Science.gov

Sample records for order ionospheric effects

  1. First estimates of the second-order ionospheric effect on radio occultation observations

    NASA Astrophysics Data System (ADS)

    Vergados, Panagiotis; Pagiatakis, Spiros D.

    2010-07-01

    This study examines the impact of the second-order ionospheric effect on radio occultation (RO) data products. We propose a new linear combination between dual frequency GPS observables, which retrieves slant total electron content free from the second-order ionospheric effect. Our STEC values differ from those obtained by independent techniques by a maximum of 3 total electron content units (TECU), depending on the geographic location and geomagnetic activity. Additionally, we suggest an alternative method of computing the second-order ionospheric delay in RO experiments, which does not require the use of geomagnetic and ionospheric models. First estimates show that the second-order ionospheric delay for the RO experiments falls within the range [-10, -8] mm, which is of the same order of magnitude with second-order ionospheric delay estimates from ground-based experiments. Finally, as a by-product of our model, we retrieve weighted mean geomagnetic field values, which we compare with theoretical estimates computed by the International Geomagnetic Reference Field-10 (IGRF-10) model. Our estimations agree with the IGRF-10 model between 0.23% and 7.0%.

  2. Distribution and mitigation of higher-order ionospheric effects on precise GNSS processing

    NASA Astrophysics Data System (ADS)

    Hernández-Pajares, Manuel; Aragón-Ángel, Àngela; Defraigne, Pascale; Bergeot, Nicolas; Prieto-Cerdeira, Roberto; García-Rigo, Alberto

    2014-04-01

    Higher-order ionospheric effects (I2+) are one of the main limiting factors in very precise Global Navigation Satellite Systems (GNSS) processing, for applications where millimeter accuracy is demanded. This paper summarizes a comprehensive study of the I2+ effects in range and in GNSS precise products such as receiver position and clock, tropospheric delay, geocenter offset, and GNSS satellite position and clock. All the relevant higher-order contributions are considered: second and third orders, geometric bending, and slant total electron content (dSTEC) bending (i.e., the difference between the STEC for straight and bent paths). Using a realistic simulation with representative solar maximum conditions on GPS signals, both the effects and mitigation errors are analyzed. The usage of the combination of multifrequency L band observations has to be rejected due to its increased noise level. The results of the study show that the main two effects in range are the second-order ionospheric and dSTEC terms, with peak values up to 2 cm. Their combined impacts on the precise GNSS satellite products affects the satellite Z coordinates (up to +1 cm) and satellite clocks (more than ±20 ps). Other precise products are affected at the millimeter level. After correction the impact on all the precise GNSS products is reduced below 5 mm. We finally show that the I2+ impact on a Precise Point Positioning (PPP) user is lower than the current uncertainties of the PPP solutions, after applying consistently the precise products (satellite orbits and clocks) obtained under I2+ correction.

  3. A semi-analytic evaluation of the effect of second-order ionosphere term on GPS positioning

    NASA Astrophysics Data System (ADS)

    Munekane, H.

    2005-05-01

    We developed a method to evaluate the effect of the second-order ionosphere term on GPS positioning. The method is based on the semi-analytic positioning error simulation method developed by Geiger (1988), which assumes the continuous distribution of the GPS satellites and maps the ranging error to the positioning error using the normal equation. We expanded the method to incorporate the satellite positioning error due to the second-order ionospheric term, which is estimated in a similar manner as the site positioning error, assuming the continuous distribution of the ground tracking stations instead of the continuous satellite distribution in the case of the site positioning error estimation. The method is first applied to simulate the positioning errors on three IGS sites (BAHR, COCO, GALA) which were investigated in Kedar et al. (2002) by analyzing the observed GPS data using the GIPSY software with the correction for second-order ionospheric term. We considered three cases, namely, 1) without satellite positioning error, 2) with satellite positioning error, and 3) with satellite positioning error whose spatial average of each component is corrected for. The third case corresponds to the situation where there are other observations available such as SLR and the center of the mass of the GPS satellite network is corrected properly. For the first case, we found that our method reproduced the positioning errors observed at these stations as well as Kedar et al. (2002). For the second case, however, we found that the positioning error is almost canceled. For the third case, we found that the error is reproduced as well as in the first case, though the spatial distribution of the error is different. These results indicate that 1) the semi-analytic method developed in this paper is accurate enough to simulate the position error due to the second-order ionospheric term, and 2) the satellite positioning error due to the second-order ionospheric term may have significant

  4. Higher-order ionosphere modeling for CODE's next reprocessing activities

    NASA Astrophysics Data System (ADS)

    Lutz, S.; Schaer, S.; Meindl, M.; Dach, R.; Steigenberger, P.

    2009-12-01

    CODE (the Center for Orbit Determination in Europe) is a joint venture between the Astronomical Institute of the University of Bern (AIUB, Bern, Switzerland), the Federal Office of Topography (swisstopo, Wabern, Switzerland), the Federal Agency for Cartography and Geodesy (BKG, Frankfurt am Main, Germany), and the Institut für Astronomische und Phsyikalische Geodäsie of the Technische Universität München (IAPG/TUM, Munich, Germany). It acts as one of the global analysis centers of the International GNSS Service (IGS) and participates in the first IGS reprocessing campaign, a full reanalysis of GPS data collected since 1994. For a future reanalyis of the IGS data it is planned to consider not only first-order but also higher-order ionosphere terms in the space geodetic observations. There are several works (e.g. Fritsche et al. 2005), which showed a significant and systematic influence of these effects on the analysis results. The development version of the Bernese Software used at CODE is expanded by the ability to assign additional (scaling) parameters to each considered higher-order ionosphere term. By this, each correction term can be switched on and off on normal-equation level and, moreover, the significance of each correction term may be verified on observation level for different ionosphere conditions.

  5. Low-latitude ionospheric effects on SBAS

    NASA Astrophysics Data System (ADS)

    Arenas, J.; Sardón, E.; Sainz, A.; Ochoa, B.; Magdaleno, S.

    2016-06-01

    Satellite-based augmentation systems (SBAS) provide augmentation to Global Navigation Satellite Systems (GNSS) users in three areas: (1) broadcasting accurate corrections to GNSS satellite ephemeris, (2) providing a real-time empirical ionospheric model in the service area, and (3) providing integrity information in the form of estimates of the confidence of the ephemeris corrections and ionospheric delays. Ionospheric effects on SBAS are twofold: (a) the input data used by the SBAS will be affected by ionospheric effects, and (b) the more perturbed the ionosphere is, the more difficult it will be to provide accurate and reliable ionospheric information to the users. The ionosphere at low latitudes presents larger variability and more intense phenomena than at midlatitudes. Therefore, SBAS providing service to low-latitude regions will be more affected than those at other latitudes. From the different low-latitude ionospheric effects, this paper will focus on those having the largest impact on SBAS, which are total electron content temporal and spatial gradients, ionospheric scintillations, and depletions. This paper will present the impact of these effects on EGNOS (European Global Navigation Overlay System), the European SBAS. Although EGNOS can be considered as a midlatitude SBAS, it has to provide coverage down to rather low latitudes, so sometimes low-latitude ionospheric effects are observed in the EGNOS data. It will be shown how EGNOS performs under nominal conditions and how its performance is degraded when low-latitude ionospheric phenomena occur. Real EGNOS data affected by low-latitude ionospheric phenomena will be used.

  6. Ionospheric scintillation in Brazil: Analyses and Effects on GNSS Positioning

    NASA Astrophysics Data System (ADS)

    Alves, D. B.; Souza, J. S.; Silva, H. D.

    2013-05-01

    Ionosphere has a great influence on GNSS (Global Navigation Satellite System) signals and its behavior depends on several variables: local time, geographic location, seasons and solar activity. Besides, there are ionospheric irregularities that also affect the GNSS signal propagation, as the ionospheric scintillation. The ionospheric scintillation can be described as a fast change in phase and amplitude of GNSS signal, caused by irregularities of electron density. Scintillation can degrade or cause the GNSS signal lost. Due to these described factors, one can say that the ionosphere can cause important effects on GNSS positioning. It can degrade the coordinate accuracy obtained by GNSS positioning methods. In this paper the goal is to evaluate the ionospheric effect, in special the ionospheric scintillation in different regions of Brazil, and its effects on GNSS Point Positioning. In order to evaluate the days where the scintillation was more significant it is used a database (http://200.145.185.118/cigala/index.php) from CIGALA (Concept for Ionospheric Scintillation Mitigation for Professional GNSS in Latin America) project (http://cigala.galileoic.org/). Using these data it is possible to obtain information about ionospheric scintillation in different GNSS stations in Brazil. It is possible to correlate the data according to time, season and other factors that can contribute to scintillation analysis. In 2013 must occur an intense solar activity, which can intensify the ionospheric effects, and consequently ionospheric scintillation, mainly in Brazil region, where the scintillation index is already intense. Preliminary evaluations, showed larger values of S4 (scintillation index) in Brazil. For example, in October 2012, it was obtained S4 values larger than 1 in several epochs. This causes severe effects in GNSS Positioning. In this paper, the results of GNSS positioning under ionosphere scintillation effects in different regions of Brazil will be presented.

  7. Mitigation of Second-Order Ionospheric Error for Real-Time PPP Users in Europe

    NASA Astrophysics Data System (ADS)

    Abdelazeem, Mohamed

    2016-07-01

    Currently, the international global navigation satellite system (GNSS) real-time service (IGS-RTS) products are used extensively for real-time precise point positioning and ionosphere modeling applications. The major challenge of the dual frequency real-time precise point positioning (RT-PPP) is that the solution requires relatively long time to converge to the centimeter-level accuracy. This relatively long convergence time results essentially from the un-modeled high-order ionospheric errors. To overcome this challenge, a method for the second-order ionospheric delay mitigation, which represents the bulk of the high-order ionospheric errors, is proposed for RT-PPP users in Europe. A real-time regional ionospheric model (RT-RIM) over Europe is developed using the IGS-RTS precise satellite orbit and clock products. GPS observations from a regional network consisting of 60 IGS and EUREF reference stations are processed using the Bernese 5.2 software package in order to extract the real-time vertical total electron content (RT-VTEC). The proposed RT-RIM has spatial and temporal resolution of 1º×1º and 15 minutes, respectively. In order to investigate the effect of the second-order ionospheric delay on the RT-PPP solution, new GPS data sets from another reference stations are used. The examined stations are selected to represent different latitudes. The GPS observations are corrected from the second-order ionospheric errors using the extracted RT-VTEC values. In addition, the IGS-RTS precise orbit and clock products are used to account for the satellite orbit and clock errors, respectively. It is shown that the RT-PPP convergence time and positioning accuracy are improved when the second-order ionospheric delay is accounted for.

  8. Higher-order ionospheric error at Arecibo, Millstone, and Jicamarca

    NASA Astrophysics Data System (ADS)

    Matteo, N. A.; Morton, Y. T.

    2010-12-01

    The ionosphere is a dominant source of Global Positioning System receiver range measurement error. Although dual-frequency receivers can eliminate the first-order ionospheric error, most second- and third-order errors remain in the range measurements. Higher-order ionospheric error is a function of both electron density distribution and the magnetic field vector along the GPS signal propagation path. This paper expands previous efforts by combining incoherent scatter radar (ISR) electron density measurements, the International Reference Ionosphere model, exponential decay extensions of electron densities, the International Geomagnetic Reference Field, and total electron content maps to compute higher-order error at ISRs in Arecibo, Puerto Rico; Jicamarca, Peru; and Millstone Hill, Massachusetts. Diurnal patterns, dependency on signal direction, seasonal variation, and geomagnetic activity dependency are analyzed. Higher-order error is largest at Arecibo with code phase maxima circa 7 cm for low-elevation southern signals. The maximum variation of the error over all angles of arrival is circa 8 cm.

  9. Solar cosmic ray effects in the lower ionosphere

    NASA Technical Reports Server (NTRS)

    Shirochkov, A. V.

    1989-01-01

    The polar cap absorption (PCA) events are the most remarkable geophysical phenomena in the high latitude ionosphere. Their effects are extended on the whole polar region in both hemispheres. The PCA events are caused by the intense fluxes of the solar cosmic rays (SCR) which are generated by the solar proton flares. Entering into the Earth's magnetosphere and ionosphere the SCR fluxes create excessive anomal ionization at the ionospheric heights of 50 to 100 km which exceeds usual undisturbed level of ionization in several orders of magnitude. The PCA events can be considered as catastrophic in relation to the polar ionosphere because all radio systems using ionospheric radio channels ceased to operate during these events. On the other hand the abnormally high level of ionization in the ionospheric D region during the PCA events create excellent opportunities to conduct fruitful aeronomical research for the lower ionosphere. Obvious scientific and practical importance of the PCA events leads to publishing of special PCA catalogues. The ionospheric effects caused by the SCR fluxes were profoundly described in the classical paper (Bailey, 1964). Nevertheless several aspects of this problem were not studied properly. An attempt is made to clarify these questions.

  10. Intercomparison Of Approaches For Modeling Second Order Ionospheric Corrections Using Gnss Measurements

    NASA Astrophysics Data System (ADS)

    Garcia Fernandez, M.; Butala, M.; Komjathy, A.; Desai, S. D.

    2012-12-01

    Correcting GNSS tracking data for the effects of second order ionospheric effects have been shown to cause a southward shift in GNSS-based precise point positioning solutions by as much as 10 mm, depending on the solar cycle conditions. The most commonly used approaches for modeling the higher order ionospheric effect include, (a) the use of global ionosphere maps to determine vertical total electron content (VTEC) and convert to slant TEC (STEC) assuming a thin shell ionosphere, and (b) using the dual-frequency measurements themselves to determine STEC. The latter approach benefits from not requiring ionospheric mapping functions between VTEC and STEC. However, this approach will require calibrations with receiver and transmitter Differential Code Biases (DCBs). We present results from comparisons of the two approaches. For the first approach, we also compare the use of VTEC observations from IONEX maps compared to climatological model-derived VTEC as provided by the International Reference Ionosphere (IRI2012). We consider various metrics to evaluate the relative performance of the different approaches, including station repeatability, GNSS-based reference frame recovery, and post-fit measurement residuals. Overall, the GIM-based approaches tend to provide lower noise in second order ionosphere correction and positioning solutions. The use of IONEX and IRI2012 models of VTEC provide similar results, especially in periods of low solar activity periods. The use of the IRI2012 model provides a convenient approach for operational scenarios by eliminating the dependence on routine updates of the GIMs, and also serves as a useful source of VTEC when IONEX maps may not be readily available.

  11. Ionospheric effects of supernova explosions

    NASA Astrophysics Data System (ADS)

    Edwards, P. J.

    Possible ionospheric effects of supernova explosions are considered, with special attention given to those of SN 1987a. Results are presented on the calculations of anticipated X-ray/UV flare parameters, including the shock temperature, the minimum flare duration, the average photon energy, and the shock-front travel time for a range of stellar radii bracketing SK 202-69, which was identified by White Malin (1987) as the progenitor star for SN 1987a. It is shown that the characteristics of the X-ray/UV flare are strongly influenced by the radius of the shock wave breakout, so that the flare from SN 1987a can be anticipated to have characteristics intermediate between those attributed to compact stars and stars with extended envelopes.

  12. Effects of large-scale magnetic fields in the Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.; Elphic, R. C.; Russell, C. T.; Brace, L. H.; Hartle, R. E.

    1982-01-01

    Theoretical models of the ionosphere of Venus have been constructed in the past without due consideration of the fact that the ionosphere is sometimes magnetized. This paper examines some differences between the magnetized and unmagnetized dayside Venus ionosphere using the Pioneer Venus Orbiter Langmuir probe and magnetometer data. Particular attention is given to the evaluation of the altitude profiles of the thermal electron heating and comparison of the magnitude of the magnetic force with other forces in the ionosphere. Several examples illustrate how heating profiles are different in the magnetized ionosphere with effective heating below 200 km altitude reduced by orders of magnitude compared to the field-free ionosphere. The force associated with the magnetic field is comparable to other forces in the magnetized ionosphere. The measured plasma density, electron temperature and magnetic field thus suggest that large-scale magnetic fields should be included in future ionosphere models.

  13. Ionospheric effects of solar x-rays

    NASA Astrophysics Data System (ADS)

    Danskin, Donald

    2016-07-01

    The ionospheric absorption of radio waves caused by solar x-ray bursts is measured directly by Riometers from the Canada Riometer Array. The absorption is found to be proportional to the square root of the flux intensity of the X-ray burst with time delays of 18-20 seconds between the peak X-ray emission and absorption in the ionosphere. A detailed analysis showed that some X-ray flares during 2011-2014 are more effective at producing absorption than others. Solar longitude of X-ray burst for several X-class flares shows no consistent pattern of enhancement in the absorption.

  14. Ionospheric effects of the Chelyabinsk meteoroid

    NASA Astrophysics Data System (ADS)

    Chernogor, L. F.

    2015-05-01

    Observation results are presented for the lower and upper ionosphere disturbances accompanying the passage and explosion of the Chelyabinsk space body. The effects near the meteoroid's path are investigated from the total electron content variations detected by GPS radio receivers. The ionosphere observations at distances of ˜2000-300 km are based on the ionosonde data and the phase and amplitude measurements for a radio signal at 66.67 kHz on the route from Moscow to Kharkiv. Manifestations are found both of acoustic and gravity waves following the passage and explosion of the space body. Their connection with the passage of the Chelyabinsk meteoroid is discussed.

  15. A review of ionospheric effects on Earth-space propagation

    NASA Technical Reports Server (NTRS)

    Klobuchar, J. A.

    1984-01-01

    A short description is given of each ionospheric total electron content (TEC) effect upon radio waves, along with a representative value of the magnitude of each of these effects under normal ionospheric conditions. A discussion is given of the important characteristics of average ionospheric TEC behavior and the temporal and spatial variability of TEC. Radio waves undergo several effects when they pass through the Earth's ionosphere. One of the most important of these effects is a retardation, or group delay, on the modulation or information carried on the radio wave that is due to its encounter with the free, thermal electrons in the Earth's ionosphere. Other effects the ionosphere has on radio waves include: radio frequency (RF) carrier phase advance; Doppler shift of the RF carrier of the radio wave; Faraday rotation of the plane of polarization of linearly polarized waves; angular refraction or bending of the radio wave path as it travels through the ionosphere; and amplitude and phase scintillations.

  16. Ionospheric Scintillation Effects on GPS

    NASA Astrophysics Data System (ADS)

    Steenburgh, R. A.; Smithtro, C.; Groves, K.

    2007-12-01

    . Ionospheric scintillation of Global Positioning System (GPS) signals threatens navigation and military operations by degrading performance or making GPS unavailable. Scintillation is particularly active, although not limited to, a belt encircling the earth within 20 degrees of the geomagnetic equator. As GPS applications and users increases, so does the potential for detrimental impacts from scintillation. We examined amplitude scintillation data spanning seven years from Ascension Island, U.K.; Ancon, Peru; and Antofagasta, Chile in the Atlantic/Americas longitudinal sector at as well as data from Parepare, Indonesia; Marak Parak, Malaysia; Pontianak, Indonesia; Guam; and Diego Garcia, U.K.; in the Pacific longitudinal sector. From these data, we calculate percent probability of occurrence of scintillation at various intensities described by the S4 index. Additionally, we determine Dilution of Precision at one minute resolution. We examine diurnal, seasonal and solar cycle characteristics and make spatial comparisons. In general, activity was greatest during the equinoxes and solar maximum, although scintillation at Antofagasta, Chile was higher during 1998 rather than at solar maximum.

  17. The ionospheric effects of industrial explosions

    NASA Astrophysics Data System (ADS)

    Varshavskii, I. I.; Kalikhman, A. D.

    1984-04-01

    A mathematical model is developed which describes the effect of an industrial explosion on the parameters of a radio signal reflected from the ionosphere. The model predictions are shown to be in good agreement with the observed Doppler shift and angle of arrival of radio signals for actual explosions near Alma-Ata and Sliudianka. Estimates are made of the amplitude and shape of a perturbation wave at the heights of the F layer.

  18. Saturation Effects in the VLF Scattering off Strongly Heated Ionosphere

    NASA Astrophysics Data System (ADS)

    Lehtinen, N. G.; Bell, T. F.; Inan, U. S.

    2011-12-01

    The HAARP ionospheric HF heating facility modifies the conductivity of the lower ionosphere, creating a perturbation in the propagation of VLF transmitter-generated waves. The changes in the VLF amplitude may be detected by ground-based receivers and satellites with VLF instruments. In order to quantify these effects, we introduce a novel computational technique which combines the Stanford FWM (full-wave method) with the method of moments (MoM) to calculate the scattering on localized strong perturbations in stratified media. The Born approximation, which was previously used for similar calculations [Lehtinen et al., 2010], neglects the scattered field inside the perturbation region and therefore becomes invalid when the scattered field is of the order of the incident field, which happens when the perturbation is strong (i.e., the relative change of the conductivity is ~1). On the contrary, the use of MoM allows us to calculate the effects of the total field and thus may be applied to situations with any level of perturbation. This technique is applied to the VLF scattering off ionospheric disturbances created by HF heating. We show how the field measured on the ground and at a satellite deviates from that calculated previously in the Born approximation by demonstrating saturation effects for strong heating.

  19. Effect of the topography on the ionosphere: results from the Mars Express MARSIS experiment.

    NASA Astrophysics Data System (ADS)

    Sánchez-Cano, Beatriz; Witasse, Olivier; Herraiz, Miguel; Radicella, Sandro M.

    2013-04-01

    Active Ionospheric Sounding (AIS) data acquired by the MARSIS instrument on board the Mars Express mission have been used to analyze the effect of the irregular Martian topography on the altitude of the main ionospheric peak. Besides basic parameters, such as heliocentric distance or season, solar activity or solar zenith angle that must be considered when the Martian ionosphere is analyzed, there are other factors that can influence the ionosphere behavior. One of them is the topography. Topography seems to play a role on the Martian ionosphere when regional scale is considered. It has been observed that the main ionospheric peak altitude is higher over large volcanic edifices by as much as 20 km above surrounding areas and lower over impact basins by as much as 15 km below surrounding areas. This behavior, apparently only detected at sub-regional scale, has been found for the most prominent topographic features studied in this work. Correction for the solar zenith angle has been taken into account, in order to remove potential effect due to this parameter. This work examines and evaluates the main variations of the main ionosphere peak altitude found in regions with particular topography. A statistical analysis of the ionosphere deviation over each selected structure is given and special attention is paid to the possible physical mechanisms that can explain this phenomenon. MARSIS data have been downloaded from the ESA planetary science archive and topographic information comes from MOLA instrument on board Mars Global Surveyor mission.

  20. Effects of the different times of sunrise at different altitudes in the ionosphere

    NASA Astrophysics Data System (ADS)

    Verhulst, Tobias; Stankov, Stan

    2016-07-01

    It is well established that the sunrise and sunset periods are of particular importance to ionospheric research and modeling because of the rapid changes in the ionospheric plasma density, temperature, and dynamics. In particular, the sharp increase in the ionisation following sunrise results in a quick increase in the ionospheric peak density, N_mF_2, and a decrease in the peak height, h_mF_2. Changes in plasma temperature, scale height and transport processes add further complexity which makes it difficult to investigate and model the ionospheric behaviour during this transitional period from night to day. One of the aspects contributing to this difficulty is that not all ionospheric altitudes are exposed to the first sunlight of the day at the same time. During sunrise, the upper part of the ionosphere is illuminated prior to the lower part which is still in the dark. The boundary between sunlit and dark regions moves downwards until it reaches the surface of the Earth, which is commonly taken as the moment of sunrise at certain geographical coordinates. This means that the ``traditional'' sunrise does not occur until after the entire ionosphere has been illuminated. During sunset, the same process happens in reverse order. In this presentation, we will address the issue and report on our study of some of the effects of this altitude-dependent time of sunrise on the diurnal variations in the ionospheric characteristics.

  1. The effect of stochastic modeling of ionospheric effect on the various lengths of baseline determination

    NASA Astrophysics Data System (ADS)

    Kwon, J.; Yang, H.

    2006-12-01

    Although GPS provides continuous and accurate position information, there are still some rooms for improvement of its positional accuracy, especially in the medium and long range baseline determination. In general, in case of more than 50 km baseline length, the effect of ionospheric delay is the one causing the largest degradation in positional accuracy. For example, the ionospheric delay in terms of double differenced mode easily reaches 10 cm with baseline length of 101 km. Therefore, many researchers have been tried to mitigate/reduce the effect using various modeling methods. In this paper, the optimal stochastic modeling of the ionospheric delay in terms of baseline length is presented. The data processing has been performed by constructing a Kalman filter with states of positions, ambiguities, and the ionospheric delays in the double differenced mode. Considering the long baseline length, both double differenced GPS phase and code observations are used as observables and LAMBDA has been applied to fix the ambiguities. Here, the ionospheric delay is stochastically modeled by well-known Gaussian, 1st and 3rd order Gauss-Markov process. The parameters required in those models such as correlation distance and time is determined by the least-square adjustment using ionosphere-only observables. Mainly the results and analysis from this study show the effect of stochastic models of the ionospheric delay in terms of the baseline length, models, and parameters used. In the above example with 101 km baseline length, it was found that the positional accuracy with appropriate ionospheric modeling (Gaussian) was about ±2 cm whereas it reaches about ±15 cm with no stochastic modeling. It is expected that the approach in this study contributes to improve positional accuracy, especially in medium and long range baseline determination.

  2. Ionospheric effects to antenna impedance

    NASA Technical Reports Server (NTRS)

    Bethke, K. H.

    1986-01-01

    The reciprocity between high power satellite antennas and the surrounding plasma are examined. The relevant plasma states for antenna impedance calculations are presented and plasma models, and hydrodynamic and kinetic theory, are discussed. A theory from which a variation in antenna impedance with regard to the radiated power can be calculated for a frequency range well above the plasma resonance frequency is give. The theory can include photo and secondary emission effects in antenna impedance calculations.

  3. Ionospheric effects of magnetic storm observed by means of oblique sounding of artificial ionospheric turbulence

    NASA Astrophysics Data System (ADS)

    Uryadov, V. P.; Vertogradov, G. G.; Vertogradov, V. G.; Ponyatov, A. A.

    Results of experimental studies of the influence of the artificial ionospheric turbulence (AIT) on HF propagation are presented. Ionospheric modification and the creation of a scatterer was produced by powerful radio emission of the SURA heating facility (Nizhny Novgorod region). For diagnostics of the AIT were used the Russian chirp sounders network and HF Doppler radar. The reception of scattered signals was carried out in the Rostov-Don on the oblique V-type antenna oriented to the SURA heating facility. It is investigated ionospheric effects of magnetic storm during August 17-22, 2003 accompanied a period of the experiment. It is shown that ionospheric effects of the magnetic storm observed by means of Doppler frequency shift (DFS) measurements signals scattered from artificial small-scale field-aligned irregularities correlate well with the behavior of the southward component Bz of the interplanetary magnetic field and with variations in the geomagnetic field near the Earth surface. It has been found that at heights of the mid-latitude ionospheric F region under undisturbed conditions the electric field and the drift velocity of irregularities correspond to the typical values about 1 mV m-1 and 20 m s-1, respectively. During magnetic storm these values increase up to values of about 8.6 mV m-1 and 186 m s-1, which better correspond to the values typical for the high-latitude ionosphere. It is found that in the magnetically-disturbed period sporadically appearing trains with quasi-periodical modulation of DFS for the scattered signal with a period of ˜ 40-60 s and amplitude reaching 2 Hz were observed. The relation of the quasi-periodical oscillations of the DFS for the scattered signal to the presence of magnetohydrodynamics waves excited during a magnetic storm is considered. It is concluded that use HF Doppler radar for AIT sounding is of interest for diagnostics of wave processes in the ionosphere and magnetosphere. The conditions of formation of the HF

  4. Effects of tropospheric and ionospheric refraction errors in the utilization of GEOS-C altimeter data

    NASA Technical Reports Server (NTRS)

    Goad, C. C.

    1977-01-01

    The effects of tropospheric and ionospheric refraction errors are analyzed for the GEOS-C altimeter project in terms of their resultant effects on C-band orbits and the altimeter measurement itself. Operational procedures using surface meteorological measurements at ground stations and monthly means for ocean surface conditions are assumed, with no corrections made for ionospheric effects. Effects on the orbit height due to tropospheric errors are approximately 15 cm for single pass short arcs (such as for calibration) and 10 cm for global orbits of one revolution. Orbit height errors due to neglect of the ionosphere have an amplitude of approximately 40 cm when the orbits are determined from C-band range data with predominantly daylight tracking. Altimeter measurement errors are approximately 10 cm due to residual tropospheric refraction correction errors. Ionospheric effects on the altimeter range measurement are also on the order of 10 cm during the GEOS-C launch and early operation period.

  5. Measurements of ionospheric effects on wideband signals at VHF

    SciTech Connect

    Fitzgerald, T.J.

    1998-08-17

    Radars operating at very high frequency (VHF) have enhanced foliage and ground penetration compared to radars operated at higher frequencies. For example, VHF systems operated from airplanes have been used as synthetic aperture radars (SAR); a satellite-borne VHF SAR would have considerable utility. In order to operate with high resolution it would have to use both a large relative bandwidth and a large aperture. A satellite-borne radar would likely have to operate at altitudes above the maximum density of the ionosphere; the presence of the ionosphere in the propagation path of the radar will cause a deterioration of the performance because of dispersion over the bandwidth. The author presents measurements of the effects of the ionosphere on radar signals propagated from a source on the surface of the Earth and received by instruments on the FORTE satellite at altitudes of 800 km. The author employs signals with a 90 MHz bandwidth centered at 240 MHz with a continuous digital recording period of 0.6 s.

  6. Ionospheric effects on synthetic aperture radar at VHF

    SciTech Connect

    Fitzgerald, T.J.

    1997-02-01

    Synthetic aperture radars (SAR) operated from airplanes have been used at VHF because of their enhanced foliage and ground penetration compared to radars operated at UHF. A satellite-borne VHF SAR would have considerable utility but in order to operate with high resolution it would have to use both a large relative bandwidth and a large aperture. The presence of the ionosphere in the propagation path of the radar will cause a deterioration of the imaging because of dispersion over the bandwidth and group path changes in the imaged area over the collection aperture. In this paper we present calculations of the effects of a deterministic ionosphere on SAR imaging for a radar operated with a 100 MHz bandwidth centered at 250 MHz and over an angular aperture of 23{degrees}. The ionosphere induces a point spread function with an approximate half-width of 150 m in the slant-range direction and of 25 m in the cross-range direction compared to the nominal resolution of 1.5 m in both directions.

  7. Ionospheric effects on synthetic aperture radar at 100 MHz to 2 GHz

    NASA Astrophysics Data System (ADS)

    Ishimaru, Akira; Kuga, Yasuo; Liu, Jun; Kim, Yunjin; Freeman, Tony

    1999-01-01

    Recently, there has been increasing interest in the use of spaceborne synthetic aperture radar (SAR) for measuring forest biomass. However, it is noted that conventional SAR using C-band or higher frequencies cannot penetrate into foliage, and therefore the biomass measurements require longer wavelengths, typically P-band (500 MHz). It is also known that the ionosphere is highly dispersive, causing group delay and broadening of pulses. The variance of the refractive index fluctuations due to turbulence is approximately proportional toƒ-4. In addition, the Faraday rotation due to the geomagnetic field in the ionosphere becomes significant. This paper presents an analysis with numerical examples of the following effects in the frequency range from 100 MHz to 2 GHz in order to show the frequency dependence and the effects of total electron content (TEC) of the ionosphere. First, the ionospheric turbulence can reduce the coherent length below the equivalent aperture size, and the azimuthal resolution becomes greater than D/2 where D is the antenna aperture size. Second, the ionospheric dispersion causes a shift of the imagery due to the group velocity. Third, the dispersion also creates broadening of the pulse. In addition, multiple scattering due to ionospheric turbulence gives rise to pulse broadening. Fourth, we consider the Faraday rotation effect and show that the ellipticity change is negligible, but the orientation angle changes significantly at P-band. Numerical examples are shown using typical ionospheric parameters, turbulence spectrum, and TEC values.

  8. Solar Rotational Effects on the Mars Ionosphere

    NASA Astrophysics Data System (ADS)

    Talaat, E. R.; Paxton, L.; Zhu, X.; Yee, J.; Smith, D. C.

    2006-05-01

    In this paper, using opportune periods during the five years of MGS radio occultation observations of the Martian ionosphere, we examine the short-term variability in the ionospheric profile peak densities and peak heights. During solar maximum, strong solar rotational signatures were observed. On Mars, the morphology of the ionosphere is thought to be controlled by photochemical processes (coupled with the neutral atmosphere). In this paper, we will present the observed magnitude of the variabilities the phasing with solar forcing, and quantify the source mechanisms with a 1-D ionospheric model.

  9. Thermospheric storms and related ionospheric effects

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Spencer, N. W.

    1976-01-01

    A comparative study of thermospheric storms for equinox and winter conditions is presented based on neutral-composition measurements from the Aeros-A neutral-atmosphere temperature experiment. The main features of the two storms as inferred from changes in N2, Ar, He, and O are described, and their implications for current theories of thermospheric storms are discussed. On the basis of the study of the F-region critical frequency measured from a chain of ground-based ionospheric stations during the two storm periods, the general characteristics of the ionospheric storms and the traveling ionospheric disturbances are described. It is suggested that the positive and negative phases of ionospheric storms are different manifestations of thermospheric storms.

  10. Bounding higher-order ionosphere errors for the dual-frequency GPS user

    NASA Astrophysics Data System (ADS)

    Datta-Barua, S.; Walter, T.; Blanch, J.; Enge, P.

    2008-10-01

    Civil signals at L2 and L5 frequencies herald a new phase of Global Positioning System (GPS) performance. Dual-frequency users typically assume a first-order approximation of the ionosphere index of refraction, combining the GPS observables to eliminate most of the ranging delay, on the order of meters, introduced into the pseudoranges. This paper estimates the higher-order group and phase errors that occur from assuming the ordinary first-order dual-frequency ionosphere model using data from the Federal Aviation Administration's Wide Area Augmentation System (WAAS) network on a solar maximum quiet day and an extremely stormy day postsolar maximum. We find that during active periods, when ionospheric storms may introduce slant range delays at L1 as high as 100 m, the higher-order group errors in the L1-L2 or L1-L5 dual-frequency combination can be tens of centimeters. The group and phase errors are no longer equal and opposite, so these errors accumulate in carrier smoothing of the dual-frequency code observable. We show the errors in the carrier-smoothed code are due to higher-order group errors and, to a lesser extent, to higher-order phase rate errors. For many applications, this residual error is sufficiently small as to be neglected. However, such errors can impact geodetic applications as well as the error budgets of GPS Augmentation Systems providing Category III precision approach.

  11. Investigation of the seismo-ionospheric effects on the base of GPS/GLONASS measurements

    NASA Astrophysics Data System (ADS)

    Zakharenkova, I.; Cherniak, Iu.; Shagimuratov, I.; Suslova, O.

    2012-04-01

    During last years the monitoring of the ionospheric effects of different origin is carried out mainly with use of Global Navigating Satellite Systems (GPS / GLONASS). By means of measurements of the signals temporal delays it is possible to do the mapping of total electron content (TEC) in a column of unit cross section through the Earth's ionosphere and investigate its temporal evolution depended on the variations of electron concentration (NmF2) in the F2 ionospheric region. In the given report we present results of analysis of spatial-temporal variability of the ionosphere during the earthquake preparation phase for several major earthquakes which took place in Japan. It was revealed that for considered events mainly positive TEC anomalies appeared 1-5 days prior to the earthquake. The enhancement of electron concentration reached the value of 30-70% relative to the quiet geomagnetic conditions. In order to analyze the revealed effects in more details it was additionally involved data of GPS TEC values over GPS stations located at different distances from earthquake epicenters and data of vertical sounding of the ionosphere (NICT database). The hourly values of critical frequency of ionospheric F2 and Es layers were obtained from manually scaled ionograms recorded at Japanese ionospheric sounding stations Wakkanai, Kokubunji and Yamagawa. Acknowledgments. We acknowledge the IGS community for providing GPS permanent data and WDC for Ionosphere, Tokyo, National Institute of Information and Communications Technology (NICT) for providing ionosonde data. This work was supported by Russian Federation President grant MK-2058.2011.5.

  12. Ionospheric Geo-effectiveness of Magnetic Clouds

    NASA Astrophysics Data System (ADS)

    Bronder, T. J.; Knipp, D. J.; Lynch, B.; Zurbuchen, T.; McHarg, M. G.; Chun, F. K.

    2002-12-01

    We present an analysis of the geo-effectiveness of magnetic clouds and the disturbed solar wind surrounding them. Estimates of the ionospheric Joule heating rates based on two ground magnetic indices and estimates of auroral zone particle heating from polar satellites will be combined to provide a summary of the total geomagnetic heating during magnetic cloud passage. Preliminary estimates suggest that intervals of magnetic cloud passage experience about 50 percent greater heating rates than intervals associated with the more general class of interplanetary coronal mass ejection. Heating rates for magnetic clouds are about four times greater than heating rates estimated for intervals of background slow solar wind flow. Preliminary work also indicates that magnetic clouds lying in the ecliptic plane (leading or trailing fields oriented N-S or S-N) have heating rates about 50 percent greater than clouds with leading or trailing fields perpendicular to the ecliptic plane. We will provide hourly heating profiles for more than 50 magnetic clouds passing the earth during the rise and peak of solar cycle 23.

  13. Effects of UGTs on the ionosphere

    NASA Astrophysics Data System (ADS)

    Argo, P. E.; Fitzgerald, T. J.

    The processes that propagate local effects of underground nuclear tests from the ground into the upper atmosphere, and produce a detectable signal in the ionosphere are described. Initially, the blast wave from a underground test (UGT) radially expands, until it reaches the surface of the earth. The wave is both reflected and transmitted at this sharp discontinuity in propagation media. Tne reflected wave combines with the incident wave to form an 'Airy surface,' at which very strong ripping forces tear the earth apart. This broken region is called the 'spat zone,' and is launched into ballistic motion. The resultant ground motion launches an acoustical wave into the atmosphere. This acoustic wave, with overpressures of a few tenths of one percent, propagates upwards at the speed of sound. Assuming purely linear propagation, the path of the acoustic energy can be tracked using raytracing models. Most of the wave energy, which is radiated nearly vertically, tends to propagate into the upper atmosphere, while wave energy radiated at angles greater than about 30 degrees to the vertical will be reflected back to earth and is probably what is seen by most infrasonde measurements.

