, Shihyan; McIntire, Jeff; Oudari, Hassan
2012-01-01
The Visible/Infrared Imager Radiometer Suite (VIIRS) contains six dual gain bands in the reflective solar spectrum. The dual gain bands are designed to switch gain mode at pre-defined thresholds to achieve high resolution at low radiances while maintaining the required dynamic range for science. During pre-launch testing, an anomaly in the electronic response before transitioning from high to low gain was discovered and characterized. On-orbit, the anomaly was confirmed using MODIS data collected during Simultaneous Nadir Overpasses (SNOs). The analysis of the Earth scene data shows that dual gain anomaly can be determined at the orbital basis. To characterize the dual gain anomaly, the anomaly region and electronic offsets were tracked per week during the first 8 month of VIIRS operation. The temporal analysis shows the anomaly region can drift 20 DN and is impacted by detectors DC Restore. The estimated anomaly flagging regions cover 2.5 % of the high gain dynamic range and are consistent with prelaunch and on-orbit LUT. The prelaunch results had a smaller anomaly range (30-50 DN) and are likely the results of more stable electronics from the shorter data collection time. Finally, this study suggests future calibration efforts to focus on the anomaly's impact on science products and possible correction method to reduce uncertainties.
Anomaly discrimination in hyperspectral imagery
NASA Astrophysics Data System (ADS)
Chen, Shih-Yu; Paylor, Drew; Chang, Chein-I.
2014-05-01
Anomaly detection finds data samples whose signatures are spectrally distinct from their surrounding data samples. Unfortunately, it cannot discriminate the anomalies it detected one from another. In order to accomplish this task it requires a way of measuring spectral similarity such as spectral angle mapper (SAM) or spectral information divergence (SID) to determine if a detected anomaly is different from another. However, this arises in a challenging issue of how to find an appropriate thresholding value for this purpose. Interestingly, this issue has not received much attention in the past. This paper investigates the issue of anomaly discrimination which can differentiate detected anomalies without using any spectral measure. The ideas are to makes use unsupervised target detection algorithms, Automatic Target Generation Process (ATGP) coupled with an anomaly detector to distinguish detected anomalies. Experimental results show that the proposed methods are indeed very effective in anomaly discrimination.
Gogan, Peter J.P.; Jessup, David A.; Barrett, Reginald H.
1988-01-01
Antler anomalies were evident in tule elk (Cervus elaphus nannodes) within 1 yr of reintroduction to Point Reyes, California (USA). These anomalies are consistent with previously described mineral deficiency-induced anomalies in cervids. The elk were judged deficient in copper. Low levels of copper in soils and vegetation at the release site, exacerbated by possible protein deficiency due to poor range conditions, are postulated as likely causes of the antler anomalies.
NASA Technical Reports Server (NTRS)
Colombo, O. L.
1984-01-01
The nature of the orbit error and its effect on the sea surface heights calculated with satellite altimetry are explained. The elementary concepts of celestial mechanics required to follow a general discussion of the problem are included. Consideration of errors in the orbits of satellites with precisely repeating ground tracks (SEASAT, TOPEX, ERS-1, POSEIDON, amongst past and future altimeter satellites) are detailed. The theoretical conclusions are illustrated with the numerical results of computer simulations. The nature of the errors in this type of orbits is such that this error can be filtered out by using height differences along repeating (overlapping) passes. This makes them particularly valuable for the study and monitoring of changes in the sea surface, such as tides. Elements of tidal theory, showing how these principles can be combined with those pertinent to the orbit error to make direct maps of the tides using altimetry are presented.
NASA Astrophysics Data System (ADS)
Vijayaraghavan, A.
1984-08-01
Hill's variational equations are solved analytically for the orbital perturbations of a spacecraft nominally in an elliptic orbit around a non-spherical body. The rotation of the central planet about its spin-axis is not considered in the analysis. The perturbations are restricted to the planetary gravitational harmonics only. An extremely simple algorithm is derived to transform the spherical harmonic potentials to the orbital coordinate system, and the resulting accelerations are shown to be simply trigonometric functions of the true anomaly. With the principal matrix solution for the differential equations of the adjoint system given in closed form, the orthogonality of the trigonometric functions makes it possible to obtain an analytic solution for the non-homogeneous problem, at intervals of 2 pi in true anomaly. The solution for orbital perturbations can be extended over several revolutions by applying well-known results from Floquet's theory. The technique is demonstrated with results presented on the spacecraft periapsis altitude for the forthcoming Venus Radar Mapper Mission.
NASA Technical Reports Server (NTRS)
Vijayaraghavan, A.
1984-01-01
Hill's variational equations are solved analytically for the orbital perturbations of a spacecraft nominally in an elliptic orbit around a non-spherical body. The rotation of the central planet about its spin-axis is not considered in the analysis. The perturbations are restricted to the planetary gravitational harmonics only. An extremely simple algorithm is derived to transform the spherical harmonic potentials to the orbital coordinate system, and the resulting accelerations are shown to be simply trigonometric functions of the true anomaly. With the principal matrix solution for the differential equations of the adjoint system given in closed form, the orthogonality of the trigonometric functions makes it possible to obtain an analytic solution for the non-homogeneous problem, at intervals of 2 pi in true anomaly. The solution for orbital perturbations can be extended over several revolutions by applying well-known results from Floquet's theory. The technique is demonstrated with results presented on the spacecraft periapsis altitude for the forthcoming Venus Radar Mapper Mission.
[Echinococcosis of the orbit].
