Science.gov

Sample records for order ocean model

  1. High-Order/Low-Order methods for ocean modeling

    SciTech Connect

    Newman, Christopher; Womeldorff, Geoff; Chacón, Luis; Knoll, Dana A.

    2015-06-01

    We examine a High Order/Low Order (HOLO) approach for a z-level ocean model and show that the traditional semi-implicit and split-explicit methods, as well as a recent preconditioning strategy, can easily be cast in the framework of HOLO methods. The HOLO formulation admits an implicit-explicit method that is algorithmically scalable and second-order accurate, allowing timesteps much larger than the barotropic time scale. We demonstrate how HOLO approaches, in particular the implicit-explicit method, can provide a solid route for ocean simulation to heterogeneous computing and exascale environments.

  2. The Modular Arbitrary-Order Ocean-Atmosphere Model of the RMIB: MAOOAM

    NASA Astrophysics Data System (ADS)

    De Cruz, Lesley; Demaeyer, Jonathan; Vannitsem, Stéphane

    2016-04-01

    The coupled ocean-atmosphere system exhibits a decadal variability at midlatitudes, which gives rise to the North-Atlantic Oscillation (NOA). The driving mechanism behind this variability has been the subject of much interest and debate in recent years. This conundrum was addressed using several low-order coupled ocean-atmosphere models for midlatitudes, with an increasing level of physical realism: OA-QG-WS v1 [1], v2 [2], and most recently, VDDG [3]. The VDDG-model was designed to capture the key dynamics of the coupled ocean-atmosphere system, featuring a two-layer atmosphere over a shallow-water ocean layer with passively advected temperature. It incorporates both frictional coupling and an energy balance scheme which accounts for radiative and heat fluxes between ocean and atmosphere. The spectral expansion was truncated at 10 atmospheric and 8 oceanic modes, and a coupled low-frequency variability was found. We present an extended version of the VDDG model, in which an arbitrary number of atmospheric and oceanic modes can be retained. The modularity of the new model version allows one to easily modify the model physics. Using this new model, named the "Modular Arbitrary-Order Ocean-Atmosphere Model" (MAOOAM), we analyse the dependence of the model dynamics on the truncation level of the spectral expansion. Indeed, previous studies have shown that spurious behaviour may exist in low-resolution models, which can be unveiled by a comparison with their high-resolution counterparts [4]. In particular, we assess the robustness of the coupled low-frequency variability when the number of modes is increased. References [1] Vannitsem, S.: Dynamics and predictability of a low-order wind-driven ocean-atmosphere coupled model, Climate dynamics, 42, 1981-1998, 2014. [2] Vannitsem, S. and De Cruz, L.: A 24-variable low-order coupled ocean-atmosphere model: OA-QG-WS v2, Geoscientific Model Development, 7, 649-662, 2014. [3] Vannitsem, S., Demaeyer, J., De Cruz, L., and Ghil

  3. Quantifying predictability variations in a low-order ocean-atmosphere model - A dynamical systems approach

    NASA Technical Reports Server (NTRS)

    Nese, Jon M.; Dutton, John A.

    1993-01-01

    The predictability of the weather and climatic states of a low-order moist general circulation model is quantified using a dynamic systems approach, and the effect of incorporating a simple oceanic circulation on predictability is evaluated. The predictability and the structure of the model attractors are compared using Liapunov exponents, local divergence rates, and the correlation and Liapunov dimensions. It was found that the activation of oceanic circulation increases the average error doubling time of the atmosphere and the coupled ocean-atmosphere system by 10 percent and decreases the variance of the largest local divergence rate by 20 percent. When an oceanic circulation develops, the average predictability of annually averaged states is improved by 25 percent and the variance of the largest local divergence rate decreases by 25 percent.

  4. Quantifying predictability variations in a low-order ocean-atmosphere model: A dynamical systems approach

    SciTech Connect

    Nese, J.M. ); Dutton, J.A. )

    1993-02-01

    A dynamical systems approach is used to quantify the predictability of weather and climatic states of a low-order, moist general circulation model. The effects on predictability of incorporating a simple oceanic circulation are evaluated. The predictability and structure of the model attractors are compared using Lyapunov exponents, local divergence rates, and the correlation and Lyapunov dimensions. Lyapunov exponents quantify global predictability by measuring the mean rate of growth of small perturbations on an attractor, while local divergence rates quantify temporal variations of this error growth rate and thus measure local, or instantaneous, predictability. Activating an oceanic circulation increases the average error doubling time of the atmosphere and the coupled ocean-atmosphere system by 10% while decreasing the variance of the largest local divergence rate by 20%. The correlation dimension of the attractor decreases slightly when an oceanic circulation is activated, while the Lyapunov dimension decreases more significantly because it depends directly on the Lyapunov exponents. The average predictability of annually averaged states is improved by 25% when an oceanic circulation develops, and the variance of the largest local divergence rate also decreases by 25%. One-third of the yearly averaged states have local error doubling times larger than 2 years. The dimensions of the attractors of the yearly averaged states are not significantly different than the dimensions of the attractors of the original model. The most important contribution of this article is the demonstration that the local divergence rates provide a concise quantification of the variations of predictability on attractors and an efficient basis for comparing their local predictability characteristics. Local divergence rates might be computed to provide a real-time estimate of local predictability to accompany an operational forecast.

  5. Dynamics and predictability of a low-order wind-driven ocean - atmosphere model

    NASA Astrophysics Data System (ADS)

    Vannitsem, Stéphane

    2013-04-01

    The dynamics of a low order coupled wind-driven Ocean-Atmosphere (OA) system is investigated with emphasis on its predictability properties. The low-order coupled deterministic system is composed of a baroclinic atmosphere for which 12 dominant dynamical modes are only retained (Charney and Straus, 1980) and a wind-driven, quasi-geostrophic and reduced-gravity shallow ocean whose field is truncated to four dominant modes able to reproduce the large scale oceanic gyres (Pierini, 2011). The two models are coupled through mechanical forcings only. The analysis of its dynamics reveals first that under aperiodic atmospheric forcings only dominant single gyres (clockwise or counterclockwise) appear. This feature is expected to be related with the specific domain choice over which the coupled system is defined. Second the dynamical quantities characterizing the short-term predictability (Lyapunov exponents, Lyapunov dimension, Kolmogorov-Sinaï (KS) entropy) displays a complex dependence as a function of the key parameters of the system, namely the coupling strength and the external thermal forcing. In particular, the KS-entropy is increasing as a function of the coupling in most of the experiments, implying an increase of the rate of loss of information about the localization of the system on his attractor. Finally the dynamics of the error is explored and indicates, in particular, a rich variety of short term behaviors of the error in the atmosphere depending on the (relative) amplitude of the initial error affecting the ocean, from polynomial (at2 + bt3 + ct4) up to purely exponential evolutions. These features are explained and analyzed in the light of the recent findings on error growth (Nicolis et al, 2009). References Charney J G, Straus DM (1980) Form-Drag Instability, Multiple Equilibria and Propagating Planetary Waves in Baroclinic, Orographically Forced, Planetary Wave Systems. J Atmos Sci 37: 1157-1176. Nicolis C, Perdigao RAP, Vannitsem S (2009) Dynamics of

  6. Dynamics and predictability of a low-order wind-driven ocean-atmosphere coupled model

    NASA Astrophysics Data System (ADS)

    Vannitsem, Stéphane

    2014-04-01

    The dynamics of a low-order coupled wind-driven ocean-atmosphere system is investigated with emphasis on its predictability properties. The low-order coupled deterministic system is composed of a baroclinic atmosphere for which 12 dominant dynamical modes are only retained (Charney and Straus in J Atmos Sci 37:1157-1176, 1980) and a wind-driven, quasi-geostrophic and reduced-gravity shallow ocean whose field is truncated to four dominant modes able to reproduce the large scale oceanic gyres (Pierini in J Phys Oceanogr 41:1585-1604, 2011). The two models are coupled through mechanical forcings only. The analysis of its dynamics reveals first that under aperiodic atmospheric forcings only dominant single gyres (clockwise or counterclockwise) appear, while for periodic atmospheric solutions the double gyres emerge. In the present model domain setting context, this feature is related to the level of truncation of the atmospheric fields, as indicated by a preliminary analysis of the impact of higher wavenumber ("synoptic" scale) modes on the development of oceanic gyres. In the latter case, double gyres appear in the presence of a chaotic atmosphere. Second the dynamical quantities characterizing the short-term predictability (Lyapunov exponents, Lyapunov dimension, Kolmogorov-Sinaï (KS) entropy) displays a complex dependence as a function of the key parameters of the system, namely the coupling strength and the external thermal forcing. In particular, the KS-entropy is increasing as a function of the coupling in most of the experiments, implying an increase of the rate of loss of information about the localization of the system on its attractor. Finally the dynamics of the error is explored and indicates, in particular, a rich variety of short term behaviors of the error in the atmosphere depending on the (relative) amplitude of the initial error affecting the ocean, from polynomial ( at 2 + bt 3 + ct 4) up to exponential-like evolutions. These features are explained

  7. A 24-variable low-order coupled ocean-atmosphere model: OA-QG-WS v2

    NASA Astrophysics Data System (ADS)

    Vannitsem, S.; De Cruz, L.

    2014-04-01

    A new low-order coupled ocean-atmosphere model for midlatitudes is derived. It is based on quasi-geostrophic equations for both the ocean and the atmosphere, coupled through momentum transfer at the interface. The systematic reduction of the number of modes describing the dynamics leads to an atmospheric low-order component of 20 ordinary differential equations, already discussed in Reinhold and Pierrehumbert (1982), and an oceanic low-order component of four ordinary differential equations, as proposed by Pierini (2011). The coupling terms for both components are derived and all the coefficients of the ocean model are provided. Its dynamics is then briefly explored, through the analysis of its mean field, its variability and its instability properties. The wind-driven ocean displays a decadal variability induced by the atmospheric chaotic wind forcing. The chaotic behavior of the coupled system is highly sensitive to the ocean-atmosphere coupling for low values of the thermal forcing affecting the atmosphere (corresponding to a weakly chaotic coupled system). But it is less sensitive for large values of the thermal forcing (corresponding to a highly chaotic coupled system). In all the cases explored, the number of positive exponents is increasing with the coupling. Two codes in Fortran and Lua of the model integration are provided as Supplement.

  8. A New Ice-sheet / Ocean Interaction Model for Greenland Fjords using High-Order Discontinuous Galerkin Methods

    NASA Astrophysics Data System (ADS)

    Kopera, M. A.; Maslowski, W.; Giraldo, F.

    2015-12-01

    One of the key outstanding challenges in modeling of climate change and sea-level rise is the ice-sheet/ocean interaction in narrow, elongated and geometrically complicated fjords around Greenland. To address this challenge we propose a new approach, a separate fjord model using discontinuous Galerkin (DG) methods, or FDG. The goal of this project is to build a separate, high-resolution module for use in Earth System Models (ESMs) to realistically represent the fjord bathymetry, coastlines, exchanges with the outside ocean, circulation and fine-scale processes occurring within the fjord and interactions at the ice shelf interface. FDG is currently at the first stage of development. The DG method provides FDG with high-order accuracy as well as geometrical flexibility, including the capacity to handle non-conforming adaptive mesh refinement to resolve the processes occurring near the ice-sheet/ocean interface without introducing prohibitive computational costs. Another benefit of this method is its excellent performance on multi- and many-core architectures, which allows for utilizing modern high performance computing systems for high-resolution simulations. The non-hydrostatic model of the incompressible Navier-Stokes equation will account for the stationary ice-shelf with sub-shelf ocean interaction, basal melting and subglacial meltwater influx and with boundary conditions at the surface to account for floating sea ice. The boundary conditions will be provided to FDG via a flux coupler to emulate the integration with an ESM. Initially, FDG will be tested for the Sermilik Fjord settings, using real bathymetry, boundary and initial conditions, and evaluated against available observations and other model results for this fjord. The overarching goal of the project is to be able to resolve the ice-sheet/ocean interactions around the entire coast of Greenland and two-way coupling with regional and global climate models such as the Regional Arctic System Model (RASM

  9. Earth and ocean modeling

    NASA Technical Reports Server (NTRS)

    Knezovich, F. M.

    1976-01-01

    A modular structured system of computer programs is presented utilizing earth and ocean dynamical data keyed to finitely defined parameters. The model is an assemblage of mathematical algorithms with an inherent capability of maturation with progressive improvements in observational data frequencies, accuracies and scopes. The Eom in its present state is a first-order approach to a geophysical model of the earth's dynamics.

  10. Interaction between surface wind and ocean circulation in the Carolina Capes in a coupled low-order model

    SciTech Connect

    Xie, L.; Pietrafesa, L.J.; Raman, S.

    1997-03-18

    Interactions between surface winds and ocean currents over an east-coast continental shelf are studied using a simple mathematical model. The model physics include cross-shelf advection of sea surface temperature (SST) by Ekman drift, upwelling due to Ekman transport divergence, differential heating of the low-level atmosphere by a cross-shelf SST gradient, and the Coriolis effect. Additionally, the effects of diabatic cooling of surface waters due to air-sea heat exchange and of the vertical density stratification on the thickness of the upper ocean Ekman layer are considered. The model results are qualitatively consistent with observed wind-driven coastal ocean circulation and surface wind signatures induced by SST. This simple model also demonstrates that two-way air-sea interaction plays a significant role in the subtidal frequency variability of coastal ocean circulation and mesoscale variability of surface wind fields over coastal waters.

  11. Modeling ocean circulation

    SciTech Connect

    Semtner, A.J.

    1995-09-08

    Ocean numerical models have become quite realistic over the past several years as a result of improved methods, faster computers, and global data sets. Models now treat basin-scale to global domains while retaining the fine spatial scales that are important for modeling the transport of heat, salt, and other properties over vast distances. Simulations are reproducing observed satellite results on the energetics of strong currents and are properly showing diverse aspects of thermodynamic and dynamic ocean responses ranging from deep-water production of El Nino. Now models can represent not only currents but also the consequences for climate, biology, and geo-chemistry over time spans for months to decades. However, much remains to be understood from models about ocean circulation on longer time scales, including the evolution of the dominant water masses, the predictability of climate, and the ocean`s influence on global change. 34 refs., 6 figs.

  12. Modeling the Pacific Ocean

    SciTech Connect

    Johnson, M.A.; O'Brien, J.J. )

    1990-01-01

    Two numerical models utilizing primitive equations (two momentum equations and a mass continuity equation) simulate the oceanography of the Pacific Ocean from 20{degrees}S to 50{degrees}N. The authors examine the abundant model data through visualization , by animating the appropriate model fields and viewing the time history of each model simulation as a color movie. The animations are used to aid understanding of ocean circulation.

  13. Ocean General Circulation Models

    SciTech Connect

    Yoon, Jin-Ho; Ma, Po-Lun

    2012-09-30

    1. Definition of Subject The purpose of this text is to provide an introduction to aspects of oceanic general circulation models (OGCMs), an important component of Climate System or Earth System Model (ESM). The role of the ocean in ESMs is described in Chapter XX (EDITOR: PLEASE FIND THE COUPLED CLIMATE or EARTH SYSTEM MODELING CHAPTERS). The emerging need for understanding the Earth’s climate system and especially projecting its future evolution has encouraged scientists to explore the dynamical, physical, and biogeochemical processes in the ocean. Understanding the role of these processes in the climate system is an interesting and challenging scientific subject. For example, a research question how much extra heat or CO2 generated by anthropogenic activities can be stored in the deep ocean is not only scientifically interesting but also important in projecting future climate of the earth. Thus, OGCMs have been developed and applied to investigate the various oceanic processes and their role in the climate system.

  14. Mesoscale ocean dynamics modeling

    SciTech Connect

    mHolm, D.; Alber, M.; Bayly, B.; Camassa, R.; Choi, W.; Cockburn, B.; Jones, D.; Lifschitz, A.; Margolin, L.; Marsden, L.; Nadiga, B.; Poje, A.; Smolarkiewicz, P.; Levermore, D.

    1996-05-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The ocean is a very complex nonlinear system that exhibits turbulence on essentially all scales, multiple equilibria, and significant intrinsic variability. Modeling the ocean`s dynamics at mesoscales is of fundamental importance for long-time-scale climate predictions. A major goal of this project has been to coordinate, strengthen, and focus the efforts of applied mathematicians, computer scientists, computational physicists and engineers (at LANL and a consortium of Universities) in a joint effort addressing the issues in mesoscale ocean dynamics. The project combines expertise in the core competencies of high performance computing and theory of complex systems in a new way that has great potential for improving ocean models now running on the Connection Machines CM-200 and CM-5 and on the Cray T3D.

  15. Simple ocean carbon cycle models

    SciTech Connect

    Caldeira, K.; Hoffert, M.I.; Siegenthaler, U.

    1994-02-01

    Simple ocean carbon cycle models can be used to calculate the rate at which the oceans are likely to absorb CO{sub 2} from the atmosphere. For problems involving steady-state ocean circulation, well calibrated ocean models produce results that are very similar to results obtained using general circulation models. Hence, simple ocean carbon cycle models may be appropriate for use in studies in which the time or expense of running large scale general circulation models would be prohibitive. Simple ocean models have the advantage of being based on a small number of explicit assumptions. The simplicity of these ocean models facilitates the understanding of model results.

  16. Application of a Reduced Order Kalman Filter to Initialize a Coupled Atmosphere-Ocean Model: Impact on the Prediction of El Nino

    NASA Technical Reports Server (NTRS)

    Ballabrera-Poy, J.; Busalacchi, A.; Murtugudde, R.

    2000-01-01

    A reduced order Kalman Filter, based on a simplification of the Singular Evolutive Extended Kalman (SEEK) filter equations, is used to assimilate observed fields of the surface wind stress, sea surface temperature and sea level into the nonlinear coupled ocean-atmosphere model of Zebiak and Cane. The SEEK filter projects the Kalman Filter equations onto a subspace defined by the eigenvalue decomposition of the error forecast matrix, allowing its application to high dimensional systems. The Zebiak and Cane model couples a linear reduced gravity ocean model with a single vertical mode atmospheric model of Zebiak. The compatibility between the simplified physics of the model and each observed variable is studied separately and together. The results show the ability of the model to represent the simultaneous value of the wind stress, SST and sea level, when the fields are limited to the latitude band 10 deg S - 10 deg N In this first application of the Kalman Filter to a coupled ocean-atmosphere prediction model, the sea level fields are assimilated in terms of the Kelvin and Rossby modes of the thermocline depth anomaly. An estimation of the error of these modes is derived from the projection of an estimation of the sea level error over such modes. This method gives a value of 12 for the error of the Kelvin amplitude, and 6 m of error for the Rossby component of the thermocline depth. The ability of the method to reconstruct the state of the equatorial Pacific and predict its time evolution is demonstrated. The method is shown to be quite robust for predictions up to six months, and able to predict the onset of the 1997 warm event fifteen months before its occurrence.

  17. Application of a Reduced Order Kalman Filter to Initialize a Coupled Atmosphere-Ocean Model: Impact on the Prediction of El Nino

    NASA Technical Reports Server (NTRS)

    Ballabrera-Poy, Joaquim; Busalacchi, Antonio J.; Murtugudde, Ragu

    2000-01-01

    A reduced order Kalman Filter, based on a simplification of the Singular Evolutive Extended Kalman (SEEK) filter equations, is used to assimilate observed fields of the surface wind stress, sea surface temperature and sea level into the nonlinear coupled ocean-atmosphere model. The SEEK filter projects the Kalman Filter equations onto a subspace defined by the eigenvalue decomposition of the error forecast matrix, allowing its application to high dimensional systems. The Zebiak and Cane model couples a linear reduced gravity ocean model with a single vertical mode atmospheric model of Zebiak. The compatibility between the simplified physics of the model and each observed variable is studied separately and together. The results show the ability of the model to represent the simultaneous value of the wind stress, SST and sea level, when the fields are limited to the latitude band 10 deg S - 10 deg N. In this first application of the Kalman Filter to a coupled ocean-atmosphere prediction model, the sea level fields are assimilated in terms of the Kelvin and Rossby modes of the thermocline depth anomaly. An estimation of the error of these modes is derived from the projection of an estimation of the sea level error over such modes. This method gives a value of 12 for the error of the Kelvin amplitude, and 6 m of error for the Rossby component of the thermocline depth. The ability of the method to reconstruct the state of the equatorial Pacific and predict its time evolution is demonstrated. The method is shown to be quite robust for predictions I up to six months, and able to predict the onset of the 1997 warm event fifteen months before its occurrence.

  18. A Reduced-order Kalman Filter To Assimilate Ssh, Sst and Sss In A Primitive Equation Model of The North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Testut, C. E.; Brasseur, P.; Brankart, J. M.; Verron, J.

    The main objective of this work is to develop an advanced statistical method in order to assimilate, simultaneously, various data sets characterised by low and high resolution, in a model of the North Atlantic Ocean. The assimilated sea surface temperature (SST) data originate from AVHRR observations gathered and processed within the NASA Pathfinder project while the altimetric data consist of sea surface height (SSH) maps computed as the sum of a time-invariant dynamic topography and gridded sea-level anomalies from the AVISO project. In addition, these high resolution data sets (1/4) have been complemented by a low resolution sea-surface salinity (SSS) coming from Levitus 98 monthly climatology. The assimilation system has been implemented in a eddy-permitting OPA configuration which has been elaborated within the framework of the French CLIPPER project and used in the MERCATOR Project for the near-real- time experiment during 2001. The domain of application is the North Atlantic Basin between 20S and 70N with high horizontal resolution (1/3×1/3). The method used in these assimilation experiments is a reduced-order Kalman filter derived from the SEEK, in which the error sub-space is represented by means of a truncated series of Empirical Orthogonal Functions (Eofs) of the system variability. The analysis al- gorithm has been further developed to strengthen the local impact of the data, and to update the forecast error statistics adaptively using all pertinent information left in the innovation vector. Hindcast experiments have been conducted with real observations to reconstruct the Atlantic Ocean circulation between 1992 and 1999. The validation of these experiments with independent in situ measurements (XBT) demonstrates the skill of the system to represent the upper ocean circulation.

  19. Implementation of a reduced order Kalman filter to assimilate ocean color data into a coupled physical-biochemical model of the North Aegean Sea.

    NASA Astrophysics Data System (ADS)

    Kalaroni, Sofia; Tsiaras, Kostas; Economou-Amilli, Athena; Petihakis, George; Politikos, Dimitrios; Triantafyllou, George

    2013-04-01

    Within the framework of the European project OPEC (Operational Ecology), a data assimilation system was implemented to describe chlorophyll-a concentrations of the North Aegean, as well the impact on the European anchovy (Engraulis encrasicolus) biomass distribution provided by a bioenergetics model, related to the density of three low trophic level functional groups of zooplankton (heterotrophic flagellates, microzooplankton and mesozooplankton). The three-dimensional hydrodynamic-biogeochemical model comprises two on-line coupled sub-models: the Princeton Ocean Model (POM) and the European Regional Seas Ecosystem Model (ERSEM). The assimilation scheme is based on the Singular Evolutive Extended Kalman (SEEK) filter and its variant that uses a fixed correction base (SFEK). For the initialization, SEEK filter uses a reduced order error covariance matrix provided by the dominant Empirical Orthogonal Functions (EOF) of model. The assimilation experiments were performed for year 2003 using SeaWiFS chlorophyll-a data during which the physical model uses the atmospheric forcing obtained from the regional climate model HIRHAM5. The assimilation system is validated by assessing the relevance of the system in fitting the data, the impact of the assimilation on non-observed biochemical parameters and the overall quality of the forecasts.

  20. LLNL Ocean General Circulation Model

    Energy Science and Technology Software Center (ESTSC)

    2005-12-29

    The LLNL OGCM is a numerical ocean modeling tool for use in studying ocean circulation over a wide range of space and time scales, with primary applications to climate change and carbon cycle science.

  1. Modeling ocean deep convection

    NASA Astrophysics Data System (ADS)

    Canuto, V. M.; Howard, A.; Hogan, P.; Cheng, Y.; Dubovikov, M. S.; Montenegro, L. M.

    The goal of this study is to assess models for Deep Convection with special emphasis on their use in coarse resolution ocean general circulation models. A model for deep convection must contain both vertical transport and lateral advection by mesoscale eddies generated by baroclinic instabilities. The first process operates mostly in the initial phases while the second dominates the final stages. Here, the emphasis is on models for vertical mixing. When mesoscales are not resolved, they are treated with the Gent and McWilliams parameterization. The model results are tested against the measurements of Lavender, Davis and Owens, 2002 (LDO) in the Labrador Sea. Specifically, we shall inquire whether the models are able to reproduce the region of " deepest convection," which we shall refer to as DC (mixed layer depths 800-1300 m). The region where it was measured by Lavender et al. (2002) will be referred to as the LDO region. The main results of this study can be summarized as follows. 3° × 3° resolution. A GFDL-type OGCM with the GISS vertical mixing model predicts DC in the LDO region where the vertical heat diffusivity is found to be 10 m 2 s -1, a value that is quite close to the one suggested by heuristic studies. No parameter was changed from the original GISS model. However, the GISS model also predicts some DC in a region to the east of the LDO region. 3° × 3° resolution. A GFDL-type OGCM with the KPP model (everything else being the same) does not predict DC in the LDO region where the vertical heat diffusivity is found to be 0.5 × 10 -4 m 2 s -1 which is the background value. The KPP model yields DC only to the east of the LDO region. 1° × 1° resolution. In this case, a MY2.5 mixing scheme predicts DC in the LDO region. However, it also predicts DC to the west, north and south of it, where it is not observed. The behavior of the KPP and MY models are somewhat anti-symmetric. The MY models yield too low a mixing in stably stratified flows since they

  2. Modeling ocean deep convection

    NASA Astrophysics Data System (ADS)

    Canuto, V. M.; Howard, A.; Hogan, P.; Cheng, Y.; Dubovikov, M. S.; Montenegro, L. M.

    The goal of this study is to assess models for Deep Convection with special emphasis on their use in coarse resolution ocean general circulation models. A model for deep convection must contain both vertical transport and lateral advection by mesoscale eddies generated by baroclinic instabilities. The first process operates mostly in the initial phases while the second dominates the final stages. Here, the emphasis is on models for vertical mixing. When mesoscales are not resolved, they are treated with the Gent and McWilliams parameterization. The model results are tested against the measurements of Lavender, Davis and Owens, 2002 (LDO) in the Labrador Sea. Specifically, we shall inquire whether the models are able to reproduce the region of " deepest convection," which we shall refer to as DC (mixed layer depths 800-1300 m). The region where it was measured by Lavender et al. (2002) will be referred to as the LDO region. The main results of this study can be summarized as follows. 3° × 3° resolution. A GFDL-type OGCM with the GISS vertical mixing model predicts DC in the LDO region where the vertical heat diffusivity is found to be 10 m 2 s -1, a value that is quite close to the one suggested by heuristic studies. No parameter was changed from the original GISS model. However, the GISS model also predicts some DC in a region to the east of the LDO region. 3° × 3° resolution. A GFDL-type OGCM with the KPP model (everything else being the same) does not predict DC in the LDO region where the vertical heat diffusivity is found to be 0.5 × 10 -4 m 2 s -1 which is the background value. The KPP model yields DC only to the east of the LDO region. 1° × 1° resolution. In this case, a MY2.5 mixing scheme predicts DC in the LDO region. However, it also predicts DC to the west, north and south of it, where it is not observed. The behavior of the KPP and MY models are somewhat anti-symmetric. The MY models yield too low a mixing in stably stratified flows since they

  3. Development of ocean model LSOMG

    NASA Astrophysics Data System (ADS)

    Sachl, Libor; Martinec, Zdenek

    2015-04-01

    The purpose of this contribution is to present the ocean general circulation model LSOMG. It originates from the LSG (Maier-Reimer and Mikolajewicz, 1992) ocean model, however, significant number of changes has been made. LSOMG is a z-coordinate baroclinic ocean model which solves the primitive equations under the Boussinesq approximation. We intend to use the model for a various geophysical applications with the focus on paleoclimate studies. Hence, the model is not as complex as the current state-of-art climate models, such as the Modular Ocean Model or NEMO models. On the other hand, it is less computationally demanding. The changes and improvements in the code will be reported. One of the obvious changes is that the governing equations are no more discretized on the Arakawa E grid. The whole model has been rewritten on the Arakawa C grid. The main motivation is to avoid a coexistence of two solutions on the grid that evolve independently of each other. A more natural treatment of boundary conditions and simpler structure of the grid are additional advantages. Another significant change is the treatment of time tendencies. The system of equations is split to barotropic and baroclinic subsystems. Both subsystems may either be discretized at the same time points (as in the original LSG model), or their discretizations may be staggered in time as described in Griffies (2004). The original fully implicit barotropic time stepping scheme was found to significantly dissipate energy. Three different time stepping schemes are available instead. Namely, the predictor-corrector scheme of Griffies (2004), the generalized forward-backward scheme of Shchepetkin and McWilliams (2008) and the implicit free surface scheme of Campin et al. (2004). The first two schemes are intended to be used with the split-explicit model configuration for short-term studies whereas the third scheme is suitable for long-term studies, e.g. paleoclimate studies. The short-term studies may also

  4. NEMO Oceanic Model Optimization

    NASA Astrophysics Data System (ADS)

    Epicoco, I.; Mocavero, S.; Murli, A.; Aloisio, G.

    2012-04-01

    NEMO is an oceanic model used by the climate community for stand-alone or coupled experiments. Its parallel implementation, based on MPI, limits the exploitation of the emerging computational infrastructures at peta and exascale, due to the weight of communications. As case study we considered the MFS configuration developed at INGV with a resolution of 1/16° tailored on the Mediterranenan Basin. The work is focused on the analysis of the code on the MareNostrum cluster and on the optimization of critical routines. The first performance analysis of the model aimed at establishing how much the computational performance are influenced by the GPFS file system or the local disks and wich is the best domain decomposition. The results highlight that the exploitation of local disks can reduce the wall clock time up to 40% and that the best performance is achieved with a 2D decomposition when the local domain has a square shape. A deeper performance analysis highlights the obc_rad, dyn_spg and tra_adv routines are the most time consuming routines. The obc_rad implements the evaluation of the open boundaries and it has been the first routine to be optimized. The communication pattern implemented in obc_rad routine has been redesigned. Before the introduction of the optimizations all processes were involved in the communication, but only the processes on the boundaries have the actual data to be exchanged and only the data on the boundaries must be exchanged. Moreover the data along the vertical levels are "packed" and sent with only one MPI_send invocation. The overall efficiency increases compared with the original version, as well as the parallel speed-up. The execution time was reduced of about 33.81%. The second phase of optimization involved the SOR solver routine, implementing the Red-Black Successive-Over-Relaxation method. The high frequency of exchanging data among processes represent the most part of the overall communication time. The number of communication is

  5. Numerical Modeling of Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Miller, Robert N.

    2007-01-01

    The modelling of ocean circulation is important not only for its own sake, but also in terms of the prediction of weather patterns and the effects of climate change. This book introduces the basic computational techniques necessary for all models of the ocean and atmosphere, and the conditions they must satisfy. It describes the workings of ocean models, the problems that must be solved in their construction, and how to evaluate computational results. Major emphasis is placed on examining ocean models critically, and determining what they do well and what they do poorly. Numerical analysis is introduced as needed, and exercises are included to illustrate major points. Developed from notes for a course taught in physical oceanography at the College of Oceanic and Atmospheric Sciences at Oregon State University, this book is ideal for graduate students of oceanography, geophysics, climatology and atmospheric science, and researchers in oceanography and atmospheric science. Features examples and critical examination of ocean modelling and results Demonstrates the strengths and weaknesses of different approaches Includes exercises to illustrate major points and supplement mathematical and physical details

  6. Ocean Modeling of the North Atlantic

    NASA Technical Reports Server (NTRS)

    Seminar, A. J.

    1984-01-01

    Present modeling of the North Atlantic is inadequate and can be improved in a number of ways. A number of important physical processes are listed in five categories from the viewpoints of how they are treated in isolation, how they are usually represented in present ocean basin models, and how they may be better represented in future models. In the first two categories of vertical boundary processes and internal vertical mixing, parameterizations exist which can easily be incorporated into models and which will have important effects on the simulated structure of the North Atlantic. For the third catagory (mesoscale eddy effects), adequate parameterizations do not exist; but the order of magnitude of the effects is known from observational and process-model studies. A horizontal grid spacing of 100 km or less in required to allow parameterizations with this order of magnitude, as well as to resolve the time-averaged ocean fields. In the fourth category of large scale transports improvements are suggested by way of increased vertical resolution and by the requirement that lateral mixing due to eddies takes place on isopycnal surfaces. Model incorporation of the latter phenomenta is underway. In the fifth category of miscellaneous high-latitude processes, formulations for the treatment of sea ice are available for use. However, the treatment of gravitational instability, which is crucial to deepwater formation in the Atlantic Ocean, will require additional refinements to account for the unresolved physics of chimney formations in the open ocean and buoyant plumes near ocean boundaries.

  7. Higher order mode laser beam scintillations in oceanic medium

    NASA Astrophysics Data System (ADS)

    Baykal, Yahya

    2016-01-01

    In a horizontal oceanic optical wireless communication link, the scintillation index (the measure for the intensity fluctuations) of the received intensity caused by the oceanic turbulence is formulated and evaluated when the source is a higher order mode laser. Variations in the scintillation index vs. the underwater turbulence parameters, size of the higher order mode laser source, link length, and the wavelength are examined. Underwater turbulence parameters are the ratio that determines the relative strength of temperature and salinity in driving the index fluctuations, the rate of dissipation of the mean squared temperature, the rate of dissipation of the turbulent kinetic energy, and the Kolmogorov microscale length.

  8. Four simple ocean carbon models

    NASA Technical Reports Server (NTRS)

    Moore, Berrien, III

    1992-01-01

    This paper briefly reviews the key processes that determine oceanic CO2 uptake and sets this description within the context of four simple ocean carbon models. These models capture, in varying degrees, these key processes and establish a clear foundation for more realistic models that incorporate more directly the underlying physics and biology of the ocean rather than relying on simple parametric schemes. The purpose of this paper is more pedagogical than purely scientific. The problems encountered by current attempts to understand the global carbon cycle not only require our efforts but set a demand for a new generation of scientist, and it is hoped that this paper and the text in which it appears will help in this development.

  9. Second order Standard Model

    NASA Astrophysics Data System (ADS)

    Espin, Johnny; Krasnov, Kirill

    2015-06-01

    It is known, though not commonly, that one can describe fermions using a second order in derivatives Lagrangian instead of the first order Dirac one. In this description the propagator is scalar, and the complexity is shifted to the vertex, which contains a derivative operator. In this paper we rewrite the Lagrangian of the fermionic sector of the Standard Model in such second order form. The new Lagrangian is extremely compact, and is obtained from the usual first order Lagrangian by integrating out all primed (or dotted) 2-component spinors. It thus contains just half of the 2-component spinors that appear in the usual Lagrangian, which suggests a new perspective on unification. We sketch a natural in this framework SU (2) × SU (4) ⊂ SO (9) unified theory.

  10. Fourth-order mutual coherence function in oceanic turbulence.

    PubMed

    Baykal, Yahya

    2016-04-10

    We have recently expressed the structure constant of atmospheric turbulence in terms of the oceanic turbulence parameters, which are the ratio of temperature to salinity contributions to the refractive index spectrum, rate of dissipation of kinetic energy per unit mass of fluid, rate of dissipation of the mean-squared temperature, wavelength, Kolmogorov microscale, and link length. In this paper, utilizing this recently found structure constant and the fourth-order mutual coherence function of atmospheric turbulence, we present the fourth-order mutual coherence function to be used in oceanic turbulence evaluations. Thus, the found fourth-order mutual coherence function of oceanic turbulence is evaluated for the special case of a point source located at the transmitter origin and at a single receiver point. The variations of this special case of the fourth-order mutual coherence function of oceanic turbulence against the changes in the ratio of temperature to salinity contributions to the refractive index spectrum, the rate of dissipation of kinetic energy per unit mass of fluid, the rate of dissipation of the mean-squared temperature, the wavelength, and the Kolmogorov microscale at various link lengths are presented. PMID:27139862

  11. Modelling the global coastal ocean.

    PubMed

    Holt, Jason; Harle, James; Proctor, Roger; Michel, Sylvain; Ashworth, Mike; Batstone, Crispian; Allen, Icarus; Holmes, Robert; Smyth, Tim; Haines, Keith; Bretherton, Dan; Smith, Gregory

    2009-03-13

    Shelf and coastal seas are regions of exceptionally high biological productivity, high rates of biogeochemical cycling and immense socio-economic importance. They are, however, poorly represented by the present generation of Earth system models, both in terms of resolution and process representation. Hence, these models cannot be used to elucidate the role of the coastal ocean in global biogeochemical cycles and the effects global change (both direct anthropogenic and climatic) are having on them. Here, we present a system for simulating all the coastal regions around the world (the Global Coastal Ocean Modelling System) in a systematic and practical fashion. It is based on automatically generating multiple nested model domains, using the Proudman Oceanographic Laboratory Coastal Ocean Modelling System coupled to the European Regional Seas Ecosystem Model. Preliminary results from the system are presented. These demonstrate the viability of the concept, and we discuss the prospects for using the system to explore key areas of global change in shelf seas, such as their role in the carbon cycle and climate change effects on fisheries. PMID:19087928

  12. Numerical Modeling of Ocean Acoustic Wavefields

    NASA Astrophysics Data System (ADS)

    Tappert, Frederick

    1997-08-01

    The U.S. Navy requires real-time ``acoustic performance prediction'' models in order to optimize sonar tactics in naval combat situations. The need for numerical models that solve the acoustic wave equation in realistic ocean environments is being met by a collaborative effort between university researchers, industrial contractors, and navy laboratory workers. This paper discusses one particularly successful numerical model, called the PE/SSF model, that was originally developed by the author. Here PE stands for Parabolic Equation, a good approximation to the elliptic Helmholtz equation; and SSF stands for the Split-Step Fourier algorithm, a highly efficient marching algorithm for solving parabolic type equations. These techniques are analyzed, and examples are displayed of ocean acoustic wavefields generated by the PE/SSF model.

  13. Climate science: Unexpected fix for ocean models

    NASA Astrophysics Data System (ADS)

    Kelly, Kathryn A.; Thompson, Luanne

    2016-07-01

    Computational models persistently underestimate strong currents that redistribute ocean heat. This problem is solved in models in which ocean eddies are damped by coupling of the atmosphere with the sea. See Letter p.533

  14. Origin and models of oceanic transform faults

    NASA Astrophysics Data System (ADS)

    Gerya, Taras

    2012-02-01

    Mid-ocean ridges sectioned by transform faults represent prominent surface expressions of plate tectonics. A fundamental problem of plate tectonics is how this pattern has formed and why it is maintained. Gross-scale geometry of mid-ocean ridges is often inherited from respective rifted margins. Indeed, transform faults seem to nucleate after the beginning of the oceanic spreading and can spontaneously form at a single straight ridge. Both analog and numerical models of transform faults were investigated since the 1970s. Two main groups of analog models were developed: thermomechanical (freezing wax) models with accreting and cooling plates and mechanical models with non-accreting lithosphere. Freezing wax models reproduced ridge-ridge transform faults, inactive fracture zones, rotating microplates, overlapping spreading centers and other features of oceanic ridges. However, these models often produced open spreading centers that are dissimilar to nature. Mechanical models, on the other hand, do not accrete the lithosphere and their results are thus only applicable for relatively small amount of spreading. Three main types of numerical models were investigated: models of stress and displacement distribution around transforms, models of their thermal structure and crustal growth, and models of nucleation and evolution of ridge-transform fault patterns. It was shown that a limited number of spreading modes can form: transform faults, microplates, overlapping spreading centers, zigzag ridges and oblique connecting spreading centers. However, the controversy exists whether these patterns always result from pre-existing ridge offsets or can also form spontaneously at a single straight ridge during millions of year of accretion. Therefore, two types of transform fault interpretation exist: plate fragmentation structures vs. plate accretion structures. Models of transform faults are yet relatively scarce and partly controversial. Consequently, a number of first order

  15. Improving the EOTDA ocean background model

    NASA Astrophysics Data System (ADS)

    McGrath, Charles P.; Badzik, Gregory D.

    1997-09-01

    The Electro-Optical Tactical Decision Aid (EOTDA) is a strike warfare mission planning tool originally developed by the US Air Force. The US Navy has added navy sensors and targets to the EOTDA and installed it into current fleet mission planning and support systems. Fleet experience with the EOTDA and previous studies have noted the need for improvement, especially for scenarios involving ocean backgrounds. In order to test and improve the water background model in the EOTDA, a modified version has been created that replaces the existing semi-empirical model with the SeaRad model that was developed by Naval Command, Control and Ocean Surveillance Systems (NRaD). The SeaRad model is a more rigorous solution based on the Cox-Munk wave-slope probabilities. During the April 1996 Electrooptical Propagation Assessment in Coastal Environments (EOPACE) trials, data was collected to evaluate the effects of the SeaRad version of the EOTDA. Data was collected using a calibrated airborne infrared imaging system and operational FUR systems against ship targets. A modified version of MODTRAN also containing the SeaRad model is used to correct the data for the influences of the atmosphere. This report uses these data along with the modified EOTDA to evaluate the effects of the SeaRad model on ocean background predictions under clear and clouded skies. Upon using the more accurate water reflection model, the significance of the sky and cloud radiance contributions become more apparent leading to recommendations for further improvements.

  16. Model-based ocean acoustic passive localization

    SciTech Connect

    Candy, J.V.; Sullivan, E.J.

    1994-01-24

    The detection, localization and classification of acoustic sources (targets) in a hostile ocean environment is a difficult problem -- especially in light of the improved design of modern submarines and the continual improvement in quieting technology. Further the advent of more and more diesel-powered vessels makes the detection problem even more formidable than ever before. It has recently been recognized that the incorporation of a mathematical model that accurately represents the phenomenology under investigation can vastly improve the performance of any processor, assuming, of course, that the model is accurate. Therefore, it is necessary to incorporate more knowledge about the ocean environment into detection and localization algorithms in order to enhance the overall signal-to-noise ratios and improve performance. An alternative methodology to matched-field/matched-mode processing is the so-called model-based processor which is based on a state-space representation of the normal-mode propagation model. If state-space solutions can be accomplished, then many of the current ocean acoustic processing problems can be analyzed and solved using this framework to analyze performance results based on firm statistical and system theoretic grounds. The model-based approach, is (simply) ``incorporating mathematical models of both physical phenomenology and the measurement processes including noise into the processor to extract the desired information.`` In this application, we seek techniques to incorporate the: (1) ocean acoustic propagation model; (2) sensor array measurement model; and (3) noise models (ambient, shipping, surface and measurement) into a processor to solve the associated localization/detection problems.

  17. On effective resolution in ocean models

    NASA Astrophysics Data System (ADS)

    Soufflet, Yves; Marchesiello, Patrick; Lemarié, Florian; Jouanno, Julien; Capet, Xavier; Debreu, Laurent; Benshila, Rachid

    2016-02-01

    The increase of model resolution naturally leads to the representation of a wider energy spectrum. As a result, in recent years, the understanding of oceanic submesoscale dynamics has significantly improved. However, dissipation in submesoscale models remains dominated by numerical constraints rather than physical ones. Effective resolution is limited by the numerical dissipation range, which is a function of the model numerical filters (assuming that dispersive numerical modes are efficiently removed). We present a Baroclinic jet test case set in a zonally reentrant channel that provides a controllable test of a model capacity at resolving submesoscale dynamics. We compare simulations from two models, ROMS and NEMO, at different mesh sizes (from 20 to 2 km). Through a spectral decomposition of kinetic energy and its budget terms, we identify the characteristics of numerical dissipation and effective resolution. It shows that numerical dissipation appears in different parts of a model, especially in spatial advection-diffusion schemes for momentum equations (KE dissipation) and tracer equations (APE dissipation) and in the time stepping algorithms. Effective resolution, defined by scale-selective dissipation, is inadequate to qualify traditional ocean models with low-order spatial and temporal filters, even at high grid resolution. High-order methods are better suited to the concept and probably unavoidable. Fourth-order filters are suited only for grid resolutions less than a few kilometers and momentum advection schemes of even higher-order may be justified. The upgrade of time stepping algorithms (from filtered Leapfrog), a cumbersome task in a model, appears critical from our results, not just as a matter of model solution quality but also of computational efficiency (extended stability range of predictor-corrector schemes). Effective resolution is also shaken by the need for non scale-selective barotropic mode filters and requires carefully addressing the

  18. Toward Submesocale Ocean Modelling and Observations for Global Ocean Forecast.

    NASA Astrophysics Data System (ADS)

    Drillet, Y.

    2014-12-01

    Mercator Ocean is the French oceanographic operational center involved in the development an operation of global high resolution ocean forecasting systems; it is part of the European Copernicus Marine service initiated during MyOcean project. Mercator Ocean currently delivers daily 1/12° global ocean forecast based on the NEMO model which allows for a good representation of mesoscale structures in main areas of the global ocean. Data assimilation of altimetry provides a precise initialization of the mesoscale structures while in situ observations, mainly based on the ARGO network, and satellite Sea Surface Temperature constrain water mass properties from the surface to intermediate depths. One of the main improvements scheduled in the coming years is the transitioning towards submesoscale permitting horizontal resolution (1/36°). On the basis of numerical simulations in selected areas and standard diagnostics developed to validate operational systems, we will discuss : i) The impact of the resolution increase at the basin scale. ii) Adequacy of numerical schemes, vertical resolution and physical parameterization. iii) Adequacy of currently implemented data assimilation procedures in particular with respect to new high resolution data set such as SWOT.

  19. A first-order estimate of shock heating and vaporization in oceanic impacts

    NASA Technical Reports Server (NTRS)

    Croft, S. K.

    1982-01-01

    The vaporization of water in oceanic impacts of asteroids or comets of multikilometer dimensions is estimated by a semianalytical modeling of impact heating and shock isobar geometry that is based on computer code calculations. The mass of water vaporized in an infinitely deep ocean by the impact of a 10 km diameter asteroid at 25 km/sec (these values have been proposed for the Cretaceous/Tertiary extinction bolide) is approximately equal to the total mass of water vapor present in the earth's atmosphere, and 3-4 orders of magnitude larger than the mass of water vapor in the stratosphere. For projectiles of this size, however, the finite depth of the ocean becomes significant and may considerably reduce the amount of water vapor initially generated by the impact. Climatological models and extinction scenarios invoking the effects of impact-generated water vapor may critically depend on the a priori ambiguous details of the hypothesized impact.

  20. Computational ocean acoustics: Advances in 3D ocean acoustic modeling

    NASA Astrophysics Data System (ADS)

    Schmidt, Henrik; Jensen, Finn B.

    2012-11-01

    The numerical model of ocean acoustic propagation developed in the 1980's are still in widespread use today, and the field of computational ocean acoustics is often considered a mature field. However, the explosive increase in computational power available to the community has created opportunities for modeling phenomena that earlier were beyond reach. Most notably, three-dimensional propagation and scattering problems have been prohibitive computationally, but are now addressed routinely using brute force numerical approaches such as the Finite Element Method, in particular for target scattering problems, where they are being combined with the traditional wave theory propagation models in hybrid modeling frameworks. Also, recent years has seen the development of hybrid approaches coupling oceanographic circulation models with acoustic propagation models, enabling the forecasting of sonar performance uncertainty in dynamic ocean environments. These and other advances made over the last couple of decades support the notion that the field of computational ocean acoustics is far from being mature. [Work supported by the Office of Naval Research, Code 321OA].

  1. An integrated modeling study of ocean circulation, the ocean carbon cycle, marine ecosystems, and climate change

    NASA Astrophysics Data System (ADS)

    Cao, Long

    The unifying theme of this study is to conduct an extensive exploration of various interactions between ocean circulation, the carbon cycle, marine ecosystems, and climate change using an earth system model of intermediate complexity, ISAM-2.5D (Integrated Science Assessment Model). First, through the simulation of radiocarbon (in terms of Delta14C) it is demonstrated that the inclusion of isopycnal diffusion and a parameterization of eddy-induced circulation in the ISAM-2.5D model yields the most realistic representation of ocean mixing and circulation. Secondly, I demonstrate the value of the simulation of multiple tracers, combined with a variety of observational data, in constraining the ISAM-2.5D model that has been constrained by the simulation of Delta14C. Through the simulation of ocean biogeochemical cycles and CFC-11 and the use of the updated observational data of bomb radiocarbon, I improve the Delta14C-constrained ISAM-2.5D model's performance in simulating ocean circulation and air-sea gas exchange, as well as its credibility in predicting oceanic carbon uptake. Third, I use the ISAM-2.5D model to assess the efficiency of direct carbon injection into the deep ocean with the influence of climate change. It is shown that the consideration of climate change enhances the retention time of injected carbon into the Atlantic Ocean as a result of weakened North Atlantic overturning circulation in a warming climate. However, the climatic effect is insignificant on the efficiency of carbon injection into the Pacific and Indian Oceans. Finally, I quantify that increased atmospheric CO2 concentrations would be mainly responsible for future ocean acidification, including lowering in ocean pH and sea water saturation state with respect to carbonate minerals. The consideration of climate change produces a second-order modification to projected ocean acidification. Therefore, in addition to its radiative effects on climate change, increased atmospheric CO2

  2. Warm World Ocean Thermohaline Circulation Model

    NASA Astrophysics Data System (ADS)

    Zimov, N.; Zimov, S. A.

    2014-12-01

    Modern day ocean circulation is dominated by thermal convection with cold waters subsiding in the Northern Atlantic, filling the ocean interior with cold and heavy water. However, ocean circulation diminished during the last glaciation and consequently the downwelling of the cold. Therefore interior ocean water temperatures must have been affected by other mechanisms which are negligible in the current state. We propose that the submergence of highly saline water from warm seas with high rates of evaporation (like the Red or Mediterranean Sea) was a major factor controlling ocean circulation during the last glaciation. Even today, waters in these poorly connected seas are the heaviest waters in the World ocean (1.029 g/cm3). The second mechanism affecting ocean temperature is the geothermal heat flux. With no heat exchange between the atmosphere and the ocean, geothermal heat flux through the ocean floor is capable of increasing ocean temperature by tens of degrees C over a 100 thousand year glacial cycle. To support these hypotheses we present an ocean box model that describes thermohaline circulation in the World Ocean. According to the model parameters, all water circulation is driven by the water density gradient. Boxes include high-latitude seas, high salinity seas, surface ocean, glaciers, and rift and lateral zones of the ocean interior. External heat sources are radiative forcing, affected by Milankovich cycles, and geothermal heat flux. Additionally this model accounts for the heat produced by organic rain decay. Taking all input parameters close to currently observed values, the model manages to recreate the glacial-interglacial cycles. During the glacial periods only haline circulation takes place, the ocean is strongly stratified, and the interior ocean accumulates heat while high-latitudes accumulate ice. 112,000 years after glaciation starts, water density on the ocean bottom becomes equal to the density of water in high-latitude seas, strong thermal

  3. HOS-ocean: Open-source solver for nonlinear waves in open ocean based on High-Order Spectral method

    NASA Astrophysics Data System (ADS)

    Ducrozet, Guillaume; Bonnefoy, Félicien; Le Touzé, David; Ferrant, Pierre

    2016-06-01

    HOS-ocean is an efficient High-Order Spectral code developed to solve the deterministic propagation of nonlinear wavefields in open ocean. HOS-ocean is released as open-source, developed and distributed under the terms of GNU General Public License (GPLv3). Along with the source code, a documentation under wiki format is available which makes easy the compilation and execution of the source files. The code has been shown to be accurate and efficient.

  4. Modelling Tropical Cyclones-Ocean interactions: the role of the Atmophere - Ocean coupling frequency

    NASA Astrophysics Data System (ADS)

    Scoccimarro, Enrico; Fogli, Pier Giuseppe; Gualdi, Silvio; Masina, Simona; Navarra, Antonio

    2016-04-01

    The interaction between Tropical Cyclones (TCs) and ocean is a major mechanism responsible for energy exchange between the atmosphere and the ocean. TCs affect the thermal and dynamical structure of the ocean, but the magnitude of the impact is still uncertain. Very few CMIP5 models demonstrated ability in representing TCs, mainly due to their horizontal resolution. We aim to improve TCs representation in next CMIPs experiments through the new CMCC-CM2VHR General Circulation Model, having a horizontal resolution of 1/4 degree in both atmospheric and ocean components. The model is capable to represent realistically TCs up to Cat-5 Typhoons. A good representation of the TC-Ocean interaction strongly depends on the coupling frequency between the atmospheric and the ocean components. In this work, we found that a better representation of the negative Sea Surface Temperature - TC induced feedback, through a high (hourly) coupling frequency, ensures the reduction of the TC induced Power Dissipation Index (PDI) bias of one order of magnitude. In addition, a cat-5 storm case study is deeply investigated also in terms of TC effects on the deep ocean.

  5. Intercomparison of modeled and observed marine surface climate variation over the pre-anthropogenic last millennium: First-order results from the PAGES/Ocean2k project

    NASA Astrophysics Data System (ADS)

    Evans, M. N.

    2013-12-01

    We have synthesized reconstructed sea surface temperatures (SSTs) from sediment-derived paleodata (Mg/Ca, alkenones, TEX86, and faunal assemblages) for the interval 0-1800 C.E. at 200-year resolution. We observe a statistically-significant cooling trend, which is apparently not sensitive to quality of chronological control, chronological resolution, seasonality of response, water depth of the sediment core, or type of measurement, but is likely biased toward observations from the North Atlantic basin margins. The cooling trend is qualitatively consistent with a cooling trend observed from a synthesis of terrestrial paleodata and other marine paleodata syntheses, but the mechanisms underlying the cooling are still unknown. We assess the extent to which a multimodel superensemble of paleoclimate model simulations driven with realistic external forcing is consistent with the cooling trend observed in the paleoreconstruction synthesis for the common period 850-1850 CE. Within the context of the uncertainty in the paleoreconstruction synthesis and the simulations, we find that a global cooling trend is not simulated with only orbital forcing, but is consistent with the combined effects of volcanic and solar forcing. Assessment of the robustness of this result, and diagnostic understanding of the underlying mechanisms, is the subject of further work to be presented in this contribution.

  6. A predictive ocean oil spill model

    SciTech Connect

    Sanderson, J.; Barnette, D.; Papodopoulos, P.; Schaudt, K.; Szabo, D.

    1996-07-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Initially, the project focused on creating an ocean oil spill model and working with the major oil companies to compare their data with the Los Alamos global ocean model. As a result of this initial effort, Los Alamos worked closely with the Eddy Joint Industry Project (EJIP), a consortium oil and gas producing companies in the US. The central theme of the project was to use output produced from LANL`s global ocean model to look in detail at ocean currents in selected geographic areas of the world of interest to consortium members. Once ocean currents are well understood this information could be used to create oil spill models, improve offshore exploration and drilling equipment, and aid in the design of semi-permanent offshore production platforms.

  7. Ocean foam generation and modeling

    NASA Technical Reports Server (NTRS)

    Porter, R. A.; Bechis, K. P.

    1976-01-01

    A laboratory investigation was conducted to determine the physical and microwave properties of ocean foam. Special foam generators were designed and fabricated, using porous glass sheets, known as glass frits, as the principal element. The glass frit was sealed into a water-tight vertical box, a few centimeters from the bottom. Compressed air, applied to the lower chamber, created ocean foam from sea water lying on the frit. Foam heights of 30 cm were readily achieved, with relatively low air pressures. Special photographic techniques and analytical procedures were employed to determine foam bubble size distributions. In addition, the percentage water content of ocean foam was determined with the aid of a particulate sampling procedure. A glass frit foam generator, with pore diameters in the range 70 - 100 micrometers, produced foam with bubble distributions very similar to those found on the surface of natural ocean foam patches.

  8. Nested ocean models: Work in progress

    NASA Technical Reports Server (NTRS)

    Perkins, A. Louise

    1991-01-01

    The ongoing work of combining three existing software programs into a nested grid oceanography model is detailed. The HYPER domain decomposition program, the SPEM ocean modeling program, and a quasi-geostrophic model written in England are being combined into a general ocean modeling facility. This facility will be used to test the viability and the capability of two-way nested grids in the North Atlantic.

  9. Determining Reduced Order Models for Optimal Stochastic Reduced Order Models

    SciTech Connect

    Bonney, Matthew S.; Brake, Matthew R.W.

    2015-08-01

    The use of parameterized reduced order models(PROMs) within the stochastic reduced order model (SROM) framework is a logical progression for both methods. In this report, five different parameterized reduced order models are selected and critiqued against the other models along with truth model for the example of the Brake-Reuss beam. The models are: a Taylor series using finite difference, a proper orthogonal decomposition of the the output, a Craig-Bampton representation of the model, a method that uses Hyper-Dual numbers to determine the sensitivities, and a Meta-Model method that uses the Hyper-Dual results and constructs a polynomial curve to better represent the output data. The methods are compared against a parameter sweep and a distribution propagation where the first four statistical moments are used as a comparison. Each method produces very accurate results with the Craig-Bampton reduction having the least accurate results. The models are also compared based on time requirements for the evaluation of each model where the Meta- Model requires the least amount of time for computation by a significant amount. Each of the five models provided accurate results in a reasonable time frame. The determination of which model to use is dependent on the availability of the high-fidelity model and how many evaluations can be performed. Analysis of the output distribution is examined by using a large Monte-Carlo simulation along with a reduced simulation using Latin Hypercube and the stochastic reduced order model sampling technique. Both techniques produced accurate results. The stochastic reduced order modeling technique produced less error when compared to an exhaustive sampling for the majority of methods.