  14. Ionospheric criticial frequencies and solar cycle effects

    NASA Astrophysics Data System (ADS)

    Kilcik, Ali; Ozguc, Atila; Rozelot, Jean Pierre; Yiǧit, Erdal; Elias, Ana; Donmez, Burcin; Yurchyshyn, Vasyl

    2016-07-01

    The long term solar activity dependencies of ionospheric F1 and F2 regions critical frequencies (foF1 and foF2) are investigated observationally for the last four solar cycles (1976-2015). We here show that the ionospheric F1 and F2 regions have different solar activity dependencies in terms of the sunspot group (SG) numbers: F1 region critical frequency (foF1) peaks at the same time with small SG numbers, while the foF2 reaches its maximum at the same time with the large SG numbers especially during the solar cycle 23. Thus, we may conclude that the sensitivities of ionospheric F1 and F2 region critical frequencies to sunspot group (SG) numbers are associated with different physical processes that are yet to be investigated in detail. Such new results provide further evidence that the two ionospheric regions have different responses to the solar activity. We also analyzed short term oscillatory behavior of ionospheric critical frequencies and found some solar signatures.

  15. Method for Canceling Ionospheric Doppler Effect

    NASA Technical Reports Server (NTRS)

    Vessot, R. F. C.

    1982-01-01

    Unified transponder system with hydrogen-maser oscillators at both stations can compensate for both motional and ionospheric components of Doppler shift. Appropriate choices of frequency shift in output of mixer m3. System exploits proportionality between dispersive component of frequency shift and reciprocal of frequency to achieve cancellation of dispersive component at output.

  16. Effect of Ionosphere on Geostationary Communication Satellite Signals

    NASA Astrophysics Data System (ADS)

    Erdem, Esra; Arikan, Feza; Gulgonul, Senol

    2016-07-01

    Geostationary orbit (GEO) communications satellites allow radio, television, and telephone transmissions to be sent live anywhere in the world. They are extremely important in daily life and also for military applications. Since, satellite communication is an expensive technology addressing crowd of people, it is critical to improve the performance of this technology. GEO satellites are at 35,786 kilometres from Earth's surface situated directly over the equator. A satellite in a geostationary orbit (GEO) appears to stand still in the sky, in a fixed position with respect to an observer on the earth, because the satellite's orbital period is the same as the rotation rate of the Earth. The advantage of this orbit is that ground antennas can be fixed to point towards to satellite without their having to track the satellite's motion. Radio frequency ranges used in satellite communications are C, X, Ku, Ka and even EHG and V-band. Satellite signals are disturbed by atmospheric effects on the path between the satellite and the receiver antenna. These effects are mostly rain, cloud and gaseous attenuation. It is expected that ionosphere has a minor effect on the satellite signals when the ionosphere is quiet. But there are anomalies and perturbations on the structure of ionosphere with respect to geomagnetic field and solar activity and these conditions may cause further affects on the satellite signals. In this study IONOLAB-RAY algorithm is adopted to examine the effect of ionosphere on satellite signals. IONOLAB-RAY is developed to calculate propagation path and characteristics of high frequency signals. The algorithm does not have any frequency limitation and models the plasmasphere up to 20,200 km altitude, so that propagation between a GEO satellite and antenna on Earth can be simulated. The algorithm models inhomogeneous, anisotropic and time dependent structure of the ionosphere with a 3-D spherical grid geometry and calculates physical parameters of the

  17. Effects of Saturn's magnetospheric dynamics on Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Edberg, N. J. T.; Andrews, D. J.; Bertucci, C.; Gurnett, D. A.; Holmberg, M. K. G.; Jackman, C. M.; Kurth, W. S.; Menietti, J. D.; Opgenoorth, H. J.; Shebanits, O.; Vigren, E.; Wahlund, J.-E.

    2015-10-01

    We use the Cassini Radio and Plasma Wave Science/Langmuir probe measurements of the electron density from the first 110 flybys of Titan to study how Saturn's magnetosphere influences Titan's ionosphere. The data is first corrected for biased sampling due to varying solar zenith angle and solar energy flux (solar cycle effects). We then present results showing that the electron density in Titan's ionosphere, in the altitude range 1600-2400 km, is increased by about a factor of 2.5 when Titan is located on the nightside of Saturn (Saturn local time (SLT) 21-03 h) compared to when on the dayside (SLT 09-15 h). For lower altitudes (1100-1600 km) the main dividing factor for the ionospheric density is the ambient magnetospheric conditions. When Titan is located in the magnetospheric current sheet, the electron density in Titan's ionosphere is about a factor of 1.4 higher compared to when Titan is located in the magnetospheric lobes. The factor of 1.4 increase in between sheet and lobe flybys is interpreted as an effect of increased particle impact ionization from ˜200 eV sheet electrons. The factor of 2.5 increase in electron density between flybys on Saturn's nightside and dayside is suggested to be an effect of the pressure balance between thermal plus magnetic pressure in Titan's ionosphere against the dynamic pressure and energetic particle pressure in Saturn's magnetosphere.

  18. Ionospheric Effects of Underground Nuclear Explosions

    NASA Astrophysics Data System (ADS)

    Park, J.; von Frese, R. R.; G-Brzezinska, D. A.; Morton, Y.

    2010-12-01

    Telemetry from the Russian INTERCOSMOS 24 satellite recorded ELF and VLF electromagnetic disturbances in the outer ionosphere from an underground nuclear explosion that was detonated at Novaya Zemlya Island on 24 October 1994. The IC24 satellite observations were obtained at about 900 km altitude within a few degrees of ground zero. The disturbances were interpreted for magnetohydrodynamic excitation of the ionosphere’s E layer by the acoustic wave. Electrons are accelerated along the magnetic force lines to amplify longitudinal currents and magnetic disturbances that may be measured by magnetometers at ground-based observatories and on-board satellites. The underground nuclear test near P’unggye, North Korea on 25 May 2009 provides a further significant opportunity for studying the utility of ionospheric disturbances for characterizing ground zero. Of the seismic, infrasound, hydroacoustic, and radionuclide detection elements of the International Monitoring System (IMS) established by the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), only the first two elements detected this event. However, the event also appears to have been recorded as a direct traveling ionospheric disturbance (TID) in the slant total electron content (TEC) observations derived from a network of the Global Navigation Satellite System (GNSS) measurements. The TID was observed to distances of at least 600 km from the explosion site propagating with a speed of about 281m/s. Thus, the global distributions and temporal variations of the TEC, may provide important information to help detect and characterize clandestine underground nuclear explosions.

  19. Ionospheric Effects from the superbolid exploded over the Chelyabinsk area

    NASA Astrophysics Data System (ADS)

    Ruzhin, Yuri; Smirnov, Vladimir; Kuznetsov, Vladimir; Smirnova, Elena

    The Chelyabinsk meteorite fall is undoubtedly the most documented in history. Its passage through the atmosphere was recorded by video and photographers, visual observers, infrasonic microphones, seismographs on the ground, and by satellites in orbit. The data of transionospheric sounding by signals from the GPS cluster satellites carried out in the zone of explosion of the Chelyabinsk meteoroid have been analyzed. The analysis has shown that the explosion had a very weak effect on the ionosphere. The observed ionospheric disturbances were asymmetric with respect to the explosion epicenter. The signals obtained were compared both in shape and in amplitude with the known surface explosions for which the diagnostics of the ionospheric effects had been made by radio techniques. Ionospheric effects in the form of acoustic-gravity waves (AGW) produced by 500-600 tons TNT explosions on the ground are detected with confidence both by vertical sounding and by GPS techniques. This allows us to suggest that the reported equivalent of the meteoroid explosion was obviously overestimated. The experiments on the injection of barium vapor (3.3 kg) carried out under similar conditions in the terminator zone revealed the response of the ionosphere in variations of the critical frequencies of the layer at a distance of 1500-2000 km (AGW with a period of 5-10 min). The absence of such ionospheric effects in the remote zone at 1500-1700 km from the epicenter of the bolide explosion in the case under discussion also makes us feel doubtful about the estimated explosion equivalent.

  20. Maps of average ionospheric vorticity ordered by relationship with the open-closed magnetic field line boundary

    NASA Astrophysics Data System (ADS)

    Chisham, Gareth

    2015-04-01

    Spatiotemporal variations of ionospheric vorticity are a measure of the dynamical coupling of the magnetosphere to the ionosphere via magnetic field-aligned currents (FACs). Indeed, ionospheric vorticity measurements have often been used as proxy measurements for FACs. Previously, we have determined statistical models of ionospheric vorticity using 6 years of ionospheric convection velocity measurements made by the SuperDARN HF radar network in the northern hemisphere ionosphere and shown that the spatial variation of these probability distributions is well organised according to the well-established large-scale FAC structure in the polar ionosphere. However, to date, these statistical models have been parameterised solely by the state of the interplanetary magnetic field (IMF), and as such do not account for the range of polar cap sizes that occur for a single IMF state. This leads to a distortion of the shape of the resulting statistical maps that makes features in the statistical variations appear smoother than those in instantaneous/short-time averaged measurements. This is because the averaging process does not consider the variable size of the polar cap, by which spatial features in the ionospheric vorticity variation are ordered. Using open-closed magnetic field line boundary measurements determined from FUV imager data from the IMAGE spacecraft, we investigate the parameterisation of the statistical ionospheric vorticity models with polar cap size in addition to the state of the IMF. The results of this analysis have implications for other statistical models determined in this way, such as those for FACs and ionospheric convection.

  1. Irregularities in ionospheric plasma clouds: their evolution and effect on radio communication. Technical report

    SciTech Connect

    Vesecky, J.F.; Chamberlain, J.W.; Cornwall, J.M.; Hammer, D.A.; Perkins, F.W.

    1980-09-01

    Both satellite radio communications, which travel through the Earth's ionosphere, and high frequency (HF) sky wave circuits, which use the ionosphere as a refracting medium, can be strongly affected by radio wave scintillation. High altitude nuclear explosions cause scintillation (by strongly disturbing the ionosphere) and thus severely degrade satellite radio communications over a large region. Since further atmospheric nuclear tests are banned, a thorough understanding of the physics involved in both the disturbed ionosphere and its interaction with radio waves is necessary in order to design radio communications systems which will operate satisfactorily in a nuclear environment. During the 1980 JASON Summer Study we addressed some aspects of the evolution of ionospheric irregularities following a high altitude nuclear explosion--the radio wave propagation theory being apparently well understood for the satellite link case. In particular, we have worked on irregularity evolution at late times (approx. hours) after an explosion and the impact of early time irregularity structure on late time evolution. We also raise the question of scintillation effects on HF sky wave communications.

  2. Numerical modeling of the ionospheric effects of substorms

    NASA Astrophysics Data System (ADS)

    Klimenko, M. V.; Klimenko, V. V.

    2008-12-01

    The investigations of the substorm are carried out already many years. In spite of that, the single-valued answers on many questions which arise at the researchers of the substorm till now are not given. To such questions it is possible to concern the questions about the mechanism of occurrence of the substorm and on the influence of the substorm on the Earth's ionosphere. At modeling of the ionospheric effects of substorms it is important to know the following. How does the potential drop through polar caps change at initial stages of the substorm development - stepwise or smoothly? What is the duration of these changes? What and how does occur with the potential drop in the further during development of the substorm down to its termination? How does the time course of intensity of the field aligned currents of the first zone change before the substorm beginning, during substorm and after its termination? Is there a time delay of changes of the field aligned currents of the second zone relative to changes of the field aligned currents of the first zone or potential drop through polar caps? If the delay exists, what is it? How does the high-energy particle precipitation in the auroral zones and polar caps change during the substorm? Is it necessary to set at the modeling of the substorm effects the Substorm Current Wedge? If it is necessary, how make it correctly? On these questions we do not have the single-valued answers. But we shall like very strongly for them to have. We have carried out the modeling researches of the substorm influence on the ionosphere in various statements of the problem. The investigations were spent on the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere, added by the new block of calculation of electric fields in the Earth's ionosphere. In our investigations we have given the particular attention: to electrodynamics of the ionosphere; to changes of the global distributions of foF2, TEC and ion composition of

  3. Stochastic Modeling Considering Ionospheric Scintillation Effects on GNSS Relative and Point Positioning

    NASA Astrophysics Data System (ADS)

    Silva, H. A.; Camargo, P. D.; Monico, J. F.; Aquino, M.; Marques, H. A.; de Franceschi, G.

    2008-12-01

    Nowadays, Global Navigation Satellite Systems (GNSS), especially the Global Positioning System (GPS), represent one of the most used techniques for geodetic positioning. The functional models related with the GNSS observables are better understood than the stochastic models, considering that the development of the latter is more complex. Usually, the stochastic models are used in a simplified form, as the standard models, which assume that all the GNSS observables are statistically independent and have the same variance. However, the stochastic models may be investigated in more detail, considering for example, the effects of ionospheric scintillation. The high latitudes regions experiment strong influence of the ionospheric effects, in particular ionospheric scintillation. Considering the availability of specially designed GNSS receivers that provide ionospheric scintillation parameters, these effects can be mitigated through improved stochastic models. This paper presents the methodology and results from GPS relative and point positioning considering ionospheric scintillation in the stochastic modeling. Two programs have been developed to obtain the results from relative and point positioning: "GPSeq" (currently under development at the FCT/UNESP Sao Paulo State University - Brazil) and "pp_sc" (developed in a collaborative project between FCT/UNESP and Nottingham University - UK). The point positioning approach can be realized considering an epoch by epoch solution and the relative positioning using a Kalman Filter and the LAMBDA method to solve the Double Differences ambiguities. Both programs have the option to estimate the ionospheric residuals as one stochastic process using the white noise or random walk correlation models. In both cases it is also possible to use the L1/L2 ion-free linear combination. The stochastic modeling considering ionospheric scintillation has been implemented based in the models of Conker et al. (2003), following the approach

  4. Ionospheric modelling for navigation

    NASA Astrophysics Data System (ADS)

    Aragon Angel, M. A.

    Signals transmitted to and from satellites for communication and navigation purposes must pass through the ionosphere Ionospheric irregularities most common at equatorial latitudes although they could occur anywhere can have a major impact on system performance and reliability and commercial navigation service satellite-based providers need to account for their effects For a GNSS single-frequency receiver the Slant Total Electron Content STEC must be known by the user through broadcast corrections In this context there are several sets of broadcast parameters that can be defined to take into account this ionospheric term The chosen model to generate the ionospheric correction coefficients for the present study is the NeQuick model although with a number of adaptations intended to improve effective ionospheric effect modelling performances The aim of this study is to describe a possible adaptation to the NeQuick model for real time purposes and suitable for single frequency users Therefore it will be necessary to determine the performance of this modified NeQuick model in correcting the ionospheric delay In order to generate the ionospheric corrections for single frequency receivers using the NeQuick model a certain approach should be followed to adapt the performance of NeQuick since this model was originally developed to provide TEC using averaged monthly information of the solar activity and not daily one Thus to use NeQuick for real time applications as an ionospheric broadcasted model such as Klobuchar solar daily information at the user point

  5. Ionospheric effects of the extreme solar activity of February 1986

    NASA Technical Reports Server (NTRS)

    Boska, J.; Pancheva, D.

    1989-01-01

    During February 1986, near the minimum of the 11 year Solar sunspot cycle, after a long period of totally quiet solar activity (R sub z = 0 on most days in January) a period of a suddenly enhanced solar activity occurred in the minimum between solar cycles 21 and 22. Two proton flares were observed during this period. A few other flares, various phenomena accompanying proton flares, an extremely severe geomagnetic storm and strong disturbances in the Earth's ionosphere were observed in this period of enhanced solar activity. Two active regions appeared on the solar disc. The flares in both active regions were associated with enhancement of solar high energy proton flux which started on 4 February of 0900 UT. Associated with the flares, the magnetic storm with sudden commencement had its onset on 6 February 1312 UT and attained its maximum on 8 February (Kp = 9). The sudden enhancement in solar activity in February 1986 was accompanied by strong disturbances in the Earth's ionosphere, SIDs and ionospheric storm. These events and their effects on the ionosphere are discussed.

  6. Effects of ionizing energetic electrons and plasma transport in the ionosphere during the initial phase of the December 2006 magnetic storm

    NASA Astrophysics Data System (ADS)

    Suvorova, A. V.; Huang, C.-M.; Dmitriev, A. V.; Kunitsyn, V. E.; Andreeva, E. S.; Nesterov, I. A.; Klimenko, M. V.; Klimenko, V. V.; Tumanova, Yu. S.

    2016-06-01

    The initial phase of a major geomagnetic storm on 14 December 2006 was selected in order to investigate the ionizing effect of energetic electrons in the ionosphere. The global network of GPS receivers was used to analyze the total electron content (TEC). A strong positive ionospheric storm of ~20 TEC units (TECU) with ~6 h duration was observed on the dayside during the interval of northward interplanetary magnetic field. At the same time, the NOAA/POES satellites observed long-lasting intense fluxes of >30 keV electrons in the topside ionosphere at middle and low latitudes, including a near-equatorial forbidden zone outside of the South Atlantic Anomaly (SAA). We found that the TEC increases overlapped well with the enhancements of energetic electrons. Modeling of the ionospheric response by using a Global Self-consistent Model of the Thermosphere, Ionosphere, and Protonosphere, based on the standard mechanisms of plasma transport, could only partially explain the ionospheric response and was unable to predict the long-duration increase of TEC. For the energetic electrons, we estimated the ionizing effect of ~45 TECU and ~23 TECU in the topside ionosphere, respectively, inside and outside of SAA. The ionizing effect contributed from 50% to 100% of TEC increases and provided the long duration and wide latitudinal extension of the positive ionospheric storm. This finding is a very important argument in supporting significant ionizing effect of energetic electrons in the storm time ionosphere both at middle and low latitudes.

  7. IMF-By effect on the mid-latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Maruyama, Takashi; Jin, Hidekatsu

    The primary factor that controls ionospheric total electron content (TEC) variations is solar UV/EUV radiations through the ionization of the thermospheric neutral particles and through the modification of the thermosphere. Changes in temperature and composition of the neutral atmosphere and the atmospheric circulation greatly affect the ionospheric electron density. Because such a relationship between the solar spectral irradiance and the ionospheric TEC is highly complex, we applied an artificial neural network (ANN) technique that has a great capability of function approximation of complex systems to model solar irradiance effects on TEC. Three solar proxies, F_{10.7}, SOHO_SEM_{26-34} EUV emission index, and MgII_c-w-r were chosen as input parameters to the ANN-TEC model. Another channel of energy flow from the sun to the earth’s ionosphere is the solar wind. The am index and several solar wind magnetosphere coupling functions were chosen as additional inputs to the ANN to model the effects of magnetic disturbances. Somewhat minor but interesting effects on TEC variations emerged when the major effects of solar irradiance and magnetic disturbances were removed. We analyzed the time series of the residual error in TEC prediction by using a wavelet transformation, which revealed a periodic increase in error approximately every 27 days in the summer. Possible origins of the error are (1) insufficient modeling of the solar activity effect, (2) lunar tidal forcing, (3) coupling with planetary waves in the lower atmosphere, and (4) solar wind effects. Examinations refused the first three possibilities. We investigated solar wind parameters that are not concerned in geomagnetic disturbances. The 27-day periodic error during the summer disappeared when the IMF-By component and the solar wind velocity were included in the input space of the ANN. Possible explanation of the IMF-By effect is discussed in terms of changes in the thermospheric general circulation pattern.

  8. Stormtime Ionospheric Outflow Effects in Global Multi-Fluid MHD

    NASA Astrophysics Data System (ADS)

    Garcia-Sage, K.; Moore, T. E.; Eccles, V.; Merkin, V. G.; Welling, D. T.; Schunk, R. W.; Barakat, A. R.

    2015-12-01

    We present work detailing the effects of ionospheric outflow in the magnetosphere during the Sept 27- Oct 4, 2002 and Oct 22- Oct 29, 2002 GEM storms. The Multi-Fluid LFM global MHD code is driven by OMNI solar wind and IMF data and by outflow from the Generalized Polar Wind (GPW) model. The GPW input results in a realistic and dynamic, although not self-consistent, outflow of O+, H+, and He+ from the ionosphere. The validity of this outflow and its entry into the magnetosphere is tested through comparisons to Cluster and geosynchronous spacecraft observations. We show the access of these various populations to the magnetosphere, and we examine their effects on plasma sheet structure and storm time dynamics.

  9. Ionospheric storm effects at subauroral latitudes - A case study

    NASA Technical Reports Server (NTRS)

    Proelss, G. W.; Brace, L. H.; Mayr, H. G.; Carignan, G. R.; Killeen, T. L.

    1991-01-01

    An attempt is made to classify ionospheric storm effects at subauroral latitudes according to their presumed origin. The storm of December 7/8, 1982, serves as an example. It is investigated using ionosonde, electron content, and DE 2 satellite data. The following effects are distinguished: (1) positive storm effects caused by traveling atmospheric disturbances, (2) positive storm effects caused by changes in the large-scale thermospheric wind circulation, (3) positive storm effects caused by the expansion of the polar ionization enhancement, (4) negative storm effects caused by perturbations of the neutral gas composition, and (5) negative storm effects caused by the equatorward displacement of the trough region.

  10. Ionospheric storm effects at subauroral latitudes: A case study

    SciTech Connect

    Proelss, G.W. ); Brace, L.H.; Mayr, H.G. ); Carignan, G.R.; Killeen, T.L. ); Klobuchar, J.A. )

    1991-02-01

    An attempt is made to classify ionospheric storm effects at subauroral latitudes according to their presumed origin. The storm of December 7/8, 1982, serves as an example. It is investigated using ionosonde, electron content, and DE 2 satellite data. The following effects are distinguished: (1) positive storm effects caused by traveling atmospheric disturbances, (2) positive storm effects caused by changes in the large-scale thermospheric wind circulation, (3) positive storm effects caused by the expansion of the polar ionization enhancement, (4) negative storm effects caused by perturbations of the neutral gas composition, and (5) negative storm effects caused by the equatorward displacement of the trough region.

  11. The Effect of Ionospheric Models on Electromagnetic Pulse Locations

    SciTech Connect

    Fenimore, Edward E.; Triplett, Laurie A.

    2014-07-01

    Locations of electromagnetic pulses (EMPs) determined by time-of-arrival (TOA) often have outliers with significantly larger errors than expected. In the past, these errors were thought to arise from high order terms in the Appleton-Hartree equation. We simulated 1000 events randomly spread around the Earth into a constellation of 22 GPS satellites. We used four different ionospheres: “simple” where the time delay goes as the inverse of the frequency-squared, “full Appleton-Hartree”, the “BobRD integrals” and a full raytracing code. The simple and full Appleton-Hartree ionospheres do not show outliers whereas the BobRD and raytracing do. This strongly suggests that the cause of the outliers is not additional terms in the Appleton-Hartree equation, but rather is due to the additional path length due to refraction. A method to fix the outliers is suggested based on fitting a time to the delays calculated at the 5 GPS frequencies with BobRD and simple ionospheres. The difference in time is used as a correction to the TOAs.

  12. Influence of geomagnetic storms of September 26-30, 2011, on the ionosphere and HF radiowave propagation. I. Ionospheric effects

    NASA Astrophysics Data System (ADS)

    Klimenko, M. V.; Klimenko, V. V.; Bessarab, F. S.; Ratovsky, K. G.; Zakharenkova, I. E.; Nosikov, I. A.; Stepanov, A. E.; Kotova, D. S.; Vorobjev, V. G.; Yagodkina, O. I.

    2015-11-01

    Geomagnetic storm ionospheric effects observed at different latitudes and longitudes on September 26 and 28-30, 2011, are interpreted with the GSM TIP model. It has been justified that the results of this model can subsequently be used to calculate the HF radiowave ray tracing under quiet conditions and for the selected dates in September 2011. The model calculations are compared with observations of the ionospheric parameters performed by different radiophysical methods. The presented results confirm the classical mechanisms by which positive and negative ionospheric storms are formed during the main phase of a geomagnetic storm. At high latitudes, the electron density is mainly disturbed due to changes in the neutral composition of the thermosphere, resulting in an increase in the chemical loss rates, and the electromagnetic drift, which results in a substantial reconstruction of the high-latitude ionosphere owing to the horizontal plasma transfer. During the storm recovery phase at midlatitudes, electron density positive disturbances are formed in the daytime due to an increase in the n(O)/ n(N2) ratio; at the same time, negative effects in the electron density are formed at night as a result of plasma tube devastation. Comparison with the observations indicates that the presented model calculation results can be used to describe a medium for solving problems of radiowave propagation in the ionosphere during the storm main phase on September 26 and during the recovery phase on September 28-30, 2011.

  13. Improved Ionospheric Correction for DGPS by taking into account the Horizontal Gradient Effect over the Equatorial Region

    NASA Astrophysics Data System (ADS)

    Nagarajoo, Karthigesu

    Improved Ionospheric Correction for DGPS by taking into account the Horizontal Gradient Effect over the Equatorial Region K Nagarajoo Universiti Tun Hussein Onn Malaysia 86400 Parit Raja Johor Darul Takzim Email: karthi@uthm.edu.my DGPS is a system where the range error at a reference station will be eliminated from the range measurement at the user, which `view' the same satellite, presuming that the satellite's path to both the reference station and the user experience common errors due to the ionosphere, clock errors, multipath etc. In this assumption, the error due to the ionospheric refraction is assumed to be the same for the two closely spaced paths (such as a baseline length between reference station and the user is 10km) and thus the presence of ionospheric horizontal gradient is ignored. If a user's path is exposed to a drastically large ionosphere gradient (i.e., over the equatorial region), the large difference of ionosphere delays between the reference station and the user can result in significant position error for the user. Apart from that, the difference in the elevation angle at the reference and the user that `view' the same satellite to get the range measurement does also introduce some millimetre to centimetre of range difference. The neglect of the effect due to the presence of an ionospheric horizontal gradient and the elevation angle's difference (at both ends of the baseline) will cause a significant amount of error in the final DGPS user positioning. In this work, those two effects have been investigated in order to obtain a more accurate ionospheric correction for DGPS and have been found to be roughly comparable showing that they are both important. By performing ray-tracing calculations (using Jones 3-D Ray Tracing program) with and without a linear horizontal ionosphere gradient, the effects of elevation angle and horizontal gradient have been separated and a final positioning improvement of about 8cm has been shown at the user of a

  14. Effect of anomalous transport coefficients on the thermal structure of the storm time auroral ionosphere

    NASA Technical Reports Server (NTRS)

    Fontheim, E. G.; Ong, R. S. B.; Roble, R. G.; Mayr, H. G.; Hoegy, W. H.; Ionson, J. A.; Baron, M. J.; Wickwar, V. B.; Vondrak, R. R.

    1978-01-01

    By analyzing an observed storm time auroral electron temperature profile it is shown that anomalous transport effects strongly influence the thermal structure of the disturbed auroral ionosphere. Such anomalous transport effects are a consequence of plasma turbulence, the existence of which has been established by a large number of observations in the auroral ionosphere. The electron and composite ion energy equations are solved with anomalous electron thermal conductivity and parallel electrical resistivity coefficients. The solutions are parameterized with respect to a phenomenological altitude-dependent anomaly coefficient A and are compared with an observed storm time electron temperature profile above Chatanika. The calculated temperature profile for the classical case (A = 1) disagrees considerably with the measured profile over most of the altitude range up to 450 km. It is shown that an anomaly coefficient with a sharp peak of the order of 10,000 centered around the F2 peak is consistent with observations.

  15. Methods of alleviation of ionospheric scintillation effects on digital communications

    NASA Technical Reports Server (NTRS)

    Massey, J. L.

    1974-01-01

    The degradation of the performance of digital communication systems because of ionospheric scintillation effects can be reduced either by diversity techniques or by coding. The effectiveness of traditional space-diversity, frequency-diversity and time-diversity techniques is reviewed and design considerations isolated. Time-diversity signaling is then treated as an extremely simple form of coding. More advanced coding methods, such as diffuse threshold decoding and burst-trapping decoding, which appear attractive in combatting scintillation effects are discussed and design considerations noted. Finally, adaptive coding techniques appropriate when the general state of the channel is known are discussed.

  16. The effect of large-scale tropospheric storms on the ionospheres of giant planets

    NASA Astrophysics Data System (ADS)

    Matcheva, Katia

    2015-11-01

    It is well recognized that large-scale storms in the Earth troposphere can leave observable signatures in the structure of the ionosphere in terms of local electron density distribution. Terrestrial numerical models indicate that thunderstorms can change the electron density by more than an order of magnitude (Shao et al. 2012). The atmospheres of Jupiter and Saturn are riddled by atmospheric storms of all scales. Lightning has been successfully detected in optical images in the tropospheres of both planets. Our work presents a theoretical study of the dynamical and electromagnetic effects of large thunderstorms on the vertical plasma distribution in the ionospheres of Jupiter and Saturn and compares the predicted signatures with the available electron density profiles from the Galileo and the Cassini missions.

  17. Effects of the equatorial ionosphere on L-band Earth-space transmissions

    NASA Technical Reports Server (NTRS)

    Smith, Ernest K.; Flock, Warren L.

    1993-01-01

    Ionosphere scintillation can effect satellite telecommunication up to Ku-band. Nighttime scintillation can be attributed to large-scale inhomogeneity in the F-region of the ionosphere predominantly between heights of 200 and 600 km. Daytime scintillation has been attributed to sporadic E. It can be thought of as occurring in three belts: equatorial, high-latitude, and mid-latitude, in order of severity. Equatorial scintillation occurs between magnetic latitudes +/- 25 degrees, peaking near +/- 10 degrees. It commonly starts abruptly near 2000 local time and dies out shortly after midnight. There is a strong solar cycle dependence and a seasonal preference for the equinoxes, particularly the vernal one. Equatorial scintillation occurs more frequently on magnetically quiet than on magnetically disturbed days in most longitudes. At the peak of the sunspot cycle scintillation depths as great as 20 dB were observed at L-band.

  18. Examination of Prompt Effects of Solar X-ray Flares on Ionospheric Electrodynamics

    NASA Astrophysics Data System (ADS)

    Eccles, J. V.

    2007-12-01

    Photons from solar X-ray flares arrive at the Earth only eight minutes after emission. The short wavelength region of the solar spectrum is effective in modifying the ionization of the dayside upper atmosphere. For periods like the 2003 Halloween Solar events, the solar flares enhanced the E and D regions significantly over the quiet time background ionosphere. The effects of these enhancements on HF and VLF signal propagation and absorption are well understood and widely known. We present studies of the space weather impacts of sustained, elevated solar x-ray and EUV levels of the background spectrum during solar active times related to the changes in the dayside conductivities. We show that not only the dayside conductivities sustain at an order of magnitude higher values than background levels, but the Pedersen-to-Hall conductivity ratio increases by a factor of 2 to 3 during high solar X-ray periods when compared to quiet periods. The effects of prompt changes of the dayside conductivities associated with a solar flare event on the dynamo electric fields and ionospheric currents are then systematically examined by using a model of the low-latitude ionospheric electrodynamics.

  19. Effects of ionospheric turbulence on SPS pilot signal

    NASA Technical Reports Server (NTRS)

    Clynch, J. R.

    1981-01-01

    The spatial variation of the electron density was studied by monitoring the differential Doppler on radio beacons aboard the Navy navigation satellites. The radio frequency heater was used to deposit energy in the F-region ionosphere with the heating frequency above peak plasma frequency. The effects of the solar power satellite power beam on the pilot signal were simulated. It was found that a small depletion was formed in the beam and that there was turbulence in the elctron density up the magnetic field line from the beam. It is suggested that the depletion will not seriously affect the power or pilot beams of the solar power satellite.

  20. Effects of solar flares on the ionosphere of Mars.

    PubMed

    Mendillo, Michael; Withers, Paul; Hinson, David; Rishbeth, Henry; Reinisch, Bodo

    2006-02-24

    All planetary atmospheres respond to the enhanced x-rays and ultraviolet (UV) light emitted from the Sun during a flare. Yet only on Earth are observations so continuous that the consequences of these essentially unpredictable events can be measured reliably. Here, we report observations of solar flares, causing up to 200% enhancements to the ionosphere of Mars, as recorded by the Mars Global Surveyor in April 2001. Modeling the altitude dependence of these effects requires that relative enhancements in the soft x-ray fluxes far exceed those in the UV. PMID:16497929

  1. Studing Solar Flare Effects on Ionosphere Using AWESOME Receiver

    NASA Astrophysics Data System (ADS)

    Mustafa, Famil; Babayev, Elchin; Alekperov, Ilgar

    2015-08-01

    Ground based observations of Extremely Low Frequency (ELF) / Very Low Frequency (VLF) (300 Hz 30 kHz) waves are considered as an important remote sensing tool for the investigation of the ionosphere and the magnetosphere. VLF waves find their origin in various natural and artificial phenomena; the natural sources include thunderstorms, lightning and associated phenomena. Sub-ionospheric VLF transmissions propagating inside the Earth-ionosphere wave-guide is also being widely used for investigating sudden ionospheric perturbations (SIDs) in lower part of the ionosphere.

  2. Ion effects on ionospheric electron resonance phenomena

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    1974-01-01

    Ion effects are often observed on topside-sounder stimulated electron plasma wave phenomena. A commonly observed effect is a spur, appearing after a time delay corresponding to the proton gyro period, attached to the low frequency side of an electron plasma resonance. The spurs are often observed on the resonances at the electron plasma frequency f sub N, the harmonics nf sub H of the electron cyclotron frequency f sub H (n = 2, 3, 4, ...), and occasionally on the upper hybrid frequency. The spurs on the f sub N resonance are usually quite small unless the f sub N resonance overlaps with an nf sub H resonance; very large spurs are observed during such overlap conditions. Proton spurs are only observed on the nf sub H resonances when the electron plasma waves associated with these resonances are susceptible to the Harris instability and when the electromagnetic z wave can be initiated by the sounderpulse. This instability is the result of a sounder stimulated anisotropic electron velocity distribution. The observations suggest that energy is fed into the nf sub H longitudinal plasma wave from the z wave via wave-mode coupling. The magnitude of the nf sub H spurs for large n is much greater than for small n.

  3. Very low frequency and ELF effects in the upper ionosphere caused by large-scale acoustic waves in the lower ionosphere observed from AUREOL-3 satellite

    NASA Astrophysics Data System (ADS)

    Galperin, Y. I.; Gladyshev, V. A.; Jorjio, N. V.; Kovrazhkin, R. A.; Lissakov, Y. V.; Maslov, V. D.; Nikolaenko, L. M.; Sagdeev, R. Z.; Molchanov, O. A.; Mogilevsky, M. M.

    The active MASSA experiment studied the effects generated in the upper atmosphere and in the magnetosphere by a large-scale acoustic wave from a chemical explosion reaching ionospheric altitudes. The AUREOL-3 satellite crossed the corresponding magnetic force tubes by the time of the development of the electromagnetic processes expected in the lower ionosphere E-region above the explosion. Measurements reveal electromagnetic effects in the ionospheric and magnetospheric plasmas. Effects include nearly electrostatic ELF and VLF noises in the magnetic force tube based on the E-layer ionosphere above the explosion. Their area expands with a velocity of 0.6 km/sec, i.e., as of an acoustic wave in the lower ionosphere. An intense MHD wave is detected at L = 1.31, equatorwards from the explosion L-shell (L = 1.5).

  4. Broadband Electron Precipitation in Global MHD Simulation and its Effect on the Ionosphere

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Lotko, W.; Brambles, O. J.; Wiltberger, M. J.

    2010-12-01

    A broadband electron (BBE) precipitation model is implemented and analyzed in the MI coupling module of the Lyon-Fedder-Mobarry MHD simulation. Both number flux and energy flux of precipitating BBEs are regulated by MHD variables calculated near the low-altitude boundary of the LFM simulation. An empirical relation deduced from results of Keiling et al. (2003) is used to relate the AC Poynting flux to the energy flux precipitating BBEs in the simulation. We are investigating two different ways of regulating the number flux of BBE precipitation, one using an empirical relation between AC Poynting flux and number flux (Strangeway, unpublished) and another by constraining the intensity and cut-off energy of a fixed-pitch angle distribution of BBEs in terms of MHD simulation variables. The contributions to ionospheric conductance from BBE precipitation are evaluated using empirical relations derived by Robinson et al. (1987). The BBE-induced-conductance is added to the “standard” auroral contribution to conductance derived from monoenergetic and diffuse electron precipitation in the existing LFM precipitation model. The simulation is driven by ideal SW/IMF conditions with Vsw=400 km/s, Nsw=5/cc and Bz=-5 nT. The simulated time-average AC Poynting flux pattern resembles statistical patterns from Polar data (Keiling et al. 2003), and the simulated statistical pattern of BBE number flux resembles the statistical maps derived from DMSP data (Newell et al. 2009) on the nightside with a similar dawn-dusk asymmetry. The ionospheric Pedersen and Hall conductances are enhanced about 20% by the BBE precipitation. The number flux produced by BBEs is the same order of magnitude as that of monoenergetic and diffuse electrons. We thus expect BBE precipitation to have a moderate effect on the E-region ionosphere and a more significant influence on the density distribution of the F-region ionosphere.

  5. Modeling the Earth-ionosphere cavity. Effects of hypothetical earthquake precursors over the Schumann resonance

    NASA Astrophysics Data System (ADS)

    Toledo-Redondo, Sergio; Salinas, Alfonso; Fornieles, Jesús; Portí, Jorge

    2013-04-01

    Schumann resonances (SR) are global phenomena which occur within the Earth-ionosphere cavity. They are the result of waves propagating several turns around the Earth. Due to the dimensions of the cavity, SR belong to the ELF spectra. The main source of excitation is lightning, and several natural processes do modify the geometry of the cavity and its parameters, like for instance seismo-electromagnetic activity, atmospheric aerosols, solar radiation, etc. Therefore, SR are a promising tool for monitoring (and even forecasting) these natural events. Although several measurements seem to confirm the link between electromagnetic activity and earthquake precursors, the physical mechanisms which produce them are still not clear, and several possibilities have been proposed, like for instance piezoelectric effects on the rocks in the lithosphere, emanation of ionizing gasses like radon, or acoustic gravity waves modifying the properties of the ionosphere in the earthquake preparation zone. However, further measurements combined with analytical models and/or numerical simulations are required in order to better understand the seismo-electromagnetic activity. In this work, the whole Earth-ionosphere electromagnetic cavity has been modeled with 10 km accuracy, by means of Transmission-Line Modeling (TLM) method. Since Schumann resonance parameters depend primarily on the geometry of such cavity, electromagnetic changes produced by earthquake precursors can modify the properties of SR. There is not much quantitative information available about the changes produced by the precursors, either in the lithosphere, atmosphere, or ionosphere. Therefore, different models of the precursors are proposed and their consequences over the SR are evaluated. The so-called Chi-Chi earthquake is employed as a case of study.