Staindl, O; Krenkel, C
1985-09-01
A 5 year old girl with an echinococcuscyst in the right orbit is reported. The final diagnosis was made by removal of the cyst. A second cyst was found in the liver. The epidemiology, clinical and diagnostic problems of echinococcosis are reviewed. Radical surgery is still the only reliable treatment. For inoperable cases chemotherapy with Mebendazol seems promising. Many problems of chemotherapy remain to be solved and Mebendazol therapy is still in an experimental stage. PMID:4077595
Visual analytics of anomaly detection in large data streams
NASA Astrophysics Data System (ADS)
Hao, Ming C.; Dayal, Umeshwar; Keim, Daniel A.; Sharma, Ratnesh K.; Mehta, Abhay
2009-01-01
Most data streams usually are multi-dimensional, high-speed, and contain massive volumes of continuous information. They are seen in daily applications, such as telephone calls, retail sales, data center performance, and oil production operations. Many analysts want insight into the behavior of this data. They want to catch the exceptions in flight to reveal the causes of the anomalies and to take immediate action. To guide the user in finding the anomalies in the large data stream quickly, we derive a new automated neighborhood threshold marking technique, called AnomalyMarker. This technique is built on cell-based data streams and user-defined thresholds. We extend the scope of the data points around the threshold to include the surrounding areas. The idea is to define a focus area (marked area) which enables users to (1) visually group the interesting data points related to the anomalies (i.e., problems that occur persistently or occasionally) for observing their behavior; (2) discover the factors related to the anomaly by visualizing the correlations between the problem attribute with the attributes of the nearby data items from the entire multi-dimensional data stream. Mining results are quickly presented in graphical representations (i.e., tooltip) for the user to zoom into the problem regions. Different algorithms are introduced which try to optimize the size and extent of the anomaly markers. We have successfully applied this technique to detect data stream anomalies in large real-world enterprise server performance and data center energy management.
NASA Technical Reports Server (NTRS)
2005-01-01
The structure of NASA's Mars Reconnaissance Orbiter spacecraft is constructed from composite panels of carbon layers over aluminum honeycomb, lightweight yet strong. This forms a basic structure or skeleton on which the instruments, electronics, propulsion and power systems can be mounted. The propellant tank is contained in the center of the orbiter's structure. This photo was taken at Lockheed Martin Space Systems, Denver, during construction of the spacecraft.
Physicochemical isotope anomalies
Esat, T.M.
1988-06-01
Isotopic composition of refractory elements can be modified, by physical processes such as distillation and sputtering, in unexpected patterns. Distillation enriches the heavy isotopes in the residue and the light isotopes in the vapor. However, current models appear to be inadequate to describe the detailed mass dependence, in particular for large fractionations. Coarse- and fine-grained inclusions from the Allende meteorite exhibit correlated isotope effects in Mg both as mass-dependent fractionation and residual anomalies. This isotope pattern can be duplicated by high temperature distillation in the laboratory. A ubiquitous property of meteoritic inclusions for Mg as well as for most of the other elements, where measurements exist, is mass-dependent fractionation. In contrast, terrestrial materials such as microtektites, tektite buttons as well as lunar orange and green glass spheres have normal Mg isotopic composition. A subset of interplanetary dust particles labelled as chondritic aggregates exhibit excesses in {sup 26}Mg and deuterium anomalies. Sputtering is expected to be a dominant mechanism in the destruction of grains within interstellar dust clouds. An active proto-sun as well as the present solar-wind and solar-flare flux are of sufficient intensity to sputter significant amounts of material. Laboratory experiments in Mg show widespread isotope effects including residual {sup 26}Mg excesses and mass dependent fractionation. It is possible that the {sup 26}Mg excesses in interplanetary dust is related to sputtering by energetic solar-wind particles. The implication if the laboratory distillation and sputtering effects are discussed and contrasted with the anomalies in meteoritic inclusions the other extraterrestrial materials the authors have access to.
NASA Technical Reports Server (NTRS)
Tang, Charles C. H.
1988-01-01
By using Von Zeipel's generating function procedure the perturbing earth gravitational potential is averaged with respect to the fast variable (mean anomaly) and a set of 'fictitous' mean orbital elements which can be used as a long-term satellite orbit predictor is obtained. The set of elements is shown to be a function of the nonlinear square of the second zonal harmonic coefficient. It is found that the long-term orbit prediction using the 'fictitous' mean elements is as accurate as that using the osculating elements, but has a computing speed about two orders of magnitude faster. For short-term orbit predictions, the osculating elements approach must be used.
The norm of the position shift of a celestial body upon variation of its orbit
NASA Astrophysics Data System (ADS)
Batmunkh, N.; Sannikova, T. N.; Kholshevnikov, K. V.; Shaidulin, V. Sh.
2016-03-01
A precise estimate of the variation of the position of a celestial body in the case of small variations of the elements of its orbit is obtained using an Euclidean (mean-square) norm for the deviation in the position. A relatively simple expression for the mean-square deviation of the radius vector d r in terms of the deviations of the elements is derived. These are taken to be first-order small quantitites, with second-order quantities neglected. This relation is applied to estimate the norm || d r|| in two problems. In the first one, small and constant differences between six orbital elements (including the mean anomaly) are considered for two orbits. In the second one, a zero-mass point moves under the gravitation of a central body and a small perturbing acceleration F. The vector F is taken to be constant in a co-moving coordinate system with axes directed along the radius vector, the transversal, and the binormal vector. In this latter problem, d r is the difference between the position vectors in the osculating and mean orbit. The norm || d r||2 is the weighted sum of the squares of the components of F, neglecting higher-order small quantities. The coefficients of the quadratic form depend only on the semi-major axis and the eccentricity of the mean orbit. The results are applied to the motion of a small asteroid under the action of a low-thrust engine imparting a small force.
Discovering Recurring Anomalies in Text Reports Regarding Complex Space Systems
NASA Technical Reports Server (NTRS)
Zane-Ulman, Brett; Srivastava, Ashok N.