  10. Ocean Clutter Modeling for Ship Detection

    NASA Astrophysics Data System (ADS)

    Tao, Ding; Anfinsen, Stian Normann; Brekke, Camilla

    2013-03-01

    This work addresses the problem of covariance matrix estimation for ocean clutter modeling. For ship detection based on polarimetric synthetic aperture radar (Pol-SAR) imagery and constant false alarm rate (CFAR) detectors, accurate ocean clutter modeling is essential. The covariance matrix provides all the polarimetric information of the ocean clutter and its estimate is always involved in PolSAR detection [1]. The aim of this work is to investigate and compare the behavior of different covariance matrix estimators, i.e., the sample mean, fixedpoint, and maximum likelihood estimators. An approximate maximum likelihood covariance matrix estimator is also proposed and discussed for better computational efficiency. Their performances are evaluated in terms of the Kullback-Leibler (KL) matrix distance, and computational efficiency. Various textured ocean clutter conditions are considered, ranging from high texture to the non-textured case with Gaussian clutter. Experiments are performed on simulated ocean clutter data.

  11. Low Order Uncertainty Dynamics in Ocean State Estimation: Reduced Hessian Method for Constraining Barotropic Drake Passage Transport

    NASA Astrophysics Data System (ADS)

    Kalmikov, A.; Heimbach, P.; Wunsch, C. I.

    2015-12-01

    Uncertainty Quantification (UQ) is of central practical and theoretical importance in Ocean State Estimation, enabling estimation of error bounds of model outputs as well as new dynamical insight by analyzing information propagation in ocean models. Key effort in developing UQ techniques applicable to realistic large scale ocean models is numerical scalability for high dimensionality imposed by high resolution discretization of infinite dimensional PDEs governing ocean dynamics. This scalability requirement conflicts with the "curse of dimensionality" restricting current non-Gaussian UQ approaches to low dimensional idealized problems. On the other hand, practical progress in large scale UQ was enabled by Hessian-based methodologies, relying on a Gaussian approximation of the nonlinear state-space statistics. Validity of this approximation is rooted in the experience that for many large scale ocean problems the dynamics are smooth and not chaotic, supported by the expectation that small scale turbulence cancels out in aggregate converging to asymptotic normality on the large scale. Here, the dynamics of large scale uncertainty is addressed directly by explicit analysis of propagation of assimilated information in a global ocean model. It is demonstrated that for the case of barotropic Drake Passage transport separate uncertainty propagation mechanisms can be identified on small and large scales, with aggregate balances governed by simple low order dynamics. Reduced order Hessian is derived to approximate the dominant uncertainty evolution patterns, explaining the physical mechanisms of uncertainty propagation and reduction in a global ocean model.

  12. Reduced Order Modeling Incompressible Flows

    NASA Technical Reports Server (NTRS)

    Helenbrook, B. T.

    2010-01-01

    The details: a) Need stable numerical methods; b) Round off error can be considerable; c) Not convinced modes are correct for incompressible flow. Nonetheless, can derive compact and accurate reduced-order models. Can be used to generate actuator models or full flow-field models

  13. Lagrangian predictability characteristics of an Ocean Model

    NASA Astrophysics Data System (ADS)

    Lacorata, Guglielmo; Palatella, Luigi; Santoleri, Rosalia

    2014-11-01

    The Mediterranean Forecasting System (MFS) Ocean Model, provided by INGV, has been chosen as case study to analyze Lagrangian trajectory predictability by means of a dynamical systems approach. To this regard, numerical trajectories are tested against a large amount of Mediterranean drifter data, used as sample of the actual tracer dynamics across the sea. The separation rate of a trajectory pair is measured by computing the Finite-Scale Lyapunov Exponent (FSLE) of first and second kind. An additional kinematic Lagrangian model (KLM), suitably treated to avoid "sweeping"-related problems, has been nested into the MFS in order to recover, in a statistical sense, the velocity field contributions to pair particle dispersion, at mesoscale level, smoothed out by finite resolution effects. Some of the results emerging from this work are: (a) drifter pair dispersion displays Richardson's turbulent diffusion inside the [10-100] km range, while numerical simulations of MFS alone (i.e., without subgrid model) indicate exponential separation; (b) adding the subgrid model, model pair dispersion gets very close to observed data, indicating that KLM is effective in filling the energy "mesoscale gap" present in MFS velocity fields; (c) there exists a threshold size beyond which pair dispersion becomes weakly sensitive to the difference between model and "real" dynamics; (d) the whole methodology here presented can be used to quantify model errors and validate numerical current fields, as far as forecasts of Lagrangian dispersion are concerned.

  14. Modelling Ocean Surface Waves in Polar Regions

    NASA Astrophysics Data System (ADS)

    Hosekova, Lucia; Aksenov, Yevgeny; Coward, Andrew; Bertino, Laurent; Williams, Timothy; Nurser, George A. J.

    2015-04-01

    In the Polar Oceans, the surface ocean waves break up sea ice cover and create the Marginal Ice Zone (MIZ), an area between the sea-ice free ocean and pack ice characterized by highly fragmented ice. This band of sea ice cover is undergoing dramatic changes due to sea ice retreat, with up to a 39% widening in the Arctic Ocean reported over the last three decades and projections predicting a continuing increase. The surface waves, sea ice and ocean interact in the MIZ through multiple complex feedbacks and processes which are not accounted for in any of the present-day climate models. To address this issue, we present a model development which implements surface ocean wave effects in the global Ocean General Circulation Model NEMO, coupled to the CICE sea ice model. Our implementation takes into account a number of physical processes specific to the MIZ dynamics. Incoming surface waves are attenuated due to reflection and energy dissipation induced by the presence of ice cover, which is in turn fragmented in response to external stresses. This process generates a distribution of floe sizes and impacts the dynamics of sea ice by the means of combined rheology that takes into account floe collisions and allows for a more realistic representation of the MIZ. We present results from the NEMO OGCM at 1 degree resolution with a wave-ice interaction module described above. The module introduces two new diagnostics previously unavailable in GCM's: surface wave spectra in sea ice covered areas, and floe size distribution due to wave-induced fragmentation. We discuss the impact of these processes on the ocean and sea ice state, including ocean circulation, mixing, stratification and the role of the MIZ in the ocean variability. The model predictions for the floe sizes in the summer Arctic Ocean range from 60 m in the inner MIZ to a few tens of meters near the open ocean, which agrees with estimates from the satellites. The extent of the MIZ throughout the year is also in

  15. Towards petascaling of the NEMO ocean model

    NASA Astrophysics Data System (ADS)

    Donners, J.; Audiffren, N.; Molines, J.-M.

    2012-04-01

    PRACE, the Partnership for Advanced Computing in Europe, offers acces to the largest high-performance computing systems in Europe. These systems follow the trend of increasing numbers of nodes, each with an increasing number of cores. To utilize these computing systems, it is necessary to use a model that is parallellized and has a good scalability. This poster describes different efforts to improve the scalability of the NEMO ocean model. Most importantly, the problem size needs to be chosen adequately: it should contain enough computations to keep thousands of cores busy, but foremostly it has to be scientifically relevant. The global, 1/12degree, NEMO ocean model configuration, developed by the Mercator team, is used for operational ocean forecasting. Therefore, PRACE selected this model for the PRACE Benchmarking suite. However, an increased problem size alone was not enough to efficiently use these petascale systems. Different optimizations were required to reach the necessary performance. Scientifically, the model should simulate one year within a wallclock day. Technically, the application needs to scale up to a minimum number of cores. For example, to utilize the fastest system in Europe, the new Curie system in France, the lower limit is 2048 cores. Scalability can be increased by minimizing the time needed for communication between cores. This has been done in two ways. Firstly, advanced parameters of the MPI-communication library were optimized. The improvement consists in: 1. using RDMA for eager messages (NEMO messages size are below the eager size limit) conjugated with adequate openib flags. 2. tuning for openMPI for collective communication through the btl_coll_tuned_dynamic_rules flag. Overall, the improvement is 33%. Secondly, NEMO uses a tri-polar and staggered grid, which involves a complicated fold across the northpole. Communication along this fold involves collective gather and scatter operations which create a bottleneck at a single core, so

  16. A one ocean model of biodiversity

    NASA Astrophysics Data System (ADS)

    O'Dor, Ronald K.; Fennel, Katja; Berghe, Edward Vanden

    2009-09-01

    The history of life is written in the ocean, and the history of the ocean is written in DNA. Geologists have shown us that hundreds of millions of years of ocean history can be revealed from records of a single phylum in cores of mud from abyssal plains. We are now accumulating genetic tools to unravel the relationships of hundreds of phyla to track this history back billions of years. The technologies demonstrated by the Census of Marine Life (CoML) mean that the ocean is no longer opaque or unknowable. The secrets of the largest component of the biosphere are knowable. The cost of understanding the history of ocean life is not cheap, but it is also not prohibitive. A transparent, open ocean is available for us to use to understand ourselves. This article develops a model of biodiversity equilibration in a single, physically static ocean as a step towards biodiversity in physically complex real oceans. It attempts to be quantitative and to simultaneously account for biodiversity patterns from bacteria to whales focusing on emergent properties rather than details. Biodiversity reflects long-term survival of DNA sequences, stabilizing "ecosystem services" despite environmental change. In the ocean, mechanisms for ensuring survival range from prokaryotes maintaining low concentrations of replicable DNA throughout the ocean volume, anticipating local change, to animals whose mobility increases with mass to avoid local change through movement. Whales can reach any point in the ocean in weeks, but prokaryotes can only diffuse. The high metabolic costs of mobility are offset by the dramatically lower number of DNA replicates required to ensure survival. Reproduction rates probably scale more or less inversely with body mass. Bacteria respond in a week, plankton in a year, whales in a century. We generally lack coherent theories to explain the origins of animals (metazoans) and the contributions of biodiversity to ecosystems. The One Ocean Model suggests that mobile

  17. Thermal and mechanical structure of the upper mantle: A comparison between continental and oceanic models

    NASA Technical Reports Server (NTRS)

    Froidevaux, C.; Schubert, G.; Yuen, D. A.

    1976-01-01

    Temperature, velocity, and viscosity profiles for coupled thermal and mechanical models of the upper mantle beneath continental shields and old ocean basins show that under the continents, both tectonic plates and the asthenosphere, are thicker than they are beneath the oceans. The minimum value of viscosity in the continental asthenosphere is about an order of magnitude larger than in the shear zone beneath oceans. The shear stress or drag underneath continental plates is also approximately an order of magnitude larger than the drag on oceanic plates. Effects of shear heating may account for flattening of ocean floor topography and heat flux in old ocean basins.

  18. A review of ocean chlorophyll algorithms and primary production models

    NASA Astrophysics Data System (ADS)

    Li, Jingwen; Zhou, Song; Lv, Nan

    2015-12-01

    This paper mainly introduces the five ocean chlorophyll concentration inversion algorithm and 3 main models for computing ocean primary production based on ocean chlorophyll concentration. Through the comparison of five ocean chlorophyll inversion algorithm, sums up the advantages and disadvantages of these algorithm,and briefly analyzes the trend of ocean primary production model.

  19. Artificial retardation of barotropic waves in layered ocean models

    SciTech Connect

    Jensen, T.G.

    1996-06-01

    The effect of reducing the barotropic gravity wave speed in a layered ocean model in order to gain computational speed is explored. In theory the error in the propagation of baroclinic gravity waves typically is less than 3% for a reduction of the external gravity speed by one order of magnitude. This is confirmed in a numerical experiment. For baroclinic Rossby waves, the phase speed error is even less. The barotropic response is limited to the reduced radius of deformation. The method, which we will refer to as gravity wave retardation, is therefore applicable only for oceanic flows where the barotropic mode is of minor importance. It is demonstrated that the method gives very good results for the baroclinic flow of an equatorial jet, spinup of a midlatitude ocean and flow over a midoceanic ridge. The method can be considered as an alternative to multilayer reduced gravity models, and has the advantage that bottom topography can be included. 24 refs., 15 figs.

  20. A coastal ocean model with subgrid approximation

    NASA Astrophysics Data System (ADS)

    Walters, Roy A.

    2016-06-01

    A wide variety of coastal ocean models exist, each having attributes that reflect specific application areas. The model presented here is based on finite element methods with unstructured grids containing triangular and quadrilateral elements. The model optimizes robustness, accuracy, and efficiency by using semi-implicit methods in time in order to remove the most restrictive stability constraints, by using a semi-Lagrangian advection approximation to remove Courant number constraints, and by solving a wave equation at the discrete level for enhanced efficiency. An added feature is the approximation of the effects of subgrid objects. Here, the Reynolds-averaged Navier-Stokes equations and the incompressibility constraint are volume averaged over one or more computational cells. This procedure gives rise to new terms which must be approximated as a closure problem. A study of tidal power generation is presented as an example of this method. A problem that arises is specifying appropriate thrust and power coefficients for the volume averaged velocity when they are usually referenced to free stream velocity. A new contribution here is the evaluation of three approaches to this problem: an iteration procedure and two mapping formulations. All three sets of results for thrust (form drag) and power are in reasonable agreement.

  1. Modeling Europa's Ice-Ocean Interface

    NASA Astrophysics Data System (ADS)

    Elsenousy, A.; Vance, S.; Bills, B. G.

    2014-12-01

    This work focuses on modeling the ice-ocean interface on Jupiter's Moon (Europa); mainly from the standpoint of heat and salt transfer relationship with emphasis on the basal ice growth rate and its implications to Europa's tidal response. Modeling the heat and salt flux at Europa's ice/ocean interface is necessary to understand the dynamics of Europa's ocean and its interaction with the upper ice shell as well as the history of active turbulence at this area. To achieve this goal, we used McPhee et al., 2008 parameterizations on Earth's ice/ocean interface that was developed to meet Europa's ocean dynamics. We varied one parameter at a time to test its influence on both; "h" the basal ice growth rate and on "R" the double diffusion tendency strength. The double diffusion tendency "R" was calculated as the ratio between the interface heat exchange coefficient αh to the interface salt exchange coefficient αs. Our preliminary results showed a strong double diffusion tendency R ~200 at Europa's ice-ocean interface for plausible changes in the heat flux due to onset or elimination of a hydrothermal activity, suggesting supercooling and a strong tendency for forming frazil ice.

  2. Mixing parameterizations in ocean climate modeling

    NASA Astrophysics Data System (ADS)

    Moshonkin, S. N.; Gusev, A. V.; Zalesny, V. B.; Byshev, V. I.

    2016-03-01

    Results of numerical experiments with an eddy-permitting ocean circulation model on the simulation of the climatic variability of the North Atlantic and the Arctic Ocean are analyzed. We compare the ocean simulation quality with using different subgrid mixing parameterizations. The circulation model is found to be sensitive to a mixing parametrization. The computation of viscosity and diffusivity coefficients by an original splitting algorithm of the evolution equations for turbulence characteristics is found to be as efficient as traditional Monin-Obukhov parameterizations. At the same time, however, the variability of ocean climate characteristics is simulated more adequately. The simulation of salinity fields in the entire study region improves most significantly. Turbulent processes have a large effect on the circulation in the long-term through changes in the density fields. The velocity fields in the Gulf Stream and in the entire North Atlantic Subpolar Cyclonic Gyre are reproduced more realistically. The surface level height in the Arctic Basin is simulated more faithfully, marking the Beaufort Gyre better. The use of the Prandtl number as a function of the Richardson number improves the quality of ocean modeling.

  3. On Lagrangian stochastic modelling of material transport in oceanic gyres

    NASA Astrophysics Data System (ADS)

    Reynolds, A. M.

    2002-11-01

    The introduction of ‘spin’ into second-order Lagrangian stochastic models (LSM) for stationary turbulence with broken reflectional symmetry is shown to result in the prediction of super-diffusive transport at intermediate times and the occurrence of anomalously large normal diffusion at later times. These characteristic features of material transport in oceanic gyres cannot be reproduced by two-dimensional first-order LSM. A correspondence is established between high-dimensional, low-order LSM and lower-dimensional, higher-order LSM. It is found that time-dependent spin statistics allow for the coexistence of rotating particle trajectories and non-oscillatory Lagrangian velocity autocorrelation functions.

  4. Serving ocean model data on the cloud

    USGS Publications Warehouse

    Meisinger, M.; Farcas, C.; Farcas, E.; Alexander, Corrine; Arrott, M.; de La Beaujardière, J.; Hubbard, P.; Mendelssohn, R.; Signell, R.

    2009-01-01

    The NOAA-led Integrated Ocean Observing System (IOOS) and the NSF-funded Ocean Observatories Initiative Cyberinfrastructure Project (OOI-CI) are collaborating on a prototype data delivery system for numerical model output and other gridded data using cloud computing. The strategy is to take an existing distributed system for delivering gridded data and redeploy on the cloud, making modifications to the system that allow it to harness the scalability of the cloud as well as adding functionality that the scalability affords. ??2009 MTS.

  5. Assimilation of altimeter topography into oceanic models

    NASA Technical Reports Server (NTRS)

    Demey, Pierre; Menard, Yves; Pinardi, Nadia; Schroeter, J.; Verron, J.

    1991-01-01

    The primary goals of the authors are to build an intuition for assimilation techniques and to investigate the impact of variable altimeter topography on simple or complex oceanic models. In particular, applying various techniques and sensitivity studies to model and data constraints plays a key role. We are starting to use quasi-geostrophic, semigeostrophic, and primitive-equation (PE) models and to test the schemes in regions of interest to the World Ocean Circulation Experiment (WOCE), as well as in the northeast Atlantic and the Mediterranean. The impact of scatterometer wind forcing on the results is also investigated. The use of Geosat, European Remote Sensing satellite (ERS-1), and TOPEX/POSEIDON altimetry data is crucial in fine tuning the models and schemes to the selected areas of interest.

  6. Partially molten magma ocean model

    SciTech Connect

    Shirley, D.N.

    1983-02-15

    The properties of the lunar crust and upper mantle can be explained if the outer 300-400 km of the moon was initially only partially molten rather than fully molten. The top of the partially molten region contained about 20% melt and decreased to 0% at 300-400 km depth. Nuclei of anorthositic crust formed over localized bodies of magma segregated from the partial melt, then grew peripherally until they coverd the moon. Throughout most of its growth period the anorthosite crust floated on a layer of magma a few km thick. The thickness of this layer is regulated by the opposing forces of loss of material by fractional crystallization and addition of magma from the partial melt below. Concentrations of Sr, Eu, and Sm in pristine ferroan anorthosites are found to be consistent with this model, as are trends for the ferroan anorthosites and Mg-rich suites on a diagram of An in plagioclase vs. mg in mafics. Clustering of Eu, Sr, and mg values found among pristine ferroan anorthosites are predicted by this model.

  7. Higher order turbulence closure models

    NASA Technical Reports Server (NTRS)

    Amano, Ryoichi S.; Chai, John C.; Chen, Jau-Der

    1988-01-01

    Theoretical models are developed and numerical studies conducted on various types of flows including both elliptic and parabolic. The purpose of this study is to find better higher order closure models for the computations of complex flows. This report summarizes three new achievements: (1) completion of the Reynolds-stress closure by developing a new pressure-strain correlation; (2) development of a parabolic code to compute jets and wakes; and, (3) application to a flow through a 180 deg turnaround duct by adopting a boundary fitted coordinate system. In the above mentioned models near-wall models are developed for pressure-strain correlation and third-moment, and incorporated into the transport equations. This addition improved the results considerably and is recommended for future computations. A new parabolic code to solve shear flows without coordinate tranformations is developed and incorporated in this study. This code uses the structure of the finite volume method to solve the governing equations implicitly. The code was validated with the experimental results available in the literature.

  8. Simulations of ice shelves in the Parallel Ocean Program (POP), the ocean model of the Community Earth System Model (CESM)

    NASA Astrophysics Data System (ADS)

    Asay-Davis, Xylar

    2013-04-01

    We present a series of simulations using POP2X, a modified version of the LANL Parallel Ocean Program version 2 (POP2) that includes circulations in ice-shelf cavities. The geometry of the ice-shelf/ocean interface is represented using the partial-top cells, following the approach developed by Losch (2008) for the Massachusetts Institute of Technology General Circulation Model (MITgcm). The model domain is an idealized domain reminiscent of the Ronne-Filchner Ice Shelf cavity. Our simulations show relatively warm circumpolar deep water (CDW) flowing into the Filchner trough, causing a large increase in melting under the ice shelf. Using more realistic geometry and climate forcing, Helmer et al. (2012) saw a drastic increase in melting in the late twenty-first century as a result of similar processes. We show that vertical model resolution can have a strong impact on the melt rate and circulation in the vicinity of the ice shelf. The results suggest that a resolution-conscious parameterization of the buoyancy-driven plume under ice shelves is needed. This work is an early step toward coupling POP2X to the Community Ice Sheet Model (CISM) in order to perform more advanced modeling of ice-sheet/ocean interactions. Remarkable advances in ice-sheet model physics and numerical methods in recent years mean that a number of these models (e.g. the CISM; the Ice Sheet System Model; the Elmer Ice Sheet Model) have both sufficient physical accuracy and numerical scalability to be ready for inclusion in Earth System Models (ESMs). A significant stumbling block preventing full ice-sheet/ocean coupling is the inability of ocean models to handle ice-shelf cavity geometries that change in time. This is a major focus of our ongoing research.

  9. Ocean general circulation models for parallel architectures

    SciTech Connect

    Smith, R.D.

    1993-05-01

    The authors report continuing work in developing ocean general circulation models for parallel architectures. In earlier work, they began with the widely-used Bryan-Cox ocean model, but reformulated the barotropic equations (which describe the vertically integrated flow) to solve for the surface-pressure field rather than the volume-transport streamfunction as in the original model. This had the advantage of being more easily parallelized and allowed for a more realistic representation of coastal and bottom topography. Both streamfunction and surface-pressure formulations use a rigid-lid approximation to eliminate fast surface waves. They have now replaced the rigid-lid with a free surface, and solve the barotropic equations implicitly to overcome the timestep restriction associated with the fast waves. This method has several advantages, including: (1) a better physical representation of the barotropic mode, and (2) a better-conditioned operator matrix, which leads to much faster convergence in the conjugate-gradient solver. They have also extended the model to allow use of arbitrary orthogonal curvilinear coordinates for the horizontal grid. The original model uses a standard polar grid that has a singularity at each pole, making it difficult to include the Arctic basin, which plays an important role in global ocean circulation. They can now include the Arctic (while still using an explicit time-integration scheme without high-latitude filtering) by using a distorted grid with a displaced pole for the North Atlantic - Arctic region of the ocean. The computer code, written in Fortran 90 and developed on the Connection Machine, has been substantially restructured so that all communication occurs in low-level stencil routines. The idea is that the stencil routines may be rewritten to optimize communication costs on a particular architecture, while the remainder of the code is for the most part machine-independent, involving only the simplest Fortran 90 constructs.

  10. The forecasting Ocean assimilation model (FOAM) system

    NASA Astrophysics Data System (ADS)

    Bell, M. J.; Acreman, D.; Barciela, R.; Hines, A.; Martin, M. J.; Sellar, A.; Stark, J.; Storkey, D.

    The FOAM system is built around the ocean and sea-ice components of the Met Office's Unified Model (UM), developed by the Hadley Centre for coupled ocean-ice-atmosphere climate prediction. It is forced by 6-hourly surface fluxes from the Met Office's Numerical Weather Prediction (NWP) system, and assimilates temperature and salinity profiles from in situ instruments, surface temperature, sea-ice concentration and sea surface height data. A coarse resolution global configuration of FOAM on a 1 ° latitude-longitude grid with 20 vertical levels was implemented in the Met Office's operational suite in 1997. Nested models with grid spacings ranging from 30 km to 6 km are used to provide detailed forecasts for selected regions. The models are run each morning and typically produce 5-day forecasts. Real-time daily and archived analyses for the North Atlantic are freely available at http://nerc-essc.reading.ac.uk/las for research and developmentpurposes. We will present results from studies of the accuracy of the forecasts and how it depends on the data types assimilated and the assimilation scheme used. We will also briefly describe the developments being made to assimilate sea-ice concentration and velocity data and incorporate the HadOCC NPZD (nutrient-phytoplankton-zooplankton-detritus) model and assimilation of ocean colour data.

  11. Mixing parametrizations for ocean climate modelling

    NASA Astrophysics Data System (ADS)

    Gusev, Anatoly; Moshonkin, Sergey; Diansky, Nikolay; Zalesny, Vladimir

    2016-04-01

    The algorithm is presented of splitting the total evolutionary equations for the turbulence kinetic energy (TKE) and turbulence dissipation frequency (TDF), which is used to parameterize the viscosity and diffusion coefficients in ocean circulation models. The turbulence model equations are split into the stages of transport-diffusion and generation-dissipation. For the generation-dissipation stage, the following schemes are implemented: the explicit-implicit numerical scheme, analytical solution and the asymptotic behavior of the analytical solutions. The experiments were performed with different mixing parameterizations for the modelling of Arctic and the Atlantic climate decadal variability with the eddy-permitting circulation model INMOM (Institute of Numerical Mathematics Ocean Model) using vertical grid refinement in the zone of fully developed turbulence. The proposed model with the split equations for turbulence characteristics is similar to the contemporary differential turbulence models, concerning the physical formulations. At the same time, its algorithm has high enough computational efficiency. Parameterizations with using the split turbulence model make it possible to obtain more adequate structure of temperature and salinity at decadal timescales, compared to the simpler Pacanowski-Philander (PP) turbulence parameterization. Parameterizations with using analytical solution or numerical scheme at the generation-dissipation step of the turbulence model leads to better representation of ocean climate than the faster parameterization using the asymptotic behavior of the analytical solution. At the same time, the computational efficiency left almost unchanged relative to the simple PP parameterization. Usage of PP parametrization in the circulation model leads to realistic simulation of density and circulation with violation of T,S-relationships. This error is majorly avoided with using the proposed parameterizations containing the split turbulence model

  12. 76 FR 50217 - Ocean Transportation Intermediary License; Rescission of Order of Revocation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... From the Federal Register Online via the Government Publishing Office FEDERAL MARITIME COMMISSION Ocean Transportation Intermediary License; Rescission of Order of Revocation Notice is hereby given that the Order revoking the following licenses are being rescinded by the Federal Maritime Commission pursuant to section 19 of the Shipping Act...

  13. Higher Order Cumulant Studies of Ocean Surface Random Fields from Satellite Altimeter Data

    NASA Technical Reports Server (NTRS)

    Cheng, B.

    1996-01-01

    Higher order statistics, especially 2nd order statistics, have been used to study ocean processes for many years in the past, and occupy an appreciable part of the research literature on physical oceanography. They in turn form part of a much larger field of study in statistical fluid mechanics.

  14. Downscaling ocean conditions: Experiments with a quasi-geostrophic model

    NASA Astrophysics Data System (ADS)

    Katavouta, A.; Thompson, K. R.

    2013-12-01

    The predictability of small-scale ocean variability, given the time history of the associated large-scales, is investigated using a quasi-geostrophic model of two wind-driven gyres separated by an unstable, mid-ocean jet. Motivated by the recent theoretical study of Henshaw et al. (2003), we propose a straightforward method for assimilating information on the large-scale in order to recover the small-scale details of the quasi-geostrophic circulation. The similarity of this method to the spectral nudging of limited area atmospheric models is discussed. Results from the spectral nudging of the quasi-geostrophic model, and an independent multivariate regression-based approach, show that important features of the ocean circulation, including the position of the meandering mid-ocean jet and the associated pinch-off eddies, can be recovered from the time history of a small number of large-scale modes. We next propose a hybrid approach for assimilating both the large-scales and additional observed time series from a limited number of locations that alone are too sparse to recover the small scales using traditional assimilation techniques. The hybrid approach improved significantly the recovery of the small-scales. The results highlight the importance of the coupling between length scales in downscaling applications, and the value of assimilating limited point observations after the large-scales have been set correctly. The application of the hybrid and spectral nudging to practical ocean forecasting, and projecting changes in ocean conditions on climate time scales, is discussed briefly.

  15. Ocean modelling aspects for drift applications

    NASA Astrophysics Data System (ADS)

    Stephane, L.; Pierre, D.

    2010-12-01

    Nowadays, many authorities in charge of rescue-at-sea operations lean on operational oceanography products to outline research perimeters. Moreover, current fields estimated with sophisticated ocean forecasting systems can be used as input data for oil spill/ adrift object fate models. This emphasises the necessity of an accurate sea state forecast, with a mastered level of reliability. This work focuses on several problems inherent to drift modeling, dealing in the first place with the efficiency of the oceanic current field representation. As we want to discriminate the relevance of a particular physical process or modeling option, the idea is to generate series of current fields of different characteristics and then qualify them in term of drift prediction efficiency. Benchmarked drift scenarios were set up from real surface drifters data, collected in the Mediterranean sea and off the coasts of Angola. The time and space scales that we are interested in are about 72 hr forecasts (typical timescale communicated in case of crisis), for distance errors that we hope about a few dozen of km around the forecast (acceptable for reconnaissance by aircrafts) For the ocean prediction, we used some regional oceanic configurations based on the NEMO 2.3 code, nested into Mercator 1/12° operational system. Drift forecasts were computed offline with Mothy (Météo France oil spill modeling system) and Ariane (B. Blanke, 1997), a Lagrangian diagnostic tool. We were particularly interested in the importance of the horizontal resolution, vertical mixing schemes, and any processes that may impact the surface layer. The aim of the study is to ultimately point at the most suitable set of parameters for drift forecast use inside operational oceanic systems. We are also motivated in assessing the relevancy of ensemble forecasts regarding determinist predictions. Several tests showed that mis-described observed trajectories can finally be modelled statistically by using uncertainties

  16. NCAR CSM ocean model by the NCAR oceanography section. Technical note

    SciTech Connect

    1996-05-01

    This technical note documents the ocean component of the NCAR Climate System Model (CSM). The ocean code has been developed from the Modular Ocean Model (version 1.1) which was developed and maintained at the NOAA Geophysical Fluid Dynamics Laboratory in Princeton. As a tribute to Mike Cox, and because the material is still relevant, the first four sections of this technical note are a straight reproduction from the GFDL Technical Report that Mike wrote in 1984. The remaining sections document how the NCAR Oceanography Section members have developed the MOM 1.1 code, and how it is forced, in order to produce the NCAR CSM Ocean Model.

  17. Warm Bias and Parameterization of Boundary Upwelling in Ocean Models

    SciTech Connect

    Cessi, Paola; Wolfe, Christopher

    2012-11-06

    It has been demonstrated that Eastern Boundary Currents (EBC) are a baroclinic intensification of the interior circulation of the ocean due to the emergence of mesoscale eddies in response to the sharp buoyancy gradients driven by the wind-stress and the thermal surface forcing. The eddies accomplish the heat and salt transport necessary to insure that the subsurface flow is adiabatic, compensating for the heat and salt transport effected by the mean currents. The EBC thus generated occurs on a cross-shore scale of order 20-100 km, and thus this scale needs to be resolved in climate models in order to capture the meridional transport by the EBC. Our result indicate that changes in the near shore currents on the oceanic eastern boundaries are linked not just to local forcing, such as coastal changes in the winds, but depend on the basin-wide circulation as well.

  18. Global ocean modeling on the Connection Machine

    SciTech Connect

    Smith, R.D.; Dukowicz, J.K.; Malone, R.C.

    1993-10-01

    The authors have developed a version of the Bryan-Cox-Semtner ocean model (Bryan, 1969; Semtner, 1976; Cox, 1984) for massively parallel computers. Such models are three-dimensional, Eulerian models that use latitude and longitude as the horizontal spherical coordinates and fixed depth levels as the vertical coordinate. The incompressible Navier-Stokes equations, with a turbulent eddy viscosity, and mass continuity equation are solved, subject to the hydrostatic and Boussinesq approximations. The traditional model formulation uses a rigid-lid approximation (vertical velocity = 0 at the ocean surface) to eliminate fast surface waves. These waves would otherwise require that a very short time step be used in numerical simulations, which would greatly increase the computational cost. To solve the equations with the rigid-lid assumption, the equations of motion are split into two parts: a set of twodimensional ``barotropic`` equations describing the vertically-averaged flow, and a set of three-dimensional ``baroclinic`` equations describing temperature, salinity and deviations of the horizontal velocities from the vertically-averaged flow.

  19. North Atlantic Finite Element Ocean Modeling

    NASA Astrophysics Data System (ADS)

    Veluthedathekuzhiyil, Praveen

    This thesis presents a modified version of the Finite Element Ocean Model (FEOM) developed at Alfred Wegener Institute for Polar and Marine Research (AWI) for the North Atlantic Ocean. A reasonable North Atlantic Ocean simulation is obtained against the observational data sets in a Control simulation (CS) where the surface boundary conditions are relaxed to a climatology. The vertical mixing in the model was tuned to represent convection in the model, also the horizontal mixing and diffusion coefficients to represent the changes in the resolution of the model’s unstructured grid. In addition, the open boundaries in the model are treated with a sponge layer where tracers are relaxed to climatology. The model is then further modified to accept the atmospheric flux forcing at the surface boundary with an added net heat flux correction and freshwater forcing from major rivers that are flowing into the North Atlantic Ocean. The impact of this boundary condition on the simulation results is then analyzed and shows many improvements albeit the drift in tracer properties around the Gulf Stream region remains as that of the CS case. However a comparison of the vertical sections at Cape Desolation and Cape Farewell with the available observational data sets shows many improvements in this simulation compared to that of the CS case. But the freshwater content in the Labrador Sea interior shows a continued drift as that of the CS case with an improvement towards the 10th model year. A detailed analysis of the boundary currents around the Labrador Sea shows the weak offshore transport of freshwater from the West Greenland Current (WGC) as one of the causes. To further improve the model and reasonably represent the boundary currents and associated sub-grid scale eddies in the model, a modified sub-grid scale parameterization based on Gent and McWilliams, (1990) is adopted. The sensitivity of using various approaches in the thickness diffusion parameter ( Kgm) for this

  20. Modelling the volatile and organic content of Enceladus' ocean

    NASA Astrophysics Data System (ADS)

    Sotin, Christophe; Lunine, Jonathan

    2015-04-01

    A variety of Cassini data on Enceladus suggest that the jets of material spraying out of the south polar region of this Saturnian moon are connected to a regional or global ocean below an icy crust -- an ocean in contact with a rocky core [1, 2, 3]. In this study we construct models of the mineralogical and elemental composition of Enceladus' rocky core so as to predict the abundance of species that may provide more detail on the extent of hydrothermal evolution of the ocean and its interaction with the rocky core. Using equations of state of the relevant material, the models are made consistent with the values of the gravity coefficients [1]. We investigate the amount of organic molecules (amino acids and fatty acids) as well as the amount of 40Ar that could be present in Enceladus' deep ocean and, therefore, in the icy grains expelled into space. Some models show that the conditions in Enceladus rocky core can be very similar to those existing in the Earth's oceanic crust, suggesting that all of Enceladus rocky core would have been leached over the age of the solar system. The amount of 40Ar dissolved in the ocean provides constraints on the amount of K in the building blocks of Enceladus, the amount of leaching of the silicate fraction, and the extent of the ocean. Based on chondritic abundances for K, we have calculated that the total potential of 40Ar is about 5.6x1012 kg. We also investigate the amount of organic material that would have been concentrated in the ocean. The Murchison meteorite contains about 60 ppm of amino acids, mainly glycine [4]. Assuming that all the rocky core has been leached by water, the modelled concentration of amino acids exceeds 150 ppm. Carboxylic acids were detected in the Asuka carbonaceous chondrites in Antarctica with values, for example, of 90 nmol/g of benzoic acid. Assuming this value, about 35 ppm of benzoic acid would be present in Enceladus' ocean. The concentrations are larger if the ocean is not global, but rather

  1. Modeling and Assimilating Ocean Color Radiances

    NASA Technical Reports Server (NTRS)

    Gregg, Watson

    2012-01-01

    Radiances are the source of information from ocean color sensors to produce estimates of biological and geochemical constituents. They potentially provide information on various other aspects of global biological and chemical systems, and there is considerable work involved in deriving new information from these signals. Each derived product, however, contains errors that are derived from the application of the radiances, above and beyond the radiance errors. A global biogeochemical model with an explicit spectral radiative transfer model is used to investigate the potential of assimilating radiances. The results indicate gaps in our understanding of radiative processes in the oceans and their relationships with biogeochemical variables. Most important, detritus optical properties are not well characterized and produce important effects of the simulated radiances. Specifically, there does not appear to be a relationship between detrital biomass and its optical properties, as there is for chlorophyll. Approximations are necessary to get beyond this problem. In this reprt we will discuss the challenges in modeling and assimilation water-leaving radiances and the prospects for improving our understanding of biogeochemical process by utilizing these signals.

  2. Interactive Visual Analysis within Dynamic Ocean Models

    NASA Astrophysics Data System (ADS)

    Butkiewicz, T.

    2012-12-01

    The many observation and simulation based ocean models available today can provide crucial insights for all fields of marine research and can serve as valuable references when planning data collection missions. However, the increasing size and complexity of these models makes leveraging their contents difficult for end users. Through a combination of data visualization techniques, interactive analysis tools, and new hardware technologies, the data within these models can be made more accessible to domain scientists. We present an interactive system that supports exploratory visual analysis within large-scale ocean flow models. The currents and eddies within the models are illustrated using effective, particle-based flow visualization techniques. Stereoscopic displays and rendering methods are employed to ensure that the user can correctly perceive the complex 3D structures of depth-dependent flow patterns. Interactive analysis tools are provided which allow the user to experiment through the introduction of their customizable virtual dye particles into the models to explore regions of interest. A multi-touch interface provides natural, efficient interaction, with custom multi-touch gestures simplifying the otherwise challenging tasks of navigating and positioning tools within a 3D environment. We demonstrate the potential applications of our visual analysis environment with two examples of real-world significance: Firstly, an example of using customized particles with physics-based behaviors to simulate pollutant release scenarios, including predicting the oil plume path for the 2010 Deepwater Horizon oil spill disaster. Secondly, an interactive tool for plotting and revising proposed autonomous underwater vehicle mission pathlines with respect to the surrounding flow patterns predicted by the model; as these survey vessels have extremely limited energy budgets, designing more efficient paths allows for greater survey areas.

  3. Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System

    USGS Publications Warehouse

    Haidvogel, D.B.; Arango, H.; Budgell, W.P.; Cornuelle, B.D.; Curchitser, E.; Di, Lorenzo E.; Fennel, K.; Geyer, W.R.; Hermann, A.J.; Lanerolle, L.; Levin, J.; McWilliams, J.C.; Miller, A.J.; Moore, A.M.; Powell, T.M.; Shchepetkin, A.F.; Sherwood, C.R.; Signell, R.P.; Warner, J.C.; Wilkin, J.

    2008-01-01

    Systematic improvements in algorithmic design of regional ocean circulation models have led to significant enhancement in simulation ability across a wide range of space/time scales and marine system types. As an example, we briefly review the Regional Ocean Modeling System, a member of a general class of three-dimensional, free-surface, terrain-following numerical models. Noteworthy characteristics of the ROMS computational kernel include: consistent temporal averaging of the barotropic mode to guarantee both exact conservation and constancy preservation properties for tracers; redefined barotropic pressure-gradient terms to account for local variations in the density field; vertical interpolation performed using conservative parabolic splines; and higher-order, quasi-monotone advection algorithms. Examples of quantitative skill assessment are shown for a tidally driven estuary, an ice-covered high-latitude sea, a wind- and buoyancy-forced continental shelf, and a mid-latitude ocean basin. The combination of moderate-order spatial approximations, enhanced conservation properties, and quasi-monotone advection produces both more robust and accurate, and less diffusive, solutions than those produced in earlier terrain-following ocean models. Together with advanced methods of data assimilation and novel observing system technologies, these capabilities constitute the necessary ingredients for multi-purpose regional ocean prediction systems. ?? 2007 Elsevier Inc. All rights reserved.

  4. Modeling Horizontal GPS Seasonal Signals Caused by Ocean Loading

    NASA Astrophysics Data System (ADS)

    Bartlow, N. M.; Fialko, Y. A.

    2014-12-01

    GPS monuments around the world exhibit seasonal signals in both the horizontal and vertical components with amplitudes on the order of centimeters. For analysis of tectonic signals, researchers typically fit and remove a sine wave with an annual period, and sometimes an additional sine wave with a semiannual period. As interest grows in analyzing smaller, slower signals it becomes more important to correct for these seasonal signals accurately. It is well established that the vertical component of seasonal GPS signals is largely due to continental water storage cycles (e.g. van Dam et al., GRL, 2001). Horizontal seasonal signals however are not well explained by continental water storage. We examine horizontal seasonal signals across western North America and find that the horizontal component is coherent at very large spatial scales and is in general oriented perpendicular to the nearest coastline, indicating an oceanic origin. Additionally, horizontal and vertical annual signals are out of phase by approximately 2 months indicating different physical origins. Studies of GRACE and ocean bottom pressure data indicate an annual variation of non-steric, non-tidal ocean height with an average amplitude of 1 cm globally (e.g. Ponte et al., GRL, 2007). We use Some Programs for Ocean Tide Loading (SPOTL; Agnew, SIO Technical Report, 2012) to model predicted displacements due to these (non-tidal) ocean loads and find general agreement with observed horizontal GPS seasonal signals. In the future, this may lead to a more accurate way to predict and remove the seasonal component of GPS displacement time-series, leading to better discrimination of the true tectonic signal. Modeling this long wavelength signal also provides a potential opportunity to probe the structure of the Earth.

  5. Evaluating the deep-ocean circulation of a global ocean model using carbon isotopic ratios

    NASA Astrophysics Data System (ADS)

    Paul, André; Dutkiewicz, Stephanie; Gebbie, Jake; Losch, Martin; Marchal, Olivier

    2016-04-01

    We study the sensitivity of a global three-dimensional biotic ocean carbon-cycle model to the parameterizations of gas exchange and biological productivity as well as to deep-ocean circulation strength, and we employ the carbon isotopic ratios δ13C and Δ14C of dissolved inorganic carbon for a systematic evaluation against observations. Radiocarbon (Δ14C) in particular offers the means to assess the model skill on a time scale of 100 to 1000 years relevant to the deep-ocean circulation. The carbon isotope ratios are included as tracers in the MIT general circulation model (MITgcm). The implementation involves the fractionation processes during photosynthesis and air-sea gas exchange. We present the results of sixteen simulations combining two different parameterizations of the piston velocity, two different parameterizations of biological productivity (including the effect of iron fertilization) and four different overturning rates. These simulations were first spun up to equilibrium (more than 10,000 years of model simulation) and then continued from AD 1765 to AD 2002. For the model evaluation, we followed the OCMIP-2 (Ocean Carbon-Cycle Model Intercomparision Project phase two) protocol, comparing the results to GEOSECS (Geochemical Ocean Sections Survey) and WOCE (World Ocean Circulation Experiment) δ13C and natural Δ14C data in the world ocean. The range of deep natural Δ14C (below 1000 m) for our single model (MITgcm) was smaller than for the group of different OCMIP-2 models. Furthermore, differences between different model parameterizations were smaller than for different overturning rates. We conclude that carbon isotope ratios are a useful tool to evaluate the deep-ocean circulation. Since they are also available from deep-sea sediment records, we postulate that the simulation of carbon isotope ratios in a global ocean model will aid in estimating the deep-ocean circulation and climate during present and past.

  6. Numerical noise in ocean and estuarine models

    USGS Publications Warehouse

    Walters, R.; Carey, G.F.

    1984-01-01

    Approximate methods for solving the shallow water equations may lead to solutions exhibiting large fictitious, numerically-induced oscillations. The analysis of the discrete dispersion relation and modal solutions of small wavelengths provides a powerful technique for assessing the sensitivity of alternative numerical schemes to irregular data which may lead to such oscillatory numerical noise. For those schemes where phase speed vanishes at a finite wavenumber or there are multiple roots for wavenumber, oscillation modes can exist which are uncoupled from the dynamics of the problem. The discrete modal analysis approach is used here to identify two classes of spurious oscillation modes associated respectively with the two different asymptotic limits corresponding to estuarine and large scale ocean models. The analysis provides further insight into recent numerical results for models which include large spatial scales and Coriolis acceleration. ?? 1984.

  7. Ocean reverberation: Modeling, measurements and inversions

    NASA Astrophysics Data System (ADS)

    Zhou, Ji-Xun; Zhang, Xue-Zhen; Peng, Zhaohui; Li, Zhenglin

    2012-11-01

    Research on ocean reverberation has practical and scientific significance. Much progress has been made in the past three decades to improve our understanding of reverberation. However, there remain important unanswered questions and a real scarcity of high-quality basic research data sets. New progress on the reverberation modeling and the low-frequency (LF) seabed scattering characterization in shallow water (SW) requires three essential conditions: 1). A reliable reverberation model using a physics-based seabed scattering function, 2). Carefully calibrated broadband reverberation data, and 3). A ground truth about the seabed geoacoustic model. Some related work on these topics is introduced in this paper. The energy flux method for SW reverberation is briefly introduced. Integration of this method with physics-based seabed scattering models directly and intuitively results in a general expression for SW reverberation. A simple relationship between the classic scattering cross-section and the modal scattering matrix is derived. Some basic research data sets, including the reverberation level/vertical coherence as a function of time, frequency, depth/hydrophone separation and sea state, are reported. Reverberation data and model predictions are in good agreement, which results in some inversion results. The HF seabed scattering models and the energy flux method-derived reverberation model are validated using LF reverberation broadband data.

  8. Response Of Ocean Carbon Export To Different Model Algorithms

    NASA Astrophysics Data System (ADS)

    Caglar Yumruktepe, Veli; Salihoglu, Baris; Kideys, Ahmet E.

    2013-04-01

    Effects of climate change on the biological carbon pump (BCP) and vice-versa, and the influence of change in ecosystem structure on the dynamics of BCP are vital topics to understand the role of oceans in the global carbon cycle and sequestration of greenhouse gases. Construction of a complete carbon budget, requires better understanding of air-sea exchanges and the processes controlling the vertical and horizontal transport of carbon in the ocean, particularly the biological carbon pump. Improved parameterization of carbon sequestration within ecosystem models is vital to better understand and predict changes in the global carbon cycle. However, due to the complexity of processes controlling particle aggregation, sinking and decomposition, existing ecosystem models necessarily parameterize carbon sequestration using simple algorithms. For this reason, the primary aim of this study is to provide new parameterizations of the downward flux of organic carbon, suitable for inclusion in numerical models. The study area was chosen to be the North Atlantic Basin (NA) and the surrounding shelf seas. In the scope of this study, first, the skill of existing models in representing particle fluxes were compared theoretically. The unique algorithms used in three state-of-the art ecosystem models ERSEM, PISCES and MEDUSA have been compared and tested against observational data collected at the PAP mooring site. For testing purposes, algorithms were inserted into a common 1D pelagic ecosystem model. Following comparison of existing algorithms, new experimental results obtained from targeted mesocosm experiments and open ocean observations, will be utilized to develop improved formulations. New algorithms will be compared to existing model formulations using a standard validation data set complied within the framework of BASIN. In order to assess algorithm response under differing hydrographic environments, each set of algorithms will be tested within a 1D framework at three sites

  9. Ocean circulation modeling by use of radar altimeter data

    NASA Technical Reports Server (NTRS)

    Olbers, Dirk; Alpers, W.; Hasselmann, K.; Maier-Reimer, E.; Kase, R.; Krauss, W.; Siedler, G.; Willebrand, J.; Zahel, W.

    1991-01-01

    The project will investigate the use of radar altimetry (RA) data in the determination of the ocean circulation models. RA data will be used to verify prognostic experiments of the steady state and seasonal cycle of large-scale circulation models and the statistical steady state of eddy-resolving models. The data will serve as initial and update conditions in data assimilation experiments and as constraints in inverse calculations. The aim of the project is a better understanding of ocean physics, the determination and mapping of ocean currents, and a contribution to the establishment of ocean circulation models for climate studies. The goal of the project is to use satellite radar altimetry data for improving our knowledge of ocean circulation both in a descriptive sense and through the physics that govern the circulation state. The basic tool is a series of ocean circulation models. Depending on the model, different techniques will be applied to incorporate the RA data.

  10. Modeling Nitrogen Isotopes in the Global Ocean

    NASA Astrophysics Data System (ADS)

    Somes, C.; Schmittner, A.

    2008-12-01

    The nitrogen isotopic signal measured in marine sediments has the potential to be a valuable paleoceanographic proxy. It captures the response of different biological processes in the marine ecosystem including photosynthesis, nitrogen fixation, denitrification as well as processes within the food chain. A simple marine ecosystem model that includes the interactive cycling of nitrogen, phosphorus, and oxygen is augmented to record nitrogen isotopes in the University of Victoria Earth System Climate Model. New nitrogen isotopic tracers are employed at all trophic levels of the ecosystem. This includes the δ15N of nitrate, both classes of phytoplankton (nitrogen fixers and all other phytoplankton), zooplankton, and detritus. Despite a few shortcomings, it is shown that the nitrogen isotope model can capture the major trends observed in the modern climate. The ability to model nitrogen isotopes in a global coupled ocean- atmosphere-sea ice-ecosystem model gives us a unique opportunity to directly infer what physical and biological changes in the climate system are driving the δ15N signal on spatial and temporal scales. This is a valuable tool giving us tremendous insight on how to interpret the nitrogen isotopic signal.

  11. An update on modeling land-ice/ocean interactions in CESM

    SciTech Connect

    Asay-davis, Xylar

    2011-01-24

    This talk is an update on ongoing land-ice/ocean coupling work within the Community Earth System Model (CESM). The coupling method is designed to allow simulation of a fully dynamic ice/ocean interface, while requiring minimal modification to the existing ocean model (the Parallel Ocean Program, POP). The method makes use of an immersed boundary method (IBM) to represent the geometry of the ice-ocean interface without requiring that the computational grid be modified in time. We show many of the remaining development challenges that need to be addressed in order to perform global, century long climate runs with fully coupled ocean and ice sheet models. These challenges include moving to a new grid where the computational pole is no longer at the true south pole and several changes to the coupler (the software tool used to communicate between model components) to allow the boundary between land and ocean to vary in time. We discuss benefits for ice/ocean coupling that would be gained from longer-term ocean model development to allow for natural salt fluxes (which conserve both water and salt mass, rather than water volume).

  12. Ocean Models and Proper Orthogonal Decomposition

    NASA Astrophysics Data System (ADS)

    Salas-de-Leon, D. A.

    2007-05-01

    The increasing computational developments and the better understanding of mathematical and physical systems resulted in an increasing number of ocean models. Long time ago, modelers were like a secret organization and recognize each other by using secret codes and languages that only a select group of people was able to recognize and understand. The access to computational systems was reduced, on one hand equipment and the using time of computers were expensive and restricted, and on the other hand, they required an advance computational languages that not everybody wanted to learn. Now a days most college freshman own a personal computer (PC or laptop), and/or have access to more sophisticated computational systems than those available for research in the early 80's. The resource availability resulted in a mayor access to all kind models. Today computer speed and time and the algorithms does not seem to be a problem, even though some models take days to run in small computational systems. Almost every oceanographic institution has their own model, what is more, in the same institution from one office to the next there are different models for the same phenomena, developed by different research member, the results does not differ substantially since the equations are the same, and the solving algorithms are similar. The algorithms and the grids, constructed with algorithms, can be found in text books and/or over the internet. Every year more sophisticated models are constructed. The Proper Orthogonal Decomposition is a technique that allows the reduction of the number of variables to solve keeping the model properties, for which it can be a very useful tool in diminishing the processes that have to be solved using "small" computational systems, making sophisticated models available for a greater community.

  13. Carbon isotopes in the ocean model of the Community Earth System Model (CESM1)

    NASA Astrophysics Data System (ADS)

    Jahn, A.; Lindsay, K.; Giraud, X.; Gruber, N.; Otto-Bliesner, B. L.; Liu, Z.; Brady, E. C.

    2015-08-01

    Carbon isotopes in the ocean are frequently used as paleoclimate proxies and as present-day geochemical ocean tracers. In order to allow a more direct comparison of climate model results with this large and currently underutilized data set, we added a carbon isotope module to the ocean model of the Community Earth System Model (CESM), containing the cycling of the stable isotope 13C and the radioactive isotope 14C. We implemented the 14C tracer in two ways: in the "abiotic" case, the 14C tracer is only subject to air-sea gas exchange, physical transport, and radioactive decay, while in the "biotic" version, the 14C additionally follows the 13C tracer through all biogeochemical and ecological processes. Thus, the abiotic 14C tracer can be run without the ecosystem module, requiring significantly fewer computational resources. The carbon isotope module calculates the carbon isotopic fractionation during gas exchange, photosynthesis, and calcium carbonate formation, while any subsequent biological process such as remineralization as well as any external inputs are assumed to occur without fractionation. Given the uncertainty associated with the biological fractionation during photosynthesis, we implemented and tested three parameterizations of different complexity. Compared to present-day observations, the model is able to simulate the oceanic 14C bomb uptake and the 13C Suess effect reasonably well compared to observations and other model studies. At the same time, the carbon isotopes reveal biases in the physical model, for example, too sluggish ventilation of the deep Pacific Ocean.

  14. Carbon isotopes in the ocean model of the Community Earth System Model (CESM1)

    NASA Astrophysics Data System (ADS)

    Jahn, A.; Lindsay, K.; Giraud, X.; Gruber, N.; Otto-Bliesner, B. L.; Liu, Z.; Brady, E. C.

    2014-11-01

    Carbon isotopes in the ocean are frequently used as paleo climate proxies and as present-day geochemical ocean tracers. In order to allow a more direct comparison of climate model results with this large and currently underutilized dataset, we added a carbon isotope module to the ocean model of the Community Earth System Model (CESM), containing the cycling of the stable isotope 13C and the radioactive isotope 14C. We implemented the 14C tracer in two ways: in the "abiotic" case, the 14C tracer is only subject to air-sea gas exchange, physical transport, and radioactive decay, while in the "biotic" version, the 14C additionally follows the 13C tracer through all biogeochemical and ecological processes. Thus, the abiotic 14C tracer can be run without the ecosystem module, requiring significantly less computational resources. The carbon isotope module calculates the carbon isotopic fractionation during gas exchange, photosynthesis, and calcium carbonate formation, while any subsequent biological process such as remineralization as well as any external inputs are assumed to occur without fractionation. Given the uncertainty associated with the biological fractionation during photosynthesis, we implemented and tested three parameterizations of different complexity. Compared to present-day observations, the model is able to simulate the oceanic 14C bomb uptake and the 13C Suess effect reasonably well compared to observations and other model studies. At the same time, the carbon isotopes reveal biases in the physical model, for example a too sluggish ventilation of the deep Pacific Ocean.

  15. Improved representation of Southern Ocean fronts in a finite element ocean model

    NASA Astrophysics Data System (ADS)

    Janjic, T.; Timmerman, R.; Schroeter, J.

    2012-04-01

    Orsi et al. 1995 determined the positions of fronts in Southern Ocean based on the water mass criteria from hydrographic sections data. Following Orsi et al. 1995 three main Southern Ocean fronts are distinguished, the subantarctic front (SAF), the polar front (PF) and the southern Antarctic Circumpolar current (sACC) front. All three fronts are continuous features of the ACC, and extend from the sea surface to the deep ocean. Several studies used satellite observations (gradients of sea surface height and sea surface temperature) to locate ACC fronts. In recent work by Sokolov and Rintoul 2009, the authors introduced south, north and middle branches of each of the three major fronts. The position of the branches are determined based on the contour lines of absolute SSH, where the absolute SSH values were calculated by adding the SSH anomalies to the mean surface dynamic height (relative to 2500 dbar) derived from the World Ocean Circulation Experiment climatology. In this work, we estimate the locations of the Southern Ocean fronts using the finite element ocean model and the same criteria as specified in Orsi et al. 1995. The ocean model representation of the locations of fronts is improved by assimilating dynamical ocean topography (DOT) data. In our study, the DOT is generated using the satellite altimetry and our knowledge of the geoid as given by the GOCO2S model which combines GRACE and GOCE gravity data. In addition, front locations determined in such a way are compared to the streamline approach of Sokolov and Rintoul 2009.

  16. Multi-scale Modelling of the Ocean Beneath Ice Shelves

    NASA Astrophysics Data System (ADS)

    Candy, A. S.; Kimura, S.; Holland, P.; Kramer, S. C.; Piggott, M. D.; Jenkins, A.; Pain, C. C.

    2011-12-01

    dynamics will be presented; including a discussion of the dynamical adjustment of the ice-ocean interface, the parameterisation of meltrate over this boundary, and the strategies required to model non-hydrostatic dynamics in domains typical in this regime. The larger of the ice shelf ocean cavities of Antarctica, such as under the Pine Island Glacier, lie in domains with very small aspect ratios, on the order of 1:1000. Elements of the mesh can typically have a similar acute anisotropic form, with aspect ratios of the order of 1:1000, up to 1:10000 in some parts of the domain. This anisotropy necessitates a careful treatment and the strategy developed will be described. A verification of this modelling approach will be presented with a comparison to the idealised modelling study of Holland et al. 2008 (doi:10.1175/2007JCLI1909.1). Progress towards an application of this approach to multi-scale modelling of more realistic ice shelf ocean cavity systems will be demonstrated. This is in preparation for future validation of the model with data collected by the autonomous submarine Autosub, which was recently deployed under the Pine Island Glacier (Jenkins et al. 2010, doi:10.1038/ngeo890).

  17. Diurnal ocean surface layer model validation

    NASA Technical Reports Server (NTRS)

    Hawkins, Jeffrey D.; May, Douglas A.; Abell, Fred, Jr.