  6. Effects of geographic-geomagnetic pole offset on ionospheric outflow: Can the ionosphere wag the magnetospheric tail?

    NASA Astrophysics Data System (ADS)

    Barakat, Abdallah R.; Eccles, J. Vincent; Schunk, Robert W.

    2015-10-01

    The generalized polar wind model was used to simulate the polar ionosphere during the September/October 2002 storm. The solar terminator moved across the polar caps in a diurnal oscillation during this equinox period. The main conclusions of this study are the following: (1) the terminator oscillation generates a diurnal oscillation in the total hemispheric fluxes of the polar wind from the ionosphere into the magnetosphere; (2) the diurnal oscillation of outflow in the Northern Hemisphere is 12 h out of phase with the Southern Hemisphere; (3) the H+ outflow flux is near its limiting value, so the oscillation is larger than the nonperiodic contributions (e.g., geomagnetic activity); and (4) the O+ flux is less than its limiting value, hence the diurnal oscillation is comparable to the non-periodic effects. The simulation suggests that the hemispherical asymmetry and periodicity of the total ion outflow could "wag the magnetospheric tail" and perhaps contribute to substorm triggering.

  7. Foreword: Ionospheric effects on communication and related systems (IES)

    NASA Astrophysics Data System (ADS)

    Goodman, John M.; Klobuchar, John A.; Soicher, Haim

    1988-07-01

    The special section contained in this issue of Radio Science is the second of two which have been developed from papers presented at the 1987 symposium on the Effect of the Ionosphere on Communication, Navigation, and Surveillance Systems (IES 1987). This technical conference was jointly sponsored by the Naval Research Laboratory (NRL), the Office of Naval Research (ONR), the Air Force Geophysics Laboratory (AFGL), and the Army Communications-Electronics Command (USACECOM). The symposium was held in Springfield, Virginia on May 5-7, 1987 in cooperation with the Defense Nuclear Agency (DNA), the Naval Ocean Systems Center (NOSC), the Institute for Telecommunication Sciences (ITS), and the Voice of America (VOA). See the May-June 1988 issue of Radio Science for a more complete foreword (Radio Sci., 23, 209, 1988).

  8. Ionospheric physics

    SciTech Connect

    Sojka, J.J. )

    1991-01-01

    Advances in all areas of ionospheric research are reviewed for the 1987-1990 time period. Consideration is given to the equatorial ionosphere, the midlatitude ionosphere and plasmasphere, the auroral ionosphere, the polar ionosphere and polar wind, ionospheric electrodynamic inputs, plasma waves and irregularities, active experiments, ionospheric forecasting, and coupling the ionosphere with other regions.

  9. Investigation of ionospheric effects on SAR Interferometry (InSAR): A case study of Hong Kong

    NASA Astrophysics Data System (ADS)

    Zhu, Wu; Ding, Xiao-Li; Jung, Hyung-Sup; Zhang, Qin; Zhang, Bo-Chen; Qu, Wei

    2016-08-01

    Synthetic Aperture Radar Interferometry (InSAR) has demonstrated its potential for high-density spatial mapping of ground displacement associated with earthquakes, volcanoes, and other geologic processes. However, this technique may be affected by the ionosphere, which can result in the distortions of Synthetic Aperture Radar (SAR) images, phases, and polarization. Moreover, ionospheric effect has become and is becoming further significant with the increasing interest in low-frequency SAR systems, limiting the further development of InSAR technique. Although some research has been carried out, thorough analysis of ionospheric influence on true SAR imagery is still limited. Based on this background, this study performs a thorough investigation of ionospheric effect on InSAR through processing L-band ALOS-1/PALSAR-1 images and dual-frequency Global Positioning System (GPS) data over Hong Kong, where the phenomenon of ionospheric irregularities often occurs. The result shows that the small-scale ionospheric irregularities can cause the azimuth pixel shifts and phase advance errors on interferograms. Meanwhile, it is found that these two effects result in the stripe-shaped features in InSAR images. The direction of the stripe-shaped effects keep approximately constant in space for our InSAR dataset. Moreover, the GPS-derived rate of total electron content change index (ROTI), an index to reflect the level of ionospheric disturbances, may be a useful indicator for predicting the ionospheric effect for SAR images. This finding can help us evaluate the quality of SAR images when considering the ionospheric effect.

  10. Effective recombination coefficients in the high-latitude lower ionosphere from solar eclipse observations

    NASA Astrophysics Data System (ADS)

    Cherniakov, Sergey

    2016-07-01

    The photochemistry of processes in the lower ionosphere is rather difficult and up to the end is not developed: it is necessary to specify photochemical schemes, there is big uncertainty in coefficients of separate reactions and concentration of small neutral components. Therefore introduction of the effective coefficients determining the total speed of several reactions was widely adopted when modeling the lower ionosphere, especially the D-region. Experimental opportunities of obtaining of effective recombination coefficients are rather limited. One of the methods allows to define effective recombination coefficients is based on the phenomenon of a solar eclipse and the changes of electron concentration in the ionosphere connected with it. During a solar eclipse there is a short-term and controlled change of solar ionizing radiation intensity that allows to research photochemical processes at known input parameters. The time delay between the eclipse maximum (the sunlight minimum) and the electron concentration minimum at the chosen height during the "short night" is defined as the "sluggishness" [Appleton E.V., 1953] and "relaxation time" [Mitra A., 1974]. The received time delay from observations at the considered ionosphere height with the known electron concentration value gives possibility to calculate the effective recombination coefficient for this height. During solar eclipses on 1 August 2008, on 1 June 2011 and on 20 March 2015 at the partial reflection facility of the observatory "Tumanny" (69° N, 35.7 E) observations of the lower ionosphere behavior were made. On the basis of the obtained data the electron concentration profiles at the heights of the lower ionosphere were received. Calculation of relaxation times allowed to define effective recombination coefficients at some heights of D region of the ionosphere. Appleton, E. V. A note on the "sluggishness" of the ionosphere // J. Atmos. Terr. Phys. - 1953. - Vol. 3, N 5. - P. 282-284. Mitra, A. P

  11. The Search for Ionospheric Effects at 150 MHz with PAPER

    NASA Astrophysics Data System (ADS)

    Gugliucci, Nicole E.; Bradley, R.; PAPER Collaboration

    2012-01-01

    PAPER (the Precision Array to Probe the Epoch of Reionization) is a telescope designed to detect the redshifted hydrogen signal from the early universe. The hydrogen is at a redshift of approximately 6-14, bringing the spin-flip transition of neutral hydrogen from 1.4 GHz to a regime between 100 and 230 GHz. PAPER has a test site with 32 antennas in the Radio Quiet Zone of Green Bank, West Virginia, and a 64-antenna array at the Square Kilometer Array candidate site in the Karoo, South Africa. Astronomical observations at such low frequencies are made more challenging by the refractive properties of the ionosphere. We present the angular shifts in bright source positions (Cyg A, Cas A, Vir A, and Tau A) as probes of the variations in the total electron content (TEC) along the lines of sight between the sources and the 32-element array in Green Bank. With an integration time of 10 seconds, we can probe for the small fluctuations, using the visibilities, that may be the most difficult to calibrate in upcoming experiments and observations. More sensitive probes of longer timescales are also done by imaging the sky with both the 32 and 64-element arrays. Here again, the bright source position stability is used as an indicator of the TEC stability. The wideband nature of the PAPER instrument enables it to probe the effects of a varying TEC over a nearly 100 MHz bandwidth. We compare these measurements to more traditional methods of probing the ionosphere, such as GPS satellites, and we discuss the implications that these measurements will have on experiments aimed at detecting the epoch of reionization.

  12. Lightning Interaction with the Lower Ionosphere: Effects of Mesospheric Ions and Geomagnetic Field

    NASA Astrophysics Data System (ADS)

    Marshall, R. A.; Inan, U. S.

    2011-12-01

    The interaction between the lightning electromagnetic pulse (EMP) and quasi-electrostatic (QE) fields and the D-region ionosphere has been observed optically in the past 20 years through sprites, elves, and gigantic jets. Very-low-frequency (VLF) measurements have been used to measure direct ionospheric modification, which may comprise electron density changes and/or heating. In the same time period, a number of models have been used to study the lightning-ionosphere interaction. Here, we present new time-domain 2D and 3D models of the lightning-ionosphere interaction, including EMP and QE effects. These spherical-coordinate models include effects of Earth's magnetic field; effects of mesospheric and ionospheric electron and ion densities; and responses to arbitrary lightning amplitudes, waveforms, and orientations. In this paper, we use the new models to investigate the response of the ionosphere under varying conditions. First, we focus on the effects of different mesospheric ion density profiles. Mesospheric ions, for which measurements are nearly nonexistent, serve to reduce the amplitude of the electromagnetic pulse as it propagates towards the ionosphere; high ion densities will reduce the wave electric field enough that it does not exceed the breakdown field in the ionosphere. We demonstrate the relationship between the lightning parameters, ion density profile, and observed elve intensity, and show that elves are suppressed when the ion density is high. Second, we investigate the effects of the geomagnetic field magnitude and orientation on wave propagation in and through the ionosphere. We compare these simulation results with known global lightning distributions and compare to the observed whistler distributions onboard satellites.

  13. Space Weather Topics at Ionospheric Effects Symposium 2008

    NASA Astrophysics Data System (ADS)

    Goodman, John

    2008-08-01

    The ionosphere has captured the interest of scientists and communications specialists for many years. Research has been intrinsically applications oriented since Guglielmo Marconi identified an ionized region within the upper atmosphere that acted like a high-altitude mirror reflecting radio waves so that long-distance communication could be achieved. His successful transatlantic radio transmissions early in the twentieth century heralded the beginning of an era of wireless communications. Eager to capitalize on this, civilian and military industries sponsored research to better understand the ionosphere. These endeavors established that the ionosphere exhibits considerable variability, with significant changes associated with ionospheric storms that are driven by solar disturbances. This variability, now termed space weather, also introduces changes in radio propagation conditions that can disrupt various radio systems, such as high-frequency and satellite communications, the Global Positioning System, radar, and specialized surveillance methods.

  14. Long-duration positive ionospheric storm during the December 2006 geomagnetic storm: Ionizing effect of forbidden electrons

    NASA Astrophysics Data System (ADS)

    Suvorova, A. V.; Huang, C.-M.; Tsai, L.-C.; Dmitriev, A. V.; Ratovsky, K. G.

    2015-11-01

    The magnetosphere-ionosphere coupling at low latitudes was studied during the major geomagnetic storm on 14-16 December 2006. Data from NOAA/POES satellites were used to identify the enhancements of forbidden energetic electrons (FEE). Global Ionospheric Maps and COSMIC/FORMOSAT-3 radio occultation measurements were used for studying positive ionospheric storm phases. We found that long-lasting positive ionospheric storms were concomitant with FEE enhancements. We discussed relative contributions of the FEE ionizing effect as well as other general mechanisms to the positive ionospheric storm at different phases of the geomagnetic storm.

  15. Effects of X-ray flares on the aeronomy of Mars: Simultaneous measurements of ionospheric effects of X-ray flares on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Haider, Syed A.; Machado Santos, Angela; Abdu, Mangalathayil A.; Batista, Inez S.; Shah, Siddhi Y.; Thirupathaiah, P.

    2016-07-01

    MIRI: Validation and Testing Requirements We have studied X-ray aeronomy in the ionospheric E region of Mars during six X-ray flares that occurred on 28 March and 6 April, 2001; 17,18 March and 21 April, 2003 and 19 February, 2005 respectively. These flares were responded by the corresponding electron density profiles of Mars Global Surveyor (MGS). The time series of photoionization rate, photoelectron impact ionization rate, photoelectron flux, ion density, electron density and total Electron Content (TEC) are predicted for each flare day. The estimated production rate, flux and densities are increased by 1-2 orders of magnitude due to effects of these flares in the E region ionosphere of Mars. The normalized estimated TEC are compared with the normalized measured TEC of MGS profiles. At the peak flare time the normalized estimated and normalized measured TEC were enhanced by a factor of 5-10 and 2 respectively. The effects of these flares were also registered in the D region equatorial ionosphere of Earth at Fortaleza observatory. The flares of 6 April, 2001, 17 March and 21 April, 2003 also produced electron density enhancement in the E region ionosphere of Earth at College AK and Cachoeira Paulista observatories. The minimum frequency fmin, recorded in ionogram, increased by 100% (due to D region absorption) while the foE increased by 20%, in the Earth's ionosphere.

  16. Effects of Atmospheric Variability on Ionospheric Manifestations of Earthquakes and Tsunamis

    NASA Astrophysics Data System (ADS)

    Godin, O. A.; Zabotin, N. A.; Zabotina, L.

    2014-12-01

    There is a large and increasing number of ground-based and satellite-borne instruments, which reliably reveal ionospheric manifestations of natural hazards such as large earthquakes, strong tsunamis, and powerful tornadoes. As the focus shifts from detecting the ionospheric features associated with the natural hazards to characterizing the hazards for the purposes of improving early warning systems and contributing to disaster recovery, it becomes imperative to relate quantitatively characteristics of the observed ionospheric disturbances and the underlying natural hazard. The relation between perturbations at the ground level and their ionospheric manifestations is strongly affected by parameters of the intervening atmosphere. In this paper, we employ the ray theory to model propagation of acoustic gravity waves in three-dimensionally inhomogeneous atmosphere. Huygens' wavefront-tracing and Hamiltonian ray-tracing algorithms are used to simulate wave propagation from an earthquake hypocenter through the earth's crust and ocean to the upper atmosphere as well as the generation of atmospheric waves by seismic surface waves and tsunamis. We quantify the influence of temperature stratification and winds, including their seasonal variability, and air viscosity and thermal conductivity on the geometry and amplitude of ionospheric disturbances. Modeling results are verified by comparing observations of the velocity fluctuations at altitudes of 150-160 km by a coastal Dynasonde HF radar system with theoretical predictions of ionospheric manifestations of background infragravity waves in the ocean. Dynasonde radar systems are shown to be a promising means for monitoring acoustic-gravity wave activity and observing ionospheric perturbations due to earthquakes and tsunamis. The effects will be discussed of background ionospheric disturbances and uncertainty in atmospheric parameters on the feasibility and accuracy of retrieval of open-ocean tsunami heights from observations

  17. The High-Latitude Ionosphere and Its Effects on Radio Propagation

    NASA Astrophysics Data System (ADS)

    Moses, Ronald W., Jr.

    2004-05-01

    The ionosphere is indeed the place where Earth and space come together. Correspondingly, the ionosphere is subject to the details and complexities of both Earth and space. If one is to develop a logical understanding of even a limited portion of the ionosphere, that knowledge will be constructed on a foundation of many facts of nature. Awareness of those facts will in turn be supported by a vast historical array of scientific effort to ascertain the fundamentals of Earth and space that combine to form the ionosphere as we know it. Fortunately for us, R. D. Hunsucker and J. K. Hargreaves have written a book that goes from the Earth up and comes from the Sun down to arrive at a remarkably detailed physical description of the ionosphere and its impact on human activities, especially radio-frequency (RF) communications. The High-Latitude Ionosphere and its Effects on Radio Propagation is a bit of a misnomer, because the book covers many more topics than its title suggests. The authors set the stage by developing a detailed picture of the density, temperature, chemical, neutral, and charge states of the atmosphere-ionosphere system. Basic models of the ionization and recombination processes are presented with supporting mathematics and graphical examples. Concepts such as the Chapman production function are introduced and applied, whereby ionizing solar radiation produces electron-ion pairs. One can then grasp how the so-called D, E, and F layers of the ionosphere are related to the ionization of specific molecular species. Along the way, the authors are careful to introduce the extensive nomenclature of ionospheric descriptors. There is a comfortable relationship of prose, mathematics, and graphical material. Reading this book is a pleasure for the scientifically curious mind.

  18. HF Radar Observations of Space Weather Effects in the Low and Mid-latitude Ionosphere

    NASA Astrophysics Data System (ADS)

    Menk, F. W.

    2015-12-01

    The ionosphere is dynamically coupled to the magnetosphere and hence diurnal and seasonal processes in the ionosphere are strongly influenced by space weather effects. These may vary the electron density distribution and cause changes in the reflection and absorption of HF radio signals. Other consequences include the formation of enhanced convective flows and irregularity features which may contribute to Doppler clutter. While there has been much discussion on the ionospheric signatures of magnetic storms at high latitudes, this presentation focuses on effects detected using mid- and low-latitude HF radars which examine field lines mapping to the vicinity of the ring current. Characteristic features include travelling ionospheric disturbances, high velocity flows and sustained irregular and quasi-sinusoidal 5 - 20 mHz waves recorded near the plasmapause. Such observations provide new insight on complex M-I coupling dynamics.

  19. Stochastic modelling considering ionospheric scintillation effects on GNSS relative and point positioning

    NASA Astrophysics Data System (ADS)

    da Silva, Heloísa Alves; de Oliveira Camargo, Paulo; Galera Monico, João Francisco; Aquino, Marcio; Marques, Haroldo Antonio; de Franceschi, Giorgiana; Dodson, Alan

    2010-05-01

    Global Navigation Satellite Systems (GNSS), in particular the Global Positioning System (GPS), have been widely used for high accuracy geodetic positioning. The Least Squares functional models related to the GNSS observables have been more extensively studied than the corresponding stochastic models, given that the development of the latter is significantly more complex. As a result, a simplified stochastic model is often used in GNSS positioning, which assumes that all the GNSS observables are statistically independent and of the same quality, i.e. a similar variance is assigned indiscriminately to all of the measurements. However, the definition of the stochastic model may be approached from a more detailed perspective, considering specific effects affecting each observable individually, as for example the effects of ionospheric scintillation. These effects relate to phase and amplitude fluctuations in the satellites signals that occur due to diffraction on electron density irregularities in the ionosphere and are particularly relevant at equatorial and high latitude regions, especially during periods of high solar activity. As a consequence, degraded measurement quality and poorer positioning accuracy may result. This paper takes advantage of the availability of specially designed GNSS receivers that provide parameters indicating the level of phase and amplitude scintillation on the signals, which therefore can be used to mitigate these effects through suitable improvements in the least squares stochastic model. The stochastic model considering ionospheric scintillation effects has been implemented following the approach described in Aquino et al. (2009), which is based on the computation of weights derived from the scintillation sensitive receiver tacking models of Conker et al. (2003). The methodology and algorithms to account for these effects in the stochastic model are described and results of experiments where GPS data were processed in both a relative and

  20. Solar Flare Effects on the Thermosphere and Ionosphere

    NASA Astrophysics Data System (ADS)

    Solomon, S.; Qian, L.; Rodgers, E.; Bailey, S.

    The Solar Extreme-ultraviolet Experiment SEE on the TIMED satellite and by the X-ray Photometer System XPS on the SORCE satellite provide the first comprehensive irradiance measurements of the complete solar spectrum during large solar flares However the soft X-ray portion of these observations are performed using silicon photodiodes coated with metallic filters to provide photometric measurements with multiple band passes which leads to complexities in obtaining spectral information A new analysis technique developed specifically for flare conditions is used to infer flare spectra in this region These are combined with spectrographic measurements in the extreme ultraviolet and far ultraviolet and applied to the NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model TIE-GCM The electron content neutral density and airglow response to large flares during the declining phase of solar cycle 23 are calculated using this model and compared to several measurement sets obtaining good agreement This supports both the validity of the solar X-ray analysis and the modeling methodology showing that although flare-driven effects in the upper atmosphere are significant they are shorter and of much smaller magnitude than geomagnetic disturbances

  1. Ionospheric refraction effects on orbit determination using the orbit determination error analysis system

    NASA Technical Reports Server (NTRS)

    Yee, C. P.; Kelbel, D. A.; Lee, T.; Dunham, J. B.; Mistretta, G. D.

    1990-01-01

    The influence of ionospheric refraction on orbit determination was studied through the use of the Orbit Determination Error Analysis System (ODEAS). The results of a study of the orbital state estimate errors due to the ionospheric refraction corrections, particularly for measurements involving spacecraft-to-spacecraft tracking links, are presented. In current operational practice at the Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF), the ionospheric refraction effects on the tracking measurements are modeled in the Goddard Trajectory Determination System (GTDS) using the Bent ionospheric model. While GTDS has the capability of incorporating the ionospheric refraction effects for measurements involving ground-to-spacecraft tracking links, such as those generated by the Ground Spaceflight Tracking and Data Network (GSTDN), it does not have the capability to incorporate the refraction effects for spacecraft-to-spacecraft tracking links for measurements generated by the Tracking and Data Relay Satellite System (TDRSS). The lack of this particular capability in GTDS raised some concern about the achievable accuracy of the estimated orbit for certain classes of spacecraft missions that require high-precision orbits. Using an enhanced research version of GTDS, some efforts have already been made to assess the importance of the spacecraft-to-spacecraft ionospheric refraction corrections in an orbit determination process. While these studies were performed using simulated data or real tracking data in definitive orbit determination modes, the study results presented here were obtained by means of covariance analysis simulating the weighted least-squares method used in orbit determination.

  2. Meteorological effects of ionospheric disturbances from vertical radio sounding data

    NASA Astrophysics Data System (ADS)

    Chernigovskaya, M. A.; Shpynev, B. G.; Ratovsky, K. G.

    2015-12-01

    We studied ionospheric disturbances caused by the wave-like processes in the middle atmosphere. The ionospheric data were obtained from continuous measurements with the DPS-4 vertical sounding ionosondes in Irkutsk and Norilsk over 2008-2010. The ionospheric disturbances were considered as deviations of the F2 layer peak density variations from the daily average values. We also used ECMWF ERA-Interim reanalysis data for the middle atmosphere dynamics analysis, and the Aura MLS data on the atmospheric temperature at the stratosphere and upper mesosphere heights obtained within the above period. The analysis allowed us to reveal periods of middle-scale wave motions in the stratosphere and lower mesosphere during winter seasons in the Northern Hemisphere. The wave motions observed in the study were associated with the jet streams at the stratosphere/lower mesosphere heights localized mainly between 50 and 80°N. The middle-scale waves in the stratosphere were compared with ionospheric disturbances over two ionosonde stations in Irkutsk and Norilsk. A noticeable increase in the wave activity was found at the F2 layer heights during the periods of stratospheric wave activity. For both stations, the maximal variability in the ionosphere F2 layer parameters was observed in winter with the minimal variability observed in summer. The summer-winter difference was more pronounced in the case of the high-latitude ionosonde in Norilsk.

  3. Modeling the pre-earthquake electrostatic effect on the F region ionosphere

    NASA Astrophysics Data System (ADS)

    Kim, V. P.; Liu, J. Y.; Hegai, V. V.

    2012-12-01

    This paper presents the results of modeling the ionospheric effect of the seismogenic electrostatic field (SEF) seen at the earth's surface as a perturbation of the vertical atmospheric electrostatic field in the earthquake preparation zone. The SEF distribution at ionospheric altitudes is obtained as an analytical solution of the continuity equation for the electric current density. It is shown that at night, the horizontally large scale SEF can efficiently penetrate into the ionosphere and produce noticeable changes in the horizontal distribution of the F region electron density. The results suggest that the seismogenic electrostatic field could be a possible source for the ionospheric variations observed over Taiwan before the strong Chi Chi earthquake of September 21, 1999.

  4. Effects of the equatorial ionosphere anomaly on the interhemispheric circulation in the thermosphere

    NASA Astrophysics Data System (ADS)

    Qian, Liying; Burns, Alan G.; Wang, Wenbin; Solomon, Stanley C.; Zhang, Yongliang; Hsu, V.

    2016-03-01

    We investigate the interhemispheric circulation at the solstices, in order to understand why O/N2 is larger in the northern hemisphere winter than in the southern hemisphere winter. Our studies reveal that the equatorial ionosphere anomaly (EIA) significantly impacts the summer-to-winter wind through plasma-neutral collisional heating, which changes the summer-to-winter pressure gradient, and ion drag. Consequently, the wind is suppressed in the summer hemisphere as it encounters the EIA but accelerates after it passes the EIA in the winter hemisphere. The wind then converges due to an opposing pressure gradient driven by Joule heating in auroral regions and produces large O/N2 at subauroral latitudes. This EIA effect is stronger near the December solstice than near the June solstice because the ionospheric annual asymmetry creates greater meridional wind convergence near the December solstice, which in turn produces larger O/N2 in the northern hemisphere winter than in the southern hemisphere winter.

  5. Ionospheric Effects of Strong El Nino Southern Oscillation Conditions

    NASA Astrophysics Data System (ADS)

    Immel, T. J.; England, S.; Forbes, J. M.; Nguyen, V.; Lieberman, R. S.; Maute, A. I.; Greer, K.

    2015-12-01

    The current prediction for the occurrence of a very strong positive phase in the El Nino Southern Oscillation (ENSO) in late 2015 has implications for weather around the entire planet. Furthermore, recent investigations show that ENSO-related changes in tropospheric water vapor and rainfall drive extraordinary changes in the temperature and wind structure in the middle atmosphere, through the modification of the spectrum of atmospheric tides. Given that several components of the tidal spectrum can propagate into the thermosphere, ENSO-related changes at altitudes above the mesopause and into the ionosphere may be expected. We will show the ionospheric and thermospheric variations expected for El Niño and La Niña conditions. These efforts are enabled in part by modeling capabilities developed for the upcoming NASA Ionospheric Connection Explorer mission.

  6. Effects of Soft Electron Precipitation on the Coupled Magnetosphere-Ionosphere-Thermosphere

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Lotko, W.; Brambles, O.; Wiltberger, M. J.; Wang, W.; Schmitt, P. J.; Lyon, J.

    2011-12-01

    Global simulations play an important role in understanding the coupled magnetosphere-ionosphere-thermosphere (MIT) system. The MIT interaction involves both electrodynamic and plasma transport processes, and it is influenced by precipitating particles that deposit both thermal and kinetic energy from the magnetosphere in the ionosphere-thermosphere. Currently, global simulation codes do not include soft electron precipitation, which can significantly influence the thermospheric and ionospheric structure. In this study, two types of causally specified soft electron precipitation, direct-entry cusp and broadband electron precipitation, are implemented in the Coupled Magnetosphere-Ionosphere-Thermosphere (CMIT) model. The direct entry cusp electron precipitation is modeled by specifying the electron thermal flux and temperature in a dynamically determined cusp area. The broadband electron precipitation is regulated by the downward Alfvenic Poynting flux based on empirical relations from Polar and FAST satellite data. Simulation results show that while both types of soft electron precipitation have only minor effects on the ionospheric conductance, they can significantly modify the plasma distribution in the F-region ionosphere and the neutral density in the thermosphere.

  7. Precise Point Positioning with Ionosphere Estimation and application of Regional Ionospheric Maps

    NASA Astrophysics Data System (ADS)

    Galera Monico, J. F.; Marques, H. A.; Rocha, G. D. D. C.

    2015-12-01

    The ionosphere is one of most difficult source of errors to be modelled in the GPS positioning, mainly when applying data collected by single frequency receivers. Considering Precise Point Positioning (PPP) with single frequency data the options available include, for example, the use of Klobuchar model or applying Global Ionosphere Maps (GIM). The GIM contains Vertical Electron Content (VTEC) values that are commonly estimated considering a global network with poor covering in certain regions. For this reason Regional Ionosphere Maps (RIM) have been developed considering local GNSS network, for instance, the La Plata Ionospheric Model (LPIM) developed inside the context of SIRGAS (Geocentric Reference System for Americas). The South American RIM are produced with data from nearly 50 GPS ground receivers and considering these maps are generated for each hour with spatial resolution of one degree it is expected to provide better accuracy in GPS positioning for such region. Another possibility to correct for ionosphere effects in the PPP is to apply the ionosphere estimation technique based on Kalman filter. In this case, the ionosphere can be treated as a stochastic process and a good initial guess is necessary what can be obtained from an ionospheric map. In this paper we present the methodology involved with ionosphere estimation by using Kalman filter and also the application of global and regional ionospheric maps in the PPP as first guess. The ionosphere estimation strategy was implemented in the house software called RT_PPP that is capable of accomplishing PPP either for single or dual frequency data. GPS data from Brazilian station near equatorial region were processed and results with regional maps were compared with those by using global maps. Improvements of the order 15% were observed. In case of ionosphere estimation, the estimated coordinates were compared with ionosphere free solution and after PPP convergence the results reached centimeter accuracy.

  8. Physics of planetary ionospheres

    NASA Technical Reports Server (NTRS)

    Bauer, S. J.

    1973-01-01

    The fundamental physical and chemical processes in an idealized planetary ionosphere are considered as a general abstraction, with actual planetary ionospheres representing special cases. After describing the structure of the neutral atmospheres (the barosphere, the thermosphere, and the exosphere) and noting the principal ionizing radiations responsible for the formation of planetary ionospheres, a detailed study is made of the thermal structure of these ionospheres and of the chemical processes and plasma-transport processes occurring in them. The features of equilibrium and realistic models of planetary ionospheres are discussed, and an attempt is made to determine the extent of these ionospheres. Considering the ionosphere as a plasma, a plasma kinetic approach is developed for determining the effects of interactions between individual particles and waves in this plasma. The use of remote-sensing radio techniques and direct measurement or in situ techniques is discussed. Finally, the observed properties of the ionospheres of the Earth, Mars, Venus, and Jupiter are reviewed.

  9. Ionospheric effects observed during the BIME (Brazilian Ionospheric Modification Experiments) campaign over Fernando de Noronha and Fortaleza

    NASA Astrophysics Data System (ADS)

    Abdu, M. A.; Sobral, J. H. A.; Kantor, I. J.; Ramirez, R.; Alves, P. R. G.

    1983-03-01

    Two scanning 6300A photometers, an HF ionosonde and a VHF electronic polarimeter were operated. Special soundings were carried out also by the ionosonde. Observations with these instruments were taken during all the four rocket chemical release experiments, namely, the explosive chemical releases to create electron hole and the metallic vapor release experiments carried out in an attempt to initiate plasma bubble formation in the evening equatorial ionosphere. The photometers detected immediate effects from the chemical release experiments, namely, significant enhancements in the 6300A emission following the detonations and their subsequent decays. They did not, however, detect plasma bubble developments as an after effect of the chemical release experiments. The ionosonde and polarimeter did observe plasma bubble and spread F irregularity developments and their eastward motions shortly following the chemical release, in all the four experiments.

  10. Solar Flare and IMF Sector Structure Effects in the Lower Ionosphere

    NASA Technical Reports Server (NTRS)

    Lastovicka, J.

    1984-01-01

    About 1% of all sudden ionospheric disturbances (SIDs) observed at the Panska Ves Observatory (Czechoslovakia), were found to be not of solar-XUV origin. Among them, the very rare SWF events (observed at L = 2.4) of corpuscular origin are the most interesting. The IMF sector structure effects in the midlatitude lower ionosphere are minor in comparison with effects of solar flares, geomagnetic storms, etc. There are two basic types of effects. The first type is a disturbance, best developed in geomagnetic activity, and observed in the night-time ionosphere. It can be interpreted as a response to sector structure related changes of geomagnetic (= magnetospheric) activity. The other type is best developed in the tropospheric vorticity area index and is also observed in the day-time ionosphere in winter. This effect is quietening in the ionosphere as well as troposphere. While the occurrence of the former type is persistent in time, the latter is severely diminished in some periods. All the stratosphere, the 10-mb level temperature and height above Berlin-Tempelhof do not display any observable IMF section structure effect.

  11. Solar flare and IMF sector structure effects in the lower ionosphere

    SciTech Connect

    Lastovicka, J.

    1984-05-01

    About 1% of all sudden ionospheric disturbances (SIDs) observed at the Panska Ves Observatory (Czechoslovakia), were found to be not of solar-XUV origin. Among them, the very rare SWF events (observed at L 2.4) of corpuscular origin are the most interesting. The IMF sector structure effects in the midlatitude lower ionosphere are minor in comparison with effects of solar flares, geomagnetic storms, etc. There are two basic types of effects. The first type is a disturbance, best developed in geomagnetic activity, and observed in the night-time ionosphere. It can be interpreted as a response to sector structure related changes of geomagnetic (magnetospheric) activity. The other type is best developed in the tropospheric vorticity area index and is also observed in the day-time ionosphere in winter. This effect is quietening in the ionosphere as well as troposphere. While the occurrence of the former type is persistent in time, the latter is severely diminished in some periods. All the stratosphere, the 10-mb level temperature and height above Berlin-Tempelhof do not display any observable IMF section structure effect.

  12. Investigation of the Ionospheric Fluctuations Caused by Space Weather Effects Using GNSS TEC Measurements

    NASA Astrophysics Data System (ADS)

    Shagimuratov, Irk; Krankowski, Andrzej; Cherniak, Iurii; Ephishov, Ivan; Zakharenkova, Irina; Yakimova, Galina

    2013-04-01

    It is known that GPS radio signals passing through the ionosphere suffer varying degrees of rapid variations of their amplitude and phase - signal scintillations. The scintillations are caused by the presence of wide range of scale size irregularities in the ionosphere. It is very important to estimate scintillation and phase fluctuation effects on GNSS navigation system (GPS/GLONASS) performance and consequently on the precession of the obtained position. Effects of the ionospheric irregularities on the GPS signals can be evaluated by measurements of the differential phase time rate of dual frequency GPS signals. GPS observations carried out at the Arctic IGS (International GNSS Service) stations were used to study the development of TEC fluctuations in the high latitude ionosphere. Standard GPS measurements with 30s sampling rate allow the detection of middle- and large-scale ionospheric irregularities. For detection of ionospheric fluctuations the rate of TEC (ROT, in the unit of TECU/min) at 1 min interval was used. The temporal occurrence of TEC fluctuations is clearly observed in time variations in the dual frequency carrier phase along satellite passes. As a measure of the fluctuation activity level the Rate of TEC Index (ROTI) based on standard deviation of ROT was also used. ROTI was estimated in 10-minute interval. These techniques and IGS data were used to study the occurrence of TEC fluctuations at the northern latitude ionosphere for selected geomagnetic storms occurred at the end of 23rd and beginning of new 24th solar cycles. Results demonstrate that fluctuation activity of GPS signals in the high latitude ionosphere is depended on geomagnetic conditions. Intensity of fluctuations essentially increases during geomagnetic storms. The strongest TEC fluctuations occurred as short time rate of TEC enhancements of a factor of 2-5 relative to the quiet time. During geomagnetic disturbed conditions strong phase fluctuations can register at latitudes low

  13. Electric fields and conductivity in the nighttime E-region - A new magnetosphere-ionosphere-atmosphere coupling effect

    NASA Technical Reports Server (NTRS)

    Banks, P. M.; Yasuhara, F.

    1978-01-01

    Calculations have been made of the effects of intense poleward-directed electric fields upon the nighttime ionospheric E-region. The results show the Pedersen and Hall conductivities are substantially changed, thereby decreasing the ionospheric electrical load seen by magnetospheric sources. It appears that relatively large electric fields can exist in the absence of accompanying large field-aligned currents, as long as the underlying ionosphere remains in darkness and/or energetic particle precipitation is absent.

  14. Effects of the 20 March 2015 total solar eclipse on the ionosphere-thermosphere system

    NASA Astrophysics Data System (ADS)

    Grandin, Maxime; Marchaudon, Aurelie; Aikio, Anita; Blelly, Pierre-Louis; Kozlovsky, Alexander; Pitout, Frederic; Ulich, Thomas; Lester, Mark; Miller, Ethan; Yeoman, Tim

    2015-04-01

    A total solar eclipse is a spectacular natural phenomenon whose consequences over the underlying ionosphere and thermosphere remain complex and not fully explained. On 20 March 2015, a total solar eclipse lasting almost 2 hours passed over the Atlantic Ocean, then over Svalbard. These specific regions are extremely interesting as they are covered by several ground-based instruments: SuperDARN radars, EISCAT Svalbard radar (ESR), magnetometers, and imaging instruments. We take advantage of this excellent instrumental configuration coupled with results from detailed ionosphere models to study the dynamic consequences of this eclipse on the underlying ionosphere and thermosphere. In particular, we run specific scanning modes on the SuperDARN radars in order to identify a possible generation of Atmospheric Gravity Waves (AGW) caused by the eclipse. We present the observations of the different instruments and compare them with initial simulations made with the TRANSCAR ionosphere model. As this eclipse is first located on closed field lines, we also investigate the possible exchange of energy and particle fluxes with the opposite sunlit hemisphere by running the interhemispheric version of our ionosphere model.

  15. Ionospheric Effects Prior to the Napa Earthquake of August 24, 2014

    NASA Astrophysics Data System (ADS)

    Kelley, M. C.; Swartz, W. E.; Komjathy, A.; Mannucci, A. J.; Shume, E. B.; Heki, K.; Fraser-Smith, A. C.; McCready, M. A.

    2014-12-01

    Recently, evidence that the ionosphere reacts in a reliable, reproducible manner before major earthquakes has been increasing. Fraser-Smith (1990) reported ULF magnetic field fluctuations prior to the Loma Prieta quake. Although not an ionospheric measurement, such magnetic fields before a quake are part of our explanation for the ionospheric effect. Heki (2011) and Heki and Enomoto (2013) reported in great detail the devastating March 11, 2011 Tohoku-Oki earthquake in which numerous GPS satellite/ground-station pairs showed apparent changes, both increases and decreases, starting 40 minutes before the event. We say "apparent" since our theory is that electric fields associated with stresses before an earthquake map through the ionosphere at the speed of light and raise or lower the main ionosphere. Both effects have been detected. Heki's results for four quakes exceeding M = 7 are shown in Figure 4 of Heki (2011). Based on the inserted curve of Heki's Figure 4 relating the size of the ionospheric effect to the quake's magnitude, we were not optimistic about detecting an effect for the 6.0 Napa quake. However, it occurred at night, when the well-known shielding effect of the ionospheric D and lower E regions for EM fields becomes very small. When this special session with a later abstract deadline was announced, JPL researchers were asked to examine GPS data from California stations. Based on their data, the plot shown (left panel) combined with a similar plot for the Tohoku-Oki earthquake (right panel, based on Heki's data) was produced. Both panels show fluctuations of STEC (Slant Total Electron Content) before the quake times (indicated by asterisks showing the positions of ionospheric penetration points (IPP) at the respective quake times). Although alternative explanations for the TEC fluctuations cannot be ruled out entirely, these results suggest that a patent-pending system able to predict an earthquake some 30 minutes before an event by using satellites

  16. Ppp Analisys with GPS and Glonass Integration in Periods Under Ionospheric Scintillation Effects

    NASA Astrophysics Data System (ADS)

    Marques, H. A. S.