2005-01-01
Many existing complex space systems have a significant amount of historical maintenance and problem data bases that are stored in unstructured text forms. For some platforms, these reports may be encoded as scanned images rather than even searchable text. The problem that we address in this paper is the discovery of recurring anomalies and relationships between different problem reports that may indicate larger systemic problems. We will illustrate our techniques on data from discrepancy reports regarding software anomalies in the Space Shuttle. These free text reports are written by a number of different penp!e, thus the emphasis and wording varies considerably.
Hypercharged anomaly mediation.
Dermísek, Radovan; Verlinde, Herman; Wang, Lian-Tao
2008-04-01
We show that, in string models with the minimal supersymmetric standard model residing on D-branes, the bino mass can be generated in a geometrically separated hidden sector. Hypercharge mediation thus naturally teams up with anomaly mediation. The mixed scenario predicts a distinctive yet viable superpartner spectrum, provided that the ratio alpha between the bino and gravitino mass lies in the range 0.05 < or = |alpha| < or = 0.25 and m(3/2) > or = 35 TeV. We summarize some of the experimental signatures of this scenario. PMID:18517937
Modeling of self-potential anomalies near vertical dikes.
Fitterman, D.V.
1983-01-01
The self-potential (SP) Green's function for an outcropping vertical dike is derived from solutions for the dc resistivity problem for the same geometry. The Green's functions are numerically integrated over rectangular source regions on the contacts between the dike and the surrounding material to obtain the SP anomaly. The analysis is valid for thermoelectrical source mechanisms. Two types of anomalies can be produced by this geometry. When the two source planes are polarized in opposite directions, a monopolar anomaly is produced. This corresponds to the thermoelectrical properties of the dike being in contrast with the surrounding material. When the thermoelectric coefficients change monotonically across the dike, a dipolar anomaly is produced. In either case positive and negative anomalies are possible, and the greatest variation in potential will occur in the most resistive regions. -Author
Satellite magnetic anomalies over subduction zones - The Aleutian Arc anomaly
NASA Technical Reports Server (NTRS)
Clark, S. C.; Frey, H.; Thomas, H. H.
1985-01-01
Positive magnetic anomalies seen in MAGSAT average scalar anomaly data overlying some subduction zones can be explained in terms of the magnetization contrast between the cold subducted oceanic slab and the surrounding hotter, nonmagnetic mantle. Three-dimensional modeling studies show that peak anomaly amplitude and location depend on slab length and dip. A model for the Aleutian Arc anomaly matches the general trend of the observed MAGSAT anomaly if a slab thickness of 7 km and a relatively high (induced plus viscous) magnetization contrast of 4 A/m are used. A second source body along the present day continental margin is required to match the observed anomaly in detail, and may be modeled as a relic slab from subduction prior to 60 m.y. ago.
Chiral anomaly, bosonization, and fractional charge
Mignaco, J.A.; Monteiro, M.A.R.
1985-06-15
We present a method to evaluate the Jacobian of chiral rotations, regulating determinants through the proper-time method and using Seeley's asymptotic expansion. With this method we compute easily the chiral anomaly for ..nu.. = 4,6 dimensions, discuss bosonization of some massless two-dimensional models, and handle the problem of charge fractionization. In addition, we comment on the general validity of Fujikawa's approach to regulate the Jacobian of chiral rotations with non-Hermitian operators.
Panopoulos, G. A.; Simos, T. E.; Anastassi, Z. A.
2013-03-15
A new multistep predictor-corrector (PC) pair form is introduced for the numerical integration of second-order initial-value problems. Using this form, a new eight-step symmetric embedded predictor-corrector method is constructed. The new PC method is based on the multistep symmetric method of Quinlan and Tremaine, with eight steps and eighth algebraic order, and is constructed to solve numerically the N-body problem. The new integrator has algebraic order 10 and it can be used to solve problems, for which the frequency is not known. We investigate the behavior of the new algorithm by integrating the five outer-planet problem and the two-body problem with various eccentricities. Regarding the five outer-planet problem, we calculate the error of the integrator in the solution, the Hamiltonian, and the phase after forward and backward integration over various intervals that are multiples of the period of Jupiter.
ERIC Educational Resources Information Center
Quimby, Donald J.
1984-01-01
Discusses the geometry, algebra, and logic involved in the solution of a "Mindbenders" problem in "Discover" magazine and applies it to calculations of satellite orbital velocity. Extends the solution of this probe to other applications of falling objects. (JM)
OSO-6 Orbiting Solar Observatory
NASA Technical Reports Server (NTRS)
1972-01-01
The description, development history, test history, and orbital performance analysis of the OSO-6 Orbiting Solar Observatory are presented. The OSO-6 Orbiting Solar Observatory was the sixth flight model of a series of scientific spacecraft designed to provide a stable platform for experiments engaged in the collection of solar and celestial radiation data. The design objective was 180 days of orbital operation. The OSO-6 has telemetered an enormous amount of very useful experiment and housekeeping data to GSFC ground stations. Observatory operation during the two-year reporting period was very successful except for some experiment instrument problems.
Orbital science's 'Bermuda Triangle'
NASA Astrophysics Data System (ADS)
Sherrill, Thomas J.
1991-02-01
The effects of a part of the inner Van Allen belt lying closest to the earth, known as the South Atlantic Anomaly (SAA) upon spacecraft including the Hubble Space Telescope (HST), are discussed. The area consists of positively charged ions and electrons from the Van Allen Belt which become trapped in the earth's dipole field. Contor maps representing the number of protons per square centimeter per second having energies greater than 10 million electron volts are presented. It is noted that the HST orbit causes it to spend about 15 percent of its time in the SAA, but that, unlike the experience with earlier spacecraft, the satellite's skin, internal structure, and normal electronic's packaging provides sufficient protection against eletrons, although some higher energy protons still get through. Various charged particle effects which can arise within scientific instruments including fluorescence, Cerenkov radiation, and induced radioactivity are described.
