Science.gov

Sample records for order discrete event

  1. A discrete event method for wave simulation

    SciTech Connect

    Nutaro, James J

    2006-01-01

    This article describes a discrete event interpretation of the finite difference time domain (FDTD) and digital wave guide network (DWN) wave simulation schemes. The discrete event method is formalized using the discrete event system specification (DEVS). The scheme is shown to have errors that are proportional to the resolution of the spatial grid. A numerical example demonstrates the relative efficiency of the scheme with respect to FDTD and DWN schemes. The potential for the discrete event scheme to reduce numerical dispersion and attenuation errors is discussed.

  2. Discrete events and solar wind energization

    NASA Technical Reports Server (NTRS)

    Yang, W.-H.; Schunk, R. W.

    1989-01-01

    Based on a multiple-magnetic-reconnection picture, an estimation of the energy flux suggests that small-scale EUV exploding events may contribute a significant amount of energy (of order of 100,000 erg/sq cm sec) to solar atmospheric heating and solar-wind acceleration. Most of the dissipated magnetic energy is converted into thermal energy and plasma turbulence. On a related aspect, a numerical study based on the nonlinear one-fluid hydrodynamic equations shows a self-smoothing effect, whereby a multistream structure of the solar wind formed near the sun can be gradually smoothed during its propagation through interplanetary space. This calculation gives support for the possible contribution of discrete energetic events to high-speed solar wind streams.

  3. Discrete Fractional Diffusion Equation of Chaotic Order

    NASA Astrophysics Data System (ADS)

    Wu, Guo-Cheng; Baleanu, Dumitru; Xie, He-Ping; Zeng, Sheng-Da

    Discrete fractional calculus is suggested in diffusion modeling in porous media. A variable-order fractional diffusion equation is proposed on discrete time scales. A function of the variable order is constructed by a chaotic map. The model shows some new random behaviors in comparison with other variable-order cases.

  4. Running Parallel Discrete Event Simulators on Sierra

    SciTech Connect

    Barnes, P. D.; Jefferson, D. R.

    2015-12-03

    In this proposal we consider porting the ROSS/Charm++ simulator and the discrete event models that run under its control so that they run on the Sierra architecture and make efficient use of the Volta GPUs.

  5. Terminal Dynamics Approach to Discrete Event Systems

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Meyers, Ronald

    1995-01-01

    This paper presents and discusses a mathematical formalism for simulation of discrete event dynamic (DED)-a special type of 'man-made' systems to serve specific purposes of information processing. The main objective of this work is to demonstrate that the mathematical formalism for DED can be based upon a terminal model of Newtonian dynamics which allows one to relax Lipschitz conditions at some discrete points.!.

  6. An algebra of discrete event processes

    NASA Technical Reports Server (NTRS)

    Heymann, Michael; Meyer, George

    1991-01-01

    This report deals with an algebraic framework for modeling and control of discrete event processes. The report consists of two parts. The first part is introductory, and consists of a tutorial survey of the theory of concurrency in the spirit of Hoare's CSP, and an examination of the suitability of such an algebraic framework for dealing with various aspects of discrete event control. To this end a new concurrency operator is introduced and it is shown how the resulting framework can be applied. It is further shown that a suitable theory that deals with the new concurrency operator must be developed. In the second part of the report the formal algebra of discrete event control is developed. At the present time the second part of the report is still an incomplete and occasionally tentative working paper.

  7. Analysis hierarchical model for discrete event systems

    NASA Astrophysics Data System (ADS)

    Ciortea, E. M.

    2015-11-01

    The This paper presents the hierarchical model based on discrete event network for robotic systems. Based on the hierarchical approach, Petri network is analysed as a network of the highest conceptual level and the lowest level of local control. For modelling and control of complex robotic systems using extended Petri nets. Such a system is structured, controlled and analysed in this paper by using Visual Object Net ++ package that is relatively simple and easy to use, and the results are shown as representations easy to interpret. The hierarchical structure of the robotic system is implemented on computers analysed using specialized programs. Implementation of hierarchical model discrete event systems, as a real-time operating system on a computer network connected via a serial bus is possible, where each computer is dedicated to local and Petri model of a subsystem global robotic system. Since Petri models are simplified to apply general computers, analysis, modelling, complex manufacturing systems control can be achieved using Petri nets. Discrete event systems is a pragmatic tool for modelling industrial systems. For system modelling using Petri nets because we have our system where discrete event. To highlight the auxiliary time Petri model using transport stream divided into hierarchical levels and sections are analysed successively. Proposed robotic system simulation using timed Petri, offers the opportunity to view the robotic time. Application of goods or robotic and transmission times obtained by measuring spot is obtained graphics showing the average time for transport activity, using the parameters sets of finished products. individually.

  8. Discrete Events as Units of Perceived Time

    ERIC Educational Resources Information Center

    Liverence, Brandon M.; Scholl, Brian J.

    2012-01-01

    In visual images, we perceive both space (as a continuous visual medium) and objects (that inhabit space). Similarly, in dynamic visual experience, we perceive both continuous time and discrete events. What is the relationship between these units of experience? The most intuitive answer may be similar to the spatial case: time is perceived as an…

  9. Multiple Autonomous Discrete Event Controllers for Constellations

    NASA Technical Reports Server (NTRS)

    Esposito, Timothy C.

    2003-01-01

    The Multiple Autonomous Discrete Event Controllers for Constellations (MADECC) project is an effort within the National Aeronautics and Space Administration Goddard Space Flight Center's (NASA/GSFC) Information Systems Division to develop autonomous positioning and attitude control for constellation satellites. It will be accomplished using traditional control theory and advanced coordination algorithms developed by the Johns Hopkins University Applied Physics Laboratory (JHU/APL). This capability will be demonstrated in the discrete event control test-bed located at JHU/APL. This project will be modeled for the Leonardo constellation mission, but is intended to be adaptable to any constellation mission. To develop a common software architecture. the controllers will only model very high-level responses. For instance, after determining that a maneuver must be made. the MADECC system will output B (Delta)V (velocity change) value. Lower level systems must then decide which thrusters to fire and for how long to achieve that (Delta)V.

  10. An adaptive synchronization protocol for parallel discrete event simulation

    SciTech Connect

    Bisset, K.R.

    1998-12-01

    Simulation, especially discrete event simulation (DES), is used in a variety of disciplines where numerical methods are difficult or impossible to apply. One problem with this method is that a sufficiently detailed simulation may take hours or days to execute, and multiple runs may be needed in order to generate the desired results. Parallel discrete event simulation (PDES) has been explored for many years as a method to decrease the time taken to execute a simulation. Many protocols have been developed which work well for particular types of simulations, but perform poorly when used for other types of simulations. Often it is difficult to know a priori whether a particular protocol is appropriate for a given problem. In this work, an adaptive synchronization method (ASM) is developed which works well on an entire spectrum of problems. The ASM determines, using an artificial neural network (ANN), the likelihood that a particular event is safe to process.

  11. LAN attack detection using Discrete Event Systems.

    PubMed

    Hubballi, Neminath; Biswas, Santosh; Roopa, S; Ratti, Ritesh; Nandi, Sukumar

    2011-01-01

    Address Resolution Protocol (ARP) is used for determining the link layer or Medium Access Control (MAC) address of a network host, given its Internet Layer (IP) or Network Layer address. ARP is a stateless protocol and any IP-MAC pairing sent by a host is accepted without verification. This weakness in the ARP may be exploited by malicious hosts in a Local Area Network (LAN) by spoofing IP-MAC pairs. Several schemes have been proposed in the literature to circumvent these attacks; however, these techniques either make IP-MAC pairing static, modify the existing ARP, patch operating systems of all the hosts etc. In this paper we propose a Discrete Event System (DES) approach for Intrusion Detection System (IDS) for LAN specific attacks which do not require any extra constraint like static IP-MAC, changing the ARP etc. A DES model is built for the LAN under both a normal and compromised (i.e., spoofed request/response) situation based on the sequences of ARP related packets. Sequences of ARP events in normal and spoofed scenarios are similar thereby rendering the same DES models for both the cases. To create different ARP events under normal and spoofed conditions the proposed technique uses active ARP probing. However, this probing adds extra ARP traffic in the LAN. Following that a DES detector is built to determine from observed ARP related events, whether the LAN is operating under a normal or compromised situation. The scheme also minimizes extra ARP traffic by probing the source IP-MAC pair of only those ARP packets which are yet to be determined as genuine/spoofed by the detector. Also, spoofed IP-MAC pairs determined by the detector are stored in tables to detect other LAN attacks triggered by spoofing namely, man-in-the-middle (MiTM), denial of service etc. The scheme is successfully validated in a test bed. PMID:20804980

  12. HODIF:High-Order Discretizations, Interpolations and

    SciTech Connect

    Kennedy, Christopher A.; Carpenter, Mark H.; Ray, Jaideen

    2006-06-20

    This software, a library, contains FORTRAN77 subroutines to calculate first and second derivatives up to 8th order, interpolations (1D and 2D) up to 10th order and filters up to 14th order. Only even orders are addressed and finite-difference stencils are implemented on a vertex-centered mesh. The primary aim of this library is to be used in block-structured adaptive mesh simulations where high order is desired. The interpolants in this library are essentially designed to do prolongations and restrictions between levels of rfinement - however, they assume that the refinement ratio is 2. The filters are provided to remove high wavenumber content from solutions in case Runge phenomenon occurs - a common occurrence in case of marginal resolution of the solution. Details of the derivation and use are to be found in "Using high-order methods on adaptively refined block-structured meshes - discretizations, interpolations and filters", by J. Ray, C.A. Kennedy, S. Lefantzi and H.N. Najm, Sandia Technical Report, SAND2005-7981. The software comes with a User's Guide and examples how to use it.

  13. HODIF:High-Order Discretizations, Interpolations and

    Energy Science and Technology Software Center (ESTSC)

    2006-06-20

    This software, a library, contains FORTRAN77 subroutines to calculate first and second derivatives up to 8th order, interpolations (1D and 2D) up to 10th order and filters up to 14th order. Only even orders are addressed and finite-difference stencils are implemented on a vertex-centered mesh. The primary aim of this library is to be used in block-structured adaptive mesh simulations where high order is desired. The interpolants in this library are essentially designed to domore » prolongations and restrictions between levels of rfinement - however, they assume that the refinement ratio is 2. The filters are provided to remove high wavenumber content from solutions in case Runge phenomenon occurs - a common occurrence in case of marginal resolution of the solution. Details of the derivation and use are to be found in "Using high-order methods on adaptively refined block-structured meshes - discretizations, interpolations and filters", by J. Ray, C.A. Kennedy, S. Lefantzi and H.N. Najm, Sandia Technical Report, SAND2005-7981. The software comes with a User's Guide and examples how to use it.« less

  14. Distributed discrete event simulation. Final report

    SciTech Connect

    De Vries, R.C.

    1988-02-01

    The presentation given here is restricted to discrete event simulation. The complexity of and time required for many present and potential discrete simulations exceeds the reasonable capacity of most present serial computers. The desire, then, is to implement the simulations on a parallel machine. However, certain problems arise in an effort to program the simulation on a parallel machine. In one category of methods deadlock care arise and some method is required to either detect deadlock and recover from it or to avoid deadlock through information passing. In the second category of methods, potentially incorrect simulations are allowed to proceed. If the situation is later determined to be incorrect, recovery from the error must be initiated. In either case, computation and information passing are required which would not be required in a serial implementation. The net effect is that the parallel simulation may not be much better than a serial simulation. In an effort to determine alternate approaches, important papers in the area were reviewed. As a part of that review process, each of the papers was summarized. The summary of each paper is presented in this report in the hopes that those doing future work in the area will be able to gain insight that might not otherwise be available, and to aid in deciding which papers would be most beneficial to pursue in more detail. The papers are broken down into categories and then by author. Conclusions reached after examining the papers and other material, such as direct talks with an author, are presented in the last section. Also presented there are some ideas that surfaced late in the research effort. These promise to be of some benefit in limiting information which must be passed between processes and in better understanding the structure of a distributed simulation. Pursuit of these ideas seems appropriate.

  15. Transequatorial propagation through equatorial plasma bubbles - Discrete events

    NASA Astrophysics Data System (ADS)

    Heron, M. L.

    1980-08-01

    The discrete nature of VHF transequatorial propagation path openings is pointed out. These events are shown to be consistent with the concept of guided propagation inside equatorial plasma bubbles. The important prediction of this work is that observations on discrete transequatorial VHF links may be used to track the production and development of equatorial plasma bubbles.

  16. Non-Lipschitz Dynamics Approach to Discrete Event Systems

    NASA Technical Reports Server (NTRS)

    Zak, M.; Meyers, R.

    1995-01-01

    This paper presents and discusses a mathematical formalism for simulation of discrete event dynamics (DED) - a special type of 'man- made' system designed to aid specific areas of information processing. A main objective is to demonstrate that the mathematical formalism for DED can be based upon the terminal model of Newtonian dynamics which allows one to relax Lipschitz conditions at some discrete points.

  17. Safety Discrete Event Models for Holonic Cyclic Manufacturing Systems

    NASA Astrophysics Data System (ADS)

    Ciufudean, Calin; Filote, Constantin

    In this paper the expression “holonic cyclic manufacturing systems” refers to complex assembly/disassembly systems or fork/join systems, kanban systems, and in general, to any discrete event system that transforms raw material and/or components into products. Such a system is said to be cyclic if it provides the same sequence of products indefinitely. This paper considers the scheduling of holonic cyclic manufacturing systems and describes a new approach using Petri nets formalism. We propose an approach to frame the optimum schedule of holonic cyclic manufacturing systems in order to maximize the throughput while minimize the work in process. We also propose an algorithm to verify the optimum schedule.

  18. Parallel discrete-event simulation of FCFS stochastic queueing networks

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1988-01-01

    Physical systems are inherently parallel. Intuition suggests that simulations of these systems may be amenable to parallel execution. The parallel execution of a discrete-event simulation requires careful synchronization of processes in order to ensure the execution's correctness; this synchronization can degrade performance. Largely negative results were recently reported in a study which used a well-known synchronization method on queueing network simulations. Discussed here is a synchronization method (appointments), which has proven itself to be effective on simulations of FCFS queueing networks. The key concept behind appointments is the provision of lookahead. Lookahead is a prediction on a processor's future behavior, based on an analysis of the processor's simulation state. It is shown how lookahead can be computed for FCFS queueing network simulations, give performance data that demonstrates the method's effectiveness under moderate to heavy loads, and discuss performance tradeoffs between the quality of lookahead, and the cost of computing lookahead.

  19. Temporal Trends of Discrete Extreme Events - A Case Study

    NASA Astrophysics Data System (ADS)

    Rahmat, S. N.; Jayasuriya, N.; Bhuiyan, M.; Adnan, M. S.

    2016-07-01

    Investigating trends in discrete events is essential for the study of changing patterns of extreme events. Temporal trends in the inter-arrival times of occurrence of drought events were examined for 21 selected stations across Victoria, Australia. In the present study, the Standardize Precipitation Index (SPI) was applied for 12-month time scale to identify drought. A drought event here is defined as a period in which the SPI is continuously negative and reaching a value of -1.0 or less. Often, nonparametric tests are commonly used to test for trends including in discrete events. However, discrete events are not constant because of the presence of zero values or non-normality of data. The methodology applies to long-term records of event counts and is based on the stochastic concepts of Poisson process and standard linear regression. Overall, of the 21 stations, 15 showed statistically significant increasing frequency indicates those events are becoming more frequent. Only one station gave insignificant result. The remaining 5 stations showed the time between events was significantly increasing designates droughts are becoming less frequent.

  20. Hierarchical Discrete Event Supervisory Control of Aircraft Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Yasar, Murat; Tolani, Devendra; Ray, Asok; Shah, Neerav; Litt, Jonathan S.

    2004-01-01

    This paper presents a hierarchical application of Discrete Event Supervisory (DES) control theory for intelligent decision and control of a twin-engine aircraft propulsion system. A dual layer hierarchical DES controller is designed to supervise and coordinate the operation of two engines of the propulsion system. The two engines are individually controlled to achieve enhanced performance and reliability, necessary for fulfilling the mission objectives. Each engine is operated under a continuously varying control system that maintains the specified performance and a local discrete-event supervisor for condition monitoring and life extending control. A global upper level DES controller is designed for load balancing and overall health management of the propulsion system.

  1. Optimization of Operations Resources via Discrete Event Simulation Modeling

    NASA Technical Reports Server (NTRS)

    Joshi, B.; Morris, D.; White, N.; Unal, R.

    1996-01-01

    The resource levels required for operation and support of reusable launch vehicles are typically defined through discrete event simulation modeling. Minimizing these resources constitutes an optimization problem involving discrete variables and simulation. Conventional approaches to solve such optimization problems involving integer valued decision variables are the pattern search and statistical methods. However, in a simulation environment that is characterized by search spaces of unknown topology and stochastic measures, these optimization approaches often prove inadequate. In this paper, we have explored the applicability of genetic algorithms to the simulation domain. Genetic algorithms provide a robust search strategy that does not require continuity and differentiability of the problem domain. The genetic algorithm successfully minimized the operation and support activities for a space vehicle, through a discrete event simulation model. The practical issues associated with simulation optimization, such as stochastic variables and constraints, were also taken into consideration.

  2. Discretely Integrated Condition Event (DICE) Simulation for Pharmacoeconomics.

    PubMed

    Caro, J Jaime

    2016-07-01

    Several decision-analytic modeling techniques are in use for pharmacoeconomic analyses. Discretely integrated condition event (DICE) simulation is proposed as a unifying approach that has been deliberately designed to meet the modeling requirements in a straightforward transparent way, without forcing assumptions (e.g., only one transition per cycle) or unnecessary complexity. At the core of DICE are conditions that represent aspects that persist over time. They have levels that can change and many may coexist. Events reflect instantaneous occurrences that may modify some conditions or the timing of other events. The conditions are discretely integrated with events by updating their levels at those times. Profiles of determinant values allow for differences among patients in the predictors of the disease course. Any number of valuations (e.g., utility, cost, willingness-to-pay) of conditions and events can be applied concurrently in a single run. A DICE model is conveniently specified in a series of tables that follow a consistent format and the simulation can be implemented fully in MS Excel, facilitating review and validation. DICE incorporates both state-transition (Markov) models and non-resource-constrained discrete event simulation in a single formulation; it can be executed as a cohort or a microsimulation; and deterministically or stochastically. PMID:26961779

  3. Synchronous parallel system for emulation and discrete event simulation

    NASA Technical Reports Server (NTRS)

    Steinman, Jeffrey S. (Inventor)

    1992-01-01

    A synchronous parallel system for emulation and discrete event simulation having parallel nodes responds to received messages at each node by generating event objects having individual time stamps, stores only the changes to state variables of the simulation object attributable to the event object, and produces corresponding messages. The system refrains from transmitting the messages and changing the state variables while it determines whether the changes are superseded, and then stores the unchanged state variables in the event object for later restoral to the simulation object if called for. This determination preferably includes sensing the time stamp of each new event object and determining which new event object has the earliest time stamp as the local event horizon, determining the earliest local event horizon of the nodes as the global event horizon, and ignoring the events whose time stamps are less than the global event horizon. Host processing between the system and external terminals enables such a terminal to query, monitor, command or participate with a simulation object during the simulation process.

  4. A discrete-time Multiple Event Process Survival Mixture (MEPSUM) model.

    PubMed

    Dean, Danielle O; Bauer, Daniel J; Shanahan, Michael J

    2014-06-01

    Traditional survival analysis was developed to investigate the occurrence and timing of a single event, but researchers have recently begun to ask questions about the order and timing of multiple events. A multiple event process survival mixture model is developed here to analyze nonrepeatable events measured in discrete-time that may occur at the same point in time. Building on both traditional univariate survival analysis and univariate survival mixture analysis, the model approximates the underlying multivariate distribution of hazard functions via a discrete-point finite mixture in which the mixing components represent prototypical patterns of event occurrence. The model is applied in an empirical analysis concerning transitions to adulthood, where the events under study include parenthood, marriage, beginning full-time work, and obtaining a college degree. Promising opportunities, as well as possible limitations of the model and future directions for research, are discussed. PMID:24079930

  5. Optimal Discrete Event Supervisory Control of Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan (Technical Monitor); Ray, Asok

    2004-01-01

    This report presents an application of the recently developed theory of optimal Discrete Event Supervisory (DES) control that is based on a signed real measure of regular languages. The DES control techniques are validated on an aircraft gas turbine engine simulation test bed. The test bed is implemented on a networked computer system in which two computers operate in the client-server mode. Several DES controllers have been tested for engine performance and reliability.

  6. Approximate Schur complement preconditioning of the lowest order nodal discretizations

    SciTech Connect

    Moulton, J.D.; Ascher, U.M.; Morel, J.E.

    1996-12-31

    Particular classes of nodal methods and mixed hybrid finite element methods lead to equivalent, robust and accurate discretizations of 2nd order elliptic PDEs. However, widespread popularity of these discretizations has been hindered by the awkward linear systems which result. The present work exploits this awkwardness, which provides a natural partitioning of the linear system, by defining two optimal preconditioners based on approximate Schur complements. Central to the optimal performance of these preconditioners is their sparsity structure which is compatible with Dendy`s black box multigrid code.

  7. Parallel discrete event simulation: A shared memory approach

    NASA Technical Reports Server (NTRS)

    Reed, Daniel A.; Malony, Allen D.; Mccredie, Bradley D.

    1987-01-01

    With traditional event list techniques, evaluating a detailed discrete event simulation model can often require hours or even days of computation time. Parallel simulation mimics the interacting servers and queues of a real system by assigning each simulated entity to a processor. By eliminating the event list and maintaining only sufficient synchronization to insure causality, parallel simulation can potentially provide speedups that are linear in the number of processors. A set of shared memory experiments is presented using the Chandy-Misra distributed simulation algorithm to simulate networks of queues. Parameters include queueing network topology and routing probabilities, number of processors, and assignment of network nodes to processors. These experiments show that Chandy-Misra distributed simulation is a questionable alternative to sequential simulation of most queueing network models.

  8. Modelling machine ensembles with discrete event dynamical system theory

    NASA Technical Reports Server (NTRS)

    Hunter, Dan

    1990-01-01

    Discrete Event Dynamical System (DEDS) theory can be utilized as a control strategy for future complex machine ensembles that will be required for in-space construction. The control strategy involves orchestrating a set of interactive submachines to perform a set of tasks for a given set of constraints such as minimum time, minimum energy, or maximum machine utilization. Machine ensembles can be hierarchically modeled as a global model that combines the operations of the individual submachines. These submachines are represented in the global model as local models. Local models, from the perspective of DEDS theory , are described by the following: a set of system and transition states, an event alphabet that portrays actions that takes a submachine from one state to another, an initial system state, a partial function that maps the current state and event alphabet to the next state, and the time required for the event to occur. Each submachine in the machine ensemble is presented by a unique local model. The global model combines the local models such that the local models can operate in parallel under the additional logistic and physical constraints due to submachine interactions. The global model is constructed from the states, events, event functions, and timing requirements of the local models. Supervisory control can be implemented in the global model by various methods such as task scheduling (open-loop control) or implementing a feedback DEDS controller (closed-loop control).

  9. Discrete-Event Simulation Models of Plasmodium falciparum Malaria

    PubMed Central

    McKenzie, F. Ellis; Wong, Roger C.; Bossert, William H.

    2008-01-01

    We develop discrete-event simulation models using a single “timeline” variable to represent the Plasmodium falciparum lifecycle in individual hosts and vectors within interacting host and vector populations. Where they are comparable our conclusions regarding the relative importance of vector mortality and the durations of host immunity and parasite development are congruent with those of classic differential-equation models of malaria, epidemiology. However, our results also imply that in regions with intense perennial transmission, the influence of mosquito mortality on malaria prevalence in humans may be rivaled by that of the duration of host infectivity. PMID:18668185

  10. Control of discrete event systems modeled as hierarchical state machines

    NASA Technical Reports Server (NTRS)

    Brave, Y.; Heymann, M.

    1991-01-01

    The authors examine a class of discrete event systems (DESs) modeled as asynchronous hierarchical state machines (AHSMs). For this class of DESs, they provide an efficient method for testing reachability, which is an essential step in many control synthesis procedures. This method utilizes the asynchronous nature and hierarchical structure of AHSMs, thereby illustrating the advantage of the AHSM representation as compared with its equivalent (flat) state machine representation. An application of the method is presented where an online minimally restrictive solution is proposed for the problem of maintaining a controlled AHSM within prescribed legal bounds.

  11. State-space supervision of reconfigurable discrete event systems

    SciTech Connect

    Garcia, H.E.; Ray, A.

    1995-12-31

    The Discrete Event Systems (DES) theory of supervisory and state feedback control offers many advantages for implementing supervisory systems. Algorithmic concepts have been introduced to assure that the supervising algorithms are correct and meet the specifications. It is often assumed that the supervisory specifications are invariant or, at least, until a given supervisory task is completed. However, there are many practical applications where the supervising specifications update at real time. For example, in a Reconfigurable Discrete Event System (RDES) architecture, a bank of supervisors is defined to accommodate each identified operational condition or different supervisory specifications. This adaptive supervisory control system changes the supervisory configuration to accept coordinating commands or to adjust for changes in the controlled process. This paper addresses reconfiguration at the supervisory level of hybrid systems along with a RDES underlying architecture. It reviews the state-based supervisory control theory and extends it to the paradigm of RDES and in view of process control applications. The paper addresses theoretical issues with a limited number of practical examples. This control approach is particularly suitable for hierarchical reconfigurable hybrid implementations.

  12. Planning and supervision of reactor defueling using discrete event techniques

    SciTech Connect

    Garcia, H.E.; Imel, G.R.; Houshyar, A.

    1995-12-31

    New fuel handling and conditioning activities for the defueling of the Experimental Breeder Reactor II are being performed at Argonne National Laboratory. Research is being conducted to investigate the use of discrete event simulation, analysis, and optimization techniques to plan, supervise, and perform these activities in such a way that productivity can be improved. The central idea is to characterize this defueling operation as a collection of interconnected serving cells, and then apply operational research techniques to identify appropriate planning schedules for given scenarios. In addition, a supervisory system is being developed to provide personnel with on-line information on the progress of fueling tasks and to suggest courses of action to accommodate changing operational conditions. This paper provides an introduction to the research in progress at ANL. In particular, it briefly describes the fuel handling configuration for reactor defueling at ANL, presenting the flow of material from the reactor grid to the interim storage location, and the expected contributions of this work. As an example of the studies being conducted for planning and supervision of fuel handling activities at ANL, an application of discrete event simulation techniques to evaluate different fuel cask transfer strategies is given at the end of the paper.

  13. The cost of conservative synchronization in parallel discrete event simulations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1990-01-01

    The performance of a synchronous conservative parallel discrete-event simulation protocol is analyzed. The class of simulation models considered is oriented around a physical domain and possesses a limited ability to predict future behavior. A stochastic model is used to show that as the volume of simulation activity in the model increases relative to a fixed architecture, the complexity of the average per-event overhead due to synchronization, event list manipulation, lookahead calculations, and processor idle time approach the complexity of the average per-event overhead of a serial simulation. The method is therefore within a constant factor of optimal. The analysis demonstrates that on large problems--those for which parallel processing is ideally suited--there is often enough parallel workload so that processors are not usually idle. The viability of the method is also demonstrated empirically, showing how good performance is achieved on large problems using a thirty-two node Intel iPSC/2 distributed memory multiprocessor.

  14. Multiple Orderings of Events in Disease Progression.

    PubMed

    Young, Alexandra L; Oxtoby, Neil P; Huang, Jonathan; Marinescu, Razvan V; Daga, Pankaj; Cash, David M; Fox, Nick C; Ourselin, Sebastien; Schott, Jonathan M; Alexander, Daniel C

    2015-01-01

    The event-based model constructs a discrete picture of disease progression from cross-sectional data sets, with each event corresponding to a new biomarker becoming abnormal. However, it relies on the assumption that all subjects follow a single event sequence. This is a major simplification for sporadic disease data sets, which are highly heterogeneous, include distinct subgroups, and contain significant proportions of outliers. In this work we relax this assumption by considering two extensions to the event-based model: a generalised Mallows model, which allows subjects to deviate from the main event sequence, and a Dirichlet process mixture of generalised Mallows models, which models clusters of subjects that follow different event sequences, each of which has a corresponding variance. We develop a Gibbs sampling technique to infer the parameters of the two models from multi-modal biomarker data sets. We apply our technique to data from the Alzheimer's Disease Neuroimaging Initiative to determine the sequence in which brain regions become abnormal in sporadic Alzheimer's disease, as well as the heterogeneity of that sequence in the cohort. We find that the generalised Mallows model estimates a larger variation in the event sequence across subjects than the original event-based model. Fitting a Dirichlet process model detects three subgroups of the population with different event sequences. The Gibbs sampler additionally provides an estimate of the uncertainty in each of the model parameters, for example an individual's latent disease stage and cluster assignment. The distributions and mixtures of sequences that this new family of models introduces offer better characterisation of disease progression of heterogeneous populations, new insight into disease mechanisms, and have the potential for enhanced disease stratification and differential diagnosis. PMID:26223048

  15. Stochastic Event Counter for Discrete-Event Systems Under Unreliable Observations

    SciTech Connect

    Tae-Sic Yoo; Humberto E. Garcia

    2008-06-01

    This paper addresses the issues of counting the occurrence of special events in the framework of partiallyobserved discrete-event dynamical systems (DEDS). First, we develop a noble recursive procedure that updates active counter information state sequentially with available observations. In general, the cardinality of active counter information state is unbounded, which makes the exact recursion infeasible computationally. To overcome this difficulty, we develop an approximated recursive procedure that regulates and bounds the size of active counter information state. Using the approximated active counting information state, we give an approximated minimum mean square error (MMSE) counter. The developed algorithms are then applied to count special routing events in a material flow system.

  16. Performance bounds on parallel self-initiating discrete-event

    NASA Technical Reports Server (NTRS)

    Nicol, David M.

    1990-01-01

    The use is considered of massively parallel architectures to execute discrete-event simulations of what is termed self-initiating models. A logical process in a self-initiating model schedules its own state re-evaluation times, independently of any other logical process, and sends its new state to other logical processes following the re-evaluation. The interest is in the effects of that communication on synchronization. The performance is considered of various synchronization protocols by deriving upper and lower bounds on optimal performance, upper bounds on Time Warp's performance, and lower bounds on the performance of a new conservative protocol. The analysis of Time Warp includes the overhead costs of state-saving and rollback. The analysis points out sufficient conditions for the conservative protocol to outperform Time Warp. The analysis also quantifies the sensitivity of performance to message fan-out, lookahead ability, and the probability distributions underlying the simulation.