    2015-12-01

    The GNSS is widely used nowadays either for geodetic positioning or scientific purposes. The GNSS currently includes GPS, GLONASS, Galileo among other emerging systems. The GPS and GLONASS are currently operational with a full satellite constellation. The GPS is still the most used nowadays and both GPS and GLONASS are under a modernization process. The geodetic positioning by using data from multi-constellation can provide better accuracy in positioning and also more reliability. The PPP is benefited once the satellite geometry is crucial in this method, mainly for kinematic scenarios. The satellite geometry can change suddenly for data collected in urban areas or in conditions of strong atmospheric effects such as Ionospheric Scintillation (IS) that causes weakening of signals with cycle slips and even loss of lock. The IS is caused by small irregularities in the ionosphere layer and is characterized by rapid change in amplitude and phase of the signal being stronger in equatorial and high latitudes regions. In this work the PPP is evaluated with GPS and GLONASS data collected by monitoring receivers from Brazilian CIGALA/CALIBRA network under IS conditions. The PPP processing was accomplished by using the GPSPPP software provided by Natural Resources Canadian (NRCAN). The IS effects were analyzed taking account the S4 and PHI60 indices. Considering periods with moderate IS effects, the use of only GPS data in the PPP presented several peaks in the coordinate time series due to cycle slips and loos of lock. In cycle slip conditions the ambiguity parameter are reinitialized by GPSPPP and considering loss of lock few satellites can be available in some epochs affecting the positioning geometry and consequently decreasing accuracy. In such situations, the PPP using GPS and GLONASS data presented improvements in positioning accuracy of the order to 70% in height component when compared with PPP using only GPS data. Analyses of GDOP and ambiguities parameters were

  17. The worldwide ionospheric data base

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter

    1989-01-01

    The worldwide ionospheric data base is scattered over the entire globe. Different data sets are held at different institutions in the U.S., U.S.S.R., Australia, Europe, and Asia. The World Data Centers on the different continents archive and distribute part of the huge data base; the scope and cross section of the individual data holdings depend on the regional and special interest of the center. An attempt is made to pull together all the strings that point toward different ionospheric data holdings. Requesters are provided with the information about what is available and where to get it. An attempt is also made to evaluate the reliability and compatibility of the different data sets based on the consensus in the ionospheric research community. The status and accuracy of the standard ionospheric models are also discussed because they may facilitate first order assessment of ionospheric effects. This is a first step toward an ionospheric data directory within the framework of NSSDC's master directory.

  18. Ionospheric effects in active retrodirective array and mitigating system design

    NASA Technical Reports Server (NTRS)

    Nandi, A. K.; Tomita, C. Y.

    1980-01-01

    The operation of an active retrodirective array (ARA) in an ionospheric environment (that is either stationary or slowly-varying) was examined. The restrictions imposed on the pilot signal structure as a result of such operation were analyzed. A 3 tone pilot beam system was defined which first estimates the total electron content along paths of interest and then utilizes this information to aid the phase conjugator so that correct beam pointing can be achieved.

  19. Local and long-distance effects of meteor showers in the low ionosphere

    NASA Astrophysics Data System (ADS)

    Vilas Boas, J. W. S.; Paes Leme, N. M.; Rizzo Piazza, L.; da Costa, A. M.; Macedo Moura, M. S. S.

    1986-07-01

    The effect of the Geminids and alpha Scorpiids meteor showers in the lower ionosphere have been observed using two different methods. Low ionosphere group heights, measured by a VLF ionosonde located in southern Brazil, indicated significant anomalous lowering of the effective reflection height which was in good correlation with the transit of the alpha Scorpiids stream. The diurnal VLF phase variations over two long-distance propagation paths showed significant phase deviations from the average during the transits of the showers' radiants. Geomagnetic activity during the periods concerned was low and the results obtained using the two different techniques confirm the occurrence of changes in the physical conditions of the low ionosphere produced by meteor showers on local, as well as on long-distance, scales.

  20. Anomalous electron heating effects on the E region ionosphere in TIEGCM

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Wang, Wenbin; Oppenheim, Meers; Dimant, Yakov; Wiltberger, Michael; Merkin, Slava

    2016-03-01

    We have recently implemented a new module that includes both the anomalous electron heating and the electron-neutral cooling rate correction associated with the Farley-Buneman Instability (FBI) in the thermosphere-ionosphere electrodynamics global circulation model (TIEGCM). This implementation provides, for the first time, a modeling capability to describe macroscopic effects of the FBI on the ionosphere and thermosphere in the context of a first-principle, self-consistent model. The added heating sources primarily operate between 100 and 130 km altitude, and their magnitudes often exceed auroral precipitation heating in the TIEGCM. The induced changes in E region electron temperature in the auroral oval and polar cap by the FBI are remarkable with a maximum Te approaching 2200 K. This is about 4 times larger than the TIEGCM run without FBI heating. This investigation demonstrates how researchers can add the important effects of the FBI to magnetosphere-ionosphere-thermosphere models and simulators.

  1. Speed-dependent collision effects on radar back-scattering from the ionosphere

    NASA Technical Reports Server (NTRS)

    Theimer, O.

    1981-01-01

    A computer code to accurately compute the fluctuation spectrum for linearly speed dependent collision frequencies was developed. The effect of ignoring the speed dependence on the estimates of ionospheric parameters was determined. It is shown that disagreements between the rocket and the incoherent scatter estimates could be partially resolved if the correct speed dependence of the i-n collision frequency is not ignored. This problem is also relevant to the study of ionospheric irregularities in the auroral E-region and their effects on the radio communication with satellites.

  2. Mitigation of Ionospheric Effects on DGPS and WADGPS Operations

    NASA Astrophysics Data System (ADS)

    Skone, S.

    2007-12-01

    Under high levels of ionospheric activity, significant degradations in differential GPS (DGPS) and wide area DGPS (WADGPS) positioning accuracies can occur. DGPS and WADGPS methods are employed for many applications and millions of users. Examples include marine DGPS services, land applications (such as transportation monitoring, fleet management and emergency response) and commercial aviation. In previous studies for the North American sector, DGPS and WADGPS positioning errors were observed to increase by factors of 10-30 under increased ionospheric activity. In particular, gradients of up to 50 ppm are associated with a feature known as storm enhanced density (SED). This feature is a localized enhancement of total electron content (TEC) extending northwest through the mid-latitudes. Positioning errors of 20 m or more have persisted for hours during such events. Specific WADGPS services include the Satellite-Based Augmentation Systems (SBAS) WAAS and EGNOS. The WAAS has been designed for commercial aviation in the United States; EGNOS operates in a similar manner for the European sector. In this presentation, DGPS, WAAS and EGNOS capabilities are assessed under severe ionosphere events. The horizontal and vertical positioning accuracies are determined throughout North America and Europe during such events using available data from existing GPS networks (IGS and CORS). All DGPS baselines of length 100-200 km are processed; one station of the baseline is designated as reference and the other as remote user. Differential corrections are computed for the reference and applied at the remote user location. DGPS positioning solutions are generated for hundreds of baselines simultaneously in this manner to derive full spatial statistics of positioning accuracies. WADGPS positioning solutions are also generated for the same set of remote user stations using archived WAAS and EGNOS messages, and computing and applying localized corrections. An extensive study is conducted

  3. Quantifying ionospheric effects on time-domain astrophysics with the Murchison Widefield Array

    NASA Astrophysics Data System (ADS)

    Loi, Shyeh Tjing; Murphy, Tara; Bell, Martin E.; Kaplan, David L.; Lenc, Emil; Offringa, André R.; Hurley-Walker, Natasha; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; Emrich, D.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Johnston-Hollitt, M.; Kasper, J. C.; Kratzenberg, E.; Lonsdale, C. J.; Lynch, M. J.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Ord, S. M.; Prabu, T.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.

    2015-11-01

    Refraction and diffraction of incoming radio waves by the ionosphere induce time variability in the angular positions, peak amplitudes and shapes of radio sources, potentially complicating the automated cross-matching and identification of transient and variable radio sources. In this work, we empirically assess the effects of the ionosphere on data taken by the Murchison Widefield Array (MWA) radio telescope. We directly examine 51 h of data observed over 10 nights under quiet geomagnetic conditions (global storm index Kp < 2), analysing the behaviour of short-time-scale angular position and peak flux density variations of around ten thousand unresolved sources. We find that while much of the variation in angular position can be attributed to ionospheric refraction, the characteristic displacements (10-20 arcsec) at 154 MHz are small enough that search radii of 1-2 arcmin should be sufficient for cross-matching under typical conditions. By examining bulk trends in amplitude variability, we place upper limits on the modulation index associated with ionospheric scintillation of 1-3 per cent for the various nights. For sources fainter than ˜1 Jy, this variation is below the image noise at typical MWA sensitivities. Our results demonstrate that the ionosphere is not a significant impediment to the goals of time-domain science with the MWA at 154 MHz.

  4. The effect of moving cold fronts over Central Europe to the variability of the ionosphere

    NASA Astrophysics Data System (ADS)

    Potuznikova, Katerina; Koucka Knizova, Petra; Boska, Josef; Sindelarova, Tereza; Mosna, Zbysek

    2015-04-01

    Cold fronts represent well known source of atmospheric waves, (especially short and medium scale AGW - acoustic gravity waves), that are able to propagate up to the ionospheric heights. In our study we focus on the effects of the transitions of cold front over the region of Central Europe on the variations of the ionosphere. We concentrate on periods of low solar and geomagnetic activity. Neutral atmosphere data are compared with the wave-like oscillations in the E and F layer. Our tropospheric data comprise synoptic maps on of 500 hPa and 850 hPa geopotential heights. Within ionospheric data we search for variability that is linked to the tropospheric disturbances. The ionospheric parameters (electron concentration and corresponding height) we analyse by the wavelet transform method. The Modern HF digisonde DPS-4 D (Digisonde Portable Sounder), which is in operation at the Pruhonice observatory (49.59 N; 14.33 E) of the Institute of Atmospheric Physics, Prague (IAP) since 2004, represents an excellent source of the ionospheric data for Central Europe. Pruhonice digisonde usually operates in standard mode - one ionogram and electron density profie N(h) each 15 minutes. Besides that, data from several european stations of the digisonde world network (data from Juliusruhe, Chilton, Brusel, Roma and Tortosa digisonde stations) are included in the study.

  5. Ionospheric Asymmetry Evaluation using Tomography to Assess the Effectiveness of Radio Occultation Data Inversion

    NASA Astrophysics Data System (ADS)

    Shaikh, M. M.; Notarpietro, R.; Yin, P.; Nava, B.

    2013-12-01

    The Multi-Instrument Data Analysis System (MIDAS) algorithm is based on the oceanographic imaging techniques first applied to do the imaging of 2D slices of the ionosphere. The first version of MIDAS (version 1.0) was able to deal with any line-integral data such as GPS-ground or GPS-LEO differential-phase data or inverted ionograms. The current version extends tomography into four dimensional (lat, long, height and time) spatial-temporal mapping that combines all observations simultaneously in a single inversion with the minimum of a priori assumptions about the form of the ionospheric electron-concentration distribution. This work is an attempt to investigate the Radio Occultation (RO) data assimilation into MIDAS by assessing the ionospheric asymmetry and its impact on RO data inversion, when the Onion-peeling algorithm is used. Ionospheric RO data from COSMIC mission, specifically data collected during 24 September 2011 storm over mid-latitudes, has been used for the data assimilation. Using output electron density data from Midas (with/without RO assimilation) and ideal RO geometries, we tried to assess ionospheric asymmetry. It has been observed that the level of asymmetry was significantly increased when the storm was active. This was due to the increased ionization, which in turn produced large gradients along occulted ray path in the ionosphere. The presence of larger gradients was better observed when Midas was used with RO assimilated data. A very good correlation has been found between the evaluated asymmetry and errors related to the inversion products, when the inversion is performed considering standard techniques based on the assumption of spherical symmetry of the ionosphere. Errors are evaluated considering the peak electron density (NmF2) estimate and the Vertical TEC (VTEC) evaluation. This work highlights the importance of having a tool which should be able to state the effectiveness of Radio Occultation data inversion considering standard

  6. Effects of a Weak Planetary Field on a Model Venus Ionosphere

    NASA Astrophysics Data System (ADS)

    Luhmann, Janet G.; Ma, Yingjuan; Villarreal, Michaela

    2014-05-01

    There are a number of attributes of the near-Venus space environment and upper atmosphere that remain mysterious, including occasional large polar magnetic field stuctures seen on VEX and nightside ionospheric holes seen on PVO. We have been exploring the consequences of a weak global dipole magnetic field of Venus using results of BATS-R-US MHD simulations. An advantage of these models is that they include the effects on a realistic ionosphere. We compare some of the weak magnetosphere's ionospheric properties with the typical unmagnetized ionsphere case. The results show the differences can be quite subtle for dipole fields less than ~10 nT at the equator, as might be expected. Nevertheless the dipole fields do produce distinctive details, especially in the upper regions.

  7. VLF Radio Observations and Modeling of the Ionospheric Effects of SGR 1550-5418

    NASA Astrophysics Data System (ADS)

    Carlson, B. E.; Lehtinen, N. G.; Cohen, M.; Fishman, G. J.; Kouveliotou, C.; van der Horst, A.; Chaplan, V.; Inan, U. S.

    2010-12-01

    Cosmic gamma-ray bursts ionize the upper atmosphere, affecting sub-ionospheric propagation of very-low-frequency (VLF) radio waves. Perturbations of VLF radio signals can therefore be used to study gamma-ray burst effects on the ionosphere. We present observations of VLF radio signal perturbations coincident with bursts observed by the Fermi satellite to be produced by soft gamma-ray repeater (SGR) 1550-5418 on January 22, 2009. Massive VLF signal amplitude perturbations as large as 15 dB are seen coincident with the gamma-ray events. Models of gamma-ray ionization and chemical recovery of the upper atmosphere are then used to drive simulations of VLF radio propagation. Simulation results are compared to the observed radio data and to Fermi gamma-ray observations and are used to constrain the properties of the ionosphere and the gamma-ray events.

  8. Ionospheric effects of the Mt. Kirishima volcanic eruption as seen from subionospheric VLF observations

    NASA Astrophysics Data System (ADS)

    Rozhnoi, A.; Hayakawa, M.; Solovieva, M.; Hobara, Y.; Fedun, V.

    2014-01-01

    Data from the Pacific network of VLF receivers have been used to study the response of the lower ionosphere to the January 2011 Mt. Kirishima (South Japan) volcanic eruption. A major explosive eruption occurred on January 27, which was preceded by several small eruptions. Perturbations of nighttime subionospheric VLF signals have been detected on the day of the first small eruption on January 18 (UT) with the maximum observed about 1.5 h after the eruption. The nighttime signal remained disturbed during the subsequent pre-eruptive and eruptive activity of Mt. Kirishima. The daytime perturbations were not observed. The frequency of the maximum spectral amplitude was found to be in the range of periods of 6-30 min, which corresponds to the periods of internal gravity waves. These results suggest that the observed VLF ionospheric effects can possibly be produced by the penetration of gravity waves caused by the volcanic activity into the ionosphere.

  9. Calculation of ionospheric effects due to acoustic radiation from an underground nuclear explosion

    NASA Astrophysics Data System (ADS)

    Rudenko, G. V.; Uralov, A. M.

    1995-03-01

    Within the framework of the ionospheric detection of underground nuclear tests, we have developed analytic computing technique for the acoustic effect of a confined nuclear explosion on upper layers of the Earth's atmosphere. The relationship is obtained, which relates the nuclear test parameters (depth, explosion yield, and mechanical properties of the rock) to the vertical displacement of the ionosphere produced by the shock wave over the explosion's epicenter. It is also shown that most of the acoustic energy produced by a confined underground nuclear explosion escapes upward, with only a small fraction being captured by the atmospheric waveguide.

  10. Magnetic field-aligned coupling effects on ionospheric plasma structure

    NASA Technical Reports Server (NTRS)

    Heelis, R. A.; Vickrey, J. F.

    1990-01-01

    This paper presents a mathematical description of the electrical coupling and dynamics of plasma structure in the E and F regions. The scale size dependence of the electric field coupling along the magnetic field is examined for a realistic background ionosphere and atmosphere. It is shown that, while normalized potentials map reciprocally between two altitudes, the potential disturbance caused by a fixed amplitude plasma density perturbation does not. The magnitude of electrostatic potential created by structured ionization is also shown to be strongly dependent on the altitude of the structure. The role of diffusion parallel to the magnetic field in the redistribution and decay of plasma structure is illustrated.

  11. Possible effects of ionospheric beating for the formation of Pc1 pearl structures based on 6-year ground observations in Canada, Russia and Japan

    NASA Astrophysics Data System (ADS)

    Jun, C. W.; Shiokawa, K.; Connors, M. G.; Schofield, I.; Poddelsky, I.; Shevtsov, B.

    2014-12-01

    We investigate pearl structures (amplitude modulation) of Pc1 pulsations simultaneously observed at Athabasca (ATH, 54.7N, 246.7E, L=4.3) in Canada, Magadan (MGD, 60.1N, 150.7E, L=2.6) in Russia, and Moshiri (MOS, 44.4N, 142.3E, L=1.5) in Japan. From a 6-year period of ground observations, from 2008 to 2013, we selected 150 events at longitudinally separated stations (ATH and MGD, group 1), 782 at latitudinally separated stations (MGD and MOS, group 2), all with high coherence of Pc1 waveforms (r > 0.5). As a result, we found that the peak occurrence rates of simultaneous Pc1 events were at 12-18 UT in group1, when ATH was in the morning sector and MGD in the midnight sector. In group 2, the peak was at 18-21 UT, with MGD and MOS in the morning sector. Using cross-correlation analysis, we confirmed the similarity of Pc1 pearl structures at different stations during Pc1 event timing. 82 % of Pc1 events in group 1 were less than 40 % of similarity of Pc1 pearl structures. In addition, 18 % of Pc1 events in group 1, which are over than 40 % of similarity of Pc1 pearl structures, were concentrated at 10-18 UT. According to polarization angle distribution in group 1, 57 % of Pc1 events occurred between ATH and MGD. Most of those events had high similarity of Pc1 amplitude envelopes. We investigated the relationship between the similarity of Pc1 pearl structures and geomagnetic activities (AE and SYM-H indices). The AE index seemed suddenly to start decreasing before the Pc1 onset and increasing after 80 min. The variation of SYM-H index was increasing 2 hours before Pc1 onset. From our statistical analysis, we suggest that the beating process in the ionosphere could be the dominant generation mechanism of Pc1 pearl structures in the ionosphere. It seems that the ionospheric duct in dawn sector of the ionosphere is well-defined during Pc1 pulsation propagating from ionospheric sources to stations. In order to understand the beating process in the ionosphere more clearly

  12. The effects on the ionosphere of inertia in the high latitude neutral thermosphere

    NASA Technical Reports Server (NTRS)

    Burns, Alan; Killeen, Timothy

    1993-01-01

    High-latitude ionospheric currents, plasma temperatures, densities, and composition are all affected by the time-dependent response of the neutral thermosphere to ion drag and Joule heating through a variety of complex feedback processes. These processes can best be studied numerically using the appropriate nonlinear numerical modeling techniques in conjunction with experimental case studies. In particular, the basic physics of these processes can be understood using a model, and these concepts can then be applied to more complex realistic situations by developing the appropriate simulations of real events. Finally, these model results can be compared with satellite-derived data from the thermosphere. We used numerical simulations from the National Center of Atmospheric Research Thermosphere/Ionosphere General Circulation Model (NCAR TIGCM) and data from the Dynamic Explorer 2 (DE 2) satellite to study the time-dependent effects of the inertia of the neutral thermosphere on ionospheric currents, plasma temperatures, densities, and composition. One particular case of these inertial effects is the so-called 'fly-wheel effect'. This effect occurs when the neutral gas, that has been spun-up by the large ionospheric winds associated with a geomagnetic storm, moves faster than the ions in the period after the end of the main phase of the storm. In these circumstances, the neutral gas can drag the ions along with them. It is this last effect, which is described in the next section, that we have studied under this grant.

  13. Effects of Solar Activity Variation on the Low Latitude Topside Nighttime Ionosphere

    NASA Astrophysics Data System (ADS)

    Min, K. W.; Kim, H.; Park, J.; Park, S.; Lee, J.; Lee, E.

    2006-05-01

    We investigate the effects of solar activity variation on the topside nighttime ionosphere of the low latitude region using the DMSP F15 data taken at 840 km altitude as well as the KOMPSAT-1 data taken at 685 km altitude. The change of the ionospheric parameters shows a good correlation with F 10.7 variations, in accordance with 27-day solar rotations. The correlation is especially good when a time delay of 1 to 2 days is incorporated and when the F 10.7 variation is large. Vertical drift velocities and the oxygen ion fractions, observed by DMSP F15, are also seen to have good correlations with F 10.7 with similar time delays. We suspect the delayed correlation of the ionospheric response is closely related to the neutral density changes affected by the solar activity as it has been reported that changes in the solar soft X-rays and the neutral density are well correlated with a delay of approximately 1.5 days. We also compare the ionospheric response for the solar maximum period with that of the declining phase using the data for the period 2000 through 2004 during which average F 10.7 varied from over 200 to around 100. The density does not seem to saturate at high F 10.7 values even during the solar maximum phase, in contrast to the daytime ionospheric response reported previously. The density during the low solar activity cycle is observed to be lower than that of the high solar activity for the same F 10.7 values, implying the long term dependence of the ionosphere in addition to the prompt response of 1 to 2 days.

  14. Ionospheric effects of the missile destruction on 9 December 2009

    NASA Astrophysics Data System (ADS)

    Kozlovsky, Alexander; Shalimov, Sergey; Lukianova, Renata; Lester, Mark

    2014-05-01

    We report on ionosonde and meteor radar observations made in Sodankylä Geophysical Observatory (SGO, 67°22'N, 26°38'E, Finland) on 9 December 2009, during a test launch of the Russian solid propellant military missile. Due to a technical problem, the missile was self-destroyed around 07 UT at an ionospheric height (near 200 km altitude) over the Kola Peninsula (Russia), at a distance about 500 km to east from the observatory. Products of the explosion were spread into a large area and reached the region of SGO meteor radar observations in about 2 h (around 09 UT). After about 3 h (around 10 UT), a sporadic E layer presumably composed of the remains including long-lived metallic (aluminum and its oxides) ions, was observed near the zenith of the SGO ionosonde. We discuss possible mechanisms accounting for transport of the remains. (1) Since the event occurred during a long-lasting period of extremely low solar and magnetic activity, the ionospheric electric field was unlikely to play a substantial role in the transport of the remains and sporadic E layer formation. (2) The horizontal transport of the remains cannot be explained by the neutral winds based on empirical models. (3) Theoretical estimations suggest that the observed transport could be due to thermospheric turbulence.

  15. The ionospheric storm effects at low latitudes and equatorial regions during the 2015 St. Patrick's Day storm

    NASA Astrophysics Data System (ADS)

    Kuai, Jiawei; Liu, Libo

    2016-04-01

    Ionospheric storms manifest an extreme state of the ionosphere caused by geomagnetic storms, and the complicated ionospheric storm effects are always a research focus for the ionospheric community. The geomagnetic storm occurring on 17-20 March 2015, which is characterized by the minimum SYM-H value -233 nT, is an extremely event of space weather in the current 24th solar cycle. In this report, multiple observations including GPS total electron content (TEC), ionospheric parameters from ionosondes, and magnetometer data are used to investigate the profound ionospheric disturbances at low latitudes and equatorial regions during this geomagnetic storm. Through observation and analysis, the disturbed electric fields, which comprise penetration electric fields (PEFs) and disturbance dynamo electric fields (DDEFs), are closely related to the ionospheric storm effects at low latitudes and equatorial regions during this event. The decisive role of electrodynamics at equatorial regions are focused in view of these observations to understand the complete process of the low-latitude and equatorial ionospheric response during the great geomagnetic storm.

  16. Tropical cyclone effects on the equatorial ionosphere: First result from the Indian sector

    NASA Astrophysics Data System (ADS)

    Guha, Anirban; Paul, Bapan; Chakraborty, Monti; De, Barin Kumar

    2016-06-01

    Ionospheric response to the effects of tropical cyclone (TC) "Mahasen" in 2013 and Hudhud in 2014 is studied on the equatorial ionosphere over the Indian sector for the first time using Global Positioning System-derived total electron content (TEC) data. We observed an anomalous decrease of 3.8 TEC unit (1 TECU = 1016 el m-2) in vertical TEC (VTEC) value from the monthly mean for TC Mahasen and 2.1 TECU for TC Hudhud on the day of the landfall. We have also observed similar VTEC depletion of 1.5, 1.9, and 2.1 TECU for three different receivers on the landfall day for TC Vongfong over Japan. This anomalous decrease is observed over a wide zone around the trajectory of the cyclone during the active cyclonic storm stage. This observed anomaly might be the result of combined effect of TC-inspired gravity waves, ejection of neutral particles from the terminator of a TC, and lightning electric fields which redistribute the chemical constituents of the ionosphere by increasing the number of neutral particles at different ionospheric heights, thus decreasing the TEC over the satellite-receiver path.

  17. Effect of Solar Eclipse of March 20, 2015 on the Ionosphere

    NASA Astrophysics Data System (ADS)

    Ippolito, Alessandro; Settimi, Alessandro; Sabbagh, Dario; Scotto, Carlo; Sgrigna, Vittorio

    2016-04-01

    The effect on the ionosphere of solar eclipse of March 20, 2015 on different ionospheric layers has been studied, using the vertical ionospheric soundings from the ionosondes of Rome, Gibilmanna and San Vito dei Normanni. The response of the critical frequencies foF1 and foF2 have been investigated during the solar eclipse. The DuCharme and Petrie's formulation used to estimate foF1 has been corrected taking into account the decreased solar irradiance. This effect has been modeled by a Solar Obscuration Factor (SOF) and comparison with experimental values has been performed. A further study on the occurrence of the Sporadic E layer during the eclipse is here presented. As reported in literature, sporadic E layer appears during the eclipse, if the ionograms for 3 days before and 3 days after are analysed. When a wider set of days before and after the eclipse event are taken into account this phenomenon does not appear so clear. The behaviour of a regional adaptive and assimilative 3D ionospheric model has been tested as well, assimilating plasma frequency profiles fp(h). The study of the model behaviour in such particular condition has let us introduce corrections to F1 and E region modeling, improving its performances.

  18. Impacts of Space Weather Effects on the Ionospheric Vertical Total Electron Content

    NASA Astrophysics Data System (ADS)

    Hinrichs, Johannes; Bothmer, Volker; Mrotzek, Niclas; Venzmer, Malte; Erdogan, Eren; Dettmering, Denise; Limberger, Marco; Schmidt, Michael; Seitz, Florian; Börger, Klaus; Brandert, Sylvia; Görres, Barbara; Kersten, Wilhelm F.

    2016-04-01

    Space weather effects on the terrestrial ionospheric vertical total electron content (VTEC) are caused by solar EUV- and X-Ray emissions, solar wind streams and coronal mass ejections (CMEs), amongst other processes. They can lead to major disturbances of telecommunication and navigation systems. Accurately predicting the global VTEC distribution is thus of utmost importance for our societal infrastructure. Here we present results obtained within the German space situational awareness project OPTIMAP (OPerational Tool for Ionosphere Mapping And Prediction) through analyzing the solar effects on the global and regional distribution as well as on the temporal variation of the ionospheric VTEC. For the state-of-the-art analysis in the OPTIMAP project, key data from the GOES, SDO, ACE, SOHO, Proba2 and STEREO missions are analysed together with ground based parameters such as the F10.7 index. The ionospheric data are taken from global VTEC-maps provided by the International GNSS Service (IGS). The results will be used as input for the development of an improved operational VTEC forecast service providing forecasts up to five days in advance.

  19. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    NASA Astrophysics Data System (ADS)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-09-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  20. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    NASA Technical Reports Server (NTRS)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-01-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  1. Interplanetary magnetic field effects on high latitude ionospheric convection

    NASA Technical Reports Server (NTRS)

    Heelis, R. A.

    1985-01-01

    Relations between the electric field and the electric current in the ionosphere can be established on the basis of a system of mathematical and physical equations provided by the equations of current continuity and Ohm's law. For this reason, much of the synthesis of electric field and plasma velocity data in the F-region is made with the aid of similar data sets derived from field-aligned current and horizontal current measurements. During the past decade, the development of a self-consistent picture of the distribution and behavior of these measurements has proceeded almost in parallel. The present paper is concerned with the picture as it applies to the electric field and plasma drift velocity and its dependence on the interplanetary magnetic field. Attention is given to the southward interplanetary magnetic field and the northward interplanetary magnetic field.

  2. Effect of enhanced x-ray flux on the ionosphere over Cyprus during solar flares

    NASA Astrophysics Data System (ADS)

    Mostafa, Md. Golam; Haralambous, Haris

    2015-06-01

    In this work we study the effect of solar flares on the ionosphere over Cyprus. Solar flares are impulsive solar activity events usually coupled with Coronal Mass Ejection (CME). The arrival and the subsequent impact of solar flares on geospace, following an eruption on the Sun's surface is almost immediate (around 9 min) whereas the impact of CMEs is rather delayed (2-3 days) as the former is based on X-ray radiation whereas the latter phenomenon is related with particles and magnetic fields travelling at lower speeds via the Solar Wind. The penetration of X-rays down to the Dregion following such an event enhances the electron density. This increase can be monitored by ionosondes, which measure the electron density up to the maximum electron density NmF2. The significance of this increase lies on the increase of signal absorption causing limited window of operating frequencies for HF communications. In this study the effect of enhanced X-ray flux on the ionosphere over Cyprus during solar flares has been investigated. To establish the correlation and extent of impact on different layers, data of X-ray intensity from Geostationary Operational Environmental Satellite (GOES) and ionospheric characteristics (D & F layer) over Nicosia station (35° N, 33° E) were examined for all solar flares during the period 2011-2014. The analysis revealed a positive and good correlation between frequency of minimum reflection, fmin and X-ray intensity for D layer demonstrating that X-rays play a dominant role in the ionization of lower ionosphere. Hence, X-ray flux can be used as a good proxy for studying the solar flare effects on lower ionosphere. The correlation coefficient between maximum electron density of F layer, NmF2 and X-ray intensity was found to be poor.

  3. Effects of an atmospheric gravity wave on the midlatitude ionospheric F layer

    SciTech Connect

    Millward, G.H.; Moffett, R.J.; Quegan, S.; Fuller-Rowell, T.J. |

    1993-11-01

    A modeling study of the atmospheric response to a single short burst of enhanced ion convection at high latitudes, undertaken using the Sheffield/University College London/Space Environment Laboratory coupled ionosphere/thermosphere model, has revealed a large-scale atmospheric gravity wave (AGW) moving equatorward from a source in the dawn sector auroral zone. The wave propagates to midlatitude, perturbing the ionosphere and creating a traveling ionospheric disturbance. Analysis of the interaction between the thermosphere and ionosphere during the passage of the AGW at midlatitudes is undertaken and reveals a complex height-dependent response. At lower altitudes the field-aligned velocity of the ions follows closely the field-aligned wind. Above the F peak, diffusion processes become important and the field-aligned ion velocity shows fluctuations which exceded those in the wind. Changes in N{sub m}F{sub 2} and h{sub m} F{sub 2}, during the interaction, are due to redistribution of plasma alone with changes in production and loss insignificant. As the F layer is lifted by the positive surge in the gravity wave, N{sub m}F{sub 2} decreases, due to a divergence in the ion flux, itself caused by the combination of a divergent neutral wind and an increase in the effects of diffusion with altitude. The slab thickness also increases. Subsequently, the opposite happens as h{sub m}F{sub 2} falls below its equilibrium value. 14 refs., 9 figs., 1 tab.

  4. Review of radio-frequency, non-linear effects on the ionosphere

    NASA Astrophysics Data System (ADS)

    Gordon, William E.; Duncan, Lewis M.

    1988-06-01

    The nonlinear effects of powerful radio waves on the ionosphere are reviewed. The history of such effects beginning in the early 1930s are retold, highlighting important events up to the late 1960s. A phenomenological treatment is then given to ohmic heating, parametric instabilities, self-focusing, and kilometric-scale irregularities, meter-scale irregularities, and a collection of recently discovered effects. The benefits that international cooperation would provide for this research are discussed, giving a list of future research challenges.

  5. Ionospheric effects of the magnetic storm on 18-22 August 2003 according to the data of HF sounding of the artificial ionospheric turbulence

    NASA Astrophysics Data System (ADS)

    Uryadov, V. P.; Vertogradov, G. G.; Vertogradov, V. G.; Ponyatov, A. A.; Frolov, V. L.

    2004-07-01

    The results of the experimental studies of the influence on the HF signals characteristics of the artificial ionospheric turbulence (AIT) created by the impact on the ionosphere of the powerful radioemission of the heating facilities SURA (Nizhny Novgorod region of Russia) are presented. The measurements were conducted on 18-22 August 2003 in the evening time (1600-2000 UT) at the linearly frequency modulated (LFM) sounding paths: Khabarovsk-Rostov on Don, Irkutsk-Rostov on Don, and Inskip (England)-Rostov on Don and also at the Moscow-Rostov on Don path by the reception of signals of the RVM precise time stations. It was found that at the presence of a strong sporadic E layer at the Irkutsk-SURA path, there appeared the conditions for the SW signal propagation through the upper ionosphere at the frequencies exceeding the maximum usable frequency of the standard hop-like propagation through the F region. The presence of these signals was detected by descending of radio waves from F region altitudes to the Rostov-on-Don reception point due to their scatter at artificial small-scale magnetically oriented irregularities. Using the measurements of the Doppler shift of the frequency of the signals scattered at AIT, ionospheric effects of the magnetic storm occurred in the period of the experiment were studied. It is shown that during the magnetic storm the electric field and irregularity drift velocity at F region heights over the SURA facility reached values of ~8.6 mV m-1 and 186 m s-1, respectively, that is, the values typical for the high-latitude ionosphere. The relation of the quasiperiodic oscillations of the Doppler frequency of the scattered signal to propagation of magnetohydrodynamics waves excited during a magnetic storm is considered.

  6. Ionospheric research opportunity

    NASA Astrophysics Data System (ADS)

    Rickel, Dwight

    1985-05-01

    Ground-based explosions have been exploited successfully in the past as a relatively controlled source for producing ionospheric disturbances. On June 25, the Defense Nuclear Agency will conduct a high explosives test on the northern section of the White Sands Missile Range. Approximately 4,800 tons of ammonium nitrate and fuel oil (ANFO) will be detonated at ground level, producing an acoustic shock wave with a surface pressure change of approximately 20 mbar at a 6 km range. This shock front will have sufficient strength to propagate into the ionosphere with at least a 10% change in the ambient pressure across the disturbance front in the lower F region. Such an ionospheric perturbation will give ionospheric researchers an excellent opportunity to investigate acoustic propagation at ionospheric heights, shock dissipation effect, the ion-neutral coupling process, acoustic-gravity wave (traveling ionospheric disturbance) generation mechanisms, and associated RF phenomena.

  7. The flywheel effect: Ionospheric currents after a geomagnetic storm

    SciTech Connect

    Deng, W.; Killeen, T.L.; Burns, A.G. ); Roble, R.G. )

    1991-10-01

    In the period following a geomagnetic storm the high-latitude, magnetospheric-driven convection pattern is normally weak. However, the neutral circulation, set up by ion-neutral momentum coupling during the main phase of the storm, may continue for several hours after the storm has ended. This persistent neutral circulation has the potential to drive Hall currents for some hours. In this paper the authors investigate these flywheel' currents by simulating a storm which occurred on the 23rd of November 1982 using the National Center for Atmospheric Research Thermosphere Ionosphere General Circulation Model (NCAR-TIGCM). The resulting high-latitude, height-integrated Hall currents are dominated by the neutral-wind-driven component for several hours after the end of main phase of the storm. The direction of these currents is reversed from normal. Analysis of the neutral and ion components of this current system indicates that the neutral component may drive as much as 80% of the high-latitude current system immediately after the storm has ended, and may continue to dominate this system for 4 to 5 hours.

  8. Stratospheric Sudden Warming Effects on the Ionospheric Migrating Tides during 2008-2010 observed by FORMOSAT-3/COSMIC

    NASA Astrophysics Data System (ADS)

    Lin, J.; Lin, C.; Chang, L. C.; Liu, H.; Chen, W.; Chen, C.; Liu, J. G.

    2013-12-01

    In this paper, ionospheric electron densities obtained from radio occultation soundings of FORMOSAT-3/COSMIC are decomposed into their various constituent tidal components for studying the stratospheric sudden warming (SSW) effects on the ionosphere during 2008-2010. The tidal analysis indicates that the amplitudes of the zonal mean and major migrating tidal components (DW1, SW2 and TW3) decrease around the time of the SSW, with phase/time shifts in the daily time of maximum around EIA and middle latitudes. Meanwhile consistent enhancements of the SW2 and nonmigrating SW1 tides are seen after the stratospheric temperature increase. In addition to the amplitude changes of the tidal components, well matched phase shifts of the ionospheric migrating tides and the stratospheric temperatures are found for the three SSW events, suggesting a good indicator of the ionospheric response. Although the conditions of the planetary waves and the mean winds in the middle atmosphere region during the 2008-2010 SSW events may be different, similar variations of the ionospheric tidal components and their associated phase shifts are found. Futher, these ionospheric responses will be compared with realistic simulations of Thermosphere-Ionosphere-Mesophere-Electrodynamics General Circulation Model (TIME-GCM) by nudging Modern-Era Retrospective analysis for Research and Applications (MERRA) data.

  9. Optimization of satellite coverage in observing cause and effect changes in the ionosphere, magnetosphere, and solar wind. Master's thesis

    SciTech Connect

    Loveless, M.J.

    1993-06-01

    Disturbances in the ionosphere sometimes cause adverse effects to communications systems, power grids, etc. on the earth. Currently, very little, if any, lead time is given to warn of an impending problem. If a forecast could be made of ionospheric occurrences, some lead time may be given to appropriate agencies and equipment may be saved. Most changes that occur in the ionosphere are a result of interaction of energy, currents, etc. between the magnetosphere and/or solar wind. Before a forecast can be made, however, improvement of ionospheric models currently in use need to be made. The models currently depict features in various regions of the ionosphere but not always where these features are actually observed. So an improvement to the model is needed to create an accurate baseline condition, or in other words an accurate depiction of the current ionosphere. Models could be improved by inputting real-time data from the ionosphere into the model. This data would come from satellites and/or ground-based stations.