Periodic orbits for three and four co-orbital bodies
NASA Astrophysics Data System (ADS)
Verrier, P. E.; McInnes, C. R.
2014-08-01
We investigate the natural families of periodic orbits associated with the equilibrium configurations of the planar-restricted 1 + n-body problem for the case 2 ≤ n ≤ 4 equal-mass satellites. Such periodic orbits can be used to model both trojan exoplanetary systems and parking orbits for captured asteroids within the Solar system. For n = 2, there are two families of periodic orbits associated with the equilibria of the system: the well-known horseshoe and tadpole orbits. For n = 3, there are three families that emanate from the equilibrium configurations of the satellites, while for n = 4, there are six such families as well as numerous additional connecting families. The families of periodic orbits are all of the horseshoe or tadpole type, and several have regions of neutral linear stability.
The development of the Poincare-similar elements with true anomaly as the independent variable
NASA Technical Reports Server (NTRS)
Mueller, A.
1976-01-01
In reference 1, the Hamiltonian of the unperturbed two-body problem in extended phase space is established. Depending on the type of time transformation, eight canonical elements were developed with the true anomaly or the eccentric anomaly as the independent variable. These two new sets, DS(phi) and DS(u), however contain singularities for small eccentricities and inclinations. In reference 2, these singularities are removed by a transformation from DS(u) to eight canonical PS(u) elements. In reference 3, the DS(phi) variables are transformed to the PS(phi) elements to remove the singularities. However, no direct relation was established between the eight canonical PS(phi) elements and the Cartesian coordinates. It is the purpose of this report to establish those relations and to develop the perturbed equations of motion in the PS(phi) space. This report also demonstrates the accuracy of this new set when it is applied to numerical orbit prediction problems.
Automated anomaly detection processor
NASA Astrophysics Data System (ADS)
Kraiman, James B.; Arouh, Scott L.; Webb, Michael L.
2002-07-01
Robust exploitation of tracking and surveillance data will provide an early warning and cueing capability for military and civilian Law Enforcement Agency operations. This will improve dynamic tasking of limited resources and hence operational efficiency. The challenge is to rapidly identify threat activity within a huge background of noncombatant traffic. We discuss development of an Automated Anomaly Detection Processor (AADP) that exploits multi-INT, multi-sensor tracking and surveillance data to rapidly identify and characterize events and/or objects of military interest, without requiring operators to specify threat behaviors or templates. The AADP has successfully detected an anomaly in traffic patterns in Los Angeles, analyzed ship track data collected during a Fleet Battle Experiment to detect simulated mine laying behavior amongst maritime noncombatants, and is currently under development for surface vessel tracking within the Coast Guard's Vessel Traffic Service to support port security, ship inspection, and harbor traffic control missions, and to monitor medical surveillance databases for early alert of a bioterrorist attack. The AADP can also be integrated into combat simulations to enhance model fidelity of multi-sensor fusion effects in military operations.
Zaleski, Witold A.; Houston, C. Stuart; Pozsonyi, J.; Ying, K. L.
1966-01-01
The majority of abnormal sex chromosome complexes in the male have been considered to be variants of Klinefelter's syndrome but an exception should probably be made in the case of the XXXXY individual who has distinctive phenotypic features. Clinical, radiological and cytological data on three new cases of XXXXY syndrome are presented and 30 cases from the literature are reviewed. In many cases the published clinical and radiological data were supplemented and re-evaluated. Mental retardation, usually severe, was present in all cases. Typical facies was observed in many; clinodactyly of the fifth finger was seen in nearly all. Radiological examination revealed abnormalities in the elbows and wrists in all the 19 personally evaluated cases, and other skeletal anomalies were very frequent. Cryptorchism is very common and absence of Leydig's cells may differentiate the XXXXY chromosome anomaly from polysomic variants of Klinefelter's syndrome. The relationship of this syndrome to Klinefelter's syndrome and to Down's syndrome is discussed. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 14Fig. 15 PMID:4222822
Cassini Camera Contamination Anomaly: Experiences and Lessons Learned
NASA Technical Reports Server (NTRS)
Haemmerle, Vance R.; Gerhard, James H.
2006-01-01
We discuss the contamination 'Haze' anomaly for the Cassini Narrow Angle Camera (NAC), one of two optical telescopes that comprise the Imaging Science Subsystem (ISS). Cassini is a Saturn Orbiter with a 4-year nominal mission. The incident occurred in 2001, five months after Jupiter encounter during the Cruise phase and ironically at the resumption of planned maintenance decontamination cycles. The degraded optical performance was first identified by the Instrument Operations Team with the first ISS Saturn imaging six weeks later. A distinct haze of varying size from image to image marred the images of Saturn. A photometric star calibration of the Pleiades, 4 days after the incident, showed stars with halos. Analysis showed that while the halo's intensity was only 1 - 2% of the intensity of the central peak of a star, the halo contained 30 - 70% of its integrated flux. This condition would impact science return. In a review of our experiences, we examine the contamination control plan, discuss the analysis of the limited data available and describe the one-year campaign to remove the haze from the camera. After several long conservative heating activities and interim analysis of their results, the contamination problem as measured by the camera's point spread function was essentially back to preanomaly size and at a point where there would be more risk to continue. We stress the importance of the flexibility of operations and instrument design, the need to do early infight instrument calibration and continual monitoring of instrument performance.
On-Orbit Performance and Calibration of the Soft X-Ray Telescope on Yohkoh
NASA Astrophysics Data System (ADS)
Acton, Loren W.