  17. Quality Improvement With Discrete Event Simulation: A Primer for Radiologists.

    PubMed

    Booker, Michael T; O'Connell, Ryan J; Desai, Bhushan; Duddalwar, Vinay A

    2016-04-01

    The application of simulation software in health care has transformed quality and process improvement. Specifically, software based on discrete-event simulation (DES) has shown the ability to improve radiology workflows and systems. Nevertheless, despite the successful application of DES in the medical literature, the power and value of simulation remains underutilized. For this reason, the basics of DES modeling are introduced, with specific attention to medical imaging. In an effort to provide readers with the tools necessary to begin their own DES analyses, the practical steps of choosing a software package and building a basic radiology model are discussed. In addition, three radiology system examples are presented, with accompanying DES models that assist in analysis and decision making. Through these simulations, we provide readers with an understanding of the theory, requirements, and benefits of implementing DES in their own radiology practices. PMID:26922594

  18. Performance Analysis of Cloud Computing Architectures Using Discrete Event Simulation

    NASA Technical Reports Server (NTRS)

    Stocker, John C.; Golomb, Andrew M.

    2011-01-01

    Cloud computing offers the economic benefit of on-demand resource allocation to meet changing enterprise computing needs. However, the flexibility of cloud computing is disadvantaged when compared to traditional hosting in providing predictable application and service performance. Cloud computing relies on resource scheduling in a virtualized network-centric server environment, which makes static performance analysis infeasible. We developed a discrete event simulation model to evaluate the overall effectiveness of organizations in executing their workflow in traditional and cloud computing architectures. The two part model framework characterizes both the demand using a probability distribution for each type of service request as well as enterprise computing resource constraints. Our simulations provide quantitative analysis to design and provision computing architectures that maximize overall mission effectiveness. We share our analysis of key resource constraints in cloud computing architectures and findings on the appropriateness of cloud computing in various applications.

  19. Parallel Discrete Molecular Dynamics Simulation With Speculation and In-Order Commitment*†

    PubMed Central

    Khan, Md. Ashfaquzzaman; Herbordt, Martin C.

    2011-01-01

    Discrete molecular dynamics simulation (DMD) uses simplified and discretized models enabling simulations to advance by event rather than by timestep. DMD is an instance of discrete event simulation and so is difficult to scale: even in this multi-core era, all reported DMD codes are serial. In this paper we discuss the inherent difficulties of scaling DMD and present our method of parallelizing DMD through event-based decomposition. Our method is microarchitecture inspired: speculative processing of events exposes parallelism, while in-order commitment ensures correctness. We analyze the potential of this parallelization method for shared-memory multiprocessors. Achieving scalability required extensive experimentation with scheduling and synchronization methods to mitigate serialization. The speed-up achieved for a variety of system sizes and complexities is nearly 6× on an 8-core and over 9× on a 12-core processor. We present and verify analytical models that account for the achieved performance as a function of available concurrency and architectural limitations. PMID:21822327

  20. Optimal Parametric Discrete Event Control: Problem and Solution

    SciTech Connect

    Griffin, Christopher H

    2008-01-01

    We present a novel optimization problem for discrete event control, similar in spirit to the optimal parametric control problem common in statistical process control. In our problem, we assume a known finite state machine plant model $G$ defined over an event alphabet $\\Sigma$ so that the plant model language $L = \\LanM(G)$ is prefix closed. We further assume the existence of a \\textit{base control structure} $M_K$, which may be either a finite state machine or a deterministic pushdown machine. If $K = \\LanM(M_K)$, we assume $K$ is prefix closed and that $K \\subseteq L$. We associate each controllable transition of $M_K$ with a binary variable $X_1,\\dots,X_n$ indicating whether the transition is enabled or not. This leads to a function $M_K(X_1,\\dots,X_n)$, that returns a new control specification depending upon the values of $X_1,\\dots,X_n$. We exhibit a branch-and-bound algorithm to solve the optimization problem $\\min_{X_1,\\dots,X_n}\\max_{w \\in K} C(w)$ such that $M_K(X_1,\\dots,X_n) \\models \\Pi$ and $\\LanM(M_K(X_1,\\dots,X_n)) \\in \\Con(L)$. Here $\\Pi$ is a set of logical assertions on the structure of $M_K(X_1,\\dots,X_n)$, and $M_K(X_1,\\dots,X_n) \\models \\Pi$ indicates that $M_K(X_1,\\dots,X_n)$ satisfies the logical assertions; and, $\\Con(L)$ is the set of controllable sublanguages of $L$.

  1. Enhancing Complex System Performance Using Discrete-Event Simulation

    SciTech Connect

    Allgood, Glenn O; Olama, Mohammed M; Lake, Joe E

    2010-01-01

    In this paper, we utilize discrete-event simulation (DES) merged with human factors analysis to provide the venue within which the separation and deconfliction of the system/human operating principles can occur. A concrete example is presented to illustrate the performance enhancement gains for an aviation cargo flow and security inspection system achieved through the development and use of a process DES. The overall performance of the system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, and total number of pallets waiting for inspection in the queue. These metrics are performance indicators of the system's ability to service current needs and respond to additional requests. We studied and analyzed different scenarios by changing various model parameters such as the number of pieces per pallet ratio, number of inspectors and cargo handling personnel, number of forklifts, number and types of detection systems, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures identified effective ways to meet inspection requirements while maintaining or reducing overall operational cost and eliminating any shipping delays associated with any proposed changes in inspection requirements. With this understanding effective operational strategies can be developed to optimally use personnel while still maintaining plant efficiency, reducing process interruptions, and holding or reducing costs.

  2. Discrete Event Supervisory Control Applied to Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Shah, Neerav

    2005-01-01

    The theory of discrete event supervisory (DES) control was applied to the optimal control of a twin-engine aircraft propulsion system and demonstrated in a simulation. The supervisory control, which is implemented as a finite-state automaton, oversees the behavior of a system and manages it in such a way that it maximizes a performance criterion, similar to a traditional optimal control problem. DES controllers can be nested such that a high-level controller supervises multiple lower level controllers. This structure can be expanded to control huge, complex systems, providing optimal performance and increasing autonomy with each additional level. The DES control strategy for propulsion systems was validated using a distributed testbed consisting of multiple computers--each representing a module of the overall propulsion system--to simulate real-time hardware-in-the-loop testing. In the first experiment, DES control was applied to the operation of a nonlinear simulation of a turbofan engine (running in closed loop using its own feedback controller) to minimize engine structural damage caused by a combination of thermal and structural loads. This enables increased on-wing time for the engine through better management of the engine-component life usage. Thus, the engine-level DES acts as a life-extending controller through its interaction with and manipulation of the engine s operation.

  3. Improving the Teaching of Discrete-Event Control Systems Using a LEGO Manufacturing Prototype

    ERIC Educational Resources Information Center

    Sanchez, A.; Bucio, J.

    2012-01-01

    This paper discusses the usefulness of employing LEGO as a teaching-learning aid in a post-graduate-level first course on the control of discrete-event systems (DESs). The final assignment of the course is presented, which asks students to design and implement a modular hierarchical discrete-event supervisor for the coordination layer of a…

  4. Model reference adaptive control in fractional order systems using discrete-time approximation methods

    NASA Astrophysics Data System (ADS)

    Abedini, Mohammad; Nojoumian, Mohammad Ali; Salarieh, Hassan; Meghdari, Ali

    2015-08-01

    In this paper, model reference control of a fractional order system has been discussed. In order to control the fractional order plant, discrete-time approximation methods have been applied. Plant and reference model are discretized by Grünwald-Letnikov definition of the fractional order derivative using "Short Memory Principle". Unknown parameters of the fractional order system are appeared in the discrete time approximate model as combinations of parameters of the main system. The discrete time MRAC via RLS identification is modified to estimate the parameters and control the fractional order plant. Numerical results show the effectiveness of the proposed method of model reference adaptive control.

  5. Behavior coordination of mobile robotics using supervisory control of fuzzy discrete event systems.

    PubMed

    Jayasiri, Awantha; Mann, George K I; Gosine, Raymond G

    2011-10-01

    In order to incorporate the uncertainty and impreciseness present in real-world event-driven asynchronous systems, fuzzy discrete event systems (DESs) (FDESs) have been proposed as an extension to crisp DESs. In this paper, first, we propose an extension to the supervisory control theory of FDES by redefining fuzzy controllable and uncontrollable events. The proposed supervisor is capable of enabling feasible uncontrollable and controllable events with different possibilities. Then, the extended supervisory control framework of FDES is employed to model and control several navigational tasks of a mobile robot using the behavior-based approach. The robot has limited sensory capabilities, and the navigations have been performed in several unmodeled environments. The reactive and deliberative behaviors of the mobile robotic system are weighted through fuzzy uncontrollable and controllable events, respectively. By employing the proposed supervisory controller, a command-fusion-type behavior coordination is achieved. The observability of fuzzy events is incorporated to represent the sensory imprecision. As a systematic analysis of the system, a fuzzy-state-based controllability measure is introduced. The approach is implemented in both simulation and real time. A performance evaluation is performed to quantitatively estimate the validity of the proposed approach over its counterparts. PMID:21421445

  6. Statistical and Probabilistic Extensions to Ground Operations' Discrete Event Simulation Modeling

    NASA Technical Reports Server (NTRS)

    Trocine, Linda; Cummings, Nicholas H.; Bazzana, Ashley M.; Rychlik, Nathan; LeCroy, Kenneth L.; Cates, Grant R.

    2010-01-01

    NASA's human exploration initiatives will invest in technologies, public/private partnerships, and infrastructure, paving the way for the expansion of human civilization into the solar system and beyond. As it is has been for the past half century, the Kennedy Space Center will be the embarkation point for humankind's journey into the cosmos. Functioning as a next generation space launch complex, Kennedy's launch pads, integration facilities, processing areas, launch and recovery ranges will bustle with the activities of the world's space transportation providers. In developing this complex, KSC teams work through the potential operational scenarios: conducting trade studies, planning and budgeting for expensive and limited resources, and simulating alternative operational schemes. Numerous tools, among them discrete event simulation (DES), were matured during the Constellation Program to conduct such analyses with the purpose of optimizing the launch complex for maximum efficiency, safety, and flexibility while minimizing life cycle costs. Discrete event simulation is a computer-based modeling technique for complex and dynamic systems where the state of the system changes at discrete points in time and whose inputs may include random variables. DES is used to assess timelines and throughput, and to support operability studies and contingency analyses. It is applicable to any space launch campaign and informs decision-makers of the effects of varying numbers of expensive resources and the impact of off nominal scenarios on measures of performance. In order to develop representative DES models, methods were adopted, exploited, or created to extend traditional uses of DES. The Delphi method was adopted and utilized for task duration estimation. DES software was exploited for probabilistic event variation. A roll-up process was used, which was developed to reuse models and model elements in other less - detailed models. The DES team continues to innovate and expand

  7. Sensor Configuration Selection for Discrete-Event Systems under Unreliable Observations

    SciTech Connect

    Wen-Chiao Lin; Tae-Sic Yoo; Humberto E. Garcia

    2010-08-01

    Algorithms for counting the occurrences of special events in the framework of partially-observed discrete event dynamical systems (DEDS) were developed in previous work. Their performances typically become better as the sensors providing the observations become more costly or increase in number. This paper addresses the problem of finding a sensor configuration that achieves an optimal balance between cost and the performance of the special event counting algorithm, while satisfying given observability requirements and constraints. Since this problem is generally computational hard in the framework considered, a sensor optimization algorithm is developed using two greedy heuristics, one myopic and the other based on projected performances of candidate sensors. The two heuristics are sequentially executed in order to find best sensor configurations. The developed algorithm is then applied to a sensor optimization problem for a multiunit- operation system. Results show that improved sensor configurations can be found that may significantly reduce the sensor configuration cost but still yield acceptable performance for counting the occurrences of special events.

  8. Incomplete block SSOR preconditionings for high order discretizations

    SciTech Connect

    Kolotilina, L.

    1994-12-31

    This paper considers the solution of linear algebraic systems Ax = b resulting from the p-version of the Finite Element Method (FEM) using PCG iterations. Contrary to the h-version, the p-version ensures the desired accuracy of a discretization not by refining an original finite element mesh but by introducing higher degree polynomials as additional basis functions which permits to reduce the size of the resulting linear system as compared with the h-version. The suggested preconditionings are the so-called Incomplete Block SSOR (IBSSOR) preconditionings.

  9. Weak order for the discretization of the stochastic heat equation

    NASA Astrophysics Data System (ADS)

    Debussche, Arnaud; Printems, Jacques

    2009-06-01

    In this paper we study the approximation of the distribution of X_t Hilbert-valued stochastic process solution of a linear parabolic stochastic partial differential equation written in an abstract form as mathrm{d} X_t+AX_t mathrm{d} t = Q^{1/2} mathrm{d} W(t), quad X_0=x in H, quad tin[0,T], driven by a Gaussian space time noise whose covariance operator Q is given. We assume that A^{-alpha} is a finite trace operator for some alpha>0 and that Q is bounded from H into D(A^beta) for some betageq 0 . It is not required to be nuclear or to commute with A . The discretization is achieved thanks to finite element methods in space (parameter h>0 ) and a theta -method in time (parameter Delta t=T/N ). We define a discrete solution X^n_h and for suitable functions \\varphi defined on H , we show that \\vertmathbb{E} \\varphi(X^N_h) - mathbb{E} \\varphi(X_T) \\vert = O(h^{2gamma} + Delta t^gamma) where gamma<1- alpha + beta . Let us note that as in the finite dimensional case the rate of convergence is twice the one for pathwise approximations.

  10. On constructing optimistic simulation algorithms for the discrete event system specification

    SciTech Connect

    Nutaro, James J

    2008-01-01

    This article describes a Time Warp simulation algorithm for discrete event models that are described in terms of the Discrete Event System Specification (DEVS). The article shows how the total state transition and total output function of a DEVS atomic model can be transformed into an event processing procedure for a logical process. A specific Time Warp algorithm is constructed around this logical process, and it is shown that the algorithm correctly simulates a DEVS coupled model that consists entirely of interacting atomic models. The simulation algorithm is presented abstractly; it is intended to provide a basis for implementing efficient and scalable parallel algorithms that correctly simulate DEVS models.

  11. Application of Parallel Discrete Event Simulation to the Space Surveillance Network

    NASA Astrophysics Data System (ADS)

    Jefferson, D.; Leek, J.

    2010-09-01

    In this paper we describe how and why we chose parallel discrete event simulation (PDES) as the paradigm for modeling the Space Surveillance Network (SSN) in our modeling framework, TESSA (Testbed Environment for Space Situational Awareness). DES is a simulation paradigm appropriate for systems dominated by discontinuous state changes at times that must be calculated dynamically. It is used primarily for complex man-made systems like telecommunications, vehicular traffic, computer networks, economic models etc., although it is also useful for natural systems that are not described by equations, such as particle systems, population dynamics, epidemics, and combat models. It is much less well known than simple time-stepped simulation methods, but has the great advantage of being time scale independent, so that one can freely mix processes that operate at time scales over many orders of magnitude with no runtime performance penalty. In simulating the SSN we model in some detail: (a) the orbital dynamics of up to 105 objects, (b) their reflective properties, (c) the ground- and space-based sensor systems in the SSN, (d) the recognition of orbiting objects and determination of their orbits, (e) the cueing and scheduling of sensor observations, (f) the 3-d structure of satellites, and (g) the generation of collision debris. TESSA is thus a mixed continuous-discrete model. But because many different types of discrete objects are involved with such a wide variation in time scale (milliseconds for collisions, hours for orbital periods) it is suitably described using discrete events. The PDES paradigm is surprising and unusual. In any instantaneous runtime snapshot some parts my be far ahead in simulation time while others lag behind, yet the required causal relationships are always maintained and synchronized correctly, exactly as if the simulation were executed sequentially. The TESSA simulator is custom-built, conservatively synchronized, and designed to scale to

  12. Sequential Window Diagnoser for Discrete-Event Systems Under Unreliable Observations

    SciTech Connect

    Wen-Chiao Lin; Humberto E. Garcia; David Thorsley; Tae-Sic Yoo

    2009-09-01

    This paper addresses the issue of counting the occurrence of special events in the framework of partiallyobserved discrete-event dynamical systems (DEDS). Developed diagnosers referred to as sequential window diagnosers (SWDs) utilize the stochastic diagnoser probability transition matrices developed in [9] along with a resetting mechanism that allows on-line monitoring of special event occurrences. To illustrate their performance, the SWDs are applied to detect and count the occurrence of special events in a particular DEDS. Results show that SWDs are able to accurately track the number of times special events occur.

  13. Using high-order methods on adaptively refined block-structured meshes - discretizations, interpolations, and filters.

    SciTech Connect

    Ray, Jaideep; Lefantzi, Sophia; Najm, Habib N.; Kennedy, Christopher A.

    2006-01-01

    Block-structured adaptively refined meshes (SAMR) strive for efficient resolution of partial differential equations (PDEs) solved on large computational domains by clustering mesh points only where required by large gradients. Previous work has indicated that fourth-order convergence can be achieved on such meshes by using a suitable combination of high-order discretizations, interpolations, and filters and can deliver significant computational savings over conventional second-order methods at engineering error tolerances. In this paper, we explore the interactions between the errors introduced by discretizations, interpolations and filters. We develop general expressions for high-order discretizations, interpolations, and filters, in multiple dimensions, using a Fourier approach, facilitating the high-order SAMR implementation. We derive a formulation for the necessary interpolation order for given discretization and derivative orders. We also illustrate this order relationship empirically using one and two-dimensional model problems on refined meshes. We study the observed increase in accuracy with increasing interpolation order. We also examine the empirically observed order of convergence, as the effective resolution of the mesh is increased by successively adding levels of refinement, with different orders of discretization, interpolation, or filtering.

  14. Dynamical behavior of fractional-order Hastings-Powell food chain model and its discretization

    NASA Astrophysics Data System (ADS)

    Matouk, A. E.; Elsadany, A. A.; Ahmed, E.; Agiza, H. N.

    2015-10-01

    In this work, the dynamical behavior of fractional-order Hastings-Powell food chain model is investigated and a new discretization method of the fractional-order system is introduced. A sufficient condition for existence and uniqueness of the solution of the proposed system is obtained. Local stability of the equilibrium points of the fractional-order system is studied. Furthermore, the necessary and sufficient conditions of stability of the discretized system are also studied. It is shown that the system's fractional parameter has effect on the stability of the discretized system which shows rich variety of dynamical behaviors such as Hopf bifurcation, an attractor crisis and chaotic attractors. Numerical simulations show the tea-cup chaotic attractor of the fractional-order system and the richer dynamical behavior of the corresponding discretized system.

  15. Synchronous Parallel Emulation and Discrete Event Simulation System with Self-Contained Simulation Objects and Active Event Objects

    NASA Technical Reports Server (NTRS)

    Steinman, Jeffrey S. (Inventor)

    1998-01-01

    The present invention is embodied in a method of performing object-oriented simulation and a system having inter-connected processor nodes operating in parallel to simulate mutual interactions of a set of discrete simulation objects distributed among the nodes as a sequence of discrete events changing state variables of respective simulation objects so as to generate new event-defining messages addressed to respective ones of the nodes. The object-oriented simulation is performed at each one of the nodes by assigning passive self-contained simulation objects to each one of the nodes, responding to messages received at one node by generating corresponding active event objects having user-defined inherent capabilities and individual time stamps and corresponding to respective events affecting one of the passive self-contained simulation objects of the one node, restricting the respective passive self-contained simulation objects to only providing and receiving information from die respective active event objects, requesting information and changing variables within a passive self-contained simulation object by the active event object, and producing corresponding messages specifying events resulting therefrom by the active event objects.

  16. On the Total Variation of High-Order Semi-Discrete Central Schemes for Conservation Laws

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron

    2004-01-01

    We discuss a new fifth-order, semi-discrete, central-upwind scheme for solving one-dimensional systems of conservation laws. This scheme combines a fifth-order WENO reconstruction, a semi-discrete central-upwind numerical flux, and a strong stability preserving Runge-Kutta method. We test our method with various examples, and give particular attention to the evolution of the total variation of the approximations.

  17. Long-time behavior of a finite volume discretization for a fourth order diffusion equation

    NASA Astrophysics Data System (ADS)

    Maas, Jan; Matthes, Daniel

    2016-07-01

    We consider a non-standard finite-volume discretization of a strongly non-linear fourth order diffusion equation on the d-dimensional cube, for arbitrary d≥slant 1 . The scheme preserves two important structural properties of the equation: the first is the interpretation as a gradient flow in a mass transportation metric, and the second is an intimate relation to a linear Fokker–Planck equation. Thanks to these structural properties, the scheme possesses two discrete Lyapunov functionals. These functionals approximate the entropy and the Fisher information, respectively, and their dissipation rates converge to the optimal ones in the discrete-to-continuous limit. Using the dissipation, we derive estimates on the long-time asymptotics of the discrete solutions. Finally, we present results from numerical experiments which indicate that our discretization is able to capture significant features of the complex original dynamics, even with a rather coarse spatial resolution.

  18. Quantifying Temporal Distributions of Self-Injurious Behavior: Defining Bouts versus Discrete Events

    ERIC Educational Resources Information Center

    Kroeker, Rose; Touchette, Paul E.; Engleman, Laszlo; Sandman, Curt A.

    2004-01-01

    An objective method is presented to group discrete self-injurious behavior (SIB) events into bouts. Survival analysis was used to determine how long after an SIB the probability of observing a subsequent SIB remained elevated. This estimated bout length criterion time point was determined individually for 19 subjects with developmental disorders…

  19. Modeling Repeatable Events Using Discrete-Time Data: Predicting Marital Dissolution

    ERIC Educational Resources Information Center

    Teachman, Jay

    2011-01-01

    I join two methodologies by illustrating the application of multilevel modeling principles to hazard-rate models with an emphasis on procedures for discrete-time data that contain repeatable events. I demonstrate this application using data taken from the 1995 National Survey of Family Growth (NSFG) to ascertain the relationship between multiple…

  20. A design study for the addition of higher order parametric discrete elements to NASTRAN

    NASA Technical Reports Server (NTRS)

    Stanton, E. L.

    1972-01-01

    The addition of discrete elements to NASTRAN poses significant interface problems with the level 15.1 assembly modules and geometry modules. Potential problems in designing new modules for higher-order parametric discrete elements are reviewed in both areas. An assembly procedure is suggested that separates grid point degrees of freedom on the basis of admissibility. New geometric input data are described that facilitate the definition of surfaces in parametric space.

  1. A network of discrete events for the representation and analysis of diffusion dynamics

    NASA Astrophysics Data System (ADS)

    Pintus, Alberto M.; Pazzona, Federico G.; Demontis, Pierfranco; Suffritti, Giuseppe B.

    2015-11-01

    We developed a coarse-grained description of the phenomenology of diffusive processes, in terms of a space of discrete events and its representation as a network. Once a proper classification of the discrete events underlying the diffusive process is carried out, their transition matrix is calculated on the basis of molecular dynamics data. This matrix can be represented as a directed, weighted network where nodes represent discrete events, and the weight of edges is given by the probability that one follows the other. The structure of this network reflects dynamical properties of the process of interest in such features as its modularity and the entropy rate of nodes. As an example of the applicability of this conceptual framework, we discuss here the physics of diffusion of small non-polar molecules in a microporous material, in terms of the structure of the corresponding network of events, and explain on this basis the diffusivity trends observed. A quantitative account of these trends is obtained by considering the contribution of the various events to the displacement autocorrelation function.

  2. An extension of the OpenModelica compiler for using Modelica models in a discrete event simulation

    DOE PAGESBeta

    Nutaro, James

    2014-11-03

    In this article, a new back-end and run-time system is described for the OpenModelica compiler. This new back-end transforms a Modelica model into a module for the adevs discrete event simulation package, thereby extending adevs to encompass complex, hybrid dynamical systems. The new run-time system that has been built within the adevs simulation package supports models with state-events and time-events and that comprise differential-algebraic systems with high index. Finally, although the procedure for effecting this transformation is based on adevs and the Discrete Event System Specification, it can be adapted to any discrete event simulation package.

  3. Second-order discrete Kalman filtering equations for control-structure interaction simulations

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Belvin, W. Keith; Alvin, Kenneth F.

    1991-01-01

    A general form for the first-order representation of the continuous, second-order linear structural dynamics equations is introduced in order to derive a corresponding form of first-order Kalman filtering equations (KFE). Time integration of the resulting first-order KFE is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete KFE involving only symmetric, N x N solution matrix.

  4. Discrete-time reduced order neural observers for uncertain nonlinear systems.

    PubMed

    Alanis, Alma Y; Sanchez, Edgar N; Ricalde, Luis J

    2010-02-01

    This paper focusses on a novel discrete-time reduced order neural observer for nonlinear systems, which model is assumed to be unknown. This neural observer is robust in presence of external and internal uncertainties. The proposed scheme is based on a discrete-time recurrent high order neural network (RHONN) trained with an extended Kalman filter (EKF)-based algorithm, using a parallel configuration. This work includes the stability proof of the estimation error on the basis of the Lyapunov approach; to illustrate the applicability, simulation results for a nonlinear oscillator are included. PMID:20180251

  5. Continuous and discrete extreme climatic events affecting the dynamics of a high-arctic reindeer population.

    PubMed

    Chan, Kung-Sik; Mysterud, Atle; Øritsland, Nils Are; Severinsen, Torbjørn; Stenseth, Nils Chr

    2005-10-01

    Climate at northern latitudes are currently changing both with regard to the mean and the temporal variability at any given site, increasing the frequency of extreme events such as cold and warm spells. Here we use a conceptually new modelling approach with two different dynamic terms of the climatic effects on a Svalbard reindeer population (the Brøggerhalvøya population) which underwent an extreme icing event ("locked pastures") with 80% reduction in population size during one winter (1993/94). One term captures the continuous and linear effect depending upon the Arctic Oscillation and another the discrete (rare) "event" process. The introduction of an "event" parameter describing the discrete extreme winter resulted in a more parsimonious model. Such an approach may be useful in strongly age-structured ungulate populations, with young and very old individuals being particularly prone to mortality factors during adverse conditions (resulting in a population structure that differs before and after extreme climatic events). A simulation study demonstrates that our approach is able to properly detect the ecological effects of such extreme climate events. PMID:16010537

  6. Finite element method combined with second-order time discrete scheme for nonlinear fractional Cable equation

    NASA Astrophysics Data System (ADS)

    Wang, Yajun; Liu, Yang; Li, Hong; Wang, Jinfeng

    2016-03-01

    In this article, a Galerkin finite element method combined with second-order time discrete scheme for finding the numerical solution of nonlinear time fractional Cable equation is studied and discussed. At time t_{k-α/2} , a second-order two step scheme with α -parameter is proposed to approximate the first-order derivative, and a weighted discrete scheme covering second-order approximation is used to approximate the Riemann-Liouville fractional derivative, where the approximate order is higher than the obtained results by the L1-approximation with order (2-α in the existing references. For the spatial direction, Galerkin finite element approximation is presented. The stability of scheme and the rate of convergence in L^2 -norm with O(Δ t^2+(1+Δ t^{-α})h^{m+1}) are derived in detail. Moreover, some numerical tests are shown to support our theoretical results.

  7. DISCRETE EVENT SIMULATION OF OPTICAL SWITCH MATRIX PERFORMANCE IN COMPUTER NETWORKS

    SciTech Connect

    Imam, Neena; Poole, Stephen W

    2013-01-01

    In this paper, we present application of a Discrete Event Simulator (DES) for performance modeling of optical switching devices in computer networks. Network simulators are valuable tools in situations where one cannot investigate the system directly. This situation may arise if the system under study does not exist yet or the cost of studying the system directly is prohibitive. Most available network simulators are based on the paradigm of discrete-event-based simulation. As computer networks become increasingly larger and more complex, sophisticated DES tool chains have become available for both commercial and academic research. Some well-known simulators are NS2, NS3, OPNET, and OMNEST. For this research, we have applied OMNEST for the purpose of simulating multi-wavelength performance of optical switch matrices in computer interconnection networks. Our results suggest that the application of DES to computer interconnection networks provides valuable insight in device performance and aids in topology and system optimization.

  8. Desktop Modeling and Simulation: Parsimonious, yet Effective Discrete-Event Simulation Analysis

    NASA Technical Reports Server (NTRS)

    Bradley, James R.

    2012-01-01

    This paper evaluates how quickly students can be trained to construct useful discrete-event simulation models using Excel The typical supply chain used by many large national retailers is described, and an Excel-based simulation model is constructed of it The set of programming and simulation skills required for development of that model are then determined we conclude that six hours of training are required to teach the skills to MBA students . The simulation presented here contains all fundamental functionallty of a simulation model, and so our result holds for any discrete-event simulation model. We argue therefore that Industry workers with the same technical skill set as students having completed one year in an MBA program can be quickly trained to construct simulation models. This result gives credence to the efficacy of Desktop Modeling and Simulation whereby simulation analyses can be quickly developed, run, and analyzed with widely available software, namely Excel.

  9. Discrete-event simulation of nuclear-waste transport in geologic sites subject to disruptive events. Final report

    SciTech Connect

    Aggarwal, S.; Ryland, S.; Peck, R.

    1980-06-19

    This report outlines a methodology to study the effects of disruptive events on nuclear waste material in stable geologic sites. The methodology is based upon developing a discrete events model that can be simulated on the computer. This methodology allows a natural development of simulation models that use computer resources in an efficient manner. Accurate modeling in this area depends in large part upon accurate modeling of ion transport behavior in the storage media. Unfortunately, developments in this area are not at a stage where there is any consensus on proper models for such transport. Consequently, our work is directed primarily towards showing how disruptive events can be properly incorporated in such a model, rather than as a predictive tool at this stage. When and if proper geologic parameters can be determined, then it would be possible to use this as a predictive model. Assumptions and their bases are discussed, and the mathematical and computer model are described.