  10. On differences of magnetic storm effects on ionosphere above neighbouring locations

    NASA Astrophysics Data System (ADS)

    Buresova, Dalia; Bosco Habarulema, John; Thobeka Katamzi, ama; Lastovicka, Jan; Chum, Jaroslav; Sindelarova, Tereza; Mosna, Zbysek; Urbar, Jaroslav; Kouba, Daniel

    2016-04-01

    The paper is focused on cases of different ionospheric reaction above a few neighbouring European and South African locations to disturbances induced by CIR/HSS-related storms. Most of storms involved in the analysis occurred within the 23rd and 24th solar cycle. We analysed variability of the F2 layer critical frequency foF2, peak height hmF2 and GPS TEC values for the entire storm period. Both positive and negative deviations of foF2, hmF2 and TEC have been obtained independently on season. Observed differences in ionospheric effects (mainly in positive effects) for the individual events and neighbouring locations are well pronounced both in foF2 and hmF2. We considered an impact of several factors (e.g. intensity of geomagnetic storm, local geomagnetic situation, and season, difference between geographic and geomagnetic coordinates etc.) with aim to identify the "main players".

  11. The spectral effect of the ionospheric irregularities on the scintillation of transionospheric signals

    SciTech Connect

    Lyle, R.; Kuo, S.P.; Huang, J.

    1995-12-31

    The effect of the spectral width {Delta}k of the ionospheric density irregularity an scintillation of the transionospheric signal is examined. The results show that the Scinti1lation Index S{sub 4} depends strongly on {Delta}/k which can enhance or reduce S{sub 4} value depending on the wave length of the irregularity. However, a 10% spectral width reduces S{sub 4} to a negligibly small value almost independent of the scale length of the irregularity.

  12. Magnetic zenith effect in the ionospheric modification by an X-mode HF heater wave

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Haggstrom, I.; Rietveld, M. T.; Yeoman, T. K.

    2013-12-01

    We report experimental results aimed at an investigation of the magnetic zenith effect in the high latitude ionosphere F region from ionospheric modification by powerful HF heater wave with X-polarization. The ionospheric modification was produced by the HF heating facility at Tromsø (Norway) using the phased array with a narrow beam with of 6 degrees. Effective radiated power was varied between 450 and 1000 MW. The HF pump wave radiated in different directions relative to the magnetic field from 90 degrees (vertical) to 78 degrees (magnetic zenith) at frequencies near or above the ordinary-mode critical frequency. The response of the ionosphere plasma to the HF pump wave impact was checked by the UHF incoherent scatter radar located in the immediate vicinity of the HF heater. UHF radar was probing the plasma parameters, such as electron density and temperature (Ne and Te), HF-induced plasma and ion lines in the altitude range from 90 to 600 km. It was running in a scanning mode when UHF radar look angles were changed from 74 to 90 degrees by 1 or 2 degree step. It was clearly demonstrated that the strongest heater-induced effects took place in the magnetic field-aligned direction when HF pointing was also to the magnetic zenith. It was found that strong Ne enhancement of up to 80 % along magnetic field (artificial density ducts) were excited only under HF pumping towards magnetic zenith. The width of the artificial ducts comes to only 2 degrees. The Ne increases were accompanied by the Te enhancements of up to about 50 %. Less pronounced Te increases were also observed in the directions of 84 and 90 degrees. Strong Ne enhancements can be accompanied by excitation of strong HF-induced plasma and ion lines. Thus experimental results obtained points to the strong magnetic zenith effect due to self-focusing powerful HF radio wave with X-mode polarization.

  13. Effect of finite blob size on the current convective instability in the auroral ionosphere. Memorandum report

    SciTech Connect

    Huba, J.D.; Chaturvedi, P.K.

    1986-04-11

    It has been suggested that the current convective instability may be responsible for the structuring, i.e., generation of density irregularities, of density enhancements (known as blobs) in the auroral ionosphere. However, previous theories have neglected the finite extent of the blob along the geomagnetic field. In this paper, a nonlocal theory of the current convective instability is developed, which considers the finite extent of an ionospheric blob parallel to the geomagnetic field. It was found that the growth rate of the instability can be substantially reduced in the finite-sized blob case from the value obtained in the local approximation for an infinitely long blob. For auroral ionosphere parameters, the reduction in the growth rate for medium scale irregularities (1-10 km) can be one to two orders of magnitude for the typical observed values of blob sizes (approx. a few hundred km). Thus, it appears that the current convective instability is not a viable mechanism to generate scintillation causing irregularities, i.e., 1-10 km irregularities.

  14. Effect of interhemispheric currents on equivalent ionospheric currents in two hemispheres: Simulation results

    NASA Astrophysics Data System (ADS)

    Lyatskaya, Sonya; Lyatsky, Wladislaw; Zesta, Eftyhia

    2016-02-01

    In this research, we used numerical simulation to study the effect of interhemispheric field-aligned currents (IHCs), going between two conjugate ionospheres in two hemispheres, on the equivalent ionospheric currents (EICs). We computed the maps of these EICs in two hemispheres during summer-winter conditions, when the effect of the IHCs is especially significant. The main results may be summarized as follows. (1) In winter hemisphere, the IHCs may significantly exceed and be a substitute for the local R1 currents, and they may strongly affect the magnitude, location, and direction of the EICs in the nightside winter auroral ionosphere. (2) While in summer polar cap the EICs tend to flow sunward, and in winter polar cap the EICs turn toward dawn due to the effect of the IHCs. (3) The well-known reversal in the direction of the EICs in the vicinity of the midnight meridian, in winter hemisphere, is observed not at the polar caps boundary (as usually expected) but equatorward of this boundary in the region of the IHCs location. (4) The IHCs in winter hemisphere may be, in fact, not only a substitute for the R1 currents but also the major source of the Westward Auroral Electrojet, observed in both hemispheres during substorm activity.

  15. Effects of the Ionosphere on Passive Microwave Remote Sensing of Ocean Salinity from Space

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Abaham, Saji; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    Among the remote sensing applications currently being considered from space is the measurement of sea surface salinity. The salinity of the open ocean is important for understanding ocean circulation and for modeling energy exchange with the atmosphere. Passive microwave remote sensors operating near 1.4 GHz (L-band) could provide data needed to fill the gap in current coverage and to complement in situ arrays being planned to provide subsurface profiles in the future. However, the dynamic range of the salinity signal in the open ocean is relatively small and propagation effects along the path from surface to sensor must be taken into account. In particular, Faraday rotation and even attenuation/emission in the ionosphere can be important sources of error. The purpose or this work is to estimate the magnitude of these effects in the context of a future remote sensing system in space to measure salinity in L-band. Data will be presented as a function of time location and solar activity using IRI-95 to model the ionosphere. The ionosphere presents two potential sources of error for the measurement of salinity: Rotation of the polarization vector (Faraday rotation) and attenuation/emission. Estimates of the effect of these two phenomena on passive remote sensing over the oceans at L-band (1.4 GHz) are presented.

  16. HF Propagation Effects Caused by an Artificial Plasma Cloud in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Joshi, D. R.; Groves, K. M.; McNeil, W. J.; Caton, R. G.; Parris, R. T.; Pedersen, T. R.; Cannon, P. S.; Angling, M. J.; Jackson-Booth, N. K.

    2014-12-01

    In a campaign carried out by the NASA sounding rocket team, the Air Force Research Laboratory (AFRL) launched two sounding rockets in the Kwajalein Atoll, Marshall Islands, in May 2013 known as the Metal Oxide Space Cloud (MOSC) experiment to study the interactions of artificial ionization and the background plasma and measure the effects on high frequency (HF) radio wave propagation. The rockets released samarium metal vapor in the lower F-region of the ionosphere that ionized forming a plasma cloud that persisted for tens of minutes to hours in the post-sunset period. Data from the experiments has been analyzed to understand the impacts of the artificial ionization on HF radio wave propagation. Swept frequency HF links transiting the artificial ionization region were employed to produce oblique ionograms that clearly showed the effects of the samarium cloud. Ray tracing has been used to successfully model the effects of the ionized cloud. Comparisons between observations and modeled results will be presented, including model output using the International Reference Ionosphere (IRI), the Parameterized Ionospheric Model (PIM) and PIM constrained by electron density profiles measured with the ALTAIR radar at Kwajalein. Observations and modeling confirm that the cloud acted as a divergent lens refracting energy away from direct propagation paths and scattering energy at large angles relative to the initial propagation direction. The results confirm that even small amounts of ionized material injected in the upper atmosphere can result in significant changes to the natural propagation environment.

  17. Implementation of Inductive Magnetosphere-Ionosphere Coupling and its Effects on Global MHD Magnetospheric Simulations

    NASA Astrophysics Data System (ADS)

    Xi, S.; Lotko, W.; Zhang, B.; Brambles, O.; Wiltberger, M. J.; Lyon, J.; Merkin, V. G.

    2010-12-01

    In global modeling, magnetosphere-ionosphere (MI) coupling physically connects a global magnetospheric (GM) model and a global ionospheric-thermospheric (GIT) model. The field-aligned current from the GM model and the conductance distributions from the GIT model are used in a Poisson equation derived from the ionospheric Ohm's law combined with current continuity to determine the electrostatic potential in the ionosphere. In current GM models, this electrostatic potential is mapped to the inner boundary of the GM simulation to determine electrostatic boundary conditions on the electric field and MHD velocity there. Inductive effects and the finite Alfven transit time between the low-altitude GM boundary and the high-altitude GIT boundary (MI gap region) are neglected in this formulation of MI coupling. Using fields and currents derived from Lyon-Fedder-Mobarry GM simulations, and conductance distributions derived from its standalone empirical conductance model in the MI coupling Poisson equation, we have computed the fast Fourier transform of the electrostatic field at the low-altitude LFM simulation boundary as described above, and the FFT of the inductive electric field at the boundary under the assumption that μ 0 Σ P vA ≤ 1, where Σ P is the ionospheric Pedersen conductance and vA is the smallest value of the Alfven speed in the MI gap region. In this regime, the complete electric field at the low-altitude simulation boundary includes the usual mapped electrostatic field with an inductive addition for which the finite Alfven transit time and the diversion of field-aligned into polarization currents in the gap region are negligible (Lotko, 2004). By comparing the boundary-averaged spectra of the electrostatic and so-determined inductive fields, we confirm that the purely electrostatic formulation of MI coupling is valid when the MHD state varies on times scales exceeding about 200 s. For faster MHD time variations, the inductive electric field is shown to

  18. Modeling the ionospheric impact of tsunami-driven gravity waves with SAMI3: Conjugate effects

    NASA Astrophysics Data System (ADS)

    Huba, J. D.; Drob, D. P.; Wu, T.-W.; Makela, J. J.

    2015-07-01

    The Naval Research Laboratory first-principles ionosphere model SAMI3 is used to study the ionospheric effects associated with tsunami-driven gravity waves. Specifically, the Tohoku-Oki tsunami of 11 March 2011 is modeled. It is shown that gravity wave-induced variations in the neutral wind lead to plasma velocity variations both perpendicular and parallel to the geomagnetic field. Moreover, the electric field induced by the neutral wind perturbations can map to the conjugate hemisphere. Thus, electron density variations can be generated in both hemispheres which impact the total electron content (TEC) and 6300 Šairglow emission. It is found that the TEC exhibits variations of ≲ ±0.1 total electron content unit (1 TECU = 1016 el m-2) and the 6300 Šairglow emission variation is up to ˜±2.5% relative to the unperturbed background airglow.

  19. The 20 March 2015 total solar eclipse: effects in the high-latitude lower ionosphere

    NASA Astrophysics Data System (ADS)

    Cherniakov, Sergey; Tereshchenko, Valentina; Ogloblina, Olga; Vasiliev, Evgeny; Gomonov, Alexander

    2016-07-01

    The medium-wave facility of partial reflections of the Polar Geophysical Institute (observatory "Tumanny", 69 N, 35.7 E) has observed behavior of the lower high-latitude ionosphere during the 20 March 2015 total solar eclipse. There were several effects during the eclipse. Generally on the heights of the lower ionosphere the "short night" effect had shown, but at some heights local enhanced electron concentration were revealed and the behavior of the electron concentration had the wave-like form. It had seen also at the behavior of the total electron content of the lower ionosphere. The periods and behavior of the wave are considered. It can be explained by influence of acoustic-gravity waves which originated after cooling of the atmosphere by the lunar shadow during its supersonic movement along the earth surface. The periods and behavior of waves during the eclipse were also received using riometer data at the observatory "Tumanny" and the magnetometer at the observatory "Loparskaya" (68.63 N, 33.38 E).

  20. Ionospheric effects of rocket exhaust products (HEAO-C, Skylab and SPS-HLLV)

    SciTech Connect

    Zinn, J; Sutherland, D; Stone, S N; Duncan, L M; Behnke, R

    1980-10-01

    This paper reviews the current state of our understanding of the problem of ionospheric F-layer depletions produced by chemical effects of the exhaust gases from large rockets, with particular emphasis on the Heavy Lift Launch Vehicles (HLLV) proposed for use in the construction of solar power satellites. The currently planned HLLV flight profile calls for main second-stage propulsion confined to altitudes below 124 km, and a brief orbit-circularization maneuver at apogee. The second-stage engines deposit 9 x 10/sup 31/ H/sub 2/O and H/sub 2/ molecules between 56 and 124 km. Model computations show that they diffuse gradually into the ionospheric F region, where they lead to weak but widespread and persistent depletions of ionization and continuous production of H atoms. The orbit-circularization burn deposits 9 x 10/sup 29/ exhaust molecules at about 480-km altitude. These react rapidly with the F2 region 0/sup +/ ions, leading to a substantial (factor-of-three) reduction in plasma density, which extends over a 1000- by 2000-km region and persists for four to five hours. Also described are experimental airglow and incoherent-scatter radar measurements performed in conjunction with the 1979 launch of satellite HEAO-C, together with prelaunch and post-launch computations of the ionospheric effects. Several improvements in the model have been driven by the experimental observations. The computer model is described in some detail.

  1. Partial order of quantum effects

    NASA Astrophysics Data System (ADS)

    Lahti, Pekka J.; Ma̧czynski, Maciej J.

    1995-04-01

    The set of effects is not a lattice with respect to its natural order. Projection operators do have the greatest lower bounds (and the least upper bounds) in that set, but there are also other (incomparable) effects which share this property. However, the coexistence, the commutativity, and the regularity of a pair of effects are not sufficient for the existence of their infima and suprema. The structure of the range of an observable (as a normalized POV measure) can vary from that of a commutative Boolean to a noncommutative non-Boolean subset of effects.

  2. The effects of neutral inertia on ionospheric currents in the high-latitude thermosphere following a geomagnetic storm

    SciTech Connect

    Deng, W.; Killeen, T.L.; Burns, A.G. ); Roble, R.G. ); Slavin, J.A.; Wharton, L.E. )

    1993-05-01

    The authors extend previous work with a National Center for Atmospheric Research (NCAR) thermosphere/ionosphere general circulation model (TIGCM), to study dynamo effects in the high latitude thermosphere. Ionospheric convection can drive neutral currents in much the same pattern by means of ion drag reactions. It has been observed that ion currents established during magnetic storms can induce neutral currents which persist for hours after the end of the storm. Model results have shown that such currents can account for up to 80 percent of the Hall currents in the period immediately following storms. Here this previous work is extended and compared with experimental observations. The authors simulate time dependent Hall currents, field-aligned currents, and electrical power fluxes coupling the magnetosphere and ionosphere. They discuss their results in terms of a loaded magnetosphere, which accounts for the fact that the neutral currents can also induce currents and electric fields in the ionosphere.

  3. Effects of magnetospheric precipitation and ionospheric conductivity on the ground magnetic signatures of traveling convection vortices

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Schunk, R. W.; Sojka, J. J.

    1999-04-01

    By using an improved TCV model (Zhu et al., 1997), a quantitative study of the effects of magnetospheric precipitation and ionospheric background conductivity on the ground magnetic signatures of traveling convection vortices (TCVs) has been conducted. In this study the localized conductivity enhancement associated with the TCVs is present and the ratio of the Hall and Pedersen conductances vary both spatially and temporally according to the hardness of the TCV precipitation. It is found that a strong conductivity enhancement associated with hard TCV precipitation can significantly distort the TCV current closure in the ionosphere and lead to ground magnetic disturbance patterns with strong asymmetry in E-W direction. The asymmetry of the ground magnetic patterns is characterized by a stronger magnetic disturbance on the side of the upward field-aligned currents (clockwise convection cell) and a possible rotation of the whole magnetic patterns. Specifically, the modeling results predict that when the characteristic energy of the TCV precipitation is below 500 eV, the asymmetry of the ground magnetic patterns is minimal (less than 1%) and may not be detectable. When the characteristic energy of the precipitation is about 7 keV, the asymmetry of the magnetic patterns can be well above 30%. It is also found that a low ionospheric background conductivity favors the appearance of strong asymmetry in the ground magnetic patterns of the TCVs, while a high ionospheric background conductivity favors the appearance of strong ground magnetic disturbances but with less asymmetry. We concluded that the most favorable condition for the appearance of strong asymmetry in the TCV ground magnetic signatures is the condition of winter, solar minimum, and hard precipitation.

  4. A re-analysis of the atmospheric and ionospheric effects of the Flixborough explosion

    NASA Astrophysics Data System (ADS)

    Krasnov, V. M.; Drobzheva, Ya. V.; Venart, J. E. S.; Lastovicka, J.

    2003-07-01

    The ionospheric record of the 1974 cyclohexane vapour cloud explosion (VCE) accident near Flixborough is re-examined in light of a new theory used to describe the acoustic field in the atmosphere and ionosphere caused by explosions on the ground. The reconstructed oblique Doppler sounding records from six radio traces agree remarkably well with experimental results when a ground source explosion yield of 283+/-38tons of TNT is utilized. This result, when compared to the detonation of large hydrocarbon fuel-drop-air clouds, suggests that only 14+/-2tons of cyclohexane was involved in the explosion. Additionally the time of the explosion determined from the model, 15:52:08+/-6, agrees, within the mutual uncertainty, with that determined seismically, 15:52:15.5+/-2 UT. The precision in the value of the yield and accuracy of the time of the explosion validates the model used to describe the propagation of acoustic waves by taking into account expansion, absorption, and non-linear and inhomogeneous effects in the atmosphere and ionosphere.

  5. Thermospheric tidal effects on the ionospheric midlatitude summer nighttime anomaly using SAMI3 and TIEGCM

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Lin, C. H.; Chang, L. C.; Huba, J. D.; Lin, J. T.; Saito, A.; Liu, J. Y.

    2013-06-01

    This paper is the first study to employ a three-dimensional physics-based ionosphere model, SAMI3, coupled with the National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM) and Global Scale Wave Model to simulate the mesospheric and lower thermospheric tidal effects on the development of midlatitude summer nighttime anomaly (MSNA). Using this coupled model, the diurnal variation of MSNA electron densities at 300 km altitude is simulated on both June solstice (day of year (DOY) 167) and December solstice (DOY 350) in 2007. Results show successful reproduction of the southern hemisphere MSNA structure including the eastward drift feature of the southern MSNA, which is not reproduced by the default SAMI3 runs using the neutral winds provided by the empirical Horizontal Wind Model 93 neutral wind model. A linear least squares algorithm for extracting tidal components is utilized to examine the major tidal component affecting the variation of southern MSNA. Results show that the standing diurnal oscillation component dominates the vertical neutral wind manifesting as a diurnal eastward wave-1 drift of the southern MSNA in the local time frame. We also find that the stationary planetary wave-1 component of vertical neutral wind can cause diurnal variation of the summer nighttime electron density enhancement around the midlatitude ionosphere.

  6. Testing Ionospheric Faraday Rotation Corrections in CASA

    NASA Astrophysics Data System (ADS)

    Kooi, Jason E.; Moellenbrock, George

    2015-04-01

    The Earth’s ionosphere introduces direction- and time-dependent effects over a range of physical and temporal scales and so is a major source for unmodeled phase offsets for low frequency radioastronomical observations. Ionospheric effects are often the limiting factor to making sensitive radioastronomical measurements to probe the solar corona or coronal mass ejections at low frequencies (< 5 GHz). It has become common practice to use global ionospheric models derived from the Global Positioning System (GPS) to provide a means of externally calibrating low frequency data. We have developed a new calibration algorithm in the Common Astronomy Software Applications (CASA) package. CASA, which was developed to meet the data post-processing needs of next generation telescopes such as the Karl G. Jansky Very Large Array (VLA), did not previously have the capability to mitigate ionospheric effects. This algorithm uses GPS-based global ionosphere maps to mitigate the first and second order ionospheric effects (dispersion delay and Faraday rotation, respectively). We investigated several data centers as potential sources for global ionospheric models and chose the International Global Navigation Satellite System Service data product because data from other sources are generally too sparse to use without additional interpolation schemes. This implementation of ionospheric corrections in CASA has been tested on several sets of VLA observations and all of them showed a significant reduction of the dispersion delay. In order to rigorously test CASA’s ability to mitigate ionospheric Faraday rotation, we made VLA full-polarization observations of the standard VLA phase calibrators J0359+5057 and J0423+4150 in August 2014, using L band (1 - 2 GHz), S band (2 - 4 GHz), and C band (4 - 6 GHz) frequencies in the D array configuration. The observations were 4 hours in duration, beginning near local sunrise. In this paper, we give a general description of how these corrections are

  7. Ionospheric effects on a wide-bandwidth, polarimetric, space-based, synthetic-aperture radar

    NASA Astrophysics Data System (ADS)

    Brock, B. C.

    1993-01-01

    The earth's ionosphere consists of an ionized plasma which will interact with any electromagnetic wave propagating through it. The interaction is particularly strong at vhf and uhf frequencies but decreases for higher microwave frequencies. These interaction effects and their relationship to the operation of a wide-bandwidth, synthetic-aperture, space-based radar are examined. Emphasis is placed on the dispersion effects and the polarimetric effects. Results show that high-resolution (wide-bandwidth) and high-quality coherent polarimetrics will be very difficult to achieve below 1 GHz.

  8. Ionospheric effects in uncalibrated phase delay estimation and ambiguity-fixed PPP based on raw observable model

    NASA Astrophysics Data System (ADS)

    Gu, Shengfeng; Shi, Chuang; Lou, Yidong; Liu, Jingnan

    2015-05-01

    Zero-difference (ZD) ambiguity resolution (AR) reveals the potential to further improve the performance of precise point positioning (PPP). Traditionally, PPP AR is achieved by Melbourne-Wübbena and ionosphere-free combinations in which the ionosphere effect are removed. To exploit the ionosphere characteristics, PPP AR with L1 and L2 raw observable has also been developed recently. In this study, we apply this new approach in uncalibrated phase delay (UPD) generation and ZD AR and compare it with the traditional model. The raw observable processing strategy treats each ionosphere delay as an unknown parameter. In this manner, both a priori ionosphere correction model and its spatio-temporal correlation can be employed as constraints to improve the ambiguity resolution. However, theoretical analysis indicates that for the wide-lane (WL) UPD retrieved from L1/L2 ambiguities to benefit from this raw observable approach, high precision ionosphere correction of better than 0.7 total electron content unit (TECU) is essential. This conclusion is then confirmed with over 1 year data collected at about 360 stations. Firstly, both global and regional ionosphere model were generated and evaluated, the results of which demonstrated that, for large-scale ionosphere modeling, only an accuracy of 3.9 TECU can be achieved on average for the vertical delays, and this accuracy can be improved to about 0.64 TECU when dense network is involved. Based on these ionosphere products, WL/narrow-lane (NL) UPDs are then extracted with the raw observable model. The NL ambiguity reveals a better stability and consistency compared to traditional approach. Nonetheless, the WL ambiguity can be hardly improved even constrained with the high spatio-temporal resolution ionospheric corrections. By applying both these approaches in PPP-RTK, it is interesting to find that the traditional model is more efficient in AR as evidenced by the shorter time to first fix, while the three

  9. The ionospheric effect of Total solar eclipse of 22 July 2009 in the equatorial anomaly region

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Singh, R.; Singh, A. K.

    2012-12-01

    Response of the D and E and F-region of the ionosphere to the total solar eclipse of 22 July 2009 at low latitude, Varanasi (geomagnetic lat = 140 55'N, longitude = 1540 E, dip. angle = 37.30) was investigated using multi-instrument. The solar eclipse started at 05:30:04.4 hrs IST and lasted up to 07:27 hrs IST with totally from 6.25 IST to 6.27 IST in the morning hours at Varanasi. Here we have analyzed narrowband (Amplitude and phase of transmitted signal) as well as broadband (entire VLF signal spectrum) VLF data to find any significant changes in amplitude and/or phase of the signals from various transmitters across the world and any variation from the normal diurnal behavior in ionospheric parameters such as electron density, VLF reflection height. The changes in D-region ionospheric VLF reflection heights and electron density during eclipse have been estimated from tweek analysis. The reflection height increased from ~90 km from the first occurrence of tweek to about 93-94 km at the totality and then decreased to ~89 km at the end of the eclipse. Observations suggest that about 30-40% obscuration of solar disc can lead to the tweeks occurrence which otherwise occur only in the nighttime. A significant increase of 3 dB in the strength of the amplitude of VLF signal of 22.2 kHz transmitted from JJI-Japan is observed around the time of the total solar eclipse (TSE) as compared to a normal day. The modeled electron density height profile of the lower ionosphere depicts linear variation in the electron density with respect to solar radiation as observed by tweek analysis also. We have also used GPS based TEC measurement along with the VHF scintillation to study effect of total solar eclipse. To observe the variability of TEC at Varanasi we have used the VTEC of some selected PRNs and quiet mean VTEC of the same PRN. The percentage change in VTEC (DTEC) compared to quiet mean for each PRN is also plotted to observe the effect. There is considerable reduction in

  10. New Ionospheric Interaction Experiments

    NASA Astrophysics Data System (ADS)

    Sheerin, J. P.

    2004-11-01

    Current upgrades to both the HF transmitter and diagnostic capabilities at the HAARP facility near Gakona, AK will permit a new generation ionospheric interaction experiments. We explore some of the new phenomena accessible with significantly increased ERP. Large-scale long-lived density structures induced by the HF pump in the ionospheric plasma are investigated. Long-lived density structures which convect with the ambient ionosphere, may serve as tracers for ionospheric flows and fields. Recent advances in HF and VHF radar diagnostics available for HAARP experiments, permit plasma wave detection and monitoring. We survey the mode structures expected with the next generation of high intensity experiments. Together with existing complementary diagnostics such as stimulated HF emissions and optical effects, these data will provide unprecedented views of highly nonlinear phenomena induced by high intensity RF radiation in the ionosphere.

  11. The energetics of Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Roboz, A.; Nagy, A. F.

    1994-02-01

    We have developed a comprehensive model to study the dynamics and energetics of the ionosphere of Titan. We solved the one-dimensional, time-dependent, coupled continuity and momentum equations for several ion species, together with single ion and electron energy equations, in order to calculate density, velocity, and temperature profiles. Calculations were carried out for several cases corresponding to different local times and configurations of the Titan-Saturn system. In our model the effects of horizontal magnetic fields were assumed to be negligible, except for their effect on reducing the electron and ion thermal conductivities and inhibiting vertical transport in the subram region. The ionospheric density peak was found to be at an altitude of about 1100 km, in accordance with earlier model calculations. The ionosphere is chemically controlled below an altitude of about 1500 km. Above this level, ion densities differ significantly from their chemical equilibrium values due to strong upward ion velocities. Heat is deposited in a narrow region around the ionospheric peak, resulting in temperature profiles increasing sharply and reaching nearly constant values of 800-1000 deg K for electrons and 300 deg K for ions in the topside, assuming conditions appropriate for the wake region. In the subram region magnetic correction factors make the electron heat conductivities negligible, resulting in electron temperatures increasing strongly with altitude and reaching values in the order of 5000 deg K at our upper boundary located at 2200 km. Ion chemical heating is found to play an important role in shaping the ion energy balance in Titan's ionosphere.

  12. Large-Scale Ionospheric Effects Related to Electron-Gyro Harmonics: What We Have Learned from HAARP.

    NASA Astrophysics Data System (ADS)

    Watkins, B. J.; Fallen, C. T.; Secan, J. A.

    2014-12-01

    The HAARP ionospheric modification facility has unique capabilities that enable a wide range of HF frequencies with transmit powers ranging from very low to very high values. We will review a range of experiment results that illustrate large-scale ionospheric effects when the HF frequencies used are close to electron gyro-harmoncs and we focus mainly on the 3rd and 4th harmonics. The data are primarily from the UHF diagnosticc radar and total electron content (TEC) observations through the heated topside ionosphere. Radar data for HF frequencies just above and just below gyro harmoncs show significant differences in radar scatter cross-section that suggest differing plasma processes, and this effect is HF power dependent with some effects only observable with full HF power. For the production of artificial ionization in the E-region when the HF frequency is near gyro-harmoncs the results differ significantly for relatively small (50 kHz) variations in the HF frequency. We show how slow FM scans in conjunction with gyro-harmonic effects are effective in producing artificial ionization in the lower ionosphere.In the topside ionosphere enhanced density and upward fluxes have been observed and these may act as effective ducts for the propagation of VLF waves upward into the magneosphere. Experimental techniques have been developed that may be used to continuously maintain these effects in the topside ionossphere.

  13. Ionosphere Waves Service - A demonstration

    NASA Astrophysics Data System (ADS)

    Crespon, François

    2013-04-01

    In the frame of the FP7 POPDAT project the Ionosphere Waves Service was developed by ionosphere experts to answer several questions: How make the old ionosphere missions more valuable? How provide scientific community with a new insight on wave processes that take place in the ionosphere? The answer is a unique data mining service accessing a collection of topical catalogues that characterize a huge number of Atmospheric Gravity Waves, Travelling Ionosphere Disturbances and Whistlers events. The Ionosphere Waves Service regroups databases of specific events extracted by experts from a ten of ionosphere missions which end users can access by applying specific searches and by using statistical analysis modules for their domain of interest. The scientific applications covered by the IWS are relative to earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations. In this presentation we propose to detail the service design, the hardware and software architecture, and the service functions. The service interface and capabilities will be the focus of a demonstration in order to help potential end-users for their first access to the Ionosphere Waves Service portal. This work is made with the support of FP7 grant # 263240.

  14. Ionospheric effects during first 2 hours after the "Chelyabinsk" meteorite impact

    NASA Astrophysics Data System (ADS)

    Berngardt, Oleg; Kurkin, Vladimir; Zherebtsov, Gelii; Grigorieva, Svetlana; Kusonski, Oleg

    In this paper, we analyzed the ionospheric effects within the 100-1500 km ranges from the Chelyabinsk meteorite explosion site from the ISTP SB RAS EKB radar data, and from the IG UB RAS PARUS ionosonde data. Both instruments are located at the Arti Observatory, approximately 200 km north of the supposed explosion location. The ionospheric disturbance caused by the meteorite flyby, explosion, and impact had high dynamics and amplitude. Essential effects, however, were observed at more than 100-200 km from the explosion site, and farther, up to 1500 km. Almost simultaneously with the explosion and for 3 minutes (03:20-03:23 UT), there was a motion away from the radar 400 km southwest of the latter (and approximately 200 km west of the explosion site) at the E-layer height with the characteristic velocities 200 m/s and high spectral width. A short delay of the detected effect at a significant distance from the explosion site also testifies to the hypothesis of a large short-living irregularity formations at the heights of the lower E-layer, with the transversal size of several hundreds of kilometers. The first disturbance in the F-layer was observed 15 minutes after the explosion, and it propagated away from the radar almost radially. The radial disturbances were observed up to about 80-100 minutes. The main disturbances in the F-layer were nearly radial waves with the center close to the explosion site. Analyzing the experimental data allowed us to determine the equivalent ionospheric velocities for individual travel mode. The work was done under financial support of RFBR grant #14-05-00514-a.

  15. Environmental assessment for the Satellite Power System: concept development and evaluation program - effects of ionospheric heating on telecommunications

    SciTech Connect

    Not Available

    1980-08-01

    The microwave power beam that is associated with the operation of the Satellite Power System (SPS) will provide a continuous source of power density into the earth's ionosphere. As currently conceptualized, the power density at the center of the beam would be 23 mW/cm/sup 2/. This power density may be of sufficient magnitude to give rise to changes in the structure of the ionosphere and to increases in the electron temperature in the ionosphere. The work described in this report was undertaken to assess the degree to which the ionosphere and ionospheric-dependent telecommunication systems would be impacted by the passage of the Satellite Power System microwave power beam. The program of study utilized resources from Government, industry, and universities in order to conduct theoretical and experimental investigations that relate to the operational scenario surrounding the Satellite Power System concept. The results of the numerous investigations that were undertaken are summarized in this document and areas in which further study is required are pointed out.

  16. Preface to the Special Issue on Thunderstorm Effects in the Atmosphere-Ionosphere System

    NASA Astrophysics Data System (ADS)

    Gordillo-Vázquez, F. J.; Luque, A.

    2013-11-01

    The first summer school of the "Thunderstorm Effects in the Atmosphere-Ionosphere System" (TEA-IS) funded by the European Science Foundation through its Research Network Programme took place in Torremolinos (Spain) on June 17-22, 2012. The meeting gathered almost 100 scientists with different backgrounds (plasma physics, electrical and signal engineering, geophysics, space physics and computational science) coming from 20 countries, both from inside and outside TEA-IS member countries. We very briefly comment here on the five review papers included in this Special Issue of Surveys in Geophysics devoted to the 2012 TEA-IS summer school.

  17. Prompt and delayed effects of solar disturbances in magnetosphere-ionosphere system on March 4-7, 2012

    NASA Astrophysics Data System (ADS)

    Romanova, Elena; Kurkin, Vladimir; Zolotukhina, Nina; Polekh, Nelya

    We analyze prompt and delayed effects of five X-class solar flares observed on March 4-7, 2012 at Siberian and Far Eastern ionospheric stations. The flares were associated with intensification of solar cosmic rays and Earth-directed coronal mass ejections. The prompt effects were caused by EUV, X-rays and relativistic particles. They were observed as increase in the daytime lowest frequency reflected from the ionosphere from 1.5-2 MHz to 4-8 MHz and the disappearance of reflections (complete blackout) from the high-latitude ionosphere. Delayed effects were caused by heliospheric inhomogeneity created by four interacting coronal mass ejections. The inhomogeneity enveloped the Earth’s magnetosphere during 80 hours and triggered two (moderate and strong) magnetic storms accompanied by ionospheric storms. Because of the strong variability of the solar wind and the interplanetary magnetic field in the inhomogeneity, the magnetospheric and ionospheric storms had specific features discussed in our report. The work was supported by the Russian Foundation for Basic Research (grant 13-05-91159 and 13-05-00733) and RF President Grant of Public Support for RF Leading Scientific Schools (NSh-2942.2014.5).

  18. A case study of ionospheric storm effects in the Chinese sector during the October 2013 geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Mao, Tian; Sun, Lingfeng; Hu, Lianhuan; Wang, Yungang; Wang, Zhijun

    2015-11-01

    In this study, we investigate the ionospheric storm effects in the Chinese sector during 2 October 2013 geomagnetic storm. The TEC map over China sector (1° × 1°) and eight ionosondes data along the longitude of 110°E are used to show significant positive ionospheric phases (enhancements in TEC and ionospheric peak electron density NmF2) in the high-middle latitude region and the negative effects at the low latitude and equatorial region during the storm. A wave structure with periods about 1-2 h and horizontal speed about 680 m/s, propagating from the high latitudes to the low latitudes is observed in electron densities within the height region from 200 to 400 km, which is caused by the combined effects of neutral wind and the large-scale traveling disturbances (LSTIDs). In the low latitude regions, compared with those in the quiet day, the ionospheric peak heights of the F2 layer (hmF2) in the storm day obviously increase accompanying a notably decrease in TEC and NmF2, which might be as a result of the eastward prompt penetration electric field (PPEF) evidenced by the two magnetometers and the subsequent westward disturbance dynamo electric fields (DDEF). The storm-time TEC enhancement mainly occurs in the topside ionosphere, as revealed from the topside TEC, bottomside TEC and GPS TEC.

  19. Mitigating ionospheric scintillation effects by integrating coding and interleaving

    NASA Astrophysics Data System (ADS)

    Ng, Wai-Hung

    Since conventional interleaving cannot be effectively integrated into coded high data rate communications systems operating in slow and deep fading environments, a new adaptive approach to overcome the problem has been derived. This technique would enable the communications system to delete burst errors as well as to correct random errors. Therefore, it could minimize the effects of various interferences including jamming, antenna switching, and deep fading occurring in nuclear scintillation. In this paper, this new technique is introduced, and the performance of this new approach is illustrated.

  20. Solar Illumination of the Polar Ionosphere and Its Effects on Cold Ion Outflow.

    NASA Astrophysics Data System (ADS)

    Maes, L.; Maggiolo, R.; Haaland, S.; Li, K.; Andre, M.; Eriksson, A. I.

    2015-12-01

    Solar illumination is the most important form of energy driving the outflow of cold ionospheric ions in the polar regions, called the polar wind. Due to the offset of the magnetic poles from the rotation axis and Earth's rotational and orbital motion, the part of the magnetic polar cap being illuminated and the part being in the dark, will vary throughout the day and the seasons. Therefore the outflowing ion flux from the whole polar cap will vary accordingly. Moreover, the offset in the Northern hemisphere is different from the one in the Southern hemisphere. Thus the flux from both polar caps will also be different. With a very simple model we will explore the effects of this on the outflowing flux, which will affect the atmospheric erosion as well as the supply of ionospheric ions to the plasma sheet. In recent observations with the Cluster satellites, the heavier O⁺ ions have been shown to be affected more strongly by solar illumination than H⁺ ions. So this may lead to an alteration of the mass density in the plasma sheet on a periodic basis. This study will also look for signatures of the effects predicted by this model in data of cold ion outflow. The Cluster extensive data set from André et al. [2015] seems best suited for this. It uses the technique detecting the wake formed behind a charged spacecraft in a low density and low energy plasma environment. This technique will generally only observe ions with an energy too low to overcome the spacecraft potential (i.e. ~< 40 eV). The measurements are made in the magnetospheric lobes, up to altitudes of 20 RE, between 2001 and 2010. This long period of observations creates the possibility to study the seasonal variation of cold ion outflow from the polar ionosphere and look for possible differences between both hemispheres.