2016-02-01
This paper documents details of the on-orbit performance, data problem solving, and calibration of the Soft X-ray Telescope (SXT) experiment on Yohkoh. This information is important to a full understanding of the strengths and weaknesses of the SXT data set. The paper begins with summaries of SXT calibration issues and how they have been addressed, operational anomalies experienced during the mission, and a brief discussion of the SXT optical train. The following section on the accuracy of Yohkoh pointing determination provides information important for alignment of SXT images with each other and with other solar data. The remainder of the paper gives details of work by the experiment team to understand and ameliorate the many instrument anomalies and changes which impacted the scientific data.
Multicriteria Similarity-Based Anomaly Detection Using Pareto Depth Analysis.
Hsiao, Ko-Jen; Xu, Kevin S; Calder, Jeff; Hero, Alfred O
2016-06-01
We consider the problem of identifying patterns in a data set that exhibits anomalous behavior, often referred to as anomaly detection. Similarity-based anomaly detection algorithms detect abnormally large amounts of similarity or dissimilarity, e.g., as measured by the nearest neighbor Euclidean distances between a test sample and the training samples. In many application domains, there may not exist a single dissimilarity measure that captures all possible anomalous patterns. In such cases, multiple dissimilarity measures can be defined, including nonmetric measures, and one can test for anomalies by scalarizing using a nonnegative linear combination of them. If the relative importance of the different dissimilarity measures are not known in advance, as in many anomaly detection applications, the anomaly detection algorithm may need to be executed multiple times with different choices of weights in the linear combination. In this paper, we propose a method for similarity-based anomaly detection using a novel multicriteria dissimilarity measure, the Pareto depth. The proposed Pareto depth analysis (PDA) anomaly detection algorithm uses the concept of Pareto optimality to detect anomalies under multiple criteria without having to run an algorithm multiple times with different choices of weights. The proposed PDA approach is provably better than using linear combinations of the criteria, and shows superior performance on experiments with synthetic and real data sets. PMID:26336154
Quantum anomalies in dense matter
Son, D.T.; Zhitnitsky, Ariel R.
2004-10-01
We consider the effects of quantum anomalies involving the baryon current for high-density matter. In the effective Lagrangian, the anomaly terms describe the interaction of three light fields: the electromagnetic photons A{sub {mu}}, neutral light Nambu-Goldstone bosons ({pi}, {eta}, {eta}{sup '}), and the superfluid phonon. The anomaly induced interactions lead to a number of interesting phenomena which may have phenomenological consequences observable in neutron stars.
Discovering System Health Anomalies Using Data Mining Techniques
NASA Technical Reports Server (NTRS)
Sriastava, Ashok, N.
2005-01-01
We present a data mining framework for the analysis and discovery of anomalies in high-dimensional time series of sensor measurements that would be found in an Integrated System Health Monitoring system. We specifically treat the problem of discovering anomalous features in the time series that may be indicative of a system anomaly, or in the case of a manned system, an anomaly due to the human. Identification of these anomalies is crucial to building stable, reusable, and cost-efficient systems. The framework consists of an analysis platform and new algorithms that can scale to thousands of sensor streams to discovers temporal anomalies. We discuss the mathematical framework that underlies the system and also describe in detail how this framework is general enough to encompass both discrete and continuous sensor measurements. We also describe a new set of data mining algorithms based on kernel methods and hidden Markov models that allow for the rapid assimilation, analysis, and discovery of system anomalies. We then describe the performance of the system on a real-world problem in the aircraft domain where we analyze the cockpit data from aircraft as well as data from the aircraft propulsion, control, and guidance systems. These data are discrete and continuous sensor measurements and are dealt with seamlessly in order to discover anomalous flights. We conclude with recommendations that describe the tradeoffs in building an integrated scalable platform for robust anomaly detection in ISHM applications.
Martin-Hirsch, D P; Habashi, S; Hinton, A H; Kotecha, B
1992-01-01
Orbital cellulitis is an emergency. It may cause blindness and progress to life-threatening sequelae such as brain abscess, meningitis and cavernous sinus thrombosis. Successful management is dependent upon urgent referral and immediate treatment. Although isolated eyelid erythema and swelling usually indicate primary infection anterior to the orbital septum, they may also be the first signs of an underlying frontal or ethmoidal sinusitis. The condition always requires emergency referral to both an ophthalmologist and otorhinolaryngologist. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:1388488
Anomaly Detection in Dynamic Networks
Turcotte, Melissa
2014-10-14
Anomaly detection in dynamic communication networks has many important security applications. These networks can be extremely large and so detecting any changes in their structure can be computationally challenging; hence, computationally fast, parallelisable methods for monitoring the network are paramount. For this reason the methods presented here use independent node and edge based models to detect locally anomalous substructures within communication networks. As a first stage, the aim is to detect changes in the data streams arising from node or edge communications. Throughout the thesis simple, conjugate Bayesian models for counting processes are used to model these data streams. A second stage of analysis can then be performed on a much reduced subset of the network comprising nodes and edges which have been identified as potentially anomalous in the first stage. The first method assumes communications in a network arise from an inhomogeneous Poisson process with piecewise constant intensity. Anomaly detection is then treated as a changepoint problem on the intensities. The changepoint model is extended to incorporate seasonal behavior inherent in communication networks. This seasonal behavior is also viewed as a changepoint problem acting on a piecewise constant Poisson process. In a static time frame, inference is made on this extended model via a Gibbs sampling strategy. In a sequential time frame, where the data arrive as a stream, a novel, fast Sequential Monte Carlo (SMC) algorithm is introduced to sample from the sequence of posterior distributions of the change points over time. A second method is considered for monitoring communications in a large scale computer network. The usage patterns in these types of networks are very bursty in nature and don’t fit a Poisson process model. For tractable inference, discrete time models are considered, where the data are aggregated into discrete time periods and probability models are fitted to the