  10. Max-plus Algebraic Tools for Discrete Event Systems, Static Analysis, and Zero-Sum Games

    NASA Astrophysics Data System (ADS)

    Gaubert, Stéphane

    The max-plus algebraic approach of timed discrete event systems emerged in the eighties, after the discovery that synchronization phenomena can be modeled in a linear way in the max-plus setting. This led to a number of results, like the determination of long term characteristics (throughput, stationary regime) by spectral theory methods or the representation of the input-output behavior by rational series.

  11. Model for the evolution of the time profile in optimistic parallel discrete event simulations

    NASA Astrophysics Data System (ADS)

    Ziganurova, L.; Novotny, M. A.; Shchur, L. N.

    2016-02-01

    We investigate synchronisation aspects of an optimistic algorithm for parallel discrete event simulations (PDES). We present a model for the time evolution in optimistic PDES. This model evaluates the local virtual time profile of the processing elements. We argue that the evolution of the time profile is reminiscent of the surface profile in the directed percolation problem and in unrestricted surface growth. We present results of the simulation of the model and emphasise predictive features of our approach.

  12. Fault Diagnosis in Discrete-Event Systems with Incomplete Models: Learnability and Diagnosability.

    PubMed

    Kwong, Raymond H; Yonge-Mallo, David L

    2015-07-01

    Most model-based approaches to fault diagnosis of discrete-event systems require a complete and accurate model of the system to be diagnosed. However, the discrete-event model may have arisen from abstraction and simplification of a continuous time system, or through model building from input-output data. As such, it may not capture the dynamic behavior of the system completely. In a previous paper, we addressed the problem of diagnosing faults given an incomplete model of the discrete-event system. We presented the learning diagnoser which not only diagnoses faults, but also attempts to learn missing model information through parsimonious hypothesis generation. In this paper, we study the properties of learnability and diagnosability. Learnability deals with the issue of whether the missing model information can be learned, while diagnosability corresponds to the ability to detect and isolate a fault after it has occurred. We provide conditions under which the learning diagnoser can learn missing model information. We define the notions of weak and strong diagnosability and also give conditions under which they hold. PMID:25204002

  13. Penalised logistic regression and dynamic prediction for discrete-time recurrent event data.

    PubMed

    Elgmati, Entisar; Fiaccone, Rosemeire L; Henderson, R; Matthews, John N S

    2015-10-01

    We consider methods for the analysis of discrete-time recurrent event data, when interest is mainly in prediction. The Aalen additive model provides an extremely simple and effective method for the determination of covariate effects for this type of data, especially in the presence of time-varying effects and time varying covariates, including dynamic summaries of prior event history. The method is weakened for predictive purposes by the presence of negative estimates. The obvious alternative of a standard logistic regression analysis at each time point can have problems of stability when event frequency is low and maximum likelihood estimation is used. The Firth penalised likelihood approach is stable but in removing bias in regression coefficients it introduces bias into predicted event probabilities. We propose an alterative modified penalised likelihood, intermediate between Firth and no penalty, as a pragmatic compromise between stability and bias. Illustration on two data sets is provided. PMID:25626559

  14. The first order solutions for two configurations of discrete zoom lenses

    NASA Astrophysics Data System (ADS)

    Yee, Anthony J.; Zhao, Yang; Steven, Samuel J.; Berman, Rebecca; Fennig, Eryn A.; Petropavlovskiy, Dmitry; Bentley, Julie; Moore, Duncan T.; Olson, Craig

    2016-05-01

    Discrete zoom systems are commonly used as laser beam expanders and infrared zoom lenses. The reason to design a discrete zoom lens is that they are often a desirable compromise between fixed-focal length lenses and continuous zoom lenses, offering many advantages to imaging systems of all types. They have the advantage over continuous zoom systems for containing fewer elements, thus reducing the weight of the system, and having one mechanical motion instead of two. In literature there is little information on the first order parameters and starting requirements for discrete systems. This work derives the first order equations for two different discrete zoom systems. The equations are derived from the requirements of first order parameters which define the starting group focal lengths. The two design configurations studied are: one zoom group flipping in and out of the system; one zoom group moving laterally along the optical axis. This work analyzes the first order equations for both configurations and discusses the starting point for the designs taking into consideration system limitations. Final designs for both configurations are then compared over several parameters: group focal lengths, lens diameters, overall length, number of elements, materials, and performance.

  15. Discrete integration of continuous Kalman filtering equations for time invariant second-order structural systems

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Belvin, W. Keith

    1990-01-01

    A general form for the first-order representation of the continuous second-order linear structural-dynamics equations is introduced to derive a corresponding form of first-order continuous Kalman filtering equations. Time integration of the resulting equations is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete Kalman filtering equations involving only symmetric sparse N x N solution matrices.

  16. Humans can integrate feedback of discrete events in their sensorimotor control of a robotic hand

    PubMed Central

    Segil, Jacob L.; Clemente, Francesco; Weir, Richard F. ff; Edin, Benoni

    2015-01-01

    Providing functionally effective sensory feedback to users of prosthetics is a largely unsolved challenge. Traditional solutions require high band-widths for providing feedback for the control of manipulation and yet have been largely unsuccessful. In this study, we have explored a strategy that relies on temporally discrete sensory feedback that is technically simple to provide. According to the Discrete Event-driven Sensory feedback Control (DESC) policy, motor tasks in humans are organized in phases delimited by means of sensory encoded discrete mechanical events. To explore the applicability of DESC for control, we designed a paradigm in which healthy humans operated an artificial robot hand to lift and replace an instrumented object, a task that can readily be learned and mastered under visual control. Assuming that the central nervous system of humans naturally organizes motor tasks based on a strategy akin to DESC, we delivered short-lasting vibrotactile feedback related to events that are known to forcefully affect progression of the grasp-lift-and-hold task. After training, we determined whether the artificial feedback had been integrated with the sensorimotor control by introducing short delays and we indeed observed that the participants significantly delayed subsequent phases of the task. This study thus gives support to the DESC policy hypothesis. Moreover, it demonstrates that humans can integrate temporally discrete sensory feedback while controlling an artificial hand and invites further studies in which inexpensive, noninvasive technology could be used in clever ways to provide physiologically appropriate sensory feedback in upper limb prosthetics with much lower band-width requirements than with traditional solutions. PMID:24992899

  17. Humans can integrate feedback of discrete events in their sensorimotor control of a robotic hand.

    PubMed

    Cipriani, Christian; Segil, Jacob L; Clemente, Francesco; ff Weir, Richard F; Edin, Benoni

    2014-11-01

    Providing functionally effective sensory feedback to users of prosthetics is a largely unsolved challenge. Traditional solutions require high band-widths for providing feedback for the control of manipulation and yet have been largely unsuccessful. In this study, we have explored a strategy that relies on temporally discrete sensory feedback that is technically simple to provide. According to the Discrete Event-driven Sensory feedback Control (DESC) policy, motor tasks in humans are organized in phases delimited by means of sensory encoded discrete mechanical events. To explore the applicability of DESC for control, we designed a paradigm in which healthy humans operated an artificial robot hand to lift and replace an instrumented object, a task that can readily be learned and mastered under visual control. Assuming that the central nervous system of humans naturally organizes motor tasks based on a strategy akin to DESC, we delivered short-lasting vibrotactile feedback related to events that are known to forcefully affect progression of the grasp-lift-and-hold task. After training, we determined whether the artificial feedback had been integrated with the sensorimotor control by introducing short delays and we indeed observed that the participants significantly delayed subsequent phases of the task. This study thus gives support to the DESC policy hypothesis. Moreover, it demonstrates that humans can integrate temporally discrete sensory feedback while controlling an artificial hand and invites further studies in which inexpensive, noninvasive technology could be used in clever ways to provide physiologically appropriate sensory feedback in upper limb prosthetics with much lower band-width requirements than with traditional solutions. PMID:24992899

  18. Discrete Climatic Events on Timescales of Decades to Centuries: Clues from Polar Landforms

    NASA Astrophysics Data System (ADS)

    Byrne, S.; Ingersoll, A. P.

    2002-12-01

    Recent observations indicate fast (meters per year) evolution of features, named Swiss-cheese for their morphologic appearance, on the surface of the southern residual frost cap [Malin et al., Science, 2001]. The onset of growth of these features may be responding in a sensitive way to changes in Martian climatic conditions on the timescales of decades to centuries. We have developed a model to examine the growth and development of the Swiss-cheese depressions. Swiss-cheese features were first identified by Thomas et al. [Science, 2000] using Mars Orbiter Camera imagery. They have flat floors and steep sided walls. Their lateral sizes are of the order of a few hundred meters. They are quite shallow with shadow and MOLA measurements indicating a depth of about 8 meters. Although the depressions are fairly circular the smaller ones do display a slight but consistent asymmetry in the form of a small cusp which points poleward indicating that the origin of these features is connected with insolation. As the seasonal frost disappears their walls appear to darken considerably relative to the surrounding terrain. The flat interior of the depression however does not appear to change in this way. There is a clear size division between smaller and larger depressions. Our modeling indicates that the growth timescales of the small-size population are on the order of a few Martian decades to centuries. This populations has a narrow size distribution with most of the depressions in any one area being roughly the same size. The similar size of adjacent depressions argues for some discrete climatic event which triggered this form of erosion of the cap. Larger depressions in other parts of the cap display an interior moat which indicates their walls have begun to be eroded outward after a period of inactivity or perhaps deposition. The width of these moats along with the observed expansion rates of the depressions [Malin et al., Science, 2001] indicates that these larger

  19. Near Optimal Event-Triggered Control of Nonlinear Discrete-Time Systems Using Neurodynamic Programming.

    PubMed

    Sahoo, Avimanyu; Xu, Hao; Jagannathan, Sarangapani

    2016-09-01

    This paper presents an event-triggered near optimal control of uncertain nonlinear discrete-time systems. Event-driven neurodynamic programming (NDP) is utilized to design the control policy. A neural network (NN)-based identifier, with event-based state and input vectors, is utilized to learn the system dynamics. An actor-critic framework is used to learn the cost function and the optimal control input. The NN weights of the identifier, the critic, and the actor NNs are tuned aperiodically once every triggered instant. An adaptive event-trigger condition to decide the trigger instants is derived. Thus, a suitable number of events are generated to ensure a desired accuracy of approximation. A near optimal performance is achieved without using value and/or policy iterations. A detailed analysis of nontrivial inter-event times with an explicit formula to show the reduction in computation is also derived. The Lyapunov technique is used in conjunction with the event-trigger condition to guarantee the ultimate boundedness of the closed-loop system. The simulation results are included to verify the performance of the controller. The net result is the development of event-driven NDP. PMID:26285220

  20. Discrete event simulation tool for analysis of qualitative models of continuous processing systems

    NASA Technical Reports Server (NTRS)

    Malin, Jane T. (Inventor); Basham, Bryan D. (Inventor); Harris, Richard A. (Inventor)

    1990-01-01

    An artificial intelligence design and qualitative modeling tool is disclosed for creating computer models and simulating continuous activities, functions, and/or behavior using developed discrete event techniques. Conveniently, the tool is organized in four modules: library design module, model construction module, simulation module, and experimentation and analysis. The library design module supports the building of library knowledge including component classes and elements pertinent to a particular domain of continuous activities, functions, and behavior being modeled. The continuous behavior is defined discretely with respect to invocation statements, effect statements, and time delays. The functionality of the components is defined in terms of variable cluster instances, independent processes, and modes, further defined in terms of mode transition processes and mode dependent processes. Model construction utilizes the hierarchy of libraries and connects them with appropriate relations. The simulation executes a specialized initialization routine and executes events in a manner that includes selective inherency of characteristics through a time and event schema until the event queue in the simulator is emptied. The experimentation and analysis module supports analysis through the generation of appropriate log files and graphics developments and includes the ability of log file comparisons.

  1. Reversible Parallel Discrete Event Formulation of a TLM-based Radio Signal Propagation Model

    SciTech Connect

    Seal, Sudip K; Perumalla, Kalyan S

    2011-01-01

    Radio signal strength estimation is essential in many applications, including the design of military radio communications and industrial wireless installations. For scenarios with large or richly- featured geographical volumes, parallel processing is required to meet the memory and computa- tion time demands. Here, we present a scalable and efficient parallel execution of the sequential model for radio signal propagation recently developed by Nutaro et al. Starting with that model, we (a) provide a vector-based reformulation that has significantly lower computational overhead for event handling, (b) develop a parallel decomposition approach that is amenable to reversibility with minimal computational overheads, (c) present a framework for transparently mapping the conservative time-stepped model into an optimistic parallel discrete event execution, (d) present a new reversible method, along with its analysis and implementation, for inverting the vector-based event model to be executed in an optimistic parallel style of execution, and (e) present performance results from implementation on Cray XT platforms. We demonstrate scalability, with the largest runs tested on up to 127,500 cores of a Cray XT5, enabling simulation of larger scenarios and with faster execution than reported before on the radio propagation model. This also represents the first successful demonstration of the ability to efficiently map a conservative time-stepped model to an optimistic discrete-event execution.

  2. Optimized Hypervisor Scheduler for Parallel Discrete Event Simulations on Virtual Machine Platforms

    SciTech Connect

    Yoginath, Srikanth B; Perumalla, Kalyan S

    2013-01-01

    With the advent of virtual machine (VM)-based platforms for parallel computing, it is now possible to execute parallel discrete event simulations (PDES) over multiple virtual machines, in contrast to executing in native mode directly over hardware as is traditionally done over the past decades. While mature VM-based parallel systems now offer new, compelling benefits such as serviceability, dynamic reconfigurability and overall cost effectiveness, the runtime performance of parallel applications can be significantly affected. In particular, most VM-based platforms are optimized for general workloads, but PDES execution exhibits unique dynamics significantly different from other workloads. Here we first present results from experiments that highlight the gross deterioration of the runtime performance of VM-based PDES simulations when executed using traditional VM schedulers, quantitatively showing the bad scaling properties of the scheduler as the number of VMs is increased. The mismatch is fundamental in nature in the sense that any fairness-based VM scheduler implementation would exhibit this mismatch with PDES runs. We also present a new scheduler optimized specifically for PDES applications, and describe its design and implementation. Experimental results obtained from running PDES benchmarks (PHOLD and vehicular traffic simulations) over VMs show over an order of magnitude improvement in the run time of the PDES-optimized scheduler relative to the regular VM scheduler, with over 20 reduction in run time of simulations using up to 64 VMs. The observations and results are timely in the context of emerging systems such as cloud platforms and VM-based high performance computing installations, highlighting to the community the need for PDES-specific support, and the feasibility of significantly reducing the runtime overhead for scalable PDES on VM platforms.

  3. A third-order multistep time discretization for a Chebyshev tau spectral method

    NASA Astrophysics Data System (ADS)

    Vreman, A. W.; Kuerten, J. G. M.

    2016-01-01

    A time discretization scheme based on the third-order backward difference formula has been embedded into a Chebyshev tau spectral method for the Navier-Stokes equations. The time discretization is a variant of the second-order backward scheme proposed by Krasnov et al. (2008) [3]. High-resolution direct numerical simulations of turbulent incompressible channel flow have been performed to compare the backward scheme to the Runge-Kutta scheme proposed by Spalart et al. (1991) [2]. It is shown that the Runge-Kutta scheme leads to a poor convergence of some third-order spatial derivatives in the direct vicinity of the wall, derivatives that represent the diffusion of wall-tangential vorticity. The convergence at the wall is shown to be significantly improved if the backward scheme is applied.

  4. Domain-decomposable preconditioners for second-order upwind discretizations of multicomponent systems

    SciTech Connect

    Keyes, D.E. . Dept. of Mechanical Engineering); Gropp, W.D. )

    1990-01-01

    Discrete systems arising in computational fluid dynamics applications often require wide stencils adapted to the local convective direction in order to accommodate higher-order upwind differencing, and involve multiple components perhaps coupling strongly at each point. Conventional exactly or approximately factored inverses of such operators are burdensome to apply globally, especially in problems complicated by non-tensor-product domain geometry or adaptive refinement, though their forward'' action is not. Such problems can be solved by iterative methods by using either point-block preconditioners or combination space-decoupled/component-decoupled preconditioners that are based on lower-order discretizations. Except for a global implicit solve on a coarse grid, each phase in the application of such preconditioners has simple locally exploitable structure. 16 refs., 2 figs., 3 tabs.

  5. Using Discrete Event Simulation to predict KPI's at a Projected Emergency Room.

    PubMed

    Concha, Pablo; Neriz, Liliana; Parada, Danilo; Ramis, Francisco

    2015-01-01

    Discrete Event Simulation (DES) is a powerful factor in the design of clinical facilities. DES enables facilities to be built or adapted to achieve the expected Key Performance Indicators (KPI's) such as average waiting times according to acuity, average stay times and others. Our computational model was built and validated using expert judgment and supporting statistical data. One scenario studied resulted in a 50% decrease in the average cycle time of patients compared to the original model, mainly by modifying the patient's attention model. PMID:26262262

  6. Determining the significance of associations between two series of discrete events : bootstrap methods /

    SciTech Connect

    Niehof, Jonathan T.; Morley, Steven K.

    2012-01-01

    We review and develop techniques to determine associations between series of discrete events. The bootstrap, a nonparametric statistical method, allows the determination of the significance of associations with minimal assumptions about the underlying processes. We find the key requirement for this method: one of the series must be widely spaced in time to guarantee the theoretical applicability of the bootstrap. If this condition is met, the calculated significance passes a reasonableness test. We conclude with some potential future extensions and caveats on the applicability of these methods. The techniques presented have been implemented in a Python-based software toolkit.

  7. Supervisor Localization: A Top-Down Approach to Distributed Control of Discrete-Event Systems

    NASA Astrophysics Data System (ADS)

    Cai, K.; Wonham, W. M.

    2009-03-01

    A purely distributed control paradigm is proposed for discrete-event systems (DES). In contrast to control by one or more external supervisors, distributed control aims to design built-in strategies for individual agents. First a distributed optimal nonblocking control problem is formulated. To solve it, a top-down localization procedure is developed which systematically decomposes an external supervisor into local controllers while preserving optimality and nonblockingness. An efficient localization algorithm is provided to carry out the computation, and an automated guided vehicles (AGV) example presented for illustration. Finally, the 'easiest' and 'hardest' boundary cases of localization are discussed.

  8. Physician's Orders, Use of Nursing Resources, and Subsequent Clinical Events

    ERIC Educational Resources Information Center

    Griner, Paul F.; Vautrain, Robert L.

    1978-01-01

    Orders written by medical residents to be carried out on newly-hospitalized patients were reviewed to determine the frequency of vital signs orders. Subsequent clinical events requiring nurses to contact house officers were determined. Data suggest that physicians should request nurses to use more efficient methods of clinical observation.…

  9. Second-order discretization in space and time for radiation hydrodynamics

    SciTech Connect

    Edwards, J. D.; Morel, J. E.; Lowrie, R. B.

    2013-07-01

    We present a method for solving the equations of radiation hydrodynamics that is second-order accurate in space and time. This method combines the MUSCL-Hancock method for solving the Euler equations with the TR/BDF2 scheme in time for solving the equations of radiative transfer. We use an LDFEM to discretize the radiative transfer equations in space, which, though uncommon for radiation diffusion calculations, is a standard for radiation transport applications. We address the challenges inherent to using different spatial discretizations for the hydrodynamics and radiation and demonstrate how these may be overcome. We define our method for a 1-D model of compressible fluid dynamics coupled with grey radiation diffusion. Using the method of manufactured solutions, we show that the method is second-order accurate in space and time for both the equilibrium diffusion and streaming limit. (authors)

  10. Tutorial in medical decision modeling incorporating waiting lines and queues using discrete event simulation.

    PubMed

    Jahn, Beate; Theurl, Engelbert; Siebert, Uwe; Pfeiffer, Karl-Peter

    2010-01-01

    In most decision-analytic models in health care, it is assumed that there is treatment without delay and availability of all required resources. Therefore, waiting times caused by limited resources and their impact on treatment effects and costs often remain unconsidered. Queuing theory enables mathematical analysis and the derivation of several performance measures of queuing systems. Nevertheless, an analytical approach with closed formulas is not always possible. Therefore, simulation techniques are used to evaluate systems that include queuing or waiting, for example, discrete event simulation. To include queuing in decision-analytic models requires a basic knowledge of queuing theory and of the underlying interrelationships. This tutorial introduces queuing theory. Analysts and decision-makers get an understanding of queue characteristics, modeling features, and its strength. Conceptual issues are covered, but the emphasis is on practical issues like modeling the arrival of patients. The treatment of coronary artery disease with percutaneous coronary intervention including stent placement serves as an illustrative queuing example. Discrete event simulation is applied to explicitly model resource capacities, to incorporate waiting lines and queues in the decision-analytic modeling example. PMID:20345550

  11. Energy Stable Flux Formulas For The Discontinuous Galerkin Discretization Of First Order Nonlinear Conservation Laws

    NASA Technical Reports Server (NTRS)

    Barth, Timothy; Charrier, Pierre; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    We consider the discontinuous Galerkin (DG) finite element discretization of first order systems of conservation laws derivable as moments of the kinetic Boltzmann equation. This includes well known conservation law systems such as the Euler For the class of first order nonlinear conservation laws equipped with an entropy extension, an energy analysis of the DG method for the Cauchy initial value problem is developed. Using this DG energy analysis, several new variants of existing numerical flux functions are derived and shown to be energy stable.

  12. A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models

    DOE PAGESBeta

    Guerra, Jorge E.; Ullrich, Paul A.

    2016-06-01

    Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δx) modes. Furthermore, high-order accuracy alsomore » eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Lastly, our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less

  13. A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models

    NASA Astrophysics Data System (ADS)

    Guerra, Jorge E.; Ullrich, Paul A.

    2016-06-01

    Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δx) modes. Furthermore, high-order accuracy also eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.

  14. A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models

    DOE PAGESBeta

    Guerra, Jorge E.; Ullrich, Paul A.

    2016-06-01

    Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δx) modes. Furthermore, high-order accuracy alsomore » eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less

  15. Discretization parameter and operator ordering in loop quantum cosmology with the cosmological constant

    SciTech Connect

    Tanaka, Tomo; Amemiya, Fumitoshi; Shimano, Masahiro; Harada, Tomohiro; Tamaki, Takashi

    2011-05-15

    In loop quantum cosmology, the Hamiltonian reduces to a finite difference operator and quantum dynamics are controlled by the difference equation. In this framework, Bojowald [M. Bojowald, Phys. Rev. Lett. 86, 5227 (2001).] showed that the initial singularity is absent in the twofold sense: (i) the spectrum of the inverse scale factor operator is bounded from above; (ii) the wave function of the Universe can be uniquely extended beyond the point which was the initial singularity in classical theory. In this paper, we study the initial singularity in this sense and the large-volume limit against the ambiguities in the discretization and the operator ordering within a homogeneous, isotropic and spatially flat model with the cosmological constant. We find that the absence of the singularity strongly depends on the choice of the operator ordering and the requirement for the absence singles out a very small class of orderings. Moreover we find a general ordering rule required for the absence of the singularity. We also find that the large-volume limit naturally recovers a smooth wave function in the discretization where each step corresponds to a fixed volume increment but not in the one where each step corresponds to a fixed area increment. If loop quantum cosmology is to be a phenomenological realization of full loop quantum gravity, these results are important to fix the theoretical ambiguities.

  16. Scale invariance of temporal order discrimination using complex, naturalistic events

    PubMed Central

    Kwok, Sze Chai; Macaluso, Emiliano

    2015-01-01

    Recent demonstrations of scale invariance in cognitive domains prompted us to investigate whether a scale-free pattern might exist in retrieving the temporal order of events from episodic memory. We present four experiments using an encoding-retrieval paradigm with naturalistic stimuli (movies or video clips). Our studies show that temporal order judgement retrieval times were negatively correlated with the temporal separation between two events in the movie. This relation held, irrespective of whether temporal distances were on the order of tens of minutes (Exp 1−2) or just a few seconds (Exp 3−4). Using the SIMPLE model, we factored in the retention delays between encoding and retrieval (delays of 24 h, 15 min, 1.5–2.5 s, and 0.5 s for Exp 1–4, respectively) and computed a temporal similarity score for each trial. We found a positive relation between similarity and retrieval times; that is, the more temporally similar two events, the slower the retrieval of their temporal order. Using Bayesian analysis, we confirmed the equivalence of the RT/similarity relation across all experiments, which included a vast range of temporal distances and retention delays. These results provide evidence for scale invariance during the retrieval of temporal order of episodic memories. PMID:25909581

  17. Scale invariance of temporal order discrimination using complex, naturalistic events.

    PubMed

    Kwok, Sze Chai; Macaluso, Emiliano

    2015-07-01

    Recent demonstrations of scale invariance in cognitive domains prompted us to investigate whether a scale-free pattern might exist in retrieving the temporal order of events from episodic memory. We present four experiments using an encoding-retrieval paradigm with naturalistic stimuli (movies or video clips). Our studies show that temporal order judgement retrieval times were negatively correlated with the temporal separation between two events in the movie. This relation held, irrespective of whether temporal distances were on the order of tens of minutes (Exp 1-2) or just a few seconds (Exp 3-4). Using the SIMPLE model, we factored in the retention delays between encoding and retrieval (delays of 24 h, 15 min, 1.5-2.5 s, and 0.5 s for Exp 1-4, respectively) and computed a temporal similarity score for each trial. We found a positive relation between similarity and retrieval times; that is, the more temporally similar two events, the slower the retrieval of their temporal order. Using Bayesian analysis, we confirmed the equivalence of the RT/similarity relation across all experiments, which included a vast range of temporal distances and retention delays. These results provide evidence for scale invariance during the retrieval of temporal order of episodic memories. PMID:25909581

  18. Exception handling controllers: An application of pushdown systems to discrete event control

    SciTech Connect

    Griffin, Christopher H

    2008-01-01

    Recent work by the author has extended the Supervisory Control Theory to include the class of control languages defined by pushdown machines. A pushdown machine is a finite state machine extended by an infinite stack memory. In this paper, we define a specific type of deterministic pushdown machine that is particularly useful as a discrete event controller. Checking controllability of pushdown machines requires computing the complement of the controller machine. We show that Exception Handling Controllers have the property that algorithms for taking their complements and determining their prefix closures are nearly identical to the algorithms available for finite state machines. Further, they exhibit an important property that makes checking for controllability extremely simple. Hence, they maintain the simplicity of the finite state machine, while providing the extra power associated with a pushdown stack memory. We provide an example of a useful control specification that cannot be implemented using a finite state machine, but can be implemented using an Exception Handling Controller.

  19. Decidability for a temporal logic used in discrete-event system analysis

    NASA Technical Reports Server (NTRS)

    Knight, J. F.; Passino, K. M.

    1990-01-01

    The type of plant considered is one that can be modeled by a nondeterministic finite-state machine P. The regulator is a deterministic finite state machine R. The closed-loop system is formed by connecting P and R in a regulator configuration. Formulas in a propositional temporal language are used to describe the behavior of the closed-loop system. It is shown that there is a mechanical procedure which, for a given P and R, and a temporal formula Psi, will determine in a finite number of steps whether or not Psi must be true. This 'decidability' result could be proven using other known results on temporal logic. The proof given here shows that the behavior of the closed-loop system may safely be assumed to be ultimately periodic. The results are illustrated on two discrete-event system examples.

  20. Fault detection and isolation in manufacturing systems with an identified discrete event model

    NASA Astrophysics Data System (ADS)

    Roth, Matthias; Schneider, Stefan; Lesage, Jean-Jacques; Litz, Lothar

    2012-10-01

    In this article a generic method for fault detection and isolation (FDI) in manufacturing systems considered as discrete event systems (DES) is presented. The method uses an identified model of the closed-loop of plant and controller built on the basis of observed fault-free system behaviour. An identification algorithm known from literature is used to determine the fault detection model in form of a non-deterministic automaton. New results of how to parameterise this algorithm are reported. To assess the fault detection capability of an identified automaton, probabilistic measures are proposed. For fault isolation, the concept of residuals adapted for DES is used by defining appropriate set operations representing generic fault symptoms. The method is applied to a case study system.

  1. DeMO: An Ontology for Discrete-event Modeling and Simulation

    PubMed Central

    Silver, Gregory A; Miller, John A; Hybinette, Maria; Baramidze, Gregory; York, William S

    2011-01-01

    Several fields have created ontologies for their subdomains. For example, the biological sciences have developed extensive ontologies such as the Gene Ontology, which is considered a great success. Ontologies could provide similar advantages to the Modeling and Simulation community. They provide a way to establish common vocabularies and capture knowledge about a particular domain with community-wide agreement. Ontologies can support significantly improved (semantic) search and browsing, integration of heterogeneous information sources, and improved knowledge discovery capabilities. This paper discusses the design and development of an ontology for Modeling and Simulation called the Discrete-event Modeling Ontology (DeMO), and it presents prototype applications that demonstrate various uses and benefits that such an ontology may provide to the Modeling and Simulation community. PMID:22919114

  2. Reversible Parallel Discrete-Event Execution of Large-scale Epidemic Outbreak Models

    SciTech Connect

    Perumalla, Kalyan S; Seal, Sudip K

    2010-01-01

    The spatial scale, runtime speed and behavioral detail of epidemic outbreak simulations together require the use of large-scale parallel processing. In this paper, an optimistic parallel discrete event execution of a reaction-diffusion simulation model of epidemic outbreaks is presented, with an implementation over the $\\mu$sik simulator. Rollback support is achieved with the development of a novel reversible model that combines reverse computation with a small amount of incremental state saving. Parallel speedup and other runtime performance metrics of the simulation are tested on a small (8,192-core) Blue Gene / P system, while scalability is demonstrated on 65,536 cores of a large Cray XT5 system. Scenarios representing large population sizes (up to several hundred million individuals in the largest case) are exercised.

  3. CONFIG - Adapting qualitative modeling and discrete event simulation for design of fault management systems

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Basham, Bryan D.

    1989-01-01

    CONFIG is a modeling and simulation tool prototype for analyzing the normal and faulty qualitative behaviors of engineered systems. Qualitative modeling and discrete-event simulation have been adapted and integrated, to support early development, during system design, of software and procedures for management of failures, especially in diagnostic expert systems. Qualitative component models are defined in terms of normal and faulty modes and processes, which are defined by invocation statements and effect statements with time delays. System models are constructed graphically by using instances of components and relations from object-oriented hierarchical model libraries. Extension and reuse of CONFIG models and analysis capabilities in hybrid rule- and model-based expert fault-management support systems are discussed.