    1990-01-01

    The diurnal ocean surface layer (DOSL) model at the Fleet Numerical Oceanography Center forecasts the 24-hour change in a global sea surface temperatures (SST). Validating the DOSL model is a difficult task due to the huge areas involved and the lack of in situ measurements. Therefore, this report details the use of satellite infrared multichannel SST imagery to provide day and night SSTs that can be directly compared to DOSL products. This water-vapor-corrected imagery has the advantages of high thermal sensitivity (0.12 C), large synoptic coverage (nearly 3000 km across), and high spatial resolution that enables diurnal heating events to be readily located and mapped. Several case studies in the subtropical North Atlantic readily show that DOSL results during extreme heating periods agree very well with satellite-imagery-derived values in terms of the pattern of diurnal warming. The low wind and cloud-free conditions necessary for these events to occur lend themselves well to observation via infrared imagery. Thus, the normally cloud-limited aspects of satellite imagery do not come into play for these particular environmental conditions. The fact that the DOSL model does well in extreme events is beneficial from the standpoint that these cases can be associated with the destruction of the surface acoustic duct. This so-called afternoon effect happens as the afternoon warming of the mixed layer disrupts the sound channel and the propagation of acoustic energy.

  18. Including eddies in global ocean models

    NASA Astrophysics Data System (ADS)

    Semtner, Albert J.; Chervin, Robert M.

    The ocean is a turbulent fluid that is driven by winds and by surface exchanges of heat and moisture. It is as important as the atmosphere in governing climate through heat distribution, but so little is known about the ocean that it remains a “final frontier” on the face of the Earth. Many ocean currents are truly global in extent, such as the Antarctic Circumpolar Current and the “conveyor belt” that connects the North Atlantic and North Pacific oceans by flows around the southern tips of Africa and South America. It has long been a dream of some oceanographers to supplement the very limited observational knowledge by reconstructing the currents of the world ocean from the first principles of physics on a computer. However, until very recently, the prospect of doing this was thwarted by the fact that fluctuating currents known as “mesoscale eddies” could not be explicitly included in the calculation.

  19. Iron supply to the Southern Ocean mixed layer from below; the ocean model effect

    NASA Astrophysics Data System (ADS)

    Schourup-Kristensen, Vibe; Hauck, Judith; Losch, Martin; Wolf-Gladrow, Dieter A.; Völker, Christoph

    2015-04-01

    In the iron limited Southern Ocean, the biogeochemical results of commonly used ocean general circulation biogeochemical models differ greatly dependent on the ocean model used. This is largely due to the difficulties in reproducing a realistic mixed layer depth (MLD), which leads to different degrees of light limitation and nutrient supply from below. Regarding the iron sources to the Southern Ocean, research has traditionally focused on the input from dust and the sediment, but recent studies have highlighted the importance of the vertical supply to the mixed layer from the nutrient rich deeper water. This latter supply mechanism may also be affected by the large inter-model differences in the MLD and thereby influence the total net primary production and export production in the models. We have performed a model study in which the biogeochemical model REcoM2 was coupled to two different ocean models, the Finite Element Sea-ice Ocean Model (FESOM) and the MIT general circulation model (MITgcm). The effect of the ocean mixed layer on the magnitude of the iron sources from below in the two models was analyzed, as was the effect on the export and net primary production. Our results revealed a remarkable difference in terms of mode and magnitude of transport dependent on the mixed layer depth in the two models; the mean iron supply from below in the Southern Ocean was on average four times higher in MITgcm than in FESOM. The dominant pathway was entrainment in MITgcm, whereas diffusion dominated in FESOM. We discuss how the difference in the depth and seasonal amplitude of the mixed layer between the models has a major effect on the vertical iron profile and thereby also on the iron fluxes. A further effect of the difference in supply is that the fraction of exported net primary production is higher in MITgcm than in FESOM, showing that the choice of ocean model has a significant impact on the modeled carbon cycle in the Southern Ocean, with possible implications for

  20. A Coupled Ocean General Circulation, Biogeochemical, and Radiative Model of the Global Oceans: Seasonal Distributions of Ocean Chlorophyll and Nutrients

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Busalacchi, Antonio (Technical Monitor)

    2000-01-01

    A coupled ocean general circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability. and the interactions among three functional phytoplankton groups (diatoms. chlorophytes, and picoplankton) and three nutrients (nitrate, ammonium, and silicate). Basin scale (greater than 1000 km) model chlorophyll results are in overall agreement with CZCS pigments in many global regions. Seasonal variability observed in the CZCS is also represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are generally in conformance although occasional departures are apparent. Model nitrate distributions agree with in situ data, including seasonal dynamics, except for the equatorial Atlantic. The overall agreement of the model with satellite and in situ data sources indicates that the model dynamics offer a reasonably realistic simulation of phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent many aspects of the great diversity of physical, biological, chemical, and radiative environments encountered in the global oceans.

  1. The determination of third order linear models from a seventh order nonlinear jet engine model

    NASA Technical Reports Server (NTRS)

    Lalonde, Rick J.; Hartley, Tom T.; De Abreu-Garcia, J. Alex

    1989-01-01

    Results are presented that demonstrate how good reduced-order models can be obtained directly by recursive parameter identification using input/output (I/O) data of high-order nonlinear systems. Three different methods of obtaining a third-order linear model from a seventh-order nonlinear turbojet engine model are compared. The first method is to obtain a linear model from the original model and then reduce the linear model by standard reduction techniques such as residualization and balancing. The second method is to identify directly a third-order linear model by recursive least-squares parameter estimation using I/O data of the original model. The third method is to obtain a reduced-order model from the original model and then linearize the reduced model. Frequency responses are used as the performance measure to evaluate the reduced models. The reduced-order models along with their Bode plots are presented for comparison purposes.

  2. A Parallel Ocean Model With Adaptive Mesh Refinement Capability For Global Ocean Prediction

    SciTech Connect

    Herrnstein, A

    2005-09-08

    An ocean model with adaptive mesh refinement (AMR) capability is presented for simulating ocean circulation on decade time scales. The model closely resembles the LLNL ocean general circulation model with some components incorporated from other well known ocean models when appropriate. Spatial components are discretized using finite differences on a staggered grid where tracer and pressure variables are defined at cell centers and velocities at cell vertices (B-grid). Horizontal motion is modeled explicitly with leapfrog and Euler forward-backward time integration, and vertical motion is modeled semi-implicitly. New AMR strategies are presented for horizontal refinement on a B-grid, leapfrog time integration, and time integration of coupled systems with unequal time steps. These AMR capabilities are added to the LLNL software package SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) and validated with standard benchmark tests. The ocean model is built on top of the amended SAMRAI library. The resulting model has the capability to dynamically increase resolution in localized areas of the domain. Limited basin tests are conducted using various refinement criteria and produce convergence trends in the model solution as refinement is increased. Carbon sequestration simulations are performed on decade time scales in domains the size of the North Atlantic and the global ocean. A suggestion is given for refinement criteria in such simulations. AMR predicts maximum pH changes and increases in CO{sub 2} concentration near the injection sites that are virtually unattainable with a uniform high resolution due to extremely long run times. Fine scale details near the injection sites are achieved by AMR with shorter run times than the finest uniform resolution tested despite the need for enhanced parallel performance. The North Atlantic simulations show a reduction in passive tracer errors when AMR is applied instead of a uniform coarse resolution. No

  3. Ocean Wave Studies with Applications to Ocean Modeling and Improvement of Satellite Altimeter Measurements

    NASA Technical Reports Server (NTRS)

    Glazman, Roman E.

    1999-01-01

    Combining analysis of satellite data (altimeter, scatterometer, high-resolution visible and infrared images, etc.) with mathematical modeling of non-linear wave processes, we investigate various ocean wave fields (on scales from capillary to planetary), their role in ocean dynamics and turbulent transport (of heat and biogeochemical quantities), and their effects on satellite altimeter measuring accuracy. In 1998 my attention was focused on long internal gravity waves (10 to 1000 km), known also as baroclinic inertia-gravity (BIG) waves. We found these waves to be a major factor of altimeter measurements "noise," resulting in a greater uncertainty [up to 10 cm in terms of sea surface height (SSH) amplitude] in the measured SSH signal than that caused by the sea state bias variations (up to 5 cm or so). This effect still remains largely overlooked by the satellite altimeter community. Our studies of BIG waves address not only their influence on altimeter measurements but also their role in global ocean dynamics and in transport and turbulent diffusion of biogeochemical quantities. In particular, in collaboration with Prof Peter Weichman, Caltech, we developed a theory of turbulent diffusion caused by wave motions of most general nature. Applied to the problem of horizontal turbulent diffusion in the ocean, the theory yielded the effective diffusion coefficient as a function of BIG wave parameters obtainable from satellite altimeter data. This effort, begun in 1997, has been successfully completed in 1998. We also developed a theory that relates spatial fluctuations of scalar fields (such as sea surface temperature, chlorophyll concentration, drifting ice concentration, etc.) to statistical characteristics of BIG waves obtainable from altimeter measurements. A manuscript is in the final stages of preparation. In order to verify the theoretical predictions and apply them to observations, we are now analyzing Sea-viewing Wide Field of view Sensor (SeaWiFS) and Field of

  4. Adaptation of a general circulation model to ocean dynamics

    NASA Technical Reports Server (NTRS)

    Turner, R. E.; Rees, T. H.; Woodbury, G. E.

    1976-01-01

    A primitive-variable general circulation model of the ocean was formulated in which fast external gravity waves are suppressed with rigid-lid surface constraint pressires which also provide a means for simulating the effects of large-scale free-surface topography. The surface pressure method is simpler to apply than the conventional stream function models, and the resulting model can be applied to both global ocean and limited region situations. Strengths and weaknesses of the model are also presented.

  5. Oceans Abound? Tectonic Tests of Global Ocean Models for Enceladus and Mimas

    NASA Astrophysics Data System (ADS)

    Rhoden, A.; Henning, W. G.; Bland, M. T.; Tajeddine, R.; Hurford, T., Jr.

    2015-12-01

    Librations identified in Cassinidata imply that Mimas either has a global ocean or an irregular core (Tajeddine et al., 2014). A global ocean is the only model consistent with Enceladus' librations (Tajeddine et al., 2015). A global ocean can also explain gravity measurements of Enceladus as long as the overlying ice shell is thicker in the north pole than the south pole (McKinnon, 2015), although a regional sea is also possible (Iess et al., 2014). Generations of fractures at Enceladus' south pole may indicate longitudinal migration of the ice shell, which would also require a global ocean (Patthoff and Kattenhorn, 2011). Because both Mimas and Enceladus have eccentric orbits (0.0196 and 0.0047, respectively) interior models that include oceans can generate much larger tidal stresses than models without oceans. However, the enhancement in tidal stress due to oceans creates complications for both moons. Mimas' surface is ancient and heavily cratered; only about 40 tectonic features have been identified, globally (Schenk, 2011). The lack of tidal-tectonic activity on Mimas implies that either it has not experienced large tidal stresses over its surface age or that its ice shell behaves quite differently than Europa. Enceladus has a young, heavily-fractured region at the south pole, and an old, heavily-cratered region at the north pole. Are global ocean models compatible with ongoing, tidal-tectonic activity at Enceladus' south pole and the lack of activity on Mimas and at Enceladus' north pole? We consider whether global oceans are compatible with the geologic records of Mimas and Enceladus by calculating tidal stresses for 5-layer interior structure models. To explore the range of possible interior structures, we vary the ice shell thickness, the depth of the upper brittle ice layer, and the viscosities of the brittle and ductile ice layers. We find that a global ocean within Mimas generates tidal stresses comparable to those on Europa (~100 kPa) and in some cases

  6. Coupled atmosphere-ocean models of Titan's past

    NASA Astrophysics Data System (ADS)

    McKay, C. P.; Pollack, J. B.; Lunine, J. I.; Courtin, R.

    1993-03-01

    The behavior and possible past evolution of fully coupled atmosphere and ocean model of Titan are investigated. It is found that Titan's surface temperature was about 20 K cooler at 4 Gyr ago and will be about 5 K warmer 0.5 Gyr in the future. The change in solar luminosity and the conversion of oceanic CH4 to C2H6 drive the evolution of the ocean and atmosphere over time. Titan appears to have experienced a frozen epoch about 3 Gyr ago independent of whether an ocean is present or not. This finding may have important implications for understanding the inventory of Titan's volatile compounds.

  7. Simulating aggregate dynamics in ocean biogeochemical models

    NASA Astrophysics Data System (ADS)

    Jackson, George A.; Burd, Adrian B.

    2015-04-01

    The dynamics of elements in the water column is complex, depending on multiple biological and physical processes operating at very different physical scales. Coagulation of particulate material is important for transforming particles and moving them in the water column. Mechanistic models of coagulation processes provide a means to predict these processes, help interpret observations, and provide insight into the processes occurring. However, most model applications have focused on describing simple marine systems and mechanisms. We argue that further model development, in close collaboration with field and experimental scientists, is required in order to extend the models to describe the large-scale elemental distributions and interactions being studied as part of GEOTRACES. Models that provide a fundamental description of trace element-particle interactions are required as are experimental tests of the mechanisms involved and the predictions arising from models. However, a comparison between simple and complicated models of aggregation and trace metal provides a means for understanding the implications of simplifying assumptions and providing guidance as to which simplifications are needed.

  8. Using ocean tracers to reduce uncertainties about ocean diapycnal mixing and model projections

    NASA Astrophysics Data System (ADS)

    Goes, M. P.; Urban, N.; Keller, K.; Schmittner, A.; Tonkonojenkov, R.; Haran, M.

    2010-12-01

    Current projections of the oceanic response to anthropogenic climate forcings are uncertain. Two key sources of these uncertainties are (i) structural errors in current Earth system models and (ii) imperfect knowledge of model parameters. Ocean tracers observations have the potential to reduce these uncertainties. Previous studies typically consider each tracer separately, neglect potentially important statistical properties of the system, or use methods that impose rather daunting computational demands. Here we extend and improve upon a recently developed approach using horizontally averaged vertical profiles of chlorofluorocarbon (CFC-11), radiocarbon (DC14), and temperature (T) observations to reduce model parametric and structural uncertainties. Our method estimates a joint probability density function, which considers cross-tracer correlations and spatial autocorrelations of the errors. We illustrate this method by estimating two model parameters related to the vertical diffusivity, the background vertical diffusivity and the upper Southern Ocean mixing. We show that enhancing the upper Southern Ocean mixing in the model improves the representations of ocean tracers, as well as improves hindcasts of the Atlantic Meridional Overturning Circulation (AMOC) and Ocean Carbon uptake. The most probable value of the background vertical diffusivity in the pelagic pycnocline is between 0.1-0.2 cm2/s. According to the statistical method, observations of DC14 reduce the uncertainty about the background vertical diffusivity the most followed by CFC-11 and T. Using all three tracers jointly reduces the model uncertainty by 40%, more than each tracer individually. Given several important caveats, we illustrate how the reduced model parametric uncertainty improves probabilistic projections of the AMOC and Ocean Carbon uptake.

  9. Comprehensive plate models for the thermal evolution of oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Grose, Christopher J.; Afonso, Juan Carlos

    2013-09-01

    Seafloor spreading and the cooling of oceanic lithosphere is a fundamental feature of plate tectonics in the Earth, the details of which are unveiled by modeling with constraints from mineral physics and geophysical observations. To work toward a more complete model of the thermal evolution of oceanic lithosphere, we investigate the contributions of axial hydrothermal circulation, oceanic crust, and temperature-pressure-dependent thermal properties. We find that models with only temperature-dependent properties disagree with geophysical observations unless properties are artificially modified. On the other hand, more comprehensive models are in better agreement with geophysical observations. Our preferred model requires a thermal expansivity reduction of 15% from a mineral physics estimate, and predicts a plate thickness of about 110-130 km. A principal result of our analysis is that the oceanic crust is a major contributor to the cooling of oceanic lithosphere. The oceanic crust acts as an insulating lid on the mantle, causing the rate of lithospheric cooling to increase from "crustal" values near the ridge to higher mantle values at old-age. Major consequences of this insulation effect are: (a) low seafloor subsidence rate in proximity to ridge axes (<5 Ma), (b) the thermal structure of oceanic lithosphere is significantly warmer than previous models, (c) seafloor heat flow is significantly lower over young (<35 Ma) seafloor compared to simple models, (d) a low net seafloor heat flux (˜27 TW), and (e) temperature at the base of the seismogenic zone extends to 700-800°C mantle.

  10. Scientific development of a massively parallel ocean climate model

    SciTech Connect

    Semtner, A.J. Jr. ); Chervin, R.M. )

    1992-01-01

    A thorough examination was made of existing results from the global ocean model with high resolution. Additional experiments were chosen to help investigate the sensitivity of global ocean circulation and its associated transports of heat and salt to proposed changes in high-latitude buoyancy forcing and wind forcing.

  11. Parameterizations in high resolution isopycanl wind-driven ocean models

    SciTech Connect

    Jensen, T.G.; Randall, D.A.

    1993-01-01

    For the CHAMMP project, we proposed to implement and test new numerical schemes, parameterizations of boundary layer flow and development and implement mixed layer physics in an existing isopycnal models. The objectives for the proposed research were; implement the Arakawa and Hsu, scheme in an existing isopycnal model of the Indian Ocean; recode the new model for a highly parallel architecture; determine effects of various parameterizations of islands; determine the correct lateral boundary condition for boundary layer currents, as for instance the Gulf Stream and other western boundary currents.; and incorporate a oceanic mixed layer on top of the isopycnal deep layers. This is, primarily a model development project, with emphasis on determining the influence and parameterization of narrow flows along continents and through chains of small islands on the large scale oceanic circulation, which is resolved by climate models. The new model is based on the multi-layer FSU Indian Ocean model. Our research strategy is to; recode a one-layer version of the Indian Ocean Model for a highly parallel computer; add thermodynamics to a rectangular domain version of the new model; implement the irregular domain from the Indian Ocean Model into the box model; change the numerical scheme for the continuity equation to the scheme proposed by; perform parameterization experiments with various coast line and island geometries. This report discusses project progress for period August 1, 1992 through December 31, 1992.

  12. Ocean modelling on the CYBER 205 at GFDL

    NASA Technical Reports Server (NTRS)

    Cox, M.

    1984-01-01

    At the Geophysical Fluid Dynamics Laboratory, research is carried out for the purpose of understanding various aspects of climate, such as its variability, predictability, stability and sensitivity. The atmosphere and oceans are modelled mathematically and their phenomenology studied by computer simulation methods. The present state-of-the-art in the computer simulation of large scale oceans on the CYBER 205 is discussed. While atmospheric modelling differs in some aspects, the basic approach used is similar. The equations of the ocean model are presented along with a short description of the numerical techniques used to find their solution. Computational considerations and a typical solution are presented in section 4.

  13. Whither low-order climate models?

    NASA Astrophysics Data System (ADS)

    Viebahn, Jan; Dijkstra, Henk A.

    2015-04-01

    A zoo of low-order (small degrees of freedom) deterministic and stochastic climate models has appeared in the literature with each focussing on specific aspects of (paleo)climate variability. The advantage of these models is that their behavior can be analyzed in detail and hence cause and effect (mechanisms) can be disentangled efficiently. Indeed, much insight has been obtained by `thinking deep about simple models'. However, the disadvantage is that each model usually contains idealizations and severe approximations such that the mechanisms underlying a certain phenomenon in these models may not represent the mechanisms which are at work in more detailed models and in observations. The danger is thus that low-order model results will be ignored by many of the climate science community. In this presentation, focus will be on several issues related to the use of low-order model results. Did the results of these models contribute to a better understanding of observed climate variability or did they only aggravate the confusion about cause and effect? In the spirit of `essentially all models are wrong but some are useful' (George Box), which type of models (e.g. stochastic versus deterministic, ad hoc versus truncated, etc.) has been more useful than others (has been the best fit for purpose)? Does this provide future guidelines on the development and usage of these models? Example models and their results will serve to address these issues.

  14. Simulations of Antarctic ice shelves and the Southern Ocean in the POP2x ocean model coupled with the BISICLES ice-sheet model

    NASA Astrophysics Data System (ADS)

    Asay-Davis, Xylar; Martin, Daniel; Price, Stephen; Maltrud, Mathew

    2014-05-01

    We present initial results from Antarctic, ice-ocean coupled simulations using large-scale ocean circulation and ice-sheet evolution models. This presentation focuses on the ocean model, POP2x, which is a modified version of POP, a fully eddying, global-scale ocean model (Smith and Gent, 2002). POP2x allows for circulation beneath ice shelf cavities using the method of partial top cells (Losch, 2008). Boundary layer physics, which control fresh water and salt exchange at the ice-ocean interface, are implemented following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013) and with results from other idealized ice-ocean coupling test cases (e.g., Goldberg et al., 2012). A companion presentation, 'Fully resolved whole-continent Antarctica simulations using the BISICLES AMR ice sheet model coupled with the POP2x Ocean Model', concentrates more on the ice-sheet model, BISICLES (Cornford et al., 2012), which includes a 1st-order accurate momentum balance (L1L2) and uses block structured, adaptive-mesh refinement to more accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. For idealized test cases focused on marine-ice sheet dynamics, BISICLES output compares very favorably relative to simulations based on the full, nonlinear Stokes momentum balance (MISMIP-3d; Pattyn et al., 2013). Here, we present large-scale (Southern Ocean) simulations using POP2x at 0.1 degree resolution with fixed ice shelf geometries, which are used to obtain and validate modeled submarine melt rates against observations. These melt rates are, in turn, used to force evolution of the BISICLES model. An offline-coupling scheme, which we compare with the ice-ocean coupling work of Goldberg et al. (2012), is then used to

  15. Modeling pCO sub 2 in the upper ocean

    SciTech Connect

    Archer, D.

    1990-12-01

    This report summarizes our current understanding of the physical, chemical, and biological processes that control the natural cycling of carbon dioxide (CO{sub 2}) in the surface ocean. Because the physics of mixing at the ocean surface creates the essential framework for the chemistry and biology, and because the literature on surface ocean mixing is extensive, a major focus of the report is to review existing mixed layer models for the upper ocean and their implementation in global ocean circulation models. Three families of mixed layer models have been developed. The integrated turbulent kinetic energy'' (TKE) models construct a budget for surface ocean TKE, using the wind stress as source and dissipation as sink for TKE. The shear instability'' models maintain profiles of current velocity resulting from the wind stress. Turbulence closure'' models are the most general and the most complicated of the three types, and are based on laboratory studies of fluid turbulence. This paper explores behavioral distinctions between the three types of models, and summarizes previously published comparisons of the generality, accuracy, and computational requirements of the three models. The application of mixed layer models to treatment of sea ice is also reviewed. 101 refs., 7 figs., 1 tab.

  16. Modelling the distribution of plutonium in the Pacific Ocean.

    PubMed

    Nakano, Masanao; Povinec, Pavel P

    2003-01-01

    An Oceanic General Circulation Model (OGCM) including a plutonium scavenging model as well as an advection-diffusion model has been developed for modelling the distribution of plutonium in the Pacific Ocean. Calculated 239, 240Pu water profile concentrations and 239, 240Pu inventories in water and sediment of the Pacific Ocean have showed a reasonable agreement with the experimental results. The presence of local fallout plutonium in central North Pacific waters has been confirmed. The observed 240Pu/239Pu mass ratios confirm that plutonium originating from local fallout from nuclear weapons tests carried out at Bikini and Enewetak Atolls is more rapidly removed from surface waters to deeper waters than plutonium originating from global fallout. The developed OGCM can be used for modelling the dispersion of other non-conservative tracers in the ocean as well. PMID:12860091

  17. A fully-implicit model of the global ocean circulation

    NASA Astrophysics Data System (ADS)

    Weijer, Wilbert; Dijkstra, Henk A.; Öksüzoğlu, Hakan; Wubs, Fred W.; de Niet, Arie C.

    2003-12-01

    With the recent developments in the solution methods for large-dimensional nonlinear algebraic systems, fully-implicit ocean circulation models are now becoming feasible. In this paper, the formulation of such a three-dimensional global ocean model is presented. With this implicit model, the sensitivity of steady states to parameters can be investigated efficiently using continuation methods. In addition, the implicit formulation allows for much larger time steps than can be used with explicit models. To demonstrate current capabilities of the implicit global ocean model, we use a relatively low-resolution (4° horizontally and 12 levels vertically) version. For this configuration, we present: (i) an explicit calculation of the bifurcation diagram associated with hysteresis behavior of the ocean circulation and (ii) the scaling behavior of the Atlantic meridional overturning versus the magnitude of the vertical mixing coefficient of heat and salt.

  18. Variability of Ocean Heat Uptake: Reconciling Observations and Models

    SciTech Connect

    AchutaRao, K M; Santer, B D; Gleckler, P J; Taylor, K; Pierce, D; Barnett, T; Wigley, T L

    2005-05-05

    This study examines the temporal variability of ocean heat uptake in observations and in climate models. Previous work suggests that coupled Atmosphere-Ocean General Circulation Models (A-OGCMs) may have underestimated the observed natural variability of ocean heat content, particularly on decadal and longer timescales. To address this issue, we rely on observed estimates of heat content from the 2004 World Ocean Atlas (WOA-2004) compiled by Levitus et al. (2005). Given information about the distribution of observations in WOA-2004, we evaluate the effects of sparse observational coverage and the infilling that Levitus et al. use to produce the spatially-complete temperature fields required to compute heat content variations. We first show that in ocean basins with limited observational coverage, there are important differences between ocean temperature variability estimated from observed and infilled portions of the basin. We then employ data from control simulations performed with eight different A-OGCMs as a test-bed for studying the effects of sparse, space- and time-varying observational coverage. Subsampling model data with actual observational coverage has a large impact on the inferred temperature variability in the top 300 and 3000 meters of the ocean. This arises from changes in both sampling depth and in the geographical areas sampled. Our results illustrate that subsampling model data at the locations of available observations increases the variability, reducing the discrepancy between models and observations.

  19. Observed and Modeled Trends in Southern Ocean Sea Ice

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2003-01-01

    Conceptual models and global climate model (GCM) simulations have both indicated the likelihood of an enhanced sensitivity to climate change in the polar regions, derived from the positive feedbacks brought about by the polar abundance of snow and ice surfaces. Some models further indicate that the changes in the polar regions can have a significant impact globally. For instance, 37% of the temperature sensitivity to a doubling of atmospheric CO2 in simulations with the GCM of the Goddard Institute for Space Studies (GISS) is attributable exclusively to inclusion of sea ice variations in the model calculations. Both sea ice thickness and sea ice extent decrease markedly in the doubled CO, case, thereby allowing the ice feedbacks to occur. Stand-alone sea ice models have shown Southern Ocean hemispherically averaged winter ice-edge retreats of 1.4 deg latitude for each 1 K increase in atmospheric temperatures. Observations, however, show a much more varied Southern Ocean ice cover, both spatially and temporally, than many of the modeled expectations. In fact, the satellite passive-microwave record of Southern Ocean sea ice since late 1978 has revealed overall increases rather than decreases in ice extents, with ice extent trends on the order of 11,000 sq km/year. When broken down spatially, the positive trends are strongest in the Ross Sea, while the trends are negative in the Bellingshausen/Amundsen Seas. Greater spatial detail can be obtained by examining trends in the length of the sea ice season, and those trends show a coherent picture of shortening sea ice seasons throughout almost the entire Bellingshausen and Amundsen Seas to the west of the Antarctic Peninsula and in the far western Weddell Sea immediately to the east of the Peninsula, with lengthening sea ice seasons around much of the rest of the continent. This pattern corresponds well with the spatial pattern of temperature trends, as the Peninsula region is the one region in the Antarctic with a strong

  20. Ocean Model Analysis and Prediction System (Ocean Maps): Operational Ocean Forecasting Base on Near Real-Time Satellite Altimetry

    NASA Astrophysics Data System (ADS)

    Brassington, G. B.

    2006-07-01

    BLU Elink> is a join t Australian governmen t initiative to develop Austr alia's f irst operational ocean forecasting system called O cean MAPS. The project has transitioned to th e implemen tation and trial phase using the infrastructure of the Bureau of Meteorology. OceanMAPS has a g lobal grid with 1/10° by 1/10° resolution in the Australian region (90E-180E, 70S- 16N) and uses the Modular Ocean Model version 4 optimised for the NEC SX6. The analysis uses an ensemb le based multi-variate optimal interpolation scheme wh ere model error cov ariances ar e der ived from a 72-member ensemble of in tra-seasonal anomalies based on a 12-year ocean only model integration. The scheme has been formulated to assimilate near real- time sea level heigh t anomalies processed from Jason-1, ENVISAT and Geosat Follow-On and profile observations including Argo, X BT and the TAO array. The operation al configuration including the data manag emen t of the near real- time observ ations is review ed.

  1. A fractional-order infectivity SIR model

    NASA Astrophysics Data System (ADS)

    Angstmann, C. N.; Henry, B. I.; McGann, A. V.

    2016-06-01

    Fractional-order SIR models have become increasingly popular in the literature in recent years, however unlike the standard SIR model, they often lack a derivation from an underlying stochastic process. Here we derive a fractional-order infectivity SIR model from a stochastic process that incorporates a time-since-infection dependence on the infectivity of individuals. The fractional derivative appears in the generalised master equations of a continuous time random walk through SIR compartments, with a power-law function in the infectivity. We show that this model can also be formulated as an infection-age structured Kermack-McKendrick integro-differential SIR model. Under the appropriate limit the fractional infectivity model reduces to the standard ordinary differential equation SIR model.

  2. A regional ocean model for the Southwest Pacific Ocean region to assess the risk of storms

    NASA Astrophysics Data System (ADS)

    Natoo, N.; Paul, A.; Hadfield, M.; Jendersie, S.; Bornman, J.; de Lange, W.; Ye, W.; Schulz, M.

    2012-04-01

    New Zealand's coasts are not only affected by mid-latitude storms, but infrequently also by storms that originate from the tropics. Projections for the southern hemisphere's southwest Pacific island countries for the 21st century show a poleward shift of the mid-latitude storm tracks, which consequently might result in changes in wind, precipitation and temperature patterns. Furthermore, an increase in frequency of intense storms is expected for the New Zealand region, which will very likely increase the risk of storm surges and flooding of coastal and low-lying regions. We employ the Regional Ocean Modeling System (ROMS) to assess the changes in the storm climate of the New Zealand region. The model set-up uses a resolution of ~50 km for the Southwest Pacific Ocean "parent domain" and ~10 km for the New Zealand "child domain", to well represent the major eddies that influence the climate of North Island. With the aim to later utilize this nested ocean model set-up as part of a coupled ocean-atmosphere modelling system for the Southwest Pacific Ocean region, results for the 20th century will be presented. The simulated circulation is shown to be largely consistent with the observed regional oceanography.

  3. A world ocean model for greenhouse sensitivity studies: Resolution intercomparison and the role of diagnostic forcing

    SciTech Connect

    Washington, W.M.; Meehl, G.A.; VerPlank, L.; Bettge, T.W.

    1994-05-01

    This article documents the simulation capability of this improved 1{degrees} global ocean model, shows improvements over our earlier 5{degrees} version, and compares it to features simulated with a 0.5{degrees} model. These experiments use a model spin-up methodology whereby the ocean model can subsequently be coupled to an atmospheric model and used for order 100-year coupled model integrations. With present-day computers, 1{degrees} is a reasonable compromise in resolution that allows for century-long coupled experiments. The 1{degrees} ocean model is derived from a 0.5{degrees}-resolution model developed for studies of the global eddy-resolving world ocean circulation. The 0.5{degrees} bottom topography and continental outlines have been altered to be compatible with the 1{degrees} resolution and the Arctic Ocean has been added. Results show a dramatic intensification of the meridional overturning circulation (order of magnitude) with perpetual winter surface temperature forcing in the North Atlantic and strong intensification (factor of three) with perpetual early winter temperatures in that region. These effects are felt throughout the Atlantic (particularly an intensified and northward-shifted Gulf Stream outflow). In the Pacific, the temperature gradient strengthens in the thermocline, thus helping counter the systematic error of a thermocline that is too diffuse. 41 refs., 13 figs.

  4. Modeling water clarity in oceans and coasts

    EPA Science Inventory

    In oceans and coastal waters, phytoplankton is the primary producer of organic compounds which form the base for the food chain. The concentration of phytoplankton is a major factor controlling water clarity and the depth to which light penetrates in the water column. The light i...

  5. Model-Based Detection in a Shallow Water Ocean Environment

    SciTech Connect

    Candy, J V

    2001-07-30

    A model-based detector is developed to process shallow water ocean acoustic data. The function of the detector is to adaptively monitor the environment and decide whether or not a change from normal has occurred. Here we develop a processor incorporating both a normal-mode ocean acoustic model and a vertical hydrophone array. The detector is applied to data acquired from the Hudson Canyon experiments at various ranges and its performance is evaluated.

  6. Advances in a distributed approach for ocean model data interoperability

    USGS Publications Warehouse

    Signell, Richard P.; Snowden, Derrick P.

    2014-01-01

    An infrastructure for earth science data is emerging across the globe based on common data models and web services. As we evolve from custom file formats and web sites to standards-based web services and tools, data is becoming easier to distribute, find and retrieve, leaving more time for science. We describe recent advances that make it easier for ocean model providers to share their data, and for users to search, access, analyze and visualize ocean data using MATLAB® and Python®. These include a technique for modelers to create aggregated, Climate and Forecast (CF) metadata convention datasets from collections of non-standard Network Common Data Form (NetCDF) output files, the capability to remotely access data from CF-1.6-compliant NetCDF files using the Open Geospatial Consortium (OGC) Sensor Observation Service (SOS), a metadata standard for unstructured grid model output (UGRID), and tools that utilize both CF and UGRID standards to allow interoperable data search, browse and access. We use examples from the U.S. Integrated Ocean Observing System (IOOS®) Coastal and Ocean Modeling Testbed, a project in which modelers using both structured and unstructured grid model output needed to share their results, to compare their results with other models, and to compare models with observed data. The same techniques used here for ocean modeling output can be applied to atmospheric and climate model output, remote sensing data, digital terrain and bathymetric data.

  7. Assimilation of GRACE-derived oceanic mass distributions with a global ocean circulation model

    NASA Astrophysics Data System (ADS)

    Saynisch, J.; Bergmann-Wolf, I.; Thomas, M.

    2015-02-01

    To study the sub-seasonal distribution and generation of ocean mass anomalies, Gravity Recovery and Climate Experiment (GRACE) observations of daily and monthly resolution are assimilated into a global ocean circulation model with an ensemble-based Kalman-Filter technique. The satellite gravimetry observations are processed to become time-variable fields of ocean mass distribution. Error budgets for the observations and the ocean model's initial state are estimated which contain the full covariance information. The consistency of the presented approach is demonstrated by increased agreement between GRACE observations and the ocean model. Furthermore, the simulations are compared with independent observations from 54 bottom pressure recorders. The assimilation improves the agreement to high-latitude recorders by up to 2 hPa. The improvements are caused by assimilation-induced changes in the atmospheric wind forcing, i.e., quantities not directly observed by GRACE. Finally, the use of the developed Kalman-Filter approach as a destriping filter to remove artificial noise contaminating the GRACE observations is presented.

  8. Chaotic dynamics in a simple dynamical green ocean plankton model

    NASA Astrophysics Data System (ADS)

    Cropp, Roger; Moroz, Irene M.; Norbury, John

    2014-11-01

    The exchange of important greenhouse gases between the ocean and atmosphere is influenced by the dynamics of near-surface plankton ecosystems. Marine plankton ecosystems are modified by climate change creating a feedback mechanism that could have significant implications for predicting future climates. The collapse or extinction of a plankton population may push the climate system across a tipping point. Dynamic green ocean models (DGOMs) are currently being developed for inclusion into climate models to predict the future state of the climate. The appropriate complexity of the DGOMs used to represent plankton processes is an ongoing issue, with models tending to become more complex, with more complicated dynamics, and an increasing propensity for chaos. We consider a relatively simple (four-population) DGOM of phytoplankton, zooplankton, bacteria and zooflagellates where the interacting plankton populations are connected by a single limiting nutrient. Chaotic solutions are possible in this 4-dimensional model for plankton population dynamics, as well as in a reduced 3-dimensional model, as we vary two of the key mortality parameters. Our results show that chaos is robust to the variation of parameters as well as to the presence of environmental noise, where the attractor of the more complex system is more robust than the attractor of its simplified equivalent. We find robust chaotic dynamics in low trophic order ecological models, suggesting that chaotic dynamics might be ubiquitous in the more complex models, but this is rarely observed in DGOM simulations. The physical equations of DGOMs are well understood and are constrained by conservation principles, but the ecological equations are not well understood, and generally have no explicitly conserved quantities. This work, in the context of the paucity of the empirical and theoretical bases upon which DGOMs are constructed, raises the interesting question of whether DGOMs better represent reality if they include

  9. Multi-property modeling of ocean basin carbon fluxes

    NASA Technical Reports Server (NTRS)

    Volk, Tyler

    1988-01-01

    The objectives of this project were to elucidate the causal mechanisms in some of the most important features of the global ocean/atomsphere carbon system. These included the interaction of physical and biological processes in the seasonal cycle of surface water pCo2, and links between productivity, surface chlorophyll, and the carbon cycle that would aid global modeling efforts. In addition, several other areas of critical scientific interest involving links between the marine biosphere and the global carbon cycle were successfully pursued; specifically, a possible relation between phytoplankton emitted DMS and climate, and a relation between the location of calcium carbonate burial in the ocean and metamorphic source fluxes of CO2 to the atmosphere. Six published papers covering the following topics are summarized: (1) Mass extinctions, atmospheric sulphur and climatic warming at the K/T boundary; (2) Sensitivity of climate and atmospheric CO2 to deep-ocean and shallow-ocean carbonate burial; (3) Controls on CO2 sources and sinks in the earthscale surface ocean; (4) pre-anthropogenic, earthscale patterns of delta pCO2 between ocean and atmosphere; (5) Effect on atmospheric CO2 from seasonal variations in the high latitude ocean; and (6) Limitations or relating ocean surface chlorophyll to productivity.

  10. Arctic Ocean Freshwater: How Robust are Model Simulations

    NASA Technical Reports Server (NTRS)

    Jahn, A.; Aksenov, Y.; deCuevas, B. A.; deSteur, L.; Haekkinen, S.; Hansen, E.; Herbaut, C.; Houssais, M.-N.; Karcher, M.; Kauker, F.; Lique, C.; Nguyen, A.; Pemberton, P.; Worthen, D.; Zhang, J.

    2012-01-01

    The Arctic freshwater (FW) has been the focus of many modeling studies, due to the potential impact of Arctic FW on the deep water formation in the North Atlantic. A comparison of the hindcasts from ten ocean-sea ice models shows that the simulation of the Arctic FW budget is quite different in the investigated models. While they agree on the general sink and source terms of the Arctic FW budget, the long-term means as well as the variability of the FW export vary among models. The best model-to-model agreement is found for the interannual and seasonal variability of the solid FW export and the solid FW storage, which also agree well with observations. For the interannual and seasonal variability of the liquid FW export, the agreement among models is better for the Canadian Arctic Archipelago (CAA) than for Fram Strait. The reason for this is that models are more consistent in simulating volume flux anomalies than salinity anomalies and volume-flux anomalies dominate the liquid FW export variability in the CAA but not in Fram Strait. The seasonal cycle of the liquid FW export generally shows a better agreement among models than the interannual variability, and compared to observations the models capture the seasonality of the liquid FW export rather well. In order to improve future simulations of the Arctic FW budget, the simulation of the salinity field needs to be improved, so that model results on the variability of the liquid FW export and storage become more robust.

  11. Arctic Ocean freshwater: How robust are model simulations?

    NASA Astrophysics Data System (ADS)

    Jahn, A.; Aksenov, Y.; de Cuevas, B. A.; de Steur, L.; Häkkinen, S.; Hansen, E.; Herbaut, C.; Houssais, M.-N.; Karcher, M.; Kauker, F.; Lique, C.; Nguyen, A.; Pemberton, P.; Worthen, D.; Zhang, J.

    The Arctic freshwater (FW) has been the focus of many modeling studies, due to the potential impact of Arctic FW on the deep water formation in the North Atlantic. A comparison of the hindcasts from ten ocean-sea ice models shows that the simulation of the Arctic FW budget is quite different in the investigated models. While they agree on the general sink and source terms of the Arctic FW budget, the long-term means as well as the variability of the FW export vary among models. The best model-to-model agreement is found for the interannual and seasonal variability of the solid FW export and the solid FW storage, which also agree well with observations. For the interannual and seasonal variability of the liquid FW export, the agreement among models is better for the Canadian Arctic Archipelago (CAA) than for Fram Strait. The reason for this is that models are more consistent in simulating volume flux anomalies than salinity anomalies and volume-flux anomalies dominate the liquid FW export variability in the CAA but not in Fram Strait. The seasonal cycle of the liquid FW export generally shows a better agreement among models than the interannual variability, and compared to observations the models capture the seasonality of the liquid FW export rather well. In order to improve future simulations of the Arctic FW budget, the simulation of the salinity field needs to be improved, so that model results on the variability of the liquid FW export and storage become more robust.

  12. Documentation of the Fourth Order Band Model

    NASA Technical Reports Server (NTRS)

    Kalnay-Rivas, E.; Hoitsma, D.

    1979-01-01

    A general circulation model is presented which uses quadratically conservative, fourth order horizontal space differences on an unstaggered grid and second order vertical space differences with a forward-backward or a smooth leap frog time scheme to solve the primitive equations of motion. The dynamic equations for motion, finite difference equations, a discussion of the structure and flow chart of the program code, a program listing, and three relevent papers are given.

  13. Testing Components of New Community Isopycnal Ocean Circulation Model

    SciTech Connect

    Bryan, Kirk

    2008-05-09

    The ocean and atmosphere are both governed by the same physical laws and models of the two media have many similarities. However, there are critical differences that call for special methods to provide the best simulation. One of the most important difference is that the ocean is nearly opaque to radiation in the visible and infra-red part of the spectrum. For this reason water mass properties in the ocean are conserved along trajectories for long distances and for long periods of time. For this reason isopycnal coordinate models would seem to have a distinct advantage in simulating ocean circulation. In such a model the coordinate surfaces are aligned with the natural paths of near adiabatic, density conserving flow in the main thermocline. The difficulty with this approach is at the upper and lower boundaries of the ocean, which in general do not coincide with density surfaces. For this reason hybrid coordinate models were proposed by Bleck and Boudra (1981) in which Cartesian coordinates were used near the ocean surface and isopycnal coordinates were used in the main thermocline. This feature is now part of the HICOM model (Bleck, 2002).

  14. Adaptation of an unstructured-mesh, finite-element ocean model to the simulation of ocean circulation beneath ice shelves

    NASA Astrophysics Data System (ADS)

    Kimura, Satoshi; Candy, Adam S.; Holland, Paul R.; Piggott, Matthew D.; Jenkins, Adrian

    2013-07-01

    Several different classes of ocean model are capable of representing floating glacial ice shelves. We describe the incorporation of ice shelves into Fluidity-ICOM, a nonhydrostatic finite-element ocean model with the capacity to utilize meshes that are unstructured and adaptive in three dimensions. This geometric flexibility offers several advantages over previous approaches. The model represents melting and freezing on all ice-shelf surfaces including vertical faces, treats the ice shelf topography as continuous rather than stepped, and does not require any smoothing of the ice topography or any of the additional parameterisations of the ocean mixed layer used in isopycnal or z-coordinate models. The model can also represent a water column that decreases to zero thickness at the 'grounding line', where the floating ice shelf is joined to its tributary ice streams. The model is applied to idealised ice-shelf geometries in order to demonstrate these capabilities. In these simple experiments, arbitrarily coarsening the mesh outside the ice-shelf cavity has little effect on the ice-shelf melt rate, while the mesh resolution within the cavity is found to be highly influential. Smoothing the vertical ice front results in faster flow along the smoothed ice front, allowing greater exchange with the ocean than in simulations with a realistic ice front. A vanishing water-column thickness at the grounding line has little effect in the simulations studied. We also investigate the response of ice shelf basal melting to variations in deep water temperature in the presence of salt stratification.

  15. Detecting toxic diatom blooms from ocean color and a regional ocean model

    NASA Astrophysics Data System (ADS)

    Anderson, Clarissa R.; Kudela, Raphael M.; Benitez-Nelson, Claudia; Sekula-Wood, Emily; Burrell, Christopher T.; Chao, Yi; Langlois, Gregg; Goodman, Jo; Siegel, David A.

    2011-02-01

    An apparent link between upwelling-related physical signatures, macronutrients, and toxic diatom blooms in the various “hotspots” throughout California has motivated attempts to forecast harmful algal blooms (HABs) as a function of select environmental variables. Empirical models for predicting toxic Pseudo-nitzschia blooms in one such region, the Santa Barbara Channel (SBC), are tested in a nowcast mode using predictions based on merging data from MODIS ocean color geophysical products and the Regional Ocean Modeling System (ROMS) applied to the Southern California Bight. Thresholds for each model generate event forecasts. Spatially-explicit, monthly HAB maps are compared to shipboard observations and California monitoring data, demonstrating that the models predict offshore events otherwise undetected by nearshore monitoring. The use of mechanistic hydrodynamic models in concert with empirical, biological models facilitates future process studies on the effects of coastal eutrophication and climate change on regional HAB dynamics.

  16. Modeling Mesoscale Eddies in the North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Chao, Yi

    1999-01-01

    Ocean modeling plays an important role in understanding the current climatic conditions and predicting the future climate change. Modeling the ocean at eddy-permitting and/or eddy resolving resolutions (1/3 degree or higher) has a two-fold objective. One part is to represent the ocean as realistically as possible, because mesoscale eddies have an impact on the large-scale circulation. The second objective is to learn how to represent effects of mesoscale eddies without explicitly resolving them. This is particularly important for climate models which cannot be run at eddy-resolving resolutions because of the computational constraints. At JPL, a 1/6 degree latitude by 1/6 degree longitude with 37 vertical levels Atlantic Ocean model has been developed. The model is based on the Parallel Ocean Program (POP) developed at Los Alamos National Laboratory (LANL). Using the 256-processor Cray T3D, we have conducted a 40-year integration of this Atlantic eddy-resolving ocean model. A regional analysis demonstrate that many observed features associated with the Caribbean Sea eddies can be realistically simulated by this model. Analysis of this Atlantic eddy-resolving ocean model further suggests that these Caribbean Sea eddies are connected with eddies formed outside the Caribbean Sea at the confluence of the North Brazil Current (NBC) and the North Equatorial Countercurrent. The diagram of the model simulated surface current shows that the Caribbean eddies ultimately originate in the NBC retroflection region, traveling more than a year from the North Brazil coast through the Lesser Antilles into the Caribbean Sea and eventually into the Gulf of Mexico. Additional information is contained in the original.

  17. The Impact of Ocean Tides on a Climate Model Simulation.

    NASA Astrophysics Data System (ADS)

    Mueller, M.; Haak, H.; Jungclaus, J.; Thomas, M.

    2008-12-01

    We explicitly include the forcing of ocean tides in a global ocean general circulation model (OGCM). The tidal forcing is deduced from lunisolar ephemerides according to the instantaneous positions of moon and sun. In this real-time approach we consider the complete lunisolar tides of second degree. The OGCM is part of a state-of-the-art climate model which was used for the fourth assessment report simulations of the Intergovernmental Panel on Climate Change (IPCC). An ensemble of five IPCC A1B climate scenarios covering the period 1860 to 2059 has been computed. The induced tidal currents affect the ocean circulation by nonlinear interaction and through vertical mixing. The latter is described in the model by a Richardson number dependent mixing term. Thus, mixing depends on the density stratification and the vertical velocity shear. In regions of high tidal velocities the vertical velocity shear is enhanced in the deepest layers induced by bottom friction. Our study focuses on the North Atlantic region, where the highest tidal velocities occur. There, the representation of the present state of the ocean is improved significantly. The tides adjust the pathway of the North Atlantic Current, which leads to improved sea surface temperatures of up to 3 degree in the North Atlantic. Further, the simulation of the deep convection in the Labrador Sea, one of the driving mechanisms of the meridional overturning circulation, becomes more realistic when forcing ocean tides. The modified oceanic dynamics in the North Atlantic have implications for the simulation of the European climate and for the future projection of the sea surface temperature of the North Atlantic. This study reveals that ocean tides are an important component in the simulation of ocean dynamics and are essential for an appropriate simulation of a changing ocean under climate warming conditions.

  18. Numerical simulation of Typhoon Muifa (2011) using a Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system

    NASA Astrophysics Data System (ADS)

    Liu, Na; Ling, Tiejun; Wang, Hui; Zhang, Yunfei; Gao, Zhiyi; Wang, Yi

    2015-04-01

    The newly developed Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System is applied to investigate typhoon-ocean interactions in this study. The COAWST modeling system represents the state-of-the-art numerical simulation technique comprising several coupled models to study coastal and environmental processes. The modeling system is applied to simulate Typhoon Muifa (2011), which strengthened from a tropical storm to a super typhoon in the Northwestern Pacific, to explore the heat fluxes exchanged among the processes simulated using the atmosphere model WRF, ocean model ROMS and wave model SWAN. These three models adopted the same horizontal grid. Three numerical experiments with different coupling configurations are performed in order to investigate the impact of typhoon-ocean interaction on the intensity and ocean response to typhoon. The simulated typhoon tracks and intensities agree with observations. Comparisons of the simulated variables with available atmospheric and oceanic observations show the good performance of using the coupled modeling system for simulating the ocean and atmosphere processes during a typhoon event. The fully coupled simulation that includes a ocean model identifies a decreased SST as a result of the typhoon-forced entrainment. Typhoon intensity and wind speed are reduced due to the decrease of the sea surface temperature when using a coupled ocean model. The experiments with ocean coupled to atmosphere also results in decreased sea surface heat flux and air temperature. The heat flux decreases by about 29% compared to the WRF only case. The reduction of the energy induced by SST decreases, resulting in weakening of the typhoon. Coupling of the waves to the atmosphere and ocean model induces a slight increase of SST in the typhoon center area with the ocean-atmosphere interaction increased as a result of wave feedback to atmosphere.

  19. Improved Upper Ocean/Sea Ice Modeling in the GISS GCM for Investigating Climate Change

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This project built on our previous results in which we highlighted the importance of sea ice in overall climate sensitivity by determining that for both warming and cooling climates, when sea ice was not allowed to change, climate sensitivity was reduced by 35-40%. We also modified the Goddard Institute for Space Studies (GISS) 8 deg x lO deg atmospheric General Circulation Model (GCM) to include an upper-ocean/sea-ice model involving the Semtner three-layer ice/snow thermodynamic model, the Price et al. (1986) ocean mixed layer model and a general upper ocean vertical advection/diffusion scheme for maintaining and fluxing properties across the pycnocline. This effort, in addition to improving the sea ice representation in the AGCM, revealed a number of sensitive components of the sea ice/ocean system. For example, the ability to flux heat through the ice/snow properly is critical in order to resolve the surface temperature properly, since small errors in this lead to unrestrained climate drift. The present project, summarized in this report, had as its objectives: (1) introducing a series of sea ice and ocean improvements aimed at overcoming remaining weaknesses in the GCM sea ice/ocean representation, and (2) performing a series of sensitivity experiments designed to evaluate the climate sensitivity of the revised model to both Antarctic and Arctic sea ice, determine the sensitivity of the climate response to initial ice distribution, and investigate the transient response to doubling CO2.

  20. A parallel Atmosphere-Ocean Global Circulation Model of intermediate complexity for Earth system climate research

    NASA Astrophysics Data System (ADS)

    Silva, T. A.; Schmittner, A.

    2007-12-01

    We present the evolution of an Earth System model of intermediate complexity featuring an ocean global circulation model to include a fully coupled 3D primitive equations atmospheric model. The original Earth System climate model, UVic ESCM (Weaver et al. 2001), uses an ocean global circulation model coupled to a one layer atmospheric energy-moisture balance model. It also comprises a viscous-plastic rheology sea ice model, a mechanical land ice model, land surface, oceanic and terrestrial carbon models and a simple 3D marine ecosystem model (Schmittner et al. 2005). A spectral atmospheric, model, PUMA (Fraedrich et al. 2005), was coupled to the UVic ESCM to provide an atmosphere with nonlinear dynamics in target resolutions of T21, T31 and T42, as required. The coupling with the atmosphere, which involves data transfer, preprocessing and interpolation, is done through the OASIS3 coupler. During a run there are 2 + 2N parallel processes: the UVic ESCM, the Oasis3 coupler and the PUMA model with its domain split across 2N processes. The choice of N allows to balance more or less complex configurations of UVic model (e.g. higher level marine ecosystem model or number of biogeochemical tracers) with the atmospheric model at different resolutions, in order to maintain computational efficiency. The relatively simple parameterizations make this new atmosphere-ocean global circulation model much faster than a state-of-the-art Atmosphere-Ocean Global Circulation Model, and so optimally geared for decadal to millennial scale integrations. The latter require special care with the conservation of fluxes during coupling. A second order conservative interpolation method was applied (Jones 1999) and this is compared with the use of typical non-conservative methods.

  1. Global Earth Response to Loading by Ocean Tide Models

    NASA Technical Reports Server (NTRS)

    Estes, R. H.; Strayer, J. M.

    1979-01-01

    Mathematical and programming techniques to numerically calculate Earth response to global semidiurnal and diurnal ocean tide models were developed. Global vertical crustal deformations were evaluated for M sub 2, S sub 2, N sub 2, K sub 2, K sub 1, O sub 1, and P sub 1 ocean tide loading, while horizontal deformations were evaluated for the M sub 2 tidal load. Tidal gravity calculations were performed for M sub 2 tidal loads, and strain tensor elements were evaluated for M sub 2 loads. The M sub 2 solution used for the ocean tide included the effects of self-gravitation and crustal loading.

  2. Dynamical models of happiness with fractional order

    NASA Astrophysics Data System (ADS)

    Song, Lei; Xu, Shiyun; Yang, Jianying

    2010-03-01

    This present study focuses on a dynamical model of happiness described through fractional-order differential equations. By categorizing people of different personality and different impact factor of memory (IFM) with different set of model parameters, it is demonstrated via numerical simulations that such fractional-order models could exhibit various behaviors with and without external circumstance. Moreover, control and synchronization problems of this model are discussed, which correspond to the control of emotion as well as emotion synchronization in real life. This study is an endeavor to combine the psychological knowledge with control problems and system theories, and some implications for psychotherapy as well as hints of a personal approach to life are both proposed.

  3. Feature-oriented regional modeling of oceanic fronts

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Avijit; Robinson, Allan R.

    2002-11-01

    This paper outlines some important aspects of modeling oceanic fronts in the context of feature-oriented regional modeling for the deep sea and the Global Coastal Ocean. Previously developed forms of feature models for different types of fronts are presented in a generalized approach. The large-scale meandering frontal systems such as the Gulf Stream, Kuroshio and Brazil current can be represented by velocity-based feature models. Buoyancy forced coastal water mass fronts, such as the coastal currents, the tidal fronts, plume fronts, dense water fronts and inflow/outflow fronts can be represented by a generalized parameterized water mass feature model. The interface region of the deep ocean and the coastal region can be modeled by a melding of two water masses along and across a prescribed isobath in the form of a shelf-break front. Initialization and/or updating fields for a regional dynamical model can then be established in association with other available synoptic data sets via a feature-oriented strategic sampling approach for forecasting and dynamical balances. Example simulations from the western north Atlantic (WNA) and the strait of Sicily region are presented in support of the applicability of this approach for the Global Coastal Ocean. Simulations in the strait of Sicily region with fronts, eddies and background climatology help provide a perspective on dynamical processes in this region. Application of this methodology for rapid assessment of any regional ocean, based on limited data and resources is now possible.

  4. Modelling of Ocean Induced Magnetic Signals in Swarm Satellite Data

    NASA Astrophysics Data System (ADS)

    Einspigel, D.; Velimsky, J.; Martinec, Z.; Sachl, L.

    2015-12-01

    It is well known that the motion of sea water in the Earth's main magnetic field induces the secondary magnetic field which can be measured by satellite, land-based or sea surface magnetic measurements, despite being rather weak, reaching intensities of up to a few nT. We focus on the extraction of ocean induced signals from Swarm satellite data and their interpretation by a comparison with synthetic signals. Results of our modeling and data processing efforts will be presented. We use two ocean circulation models: 1) DEBOT, a barotropic model of ocean tide flow and 2) LSOMG, a baroclinic model of global ocean circulation; and two different approaches for modelling the secondary magnetic field: 1) a single-layer approximation model and 2) a three-dimensional time-domain electromagnetic induction model. Swarm data are analyzed along night-time tracks of the satellites. Only a small amount of the data can be used for the analysis of ocean-induced signals because of permanently present strong signals from the magnetosphere and disruptive effects of polar electrojets. Nevertheless, the extracted signals from selected Swarm data tracks show a relatively good coincidence with predicted signals.

  5. Stochastic Ocean Eddy Perturbations in a Coupled General Circulation Model.

    NASA Astrophysics Data System (ADS)

    Howe, N.; Williams, P. D.; Gregory, J. M.; Smith, R. S.