  1. Investigations into the properties, conditions, and effects of the ionosphere. Final report 4 Dec 86-31 Dec 89

    SciTech Connect

    Fremouw, E.J.; Reinisch, B.W.; Szuszczewica, E.P.

    1990-01-15

    The contractor and its subcontractors supported GL/AFSC research in ionospheric physics and its systems effects. Support was provided in the following six categories; laboratory measurements; field measurements, aircraft measurements; rocket, satellite, and Shuttle measurements; analytical and theoretical investigations; and engineering analysis. This report summarizes results on 15 specific topics. These topics included ionospheric characteristics central to operation of HF systems, such as OTH radars; engineering studies of meteor/scatter communication links; effects on transionospheric radio propagation controlled by the total electron content (path integral of electron density) of the ionosphere and its fine structure (which produces radiowave scintillation); optical and ultraviolet effects of the aurora and airglow, as well as laboratory uv studies; and feasibility studies on modifying radio blackout and measuring electron density in the D region..

  2. Geomagnetic activity effect on the global ionosphere during the 2007-2009 deep solar minimum

    NASA Astrophysics Data System (ADS)

    Chen, Yiding; Liu, Libo; Le, Huijun; Wan, Weixing

    2014-05-01

    In this paper the significant effect of weaker geomagnetic activity during the 2007-2009 deep solar minimum on ionospheric variability on the shorter-term time scales of several days was highlighted via investigating the response of daily mean global electron content (GEC, the global area integral of total electron content derived from ground-based GPS measurements) to geomagnetic activity index Ap. Based on a case during the deep solar minimum, the effect of the recurrent weaker geomagnetic disturbances on the ionosphere was evident. Statistical analyses indicate that the effect of weaker geomagnetic activity on GEC variations on shorter-term time scales was significant during 2007-2009 even under relatively quiet geomagnetic activity condition; daily mean GEC was positively correlated with geomagnetic activity. However, GEC variations on shorter-term time scales were poorly correlated with geomagnetic activity during the solar cycle descending phase of 2003-2005 except under strong geomagnetic disturbance condition. Statistically, the effects of solar EUV irradiance, geomagnetic activity, and other factors (e.g., meteorological sources) on GEC variations on shorter-term time scales were basically equivalent during the 2007-2009 solar minimum.

  3. Effect of double layers on magnetosphere-ionosphere coupling

    NASA Technical Reports Server (NTRS)

    Lysak, Robert L.; Hudson, Mary K.

    1987-01-01

    The Earth's auroral zone contains dynamic processes occurring on scales from the length of an auroral zone field line which characterizes Alfven wave propagation to the scale of microscopic processes which occur over a few Debye lengths. These processes interact in a time-dependent fashion since the current carried by the Alfven waves can excite microscopic turbulence which can in turn provide dissipation of the Alfven wave energy. This review will first describe the dynamic aspects of auroral current structures with emphasis on consequences for models of microscopic turbulence. A number of models of microscopic turbulence will be introduced into a large-scale model of Alfven wave propagation to determine the effect of various models on the overall structure of auroral currents. In particular, the effects of a double layer electric field which scales with the plasma temperature and Debye length is compared with the effect of anomalous resistivity due to electrostatic ion cyclotron turbulence in which the electric field scales with the magnetic field strength. It is found that the double layer model is less diffusive than in the resistive model leading to the possibility of narrow, intense current structures.

  4. Ionospheric irregularity physics modelling

    SciTech Connect

    Ossakow, S.L.; Keskinen, M.J.; Zalesak, S.T.

    1982-01-01

    Theoretical and numerical simulation techniques have been employed to study ionospheric F region plasma cloud striation phenomena, equatorial spread F phenomena, and high latitude diffuse auroral F region irregularity phenomena. Each of these phenomena can cause scintillation effects. The results and ideas from these studies are state-of-the-art, agree well with experimental observations, and have induced experimentalists to look for theoretically predicted results. One conclusion that can be drawn from these studies is that ionospheric irregularity phenomena can be modelled from a first principles physics point of view. Theoretical and numerical simulation results from the aforementioned ionospheric irregularity areas will be presented.

  5. Modeling the effects of ionospheric oxygen outflow on bursty magnetotail flows

    NASA Astrophysics Data System (ADS)

    Garcia-Sage, K.; Moore, T. E.; Pembroke, A.; Merkin, V. G.; Hughes, W. J.

    2015-10-01

    Using a global multifluid MHD model, we demonstrate the effects of magnetospheric O+ on bursty magnetotail flows. We carry out two simulations without ionospheric outflow to use as baseline, one driven by real solar wind data and one driven by idealized solar wind. Solar wind data from 1 October 2001 are used as a storm time solar wind driver. During this event, the plasma sheet was observed to be rich in O+, making the event of interest for a model analysis of the effects of ionospheric origin O+ on magnetospheric dynamics. We carry out outflow comparison simulations for both the realistic and idealized solar wind drivers using a simple empirical model that places auroral outflow in regions where downward propagating Poynting flux and electron precipitation are present, combined with a low-flux thermal energy O+ outflow over the entire polar region. We demonstrate the effects of O+ on magnetotail structure and the occurrence rate and strength of bursty, fast earthward flows. The addition of O+ to the magnetotail stretches the tail and increases the velocity of bursty earthward flows. This increase is shown to be produced by reconnection events in an extended current sheet created by tail stretching.

  6. The effects of ionospheric outflow on ICME and SIR driven sawtooth events

    NASA Astrophysics Data System (ADS)

    Brambles, O. J.; Lotko, W.; Zhang, B.; Ouellette, J.; Lyon, J.; Wiltberger, M.

    2013-10-01

    Magnetosphere sawtooth oscillations have been observed during interplanetary coronal mass ejection (ICME) events, when the solar wind conditions are relatively steady, and during periods when the interplanetary magnetic field (IMF) fluctuates between northward and southward, as during interplanetary stream interaction regions (SIR). The impact of ionospheric outflow on the ICME-driven 18 April 2002 and SIR-driven 24 October 2002 sawtooth events is investigated using a multifluid adaptation of the Lyon-Fedder-Mobarry global simulation. The mechanisms that generate the sawtooth oscillations are investigated by comparing a baseline simulation without outflow and a simulation that includes an O+ outflow model. The ionospheric outflow is regulated by a statistical relationship between Alfvénic Poynting flux and O+ ion outflow flux. In the baseline simulation for the 18 April 2002 ICME-driven event, one substorm is observed that is generated by the southward turning of the IMF, after which the magnetosphere-ionosphere system settles into a quasi-steady convection mode. When outflow is included, quasi-periodic substorms are observed suggesting that the sawtooth oscillations are generated internally by the effects of the O+ ions. In contrast, during the 24 October 2002 SIR-driven event, quasi-periodic substorms are generated regardless of whether outflow is included or not. For this event, the generation and triggering of the substorms is controlled by the external driving of the solar wind. For both events, when outflow is included, the signatures of the substorms are more intense and are more noticeable across a wider range of local times than in the baseline simulations.

  7. Study of potential ionospheric effects on space-based radars. Report for 7 July 1987-28 February 1988

    SciTech Connect

    Fremouw, E.J.; Secan, J.A.

    1988-02-28

    The Air Force and the Navy have considered development of space-based radars for purposes of defense surveillance. System configurations considered include sufficiently low frequencies and grazing angles and sufficiently large apertures (synthetic or otherwise) to require consideration of the effects of the ionosphere on the radar propagation path. Toward this end, the Air Force Geophysics Laboratory hosted a Workshop in which engineering organizations responsible for system design were brought together with research organizations active in identifying and characterizing ionospheric effects to assess the need for and state of relevant knowledge. This report summarizes an assessment of the suitability and limitations of information presented at the Workshop and available from related studies. Dispersive phase, Ionosphere, Radar clutter, Radiowave scintillation, Space-based radar, Synthetic-aperture radar, TEC, Defense surveillance, Total electron content.

  8. Effects of the ionosphere and solar activity on radio occultation signals: Application to CHAllenging Minisatellite Payload satellite observations

    NASA Astrophysics Data System (ADS)

    Pavelyev, A. G.; Liou, Y. A.; Wickert, J.; Schmidt, T.; Pavelyev, A. A.; Liu, S. F.

    2007-06-01

    We analyze the ionospheric effect on the phase and amplitude of radio occultation (RO) signal. The introduced theoretical model predicts a correlation between the phase acceleration and intensity variations of RO signal and opens a way to locate layered structures in the propagation medium, in particular, in trans-ionospheric satellite-to-satellite links. For considered CHAllenging Minisatellite Payload (CHAMP) RO events, the locations of the inclined plasma layers in the lower ionosphere are estimated, and the electron density distribution is retrieved. By analysis of the CHAMP RO data, we reveal the dependence of the intensity variations of RO signal on sharp changes in the DST index and on the local time. Maps of the seasonal, geographical, and temporal distributions of the CHAMP RO events with amplitude scintillations, having high S4 index values, and observed during the years 2001-2004 indicate dependence on solar activity. As follows from this analysis, the GPS signals in the trans-ionospheric links can be used for investigating the location and parameters of inclined plasma layers and monitoring the influence of solar activity on the ionosphere with global coverage.

  9. Utilization of ionosonde data to analyze the latitudinal penetration of ionospheric storm effects

    SciTech Connect

    Forbes, J.M.; Codrescu, M.; Hall, T.J.

    1988-03-01

    Increased emphasis is placed on global coupling between the magnetosphere, ionosphere, and thermosphere systems, particularly with regard to the penetration of dynamic, chemical, and electrodynamic effects from high to low latitudes during magnetically disturbed periods. An emerging potential exists for latitudinal and longitudinal chains of ionosondes to contribute uniquely to this thrust in ways complementary to the capabilities and shortcomings of other groundbased sensors and satellites. Here is illustrated a methodology to realize the fullest potential of such ionosonde data. Hourly values are fit in latitude using Legendre polynominals, and variations from quiet time values are displayed in latitude - U.T. coordinates using a color graphics method which provides an illuminating illustration of the penetration of ionospheric disturbances in latitude and their dependence on Kp, storm time, and local time. Observed effects are interpreted in terms of plausible electric field, neutral wind, and neutral composition changes during the storm period. Besides reflecting the anticipated southward flows and equatorward extensions in conjunction with magnetically disturbed conditions, the 24-hour average meridional winds exhibit a northward return flow after the magnetic disturbance has relaxed.

  10. Counterbalancing for Serial Order Carryover Effects in Experimental Condition Orders

    ERIC Educational Resources Information Center

    Brooks, Joseph L.

    2012-01-01

    Reactions of neural, psychological, and social systems are rarely, if ever, independent of previous inputs and states. The potential for serial order carryover effects from one condition to the next in a sequence of experimental trials makes counterbalancing of condition order an essential part of experimental design. Here, a method is proposed…

  11. Magnetic field effects on the accuracy of ionospheric mirror models for geolocation

    NASA Astrophysics Data System (ADS)

    Dao, Eugene V.; McNamara, Leo F.; Colman, Jonah J.

    2016-04-01

    The geolocation of an uncooperative HF emitter is based on observations of the azimuth and elevation (angle of arrival; AoA) of its signals as they arrive at a surveillance site, along with a model of the propagation medium. The simplest propagation model that provides an estimate of the location of the emitter is based on the use of a horizontal mirror placed at the appropriate altitude. If there are large-scale horizontal ionospheric gradients or traveling ionospheric disturbances present, tilts derived from a suitable ionosonde or from the AoA of convenient known emitters (check targets) may be applied to the mirror before geolocation is performed. However, the methodology of this approach to geolocation completely ignores the Earth's magnetic field, producing errors that can reach 25% of range for a short range (less than 100 km) low-latitude target. The errors are generally smaller at midlatitudes. This paper investigates and characterizes these errors in terms of wave polarization, magnetic dip, circuit length, and azimuth relative to the direction of the magnetic field. The magnetic field also affects the procedure of using tilts derived from check-target AoA because the field effects can masquerade as tilts of unknown magnitude.

  12. Ionospheric effects of the solar eclipse of September 23, 1987, around the equatorial anomaly crest region

    SciTech Connect

    Kang Cheng; Yinnnien Huang; Senwen Chen )

    1992-01-01

    The ionospheric responses to the solar eclipse of September 23, 1987, in the equatorial anomaly crest region have been investigated by using ionospheric vertical sounding, VLF propagation delay time, and differential Doppler shift data observed at Chungli, which is located near the northern equatorial anomaly crest region. It has been found that temporal variations of the F{sub 1} layer and D region are mainly controlled by local solar radiation. Quantitative analysis of the variations of the F{sub 1} layer critical frequency, F{sub o} F{sub 1}, shows that electrons are removed from the F{sub 1} layer through ionic recombination. However, the temporal variations of f{sub o}F{sub 2} and electron density above 200 km show that the variations o the F{sub 2} layer around the equatorial anomaly region are controlled not by local solar radiation but by solar radiation at the equator. The fountain effect plays an important role even during the solar eclipse. The VLF propagation time delay is controlled by the variations of average path obscuration. Atmospheric gravity waves produced by the moving bow wave front of the solar eclipse are found with a period around 17-23 min and wavelength about 293 km.

  13. Use of the index of TEC vertical variation disturbance in studying ionospheric effects of the Chelyabinsk meteorite

    NASA Astrophysics Data System (ADS)

    Voeykov, S. V.; Berngardt, O. I.; Shestakov, N. V.

    2016-03-01

    The results of an analysis of the ionospheric effects accompanying fall of the Chelyabinsk meteorite on February 15, 2013 are presented using a method of calculating the index of the disturbance of total electron content vertical variations ( Wtec) according to data from the GPS receiver network. A substantial increase (by a factor of 2-3) in the Wtec index with a duration of ~1.5 h was observed in the studied region after the main height explosion accompanying the meteorite fall at 0320 UT. The ionospheric response in Wtec was most significant statistically registered at the radio rays "receiver-satellite" for the GPS located southward from the place of explosion.

  14. Estimation of Ionospheric Conductivity Based on the Measurements by Superdarn

    NASA Astrophysics Data System (ADS)

    Lee, Eun-Ah; An, Byung-Ho; Yi, Yu

    2002-06-01

    The ionosphere plays an important role in the electrodynamics of space environment. In particular, the information on the ionospheric conductivity distribution is indispensable in understanding the electrodynamics of the magnetosphere and ionosphere coupling study. To meet such a requirement, several attempts have been made to estimate the conductivity distribution over the polar ionosphere. As one of such attempts we compare the ionospheric plasma convection patterns obtained from the Super Dual Auroral Radar Network (SuperDARN), from which the electric field distribution is estimated, and the simultaneously measured ground magnetic disturbance. Specifically, the electric field measured from the Goose Bay and Stokkseyri radars and magnetic disturbance data obtained from the west coast chain of Greenland are compared. In order to estimate ionospheric conductivity distribution with these information, the overhead infinite sheet current approximation is employed. As expected, the Hall conductance, height-integrated conductivity, shows a wide enhancement along the center of the auroral electrojet. However, Pedersen conductance shows negative values over a wide portion of the auroral oval region, a physically unacceptable situation. To alleviate this problem, the effect of the field-aligned current is taken into account. As a result, the region with negative Pedersen conductance disappears significantly, suggesting that the effect of the field-aligned current should be taken into account, when one wants to estimate ionospheric conductance based on ground magnetic disturbance and electric field measurements by radars.

  15. Realtime Monitoring of Traveling Ionospheric Disturbances Caused by Tsunamis

    NASA Astrophysics Data System (ADS)

    McBride, P. J.; Crowley, G.; Reynolds, A.; Azeem, I.; Makela, J. J.; Vadas, S.

    2014-12-01

    The ocean-ionosphere coupling associated with tsunamis was predicted as early as the 1970s and had been observed previously by various radio frequency techniques, including arrays of ground-based Global Positioning System (GPS) receivers. Much work is still needed in order to fully understand the coupling mechanism and allow for the development of effective tsunami detection/warning systems. These challenges include the need for additional observations of the tsunami ionospheric signature to provide new scientific insight into the geophysical source phenomenology and wave propagation physics, and to better constrain the conditions under which ocean-atmospheric coupling is effective. One of the ionospheric signatures of tsunamis is a Traveling Ionospheric Disturbance (TID). ASTRA has developed a realtime TID Mapping System based on HF radio sounding. We will provide examples of TIDs associated with various tsunamis, including the propagation characteristics of the TIDs. We are deploying an expanded ground-based observation network using strategically placed optical imaging systems together with ASTRA's TID Mapping Systems, to obtain new information about the ionospheric waves associated with tsunamis. We will also use a published and validated gravity wave ray trace model to perform studies of the propagation of tsunami-generated gravity waves through the atmosphere and into the thermosphere/ionosphere system. This work will also enhance our understanding of upward coupling caused by all gravity wave sources in the lower atmosphere (not just tsunamis) and how this coupling can generate ionospheric irregularities that affect navigation, communications and surveillance systems.

  16. Climatology of GNSS ionospheric scintillation at high latitudes

    NASA Astrophysics Data System (ADS)

    Spogli, L.; Alfonsi, L.; de Franceschi, G.; Romano, V.; Aquino, M.; Dodson, A.; Mitchell, C. N.

    2009-12-01

    Under perturbed conditions caused by intense solar wind magnetosphere coupling, the ionosphere may become highly turbulent and irregularities, typically enhancements or depletions of the electron density embedded in the ambient ionosphere, can form. Such irregularities cause diffraction effects, mainly due to the random fluctuations of the refractive index of the ionosphere, on the satellites signals passing through them and consequent perturbations may cause GNSS navigation errors and outages, abruptly corrupting its performance. Due to the morphology of the geomagnetic field, whose lines are almost vertical at high latitude, polar areas are characterized by the presence of significant ionospheric irregularities having scale sizes ranging from hundreds of kilometers down to a few centimeters and with highly dynamic structures. The understanding of the effect of such phenomena is important, not only in preparation for the next solar cycle (24), whose maximum is expected in 2012, but also for a deeper comprehension of the dynamics of the high-latitude ionosphere. We analyze the fluctuations in the carrier frequency of the radio waves received on the ground, commonly referred to as ionospheric amplitude and phase scintillations, to investigate the physical processes causing them. The phase scintillations on GNSS signals are likely caused by ionospheric irregularities of scale size of hundreds of meters to few kilometers. The amplitude scintillations on GNSS signals are caused by ionospheric irregularities of scale size smaller than the Fresnel radius, which is of the order of hundreds of meters for GNSS signals, typically embedded into the patches. The Istituto Nazionale di Geofisica e Vulcanologia (INGV) and the Institute of Engineering Surveying and Space Geodesy (IESSG) of the University of Nottingham manage the same kind of GISTM (GPS Ionospheric Scintillation and TEC Monitor) receivers over the European high and mid latitude regions and over Antarctica. The

  17. The investigation of man-made modifications of the ionosphere. [effects of detonations and rocket exhaust

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Darosa, A. V.; Price, K. M.

    1980-01-01

    Topics covered include: (1) the application of ionosphere modifications models to the simulation of results obtained when rocket-borne explosives were detonated in the ionosphere; (2) the problem of hypersonic vapor releases from orbiting vehicles; (3) measuring the electron content reduction resulting from the firing of a Centaur rocket in the ionosphere; and (4) the preliminary design of the critical frequency tracker which displays the value of electron concentration at the peak of the F 2 region, in real time.

  18. Birth Order: Reconciling Conflicting Effects.

    ERIC Educational Resources Information Center

    Zajonc, Robert B.; Mullally, Patricia R.

    1997-01-01

    Introduces the confluence model as a theory specifying the process by which the intellectual environment modifies intellectual development. Using this model, explores the contradiction between prediction of secular trends in test scores by trends in aggregate birth order and the lack of prediction of individual test scores by birth order using…

  19. Ordered delinquency: the "effects" of birth order on delinquency.

    PubMed

    Cundiff, Patrick R

    2013-08-01

    Juvenile delinquency has long been associated with birth order in popular culture. While images of the middle child acting out for attention or the rebellious youngest child readily spring to mind, little research has attempted to explain why. Drawing from Adlerian birth order theory and Sulloway's born-to-rebel hypothesis, I examine the relationship between birth order and a variety of delinquent outcomes during adolescence. Following some recent research on birth order and intelligence, I use new methods that allow for the examination of between-individual and within-family differences to better address the potential spurious relationship. My findings suggest that contrary to popular belief, the relationship between birth order and delinquency is spurious. Specifically, I find that birth order effects on delinquency are spurious and largely products of the analytic methods used in previous tests of the relationship. The implications of this finding are discussed. PMID:23719623

  20. The effects on the ionosphere of inertia in the high latitude neutral thermosphere. Final report, April 1989-April 1993

    SciTech Connect

    Burns, A.; Killeen, T.

    1993-02-01

    High-latitude ionospheric currents, plasma temperatures, densities, and composition are all affected by the time-dependent response of the neutral thermosphere to ion drag and Joule heating through a variety of complex feedback processes. These processes can best be studied numerically using the appropriate nonlinear numerical modeling techniques in conjunction with experimental case studies. In particular, the basic physics of these processes can be understood using a model, and these concepts can then be applied to more complex realistic situations by developing the appropriate simulations of real events. Finally, these model results can be compared with satellite-derived data from the thermosphere. We used numerical simulations from the National Center of Atmospheric Research Thermosphere/Ionosphere General Circulation Model (NCAR TIGCM) and data from the Dynamic Explorer 2 (DE 2) satellite to study the time-dependent effects of the inertia of the neutral thermosphere on ionospheric currents, plasma temperatures, densities, and composition. One particular case of these inertial effects is the so-called 'fly-wheel effect'. This effect occurs when the neutral gas, that has been spun-up by the large ionospheric winds associated with a geomagnetic storm, moves faster than the ions in the period after the end of the main phase of the storm. In these circumstances, the neutral gas can drag the ions along with them. It is this last effect, which is described in the next section, that has been studied under this grant.

  1. Magnetosphere-ionosphere coupling currents in JupiterÂ’s middle magnetosphere: dependence on the effective ionospheric Pedersen conductivity and iogenic plasma mass outflow rate

    NASA Astrophysics Data System (ADS)

    Nichols, J. D.; Cowley, S. W. H.

    2003-07-01

    The amplitude and spatial distribution of the coupling currents that flow between Jupiter’s ionosphere and middle magnetosphere, which enforce partial corotation on outward-flowing iogenic plasma, depend on the values of the effective Pedersen conductivity of the jovian ionosphere and the mass outflow rate of iogenic plasma. The values of these parameters are, however, very uncertain. Here we determine how the solutions for the plasma angular velocity and current components depend on these parameters over wide ranges. We consider two models of the poloidal magnetospheric magnetic field, namely the planetary dipole alone, and an empirical current sheet field based on Voyager data. Following work by Hill (2001), we obtain a complete normalized analytic solution for the dipole field, which shows in compact form how the plasma angular velocity and current components scale in space and in amplitude with the system parameters in this case. We then obtain an approximate analytic solution in similar form for a current sheet field in which the equatorial field strength varies with radial distance as a power law. A key feature of the model is that the current sheet field lines map to a narrow latitudinal strip in the ionosphere, at approx 15° co-latitude. The approximate current sheet solutions are compared with the results of numerical integrations using the full field model, for which a power law applies beyond approx 20 RJ, and are found to agree very well within their regime of applicability. A major distinction between the solutions for the dipole field and the current sheet concerns the behaviour of the field-aligned current. In the dipole model the direction of the current reverses at moderate equatorial distances, and the current system wholly closes if the model is extended to infinity in the equatorial plane and to the pole in the ionosphere. In the approximate current sheet model, however, the field-aligned current is unidirectional, flowing consistently from

  2. Effect of HF Emission of the topside sounder transmitter aboard the COSMOS-1809 satellite on the ionospheric plasma

    NASA Astrophysics Data System (ADS)

    Baranets, N. V.; Gladyshev, V. A.; Afonin, V. V.

    The experiment on investigation of effect of the HF emission (300 W) by the dipole antenna on the ionospheric plasma was carried out onboard the COSMOS-1809 satellite (1987). The sounder accelerated particles (SAP) at the electron cyclotron harmonics n x omegace and in the frequency region of antenna resonance were detected by the charged particle spectrometer.

  3. Multi-GNSS for Ionospheric Scintillation Studies

    NASA Astrophysics Data System (ADS)

    Morton, Y.

    2015-12-01

    GNSS have been widely used for ionospheric monitoring. We anticipate over 160 GNSS satellites broadcasting 400 signals by 2023, nearly double the number today. With their well-defined signal structures, high spatial density and spectral diversity, GNSS offers low cost and distributed passive sensing of ionosphere effects. There are, however, many challenges to utilize GNSS resources to characterize and forecast ionospheric scintillation. Originally intended for navigation purposes, GNSS receivers are designed to filter out nuisance effects due to ionosphere effects. GNSS measurements are plagued with errors from multipath, oscillator jitters, processing artifacts, and neutral atmosphere effects. Strong scintillation events are often characterized by turbulent structures in ionosphere, causing simultaneous deep amplitude fading and abrupt carrier phase changes. The combined weak signal and high carrier dynamics imposes conflicting requirements for GNSS receiver design. Therefore, GNSS receivers often experience cycle slips and loss of lock of signals during strong scintillation events. High quality, raw GNSS signals bearing space weather signatures and robust receiver algorithms designed to capture these signatures are needed in order for GNSS to be a reliable and useful agent for scintillation monitoring and forecasting. Our event-driven, reconfigurable data collection system is designed to achieve this purpose. To date, our global network has collected ~150TB of raw GNSS data during space weather events. A suite of novel receiver processing algorithms has been developed by exploitating GNSS spatial, frequency, temporal, and constellation diversity to process signals experiencing challenging scintillation impact. The algorithms and data have advanced our understanding of scintillation impact on GNSS, lead to more robust receiver technologies, and enabled high spatial and temporal resolution depiction of ionosphere responses to solar and geomagnetic conditions. This

  4. Global ionospheric effects of geomagnetic storm on May 2-3, 2010 and their influence on HF radio wave propagation

    NASA Astrophysics Data System (ADS)

    Kotova, Daria; Klimenko, Maxim; Klimenko, Vladimir; Zakharov, Veniamin

    2013-04-01

    In this work we have investigated the global ionospheric response to geomagnetic storm on May 2-3, 2010 using GSM TIP (Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere) simulation results. In the GSM TIP storm time model runs, several input parameters such as cross-polar cap potential difference and R2 FAC (Region 2 Field-Aligned Currents) varied as a function of the geomagnetic activity AE-index. Current simulation also uses the empirical model of high-energy particle precipitation by Zhang and Paxton. In this model, the energy and energy flux of precipitating electrons depend on a 3 hour Kp-index. We also have included the 30 min time delay of R2 FAC variations with respect to the variations of cross-polar cap potential difference. In addition, we use the ground-based ionosonde data for comparison our model results with observations. We present an analysis of the physical mechanisms responsible for the ionospheric effects of geomagnetic storms. The obtained simulation results are used by us as a medium for HF radio wave propagation at different latitudes in quiet conditions, and during main and recovery phase of a geomagnetic storm. To solve the problem of the radio wave propagation we used Zakharov's (I. Kant BFU) model based on geometric optics. In this model the solution of the eikonal equation for each of the two normal modes is reduced using the method of characteristics to the integration of the six ray equation system for the coordinates and momentum. All model equations of this system are solved in spherical geomagnetic coordinate system by the Runge-Kutta method. This model was tested for a plane wave in a parabolic layer. In this study, the complex refractive indices of the ordinary and extraordinary waves at ionospheric heights was calculated for the first time using the global first-principal model of the thermosphere-ionosphere system that describes the parameters of an inhomogeneous anisotropic medium during a

  5. Meteor showers effects in the low terrestrial ionosphere detected at VLF ionosonde and long distance propagation paths

    NASA Astrophysics Data System (ADS)

    Vilas-Boas, J. W. S.; Paesleme, N. M.; Piazza, L. R.; Macedomoura, M. S. S.

    1984-08-01

    The effect of Geminids and eta Aquarids meteor showers in the lower ionosphere were observed using two different methods. Low ionosphere group heights measured by a very low frequency ionosonde located south of Brazil indicated an anomalous lowering of the effective reflection height and presented night-time 5 sigma deviation in good correlation with Eta Aquarids stream transit. The group reflection coefficients present a very pronounced variation reaching values 3 sigma below the normal values. Diurnal very low frequency phase variations in two long-distance propagation paths present night-time 7 sigma and 4 sigma phase deviations from the average during the Eta Aquarids shower transit. The Geminids shower effect in the lower ionosphere was detected in two different long distance very low frequency propagation paths: NAA, Culter, U.S.A. - Atibaia, S.P., Brazil presented 5 sigma phase deviation and ARG, Argentina - Atibaia, S.P., Brasil presented 3.5 sigma phase deviation from the average. The geomagnetic activity in the periods covered by this investigation was low and the results obtained are a confirmation through two different techniques of changes in the physical conditions of the low ionosphere by meteor shower.

  6. On the utilization of ionosonde data to analyze the latitudinal penetration of ionospheric storm effects

    SciTech Connect

    Forbes, J.M.; Codrescu, M.; Hall, T.J.

    1988-03-01

    Upper atmosphere science is placing increased emphasis on global coupling between the magnetosphere, ionosphere, and thermosphere systems, particularly with regard to the penetration of dynamic, chemical, and electrodynamic effects from high to low latitudes during magnetically disturbed periods. An emerging potential exists for latitudinal and longitudinal chains of ionosondes to contribute uniquely to this thrust in ways complementary to the capabilities and shortcomings of other groundbased sensors and satellites. Here we illustrate a methodology whereby the fullest potential of such ionosonde data can be realized. Data from a chain of stations close to the -165/sup 0/ magnetic meridian and separated by about 5/sup 0/ in magnetic latitude are used to study the relationships between magnetic activity, hmF2, foF2, and inferred meridional winds during 17--28 April, 1979. Hourly values are fit in latitude using Legendre polynomials, and variations from quiet-time values are displayed in latitude-U.T. coordinates using a color graphics method which provides an illuminating illustration of the penetration of ionospheric disturbances in latitude and their dependence on Kp, storm time, and local time. Observed effects are interpreted in terms of plausible electric field, neutral wind, and neutral composition changes during the storm period. For instance, net depletions in foF2 occur over the entire disturbed interval down to about 25/sup 0/--30/sup 0/ latitude, apparently due to such increased N/sub 2/ densities that the resulting enhanced plasma loss rates overcompensate and ''positive'' storm effects whereby southward winds elevate the F-layer peak to altitudes of reduced chemical loss.

  7. Source, propagation, and effects of lightning in the Earth-ionosphere system

    NASA Astrophysics Data System (ADS)

    Hutchins, Michael L.

    The capabilities of the World Wide Lightning Location Network (WWLLN) are expanded to enable research of the source, propagation, and effects of lightning in the Earth-ionosphere system. The main expansion of the network capability is the measurement of the very low frequency radiated energy from lightning; the radiated stroke energy is one to one related to the canonical peak current measurements of other ground based networks. Stroke energy is used to develop a model of the network relative detection efficiency; this internal model rates the coverage capabilities of the network compared to the networks best regional coverage. The last dataset developed and discussed is the clustering of the lightning locations into both flashes and the active lightning regions of thunderstorms. These three capabilities of the network allow tracing the effects of lightning and thunderstorms from their source, to a proxy for the global electric circuit and to the magnetosphere. The source of lightning is investigated in two regimes: within thunderstorms and between thunderstorms. Within thunderstorms the time between flashes is found to be proportional to the resulting flash energy for differing thunderstorms, regions, and seasons. Between thunderstorms the lightning energy is shown to differ between land and ocean, with oceanic thunderstorms producing stronger and fewer strokes. The propagation of the radiated energy is measured using the lightning as a probe of attenuation along the different propagation paths. Attenuation is seen to have an asymmetry with magnetic azimuth: eastward moving waves are attenuated less than westward moving waves. The attenuation asymmetry is complimentary to the observed asymmetry in whistler and radio energy emitted through the ionosphere into the magnetosphere. Thunderstorm clusters are used to estimate the total upward current contribution of thunderstorms to the global electric circuit. It is shown that WWLLN can provide one of the first

  8. Modification of the lower ionospheric conductivity by thunderstorm electrostatic fields

    NASA Astrophysics Data System (ADS)

    Salem, Mohammad A.; Liu, Ningyu; Rassoul, Hamid K.

    2016-01-01

    This paper reports a modeling study of the modifications of the nighttime lower ionospheric conductivity by electrostatic fields produced by underlying thunderstorms. The model used combines Ohm's law with a simplified lower ionospheric ion chemistry model to self-consistently calculate the steady state nighttime conductivity above a thunderstorm. The results indicate that although the electron density is generally increased, the lower ionospheric conductivity can be reduced by up to 1-2 orders of magnitude because electron mobility is significantly reduced due to the electron heating effect. For a typical ionospheric density profile, the resulting changes in the reflection heights of extremely low frequency and very low frequency waves are 5 and 2 km, respectively.

  9. Simulation study of ionospheric response to the annular eclipse on May 21, 2012

    NASA Astrophysics Data System (ADS)

    Shinagawa, H.; Miyoshi, Y.; Jin, H.; Matsumura, M.; Fujiwara, H.; Tsugawa, T.; Kubo, Y.; Murata, T.

    2012-12-01

    It is widely accepted that the ionosphere varies significantly during a solar eclipse. Previous ionospheric observations have indicated that reduction in solar EUV and X-ray radiation results in significant decrease of electron densities. In addition, some studies have suggested that neutral wind variations and neutral composition changes caused by local cooling of the neutral atmosphere indirectly affect the ionosphere. However, effects of the atmospheric processes on the ionospheric variations have not been fully understood. The annular solar eclipse on May 21, 2012 passed over Japan provided us with a good opportunity for studying the ionospheric variations during a solar eclipse. A number of ionospheric data have been obtained at various observatories in Japan. In order to quantitatively study variations in the ionosphere and atmosphere during the solar eclipse, we used the whole atmosphere-ionosphere coupled model (GAIA), and compared the simulation results with the observed data of the ionosphere. The results indicate that electron density decrease is primarily caused by reduction in solar EUV/X-ray radiation, but that neutral atmospheric variations driven by cooling of the atmosphere during the solar eclipse also play an important role in the electron density variations.

  10. Ionosphere research

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A report is presented on on-going research projects in ionospheric studies. The topics discussed are planetary atmospheres, E and F region, D region, mass spectrometer measurements, direct measurements and atmospheric reactions.

  11. Ionospheric research

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Data from research on ionospheric D, E, and F, regions are reported. Wave propagation, mass spectrometer measurements, and atmospheric reactions of HO2 with NO and NO2 and NH2 with NO and O2 are summarized.

  12. Thunderstorm coupling to the magnetosphere and associated ionospheric effects. Semiannual Report, 1 November 1991-30 April 1992

    SciTech Connect

    Inan, U.S.

    1992-01-01

    This project deals with the coupling of electromagnetic energy released during a thunderstorm to the magnetosphere and the ionosphere. Both the effects of an individual lightning event as well the aggregate of all the lightning events during a thunderstorm are considered. Energy in the very low frequency (VLF) band can play a variety of roles in the magnetospheric and ionospheric physics: generation of plasmaspheric hiss believed to be responsible for the slot region in the radiation belts, generation of lower hybrid waves that can heat ions in the auroral and subauroral regions, precipitation of energetic electrons, ionospheric heating etc. While these phenomena have been identified, and characterized to some extent, the influence and role of thunderstorm energy on the magnetosphere and ionosphere at a global scale is not known. Only recently, simultaneous high resolution (temporal and spatial) data sets from ground based lightning detectors and space and ground based VLF detectors have become available, and thus it has become possible to raise a question of the kind mentioned above and try to answer it quantitatively. Work on the correlation between individual lightning discharges in a thunderstorm as detected by the lightning network and the whistlers observed on the DE-1 satellite continued during this period. Results are summarized.

  13. The effect of including field-aligned potentials in the coupling between Jupiter's thermosphere, ionosphere, and magnetosphere

    NASA Astrophysics Data System (ADS)

    Ray, L. C.; Achilleos, N. A.; Yates, J. N.

    2015-08-01

    Jupiter's magnetosphere-ionosphere-thermosphere system drives the brightest, steadiest aurora in our solar system. This emission is the result of an electrical current system, which couples the magnetosphere to the planetary atmosphere in an attempt to enforce the corotation of the middle magnetospheric plasma. Field-aligned currents transfer angular momentum from the atmosphere to the magnetosphere. In the equatorial plane, the field-aligned currents diverge into radially outward currents, which exert a torque on the plasma due to the J × B forces. Equatorward ionospheric currents exert an opposite torque on the ionosphere, which interacts with the thermosphere via ion-neutral collisions. The upward field-aligned currents result in auroral electron precipitation, depositing energy into the high-latitude atmosphere. This energy input is a possible candidate for explaining the large thermospheric temperature measured by the Galileo probe at equatorial latitudes; however, previous atmospheric circulation models have shown that the bulk of the energy is transported poleward, rather than equatorward. We present numerical results of Jupiter's coupled magnetosphere-ionosphere-thermosphere system including, for the first time, field-aligned potentials. The model is compared with three previously published works. We find that the rotational decoupling of the magnetospheric and thermospheric angular velocities in the presence of field-aligned potentials tempers the thermospheric response to the outward transport of magnetospheric plasma, but this is a secondary effect to variations in the Pedersen conductance.

  14. F region ionosphere effects on the mapping accuracy of SuperDARN HF radar echoes

    NASA Astrophysics Data System (ADS)

    Chen, X.-C.; Lorentzen, D. A.; Moen, J. I.; Oksavik, K.; Baddeley, L. J.; Lester, M.

    2016-05-01

    Structured particle precipitation in the cusp is an important source for the generation of F region ionospheric irregularities. The equatorward boundaries of broad Doppler spectral width in Super Dual Auroral Radar Network (SuperDARN) data and the concurrent OI 630.0 nm auroral emission are good empirical proxies for the dayside open-closed field line boundary. However, SuperDARN currently employs a simple virtual model to determine the location of its echoes, instead of a direct calculation of the radio wave path. The varying ionospheric conditions could influence the final mapping accuracy of SuperDARN echoes. A statistical comparison of the offsets between the SuperDARN Finland radar spectral width boundary (SWB) and the OI 630.0 nm auroral emission boundary (AEB) from a meridian-scanning photometer (MSP) on Svalbard is performed in this paper. By restricting the location of the 630.0 nm data to be near local zenith where the MSP has the highest spatial resolution, the optical mapping errors were significantly reduced. The variation of the SWB-AEB offset confirms that there is a close relationship between the mapping accuracy of the HF radar echoes and solar activity. The asymmetric variation of the SWB-AEB offset versus magnetic local time suggests that the intake of high-density solar extreme ultraviolet ionized plasma from postnoon at subauroral latitudes could result in a stronger refraction of the HF radar signals in the noon sector, while changing the HF radar operating frequency also has a refraction effect that contributes to the final location of the HF radar echoes.