  4. A conceptual modeling framework for discrete event simulation using hierarchical control structures

    PubMed Central

    Furian, N.; O’Sullivan, M.; Walker, C.; Vössner, S.; Neubacher, D.

    2015-01-01

    Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM’s applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models’ system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example. PMID:26778940

  5. State feedback control of real-time discrete event systems with infinite states

    NASA Astrophysics Data System (ADS)

    Park, Seong-Jin; Cho, Kwang-Hyun

    2015-05-01

    In this paper, we study a state feedback supervisory control of timed discrete event systems (TDESs) with infinite number of states modelled as timed automata. To this end, we represent a timed automaton with infinite number of untimed states (called locations) by a finite set of conditional assignment statements. Predicates and predicate transformers are employed to finitely represent the behaviour and specification of a TDES with infinite number of locations. In addition, the notion of clock regions in timed automata is used to identify the reachable states of a TDES with an infinite time space. For a real-time specification described as a predicate, we present the controllability condition for the existence of a state feedback supervisor that restricts the behaviour of the controlled TDES within the specification.

  6. A Framework for the Optimization of Discrete-Event Simulation Models

    NASA Technical Reports Server (NTRS)

    Joshi, B. D.; Unal, R.; White, N. H.; Morris, W. D.

    1996-01-01

    With the growing use of computer modeling and simulation, in all aspects of engineering, the scope of traditional optimization has to be extended to include simulation models. Some unique aspects have to be addressed while optimizing via stochastic simulation models. The optimization procedure has to explicitly account for the randomness inherent in the stochastic measures predicted by the model. This paper outlines a general purpose framework for optimization of terminating discrete-event simulation models. The methodology combines a chance constraint approach for problem formulation, together with standard statistical estimation and analyses techniques. The applicability of the optimization framework is illustrated by minimizing the operation and support resources of a launch vehicle, through a simulation model.

  7. Small-World Synchronized Computing Networks for Scalable Parallel Discrete-Event Simulations

    NASA Astrophysics Data System (ADS)

    Guclu, Hasan; Korniss, Gyorgy; Toroczkai, Zoltan; Novotny, Mark A.

    We study the scalability of parallel discrete-event simulations for arbitrary short-range interacting systems with asynchronous dynamics. When the synchronization topology mimics that of the short-range interacting underlying system, the virtual time horizon (corresponding to the progress of the processing elements) exhibits Kardar-Parisi-Zhang-like kinetic roughening. Although the virtual times, on average, progress at a nonzero rate, their statistical spread diverges with the number of processing elements, hindering efficient data collection. We show that when the synchronization topology is extended to include quenched random communication links between the processing elements, they make a close-to-uniform progress with a nonzero rate, without global synchronization. We discuss in detail a coarse-grained description for the small-world synchronized virtual time horizon and compare the findings to those obtained by simulating the simulations based on the exact algorithmic rules.

  8. Developing Flexible Discrete Event Simulation Models in an Uncertain Policy Environment

    NASA Technical Reports Server (NTRS)

    Miranda, David J.; Fayez, Sam; Steele, Martin J.

    2011-01-01

    On February 1st, 2010 U.S. President Barack Obama submitted to Congress his proposed budget request for Fiscal Year 2011. This budget included significant changes to the National Aeronautics and Space Administration (NASA), including the proposed cancellation of the Constellation Program. This change proved to be controversial and Congressional approval of the program's official cancellation would take many months to complete. During this same period an end-to-end discrete event simulation (DES) model of Constellation operations was being built through the joint efforts of Productivity Apex Inc. (PAl) and Science Applications International Corporation (SAIC) teams under the guidance of NASA. The uncertainty in regards to the Constellation program presented a major challenge to the DES team, as to: continue the development of this program-of-record simulation, while at the same time remain prepared for possible changes to the program. This required the team to rethink how it would develop it's model and make it flexible enough to support possible future vehicles while at the same time be specific enough to support the program-of-record. This challenge was compounded by the fact that this model was being developed through the traditional DES process-orientation which lacked the flexibility of object-oriented approaches. The team met this challenge through significant pre-planning that led to the "modularization" of the model's structure by identifying what was generic, finding natural logic break points, and the standardization of interlogic numbering system. The outcome of this work resulted in a model that not only was ready to be easily modified to support any future rocket programs, but also a model that was extremely structured and organized in a way that facilitated rapid verification. This paper discusses in detail the process the team followed to build this model and the many advantages this method provides builders of traditional process-oriented discrete

  9. Reversible Discrete Event Formulation and Optimistic Parallel Execution of Vehicular Traffic Models

    SciTech Connect

    Yoginath, Srikanth B; Perumalla, Kalyan S

    2009-01-01

    Vehicular traffic simulations are useful in applications such as emergency planning and traffic management. High speed of traffic simulations translates to speed of response and level of resilience in those applications. Discrete event formulation of traffic flow at the level of individual vehicles affords both the flexibility of simulating complex scenarios of vehicular flow behavior as well as rapid simulation time advances. However, efficient parallel/distributed execution of the models becomes challenging due to synchronization overheads. Here, a parallel traffic simulation approach is presented that is aimed at reducing the time for simulating emergency vehicular traffic scenarios. Our approach resolves the challenges that arise in parallel execution of microscopic, vehicular-level models of traffic. We apply a reverse computation-based optimistic execution approach to address the parallel synchronization problem. This is achieved by formulating a reversible version of a discrete event model of vehicular traffic, and by utilizing this reversible model in an optimistic execution setting. Three unique aspects of this effort are: (1) exploration of optimistic simulation applied to vehicular traffic simulation (2) addressing reverse computation challenges specific to optimistic vehicular traffic simulation (3) achieving absolute (as opposed to self-relative) speedup with a sequential speed close to that of a fast, de facto standard sequential simulator for emergency traffic. The design and development of the parallel simulation system is presented, along with a performance study that demonstrates excellent sequential performance as well as parallel performance. The benefits of optimistic execution are demonstrated, including a speed up of nearly 20 on 32 processors observed on a vehicular network of over 65,000 intersections and over 13 million vehicles.

  10. SPEEDES - A multiple-synchronization environment for parallel discrete-event simulation

    NASA Technical Reports Server (NTRS)

    Steinman, Jeff S.

    1992-01-01

    Synchronous Parallel Environment for Emulation and Discrete-Event Simulation (SPEEDES) is a unified parallel simulation environment. It supports multiple-synchronization protocols without requiring users to recompile their code. When a SPEEDES simulation runs on one node, all the extra parallel overhead is removed automatically at run time. When the same executable runs in parallel, the user preselects the synchronization algorithm from a list of options. SPEEDES currently runs on UNIX networks and on the California Institute of Technology/Jet Propulsion Laboratory Mark III Hypercube. SPEEDES also supports interactive simulations. Featured in the SPEEDES environment is a new parallel synchronization approach called Breathing Time Buckets. This algorithm uses some of the conservative techniques found in Time Bucket synchronization, along with the optimism that characterizes the Time Warp approach. A mathematical model derived from first principles predicts the performance of Breathing Time Buckets. Along with the Breathing Time Buckets algorithm, this paper discusses the rules for processing events in SPEEDES, describes the implementation of various other synchronization protocols supported by SPEEDES, describes some new ones for the future, discusses interactive simulations, and then gives some performance results.

  11. Towards High Performance Discrete-Event Simulations of Smart Electric Grids

    SciTech Connect

    Perumalla, Kalyan S; Nutaro, James J; Yoginath, Srikanth B

    2011-01-01

    Future electric grid technology is envisioned on the notion of a smart grid in which responsive end-user devices play an integral part of the transmission and distribution control systems. Detailed simulation is often the primary choice in analyzing small network designs, and the only choice in analyzing large-scale electric network designs. Here, we identify and articulate the high-performance computing needs underlying high-resolution discrete event simulation of smart electric grid operation large network scenarios such as the entire Eastern Interconnect. We focus on the simulator's most computationally intensive operation, namely, the dynamic numerical solution for the electric grid state, for both time-integration as well as event-detection. We explore solution approaches using general-purpose dense and sparse solvers, and propose a scalable solver specialized for the sparse structures of actual electric networks. Based on experiments with an implementation in the THYME simulator, we identify performance issues and possible solution approaches for smart grid experimentation in the large.

  12. Examining Passenger Flow Choke Points at Airports Using Discrete Event Simulation

    NASA Technical Reports Server (NTRS)

    Brown, Jeremy R.; Madhavan, Poomima

    2011-01-01

    The movement of passengers through an airport quickly, safely, and efficiently is the main function of the various checkpoints (check-in, security. etc) found in airports. Human error combined with other breakdowns in the complex system of the airport can disrupt passenger flow through the airport leading to lengthy waiting times, missing luggage and missed flights. In this paper we present a model of passenger flow through an airport using discrete event simulation that will provide a closer look into the possible reasons for breakdowns and their implications for passenger flow. The simulation is based on data collected at Norfolk International Airport (ORF). The primary goal of this simulation is to present ways to optimize the work force to keep passenger flow smooth even during peak travel times and for emergency preparedness at ORF in case of adverse events. In this simulation we ran three different scenarios: real world, increased check-in stations, and multiple waiting lines. Increased check-in stations increased waiting time and instantaneous utilization. while the multiple waiting lines decreased both the waiting time and instantaneous utilization. This simulation was able to show how different changes affected the passenger flow through the airport.

  13. A second-order two-scale homogenization procedure using macrolevel discretization

    NASA Astrophysics Data System (ADS)

    Lesičar, Tomislav; Tonković, Zdenko; Sorić, Jurica

    2014-08-01

    The present study deals with a second-order two-scale computational homogenization procedure for modeling deformation responses of heterogeneous materials at small strains. The macro to micro transition and the application of generalized periodic boundary conditions on the representative volume element (RVE) at the microlevel are investigated. The structure at macroscale level is discretized by the two dimensional triangular finite elements, while the quadrilateral finite element is used for the discretization of the RVE. The finite element formulations and the new proposed multiscale scheme have been implemented into the finite element software ABAQUS using user subroutines derived. Due to the continuity transition, an additional integral condition on microlevel fluctuation field has to be imposed, as expected. The integration has been performed using various numerical integration techniques and the results obtained are compared in a few examples. It is concluded that only trapezoidal rule gives a physically based deformed shape of the RVE. Finally, the efficiency and accuracy of the proposed multiscale homogenization approach are demonstrated by the modeling of a shear layer problem, usually used as a benchmark in multiscale analyses.

  14. Automatic generation of efficient orderings of events for scheduling applications

    NASA Technical Reports Server (NTRS)

    Morris, Robert A.

    1994-01-01

    In scheduling a set of tasks, it is often not known with certainty how long a given event will take. We call this duration uncertainty. Duration uncertainty is a primary obstacle to the successful completion of a schedule. If a duration of one task is longer than expected, the remaining tasks are delayed. The delay may result in the abandonment of the schedule itself, a phenomenon known as schedule breakage. One response to schedule breakage is on-line, dynamic rescheduling. A more recent alternative is called proactive rescheduling. This method uses statistical data about the durations of events in order to anticipate the locations in the schedule where breakage is likely prior to the execution of the schedule. It generates alternative schedules at such sensitive points, which can be then applied by the scheduler at execution time, without the delay incurred by dynamic rescheduling. This paper proposes a technique for making proactive error management more effective. The technique is based on applying a similarity-based method of clustering to the problem of identifying similar events in a set of events.

  15. The effects of indoor environmental exposures on pediatric asthma: a discrete event simulation model

    PubMed Central

    2012-01-01

    Background In the United States, asthma is the most common chronic disease of childhood across all socioeconomic classes and is the most frequent cause of hospitalization among children. Asthma exacerbations have been associated with exposure to residential indoor environmental stressors such as allergens and air pollutants as well as numerous additional factors. Simulation modeling is a valuable tool that can be used to evaluate interventions for complex multifactorial diseases such as asthma but in spite of its flexibility and applicability, modeling applications in either environmental exposures or asthma have been limited to date. Methods We designed a discrete event simulation model to study the effect of environmental factors on asthma exacerbations in school-age children living in low-income multi-family housing. Model outcomes include asthma symptoms, medication use, hospitalizations, and emergency room visits. Environmental factors were linked to percent predicted forced expiratory volume in 1 second (FEV1%), which in turn was linked to risk equations for each outcome. Exposures affecting FEV1% included indoor and outdoor sources of NO2 and PM2.5, cockroach allergen, and dampness as a proxy for mold. Results Model design parameters and equations are described in detail. We evaluated the model by simulating 50,000 children over 10 years and showed that pollutant concentrations and health outcome rates are comparable to values reported in the literature. In an application example, we simulated what would happen if the kitchen and bathroom exhaust fans were improved for the entire cohort, and showed reductions in pollutant concentrations and healthcare utilization rates. Conclusions We describe the design and evaluation of a discrete event simulation model of pediatric asthma for children living in low-income multi-family housing. Our model simulates the effect of environmental factors (combustion pollutants and allergens), medication compliance, seasonality

  16. Discrete Kalman filtering equations of second-order form for control-structure interaction simulations

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Alvin, K. F.; Belvin, W. Keith

    1991-01-01

    A second-order form of discrete Kalman filtering equations is proposed as a candidate state estimator for efficient simulations of control-structure interactions in coupled physical coordinate configurations as opposed to decoupled modal coordinates. The resulting matrix equation of the present state estimator consists of the same symmetric, sparse N x N coupled matrices of the governing structural dynamics equations as opposed to unsymmetric 2N x 2N state space-based estimators. Thus, in addition to substantial computational efficiency improvement, the present estimator can be applied to control-structure design optimization for which the physical coordinates associated with the mass, damping and stiffness matrices of the structure are needed instead of modal coordinates.

  17. Symmetry preserving discretization of ordinary differential equations. Large symmetry groups and higher order equations

    NASA Astrophysics Data System (ADS)

    Campoamor-Stursberg, R.; Rodríguez, M. A.; Winternitz, P.

    2016-01-01

    Ordinary differential equations (ODEs) and ordinary difference systems (OΔSs) invariant under the actions of the Lie groups {{SL}}x(2),{{SL}}y(2) and {{SL}}x(2)× {{SL}}y(2) of projective transformations of the independent variables x and dependent variables y are constructed. The ODEs are continuous limits of the OΔSs, or conversely, the OΔSs are invariant discretizations of the ODEs. The invariant OΔSs are used to calculate numerical solutions of the invariant ODEs of order up to five. The solutions of the invariant numerical schemes are compared to numerical solutions obtained by standard Runge-Kutta methods and to exact solutions, when available. The invariant method performs at least as well as standard ones and much better in the vicinity of singularities of solutions.

  18. A preference-ordered discrete-gaming approach to air-combat analysis

    NASA Technical Reports Server (NTRS)

    Kelley, H. J.; Lefton, L.

    1978-01-01

    An approach to one-on-one air-combat analysis is described which employs discrete gaming of a parameterized model featuring choice between several closed-loop control policies. A preference-ordering formulation due to Falco is applied to rational choice between outcomes: win, loss, mutual capture, purposeful disengagement, draw. Approximate optimization is provided by an active-cell scheme similar to Falco's obtained by a 'backing up' process similar to that of Kopp. The approach is designed primarily for short-duration duels between craft with large-envelope weaponry. Some illustrative computations are presented for an example modeled using constant-speed vehicles and very rough estimation of energy shifts.

  19. Tempest - Efficient Computation of Atmospheric Flows Using High-Order Local Discretization Methods

    NASA Astrophysics Data System (ADS)

    Ullrich, P. A.; Guerra, J. E.

    2014-12-01

    The Tempest Framework composes several compact numerical methods to easily facilitate intercomparison of atmospheric flow calculations on the sphere and in rectangular domains. This framework includes the implementations of Spectral Elements, Discontinuous Galerkin, Flux Reconstruction, and Hybrid Finite Element methods with the goal of achieving optimal accuracy in the solution of atmospheric problems. Several advantages of this approach are discussed such as: improved pressure gradient calculation, numerical stability by vertical/horizontal splitting, arbitrary order of accuracy, etc. The local numerical discretization allows for high performance parallel computation and efficient inclusion of parameterizations. These techniques are used in conjunction with a non-conformal, locally refined, cubed-sphere grid for global simulations and standard Cartesian grids for simulations at the mesoscale. A complete implementation of the methods described is demonstrated in a non-hydrostatic setting.

  20. Scaling Time Warp-based Discrete Event Execution to 104 Processors on Blue Gene Supercomputer

    SciTech Connect

    Perumalla, Kalyan S

    2007-01-01

    Lately, important large-scale simulation applications, such as emergency/event planning and response, are emerging that are based on discrete event models. The applications are characterized by their scale (several millions of simulated entities), their fine-grained nature of computation (microseconds per event), and their highly dynamic inter-entity event interactions. The desired scale and speed together call for highly scalable parallel discrete event simulation (PDES) engines. However, few such parallel engines have been designed or tested on platforms with thousands of processors. Here an overview is given of a unique PDES engine that has been designed to support Time Warp-style optimistic parallel execution as well as a more generalized mixed, optimistic-conservative synchronization. The engine is designed to run on massively parallel architectures with minimal overheads. A performance study of the engine is presented, including the first results to date of PDES benchmarks demonstrating scalability to as many as 16,384 processors, on an IBM Blue Gene supercomputer. The results show, for the first time, the promise of effectively sustaining very large scale discrete event execution on up to 104 processors.

  1. Explicit spatial scattering for load balancing in conservatively synchronized parallel discrete-event simulations

    SciTech Connect

    Thulasidasan, Sunil; Kasiviswanathan, Shiva; Eidenbenz, Stephan; Romero, Philip

    2010-01-01

    We re-examine the problem of load balancing in conservatively synchronized parallel, discrete-event simulations executed on high-performance computing clusters, focusing on simulations where computational and messaging load tend to be spatially clustered. Such domains are frequently characterized by the presence of geographic 'hot-spots' - regions that generate significantly more simulation events than others. Examples of such domains include simulation of urban regions, transportation networks and networks where interaction between entities is often constrained by physical proximity. Noting that in conservatively synchronized parallel simulations, the speed of execution of the simulation is determined by the slowest (i.e most heavily loaded) simulation process, we study different partitioning strategies in achieving equitable processor-load distribution in domains with spatially clustered load. In particular, we study the effectiveness of partitioning via spatial scattering to achieve optimal load balance. In this partitioning technique, nearby entities are explicitly assigned to different processors, thereby scattering the load across the cluster. This is motivated by two observations, namely, (i) since load is spatially clustered, spatial scattering should, intuitively, spread the load across the compute cluster, and (ii) in parallel simulations, equitable distribution of CPU load is a greater determinant of execution speed than message passing overhead. Through large-scale simulation experiments - both of abstracted and real simulation models - we observe that scatter partitioning, even with its greatly increased messaging overhead, significantly outperforms more conventional spatial partitioning techniques that seek to reduce messaging overhead. Further, even if hot-spots change over the course of the simulation, if the underlying feature of spatial clustering is retained, load continues to be balanced with spatial scattering leading us to the observation that

  2. Discrete event command and control for networked teams with multiple missions

    NASA Astrophysics Data System (ADS)

    Lewis, Frank L.; Hudas, Greg R.; Pang, Chee Khiang; Middleton, Matthew B.; McMurrough, Christopher

    2009-05-01

    During mission execution in military applications, the TRADOC Pamphlet 525-66 Battle Command and Battle Space Awareness capabilities prescribe expectations that networked teams will perform in a reliable manner under changing mission requirements, varying resource availability and reliability, and resource faults. In this paper, a Command and Control (C2) structure is presented that allows for computer-aided execution of the networked team decision-making process, control of force resources, shared resource dispatching, and adaptability to change based on battlefield conditions. A mathematically justified networked computing environment is provided called the Discrete Event Control (DEC) Framework. DEC has the ability to provide the logical connectivity among all team participants including mission planners, field commanders, war-fighters, and robotic platforms. The proposed data management tools are developed and demonstrated on a simulation study and an implementation on a distributed wireless sensor network. The results show that the tasks of multiple missions are correctly sequenced in real-time, and that shared resources are suitably assigned to competing tasks under dynamically changing conditions without conflicts and bottlenecks.

  3. StratBAM: A Discrete-Event Simulation Model to Support Strategic Hospital Bed Capacity Decisions.

    PubMed

    Devapriya, Priyantha; Strömblad, Christopher T B; Bailey, Matthew D; Frazier, Seth; Bulger, John; Kemberling, Sharon T; Wood, Kenneth E

    2015-10-01

    The ability to accurately measure and assess current and potential health care system capacities is an issue of local and national significance. Recent joint statements by the Institute of Medicine and the Agency for Healthcare Research and Quality have emphasized the need to apply industrial and systems engineering principles to improving health care quality and patient safety outcomes. To address this need, a decision support tool was developed for planning and budgeting of current and future bed capacity, and evaluating potential process improvement efforts. The Strategic Bed Analysis Model (StratBAM) is a discrete-event simulation model created after a thorough analysis of patient flow and data from Geisinger Health System's (GHS) electronic health records. Key inputs include: timing, quantity and category of patient arrivals and discharges; unit-level length of care; patient paths; and projected patient volume and length of stay. Key outputs include: admission wait time by arrival source and receiving unit, and occupancy rates. Electronic health records were used to estimate parameters for probability distributions and to build empirical distributions for unit-level length of care and for patient paths. Validation of the simulation model against GHS operational data confirmed its ability to model real-world data consistently and accurately. StratBAM was successfully used to evaluate the system impact of forecasted patient volumes and length of stay in terms of patient wait times, occupancy rates, and cost. The model is generalizable and can be appropriately scaled for larger and smaller health care settings. PMID:26310949

  4. Empirical Evaluation of Conservative and Optimistic Discrete Event Execution on Cloud and VM Platforms

    SciTech Connect

    Yoginath, Srikanth B; Perumalla, Kalyan S

    2013-01-01

    Virtual machine (VM) technologies, especially those offered via Cloud platforms, present new dimensions with respect to performance and cost in executing parallel discrete event simulation (PDES) applications. Due to the introduction of overall cost as a metric, the choice of the highest-end computing configuration is no longer the most economical one. Moreover, runtime dynamics unique to VM platforms introduce new performance characteristics, and the variety of possible VM configurations give rise to a range of choices for hosting a PDES run. Here, an empirical study of these issues is undertaken to guide an understanding of the dynamics, trends and trade-offs in executing PDES on VM/Cloud platforms. Performance results and cost measures are obtained from actual execution of a range of scenarios in two PDES benchmark applications on the Amazon Cloud offerings and on a high-end VM host machine. The data reveals interesting insights into the new VM-PDES dynamics that come into play and also leads to counter-intuitive guidelines with respect to choosing the best and second-best configurations when overall cost of execution is considered. In particular, it is found that choosing the highest-end VM configuration guarantees neither the best runtime nor the least cost. Interestingly, choosing a (suitably scaled) low-end VM configuration provides the least overall cost without adversely affecting the total runtime.

  5. Discrete event simulation for healthcare organizations: a tool for decision making.

    PubMed

    Hamrock, Eric; Paige, Kerrie; Parks, Jennifer; Scheulen, James; Levin, Scott

    2013-01-01

    Healthcare organizations face challenges in efficiently accommodating increased patient demand with limited resources and capacity. The modern reimbursement environment prioritizes the maximization of operational efficiency and the reduction of unnecessary costs (i.e., waste) while maintaining or improving quality. As healthcare organizations adapt, significant pressures are placed on leaders to make difficult operational and budgetary decisions. In lieu of hard data, decision makers often base these decisions on subjective information. Discrete event simulation (DES), a computerized method of imitating the operation of a real-world system (e.g., healthcare delivery facility) over time, can provide decision makers with an evidence-based tool to develop and objectively vet operational solutions prior to implementation. DES in healthcare commonly focuses on (1) improving patient flow, (2) managing bed capacity, (3) scheduling staff, (4) managing patient admission and scheduling procedures, and (5) using ancillary resources (e.g., labs, pharmacies). This article describes applicable scenarios, outlines DES concepts, and describes the steps required for development. An original DES model developed to examine crowding and patient flow for staffing decision making at an urban academic emergency department serves as a practical example. PMID:23650696

  6. Discrete Event Simulation Models for CT Examination Queuing in West China Hospital

    PubMed Central

    Luo, Li; Tang, Shijun; Shi, Yingkang; Guo, Huili

    2016-01-01

    In CT examination, the emergency patients (EPs) have highest priorities in the queuing system and thus the general patients (GPs) have to wait for a long time. This leads to a low degree of satisfaction of the whole patients. The aim of this study is to improve the patients' satisfaction by designing new queuing strategies for CT examination. We divide the EPs into urgent type and emergency type and then design two queuing strategies: one is that the urgent patients (UPs) wedge into the GPs' queue with fixed interval (fixed priority model) and the other is that the patients have dynamic priorities for queuing (dynamic priority model). Based on the data from Radiology Information Database (RID) of West China Hospital (WCH), we develop some discrete event simulation models for CT examination according to the designed strategies. We compare the performance of different strategies on the basis of the simulation results. The strategy that patients have dynamic priorities for queuing makes the waiting time of GPs decrease by 13 minutes and the degree of satisfaction increase by 40.6%. We design a more reasonable CT examination queuing strategy to decrease patients' waiting time and increase their satisfaction degrees. PMID:27547237

  7. Public perceptions of coronary events risk factors: a discrete choice experiment

    PubMed Central

    Al Hamarneh, Yazid N; Agus, Ashley; Campbell, Danny; Crealey, Grainne E; McElnay, James C

    2012-01-01

    Objectives To assess public perceptions of coronary heart disease (CHD) risk factors. Design Discrete choice experiment questionnaire. Setting Six provincial centres in Northern Ireland. Participants 1000 adults of the general public in Northern Ireland. Primary and secondary outcomes The general public's perception of CHD risk factors. The effect of having risk factor(s) on that perception. Results Two multinomial logit models were created. One was a basic model (no heterogeneity permitted), while the other permitted heterogeneity based on respondents’ characteristics. In both models individuals with very high cholesterol were perceived to be at the highest risk of having a coronary event. Respondents who reported having high cholesterol perceived the risk contribution of very high cholesterol to be greater than those who reported having normal cholesterol. Similar findings were observed with blood pressure and smoking. Respondents who were male and older perceived the contribution of age and gender to be lower than respondents who were female and younger. Conclusions Respondents with different risk factors perceived such factors differently. These divergent perceptions of CHD risk factors could be a barrier to behavioural change. This brings into focus the need for more tailored health promotion campaigns to tackle CHD. PMID:22952164

  8. Discrete Event Simulation Models for CT Examination Queuing in West China Hospital.

    PubMed

    Luo, Li; Liu, Hangjiang; Liao, Huchang; Tang, Shijun; Shi, Yingkang; Guo, Huili

    2016-01-01

    In CT examination, the emergency patients (EPs) have highest priorities in the queuing system and thus the general patients (GPs) have to wait for a long time. This leads to a low degree of satisfaction of the whole patients. The aim of this study is to improve the patients' satisfaction by designing new queuing strategies for CT examination. We divide the EPs into urgent type and emergency type and then design two queuing strategies: one is that the urgent patients (UPs) wedge into the GPs' queue with fixed interval (fixed priority model) and the other is that the patients have dynamic priorities for queuing (dynamic priority model). Based on the data from Radiology Information Database (RID) of West China Hospital (WCH), we develop some discrete event simulation models for CT examination according to the designed strategies. We compare the performance of different strategies on the basis of the simulation results. The strategy that patients have dynamic priorities for queuing makes the waiting time of GPs decrease by 13 minutes and the degree of satisfaction increase by 40.6%. We design a more reasonable CT examination queuing strategy to decrease patients' waiting time and increase their satisfaction degrees. PMID:27547237

  9. Application of Discrete Event Control to the Insertion Task of Electric Line Using 6-Link Electro-Hydraulic Manipulators with Dual Arm

    NASA Astrophysics Data System (ADS)

    Ahn, Kyoungkwan; Yokota, Shinichi

    Uninterrupted power supply has become indispensable during the maintenance task of active electric power lines as a result of today's highly information-oriented society and increasing demand of electric utilities. The maintenance task has the risk of electric shock and the danger of falling from high place. Therefore it is necessary to realize an autonomous robot system using electro-hydraulic manipulator because hydraulic manipulators have the advantage of electric insulation. Meanwhile it is relatively difficult to realize autonomous assembly tasks particularly in the case of manipulating flexible objects such as electric lines. In this report, a discrete event control system is introduced for automatic assembly task of electric lines into sleeves as one of a typical task of active electric power lines. In the implementation of a discrete event control system, LVQNN (learning vector quantization neural network) is applied to the insertion task of electric lines to sleeves. In order to apply these proposed control system to the unknown environment, virtual learning data for LVQNN was generated by fuzzy inference. By the experimental results of two types of electric lines and sleeves, these proposed discrete event control and neural network learning algorithm are confirmed very effective to the insertion tasks of electric lines to sleeves as a typical task of active electric power maintenance tasks.

  10. Characterization of high order spatial discretizations and lumping techniques for discontinuous finite element SN transport

    SciTech Connect

    Maginot, P. G.; Ragusa, J. C.; Morel, J. E.