    2014-12-01

    High-resolution ocean models, which are eddy permitting and resolving, require large computing resources to produce centuries worth of data. Also, some previous studies have suggested that increasing resolution does not necessarily solve the problem of unresolved scales, because it simply introduces a new set of unresolved scales. Applying stochastic parameterisations to ocean models is one solution that is expected to improve the representation of small-scale (eddy) effects without increasing run-time. Stochastic parameterisation has been shown to have an impact in atmosphere-only models and idealised ocean models, but has not previously been studied in ocean general circulation models. Here we apply simple stochastic perturbations to the ocean temperature and salinity tendencies in the low-resolution coupled climate model, FAMOUS. The stochastic perturbations are implemented according to T(t) = T(t-1) + (∆T(t) + ξ(t)), where T is temperature or salinity, ΔT is the corresponding deterministic increment in one time step, and ξ(t) is Gaussian noise. We use high-resolution HiGEM data coarse-grained to the FAMOUS grid to provide information about the magnitude and spatio-temporal correlation structure of the noise to be added to the lower resolution model. Here we present results of adding white and red noise, showing the impacts of an additive stochastic perturbation on mean climate state and variability in an AOGCM.

  6. Propagation of signals in basin-scale ocean bottom pressure from a barotropic model

    NASA Astrophysics Data System (ADS)

    Stepanov, Vladimir N.; Hughes, Chris W.

    2006-12-01

    The exchange of atmospheric plus oceanic mass between ocean basins is investigated using a global barotropic ocean model. We find two particular cases of exchange between two basins. At periods of 4-6 days, the exchange is between the Atlantic and Pacific basins, and represents a known oscillation forced by atmospheric pressure. This mode represents a failure of the inverse-barometer relationship due to the large scale and high frequency of atmospheric forcing, and the presence of continents. Significant exchange between Atlantic and Pacific also occurs at longer periods. The second case is most prominent at periods longer than 30 days (strongest at periods longer than 100 days), and represents a mass exchange between the Southern Ocean and the Pacific. The Southern Ocean part of this exchange is clearly related to the Southern Mode of fluctuations in Antarctic circumpolar transport, forced by Southern Ocean wind stress. The reason for the exchange being with the Pacific rather than other basins is explored, and is found to be related to the balance of wind stress by form stress in Drake Passage: exchange with the Atlantic and Indian oceans becomes dominant if Drake Passage topography is removed. While recognizing the limitations of a barotropic model, we contend that it is necessary to understand the barotropic adjustment process in order to make sense of longer timescale processes. Accordingly, we end with speculation on the possible importance of the barotropic results for global sea level and tropical dynamics.

  7. Assimilation in regional ice-ocean models and assessment metrics

    NASA Astrophysics Data System (ADS)

    Bertino, L.; Liseter, K. A.; Counillon, F.; Keghouche, I.

    2008-12-01

    The sea-ice retreats at a spectacular rate from the Arctic, opening the NE and NW sea routes and opening as well new perspectives for the exploitation of fossil fuel resources on the Arctic Shelves. The more offshore activity will populate the Arctic the more challenging will be the preservation of its fragile ecosystem and important fish stocks. Thus adequate ocean monitoring and forecasting tools are required to follow the development of the Arctic regions. The Arctic Ocean, where the Rossby radius takes values as low as 1 km, is a difficult ocean to monitor, requiring high resolution models. In addition, the complex non-linear ice-ocean coupling poses a non- Gaussian problem for assimilation of sea-ice and ocean observations. Even more issues have to be considered when nesting data assimilative models between themselves, to keep the outer and inner models consistent. The TOPAZ monitoring and forecasting system has been developed using nested versions of the Hybrid Coordinate Ocean Model (HYCOM) and runs the Ensemble Kalman Filter (EnKF) with a hundred members. The system has been run in real-time since 2003, delivering data on an open-access OPeNDAP server. The EnKF offers a general framework for assimilating data from different sources with multivariate updates. The system is validated using the metrics defined for the Mersea projects, as European contributions to GODAE. The TOPAZ system delivers boundary conditions to a number of nested high-resolution models. The presentation will go through the assessment of the TOPAZ system and show some applications of local nested models, not necessarily in the Arctic: the Loop Current forecasting in the Gulf of Mexico, the iceberg modelling in the Barents Sea and the monitoring of heat fluxes in the Fram Strait in support of the Damocles IPY project. The TOPAZ system is now exploited operationally at the Norwegian Meteorological institute and NERSC will continue its developments and production during the MyOcean European

  8. Preliminary testing of turbulence and radionuclide transport modeling in deep ocean environment

    SciTech Connect

    Onishi, Y.; Dummuller, D.C.; Trent, D.S.; Washington State Univ., Pullman, WA; Pacific Northwest Lab., Richland, WA )

    1989-03-01

    Pacific Northwest Laboratory (PNL) performed a study for the US Environmental Protection Agency's Office of Radiation Programs to (1) identify candidate models for regional modeling of low-level waste ocean disposal sites in the mid-Atlantic ocean; (2) evaluate mathematical representation of the model's eddy viscosity/dispersion coefficients; and (3) evaluate the adequacy of the k-{epsilon} turbulence model and the feasibility of one of the candidate models, TEMPEST{copyright}/FLESCOT{copyright}, to deep-ocean applications on a preliminary basis. PNL identified the TEMPEST{copyright}/FLESCOT{copyright}, FLOWER, Blumberg's, and RMA 10 models as appropriate candidates for the regional radionuclide modeling. Among these models, TEMPEST/FLESCOT is currently the only model that solves distributions of flow, turbulence (with the k-{epsilon} model), salinity, water temperature, sediment, dissolved contaminants, and sediment-sorbed contaminants. Solving the Navier-Stokes equations using higher order correlations is not practical for regional modeling because of the prohibitive computational requirements; therefore, the turbulence modeling is a more practical approach. PNL applied the three-dimensional code, TEMPEST{copyright}/FLESCOT{copyright} with the k-{epsilon} model, to a very simple, hypothetical, two-dimensional, deep-ocean case, producing at least qualitatively appropriate results. However, more detailed testing should be performed for the further testing of the code. 46 refs., 39 figs., 6 tabs.

  9. Improved Upper Ocean/Sea Ice Modeling in the GISS GCM for Investigating Climate Change

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This project built on our previous results in which we highlighted the importance of sea ice in overall climate sensitivity by determining that for both warming and cooling climates, when sea ice was not allowed to change, climate sensitivity was reduced by 35-40%. We also modified the GISS 8 deg x lO deg atmospheric GCM to include an upper-ocean/sea-ice model involving the Semtner three-layer ice/snow thermodynamic model, the Price et al. (1986) ocean mixed layer model and a general upper ocean vertical advection/diffusion scheme for maintaining and fluxing properties across the pycnocline. This effort, in addition to improving the sea ice representation in the AGCM, revealed a number of sensitive components of the sea ice/ocean system. For example, the ability to flux heat through the ice/snow properly is critical in order to resolve the surface temperature properly, since small errors in this lead to unrestrained climate drift. The present project, summarized in this report, had as its objectives: (1) introducing a series of sea ice and ocean improvements aimed at overcoming remaining weaknesses in the GCM sea ice/ocean representation, and (2) performing a series of sensitivity experiments designed to evaluate the climate sensitivity of the revised model to both Antarctic and Arctic sea ice, determine the sensitivity of the climate response to initial ice distribution, and investigate the transient response to doubling CO2.

  10. Parallel Computation of the Regional Ocean Modeling System (ROMS)

    SciTech Connect

    Wang, P; Song, Y T; Chao, Y; Zhang, H

    2005-04-05

    The Regional Ocean Modeling System (ROMS) is a regional ocean general circulation modeling system solving the free surface, hydrostatic, primitive equations over varying topography. It is free software distributed world-wide for studying both complex coastal ocean problems and the basin-to-global scale ocean circulation. The original ROMS code could only be run on shared-memory systems. With the increasing need to simulate larger model domains with finer resolutions and on a variety of computer platforms, there is a need in the ocean-modeling community to have a ROMS code that can be run on any parallel computer ranging from 10 to hundreds of processors. Recently, we have explored parallelization for ROMS using the MPI programming model. In this paper, an efficient parallelization strategy for such a large-scale scientific software package, based on an existing shared-memory computing model, is presented. In addition, scientific applications and data-performance issues on a couple of SGI systems, including Columbia, the world's third-fastest supercomputer, are discussed.

  11. First-order aggregation models with alignment

    NASA Astrophysics Data System (ADS)

    Fetecau, Razvan C.; Sun, Weiran; Tan, Changhui

    2016-06-01

    We include alignment interactions in a well-studied first-order attractive-repulsive macroscopic model for aggregation. The distinctive feature of the extended model is that the equation that specifies the velocity in terms of the population density, becomes implicit, and can have non-unique solutions. We investigate the well-posedness of the model and show rigorously how it can be obtained as a macroscopic limit of a second-order kinetic equation. We work within the space of probability measures with compact support and use mass transportation ideas and the characteristic method as essential tools in the analysis. A discretization procedure that parallels the analysis is formulated and implemented numerically in one and two dimensions.

  12. A world ocean model for greenhouse sensitivity studies: resolution intercomparison and the role of diagnostic forcing

    NASA Astrophysics Data System (ADS)

    Washington, Warren M.; Meehl, Gerald A.; Verplank, Lynda; Bettge, Thomas W.

    1994-05-01

    We have developed an improved version of a world ocean model with the intention of coupling to an atmospheric model. This article documents the simulation capability of this 1° global ocean model, shows improvements over our earlier 5° version, and compares it to features simulated with a 0.5° model. These experiments use a model spin-up methodology whereby the ocean model can subsequently be coupled to an atmospheric model and used for order 100-year coupled model integrations. With present-day computers, 1° is a reasonable compromise in resolution that allows for century-long coupled experiments. The 1° ocean model is derived from a 0.5°-resolution model developed by A. Semtner (Naval Postgraduate School) and R. Chervin (National Center for Atmospheric Research) for studies of the global eddy-resolving world ocean circulation. The 0.5° bottom topography and continental outlines have been altered to be compatible with the 1° resolution, and the Arctic Ocean has been added. We describe the ocean simulation characteristics of the 1° version and compare the result of weakly constraining (three-year time scale) the three-dimensional temperature and salinity fields to the observations below the thermocline (710 m) with the model forced only at the top of the ocean by observed annual mean wind stress, temperature, and salinity. The 1° simulations indicate that major ocean circulation patterns are greatly improved compared to the 5° version and are qualitatively reproduced in comparison to the 0.5° version. Using the annual mean top forcing alone in a 100-year simulation with the 1° version preserves the general features of the major observed temperature and salinity structure with most climate drift occurring mainly beneath the thermocline in the first 50 75 years. Because the thermohaline circulation in the 1° version is relatively weak with annual mean forcing, we demonstrate the importance of the seasonal cycle by performing two sensitivity experiments

  13. Reduced order models for nonlinear aerodynamics

    NASA Technical Reports Server (NTRS)

    Mahajan, Aparajit J.; Dowell, Earl H.; Bliss, Donald B.

    1988-01-01

    Reduced order models are needed for reliable, efficient and accurate prediction of aerodynamic forces to analyze fluid structure interaction problems in turbomachinery, including propfans. Here, a finite difference, time marching Navier-Stokes code is validated for unsteady airfoil motion by comparing results with those from classical potential flow. The Navier-Stokes code is then analyzed for calculation of primitive and exact estimates of eigenvalues and eigenvectors associated with fluid-airfoil interaction. A variational formulation for the Euler equations and Navier-Stokes equations will be the basis for reduction of order through an eigenvector transformation.

  14. Modelling the seasonal cycle of dissolved oxygen in the upper ocean at ocean weather station P

    NASA Astrophysics Data System (ADS)

    Thomas, F.; Garcon, V.; Minster, J.-F.

    1990-03-01

    Three main processes regulate the variations of dissolved O 2 concentrations in the surface waters: gas exchange at the air-sea interface, vertical mixing and biological activity of marine organisms. A one-dimensional integral mixed layer model ( GASPAR, 1988) is used to study the temporal evolution of monthly averaged dissolved O 2 content of surface waters at Ocean Weather Station P, and to assess the relative importance of the various contributing mechanisms during 1969-1972. Production and consumption due to biological activity are taken into account as an input function of the model. A large part of the seasonal signal of dissolved O 2 in surface waters can be reproduced by the physical model without biological activity. However, kinetics of gas exchange, biological production and entrainment of sub-mixed layer water all contribute by the same order of magnitude to supersaturation during warming periods and undersaturation during cooling periods. Various shapes (over depth and time) of production-consumption function have been tested for the year 1970. Most of the evolution of monthly average dissolved O 2 in the surface waters can be obtained (1) with a total annual production rate of the order of 5 mol O 2 m -2 y -1, (2) with a constant production throughout the year and in the 0-50 m layer, and (3) with logarithmic decrease in consumption between 50 and 300 m. The relative influence of various parameters on the three processes supplying O 2 to the surface waters is investigated. Total annual production P seems to be the most influential. Vertical mixing and depth of photic zone, z 0, affect the gas exchange flux during the cooling season. Episodic events, like storms, modify the supersaturation of the mixed layer O 2 content by up to 4 mmol m -3, but gas exchange later draws back this content towards a smooth evolution curve. Finally, the sensitivity of the net annual gas exchange to various parameters is too large for the model to provide a reliable value.

  15. (CO sub 2 uptake in an Ocean Circulation Model)

    SciTech Connect

    Siegenthaler, U.C.

    1990-11-06

    The traveler collaborated with Drs. J. L. Sarmiento and J. C. Orr of the Program in Atmospheric Sciences at Princeton University to finish the article A Perturbation Simulation of CO{sub 2} Uptake in an Ocean Circulation Model,'' which has been submitted to the Journal of Geophysical Research for publication. With F. Joos, a graduate student from the University of Bern, the traveler started writing a journal article describing a box model of the global carbon cycle that is an extension of the one-dimensional box-diffusion model. The traveler further collaborated with F. Joos and Dr. J. L. Sarmiento on modeling the potential enhancement of oceanic CO{sub 2} uptake by fertilizing the southern ocean with iron. A letter describing the results is currently being written for the journal Nature.

  16. A Coupled Atmosphere-Ocean-Wave Modeling System

    NASA Astrophysics Data System (ADS)

    Allard, R. A.; Smith, T.; Rogers, W. E.; Jensen, T. G.; Chu, P.; Campbell, T. J.

    2012-12-01

    A growing interest in the impacts that large and small scale ocean and atmospheric events (El Niño, hurricanes, etc.) have on weather forecasting has led to the coupling of atmospheric, ocean circulation and ocean wave models. The Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS™ ) consists of the Navy's atmospheric model coupled to the Navy Coastal Ocean Model (NCOM) and the wave models SWAN (Simulating WAves Nearshore) and WAVEWATCH III (WW3™). In a fully coupled mode, COAMPS, NCOM, and SWAN (or WW3) may be integrated concurrently so that currents and water levels, wave-induced stress, bottom drag, Stokes drift current, precipitation, and surface fluxes of heat, moisture, and momentum are exchanged across the air-wave-sea interface. This coupling is facilitated through the Earth System Modeling Framework (ESMF). The ESMF version of COAMPS is being transitioned to operational production centers at the Naval Oceanographic Office and the Fleet Numerical Meteorology and Oceanography Center. Highlights from validation studies for the Florida Straits, Hurricane Ivan and the Adriatic Sea will be presented. COAMPS® is a registered trademark of the Naval Research Laboratory.

  17. Interannual variability of CFC-11 absorption by the ocean: an offline model study

    NASA Astrophysics Data System (ADS)

    Valsala, Vinu; Alsibai, Hayyan M.; Ikeda, Motoyoshi; Maksyutov, Shamil

    2011-04-01

    The global ocean Chlorofluorocarbon (CFC-11) was simulated in an offline model driven by re-analysis ocean currents in order to identify the mechanisms of interannual to interdecadal variability of air-sea CFC fluxes. The model was forced with the observed anthropogenic perturbations of atmospheric CFC-11 from the post industrial period (1938) following the OCMIP-II flux protocols along with the observed winds from 1960 to 1999 in the formulation of surface gas exchanges. The model ocean CFC-11 inventories, at the end of 1990s, accounted approximately 1% of the total atmospheric CFC-11, which is consistent with the corresponding observations. The mid-to-high latitude oceans were venue for strong (weak) oceanic sinks (sources) of CFC-11 during the winter (summer) months. The Southern Ocean (south of 40°S) and the North Atlantic (north of 35°N) provided two largest sinks of CFC-11, through which 31.4 and 14.6% of the global ocean CFC-11 entered, respectively. The eastern tropical Pacific Ocean exhibited large interannual variability of CFC-11 flux with a strong (weak) sink during La Niña (El Niño) years and represented 36% of the global CFC-11 flux variability. The North Atlantic and Southern Ocean were found as regions of large sink efficiency: a capacity to sink more CFC than outsource, although it reduced by 80 and 70%, respectively, in the last 40 years compared to 1960. The sink to source ratio of global ocean CFC-11 fluxes were reduced from 90 to 50% in the last 40 years. This indicates a saturation of CFC in the above-thermocline subsurface that makes the upper ocean less efficient in absorbing CFC in recent decades. A positive trend in CFC sink is now limited to the Southern Ocean, central tropical Pacific and western boundary current regions which possess active upwelling of old water with long time since last atmospheric contact. However, a globally averaged trend was a reduced CFC-11 sink, by emitting 30% of the total ocean CFC-11 that was absorbed

  18. Shipborne LF-VLF oceanic lightning observations and modeling

    NASA Astrophysics Data System (ADS)

    Zoghzoghy, F. G.; Cohen, M. B.; Said, R. K.; Lehtinen, N. G.; Inan, U. S.

    2015-10-01

    Approximately 90% of natural lightning occurs over land, but recent observations, using Global Lightning Detection (GLD360) geolocation peak current estimates and satellite optical data, suggested that cloud-to-ground flashes are on average stronger over the ocean. We present initial statistics from a novel experiment using a Low Frequency (LF) magnetic field receiver system installed aboard the National Oceanic Atmospheric Agency (NOAA) Ronald W. Brown research vessel that allowed the detection of impulsive radio emissions from deep-oceanic discharges at short distances. Thousands of LF waveforms were recorded, facilitating the comparison of oceanic waveforms to their land counterparts. A computationally efficient electromagnetic radiation model that accounts for propagation over lossy and curved ground is constructed and compared with previously published models. We include the effects of Earth curvature on LF ground wave propagation and quantify the effects of channel-base current risetime, channel-base current falltime, and return stroke speed on the radiated LF waveforms observed at a given distance. We compare simulation results to data and conclude that previously reported larger GLD360 peak current estimates over the ocean are unlikely to fully result from differences in channel-base current risetime, falltime, or return stroke speed between ocean and land flashes.

  19. A New Model of the Oceanic Evaporation Duct.

    NASA Astrophysics Data System (ADS)

    Babin, Steven M.; Young, George S.; Carton, James A.

    1997-03-01

    Failure to consider anomalous propagation of microwave radiation in the troposphere may result in erroneous meteorological radar measurements. The most commonly occurring anomalous propagation phenomenon over the ocean is the evaporation duct. The height of this duct is dependent on atmospheric variables and is a major input to microwave propagation prediction models. This evaporation duct height is determined from an evaporation duct model using bulk measurements. Two current evaporation duct models in widespread operational use are examined. We propose and test a new model that addresses deficiencies in these two models. The new model uses recently refined bulk similarity expressions developed for the determination of the ocean surface energy budget in the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment. Comparison of these models is made using data collected from a boat off Wallops Island, Virginia, during a range of seasons and weather conditions and from the tidal Potomac River during June and August. Independent evaporation duct height determinations are made using profile measurements from the same boat and are corroborated with fade measurements made with a nearby microwave link whenever possible. The proposed model performs better than the other (operational) models for the cases examined and has advantages of internal consistency.

  20. Validation of ocean tide models around Antarctica using onshore GPS and gravity data

    NASA Astrophysics Data System (ADS)

    King, M. A.; Penna, N. T.; Clarke, P. J.; Thomas, I.

    2005-12-01

    Ocean tide modeling errors, along with subsequent ocean tide loading (OTL) displacement modeling errors, alias into altimetry and time variable gravity (e.g., GRACE) time series. Present ocean tide models around Antarctica are shown to disagree by up to several decimeters per constituent, especially in the large ice shelf regions, and are presently only sparsely tested against independent data. In terms of modeled OTL displacements, the inter-model disagreements are of the order of a few millimeters or less per constituent and hence high quality geodetic measurements are able to rank relative model accuracy. To achieve this for the circum-Antarctic seas, GPS data from fifteen sites have been used to derive three-dimensional displacement estimates at eight diurnal and semidiurnal tidal frequencies. These are then compared with OTL displacement estimates derived from global and regional ocean tide models. Modeled tidal gravity variations are also compared with gravity measurements at the South Pole. In East Antarctica, where the tides are well-defined, sub-millimeter differences are demonstrated in each coordinate component with the lunar N2 and Q1 constituents in closest agreement. In West Antarctica, where sites are nearer the largest ice shelves, agreement with the older models (CSR3 and TPXO.2) and NAO.99b is poor for all constituents. Overall the GPS and gravity data agree best with newer tide models, such as TPXO.6.2, but further data are required to validate the models at the most remote locations.

  1. The Effect of Atmosphere-Ocean-Wave Interactions and Model Resolution on Hurricane Katrina in a Coupled Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Patricola, C. M.; Chang, P.; Saravanan, R.; Montuoro, R.

    2012-04-01

    The sensitivity of simulated strength, track, and structure of Hurricane Katrina to atmospheric model resolution, cumulus parameterization, and initialization time, as well as mesoscale ocean-atmosphere interactions with and without small-scale ocean-wave effect, are investigated with a fully coupled regional climate model. The atmosphere, ocean, and wave components are represented by the Weather Research and Forecasting Model (WRF), Regional Ocean Modeling System (ROMS), and Simulating WAves Nearshore (SWAN) model. Uncoupled atmosphere-only simulations with horizontal resolutions of 1, 3, 9, and 27 km show that while the simulated cyclone track is highly sensitive to initialization time, its dependence on model resolution is relatively weak. Using NCEP/CFSR reanalysis as initial and boundary conditions, WRF, even at low resolution, is able to track Katrina accurately for 3 days before it made landfall on August 29, 2005. Katrina's strength, however, is much more difficult to reproduce and exhibits a strong dependence on model resolution. At its lowest resolution (27 km), WRF is only capable of simulating a maximum strength of Category 2 storm. Even at 1 km resolution, the simulated Katrina only reaches Category 4 storm intensity. Further WRF experiments with and without cumulus parameterization reveal minor changes in strength. None of the WRF-only simulations capture the observed rapid intensification of Katrina to Category 5 when it passed over a warm Loop-Current eddy (LCE) in the Gulf of Mexico, suggesting that mesoscale ocean-atmosphere interactions involving LCEs may play a crucial role in Katrina's rapid intensification. Coupled atmosphere-ocean simulations are designed and carried out to investigate hurricane Katrina-LCE interactions with and without considering small-scale ocean wave processes in order to fully understand the dynamical ocean-atmosphere processes in the observed rapid cyclone intensification.

  2. Modeling the coupled ocean-katabatic wind systems of the Antarctic

    SciTech Connect

    McNider, R.T.; Goodrick, S.L.

    1994-12-31

    The wind stress distribution along the periphery of the antarctic continent is like no other place on Earth. A large easterly component near the coast is evidently attributable to the geostrophic adjustment of the katabatic winds driven by the cold antarctic plateau. The large curl between these topographically driven easterlies and the strong Southern Hemispheric westerlies may have a significant role in the upwelling and associated biological productivity of the southern oceans. The direct downslope databatic flows and their alongshore adjustment may have also have significance to polynya development, bottom-water formation, and the maintenance of the coastal currents including the East Wind Drift. This paper reports on preliminary model studies of the coupling between antarctic katabatic flows and the coastal ocean. Although considerable past work in coupling large-scale and low-order ocean/atmosphere models has been done, relatively less work on coupling true mesoscale multidimensional models containing high-resolution boundary layers has been under taken. The following describes a coupled atmosphere/ocean model which has been developed by McNider from the frameworks of a mesoscale atmospheric model and a coastal ocean model. 9 refs., 3 figs.

  3. Seasonal heat and freshwater cycles in the Arctic Ocean in CMIP5 coupled models

    NASA Astrophysics Data System (ADS)

    Ding, Yanni; Carton, James A.; Chepurin, Gennady A.; Steele, Michael; Hakkinen, Sirpa

    2016-04-01

    This study examines the processes governing the seasonal response of the Arctic Ocean and sea ice to surface forcings as they appear in historical simulations of 14 Coupled Model Intercomparison Project Phase 5 coupled climate models. In both models and observations, the seasonal heat budget is dominated by a local balance between net surface heating and storage in the heat content of the ocean and in melting/freezing of sea ice. Observations suggest ocean heat storage is more important than sea ice melt, while in most of these models, sea ice melt dominates. Seasonal horizontal heat flux divergence driven by the seasonal cycle of volume transport is only important locally. In models and observations, the dominant terms in the basin-average seasonal freshwater budget are the storages of freshwater between the ocean and sea ice, and the exchange between the two. The largest external source term is continental discharge in early summer, which is an order of magnitude smaller. The appearance of sea ice (extent and volume) and also ocean stratification in both the heat and freshwater budgets provides two links between the budgets and provides two mechanisms for feedback. One consequence of such an interaction is the fact that models with strong/weak seasonal surface heating also have strong/weak seasonal haline and temperature stratification.

  4. An analytical model of the free H2 produced by serpentinization within oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Worman, S. L.; Pratson, L.; Darrah, T. H.; Karson, J. A.; Klein, E. M.

    2014-12-01

    The free H2 produced by serpentinization within oceanic lithosphere figures prominently in theories regarding (1) the origin and early evolution of life of earth, (2) the basal fuel-source sustaining the sub-seafloor biosphere, (3) the formation of abiogenic hydrocarbons as well as (4) native metal alloys, (5) the geochemical cycles of various elements, and (5) the future use of H2 as a substitute for fossil fuels. Here we present an analytical model that ties H2 production to seafloor spreading rates and the cooling of oceanic lithosphere. If the assumptions underpinning our simplistic model are largely correct, we estimate that global H2 production by the serpentinization of peridoitite within oceanic-lithosphere may be as large as ~9.7x1012 moles H2/year, which is within one or two orders of magnitude of any previous estimates. The model, however, also predicts where globally H2 production should be greatest as well as how far from the axis of a mid-oceanic ridge H2 production should remain significant. We could not rigorously test our model due to sparse and varied measurements of H2 globally however the model suggests a number of systematic relationships and testable predications for future field-based studies. To demonstrate the potential validity and implications our results, we evaluate where all the free-H2 predicted by the model may go given the limited amount known about the H2 budget within the oceans.

  5. Multiresolution in CROCO (Coastal and Regional Ocean Community model)

    NASA Astrophysics Data System (ADS)

    Debreu, Laurent; Auclair, Francis; Benshila, Rachid; Capet, Xavier; Dumas, Franck; Julien, Swen; Marchesiello, Patrick

    2016-04-01

    CROCO (Coastal and Regional Ocean Community model [1]) is a new oceanic modeling system built upon ROMS_AGRIF and the non-hydrostatic kernel of SNH, gradually including algorithms from MARS3D (sediments)and HYCOM (vertical coordinates). An important objective of CROCO is to provide the possibility of running truly multiresolution simulations. Our previous work on structured mesh refinement [2] allowed us to run two-way nesting with the following major features: conservation, spatial and temporal refinement, coupling at the barotropic level. In this presentation, we will expose the current developments in CROCO towards multiresolution simulations: connection between neighboring grids at the same level of resolution and load balancing on parallel computers. Results of preliminary experiments will be given both on an idealized test case and on a realistic simulation of the Bay of Biscay with high resolution along the coast. References: [1] : CROCO : http://www.croco-ocean.org [2] : Debreu, L., P. Marchesiello, P. Penven, and G. Cambon, 2012: Two-way nesting in split-explicit ocean models: algorithms, implementation and validation. Ocean Modelling, 49-50, 1-21.

  6. The ocean quasi-homogeneous layer model and global cycle of carbon dioxide in system of atmosphere-ocean

    NASA Astrophysics Data System (ADS)

    Glushkov, Alexander; Glushkov, Alexander; Loboda, Nataliya; Khokhlov, Valery; Serbov, Nikoly; Svinarenko, Andrey

    The purpose of this paper is carrying out the detailed model of the CO2 global turnover in system of "atmosphere-ocean" with using the ocean quasi-homogeneous layer model. Practically all carried out models are functioning in the average annual regime and accounting for the carbon distribution in bio-sphere in most general form (Glushkov et al, 2003). We construct a modified model for cycle of the carbon dioxide, which allows to reproduce a season dynamics of carbon turnover in ocean with account of zone ocean structure (up quasi-homogeneous layer, thermocline and deepest layer). It is taken into account dependence of the CO2 transfer through the bounder between atmosphere and ocean upon temperature of water and air, wind velocity, buffer mechanism of the CO2 dissolution. The same program is realized for atmosphere part of whole system. It is obtained a tempo-ral and space distribution for concentration of non-organic carbon in ocean, partial press of dissolute CO2 and value of exchange on the border between atmosphere and ocean. It is estimated a role of the wind intermixing of the up ocean layer. The increasing of this effect leads to increasing the plankton mass and further particles, which are transferred by wind, contribute to more quick immersion of microscopic shells and organic material. It is fulfilled investigation of sen-sibility of the master differential equations system solutions from the model parameters. The master differential equa-tions system, describing a dynamics of the CO2 cycle, is numerically integrated by the four order Runge-Cutt method under given initial values of valuables till output of solution on periodic regime. At first it is indicated on possible real-zation of the chaos scenario in system. On our data, the difference of the average annual values for the non-organic car-bon concentration in the up quasi-homogeneous layer between equator and extreme southern zone is 0.15 mol/m3, be-tween the equator and extreme northern zone is 0

  7. Hybrid reduced order modeling for assembly calculations

    SciTech Connect

    Bang, Youngsuk; Abdel-Khalik, Hany S.; Jessee, Matthew A.; Mertyurek, Ugur

    2015-08-14

    While the accuracy of assembly calculations has greatly improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the use of the reduced order modeling for a single physics code, such as a radiation transport calculation. This paper extends those works to coupled code systems as currently employed in assembly calculations. Finally, numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system.

  8. Hybrid reduced order modeling for assembly calculations

    SciTech Connect

    Bang, Y.; Abdel-Khalik, H. S.; Jessee, M. A.; Mertyurek, U.

    2013-07-01

    While the accuracy of assembly calculations has considerably improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the use of the reduced order modeling for a single physics code, such as a radiation transport calculation. This manuscript extends those works to coupled code systems as currently employed in assembly calculations. Numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system. (authors)

  9. Hybrid reduced order modeling for assembly calculations

    DOE PAGESBeta

    Bang, Youngsuk; Abdel-Khalik, Hany S.; Jessee, Matthew A.; Mertyurek, Ugur

    2015-08-14

    While the accuracy of assembly calculations has greatly improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the usemore » of the reduced order modeling for a single physics code, such as a radiation transport calculation. This paper extends those works to coupled code systems as currently employed in assembly calculations. Finally, numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system.« less

  10. Reduced order modeling of wall turbulence

    NASA Astrophysics Data System (ADS)

    Moin, Parviz

    2015-11-01

    Modeling turbulent flow near a wall is a pacing item in computational fluid dynamics for aerospace applications and geophysical flows. Gradual progress has been made in statistical modeling of near wall turbulence using the Reynolds averaged equations of motion, an area of research where John Lumley has made numerous seminal contributions. More recently, Lumley and co-workers pioneered dynamical systems modeling of near wall turbulence, and demonstrated that the experimentally observed turbulence dynamics can be predicted using low dimensional dynamical systems. The discovery of minimal flow unit provides further evidence that the near wall turbulence is amenable to reduced order modeling. The underlying rationale for potential success in using low dimensional dynamical systems theory is based on the fact that the Reynolds number is low in close proximity to the wall. Presumably for the same reason, low dimensional models are expected to be successful in modeling of the laminar/turbulence transition region. This has been shown recently using dynamic mode decomposition. Furthermore, it is shown that the near wall flow structure and statistics in the late and non-linear transition region is strikingly similar to that in higher Reynolds number fully developed turbulence. In this presentation, I will argue that the accumulated evidence suggests that wall modeling for LES using low dimensional dynamical systems is a profitable avenue to pursue. The main challenge would be the numerical integration of such wall models in LES methodology.

  11. Assimilation of SeaWiFS Ocean Chlorophyll Data into a Three-Dimensional Global Ocean Model

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.

    2005-01-01

    Assimilation of satellite ocean color data is a relatively new phenomenon in ocean sciences. However, with routine observations from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), launched in late 1997, and now with new data from the Moderate Resolution Imaging Spectroradometer (MODIS) Aqua, there is increasing interest in ocean color data assimilation. Here SeaWiFS chlorophyll data were assimilated with an established thre-dimentional global ocean model. The assimilation improved estimates of hlorophyll and primary production relative to a free-run (no assimilation) model. This represents the first attempt at ocean color data assimilation using NASA satellites in a global model. The results suggest the potential of assimilation of satellite ocean chlorophyll data for improving models.

  12. On Verifying Currents and Other Features in the Hawaiian Islands Region Using Fully Coupled Ocean/Atmosphere Mesoscale Prediction System Compared to Global Ocean Model and Ocean Observations

    NASA Astrophysics Data System (ADS)

    Jessen, P. G.; Chen, S.

    2014-12-01

    This poster introduces and evaluates features concerning the Hawaii, USA region using the U.S. Navy's fully Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS-OS™) coupled to the Navy Coastal Ocean Model (NCOM). It also outlines some challenges in verifying ocean currents in the open ocean. The system is evaluated using in situ ocean data and initial forcing fields from the operational global Hybrid Coordinate Ocean Model (HYCOM). Verification shows difficulties in modelling downstream currents off the Hawaiian islands (Hawaii's wake). Comparing HYCOM to NCOM current fields show some displacement of small features such as eddies. Generally, there is fair agreement from HYCOM to NCOM in salinity and temperature fields. There is good agreement in SSH fields.

  13. Modelling the turbulence of a freezing Martian ocean

    NASA Astrophysics Data System (ADS)

    Kiss, Gabor; Leitner, Johannes; Firneis, Maria

    2015-04-01

    We modified the General Ocean Turbulence Model (GOTM) to fit simulations investigating the hypotheses of early oceans or seas on planet Mars. Observed morphologies like paleoshorelines (Parker et al. 1987, Carr et al. 2003) and buried craters (Boyce et al. 2005, Head et al. 2002) indicate possible processes which could have been caused by large standing open bodies of water in the northern hemisphere of Mars. These structures, as well as altitude measurements of delta networks (diAchille et al. 2010) proclaim various sizes of oceans and or seas. Evidence for their existence whether one or more at different times in the early history of the planet, or the evolution and fate of an ocean are still elusive. The smoothness of the northern plains is debated, to be the result of volcanic effluents followed by the deposition of the sedimental load called the Vastias Borealis Formation (VBF). Detailed observations of crater depths (d/D ratios) in the northern hemisphere have shown further arguments for a northern ocean. The prevailing opinion is a short life of a liquid ocean, and a rather fast freezing period leading to sublimation under a thin atmosphere. McKay et al. (1990) have shown that liquid habitats could be maintained under an ice sheet for up to several hundred million years, if melt/freshwater and or volcanic activity was supported. Using the atmospheric data of the GCM (Forget et al. 1999) as input parameters for temperature and wind velocities, we simulate an ocean exposed from mild to freezing temperatures of water at different atmospheric pressures. We are investigating the detailed effects of turbulence on the ocean or sea floors, as well as the effects of salinity and freshwater inflow on the Martian soil. Apart from the driving forces like fed of outflow channels and or rivers and wind, the duration of liquid water is a key question on the redistribution of sediments and the formation of coastal structures.

  14. Climate Ocean Modeling on a Beowulf Class System

    NASA Technical Reports Server (NTRS)

    Cheng, B. N.; Chao, Y.; Wang, P.; Bondarenko, M.

    2000-01-01

    With the growing power and shrinking cost of personal computers. the availability of fast ethernet interconnections, and public domain software packages, it is now possible to combine them to build desktop parallel computers (named Beowulf or PC clusters) at a fraction of what it would cost to buy systems of comparable power front supercomputer companies. This led as to build and assemble our own sys tem. specifically for climate ocean modeling. In this article, we present our experience with such a system, discuss its network performance, and provide some performance comparison data with both HP SPP2000 and Cray T3E for an ocean Model used in present-day oceanographic research.

  15. Estimating the numerical diapycnal mixing in the GO5.0 ocean model

    NASA Astrophysics Data System (ADS)

    Megann, Alex; Nurser, George

    2014-05-01

    Constant-depth (or "z-coordinate") ocean models such as MOM and NEMO have become the de facto workhorse in climate applications, and have attained a mature stage in their development and are well understood. A generic shortcoming of this model type, however, is a tendency for the advection scheme to produce unphysical numerical diapycnal mixing, which in some cases may exceed the explicitly parameterised mixing based on observed physical processes (e.g. Hofmann and Maqueda, 2006), and this is likely to have effects on the long-timescale evolution of the simulated climate system. Despite this, few quantitative estimations have been made of the typical magnitude of the effective diapycnal diffusivity due to numerical mixing in these models. GO5.0 is the latest ocean model configuration developed jointly by the UK Met Office and the National Oceanography Centre (Megann et al, 2013). It uses version 3.4 of the NEMO model, on the ORCA025 global tripolar grid. Two approaches to quantifying the numerical diapycnal mixing in this model are described: the first is based on the isopycnal watermass analysis of Lee et al (2002), while the second uses a passive tracer to diagnose mixing across density surfaces. Results from these two methods will be compared and contrasted. Hofmann, M. and Maqueda, M. A. M., 2006. Performance of a second-order moments advection scheme in an ocean general circulation model. JGR-Oceans, 111(C5). Lee, M.-M., Coward, A.C., Nurser, A.G., 2002. Spurious diapycnal mixing of deep waters in an eddy-permitting global ocean model. JPO 32, 1522-1535 Megann, A., Storkey, D., Aksenov, Y., Alderson, S., Calvert, D., Graham, T., Hyder, P., Siddorn, J., and Sinha, B., 2013: GO5.0: The joint NERC-Met Office NEMO global ocean model for use in coupled and forced applications, Geosci. Model Dev. Discuss., 6, 5747-5799,.

  16. An improved model for the microwave brightness temperature seen from space over calm ocean

    NASA Astrophysics Data System (ADS)

    Cruz-Pol, Sandra L.

    An improved model for the microwave brightness temperature seen from space over calm ocean is presented. This model can be divided into two sub-models, the atmospheric absorption model and the ocean surface emissivity model. An improved model for the absorption of the atmosphere near the 22 GHz water vapor line is presented in the first part of this work. The Van-Vleck-Weisskopf line shape is used with a simple parameterized version of the model from Liebe for the water vapor absorption spectra and a scaling of the model from Rosenkranz for the 20-32 GHz oxygen absorption. Radiometric brightness temperature measurements from two sites of contrasting climatological properties-San Diego, CA and West Palm Beach, FL-are used as ground truth for comparison with in situ radiosonde derived brightness temperatures. Estimation of the new model's four parameters, related to water vapor line strength, line width and continuum absorption, and far-wing oxygen absorption, are performed using the Newton-Raphson inversion method. Improvements to the water vapor line strength and line width parameters are found to be statistically significant. The accuracy of brightness temperatures computed using the improved model is 1.3-2% near 22 GHz. In the second part of this work, a modified ocean emissivity model is presented. We investigate the contribution to the brightness temperature from the specular ocean emission. For this purpose, satellite- based microwave radiometric measurements from the TOPEX/Poseidon project are employed together with near- coincident radiosonde profiles from fifteen stations around the world's oceans and TOPEX altimeter measurements for filtering of low wind conditions. The radiative transfer equation is applied to these profiles, using the atmospheric model developed in part one, in order to account for atmospheric effects in the modeled brightness temperature. NODC ocean temperature and salinity profiles are used in determining the dielectric properties of

  17. Performance of a Southern Ocean sea ice forecast model

    NASA Astrophysics Data System (ADS)

    Heil, P.; Roberts, A.; Budd, W.

    2003-12-01

    The presentation examines the forecast peformance of an oriented fracture sea ice model applied to the Southern Ocean to predict sea ice state up to five days in advance. The model includes a modified Coulombic elastic-viscous-plastic rheology, enthalpy conserving thermodynamics and a new method of parameterising thickness distribution mechanics. 15 ice thickness classes are employed within each grid cell with a horizontal resolution of 50km. The model provides considerable insight into the thickness evolution and climatology of Antarctic sea ice. To date, thickness evolution of the Southern Ocean sea ice zone has mostly been assessed using course two-category models in climate simulations and results presented in this talk provide much greater detail over some existing model output. Simulations are presented from the model driven with NCEP-2 atmospheric analyses, NOAA sea surface temperatures, and mean climatogological currents generated using an eddy resolving ocean model. Analyses are generated by nudging ice concentrations with daily satellite derived open water fractions, and simulations using this method are compared to those without. There are important considerations in assimilating passive microwave ice concentration data into thickness distribution models, and particular attention is given to the treatment of lead ice and the impact this has on estimated total Southern Ocean sea ice volume. It is shown that nudging the model with satellite derived concentrations has an impact on ice mechanics as judged from simulated buoy tracks. A comparison with sonar soundings of sea ice draft is also favourable but shows variation with location. Whilst 5 day forecasts are reasonably skilled, predictive performance changes with season. Application of this research to operational ocean data assimilation systems is discussed in the final stages of the talk.

  18. Variability and trends in Southern Ocean eddy activity in 1/12° ocean model simulations

    NASA Astrophysics Data System (ADS)

    Patara, Lavinia; Böning, Claus W.; Biastoch, Arne

    2016-05-01

    The response of eddy kinetic energy (EKE) to the strengthening of Southern Hemisphere winds occurring since the 1950s is investigated with a global ocean model having a resolution of 1/12° in the Antarctic Circumpolar Current domain. The simulations expose regional differences in the relative importance of stochastic and wind-related contributions to interannual EKE changes. In the Pacific and Indian sectors the model captures the EKE variability observed since 1993 and confirms previous hypotheses of a lagged response to regional wind stress anomalies. Here the multidecadal trend in wind stress is reflected in an increase in EKE typically exceeding 5 cm2 s-2 decade-1. In the western Atlantic, EKE variability is mostly stochastic, is weakly correlated with wind fluctuations, and its multidecadal trends are close to zero. The nonuniform distribution of wind-related changes in the eddy activity could affect the regional patterns of ocean circulation and biogeochemical responses to future climate change.

  19. Regional ocean tide loading modelling around the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Benavent, M.; Arnoso, J.; Montesinos, F. G.

    2009-12-01

    We developed a new 1/12° resolution oceanic tide model in the complex region that surrounds the Iberian Peninsula. The model, named IBER01, allows us to obtain more accurate tidal loading computations for precise geodetic and gravimetric observations in this area. The modelling follows the scheme of data assimilation (coastal tide gauge, bottom pressure sensors and TOPEX/Poseidon altimetry) into a hydrodynamical model, which is based on two-dimensional barotropic depth averaged shallow-water equations. Detailed bathymetry data and quadratic bottom friction with a specific drag coefficient for the region have been considered. Improved ocean load maps for the Iberian Peninsula are obtained for eight harmonic constituents (Q1, P1, O1, K1, N2, M2, S2 and K2), after computing the load effect (Newtonian attraction and elastic contribution) using IBER01 and six present-day global oceanic tide models for comparison. The results achieved verify the quality of the new model. Our ocean loading computations reduce considerably the discrepancies between the theoretical Earth tide parameters and those from observations at the level of 0.3%.

  20. Reduced Order Modeling in General Relativity

    NASA Astrophysics Data System (ADS)

    Tiglio, Manuel

    2014-03-01

    Reduced Order Modeling is an emerging yet fast developing filed in gravitational wave physics. The main goals are to enable fast modeling and parameter estimation of any detected signal, along with rapid matched filtering detecting. I will focus on the first two. Some accomplishments include being able to replace, with essentially no lost of physical accuracy, the original models with surrogate ones (which are not effective ones, that is, they do not simplify the physics but go on a very different track, exploiting the particulars of the waveform family under consideration and state of the art dimensional reduction techniques) which are very fast to evaluate. For example, for EOB models they are at least around 3 orders of magnitude faster than solving the original equations, with physically equivalent results. For numerical simulations the speedup is at least 11 orders of magnitude. For parameter estimation our current numbers are about bringing ~100 days for a single SPA inspiral binary neutron star Bayesian parameter estimation analysis to under a day. More recently, it has been shown that the full precessing problem for, say, 200 cycles, can be represented, through some new ideas, by a remarkably compact set of carefully chosen reduced basis waveforms (~10-100, depending on the accuracy requirements). I will highlight what I personally believe are the challenges to face next in this subarea of GW physics and where efforts should be directed. This talk will summarize work in collaboration with: Harbir Antil (GMU), Jonathan Blackman (Caltech), Priscila Canizares (IoA, Cambridge, UK), Sarah Caudill (UWM), Jonathan Gair (IoA. Cambridge. UK), Scott Field (UMD), Chad R. Galley (Caltech), Frank Herrmann (Germany), Han Hestahven (EPFL, Switzerland), Jason Kaye (Brown, Stanford & Courant). Evan Ochsner (UWM), Ricardo Nochetto (UMD), Vivien Raymond (LIGO, Caltech), Rory Smith (LIGO, Caltech) Bela Ssilagyi (Caltech) and MT (UMD & Caltech).

  1. Higher-order brane gravity models

    SciTech Connect

    Dabrowski, Mariusz P.; Balcerzak, Adam

    2010-06-23

    We discuss a very general theory of gravity, of which Lagrangian is an arbitrary function of the curvature invariants, on the brane. In general, the formulation of the junction conditions (except for Euler characteristics such as Gauss-Bonnet term) leads to the powers of the delta function and requires regularization. We suggest the way to avoid such a problem by imposing the metric and its first derivative to be regular at the brane, the second derivative to have a kink, the third derivative of the metric to have a step function discontinuity, and no sooner as the fourth derivative of the metric to give the delta function contribution to the field equations. Alternatively, we discuss the reduction of the fourth-order gravity to the second order theory by introducing extra scalar and tensor fields: the scalaron and the tensoron. In order to obtain junction conditions we apply two methods: the application of the Gauss-Codazzi formalism and the application of the generalized Gibbons-Hawking boundary terms which are appended to the appropriate actions. In the most general case we derive junction conditions without assuming the continuity of the scalaron and the tensoron on the brane. The derived junction conditions can serve studying the cosmological implications of the higher-order brane gravity models.

  2. The Marine Virtual Laboratory: enabling efficient ocean model configuration

    NASA Astrophysics Data System (ADS)

    Oke, P. R.; Proctor, R.; Rosebrock, U.; Brinkman, R.; Cahill, M. L.; Coghlan, I.; Divakaran, P.; Freeman, J.; Pattiaratchi, C.; Roughan, M.; Sandery, P. A.; Schaeffer, A.; Wijeratne, S.

    2015-11-01

    The technical steps involved in configuring a regional ocean model are analogous for all community models. All require the generation of a model grid, preparation and interpolation of topography, initial conditions, and forcing fields. Each task in configuring a regional ocean model is straight-forward - but the process of downloading and reformatting data can be time-consuming. For an experienced modeller, the configuration of a new model domain can take as little as a few hours - but for an inexperienced modeller, it can take much longer. In pursuit of technical efficiency, the Australian ocean modelling community has developed the Web-based MARine Virtual Laboratory (WebMARVL). WebMARVL allows a user to quickly and easily configure an ocean general circulation or wave model through a simple interface, reducing the time to configure a regional model to a few minutes. Through WebMARVL, a user is prompted to define the basic options needed for a model configuration, including the: model, run duration, spatial extent, and input data. Once all aspects of the configuration are selected, a series of data extraction, reprocessing, and repackaging services are run, and a "take-away bundle" is prepared for download. Building on the capabilities developed under Australia's Integrated Marine Observing System, WebMARVL also extracts all of the available observations for the chosen time-space domain. The user is able to download the take-away bundle, and use it to run the model of their choice. Models supported by WebMARVL include three community ocean general circulation models, and two community wave models. The model configuration from the take-away bundle is intended to be a starting point for scientific research. The user may subsequently refine the details of the model set-up to improve the model performance for the given application. In this study, WebMARVL is described along with a series of results from test cases comparing WebMARVL-configured models to observations

  3. Modeling the west Florida coastal ocean by downscaling from the deep ocean, across the continental shelf and into the estuaries

    NASA Astrophysics Data System (ADS)

    Zheng, Lianyuan; Weisberg, Robert H.

    2012-05-01

    We arrive at a coastal ocean circulation model, suitable for downscaling from the deep ocean, across the continental shelf and into the estuaries, by nesting the unstructured grid, Finite Volume Coastal Ocean Model (FVCOM, inner model) into the structured grid, Global Hybrid Coordinate Model (HYCOM, outer model). The coastal ocean circulation model is three-dimensional, density dependent and inclusive of tides (eight constituents). A calendar year 2007 simulation for the west Florida continental shelf is quantitatively tested against in situ observations of sea level from coastal tide gauges and water column currents and temperature from moored acoustic Doppler current profilers. Agreements between model simulations and observations for both tides and low frequency variability over the calendar year demonstrate the usefulness of our approach. Model horizontal resolution varies from around 12 km at the open boundary to 150 m in the estuaries. Sensitivity experiments for vertical resolution led to the adoption of 21 σ-layers. Several model limitations are discussed, including seasonal steric effects and deep ocean (outer) model errors that may propagate through the inner model. With adequate observations spanning the inner model domain, we may determine when the outer model is in error at the nesting zone. This finding further highlights the need for coordinating coastal ocean observing and modeling programs. The nesting of unstructured and structured grid models is a new approach to coastal ocean circulation modeling. It provides a means for circulation hindcasts and nowcasts/forecasts, and, after combining with biological process models, may provide a framework for multi-disciplinary modeling of coastal ocean ecology from the deep ocean to the head of tides.

  4. Stochastic modeling of inhomogeneous ocean waves

    NASA Astrophysics Data System (ADS)

    Smit, P. B.; Janssen, T. T.; Herbers, T. H. C.

    2015-12-01

    Refraction of swell waves in coastal waters can result in fast-scale variations of wave statistics due to wave interference. These variations cannot be resolved by wave models based on the radiative transport equation. More advanced models based on quasi-coherent theory, a generalization of the radiative transfer equation, can be coupled or nested into larger-scale models to resolve such local inhomogeneous effects. However, source terms for quasi-coherent models to account for non-conservative and nonlinear effects are not available, which hampers their operational use. In the present work we revisit the derivation of quasi-coherent theory to consistently include a source term for dissipation associated with depth-induced wave breaking. We demonstrate how general source terms can be incorporated in this class of models and compare model simulations with the new dissipation term to laboratory observations of focusing and breaking waves over a submerged shoal. The results show that a consistent derivation of source terms is essential to accurately capture coherent effects in coastal areas. Specifically, our results show that if coherent effects are ignored in the dissipation term, interference effects are strongly exaggerated. With the development of source terms for quasi-coherent models they can be effectively nested inside or otherwise coupled to larger-scale wave models to efficiently improve operational predictive capability of wave models near the coast.

  5. Sensitivity of ocean model simulation in the coastal ocean to the resolution of the meteorological forcing

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Shapiro, Georgy; Thain, Richard

    2013-04-01

    The quality of ocean simulations depends on a number of factors such as approximations in governing equations, errors introduced by the numerical scheme, uncertainties in input parameters, and atmospheric forcing. The identification of relations between the uncertainties in input and output data is still a challenge for the development of numerical models. The impacts of ocean variables on ocean models are still not well known (e.g., Kara et al., 2009). Given the considerable importance of the atmospheric forcing to the air-sea interaction, it is essential that researchers in ocean modelling work need a good understanding about how sensitive the atmospheric forcing is to variations of model results, which is beneficial to the development of ocean models. Also, it provides a proper way to choose the atmospheric forcing in ocean modelling applications. Our previous study (Shapiro et al, 2011) has shown that the basin-wide circulation pattern and the temperature structure in the Black Sea produced by the same model is significantly dependent on the source of the meteorological input, giving remarkably different responses. For the purpose of this study we have chosen the Celtic Sea where high resolution meteo data are available from the UK Met office since 2006. The Celtic Sea is tidally dominated water basin, with the tidal stream amplitude varying from 0.25m/s in the southwest to 2 m/s in the Bristol Channel. It is also filled with mesoscale eddies which contribute to the formation of the residual (tidally averaged) circulation pattern (Young et al, 2003). The sea is strongly stratified from April to November, which adds to the formation of density driven currents. In this paper we analyse how sensitive the model output is to variations in the spatial resolution of meteorological using low (1.6°) and high (0.11°) resolution meteo forcing, giving the quantitative relation between variations of met forcing and the resulted differences of model results, as well as

  6. Improved routines to model the ocean carbonate system: mocsy 1.0

    NASA Astrophysics Data System (ADS)

    Orr, J. C.; Epitalon, J.-M.

    2014-05-01

    Software used by modelers to compute ocean carbonate chemistry is often based on code from the Ocean Carbon Cycle Model Intercomparison Project (OCMIP), last revised in 2005. As an update, we offer here new publicly available Fortran 95 routines to model the ocean carbonate system (mocsy). Both codes take as input dissolved inorganic carbon CT and total alkalinity AT, the only two tracers of the ocean carbonate system that are unaffected by changes in temperature and salinity and conservative with respect to mixing, properties that make them ideally suited for ocean carbon models. With the same basic thermodynamic equilibria, both codes compute surface-ocean pCO2 in order to simulate air-sea CO2 fluxes. The mocsy package goes beyond the OCMIP code by computing all other carbonate system variables (e.g., pH, CO32-, and CaCO3 saturation states) and by doing so throughout the water column. Moreover, it avoids three common model approximations: that density is constant, that modeled potential temperature is equivalent to in situ temperature, and that depth is equivalent to pressure. These approximations work well at the surface, but total errors in computed variables grow with depth, e.g., reaching -8 μatm in pCO2, +0.010 in pH, and +0.01 in ΩA at 5000 m. Besides the equilibrium constants recommended for best practices, mocsy also offers users three new options: (1) a recent formulation for total boron that increases its ocean content by 4%, (2) an older formulation for KF common to all other such software, and (3) recent formulations for K1 and K2 designed to also include low-salinity waters. More total boron increases borate alkalinity and reduces carbonate alkalinity, which is calculated as a difference from total alkalinity. As a result, the computed surface pCO2 increases by 4 to 6 μatm, while the computed aragonite saturation horizon (ASH) shallows by 60 m in the North Atlantic and by up to 90 m in the Southern Ocean. Changes due to the new formulation for K1

  7. Arctic pathways of Pacific Water: Arctic Ocean Model Intercomparison experiments

    NASA Astrophysics Data System (ADS)

    Aksenov, Yevgeny; Karcher, Michael; Proshutinsky, Andrey; Gerdes, Rüdiger; de Cuevas, Beverly; Golubeva, Elena; Kauker, Frank; Nguyen, An T.; Platov, Gennady A.; Wadley, Martin; Watanabe, Eiji; Coward, Andrew C.; Nurser, A. J. George

    2016-01-01

    Pacific Water (PW) enters the Arctic Ocean through Bering Strait and brings in heat, fresh water, and nutrients from the northern Bering Sea. The circulation of PW in the central Arctic Ocean is only partially understood due to the lack of observations. In this paper, pathways of PW are investigated using simulations with six state-of-the art regional and global Ocean General Circulation Models (OGCMs). In the simulations, PW is tracked by a passive tracer, released in Bering Strait. Simulated PW spreads from the Bering Strait region in three major branches. One of them starts in the Barrow Canyon, bringing PW along the continental slope of Alaska into the Canadian Straits and then into Baffin Bay. The second begins in the vicinity of the Herald Canyon and transports PW along the continental slope of the East Siberian Sea into the Transpolar Drift, and then through Fram Strait and the Greenland Sea. The third branch begins near the Herald Shoal and the central Chukchi shelf and brings PW into the Beaufort Gyre. In the models, the wind, acting via Ekman pumping, drives the seasonal and interannual variability of PW in the Canadian Basin of the Arctic Ocean. The wind affects the simulated PW pathways by changing the vertical shear of the relative vorticity of the ocean flow in the Canada Basin.

  8. Magma to Microbe: Modeling Hydrothermal Processes at Ocean Spreading Centers

    NASA Astrophysics Data System (ADS)

    Lowell, Robert P.; Seewald, Jeffrey S.; Metaxas, Anna; Perfit, Michael R.

    Hydrothermal systems at oceanic spreading centers reflect the complex interactions among transport, cooling and crystallization of magma, fluid circulation in the crust, tectonic processes, water-rock interaction, and the utilization of hydrothermal fluids as a metabolic energy source by microbial and macro-biological ecosystems. The development of mathematical and numerical models that address these complex linkages is a fundamental part the RIDGE 2000 program that attempts to quantify and model the transfer of heat and chemicals from "mantle to microbes" at oceanic ridges. This volume presents the first "state of the art" picture of model development in this context. The most outstanding feature of this volume is its emphasis on mathematical and numerical modeling of a broad array of hydrothermal processes associated with oceanic spreading centers. By examining the state of model development in one volume, both cross-fertilization of ideas and integration across the disparate disciplines that study seafloor hydrothermal systems is facilitated. Students and scientists with an interest in oceanic spreading centers in general and more specifically in ridge hydrothermal processes will find this volume to be an up-to-date and indispensable resource.

  9. Oceanic Observations

    NASA Technical Reports Server (NTRS)

    Busalacchi, Antonio J.