Windsor, Alanna; Clemmens, Clarice; Jacobs, Ian N
2016-01-01
A broad spectrum of congenital upper airway anomalies can occur as a result of errors during embryologic development. In this review, we will describe the clinical presentation, diagnosis, and management strategies for a few select, rare congenital malformations of this system. The diagnostic tools used in workup of these disorders range from prenatal tests to radiological imaging, swallowing evaluations, indirect or direct laryngoscopy, and rigid bronchoscopy. While these congenital defects can occur in isolation, they are often associated with disorders of other organ systems or may present as part of a syndrome. Therefore workup and treatment planning for patients with these disorders often involves a team of multiple specialists, including paediatricians, otolaryngologists, pulmonologists, speech pathologists, gastroenterologists, and geneticists. PMID:26277452
Genetics of lymphatic anomalies
Brouillard, Pascal; Boon, Laurence; Vikkula, Miikka
2014-01-01
Lymphatic anomalies include a variety of developmental and/or functional defects affecting the lymphatic vessels: sporadic and familial forms of primary lymphedema, secondary lymphedema, chylothorax and chylous ascites, lymphatic malformations, and overgrowth syndromes with a lymphatic component. Germline mutations have been identified in at least 20 genes that encode proteins acting around VEGFR-3 signaling but also downstream of other tyrosine kinase receptors. These mutations exert their effects via the RAS/MAPK and the PI3K/AKT pathways and explain more than a quarter of the incidence of primary lymphedema, mostly of inherited forms. More common forms may also result from multigenic effects or post-zygotic mutations. Most of the corresponding murine knockouts are homozygous lethal, while heterozygotes are healthy, which suggests differences in human and murine physiology and the influence of other factors. PMID:24590274
Relic vector field and CMB large scale anomalies
Chen, Xingang; Wang, Yi E-mail: yw366@cam.ac.uk
2014-10-01
We study the most general effects of relic vector fields on the inflationary background and density perturbations. Such effects are observable if the number of inflationary e-folds is close to the minimum requirement to solve the horizon problem. We show that this can potentially explain two CMB large scale anomalies: the quadrupole-octopole alignment and the quadrupole power suppression. We discuss its effect on the parity anomaly. We also provide analytical template for more detailed data comparison.
Pieper, S.C.; Wiringa, R.B.
1995-08-01
The Argonne v{sub 18} potential contains a detailed treatment of the pp, pn and nn electromagnetic potential, including Coulomb, vacuum polarization, Darwin Foldy and magnetic moment terms, all with suitable form factors and was fit to pp and pn data using the appropriate nuclear masses. In addition, it contains a nuclear charge-symmetry breaking (CSB) term adjusted to reproduce the difference in the experimental pp and nn scattering lengths. We have used these potential terms to compute differences in the binding energies of mirror isospin-1/2 nuclei (Nolen-Schiffer [NS] anomaly). Variational Monte Carlo calculations for the {sup 3}He-{sup 3}H system and cluster variational Monte Carlo for the {sup 15}O-{sup 15}N and {sup 17}F-{sup 17}O systems were made. In the first case, the best variational wave function for the A = 3 nuclei was used. However, because our {sup 16}O wave function does not reproduce accurately the {sup 16}O rms radius, to which the NS anomaly is very sensitive, we adjusted the A = 15 and A = 17 wave functions to reproduce the experimental density profiles. Our computed energy differences for these three systems are 0.757 {plus_minus} .001, 3.544 {plus_minus} .018 and 3.458 {plus_minus} .040 MeV respectively, which are to be compared with the experimental differences of 0.764, 3.537, and 3.544 MeV. Most of the theoretical uncertainties are due to uncertainties in the experimental rms radii. The nuclear CSB potential contributes 0.066, 0.188, and 0.090 MeV to these totals. We also attempted calculations for A = 39 and A = 41. However, in these cases, the experimental uncertainties in the rms radius make it impossible to extract useful information about the contribution of the nuclear CSB potential.
Seismic data fusion anomaly detection
NASA Astrophysics Data System (ADS)
Harrity, Kyle; Blasch, Erik; Alford, Mark; Ezekiel, Soundararajan; Ferris, David
2014-06-01
Detecting anomalies in non-stationary signals has valuable applications in many fields including medicine and meteorology. These include uses such as identifying possible heart conditions from an Electrocardiography (ECG) signals or predicting earthquakes via seismographic data. Over the many choices of anomaly detection algorithms, it is important to compare possible methods. In this paper, we examine and compare two approaches to anomaly detection and see how data fusion methods may improve performance. The first approach involves using an artificial neural network (ANN) to detect anomalies in a wavelet de-noised signal. The other method uses a perspective neural network (PNN) to analyze an arbitrary number of "perspectives" or transformations of the observed signal for anomalies. Possible perspectives may include wavelet de-noising, Fourier transform, peak-filtering, etc.. In order to evaluate these techniques via signal fusion metrics, we must apply signal preprocessing techniques such as de-noising methods to the original signal and then use a neural network to find anomalies in the generated signal. From this secondary result it is possible to use data fusion techniques that can be evaluated via existing data fusion metrics for single and multiple perspectives. The result will show which anomaly detection method, according to the metrics, is better suited overall for anomaly detection applications. The method used in this study could be applied to compare other signal processing algorithms.
Spectral anomaly detection in deep shadows.
Kanaev, Andrey V; Murray-Krezan, Jeremy
2010-03-20
Although several hyperspectral anomaly detection algorithms have proven useful when illumination conditions provide for enough light, many of these same detection algorithms fail to perform well when shadows are also present. To date, no general approach to the problem has been demonstrated. In this paper, a novel hyperspectral anomaly detection algorithm that adapts the dimensionality of the spectral detection subspace to multiple illumination levels is described. The novel detection algorithm is applied to reflectance domain hyperspectral data that represents a variety of illumination conditions: well illuminated and poorly illuminated (i.e., shadowed). Detection results obtained for objects located in deep shadows and light-shadow transition areas suggest superiority of the novel algorithm over standard subspace RX detection. PMID:20300158
Mars Geoscience Orbiter and Lunar Geoscience Orbiter
NASA Technical Reports Server (NTRS)
Fuldner, W. V.; Kaskiewicz, P. F.