    2013-07-01

    We examine several possible methods of mass matrix lumping for discontinuous finite element discrete ordinates transport using a Lagrange interpolatory polynomial trial space. Though positive outflow angular flux is guaranteed with traditional mass matrix lumping in a purely absorbing 1-D slab cell for the linear discontinuous approximation, we show that when used with higher degree interpolatory polynomial trial spaces, traditional lumping does yield strictly positive outflows and does not increase in accuracy with an increase in trial space polynomial degree. As an alternative, we examine methods which are 'self-lumping'. Self-lumping methods yield diagonal mass matrices by using numerical quadrature restricted to the Lagrange interpolatory points. Using equally-spaced interpolatory points, self-lumping is achieved through the use of closed Newton-Cotes formulas, resulting in strictly positive outflows in pure absorbers for odd power polynomials in 1-D slab geometry. By changing interpolatory points from the traditional equally-spaced points to the quadrature points of the Gauss-Legendre or Lobatto-Gauss-Legendre quadratures, it is possible to generate solution representations with a diagonal mass matrix and a strictly positive outflow for any degree polynomial solution representation in a pure absorber medium in 1-D slab geometry. Further, there is no inherent limit to local truncation error order of accuracy when using interpolatory points that correspond to the quadrature points of high order accuracy numerical quadrature schemes. (authors)

  11. Improving outpatient phlebotomy service efficiency and patient experience using discrete-event simulation.

    PubMed

    Yip, Kenneth; Pang, Suk-King; Chan, Kui-Tim; Chan, Chi-Kuen; Lee, Tsz-Leung

    2016-08-01

    Purpose - The purpose of this paper is to present a simulation modeling application to reconfigure the outpatient phlebotomy service of an acute regional and teaching hospital in Hong Kong, with an aim to improve service efficiency, shorten patient queuing time and enhance workforce utilization. Design/methodology/approach - The system was modeled as an inhomogeneous Poisson process and a discrete-event simulation model was developed to simulate the current setting, and to evaluate how various performance metrics would change if switched from a decentralized to a centralized model. Variations were then made to the model to test different workforce arrangements for the centralized service, so that managers could decide on the service's final configuration via an evidence-based and data-driven approach. Findings - This paper provides empirical insights about the relationship between staffing arrangement and system performance via a detailed scenario analysis. One particular staffing scenario was chosen by manages as it was considered to strike the best balance between performance and workforce scheduled. The resulting centralized phlebotomy service was successfully commissioned. Practical implications - This paper demonstrates how analytics could be used for operational planning at the hospital level. The authors show that a transparent and evidence-based scenario analysis, made available through analytics and simulation, greatly facilitates management and clinical stakeholders to arrive at the ideal service configuration. Originality/value - The authors provide a robust method in evaluating the relationship between workforce investment, queuing reduction and workforce utilization, which is crucial for managers when deciding the delivery model for any outpatient-related service. PMID:27477930

  12. Using Discrete Event Computer Simulation to Improve Patient Flow in a Ghanaian Acute Care Hospital

    PubMed Central

    Best, Allyson M.; Dixon, Cinnamon A.; Kelton, W. David; Lindsell, Christopher J.

    2014-01-01

    Objectives Crowding and limited resources have increased the strain on acute care facilities and emergency departments (EDs) worldwide. These problems are particularly prevalent in developing countries. Discrete event simulation (DES) is a computer-based tool that can be used to estimate how changes to complex healthcare delivery systems, such as EDs, will affect operational performance. Using this modality, our objective was to identify operational interventions that could potentially improve patient throughput of one acute care setting in a developing country. Methods We developed a simulation model of acute care at a district level hospital in Ghana to test the effects of resource-neutral (e.g. modified staff start times and roles) and resource-additional (e.g. increased staff) operational interventions on patient throughput. Previously captured, de-identified time-and-motion data from 487 acute care patients were used to develop and test the model. The primary outcome was the modeled effect of interventions on patient length of stay (LOS). Results The base-case (no change) scenario had a mean LOS of 292 minutes (95% CI 291, 293). In isolation, neither adding staffing, changing staff roles, nor varying shift times affected overall patient LOS. Specifically, adding two registration workers, history takers, and physicians resulted in a 23.8 (95% CI 22.3, 25.3) minute LOS decrease. However, when shift start-times were coordinated with patient arrival patterns, potential mean LOS was decreased by 96 minutes (95% CI 94, 98); and with the simultaneous combination of staff roles (Registration and History-taking) there was an overall mean LOS reduction of 152 minutes (95% CI 150, 154). Conclusions Resource-neutral interventions identified through DES modeling have the potential to improve acute care throughput in this Ghanaian municipal hospital. DES offers another approach to identifying potentially effective interventions to improve patient flow in emergency and acute

  13. Discrete-event simulation of a wide-area health care network.

    PubMed Central

    McDaniel, J G

    1995-01-01

    OBJECTIVE: Predict the behavior and estimate the telecommunication cost of a wide-area message store-and-forward network for health care providers that uses the telephone system. DESIGN: A tool with which to perform large-scale discrete-event simulations was developed. Network models for star and mesh topologies were constructed to analyze the differences in performances and telecommunication costs. The distribution of nodes in the network models approximates the distribution of physicians, hospitals, medical labs, and insurers in the Province of Saskatchewan, Canada. Modeling parameters were based on measurements taken from a prototype telephone network and a survey conducted at two medical clinics. Simulation studies were conducted for both topologies. RESULTS: For either topology, the telecommunication cost of a network in Saskatchewan is projected to be less than $100 (Canadian) per month per node. The estimated telecommunication cost of the star topology is approximately half that of the mesh. Simulations predict that a mean end-to-end message delivery time of two hours or less is achievable at this cost. A doubling of the data volume results in an increase of less than 50% in the mean end-to-end message transfer time. CONCLUSION: The simulation models provided an estimate of network performance and telecommunication cost in a specific Canadian province. At the expected operating point, network performance appeared to be relatively insensitive to increases in data volume. Similar results might be anticipated in other rural states and provinces in North America where a telephone-based network is desired. PMID:7583646

  14. Random vs. Combinatorial Methods for Discrete Event Simulation of a Grid Computer Network

    NASA Technical Reports Server (NTRS)

    Kuhn, D. Richard; Kacker, Raghu; Lei, Yu

    2010-01-01

    This study compared random and t-way combinatorial inputs of a network simulator, to determine if these two approaches produce significantly different deadlock detection for varying network configurations. Modeling deadlock detection is important for analyzing configuration changes that could inadvertently degrade network operations, or to determine modifications that could be made by attackers to deliberately induce deadlock. Discrete event simulation of a network may be conducted using random generation, of inputs. In this study, we compare random with combinatorial generation of inputs. Combinatorial (or t-way) testing requires every combination of any t parameter values to be covered by at least one test. Combinatorial methods can be highly effective because empirical data suggest that nearly all failures involve the interaction of a small number of parameters (1 to 6). Thus, for example, if all deadlocks involve at most 5-way interactions between n parameters, then exhaustive testing of all n-way interactions adds no additional information that would not be obtained by testing all 5-way interactions. While the maximum degree of interaction between parameters involved in the deadlocks clearly cannot be known in advance, covering all t-way interactions may be more efficient than using random generation of inputs. In this study we tested this hypothesis for t = 2, 3, and 4 for deadlock detection in a network simulation. Achieving the same degree of coverage provided by 4-way tests would have required approximately 3.2 times as many random tests; thus combinatorial methods were more efficient for detecting deadlocks involving a higher degree of interactions. The paper reviews explanations for these results and implications for modeling and simulation.

  15. A survival tree method for the analysis of discrete event times in clinical and epidemiological studies.

    PubMed

    Schmid, Matthias; Küchenhoff, Helmut; Hoerauf, Achim; Tutz, Gerhard

    2016-02-28

    Survival trees are a popular alternative to parametric survival modeling when there are interactions between the predictor variables or when the aim is to stratify patients into prognostic subgroups. A limitation of classical survival tree methodology is that most algorithms for tree construction are designed for continuous outcome variables. Hence, classical methods might not be appropriate if failure time data are measured on a discrete time scale (as is often the case in longitudinal studies where data are collected, e.g., quarterly or yearly). To address this issue, we develop a method for discrete survival tree construction. The proposed technique is based on the result that the likelihood of a discrete survival model is equivalent to the likelihood of a regression model for binary outcome data. Hence, we modify tree construction methods for binary outcomes such that they result in optimized partitions for the estimation of discrete hazard functions. By applying the proposed method to data from a randomized trial in patients with filarial lymphedema, we demonstrate how discrete survival trees can be used to identify clinically relevant patient groups with similar survival behavior. PMID:26358826

  16. Electromagnetic enhancement of ordered silver nanorod arrays evaluated by discrete dipole approximation.

    PubMed

    Wei, Guoke; Wang, Jinliang; Chen, Yu

    2015-01-01

    The enhancement factor (EF) of surface-enhanced Raman scattering (SERS) from two-dimensional (2D) hexagonal silver nanorod (AgNR) arrays were investigated in terms of electromagnetic (EM) mechanism by using the discrete dipole approximation (DDA) method. The dependence of EF on several parameters, i.e., structure, length, excitation wavelength, incident angle and polarization, and gap size has been investigated. "Hotspots" were found distributed in the gaps between adjacent nanorods. Simulations of AgNR arrays of different lengths revealed that increasing the rod length from 374 to 937 nm (aspect ratio from 2.0 to 5.0) generated more "hotspots" but not necessarily increased EF under both 514 and 532 nm excitation. A narrow lateral gap (in the incident plane) was found to result in strong EF, while the dependence of EF on the diagonal gap (out of the incident plane) showed an oscillating behavior. The EF of the array was highly dependent on the angle and polarization of the incident light. The structure of AgNR and the excitation wavelength were also found to affect the EF. The EF of random arrays was stronger than that of an ordered one with the same average gap of 21 nm, which could be explained by the exponential dependence of EF on the lateral gap size. Our results also suggested that absorption rather than extinction or scattering could be a good indicator of EM enhancement. It is expected that the understanding of the dependence of local field enhancement on the structure of the nanoarrays and incident excitations will shine light on the optimal design of efficient SERS substrates and improved performance. PMID:25821708

  17. Electromagnetic enhancement of ordered silver nanorod arrays evaluated by discrete dipole approximation

    PubMed Central

    Wei, Guoke; Wang, Jinliang

    2015-01-01

    Summary The enhancement factor (EF) of surface-enhanced Raman scattering (SERS) from two-dimensional (2D) hexagonal silver nanorod (AgNR) arrays were investigated in terms of electromagnetic (EM) mechanism by using the discrete dipole approximation (DDA) method. The dependence of EF on several parameters, i.e., structure, length, excitation wavelength, incident angle and polarization, and gap size has been investigated. “Hotspots” were found distributed in the gaps between adjacent nanorods. Simulations of AgNR arrays of different lengths revealed that increasing the rod length from 374 to 937 nm (aspect ratio from 2.0 to 5.0) generated more “hotspots” but not necessarily increased EF under both 514 and 532 nm excitation. A narrow lateral gap (in the incident plane) was found to result in strong EF, while the dependence of EF on the diagonal gap (out of the incident plane) showed an oscillating behavior. The EF of the array was highly dependent on the angle and polarization of the incident light. The structure of AgNR and the excitation wavelength were also found to affect the EF. The EF of random arrays was stronger than that of an ordered one with the same average gap of 21 nm, which could be explained by the exponential dependence of EF on the lateral gap size. Our results also suggested that absorption rather than extinction or scattering could be a good indicator of EM enhancement. It is expected that the understanding of the dependence of local field enhancement on the structure of the nanoarrays and incident excitations will shine light on the optimal design of efficient SERS substrates and improved performance. PMID:25821708

  18. High-Order Semi-Discrete Central-Upwind Schemes for Multi-Dimensional Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron; Biegel, Bran R. (Technical Monitor)

    2002-01-01

    We present high-order semi-discrete central-upwind numerical schemes for approximating solutions of multi-dimensional Hamilton-Jacobi (HJ) equations. This scheme is based on the use of fifth-order central interpolants like those developed in [1], in fluxes presented in [3]. These interpolants use the weighted essentially nonoscillatory (WENO) approach to avoid spurious oscillations near singularities, and become "central-upwind" in the semi-discrete limit. This scheme provides numerical approximations whose error is as much as an order of magnitude smaller than those in previous WENO-based fifth-order methods [2, 1]. Thee results are discussed via examples in one, two and three dimensions. We also pregnant explicit N-dimensional formulas for the fluxes, discuss their monotonicity and tl!e connection between this method and that in [2].

  19. Discrete Event Execution with One-Sided and Two-Sided GVT Algorithms on 216,000 Processor Cores

    SciTech Connect

    Perumalla, Kalyan S; Park, Alfred J; Tipparaju, Vinod

    2014-01-01

    Global virtual time (GVT) computation is a key determinant of the efficiency and runtime dynamics of parallel discrete event simulations (PDES), especially on large-scale parallel platforms. Here, three execution modes of a generalized GVT computation algorithm are studied on high-performance parallel computing systems: (1) a synchronous GVT algorithm that affords ease of implementation, (2) an asynchronous GVT algorithm that is more complex to implement but can relieve blocking latencies, and (3) a variant of the asynchronous GVT algorithm to exploit one-sided communication in extant supercomputing platforms. Performance results are presented of implementations of these algorithms on up to 216,000 cores of a Cray XT5 system, exercised on a range of parameters: optimistic and conservative synchronization, fine- to medium-grained event computation, synthetic and non-synthetic applications, and different lookahead values. Performance of up to 54 billion events executed per second is registered. Detailed PDES-specific runtime metrics are presented to further the understanding of tightly-coupled discrete event dynamics on massively parallel platforms.

  20. High order asymptotic preserving DG-IMEX schemes for discrete-velocity kinetic equations in a diffusive scaling

    NASA Astrophysics Data System (ADS)

    Jang, Juhi; Li, Fengyan; Qiu, Jing-Mei; Xiong, Tao

    2015-01-01

    In this paper, we develop a family of high order asymptotic preserving schemes for some discrete-velocity kinetic equations under a diffusive scaling, that in the asymptotic limit lead to macroscopic models such as the heat equation, the porous media equation, the advection-diffusion equation, and the viscous Burgers' equation. Our approach is based on the micro-macro reformulation of the kinetic equation which involves a natural decomposition of the equation to the equilibrium and non-equilibrium parts. To achieve high order accuracy and uniform stability as well as to capture the correct asymptotic limit, two new ingredients are employed in the proposed methods: discontinuous Galerkin (DG) spatial discretization of arbitrary order of accuracy with suitable numerical fluxes; high order globally stiffly accurate implicit-explicit (IMEX) Runge-Kutta scheme in time equipped with a properly chosen implicit-explicit strategy. Formal asymptotic analysis shows that the proposed scheme in the limit of ε → 0 is a consistent high order discretization for the limiting equation. Numerical results are presented to demonstrate the stability and high order accuracy of the proposed schemes together with their performance in the limit. Our methods are also tested for the continuous-velocity one-group transport equation in slab geometry and for several examples with spatially varying parameters.

  1. Exact meta-analysis approach for discrete data and its application to 2 × 2 tables with rare events

    PubMed Central

    Liu, Dungang; Liu, Regina Y.

    2014-01-01

    This paper proposes a general exact meta-analysis approach for synthesizing inferences from multiple studies of discrete data. The approach combines the p-value functions (also known as significance functions) associated with the exact tests from individual studies. It encompasses a broad class of exact meta-analysis methods, as it permits broad choices for the combining elements, such as tests used in individual studies, and any parameter of interest. The approach yields statements that explicitly account for the impact of individual studies on the overall inference, in terms of efficiency/power and the type I error rate. Those statements also give rises to empirical methods for further enhancing the combined inference. Although the proposed approach is for general discrete settings, for convenience, it is illustrated throughout using the setting of meta-analysis of multiple 2 × 2 tables. In the context of rare events data, such as observing few, zero or zero total (i.e., zero events in both arms) outcomes in binomial trials or 2 × 2 tables, most existing meta-analysis methods rely on the large-sample approximations which may yield invalid inference. The commonly used corrections to zero outcomes in rare events data, aiming to improve numerical performance can also incur undesirable consequences. The proposed approach applies readily to any rare event setting, including even the zero total event studies without any artificial correction. While debates continue on whether or how zero total event studies should be incorporated in meta-analysis, the proposed approach has the advantage of automatically including those studies and thus making use of all available data. Through numerical studies in rare events settings, the proposed exact approach is shown to be efficient and, generally, outperform commonly used meta-analysis methods, including Mental-Haenszel and Peto methods. PMID:25620825

  2. An exact and dual-consistent formulation for high-order discretization of the compressible viscous flow equations

    NASA Astrophysics Data System (ADS)

    Vishnampet, Ramanathan; Bodony, Daniel; Freund, Jonathan

    2014-11-01

    Finite-difference operators satisfying a summation-by-parts property enable discretization of PDEs such that the adjoint of the discretization is consistent with the continuous-adjoint equation. The advantages of this include smooth discrete-adjoint fields that converge with mesh refinement and superconvergence of linear functionals. We present a high-order dual-consistent discretization of the compressible flow equations with temperature-dependent viscosity and Fourier heat conduction in generalized curvilinear coordinates. We demonstrate dual-consistency for aeroacoustic control of a mixing layer by verifying superconvergence and show that the accuracy of the gradient is only limited by computing precision. We anticipate dual-consistency to play a key role in compressible turbulence control, for which the continuous-adjoint method, despite being robust, introduces adjoint-field errors that grow exponentially. Our dual-consistent formulation can leverage this robustness, while simultaneously providing an exact sensitivity gradient. We also present a strategy for extending dual-consistency to temporal discretization and show that it leads to implicit multi-stage schemes. Our formulation readily extends to multi-block grids through penalty-like enforcement of interface conditions.

  3. Processing Causality in Narrative Events: Temporal Order Matters

    ERIC Educational Resources Information Center

    Briner, Stephen W.; Virtue, Sandra; Kurby, Christopher A.

    2012-01-01

    To successfully comprehend narrative text, readers often make inferences about different causes and effects that occur in a text. In this study, participants read texts in which events related to a cause were presented before an effect (i.e., the forward causal condition), texts in which an effect was presented before the events related to a cause…

  4. High-Order Semi-Discrete Central-Upwind Schemes for Multi-Dimensional Hamilton-Jacobi Equations

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Levy, Doron; Biegel, Bryan (Technical Monitor)

    2002-01-01

    We present the first fifth order, semi-discrete central upwind method for approximating solutions of multi-dimensional Hamilton-Jacobi equations. Unlike most of the commonly used high order upwind schemes, our scheme is formulated as a Godunov-type scheme. The scheme is based on the fluxes of Kurganov-Tadmor and Kurganov-Tadmor-Petrova, and is derived for an arbitrary number of space dimensions. A theorem establishing the monotonicity of these fluxes is provided. The spacial discretization is based on a weighted essentially non-oscillatory reconstruction of the derivative. The accuracy and stability properties of our scheme are demonstrated in a variety of examples. A comparison between our method and other fifth-order schemes for Hamilton-Jacobi equations shows that our method exhibits smaller errors without any increase in the complexity of the computations.

  5. Modeling Temporal Processes in Early Spacecraft Design: Application of Discrete-Event Simulations for Darpa's F6 Program

    NASA Technical Reports Server (NTRS)

    Dubos, Gregory F.; Cornford, Steven

    2012-01-01

    While the ability to model the state of a space system over time is essential during spacecraft operations, the use of time-based simulations remains rare in preliminary design. The absence of the time dimension in most traditional early design tools can however become a hurdle when designing complex systems whose development and operations can be disrupted by various events, such as delays or failures. As the value delivered by a space system is highly affected by such events, exploring the trade space for designs that yield the maximum value calls for the explicit modeling of time.This paper discusses the use of discrete-event models to simulate spacecraft development schedule as well as operational scenarios and on-orbit resources in the presence of uncertainty. It illustrates how such simulations can be utilized to support trade studies, through the example of a tool developed for DARPA's F6 program to assist the design of "fractionated spacecraft".

  6. Children's Reasoning about the Temporal Order of Past and Future Events

    ERIC Educational Resources Information Center

    McCormack, Teresa; Hanley, Mary

    2011-01-01

    Four- and five-year-olds completed two sets of tasks that involved reasoning about the temporal order in which events had occurred in the past or were to occur in the future. Four-year-olds succeeded on the tasks that involved reasoning about the order of past events but not those that involved reasoning about the order of future events, whereas…

  7. A high-order full-discretization method using Hermite interpolation for periodic time-delayed differential equations

    NASA Astrophysics Data System (ADS)

    Liu, Yilong; Fischer, Achim; Eberhard, Peter; Wu, Baohai

    2015-06-01

    A high-order full-discretization method (FDM) using Hermite interpolation (HFDM) is proposed and implemented for periodic systems with time delay. Both Lagrange interpolation and Hermite interpolation are used to approximate state values and delayed state values in each discretization step. The transition matrix over a single period is determined and used for stability analysis. The proposed method increases the approximation order of the semidiscretization method and the FDM without increasing the computational time. The convergence, precision, and efficiency of the proposed method are investigated using several Mathieu equations and a complex turning model as examples. Comparison shows that the proposed HFDM converges faster and uses less computational time than existing methods.

  8. Fully discrete energy stable high order finite difference methods for hyperbolic problems in deforming domains

    NASA Astrophysics Data System (ADS)

    Nikkar, Samira; Nordström, Jan

    2015-06-01

    A time-dependent coordinate transformation of a constant coefficient hyperbolic system of equations which results in a variable coefficient system of equations is considered. By applying the energy method, well-posed boundary conditions for the continuous problem are derived. Summation-by-Parts (SBP) operators for the space and time discretization, together with a weak imposition of boundary and initial conditions using Simultaneously Approximation Terms (SATs) lead to a provable fully-discrete energy-stable conservative finite difference scheme. We show how to construct a time-dependent SAT formulation that automatically imposes boundary conditions, when and where they are required. We also prove that a uniform flow field is preserved, i.e. the Numerical Geometric Conservation Law (NGCL) holds automatically by using SBP-SAT in time and space. The developed technique is illustrated by considering an application using the linearized Euler equations: the sound generated by moving boundaries. Numerical calculations corroborate the stability and accuracy of the new fully discrete approximations.

  9. Matrix approach to discrete fractional calculus III: non-equidistant grids, variable step length and distributed orders.

    PubMed

    Podlubny, Igor; Skovranek, Tomas; Vinagre Jara, Blas M; Petras, Ivo; Verbitsky, Viktor; Chen, YangQuan

    2013-05-13

    In this paper, we further develop Podlubny's matrix approach to discretization of integrals and derivatives of non-integer order. Numerical integration and differentiation on non-equidistant grids is introduced and illustrated by several examples of numerical solution of differential equations with fractional derivatives of constant orders and with distributed-order derivatives. In this paper, for the first time, we present a variable-step-length approach that we call 'the method of large steps', because it is applied in combination with the matrix approach for each 'large step'. This new method is also illustrated by an easy-to-follow example. The presented approach allows fractional-order and distributed-order differentiation and integration of non-uniformly sampled signals, and opens the way to development of variable- and adaptive-step-length techniques for fractional- and distributed-order differential equations. PMID:23547230

  10. The Order of Events in the Transition to Adulthood.

    ERIC Educational Resources Information Center

    Marini, Margaret Mooney

    1984-01-01

    The transition from adolescence to adulthood is marked by role changes, including movement out of the student role and entry into the adult roles of worker, spouse, and parent. This study examined the temporal order in which these role changes occur and the causal factors that determine this order. (Author/RM)

  11. Using Discrete Event Simulation for Programming Model Exploration at Extreme-Scale: Macroscale Components for the Structural Simulation Toolkit (SST).

    SciTech Connect

    Wilke, Jeremiah J; Kenny, Joseph P.

    2015-02-01

    Discrete event simulation provides a powerful mechanism for designing and testing new extreme- scale programming models for high-performance computing. Rather than debug, run, and wait for results on an actual system, design can first iterate through a simulator. This is particularly useful when test beds cannot be used, i.e. to explore hardware or scales that do not yet exist or are inaccessible. Here we detail the macroscale components of the structural simulation toolkit (SST). Instead of depending on trace replay or state machines, the simulator is architected to execute real code on real software stacks. Our particular user-space threading framework allows massive scales to be simulated even on small clusters. The link between the discrete event core and the threading framework allows interesting performance metrics like call graphs to be collected from a simulated run. Performance analysis via simulation can thus become an important phase in extreme-scale programming model and runtime system design via the SST macroscale components.

  12. Comparison of Diachronic Thinking and Event Ordering in 5- to 10-Year-Old Children

    ERIC Educational Resources Information Center

    Moore, Brandy D.; Brooks, Patricia J.; Rabin, Laura A.

    2014-01-01

    Two main theoretical constructs seek to describe the elaborated sense of time that may be a uniquely human attribute: diachronic thinking (the ability to think about the past and use that information to predict future events) and event ordering (the ability to sequence events in temporal order). Researchers utilize various tasks to measure the…

  13. Bringing Order to Life Events: Memory for the Temporal Order of Autobiographical Events over an Extended Period in School-Aged Children and Adults

    ERIC Educational Resources Information Center

    Pathman, Thanujeni; Doydum, Ayzit; Bauer, Patricia J.

    2013-01-01

    Remembering temporal information associated with personal past events is critical. Yet little is known about the development of temporal order memory for naturally occurring events. In the current research, 8- to 10-year-old children and adults took photographs daily for 4 weeks. Later, they participated in a primacy/recency task (were shown 2 of…

  14. Discrete gene replication events drive coupling between the cell cycle and circadian clocks

    PubMed Central

    Paijmans, Joris; Bosman, Mark; ten Wolde, Pieter Rein; Lubensky, David K.

    2016-01-01

    Many organisms possess both a cell cycle to control DNA replication and a circadian clock to anticipate changes between day and night. In some cases, these two rhythmic systems are known to be coupled by specific, cross-regulatory interactions. Here, we use mathematical modeling to show that, additionally, the cell cycle generically influences circadian clocks in a nonspecific fashion: The regular, discrete jumps in gene-copy number arising from DNA replication during the cell cycle cause a periodic driving of the circadian clock, which can dramatically alter its behavior and impair its function. A clock built on negative transcriptional feedback either phase-locks to the cell cycle, so that the clock period tracks the cell division time, or exhibits erratic behavior. We argue that the cyanobacterium Synechococcus elongatus has evolved two features that protect its clock from such disturbances, both of which are needed to fully insulate it from the cell cycle and give it its observed robustness: a phosphorylation-based protein modification oscillator, together with its accompanying push–pull read-out circuit that responds primarily to the ratios of different phosphoform concentrations, makes the clock less susceptible to perturbations in protein synthesis; the presence of multiple, asynchronously replicating copies of the same chromosome diminishes the effect of replicating any single copy of a gene. PMID:27035936

  15. Event-driven Monte Carlo: Exact dynamics at all time scales for discrete-variable models

    NASA Astrophysics Data System (ADS)

    Mendoza-Coto, Alejandro; Díaz-Méndez, Rogelio; Pupillo, Guido

    2016-06-01

    We present an algorithm for the simulation of the exact real-time dynamics of classical many-body systems with discrete energy levels. In the same spirit of kinetic Monte Carlo methods, a stochastic solution of the master equation is found, with no need to define any other phase-space construction. However, unlike existing methods, the present algorithm does not assume any particular statistical distribution to perform moves or to advance the time, and thus is a unique tool for the numerical exploration of fast and ultra-fast dynamical regimes. By decomposing the problem in a set of two-level subsystems, we find a natural variable step size, that is well defined from the normalization condition of the transition probabilities between the levels. We successfully test the algorithm with known exact solutions for non-equilibrium dynamics and equilibrium thermodynamical properties of Ising-spin models in one and two dimensions, and compare to standard implementations of kinetic Monte Carlo methods. The present algorithm is directly applicable to the study of the real-time dynamics of a large class of classical Markovian chains, and particularly to short-time situations where the exact evolution is relevant.

  16. Using Discrete Event Simulation to Model Integrated Commodities Consumption for a Launch Campaign of the Space Launch System

    NASA Technical Reports Server (NTRS)

    Leonard, Daniel; Parsons, Jeremy W.; Cates, Grant

    2014-01-01

    In May 2013, NASA's GSDO Program requested a study to develop a discrete event simulation (DES) model that analyzes the launch campaign process of the Space Launch System (SLS) from an integrated commodities perspective. The scope of the study includes launch countdown and scrub turnaround and focuses on four core launch commodities: hydrogen, oxygen, nitrogen, and helium. Previously, the commodities were only analyzed individually and deterministically for their launch support capability, but this study was the first to integrate them to examine the impact of their interactions on a launch campaign as well as the effects of process variability on commodity availability. The study produced a validated DES model with Rockwell Arena that showed that Kennedy Space Center's ground systems were capable of supporting a 48-hour scrub turnaround for the SLS. The model will be maintained and updated to provide commodity consumption analysis of future ground system and SLS configurations.

  17. StochKit2: software for discrete stochastic simulation of biochemical systems with events

    PubMed Central

    Sanft, Kevin R.; Wu, Sheng; Roh, Min; Fu, Jin; Lim, Rone Kwei; Petzold, Linda R.

    2011-01-01

    Summary: StochKit2 is the first major upgrade of the popular StochKit stochastic simulation software package. StochKit2 provides highly efficient implementations of several variants of Gillespie's stochastic simulation algorithm (SSA), and tau-leaping with automatic step size selection. StochKit2 features include automatic selection of the optimal SSA method based on model properties, event handling, and automatic parallelism on multicore architectures. The underlying structure of the code has been completely updated to provide a flexible framework for extending its functionality. Availability: StochKit2 runs on Linux/Unix, Mac OS X and Windows. It is freely available under GPL version 3 and can be downloaded from http://sourceforge.net/projects/stochkit/. Contact: petzold@engineering.ucsb.edu PMID:21727139

  18. Second order distorted born approximation for backscattering from a layer of discrete random medium

    NASA Technical Reports Server (NTRS)

    Lang, Roger H.; Saatchi, Sasan S.

    1993-01-01

    In recent years there has been increasing interest in scattering and depolarization characteristics of the vegetation canopies. Scattering models applied to the microwave remote sensing of vegetation canopies showed that multiple scattering effects can be important in simulating the backscattering coefficients correctly. In particular, in most applications, the cross-polarized backscattering coefficients are often underestimated by single scattering models. Recently, there have been concerted efforts to include the second order terms in the radiative transfer models of vegetation canopies in order to account for multiple scattering within the canopy. The coherent wave theory approach is extended to include multiple scattering effects to predict the coherent and incoherent backscattering contributions from a layer of vegetation canopy. The problem is initially formulated in terms of the exact equation for the correlation function of the field, i.e., the Bethe-Salpeter equation. Using fractional volume as a small parameter, a Foldy type approximation is made to obtain a more manageable correlation equation. This equation is iterated to obtain first and second order solutions. The iteration procedure assumes the variance of the field fluctuations are small compared to the coherent intensity. This assumption proved to be particularly successful in computing backscattering coefficients. First and second order backscattering coefficients are calculated from the iterants of the correlation equation. It is shown that the first order coefficients are the same as the distorted Born results used previously by the authors. These results contained enhancement terms in the direct-reflected contributions. The important contributions to second order backscattering are examined and interpreted in terms of scattering diagrams. Examples of situations in which second order backscattering coefficients are important are given.

  19. The use of a paired comparison model in ordering stratigraphic events

    USGS Publications Warehouse

    Edwards, L.E.; Beaver, R.J.

    1978-01-01

    Data from lowest and highest occurrence events in several stratigraphic sections are analyzed by means of a paired comparison model with ties. The model produces an estimated relative geochronological ordering of these events. This ordering must be compared with actual observations for revision and interpretation. ?? 1978 Plenum Publishing Corporation.