    1997-01-01

    For many years, merchant ships and the naval fleets of various countries have been the major source of data over and in the open ocean. Oceanographic research experiments and process studies in the field have also contributed to the climatological data bases for the global ocean, but, for the most part, these have been limited in duration and extent. However, over the last 10 years under the auspices of the World Climate Research Program and the International Geosphere Biosphere Program the role of the oceans in global and climate change has taken on increased significance. This has created a need for a considerably improved understanding of the seasonal, interannual, decadal and longer time-scale variability of the physical and biogeochemical attributes of the global ocean. As a result, over the past 10 years several major international field programs have been implemented and have had a tremendous impact on the number of in situ observations obtained for the global ocean. The Tropical Ocean Global Atmosphere (TOGA) program, the World Ocean Circulation Experiment (WOCE), and the Joint Global Ocean Flux Study (JGOFS) were designed with observational, modelling, and process study components aimed at analyzing different aspects of the ocean's role in the coupled climate system. In parallel with the field programs, continuous space-based observations of sea surface temperature, sea surface topography, and sea surface winds spanning nearly a decade or longer have become a reality. During this same time period, numerical ocean models and computational power have advanced to the point where the oceanographic observations, both in situ and remotely sensed, can be assimilated into numerical ocean models in order to provide a four-dimensional (x-y-z-t) depiction of the evolving state of the global ocean.

  10. Task Models in the Digital Ocean

    ERIC Educational Resources Information Center

    DiCerbo, Kristen E.

    2014-01-01

    The Task Model is a description of each task in a workflow. It defines attributes associated with that task. The creation of task models becomes increasingly important as the assessment tasks become more complex. Explicitly delineating the impact of task variables on the ability to collect evidence and make inferences demands thoughtfulness from…

  11. Passive localization in ocean acoustics: A model-based approach

    SciTech Connect

    Candy, J.V.; Sullivan, E.J.

    1995-09-01

    A model-based approach is developed to solve the passive localization problem in ocean acoustics using the state-space formulation for the first time. It is shown that the inherent structure of the resulting processor consists of a parameter estimator coupled to a nonlinear optimization scheme. The parameter estimator is designed using the model-based approach in which an ocean acoustic propagation model is used in developing the model-based processor required for localization. Recall that model-based signal processing is a well-defined methodology enabling the inclusion of environmental (propagation) models, measurement (sensor arrays) models, and noise (shipping, measurement) models into a sophisticated processing algorithm. Here the parameter estimator is designed, or more appropriately the model-based identifier (MBID) for a propagation model developed from a shallow water ocean experiment. After simulation, it is then applied to a set of experimental data demonstrating the applicability of this approach. {copyright} {ital 1995} {ital Acoustical} {ital Society} {ital of} {ital America}.

  12. 14C-age tracers in global ocean circulation models

    NASA Astrophysics Data System (ADS)

    Koeve, W.; Wagner, H.; Kähler, P.; Oschlies, A.

    2015-07-01

    The natural abundance of 14C in total CO2 dissolved in seawater (DIC) is a property applied to evaluate the water age structure and circulation in the ocean and in ocean models. In this study we use three different representations of the global ocean circulation augmented with a suite of idealised tracers to study the potential and limitations of using natural 14C to determine water age, which is the time elapsed since a body of water has been in contact with the atmosphere. We find that, globally, bulk 14C-age is dominated by two equally important components, one associated with ageing, i.e. the time component of circulation, and one associated with a "preformed 14C-age". The latter quantity exists because of the slow and incomplete atmosphere-ocean equilibration of 14C particularly in high latitudes where many water masses form. In the ocean's interior, preformed 14C-age behaves like a passive tracer. The relative contribution of the preformed component to bulk 14C-age varies regionally within a given model, but also between models. Regional variability in the Atlantic Ocean is associated with the mixing of waters with very different end members of preformed 14C-age. Here, variations in the preformed component over space and time mask the circulation component to an extent that its patterns are not detectable from bulk 14C-age. Between models, the variability of preformed 14C-age can also be considerable (factor of 2), related to the combination of physical model parameters, which influence circulation dynamics or gas exchange. The preformed component was found to be very sensitive to gas exchange and moderately sensitive to ice cover. In our model evaluation, the choice of the gas-exchange constant from within the currently accepted range of uncertainty had such a strong influence on preformed and bulk 14C-age that if model evaluation would be based on bulk 14C-age, it could easily impair the evaluation and tuning of a model's circulation on global and regional

  13. Non-local ocean mixing model and a new plume model for deep convection

    NASA Astrophysics Data System (ADS)

    Canuto, V. M.; Cheng, Y.; Howard, A. M.

    Turbulent fluxes can be represented by a diffusivity tensor, the symmetric part of which describes " turbulent diffusion" while the anti-symmetric part describes " advection". Diffusion is a local process in the sense that it depends only on the local gradients of the mean fields while advection is non-local for it is represented by an integral over all length scales (all eddies) that can "fit" from say the bottom of the physical domain to the z where the fluxes are computed. In the ocean, there are two main regimes where non-local transport is important. One regime is where storms release a sudden burst of mechanical energy to the ocean surface that is then transported downward by energetic eddies that deepen the mixed layer. Even relatively simple non-local models yield results considerably more realistic than those of local models. The second regime is deep convection (DC) caused by loss of surface buoyancy, the description of which is required for a reliable assessment of water masses formation. At present, there is no reliable model for either of these non-local regimes individually or much less a formalism capable of accounting for both regimes simultaneously. The goal of this paper is to present a formalism that provides the expressions for the non-local fluxes for momentum, heat and salinity encompassing both cases. Since the resulting number of dynamic equations involves is however large, we work out two sub-models, one when only shear must be treated non-locally (e.g., when storms release mechanical energy) and one when only buoyancy is to be treated non-locally (the DC case). We employ the Reynolds Stress formalism in which non-locality is represented by the third-order moments which in turn depend on the fourth-order moments for which we employ a new model that has been tested against LES data, aircraft data and a full PBL simulation. For the DC case, we rewrite the non-local model in terms of Plumes since thus far the only non-local model used to treat

  14. Variability of the thermohaline circulation in a simple coupled atmosphere-ocean model

    NASA Astrophysics Data System (ADS)

    Taboada, J. J.; Lorenzo, M. N.

    2003-04-01

    The behavior of the Atlantic thermohaline circulation (THC) is essential to a better understanding of climate change. Paleoclimatic studies suggest that this circulation has experimented repeated changes throughout the history of the Earth associated to climate changes [1]. The coupled 3-dimensional climate models are useful in quantitatively assessing the details of the thermohaline circulation and for comparison with observations. However, the currently available computing capacity reduces the possibility of carry out exhaustive parametric studies of the THC. Models of reduced complexity can help overcome this difficulty and make valuable contributions to a better understanding of parameter space. Moreover, these models are most useful as exploratory tools for hypothesis building. Here we study a low-order coupled atmosphere-ocean general circulation model in order to understand the behavior of the thermohaline circulation through different changes on the interaction between atmosphere-ocean [1,2]. The atmosphere is represented by a low-order atmospheric "general circulation" model introduced by Lorenz in 1984 [3] and the ocean model considered here is a 3-box model which simulates the North Atlantic thermohaline circulation [2]. [1] Broecker W.S. (1997) Thermohaline circulation, the Achilles Heel of our climate system: will man-made CO_2 upset the current balance?. Science, 278, 1582-1588. [2] Roebber, P.J. (1995) Climate variability in a low-order coupled atmosphere-ocean model. Tellus, 47A, 473-494. [3] Lorenz, E.N. (1984) Irregularity. A fundamental property of the atmosphere. Tellus, 36A, 98-110.

  15. Approximate Stokes Drift Profiles and their use in Ocean Modelling

    NASA Astrophysics Data System (ADS)

    Breivik, Oyvind; Bidlot, Jea-Raymond; Janssen, Peter A. E. M.; Mogensen, Kristian

    2016-04-01

    Deep-water approximations to the Stokes drift velocity profile are explored as alternatives to the monochromatic profile. The alternative profiles investigated rely on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons against parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profiles give a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. Of the two Stokes drift profiles explored here, the profile based on the Phillips spectrum is by far the best. In particular, the shear near the surface is almost identical to that influenced by the f‑5 tail of spectral wave models. The NEMO general circulation ocean model was recently extended to incorporate the Stokes-Coriolis force along with two other wave-related effects. The ECWMF coupled atmosphere-wave-ocean ensemble forecast system now includes these wave effects in the ocean model component (NEMO).

  16. Gravity model improvement investigation. [improved gravity model for determination of ocean geoid

    NASA Technical Reports Server (NTRS)

    Siry, J. W.; Kahn, W. D.; Bryan, J. W.; Vonbun, F. F.

    1973-01-01

    This investigation was undertaken to improve the gravity model and hence the ocean geoid. A specific objective is the determination of the gravity field and geoid with a space resolution of approximately 5 deg and a height resolution of the order of five meters. The concept of the investigation is to utilize both GEOS-C altimeter and satellite-to-satellite tracking data to achieve the gravity model improvement. It is also planned to determine the geoid in selected regions with a space resolution of about a degree and a height resolution of the order of a meter or two. The short term objectives include the study of the gravity field in the GEOS-C calibration area outlined by Goddard, Bermuda, Antigua, and Cape Kennedy, and also in the eastern Pacific area which is viewed by ATS-F.

  17. Marine biological feedback associated with Indian Ocean Dipole in a coupled ocean/biogeochemical model

    NASA Astrophysics Data System (ADS)

    Park, Jong-Yeon; Kug, Jong-Seong

    2014-01-01

    The impact of marine ecosystem on the tropical climate variability in the Indian Ocean is investigated by performing coupled ocean/biogeochemical model experiments, which are forced by realistic surface winds from 1951 to 2010. Results from a suite of chlorophyll perturbation experiments reveal that the presence of chlorophyll can have significant effects on the characteristics of the Indian Ocean Dipole (IOD), including its amplitude and skewness, as well as on the mean state. Specifically, chlorophyll increases mean sea surface temperature due to direct biological heating in regions where the mean mixed layer depth is generally shallow. It is also found that the presence of chlorophyll affects the IOD magnitude by two different processes: One is the amplifying effect by the mean chlorophyll, which leads to shoaling of mean thermocline depth, and the other is the damping effect by the interactively varying chlorophyll coupled with the physical model. There is also a biological impact on the skewness of the IOD, resulting in enhanced positive skewness. This skewness change is primarily caused by the phase dependency of the above two contradicting effects involving the asymmetric thermocline feedback and the nonlinear mixed layer heating.

  18. Adaptive h -refinement for reduced-order models: ADAPTIVE h -refinement for reduced-order models

    DOE PAGESBeta

    Carlberg, Kevin T.

    2014-11-05

    Our work presents a method to adaptively refine reduced-order models a posteriori without requiring additional full-order-model solves. The technique is analogous to mesh-adaptive h-refinement: it enriches the reduced-basis space online by ‘splitting’ a given basis vector into several vectors with disjoint support. The splitting scheme is defined by a tree structure constructed offline via recursive k-means clustering of the state variables using snapshot data. This method identifies the vectors to split online using a dual-weighted-residual approach that aims to reduce error in an output quantity of interest. The resulting method generates a hierarchy of subspaces online without requiring large-scale operationsmore » or full-order-model solves. Furthermore, it enables the reduced-order model to satisfy any prescribed error tolerance regardless of its original fidelity, as a completely refined reduced-order model is mathematically equivalent to the original full-order model. Experiments on a parameterized inviscid Burgers equation highlight the ability of the method to capture phenomena (e.g., moving shocks) not contained in the span of the original reduced basis.« less

  19. An eddy-resolving model of the Global Ocean

    NASA Astrophysics Data System (ADS)

    Ibrayev, Rashit; Khabeev, Renat; Kalmykov, Vladimir; Ushakov, Konstantin

    2013-04-01

    We present results of eddy-resolving simulation of the global ocean with INM-IO general circulation model. The global grid employs tripole layout, has 0.1-degree horizontal resolution, and uses 49 vertical levels. The ocean model coupled with sea ice and atmospheric boundary layer sub-models. We address to the problem of effective implementation of the numerical code on parallel computers. The model was developed in the Institute of Numerical Mathematics (INM) and P.P.Shirshov Institute of Oceanology (IO). The global simulations were performed with atmospheric conditions based on repeat annual cycle of the normal year - CORE dataset. We present an overview from 75-year spinup. The model results are quite good when compared to observations. We discuss the results of sensitivity of AMOC to the fresh water input due to Greenland ice sheet melting.

  20. Modeling Ability Differentiation in the Second-Order Factor Model

    ERIC Educational Resources Information Center

    Molenaar, Dylan; Dolan, Conor V.; van der Maas, Han L. J.

    2011-01-01

    In this article we present factor models to test for ability differentiation. Ability differentiation predicts that the size of IQ subtest correlations decreases as a function of the general intelligence factor. In the Schmid-Leiman decomposition of the second-order factor model, we model differentiation by introducing heteroscedastic residuals,…

  1. A thermobaric instability of Lagrangian vertical coordinate ocean models

    NASA Astrophysics Data System (ADS)

    Hallberg, Robert

    Lagrangian- (and isopycnic-) vertical coordinate ocean models are subject to an exponentially growing numerical instability in weakly stratified regions when thermobaricity is not accurately compensated. Inaccurate compensation for compressibility in the pressure gradient terms leads to pressure gradient truncation errors (due to the vertical discretization) that can drive the Lagrangian coordinate surfaces to reinforce these errors. It is possible to avoid this instability while using the full non-linear equation of state for seawater by using an optimal alternate discretization of the pressure gradient terms and extracting a slowly spatially varying reference compressibility that approximates the compressibility of the ocean's mean state.

  2. Observations and models of inertial waves in the deep ocean

    NASA Technical Reports Server (NTRS)

    Fu, L.-L.

    1981-01-01

    A study of the structure of the inertial peak in deep ocean kinetic energy is presented, based on records taken from Polymode arrays deployed in the western North Atlantic Ocean. Results are interpreted in terms of both local sources and turning point effects on internal waves generated at lower latitudes, and it is found that three classes of environment and their corresponding spectra emerge from peak height variations: (1) the 1500-m level near the Mid-Atlantic Ridge, with the greatest peak height of 18 dB; (2) the upper and deep ocean over rough topography and the deep ocean underneath the Gulf Stream, with the intermediate peak height of 11.5 dB; and (3) the deep ocean over smooth topography, with the lowest peak height of 7.5 dB. Using the globally valid wave functions obtained by Munk and Phillips (1968), frequency spectra near f are calculated numerically. The model is latitudinally dependent, with the frequency shift and bandwidth of the inertial peak decreasing with latitude.

  3. Multi-Scale Coupling in Ocean and Climate Modeling

    SciTech Connect

    Zhengyu Liu, Leslie Smith

    2009-08-14

    We have made significant progress on several projects aimed at understanding multi-scale dynamics in geophysical flows. Large-scale flows in the atmosphere and ocean are influenced by stable density stratification and rotation. The presence of stratification and rotation has important consequences through (i) the conservation of potential vorticity q = {omega} {center_dot} {del} {rho}, where {omega} is the total vorticity and {rho} is the density, and (ii) the existence of waves that affect the redistribution of energy from a given disturbance to the flow. Our research is centered on quantifying the effects of potential vorticity conservation and of wave interactions for the coupling of disparate time and space scales in the oceans and the atmosphere. Ultimately we expect the work to help improve predictive capabilities of atmosphere, ocean and climate modelers. The main findings of our research projects are described.

  4. Sea level ECV quality assessment via global ocean model assimilation

    NASA Astrophysics Data System (ADS)

    Scharffenberg, Martin; Köhl, Armin; Stammer, Detlef

    2015-04-01

    In the ocean modeling community satellite data, especially SSH fields, are assimilated on a regular basis. SSH fields are very important in this context because of their dynamical relevance for constraining the ocean's flow field. However, assimilating SSH data into an ocean model does not only improve the quality of model but in addition, can also help testing the quality and the consistency of the input data as well. In our work we aim to quantify improvements in Sea Level (SL) data through the ESA - Climate Change Initiative (cci) effort and we aim to test the consistency of the Essential Climate Variable (ECV) of Sea Level (SL_ECV) with other ECVs through the assimilation process and to investigate where remaining inconsistencies exist and why. For this purpose the GECCO2 assimilation approach assimilates SSH jointly with in situ data over the ocean. The dynamically consistent ocean state estimation adjusts only uncertain model parameters to bring the model into consistency with ocean observations. Improvements in data products can be investigated by studying the residuals between the different data products and the constrained model. PHASE 1: With this approach we could demonstrate, that in many regions the SL_ECV has been improved from version V0 (AVISO product) to version V1 (SL_cci product). However, there are regions where SL_ECV_V1 is further away from the model "truth". In that sense it is important to understand that the model assimilated SL_ECV_V0 (origianl AVISO product) and therefore has tried to adapt to the SL_ECV_V0. Therefore, inconsistencies existed when comparing the synthesis results to the updated version SL_ECV_V1! These deviations between the model "truth" and the improved data product (SL_ECV_V1) increased mostly in low energetic areas. PHASE 2: Two GECCO2-assimilation-runs (5 additional iterations) have been performed to date: 1) assimilating the original AVISO SL-product (V0) and 2) assimilating the updated-improved sea level estimate

  5. 14C-age tracers in global ocean circulation models

    NASA Astrophysics Data System (ADS)

    Koeve, W.; Wagner, H.; Kähler, P.; Oschlies, A.

    2014-10-01

    The natural abundance of 14C in total CO2 dissolved in seawater is a property applied to evaluate the water age structure and circulation in the ocean and in ocean models. In this study we use three different representations of the global ocean circulation augmented with a suite of idealised tracers to study the potential and limitations of using natural 14C to determine water age, the time elapsed since a body of water had contact with the atmosphere. We find that, globally, bulk 14C-age is dominated by two equally important components, one associated with aging, i.e. the time component of circulation and one associated with a "preformed 14C-age". This latter quantity exists because of the slow and incomplete atmosphere/ocean equilibration of 14C in particular in high latitudes where many water masses form. The relative contribution of the preformed component to bulk 14C-age varies regionally within a given model, but also between models. Regional variability, e.g. in the Atlantic Ocean is associated with the mixing of waters with very different end members of preformed 14C-age. In the Atlantic, variations in the preformed component over space and time mask the circulation component to an extent that its patterns are not detectable from bulk 14C-age alone. Between models the variability of age can also be considerable (factor of 2), related to the combinations of physical model parameters, which influence circulation dynamics, and gas exchange in the models. The preformed component was found to be very sensitive to gas exchange and moderately sensitive to ice cover. In our model evaluation exercise, the choice of the gas exchange constant from within the current range of uncertainty had such a strong influence on preformed and bulk 14C-age that if model evaluation would be based on bulk 14C-age it could easily impair the evaluation and tuning of a models circulation on global and regional scales. Based on the results of this study, we propose that considering

  6. GRACE gravity model: assssment in terms of deep ocean currents from hydrography and from the ECCO ocean model

    NASA Technical Reports Server (NTRS)

    Zlotnicki, V.; Stammer, D.; Fukumori, I.

    2003-01-01

    Here we assess the new generation of gravity models, derived from GRACE data. The differences between a global geoid model (one from GRACE data and one the well-known EGM-96), minus a Mean Sea Surface derived from over a decade of altimetric data are compared to hydrographic data from the Levitus compilation and to the ECCO numerical ocean model, which assimilates altimetry and other data.

  7. A parallel coupled oceanic-atmospheric general circulation model

    SciTech Connect

    Wehner, M.F.; Bourgeois, A.J.; Eltgroth, P.G.; Duffy, P.B.; Dannevik, W.P.

    1994-12-01

    The Climate Systems Modeling group at LLNL has developed a portable coupled oceanic-atmospheric general circulation model suitable for use on a variety of massively parallel (MPP) computers of the multiple instruction, multiple data (MIMD) class. The model is composed of parallel versions of the UCLA atmospheric general circulation model, the GFDL modular ocean model (MOM) and a dynamic sea ice model based on the Hiber formulation extracted from the OPYC ocean model. The strategy to achieve parallelism is twofold. One level of parallelism is accomplished by applying two dimensional domain decomposition techniques to each of the three constituent submodels. A second level of parallelism is attained by a concurrent execution of AGCM and OGCM/sea ice components on separate sets of processors. For this functional decomposition scheme, a flux coupling module has been written to calculate the heat, moisture and momentum fluxes independent of either the AGCM or the OGCM modules. The flux coupler`s other roles are to facilitate the transfer of data between subsystem components and processors via message passing techniques and to interpolate and aggregate between the possibly incommensurate meshes.

  8. Modeling of SAR signatures of shallow water ocean topography

    NASA Technical Reports Server (NTRS)

    Shuchman, R. A.; Kozma, A.; Kasischke, E. S.; Lyzenga, D. R.

    1984-01-01

    A hydrodynamic/electromagnetic model was developed to explain and quantify the relationship between the SEASAT synthetic aperture radar (SAR) observed signatures and the bottom topography of the ocean in the English Channel region of the North Sea. The model uses environmental data and radar system parameters as inputs and predicts SAR-observed backscatter changes over topographic changes in the ocean floor. The model results compare favorably with the actual SEASAT SAR observed backscatter values. The developed model is valid for only relatively shallow water areas (i.e., less than 50 meters in depth) and suggests that for bottom features to be visible on SAR imagery, a moderate to high velocity current and a moderate wind must be present.

  9. Model-based inversion for a shallow ocean application

    SciTech Connect

    Candy, J.V.; Sullivan, E.J.

    1994-03-01

    A model-based approach to invert or estimate the sound speed profile (SSP) from noisy pressure-field measurements is discussed. The resulting model-based processor (MBP) is based on the state-space representation of the normal-mode propagation model. Using data obtained from the well-known Hudson Canyon experiment, a noisy shallow water ocean environment, the processor is designed and the results compared to those predicted using various propagation models and data. It is shown that the MBP not only predicts the sound speed quite well, but also is able to simultaneously provide enhanced estimates of both modal and pressure-field measurements which are useful for localization and rapid ocean environmental characterization.

  10. Implementation of a barotropic-baroclinic time splitting for isopynic coordinate ocean modeling

    SciTech Connect

    Higdon, R.L.

    1999-01-20

    The motions seen in numerical models of ocean circulation typically include rapidly moving external gravity waves, which are essentially two-dimensional, and a variety of other motions which are much slower and generally three-dimensional. In a number of ocean models, the computational problems resulting from the multiple time scales are addressed by splitting the fast and slow dynamics into separate subproblems that are solved by different techniques. The present paper addresses the practical implementation of such a splitting for the case of isopynic ocean modeling, in which the vertical coordinate is density or some other related quantity. During the implementation of such a splitting for the case of isopynic ocean modeling, in which the vertical coordinate is density or some other related quantity. During the implementation, a major task is to develop formulas suitable for usage with rapidly varying bottom topography. Compared to an earlier splitting, the present splitting has improved stability properties when analyzed in a simple linearized setting. When tested in the same model for which the earlier splitting was developed, the revised splitting substantially reduces a numerically induced sloshing pattern that is seen in the model. This phenomenon appears to be related to a residual term that appears in the momentum equations. In some examples, the residual is one to two orders of magnitude smaller in the case of the revised splitting.

  11. LOSCAR: Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir Model

    NASA Astrophysics Data System (ADS)

    Zeebe, R. E.

    2011-06-01

    The LOSCAR model is designed to efficiently compute the partitioning of carbon between ocean, atmosphere, and sediments on time scales ranging from centuries to millions of years. While a variety of computationally inexpensive carbon cycle models are already available, many are missing a critical sediment component, which is indispensable for long-term integrations. One of LOSCAR's strengths is the coupling of ocean-atmosphere routines to a computationally efficient sediment module. This allows, for instance, adequate computation of CaCO3 dissolution, calcite compensation, and long-term carbon cycle fluxes, including weathering of carbonate and silicate rocks. The ocean component includes various biogeochemical tracers such as total carbon, alkalinity, phosphate, oxygen, and stable carbon isotopes. We have previously published applications of the model tackling future projections of ocean chemistry and weathering, pCO2 sensitivity to carbon cycle perturbations throughout the Cenozoic, and carbon/calcium cycling during the Paleocene-Eocene Thermal Maximum. The focus of the present contribution is the detailed description of the model including numerical architecture, processes and parameterizations, tuning, and examples of input and output. Typical CPU integration times of LOSCAR are of order seconds for several thousand model years on current standard desktop machines. The LOSCAR source code in C can be obtained from the author by sending a request to loscar.model@gmail.com.

  12. An ice-ocean coupled model for the Northern Hemisphere

    NASA Technical Reports Server (NTRS)

    Cheng, Abe; Preller, Ruth

    1992-01-01

    The Hibler ice model has been modified and adapted to a domain that includes most of the sea ice-covered areas in the Northern Hemisphere. This model, joined with the Cox ocean model, is developed as an enhancement to the U.S. Navy's sea ice forecasting, PIPS, and is termed PIPS2.0. Generally, the modeled ice edge is consistent with the Navy-NOAA Joint Ice Center weekly analysis, and the modeled ice thickness distribution agrees with submarine sonar data in the central Arctic basin.

  13. A simple metabolic model of glacial-interglacial energy supply to the upper ocean

    NASA Astrophysics Data System (ADS)

    Pelegrí, J. L.; Olivella, R.; García-Olivares, A.

    2011-03-01

    We use a simple two-state two-box ocean to simulate the CO2 signal during the last four glacial-interglacial transitions in the earth system. The model is inspired by the similarity in spatial organization and temporal transition patterns between the earth and other complex systems, such as mammals. The comparison identifies the earth's metabolic rate with net autotrophic primary production in the upper ocean, sustained through new inorganic carbon and nutrients advected from the deep ocean and organic matter remineralized within the upper ocean. We view the glacial-interglacial transition as a switch of the upper ocean from a basal to an enhanced metabolic state, with energy supply initially relying on the remineralization of the local organic sources and the eventual steady state resulting from the increased advective supply of inorganic deep sources. During the interglacial-glacial transition the opposite occurs, with an initial excess of advective supply and primary production that allows the replenishment of the upper-ocean organic storages. We set the relative change in energy supply from the CO2 signal and use genetic algorithms to explore the sensitivity of the model output to both the basal recirculation rate and the intensity-timing of the maximum recirculation rate. The model is capable of reproducing quite well the long-term oscillations, as shown by correlations with observations typically about 0.8. The dominant time scale for each cycle ranges between about 40 and 45 kyr, close to the 41 kyr average obliquity astronomical period, and the deep-ocean recirculation rate increases between one and two orders of magnitude from glacial to interglacial periods.

  14. The Effects of Precipitation and River Runoff Anomalies in a Coupled Ice-Ocean Model of the Arctic.

    NASA Astrophysics Data System (ADS)

    Weatherly, John Wallace

    A coupled ice-ocean model of the Arctic Ocean and adjacent seas is developed in order to study the effects of anomalies of precipitation and river runoff on sea ice. A dynamic-thermodynamic sea ice model is coupled to an ocean general circulation model which includes a turbulence closure scheme for the treatment of stability-dependent vertical mixing of temperature, salinity, and momentum. The ice and ocean models are coupled by the fluxes of heat, momentum, and salinity computed from the predicted ice and ocean temperatures, velocities, and net ice growth. The model is forced by interannually-varying atmospheric temperature and pressure data from 1980-1989, parameterized incoming radiation, and hydrologic forcing from precipitation and river runoffs. The modeled ice thickness, ice extent, and ice drift are generally similar to observed patterns, with a bias toward thinner ice and some regional differences in extent, which reduces the export of ice out of the Arctic. The ice extent is shown to be sensitive to the ocean heat flux computed in the model. Ice thickness and sea surface salinity are shown to be very sensitive to how the vertical mixing scheme in the ocean maintains the strong stratification. Sensitivity experiments show that without any precipitation input, sea ice thickness decreases rapidly because of the destabilization of the upper ocean. Eliminating the river runoffs causes a much slower decreasing trend in ice thickness, due to the decadal timescale of the dispersal of runoff in the Arctic Ocean. Interannual precipitation anomalies are shown to create anomalies of ice thickness that last 1 -2 years, while runoff anomalies do not produce significant ice anomalies. The ice-ocean model results suggest that changes in arctic precipitation can affect sea ice more rapidly and more significantly than river runoffs, although rivers contribute the greater volume of fresh water to the Arctic, and that river runoffs can affect the sea ice on the timescale of

  15. Ocean Response to Possible Southern Meltwater Pulses During Eocene-Oligocene Cooling Climate Trend: A Sensitivity Ocean Modeling Study

    NASA Astrophysics Data System (ADS)

    Haupt, B. J.; Seidov, D.

    2003-12-01

    Understanding ocean circulation and sea level change in the past (and foreseeable future) is one of the focal points of paleoceanography. Sea level may change due to several primary causes, including the meltdown of the major ice sheets, sea ice melting, and changes in the thermohaline structure of the oceans. The sensitivity of the past ocean circulation to meltwater impacts may have been different from the present-day. We still have only a vague understanding of how ocean basin geography may influence the freshwater impacts in different oceans; the role of geography is important for reconstructing variability of past climates with substantially different land-sea distributions. As freshwater impacts in past geologic eras having different basins configurations may have been different from the present-day pattern, the sensitivity of the ocean circulation to sea surface density impacts and climate change could have been different as well. We use the Eocene-Oligocene geometry and climate to address the past ocean and sea level long-term internal variability because this time slice provides a substantially different geometry and for a strong sea ice impact that can be seen in the geologic record. The Eocene epoch is crucial as a transition from the warm Cretaceous ocean to cooler oceans that may have been subject to bi-polar millennial-scale oscillations of the deep ocean circulation caused by freshwater pulses of the developing southern cryosphere. In a series of numerical experiments, sea ice melting and sea water freezing around Antarctica were simulated by superimposing freshwater layers over zonally-averaged sea surface salinity. Eocene sea surface temperature and sea surface salinity are specified based on the paleoclimatic record and modeling. In our simulations, the Eocene ocean circulation is indeed sensitive to freshwater impacts in the Southern Hemisphere. There are noticeable sea level changes caused by the restructuring of the deep ocean thermal and

  16. High resolution modeling of direct ocean carbon sequestration

    SciTech Connect

    Michael Follows; John Marshall

    2004-04-22

    This work has followed two themes: (1) Developing and using the adjoint of the MIT ocean biogeochemistry model to examine the efficiency of carbon sequestration in a global configuration. We have demonstrated the power of the adjoint method for systematic ocean model sensitivity studies. We have shown that the relative efficiency of carbon sequestration in the Atlantic and Pacific basins changes with the period of interest. For decadal to centennial scales, the Pacific is more efficient. On longer timescales the Atlantic is more efficient . (2) We have developed and applied a high-resolution, North Atlantic circulation and tracer model to investigate the role of the mesoscale in controlling sequestration efficiency. We show that the mesoscale eddy field, and its explicit representation, significantly affects the estimated sequestration efficiency for local sources on the Eastern US seaboard.

  17. Oxygen gradients across the Pacific Ocean: Resolving an apparent discrepancy between atmospheric and ocean observations and models

    NASA Astrophysics Data System (ADS)

    Mikaloff Fletcher, S. E.; Steinkamp, K.; Stephens, B. B.; Tohjima, Y.; Gruber, N.

    2015-12-01

    We use oceanic and atmospheric model simulations to investigate and resolve a disagreement between observations of atmospheric O2/N2 and CO2 data and air-sea fluxes estimated from an ocean inversion. Atmospheric observations of O2/N2 and CO2 can be combined to calculate atmospheric potential oxygen (APO=O2/N2+1.1CO2), a powerful atmospheric tracer for ocean biogeochemical processes that is not influenced by terrestrial photosynthesis or respiration. A recent study identified a deep APO minimum in the Northwest Pacific from measurements collected on a repeat transect between New Zealand and Japan. This minimum could not be reproduced in atmospheric model simulations forced with air-sea fluxes estimated from ocean data, suggesting that oxygen uptake in the Northwest Pacific must be under-estimated by a factor of two. We use an updated ocean inverse method to estimate new air-sea fluxes from the ocean interior measurements at a higher spatial resolution than previous work using a suite of ten ocean general circulation models (OGCMs). These new air-sea flux estimates are able to match the atmospheric APO data when used as boundary conditions for an atmospheric transport model. The relative roles of thermal and biological processses in contributing to oxygen absorption by the North Pacific and other ocean regions is investigated.

  18. The fate of added alkalinity in model scenarios of ocean alkalinization

    NASA Astrophysics Data System (ADS)

    Ferrer González, Miriam; Ilyina, Tatiana

    2014-05-01

    The deliberate large-scale manipulation of the Earth's climate (geo-engineering) has been proposed to mitigate climate change and ocean acidification. Whilst the mitigation potential of these technologies could sound promising, they may also pose many environmental risks. Our research aims at exploring the ocean-based carbon dioxide removal method of alkalinity enhancement. Its mitigation potential to reduce atmospheric CO2 and counteract the consequences of ocean acidification, risks and unintended consequences are studied. In order to tackle these questions, different scenarios are implemented in the state-of-the-art Earth system model of the Max Planck Institute for Meteorology. The model configuration is based on the 5th phase of the coupled model intercomparison project following a high CO2 future climate change scenario RCP8.5 (in which radiative forcing rises to 8.5 W/m² in 2100). Two different scenarios are performed where the alkalinity is artificially added globally uniformly in the upper ocean. In the first scenario, alkalinity is increased as a pulse by doubling natural values of the first 12 meters. In the second scenario we add alkalinity into the same ocean layer such that the atmospheric CO2 concentration is reduced from RCP8.5 to RCP4.5 levels (with the radiative forcing of 4.5 W/m² in 2100). We investigate the fate of the added alkalinity in these two scenarios and compare the differences in alkalinity budgets. In order to increase oceanic CO2 uptake from the atmosphere, enhanced alkalinity has to stay in the upper ocean. Once the alkalinity is added, it will become part of the biogeochemical cycles and it will be distributed with the ocean currents. Therefore, we are particularly interested in the residence time of the added alkalinity at the surface. Variations in CO2 partial pressure, seawater pH and saturation state of carbonate minerals produced in the implemented scenarios will be presented. Collateral changes in ocean biogeochemistry and

  19. Higher Order Thermal Lattice Boltzmann Model

    NASA Astrophysics Data System (ADS)

    Sorathiya, Shahajhan; Ansumali, Santosh

    2013-03-01

    Lattice Boltzmann method (LBM) modelling of thermal flows, compressible and micro flows requires an accurate velocity space discretization. The sub optimality of Gauss-Hermite quadrature in this regard is well known. Most of the thermal LBM in the past have suffered from instability due to lack of proper H-theorem and accuracy. Motivated from these issues, the present work develops along the two works and and imposes an eighth higher order moment to get correct thermal physics. We show that this can be done by adding just 6 more velocities to D3Q27 model and obtain a ``multi-speed on lattice thermal LBM'' with 33 velocities in 3D and calO (u4) and calO (T4) accurate fieq with a consistent H-theorem and inherent numerical stability. Simulations for Rayleigh-Bernard as well as velocity and temperature slip in micro flows matches with analytical results. Lid driven cavity set up for grid convergence is studied. Finally, a novel data structure is developed for HPC. The authors express their gratitude for computational resources and financial support provide by Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, India.

  20. Geochemical constraints on ocean general circulation models. Final report, May 1, 1995--April 30, 1997

    SciTech Connect

    Broecker, W.S.

    1998-05-17

    A better understanding of the manner in which the ocean operates is essential to the preparation for the consequences of the generation of CO{sub 2} by fossil fuel burning. Examples are as follows: (1) the ocean will ultimately take up a major fraction of the CO{sub 2} produced, but this uptake is retarded by the slow mixing rates, in order to predict the uptake, researchers must develop and validate general circulation models for the ocean; (2) during glacial time large global climate changes occurred. The changes were abrupt happening in a few decades. The trigger for these changes appears to have been reorganizations of the large-scale thermohaline circulation of the ocean. Models suggest that if the CO{sub 2} content of the atmosphere rises to more than 700 ppm, then a possibility exists that another such reorganization might occur. Hence, researchers must learn more about the factors influencing deep-water formation both in the northern Atlantic and in the Souther Ocean. The thrust of this research was to develop constraints based on the distributions of chemicals and tracers in the sea. The accomplishments are outlined in this report.

  1. An Extensible Reduced Order Model Builder for Simulation and Modeling

    SciTech Connect

    2012-09-28

    REVEAL is a software framework for building reduced order models (surrogate models) for high fidelity complex scientific simulations. REVEAL is designed to do reduced order modeling and sensitivity analysis for scientific simulations. REVEAL incorporates a range of sampling and regression methods. It provides complete user environment and is adaptable to new simulators, runs jobs on any computing platform of choice, automatically post processes simulation results and provides a range of data analysis tools. The software is generic and can easily be extended to incorporate new methods, simulators.

  2. An Extensible Reduced Order Model Builder for Simulation and Modeling

    Energy Science and Technology Software Center (ESTSC)

    2012-09-28

    REVEAL is a software framework for building reduced order models (surrogate models) for high fidelity complex scientific simulations. REVEAL is designed to do reduced order modeling and sensitivity analysis for scientific simulations. REVEAL incorporates a range of sampling and regression methods. It provides complete user environment and is adaptable to new simulators, runs jobs on any computing platform of choice, automatically post processes simulation results and provides a range of data analysis tools. The softwaremore » is generic and can easily be extended to incorporate new methods, simulators.« less

  3. Documentation, critique, and suggested changes in a simple ocean model

    SciTech Connect

    Taylor, K.E.

    1986-10-01

    A simple upwelling-diffusion model originally formulated by the NYU modeling group and described in Hoffert et al. (1983) has been rederived and critically analyzed. The purpose was to evaluate how to best incorporate the model into a climate model such as the Livermore Statistical Dynamical Model (LSDM). Hoffert's model was one of the first models to be used to study the question of the transient response of the ocean to climate perturbations. It successfully reproduces the equilibrium temperature structure of the deep ocean. I have found that there are some problems in the formulation of the model when it is applied at individual latitudes. I have offered a simple alternative that allows the thermohaline circulation to vary in such a way as to keep the polar temperature just above the freezing point. I have also corrected some inconsistencies in the poleward heat transport equations. Analytic solutions of the model equations under simple harmonic forcing have been found and can be used to verify the finite-difference schemes of numerical models. Full analysis of a more complex model that includes upwelling driven by surface wind stress has not yet been completed.

  4. Generalized Reduced Order Modeling of Aeroservoelastic Systems

    NASA Astrophysics Data System (ADS)

    Gariffo, James Michael

    Transonic aeroelastic and aeroservoelastic (ASE) modeling presents a significant technical and computational challenge. Flow fields with a mixture of subsonic and supersonic flow, as well as moving shock waves, can only be captured through high-fidelity CFD analysis. With modern computing power, it is realtively straightforward to determine the flutter boundary for a single structural configuration at a single flight condition, but problems of larger scope remain quite costly. Some such problems include characterizing a vehicle's flutter boundary over its full flight envelope, optimizing its structural weight subject to aeroelastic constraints, and designing control laws for flutter suppression. For all of these applications, reduced-order models (ROMs) offer substantial computational savings. ROM techniques in general have existed for decades, and the methodology presented in this dissertation builds on successful previous techniques to create a powerful new scheme for modeling aeroelastic systems, and predicting and interpolating their transonic flutter boundaries. In this method, linear ASE state-space models are constructed from modal structural and actuator models coupled to state-space models of the linearized aerodynamic forces through feedback loops. Flutter predictions can be made from these models through simple eigenvalue analysis of their state-transition matrices for an appropriate set of dynamic pressures. Moreover, this analysis returns the frequency and damping trend of every aeroelastic branch. In contrast, determining the critical dynamic pressure by direct time-marching CFD requires a separate run for every dynamic pressure being analyzed simply to obtain the trend for the critical branch. The present ROM methodology also includes a new model interpolation technique that greatly enhances the benefits of these ROMs. This enables predictions of the dynamic behavior of the system for flight conditions where CFD analysis has not been explicitly

  5. One-way nesting for a primitive equation ocean model

    NASA Technical Reports Server (NTRS)

    Blake, D. W.

    1991-01-01

    Prognostic numerical models for atmospheric and oceanic circulations require initial fields, boundary conditions, and forcing functions in addition to a consistent set of partial differential equations, including a state relation and equations expressing conservation of mass, momentum, and energy. Depending on the horizontal domain to be modeled, the horizontal boundary conditions are either physically obvious or extremely difficult to specify consistently. If the entire atmosphere is modeled, periodic horizontal boundary conditions are appropriate. On the other hand, the physical horizontal boundaries on the entire ocean are solid walls. Obviously, the normal velocity at a solid wall is zero while the specification of the tangential velocity depends on the mathematical treatment of the horizontal viscous terms. Limitations imposed by computer capacity and cost, as well as research interests, have led to the use of limited area models to study flows in the atmosphere and ocean. The limited area models do not have physical horizontal boundaries, merely numerical ones. Correctly determining these open boundary conditions for limited-area numerical models has both intrigued and frustrated numerical modelers for decades. One common approach is to use the closed or solid wall boundary conditions for a limited-area model. The argument given for this approach is that the boundary conditions affect flow near the walls but that none of these effects are propagated into the interior. Therefore, one chooses a big enough domain that the central region of interest is not corrupted by the boundary flow. Research in progress to model the North Atlantic circulation vividly illustrates the pitfalls of this approach. Two model runs are compared: (1) the southern boundary at 20S between latitudes 0 and 40W is artificially closed; and (2) the same boundary is specified as open with an inward transport of 15 Sv (determined from a global model with the same physics) uniformly spread

  6. Modeled sensitivity of the Northwestern Pacific upper-ocean response to tropical cyclones in a fully coupled climate model with varying ocean grid resolution

    NASA Astrophysics Data System (ADS)

    Li, Hui; Sriver, Ryan L.; Goes, Marlos

    2016-01-01

    Tropical cyclones (TCs) actively contribute to Earth's climate, but TC-climate interactions are largely unexplored in fully coupled models. Here we analyze the upper-ocean response to TCs using a high-resolution Earth system model, in which a 0.5° atmosphere is coupled to an ocean with two different horizontal resolutions: 1° and 0.1°. Both versions of the model produce realistic TC climatologies for the Northwestern Pacific region, as well as the transient surface ocean response. We examined the potential sensitivity of the coupled modeled responses to ocean grid resolution by analyzing TC-induced sea surface cooling, latent heat exchange, and basin-scale ocean heat convergence. We find that sea surface cooling and basin-scale aggregated ocean heat convergence are relatively insensitive to the horizontal ocean grid resolutions considered here, but we find key differences in the poststorm restratification processes related to mesoscale ocean eddies. We estimate the annual basin-scale TC-induced latent heat fluxes are 1.70 ± 0.16 × 1021 J and 1.43 ± 0.16 × 1021 J for the high-resolution and low-resolution model configurations, respectively, which account for roughly 45% of the total TC-induced ocean heat loss from the upper ocean. Results suggest that coupled modeling approaches capable of capturing ocean-atmosphere feedbacks are important for developing a complete understanding of the relationship between TCs and climate.

  7. Validation of a global finite element sea-ice ocean model

    NASA Astrophysics Data System (ADS)

    Timmermann, R.; Danilov, S.; Schröter, J.

    2009-04-01

    Results from a global Finite Element Sea ice-Ocean Model (FESOM) are evaluated using a wide range of observational datasets. FESOM's ocean component is a primitive-equation, hydrostatic ocean model using isopycnic diffusion and a Gent-McWilliams scheme to parameterize the effects of sub-gridscale turbulence on tracer distribution. Vertical mixing and convection are parameterized as a function of the Richardson number and the Monin-Obukhov length. A finite element dynamic-thermodynamic sea ice-model with elastic-viscous-plastic rheology has been developed and coupled to the ocean component. The model features a prognostic snow layer but neglects internal heat storage. All model components are discretized on a triangular/tetrahedral grid with a continuous, conforming representation of model variables. The coupled model has been run in a global configuration and forced with NCEP daily atmospheric reanalysis data for 1948-2007. Results are analysed with a focus on the Southern Hemisphere. While summer ice extent is underestimated in both hemispheres, winter ice extents are in good agreement with satellite data. Southern Ocean sea ice thickness distribution agrees well with ship-based observations and even quantitatively with data from upwards looking sonars (ULS). Sea ice freezing rates have been validated using repeated salinity profiles from Southern Elephant Seals. Gulf Stream transport is underestimated, but transports of the Kuroshio and the Antarctic Circumpolar Current appear realistic. A comparison of numerical tracer studies to observed CFC distribution indicates that bottom layer ventilation occurs on realistic pathways. Global meridional overturning features a strong Antarctic Bottom Water (AABW) cell, while the formation of North Atlantic Deep Water (NADW) appears to be on the weak side. Besides pure model validation, the study also identifies regions and processes that critically require a locally increased horizontal resolution in order to be represented

  8. Ocean modelling for aquaculture and fisheries in Irish waters

    NASA Astrophysics Data System (ADS)

    Dabrowski, T.; Lyons, K.; Cusack, C.; Casal, G.; Berry, A.; Nolan, G. D.

    2015-06-01

    The Marine Institute, Ireland, runs a suite of operational regional and coastal ocean models. Recent developments include several tailored products that focus on the key needs of the Irish aquaculture sector. In this article, an overview of the products and services derived from the models are presented. A shellfish model that includes growth and physiological interactions of mussels with the ecosystem and is fully embedded in the 3-D numerical modelling framework has been developed at the Marine Institute. This shellfish model has a microbial module designed to predict levels of coliform contamination in mussels. This model can also be used to estimate the carrying capacity of embayments, assess impacts of pollution on aquaculture grounds and help to classify shellfish waters. The physical coastal model of southwest Ireland provides a three day forecast of shelf water movement in the region. This is assimilated into a new harmful algal bloom alert system used to inform end-users of potential toxic shellfish events and high biomass blooms that include fish killing species. Further services include the use of models to identify potential sites for offshore aquaculture, to inform studies of potential cross-contamination in farms from the dispersal of planktonic sea lice larvae and other pathogens that can infect finfish and to provide modelled products that underpin the assessment and advisory services on the sustainable exploitation of the marine fisheries resources. This paper demonstrates that ocean models can provide an invaluable contribution to the sustainable blue growth of aquaculture and fisheries.

  9. A new high resolution tidal model in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Cancet, Mathilde; Andersen, Ole; Lyard, Florent; Cotton, David; Benveniste, Jérôme

    2016-04-01

    The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are scarce at such high latitudes. As a consequence, the accuracy of the global tidal models decreases by several centimeters in the Polar Regions. It has a large impact on the quality of the satellite altimeter sea surface heights in these regions (ERS1/2, Envisat, CryoSat-2, SARAL/AltiKa and the future Sentinel-3 mission), but also on the end-users' applications that need accurate tidal information. Better knowledge of the tides will improve the quality of the high latitudes altimeter sea surface heights and of all derived products, such as the altimetry-derived geostrophic currents, the mean sea surface and the mean dynamic topography. In addition, accurate tidal models are highly strategic information for ever-growing maritime and industrial activities in this region. NOVELTIS and DTU Space have recently developed a regional, high-resolution tidal atlas in the Arctic Ocean, in the framework of an extension of the CryoSat Plus for Oceans (CP4O) project funded by ESA (STSE program). In particular, this atlas benefits from the assimilation of the most complete satellite altimetry dataset ever used in this region, including the Envisat data up to 82°N and the CryoSat-2 reprocessed data between 82°N and 88°N. The combination of all these satellites gives the best possible coverage of altimetry-derived tidal constituents. Tide gauge data have also been used either for assimilation or validation. This paper presents the methodology followed to develop the model and the performances of this new regional tidal model in the Arctic Ocean.

  10. The Pressure Gradient Force in Sigma-Co Ocean Models

    NASA Astrophysics Data System (ADS)

    Slørdal, Leiv Håvard

    1997-05-01

    The error in computing the horizontal pressure gradient force near steep topography is investigated in a primitive equation, -co-ordinate, numerical ocean model (Blumberg and Mellor, in Three -Dimensional Coastal Ocean Models, Vol. 4, American Geophysical Union, Washington D.C., 1987, pp. 1-16). By performing simple test experiments where the density field is allowed to vary in both the vertical and the horizontal direction, severe errors are detected in the areas where the isopycnals hit the sloping bottom. An alternative method of computing the pressure force (Stelling and van Kester, Int. j. numer. methods fluids, 18, 915-935 (1994) is adopted, resulting in substantial reduction of the errors. However, a systematic underestimation of the calculated quantities is revealed, leading to erroneous depth-mean values of the pressure force. In this study a modification of the Stelling and van Kester method is proposed which seems to improve the overall performance of the method.

  11. Radiative transfer modeling in the coupled atmosphere- ocean system and its application to the remote sensing of ocean color imagery

    NASA Astrophysics Data System (ADS)

    Yan, Banghua

    2001-12-01

    Ocean color is the radiance emanating from the ocean due to scattering by chlorophyll pigments and particles of organic and inorganic origin. Thus, it contains information about chlorophyll concentrations which can be used to estimate primary productivity. Observations of ocean color from space can be used to monitor the variability in marine primary productivity, thereby permitting a quantum leap in our understanding of oceanographic processes from regional to global scales. Satellite remote sensing of ocean color requires accurate removal of the contribution by atmospheric molecules and aerosols to the radiance measured at the top of the atmosphere (TOA). This removal process is called ``atmospheric correction''. Since about 90% of the radiance received by the satellite sensor comes from the atmosphere, accurate removal of this portion is very important. A prerequisite for accurate atmospheric correction is accurate and reliable simulation of the transport of radiation in the atmosphere-ocean system. This thesis focuses on this radiative transfer process, and investigates the impact of particles in the atmosphere (aerosols) and ocean (oceanic chlorophylls and air bubbles) on our ability to remove the atmospheric contribution from the received signal. To explore these issues, a comprehensive radiative transfer model for the coupled atmosphere-ocean system is used to simulate the radiative transfer process and provide a physically sound link between surface-based measurements of oceanic and atmospheric parameters and radiances observed by satellite-deployed ocean color sensors. This model has been upgraded to provide accurate radiances in arbitrary directions as required to analyze satellite data. The model is then applied to quantify the uncertainties associated with several commonly made assumptions invoked in atmospheric correction algorithms. Since atmospheric aerosols consist of a mixture of absorbing and non- absorbing components that may or may not be

  12. Global atmospheric and ocean modeling on the connection machine

    SciTech Connect

    Atlas, S.R.

    1993-12-01

    This paper describes the high-level architecture of two parallel global climate models: an atmospheric model based on the Geophysical Fluid Dynamics Laboratory (GFDL) SKYHI model, and an ocean model descended from the Bryan-Cox-Semtner ocean general circulation model. These parallel models are being developed as part of a long-term research collaboration between Los Alamos National Laboratory (LANL) and the GFDL. The goal of this collaboration is to develop parallel global climate models which are modular in structure, portable across a wide variety of machine architectures and programming paradigms, and provide an appropriate starting point for a fully coupled model. Several design considerations have emerged as central to achieving these goals. These include the expression of the models in terms of mathematical primitives such as stencil operators, to facilitate performance optimization on different computational platforms; the isolation of communication from computation to allow flexible implementation of a single code under message-passing or data parallel programming paradigms; and judicious memory management to achieve modularity without memory explosion costs.

  13. Reduced order model of draft tube flow

    NASA Astrophysics Data System (ADS)

    Rudolf, P.; Štefan, D.

    2014-03-01

    Swirling flow with compact coherent structures is very good candidate for proper orthogonal decomposition (POD), i.e. for decomposition into eigenmodes, which are the cornerstones of the flow field. Present paper focuses on POD of steady flows, which correspond to different operating points of Francis turbine draft tube flow. Set of eigenmodes is built using a limited number of snapshots from computational simulations. Resulting reduced order model (ROM) describes whole operating range of the draft tube. ROM enables to interpolate in between the operating points exploiting the knowledge about significance of particular eigenmodes and thus reconstruct the velocity field in any operating point within the given range. Practical example, which employs axisymmetric simulations of the draft tube flow, illustrates accuracy of ROM in regions without vortex breakdown together with need for higher resolution of the snapshot database close to location of sudden flow changes (e.g. vortex breakdown). ROM based on POD interpolation is very suitable tool for insight into flow physics of the draft tube flows (especially energy transfers in between different operating points), for supply of data for subsequent stability analysis or as an initialization database for advanced flow simulations.

  14. Modeling river plume dynamics with the HYbrid Coordinate Ocean Model

    NASA Astrophysics Data System (ADS)

    Schiller, Rafael V.; Kourafalou, Vassiliki H.

    The dynamics of large-scale river plumes are investigated in idealized numerical experiments using the HYbrid Coordinate Ocean Model (HYCOM). The focus of this study is to address how the development and structure of a buoyant plume are affected by the outflow properties, as impacted by processes within the estuary and at the point of discharge to the coastal basin. Changes in the outflow properties involved vertical and horizontal redistribution of the river inflow and enhanced vertical mixing inside an idealized estuary. The development of the buoyant plume was evaluated in a rectangular, f-plane basin with flat and sloping bottom conditions and in the absence of other external forcing. The general behavior of a mid-latitude river plume was reproduced, with the development of a surface anticyclonic bulge off the estuary mouth and a surface along-shore coastal current which flows in the direction of Kelvin wave propagation ("downstream"); the momentum balance was predominantly geostrophic. Conditions within the estuary and the outflow properties at the river mouth (where observed profiles may be available) greatly impacted the fate of riverine waters. In flat bottom conditions, larger mixing at the freshwater source enhanced the estuarine gravitational circulation, promoting larger upward entrainment and stronger outflow velocities. Although the overall geostrophic balance was maintained, estuarine mixing led to an asymmetry of the currents reaching the river mouth and to a sharp anticyclonic veering within the estuary, resulting in reduced upstream flow and enhanced downstream coastal current. These patterns were altered when the plumes evolved in the presence of a bottom slope. The anticyclonic veering of the buoyant outflow was suppressed, the offshore intrusion decreased and the recirculating bulge was displaced upstream. The sloping bottom impacts were accompanied by enhanced transport and increased downstream extent of the coastal current in most cases. No

  15. Cryosphere-hydrosphere interactions: numerical modeling using the Regional Ocean Modeling System (ROMS) at different scales

    NASA Astrophysics Data System (ADS)

    Bergamasco, A.; Budgell, W. P.; Carniel, S.; Sclavo, M.

    2005-03-01

    Conveyor belt circulation controls global climate through heat and water fluxes with atmosphere and from tropical to polar regions and vice versa. This circulation, commonly referred to as thermohaline circulation (THC), seems to have millennium time scale and nowadays--a non-glacial period--appears to be as rather stable. However, concern is raised by the buildup of CO2 and other greenhouse gases in the atmosphere (IPCC, Third assessment report: Climate Change 2001. A contribution of working group I, II and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, UK) 2001, http://www.ipcc.ch) as these may affect the THC conveyor paths. Since it is widely recognized that dense-water formation sites act as primary sources in strengthening quasi-stable THC paths (Stommel H., Tellus131961224), in order to simulate properly the consequences of such scenarios a better understanding of these oceanic processes is needed. To successfully model these processes, air-sea-ice-integrated modelling approaches are often required. Here we focus on two polar regions using the Regional Ocean Modeling System (ROMS). In the first region investigated, the North Atlantic-Arctic, where open-ocean deep convection and open-sea ice formation and dispersion under the intense air-sea interactions are the major engines, we use a new version of the coupled hydrodynamic-ice ROMS model. The second area belongs to the Antarctica region inside the Southern Ocean, where brine rejections during ice formation inside shelf seas origin dense water that, flowing along the continental slope, overflow becoming eventually abyssal waters. Results show how nowadays integrated-modelling tasks have become more and more feasible and effective; numerical simulations dealing with large computational domains or challenging different climate scenarios can be run on multi-processors platforms and on systems like LINUX clusters, made of the same hardware as PCs, and

  16. Barotropic-baroclinic time splitting for ocean circulation modeling

    SciTech Connect

    Higdon, R.L.; Szoeke, R.A. de

    1997-07-15

    This paper discusses the following topics on oceanic circulation modeling: time splitting in context of the nonlinear primitive equations; analysis of the stability of this splitting when applied to a linearized flow in two-layer fluid with one horizontal dimensions and a flat lower boundary; analysis of this splitting for horizontal dimensions in a rotating reference frame with constant coriolis parameters; and then numerical tests of the new splitting are discussed.

  17. Modeling the impact of polar mesocyclones on ocean circulation

    NASA Astrophysics Data System (ADS)

    Condron, Alan; Bigg, Grant R.; Renfrew, Ian A.

    2008-10-01

    Subsynoptic polar mesoscale cyclones (or mesocyclones) are underrepresented in atmospheric reanalysis data sets and are subgrid scale processes in most models used for seasonal or climate forecasting. This lack of representation, particularly over the Nordic Seas, has a significant impact on modeled ocean circulation due to a consequent underestimation of atmospheric forcing at the air-sea boundary. Using Rankine vortices and a statistically significant linear relationship between mesocyclone diameter and maximum wind speed, a novel parameterization is developed that allows the bogusing in of missing or underrepresented vortices by exploiting a satellite-derived mesocyclone database. From October 1993 to September 1995, more than 2500 cyclones known to be missing from reanalysis data over the northeast Atlantic are parameterized into the forcing fields for a global ocean-only numerical modeling experiment. A comparison of this perturbed forcing simulation to a control simulation shows enhanced surface latent and sensible heat fluxes and a dramatic increase in the cyclonic rotation of the Nordic Seas gyre by four times the average interannual variability. In response to these changes, Greenland Sea Deep Water (GSDW) formation generally increases by up to 20% in 1 month, indicating more active open ocean convection. However such enhancements are smaller than the considerable monthly variability in GSDW production. An accompanying increase in the volume transport of intermediate and deep water overflowing the Denmark Strait highlights an important coupling between short-lived, intense atmospheric activity and deep ocean circulation. The parameterization scheme has the potential to be adapted for use in coupled climate models.