1983-01-01
The feasibility of using the AE/DE Earth orbiting spacecraft design for the LGO and/or MGO missions was determined. Configurations were developed and subsystems analysis was carried out to optimize the suitability of the spacecraft to the missions. The primary conclusion is that the basic AE/DE spacecraft can readily be applied to the LGO mission with relatively minor, low risk modifications. The MGO mission poses a somewhat more complex problem, primarily due to the overall maneuvering hydrazine budget and power requirements of the sensors and their desired duty cycle. These considerations dictate a modification (scaling up) of the structure to support mission requirements.
Congenital Anomalies of the Nose.
Funamura, Jamie L; Tollefson, Travis T
2016-04-01
Congenital anomalies of the nose range from complete aplasia of the nose to duplications and nasal masses. Nasal development is the result of a complex embryologic patterning and fusion of multiple primordial structures. Loss of signaling proteins or failure of migration or proliferation can result in structural anomalies with significant cosmetic and functional consequences. Congenital anomalies of the nose can be categorized into four broad categories: (1) aplastic or hypoplastic, (2) hyperplastic or duplications, (3) clefts, and (4) nasal masses. Our knowledge of the embryologic origin of these anomalies helps dictate subsequent work-up for associated conditions, and the appropriate treatment or surgical approach to manage newborns and children with these anomalies. PMID:27097134
Medical management of vascular anomalies.
Trenor, Cameron C
2016-03-01
We have entered an exciting era in the care of patients with vascular anomalies. These disorders require multidisciplinary care and coordination and dedicated centers have emerged to address this need. Vascular tumors have been treated with medical therapies for many years, while malformations have been historically treated with endovascular and operative procedures. The recent serendipitous discoveries of propranolol and sirolimus for vascular anomalies have revolutionized this field. In particular, sirolimus responses are challenging the dogma that vascular malformations are not biologically active. While initially explored for lymphatic anomalies, sirolimus is now being used broadly throughout the spectrum of vascular anomalies. Whether medical therapies are reserved for refractory patients or used first line is currently dependent on the experience and availability of alternative therapies at each institution. On the horizon, we anticipate new drugs targeting genes and pathways involved in vascular anomalies to be developed. Also, combinations of medications and protocols combining medical and procedural approaches are in development for refractory patients. PMID:27607327
System for closure of a physical anomaly
Bearinger, Jane P; Maitland, Duncan J; Schumann, Daniel L; Wilson, Thomas S
2014-11-11
Systems for closure of a physical anomaly. Closure is accomplished by a closure body with an exterior surface. The exterior surface contacts the opening of the anomaly and closes the anomaly. The closure body has a primary shape for closing the anomaly and a secondary shape for being positioned in the physical anomaly. The closure body preferably comprises a shape memory polymer.
Operational Implementation of Mars Express Orbit and Attitude Control
NASA Astrophysics Data System (ADS)
Companys, V.; Keil, J.; Rivero, E.; Mueller, M.; de La Fuente, S.; Perez, P.
On June 2nd 2003 the Mars Express spacecraft was put onto Earth escape orbit by a Soyuz rocket. Following ascend trajectory and separation from the rocket ESOC took control of the S/C. Initial attitude acquisition and solar array deployment performed nominally, leading to convergence in Sun pointing mode. The S/C established 3-axis stabilisation based on star tracker measurements and performed successfully a series of autonomous slews to direct the high gain antenna towards the Earth, thus reaching the default attitude guidance for cruise. However star tracker measurements, which had been nominally interrupted during the slews, were not recovered. Soon after, a surveillance on the inertial measurement package triggered a transition to safe mode. A challenging trip towards Mars had started. During the cruise of Mars Express the ground segment and in particular the Flight Dynamics team had to master several problems. Some of those were originated by S/C anomalies. In other occasions, as for the October solar flare event, the problem was of natural cause. Payload commissioning activities (e.g. MELACOM antenna beam characterisation, instrument calibration) involving highly tailored attitude profiles were supported during cruise. Also platform characterisation (e.g. High Gain Antenna pointing calibration, Main Engine calibration) and S/C troubleshooting (e.g. star tracker sky scans) required attitude control strategies of high complexity. Several orbit manoeuvres were executed during cruise. The spacecraft was put in collision course 50 days prior to arrival to Mars. On December 16th an accurate manoeuvre was performed to fine tune the trajectory for the release of the landing probe Beagle-2, which took place on Dec 19th . The day after lander ejection, a deflection manoeuvre put the S/C onto its final Mars arrival hyperbola. On December 25th Mars Express performed a perfect insertion manoeuvre with the 400N main engine that led to capture into Mars orbit. Eleven
Viable Supersymmetry and Leptogenesis with Anomaly Mediation
Ibe, Masahiro; Kitano, Ryuichiro; Murayama, Hitoshi; Yanagida, Tsutomu
2005-01-13
The seesaw mechanism that explains the small neutrino masses comes naturally with supersymmetric (SUSY) grand unification and leptogenesis. However, the framework suffers from the SUSY flavor and CP problems, and has a severe cosmological gravitino problem. We propose anomaly mediation as a simple solution to all these problems, which is viable once supplemented by the D-terms for U(1)_Y and U(1)_B-L. Even though the right-handed neutrino mass explicitly breaks U(1)_B-L and hence reintroduces the flavor problem, we show that it lacks the logarithmic enhancement and poses no threat to the framework. The thermal leptogenesis is then made easily consistent with the gravitino constraint.