  20. Ordering spatiotemporal chaos in discrete neural networks with small-world connections

    NASA Astrophysics Data System (ADS)

    Wei, Du Qu; Shu Luo, Xiao

    2007-06-01

    We investigate ordering of spatiotemporal chaos in two-dimensional map neuron (2DMN) networks with small-world (SW) connections, in which each neuron exhibits chaotic spiking-bursting behavior, focusing on the dependence of the spatiotemporal evolution on the topological randomness p. It is found that as the randomness p is increased, the chaotic spiking bursts become appreciably and more and more synchronized in space and coherent in time, and the maximal spatiotemporal order appears at a particular value of randomness p. However, if the randomness p is further increased, the temporal regularity is apparently destroyed, although spatial synchronization is enhanced. These phenomena imply that topological randomness can tame the spatiotemporal chaos in the 2DMN networks with SW connections. The comparison between this work and previous studies is made and it is found that the 2DMN network with small-world connections captures well the maximal spatiotemporal order. Our results may provide a useful tip for understanding the properties of collective dynamics in coupled real neurons.

  1. Robustness of cell cycle control and flexible orders of signaling events

    PubMed Central

    Zhu, Hao; Mao, Yanlan

    2015-01-01

    The highly robust control of cell cycles in eukaryotes enables cells to undergo strictly ordered G1/S/G2/M phases and respond adaptively to regulatory signals; however the nature of the robustness remains obscure. Specifically, it is unclear whether events of signaling should be strictly ordered and whether some events are more robust than others. To quantitatively address the two questions, we have developed a novel cell cycle model upon experimental observations. It contains positive and negative E2F proteins and two Cdk inhibitors, and is parameterized, for the first time, to generate not only oscillating protein concentrations but also periodic signaling events. Events and their orders reconstructed under varied conditions indicate that proteolysis of cyclins and Cdk complexes by APC and Skp2 occurs highly robustly in a strict order, but many other events are either dispensable or can occur in flexible orders. These results suggest that strictly ordered proteolytic events are essential for irreversible cell cycle progression and the robustness of cell cycles copes with flexible orders of signaling events, and unveil a new and important dimension to the robustness of cell cycle control in particular and to biological signaling in general. PMID:26419873

  2. A Robust Computational Technique for Model Order Reduction of Two-Time-Scale Discrete Systems via Genetic Algorithms

    PubMed Central

    Alsmadi, Othman M. K.; Abo-Hammour, Zaer S.

    2015-01-01

    A robust computational technique for model order reduction (MOR) of multi-time-scale discrete systems (single input single output (SISO) and multi-input multioutput (MIMO)) is presented in this paper. This work is motivated by the singular perturbation of multi-time-scale systems where some specific dynamics may not have significant influence on the overall system behavior. The new approach is proposed using genetic algorithms (GA) with the advantage of obtaining a reduced order model, maintaining the exact dominant dynamics in the reduced order, and minimizing the steady state error. The reduction process is performed by obtaining an upper triangular transformed matrix of the system state matrix defined in state space representation along with the elements of B, C, and D matrices. The GA computational procedure is based on maximizing the fitness function corresponding to the response deviation between the full and reduced order models. The proposed computational intelligence MOR method is compared to recently published work on MOR techniques where simulation results show the potential and advantages of the new approach. PMID:25838817

  3. Quasi-discrete particle motion in an externally imposed, ordered structure in a dusty plasma at high magnetic field

    SciTech Connect

    Thomas, Edward Konopka, Uwe; Lynch, Brian; Adams, Stephen; LeBlanc, Spencer; Merlino, Robert L.; Rosenberg, Marlene

    2015-11-15

    Dusty plasmas have been studied in argon, radio frequency (rf) glow discharge plasmas at magnetic fields up to 2.5 T where the electrons and ions are strongly magnetized. Plasmas are generated between two parallel plate electrodes where the lower, powered electrode is solid and the upper electrode supports a dual mesh consisting of #24 brass and #30 aluminum wire cloth. In this experiment, we study the formation of imposed ordered structures and particle dynamics as a function of magnetic field. Through observations of trapped particles and the quasi-discrete (i.e., “hopping”) motion of particles between the trapping locations, it is possible to make a preliminary estimate of the potential structure that confines the particles to a grid structure in the plasma. This information is used to gain insight into the formation of the imposed grid pattern of the dust particles in the plasma.

  4. Quasi-discrete particle motion in an externally imposed, ordered structure in a dusty plasma at high magnetic field

    NASA Astrophysics Data System (ADS)

    Thomas, Edward; Konopka, Uwe; Lynch, Brian; Adams, Stephen; LeBlanc, Spencer; Merlino, Robert L.; Rosenberg, Marlene

    2015-11-01

    Dusty plasmas have been studied in argon, radio frequency (rf) glow discharge plasmas at magnetic fields up to 2.5 T where the electrons and ions are strongly magnetized. Plasmas are generated between two parallel plate electrodes where the lower, powered electrode is solid and the upper electrode supports a dual mesh consisting of #24 brass and #30 aluminum wire cloth. In this experiment, we study the formation of imposed ordered structures and particle dynamics as a function of magnetic field. Through observations of trapped particles and the quasi-discrete (i.e., "hopping") motion of particles between the trapping locations, it is possible to make a preliminary estimate of the potential structure that confines the particles to a grid structure in the plasma. This information is used to gain insight into the formation of the imposed grid pattern of the dust particles in the plasma.

  5. Effects of stress and other environmental factors on horizontal plasmid transfer assessed by direct quantification of discrete transfer events.

    PubMed

    Johnsen, Anders R; Kroer, Niels

    2007-03-01

    Selection pressure may affect the horizontal transfer of plasmids. The inability to distinguish between gene transfer and the growth of transconjugants complicates testing. We have developed a method that enables the quantification of discrete transfer events. It uses large numbers of replicate matings (192 or 384) in microtiter wells and the counting of transfer-positive and transfer-negative wells. We applied the method to study the transfer of the IncP1 plasmid pRO103 between Escherichia coli and Pseudomonas putida strains. pRO103 encodes resistance to mercury and tetracycline and partial degradation of 2,4-dichlorophenoxyacetic acid (2,4-D). The results showed positive correlation between transfer and donor metabolic activity, and an optimal temperature for transfer of 29 degrees C. On stimulation of donor activity, the optimal temperature was decreased to 24.5 degrees C. HgCl(2) above 1.0 microg L(-1) negatively affected transfer, whereas 2,4-D up to 0.3 mM had no effect. The negative effect of mercury was shown to be a result of stressing of the recipient. No effects of mercury on transfer could be detected by traditional filter mating. Thus, the method is superior to filter mating and, as the experimental design allows the manipulation of individual parameters, it is ideal for the assessment and comparison of effects of environmental factors on plasmid transfer. PMID:17100984

  6. Using the Integration of Discrete Event and Agent-Based Simulation to Enhance Outpatient Service Quality in an Orthopedic Department.

    PubMed

    Kittipittayakorn, Cholada; Ying, Kuo-Ching

    2016-01-01

    Many hospitals are currently paying more attention to patient satisfaction since it is an important service quality index. Many Asian countries' healthcare systems have a mixed-type registration, accepting both walk-in patients and scheduled patients. This complex registration system causes a long patient waiting time in outpatient clinics. Different approaches have been proposed to reduce the waiting time. This study uses the integration of discrete event simulation (DES) and agent-based simulation (ABS) to improve patient waiting time and is the first attempt to apply this approach to solve this key problem faced by orthopedic departments. From the data collected, patient behaviors are modeled and incorporated into a massive agent-based simulation. The proposed approach is an aid for analyzing and modifying orthopedic department processes, allows us to consider far more details, and provides more reliable results. After applying the proposed approach, the total waiting time of the orthopedic department fell from 1246.39 minutes to 847.21 minutes. Thus, using the correct simulation model significantly reduces patient waiting time in an orthopedic department. PMID:27195606

  7. Total Order Reliability in PSA: Importance of Basic Events and Systems

    SciTech Connect

    E. Borgonovo; C. Smith

    2010-06-01

    The purpose of this work is twofold. First, to formalize the properties of the total order reliability importance measure for PSA models. Second, to extend the definition of the total order importance measure to groups of basic events. This allows one to obtain the importance of systems and to address the relevance of interactions among systems.

  8. Ordering of young injection events within Saturnian SLS longitude and local time

    NASA Astrophysics Data System (ADS)

    Kennelly, T.; Leisner, J. S.; Hospodarsky, G. B.; Gurnett, D. A.

    2012-12-01

    The Saturnian SLS longitude systems are based on periodic radio emissions generated at high latitudes and relatively close to the planet. These periodicities have been observed throughout the magnetosphere in both the magnetic field and the plasma. While their presence in the outer magnetosphere has been understood, one outstanding question is how these periodicities are transmitted to the inner magnetosphere. The inner and outer magnetospheres are connected by inward-moving flux tubes, referred to as injection events, and it was postulated that they could carry the periodicities between the two regions. Early analysis of these phenomena, however, showed that there was no ordering in longitude. In this study, we reexamine this possibility by limiting our data set to the young injection events observed by the Cassini Radio and Plasma Wave Science instrument. We find that the young injection events are restricted to two local time sectors: post-noon and near-midnight. We find no structure in the post-noon sector, but the near-midnight events are strongly ordered by SLS longitude. Further, the longitudinal ordering varies with Saturnian season. Pre-equinox, the longitude system derived from the northern hemisphere's SKR emissions controls the event occurrence. Post-equinox, the events are ordered by the southern hemisphere-derived longitude system. We suggest that this may be an effect in the variations in the ionospheric conductivity or due to change in the magnetosphere's orientation relative to the solar wind.

  9. An Infinite Order Discrete Variable Representation of an Effective Mass Hamiltonian: Application to Exciton Wave Functions in Quantum Confined Nanostructures.

    PubMed

    Kaledin, Alexey L; Lian, Tianquan; Hill, Craig L; Musaev, Djamaladdin G

    2014-08-12

    We describe an extension of the conventional Fourier grid discrete variable representation (DVR) to the bound state problem of a particle with a position-dependent mass. An infinite order DVR, derived for a variable mass kinetic energy operator, coupled with an efficient grid contraction scheme yields essentially exact eigenvalues for a chosen grid spacing. Implementation of the method is shown to be very practical due to the fact that in a DVR no integral evaluation is necessary and that the resultant kinetic energy matrix is sparse. Numerical calculations are presented for exciton states of spherical, cylindrical, and toric Type I (CdSe/ZnS) core-shell quantum dots. In these examples, electron-hole interaction is treated explicitly by solving a self-consistent Schrödinger-Poisson equation on a contracted DVR grid. Prospective applications of the developed approach to calculating electron transfer rates between adsorbed molecular acceptors and quantum confined nanocrystals of generic shape, dimensionality, and composition are also discussed. PMID:26588309

  10. Modeling Pluto-Charon mutual eclipse events. I. First-order models

    SciTech Connect

    Dunbar, R.S.; Tedesco, E.F.

    1986-11-01

    The present first order analytical and numerical models of light curves due to mutual events between close planetary binaries, the effects of shadowing are included. Attention is given to the case of the Pluto-Charon system. The results of the analytical and numerical approaches agree to well within the expected light curve measurement error. The model predicts that the current mutual eclipse event series will end by November 1990. 12 references.

  11. Modeling Pluto-Charon mutual eclipse events. I - First-order models

    NASA Technical Reports Server (NTRS)

    Dunbar, R. Scott; Tedesco, Edward F.

    1986-01-01

    The present 'first order' analytical and numerical models of light curves due to mutual events between close planetary binaries, the effects of shadowing are included. Attention is given to the case of the Pluto-Charon system. The results of the analytical and numerical approaches agree to well within the expected light curve measurement error. The model predicts that the current mutual eclipse event series will end by November 1990.

  12. A discrete time event-history approach to informative drop-out in mixed latent Markov models with covariates.

    PubMed

    Bartolucci, Francesco; Farcomeni, Alessio

    2015-03-01

    Mixed latent Markov (MLM) models represent an important tool of analysis of longitudinal data when response variables are affected by time-fixed and time-varying unobserved heterogeneity, in which the latter is accounted for by a hidden Markov chain. In order to avoid bias when using a model of this type in the presence of informative drop-out, we propose an event-history (EH) extension of the latent Markov approach that may be used with multivariate longitudinal data, in which one or more outcomes of a different nature are observed at each time occasion. The EH component of the resulting model is referred to the interval-censored drop-out, and bias in MLM modeling is avoided by correlated random effects, included in the different model components, which follow common latent distributions. In order to perform maximum likelihood estimation of the proposed model by the expectation-maximization algorithm, we extend the usual forward-backward recursions of Baum and Welch. The algorithm has the same complexity as the one adopted in cases of non-informative drop-out. We illustrate the proposed approach through simulations and an application based on data coming from a medical study about primary biliary cirrhosis in which there are two outcomes of interest, one continuous and the other binary. PMID:25227970

  13. Report order and identification of multidimensional stimuli: a study of event-related brain potentials.

    PubMed

    Shieh, Kong-King; Shen, I-Hsuan

    2004-06-01

    An experiment was conducted to investigate the effect of order of report on multidimensional stimulus identification. Subjects were required to identify each two-dimensional symbol by pushing corresponding buttons on the keypad on which there were two columns representing the two dimensions. Order of report was manipulated for the dimension represented by the left or right column. Both behavioral data and event-related potentials were recorded from 14 college students. Behavioral data analysis showed that order of report had a significant effect on response times. Such results were consistent with those of previous studies. Analysis of event-related brain potentials showed significant differences in peak amplitude and mean amplitude at time windows of 120-250 msec. at Fz, F3, and F4 and of 350-750 msec. at Fz, F3, F4, Cz, and Pz. Data provided neurophysiological evidence that reporting dimensional values according to natural language habits was appropriate and less cognitively demanding. PMID:15291234

  14. Bounding the Resource Availability of Partially Ordered Events with Constant Resource Impact

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy

    2004-01-01

    We compare existing techniques to bound the resource availability of partially ordered events. We first show that, contrary to intuition, two existing techniques, one due to Laborie and one due to Muscettola, are not strictly comparable in terms of the size of the search trees generated under chronological search with a fixed heuristic. We describe a generalization of these techniques called the Flow Balance Constraint to tightly bound the amount of available resource for a set of partially ordered events with piecewise constant resource impact We prove that the new technique generates smaller proof trees under chronological search with a fixed heuristic, at little increase in computational expense. We then show how to construct tighter resource bounds but at increased computational cost.

  15. Repeated questioning for order of events: disparate effects following logical versus random presentation.

    PubMed

    Kelley, Matthew R; Lehman, Melissa S

    2006-04-01

    In the present study, 72 college-age participants from an introductory psychology course viewed a series of 20 pictures depicting events surrounding a routine activity, i.e., eating at a cafeteria; these pictures were presented either in a logical order. e.g., enter cafeteria, pick up tray, stand in line, and select food, or in a random order. Three successive tests of free reconstruction of order indicated disparate effects of these conditions; random presentation produced significant forgetting of order information across tests, whereas logical presentation produced no change in performance across tests. Whereas randomly presented stimuli produced both reliable intertest recovery (reminiscence) and forgetting, neither result was observed following logical presentation. The implications of these data for eyewitness testimony for general theories of hypermnesia are discussed. PMID:16796097

  16. A Decision Tool that Combines Discrete Event Software Process Models with System Dynamics Pieces for Software Development Cost Estimation and Analysis

    NASA Technical Reports Server (NTRS)

    Mizell, Carolyn Barrett; Malone, Linda

    2007-01-01

    The development process for a large software development project is very complex and dependent on many variables that are dynamic and interrelated. Factors such as size, productivity and defect injection rates will have substantial impact on the project in terms of cost and schedule. These factors can be affected by the intricacies of the process itself as well as human behavior because the process is very labor intensive. The complex nature of the development process can be investigated with software development process models that utilize discrete event simulation to analyze the effects of process changes. The organizational environment and its effects on the workforce can be analyzed with system dynamics that utilizes continuous simulation. Each has unique strengths and the benefits of both types can be exploited by combining a system dynamics model and a discrete event process model. This paper will demonstrate how the two types of models can be combined to investigate the impacts of human resource interactions on productivity and ultimately on cost and schedule.

  17. A cell-local finite difference discretization of the low-order quasidiffusion equations for neutral particle transport on unstructured quadrilateral meshes

    SciTech Connect

    Wieselquist, William A.; Anistratov, Dmitriy Y.; Morel, Jim E.

    2014-09-15

    We present a quasidiffusion (QD) method for solving neutral particle transport problems in Cartesian XY geometry on unstructured quadrilateral meshes, including local refinement capability. Neutral particle transport problems are central to many applications including nuclear reactor design, radiation safety, astrophysics, medical imaging, radiotherapy, nuclear fuel transport/storage, shielding design, and oil well-logging. The primary development is a new discretization of the low-order QD (LOQD) equations based on cell-local finite differences. The accuracy of the LOQD equations depends on proper calculation of special non-linear QD (Eddington) factors from a transport solution. In order to completely define the new QD method, a proper discretization of the transport problem is also presented. The transport equation is discretized by a conservative method of short characteristics with a novel linear approximation of the scattering source term and monotonic, parabolic representation of the angular flux on incoming faces. Analytic and numerical tests are used to test the accuracy and spatial convergence of the non-linear method. All tests exhibit O(h{sup 2}) convergence of the scalar flux on orthogonal, random, and multi-level meshes.

  18. The cognitive demands of second order manual control: Applications of the event related brain potential

    NASA Technical Reports Server (NTRS)

    Wickens, C.; Gill, R.; Kramer, A.; Ross, W.; Donchin, E.

    1981-01-01

    Three experiments are described in which tracking difficulty is varied in the presence of a covert tone discrimination task. Event related brain potentials (ERPs) elicited by the tones are employed as an index of the resource demands of tracking. The ERP measure reflected the control order variation, and this variable was thereby assumed to compete for perceptual/central processing resources. A fine-grained analysis of the results suggested that the primary demands of second order tracking involve the central processing operations of maintaining a more complex internal model of the dynamic system, rather than the perceptual demands of higher derivative perception. Experiment 3 varied tracking bandwidth in random input tracking, and the ERP was unaffected. Bandwidth was then inferred to compete for response-related processing resources that are independent of the ERP.

  19. Continuum behavior of lattice QED, discretized with one-sided lattice differences, in one-loop order

    SciTech Connect

    Sadooghi, N.; Rothe, H.J.

    1997-06-01

    A lattice action for QED is considered, where the derivatives in the Dirac operator are replaced by one-sided lattice differences. A systematic expansion in the lattice spacing of the one-loop contribution to the fermion self-energy, vacuum polarization tensor, and vertex function is carried out for an arbitrary choice of one-sided lattice differences. It is shown that only the vacuum polarization tensor possesses the correct continuum limit, while the fermion self-energy and vertex function receive noncovariant contributions. A lattice action, discretized with a fixed choice of one-sided lattice differences, therefore, does not define a renormalizable field theory. The noncovariant contributions can, however, be eliminated by averaging the expression over all possible choices of one-sided lattice differences. {copyright} {ital 1997} {ital The American Physical Society}

  20. A Discrete Event Simulation Model for Evaluating the Performances of an M/G/C/C State Dependent Queuing System

    PubMed Central

    Khalid, Ruzelan; M. Nawawi, Mohd Kamal; Kawsar, Luthful A.; Ghani, Noraida A.; Kamil, Anton A.; Mustafa, Adli

    2013-01-01

    M/G/C/C state dependent queuing networks consider service rates as a function of the number of residing entities (e.g., pedestrians, vehicles, and products). However, modeling such dynamic rates is not supported in modern Discrete Simulation System (DES) software. We designed an approach to cater this limitation and used it to construct the M/G/C/C state-dependent queuing model in Arena software. Using the model, we have evaluated and analyzed the impacts of various arrival rates to the throughput, the blocking probability, the expected service time and the expected number of entities in a complex network topology. Results indicated that there is a range of arrival rates for each network where the simulation results fluctuate drastically across replications and this causes the simulation results and analytical results exhibit discrepancies. Detail results that show how tally the simulation results and the analytical results in both abstract and graphical forms and some scientific justifications for these have been documented and discussed. PMID:23560037

  1. Edge-based lightweight image encryption using chaos-based reversible hidden transform and multiple-order discrete fractional cosine transform

    NASA Astrophysics Data System (ADS)

    Zhang, Yushu; Xiao, Di; Wen, Wenying; Tian, Yuan

    2013-12-01

    In some special multimedia applications, only the regions with semantic information should be provided better protection whereas the other smooth regions can be free of encryption. However, most of the existing multimedia security schemes only consider bits and pixels rather than semantic information during their encryption. Motivated by this, we propose an edge-based lightweight image encryption scheme using chaos-based reversible hidden transform and multiple-order discrete fractional cosine transform. An image is first carried out by the edge detection based on advanced CNN structure with adaptive thresholds to assess data significance in the image. The detection output is a binary image, in which a “1” reflects the detected pixel whereas a “0” is opposite. Both the detected image and the original image are divided into non-overlapping pixel blocks in the same way, respectively. Whether each block is encrypted or not depends on the significance judged by the corresponding detected block. The significant block is performed by reversible hidden transform followed by multiple-order discrete fractional cosine transform parameters and orders of these two transforms are determined by a two dimensional cross chaotic map. Experiment results show the significant contour features of an image that have been largely hidden only by encrypting about half pixels in the average sense. The keys are extremely sensitive and the proposed scheme can resist noise attack to some extent.

  2. Distributed event-triggered consensus tracking of second-order multi-agent systems with a virtual leader

    NASA Astrophysics Data System (ADS)

    Jie, Cao; Zhi-Hai, Wu; Li, Peng

    2016-05-01

    This paper investigates the consensus tracking problems of second-order multi-agent systems with a virtual leader via event-triggered control. A novel distributed event-triggered transmission scheme is proposed, which is intermittently examined at constant sampling instants. Only partial neighbor information and local measurements are required for event detection. Then the corresponding event-triggered consensus tracking protocol is presented to guarantee second-order multi-agent systems to achieve consensus tracking. Numerical simulations are given to illustrate the effectiveness of the proposed strategy. Project supported by the National Natural Science Foundation of China (Grant Nos. 61203147, 61374047, and 61403168).

  3. Discrete wavelet-aided delineation of PCG signal events via analysis of an area curve length-based decision statistic.

    PubMed

    Homaeinezhad, M R; Atyabi, S A; Daneshvar, E; Ghaffari, A; Tahmasebi, M

    2010-12-01

    The aim of this study is to describe a robust unified framework for segmentation of the phonocardiogram (PCG) signal sounds based on the false-alarm probability (FAP) bounded segmentation of a properly calculated detection measure. To this end, first the original PCG signal is appropriately pre-processed and then, a fixed sample size sliding window is moved on the pre-processed signal. In each slid, the area under the excerpted segment is multiplied by its curve-length to generate the Area Curve Length (ACL) metric to be used as the segmentation decision statistic (DS). Afterwards, histogram parameters of the nonlinearly enhanced DS metric are used for regulation of the α-level Neyman-Pearson classifier for FAP-bounded delineation of the PCG events. The proposed method was applied to all 85 records of Nursing Student Heart Sounds database (NSHSDB) including stenosis, insufficiency, regurgitation, gallop, septal defect, split sound, rumble, murmur, clicks, friction rub and snap disorders with different sampling frequencies. Also, the method was applied to the records obtained from an electronic stethoscope board designed for fulfillment of this study in the presence of high-level power-line noise and external disturbing sounds and as the results, no false positive (FP) or false negative (FN) errors were detected. High noise robustness, acceptable detection-segmentation accuracy of PCG events in various cardiac system conditions, and having no parameters dependency to the acquisition sampling frequency can be mentioned as the principal virtues and abilities of the proposed ACL-based PCG events detection-segmentation algorithm. PMID:21181267

  4. DNS and LES of Turbulent Backward-Facing Step Flow Using 2ND-and 4TH-Order Discretization

    NASA Astrophysics Data System (ADS)

    Meri, Adnan; Wengle, Hans

    Results are presented from a Direct Numerical Simulation (DNS) and Large-Eddy Simulations (LES) of turbulent flow over a backward-facing step (Reh=3300) with a fully developed channel flow (Rcτ=180) utilized asatime-dependent inflow condition. Numerical solutions using a fourth-order compact (Hermitian) scheme, which was formulated directly for anon-equidistant and staggered grid in [1] are compared with numerical solutions using the classical second-order central scheme. There sults from LES (using the dynamic subgrid scale model) are evaluated against a corresponding DNS reference data set (fourth-order solution).

  5. A New Discretization Method of Order Four for the Numerical Solution of One-Space Dimensional Second-Order Quasi-Linear Hyperbolic Equation

    ERIC Educational Resources Information Center

    Mohanty, R. K.; Arora, Urvashi

    2002-01-01

    Three level-implicit finite difference methods of order four are discussed for the numerical solution of the mildly quasi-linear second-order hyperbolic equation A(x, t, u)u[subscript xx] + 2B(x, t, u)u[subscript xt] + C(x, t, u)u[subscript tt] = f(x, t, u, u[subscript x], u[subscript t]), 0 less than x less than 1, t greater than 0 subject to…

  6. The spatiotemporal order of signaling events unveils the logic of development signaling

    PubMed Central

    Zhu, Hao; Owen, Markus R.; Mao, Yanlan

    2016-01-01

    Motivation: Animals from worms and insects to birds and mammals show distinct body plans; however, the embryonic development of diverse body plans with tissues and organs within is controlled by a surprisingly few signaling pathways. It is well recognized that combinatorial use of and dynamic interactions among signaling pathways follow specific logic to control complex and accurate developmental signaling and patterning, but it remains elusive what such logic is, or even, what it looks like. Results: We have developed a computational model for Drosophila eye development with innovated methods to reveal how interactions among multiple pathways control the dynamically generated hexagonal array of R8 cells. We obtained two novel findings. First, the coupling between the long-range inductive signals produced by the proneural Hh signaling and the short-range restrictive signals produced by the antineural Notch and EGFR signaling is essential for generating accurately spaced R8s. Second, the spatiotemporal orders of key signaling events reveal a robust pattern of lateral inhibition conducted by Ato-coordinated Notch and EGFR signaling to collectively determine R8 patterning. This pattern, stipulating the orders of signaling and comparable to the protocols of communication, may help decipher the well-appreciated but poorly defined logic of developmental signaling. Availability and implementation: The model is available upon request. Contact: hao.zhu@ymail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153573

  7. Stability and accuracy analysis of some fully-discrete algorithms for the one-dimensional second-order wave equation

    NASA Technical Reports Server (NTRS)

    Hughes, T. J. R.; Tezduyar, T. E.

    1984-01-01

    The present investigation is concerned with some basic results for a predictor-multicorrector algorithm applied to the one-dimensional wave equation, giving particular attention to so-called 2-pass explicit schemes in which both lumped and coupled mass matrices are employed. In an assessment of the accuracy and stability properties of the algorithms, use is made of the one-dimensional, second-order wave equation. The maximum stable time step of the lumped right-hand-side mass, 2-pass explicit algorithm is twice that of the 1-pass explicit algorithm. Improved accuracy is obtained by employing higher-order, or consistent, right-hand-side, mass.

  8. Linear and non-linear high order accurate residual distribution schemes for the discretization of the steady compressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Abgrall, R.; De Santis, D.

    2015-02-01

    A robust and high order accurate Residual Distribution (RD) scheme for the discretization of the steady Navier-Stokes equations is presented. The proposed method is very flexible: it is formulated for unstructured grids, regardless the shape of the elements and the number of spatial dimensions. A continuous approximation of the solution is adopted and standard Lagrangian shape functions are used to construct the discrete space, as in Finite Element methods. The traditional technique for designing RD schemes is adopted: evaluate, for any element, a total residual, split it into nodal residuals sent to the degrees of freedom of the element, solve the non-linear system that has been assembled and then iterate up to convergence. The main issue addressed by the paper is that the technique relies in depth on the continuity of the normal flux across the element boundaries: this is no longer true since the gradient of the state solution appears in the flux, hence continuity is lost when using standard finite element approximations. Naive solution methods lead to very poor accuracy. To cope with the fact that the normal component of the gradient of the numerical solution is discontinuous across the faces of the elements, a continuous approximation of the gradient of the numerical solution is recovered at each degree of freedom of the grid and then interpolated with the same shape functions used for the solution, preserving the optimal accuracy of the method. Linear and non-linear schemes are constructed, and their accuracy is tested with the method of the manufactured solutions. The numerical method is also used for the discretization of smooth and shocked laminar flows in two and three spatial dimensions.

  9. A paradigm for discrete physics

    SciTech Connect

    Noyes, H.P.; McGoveran, D.; Etter, T.; Manthey, M.J.; Gefwert, C.

    1987-01-01

    An example is outlined for constructing a discrete physics using as a starting point the insight from quantum physics that events are discrete, indivisible and non-local. Initial postulates are finiteness, discreteness, finite computability, absolute nonuniqueness (i.e., homogeneity in the absence of specific cause) and additivity.

  10. A discrete time-space geography for epidemiology: from mixing groups to pockets of local order in pandemic simulations.

    PubMed

    Holm, Einar; Timpka, Toomas

    2007-01-01

    The World Health Organization urges all nations to develop and maintain national influenza preparedness plans. Important components of such plans are forecasts of morbidity and mortality based on local social and geographic conditions. Most methodologies for simulations of epidemic outbreaks are implicitly based on the assumption that the frequency and duration of social contacts that lead to disease transmission is affected by geography, i.e. the spatial distribution of physical meeting places. In order to increase the effectiveness of the present methods for simulation of infectious disease outbreaks, the aim of this study is to examine two social geographic issues related to such models. We display how the social geographic characteristics of mixing networks, in particular when these significantly deviate from the random-mixing norm, can be represented in order to enhance the understanding and prediction of epidemic patterns in light of a possible future destructive influenza pandemic. We conclude that social geography, social networks and simulation models of directly transmitted infectious diseases are fundamentally linked. PMID:17911760

  11. Analysis of the relationship between longitudinal gene expressions and ordered categorical event data

    PubMed Central

    Rajicic, Natasa; Finkelstein, Dianne M.; Schoenfeld, David A.