  18. Coupled wave-ocean modeling system experiments in the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Clementi, Emanuela; Oddo, Paolo; Korres, Gerasimos; Pinardi, Nadia; Drudi, Massimiliano; Tonani, Marina; Grandi, Alessandro; Adani, Mario

    2015-04-01

    Wind waves and oceanic circulation processes are of major interest in determining accurate sea state predictions and their interactions are very important for individual dynamic processes. This work presents a coupled wave-current numerical modelling system composed by the ocean circulation model NEMO (Nucleus for European Modelling of the Ocean) and the third generation wave model WaveWatchIII (WW3) implemented in the Mediterranean Sea with 1/16° horizontal resolution and forced by ECMWF atmospheric fields. In order to evaluate the performance of the coupled model, two sets of numerical experiments have been performed and described in this work. A first set of experiments has been built by coupling the wave and circulation models that hourly exchange the following fields: the sea surface currents and air-sea temperature difference are transferred from NEMO model to WW3 model modifying respectively the mean momentum transfer of waves and the wind speed stability parameter; while the neutral drag coefficient computed by WW3 model is passed to NEMO that computes the turbulent component. Five years (2009-2013) numerical experiments have been carried out in both uncoupled and coupled modes. In order to validate the modelling system, numerical results have been compared with coastal and drifting buoys and remote sensing data. Comparison results demonstrate that the WW3 model can fairly reproduce the observed wave characteristics and show that the wave-current interactions improve the representation of the wave spectrum. Minor improvements have been reached by comparing coupled and uncoupled circulation NEMO model results with observations. A second set of numerical experiments has been performed by considering NEMO model one-way coupled with WW3 model. The hydrodynamic model receives from the wave model the neutral drag coefficient and a set of wave fields used to calculate the wave-induced vertical mixing according to Qiao et al. (2010) formulation. Two experiments

  19. Modeling selective pressures on phytoplankton in the global ocean.

    PubMed

    Bragg, Jason G; Dutkiewicz, Stephanie; Jahn, Oliver; Follows, Michael J; Chisholm, Sallie W

    2010-01-01

    Our view of marine microbes is transforming, as culture-independent methods facilitate rapid characterization of microbial diversity. It is difficult to assimilate this information into our understanding of marine microbe ecology and evolution, because their distributions, traits, and genomes are shaped by forces that are complex and dynamic. Here we incorporate diverse forces--physical, biogeochemical, ecological, and mutational--into a global ocean model to study selective pressures on a simple trait in a widely distributed lineage of picophytoplankton: the nitrogen use abilities of Synechococcus and Prochlorococcus cyanobacteria. Some Prochlorococcus ecotypes have lost the ability to use nitrate, whereas their close relatives, marine Synechococcus, typically retain it. We impose mutations for the loss of nitrogen use abilities in modeled picophytoplankton, and ask: in which parts of the ocean are mutants most disadvantaged by losing the ability to use nitrate, and in which parts are they least disadvantaged? Our model predicts that this selective disadvantage is smallest for picophytoplankton that live in tropical regions where Prochlorococcus are abundant in the real ocean. Conversely, the selective disadvantage of losing the ability to use nitrate is larger for modeled picophytoplankton that live at higher latitudes, where Synechococcus are abundant. In regions where we expect Prochlorococcus and Synechococcus populations to cycle seasonally in the real ocean, we find that model ecotypes with seasonal population dynamics similar to Prochlorococcus are less disadvantaged by losing the ability to use nitrate than model ecotypes with seasonal population dynamics similar to Synechococcus. The model predictions for the selective advantage associated with nitrate use are broadly consistent with the distribution of this ability among marine picocyanobacteria, and at finer scales, can provide insights into interactions between temporally varying ocean processes and

  20. A Pacific Ocean general circulation model for satellite data assimilation

    NASA Technical Reports Server (NTRS)

    Chao, Y.; Halpern, D.; Mechoso, C. R.

    1991-01-01

    A tropical Pacific Ocean General Circulation Model (OGCM) to be used in satellite data assimilation studies is described. The transfer of the OGCM from a CYBER-205 at NOAA's Geophysical Fluid Dynamics Laboratory to a CRAY-2 at NASA's Ames Research Center is documented. Two 3-year model integrations from identical initial conditions but performed on those two computers are compared. The model simulations are very similar to each other, as expected, but the simulations performed with the higher-precision CRAY-2 is smoother than that with the lower-precision CYBER-205. The CYBER-205 and CRAY-2 use 32 and 64-bit mantissa arithmetic, respectively. The major features of the oceanic circulation in the tropical Pacific, namely the North Equatorial Current, the North Equatorial Countercurrent, the South Equatorial Current, and the Equatorial Undercurrent, are realistically produced and their seasonal cycles are described. The OGCM provides a powerful tool for study of tropical oceans and for the assimilation of satellite altimetry data.

  1. Land and ocean surface temperature: data development and modeling

    NASA Astrophysics Data System (ADS)

    Zeng, X.; Wang, A.; Brunke, M.

    2014-12-01

    Surface temperature (ST) plays a critical role in land-atmosphere-ocean interactions, and is one of the fundamental variables for Earth system research. ST includes surface air temperature (SAT), surface skin temperature (Ts), and subsurface water or soil temperature at a given depth [T(z)]. In this presentation, we will review our recent work on land and ocean ST. Over land, we have developed the first global 0.5 deg hourly SAT datasets from 1948-2009 by merging in situ CRU data with reanalysis data. Using these datasets, over high latitudes in winter the monthly averaged diurnal temperature range is found to be much larger than the range of monthly averaged hourly temperature diurnal cycle. The former primarily reflects the movement of synoptic weather systems, while the latter is primarily affected by the diurnal radiative forcing. We have also compared Ts from satellite remote sensing (MODIS) and land modeling (CLM) with in situ measurements. For instance, we have identified five factors contributing to the Ts differences between the model and MODIS. Over ocean, we have developed a prognostic Ts parameterization for modeling and data analysis. For instance, the inclusion of the Ts diurnal cycle affects atmospheric processes at diurnal, intraseasonal, and longer time scales. Furthermore, our parameterization provides the relationship between water temperature T(z) at different depths and Ts, and hence helps to merge temperature data from satellite infrared and microwave sensors and in situ buoy and ship measurements.

  2. Anisotropic Mesoscale Eddy Transport in Ocean General Circulation Models

    NASA Astrophysics Data System (ADS)

    Reckinger, S. J.; Fox-Kemper, B.; Bachman, S.; Bryan, F.; Dennis, J.; Danabasoglu, G.

    2014-12-01

    Modern climate models are limited to coarse-resolution representations of large-scale ocean circulation that rely on parameterizations for mesoscale eddies. The effects of eddies are typically introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically in general circulation models. Thus, only a single parameter, namely the eddy diffusivity, is used at each spatial and temporal location to impart the influence of mesoscale eddies on the resolved flow. However, the diffusive processes that the parameterization approximates, such as shear dispersion, potential vorticity barriers, oceanic turbulence, and instabilities, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters to three: a major diffusivity, a minor diffusivity, and the principal axis of alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the newly introduced parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces global temperature and salinity biases. These effects can be improved even further by parameterizing the anisotropic transport mechanisms in the ocean.

  3. Ocean modelling for aquaculture and fisheries in Irish waters

    NASA Astrophysics Data System (ADS)

    Dabrowski, T.; Lyons, K.; Cusack, C.; Casal, G.; Berry, A.; Nolan, G. D.

    2016-01-01

    The Marine Institute, Ireland, runs a suite of operational regional and coastal ocean models. Recent developments include several tailored products that focus on the key needs of the Irish aquaculture sector. In this article, an overview of the products and services derived from the models are presented. The authors give an overview of a shellfish model developed in-house and that was designed to predict the growth, the physiological interactions with the ecosystem, and the level of coliform contamination of the blue mussel. As such, this model is applicable in studies on the carrying capacity of embayments, assessment of the impacts of pollution on aquaculture grounds, and the determination of shellfish water classes. Further services include the assimilation of the model-predicted shelf water movement into a new harmful algal bloom alert system used to inform end users of potential toxic shellfish events and high biomass blooms that include fish-killing species. Models are also used to identify potential sites for offshore aquaculture, to inform studies of potential cross-contamination in farms from the dispersal of planktonic sea lice larvae and other pathogens that can infect finfish, and to provide modelled products that underpin the assessment and advisory services on the sustainable exploitation of the resources of marine fisheries. This paper demonstrates that ocean models can provide an invaluable contribution to the sustainable blue growth of aquaculture and fisheries.

  4. High-resolution coupled ice sheet-ocean modeling using the POPSICLES model

    NASA Astrophysics Data System (ADS)

    Ng, E. G.; Martin, D. F.; Asay-Davis, X.; Price, S. F.; Collins, W.

    2014-12-01

    It is expected that a primary driver of future change of the Antarctic ice sheet will be changes in submarine melting driven by incursions of warm ocean water into sub-ice shelf cavities. Correctly modeling this response on a continental scale will require high-resolution modeling of the coupled ice-ocean system. We describe the computational and modeling challenges in our simulations of the full Southern Ocean coupled to a continental-scale Antarctic ice sheet model at unprecedented spatial resolutions (0.1 degree for the ocean model and adaptive mesh refinement down to 500m in the ice sheet model). The POPSICLES model couples the POP2x ocean model, a modified version of the Parallel Ocean Program (Smith and Gent, 2002), with the BISICLES ice-sheet model (Cornford et al., 2012) using a synchronous offline-coupling scheme. Part of the PISCEES SciDAC project and built on the Chombo framework, BISICLES makes use of adaptive mesh refinement to fully resolve dynamically-important regions like grounding lines and employs a momentum balance similar to the vertically-integrated formulation of Schoof and Hindmarsh (2009). Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests like MISMIP3D (Pattyn et al., 2013) and realistic configurations (Favier et al. 2014). POP2x includes sub-ice-shelf circulation using partial top cells (Losch, 2008) and boundary layer physics following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013). For the POPSICLES Antarctic-Southern Ocean simulations, ice sheet and ocean models communicate at one-month coupling intervals.

  5. A state-space model for ocean drifter motions dominated by inertial oscillations

    NASA Astrophysics Data System (ADS)

    Bengtsson, Thomas; Milliff, Ralph; Jones, Richard; Nychka, Doug; Niiler, Pearn P.

    2005-10-01

    Coincident ocean drifter position and surface wind time series observed on hourly timescales are used to estimate upper ocean dissipation and atmosphere-ocean coupling coefficients in the Labrador Sea. A discrete-process model based on finite differences is used to regress ocean accelerations on ocean velocity estimates but fails because errors in the discrete approximations for the ocean velocities are biased and accumulate over time. Model identification is achieved by fitting a stochastic differential equation model based on classical upper ocean physics to the drifter data via the Kalman filter. Ocean parameters are shown to be nonidentifiable in a direct application to the Labrador Sea data when the known Coriolis parameter is not identified by the model. To address this, the ocean parameters are estimated in an empirical sequence. Data from the Ocean Storms experiment are used to estimate ocean dissipation in isolation from complexities introduced by strong and variable winds. Given a realistic estimate of the ocean dissipation, a second application in the Labrador Sea successfully estimates atmosphere-ocean coupling coefficients and reproduces the Coriolis parameter. Model assessments demonstrate the robustness of the parameter estimates. The model parameter estimates are discussed in comparison with Ekman theory and results from analyses of the global ocean surface drifter data set.

  6. Controlling high-latitude Southern Ocean convection in climate models

    NASA Astrophysics Data System (ADS)

    Stössel, Achim; Notz, Dirk; Haumann, F. Alexander; Haak, Helmuth; Jungclaus, Johann; Mikolajewicz, Uwe

    2015-02-01

    Earth System Models (ESMs) generally suffer from a poor simulation of the High-Latitude Southern Ocean (HLSO). Here we aim at a better understanding of the shortcomings by investigating the sensitivity of the HLSO to the external freshwater flux and the horizontal resolution in forced and coupled simulations with the Max-Planck-Institute Ocean Model (MPIOM). Forced experiments reveal an immediate reduction of open-ocean convection with additional freshwater input. The latter leads to a remarkably realistic simulation of the distinct water-mass structure in the central Weddell Sea featuring a temperature maximum of +0.5 °C at 250 m depth. Similar, but more modest improvements occur over a time span of 40 years after switching from a forced to a coupled simulation with an eddy-resolving version of MPIOM. The switch is accompanied with pronounced changes of the external freshwater flux and the wind field, as well as a more realistic heat flux due to coupling. Similar to the forced freshwater-flux experiments, a heat reservoir develops at depth, which in turn decreases the vertically integrated density of the HLSO and reduces the Antarctic Circumpolar Current to rather realistic values. Coupling with a higher resolution version of the atmosphere model (ECHAM6) yields distinct improvements of the HLSO water-mass structure and sea-ice cover. While the coupled simulations reveal a realistic amount of Antarctic runoff, its distribution appears too concentrated along the coast. Spreading the runoff over a wider region, as suggested in earlier studies to mimic the effect of freshwater transport through icebergs, also leads to noticeable improvements of the HLSO water-mass properties, predominantly along the coast. This suggests that the spread of the runoff improves the representation of Antarctic Bottom Water formation through enhanced near-boundary convection rather than weakened open-ocean convection.

  7. Horizontal density compensation in ocean general circulation models

    NASA Astrophysics Data System (ADS)

    Koch, Andrey O.; Helber, Robert W.; Richman, James G.; Barron, Charlie N.

    2013-04-01

    Density compensation is the condition where temperature (T) and salinity (S) gradients counteract in their effect on density. Open ocean observations with SeaSoar tows and recent glider observations in the Gulf of Mexico reported in the scientific literature suggest that horizontal gradients in the surface mixed layer tend to be strongly density compensated over a range of spatial scales while in seasonal thermocline and deeper layers T,S-fronts are only partially compensated or uncompensated. We assess the capability of ocean general circulation models (OGCM) to develop horizontal density compensation as observed in the upper ocean. The physics required to evolve the initial density compensated mixed layer toward the partially compensated conditions of the thermocline is tested. Idealistic scenarios with horizontal, partially compensated density fronts in the mixed layer are examined in submesoscale-resolved run-down simulations on Hybrid Coordinate Ocean Model (HYCOM). Simulations with no atmospheric forcing show that initial Density compensation does not change substantially experiencing only minor decrease with time simultaneously with the restratification of the mixed layer by submesoscale eddies. Submesoscale fronts tend to be more compensated than mesoscale fronts. A sensitivity analysis shows that the density compensation of submesoscale fronts is particularly sensitive to the horizontal diffusion rate. Simulations with wind forcing exhibit destruction of initial density compensation due to ageostrophic frontogenesis which is confirmed by recent glider observations in the Gulf of Mexico. The lack of the model skill to develop and maintain compensated thermohaline variability is attributed to the T, S horizontal diffusion parameterization used in HYCOM and generally in modern OGCMs: it is decoupled from vertical diffusion and T and S diffusion is horizontally identical. Our findings suggest that OGCM's skill to develop compensated thermohaline variability

  8. Coupled atmosphere-ocean variational data assimilation in the presence of model error

    NASA Astrophysics Data System (ADS)

    Fowler, Alison; Lawless, Amos

    2016-04-01

    Atmosphere-only and ocean-only variational data assimilation (DA) schemes are able to use window lengths that are optimal for the error growth rate, non-linearity and observation density of the respective systems. Typical window lengths are 6-12 hours for the atmosphere and 2-10 days for the ocean. However, in the implementation of coupled DA schemes it has been necessary to match the window length of the ocean to that of the atmosphere, which may potentially sacrifice the accuracy of the ocean analysis in order to provide a more balanced coupled state. This work investigates how extending the window length in the presence of model error affects both the analysis of the coupled state and the initialized forecast when using coupled DA with differing degrees of coupling. Results are illustrated using an idealized single column model of the coupled atmosphere-ocean system. It is found that the analysis error from an uncoupled DA scheme can be smaller than that from a coupled analysis at the initial time, due to faster error growth in the coupled system. However, this does not necessarily lead to a more accurate forecast, due to imbalances in the coupled state. Instead coupled DA is more able to change the initial state to allow for model errors and thus produce a more accurate forecast. The effect of model error is potentially most detrimental in the weakly coupled formulation due to the inconsistency between the coupled model used in the outer loop and uncoupled models used in the inner loop of the incremental scheme.

  9. Theoretical comparison of subgrid turbulence in atmospheric and oceanic quasi-geostrophic models

    NASA Astrophysics Data System (ADS)

    Kitsios, Vassili; Frederiksen, Jorgen S.; Zidikheri, Meelis J.

    2016-04-01

    Due to the massive disparity between the largest and smallest eddies in the atmosphere and ocean, it is not possible to simulate these flows by explicitly resolving all scales on a computational grid. Instead the large scales are explicitly resolved, and the interactions between the unresolved subgrid turbulence and large resolved scales are parameterised. If these interactions are not properly represented then an increase in resolution will not necessarily improve the accuracy of the large scales. This has been a significant and long-standing problem since the earliest climate simulations. Historically subgrid models for the atmosphere and ocean have been developed in isolation, with the structure of each motivated by different physical phenomena. Here we solve the turbulence closure problem by determining the parameterisation coefficients (eddy viscosities) from the subgrid statistics of high-resolution quasi-geostrophic atmospheric and oceanic simulations. These subgrid coefficients are characterised into a set of simple unifying scaling laws, for truncations made within the enstrophy-cascading inertial range. The ocean additionally has an inverse energy cascading range, within which the subgrid model coefficients have different scaling properties. Simulations adopting these scaling laws are shown to reproduce the statistics of the reference benchmark simulations across resolved scales, with orders of magnitude improvement in computational efficiency. This reduction in both resolution dependence and computational effort will improve the efficiency and accuracy of geophysical research and operational activities that require data generated by general circulation models, including weather, seasonal, and climate prediction; transport studies; and understanding natural variability and extreme events.

  10. Idealised modelling of ocean circulation driven by geothermal and hydrothermal fluxes at the seabed

    NASA Astrophysics Data System (ADS)

    Barnes, Jowan; Morales Maqueda, Miguel; Polton, Jeff

    2016-04-01

    There are two distinct processes by which heat is transferred from the solid Earth into the abyssal ocean. The first is conductive geothermal heating and the second is hydrothermal heating, involving advection of heated water from within the Earth's crust. Here, the noticeably different impacts of these two physical systems on ocean circulation are investigated. Previous modelling studies have applied geothermal heat fluxes at the seabed and shown discrepancies in circulation compared to cases which neglected heat from the Earth in their boundary conditions. The true heat flux in the ocean, however, is not entirely geothermal. From areas where the crust is younger a significant proportion of the heat input from the Earth could be in the form of fluid flow from hydrothermal vents, introducing forcing to the circulation which has previously been unaccounted for. In this study a set of idealised modelling experiments are run in order to investigate the effects of changing the balance of the total heat flux from purely geothermal to purely hydrothermal, via intermediate states in which the two boundary conditions are combined in different ratios. By performing such experiments it will be shown which of the two processes is dominant in its effects on circulation driven by heating at the seabed, and whether neglecting the hydrothermal advection in favour of a fully conductive geothermal boundary condition is justifiable. The results will inform the construction of boundary conditions for future circulation models involving ocean floor heat fluxes, specifically a regional study of geothermal and hydrothermal contributions within the Panama Basin.

  11. An equilibrium model for the coupled ocean-atmosphere boundary layer in the tropics

    NASA Technical Reports Server (NTRS)

    Sui, C.-H.; Lau, K.-M.; Betts, Alan K.

    1991-01-01

    An atmospheric convective boundary layer (CBL) model is coupled to an ocean mixed-layer (OML) model in order to study the equilibrium state of the coupled system in the tropics, particularly in the Pacific region. The equilibrium state of the coupled system is solved as a function of sea-surface temperature (SST) for a given surface wind and as a function of surface wind for a given SST. It is noted that in both cases, the depth of the CBL and OML increases and the upwelling below the OML decreases, corresponding to either increasing SST or increasing surface wind. The coupled ocean-atmosphere model is solved iteratively as a function of surface wind for a fixed upwelling and a fixed OML depth, and it is observed that SST falls with increasing wind in both cases. Realistic gradients of mixed-layer depth and upwelling are observed in experiments with surface wind and SST prescribed as a function of longitude.

  12. Nonlinear dynamics approach to the predictability of the Cane-Zebiak coupled ocean-atmosphere model

    NASA Astrophysics Data System (ADS)

    Siqueira, L.; Kirtman, B.

    2014-01-01

    The predictability of the Cane-Zebiak coupled ocean-atmosphere model is investigated using nonlinear dynamics analysis. Newer theoretical concepts are applied to the coupled model in order to help quantify maximal prediction horizons for finite amplitude perturbations on different scales. Predictability analysis based on the maximum Lyapunov exponent considers infinitesimal perturbations, which are associated with errors in the smallest fastest-evolving scales of motion. However, these errors become irrelevant for the predictability of larger scale motions. In this study we employed finite-size Lyapunov exponent analysis to assess the predictability of the Cane-Zebiak coupled ocean-atmosphere model as a function of scale. We demonstrate the existence of fast and slow timescales, as noted in earlier studies, and the expected enhanced predictability of the anomalies on large scales. The final results and conclusions clarify the applicability of these new methods to seasonal forecasting problems.

  13. Modelling the Oceanic Nd Isotopic Composition With a North Atlantic Eddy Permitting Model

    NASA Astrophysics Data System (ADS)

    Peronne, S.; Treguier, A.; Arsouze, T.; Dutay, J.; Lacan, F.; Jeandel, C.

    2006-12-01

    The oceanic water masses differ by their temperatures, salinity, but also a number of geochemical tracers characterized by their weak concentrations and their ability to quantify oceanic processes (mixing, scavenging rates etc). Among these tracers, the Nd isotopic composition (hereafter epsilon-Nd) is a (quasi) conservative tracer of water mass mixing in the ocean interior, far from any lithogenic inputs. It has been recently established that exchange of Nd at the oceanic margins could be the dominant process controlling both its concentration and isotopic composition distribution in the ocean. This was demonstrated using in situ measurements and budget calculations and has recently been confirmed by a low resolution (2°) modeling approach (Arsouze et al., 2006). However, the currents flowing on the ocean margins are not correctly represented in coarse ocean models. It is the case in the North Atlantic ocean, which is of particular interest since i) it is the area of deep water formation and ii) these deep waters are characterized by the most negative epsilon-Nd values of the world ocean, which are used as "imprint" of the present and past thermohaline circulation. It is therefore essential to understand how these water masses acquire their epsilon-Nd signature. We propose here the first results of the modeling of oceanic Nd isotopic composition at eddy-permitting resolution, with the North Atlantic 0.25° version of the NEMO model used for the DRAKKAR European project. A 150 years off-line experiment and a shorter on-line experiment are performed. Simulated Nd distributions are compared to the present-day data base, vertical profiles, and the results of the low resolution model (in the North Atlantic). The eddy permitting model generally provides improved results, provided a high enough exchange rate is imposed in the deep ocean. Deficiencies of the simulated distribution in the Nordic Seas and the subpolar gyre are explained by errors in the input function on

  14. Modeling oceanic multiphase flow by using Lagrangian particle tracking

    NASA Astrophysics Data System (ADS)

    Matsumura, Y.

    2014-12-01

    While the density of seawater is basically determined by its temperature, salinity and pressure, the effective density becomes higher when the water mass contains suspended sediment. On the other hands, effective density declines when water mass contains fine scale materials of lower density such as bubbles and ice crystals. Such density anomaly induced by small scale materials suspended in water masses sometimes plays important roles in the sub-mesoscale ocean physics. To simulate these small scale oceanic multiphase flow, a new modeling framework using an online Lagrangian particle tracking method is developed. A Lagrangian particle tracking method has substantial advantages such as an explicit treatment of buoyancy force acting on each individual particle, no numerical diffusion and dissipation, high dynamic range and an ability to track the history and each individual particle. However, its numerical cost causes difficulty when we try to simulate a large number of particles. In the present study we implement a numerically efficient particle tracking scheme using linked-list data structure, which is coupled with a nonhydrostatic dynamical core. This newly developed model successfully reproduces characteristics of some interesting small scale multiphase processes, for example hyperpycnal flow (a sediment-rich river water plume trapped at ocean floor) and grease ice cover (a slurry mixture of frazil ice crystals and seawater).

  15. Using Virtual Globes and a Java web Application to Visualize and Compare Ocean Observations and Model Data

    NASA Astrophysics Data System (ADS)

    Gemmell, A. L.; Blower, J.; Haines, K.; Smith, G.

    2007-12-01

    In order to better predict how the Earth's changing climate will affect ocean circulation, and more generally the behaviour of the ocean-atmosphere system, ocean modellers need to have the ability to accurately assimilate historical and near-real time data into their models. This process has traditionally included the use of fairly static plots of model and observed data in order to attempt to visualize where discrepancies between the two are greatest. Here we present OceanDIVA - Ocean Data Intercomparison and Visualization Application. OceanDIVA can read in ocean data from both local sources, and from any publicly accessible data holdings worldwide via OPeNDAP, and output the data into either Google Earth or a freely-available online virtual globe. One of its key capabilities is to read in model data from one source and observed data from another unrelated source, and to compare the two - giving data on the misfit. This is done in the form of colour-coded observation locations, or statistical difference plots averaged over regions which can be displayed on the virtual globe. If a particular profile is of interest then users may click on that icon and OceanDIVA will proceed to generate a plot of data with depth on the fly. Data may also be plotted on temperature levels which removes errors associated with estimating the depth at which water masses are found. By harvesting the power and ease of use of virtual globes, we see this as a useful tool to visualize and compare data from different sources, generating new datasets which have more value than the sum of their constituent parts. OceanDIVA could be readily expanded to incorporate, for example, satellite data, biological marine data, or data over land.

  16. Modeling ocean wave propagation under sea ice covers

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Shen, Hayley H.; Cheng, Sukun

    2015-02-01

    Operational ocean wave models need to work globally, yet current ocean wave models can only treat ice-covered regions crudely. The purpose of this paper is to provide a brief overview of ice effects on wave propagation and different research methodology used in studying these effects. Based on its proximity to land or sea, sea ice can be classified as: landfast ice zone, shear zone, and the marginal ice zone. All ice covers attenuate wave energy. Only long swells can penetrate deep into an ice cover. Being closest to open water, wave propagation in the marginal ice zone is the most complex to model. The physical appearance of sea ice in the marginal ice zone varies. Grease ice, pancake ice, brash ice, floe aggregates, and continuous ice sheet may be found in this zone at different times and locations. These types of ice are formed under different thermal-mechanical forcing. There are three classic models that describe wave propagation through an idealized ice cover: mass loading, thin elastic plate, and viscous layer models. From physical arguments we may conjecture that mass loading model is suitable for disjoint aggregates of ice floes much smaller than the wavelength, thin elastic plate model is suitable for a continuous ice sheet, and the viscous layer model is suitable for grease ice. For different sea ice types we may need different wave ice interaction models. A recently proposed viscoelastic model is able to synthesize all three classic models into one. Under suitable limiting conditions it converges to the three previous models. The complete theoretical framework for evaluating wave propagation through various ice covers need to be implemented in the operational ocean wave models. In this review, we introduce the sea ice types, previous wave ice interaction models, wave attenuation mechanisms, the methods to calculate wave reflection and transmission between different ice covers, and the effect of ice floe breaking on shaping the sea ice morphology

  17. Coupled atmosphere-ocean model simulations of El Nino/Southern Oscillation with and without an active Indian Ocean

    SciTech Connect

    Nagai, T.; Kitamura, Y.; Endoh, M.; Tokioka, T.

    1995-01-01

    An atmospheric general circulation model (GCM) was coupled with an ocean GCM covering the Pacific. This coupled model (PAC) was integrated over a 30-year period. The PAC model stimulates well the mean seasonally varying atmospheric and ocean fields and reproduces interannual variations corresponding to ENSO (El Nino/Southern Oscillation). The same atmospheric GCM was coupled with an ocean GCM covering the Indian Ocean and the tropical Pacific. This coupled model (IPC) was integrated over a 35-year period. The model climate in IPC is fairly reasonable, and its Pacific part is very similar to the Pacific climate of the PAC model. ENSO is the major interannual variability in the IPC model. The dynamics of ENSO in IPC are essentially the same as that in PAC. In the Pacific, the subsurface ocean heat content anomalies are formed by wind anomalies and show westward propagation centered off the equator. After they reach the western Pacific, they show eastward propagation along the equator. They produce changes in the thermocline structure in the eastern equatorial Pacific resulting in anomalies in SSTs. The SST anomalies provide wind anomalies, the sign of which is opposite to that of the wind anomalies in the first stage, so that this chain will continue. ENSO in the PAC and IPC models can be regarded as the {open_quotes}delayed oscillator{close_quotes} operating in the Pacific. Although the major interannual variability in the Indian Ocean is linked to ENSO in the Pacific, the Indian Ocean does not play any active role in the ENSO cycle in the IPC model. Interannual variability of monsoon activity in the IPC model is more reasonable than that in the PAC model. However, any definite mechanism for the relationship between monsoon activity and ENSO does not emerge in the present study. 31 refs., 14 figs.

  18. Multi-order Arnoldi-based model order reduction of second-order time-delay systems

    NASA Astrophysics Data System (ADS)

    Xiao, Zhi-Hua; Jiang, Yao-Lin

    2016-09-01

    In this paper, we discuss the Krylov subspace-based model order reduction methods of second-order systems with time delays, and present two structure-preserving methods for model order reduction of these second-order systems, which avoid to convert the second-order systems into first-order ones. One method is based on a Krylov subspace by using the Taylor series expansion, the other method is based on the Laguerre series expansion. These two methods are used in the multi-order Arnoldi algorithm to construct the projection matrices. The resulting reduced models can not only preserve the structure of the original systems, but also can match a certain number of approximate moments or Laguerre expansion coefficients. The effectiveness of the proposed methods is demonstrated by two numerical examples.

  19. Predicting interactions among fishing, ocean warming, and ocean acidification in a marine system with whole-ecosystem models.

    PubMed

    Griffith, Gary P; Fulton, Elizabeth A; Gorton, Rebecca; Richardson, Anthony J

    2012-12-01

    An important challenge for conservation is a quantitative understanding of how multiple human stressors will interact to mitigate or exacerbate global environmental change at a community or ecosystem level. We explored the interaction effects of fishing, ocean warming, and ocean acidification over time on 60 functional groups of species in the southeastern Australian marine ecosystem. We tracked changes in relative biomass within a coupled dynamic whole-ecosystem modeling framework that included the biophysical system, human effects, socioeconomics, and management evaluation. We estimated the individual, additive, and interactive effects on the ecosystem and for five community groups (top predators, fishes, benthic invertebrates, plankton, and primary producers). We calculated the size and direction of interaction effects with an additive null model and interpreted results as synergistic (amplified stress), additive (no additional stress), or antagonistic (reduced stress). Individually, only ocean acidification had a negative effect on total biomass. Fishing and ocean warming and ocean warming with ocean acidification had an additive effect on biomass. Adding fishing to ocean warming and ocean acidification significantly changed the direction and magnitude of the interaction effect to a synergistic response on biomass. The interaction effect depended on the response level examined (ecosystem vs. community). For communities, the size, direction, and type of interaction effect varied depending on the combination of stressors. Top predator and fish biomass had a synergistic response to the interaction of all three stressors, whereas biomass of benthic invertebrates responded antagonistically. With our approach, we were able to identify the regional effects of fishing on the size and direction of the interacting effects of ocean warming and ocean acidification. PMID:23009091

  20. A new approach to the spin-up problem in ocean-climate models

    NASA Astrophysics Data System (ADS)

    Bernsen, E.

    2010-12-01

    The spin-up timescale in large-scale ocean models, i.e., the time it takes to reach an equilibrium state, is determined by the slow processes in the deep ocean and is usually in the order of a few thousand years. As these equilibrium states are taken as initial states for many calculations, much computer time is spent in the spin-up phase of ocean model computations. In this thesis, we propose a new approach which can lead to a reduction in spin-up time for quite a broad class of existing ocean models. Our approach is based on so-called Jacobian-Free Newton-Krylov (JFNK) methods which combine Newton's method for solving non-linear systems with Krylov subspace methods for solving large systems of linear equations. As there is no need to construct the Jacobian matrices explicitly the method can in principle be applied to existing explicit time-stepping codes. To illustrate the method we first apply it to a 3D planetary geostrophic ocean model with prognostic equations only for temperature and salinity. We compare the new method to the 'ordinary' spin-up run for several model resolutions and find a considerable reduction of spin-up time, on the order of a factor 100. The next step is to apply the JFNK methodology to the Modular Ocean Model Version 4 (MOM4), a state-of-the-art ocean model. We present the implementation of the JFNK method in MOM4 but restrict the preconditioning technique to the case for which temperature and salinity distributions are prescribed, resulting in a prescribed density field. We show that for this case the JFNK method can reduce the spin-up time to a steady equilibrium in MOM4 considerably if an accurate solution is required. A spin-off of the use of the JFNK methodology is the application of bifurcation analysis and we present bifurcation diagrams for the wind-driven ocean circulation. We also used the JFNK method (with prescribed density field) in a paleo configuration for the Oligocene and Miocene epochs. In both epochs continental

  1. Strong coupling among Antarctic ice shelves, ocean circulation and sea ice in a global sea-ice - ocean circulation model

    NASA Astrophysics Data System (ADS)

    Sergienko, Olga

    2016-04-01

    The thermodynamic effects of Antarctic ice shelf interaction with ocean circulation are investigated using a global, high-resolution, isopycnal ocean-circulation model coupled to a sea-ice model. The model uses NASA MERRA Reanalysis from 1992 to 2011 as atmospheric forcing. The simulated long-period variability of ice-shelf melting/freezing rates differ across geographic locations. The ice shelves in Antarctic Peninsula, Amundsen and Bellingshausen sea embayments and the Amery Ice Shelf experience an increase in melting starting from 2005. This increase in melting is due to an increase in the subsurface (100-500 m) ocean heat content in the embayments of these ice shelves, which is caused by an increase in sea-ice concentration after 2005, and consequent reduction of the heat loss to the atmosphere. Our simulations provide a strong evidence for a coupling between ocean circulation, sea ice and ice shelves.

  2. Global Ocean Circulation Modeling with an Isopycnic Coordinate Model. Final Report for May 1, 1998 - April 30, 2002

    SciTech Connect

    Bleck, R.

    2004-05-19

    The overall aim of this project was to continue development of a global version of the Miami Isopycnic Coordinate Ocean Model (MICOM) with the intent of turning it into a full-fledged oceanic component of an earth system model.

  3. Model Order Reduction of Aeroservoelastic Model of Flexible Aircraft

    NASA Technical Reports Server (NTRS)

    Wang, Yi; Song, Hongjun; Pant, Kapil; Brenner, Martin J.; Suh, Peter

    2016-01-01

    This paper presents a holistic model order reduction (MOR) methodology and framework that integrates key technological elements of sequential model reduction, consistent model representation, and model interpolation for constructing high-quality linear parameter-varying (LPV) aeroservoelastic (ASE) reduced order models (ROMs) of flexible aircraft. The sequential MOR encapsulates a suite of reduction techniques, such as truncation and residualization, modal reduction, and balanced realization and truncation to achieve optimal ROMs at grid points across the flight envelope. The consistence in state representation among local ROMs is obtained by the novel method of common subspace reprojection. Model interpolation is then exploited to stitch ROMs at grid points to build a global LPV ASE ROM feasible to arbitrary flight condition. The MOR method is applied to the X-56A MUTT vehicle with flexible wing being tested at NASA/AFRC for flutter suppression and gust load alleviation. Our studies demonstrated that relative to the fullorder model, our X-56A ROM can accurately and reliably capture vehicles dynamics at various flight conditions in the target frequency regime while the number of states in ROM can be reduced by 10X (from 180 to 19), and hence, holds great promise for robust ASE controller synthesis and novel vehicle design.

  4. Modeling of Oceanic Gas Hydrate Instability and Methane Release in Response to Climate Change

    SciTech Connect

    Reagan, Matthew; Reagan, Matthew T.; Moridis, George J.

    2008-04-15

    Paleooceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating global climate, implicating global oceanic deposits of methane gas hydrate as the main culprit in instances of rapid climate change that have occurred in the past. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those predicted under future climate change scenarios, is poorly understood. To determine the fate of the carbon stored in these hydrates, we performed simulations of oceanic gas hydrate accumulations subjected to temperature changes at the seafloor and assessed the potential for methane release into the ocean. Our modeling analysis considered the properties of benthic sediments, the saturation and distribution of the hydrates, the ocean depth, the initial seafloor temperature, and for the first time, estimated the effect of benthic biogeochemical activity. The results show that shallow deposits--such as those found in arctic regions or in the Gulf of Mexico--can undergo rapid dissociation and produce significant methane fluxes of 2 to 13 mol/yr/m{sup 2} over a period of decades, and release up to 1,100 mol of methane per m{sup 2} of seafloor in a century. These fluxes may exceed the ability of the seafloor environment (via anaerobic oxidation of methane) to consume the released methane or sequester the carbon. These results will provide a source term to regional or global climate models in order to assess the coupling of gas hydrate deposits to changes in the global climate.

  5. Subaqueous melting in Zachariae Isstrom, Northeast Greenland combining observations and an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Menemenlis, D.

    2015-12-01

    Zachariae Isstrom, a major ice stream in northeast Greenland, has lost its entire ice shelf in the past decade. Here, we study the evolution of subaqueous melting of its floating section during the transition. Observations show that the rate of ice shelf melting has doubled during 1999-2010 and is twice higher than that maintaining the ice shelf in a state of mass equilibrium. The ice shelf melt rate depends on the thermal forcing from warm, salty, subsurface ocean water of Atlantic origin (AW), and - in contrast with Antarctic ice shelves - on the mixing of AW with fresh buoyant subglacial discharge. Subglacial discharge has increased as result of enhanced ice sheet runoff driven by warmer air temperature; ocean thermal forcing has increased due enhanced advection of AW. Here, we employ the Massassuchetts Institute of Technology general circulation model (MITgcm) at a high spatial resolution (1 m horizontal and 1 m vertical spacing near the grounding line) to simulate the melting process in 3-D. The model is constrained by ice thickness from mass conservation, oceanic bathymetry from NASA Operation IceBridge gravity data, in-situ ocean temperature/salinity data, ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) and subglacial discharge from output products of the Regional Atmospheric Climate Model (RACMO). We compare the results in winter (no runoff) with summer (maximum runoff) at two different stages with (prior to 2012) and without the ice shelf (after 2012) to subaqueous melt rates deduced from remote sensing observations. We show that ice melting by the ocean has increased by one order of magnitude as a result of the transition from ice shelf terminating to near-vertical calving front terminating. We also find that subglacial discharge has a significant impact on the ice shelf melt rates in Greenland. We conclude on the impact of ocean warming and air temperature warming on the melting regime of the ice margin of Zachariae

  6. Skill Assessment of a Spectral Ocean-Atmosphere Radiative Model

    NASA Technical Reports Server (NTRS)

    Gregg, Watson, W.; Casey, Nancy W.

    2009-01-01

    Ocean phytoplankton, detrital material, and water absorb and scatter light spectrally. The Ocean- Atmosphere Spectral Irradiance Model (OASIM) is intended to provide surface irradiance over the oceans with sufficient spectral resolution to support ocean ecology, biogeochemistry, and heat exchange investigations, and of sufficient duration to support inter-annual and decadal investigations. OASIM total surface irradiance (integrated 200 nm to 4 microns) was compared to in situ data and three publicly available global data products at monthly 1-degree resolution. OASIM spectrally-integrated surface irradiance had root mean square (RMS) difference= 20.1 W/sq m (about 11%), bias=1.6 W/sq m (about 0.8%), regression slope= 1.01 and correlation coefficient= 0.89, when compared to 2322 in situ observations. OASIM had the lowest bias of any of the global data products evaluated (ISCCP-FD, NCEP, and ISLSCP 11), and the best slope (nearest to unity). It had the second best RMS, and the third best correlation coefficient. OASIM total surface irradiance compared well with ISCCP-FD (RMS= 20.7 W/sq m; bias=-11.4 W/sq m, r=0.98) and ISLSCP II (RMS =25.2 W/sq m; bias= -13.8 W/sq m; r=0.97), but less well with NCEP (RMS =43.0 W/sq m ;bias=-22.6 W/sq m; x=0.91). Comparisons of OASIM photosynthetically available radiation (PAR) with PAR derived from SeaWiFS showed low bias (-1.8 mol photons /sq m/d, or about 5%), RMS (4.25 mol photons /sq m/d ' or about 12%), near unity slope (1.03) and high correlation coefficient (0.97). Coupled with previous estimates of clear sky spectral irradiance in OASIM (6.6% RMS at 1 nm resolution), these results suggest that OASIM provides reasonable estimates of surface broadband and spectral irradiance in the oceans, and can support studies on ocean ecosystems, carbon cycling, and heat exchange.

  7. Procedures for offline grid nesting in regional ocean models

    NASA Astrophysics Data System (ADS)

    Mason, Evan; Molemaker, Jeroen; Shchepetkin, Alexander F.; Colas, Francois; McWilliams, James C.; Sangrà, Pablo

    One-way offline nesting of a primitive-equation regional ocean numerical model (ROMS) is investigated, with special attention to the boundary forcing file creation process. The model has a modified open boundary condition which minimises false wave reflections, and is optimised to utilise high-frequency boundary updates. The model configuration features a previously computed solution which supplies boundary forcing data to an interior domain with an increased grid resolution. At the open boundaries of the interior grid (the child) the topography is matched to that of the outer grid (the parent), over a narrow transition region. A correction is applied to the normal baroclinic and barotropic velocities at the open boundaries of the child to ensure volume conservation. It is shown that these steps, together with a carefully constructed interpolation of the parent data, lead to a high-quality child solution, with minimal artifacts such as persistent rim currents and wave reflections at the boundaries. Sensitivity experiments provide information about the robustness of the model open boundary condition to perturbations in the surface wind stress forcing field, to the perturbation of the volume conservation enforcement in the boundary forcing, and to perturbation of the vertical density structure in the boundary forcing. This knowledge is important when extending the nesting technique to include external data from alien sources, such as ocean models with physics and/or numerics different from ROMS, or from observed climatologies of temperature, salinity and sea level.

  8. gpuPOM: a GPU-based Princeton Ocean Model

    NASA Astrophysics Data System (ADS)

    Xu, S.; Huang, X.; Zhang, Y.; Fu, H.; Oey, L.-Y.; Xu, F.; Yang, G.

    2014-11-01

    Rapid advances in the performance of the graphics processing unit (GPU) have made the GPU a compelling solution for a series of scientific applications. However, most existing GPU acceleration works for climate models are doing partial code porting for certain hot spots, and can only achieve limited speedup for the entire model. In this work, we take the mpiPOM (a parallel version of the Princeton Ocean Model) as our starting point, design and implement a GPU-based Princeton Ocean Model. By carefully considering the architectural features of the state-of-the-art GPU devices, we rewrite the full mpiPOM model from the original Fortran version into a new Compute Unified Device Architecture C (CUDA-C) version. We take several accelerating methods to further improve the performance of gpuPOM, including optimizing memory access in a single GPU, overlapping communication and boundary operations among multiple GPUs, and overlapping input/output (I/O) between the hybrid Central Processing Unit (CPU) and the GPU. Our experimental results indicate that the performance of the gpuPOM on a workstation containing 4 GPUs is comparable to a powerful cluster with 408 CPU cores and it reduces the energy consumption by 6.8 times.

  9. Scientific development of a massively parallel ocean climate model. Final report

    SciTech Connect

    Semtner, A.J.; Chervin, R.M.

    1996-09-01

    Over the last three years, very significant advances have been made in refining the grid resolution of ocean models and in improving the physical and numerical treatments of ocean hydrodynamics. Some of these advances have occurred as a result of the successful transition of ocean models onto massively parallel computers, which has been led by Los Alamos investigators. Major progress has been made in simulating global ocean circulation and in understanding various ocean climatic aspects such as the effect of wind driving on heat and freshwater transports. These steps have demonstrated the capability to conduct realistic decadal to century ocean integrations at high resolution on massively parallel computers.

  10. Model-based ocean acoustic passive localization. Revision 1

    SciTech Connect

    Candy, J.V.; Sullivan, E.J.

    1994-06-01

    A model-based approach is developed (theoretically) to solve the passive localization problem. Here the authors investigate the design of a model-based identifier for a shallow water ocean acoustic problem characterized by a normal-mode model. In this problem they show how the processor can be structured to estimate the vertical wave numbers directly from measured pressure-field and sound speed measurements thereby eliminating the need for synthetic aperture processing or even a propagation model solution. Finally, they investigate various special cases of the source localization problem, designing a model-based localizer for each and evaluating the underlying structure with the expectation of gaining more and more insight into the general problem.

  11. Closing the energy cycle in an ocean model

    NASA Astrophysics Data System (ADS)

    Eden, Carsten

    2016-05-01

    An effort is discussed to construct a realistic ocean model in Boussinesq approximation which features a closed energy cycle up to numerical precision errors. In such a model, the energy related to the mean variables interacts with all parameterised forms of energy without any spurious energy sources or sinks. First, the concept of the energetics of the model in terms of resolved and unresolved energy variables is outlined using potential and dynamical enthalpy instead of internal and potential energy and without use of the concept of available potential energy. The role of energy transfer terms due to the non-linear, compressible equation of state is clarified. Second, a discretisation of the primitive equations is described in which energy transfers of viscous dissipation and mixing parameterisations are exactly calculated. Third, the model performance is documented using idealised and realistic global model configurations.

  12. Observationally-Based Data/Model Metrics from the Southern Ocean Climate Model Atlas

    NASA Astrophysics Data System (ADS)

    Abell, J.; Russell, J. L.; Goodman, P. J.

    2015-12-01

    The Southern Ocean Climate Model Atlas makes available observationally-based standardized data/model metrics of the latest simulations of climate and projections of climate change from available climate models. Global climate model simulations differ greatly in the Southern Ocean, so the development of consistent, observationally-based metrics, by which to assess the fidelity of model simulations is essential. We will present metrics showing and quantifying the results of the modern day climate simulations over the Southern Ocean from models submitted as part of the CMIP5/IPCC-AR5 process. Our analysis will focus on the simulations of the temperature, salinity and carbon at various depths and along significant hydrographic sections. The models exhibit different skill levels with various metrics between models and also within individual models.

  13. Bio-Optical Measurement and Modeling of the California Current and Southern Oceans

    NASA Technical Reports Server (NTRS)

    Mitchell, B. Gregg; Mitchell, B. Greg

    2003-01-01

    The SIMBIOS project's principal goals are to validate standard or experimental ocean color products through detailed bio-optical and biogeochemical measurements, and to combine Ocean optical observations with modeling to contribute to satellite vicarious radiometric calibration and algorithm development.

  14. Assessing first-order emulator inference for physical parameters in nonlinear mechanistic models

    USGS Publications Warehouse

    Hooten, Mevin B.; Leeds, William B.; Fiechter, Jerome; Wikle, Christopher K.

    2011-01-01

    We present an approach for estimating physical parameters in nonlinear models that relies on an approximation to the mechanistic model itself for computational efficiency. The proposed methodology is validated and applied in two different modeling scenarios: (a) Simulation and (b) lower trophic level ocean ecosystem model. The approach we develop relies on the ability to predict right singular vectors (resulting from a decomposition of computer model experimental output) based on the computer model input and an experimental set of parameters. Critically, we model the right singular vectors in terms of the model parameters via a nonlinear statistical model. Specifically, we focus our attention on first-order models of these right singular vectors rather than the second-order (covariance) structure.

  15. Coastal and Marine Spatial Planning - Efforts to Bring Law and Order to Ocean Areas

    NASA Astrophysics Data System (ADS)

    Duff, J. A.

    2011-12-01

    In recent years a number of coastal states have engaged in planning and resource stewardship efforts that go markedly beyond single sector resource-oriented management. In some cases, proponents of such efforts have laid claim to the banner of "first" in characterizing their respective ocean (and Great Lakes) management plans. In particular, California, Massachusetts, New York, Oregon, and Rhode Island have each engaged in coastal and marine spatial planning (CMSP) management approaches that can be characterized as "firsts" in one way or another. This project will outline the bases upon which these claims have been made. It will employ a set of five chronologies designed to inform policy-makers, researchers, resource users and the general public with the context and contents of various state ocean management regimes. For each state, the impetus, apparatus, and status of the state's ocean (and Great Lakes) planning efforts will be examined. In each case CMSP has been legally authorized by the state. But the construction and discretion related to those legal authorizations varies. We will also examine whether there are any early 'signals' suggesting that stricter statutory control of the principles and constraints of a state's coastal and marine spatial planning (CMSP) effort might provide political "insulation" to executive branch personnel charged with implementing such plans but that benefit will come at the expense of a loss of employing valuable expertise and discretion of executive branch administrators. The researchers will assess each state's CMSP apparatus, in detail, to identify how the five states exert legislative control over their respective CMSP efforts. To the degree that substantial variation is identified among the five states, researchers will examine the control-status relationship to see whether and how the level of legislative control may influence the sought after objectives of a given state's CMSP management endeavor.

  16. 76 FR 22106 - Ocean Transportation Intermediary License Rescission of Order of Revocation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    .... Order Published: FR: 3/23/11 (Volume 76, No. 56, Pg. 16422). License Number: 020923NF. Name: Fast Logistics, Inc. Address: 3350 SW 3rd Avenue, Suite 207, Fort Lauderdale, FL 33315. Order Published: FR:...

  17. Model Calculations of Ocean Acidification at the End Cretaceous

    NASA Astrophysics Data System (ADS)

    Tyrrell, T.; Merico, A.; Armstrong McKay, D. I.

    2014-12-01

    Most episodes of ocean acidification (OA) in Earth's past were either too slow or too minor to provide useful lessons for understanding the present. The end-Cretaceous event (66 Mya) is special in this sense, both because of its rapid onset and also because many calcifying species (including 100% of ammonites and >95% of calcareous nannoplankton and planktonic foraminifera) went extinct at this time. We used box models of the ocean carbon cycle to evaluate whether impact-generated OA could feasibly have been responsible for the calcifier mass extinctions. We simulated several proposed consequences of the asteroid impact: (1) vaporisation of gypsum (CaSO4) and carbonate (CaCO3) rocks at the point of impact, producing sulphuric acid and CO2 respectively; (2) generation of NOx by the impact pressure wave and other sources, producing nitric acid; (3) release of CO2 from wildfires, biomass decay and disinterring of fossil organic carbon and hydrocarbons; and (4) ocean stirring leading to introduction into the surface layer of deep water with elevated CO2. We simulated additions over: (A) a few years (e-folding time of 6 months), and also (B) a few days (e-folding time of 10 hours) for SO4 and NOx, as recently proposed by Ohno et al (2014. Nature Geoscience, 7:279-282). Sulphuric acid as a consequence of gypsum vaporisation was found to be the most important acidifying process. Results will also be presented of the amounts of SO4 required to make the surface ocean become extremely undersaturated (Ωcalcite<0.5) for different e-folding times and combinations of processes. These will be compared to estimates in the literature of how much SO4 was actually released.

  18. Modeling of the circulation in the Northwestern Mediterranean Sea with the Princeton Ocean Model

    NASA Astrophysics Data System (ADS)

    Ahumada, M. A.; Cruzado, A.

    2007-02-01

    The Princeton Ocean Model - POM (Blumberg and Mellor, 1987) has been implemented in the Northwestern Mediterranean nested (in one-way off-line mode) to a general circulation model of the Mediterranean Sea - OGCM (Pinardi and Masetti, 2000; Demirov and Pinardi, 2002) in order to investigate if this model configuration is capable of reproducing the major features of the circulation as known from observations and to improve what has been made by previous numerical modeling works. According to the model results, the large-scale cyclonic circulation in the northern part of the Northwestern Mediterranean is, at least in the upper layers, less coherent in winter and spring than in summer and autumn. Furthermore, there is evidence that the mesoscale structure (eddies and meanders) is, during all year, a significant dynamic characteristic in this region of the Mediterranean Sea. Finally, concerning the circulation in the lower layers, the model results have confirmed that Levantine Intermediate Water (LIW) and Western Mediterranean Deep Water (WMDW) follow essentially a cyclonic path during all year.

  19. Global Model of the Integrated Strength of Oceanic Lithosphere and Ridge-push Transmission

    NASA Astrophysics Data System (ADS)

    Mahatsente, R.

    2014-12-01

    Global models of the integrated lithospheric strength of oceanic plates and ridge-push force are presented. To assess the transmission of ridge-push related stress in oceanic plates, ridge-push force and lithospheric strength are compared. The integrated strength of oceanic plate has been estimated using plate cooling model and relevant rheology of the crust and upper mantle. The strength analysis includes Low-Temperature Plasticity (LTP) and assumes a range of possible tectonic conditions and rheology in the plates. The ridge-push force has been derived from thermal state of oceanic lithosphere, crustal age and seafloor depth data. The results of modelling show that both lithospheric strength and ridge-push force are age dependent. Old oceanic plates can be as strong as ~ 11 TN m-1. For plates of the same age, the magnitude of ridge-push force is in the order of ~ 3.5 TN m-1.The transmission of ridge-push is mainly controlled by the rheology and predominant tectonic condition in the plates. If the rheology of oceanic lithosphere is dry, the estimated lithospheric strength is larger than the ridge-push force at all ages for compressional tectonic regimes and at old ages for extension (> 75 Ma). Under such consideration, the ridge-push related stresses may not dissipate in a form of intraplate deformation. Instead, the stresses may be transmitted in the plate. If an oceanic lithosphere has wet rheology, the strength of young plates (< 75 Ma) is much less than the ridge-push force for extensional and compressional tectonic regimes. Consequently, the stress associated with ridge-push may result in intraplate deformation. This depends, however, on the balance of force resulting from far field forces, basal shear traction and Gravitational Potential Energy of elevated regions. In particular, strong basal shear traction can balance the ridge-push force, and as a result, the oceanic lithosphere may respond by deformation. The consideration of LTP in the upper mantle has

  20. 76 FR 38652 - Ocean Transportation Intermediary License; Rescission of Order of Revocation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ..., Reno, NV 89511 Order Published: FR: 5/12/11 (Volume 76, No. 92, Pg. 27644) Sandra L. Kusumoto, Director..., Stoughton, MA 02072 Order Published: FR: 6/15/11 (Volume 76, No. 115, Pg. 34994) License Number: 021442F Name: Ferm Holdings, Inc. Address: 3640 NW 115th Avenue, Miami, FL 33178 Order Published: FR:...

  1. Bayesian Inference of High-Dimensional Dynamical Ocean Models

    NASA Astrophysics Data System (ADS)

    Lin, J.; Lermusiaux, P. F. J.; Lolla, S. V. T.; Gupta, A.; Haley, P. J., Jr.

    2015-12-01

    This presentation addresses a holistic set of challenges in high-dimension ocean Bayesian nonlinear estimation: i) predict the probability distribution functions (pdfs) of large nonlinear dynamical systems using stochastic partial differential equations (PDEs); ii) assimilate data using Bayes' law with these pdfs; iii) predict the future data that optimally reduce uncertainties; and (iv) rank the known and learn the new model formulations themselves. Overall, we allow the joint inference of the state, equations, geometry, boundary conditions and initial conditions of dynamical models. Examples are provided for time-dependent fluid and ocean flows, including cavity, double-gyre and Strait flows with jets and eddies. The Bayesian model inference, based on limited observations, is illustrated first by the estimation of obstacle shapes and positions in fluid flows. Next, the Bayesian inference of biogeochemical reaction equations and of their states and parameters is presented, illustrating how PDE-based machine learning can rigorously guide the selection and discovery of complex ecosystem models. Finally, the inference of multiscale bottom gravity current dynamics is illustrated, motivated in part by classic overflows and dense water formation sites and their relevance to climate monitoring and dynamics. This is joint work with our MSEAS group at MIT.

  2. How should runoff around Antarctica be simulated in an ocean model

    NASA Astrophysics Data System (ADS)

    Mathiot, Pierre; Jenkins, Adrian; Harris, Chris

    2014-05-01

    Ice shelves melting and icebergs calving are the main components of the fresh water runoff around Antarctica. This fresh water source is spread between the surface and about 1000m depth and can also be colder than the winter surface water due to the pressure effect on the freezing point temperature (from -1.8° C in surface up to -2.5° C in depth). In many ocean and climate models, the fresh water flux due to ice shelf and iceberg melting is represented as a surface fresh water source. However, the surface runoff, derived from ice sheet surface melting is negligible in Antarctica. To model the ice shelf and iceberg melting by surface instead of deep runoff could lead to large errors in sea ice and ocean properties on the continental shelf around Antarctica. In order to evaluate the impact of this fresh water flux misrepresentation, three ways to model the runoff (surface runoff, deep runoff and a full ice shelf cavity model) are implemented and compared in a regional model of Pine Island Bay. The sensitivity of the ocean circulation, water masses and sea ice to the runoff parametrisation will be discussed.