  15. F-region ionosphere effects on the mapping accuracy of SuperDARN HF radar echoes

    NASA Astrophysics Data System (ADS)

    Chen, Xiangcai; Lorentzen, Dag; Moen, Jøran; Oksavik, Kjellmar; Baddeley, Lisa; Lester, Mark

    2016-04-01

    Structured particle precipitation in the cusp is an important source for the generation of F -region ionospheric irregularities. The equatorward boundaries of broad Doppler spectral width in Super Dual Auroral Radar Network (SuperDARN) data and the concurrent OI 630.0 nm auroral emission are good empirical proxies for the dayside open-closed field line boundary (OCB). However, SuperDARN currently employs a simple virtual model to determine the location of its echoes, instead of a direct calculation of the radio wave path. The varying ionospheric conditions could influence the final mapping accuracy of SuperDARN echoes. A statistical comparison of the offsets between the SuperDARN Finland radar spectral width boundary (SWB) and the OI 630.0 nm auroral emission boundary (AEB) from a meridian-scanning photometer (MSP) in Longyearbyen from December 1995 to January 2014 in wintertime is performed. By restricting the location of the OI 630.0 nm data to be near local zenith, where the MSP has the highest spatial resolution, the mapping errors were significantly reduced for the AEB. The variation of the SWB - AEB offset confirms that there is a close relationship between the mapping accuracy of the HF radar echoes and solar activity. The asymmetric variation of the SWB - AEB offset versus magnetic local time suggests that the intake of high density solar extreme ultraviolet ionized plasma from post-noon at sub-auroral latitudes could result in a stronger refraction of the HF radar signals in the noon sector. The changing HF radar operating frequency also has a refraction effect that contributes to the final location of the HF radar echoes.

  16. A case study of lightning, whistlers, and associated ionospheric effects during a substorm particle injection event

    SciTech Connect

    Rodriguez, J.V.; Inan, U.S. ); Li, Y.Q.; Holzworth, R.H. ); Smith, A.J. , Cambridge ); Orville, R.E. ); Rosenberg, T.J. )

    1992-01-01

    Simultaneous ground-based observations of narrowband and broadband VLF radio waves and of cloud-to-ground lightning were made at widely spaced locations during the 1987 Wave-Induced Particle Precipitation (WIPP) campaign, conducted from Wallops Island, Virginia. Based on these observations, the first case study has been made of the relationships among located cloud-to-ground (CG) lightning flashes, whistlers, and associated ionospheric effects during a substorm particle injection event. This event took place 2 days after the strongest geomagnetic storm of 1987, during a reintensification in geomagnetic activity that did not affect the high rate of whistlers observed at Faraday Station, Antarctica. At the time of the injection event, several intense nighttime thunderstorms were located over Long Island and the coast of New England, between 400 km northwest and 600 km north of the region geomagnetically conjugate to Faraday. About two thirds of the CG flashes that were detected in these thunderstorms during the hour following the injection event onset were found to be causatively associated with whistlers received at Faraday. During the same period the amplitude of the 24.0-kHz signal from the NAA transmitter in Cutler, Maine, propagating over the thunderstorm centers toward Wallops Island was repeatedly perturbed in a manner characteristic of previously reported VLF signatures of transient and localized ionization enhancements at D region altitudes. Though such enhancements may have been caused by whistler-induced bursts electron precipitation from the magnetosphere, the data in this case are insufficient to establish a clear connection between the NAA amplitude perturbations and the Faraday Station whistlers. In view of the proximity of the NAA great circle path to the storm center, having the lower ionosphere by intense radiation from lightning may also have played a role in the observed VLF perturbations.

  17. A case study of ionospheric storm effects during long-lasting southward IMF Bz-driven geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Liu, Libo; Nakamura, Takuji; Zhao, Biqiang; Ning, Baiqi; Yoshikawa, A.

    2014-09-01

    Multiple instrumental observations including GPS total electron content (TEC), foF2 and hmF2 from ionosondes, vertical ion drift measurements from Communication/Navigation Outage Forecasting System, magnetometer data, and far ultraviolet airglow measured by Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Global Ultraviolet Imager (TIMED/GUVI) are used to investigate the profound ionospheric disturbances at midlatitude and low latitude during the 14-17 July 2012 geomagnetic storm event, which was featured by prolonged southward interplanetary geomagnetic field component for about 30 h below -10 nT. In the East Asian/Australian sector, latitudinal profile of TEC variations in the main phase were characterized by three bands of increments and separated by weak depressions in the equatorial ionospheric anomaly (EIA) crest regions, which were caused by the combined effects of disturbance dynamo electric fields (DDEF) and equatorward neutral winds. In the recovery phase, strong inhibition of EIA occurred and the summer crest of EIA disappeared on 16 July due to the combined effects of intrusion of neutral composition disturbance zone as shown by the TIMED/GUVI O/N2 measurements and long-lasting daytime westward DDEF inferred from the equatorial electrojet observations. The transit time of DDEF over the dip equator from westward to eastward is around 2200 LT. In the American longitude, the salient ionospheric disturbances in the summer hemisphere were characterized by daytime periodical intrusion of negative phase for three consecutive days in the recovery phase, preceded by storm-enhanced density plume in the initial phase. In addition, multiple short-lived prompt penetration electric fields appeared during stable southward interplanetary magnetic field (IMF) Bz in the recovery phase and were responsible for enhanced the EIA and equatorial ionospheric uplift around sunset.

  18. Ionospheric refraction effects on TOPEX orbit determination accuracy using the Tracking and Data Relay Satellite System (TDRSS)

    NASA Technical Reports Server (NTRS)

    Radomski, M. S.; Doll, C. E.

    1991-01-01

    This investigation concerns the effects on Ocean Topography Experiment (TOPEX) spacecraft operational orbit determination of ionospheric refraction error affecting tracking measurements from the Tracking and Data Relay Satellite System (TDRSS). Although tracking error from this source is mitigated by the high frequencies (K-band) used for the space-to-ground links and by the high altitudes for the space-to-space links, these effects are of concern for the relatively high-altitude (1334 kilometers) TOPEX mission. This concern is due to the accuracy required for operational orbit-determination by the Goddard Space Flight Center (GSFC) and to the expectation that solar activity will still be relatively high at TOPEX launch in mid-1992. The ionospheric refraction error on S-band space-to-space links was calculated by a prototype observation-correction algorithm using the Bent model of ionosphere electron densities implemented in the context of the Goddard Trajectory Determination System (GTDS). Orbit determination error was evaluated by comparing parallel TOPEX orbit solutions, applying and omitting the correction, using the same simulated TDRSS tracking observations. The tracking scenarios simulated those planned for the observation phase of the TOPEX mission, with a preponderance of one-way return-link Doppler measurements. The results of the analysis showed most TOPEX operational accuracy requirements to be little affected by space-to-space ionospheric error. The determination of along-track velocity changes after ground-track adjustment maneuvers, however, is significantly affected when compared with the stringent 0.1-millimeter-per-second accuracy requirements, assuming uncoupled premaneuver and postmaneuver orbit determination. Space-to-space ionospheric refraction on the 24-hour postmaneuver arc alone causes 0.2 millimeter-per-second errors in along-track delta-v determination using uncoupled solutions. Coupling the premaneuver and postmaneuver solutions

  19. Whole Atmosphere-Ionosphere Coupled Model (GAIA) for Space Weather Research

    NASA Astrophysics Data System (ADS)

    Shinagawa, H.; Jin, H.; Miyoshi, Y.; Fujiwara, H.; Tanaka, T.; Fujita, S.; Terada, K.; Murata, K. T.

    2011-12-01

    Space near the Earth, called geospace, is a highly complex system, consisting of the solar wind, the magnetosphere, the ionosphere, and the neutral atmosphere. Those regions have different physical characteristics with different temporal and spatial scales. In particular, the magnetosphere, the ionosphere, and the neutral atmosphere are strongly coupled with each other, and interaction between the regions is nonlinear and extremely complicated. Even within each region, there are strong interactions between physical processes with different temporal and spatial scales. Furthermore, the geospace environment significantly varies as electromagnetic energy and particles from the sun vary. In order to quantitatively understand such a complicated system, it is necessary to model the entire region by including all fundamental processes self-consistently. Various types of global numerical models of geospace have been constructed and used to study space weather disturbances in many institutions in the world. At the National Institute of Information and Communications Technology (NICT) of Japan, a real-time solar wind model, magnetosphere model, and ionosphere-thermosphere model have been developed and used for daily space weather forecast. In addition to the effect of geospace disturbance on the upper atmosphere, recent observations of the ionosphere and the thermosphere have revealed that atmospheric waves generated in the lower atmosphere significantly influence the upper atmosphere, the ionosphere, and possibly the magnetosphere. In order to quantitatively study the effects of the lower atmosphere on the ionosphere, we have developed an atmosphere-ionosphere coupled model, which includes the whole neutral atmosphere and the ionosphere. The model is called GAIA (Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy). Using GAIA, relationship between the ionosphere and the atmosphere is being studied. We plan to incorporate magnetospheric inputs to the polar

  20. Ionospheric refraction correction in radio astronomy

    NASA Astrophysics Data System (ADS)

    Chai, Yan; Han, Wen-Jun

    1986-10-01

    Using Snell's law in polar coordinates, the ionospheric refraction effects on the declination and right ascension determination are discussed in this paper. A ray tracing method is also given. With the ionospheric data observed in Beijing, the correction of ionospheric refraction is estimated and some useful conclusions are drawn.

  1. Ionosphere of Mars as seen by Mars Express. Effect of crustal fields

    NASA Astrophysics Data System (ADS)

    Dubinin, E.; Fraenz, M.; Andrews, D.; Witasse, O.; Barabash, S.

    2015-10-01

    The Martian ionosphere is studied using the local electron number densities and total electron content (TEC) derived from the observations onboard Mars Express. The data are complemented by the ASPER A-3 observations which provide us with the information about upward/downward velocity of the low-energy ions and electron precipitation. We consider 5 years of Mars Express observations at different solar cycle intervals. Different factors which influence the ionosphere dynamics are analyzed. The focus is made on a role of the crustal magnetic field on the Martian ionosphere.

  2. A case study of lightning, whistlers, and associated ionospheric effects during a substorm particle injection event

    NASA Technical Reports Server (NTRS)

    Rodriguez, J. V.; Inan, U. S.; Li, Y. Q.; Holzworth, R. H.; Smith, A. J.; Orville, R. E.; Rosenberg, T. J.

    1992-01-01

    The relationships among cloud-to-ground (CG) lightning, sferics, whistlers, VLF amplitude perturbations, and other ionospheric phenomena occurring during substorm events were investigated using data from simultaneous ground-based observations of narrow-band and broad-band VLF radio waves and of CG lightning made during the 1987 Wave-Induced Particle Precipitation campaign conducted from Wallops Island (Virginia). Results suggest that the data collected on ionospheric phenomena during this event may represent new evidence of direct coupling of lightning energy to the lower ionosphere, either in conjunction with or in the absence of gyroresonant interactions between whistler mode waves and electrons in the magnetosphere.

  3. Empirical model of ionospheric storm effects on the F2 layer peak height associated with changes of peak electron density

    NASA Astrophysics Data System (ADS)

    Gulyaeva, T. L.

    2012-02-01

    An empirical model of storm-time behavior of the ionospheric peak height hmF2 associated with changes of peak electron density NmF2 is inferred from the topside true-height profiles provided by ISIS 1, ISIS 2, IK-19, and Cosmos-1809 satellites for the period of 1969-1987. The topside-derived quiet-time models of the ionospheric peak height hqF2 and peak electron density NqF2 are used as a frame of reference. To harmonize the model with storm and substorm effects induced by large-scale traveling ionospheric disturbances (LSTIDs), constraints are applied to the topside data, excluding their changes deviating above LSTID extreme limits. The degree of disturbance is estimated by the ionospheric weather W index; then, the least squares fitting is applied to the median of log(hm/hq) versus log(Nm/Nq). Anticorrelation between instant changes of hmF2 and NmF2 has a particular seasonal-magnetic latitude structure varying with solar activity that is used for the buildup of the analytical model. The model allows the deduction of the instantaneous hmF2 associated with the assessment or forecast of the respective NmF2. The model is validated with the data of five ground-based ionosondes during severe space weather storms at times of high solar activity (2000) and low solar activity (2006), and results agree reasonably well with the peak parameters derived from an ionogram. The model is incorporated into the coupled International Reference Ionosphere-Plasmasphere (IRI-Plas) code, used in the assimilative mode as the three-dimensional (3-D) interpolator of the GPS-derived total electron content, TECgps.

  4. Lunar tidal effects in the electrodynamics of the low-latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Tracy, Brian D.

    We used extensive measurements made by the Jicamarca Unattended Long-Term Investigations of the Ionosphere and Atmosphere (JULIA) and Incoherent Scatter Radar (ISR) systems at Jicamarca, Peru during geomagnetic quiet conditions to determine the climatologies of lunar tidal effects on equatorial vertical plasma drifts. We use, for the first time, the expectation maximization (EM) algorithm to derive the amplitudes and phases of the semimonthly and monthly lunar tidal perturbations. Our results indicate, as expected, lunar tidal effects can significantly modulate the equatorial plasma drifts. The local time and seasonal dependent phase progression has been studied in much more detail than previously and has shown to have significant variations from the average value. The semimonthly drift amplitudes are largest during December solstice and smallest during June solstice during the day, and almost season independent at night. The monthly lunar tidal amplitudes are season independent during the day, while nighttime monthly amplitudes are largest and smallest in December solstice and autumnal equinox, respectively. The monthly and semimonthly amplitudes decrease from early morning to afternoon and evening to morning with moderate to large increases near dusk and dawn. We also examined these perturbation drifts during periods of sudden stratospheric warmings (SSWs). Our results show, for the first time, the enhancements of the lunar semimonthly tidal effects associated with SSWs to occur at night, as well as during the day. Our results also indicate during SSWs, monthly tidal effects are not enhanced as strongly as the semimonthly effects.

  5. High Resolution Reconstruction of the Ionosphere for SAR Applications

    NASA Astrophysics Data System (ADS)

    Minkwitz, David; Gerzen, Tatjana; Hoque, Mainul

    2014-05-01

    Caused by ionosphere's strong impact on radio signal propagation, high resolution and highly accurate reconstructions of the ionosphere's electron density distribution are demanded for a large number of applications, e.g. to contribute to the mitigation of ionospheric effects on Synthetic Aperture Radar (SAR) measurements. As a new generation of remote sensing satellites the TanDEM-L radar mission is planned to improve the understanding and modelling ability of global environmental processes and ecosystem change. TanDEM-L will operate in L-band with a wavelength of approximately 24 cm enabling a stronger penetration capability compared to X-band (3 cm) or C-band (5 cm). But accompanied by the lower frequency of the TanDEM-L signals the influence of the ionosphere will increase. In particular small scale irregularities of the ionosphere might lead to electron density variations within the synthetic aperture length of the TanDEM-L satellite and in turn might result into blurring and azimuth pixel shifts. Hence the quality of the radar image worsens if the ionospheric effects are not mitigated. The Helmholtz Alliance project "Remote Sensing and Earth System Dynamics" (EDA) aims in the preparation of the HGF centres and the science community for the utilisation and integration of the TanDEM-L products into the study of the Earth's system. One significant point thereby is to cope with the mentioned ionospheric effects. Therefore different strategies towards achieving this objective are pursued: the mitigation of the ionospheric effects based on the radar data itself, the mitigation based on external information like global Total Electron Content (TEC) maps or reconstructions of the ionosphere and the combination of external information and radar data. In this presentation we describe the geostatistical approach chosen to analyse the behaviour of the ionosphere and to provide a high resolution 3D electron density reconstruction. As first step the horizontal structure of

  6. Experimental investigation of the ionospheric hysteresis effect on the threshold excitation level of the Stimulated Electromagnetic Emission (SEE) during heating at the second electron gyro-harmonic frequency

    NASA Astrophysics Data System (ADS)

    Samimi, A.; Scales, W.; Cruz, M.; Isham, B.; Bernhardt, P. A.

    2012-12-01

    Recent experimental observations of the stimulated electromagnetic emission (SEE) spectrum during heating at the second electron gyro-harmonic show structures ordered by ion gyro-frequency. The proposed generation mechanism considers parametric decay of a pump upper hybrid/electron Bernstein (UH/EB) wave into another UH/EB and a group of neutralized ion Bernstein waves. The presumption of the proposed mechanism is that the pump electromagnetic wave is converted into the UH/EB wave. This conversion process generates field aligned irregularity which exhibits hysteresis effect. The predicted ionospheric hysteresis effect is studied during the PARS 2012 at HAARP. The preliminary results are presented for the first time. Also, experimental study of the effects of 1) the transmitter beam angle and 2) the transmitter frequency offset relative to the second electron gyro-harmonic frequency on the ion gyro-harmonic structures in the SEE spectrum are provided. The aforementioned observations are compared to the predictions of the analytical model. Possible connection of the SEE spectral features and artificially generated ionospheric descending layer is also discussed

  7. HF ground scatter from the polar cap: Ionospheric propagation and ground surface effects

    NASA Astrophysics Data System (ADS)

    Ponomarenko, P. V.; St. Maurice, J.-P.; Hussey, G. C.; Koustov, A. V.

    2010-10-01

    In addition to being scattered by the ionospheric field-aligned irregularities, HF radar signals can be reflected by the ionosphere toward the Earth and then scattered back to the radar by the rugged ground surface. These ground scatter (GS) echoes are responsible for a substantial part of the returns observed by HF radars making up the Super Dual Auroral Radar Network (SuperDARN). While a GS component is conventionally used in studying ionosphere dynamics (e.g., traveling ionospheric disturbances, ULF waves), its potential in monitoring the state of the scattering surface remains largely unexploited. To fill this gap, we investigated diurnal and seasonal variation of the ground echo occurrence and location from a poleward-looking SuperDARN radar at Rankin Inlet, Canada. Using colocated ionosonde information, we have shown that seasonal and diurnal changes in the high-latitude ionosphere periodically modulate the overall echo occurrence rate and spatial coverage. In addition, characteristics of GS from a particular geographic location are strongly affected by the state of the underlying ground surface. We have shown that (1) ice sheets rarely produce detectable backscatter, (2) mountain ranges are the major source of GS as they can produce echoes at all seasons of the year, and (3) sea surface becomes a significant source of GS once the Arctic sea ice has melted away. Finally, we discuss how the obtained results can expand SuperDARN abilities in monitoring both the ionosphere and ground surface.

  8. Low-latitude ionospheric effects of energetic electrons during a recurrent magnetic storm

    NASA Astrophysics Data System (ADS)

    Suvorova, A. V.; Huang, C.-M.; Matsumoto, H.; Dmitriev, A. V.; Kunitsyn, V. E.; Andreeva, E. S.; Nesterov, I. A.; Tsai, L.-C.

    2014-11-01

    We study a magnetosphere-ionosphere coupling at low latitudes during a moderate (corotating interaction regions/high-speed solar wind streams-driven) geomagnetic storm on 22 July 2009. Recently, it has been shown that during major (coronal mass ejection-driven) storms, quasi-trapped >30 keV electrons largely enhance below the radiation belt in the forbidden zone and produce an additional ionization in the topside ionosphere. In this work, we examine a case of the recurrent storm when the magnetosphere-ionosphere coupling through the quasi-trapped electrons also may take place. Data from NOAA/Polar-orbiting Operational Environmental Satellite and Japanese Greenhouse gases Observing Satellite were used to identify the forbidden electron enhancement (FEE). We find a positive vertical gradient of the electron fluxes that indicates to the radiation belt as a source of FEE. Using global ionospheric maps, radiotomography reconstructions from beacon data and COSMIC/FORMOSAT-3 radio occultation measurements, we have observed an unusually large area in the nighttime ionosphere with increased total electron content (TEC) and prominent elevation of the F layer at low latitudes that coincides with FEEs spatially and temporarily. Ionizing particles are considered as an addition source of ionization along with generally accepted mechanisms for storm time TEC increase (a positive ionospheric storm). We discuss relative contributions of the FEE and disturbance dynamo electric field in the TEC increases during the storm recovery phase.

  9. foF2 seismo-ionospheric effect analysis: actual data and numerical simulations

    NASA Astrophysics Data System (ADS)

    Liperovskaya, E. V.; Biagi, P.-F.; Meister, C.-V.; Rodkin, M. V.

    2008-12-01

    On the background of seasonal and helio-geomagnetic disturbances, disturbances of the ionization density near noon connected to earthquakes are investigated. The study is performed for some tens of earthquakes with magnitudes M>5 and depths h<70 km, which occur at distances from the vertical sounding stations "Tokyo", "Akita", and "Yamagawa" not larger than R=exp(M)+150 km. The analysis is performed using data registered by the three sounding stations every hour during 30 years. Especially methods of the statistical analysis are applied to search for regularities in the lithospheric-ionospheric links before and after earthquakes. The growth of the mean ionization density N at the F-layer electron density maximum Fof2 five-three days before earthquakes, and the decrease of N approaching the eruption and during a few days after the earthquake is investigated in dependence on both the magnitude of the earthquake M and the ionization density N near the F-layer maximum. It is found that some days before earthquakes the decrease of the ionization density ΔN is proportional to the values of M and N. After the earthquakes, ΔN depends much weaker on the magnitude M, and it is not influenced by the ionization density N. The variations of the ionization density three days before earthquakes do not depend on N and M (within the same order of approximation).

  10. Effects of convection electric field on upwelling and escape of ionospheric O(+)

    NASA Technical Reports Server (NTRS)

    Cladis, J. B.; Chiu, Yam T.; Peterson, William K.

    1992-01-01

    A Monte Carlo code is used to explore the full effects of the convection electric field on distributions of upflowing O(+) ions from the cusp/cleft ionosphere. Trajectories of individual ions/neutrals are computed as they undergo multiple charge-exchange collisions. In the ion state, the trajectories are computed in realistic models of the magnetic field and the convection, corotation, and ambipolar electric fields. The effects of ion-ion collisions are included, and the trajectories are computed with and without simultaneous stochastic heating perpendicular to the magnetic field by a realistic model of broadband, low frequency waves. In the neutral state, ballistic trajectories in the gravitational field are computed. The initial conditions of the ions, in addition to ambipolar electric field and the number densities and temperatures of O(+), H(+), and electrons as a function of height in the cusp/cleft region were obtained from the results of Gombosi and Killeen (1987), who used a hydrodynamic code to simulate the time-dependent frictional-heating effects in a magnetic tube during its motion though the convection throat. The distribution of the ion fluxes as a function of height are constructed from the case histories.

  11. Common origin of positive ionospheric storms at middle latitudes and the geomagnetic activity effect at low latitudes

    SciTech Connect

    Proelss, G.W. )

    1993-04-01

    The author looks for a correlation between two different atmospheric effects. They are a positive atmospheric storm (an anomalous increase in the F2 region ionization density), observed at middle latitudes, and the geomagnetic activity effect (the anomalous changes of temperature and gas density seen in the thermosphere), observed at low latitudes. A temporal correlation is sought to test the argument that both of these effects are the result of travelling atmospheric disturbances (TAD). A TAD is a pulselike atmospheric wave thought to be generated by substorm activity, and to propagate with high velocity (600 m/s) from polar latitudes toward equatorial latitudes. The author looks at data from five separate events correlating magnetic, ionospheric, and neutral atmospheric measurements. The conclusion is that there is a positive correlation between magnetic substorm activity at high latitudes, and positive ionospheric storms at middle latitudes and geomagnetic activity at low latitudes. The time correlations are consistent with high propagation speeds between these events. The author also presents arguments which indicate that the middle latitude positive ionospheric storms are not the result of electric field effects.

  12. Statistical Analysis of the Ionosphere based on Singular Value Decomposition

    NASA Astrophysics Data System (ADS)

    Demir, Uygar; Arikan, Feza; Necat Deviren, M.; Toker, Cenk

    2016-07-01

    Ionosphere is made up of a spatio-temporally varying trend structure and secondary variations due to solar, geomagnetic, gravitational and seismic activities. Hence, it is important to monitor the ionosphere and acquire up-to-date information about its state in order both to better understand the physical phenomena that cause the variability and also to predict the effect of the ionosphere on HF and satellite communications, and satellite-based positioning systems. To charaterise the behaviour of the ionosphere, we propose to apply Singular Value Decomposition (SVD) to Total Electron Content (TEC) maps obtained from the TNPGN-Active (Turkish National Permanent GPS Network) CORS network. TNPGN-Active network consists of 146 GNSS receivers spread over Turkey. IONOLAB-TEC values estimated from each station are spatio-temporally interpolated using a Universal Kriging based algorithm with linear trend, namely IONOLAB-MAP, with very high spatial resolution. It is observed that the dominant singular value of TEC maps is an indicator of the trend structure of the ionosphere. The diurnal, seasonal and annual variability of the most dominant value is the representation of solar effect on ionosphere in midlatitude range. Secondary and smaller singular values are indicators of secondary variation which can have significance especially during geomagnetic storms or seismic disturbances. The dominant singular values are related to the physical basis vectors where ionosphere can be fully reconstructed using these vectors. Therefore, the proposed method can be used both for the monitoring of the current state of a region and also for the prediction and tracking of future states of ionosphere using singular values and singular basis vectors. This study is supported by by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR14/001 projects.

  13. Effects of plasmaspheric ion heating due to ionospheric and magnetospheric sources

    NASA Technical Reports Server (NTRS)

    Comfort, Richard H.

    1996-01-01

    In an initial study, the He(+) observations from the Retarding Ion Mass Spectrometer on Dynamics Explorer 1 (RIMS/DE 1) was examined for more than 120 transits of the plasmasphere in the fall of 1981. The He(+) to H(+) ratio was determined as it varied spatially over portions of the DE 1 orbit, and its variation with solar and magnetic activities and with local time, focusing specifically on the inner plasmasphere. These variations were compared along the L = 2 field line with calculations made by the Field Line Interhemispheric Plasma (FLIP) code. In a recently submitted paper, the He(+) to H(+) density ratio was examined for all the available data from 1981 to 1984 from the RIMS on DE 1. There are two basic characteristics of the ratio: one is that the ratio decreases with radial distance in the plasmasphere, and the other is the strong dependence of the density ratio on solar activity. In addition to the He(+)/H(+) ratio research, a phenomenon has been studied in the topside ionosphere which relates to the thermal coupling of the ionosphere to the plasmasphere. There is little or no correlation with magnetic and solar activity here. Another study has been directed toward the relation of plasma properties to the density gradients forming the plasmapause. The study has followed a two-pronged approach. First, the observations have been analyzed to determine what happens to the plasma properties across these boundary layers (density gradients). Second, comparisons were made with FLIP model calculations to determine how well the model is able to treat these conditions. Among the significant lessons learned in these studies are two that bear directly on the direction of future investigations in this area. First, composition cannot be viewed independently of thermal structure. Second, solar and magnetic activity effects are real; but the causal relationship between activity and effects is frequently quite complicated because several different processes appear to be

  14. Comparison of dayside current layers in Venus' ionosphere and earth's equatorial electrojet

    NASA Technical Reports Server (NTRS)

    Cole, Keith D.

    1993-01-01

    The major physical aspects of the equatorial electrojet of Earth and the dayside ionospheric current layers of Venus are compared, viz., the electric current intensity and total current, roles of electric field, pressure and gravity, diffusion time scales, and the Bernouille effect. The largest potential differences, of the order of 10 volts, horizontally across the dayside ionosphere of Venus, have important implications for possible dynamo action in the Venus ionosphere and the application of an electric field from the lower atmosphere or from the solar wind. An upper limit to the horizontal scale of vertical magnetic fields in the Venus ionosphere is estimated thereby for the first time. New upper limits on the velocity in, and thickness of, a possible S layer at Venus are presented. If an S layer exists, it is only for extreme conditions of the solar wind. A mechanism for formation of magnetic ropes in the Venus ionosphere is also proposed.

  15. Comparison of dayside current layers in Venus' ionosphere and earth's equatorial electrojet

    NASA Astrophysics Data System (ADS)

    Cole, K. D.

    1993-03-01

    The major physical aspects of the equatorial electrojet of Earth and the dayside ionospheric current layers of Venus are compared, viz., the electric current intensity and total current, roles of electric field, pressure and gravity, diffusion time scales, and the Bernouille effect. The largest potential differences, of the order of 10 volts, horizontally across the dayside ionosphere of Venus, have important implications for possible dynamo action in the Venus ionosphere and the application of an electric field from the lower atmosphere or from the solar wind. An upper limit to the horizontal scale of vertical magnetic fields in the Venus ionosphere is estimated thereby for the first time. New upper limits on the velocity in, and thickness of, a possible S layer at Venus are presented. If an S layer exists, it is only for extreme conditions of the solar wind. A mechanism for formation of magnetic ropes in the Venus ionosphere is also proposed.

  16. Radiotomography and HF ray tracing of the artificially disturbed ionosphere above the Sura heating facility

    NASA Astrophysics Data System (ADS)

    Andreeva, E. S.; Frolov, V. L.; Kunitsyn, V. E.; Kryukovskii, A. S.; Lukin, D. S.; Nazarenko, M. O.; Padokhin, A. M.

    2016-06-01

    We present the results of the radiotomographic imaging of the artificial ionospheric disturbances obtained in the recent experiments on the modification of the midlatitude ionosphere by powerful HF radiowaves carried out at the Sura heater. Radio transmissions from low orbital PARUS beacon satellites recorded at the specially installed network of three receiving sites were used for the remote sensing of the heated ionosphere. We discuss the possibility to generate acoustic-gravity waves (AGWs) with special regimes of ionospheric heating (with the square wave modulation of the effective radiated power at the frequency lower than or of the order of the Brunt-Vaisala frequency of the neutral atmosphere at ionospheric heights during several hours) and present radiotomographic images of the spatial structure of the disturbed volume of the ionosphere corresponding to the directivity pattern of the heater, as well as the spatial structure of the wave-like disturbances, which are possibly heating-induced AGWs, diverging from the heated area of the ionosphere. We also studied the HF propagation of the pumping wave through the reconstructed disturbed ionosphere above the Sura heater, showing the presence of heater-created, field-aligned irregularities that effectively serve as "artificial radio windows."

  17. Implications of Ionospheric Scintillation for GNSS Users in Northern Europe

    NASA Astrophysics Data System (ADS)

    Aquino, Marcio; Moore, Terry; Dodson, Alan; Waugh, Sam; Souter, Jock; Rodrigues, Fabiano S.

    2005-05-01

    Extensive ionospheric scintillation and Total Electron Content (TEC) data were collected by the Institute of Engineering Surveying and Space Geodesy (IESSG) in Northern Europe during years of great impact of the solar maximum on GNSS users (2001 2003). The ionospheric TEC is responsible for range errors due to its time delay effect on transionospheric signals. Electron density irregularities in the ionosphere, occurring frequently during these years, are responsible for (phase and amplitude) fluctuations on GNSS signals, known as ionospheric scintillation. Since June 2001 four GPS Ionospheric Scintillation and TEC Monitor receivers (the NovAtel/AJ Systems GSV4004) have been deployed at stations in the UK and Norway, forming a Northern European network, covering geographic latitudes from 53° to 70° N approximately. These receivers compute and record GPS phase and amplitude scintillation parameters, as well as TEC and TEC variations. The project involved setting up the network and developing automated archiving and data analysis strategies, aiming to study the impact of scintillation on DGPS and EGNOS users, and on different GPS receiver technologies. In order to characterise scintillation and TEC variations over Northern Europe, as well as investigate correlation with geomagnetic activity, long-term statistical analyses were also produced. This paper summarises our findings, providing an overview of the potential implications of ionospheric scintillation for the GNSS user in Northern Europe.

  18. Space weather effects on the low latitude D-region ionosphere during solar minimum

    NASA Astrophysics Data System (ADS)

    Kumar, Abhikesh; Kumar, Sushil

    2014-12-01

    The effects of the solar flares and the geomagnetic storms (disturbance storm time ( Dst) < -50 nT) during December 2006 to 2008, a period during the unprecedented solar minimum of solar cycles 23 and 24, have been examined on sub-ionospheric very low frequency (VLF) signals from NWC (19.8 kHz), NPM (21.4 kHz), VTX (18.2 kHz), and NLK (24.8 kHz) transmitters monitored at Suva (18.2° S, 178.4° E), Fiji. Apart from the higher class solar flares (C to X), a solar flare of class B8.5 also produced enhancements both on the amplitude and phase. The amplitude enhancements in NLK, NPM, and NWC signals as a function of peak solar flare X-ray flux in decibel (dB; relative to 1 μW/m2) shows that the relationship curve is steeper and quite linear between the flare power levels of 0 to 15 dB; below 0 dB, the curve gets less steep and flattens towards -5 dB flare power level, while it also gets less steep above 15 dB and almost flattens above 20 dB. In general, the level of amplitude enhancement for NLK signal is higher than that for NPM and NWC signals for all solar flares. The enhancement in the amplitude and phase of VLF signals by solar flares is due to the increase in the D-region electron density by the solar flare-produced extra ionization. The modeling of VLF perturbations produced by B8.5 and C1.5 classes of solar flares on 29 January 2007 using LWPC (Long Wave Propagation Capability) V2.1 codes show that reflection height ( H') was reduced by 0.6 and 1.2 km and the exponential sharpness factor ( β) was raised by 0.010 and 0.005 km-1, respectively. Out of seven storms with Dst < -50 nT, only the intense storm of 14 to 16 December 2006 with a minimum Dst of -145 nT has shown a clear reduction in the signal strength of NWC and NPM sub-ionospheric signals due to storm-induced reduction in the D-region electron density.

  19. Perturbation effect of the electronic induction drag on the orbital elements of a charged satellite moving in an ionosphere

    NASA Astrophysics Data System (ADS)

    Li, Lin-Sen

    The influence of the electronic induction drag on the variation of the orbital elements of a charged satellite moving in a magnetic-field-free ionosphere are studied. The theoretical result show that the induction drag results in both the secular and periodic variations of the semi-major axis, however the eccentricity, the argument of perigee and the mean longitude of epoch exhibits no secular variation, but only periodic variation. The inclination and the ascending node remain no variation. As example, the secular effect of the induction drag on the orbital semi-major axis at a supposed satellite is calculated. It can be shown that the semi-major axis is contracted due to the induction drag, if this satellite carries many charges in an ionosphere.

  20. Ionospheric Data Assimilation

    NASA Astrophysics Data System (ADS)

    Schunk, R.; Scherliess, L.; Sojka, J.; Thompson, D.

    2003-04-01

    Ionospheric weather disturbances can have detrimental effects on a variety of civilian and military systems and operations. They can affect over-the-horizon (OTH) radars, HF communications, surveying and navigation systems, surveillance, spacecraft charging, power grids, pipelines, and the FAA's Wide-Area Augmentation System (WAAS). In an effort to mitigate the adverse effects of the ionosphere on these systems/operations, there is a strong emphasis on developing specification and forecast models. One of the models under development is the Global Assimilation of Ionospheric Measurements (GAIM) model. GAIM uses a physics-based ionosphere-plasmasphere-polar wind model and a Kalman filter as a basis for assimilating a diverse set of real-time (or near real-time) measurements. Some of the data that are assimilated include in situ electron density measurements from the DMSP satellites, bottomside electron density profiles from the Air Force network of digisondes, GPS-TEC data from a network of more than 100 stations, and occultation data. GAIM provides specifications and forecasts on a spatial grid that can be global, regional, or local (25 x 25 km). The primary GAIM output is in the form of 3-dimensional electron density distributions from 90 km to the geosynchronous altitude (35,000 km). GAIM also provides auxiliary parameters (N_mF_2, h_mF_2, N_mE, h_mE, slant and vertical TEC) and global distributions of the self-consistent ionospheric drivers (neutral winds and densities, magnetospheric and dynamo electric fields, and particle precipitation patterns). In its specification mode, GAIM provides quantitative estimates for the accuracy of the reconstructed ionospheric densities. An outline of the GAIM model will be presented and then the presentation will focus on data issues, including the availability of real-time data sources, data quality problems, and the need to have realistic errors attached to all of the real-time data.

  1. Ensemble Ionospheric Total Electron Content Forecasting during Storms

    NASA Astrophysics Data System (ADS)

    Chartier, A.; Mitchell, C. N.; Lu, G.; Anderson, J. L.; Collins, N.; Hoar, T. J.; Bust, G. S.; Matsuo, T.

    2014-12-01

    Earth's ionosphere presents a threat to human activities such as satellite positioning and timing, radio communications and surveillance. Nowcasts and forecasts of the ionosphere could help mitigate these damaging effects. Recent advances in the field of ionospheric imaging, as well as new storm-time ionospheric forecasting results are presented here. The approach combines globally distributed GPS Total Electron Content (TEC) measurements with an ensemble of coupled thermosphere-ionosphere models in order to produce short-term forecasts during a storm. One-hour forecast accuracy is much better than a climatological model run. Using this ensemble approach, it is possible to infer the neutral O/N2 ratio from TEC measurements so that subsequent TEC forecasts are improved. A review of ionospheric physics and data assimilation will also be given. The term data assimilation refers to a group of techniques designed to estimate atmospheric or oceanic states. In practice, data assimilation techniques seek to improve modeled estimates of the atmospheric state by incorporating observations. The relationship between data assimilation and forecasting is explored with reference to the physics of the thermosphere-ionosphere system. The work presented here uses the Data Assimilation Research Testbed (DART), which is an ensemble Kalman filter data assimilation framework. This is combined with a version of the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM) that has been modified to accept more detailed solar and geomagnetic driver specifications. Future directions of work include the inference of Solar and geomagnetic drivers from the data assimilation process as well as coupling with lower-atmospheric models.

  2. Radio Tomography of Ionospheric Structures (probably) due to Underground-Surface-Atmosphere-Ionosphere Coupling

    NASA Astrophysics Data System (ADS)

    Kunitsyn, V.; Nesterov, I.; Andreeva, E.; Rekenthaler, D. A.