    2013-01-01

    SUMMARY The NIH project ”Inflammatory and Host Response to Injury” (Glue) is being conducted to study the changes in the body over time in response to trauma and burn. Patients are monitored for changes in their clinical status, such as the onset of and recovery from organ failure. Blood samples are drawn over the first days and weeks after the injury to obtain gene expression levels over time. Our goal was to develop a method of selecting genes that differentially expressed in patients who either improved or experienced organ failure. For this, we needed a test for the association between longitudinal gene expressions and the time to the occurrence of ordered categorical outcomes indicating recovery, stable disease, and organ failure. We propose a test for which the relationship between the gene expression and the events is modeled using the cumulative proportional odds model that is a generalization of the Pooling Repeated Observation (PRO) method. Given the high-dimensionality of the microarray data, it was necessary to control for the multiplicity of the testing. To control for the false discovery rate (FDR), we applied both a permutational approach as well as Efron's empirical estimation methods. We explore our method through simulations and provide the analysis of the multi-center, longitudinal study of immune response to inflammation and trauma (http://www.gluegrant.org). PMID:19618375

  12. Ultra-fast formation control of high-order discrete-time multi-agent systems based on multi-step predictive mechanism.

    PubMed

    Zhang, Wenle; Liu, Jianchang; Wang, Honghai

    2015-09-01

    This paper deals with the ultra-fast formation control problem of high-order discrete-time multi-agent systems. Using the local neighbor-error knowledge, a novel ultra-fast protocol with multi-step predictive information and self-feedback term is proposed. The asymptotic convergence factor is improved by a power of q+1 compared to the routine protocol. To some extent, the ultra-fast algorithm overcomes the influence of communication topology to the convergence speed. Furthermore, some sufficient conditions are given herein. The ones decouple the design of the synchronizing gains from the detailed graph properties, and explicitly reveal how the agent dynamic and the communication graph jointly affect the ultra-fast formationability. Finally, some simulations are worked out to illustrate the effectiveness of our theoretical results. PMID:26051965

  13. Chemical Dosing and First-Order Kinetics

    ERIC Educational Resources Information Center

    Hladky, Paul W.

    2011-01-01

    College students encounter a variety of first-order phenomena in their mathematics and science courses. Introductory chemistry textbooks that discuss first-order processes, usually in conjunction with chemical kinetics or radioactive decay, stop at single, discrete dose events. Although single-dose situations are important, multiple-dose events,…

  14. Expected lifetime numbers and costs of fractures in postmenopausal women with and without osteoporosis in Germany: a discrete event simulation model

    PubMed Central

    2014-01-01

    Background Osteoporotic fractures cause a large health burden and substantial costs. This study estimated the expected fracture numbers and costs for the remaining lifetime of postmenopausal women in Germany. Methods A discrete event simulation (DES) model which tracks changes in fracture risk due to osteoporosis, a previous fracture or institutionalization in a nursing home was developed. Expected lifetime fracture numbers and costs per capita were estimated for postmenopausal women (aged 50 and older) at average osteoporosis risk (AOR) and for those never suffering from osteoporosis. Direct and indirect costs were modeled. Deterministic univariate and probabilistic sensitivity analyses were conducted. Results The expected fracture numbers over the remaining lifetime of a 50 year old woman with AOR for each fracture type (% attributable to osteoporosis) were: hip 0.282 (57.9%), wrist 0.229 (18.2%), clinical vertebral 0.206 (39.2%), humerus 0.147 (43.5%), pelvis 0.105 (47.5%), and other femur 0.033 (52.1%). Expected discounted fracture lifetime costs (excess cost attributable to osteoporosis) per 50 year old woman with AOR amounted to €4,479 (€1,995). Most costs were accrued in the hospital €1,743 (€751) and long-term care sectors €1,210 (€620). Univariate sensitivity analysis resulted in percentage changes between -48.4% (if fracture rates decreased by 2% per year) and +83.5% (if fracture rates increased by 2% per year) compared to base case excess costs. Costs for women with osteoporosis were about 3.3 times of those never getting osteoporosis (€7,463 vs. €2,247), and were markedly increased for women with a previous fracture. Conclusion The results of this study indicate that osteoporosis causes a substantial share of fracture costs in postmenopausal women, which strongly increase with age and previous fractures. PMID:24981316

  15. Budget Impact Analysis of Switching to Digital Mammography in a Population-Based Breast Cancer Screening Program: A Discrete Event Simulation Model

    PubMed Central

    Comas, Mercè; Arrospide, Arantzazu; Mar, Javier; Sala, Maria; Vilaprinyó, Ester; Hernández, Cristina; Cots, Francesc; Martínez, Juan; Castells, Xavier

    2014-01-01

    Objective To assess the budgetary impact of switching from screen-film mammography to full-field digital mammography in a population-based breast cancer screening program. Methods A discrete-event simulation model was built to reproduce the breast cancer screening process (biennial mammographic screening of women aged 50 to 69 years) combined with the natural history of breast cancer. The simulation started with 100,000 women and, during a 20-year simulation horizon, new women were dynamically entered according to the aging of the Spanish population. Data on screening were obtained from Spanish breast cancer screening programs. Data on the natural history of breast cancer were based on US data adapted to our population. A budget impact analysis comparing digital with screen-film screening mammography was performed in a sample of 2,000 simulation runs. A sensitivity analysis was performed for crucial screening-related parameters. Distinct scenarios for recall and detection rates were compared. Results Statistically significant savings were found for overall costs, treatment costs and the costs of additional tests in the long term. The overall cost saving was 1,115,857€ (95%CI from 932,147 to 1,299,567) in the 10th year and 2,866,124€ (95%CI from 2,492,610 to 3,239,638) in the 20th year, representing 4.5% and 8.1% of the overall cost associated with screen-film mammography. The sensitivity analysis showed net savings in the long term. Conclusions Switching to digital mammography in a population-based breast cancer screening program saves long-term budget expense, in addition to providing technical advantages. Our results were consistent across distinct scenarios representing the different results obtained in European breast cancer screening programs. PMID:24832200

  16. Discontinuous isogeometric analysis methods for the first-order form of the neutron transport equation with discrete ordinate (SN) angular discretisation

    NASA Astrophysics Data System (ADS)

    Owens, A. R.; Welch, J. A.; Kópházi, J.; Eaton, M. D.

    2016-06-01

    In this paper two discontinuous Galerkin isogeometric analysis methods are developed and applied to the first-order form of the neutron transport equation with a discrete ordinate (SN) angular discretisation. The discontinuous Galerkin projection approach was taken on both an element level and the patch level for a given Non-Uniform Rational B-Spline (NURBS) patch. This paper describes the detailed dispersion analysis that has been used to analyse the numerical stability of both of these schemes. The convergence of the schemes for both smooth and non-smooth solutions was also investigated using the method of manufactured solutions (MMS) for multidimensional problems and a 1D semi-analytical benchmark whose solution contains a strongly discontinuous first derivative. This paper also investigates the challenges posed by strongly curved boundaries at both the NURBS element and patch level with several algorithms developed to deal with such cases. Finally numerical results are presented both for a simple pincell test problem as well as the C5G7 quarter core MOX/UOX small Light Water Reactor (LWR) benchmark problem. These numerical results produced by the isogeometric analysis (IGA) methods are compared and contrasted against linear and quadratic discontinuous Galerkin finite element (DGFEM) SN based methods.

  17. Degassing and magma mixing during the eruption of Surtsey Volcano (Iceland, 1963-1967): the signatures of a dynamic and discrete rift propagation event

    NASA Astrophysics Data System (ADS)

    Schipper, C. Ian; Le Voyer, Marion; Moussallam, Yves; White, James D. L.; Thordarson, Thor; Kimura, Jun-Ichi; Chang, Qing

    2016-04-01

    /1965 gases extremely well, but cannot account for the oxidized gases emitted in 1967, which may have been contaminated by ambient air in a system that was opening as the eruption waned. Surtsey's pyroclastic resurgence can be explained by recharge from ephemeral and compositionally heterogeneous magma bodies, tapped from possibly as deep as the mantle-crust boundary, in a process consistent with the progressively increasing interconnection between magma bodies that is typical at propagating rift tips. The eruption of Surtsey therefore shows that magma system evolution at rift tips can occur in dynamic and discrete events, with influx of new magma having explosive consequences.

  18. Reduced-Order Modeling and Wavelet Analysis of Turbofan Engine Structural Response Due to Foreign Object Damage (FOD) Events

    NASA Technical Reports Server (NTRS)

    Turso, James; Lawrence, Charles; Litt, Jonathan

    2004-01-01

    The development of a wavelet-based feature extraction technique specifically targeting FOD-event induced vibration signal changes in gas turbine engines is described. The technique performs wavelet analysis of accelerometer signals from specified locations on the engine and is shown to be robust in the presence of significant process and sensor noise. It is envisioned that the technique will be combined with Kalman filter thermal/health parameter estimation for FOD-event detection via information fusion from these (and perhaps other) sources. Due to the lack of high-frequency FOD-event test data in the open literature, a reduced-order turbofan structural model (ROM) was synthesized from a finite element model modal analysis to support the investigation. In addition to providing test data for algorithm development, the ROM is used to determine the optimal sensor location for FOD-event detection. In the presence of significant noise, precise location of the FOD event in time was obtained using the developed wavelet-based feature.

  19. Reduced-Order Modeling and Wavelet Analysis of Turbofan Engine Structural Response Due to Foreign Object Damage "FOD" Events

    NASA Technical Reports Server (NTRS)

    Turso, James A.; Lawrence, Charles; Litt, Jonathan S.

    2007-01-01

    The development of a wavelet-based feature extraction technique specifically targeting FOD-event induced vibration signal changes in gas turbine engines is described. The technique performs wavelet analysis of accelerometer signals from specified locations on the engine and is shown to be robust in the presence of significant process and sensor noise. It is envisioned that the technique will be combined with Kalman filter thermal/ health parameter estimation for FOD-event detection via information fusion from these (and perhaps other) sources. Due to the lack of high-frequency FOD-event test data in the open literature, a reduced-order turbofan structural model (ROM) was synthesized from a finite-element model modal analysis to support the investigation. In addition to providing test data for algorithm development, the ROM is used to determine the optimal sensor location for FOD-event detection. In the presence of significant noise, precise location of the FOD event in time was obtained using the developed wavelet-based feature.

  20. An essay on discrete foundations for physics

    SciTech Connect

    Noyes, H.P.; McGoveran, D.O.

    1988-07-01

    We base our theory of physics and cosmology on the five principles of finiteness, discreteness, finite computability, absolute non-uniqueness, and strict construction. Our modeling methodology starts from the current practice of physics, constructs a self-consistent representation based on the ordering operator calculus and provides rules of correspondence that allow us to test the theory by experiment. We use program universe to construct a growing collection of bit strings whose initial portions (labels) provide the quantum numbers that are conserved in the events defined by the construction. The labels are followed by content strings which are used to construct event-based finite and discrete coordinates. On general grounds such a theory has a limiting velocity, and positions and velocities do not commute. We therefore reconcile quantum mechanics with relativity at an appropriately fundamental stage in the construction. We show that events in different coordinate systems are connected by the appropriate finite and discrete version of the Lorentz transformation, that 3-momentum is conserved in events, and that this conservation law is the same as the requirement that different paths can ''interfere'' only when they differ by an integral number of deBroglie wavelengths. 38 refs., 12 figs., 3 tabs.

  1. An essay on discrete foundations for physics

    SciTech Connect

    Noyes, H.P.; McGoveran, D.O.

    1988-10-05

    We base our theory of physics and cosmology on the five principles of finiteness, discreteness, finite computability, absolute non- uniqueness, and strict construction. Our modeling methodology starts from the current practice of physics, constructs a self-consistent representation based on the ordering operator calculus and provides rules of correspondence that allow us to test the theory by experiment. We use program universe to construct a growing collection of bit strings whose initial portions (labels) provide the quantum numbers that are conserved in the events defined by the construction. The labels are followed by content strings which are used to construct event-based finite and discrete coordinates. On general grounds such a theory has a limiting velocity, and positions and velocities do not commute. We therefore reconcile quantum mechanics with relativity at an appropriately fundamental stage in the construction. We show that events in different coordinate systems are connected by the appropriate finite and discrete version of the Lorentz transformation, that 3-momentum is conserved in events, and that this conservation law is the same as the requirement that different paths can ''interfere'' only when they differ by an integral number of deBroglie wavelengths. 38 refs., 12 figs., 3 tabs.

  2. Collective Weibull behavior of social atoms: Application of the rank-ordering statistics to historical extreme events

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Chih; Tseng, Chih-Yuan; Telesca, Luciano; Chi, Sung-Ching; Sun, Li-Chung

    2012-02-01

    Analogous to crustal earthquakes in natural fault systems, we here consider the dynasty collapses as extreme events in human society. Duration data of ancient Chinese and Egyptian dynasties provides a good chance of exploring the collective behavior of the so-called social atoms. By means of the rank-ordering statistics, we demonstrate that the duration data of those ancient dynasties could be described with good accuracy by the Weibull distribution. It is thus amazing that the distribution of time to failure of human society, i.e. the disorder of a historical dynasty, follows the widely accepted Weibull process as natural material fails.

  3. Discrete resonances

    NASA Astrophysics Data System (ADS)

    Vivaldi, Franco

    2015-12-01

    The concept of resonance has been instrumental to the study of Hamiltonian systems with divided phase space. One can also define such systems over discrete spaces, which have a finite or countable number of points, but in this new setting the notion of resonance must be re-considered from scratch. I review some recent developments in the area of arithmetic dynamics which outline some salient features of linear and nonlinear stable (elliptic) orbits over a discrete space, and also underline the difficulties that emerge in their analysis.

  4. Discrete resonances

    NASA Astrophysics Data System (ADS)

    Vivaldi, Franco

    The concept of resonance has been instrumental to the study of Hamiltonian systems with divided phase space. One can also define such systems over discrete spaces, which have a finite or countable number of points, but in this new setting the notion of resonance must be re-considered from scratch. I review some recent developments in the area of arithmetic dynamics which outline some salient features of linear and nonlinear stable (elliptic) orbits over a discrete space, and also underline the difficulties that emerge in their analysis.

  5. Can utilizing a computerized provider order entry (CPOE) system prevent hospital medical errors and adverse drug events?

    PubMed

    Charles, Krista; Cannon, Margaret; Hall, Robert; Coustasse, Alberto

    2014-01-01

    Computerized provider order entry (CPOE) systems allow physicians to prescribe patient services electronically. In hospitals, CPOE essentially eliminates the need for handwritten paper orders and achieves cost savings through increased efficiency. The purpose of this research study was to examine the benefits of and barriers to CPOE adoption in hospitals to determine the effects on medical errors and adverse drug events (ADEs) and examine cost and savings associated with the implementation of this newly mandated technology. This study followed a methodology using the basic principles of a systematic review and referenced 50 sources. CPOE systems in hospitals were found to be capable of reducing medical errors and ADEs, especially when CPOE systems are bundled with clinical decision support systems designed to alert physicians and other healthcare providers of pending lab or medical errors. However, CPOE systems face major barriers associated with adoption in a hospital system, mainly high implementation costs and physicians' resistance to change. PMID:25593568

  6. Discrete Mathematics and Its Applications

    ERIC Educational Resources Information Center

    Oxley, Alan

    2010-01-01

    The article gives ideas that lecturers of undergraduate Discrete Mathematics courses can use in order to make the subject more interesting for students and encourage them to undertake further studies in the subject. It is possible to teach Discrete Mathematics with little or no reference to computing. However, students are more likely to be…

  7. Leading order determination of the gluon polarisation from DIS events with high-pT hadron pairs

    NASA Astrophysics Data System (ADS)

    Adolph, C.; Alekseev, M. G.; Alexakhin, V. Yu.; Alexandrov, Yu.; Alexeev, G. D.; Amoroso, A.; Antonov, A. A.; Austregesilo, A.; Badełek, B.; Balestra, F.; Barth, J.; Baum, G.; Bedfer, Y.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Braun, C.; Bravar, A.; Bressan, A.; Burtin, E.; Chaberny, D.; Chiosso, M.; Chung, S. U.; Cicuttin, A.; Crespo, M. L.; Dalla Torre, S.; Das, S.; Dasgupta, S. S.; Denisov, O. Yu.; Dhara, L.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O. P.; Gazda, R.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Grabmüller, S.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Guthörl, T.; Haas, F.; von Harrach, D.; Hedicke, S.; Heinsius, F. H.; Herrmann, F.; Heß, C.; Hinterberger, F.; Horikawa, N.; Höppner, Ch.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jasinski, P.; Joosten, R.; Kabuß, E.; Kang, D.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Korzenev, A.; Kotzinian, A. M.; Kouznetsov, O.; Krämer, M.; Kroumchtein, Z. V.; Kunne, F.; Kurek, K.; Lauser, L.; Le Goff, J.-M.; Lednev, A. A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G. K.; Mann, A.; Marchand, C.; Martin, A.; Marzec, J.; Matsuda, T.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Moinester, M. A.; Morreale, A.; Mutter, A.; Nagaytsev, A.; Nagel, T.; Nassalski, J. P.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V. I.; Nowak, W. D.; Nunes, A. S.; Olshevsky, A. G.; Ostrick, M.; Padee, A.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Perevalova, E.; Pesaro, G.; Peshekhonov, D. V.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V. A.; Pontecorvo, G.; Pretz, J.; Procureur, S. L.; Quaresma, M.; Quintans, C.; Rajotte, J.-F.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Richter, A.; Rocco, E.; Rondio, E.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Samoylenko, V. D.; Sandacz, A.; Sapozhnikov, M. G.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlüter, T.; Schmidt, K.; Schmitt, L.; Schönning, K.; Schopferer, S.; Schott, M.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sissakian, A. N.; Slunecka, M.; Smirnov, G. I.; Sosio, S.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Sulej, R.; Sznajder, P.; Takekawa, S.; Ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Tkatchev, L. G.; Uhl, S.; Uman, I.; Vandenbroucke, M.; Virius, M.; Vlassov, N. V.; Wang, L.; Windmolders, R.; Wiślicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zhuravlev, N.; Zvyagin, A.

    2013-01-01

    We present a determination of the gluon polarisation Δg / g in the nucleon, based on the longitudinal double-spin asymmetry of DIS events with Q2 > 1 (GeV / c) 2 including a pair of large transverse-momentum hadrons in the final state. The data were obtained by the COMPASS experiment at CERN using a 160 GeV/c polarised muon beam scattering off a polarised 6LiD target. The gluon polarisation is evaluated by a Neural Network approach for three intervals of the gluon momentum fraction xg covering the range 0.04 order in QCD do not show any significant dependence on xg. Their average is Δg / g = 0.125 ± 0.060 (stat.) ± 0.063 (syst.) at average xg = 0.09 and a scale of μ2 = 3 (GeV / c) 2.

  8. Exact discretization by Fourier transforms

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2016-08-01

    A discretization of differential and integral operators of integer and non-integer orders is suggested. New type of differences, which are represented by infinite series, is proposed. A characteristic feature of the suggested differences is an implementation of the same algebraic properties that have the operator of differentiation (property of algebraic correspondence). Therefore the suggested differences are considered as an exact discretization of derivatives. These differences have a property of universality, which means that these operators do not depend on the form of differential equations and the parameters of these equations. The suggested differences operators allows us to have difference equations whose solutions are equal to the solutions of corresponding differential equations. The exact discretization of the derivatives of integer orders is given by the suggested differences of the same integer orders. Similarly, the exact discretization of the Riesz derivatives and integrals of integer and non-integer order is given by the proposed fractional differences of the same order.

  9. E. coli Resuspension During an Artificial High-flow Event in a Small First-order Creek

    NASA Astrophysics Data System (ADS)

    Pachepsky, Y. A.; Guber, A. K.; Shelton, D. R.; Hill, R. L.

    2009-04-01

    Stream, pond, and lake sediments can serve as environmental reservoirs for E. coli, including pathogenic strains. Substantial increases in E. coli concentrations observed in stream water during rainfall events are often attributed exclusively to runoff from agricultural fields, pastures, and riparian areas. However, this increase can, to various extents, be caused by the resuspension of E. coli from sediment. The separation of runoff vs. sediment E. coli sources is not possible based exclusively on creek water sampling during natural rainfalls. The objectives of this work were (a) to create and monitor an artificial high-flow event that would cause E. coli concentration changes solely due to resuspension and settling, (b) to develop a model of E. coli transport in creek water as affected by resuspension and settling. The study site, at the USDA-Beltsville Agricultural Research Center, is in the mid-Atlantic coastal plain of Maryland. The site contains a small first-order stream that is instrumented with four stations for monitoring stream flow and bacteria concentrations. The creek runs within a riparian corridor of variable width from about 65 m at its narrowest point, to more than 100 m. The creek bed is from 100 to 150 cm wide. Prior to the high-flow experiment, the creek sediment was grab-sampled weekly for 2 months for E. coli concentrations at three locations downstream from stations 1, 2 and 4. Time and sample position across the creek were not significant factors affecting E. coli concentrations in sediment; location along the creek was a significant factor. Initial E. coli concentrations in top 1 cm (just prior to flow) averaged 4500, 2500, and 500 cell per g of sediment at locations 1 and 2 and 4, respectively. The E. coli concentrations in sediments decreased exponentially with depth by about one order of magnitude per 2 cm. The artificial flow event was created by releasing 80 tons of tap water on a tarp-covered stream bank at 11 m above the station 1

  10. Sound Classification and Call Discrimination Are Decoded in Order as Revealed by Event-Related Potential Components in Frogs.

    PubMed

    Fang, Guangzhan; Yang, Ping; Xue, Fei; Cui, Jianguo; Brauth, Steven E; Tang, Yezhong

    2015-01-01

    Species that use communication sounds to coordinate social and reproductive behavior must be able to distinguish vocalizations from nonvocal sounds as well as to identify individual vocalization types. In this study we sought to identify the neural localization of the processes involved and the temporal order in which they occur in an anuran species, the music frog Babina daunchina. To do this we measured telencephalic and mesencephalic event-related potentials (ERPs) elicited by synthesized white noise (WN), highly sexually attractive (HSA) calls produced by males from inside nests and male calls of low sexual attractiveness (LSA) produced outside of nests. Each stimulus possessed similar temporal structures. The results showed the following: (1) the amplitudes of the first negative ERP component (N1) at ∼ 100 ms differed significantly between WN and conspecific calls but not between HSA and LSA calls, indicating that discrimination between conspecific calls and nonvocal sounds occurs in ∼ 100 ms, (2) the amplitudes of the second positive ERP component (P2) at ∼ 200 ms in the difference waves between HSA calls and WN were significantly higher than between LSA calls and WN in the right telencephalon, implying that call characteristic identification occurs in ∼ 200 ms and (3) WN evoked a larger third positive ERP component (P3) at ∼ 300 ms than conspecific calls, suggesting the frogs had classified the conspecific calls into one category and perceived WN as novel. Thus, both the detection of sounds and the identification of call characteristics are accomplished quickly in a specific temporal order, as reflected by ERP components. In addition, the most dynamic ERP patterns appeared in the left mesencephalon and the right telencephalon, indicating the two brain regions might play key roles in anuran vocal communication. PMID:26613526

  11. Spatio-temporal hazard estimation in the Auckland Volcanic Field, New Zealand, with a new event-order model

    NASA Astrophysics Data System (ADS)

    Bebbington, Mark S.; Cronin, Shane J.

    2011-01-01

    The Auckland Volcanic Field (AVF) with 49 eruptive centres in the last c. 250 ka presents many challenges to our understanding of distributed volcanic field construction and evolution. We re-examine the age constraints within the AVF and perform a correlation exercise matching the well-dated record of tephras from cores distributed throughout the field to the most likely source volcanoes, using thickness and location information and a simple attenuation model. Combining this augmented age information with known stratigraphic constraints, we produce a new age-order algorithm for the field, with errors incorporated using a Monte Carlo procedure. Analysis of the new age model discounts earlier appreciations of spatio-temporal clustering in the AVF. Instead the spatial and temporal aspects appear independent; hence the location of the last eruption provides no information about the next location. The temporal hazard intensity in the field has been highly variable, with over 63% of its centres formed in a high-intensity period between 40 and 20 ka. Another, smaller, high-intensity period may have occurred at the field onset, while the latest event, at 504 ± 5 years B.P., erupted 50% of the entire field's volume. This emphasises the lack of steady-state behaviour that characterises the AVF, which may also be the case in longer-lived fields with a lower dating resolution. Spatial hazard intensity in the AVF under the new age model shows a strong NE-SW structural control of volcanism that may reflect deep-seated crustal or subduction zone processes and matches the orientation of the Taupo Volcanic Zone to the south.

  12. Advance Liquid Metal Reactor Discrete Dynamic Event Tree/Bayesian Network Analysis and Incident Management Guidelines (Risk Management for Sodium Fast Reactors)

    SciTech Connect

    Denman, Matthew R.; Groth, Katrina M.; Cardoni, Jeffrey N.; Wheeler, Timothy A.

    2015-04-01

    Accident management is an important component to maintaining risk at acceptable levels for all complex systems, such as nuclear power plants. With the introduction of self-correcting, or inherently safe, reactor designs the focus has shifted from management by operators to allowing the system's design to manage the accident. Inherently and passively safe designs are laudable, but nonetheless extreme boundary conditions can interfere with the design attributes which facilitate inherent safety, thus resulting in unanticipated and undesirable end states. This report examines an inherently safe and small sodium fast reactor experiencing a beyond design basis seismic event with the intend of exploring two issues : (1) can human intervention either improve or worsen the potential end states and (2) can a Bayesian Network be constructed to infer the state of the reactor to inform (1). ACKNOWLEDGEMENTS The authors would like to acknowledge the U.S. Department of Energy's Office of Nuclear Energy for funding this research through Work Package SR-14SN100303 under the Advanced Reactor Concepts program. The authors also acknowledge the PRA teams at Argonne National Laboratory, Oak Ridge National Laboratory, and Idaho National Laboratory for their continue d contributions to the advanced reactor PRA mission area.

  13. Efficient genetic algorithms using discretization scheduling.

    PubMed

    McLay, Laura A; Goldberg, David E

    2005-01-01

    In many applications of genetic algorithms, there is a tradeoff between speed and accuracy in fitness evaluations when evaluations use numerical methods with varying discretization. In these types of applications, the cost and accuracy vary from discretization errors when implicit or explicit quadrature is used to estimate the function evaluations. This paper examines discretization scheduling, or how to vary the discretization within the genetic algorithm in order to use the least amount of computation time for a solution of a desired quality. The effectiveness of discretization scheduling can be determined by comparing its computation time to the computation time of a GA using a constant discretization. There are three ingredients for the discretization scheduling: population sizing, estimated time for each function evaluation and predicted convergence time analysis. Idealized one- and two-dimensional experiments and an inverse groundwater application illustrate the computational savings to be achieved from using discretization scheduling. PMID:16156928

  14. Novel approach to data discretization

    NASA Astrophysics Data System (ADS)

    Borowik, Grzegorz; Kowalski, Karol; Jankowski, Cezary

    2015-09-01

    Discretization is an important preprocessing step in data mining. The data discretization method involves determining the ranges of values for numeric attributes, which ultimately represent discrete intervals for new attributes. The ranges for the proposed set of cuts are analyzed, in order to obtain a minimal set of ranges while retaining the possibility of classification. For this purpose, a special discernibility function can be constructed as a conjunction of alternative cuts set for each pair of different objects of different decisions- cuts discern these objects. However, the data mining methods based on discernibility matrix are insufficient for large databases. The purpose of this paper is the idea of implementation of a new data discretization algorithm that is based on statistics of attribute values and that avoids building the discernibility matrix explicitly. Evaluation of time complexity has shown that the proposed method is much more efficient than currently available solutions for large data sets.

  15. E. coli resuspension during an artificial high-flow event in a small first-order creek

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stream, pond, and lake sediments can serve as environmental reservoirs for E. coli, including pathogenic strains. Substantial increases in E. coli concentrations observed in stream water during rainfall events are often attributed exclusively to runoff from agricultural fields, pastures, and riparia...

  16. Discrete Trials Teaching

    ERIC Educational Resources Information Center

    Ghezzi, Patrick M.

    2007-01-01

    The advantages of emphasizing discrete trials "teaching" over discrete trials "training" are presented first, followed by a discussion of discrete trials as a method of teaching that emerged historically--and as a matter of necessity for difficult learners such as those with autism--from discrete trials as a method for laboratory research. The…

  17. Discrete-Event Simulation in Chemical Engineering.

    ERIC Educational Resources Information Center

    Schultheisz, Daniel; Sommerfeld, Jude T.

    1988-01-01

    Gives examples, descriptions, and uses for various types of simulation systems, including the Flowtran, Process, Aspen Plus, Design II, GPSS, Simula, and Simscript. Explains similarities in simulators, terminology, and a batch chemical process. Tables and diagrams are included. (RT)

  18. Extreme brain events: Higher-order statistics of brain resting activity and its relation with structural connectivity

    NASA Astrophysics Data System (ADS)

    Amor, T. A.; Russo, R.; Diez, I.; Bharath, P.; Zirovich, M.; Stramaglia, S.; Cortes, J. M.; de Arcangelis, L.; Chialvo, D. R.

    2015-09-01

    The brain exhibits a wide variety of spatiotemporal patterns of neuronal activity recorded using functional magnetic resonance imaging as the so-called blood-oxygenated-level-dependent (BOLD) signal. An active area of work includes efforts to best describe the plethora of these patterns evolving continuously in the brain. Here we explore the third-moment statistics of the brain BOLD signals in the resting state as a proxy to capture extreme BOLD events. We find that the brain signal exhibits typically nonzero skewness, with positive values for cortical regions and negative values for subcortical regions. Furthermore, the combined analysis of structural and functional connectivity demonstrates that relatively more connected regions exhibit activity with high negative skewness. Overall, these results highlight the relevance of recent results emphasizing that the spatiotemporal location of the relatively large-amplitude events in the BOLD time series contains relevant information to reproduce a number of features of the brain dynamics during resting state in health and disease.

  19. Characterization of lightning with ISUAL data in order to identify the Transient Luminous Events for the future TARANIS mission

    NASA Astrophysics Data System (ADS)

    Offroy, Marc; Farges, Thomas; Kuo, Cheng-Ling; Bing-Chih Chen, Alfred; Hsu, Rue-Ron; Su, Han-Tzong; Takahashi, Yukihiro; Mende, Stephen B.; Frey, Harald U.