  3. Biomineral shell formation under ocean acidification: a shift from order to chaos.

    PubMed

    Fitzer, Susan C; Chung, Peter; Maccherozzi, Francesco; Dhesi, Sarnjeet S; Kamenos, Nicholas A; Phoenix, Vernon R; Cusack, Maggie

    2016-01-01

    Biomineral production in marine organisms employs transient phases of amorphous calcium carbonate (ACC) in the construction of crystalline shells. Increasing seawater pCO2 leads to ocean acidification (OA) with a reduction in oceanic carbonate concentration which could have a negative impact on shell formation and therefore survival. We demonstrate significant changes in the hydrated and dehydrated forms of ACC in the aragonite and calcite layers of Mytilus edulis shells cultured under acidification conditions (1000 μatm pCO2) compared to present day conditions (380 μatm pCO2). In OA conditions, Mytilus edulis has more ACC at crystalisation sites. Here, we use the high-spatial resolution of synchrotron X-ray Photo Emission Electron Microscopy (XPEEM) combined with X-ray Absorption Spectroscopy (XAS) to investigate the influence of OA on the ACC formation in the shells of adult Mytilus edulis. Electron Backscatter Diffraction (EBSD) confirms that OA reduces crystallographic control of shell formation. The results demonstrate that OA induces more ACC formation and less crystallographic control in mussels suggesting that ACC is used as a repair mechanism to combat shell damage under OA. However, the resultant reduced crystallographic control in mussels raises concerns for shell protective function under predation and changing environments. PMID:26876022

  4. Biomineral shell formation under ocean acidification: a shift from order to chaos

    NASA Astrophysics Data System (ADS)

    Fitzer, Susan C.; Chung, Peter; Maccherozzi, Francesco; Dhesi, Sarnjeet S.; Kamenos, Nicholas A.; Phoenix, Vernon R.; Cusack, Maggie

    2016-02-01

    Biomineral production in marine organisms employs transient phases of amorphous calcium carbonate (ACC) in the construction of crystalline shells. Increasing seawater pCO2 leads to ocean acidification (OA) with a reduction in oceanic carbonate concentration which could have a negative impact on shell formation and therefore survival. We demonstrate significant changes in the hydrated and dehydrated forms of ACC in the aragonite and calcite layers of Mytilus edulis shells cultured under acidification conditions (1000 μatm pCO2) compared to present day conditions (380 μatm pCO2). In OA conditions, Mytilus edulis has more ACC at crystalisation sites. Here, we use the high-spatial resolution of synchrotron X-ray Photo Emission Electron Microscopy (XPEEM) combined with X-ray Absorption Spectroscopy (XAS) to investigate the influence of OA on the ACC formation in the shells of adult Mytilus edulis. Electron Backscatter Diffraction (EBSD) confirms that OA reduces crystallographic control of shell formation. The results demonstrate that OA induces more ACC formation and less crystallographic control in mussels suggesting that ACC is used as a repair mechanism to combat shell damage under OA. However, the resultant reduced crystallographic control in mussels raises concerns for shell protective function under predation and changing environments.

  5. Biomineral shell formation under ocean acidification: a shift from order to chaos

    PubMed Central

    Fitzer, Susan C.; Chung, Peter; Maccherozzi, Francesco; Dhesi, Sarnjeet S.; Kamenos, Nicholas A.; Phoenix, Vernon R.; Cusack, Maggie

    2016-01-01

    Biomineral production in marine organisms employs transient phases of amorphous calcium carbonate (ACC) in the construction of crystalline shells. Increasing seawater pCO2 leads to ocean acidification (OA) with a reduction in oceanic carbonate concentration which could have a negative impact on shell formation and therefore survival. We demonstrate significant changes in the hydrated and dehydrated forms of ACC in the aragonite and calcite layers of Mytilus edulis shells cultured under acidification conditions (1000 μatm pCO2) compared to present day conditions (380 μatm pCO2). In OA conditions, Mytilus edulis has more ACC at crystalisation sites. Here, we use the high-spatial resolution of synchrotron X-ray Photo Emission Electron Microscopy (XPEEM) combined with X-ray Absorption Spectroscopy (XAS) to investigate the influence of OA on the ACC formation in the shells of adult Mytilus edulis. Electron Backscatter Diffraction (EBSD) confirms that OA reduces crystallographic control of shell formation. The results demonstrate that OA induces more ACC formation and less crystallographic control in mussels suggesting that ACC is used as a repair mechanism to combat shell damage under OA. However, the resultant reduced crystallographic control in mussels raises concerns for shell protective function under predation and changing environments. PMID:26876022

  6. Complex functionality with minimal computation. Promise and pitfalls of reduced-tracer ocean biogeochemistry models

    SciTech Connect

    Galbraith, Eric D.; Dunne, John P.; Gnanadesikan, Anand; Slater, Richard D.; Sarmiento, Jorge L.; Dufour, Carolina O.; de Souza, Gregory F.; Bianchi, Daniele; Claret, Mariona; Rodgers, Keith B.; Marvasti, Seyedehsafoura Sedigh

    2015-12-21

    Earth System Models increasingly include ocean biogeochemistry models in order to predict changes in ocean carbon storage, hypoxia, and biological productivity under climate change. However, state-of-the-art ocean biogeochemical models include many advected tracers, that significantly increase the computational resources required, forcing a trade-off with spatial resolution. Here, we compare a state-of the art model with 30 prognostic tracers (TOPAZ) with two reduced-tracer models, one with 6 tracers (BLING), and the other with 3 tracers (miniBLING). The reduced-tracer models employ parameterized, implicit biological functions, which nonetheless capture many of the most important processes resolved by TOPAZ. All three are embedded in the same coupled climate model. Despite the large difference in tracer number, the absence of tracers for living organic matter is shown to have a minimal impact on the transport of nutrient elements, and the three models produce similar mean annual preindustrial distributions of macronutrients, oxygen, and carbon. Significant differences do exist among the models, in particular the seasonal cycle of biomass and export production, but it does not appear that these are necessary consequences of the reduced tracer number. With increasing CO2, changes in dissolved oxygen and anthropogenic carbon uptake are very similar across the different models. Thus, while the reduced-tracer models do not explicitly resolve the diversity and internal dynamics of marine ecosystems, we demonstrate that such models are applicable to a broad suite of major biogeochemical concerns, including anthropogenic change. Lastly, these results are very promising for the further development and application of reduced-tracer biogeochemical models that incorporate ‘‘sub-ecosystem-scale’’ parameterizations.

  7. Complex functionality with minimal computation. Promise and pitfalls of reduced-tracer ocean biogeochemistry models

    DOE PAGESBeta

    Galbraith, Eric D.; Dunne, John P.; Gnanadesikan, Anand; Slater, Richard D.; Sarmiento, Jorge L.; Dufour, Carolina O.; de Souza, Gregory F.; Bianchi, Daniele; Claret, Mariona; Rodgers, Keith B.; et al

    2015-12-21

    Earth System Models increasingly include ocean biogeochemistry models in order to predict changes in ocean carbon storage, hypoxia, and biological productivity under climate change. However, state-of-the-art ocean biogeochemical models include many advected tracers, that significantly increase the computational resources required, forcing a trade-off with spatial resolution. Here, we compare a state-of the art model with 30 prognostic tracers (TOPAZ) with two reduced-tracer models, one with 6 tracers (BLING), and the other with 3 tracers (miniBLING). The reduced-tracer models employ parameterized, implicit biological functions, which nonetheless capture many of the most important processes resolved by TOPAZ. All three are embedded inmore » the same coupled climate model. Despite the large difference in tracer number, the absence of tracers for living organic matter is shown to have a minimal impact on the transport of nutrient elements, and the three models produce similar mean annual preindustrial distributions of macronutrients, oxygen, and carbon. Significant differences do exist among the models, in particular the seasonal cycle of biomass and export production, but it does not appear that these are necessary consequences of the reduced tracer number. With increasing CO2, changes in dissolved oxygen and anthropogenic carbon uptake are very similar across the different models. Thus, while the reduced-tracer models do not explicitly resolve the diversity and internal dynamics of marine ecosystems, we demonstrate that such models are applicable to a broad suite of major biogeochemical concerns, including anthropogenic change. Lastly, these results are very promising for the further development and application of reduced-tracer biogeochemical models that incorporate ‘‘sub-ecosystem-scale’’ parameterizations.« less

  8. Complex functionality with minimal computation: Promise and pitfalls of reduced-tracer ocean biogeochemistry models

    NASA Astrophysics Data System (ADS)

    Galbraith, Eric D.; Dunne, John P.; Gnanadesikan, Anand; Slater, Richard D.; Sarmiento, Jorge L.; Dufour, Carolina O.; de Souza, Gregory F.; Bianchi, Daniele; Claret, Mariona; Rodgers, Keith B.; Marvasti, Seyedehsafoura Sedigh

    2015-12-01

    Earth System Models increasingly include ocean biogeochemistry models in order to predict changes in ocean carbon storage, hypoxia, and biological productivity under climate change. However, state-of-the-art ocean biogeochemical models include many advected tracers, that significantly increase the computational resources required, forcing a trade-off with spatial resolution. Here, we compare a state-of-the art model with 30 prognostic tracers (TOPAZ) with two reduced-tracer models, one with 6 tracers (BLING), and the other with 3 tracers (miniBLING). The reduced-tracer models employ parameterized, implicit biological functions, which nonetheless capture many of the most important processes resolved by TOPAZ. All three are embedded in the same coupled climate model. Despite the large difference in tracer number, the absence of tracers for living organic matter is shown to have a minimal impact on the transport of nutrient elements, and the three models produce similar mean annual preindustrial distributions of macronutrients, oxygen, and carbon. Significant differences do exist among the models, in particular the seasonal cycle of biomass and export production, but it does not appear that these are necessary consequences of the reduced tracer number. With increasing CO2, changes in dissolved oxygen and anthropogenic carbon uptake are very similar across the different models. Thus, while the reduced-tracer models do not explicitly resolve the diversity and internal dynamics of marine ecosystems, we demonstrate that such models are applicable to a broad suite of major biogeochemical concerns, including anthropogenic change. These results are very promising for the further development and application of reduced-tracer biogeochemical models that incorporate "sub-ecosystem-scale" parameterizations.

  9. A Global, Multi-Resolution Approach to Regional Ocean Modeling

    SciTech Connect

    Du, Qiang

    2013-11-08

    In this collaborative research project between Pennsylvania State University, Colorado State University and Florida State University, we mainly focused on developing multi-resolution algorithms which are suitable to regional ocean modeling. We developed hybrid implicit and explicit adaptive multirate time integration method to solve systems of time-dependent equations that present two signi cantly di erent scales. We studied the e ects of spatial simplicial meshes on the stability and the conditioning of fully discrete approximations. We also studies adaptive nite element method (AFEM) based upon the Centroidal Voronoi Tessellation (CVT) and superconvergent gradient recovery. Some of these techniques are now being used by geoscientists(such as those at LANL).

  10. Verification of the naval oceanic vertical aerosol model during FIRE

    NASA Technical Reports Server (NTRS)

    Davidson, K. L.; Deleeuw, G.; Gathman, S. G.; Jensen, D. R.

    1990-01-01

    The value of Naval Oceanic Vertical Aerosol Model (NOVAM) is illustrated for estimating the non-uniform and non-logarithmic extinction profiles, based on a severe test involving conditions close to and beyond the limits of applicability of NOVAM. A more comprehensive evaluation of NOVAM from the FIRE data is presented, which includes a clear-air case. For further evaluation more data are required on the vertical structure of the extinction in the marine atmospheric boundary layer (MABL), preferably for different meteorological conditions and in different geographic areas (e.g., ASTEX).

  11. Upscalling processes in an ocean-atmosphere multiscale coupled model

    NASA Astrophysics Data System (ADS)

    Masson, S. G.; Berthet, S.; Samson, G.; Crétat, J.; Colas, F.; Echevin, V.; Jullien, S.; Hourdin, C.

    2015-12-01

    This work explores new pathways toward a better representation of the multi-scale physics that drive climate variability. We are analysing the key upscaling processes by which small-scale localized errors have a knock-on effect onto global climate. We focus on the Peru-Chilli coastal upwelling, an area known to hold among the strongest models biases in the Tropics. Our approach is based on the development of a multiscale coupling interface allowing us to couple WRF with the NEMO oceanic model in a configuration including 2-way nested zooms in the oceanic and/or the atmospheric component of the coupled model. Upscalling processes are evidenced and quantified by comparing three 20-year long simulations of a tropical channel (45°S-45°N), which differ by their horizontal resolution: 0.75° everywhere, 0.75°+0.25° zoom in the southeastern Pacific or 0.25° everywhere. This set of three 20-year long simulations was repeated with 3 different sets of parameterizations to assess the robustness of our results. Our results show that adding an embedded zoom over the southeastern Pacific only in the atmosphere cools down the SST along the Peru-Chili coast, which is a clear improvement. This change is associated with a displacement of the low-level cloud cover, which moves closer to the coast cooling further the coastal area SST. Offshore, we observe the opposite effect with a reduction of the cloud cover with higher resolution, which increases solar radiation and warms the SST. Increasing the resolution in the oceanic component show contrasting results according to the different set parameterization used in the experiments. Some experiment shows a coastal cooling as expected, whereas, in other cases, we observe a counterintuitive response with a warming of the coastal SST. Using at the same time an oceanic and an atmospheric zoom mostly combines the results obtained when using the 2-way nesting in only one component of the coupled model. In the best case, we archive by this

  12. Closure of the Mongol-Okhotsk Ocean: Insights from seismic tomography and numerical modelling

    NASA Astrophysics Data System (ADS)

    Fritzell, E. H.; Bull, A. L.; Shephard, G. E.

    2016-07-01

    The existence of the Palaeozoic and Mesozoic Mongol-Okhotsk Ocean is evident from the Mongol-Okhotsk suture, which stretches from central Mongolia to the Sea of Okhotsk. A lack of sufficient palaeomagnetic data and an otherwise diffuse suture with an abrupt termination to the west has led to difficulties in reconstructing the history, geometry and closure of this ocean. Both the timing and style of the ocean's closure are unclear and have led to several alternative reconstructions. Closure timing ranges between the Late Jurassic (∼155 Ma) and beginning of the Early Cretaceous (∼120 Ma), and the proposed kinematics include contemporaneous subduction along two opposite margins, subduction along only one margin or with a component of left-lateral shear. In the present study, numerical models of mantle convection are coupled with global plate reconstructions to investigate ambiguities regarding the closure of the Mongol-Okhotsk Ocean. In order to decipher the tectonic history of this enigmatic region, two end-member scenarios of subduction location - either along the present-day northern or the southern margins of the Mongol-Okhotsk Ocean - are imposed as kinematic surface boundary conditions for the past 230 Myrs. Through a comparison to seismic tomography, the results indicate a preferred subduction history along the Siberian margin (relative northern margin) of the Mongol-Okhotsk Ocean. At present-day, the slab remnant is predicted to be located farther west than previously proposed. Furthermore, we find that the subducting slabs in this region generate a hot, dense pile at the same location and with a similar shape as the Perm Anomaly.

  13. Assessing the Effectiveness and Side-Effects of Ocean Alkalinity Enhancement in an Earth System Model

    NASA Astrophysics Data System (ADS)

    Jones, S. E.; Ridgwell, A. J.

    2013-12-01

    At present, the potential to decrease atmospheric carbon dioxide concentrations by manipulating the carbon cycle (carbon geoengineering) is being considered as a fourth possible option for addressing anthropogenic climate change, alongside emissions reductions, adaptation and solar geoengineering. This study sets out to assess the effectiveness and potential side-effects of ocean alkalinity enhancement, or ';liming the ocean', as a means to slow the current increase in atmospheric CO2. In order to achieve this, an Earth system model (cGENIE) was used to run both individual simulations as well as a number of 934-member ensembles, to assess each surface ocean grid cell individually, for effectiveness and side-effects of ocean alkalinity enhancement. Effectiveness and side-effects were considered both temporally and spatially and under both steady-state scenarios (of 1x, 2x and 4x pre-industrial pCO2), and using RCP scenarios 4.5 and 8.5. Some consideration of the amount of lime potentially required to have a useful impact on atmospheric CO2 concentration and ocean acidification has also been carried out and compared to current mining capabilities, as an initial step towards considering the feasibility of such an intervention. This research aims to inform the emerging debate around geoengineering by providing an initial insight into where, when and how frequently lime could be used to most efficiently contribute to efforts to slow the rate of increasing atmospheric CO2 concentrations, as well as insights into the caveats and side-effects that may accompany ocean alkalinity enhancement interventions.

  14. The Design and Analysis of Salmonid Tagging Studies in the Columbia Basin; Volume XII; A Multinomial Model for Estimating Ocean Survival from Salmonid Coded Wire-Tag Data.

    SciTech Connect

    Ryding, Kristen E.; Skalski, John R.

    1999-06-01

    The purpose of this report is to illustrate the development of a stochastic model using coded wire-tag (CWT) release and age-at-return data, in order to regress first year ocean survival probabilities against coastal ocean conditions and climate covariates.

  15. The Fidelity of Ocean Models With Explicit Eddies (Chapter 17)

    SciTech Connect

    McClean, J; Jayne, S; Maltrud, M; Ivanova, D

    2007-08-01

    Current practices within the oceanographic community have been reviewed with regard to the use of metrics to assess the realism of the upper-ocean circulation, ventilation processes diagnosed by time-evolving mixed layer depth and mode water formation, and eddy heat fluxes in large-scale fine resolution ocean model simulations. We have striven to understand the fidelity of these simulations in the context of their potential use in future fine-resolution coupled climate system studies. A variety of methodologies are used to assess the veracity of the numerical simulations. Sea surface height variability and the location of western boundary current paths from altimetry have been used routinely as basic indicators of fine-resolution model performance. Drifters and floats have also been used to provide pseudo-Eulerian measures of the mean and variability of surface and sub-surface flows, while statistical comparisons of observed and simulated means have been carried out using James tests. Probability density functions have been used to assess the Gaussian nature of the observed and simulated flows. Length and time scales have been calculated in both Eulerian and Lagrangian frameworks from altimetry and drifters, respectively. Concise measures of multiple model performance have been obtained from Taylor diagrams. The time-evolution of the mixed layer depth at monitoring stations has been compared with simulated time series. Finally, eddy heat fluxes are compared to climatological inferences.

  16. Preliminary ice shelf-ocean simulation results from idealized standalone-ocean and coupled model intercomparison projects (MIPs)

    NASA Astrophysics Data System (ADS)

    Asay-Davis, Xylar; Martin, Daniel

    2016-04-01

    The second Ice Shelf-Ocean MIP (ISOMIP+) and the first Marine Ice Sheet-Ocean MIP (MISOMIP1) prescribe a set of idealized experiments for ocean models with ice-shelf cavities and coupled ice sheet-ocean models, respectively. ISOMIP+ and MISOMIP1 were designed together with the third Marine Ice Sheet MIP (MISMIP+) with three main goals, namely that the MIPs should provide: a controlled forum for researchers to compare their model results with those from other models during model development. a path for testing components in the process of developing coupled ice sheet-ocean models. a basic setup from which a large variety of parameter and process studies can usefully be performed. The experimental design for the three MIPs is currently under review in Geoscientific Model Development (Asay-Davis et al. 2015, doi:10.5194/gmdd-8-9859-2015). We present preliminary results from ISOMIP+ and MISOMIP1 experiments using several ocean-only and coupled ice sheet-ocean models. Among ocean models, we show that differences in model behavior are significant enough that similar results can only be achieved by tuning model parameters (e.g. boundary-layer transfer coefficients, drag coefficients, vertical mixing parameterizations) for each models. This tuning is constrained by a desired mean melt rate in quasi-steady state under specified forcing conditions, akin to how models would be tuned based on observations for non-idealized simulations. We also present a number of parameter studies based the MIP experiments. Again, using several models, we show that melt rates respond sub-linearly to both changes in the square root of the drag coefficient and the heat-transfer coefficient, and that melting is relatively insensitive to horizontal-mixing coefficients (perhaps because the resolution is sufficient to permit eddies) but more sensitive to vertical-mixing coefficients. We show that the choice of the equation of state (linear or nonlinear) does not have a significant impact as long as

  17. Modelling of the circulation in the Northwestern Mediterranean Sea with the Princeton Ocean Model

    NASA Astrophysics Data System (ADS)

    Ahumada, M. A.; Cruzado, A.

    2006-08-01

    The Princeton Ocean Model - POM (Blumberg and Mellor, 1987) has been implemented in the Northwestern Mediterranean nested (in one-way off-line mode) to a general circulation model of the Mediterranean Sea - OGCM (Pinardi and Masetti, 2000; Demirov and Pinardi, 2002) in order to investigate if this model configuration is capable of reproducing the major features of the circulation as known from observations and to improve what has been made by previous numerical modeling works. According to the model results, the large-scale cyclonic circulation in the northern part of the Northwestern Mediterranean is, at least in the upper layers, less coherent in winter and spring than in summer and autumn. Furthermore, there is evidence that the mesoscale structure (eddies and meanders) is, during all year, a significant dynamic characteristic in this region of the Mediterranean Sea. Finally, concerning the circulation in the lower layers has been confirmed that the Levantine Intermediate Water and the Western Mediterranean Deep Water follow essentially a cyclonic path during all year.

  18. Ice-ocean-ecosystem operational model of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Janecki, M.; Dzierzbicka-Glowacka, L.; Jakacki, J.; Nowicki, A.

    2012-04-01

    3D-CEMBS is a fully coupled model adopted for the Baltic Sea and have been developed within the grant, wchich is supported by the Polish State Committee of Scientific Reasearch. The model is based on CESM1.0 (Community Earth System Model), in our configuration it consists of two active components (ocean and ice) driven by central coupler (CPL7). Ocean (POP version 2.1) and ice models (CICE model, version 4.0) are forced by atmospheric and land data models. Atmospheric data sets are provided by ICM-UM model from University of Warsaw. Additionally land model provides runoff of the Baltic Sea (currently 78 rivers). Ecosystem model is based on an intermediate complexity marine ecosystem model for the global domain (J.K. Moore et. al., 2002) and consists of 11 main components: zooplankton, small phytoplankton, diatoms, cyanobacteria, two detrital classes, dissolved oxygen and the nutrients nitrate, ammonium, phosphate and silicate. The model is configured at two horizontal resolutions, approximately 9km and 2km (1/12° and 1/48° respectively). The model bathymetry is represented as 21 vertical levels and the thickness of the first four layers were chosen to be five metres. 3D-CEMBS model grid is based on stereographic coordinates, but equator of these coordinates is in the centre of the Baltic Sea (rotated stereographic coordinates) and we can assume that shape of the cells are square and they are identical. Currently model works in a operational state. The model creates 48-hour forecasts every 6 hours (or when new atmospheric dataset is available). Prognostic variables such as temperature, salinity, ice cover, currents, sea surface height and phytoplankton concentration are presented online on a the website and are available for registered users. Also time series for any location are accessible. This work was carried out in support of grant No NN305 111636 and No NN306 353239 - the Polish state Committee of Scientific Research. The partial support for this study was

  19. Approach to equilibrium in accelerated global oceanic models

    SciTech Connect

    Danabasoglu, G.; McWilliams, J.C.; Large, W.G.

    1996-05-01

    The approach to equilibrium of a coarse-resolution, seasonally forced, global oceanic general circulation model is investigated, considering the effects of a widely used acceleration technique that distorts the dynamics by using unequal time steps in the governing equations. A measure of the equilibration time for any solution property is defined as the time it takes to go 90% of the way from its present value to its equilibrium value. This measure becomes approximately time invariant only after sufficiently long integration. It indicates that the total kinetic energy and most mass transport rates attain equilibrium within about 90 and 40 calendar years, respectively. The upper-ocean potential temperature and salinity equilibrium times are about 480 and 380 calender years, following 150- and 20-year initial adjustments, respectively. In the abyssal ocean, potential temperature and salinity equilibration take about 4500 and 3900 calender years, respectively. These longer equilibration times are due to the slow diffusion of tracers both along and across the isopycnal surfaces in stably stratified regions, and these times vary with the associated diffusivities. An analysis of synchronous (i.e., not accelerated) integrations shows that there is a complex interplay between convective, advective, and diffusive timescales. Because of the distortion by acceleration of the seasonal cycle, the solutions display some significant adjustments upon switching to synchronous integration. However, the proper seasonal cycle is recovered within five years. Provided that a sufficient equilibrium state has been achieved with acceleration, the model must be integrated synchronously for only about 15 years thereafter to closely approach synchronous equilibrium. 16 refs., 11 figs., 1 tab.

  20. Radiative transfer theory applied to ocean bottom modeling.

    PubMed

    Quijano, Jorge E; Zurk, Lisa M

    2009-10-01

    Research on the propagation of acoustic waves in the ocean bottom sediment is of interest for active sonar applications such as target detection and remote sensing. The interaction of acoustic energy with the sea floor sublayers is usually modeled with techniques based on the full solution of the wave equation, which sometimes leads to mathematically intractable problems. An alternative way to model wave propagation in layered media containing random scatterers is the radiative transfer (RT) formulation, which is a well established technique in the electromagnetics community and is based on the principle of conservation of energy. In this paper, the RT equation is used to model the backscattering of acoustic energy from a layered elastic bottom sediment containing distributions of independent scatterers due to a constant single frequency excitation in the water column. It is shown that the RT formulation provides insight into the physical phenomena of scattering and conversion of energy between waves of different polarizations. PMID:19813787

  1. Improvement in Geoid Models for Ocean Circulation Studies

    NASA Technical Reports Server (NTRS)

    Tapley, Byron D.; Chambers, Don P.; Poole, Steve; Ries, John c.

    2003-01-01

    At wavelengths of 500 km and longer, the GRACE GGM01 Model produces a significantly better marine geoid than any previous model. This conclusion follows from evaluating the geostrophic currents determined by combining the model with a mean sea surface from altimetry. The agreement with currents computed from a traditional hydrographic map is very close, which suggests that one of the primary missions of the TOPEX/POSEIDON mission, to determine the absolute dynamic ocean topography, may soon be met. This solution has been made available to the public at http://www.csr.utexs.edu/grace/gravity. The results reported in this paper have been presented at the 2003 EGS-AGU-EUG Joint Assembly. Two articles are currently being prepared for Geophysical Research Letters to summarize these results.

  2. Modeling the Ocean Tide for Tidal Power Generation Applications

    NASA Astrophysics Data System (ADS)

    Kawase, M.; Gedney, M.

    2014-12-01

    Recent years have seen renewed interest in the ocean tide as a source of energy for electrical power generation. Unlike in the 1960s, when the tidal barrage was the predominant method of power extraction considered and implemented, the current methodology favors operation of a free-stream turbine or an array of them in strong tidal currents. As tidal power generation moves from pilot-scale projects to actual array implementations, numerical modeling of tidal currents is expected to play an increasing role in site selection, resource assessment, array design, and environmental impact assessment. In this presentation, a simple, coupled ocean/estuary model designed for research into fundamental aspects of tidal power generation is described. The model consists of a Pacific Ocean-size rectangular basin and a connected fjord-like embayment with dimensions similar to that of Puget Sound, Washington, one of the potential power generation sites in the United States. The model is forced by an idealized lunar tide-generating potential. The study focuses on the energetics of a tidal system including tidal power extraction at both global and regional scales. The hyperbolic nature of the governing shallow water equations means consequence of tidal power extraction cannot be limited to the local waters, but is global in extent. Modeling power extraction with a regional model with standard boundary conditions introduces uncertainties of 3 ~ 25% in the power extraction estimate depending on the level of extraction. Power extraction in the model has a well-defined maximum (~800 MW in a standard case) that is in agreement with previous theoretical studies. Natural energy dissipation and tidal power extraction strongly interact; for a turbine array of a given capacity, the higher the level of natural dissipation the lower the power the array can extract. Conversely, power extraction leads to a decrease in the level of natural dissipation (Figure) as well as the tidal range and the

  3. 76 FR 25691 - Ocean Transportation Intermediary License; Rescission of Order of Revocation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-05

    ... Number: 018977N. Name: Alas Cargo LLC. Address: 228-236 Star of India Lane, Main Street, Carson, CA 90746. Order Published: FR: 3/23/11 (Volume 76, No. 56, Pg. 16422). License Number: 021901F. Name: Magusa Logistics, Corp. Address: 11222 NW. 53rd Lane, Doral, FL 33178. Order Published: FR: 3/23/11 (Volume 76,...

  4. Validation of a Three-Dimensional Model of the Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Monier, L.; Brossier, F.; Razafimahery, F.

    2008-10-01

    This paper is devoted to a numerical model of the oceanic circulation. In order to obtain the variability of the currents with respect to time and depth, we have to use 3D Navier-Stokes equations. The horizontal gradient of pressure appears as an unknown term in these equations. It is directly related to the gradient of the sea surface topography and obtained by solving a 2D model governed by shallow water equations. Numerical experiments are carried out in a parallelepiped canal located in the south hemisphere. First experiment proves coherence between the 2D and 3D models. Then, we test the influence of the Coriolis stress on a southward flow. Finally, we compute different vertical profiles of velocity depending on virtual viscosity used in order to model turbulence.

  5. World Ocean Circulation Experiment

    NASA Technical Reports Server (NTRS)

    Clarke, R. Allyn

    1992-01-01

    The oceans are an equal partner with the atmosphere in the global climate system. The World Ocean Circulation Experiment is presently being implemented to improve ocean models that are useful for climate prediction both by encouraging more model development but more importantly by providing quality data sets that can be used to force or to validate such models. WOCE is the first oceanographic experiment that plans to generate and to use multiparameter global ocean data sets. In order for WOCE to succeed, oceanographers must establish and learn to use more effective methods of assembling, quality controlling, manipulating and distributing oceanographic data.

  6. Second-order Optimality Conditions for Optimal Control of the Primitive Equations of the Ocean with Periodic Inputs

    SciTech Connect

    Tachim Medjo, T.

    2011-02-15

    We investigate in this article the Pontryagin's maximum principle for control problem associated with the primitive equations (PEs) of the ocean with periodic inputs. We also derive a second-order sufficient condition for optimality. This work is closely related to Wang (SIAM J. Control Optim. 41(2):583-606, 2002) and He (Acta Math. Sci. Ser. B Engl. Ed. 26(4):729-734, 2006), in which the authors proved similar results for the three-dimensional Navier-Stokes (NS) systems.

  7. Zonal momentum budget along the equator in the Indian Ocean from a high-resolution ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Nagura, Motoki; McPhaden, Michael J.

    2014-07-01

    This study examines the zonal momentum budget along the equator in the Indian Ocean in a high-resolution ocean general circulation model. Wyrtki Jets, wind-driven eastward flows in the upper 100 m that appear typically twice per year in boreal spring and fall, are a prominent feature of the ocean circulation in this region. Our results indicate that nonlinearity associated with these jets is an important element of the zonal momentum budget, with wind driven eastward momentum advected downward into the thermocline. This advection results in annually averaged zonal currents that flow against the zonal pressure gradient in the upper 200 m, such that there is no mean subsurface undercurrent in the Indian Ocean as there is in the Pacific and Atlantic Oceans. Zonal momentum is further distributed along the equator by zonal advection, with eastward flow substantially enhanced in the eastern basin relative to the western basin. Meridional advection, though generally weak, tends to decelerate surface eastward flow along the equator. These results contrast with those from previous idealized wind-forced model experiments that primarily emphasized the importance of vertical momentum advection. Also, beyond semiannual period fluctuations, significant momentum advection results from a broad range of interacting processes, spanning intraseasonal to interannual time scales. We conclude that proper simulation of zonal flows along the equator in the Indian Ocean, including their climatically relevant impacts on the mass and heat balance, requires accurate representation of nonlinearities that derive from a broad range of time and space scales.

  8. Reduced Order ODE Model for Linear Contrails

    NASA Astrophysics Data System (ADS)

    Inamdar, A. R.; Lele, S. K.; Jacobson, M. Z.

    2015-12-01

    It is widely acknowledged that the large uncertainties in predictions of climate impact of linear contrails stem from inadequate parametrization of contrails in GCMs. But, the parameter space on which contrail dynamics and optical properties depend is very large and spanning it using high fidelity LES is prohibitively expensive. This study leverages the large dataset of LES done so far to understand the most important physical process that governs the evolution of contrails in different stages of its life and proposes a simple, low-cost and robust ODE model to capture the evolution of quantities of interest such as ice mass, vortex downwash and contrail cross-sectional dimensions. A direct consequence of modeling the contrail using parameters impacting the most important physical process is the reduction of the original parameter space to only those groupings of parameters that impact linear contrails independently. We are able to capture the most prominent features of the contrail at every stage of the life of the contrail - the induction of the jet exhaust by the trailing vortex pair, the vortex downwash and eventual destruction and the subsequent spreading of the contrail by ambient turbulence. A simplified version of GATOR-GCMOM - a GCM - is initialized using inputs from the new ODE model to test if the inclusion of the impact of the aforementioned parameter groups has significant persistent effects. Results from the GATOR-GCMOM box model calculations show which parameter groupings show persistent effects.

  9. Validation of ocean-meteorological models in the Southeastern Bay of Biscay

    NASA Astrophysics Data System (ADS)

    Gaztelumendi, S.; Rubio, A.; Egaña, J.; Fontán, A.; Gelpi, I. R.; Gonzalez, M.; Otxoa de Alda, K.; Mader, J.; Alchaarani, N.; Ferrer, L.; Caballero, A.; Larreta, J.

    2009-09-01

    This contribution is focused on the validation of the modelling forecasts provided by the operational ocean-meteorological system established for the Basque Country region (Southeastern Bay of Biscay). The system, implemented and developed within the Framework of ETORTEK Programme (Department of Industry, Trade and Tourism of the Basque Government), brings together climatological, oceanographic and meteorological institutions, in order to improve the way in which these services are working presently and merge the products in a unique operational system. This modelling system, working at several time-scales, includes: (1) the Global Forecast System (GFS), and the PSU/NCAR mesoscale model (MM5) to provide atmospheric information; (2) the Wavewatch-III wind-wave forecast model (WW3); and (3) the Regional Ocean Modeling System (ROMS). Validation of the models is carried out using information from the operational observational system of the Basque Country: 6 coastal stations, 2 deep sea buoys - over ocean floors around 600 m depth - and an HF Radar array, together with satellite images of sea surface temperature (SST). Concerning the meteorological and wind wave models, some validation results for selected scenarios representative on ocean-meteorological situation over the study area are shown. On the other hand some statistical results for a pre-operational evaluation period are also exposed, focusing on relevant ocean-meteorological variables. With respect to the hydrodynamic model, comparisons with SST show that it is able to reproduce correctly the main patterns and variability observed in the Bay of Biscay. RMS errors for the annual SST show that, on average, models tend to overestimate the SST (RMS under 1.5 °C). Moreover, high errors are observed in some locations, related to specific processes, as happens, for instance, in the Northeastern coast of the Iberian Peninsula (RMS errors around 2 °C), where the model is not able to reproduce correctly the upwelling

  10. The Stratified Ocean Model with Adaptive Refinement (SOMAR)

    NASA Astrophysics Data System (ADS)

    Santilli, Edward; Scotti, Alberto

    2015-06-01

    A computational framework for the evolution of non-hydrostatic, baroclinic flows encountered in regional and coastal ocean simulations is presented, which combines the flexibility of Adaptive Mesh Refinement (AMR) with a suite of numerical tools specifically developed to deal with the high degree of anisotropy of oceanic flows and their attendant numerical challenges. This framework introduces a semi-implicit update of the terms that give rise to buoyancy oscillations, which permits a stable integration of the Navier-Stokes equations when a background density stratification is present. The lepticity of each grid in the AMR hierarchy, which serves as a useful metric for anisotropy, is used to select one of several different efficient Poisson-solving techniques. In this way, we compute the pressure over the entire set of AMR grids without resorting to the hydrostatic approximation, which can degrade the structure of internal waves whose dynamics may have large-scale significance. We apply the modeling framework to three test cases, for which numerical or analytical solutions are known that can be used to benchmark the results. In all the cases considered, the model achieves an excellent degree of congruence with the benchmark, while at the same time achieving a substantial reduction of the computational resources needed.

  11. Anisotropic mesoscale eddy transport in ocean general circulation models

    NASA Astrophysics Data System (ADS)

    Reckinger, Scott; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank; Dennis, John; Danabasoglu, Gokhan

    2014-11-01

    In modern climate models, the effects of oceanic mesoscale eddies are introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically. However, the diffusive processes that the parameterization approximates, such as shear dispersion and potential vorticity barriers, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters from one to three: major diffusivity, minor diffusivity, and alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces temperature and salinity biases. These effects can be improved by parameterizing the oceanic anisotropic transport mechanisms.

  12. Time domain analysis of the weighted distributed order rheological model

    NASA Astrophysics Data System (ADS)

    Cao, Lili; Pu, Hai; Li, Yan; Li, Ming

    2016-05-01

    This paper presents the fundamental solution and relevant properties of the weighted distributed order rheological model in the time domain. Based on the construction of distributed order damper and the idea of distributed order element networks, this paper studies the weighted distributed order operator of the rheological model, a generalization of distributed order linear rheological model. The inverse Laplace transform on weighted distributed order operators of rheological model has been obtained by cutting the complex plane and computing the complex path integral along the Hankel path, which leads to the asymptotic property and boundary discussions. The relaxation response to weighted distributed order rheological model is analyzed, and it is closely related to many physical phenomena. A number of novel characteristics of weighted distributed order rheological model, such as power-law decay and intermediate phenomenon, have been discovered as well. And meanwhile several illustrated examples play important role in validating these results.

  13. Ocean acidification in the Meso- vs. Cenozoic: lessons from modeling about the geological expression of paleo-ocean acidification

    NASA Astrophysics Data System (ADS)

    Greene, S. E.; Ridgwell, A.; Kirtland Turner, S.

    2015-12-01

    Rapid climatic and biotic events putatively associated with ocean acidification are scattered throughout the Meso-Cenozoic. Many of these rapid perturbations, variably referred to as hyperthermals (Paleogene) and oceanic anoxic events or mass extinction events (Mesozoic), share a number of characteristic features, including some combination of negative carbon isotopic excursion, global warming, and a rise in atmospheric CO2 concentration. Comparisons between ocean acidification events over the last ~250 Ma are, however, problematic because the types of marine geological archives and carbon reservoirs that can be interrogated are fundamentally different for early Mesozoic vs. late Mesozoic-Cenozoic events. Many Mesozoic events are known primarily or exclusively from geological outcrops of relatively shallow water deposits, whereas the more recent Paleogene hyperthermal events have been chiefly identified from deep sea records. In addition, these earlier events are superimposed on an ocean with a fundamentally different carbonate buffering capacity, as calcifying plankton (which created the deep-sea carbonate sink) originate in the mid-Mesozoic. Here, we use both Earth system modeling and reaction transport sediment modeling to explore the ways in which comparable ocean acidification-inducing climate perturbations might manifest in the Mesozoic vs. the Cenozoic geological record. We examine the role of the deep-sea carbonate sink in the expression of ocean acidification, as well as the spatial heterogeneity of surface ocean pH and carbonate saturation state. These results critically inform interpretations of ocean acidification prior to the mid-Mesozoic advent of calcifying plankton and expectations about the recording of these events in geological outcrop.

  14. 12 CFR Appendix A to Subpart C of... - Model Stipulation for Protective Order and Model Protective Order

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 1 2012-01-01 2012-01-01 false Model Stipulation for Protective Order and Model Protective Order A Appendix A to Subpart C of Part 4 Banks and Banking COMPTROLLER OF THE CURRENCY... Pt. 4, Subpt. C, App. A Appendix A to Subpart C of Part 4—Model Stipulation for Protective Order...

  15. 12 CFR Appendix A to Subpart C of... - Model Stipulation for Protective Order and Model Protective Order

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 1 2013-01-01 2013-01-01 false Model Stipulation for Protective Order and Model Protective Order A Appendix A to Subpart C of Part 4 Banks and Banking COMPTROLLER OF THE CURRENCY... Pt. 4, Subpt. C, App. A Appendix A to Subpart C of Part 4—Model Stipulation for Protective Order...

  16. 12 CFR Appendix A to Subpart C of... - Model Stipulation for Protective Order and Model Protective Order

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Model Stipulation for Protective Order and Model Protective Order A Appendix A to Subpart C of Part 4 Banks and Banking COMPTROLLER OF THE CURRENCY... Pt. 4, Subpt. C, App. A Appendix A to Subpart C of Part 4—Model Stipulation for Protective Order...

  17. 77 FR 13606 - Ocean Transportation Intermediary License; Rescission of Order of Revocation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Number: 021014N. Name: Magic Transport, Inc. Address: Pepsi Industrial Park, PR-2, KM 19.5, Interior BO Candelaria, Toa Baja, PR 00949. Order Published: FR: 3/1/12 (Volume 77, No. 41, Pg. 12584). Vern W....

  18. 75 FR 44262 - Ocean Transportation Intermediary License; Rescission of Order of Revocation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... Number: 003486F. Name: Mozart Forwarding, Inc. Address: 535 Seaview Avenue, Bridgeport, CT 06607. Order Published: FR: 3/10/2010 (Volume 75, No. 46 Pg. 11181). Sandra L. Kusumoto, Director, Bureau...

  19. The role of local atmospheric forcing on the modulation of the ocean mixed layer depth in reanalyses and a coupled single column ocean model

    NASA Astrophysics Data System (ADS)

    Pookkandy, Byju; Dommenget, Dietmar; Klingaman, Nicholas; Wales, Scott; Chung, Christine; Frauen, Claudia; Wolff, Holger

    2016-02-01

    The role of local atmospheric forcing on the ocean mixed layer depth (MLD) over the global oceans is studied using ocean reanalysis data products and a single-column ocean model coupled to an atmospheric general circulation model. The focus of this study is on how the annual mean and the seasonal cycle of the MLD relate to various forcing characteristics in different parts of the world's oceans, and how anomalous variations in the monthly mean MLD relate to anomalous atmospheric forcings. By analysing both ocean reanalysis data and the single-column ocean model, regions with different dominant forcings and different mean and variability characteristics of the MLD can be identified. Many of the global oceans' MLD characteristics appear to be directly linked to the different atmospheric forcing characteristics at different locations. Here, heating and wind-stress are identified as the main drivers; in some, mostly coastal, regions the atmospheric salinity forcing also contributes. The annual mean MLD is more closely related to the annual mean wind-stress and the MLD seasonality is more closely related to the seasonality in heating. The single-column ocean model, however, also points out that the MLD characteristics over most global ocean regions, and in particular in the tropics and subtropics, cannot be maintained by local atmospheric forcings only, but are also a result of ocean dynamics that are not simulated in a single-column ocean model. Thus, lateral ocean dynamics are essential in correctly simulating observed MLD.

  20. Technical Report Series on Global Modeling and Data Assimilation. Volume 22; A Coupled Ocean-Atmosphere Radiative Model for Global Ocean Biogeochemical Models

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.; Suarez, Max J. (Editor)

    2002-01-01

    An ocean-atmosphere radiative model (OARM) evaluates irradiance availability and quality in the water column to support phytoplankton growth and drive ocean thermodynamics. An atmospheric component incorporates spectral and directional effects of clear and cloudy skies as a function of atmospheric optical constituents, and spectral reflectance across the air-sea interface. An oceanic component evaluates the propagation of spectral and directional irradiance through the water column as a function of water, five phytoplankton groups, and chromophoric dissolved organic matter. It tracks the direct and diffuse streams from the atmospheric component, and a third stream, upwelling diffuse irradiance. The atmospheric component of OARM was compared to data sources at the ocean surface with a coefficient of determination (r2) of 0.97 and a root mean square of 12.1%.

  1. Ocean acoustic signal processing: A model-based approach

    SciTech Connect

    Candy, J.V. ); Sullivan, E.J. )

    1992-12-01

    A model-based approach is proposed to solve the ocean acoustic signal processing problem that is based on a state-space representation of the normal-mode propagation model. It is shown that this representation can be utilized to spatially propagate both modal (depth) and range functions given the basic parameters (wave numbers, etc.) developed from the solution of the associated boundary value problem. This model is then generalized to the stochastic case where an approximate Gauss--Markov model evolves. The Gauss--Markov representation, in principle, allows the inclusion of stochastic phenomena such as noise and modeling errors in a consistent manner. Based on this framework, investigations are made of model-based solutions to the signal enhancement, detection and related parameter estimation problems. In particular, a modal/pressure field processor is designed that allows {ital in} {ital situ} recursive estimation of the sound velocity profile. Finally, it is shown that the associated residual or so-called innovation sequence that ensues from the recursive nature of this formulation can be employed to monitor the model's fit to the data and also form the basis of a sequential detector.

  2. Closing the Seasonal Ocean Surface Temperature Balance in the Eastern Tropical Oceans from Remote Sensing and Model Reanalyses

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Clayson, Carol A.

    2012-01-01

    The Eastern tropical ocean basins are regions of significant atmosphere-ocean interaction and are important to variability across subseasonal to decadal time scales. The numerous physical processes at play in these areas strain the abilities of coupled general circulation models to accurately reproduce observed upper ocean variability. Furthermore, limitations in the observing system of important terms in the surface temperature balance (e.g., turbulent and radiative heat fluxes, advection) introduce uncertainty into the analyses of processes controlling sea surface temperature variability. This study presents recent efforts to close the surface temperature balance through estimation of the terms in the mixed layer temperature budget using state-of-the-art remotely sensed and model-reanalysis derived products. A set of twelve net heat flux estimates constructed using combinations of radiative and turbulent heat flux products - including GEWEX-SRB, ISCCP-SRF, OAFlux, SeaFlux, among several others - are used with estimates of oceanic advection, entrainment, and mixed layer depth variability to investigate the seasonal variability of ocean surface temperatures. Particular emphasis is placed on how well the upper ocean temperature balance is, or is not, closed on these scales using the current generation of observational and model reanalysis products. That is, the magnitudes and spatial variability of residual imbalances are addressed. These residuals are placed into context within the current uncertainties of the surface net heat fluxes and the role of the mixed layer depth variability in scaling the impact of those uncertainties, particularly in the shallow mixed layers of the Eastern tropical ocean basins.

  3. Onset time and strength of oceanic deep convection diagnosed from an ocean large-eddy simulation model

    SciTech Connect

    Denbo, D.W.

    1995-01-01

    Deep convection has an important role in the large-scale thermohaline circulation, which in turn plays a central part in determining global climate. Manabe and Stouffer`s climate simulations have shown that the thermal and dynamic structure of the oceans have pronounced changes in model climates with increased CO{sub 2}. In their simulations, the addition of low-salinity surface water at high latitudes prevents the ventilation of the deep ocean, thus reducing or in some cases nearly extinguishing the thermohaline circulation. Siegenthaler and Sarmiento remarked that whereas the ocean is the largest of the rapidly exchanging global carbon reservoirs and a major sink for anthropogenic carbon, this uptake capacity become available only when the whole ocean is chemically equilibrated with the new atmospheric CO{sub 2} concentration. The dynamics of the oceanic uptake of CO{sub 2} is therefore strongly determined by the rate of downward transport of CO{sub 2}-laden water from surface to depth. The importance of deep convection in moderating the uptake of CO{sub 2} by the ocean and its role in the meridional circulation, which affects climate by transporting heat from the tropics to the polar regions, motivates this research. The experiments described here were designed to study the sensitivity of the onset time and strength of deep convection to changes in the heat flux, latent heat flux, and perturbations of the surface mixed-layer temperature and salinity.

  4. Fractional-order variational optical flow model for motion estimation.

    PubMed

    Chen, Dali; Sheng, Hu; Chen, YangQuan; Xue, Dingyü

    2013-05-13

    A new class of fractional-order variational optical flow models, which generalizes the differential of optical flow from integer order to fractional order, is proposed for motion estimation in this paper. The corresponding Euler-Lagrange equations are derived by solving a typical fractional variational problem, and the numerical implementation based on the Grünwald-Letnikov fractional derivative definition is proposed to solve these complicated fractional partial differential equations. Theoretical analysis reveals that the proposed fractional-order variational optical flow model is the generalization of the typical Horn and Schunck (first-order) variational optical flow model and the second-order variational optical flow model, which provides a new idea for us to study the optical flow model and has an important theoretical implication in optical flow model research. The experiments demonstrate the validity of the generalization of differential order. PMID:23547225

  5. Modeling of submarine melting of Greenland tidewater glaciers using an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Rignot, E. J.; Menemenlis, D.; Koppes, M.

    2010-12-01

    The acceleration of Greenland tidewater glaciers has increased the mass loss from the Greenland Ice Sheet. Submarine melting is one of the possible drivers for glacier acceleration. Enhanced submarine melting could result from ocean warming, changes in ocean current, and increase in sub-glacial runoff. We use a combination of numerical modeling and field data to understand the mechanism of submarine melting in Greenland. Specifically, oceanographic data (temperature, salinity, and current velocity) were collected in August 2008 and 2010 near the calving fronts of the Lille Gletscher, Store Gletscher, Eqip Sermia, Kangilerngata Sermia, Sermeq Kujatdleq and Sermeq Avangnardleq glaciers in central West Greenland. These data are compared to high-resolution regional ocean simulations carried out using the Massachusetts Institute of Technology general circulation model (MITgcm). MITgcm includes submarine melting at the base of an ice shelf and we have added a new module to simulate the melting process along the vertical calving face of Greenland tidewater glaciers. We integrate the MITgcm with JRA25 atmospheric and ECCO2 oceanic boundary conditions and compare the simulation results with the West Greenland data. We also conduct model sensitivity studies for ocean temperature, sub-glacial runoff, and fjord. The preliminary results show a quadratic increase in submarine melting with warmer ocean temperature and a role of sub-glacial runoff in changing ocean circulation. This study could help us evaluate the impact of ocean warming and enhanced runoff on submarine melting and in turn on glacier mass balance. This work is performed at UCI under a contact with NASA Cryosphere Science Program.

  6. Geoid model of Tahiti-Moorea oceanic volcanic islands

    NASA Astrophysics Data System (ADS)

    Shih, H.; Mouyen, M.; Barriot, J.; Hwang, C.; Lequeux, D.; Sichoix, L.

    2013-12-01

    We present the results of an airborne gravity survey that has been conducted over Tahiti-Moorea, two oceanic volcanic islands in French Polynesia, during July and August 2013. The aim of this survey is two-folds. First, these gravity data can be inverted to unravel the subsurface structure of these islands, in particular the geometry of the magma chambers. Second, such data can be used to determine a geoid over Tahiti-Moorea. In this paper, we focus on the geoid modeling. The gravimeter used is the LaCoste & Romberg Air-Sea gravity System II. The aircraft is equipped with a GPS antenna and a receiver, which data are sampled at 1 Hz. A permanent GPS station in the University of French Polynesia is used together with the aircraft GPS to determine precise positions, velocities and accelerations of the plane. These parameters are necessary to get reliable gravity data at mgal accuracy. In addition to the airborne data, land measurements, done from May to August 2013, and shipborne data (1997) are also used for the Tahiti-Moorea geoid. A band-limited least-squares collocation in a classic remove-compute-restore technique is carried out to combine these data into the geoid computation. This geoid will be of primary interest for the analysis of two tide gauges set in Papeete harbor and Tahiti-Iti, altimetric surveys of the oceanic currents as well as for real-time GPS positioning for surveyors in Tahiti.

  7. The 2004 December 26 Indian Ocean tsunami impact on Sri Lanka: cascade modelling from ocean to city scales

    NASA Astrophysics Data System (ADS)

    Poisson, B.; Garcin, M.; Pedreros, R.

    2009-06-01

    The 2004 December 26 Indian Ocean tsunami severely hit Sri Lanka. Although it was not in the direct path of the initial tsunami waves, the western coast was struck by diffracted waves that caused much damage. The numerical model GEOWAVE is used to compute tsunami generation, propagation and inundation from the earthquake source to the Sri Lankan coast. A nested grid system is constructed to increase the resolution until Galle Bay, on the southwestern coast, where a 20 m-grid is used. The six nested topobathymetric grids are interpolated from ETOPO2 and high resolution data, at sea as onshore. Simulation results are compared with tsunami height data from National Oceanic and Atmospheric Administration (NOAA; US) and Geological Survey & Mines Bureau (GSMB; Sri Lanka). When the grid resolution increases, the discrepancy between the model and the data remains, on average, good, whereas its spread increases. We then conclude that the order of magnitude of the tsunami height is consistent from the 180 m-resolution grid, but the spatial imprecision is too high to locally predict reliable water heights. Nevertheless, the comparison between computed time-series of sea surface elevation at the Colombo tide station and tide-gauge data shows a very good agreement as both amplitude, and arrival time of the first wave are well reproduced. When focusing onshore, the modelled inundation limit is compared with the limit measured in the field. With its a priori setup, computed inundation spreads much farther behind the field limit. We then integrate more accurate nearshore conditions into the model. Non-linear shallow water equations are chosen instead of fully non-linear Boussinesq equations; the bottom friction on land is increased to a much higher value than at sea; the buildings cover and the low tide conditions are taken into account in the DEM. The resulting high resolution simulation agrees better with field data, even if discrepancies are still locally observed in places of

  8. LOSCAR: Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir Model v2.0.4

    NASA Astrophysics Data System (ADS)

    Zeebe, R. E.

    2012-01-01

    The LOSCAR model is designed to efficiently compute the partitioning of carbon between ocean, atmosphere, and sediments on time scales ranging from centuries to millions of years. While a variety of computationally inexpensive carbon cycle models are already available, many are missing a critical sediment component, which is indispensable for long-term integrations. One of LOSCAR's strengths is the coupling of ocean-atmosphere routines to a computationally efficient sediment module. This allows, for instance, adequate computation of CaCO3 dissolution, calcite compensation, and long-term carbon cycle fluxes, including weathering of carbonate and silicate rocks. The ocean component includes various biogeochemical tracers such as total carbon, alkalinity, phosphate, oxygen, and stable carbon isotopes. LOSCAR's configuration of ocean geometry is flexible and allows for easy switching between modern and paleo-versions. We have previously published applications of the model tackling future projections of ocean chemistry and weathering, pCO2 sensitivity to carbon cycle perturbations throughout the Cenozoic, and carbon/calcium cycling during the Paleocene-Eocene Thermal Maximum. The focus of the present contribution is the detailed description of the model including numerical architecture, processes and parameterizations, tuning, and examples of input and output. Typical CPU integration times of LOSCAR are of order seconds for several thousand model years on current standard desktop machines. The LOSCAR source code in C can be obtained from the author by sending a request to loscar.model@gmail.com.

  9. Improving Ocean Angular Momentum Estimates Using a Model Constrained by Data

    NASA Technical Reports Server (NTRS)

    Ponte, Rui M.; Stammer, Detlef; Wunsch, Carl

    2001-01-01

    Ocean angular momentum (OAM) calculations using forward model runs without any data constraints have, recently revealed the effects of OAM variability on the Earth's rotation. Here we use an ocean model and its adjoint to estimate OAM values by constraining the model to available oceanic data. The optimization procedure yields substantial changes in OAM, related to adjustments in both motion and mass fields, as well as in the wind stress torques acting on the ocean. Constrained and unconstrained OAM values are discussed in the context of closing the planet's angular momentum budget. The estimation procedure, yields noticeable improvements in the agreement with the observed Earth rotation parameters, particularly at the seasonal timescale. The comparison with Earth rotation measurements provides an independent consistency check on the estimated ocean state and underlines the importance of ocean state estimation for quantitative. studies of the variable large-scale oceanic mass and circulation fields, including studies of OAM.

  10. 76 FR 70448 - Publication of Inaccurate or Inactive Ocean Common Carrier Tariffs; Order to Show Cause

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... Rule 72 of the Commission's Rules of Practice and Procedure, 46 CFR 502.72. Such petition shall be... accordance with Rule 2 of the Commission's Rules of Practice and procedure, 46 CFR 502.2, as well as being mailed directly to all parties of record; Finally, it is ordered That pursuant to the terms of Rule 61...

  11. 76 FR 16421 - Ocean Transportation Intermediary License; Rescission of Order of Revocation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    .... Address: 1082 Rogers Avenue, Brooklyn, NY 11226. Order Published: FR: 2/25/11 (Volume 76, No. 38, Pg... Published: FR: 2/25/11 (Volume 76, No. 38, Pg. 10594). License Number: 019544NF. Name: Japan Star America... Published: FR: 2/25/11 (Volume 76, No. 38, Pg. 10594). License Number: 020577F. Name: Bosmak, Inc. dba...

  12. Modeling Thermal and Environmental Effects of Prototype Scale Ocean Thermal Energy Conversion

    NASA Astrophysics Data System (ADS)

    Hamrick, J. M.

    2010-12-01

    Ocean thermal energy conversion (OTEC) utilizes the temperature difference between the mix lay and deep water electricity generation. The small temperature difference compared to other thermal-electric generation devises, typically between 20 and 25 C, requires the substantial volumetric flows on the order of hundreds of cubic meters per second to generate net energy and recover capital investments. This presentation described the use of a high resolution three-dimensional EFDC model with an embedded jet-plume model to simulate the thermal and environmental impacts of a number of prototype OTEC configurations on the southwest coast of Oahu, Hawaii. The EFDC model is one-way nested into a larger scale ROMS model to allow for realistic incorporation of region processes including external and internal tides and sub-tidal circulation. Impacts on local thermal structure and the potential for nutrient enrichment of the mixed layer are addressed with model and presented.

  13. Modeled Sensitivity of the Upper-Ocean Response to Tropical Cyclones in the Northwestern Pacific Using a Fully-coupled Climate Model with Varying Ocean Resolution

    NASA Astrophysics Data System (ADS)

    Li, H.; Sriver, R. L.