Abundance anomalies in tidal disruption events
NASA Astrophysics Data System (ADS)
Kochanek, C. S.
2016-05-01
The ˜10 per cent of tidal disruption events (TDEs) due to stars more massive than M* ≳ M⊙ should show abundance anomalies due to stellar evolution in helium, carbon and nitrogen, but not oxygen. Helium is always enhanced, but only by up to ˜25 per cent on average because it becomes inaccessible once it is sequestered in the high-density core as the star leaves the main sequence. However, portions of the debris associated with the disrupted core of a main-sequence star can be enhanced in helium by factors of 2-3 for debris at a common orbital period. These helium abundance variations may be a contributor to the observed diversity of hydrogen and helium line strengths in TDEs. A still more striking anomaly is the rapid enhancement of nitrogen and the depletion of carbon due to the CNO cycle - stars with M* ≳ M⊙ quickly show an increase in their average N/C ratio by factors of 3-10. Because low-mass stars evolve slowly and high-mass stars are rare, TDEs showing high N/C will almost all be due to ˜1-2 M⊙ stars disrupted on the main sequence. Like helium, portions of the debris will show still larger changes in C and N, and the anomalies decline as the star leaves the main sequence. The enhanced [N/C] abundance ratio of these TDEs provides the first natural explanation for the rare, nitrogen-rich quasars and may also explain the strong nitrogen emission seen in ultraviolet spectra of ASASSN-14li.
Echography - eye orbit; Ultrasound - eye orbit; Ocular ultrasonography; Orbital ultrasonography ... ophthalmology department of a hospital or clinic. Your eye is numbed with medicine (anesthetic drops). The ultrasound ...
NASA Astrophysics Data System (ADS)
Zamaro, Mattia; Biggs, James D.
2014-12-01
The orbital dynamics around the Libration points of the classical circular restricted three-body problem (CR3BP) have been investigated in detail: in the last few decades, dynamical systems theory has provided invaluable analytical and numerical tools for understanding the dynamics of Libration Point Orbits (LPOs). The aim of this paper is to extend the model of the CR3BP to derive the LPOs in the vicinity of the Martian moon Phobos, which is becoming an appealing destination for scientific missions. The case of Phobos is particularly extreme, since the combination of both small mass-ratio and length-scale moves the collinear Libration manifold close to the moon's surface. Thus, a model of this system must consider additional dynamical perturbations, in particular the complete gravity field of Phobos, which is highly-inhomogeneous. This is accomplished using a spherical harmonics series expansion, deriving an enhanced elliptic three-body model. In this paper, we show how methodologies from dynamical systems theory are applied in differential correction continuation schemes to this proposed nonlinear model of the dynamics near Phobos, to derive the structure of the dynamical substitutes of the LPOs in this new system. Results obtained show that the structure of the LPOs differs substantially from the classical case without harmonics. The proposed methodology allows us to identify natural periodic and quasi-periodic orbits that would provide unique low-cost opportunities for close-range observations around Phobos and high-performance landing/take-off pathways to and from Phobos' surface, which could be exploited in upcoming missions targeting the exploration of this Martian moon.
Reliability of CHAMP Anomaly Continuations
NASA Technical Reports Server (NTRS)
vonFrese, Ralph R. B.; Kim, Hyung Rae; Taylor, Patrick T.; Asgharzadeh, Mohammad F.
2003-01-01
CHAMP is recording state-of-the-art magnetic and gravity field observations at altitudes ranging over roughly 300 - 550 km. However, anomaly continuation is severely limited by the non-uniqueness of the process and satellite anomaly errors. Indeed, our numerical anomaly simulations from satellite to airborne altitudes show that effective downward continuations of the CHAMP data are restricted to within approximately 50 km of the observation altitudes while upward continuations can be effective over a somewhat larger altitude range. The great unreliability of downward continuation requires that the satellite geopotential observations must be analyzed at satellite altitudes if the anomaly details are to be exploited most fully. Given current anomaly error levels, joint inversion of satellite and near- surface anomalies is the best approach for implementing satellite geopotential observations for subsurface studies. We demonstrate the power of this approach using a crustal model constrained by joint inversions of near-surface and satellite magnetic and gravity observations for Maude Rise, Antarctica, in the southwestern Indian Ocean. Our modeling suggests that the dominant satellite altitude magnetic anomalies are produced by crustal thickness variations and remanent magnetization of the normal polarity Cretaceous Quiet Zone.
NASA Technical Reports Server (NTRS)
Welsh, David; Denham, Samuel; Allen, Christopher
2011-01-01
In many cases, an initial symptom of hardware malfunction is unusual or unexpected acoustic noise. Many industries such as automotive, heating and air conditioning, and petro-chemical processing use noise and vibration data along with rotating machinery analysis techniques to identify noise sources and correct hardware defects. The NASA/Johnson Space Center Acoustics Office monitors the acoustic environment of the International Space Station (ISS) through periodic sound level measurement surveys. Trending of the sound level measurement survey results can identify in-flight hardware anomalies. The crew of the ISS also serves as a "detection tool" in identifying unusual hardware noises; in these cases the spectral analysis of audio recordings made on orbit can be used to identify hardware defects that are related to rotating components such as fans, pumps, and compressors. In this paper, three examples of the use of sound level measurements and audio recordings for the diagnosis of in-flight hardware anomalies are discussed: identification of blocked inter-module ventilation (IMV) ducts, diagnosis of abnormal ISS Crew Quarters rack exhaust fan noise, and the identification and replacement of a defective flywheel assembly in the Treadmill with Vibration Isolation (TVIS) hardware. In each of these examples, crew time was saved by identifying the off nominal component or condition that existed and in directing in-flight maintenance activities to address and correct each of these problems.