    2014-05-01

    The main objective of the TARANIS (Tool for the Analysis of RAdiation from ligntNing and Sprites) satellite is to understand transient event energetic mechanisms that generate transient luminous emissions (TLEs) and gamma ray flashes (TGFs) in the terrestrial atmosphere above thunderstorm areas. These emissions are a manifestation of a coupling between atmosphere, ionosphere and magnetosphere. However, as the TARANIS microsatellite will observe from nadir, TLE identification is not easy using only images because TLEs and lightning are superposed. On board triggering using photometers is set up to further TLEs recording. It is necessary to take into account the temporal and spectral characteristics of lightning and TLEs. For this purpose, a dataset from a previous space mission called ISUAL is used. ISUAL is dedicated to the study of sprites from limb observation on the FORMOSAT-2 satellite. We have access to photometric and also imaging data. A database only dedicated on lightning was made. Several information was identified, such as the photometric responses, the number of photons emitted or the duration of different events analyzed. The main objective of the presented work is to show that a better knowledge about lightning signal is an asset for TLEs recognition.

  20. The Cauchy-Kovalevskaya Extension Theorem in Discrete Clifford Analysis

    NASA Astrophysics Data System (ADS)

    De Ridder, H.; De Schepper, H.; Sommen, F.

    2010-09-01

    Discrete Clifford analysis is a higher dimensional discrete function theory based on skew Weyl relations. It is centered around the study of Clifford algebra valued null solutions, called discrete monogenic functions, of a discrete Dirac operator, i.e. a first order, Clifford vector valued difference operator. In this contribution, we establish a Cauchy-Kovalevskaya extension theorem for discrete monogenic functions defined on the grid Zhm of m-tuples of integer multiples of a variable mesh width h. Convergence to the continuous case is investigated. As illustrative examples we explicitly construct the Cauchy-Kovalevskaya extensions of the discrete delta function and of a discretized exponential.

  1. 75 FR 52329 - Corn Event MON 863 and MON 863 x MON 810; Product Cancellation Order for Certain Pesticide...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ...This notice announces EPA's order for the cancellations of certain products containing the pesticides, Bacillus thuringiensis Cry3Bb1 protein and the genetic material necessary for its production (vector PV-ZMIR13L) in MON 863 corn (Organization for Economic Cooperation and Development (OECD) Unique Identifier: MON- [Oslash][Oslash]863-5) and/or Bacillus thuringiensis Cry1Ab protein and the......

  2. Discretization vs. Rounding Error in Euler's Method

    ERIC Educational Resources Information Center

    Borges, Carlos F.

    2011-01-01

    Euler's method for solving initial value problems is an excellent vehicle for observing the relationship between discretization error and rounding error in numerical computation. Reductions in stepsize, in order to decrease discretization error, necessarily increase the number of steps and so introduce additional rounding error. The problem is…

  3. Event Perception

    PubMed Central

    Radvansky, Gabriel; Zacks, Jeffrey M.

    2012-01-01

    Events are central elements of human experience. Formally, they can be individuated in terms of the entities that compose them, the features of those entities, and the relations amongst entities. Psychologically, representations of events capture their spatiotemporal location, the people and objects involved, and the relations between these elements. Here, we present an account of the nature of psychological representations of events and how they are constructed and updated. Event representations are like images in that they are isomorphic to the situations they represent. However, they are like models or language in that they are constructed of components rather than being holistic. Also, they are partial representations that leave out some elements and abstract others. Representations of individual events are informed by schematic knowledge about general classes of events. Event representations are constructed in a process that segments continuous activity into discrete events. The construction of a series of event representations forms a basis for predicting the future, planning for that future, and imagining alternatives. PMID:23082236

  4. Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes

    NASA Astrophysics Data System (ADS)

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2016-05-01

    A conservative discretization of incompressible Navier-Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.

  5. Discrete Pearson distributions

    SciTech Connect

    Bowman, K.O.; Shenton, L.R.; Kastenbaum, M.A.

    1991-11-01

    These distributions are generated by a first order recursive scheme which equates the ratio of successive probabilities to the ratio of two corresponding quadratics. The use of a linearized form of this model will produce equations in the unknowns matched by an appropriate set of moments (assumed to exist). Given the moments we may find valid solutions. These are two cases; (1) distributions defined on the non-negative integers (finite or infinite) and (2) distributions defined on negative integers as well. For (1), given the first four moments, it is possible to set this up as equations of finite or infinite degree in the probability of a zero occurrence, the sth component being a product of s ratios of linear forms in this probability in general. For (2) the equation for the zero probability is purely linear but may involve slowly converging series; here a particular case is the discrete normal. Regions of validity are being studied. 11 refs.

  6. Subcompartmentalisation of Proteins in the Rhoptries Correlates with Ordered Events of Erythrocyte Invasion by the Blood Stage Malaria Parasite

    PubMed Central

    Zuccala, Elizabeth S.; Gout, Alexander M.; Dekiwadia, Chaitali; Marapana, Danushka S.; Angrisano, Fiona; Turnbull, Lynne; Riglar, David T.; Rogers, Kelly L.; Whitchurch, Cynthia B.; Ralph, Stuart A.; Speed, Terence P.; Baum, Jake

    2012-01-01

    Host cell infection by apicomplexan parasites plays an essential role in lifecycle progression for these obligate intracellular pathogens. For most species, including the etiological agents of malaria and toxoplasmosis, infection requires active host-cell invasion dependent on formation of a tight junction – the organising interface between parasite and host cell during entry. Formation of this structure is not, however, shared across all Apicomplexa or indeed all parasite lifecycle stages. Here, using an in silico integrative genomic search and endogenous gene-tagging strategy, we sought to characterise proteins that function specifically during junction-dependent invasion, a class of proteins we term invasins to distinguish them from adhesins that function in species specific host-cell recognition. High-definition imaging of tagged Plasmodium falciparum invasins localised proteins to multiple cellular compartments of the blood stage merozoite. This includes several that localise to distinct subcompartments within the rhoptries. While originating from the same organelle, however, each has very different dynamics during invasion. Apical Sushi Protein and Rhoptry Neck protein 2 release early, following the junction, whilst a novel rhoptry protein PFF0645c releases only after invasion is complete. This supports the idea that organisation of proteins within a secretory organelle determines the order and destination of protein secretion and provides a localisation-based classification strategy for predicting invasin function during apicomplexan parasite invasion. PMID:23049965

  7. Reduced discretization error in HZETRN

    SciTech Connect

    Slaba, Tony C.; Blattnig, Steve R.; Tweed, John

    2013-02-01

    The deterministic particle transport code HZETRN is an efficient analysis tool for studying the effects of space radiation on humans, electronics, and shielding materials. In a previous work, numerical methods in the code were reviewed, and new methods were developed that further improved efficiency and reduced overall discretization error. It was also shown that the remaining discretization error could be attributed to low energy light ions (A < 4) with residual ranges smaller than the physical step-size taken by the code. Accurately resolving the spectrum of low energy light particles is important in assessing risk associated with astronaut radiation exposure. In this work, modifications to the light particle transport formalism are presented that accurately resolve the spectrum of low energy light ion target fragments. The modified formalism is shown to significantly reduce overall discretization error and allows a physical approximation to be removed. For typical step-sizes and energy grids used in HZETRN, discretization errors for the revised light particle transport algorithms are shown to be less than 4% for aluminum and water shielding thicknesses as large as 100 g/cm{sup 2} exposed to both solar particle event and galactic cosmic ray environments.

  8. Event Detection and Sub-state Discovery from Bio-molecular Simulations Using Higher-Order Statistics: Application To Enzyme Adenylate Kinase

    PubMed Central

    Ramanathan, Arvind; Savol, Andrej J.; Agarwal, Pratul K.; Chennubhotla, Chakra S.

    2012-01-01

    Biomolecular simulations at milli-second and longer timescales can provide vital insights into functional mechanisms. Since post-simulation analyses of such large trajectory data-sets can be a limiting factor in obtaining biological insights, there is an emerging need to identify key dynamical events and relating these events to the biological function online, that is, as simulations are progressing. Recently, we have introduced a novel computational technique, quasi-anharmonic analysis (QAA) (PLoS One 6(1): e15827), for partitioning the conformational landscape into a hierarchy of functionally relevant sub-states. The unique capabilities of QAA are enabled by exploiting anharmonicity in the form of fourth-order statistics for characterizing atomic fluctuations. In this paper, we extend QAA for analyzing long time-scale simulations online. In particular, we present HOST4MD - a higher-order statistical toolbox for molecular dynamics simulations, which (1) identifies key dynamical events as simulations are in progress, (2) explores potential sub-states and (3) identifies conformational transitions that enable the protein to access those sub-states. We demonstrate HOST4MD on micro-second time-scale simulations of the enzyme adenylate kinase in its apo state. HOST4MD identifies several conformational events in these simulations, revealing how the intrinsic coupling between the three sub-domains (LID, CORE and NMP) changes during the simulations. Further, it also identifies an inherent asymmetry in the opening/closing of the two binding sites. We anticipate HOST4MD will provide a powerful and extensible framework for detecting biophysically relevant conformational coordinates from long time-scale simulations. PMID:22733562

  9. Principles of Discrete Time Mechanics

    NASA Astrophysics Data System (ADS)

    Jaroszkiewicz, George

    2014-04-01

    1. Introduction; 2. The physics of discreteness; 3. The road to calculus; 4. Temporal discretization; 5. Discrete time dynamics architecture; 6. Some models; 7. Classical cellular automata; 8. The action sum; 9. Worked examples; 10. Lee's approach to discrete time mechanics; 11. Elliptic billiards; 12. The construction of system functions; 13. The classical discrete time oscillator; 14. Type 2 temporal discretization; 15. Intermission; 16. Discrete time quantum mechanics; 17. The quantized discrete time oscillator; 18. Path integrals; 19. Quantum encoding; 20. Discrete time classical field equations; 21. The discrete time Schrodinger equation; 22. The discrete time Klein-Gordon equation; 23. The discrete time Dirac equation; 24. Discrete time Maxwell's equations; 25. The discrete time Skyrme model; 26. Discrete time quantum field theory; 27. Interacting discrete time scalar fields; 28. Space, time and gravitation; 29. Causality and observation; 30. Concluding remarks; Appendix A. Coherent states; Appendix B. The time-dependent oscillator; Appendix C. Quaternions; Appendix D. Quantum registers; References; Index.

  10. Some discrete multiple orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Arvesú, J.; Coussement, J.; van Assche, W.

    2003-04-01

    In this paper, we extend the theory of discrete orthogonal polynomials (on a linear lattice) to polynomials satisfying orthogonality conditions with respect to r positive discrete measures. First we recall the known results of the classical orthogonal polynomials of Charlier, Meixner, Kravchuk and Hahn (T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978; R. Koekoek and R.F. Swarttouw, Reports of the Faculty of Technical Mathematics and Informatics No. 98-17, Delft, 1998; A.F. Nikiforov et al., Classical Orthogonal Polynomials of a Discrete Variable, Springer, Berlin, 1991). These polynomials have a lowering and raising operator, which give rise to a Rodrigues formula, a second order difference equation, and an explicit expression from which the coefficients of the three-term recurrence relation can be obtained. Then we consider r positive discrete measures and define two types of multiple orthogonal polynomials. The continuous case (Jacobi, Laguerre, Hermite, etc.) was studied by Van Assche and Coussement (J. Comput. Appl. Math. 127 (2001) 317-347) and Aptekarev et al. (Multiple orthogonal polynomials for classical weights, manuscript). The families of multiple orthogonal polynomials (of type II) that we will study have a raising operator and hence a Rodrigues formula. This will give us an explicit formula for the polynomials. Finally, there also exists a recurrence relation of order r+1 for these multiple orthogonal polynomials of type II. We compute the coefficients of the recurrence relation explicitly when r=2.

  11. Dogs cannot bark: event-related brain responses to true and false negated statements as indicators of higher-order conscious processing.

    PubMed

    Herbert, Cornelia; Kübler, Andrea

    2011-01-01

    The present study investigated event-related brain potentials elicited by true and false negated statements to evaluate if discrimination of the truth value of negated information relies on conscious processing and requires higher-order cognitive processing in healthy subjects across different levels of stimulus complexity. The stimulus material consisted of true and false negated sentences (sentence level) and prime-target expressions (word level). Stimuli were presented acoustically and no overt behavioral response of the participants was required. Event-related brain potentials to target words preceded by true and false negated expressions were analyzed both within group and at the single subject level. Across the different processing conditions (word pairs and sentences), target words elicited a frontal negativity and a late positivity in the time window from 600-1000 msec post target word onset. Amplitudes of both brain potentials varied as a function of the truth value of the negated expressions. Results were confirmed at the single-subject level. In sum, our results support recent suggestions according to which evaluation of the truth value of a negated expression is a time- and cognitively demanding process that cannot be solved automatically, and thus requires conscious processing. Our paradigm provides insight into higher-order processing related to language comprehension and reasoning in healthy subjects. Future studies are needed to evaluate if our paradigm also proves sensitive for the detection of consciousness in non-responsive patients. PMID:22022414

  12. PREFACE: 4th Symposium on Prospects in the Physics of Discrete Symmetries (DISCRETE2014)

    NASA Astrophysics Data System (ADS)

    Di Domenico, Antonio; Mavromatos, Nick E.; Mitsou, Vasiliki A.; Skliros, Dimitri P.

    2015-07-01

    The DISCRETE 2014: Fourth Symposium in the Physics of Discrete Symmetries took place at King's College London, Strand Campus, London WC2R 2LS, from Tuesday, December 2 2014 till Saturday, December 6 2014. This is the fourth Edition of the DISCRETE conference series, which is a biannual event, having been held previously in Valencia (Discrete'08), Rome (Discrete2010) and Lisbon (Discrete2012). The topics covered at the DISCRETE series of conferences are: T, C, P, CP symmetries; accidental symmetries (B, L conservation); CPT symmetry, decoherence and entangled states, Lorentz symmetry breaking (phenomenology and current bounds); neutrino mass and mixing; implications for cosmology and astroparticle physics, dark matter searches; experimental prospects at LHC, new facilities. In DISCRETE 2014 we have also introduced two new topics: cosmological aspects of non-commutative space-times as well as PT symmetric Hamiltonians (non-Hermitian but with real eigenvalues), a topic that has wide applications in particle physics and beyond. The conference was opened by the King's College London Vice Principal on Research and Innovation, Mr Chris Mottershead, followed by a welcome address by the Chair of DISCRETE 2014 (Professor Nick E. Mavromatos). After these introductory talks, the scientific programme of the DISCRETE 2014 symposium started. Following the tradition of DISCRETE series of conferences, the talks (138 in total) were divided into plenary-review talks (25), invited research talks (50) and shorter presentations (63) — selected by the conveners of each session in consultation with the organisers — from the submitted abstracts. We have been fortunate to have very high-quality, thought stimulating and interesting talks at all levels, which, together with the discussions among the participants, made the conference quite enjoyable. There were 152 registered participants for the event.

  13. Anomalies and Discrete Chiral Symmetries

    SciTech Connect

    Creutz, M.

    2009-09-07

    The quantum anomaly that breaks the U(1) axial symmetry of massless multi-flavored QCD leaves behind a discrete flavor-singlet chiral invariance. With massive quarks, this residual symmetry has a close connection with the strong CP-violating parameter theta. One result is that if the lightest quarks are degenerate, then a first order transition will occur when theta passes through pi. The resulting framework helps clarify when the rooting prescription for extrapolating in the number of flavors is valid.

  14. The effectiveness of computerized order entry at reducing preventable adverse drug events and medication errors in hospital settings: a systematic review and meta-analysis

    PubMed Central

    2014-01-01

    Background The Health Information Technology for Economic and Clinical Health (HITECH) Act subsidizes implementation by hospitals of electronic health records with computerized provider order entry (CPOE), which may reduce patient injuries caused by medication errors (preventable adverse drug events, pADEs). Effects on pADEs have not been rigorously quantified, and effects on medication errors have been variable. The objectives of this analysis were to assess the effectiveness of CPOE at reducing pADEs in hospital-related settings, and examine reasons for heterogeneous effects on medication errors. Methods Articles were identified using MEDLINE, Cochrane Library, Econlit, web-based databases, and bibliographies of previous systematic reviews (September 2013). Eligible studies compared CPOE with paper-order entry in acute care hospitals, and examined diverse pADEs or medication errors. Studies on children or with limited event-detection methods were excluded. Two investigators extracted data on events and factors potentially associated with effectiveness. We used random effects models to pool data. Results Sixteen studies addressing medication errors met pooling criteria; six also addressed pADEs. Thirteen studies used pre-post designs. Compared with paper-order entry, CPOE was associated with half as many pADEs (pooled risk ratio (RR) = 0.47, 95% CI 0.31 to 0.71) and medication errors (RR = 0.46, 95% CI 0.35 to 0.60). Regarding reasons for heterogeneous effects on medication errors, five intervention factors and two contextual factors were sufficiently reported to support subgroup analyses or meta-regression. Differences between commercial versus homegrown systems, presence and sophistication of clinical decision support, hospital-wide versus limited implementation, and US versus non-US studies were not significant, nor was timing of publication. Higher baseline rates of medication errors predicted greater reductions (P < 0.001). Other context and

  15. Discrete Element Modeling

    SciTech Connect

    Morris, J; Johnson, S

    2007-12-03

    The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.

  16. Synchronous Discrete Harmonic Oscillator

    SciTech Connect

    Antippa, Adel F.; Dubois, Daniel M.

    2008-10-17

    We introduce the synchronous discrete harmonic oscillator, and present an analytical, numerical and graphical study of its characteristics. The oscillator is synchronous when the time T for one revolution covering an angle of 2{pi} in phase space, is an integral multiple N of the discrete time step {delta}t. It is fully synchronous when N is even. It is pseudo-synchronous when T/{delta}t is rational. In the energy conserving hyperincursive representation, the phase space trajectories are perfectly stable at all time scales, and in both synchronous and pseudo-synchronous modes they cycle through a finite number of phase space points. Consequently, both the synchronous and the pseudo-synchronous hyperincursive modes of time-discretization provide a physically realistic and mathematically coherent, procedure for dynamic, background independent, discretization of spacetime. The procedure is applicable to any stable periodic dynamical system, and provokes an intrinsic correlation between space and time, whereby space-discretization is a direct consequence of background-independent time-discretization. Hence, synchronous discretization moves the formalism of classical mechanics towards that of special relativity. The frequency of the hyperincursive discrete harmonic oscillator is ''blue shifted'' relative to its continuum counterpart. The frequency shift has the precise value needed to make the speed of the system point in phase space independent of the discretizing time interval {delta}t. That is the speed of the system point is the same on the polygonal (in the discrete case) and the circular (in the continuum case) phase space trajectories.

  17. Discrete monotron oscillator

    SciTech Connect

    Carlsten, B.E.; Haynes, W.B.

    1996-08-01

    The authors theoretically and numerically investigate the operation and behavior of the discrete monotron oscillator, a novel high-power microwave source. The discrete monotron differs from conventional monotrons and transit time oscillators by shielding the electron beam from the monotron cavity`s RF fields except at two distinct locations. This makes the discrete monotron act more like a klystron than a distributed traveling wave device. As a result, the oscillator has higher efficiency and can operate with higher beam powers than other single cavity oscillators and has more stable operation without requiring a seed input signal than mildly relativistic, intense-beam klystron oscillators.

  18. The Discrete Hanging Cable

    ERIC Educational Resources Information Center

    Peters, James V.

    2004-01-01

    Using the methods of finite difference equations the discrete analogue of the parabolic and catenary cable are analysed. The fibonacci numbers and the golden ratio arise in the treatment of the catenary.

  19. Discretizations of axisymmetric systems

    NASA Astrophysics Data System (ADS)

    Frauendiener, Jörg

    2002-11-01

    In this paper we discuss stability properties of various discretizations for axisymmetric systems including the so-called cartoon method which was proposed by Alcubierre et al. for the simulation of such systems on Cartesian grids. We show that within the context of the method of lines such discretizations tend to be unstable unless one takes care in the way individual singular terms are treated. Examples are given for the linear axisymmetric wave equation in flat space.

  20. Power Analysis for Trials with Discrete-Time Survival Endpoints

    ERIC Educational Resources Information Center

    Jozwiak, Katarzyna; Moerbeek, Mirjam

    2012-01-01

    Studies on event occurrence aim to investigate if and when subjects experience a particular event. The timing of events may be measured continuously using thin precise units or discretely using time periods. The latter metric of time is often used in social science research and the generalized linear model (GLM) is an appropriate model for data…

  1. A discretization of Boltzmann's collision operator with provable convergence

    NASA Astrophysics Data System (ADS)

    Brechtken, Stefan

    2014-12-01

    The discretization of the right-hand side of the Boltzmann equation (aka the collision operator) on uniform grids generally suffers from some well known problems prohibiting the construction of deterministic high order discretizations which exactly sustain the basic properties of the collision operator. These problems mainly relate to problems arising from the discretization of spheres on uniform grids and the necessity that the discretization must possess some symmetry properties in order to provide the discrete versions of properties stemming from the continuous collision operator (number of collision invariants, avoidance of artificial collision invariants, type of equilibrium solutions, H-Theorem). We present a scheme to construct discretizations in 2 dimensions with arbitrarily high convergence orders on uniform grids, which are comparable to the approach by Rogier and Schneider [1] and the subsequent works by Michel and Schneider as well as Panferov and Heintz [2, 3] who used Farey sequences for the discretization. Moreover we take a closer look at this discretization in the framework of discrete velocity models to present results governing the correct collision invariants, lack of artificial collision invariants, the H-Theorem and the correct equilibrium solutions. Furthermore we classify lattice group models (LGpM) in the context of DVMs to transfer the high convergence order of these discretizations into the context of LGpMs and finally we take a short look at the numerical complexity.

  2. Episodes, events, and models.

    PubMed

    Khemlani, Sangeet S; Harrison, Anthony M; Trafton, J Gregory

    2015-01-01

    We describe a novel computational theory of how individuals segment perceptual information into representations of events. The theory is inspired by recent findings in the cognitive science and cognitive neuroscience of event segmentation. In line with recent theories, it holds that online event segmentation is automatic, and that event segmentation yields mental simulations of events. But it posits two novel principles as well: first, discrete episodic markers track perceptual and conceptual changes, and can be retrieved to construct event models. Second, the process of retrieving and reconstructing those episodic markers is constrained and prioritized. We describe a computational implementation of the theory, as well as a robotic extension of the theory that demonstrates the processes of online event segmentation and event model construction. The theory is the first unified computational account of event segmentation and temporal inference. We conclude by demonstrating now neuroimaging data can constrain and inspire the construction of process-level theories of human reasoning. PMID:26578934

  3. Episodes, events, and models

    PubMed Central

    Khemlani, Sangeet S.; Harrison, Anthony M.; Trafton, J. Gregory

    2015-01-01

    We describe a novel computational theory of how individuals segment perceptual information into representations of events. The theory is inspired by recent findings in the cognitive science and cognitive neuroscience of event segmentation. In line with recent theories, it holds that online event segmentation is automatic, and that event segmentation yields mental simulations of events. But it posits two novel principles as well: first, discrete episodic markers track perceptual and conceptual changes, and can be retrieved to construct event models. Second, the process of retrieving and reconstructing those episodic markers is constrained and prioritized. We describe a computational implementation of the theory, as well as a robotic extension of the theory that demonstrates the processes of online event segmentation and event model construction. The theory is the first unified computational account of event segmentation and temporal inference. We conclude by demonstrating now neuroimaging data can constrain and inspire the construction of process-level theories of human reasoning. PMID:26578934

  4. Modelling road accident blackspots data with the discrete generalized Pareto distribution.

    PubMed

    Prieto, Faustino; Gómez-Déniz, Emilio; Sarabia, José María

    2014-10-01

    This study shows how road traffic networks events, in particular road accidents on blackspots, can be modelled with simple probabilistic distributions. We considered the number of crashes and the number of fatalities on Spanish blackspots in the period 2003-2007, from Spanish General Directorate of Traffic (DGT). We modelled those datasets, respectively, with the discrete generalized Pareto distribution (a discrete parametric model with three parameters) and with the discrete Lomax distribution (a discrete parametric model with two parameters, and particular case of the previous model). For that, we analyzed the basic properties of both parametric models: cumulative distribution, survival, probability mass, quantile and hazard functions, genesis and rth-order moments; applied two estimation methods of their parameters: the μ and (μ+1) frequency method and the maximum likelihood method; used two goodness-of-fit tests: Chi-square test and discrete Kolmogorov-Smirnov test based on bootstrap resampling; and compared them with the classical negative binomial distribution in terms of absolute probabilities and in models including covariates. We found that those probabilistic models can be useful to describe the road accident blackspots datasets analyzed. PMID:24878693

  5. A discrete fractional random transform

    NASA Astrophysics Data System (ADS)

    Liu, Zhengjun; Zhao, Haifa; Liu, Shutian

    2005-11-01

    We propose a discrete fractional random transform based on a generalization of the discrete fractional Fourier transform with an intrinsic randomness. Such discrete fractional random transform inheres excellent mathematical properties of the fractional Fourier transform along with some fantastic features of its own. As a primary application, the discrete fractional random transform has been used for image encryption and decryption.

  6. Mining Subsidence-generated legacy sediments in a Mid-European low-order stream floodplain as an archive for historic human activity and flooding events

    NASA Astrophysics Data System (ADS)

    Buchty-Lemke, Michael; Lehmkuhl, Frank; Frings, Roy; Henkel, Sebastian; Schwarzbauer, Jan

    2015-04-01

    Legacy sediments, which were deposited as a consequence of mining subsidence in a floodplain area, can be used as an archive for human activity and past flooding. The morphodynamics of the Wurm River, a low-order stream in the Lower Rhine Embayment at the border between Germany and the Netherlands, is significantly influenced by a long colliery history, which caused alterations in the natural river landscape. In addition, substances which are transported via municipal wastewaters as well as contaminants emitted by specific regional industries were deposited in the floodplain sediments. This study aims at the reconstruction of human activity and past flooding events derived from geochemical and sedimentological data for different time slices within the 20st century. The spatial and chronological distribution of contaminants is investigated on the basis of several sections and drilling cores along the middle reaches of the Wurm River. Sections within mining subsidence areas and outside of those are compared regarding their sedimentation rates and element contents. Additional information is gathered from digital terrain models, historical documents such as the Tranchot map (early 19th century), and interviews of contemporary witnesses. Sedimentation rates derived from Cs-137 measurements allow a temporal assignment of the legacy sediments. A section within a segment of the Siegfried Line (Westwall), constructed in 1939, that crosses the Wurm River shows a significant increase in sedimentation rates in contrast to the floodplain area that is unaffected by subsidence processes. Furthermore, source-specific contaminants can be used to refine the stratigraphy, since source and period of emission are known. The evaluation of past flooding events is supported by numerical modeling of flood scenarios, which provides detailed information about flooded areas depending on the discharge, particularly for the areas which are under influence of mining subsidence. Besides the

  7. Discrete Newtonian cosmology: perturbations

    NASA Astrophysics Data System (ADS)

    Ellis, George F. R.; Gibbons, Gary W.

    2015-03-01

    In a previous paper (Gibbons and Ellis 2014 Discrete Newtonian cosmology Class. Quantum Grav. 31 025003), we showed how a finite system of discrete particles interacting with each other via Newtonian gravitational attraction would lead to precisely the same dynamical equations for homothetic motion as in the case of the pressure-free Friedmann-Lemaître-Robertson-Walker cosmological models of general relativity theory, provided the distribution of particles obeys the central configuration equation. In this paper we show that one can obtain perturbed such Newtonian solutions that give the same linearized structure growth equations as in the general relativity case. We also obtain the Dmitriev-Zel’dovich equations for subsystems in this discrete gravitational model, and show how it leads to the conclusion that voids have an apparent negative mass.

  8. Mimetic discretization of two-dimensional magnetic diffusion equations

    NASA Astrophysics Data System (ADS)

    Lipnikov, Konstantin; Reynolds, James; Nelson, Eric

    2013-08-01

    In case of non-constant resistivity, cylindrical coordinates, and highly distorted polygonal meshes, a consistent discretization of the magnetic diffusion equations requires new discretization tools based on a discrete vector and tensor calculus. We developed a new discretization method using the mimetic finite difference framework. It is second-order accurate on arbitrary polygonal meshes and a consistent calculation of the Joule heating is intrinsic within it. The second-order convergence rates in L2 and L1 norms were verified with numerical experiments.

  9. Deformed discrete symmetries

    NASA Astrophysics Data System (ADS)

    Arzano, Michele; Kowalski-Glikman, Jerzy

    2016-09-01

    We construct discrete symmetry transformations for deformed relativistic kinematics based on group valued momenta. We focus on the specific example of κ-deformations of the Poincaré algebra with associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description of quantum states constructed from deformed kinematics and the observable charges associated with them. The results we present provide the first step towards the analysis of experimental bounds on the deformation parameter κ to be derived via precision measurements of discrete symmetries and CPT.

  10. Discrete breathers in crystals

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. V.; Korznikova, E. A.; Baimova, Yu A.; Velarde, M. G.

    2016-05-01

    It is well known that periodic discrete defect-containing systems, in addition to traveling waves, support vibrational defect-localized modes. It turned out that if a periodic discrete system is nonlinear, it can support spatially localized vibrational modes as exact solutions even in the absence of defects. Since the nodes of the system are all on equal footing, it is only through the special choice of initial conditions that a group of nodes can be found on which such a mode, called a discrete breather (DB), will be excited. The DB frequency must be outside the frequency range of the small-amplitude traveling waves. Not resonating with and expending no energy on the excitation of traveling waves, a DB can theoretically conserve its vibrational energy forever provided no thermal vibrations or other perturbations are present. Crystals are nonlinear discrete systems, and the discovery in them of DBs was only a matter of time. It is well known that periodic discrete defect-containing systems support both traveling waves and vibrational defect-localized modes. It turns out that if a periodic discrete system is nonlinear, it can support spatially localized vibrational modes as exact solutions even in the absence of defects. Because the nodes of the system are all on equal footing, only a special choice of the initial conditions allows selecting a group of nodes on which such a mode, called a discrete breather (DB), can be excited. The DB frequency must be outside the frequency range of small-amplitude traveling waves. Not resonating with and expending no energy on the excitation of traveling waves, a DB can theoretically preserve its vibrational energy forever if no thermal vibrations or other perturbations are present. Crystals are nonlinear discrete systems, and the discovery of DBs in them was only a matter of time. Experimental studies of DBs encounter major technical difficulties, leaving atomistic computer simulations as the primary investigation tool. Despite