    2012-12-01

    . The single-point measurements (by ionosondes or by isolated receivers) are not amenable to unambiguous interpretation; based on these data, it is impossible to distinguish the contribution of USAI coupling from the ionospheric effects induced by the "ordinary" impacts (the Sun, the solar wind, geomagnetic perturbations, galactic cosmic rays, etc.). In order to localize sources of the ionospheric disturbances, the geophysicist needs information on the spatial structure and dynamics of the ionospheric perturbations. This information (2D-4D RT images) is optimally provided by RT methods. We present examples of the ionospheric disturbances caused by EQs as well as the ionospheric precursors of these EQs in the form of specific ionospheric irregularities: AGW- and soliton-like wave disturbances, which we identified using RT methods. Based on the results of the RT studies in the Alaska and Taiwan regions, we have detected several dozen AGW-related precursors of EQs. These data allow us to attempt to locate the source of these perturbations. We discuss the possibilities and prospects of further research aimed at identifying and analyzing precursors of EQs and establishing the mechanisms of USAI coupling. We are grateful to Northwest Research Associates, Inc., and Dr. L.-C.Tsai for providing raw RT data for Alaska and Taiwan.

  3. Refractive index effects on the scatter volume location and Doppler velocity estimates of ionospheric HF backscatter echoes

    NASA Astrophysics Data System (ADS)

    Ponomarenko, P. V.; St-Maurice, J.-P.; Waters, C. L.; Gillies, R. G.; Koustov, A. V.

    2009-11-01

    Ionospheric E×B plasma drift velocities derived from the Super Dual Auroral Radar Network (SuperDARN) Doppler data exhibit systematically smaller (by 20-30%) magnitudes than those measured by the Defence Meteorological Satellites Program (DMSP) satellites. A part of the disagreement was previously attributed to the change in the E/B ratio due to the altitude difference between the satellite orbit and the location of the effective scatter volume for the radar signals. Another important factor arises from the free-space propagation assumption used in converting the measured Doppler frequency shift into the line-of-sight velocity. In this work, we have applied numerical ray-tracing to identify the location of the effective scattering volume of the ionosphere and to estimate the ionospheric refractive index. The simulations show that the major contribution to the radar echoes should be provided by the Pedersen and/or escaping rays that are scattered in the vicinity of the F-layer maximum. This conclusion is supported by a statistical analysis of the experimental elevation angle data, which have a signature consistent with scattering from the F-region peak. A detailed analysis of the simulations has allowed us to propose a simple velocity correction procedure, which we have successfully tested against the SuperDARN/DMSP comparison data set.

  4. A case study of Ionospheric storm effects during long-lasting southward IMF Bz driven geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Liu, J., Sr.

    2014-12-01

    Multiple instrumental observations including GPS TEC, foF2 and hmF2 from ionosondes, vertical ion drift measurements from C/NOFS, magnetometer data and far-ultraviolet airglow measured by TIMED/GUVI are used to investigate the profound ionospheric disturbances at mid- and low-latitudes during the 14-17 July 2012 geomagnetic storm event, which was featured by prolonged southward interplanetary geomagnetic field component for about 30 hours below -10 nT. In the East Asian/Australian sector, latitudinal profile of TEC variations in the main phase were characterized by three bands of increments and separated by weak depressions in the Equatorial Ionospheric Anomaly (EIA) crest regions, which were caused by the combined effects of disturbance dynamo electric fields (DDEF) and equatorward neutral winds. In the recovery phase, strong inhibition of EIA occurred and the summer crest of EIA disappeared on 16 July due to the combined effects of intrusion of neutral composition disturbance zone as shown by the TIME/GUVI O/N2 measurements and long-lasting daytime westward DDEF inferred from the equatorial electric electrojet (EEJ) observations. The transit time of DDEF over the dip equator from westward to eastward is around 2200 LT. In the American longitude, the salient ionospheric disturbances in the summer hemisphere were characterized by daytime periodical intrusion of negative phase for three consecutive days in the recovery phase, preceded by storm enhanced density (SED) plume in the initial phase. In addition, multiple short-lived prompt penetration electric fields (PPEF) appeared during stable southward IMF Bz in the recovery phase and were responsible for enhanced the EIA and equatorial ionospheric uplift around sunset.

  5. GPS Monitoring of Ionospheric TEC Over the Area of Thessaliniki in Order to Detect Disturbances Related to the Local Tectonic Activity

    NASA Astrophysics Data System (ADS)

    Contadakis, M. E.; Arambelos, D.; Asteriadis, G.; Pikridas, Ch.; Spatalas, S.

    2004-04-01

    Atmospheric and underground explosions as well as shallow earthquakes producing strong vertical ground displacement, are known to produce pressure waves (e.g. Calais and Minster 1995) that propagates at infrasonic speeds in the atmosphere. At ionospheric altitudes these waves are coupled to ionospheric gravity waves and induce variations in the ionospheric electron density. On the other hand local lithospheric density variations, produced by the local tectonic activity during the earthquake preparation period, affect the local gravity field and consequently the overlying atmospheric and ionospheric density. This fact is reflected in the presence of exalting on atmospheric tide parameters (e.g. Arabelos et al. 2003, Contadakis et al. 2004) and on LF radio signals (Biagi et al. 2003). That is the lithospheric near surface tectonic activity results in local pre-, co- and post-seismic disturbances on the ionospheric Total Electronic Content. There for a program for the monitoring of TEC over the area of Thessaloniki in relation with the local seismic activity was initiated, using the data of the GPS permanent station of the Department of Surveying and Geodesy, University of Thessaloniki. In this paper the organizing of the observations and the method of analysis are presented and the first results of the observed ionospheric TEC variations in relation with the weak local seismic activity are being discussed.

  6. Effects of a “day-time” substorm on the ionosphere and radio propagation

    NASA Astrophysics Data System (ADS)

    Blagoveshchensky, D.; Kalishin, A.; MacDougall, J.

    2009-11-01

    Propagation mechanisms of lateral (non-great-circle) signals on a high-latitude HF radio path during magnetospheric substorms that occurred in the day-time have been considered. The path is equipped with oblique ionospheric sounding (OIS) from Murmansk to St. Petersburg. The OIS method gives the possibility to determine propagation modes, MOF (maximum observed frequency) values, signal delays, etc. Data of the CUTLASS radar, the IMAGE magnetometer system, the Finnish riometer chain, and the Tromso ionosonde were also used for the analysis. The main results are the following: (1) the lateral signal propagation takes place, as a rule, if the path midpoint is located near the irregularity region that moves sharply from high to low latitudes. The lateral signal propagation appearing during day-time is a new effect. (2) Formation of dense field-aligned irregularities during a substorm leads to decreasing F2MOF values on radio paths. These results can be useful for problems of radiolocation, HF communications and navigation.

  7. The simulation of electromagnetically driven strong Langmuir turbulence effect on the backscatter radiation from ionosphere

    NASA Astrophysics Data System (ADS)

    Kochetov, Andrey

    2016-07-01

    Numerical simulations of the dynamics of electromagnetic fields in a smoothly inhomogeneous nonlinear plasma layer in frameworks of the nonlinear Schrödinger equation with boundary conditions responsible for the pumping of the field in the layer by an incident wave and the inverse radiation losses supplemented the volume field dissipation due to the electromagnetic excitation of Langmuir turbulence are carried out. The effects of the threshold of non-linearity and it's evolution, of the threshold and saturation levels of dissipation in the vicinity of the wave reflection point on the features of the dynamics of reflection and absorption indexes are investigated. We consider the hard drive damping depending on the local field amplitude and hysteresis losses with different in several times "on" and "off" absorption thresholds as well. The dependence of the thresholds of the steady-state, periodic and chaotic regimes of plasma-wave interaction on the scenario of turbulence evolution is demonstrated. The results are compared with the experimental observations of Langmuir stage ionospheric modification.

  8. Time and Order Effects on Causal Learning

    ERIC Educational Resources Information Center

    Alvarado, Angelica; Jara, Elvia; Vila, Javier; Rosas, Juan M.

    2006-01-01

    Five experiments were conducted to explore trial order and retention interval effects upon causal predictive judgments. Experiment 1 found that participants show a strong effect of trial order when a stimulus was sequentially paired with two different outcomes compared to a condition where both outcomes were presented intermixed. Experiment 2…

  9. Using Lightning Waveforms To Probe Thunderstorm's Electromagnetic Effects On The Ionospheric D-Layer

    NASA Astrophysics Data System (ADS)

    Shao, X.; Lay, E. H.; Jacobson, A. R.

    2011-12-01

    Previous studies indicated that ionospheric D-layer could be disturbed by electromagnetic activities of the underling thunderstorms, either due to impulsive EM radiation (EMP) produced by intense ground strokes or due to removal of charges by lightning flashes (quasi-static electrical, QE). More recent study by the authors showed that the dominant fluctuations in the D-layer could be attributed to the effects of atmospheric gravity wave (AGW) that was originated by the storm. With time-domain, near-range (100s km), multi-station, and broadband VLF/LF observations from the Los Alamos Sferic Array (LASA), high spatial and temporal resolution detection of the D-layer behavior became feasible. Especially, the simultaneous multi-station measurements provide a chance of probing the D-layer from different directions and at different distances from the effecting storm. Together with the measurement, we also developed a time-domain VLF/LF propagation model, which takes the D-layer electron profile as the dominant parameter. In this study, we compare the measured return stroke waveforms with the model simulation and find the best match between the two, and to retrieve the corresponding D-layer electron profile. Our analysis indicated that additional and static ionization occurred directly above some storms, possibly due to the QE effect (or rather a static electrical effect, SE). In the range of a few hundred km, the altitude of the D-layer was found to continuously descending as one approaching toward the storm, suggesting an EMP effect that occurred nearly continuously.

  10. Tsunami Ionospheric warning and Ionospheric seismology

    NASA Astrophysics Data System (ADS)

    Lognonne, Philippe; Rolland, Lucie; Rakoto, Virgile; Coisson, Pierdavide; Occhipinti, Giovanni; Larmat, Carene; Walwer, Damien; Astafyeva, Elvira; Hebert, Helene; Okal, Emile; Makela, Jonathan

    2014-05-01

    The last decade demonstrated that seismic waves and tsunamis are coupled to the ionosphere. Observations of Total Electron Content (TEC) and airglow perturbations of unique quality and amplitude were made during the Tohoku, 2011 giant Japan quake, and observations of much lower tsunamis down to a few cm in sea uplift are now routinely done, including for the Kuril 2006, Samoa 2009, Chili 2010, Haida Gwai 2012 tsunamis. This new branch of seismology is now mature enough to tackle the new challenge associated to the inversion of these data, with either the goal to provide from these data maps or profile of the earth surface vertical displacement (and therefore crucial information for tsunami warning system) or inversion, with ground and ionospheric data set, of the various parameters (atmospheric sound speed, viscosity, collision frequencies) controlling the coupling between the surface, lower atmosphere and the ionosphere. We first present the state of the art in the modeling of the tsunami-atmospheric coupling, including in terms of slight perturbation in the tsunami phase and group velocity and dependance of the coupling strength with local time, ocean depth and season. We then show the confrontation of modelled signals with observations. For tsunami, this is made with the different type of measurement having proven ionospheric tsunami detection over the last 5 years (ground and space GPS, Airglow), while we focus on GPS and GOCE observation for seismic waves. These observation systems allowed to track the propagation of the signal from the ground (with GPS and seismometers) to the neutral atmosphere (with infrasound sensors and GOCE drag measurement) to the ionosphere (with GPS TEC and airglow among other ionospheric sounding techniques). Modelling with different techniques (normal modes, spectral element methods, finite differences) are used and shown. While the fits of the waveform are generally very good, we analyse the differences and draw direction of future

  11. Modeling ionospheric electron precipitation due to wave particle scattering in the magnetosphere and the feedback effect on the magnetospheric dynamics

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Jordanova, V.; Ridley, A. J.; Albert, J.; Horne, R. B.; Jeffery, C. A.

    2015-12-01

    Electron precipitation down to the atmosphere caused by wave-particle scattering in the magnetosphere contribute significantly to the enhancement of auroral ionospheric conductivity. Global MHD models that are incapable of capturing kinetic physics in the inner magnetosphere usually adopt MHD parameters to specify the precipitation flux to estimate auroral conductivity, hence losing self-consistency in the global circulation of the magnetosphere-ionosphere system. In this study we improve the coupling structure in global models by connecting the physics-based (wave-particle scattering) electron precipitation with the ionospheric electrodynamics and investigate the feedback effect on the magnetospheric dynamics. We use BATS-R-US coupled with a kinetic ring current model RAM-SCB that solves pitch angle dependent particle distributions to study the global circulation dynamics during the Jan 25-26, 2013 storm event. Following tail injections, we found enhanced precipitation number and energy fluxes of tens of keV electrons being scattered into loss cone due to interactions with enhanced chorus and hiss waves in the magnetosphere. This results in a more profound auroral conductance and larger electric field imposing on the plasma transport in the magnetosphere. We also compared our results with previous methods in specifying the auroral conductance, such as empirical relation used in Ridley et al. (2004). It is found that our physics-based method develops a larger convection electric field in the near-Earth region and therefore leads to a more intense ring current.

  12. Evidence and effects of the sunrise enhancement of the equatorial vertical plasma drift in the F region ionosphere

    NASA Astrophysics Data System (ADS)

    Zhang, Ruilong; Liu, Libo; Le, Huijun; Chen, Yiding

    2016-05-01

    Recent studies based on the satellite observations demonstrated that the equatorial vertical plasma drift can also enhance near sunrise in a way similar to the prereversal enhancement. However, it is not clear whether the signature of this sunrise enhancement appears in observations with other sounding techniques. In this work, we explore the Jicamarca (12°S, 283.2°E) incoherent scatter radar measurements to present the evidence of sunrise enhancement in vertical plasma drift on 12 May and 10 June 2004, which are under magnetically quiet and solar minimum conditions. The effects of the sunrise enhancement on the ionosphere are, for the first time, investigated by analyzing the ionograms recorded by the Digisonde Portable Sounder at Jicamarca and conducting the Theoretical Ionospheric Model of the Earth in Institute of Geology and Geophysics, Chinese Academy of Sciences. The observations showed that, during the sunrise enhancement, the F2 layer peak height is lifted remarkably, and the F2 layer peak density and bottomside electron density tend to decrease compared to the days without sunrise enhancements. The simulations indicated that the sunrise enhancement drift can lift the equatorial ionosphere to higher heights and distort the equatorial electron density profiles. What is more, the simulations display an F3 layer in the equatorial F region during the sunrise enhancement, and a new F2 layer develops at lower altitudes under the jointed control of the usual photochemical and dynamical processes.

  13. Effect of interplanetary magnetic field on ionosphere over the magnetic equator

    NASA Technical Reports Server (NTRS)

    Rastogi, R. G.; Patel, V. L.

    1975-01-01

    Large and quick changes of the latitude of the interplanetary magnetic field from its southward to northward direction are shown to be associated with the disappearance of the Es-q layer (Knecht, 1959) at the equatorial ionosphere during the daytime or with the reversal of E region horizontal and F region vertical electron drifts during both night and day. This phenomenon is suggested as the imposition of an electric field in the ionosphere in a direction opposite to that of the Sq electric field. The resultant electrostatic field on the equatorial ionosphere would be decreased or even reversed from its normal direction, resulting in the reduction of electron drift velocity. When the normal Sq field is over-compensated by the magnetospheric electric field, the electron drifts are reversed and the irregularities in the E region due to the cross-field instabilities are inhibited, resulting in the sudden disappearance of the Es-q layers.

  14. Ionospheric range-rate effects in satellite-to-satellite tracking

    NASA Technical Reports Server (NTRS)

    Lipofsky, J. R.; Bent, R. B.; Llewellyn, S. K.; Schmid, P. E.

    1977-01-01

    Investigation of ionospheric range and range-rate corrections in satellite-to-satellite tracking were investigated. Major problems were cited and the magnitude of errors that have to be considered for communications between satellites and related experiments was defined. The results point to the need of using a sophisticated modeling approach incorporating daily solar data, and where possible actual ionospheric measurements as update information, as a simple median model cannot possibly account for the complex interaction of the many variables. The findings provide a basis from which the residual errors can be estimated after ionospheric modeling is incorporated in the reduction. Simulations were performed for satellites at various heights: Apollo, Geos, and Nimbus tracked by ATS-6; and in two different geometric configurations: coplanar and perpendicular orbits.

  15. Effect of Precipitating Electrons on Ring Current Energy Content, Ionospheric Conductance, and Thermospheric Properties

    NASA Astrophysics Data System (ADS)

    Chen, M.; Lemon, C. L.; Walterscheid, R. L.; Yoo, B.; Hecht, J. H.; Shprits, Y.; Orlova, K.; Schulz, M.; Evans, J. S.

    2014-12-01

    We investigate how scattering of electrons by waves in the plasma sheet and plasmasphere affects precipitating energy flux distributions during magnetic storms, how the precipitating electrons modify the ionospheric Hall and Pederson conductivity and electric potential, how these processes feedback on magnetospheric particle transport and redistribute the ring current, and how the ionization and energy deposition of precipitating electrons affects thermospheric winds and temperature. Our main approach is to couple simulation models: (1) the magnetically and electrically self-consistent Rice Convection Model - Equilibrium (RCM-E) of the inner magnetosphere, (2) the B3c transport model for electron-proton-hydrogen atom aurora in the ionosphere, and (3) the Thermosphere-Ionsphere-Electrodynamics General Circulation Model (TIEGCM) of the ionosphere and thermosphere. Realistic descriptions of electron pitch-angle diffusion by whistler chorus in the plasma sheet/magnetotail and hiss in the plasmasphere are included in the RCM-E. We use parameterized rates of electron pitch-angle scattering with whistler chorus of Orlova and Shprits [JGR, 2014] that depend on equatorial radial distance, magnetic activity (Kp), and magnetic local time. To study how the precipitating electron energy flux distributions affect ionospheric conductivity and ionospheric electric potential patterns, we have performed a one-way coupling of the RCM-E and ionospheric B3c model. The simulated precipitating electron flux distributions are used to specify the energy flux and particle heating due to precipitating auroral electrons for TIEGCM simulations of the neutral atmosphere. We simulate a storm event and compare simulated quantities with in situ observations.

  16. The Effects of Neutral Inertia on Ionospheric Currents in the High-Latitude Thermosphere Following a Geomagnetic Storm

    NASA Technical Reports Server (NTRS)

    Deng, W.; Killeen, T. L.; Burns, A. G.; Roble, R. G.; Slavin, J. A.; Wharton, L. E.

    1993-01-01

    Results of an experimental and theoretical investigation into the effects of the time dependent neutral wind flywheel on high-latitude ionospheric electrodynamics are presented. The results extend our previous work which used the National Center for Atmospheric Research Thermosphere/Ionosphere General Circulation Model (NCAR TIGCM) to theoretically simulate flywheel effects in the aftermath of a geomagnetic storm. The previous results indicated that the neutral circulation, set up by ion-neutral momentum coupling in the main phase of a geomagnetic storm, is maintained for several hours after the main phase has ended and may dominate height-integrated Hall currents and field-aligned currents for up to 4-5 hours. We extend the work of Deng et al. to include comparisons between the calculated time-dependent ionospheric Hall current system in the storm-time recovery period and that measured by instruments on board the Dynamics Explorer 2 (DE 2) satellite. Also, comparisons are made between calculated field-aligned currents and those derived from DE 2 magnetometer measurements. These calculations also allow us to calculate the power transfer rate (sometimes called the Poynting flux) between the magnetosphere and ionosphere. The following conclusions have been drawn: (1) Neutral winds can contribute significantly to the horizontal ionospheric current system in the period immediately following the main phase of a geomagnetic storm, especially over the magnetic polar cap and in regions of ion drift shear. (2) Neutral winds drive Hall currents that flow in the opposite direction to those driven by ion drifts. (3) The overall morphology of the calculated field-aligned current system agrees with previously published observations for the interplanetary magnetic field (IMF) B(sub Z) southward conditions, although the region I and region 2 currents are smeared by the TI(ICM model grid resolution. (4) Neutral winds can make significant contributions to the field-aligned current

  17. Ionospheric effects of the acoustic wave above the epicenter of an industrial explosion

    SciTech Connect

    Drobzhev, V.I.; Zheleznyakov, E.V.; Idrisov, I.K.; Kaliev, M.Z.; Kazakov, V.V.; Krasnov, V.M.; Pelenitsyn, G.M.; Savel'ev, V.L.

    1988-06-01

    Results obtained during two industrial explosions are compared. The appearance of identical minute pulsations in the geomagnetic field is determined. The efficiency of ionospheric action of ground-based explosions with the energy of several hundred tons of TNT is confirmed, together with the dependence of duration of the ionospheric response upon the explosion energy. Dopplergrams are used to reconstruct the time profile of neutral gas velocity in the acoustic perturbation at the reflection point of the probing radio wave at a height of /approximately/200 km.

  18. Analysis of FORTE data to extract ionospheric parameters

    NASA Astrophysics Data System (ADS)

    Roussel-Dupré, Robert A.; Jacobson, Abram R.; Triplett, Laurie A.

    2001-01-01

    The ionospheric transfer function is derived for a spherically symmetric ionosphere with an arbitrary radial electron density profile in the limit where the radio frequencies of interest ω are much larger than the plasma frequency ωpe. An expansion of the transfer function to second order in the parameter X (= ω2pe/ω2) is carried out. In this limit the dispersive properties of the ionosphere are manifested as a frequency-dependent time of arrival that includes quadratic, cubic, and quartic terms in 1/ω. The coefficients of these terms are related to the total electron content (TEC) along the slant path from transmitter to receiver, the product of TEC and the longitudinal magnetic field strength along the slant path, and refractive bending and higher-order electron density profile effects, respectively. By fitting the time of arrival versus frequency of a transionospheric signal to a polynomial in 1/ω it is possible to extract the TEC, the longitudinal magnetic field strength, the peak electron density, and an effective thickness for the ionosphere. This exercise was carried out for a number of transionospheric pulses measured in the VHF by the FORTE satellite receiver and generated by the Los Alamos Portable Pulser. The results are compared with predictions derived from the International Reference Ionosphere and the United States Geological Survey geomagnetic field model.

  19. Ionospheric mapping functions based on electron density fields

    NASA Astrophysics Data System (ADS)

    Zus, Florian; Deng, Zhiguo; Heise, Stefan; Wickert, Jens

    2016-04-01

    We developed an ionospheric Mapping Function (MF) for the Global Navigation Satellite System (GNSS) which is based on the electron density field of the International Reference Ionosphere (IRI). The station specific MF utilizes a look-up table which contains a set of ray-traced ionospheric delays. Hence, unlike the simple MFs that are currently in use, the developed MF depends on the time, location, elevation and azimuth angle. Ray-bending is taken into account, which implies that the MF depends on the carrier frequency as well. This frequency dependency of the MF can be readily used to examine higher-order ionospheric effects due to ray-bending. We compare the proposed MF with the so-called single layer model MF and find significant differences in particular around the equatorial anomaly. In so-far as the proposed MF is based on a realistic electron density field (IRI) our comparison shows the potential error of the single-layer model MF in practice. We conclude that the developed MF concept might be valuable in the GNSS Total Electron Content estimation. The frequency dependency of the MF can be used to mitigate higher-order ionospheric effects.

  20. Fluctuations in the Venusian Ionosphere and Their Effect on Venus Express Lightning Detection Rates

    NASA Astrophysics Data System (ADS)

    Hart, R. A.; Russell, C. T.; Zhang, T.

    2015-12-01

    Venus Express completed its nearly 9 year campaign at Earth's sister planet in late 2014. During this period the onboard fluxgate magnetometer collected data up to 64 Hz in frequency near periapsis. This is the expected frequency range for lightning-generated whistler-mode waves at Venus, between the local electron (~100 Hz) and ion gyrofrequencies (~1 Hz). These waves are right-hand circularly polarized and are guided by the local magnetic field. When the Venusian ionopause is low enough to reside in the collisional region, the interplanetary magnetic field can get carried down with the ions and magnetize the lower ionosphere. As the field travels towards terminator it gains a radial component, enabling whistlers to reach higher altitudes and be detected by the spacecraft. The mission covered almost an entire solar cycle and frequently observed a magnetized ionosphere during the solar minimum phase when the ionosphere was weak due to reduced incident EUV. In addition, the detection rate of whistler-mode signals varied with the solar cycle. Here, we examine the changes in the ionospheric properties associated with the evolution of the solar cycle and the rate of detection of these lightning-generated signals.

  1. Solar Cycle Effects on Equatorial Electrojet Strength and Low Latitude Ionospheric Variability (P10)

    NASA Astrophysics Data System (ADS)

    Veenadhari, B.; Alex, S.

    2006-11-01

    veena_iig@yahoo.co.in The most obvious indicators of the activity of a solar cycle are sunspots, flares, plages, and soon. These are intimately linked to the solar magnetic fields, heliospheric processes which exhibit complex but systematic variations. The changes in geomagnetic activity, as observed in the ground magnetic records follow systematic correspondence with the solar activity conditions. Thus the transient variations in the magnetic field get modified by differing solar conditions. Also the solar cycle influences the Earth causing changes in geomagnetic activity, the magnetosphere and the ionosphere. Daily variations in the ground magnetic field are produced by different current systems in the earth’s space environment flowing in the ionosphere and magnetosphere which has a strong dependence on latitude and longitude of the location. The north-south (Horizontal) configuration of the earth’s magnetic field over the equator is responsible for the narrow band of current system over the equatorial latitudes and is called the Equatorial electrojet (EEJ) and is a primary driver for Equatorial Ionization anomaly (EIA). Equatorial electric fields and plasma drifts play the fundamental roles on the morphology of the low latitude ionosphere and strongly vary during geomagnetically quiet and disturbed periods. Quantitative study is done to illustrate the development process of EEJ and its influence on ionospheric parameters. An attempt is also made to examine and discuss the response of the equatorial electrojet parameters to the fast varying conditions of solar wind and interplanetary parameters.

  2. UHF Radar observations at HAARP with HF pump frequencies near electron gyro-harmonics and associated ionospheric effects

    NASA Astrophysics Data System (ADS)

    Watkins, Brenton; Fallen, Christopher; Secan, James

    Results for HF modification experiments at the HAARP facility in Alaska are presented for experiments with the HF pump frequency near third and fourth electron gyro-harmonics. A UHF diagnostic radar with range resolution of 600 m was used to determine time-dependent altitudes of scattering from plasma turbulence during heating experiments. Experiments were conducted with multiple HF frequencies stepped by 20 kHz above and below the gyro-harmonic values. During times of HF heating the HAARP facility has sufficient power to enhance large-scale ionospheric densities in the lower ionosphere (about 150-200 km altitude) and also in the topside ionosphere (above about 350 km). In the lower ionosphere, time-dependent decreases of the altitude of radar scatter result from electron density enhancements. The effects are substantially different even for relatively small frequency steps of 20 kHz. In all cases the time-varying altitude decrease of radar scatter stops about 5-10 km below the gyro-harmonic altitude that is frequency dependent; we infer that electron density enhancements stop at this altitude where the radar signals stop decreasing with altitude. Experiments with corresponding total electron content (TEC) data show that for HF interaction altitudes above about 170 km there is substantial topside electron density increases due to upward electron thermal conduction. For lower altitudes of HF interaction the majority of the thermal energy is transferred to the neutral gas and no significant topside density increases are observed. By selecting an appropriate HF frequency a little greater than the gyro-harmonic value we have demonstrated that the ionospheric response to HF heating is a self-oscillating mode where the HF interaction altitude moves up and down with a period of several minutes. If the interaction region is above about 170 km this also produces a continuously enhanced topside electron density and upward plasma flux. Experiments using an FM scan with the HF

  3. Electron densities and temperatures in the Venus ionosphere Effects of solar EUV, solar wind pressure and magnetic field

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; Russell, C. T.; Brace, L. H.

    1985-01-01

    The Venus ionosphere is influenced by variations in both solar EUV flux and solar wind conditions. On the dayside the location of the topside of the ionosphere, the ionopause, is controlled by solar wind dynamic pressure. Within the dayside ionosphere, however, electron density is affected mainly by solar EUV variations, and is relatively unaffected by solar wind variations and associated magnetic fields induced within the ionosphere. The existence of a substantial nightside ionosphere of Venus is thought to be due to the rapid nightward transport of dayside ionospheric plasma across the terminator. Typical solar wind conditions do not strongly affect this transport and consequently have little direct influence on nightside ionospheric conditions, except on occasions of extremely high solar wind dynamic pressure. However, both nightside electron density and temperature are affected by the presence of magnetic field, as in the case of ionospheric holes.

  4. Effect of high-latitude ionospheric convection on Sun-aligned polar caps

    NASA Technical Reports Server (NTRS)

    Sojka, J. J.; Zhu, L.; Crain, D. J.; Schunk, R. W.

    1994-01-01

    A coupled magnetospheric-ionospheric (M-I) magnetohydrodynamic (MHD) model has been used to simulate the formation of Sun-aligned polar cap arcs for a variety of interplanetary magnetic field (IMF) dependent polar cap convection fields. The formation process involves launching an Alfven shear wave from the magnetosphere to the ionosphere where the ionospheric conductance can react self-consistently to changes in the upward currents. We assume that the initial Alfven shear wave is the result of solar wind-magnetosphere interactions. The simulations show how the E region density is affected by the changes in the electron precipitation that are associated with the upward currents. These changes in conductance lead to both a modified Alfven wave reflection at the ionosphere and the generation of secondary Alfven waves in the ionosphere. The ensuing bouncing of the Alfven waves between the ionosphere and magnetosphere is followed until an asymptotic solution is obtained. At the magnetosphere the Alfven waves reflect at a fixed boundary. The coupled M-I Sun-aligned polar cap arc model of Zhu et al.(1993a) is used to carry out the simulations. This study focuses on the dependence of the polar cap arc formation on the background (global) convection pattern. Since the polar cap arcs occur for northward and strong B(sub y) IMF conditions, a variety of background convection patterns can exist when the arcs are present. The study shows that polar cap arcs can be formed for all these convection patterns; however, the arc features are dramatically different for the different patterns. For weak sunward convection a relatively confined single pair of current sheets is associated with the imposed Alfven shear wave structure. However, when the electric field exceeds a threshold, the arc structure intensifies, and the conductance increases as does the local Joule heating rate. These increases are faster than a linear dependence on the background electric field strength. Furthermore

  5. Multi-PLL with two-stage fusion to mitigate ionospheric scintillation effects on GPS receivers

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Liu, Zhizhao; Chen, Wu

    2015-07-01

    Ionospheric scintillation poses a great threat to the reliability and accuracy of Global Positioning System (GPS) in various applications. It can increase tracking errors of the phase-locked loop (PLL) in a GPS receiver and even cause the PLL loss of lock under severe scintillations. To mitigate the effect of scintillation on GPS receivers, especially to reduce the occurrence of loss of lock, a multi-PLL with two-stage fusion (i.e., tracking fusion and output fusion) is proposed in this paper. This algorithm integrates several parallel sub-PLLs with different loop parameters into one channel to track one GPS satellite's signal. Every sub-PLL has its own discriminator, loop filter, carrier numerical controlled oscillator, and a tracking fusion (i.e., the first stage fusion). The tracking fusion of each sub-PLL integrates the Doppler frequency measurements from all other sub-PLLs to detect the state of its own sub-PLL and feeds back reliable Doppler frequency measurements. Simultaneously, the tracking fusion outputs the Doppler frequency measurements to the second stage fusion (i.e., output fusion), which integrates the outputs from all tracking fusions to provide continuous and accurate Doppler frequency measurements for the following positioning/navigation estimator. Performances of the proposed algorithm are tested using real-world GPS data with different levels of scintillations and compared with results from single-PLLs. For three real-world scintillation cases (S4 = 0.26-1.1, σϕ = 0.05-1.49 rad, and average C/N0 = 41.2-45.7 dB Hz), the multi-PLL algorithm performs more robustly than the single-PLLs and is able to keep tracking in all scintillation cases.

  6. The effect of gravity and pressure in the electrodynamics of the low-latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Eccles, J. Vincent

    2004-05-01

    The source of the plasma drift structure in the low-latitude ionosphere during magnetically quiet times is generally understood. Nearly all the quiet time electric field structure has been attributed to divergences in the neutral wind current dynamo. However, there are other current drivers active in the low latitude ionosphere: a gravity-driven current (g × B drift of O+) and a gradient-pressure current (∇P × B drift of e and O+). The gravity-driven current is important in the development of the Rayleigh-Taylor instability and equatorial spread F (ESF) but is ignored in global dynamo electric field models. The gradient pressure and gravity terms in the ionosphere momentum equation normally oppose each other. This paper examines the magnitude of the large-scale electric fields generated by divergences in these lesser currents in a coupled ionosphere-electrodynamics model. The low-latitude electric fields generated by the neutral wind dynamo are altered only slightly by these additional terms. The resulting vertical electric fields (zonal plasma drifts) do not change significantly but the vertical plasma drifts are affected by ˜10 to 15 m/s in the hours before sunrise and after sunset. These low-latitude plasma drift differences are due entirely to the inclusion of the gravity-driven current. The gravity current term produces a downward drift after sunset, which reduces the evening prereversal enhancement. Additionally, the positive vertical drift before sunrise is sometimes large enough to cause a predawn vertical enhancement. The gradient pressure terms can be ignored for large and medium scale ionosphere features.

  7. The "SABEIS" Project: Warning systems based on earthquake and tsunamis-induced ionospheric effects.

    NASA Astrophysics Data System (ADS)

    Rodriguez-Bouza, Marta; Sánchez-Dulcet, Francisco; Herraiz, Miguel; Rodríguez-Caderot, Gracia; Altadill, David; Blanch, Estefania; Santoyo, Miguel Angel

    2016-04-01

    The study of a possible lithosphere-atmosphere-ionosphere coupling (LAI) is mainly focused on the analysis and comprehension of atmospheric and ionospheric anomalies caused by extreme lithospheric events. In this context, earthquakes are considered as possible sources of atmosphere-ionosphere anomalies. The goal of the two-year long project SABEIS (Sistemas de Alerta Basados en Efectos de terremotos y tsunamis en la IonoSfera) granted by the Spanish Ministry of Economy and Competitiveness, is to analyze the disturbances caused by earthquakes and tsunamis and their possible contribution to warning systems. These topics are receiving increased attention in the scientific community and their correct understanding can meaningfully contribute to the protection of people and economic assets in areas subject to seismic threat. The project is based on the analysis of Total Electron Content (TEC) obtained from signals of Global Navigation Satellite Systems (GNSS) and anomalies of the ionospheric F2 layer observed in ionograms. This methodology was partially applied in a previous study of the Mw6.1 earthquake in Greece occurred on January 26, 2014. In that case two TEC disturbances were detected the days prior the earthquake. The first one, four days before, was registered by the majority of the stations analyzed over Europe and after studying its temporal variation, was considered unrelated to the earthquake. The second one occurred the day before the earthquake. This anomaly appeared only at stations close to the epicenter and their temporal proximity to the earthquake point to a possible connection with the earthquake preparation process. In the SABEIS project possible anomalies caused by earthquakes in Mexico and Peru with magnitude ranging from 5.5 to 8.2, will be studied. If the results confirm the influence of seismic events on the ionosphere, the possibility of incorporating this type of analysis in a seismic alert network for the Gulf of Cadiz (southern Iberian

  8. Calculating Second-Order Effects in MOSFET's

    NASA Technical Reports Server (NTRS)

    Benumof, Reuben; Zoutendyk, John A.; Coss, James R.

    1990-01-01

    Collection of mathematical models includes second-order effects in n-channel, enhancement-mode, metal-oxide-semiconductor field-effect transistors (MOSFET's). When dimensions of circuit elements relatively large, effects neglected safely. However, as very-large-scale integration of microelectronic circuits leads to MOSFET's shorter or narrower than 2 micrometer, effects become significant in design and operation. Such computer programs as widely-used "Simulation Program With Integrated Circuit Emphasis, Version 2" (SPICE 2) include many of these effects. In second-order models of n-channel, enhancement-mode MOSFET, first-order gate-depletion region diminished by triangular-cross-section deletions on end and augmented by circular-wedge-cross-section bulges on sides.

  9. Initial results from the operation of two argon ion generators in the auroral ionosphere

    NASA Technical Reports Server (NTRS)

    Erlandson, R. E.; Cahill, L. J., Jr.; Pollock, C. J.; Arnoldy, R. L.; Scales, W. A.

    1987-01-01

    Two argon ion generators have been lofted by sounding rockets in order to investigate ion beam dynamics and beam effects on the ionosphere, and auroral electrodynamics during rocket passage over auroral arcs. The ion generators were on a subpayload that was separated from the main payload early in the flight. The main payload conducted the diagnostic measurements during ion beam operations. Evidence of heating of the ionosphere around the subpayload during each ion beam emission is noted.

  10. Study of the mid-latitude ionospheric response to geomagnetic storms in the European region

    NASA Astrophysics Data System (ADS)

    Berényi, Kitti Alexandra; Barta, Veronika; Kis, Arpad

    2016-07-01

    Geomagnetic storms affect the ionospheric regions of the terrestrial upper atmosphere through different physical and atmospheric processes. The phenomena that can be regarded as a result of these processes, generally is named as "ionospheric storm". The processes depend on altitude, segment of the day, the geomagnetic latitude and longitude, strength of solar activity and the type of the geomagnetic storm. We examine the data of ground-based radio wave ionosphere sounding measurements of European ionospheric stations (mainly the data of Nagycenk Geophysical Observatory) in order to determine how and to what extent a geomagnetic disturbance of a certain strength affects the mid-latitude ionospheric regions in winter and in summer. For our analysis we used disturbed time periods between November 2012 and June 2015. Our results show significant changing of the ionospheric F2 layer parameters on strongly disturbed days compared to quiet ones. We show that the critical frequencies (foF2) increase compared to their quiet day value when the ionospheric storm was positive. On the other hand, the critical frequencies become lower, when the storm was negative. In our analysis we determined the magnitude of these changes on the chosen days. For a more complete analysis we compare also the evolution of the F2 layer parameters of the European ionosonde stations on a North-South geographic longitude during a full storm duration. The results present the evolution of an ionospheric storm over a geographic meridian. Furthermore, we compared the two type of geomagnetic storms, namely the CME caused geomagnetic storm - the so-called Sudden impulse (Si) storms- and the HSS (High Speed Solar Wind Streams) caused geomagnetic storms -the so-called Gradual storms (Gs)- impact on the ionospheric F2-layer (foF2 parameter). The results show a significant difference between the effect of Si and of the Gs storms on the ionospheric F2-layer.