    2014-12-01

    Tropical cyclones (TCs) actively contribute to Earth's climate by influencing oceanic mixing rates, surface fluxes, ocean heat budgets and transports, and large-scale circulations within the atmosphere and ocean. However, TC-climate effects are largely unexplored in fully-coupled Earth system models. Here we analyze results from century-scale pre-industrial control simulations using the high-resolution Community Climate System Model version 3.5 (CCSM3.5) (Kirtman et al., 2012). The modeling experiment consists of two simulations in which the 0.5 degree atmosphere component model is coupled to two different versions of the ocean model, with horizontal grid resolutions of 1 degree and 0.1 degree, respectively. In both configurations, realistic TCs are formed spontaneously within the model. We find that the atmosphere model simulates realistic TCs up to category 3 intensity for both configurations, and the modeled TCs' mean intensity (i.e. power dissipation) is consistent with observation-based estimates for TCs up to category 3. Both model configurations produce realistic TC climatologies in the Northwest Pacific basin when compared against the observational record, and the model robustly reproduces the observed transient upper ocean surface responses following storm passage, from the perspective of individual storms as well as basin-scale budgets. We estimate TC-induced ocean heat convergence within both model configurations using multiple strategies accounting for mixing depths, and we find the heat convergence estimates are generally consistent across methods and insensitive to ocean model resolution. Using scaling arguments between heat convergence and power dissipation, we estimate that the model's flux-adjusted TC-induced ocean heat convergence in the northwestern Pacific basin is ~0.20PW and ~0.23PW for the low and high resolution configurations, respectively, which is within the range of previous observation-based estimates. These results suggest that the

  14. A Lagrange-Galerkin hp-Finite Element Method for a 3D Nonhydrostatic Ocean Model

    NASA Astrophysics Data System (ADS)

    Galán del Sastre, Pedro; Bermejo, Rodolfo

    2016-03-01

    We introduce in this paper a Lagrange-Galerkin hp-finite element method to calculate the numerical solution of a nonhydrostatic ocean model. The Lagrange-Galerkin method yields a Stokes-like problem the solution of which is computed by a second-order rotational splitting scheme that separates the calculation of the velocity and pressure, the latter is decomposed into hydrostatic and nonhydrostatic components. We have tested the method in flows where the nonhydrostatic effects are important. The results are very encouraging.

  15. Low-frequency variability in a climate model with a mixed-layer ocean

    SciTech Connect

    Gould-Stewart, S.

    1984-11-01

    A mixed-layer ocean model coupled to a global spectral atmospheric circulation model produces a warming in the model equatorial Pacific Ocean similar to the El Nino or Southern Oscillation (SO) response. The mechanism for producing the SO-like response in an ocean with heat storage and without ocean dynamics is investigated. The model is capable of simulating SO-like time scales, but the details of the structure of the warming differ significantly from the observed El Nino/Southern Oscillation (ENSO) response. 22 refs.

  16. On Impacts of Ocean Waves in Marginal Ice Zones and their Repercussions for Arctic Ice/Ocean Models (Invited)

    NASA Astrophysics Data System (ADS)

    Squire, V. A.

    2013-12-01

    Associated with a gradual metamorphosis of summer Arctic sea ice -- from a quasi-continuous ice sheet punctuated by pressure ridges and leads to a mélange of ice floes resembling a MIZ, is an augmented presence of sizeable ocean waves that may have propagated into the pack ice from distant storms or have arisen within the MIZ itself due to the larger fetches that are now more common [Francis et al., 2011]. If sufficiently forceful as they pass through the ice field, these waves can break up the ice floes to create a new floe size distribution (FSD), change local concentration by moving floes around, and supplement the melting that is occurring because of ice albedo feedback. In turn, the ocean waves themselves attenuate due to conservative scattering from the randomly-sized, spatially-disordered floes and cakes making up the MIZ that diffuse the waves and return energy to neighboring open water, and lose energy through several prospective dissipative processes. Consequently, the omission of ocean waves from ice/ocean models is unwise, as they can potentially alter atmosphere-ice-ocean coupling appreciably by affecting MIZ morphology so radically. In a series of 3 research projects, involving scientists from Norway, Canada, Australia and NZ, we have systematically investigated how ocean wave interactions with sea ice can be embedded in an ice/ocean model; first at high resolution in the Fram Strait and later in other MIZ around the Arctic Basin. In each case it has been possible to track how the MIZ forms and, on the basis of its FSD or an abrupt change of concentration, how wide it becomes as a result of an inbound wave field provided by a spectral model such as WAM. Initially unidirectional seas were considered [Williams et al., 2013ab] but more sophisticated 2D scattering paradigms are now being developed that allow directionally defined seas to be modeled. Based upon the recognition that a MIZ can be delineated into a number of contiguous bands of ice floes

  17. Using Green's Functions to initialize and adjust a global, eddying ocean biogeochemistry general circulation model

    NASA Astrophysics Data System (ADS)

    Brix, H.; Menemenlis, D.; Hill, C.; Dutkiewicz, S.; Jahn, O.; Wang, D.; Bowman, K.; Zhang, H.

    2015-11-01

    The NASA Carbon Monitoring System (CMS) Flux Project aims to attribute changes in the atmospheric accumulation of carbon dioxide to spatially resolved fluxes by utilizing the full suite of NASA data, models, and assimilation capabilities. For the oceanic part of this project, we introduce ECCO2-Darwin, a new ocean biogeochemistry general circulation model based on combining the following pre-existing components: (i) a full-depth, eddying, global-ocean configuration of the Massachusetts Institute of Technology general circulation model (MITgcm), (ii) an adjoint-method-based estimate of ocean circulation from the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) project, (iii) the MIT ecosystem model "Darwin", and (iv) a marine carbon chemistry model. Air-sea gas exchange coefficients and initial conditions of dissolved inorganic carbon, alkalinity, and oxygen are adjusted using a Green's Functions approach in order to optimize modeled air-sea CO2 fluxes. Data constraints include observations of carbon dioxide partial pressure (pCO2) for 2009-2010, global air-sea CO2 flux estimates, and the seasonal cycle of the Takahashi et al. (2009) Atlas. The model sensitivity experiments (or Green's Functions) include simulations that start from different initial conditions as well as experiments that perturb air-sea gas exchange parameters and the ratio of particulate inorganic to organic carbon. The Green's Functions approach yields a linear combination of these sensitivity experiments that minimizes model-data differences. The resulting initial conditions and gas exchange coefficients are then used to integrate the ECCO2-Darwin model forward. Despite the small number (six) of control parameters, the adjusted simulation is significantly closer to the data constraints (37% cost function reduction, i.e., reduction in the model-data difference, relative to the baseline simulation) and to independent observations (e.g., alkalinity). The adjusted air-sea gas

  18. Model-based localization for a shallow ocean experiment

    SciTech Connect

    Candy, J.V.; Sullivan, E.J.

    1995-07-19

    In this paper a modern approach was developed to solve the passive localization problem in ocean acoustics using the state-space formulation. It is shown that the inherent structure of the resulting processor consists of a parameter estimator coupled to a nonlinear optimization scheme. The parameter estimator is design using an acoustic propagation model in developing the modern identifier required for localization. The detection and localization of an acoustic source has long been the motivation of early sonar systems. With the advent of quieter and quieter submarines due to new manufacturing technologies and the next proliferation of diesel powered vessels, the need for more sophisticated processing techniques has been apparent for quite some time.

  19. A Comparison between the TOPEX/POSEIDON Data and a Global Ocean General Circulation Model during 1992-1993

    NASA Technical Reports Server (NTRS)

    Chao, Yi; Fu, Lee-Lueng

    1995-01-01

    The TOPEX/POSEIDON altimetric sea level observation during 1992-1993 was used to validate the simulation made by a global ocean general circulation model (OGCM) forced by the daily wind stress and heat flux derived from the National Meteorological Center operational analysis. The OGCM is a version of the modular ocean model with a horizontal resolution of 2 deg longitude and 1 deg latitude and 22 levels in the vertical. The model simulation is compared to the observation at spatial scales of the order of 500 km and larger. Only the temporal variations are examined. The variability is composed primarily of the annual cycle and intraseasonal fluctuations (periods shorter than 100 days). The basic features of the annual cycle are simulated well by the model. Major discrepancies are found in the eastern tropical Pacific, as well as the eastern North Pacific and most of the interior of the North Atlantic. The culprit is suspected to be the inadequate heat forcing and mixing parameterizations of the model. Significant intraseasonal variability is found in the central North Pacific and the Southern Ocean. The simulation is highly correlated with the observation at periods from 20 to 100 days. The spatial scales are larger than 1000 km in many places. These variabilities are apparently the barotropic response of the ocean to wind forcing. The results of the study provide a basis for future assimilation of the data into the OGCM for improved description of the large-scale ocean variabilities.

  20. Dynamics of the Atlantic meridional overturning circulation and Southern Ocean in an ocean model of intermediate complexity

    NASA Astrophysics Data System (ADS)

    McCreary, Julian P.; Furue, Ryo; Schloesser, Fabian; Burkhardt, Theodore W.; Nonaka, Masami

    2016-04-01

    A steady-state, variable-density, 2-layer, ocean model (VLOM) is used to investigate basic dynamics of the Atlantic meridional overturning circulation and Southern Ocean. The domain consists of idealized (rectangular) representations of the Atlantic, Southern, and Pacific Oceans. The model equations represent the depth-averaged, layer-1 response (except for one solution in which they represent the depth-integrated flow over both layers). To allow for overturning, water can cross the bottom of layer 1 at the velocity we =wd +wm +wn , the three parts representing: interior diffusion wd that increases the layer-1 thickness h throughout the basin, mixed-layer entrainment wm that ensures h is never less than a minimum value hm , and diapycnal (cooling) processes external to the basin wn that adjust h to hn . For most solutions, horizontal mixing has the form of Rayleigh damping with coefficient ν , which we interpret to result from baroclinic instability through the closure, V∗ = - (ν /f2) ∇P , where ∇P = ∇(1/2 g‧h2) is the depth-integrated pressure gradient, g‧ is the reduced-gravity coefficient, and ν is a mixing coefficient; with this interpretation, the layer-1 flow corresponds to the sum of the Eulerian-mean and eddy-mean (V∗) transport/widths, that is, the "residual" circulation. Finally, layer-1 temperature cools polewards in response to a surface heat flux Q, and the cooling can be strong enough in the Southern Ocean for g‧ = 0 south of a latitude y0 , in which case layer 1 vanishes and the model reduces to a single layer 2. Solutions are obtained both numerically and analytically. The analytic approach splits fields into interior and boundary-layer parts, from which a coupled set of integral constraints can be derived. The set allows properties of the circulation (upwelling-driven transport out of the Southern Ocean M , downwelling transport in the North Atlantic, transport of the Antarctic Circumpolar Current) and stratification (Atlantic

  1. Optimisation methods for bathymetry and open boundary conditions in finite element model of ocean tides

    SciTech Connect

    Lyard, F.; Genco, M.L.

    1994-10-01

    A bidimensional, spectral in time, quasi-linearised hydrodynamic ocean tide model has been developed at the Institut de Mecanique de Grenoble. This model is derived from the classical shallow water equations by removing the velocity unknowns in the continuity equation, that leads to an elliptic, second-order differential equation where tide denivellation remains the only unknown quantity. The problem is solved in its variational formulation and the finite elements method is used to discretise the equations in the spatial domain with a Lagrange-P2 approximation. Bottom topography has to be known at the integration points of the elements. In the case of the large oceanic basins, a specific method, called the bathymetry optimisation method, is needed to correctly take into account the bottom topography inside the model. The accuracy of the model`s solutions is also strongly dependent on the quality of the open boundary conditions because of the elliptic characteristics of the problem. The optimisation method for open boundary conditions relies on the use of the in situ data available in the modelled domain. The aim of this paper is to present the basis of these optimisations of bathymetry and open boundary conditions. An illustration of the related improvements is presented on the North Atlantic Basin. 36 refs., 10 figs., 5 tabs.

  2. Predictability of the Indian Ocean Dipole in the coupled models

    NASA Astrophysics Data System (ADS)

    Liu, Huafeng; Tang, Youmin; Chen, Dake; Lian, Tao

    2016-06-01

    In this study, the Indian Ocean Dipole (IOD) predictability, measured by the Indian Dipole Mode Index (DMI), is comprehensively examined at the seasonal time scale, including its actual prediction skill and potential predictability, using the ENSEMBLES multiple model ensembles and the recently developed information-based theoretical framework of predictability. It was found that all model predictions have useful skill, which is normally defined by the anomaly correlation coefficient larger than 0.5, only at around 2-3 month leads. This is mainly because there are more false alarms in predictions as leading time increases. The DMI predictability has significant seasonal variation, and the predictions whose target seasons are boreal summer (JJA) and autumn (SON) are more reliable than that for other seasons. All of models fail to predict the IOD onset before May and suffer from the winter (DJF) predictability barrier. The potential predictability study indicates that, with the model development and initialization improvement, the prediction of IOD onset is likely to be improved but the winter barrier cannot be overcome. The IOD predictability also has decadal variation, with a high skill during the 1960s and the early 1990s, and a low skill during the early 1970s and early 1980s, which is very consistent with the potential predictability. The main factors controlling the IOD predictability, including its seasonal and decadal variations, are also analyzed in this study.

  3. Automated mapping of the ocean floor using the theory of intrinsic random functions of order k

    USGS Publications Warehouse

    David, M.; Crozel, D.; Robb, James M.

    1986-01-01

    High-quality contour maps can be computer drawn from single track echo-sounding data by combining Universal Kriging and the theory of intrinsic random function of order K (IRFK). These methods interpolate values among the closely spaced points that lie along relatively widely spaced lines. The technique provides a variance which can be contoured as a quantitative measure of map precision. The technique can be used to evaluate alternative survey trackline configurations and data collection intervals, and can be applied to other types of oceanographic data. ?? 1986 D. Reidel Publishing Company.

  4. Behaviour of oceanic 137Cs following the Fukushima Daiichi Nuclear Power Plant accident for four years simulated numerically by a regional ocean model

    NASA Astrophysics Data System (ADS)

    Torn, M. S.; Koven, C. D.; Riley, W. J.; Zhu, B.; Hicks Pries, C.; Phillips, C. L.

    2014-12-01

    A series of accidents at the Fukushima Dai-ichi Nuclear Power Plant (1F NPP) following the earthquake and tsunami of 11 March 2011 resulted in the release of radioactive materials to the ocean by two major pathways, direct release from the accident site and atmospheric deposition.We reconstructed spatiotemporal variability of 137Cs activity in the regional ocean for four years by numerical model, such as a regional scale and the North Pacific scale oceanic dispersion models, an atmospheric transport model, a sediment transport model, a dynamic biological compartment model for marine biota and river runoff model. Direct release rate of 137Cs were estimated for four years after the accident by comparing simulated results and observed activities very close to the site. The estimated total amounts of directly release was 3.6±0.7 PBq. Directly release rate of 137Cs decreased exponentially with time by the end of December 2012 and then, was almost constant. Decrease rate were quite small after 2013. The daily release rate of 137Cs was estimated to be the order of magnitude of 1010 Bq/day by the end of March 2015. The activity of directly released 137Cs was detectable only in the coastal zone after December 2012. Simulated 137Cs activities attributable to direct release were in good agreement with observed activities, a result that implies the estimated direct release rate was reasonable. There is no observed data of 137Cs activity in the ocean from 11 to 21 March 2011. Observed data of marine biota should reflect the history of 137Cs activity in this early period. We reconstructed the history of 137Cs activity in this early period by considering atmospheric deposition, river input, rain water runoff from the 1F NPP site. The comparisons between simulated 137Cs activity of marine biota by a dynamic biological compartment and observed data also suggest that simulated 137Cs activity attributable to atmospheric deposition was underestimated in this early period. The

  5. Behaviour of oceanic 137Cs following the Fukushima Daiichi Nuclear Power Plant accident for four years simulated numerically by a regional ocean model

    NASA Astrophysics Data System (ADS)

    Tsumune, D.; Tsubono, T.; Aoyama, M.; Misumi, K.; Tateda, Y.

    2015-12-01

    A series of accidents at the Fukushima Dai-ichi Nuclear Power Plant (1F NPP) following the earthquake and tsunami of 11 March 2011 resulted in the release of radioactive materials to the ocean by two major pathways, direct release from the accident site and atmospheric deposition.We reconstructed spatiotemporal variability of 137Cs activity in the regional ocean for four years by numerical model, such as a regional scale and the North Pacific scale oceanic dispersion models, an atmospheric transport model, a sediment transport model, a dynamic biological compartment model for marine biota and river runoff model. Direct release rate of 137Cs were estimated for four years after the accident by comparing simulated results and observed activities very close to the site. The estimated total amounts of directly release was 3.6±0.7 PBq. Directly release rate of 137Cs decreased exponentially with time by the end of December 2012 and then, was almost constant. Decrease rate were quite small after 2013. The daily release rate of 137Cs was estimated to be the order of magnitude of 1010 Bq/day by the end of March 2015. The activity of directly released 137Cs was detectable only in the coastal zone after December 2012. Simulated 137Cs activities attributable to direct release were in good agreement with observed activities, a result that implies the estimated direct release rate was reasonable. There is no observed data of 137Cs activity in the ocean from 11 to 21 March 2011. Observed data of marine biota should reflect the history of 137Cs activity in this early period. We reconstructed the history of 137Cs activity in this early period by considering atmospheric deposition, river input, rain water runoff from the 1F NPP site. The comparisons between simulated 137Cs activity of marine biota by a dynamic biological compartment and observed data also suggest that simulated 137Cs activity attributable to atmospheric deposition was underestimated in this early period. The

  6. Ocean Turbulence I: One-Point Closure Model Momentum and Heat Vertical Diffusivities

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Howard, A.; Cheng, Y.; Dubovikov, M. S.

    1999-01-01

    Since the early forties, one-point turbulence closure models have been the canonical tools used to describe turbulent flows in many fields. In geophysics, Mellor and Yamada applied such models using the 1980 state-of-the art. Since then, no improvements were introduced to alleviate two major difficulties: 1) closure of the pressure correlations, which affects the correct determination of the critical Richardson number Ri(sub cr) above which turbulent mixing is no longer possible and 2) the need to express the non-local third-order moments (TOM) in terms of lower order moments rather than via the down-gradient approximation as done thus far, since the latter seriously underestimates the TOMs. Since 1) and 2) are still being dealt with adjustable parameters which weaken the credibility of the models, alternative models, not based on turbulence modeling, have been suggested. The aim of this paper is to show that new information, partly derived from the newest 2-point closure model discussed, can be used to solve these shortcomings. The new one-point closure model, which in its simplest form is algebraic and thus simple to implement, is first shown to reproduce a variety of data. Then, it is used in a Ocean-General Circulation Model (O-GCM) where it reproduces well a large variety of ocean data. While phenomenological models are specifically tuned to ocean turbulence, the present model is not. It is first tested against laboratory data on stably stratified flows and then used in an O-GCM. It is more general, more predictive and more resilient, e.g., it can incorporate phenomena like wave-breaking at the surface, salinity diffusivity, non-locality, etc. One important feature that naturally comes out of the new model is that the predicted Richardson critical value Ri(sub cr) is Ri (sub cr approx. = 1) in agreement with both Large Eddy Simulations (LES) and empirical evidence while all previous models predicted Ri (sub cr approx. = 0.2) which led to a considerable

  7. An Upper Ocean Model for Operational Forecasts During MaudNESS

    NASA Astrophysics Data System (ADS)

    McPhee, M. G.

    2006-12-01

    The MaudNESS experiment required onboard assimilation of weather data and forecasts, along with remote sensing of ice concentration, into real-time models in order to (i) determine most likely regions for encountering marginal upper ocean stability; (ii) forecast ice trajectories during passive drifts; and (iii) aid in determining optimum ship orientation to minimize "watch circle" problems with up to four instrument systems deployed from the vessel. In planning the experiment, a number of different approaches were suggested and implemented. Here I describe combining relatively simple ice and upper ocean models with ice concentration and 5-day weather forecasts provided daily by the Antarctic Mesoscale Prediction System (AMPS) at NCAR. The model was used as an operational tool during the project. The upper ocean model is an adaptation of local turbulence closure (LTC) based on similarity scaling and modified to approximate local in situ density gradients using finite difference of the density (including pressure) across two points on the mean value grid (in a staggered grid system) at pressure evaluated at the midpoint. This provides at least a rough approximation of the thermobaric and other equation-of-state characteristics dependent on pressure, which are thought to be important in regions of low static stability in the eastern Weddell Sea. Model diffusivities are determined by a combination of local scale velocity and buoyancy flux. In the relatively well mixed layer above the pycnocline, LTC turbulence scales are determined by the scale velocity and buoyancy flux at the ice-ocean interface, where the turbulent scale velocity is determined mainly by wind speed and buoyancy flux depends on interface conditions, involving mixed-layer temperature and salinity, conductive heat flux in the ice cover, ice salinity, and interface friction velocity. Ice concentration modifies surface fluxes by apportioning buoyancy flux between ice covered and open ocean conditions

  8. Fractional-order in a macroeconomic dynamic model

    NASA Astrophysics Data System (ADS)

    David, S. A.; Quintino, D. D.; Soliani, J.

    2013-10-01

    In this paper, we applied the Riemann-Liouville approach in order to realize the numerical simulations to a set of equations that represent a fractional-order macroeconomic dynamic model. It is a generalization of a dynamic model recently reported in the literature. The aforementioned equations have been simulated for several cases involving integer and non-integer order analysis, with some different values to fractional order. The time histories and the phase diagrams have been plotted to visualize the effect of fractional order approach. The new contribution of this work arises from the fact that the macroeconomic dynamic model proposed here involves the public sector deficit equation, which renders the model more realistic and complete when compared with the ones encountered in the literature. The results reveal that the fractional-order macroeconomic model can exhibit a real reasonable behavior to macroeconomics systems and might offer greater insights towards the understanding of these complex dynamic systems.

  9. Small diversity effects on ocean primary production under environmental change in a diversity-resolving ocean ecosystem model

    NASA Astrophysics Data System (ADS)

    Prowe, A. E. F.; Pahlow, M.; Dutkiewicz, S.; Oschlies, A.

    2013-07-01

    Marine ecosystem models used to investigate how global change affects ocean ecosystems and their functioning typically omit pelagic diversity. Diversity, however, can affect functions such as primary production and their sensitivity to environmental changes. Using a global ocean ecosystem model that explicitly resolves phytoplankton diversity within four phytoplankton functional types (PFTs) we investigate the model's ability to capture diversity effects on primary production under environmental change. An idealized scenario with a sudden reduction in vertical mixing causes diversity and primary-production changes that turn out to be largely independent of the number of coexisting phytoplankton types. The model provides a small number of niches with respect to nutrient use in accordance with the PFTs defined in the model, and increasing the number of phytoplankton types increases the resolution within the niches. The variety of traits and trade-offs resolved in the model constrains diversity effects such as niche complementarity, which operate between, but not within PFTs. The number and nature of the niches formulated in the model, for example via trade-offs or different PFTs, thus determines the diversity effects on ecosystem functioning captured in ocean ecosystem models.

  10. 12 CFR Appendix A to Subpart C of... - Model Stipulation for Protective Order and Model Protective Order

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 1 2011-01-01 2011-01-01 false Model Stipulation for Protective Order and Model Protective Order A Appendix A to Subpart C of Part 4 Banks and Banking COMPTROLLER OF THE CURRENCY... Ratios for an Individual Bank Pt. 4, Subpt. C, App. A Appendix A to Subpart C of Part 4—Model...

  11. Characterization of Summertime Oceanic Boundary Conditions for Coastal and Regional Atmospheric Chemistry Modeling in California

    NASA Astrophysics Data System (ADS)

    Hübler, G.; Parrish, D. D.; Aikin, K. C.; Oltmans, S. J.; Johnson, B. J.; Ives, M.; Thouret, V.; Nédélec, P.; Cammas, J.; Team, A.

    2009-12-01

    Most detailed photochemical modeling must be carried out at regional or air basin scales in order to achieve the spatial resolution and detailed treatment of the chemical mechanisms required for realistic treatment of local air quality. Consequently these models must define upwind boundary conditions at the edge of the model domain. Uncertainty in the appropriate boundary conditions contributes significantly to the overall uncertainty of the photochemical modeling in California. Here we will investigate the available data sets to define to the extent possible the average summertime oceanic boundary conditions, the variability about that average, and the horizontal and vertical variability of the boundary conditions. The data sets considered will include ozone sondes launched from Trinidad Head CA, ozone and carbon monoxide profiles measured by MOZAIC aircraft flights into 4 west coast US cities, and the many chemical species measured on four aircraft flights conducted during the CARB-ARCTAS campaign during summer 2008

  12. Sensitivity of a 30 year model climatology of Middle and Central America to resolution and atmosphere-ocean coupling

    NASA Astrophysics Data System (ADS)

    Quintanar, A. I.; Sein, D.; Martinez Lopez, B.

    2013-05-01

    A 30 year climatology experiment has been completed with a regional coupled atmosphere-ocean model (REMO) over a vast region that covers latitude-wise the Middle and Central Americas up to Western Europe. The control simulation uses a horizontal resolution of 1 degree and REMO was forced at its lateral walls with ERA data for the period 1979-2010. The ocean model was initialized using previously integrated solutions from an atmospherically forced only ocean simulation. In order to gauge the impact that the atmosphere-ocean coupling had, an identical experiment was performed with prescribed SST for the same period. A couple of identical experiments but with a resolution of 1/2 degree were also performed to investigate the effect of horizontal spatial resolution. It is seen that model climatology is increasingly closer to observed precipitation climatology (compared to CRU data for that period) as the model goes from a SST-forced condition to one of full coupling and from coarser resolution to increasing resolution as well. Of note, is the significantly better representation of the ITZC annual latitudinal excursion over the Eastern Pacific Ocean corresponding to the onset of monsoon precipitation season over western Mexico.

  13. Operational ocean models in the Adriatic Sea: a skill assessment

    NASA Astrophysics Data System (ADS)

    Chiggiato, J.; Oddo, P.

    2006-12-01

    In the framework of the Mediterranean Forecasting System project (MFS) sub-regional and regional numerical ocean forecasting systems performance are assessed by mean of model-model and model-data comparison. Three different operational systems have been considered in this study: the Adriatic REGional Model (AREG); the AdriaROMS and the Mediterranean Forecasting System general circulation model (MFS model). AREG and AdriaROMS are regional implementations (with some dedicated variations) of POM (Blumberg and Mellor, 1987) and ROMS (Shchepetkin and McWilliams, 2005) respectively, while MFS model is based on OPA (Madec et al., 1998) code. The assessment has been done by means of standard scores. The data used for operational systems assessment derive from in-situ and remote sensing measurements. In particular a set of CTDs covering the whole western Adriatic, collected in January 2006, one year of SST from space born sensors and six months of buoy data. This allowed to have a full three-dimensional picture of the operational forecasting systems quality during January 2006 and some preliminary considerations on the temporal fluctuation of scores estimated on surface (or near surface) quantities between summer 2005 and summer 2006. In general, the regional models are found to be colder and fresher than observations. They eventually outperform the large scale model in the shallowest locations, as expected. Results on amplitude and phase errors are also much better in locations shallower than 50 m, while degraded in deeper locations, where the models tend to have a higher homogeneity along the vertical column compared to observations. In a basin-wide overview, the two regional models show some dissimilarities in the local displacement of errors, something suggested by the full three-dimensional picture depicted using CTDs, but also confirmed by the comparison with SSTs. In locations where the regional models are mutually correlated, the aggregated mean-square-error has

  14. Radiative Transfer Theory Applied to Ocean Bottom Modeling

    NASA Astrophysics Data System (ADS)

    Quijano, Jorge Eduardo

    Research on the propagation of acoustic waves in ocean bottom sediment is of interest for active sonar applications such as target detection and remote sensing. Currently, all seabed scattering models available in the literature are based on the full solution of the wave equation, which sometimes leads to mathematically intractable problems. In the electromagnetics community, an alternative formulation that overcomes some of this complexity is radiative transfer theory, which has established itself as an important technique for remote sensing. In this work, radiative transfer (RT) theory is proposed for the first time as a tool for the study of seabed acoustic scattering. The focus of this work is the development of a complete model for the interaction of acoustic energy with water-saturated sediments. The general geometry considered in this study consists of multiple elastic layers containing random distributions of inhomogeneities. The accuracy of the proposed model is assessed by rigorous experimental work, with data collected from random media in which acoustic properties such as the concentration and size of scatterers, background material, and the presence of elastic boundaries are controlled parameters. First, the ultrasound RT model is implemented for layers of finite thickness. The range of applicability of the proposed model is then illustrated using scaled experiments conducted at the Northwest Electromagnetics and Acoustics Research Laboratory (NEAR-Lab). Next, the model is applied to field data collected in a region with gassy sediments and compared to the formulation originally used to explain these data. Finally, insight into the emerging area of study of the time-dependent RT formulation is presented, and its role in the representation of finite broadband pulses is discussed.

  15. Exponential order statistic models of software reliability growth

    NASA Technical Reports Server (NTRS)

    Miller, D. R.

    1986-01-01

    Failure times of a software reliability growth process are modeled as order statistics of independent, nonidentically distributed exponential random variables. The Jelinsky-Moranda, Goel-Okumoto, Littlewood, Musa-Okumoto Logarithmic, and Power Law models are all special cases of Exponential Order Statistic Models, but there are many additional examples also. Various characterizations, properties and examples of this class of models are developed and presented.

  16. Exponential order statistic models of software reliability growth

    NASA Technical Reports Server (NTRS)

    Miller, D. R.

    1985-01-01

    Failure times of a software reliabilty growth process are modeled as order statistics of independent, nonidentically distributed exponential random variables. The Jelinsky-Moranda, Goel-Okumoto, Littlewood, Musa-Okumoto Logarithmic, and Power Law models are all special cases of Exponential Order Statistic Models, but there are many additional examples also. Various characterizations, properties and examples of this class of models are developed and presented.

  17. Seasonal Distributions of Global Ocean Chlorophyll and Nutrients: Analysis with a Coupled Ocean General Circulation Biogeochemical, and Radiative Model

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.

    1999-01-01

    A coupled general ocean circulation, biogeochemical, and radiative model was constructed to evaluate and understand the nature of seasonal variability of chlorophyll and nutrients in the global oceans. The model is driven by climatological meteorological conditions, cloud cover, and sea surface temperature. Biogeochemical processes in the model are determined from the influences of circulation and turbulence dynamics, irradiance availability, and the interactions among three functional phytoplankton groups (diatoms, chorophytes, and picoplankton) and three nutrient groups (nitrate, ammonium, and silicate). Phytoplankton groups are initialized as homogeneous fields horizontally and vertically, and allowed to distribute themselves according to the prevailing conditions. Basin-scale model chlorophyll results are in very good agreement with CZCS pigments in virtually every global region. Seasonal variability observed in the CZCS is also well represented in the model. Synoptic scale (100-1000 km) comparisons of imagery are also in good conformance, although occasional departures are apparent. Agreement of nitrate distributions with in situ data is even better, including seasonal dynamics, except for the equatorial Atlantic. The good agreement of the model with satellite and in situ data sources indicates that the model dynamics realistically simulate phytoplankton and nutrient dynamics on synoptic scales. This is especially true given that initial conditions are homogenous chlorophyll fields. The success of the model in producing a reasonable representation of chlorophyll and nutrient distributions and seasonal variability in the global oceans is attributed to the application of a generalized, processes-driven approach as opposed to regional parameterization, and the existence of multiple phytoplankton groups with different physiological and physical properties. These factors enable the model to simultaneously represent the great diversity of physical, biological

  18. First-order estimate of the planktic foraminifer biomass in the modern ocean

    NASA Astrophysics Data System (ADS)

    Schiebel, R.; Movellan, A.

    2012-09-01

    Planktic foraminifera are heterotrophic mesozooplankton of global marine abundance. The position of planktic foraminifers in the marine food web is different compared to other protozoans and ranges above the base of heterotrophic consumers. Being secondary producers with an omnivorous diet, which ranges from algae to small metazoans, planktic foraminifers are not limited to a single food source, and are assumed to occur at a balanced abundance displaying the overall marine biological productivity at a regional scale. With a new non-destructive protocol developed from the bicinchoninic acid (BCA) method and nano-photospectrometry, we have analysed the protein-biomass, along with test size and weight, of 754 individual planktic foraminifers from 21 different species and morphotypes. From additional CHN analysis, it can be assumed that protein-biomass equals carbon-biomass. Accordingly, the average individual planktic foraminifer protein- and carbon-biomass amounts to 0.845 μg. Samples include symbiont bearing and symbiont-barren species from the sea surface down to 2500 m water depth. Conversion factors between individual biomass and assemblage-biomass are calculated for test sizes between 72 and 845 μm (minimum test diameter). Assemblage-biomass data presented here include 1128 sites and water depth intervals. The regional coverage of data includes the North Atlantic, Arabian Sea, Red Sea, and Caribbean as well as literature data from the eastern and western North Pacific, and covers a wide range of oligotrophic to eutrophic waters over six orders of magnitude of planktic-foraminifer assemblage-biomass (PFAB). A first order estimate of the average global planktic foraminifer biomass production (>125 μm) ranges from 8.2-32.7 Tg C yr-1 (i.e. 0.008-0.033 Gt C yr-1), and might be more than three times as high including neanic and juvenile individuals adding up to 25-100 Tg C yr-1. However, this is a first estimate of regional PFAB extrapolated to the global scale

  19. First-order estimate of the planktic foraminifer biomass in the modern global oceans

    NASA Astrophysics Data System (ADS)

    Schiebel, R.; Movellan, A.

    2012-04-01

    Planktic foraminifera are heterotrophic mesozooplankton of global marine abundance. The position of planktic foraminifers in the marine food web is different compared to other protozoans and ranges above the base of heterotrophic consumers. Being secondary producers with an omnivorous diet, which ranges from algae to small metazoans, planktic foraminifers are not limited to a single food source, and are assumed to occur at a balanced abundance displaying the overall marine biological productivity at a regional scale. We have calculated the assemblage carbon biomass from data on standing stocks between the sea surface and 2500 m water depth, based on 754 protein-biomass data of 21 planktic foraminifer species and morphotypes, produced with a newly developed method to analyze the protein biomass of single planktic foraminifer specimens. Samples include symbiont bearing and symbiont barren species, characteristic of surface and deep-water habitats. Conversion factors between individual protein-biomass and assemblage-biomass are calculated for test sizes between 72 and 845 μm (minimum diameter). The calculated assemblage biomass data presented here include 1057 sites and water depth intervals. Although the regional coverage of database is limited to the North Atlantic, Arabian Sea, Red Sea, and Caribbean, our data include a wide range of oligotrophic to eutrophic waters covering six orders of magnitude of assemblage biomass. A first order estimate of the global planktic foraminifer biomass from average standing stocks (>125 μm) ranges at 8.5-32.7 Tg C yr-1 (i.e. 0.008-0.033 Gt C yr-1), and might be more than three time as high including the entire fauna including neanic and juvenile individuals adding up to 25-100 Tg C yr-1. However, this is a first estimate of regional planktic-foraminifer assemblage-biomass (PFAB) extrapolated to the global scale, and future estimates based on larger data-sets might considerably deviate from the one presented here. This paper is

  20. The seasonal response of the Held-Suarez climate model to prescribed ocean temperature anomalies. II - Dynamical analysis

    NASA Technical Reports Server (NTRS)

    Phillips, T. J.

    1984-01-01

    The heating associated with equatorial, subtropical, and midlatitude ocean temperature anamolies in the Held-Suarez climate model is analyzed. The local and downstream response to the anomalies is analyzed, first by examining the seasonal variation in heating associated with each ocean temperature anomaly, and then by combining knowledge of the heating with linear dynamical theory in order to develop a more comprehensive explanation of the seasonal variation in local and downstream atmospheric response to each anomaly. The extent to which the linear theory of propagating waves can assist the interpretation of the remote cross-latitudinal response of the model to the ocean temperature anomalies is considered. Alternative hypotheses that attempt to avoid the contradictions inherent in a strict application of linear theory are investigated, and the impact of sampling errors on the assessment of statistical significance is also examined.

  1. A coupled ice-ocean model of upwelling in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Roed, L. P.; Obrien, J. J.

    1983-01-01

    A dynamical coupled ice-ocean numerical model for the marginal ice zone (MIZ) is suggested and used to study upwelling dynamics in the MIZ. The nonlinear sea ice model has a variable ice concentration and includes internal ice stress. The model is forced by stresses on the air/ocean and air/ice surfaces. The main coupling between the ice and the ocean is in the form of an interfacial stress on the ice/ocean interface. The ocean model is a linear reduced gravity model. The wind stress exerted by the atmosphere on the ocean is proportional to the fraction of open water, while the interfacial stress ice/ocean is proportional to the concentration of ice. A new mechanism for ice edge upwelling is suggested based on a geostrophic equilibrium solution for the sea ice medium. The upwelling reported in previous models invoking a stationary ice cover is shown to be replaced by a weak downwelling due to the ice motion. Most of the upwelling dynamics can be understood by analysis of the divergence of the across ice edge upper ocean transport. On the basis of numerical model, an analytical model is suggested that reproduces most of the upwelling dynamics of the more complex numerical model.

  2. Natural Ocean Carbon Cycle Sensitivity to Parameterizations of the Recycling in a Climate Model

    NASA Technical Reports Server (NTRS)

    Romanou, A.; Romanski, J.; Gregg, W. W.

    2014-01-01

    Sensitivities of the oceanic biological pump within the GISS (Goddard Institute for Space Studies ) climate modeling system are explored here. Results are presented from twin control simulations of the air-sea CO2 gas exchange using two different ocean models coupled to the same atmosphere. The two ocean models (Russell ocean model and Hybrid Coordinate Ocean Model, HYCOM) use different vertical coordinate systems, and therefore different representations of column physics. Both variants of the GISS climate model are coupled to the same ocean biogeochemistry module (the NASA Ocean Biogeochemistry Model, NOBM), which computes prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2 and the deep ocean carbon transport and storage. In particular, the model differences due to remineralization rate changes are compared to differences attributed to physical processes modeled differently in the two ocean models such as ventilation, mixing, eddy stirring and vertical advection. GISSEH(GISSER) is found to underestimate mixed layer depth compared to observations by about 55% (10 %) in the Southern Ocean and overestimate it by about 17% (underestimate by 2%) in the northern high latitudes. Everywhere else in the global ocean, the two models underestimate the surface mixing by about 12-34 %, which prevents deep nutrients from reaching the surface and promoting primary production there. Consequently, carbon export is reduced because of reduced production at the surface. Furthermore, carbon export is particularly sensitive to remineralization rate changes in the frontal regions of the subtropical gyres and at the Equator and this sensitivity in the model is much higher than the sensitivity to physical processes such as vertical mixing, vertical advection and mesoscale eddy transport. At depth, GISSER, which has a significant warm bias, remineralizes nutrients and carbon faster thereby producing more nutrients and carbon at depth, which

  3. Spreading and wandering of Gaussian–Schell model laser beams in an anisotropic turbulent ocean

    NASA Astrophysics Data System (ADS)

    Wu, Yuqian; Zhang, Yixin; Zhu, Yun; Hu, Zhengda

    2016-09-01

    The effect of anisotropic turbulence on the spreading and wandering of Gaussian–Schell model (GSM) laser beams propagating in an ocean is studied. The long-term spreading of a GSM beam propagating through the paraxial channel of a turbulent ocean is also developed. Expressions of random wander for such laser beams are derived in an anisotropic turbulent ocean based on the extended Huygens–Fresnel principle. We investigate the influence of parameters in a turbulent ocean on the beam wander and spreading. Our results indicate that beam spreading and random beam wandering are smaller without considering the anisotropy of turbulence in the oceanic channel. Salinity fluctuation has a greater contribution to both the beam spreading and beam wander than that of temperature fluctuations in a turbulent ocean. Our results could be helpful for designing a free-space optical wireless communication system in an oceanic environment.

  4. Reproducibility and Transparency in Ocean-Climate Modeling

    NASA Astrophysics Data System (ADS)

    Hannah, N.; Adcroft, A.; Hallberg, R.; Griffies, S. M.

    2015-12-01

    Reproducibility is a cornerstone of the scientific method. Within geophysical modeling and simulation achieving reproducibility can be difficult, especially given the complexity of numerical codes, enormous and disparate data sets, and variety of supercomputing technology. We have made progress on this problem in the context of a large project - the development of new ocean and sea ice models, MOM6 and SIS2. Here we present useful techniques and experience.We use version control not only for code but the entire experiment working directory, including configuration (run-time parameters, component versions), input data and checksums on experiment output. This allows us to document when the solutions to experiments change, whether due to code updates or changes in input data. To avoid distributing large input datasets we provide the tools for generating these from the sources, rather than provide raw input data.Bugs can be a source of non-determinism and hence irreproducibility, e.g. reading from or branching on uninitialized memory. To expose these we routinely run system tests, using a memory debugger, multiple compilers and different machines. Additional confidence in the code comes from specialised tests, for example automated dimensional analysis and domain transformations. This has entailed adopting a code style where we deliberately restrict what a compiler can do when re-arranging mathematical expressions.In the spirit of open science, all development is in the public domain. This leads to a positive feedback, where increased transparency and reproducibility makes using the model easier for external collaborators, who in turn provide valuable contributions. To facilitate users installing and running the model we provide (version controlled) digital notebooks that illustrate and record analysis of output. This has the dual role of providing a gross, platform-independent, testing capability and a means to documents model output and analysis.

  5. Modeling and Measurement of Ocean Generated Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Liang, R.; Avera, W. E.; Nelson, J.; Brozena, J. M.

    2011-12-01

    -track gradient. Total-field compensated and edited data from each aircraft and the magnetic base-station data were low-pass filtered and sub-sampled to 4Hz for analysis. Data from the magnetic base-stations exhibit good coherence, as do the data from the ocean-bottom magnetometers. After correction for the geomagnetic component, the two aircraft residuals matched quite closely in both amplitude and phase in many places, but in other places the phase match was poor. This produced an overall poor coherence between the two residuals. However, cross-spectral analysis showed that there was a statistical correlation between the two aircraft residuals in the frequency band 0.02-0.05 Hz (5000-2000 m wavelength for an aircraft flying at 100 m/s). Both the amplitude (0.1-0.2 nT) and wavelength were consistent with predictions computed from the 3-D water velocities and conductivity from the ADCP using a simple model. The predicted undersea magnetic fields correlated well with the measured undersea magnetometer fields at times, but they rarely matched at the "wiggle-for-wiggle" level. More often, it was the statistics that correlated well.

  6. On Local Homogeneity and Stochastically Ordered Mixed Rasch Models

    ERIC Educational Resources Information Center

    Kreiner, Svend; Hansen, Mogens; Hansen, Carsten Rosenberg

    2006-01-01

    Mixed Rasch models add latent classes to conventional Rasch models, assuming that the Rasch model applies within each class and that relative difficulties of items are different in two or more latent classes. This article considers a family of stochastically ordered mixed Rasch models, with ordinal latent classes characterized by increasing total…

  7. Modeling Higher-Order Correlations within Cortical Microcolumns

    PubMed Central

    Köster, Urs; Sohl-Dickstein, Jascha; Gray, Charles M.; Olshausen, Bruno A.

    2014-01-01

    We statistically characterize the population spiking activity obtained from simultaneous recordings of neurons across all layers of a cortical microcolumn. Three types of models are compared: an Ising model which captures pairwise correlations between units, a Restricted Boltzmann Machine (RBM) which allows for modeling of higher-order correlations, and a semi-Restricted Boltzmann Machine which is a combination of Ising and RBM models. Model parameters were estimated in a fast and efficient manner using minimum probability flow, and log likelihoods were compared using annealed importance sampling. The higher-order models reveal localized activity patterns which reflect the laminar organization of neurons within a cortical column. The higher-order models also outperformed the Ising model in log-likelihood: On populations of 20 cells, the RBM had 10% higher log-likelihood (relative to an independent model) than a pairwise model, increasing to 45% gain in a larger network with 100 spatiotemporal elements, consisting of 10 neurons over 10 time steps. We further removed the need to model stimulus-induced correlations by incorporating a peri-stimulus time histogram term, in which case the higher order models continued to perform best. These results demonstrate the importance of higher-order interactions to describe the structure of correlated activity in cortical networks. Boltzmann Machines with hidden units provide a succinct and effective way to capture these dependencies without increasing the difficulty of model estimation and evaluation. PMID:24991969

  8. Effects of vertical shear in modelling horizontal oceanic dispersion

    NASA Astrophysics Data System (ADS)

    Lanotte, A. S.; Corrado, R.; Palatella, L.; Pizzigalli, C.; Schipa, I.; Santoleri, R.

    2016-02-01

    The effect of vertical shear on the horizontal dispersion properties of passive tracer particles on the continental shelf of the South Mediterranean is investigated by means of observation and model data. In situ current measurements reveal that vertical gradients of horizontal velocities in the upper mixing layer decorrelate quite fast ( ˜ 1 day), whereas an eddy-permitting ocean model, such as the Mediterranean Forecasting System, tends to overestimate such decorrelation time because of finite resolution effects. Horizontal dispersion, simulated by the Mediterranean sea Forecasting System, is mostly affected by: (1) unresolved scale motions, and mesoscale motions that are largely smoothed out at scales close to the grid spacing; (2) poorly resolved time variability in the profiles of the horizontal velocities in the upper layer. For the case study we have analysed, we show that a suitable use of deterministic kinematic parametrizations is helpful to implement realistic statistical features of tracer dispersion in two and three dimensions. The approach here suggested provides a functional tool to control the horizontal spreading of small organisms or substance concentrations, and is thus relevant for marine biology, pollutant dispersion as well as oil spill applications.

  9. How well do global ocean biogeochemistry models simulate dissolved iron distributions?

    NASA Astrophysics Data System (ADS)

    Tagliabue, Alessandro; Aumont, Olivier; DeAth, Ros; Dunne, John P.; Dutkiewicz, Stephanie; Galbraith, Eric; Misumi, Kazuhiro; Moore, J. Keith; Ridgwell, Andy; Sherman, Elliot; Stock, Charles; Vichi, Marcello; Völker, Christoph; Yool, Andrew

    2016-02-01

    Numerical models of ocean biogeochemistry are relied upon to make projections about the impact of climate change on marine resources and test hypotheses regarding the drivers of past changes in climate and ecosystems. In large areas of the ocean, iron availability regulates the functioning of marine ecosystems and hence the ocean carbon cycle. Accordingly, our ability to quantify the drivers and impacts of fluctuations in ocean ecosystems and carbon cycling in space and time relies on first achieving an appropriate representation of the modern marine iron cycle in models. When the iron distributions from 13 global ocean biogeochemistry models are compared against the latest oceanic sections from the GEOTRACES program, we find that all models struggle to reproduce many aspects of the observed spatial patterns. Models that reflect the emerging evidence for multiple iron sources or subtleties of its internal cycling perform much better in capturing observed features than their simpler contemporaries, particularly in the ocean interior. We show that the substantial uncertainty in the input fluxes of iron results in a very wide range of residence times across models, which has implications for the response of ecosystems and global carbon cycling to perturbations. Given this large uncertainty, iron fertilization experiments based on any single current generation model should be interpreted with caution. Improvements to how such models represent iron scavenging and also biological cycling are needed to raise confidence in their projections of global biogeochemical change in the ocean.

  10. Model-based processing for shallow ocean environments: The broadband problem

    SciTech Connect

    Candy, J.V.; Sullivan, E.J.

    1996-01-31

    Most acoustic sources found is the ocean environmental are spatially complex and broadband. When propagating in a shallow ocean these source characteristics complicate the analysis of received acoustic data considerably. The enhancement of broadband acoustic pressure- field measurements using a vertical array is discussed. Here a model- based approach is developed for a broadband source using a normal- mode propagation model.

  11. A comparison of zero-order, first-order, and monod biotransformation models

    USGS Publications Warehouse

    Bekins, B.A.; Warren, E.; Godsy, E.M.

    1998-01-01

    Under some conditions, a first-order kinetic model is a poor representation of biodegradation in contaminated aquifers. Although it is well known that the assumption of first-order kinetics is valid only when substrate concentration, S, is much less than the half-saturation constant, K(s), this assumption is often made without verification of this condition. We present a formal error analysis showing that the relative error in the first-order approximation is S/K(S) and in the zero-order approximation the error is K(s)/S. We then examine the problems that arise when the first-order approximation is used outside the range for which it is valid. A series of numerical simulations comparing results of first- and zero-order rate approximations to Monod kinetics for a real data set illustrates that if concentrations observed in the field are higher than K(s), it may better to model degradation using a zero-order rate expression. Compared with Monod kinetics, extrapolation of a first-order rate to lower concentrations under-predicts the biotransformation potential, while extrapolation to higher concentrations may grossly over-predict the transformation rate. A summary of solubilities and Monod parameters for aerobic benzene, toluene, and xylene (BTX) degradation shows that the a priori assumption of first-order degradation kinetics at sites contaminated with these compounds is not valid. In particular, out of six published values of KS for toluene, only one is greater than 2 mg/L, indicating that when toluene is present in concentrations greater than about a part per million, the assumption of first-order kinetics may be invalid. Finally, we apply an existing analytical solution for steady-state one-dimensional advective transport with Monod degradation kinetics to a field data set.A formal error analysis is presented showing that the relative error in the first-order approximation is S/KS and in the zero-order approximation the error is KS/S where S is the substrate

  12. A simple method for improving the time-stepping accuracy in atmosphere and ocean models

    NASA Astrophysics Data System (ADS)

    Williams, P. D.

    2012-12-01

    In contemporary numerical simulations of the atmosphere and ocean, evidence suggests that time-stepping errors may be a significant component of total model error, on both weather and climate time-scales. This presentation will review the available evidence, and will then suggest a simple but effective method for substantially improving the time-stepping numerics at no extra computational expense. A common time-stepping method in atmosphere and ocean models is the leapfrog scheme combined with the Robert-Asselin (RA) filter. This method is used in the following models (and many more): ECHAM, MAECHAM, MM5, CAM, MESO-NH, HIRLAM, KMCM, LIMA, SPEEDY, IGCM, PUMA, COSMO, FSU-GSM, FSU-NRSM, NCEP-GFS, NCEP-RSM, NSEAM, NOGAPS, RAMS, and CCSR/NIES-AGCM. Although the RA filter controls the time-splitting instability, it also introduces non-physical damping and reduces the accuracy. This presentation proposes a simple modification to the RA filter, which has become known as the RAW filter (Williams 2009, 2011). When used in conjunction with the leapfrog scheme, the RAW filter eliminates the non-physical damping and increases the amplitude accuracy by two orders, yielding third-order accuracy. (The phase accuracy remains second-order.) The RAW filter can easily be incorporated into existing models, typically via the insertion of just a single line of code. Better simulations are obtained at no extra computational expense. Results will be shown from recent implementations of the RAW filter in various models, including SPEEDY and COSMO. For example, in SPEEDY, the skill of weather forecasts is found to be significantly improved. In particular, in tropical surface pressure predictions, five-day forecasts made using the RAW filter have approximately the same skill as four-day forecasts made using the RA filter (Amezcua, Kalnay & Williams 2011). These improvements are encouraging for the use of the RAW filter in other atmosphere and ocean models. References PD Williams (2009) A

  13. Evaluation of Arctic Sea Ice Thickness Simulated by Arctic Ocean Model Intercomparison Project Models

    NASA Technical Reports Server (NTRS)

    Johnson, Mark; Proshuntinsky, Andrew; Aksenov, Yevgeny; Nguyen, An T.; Lindsay, Ron; Haas, Christian; Zhang, Jinlun; Diansky, Nikolay; Kwok, Ron; Maslowski, Wieslaw; Hakkinen, Sirpa; Ashik, Igor; De Cuevas, Beverly

    2012-01-01

    Six Arctic Ocean Model Intercomparison Project model simulations are compared with estimates of sea ice thickness derived from pan-Arctic satellite freeboard measurements (2004-2008); airborne electromagnetic measurements (2001-2009); ice draft data from moored instruments in Fram Strait, the Greenland Sea, and the Beaufort Sea (1992-2008) and from submarines (1975-2000); and drill hole data from the Arctic basin, Laptev, and East Siberian marginal seas (1982-1986) and coastal stations (1998-2009). Despite an assessment of six models that differ in numerical methods, resolution, domain, forcing, and boundary conditions, the models generally overestimate the thickness of measured ice thinner than approximately 2 mand underestimate the thickness of ice measured thicker than about approximately 2m. In the regions of flat immobile landfast ice (shallow Siberian Seas with depths less than 25-30 m), the models generally overestimate both the total observed sea ice thickness and rates of September and October ice growth from observations by more than 4 times and more than one standard deviation, respectively. The models do not reproduce conditions of fast ice formation and growth. Instead, the modeled fast ice is replaced with pack ice which drifts, generating ridges of increasing ice thickness, in addition to thermodynamic ice growth. Considering all observational data sets, the better correlations and smaller differences from observations are from the Estimating the Circulation and Climate of the Ocean, Phase II and Pan-Arctic Ice Ocean Modeling and Assimilation System models.

  14. Feature Analysis of Ocean Waves in North Central Pacific Ocean Based ASAR Wave Spectral Data and Wave Model

    NASA Astrophysics Data System (ADS)

    Wang, Jichao; Zhang, Jie; Yang, Jungang; Meng, Junmin

    2013-01-01

    Directional Spectrum of the ocean waves could be obtained form Envisat advanced synthetic aperture radar (ASAR) wave spectral data. The wave model WAVEWATCH III (WW3) is applied to simulate the ocean wave field. Study area is 185°E-215°E and 15°N-30°N, time range is from 1 January 2008 to 31 December 2008. Based on ASAR and buoy data, the wave numerical simulation and assimilation of the north central Pacific Ocean is carried out. The validation and assessment of ASAR ocean wave spectra products is performed. The optimal interpolation (OI) algorithm is used in model WW3 for assimilating ASAR wave spectra data. Based on the result of the simulation and assimilation, mean waves direction (MWD), significant wave height (SWH) and mean wave period (MWP) are analysed. SWH and MWP are larger in winter and SWH reach to more than 2.5 meters. Seasonal change of SWH and MWP are significant.

  15. Broadband model-based processing for shallow ocean environments

    SciTech Connect

    Candy, J.V.; Sullivan, E.J.

    1998-07-01

    Most acoustic sources found in the ocean environment are spatially complex and broadband. In the case of shallow water propagation, these source characteristics complicate the analysis of received acoustic data considerably. A common approach to the broadband problem is to decompose the received signal into a set of narrow-band lines. This then allows the problem to be treated as a multiplicity of narrow-band problems. Here a model-based approach is developed for the processing of data received on a vertical array from a broadband source where it is assumed that the propagation is governed by the normal-mode model. The goal of the processor is to provide an enhanced (filtered) version of the pressure at the array and the modal functions. Thus a pre-processor is actually developed, since one could think of several applications for these enhanced quantities such as localization, modal estimation, etc. It is well-known that in normal-mode theory a different modal structure evolves for each temporal frequency; thus it is not surprising that the model-based solution to this problem results in a scheme that requires a {open_quotes}bank{close_quotes} of narrow-band model-based processors{emdash}each with its own underlying modal structure for the narrow frequency band it operates over. The {open_quotes}optimal{close_quotes} Bayesian solution to the broadband pressure field enhancement and modal function extraction problem is developed. It is shown how this broadband processor can be implemented (using a suboptimal scheme) in pseudo real time due to its inherent parallel structure. A set of noisy broadband data is synthesized to demonstrate how to construct the processor and achieve a minimum variance (optimal Bayesian) design. It is shown that both broadband pressure-field and modal function estimates can be extracted illustrating the feasibility of this approach. {copyright} {ital 1998 Acoustical Society of America.}

  16. Oceanic Carbon Dioxide Uptake in a Model of Century-Scale Global Warming

    PubMed

    Sarmiento; Le Quéré C

    1996-11-22

    In a model of ocean-atmosphere interaction that excluded biological processes, the oceanic uptake of atmospheric carbon dioxide (CO2) was substantially reduced in scenarios involving global warming relative to control scenarios. The primary reason for the reduced uptake was the weakening or collapse of the ocean thermohaline circulation. Such a large reduction in this ocean uptake would have a major impact on the future growth rate of atmospheric CO2. Model simulations that include a simple representation of biological processes show a potentially large offsetting effect resulting from the downward flux of biogenic carbon. However, the magnitude of the offset is difficult to quantify with present knowledge. PMID:8910268

  17. Modeling the tropical Pacific Ocean using a regional coupled climate model

    NASA Astrophysics Data System (ADS)

    Fu, Weiwei; Zhou, Guangqing; Wang, Huijun

    2006-12-01

    A high-resolution tropical Pacific general circulation model (GCM) coupled to a global atmospheric GCM is described in this paper. The atmosphere component is the 5° × 4° global general circulation model of the Institute of Atmospheric Physics (IAP) with 9 levels in the vertical direction. The ocean component with a horizontal resolution of 0.5°, is based on a low-resolution model (2° × 1° in longitude-latitude). Simulations of the ocean component are first compared with its previous version. Results show that the enhanced ocean horizontal resolution allows an improved ocean state to be simulated: this involves (1) an apparent decrease in errors in the tropical Pacific cold tongue region, which exists in many ocean models, (2) more realistic large-scale flows, and (3) an improved ability to simulate the interannual variability and a reduced root mean square error (RMSE) in a long time integration. In coupling these component models, a monthly “linear-regression” method is employed to correct the model’s exchanged flux between the sea and the atmosphere. A 100-year integration conducted with the coupled GCM (CGCM) shows the effectiveness of such a method in reducing climate drift. Results from years 70 to 100 are described. The model produces a reasonably realistic annual cycle of equatorial SST. The large SSTA is confined to the eastern equatorial Pacific with little propagation. Irregular warm and cold events alternate with a broad spectrum of periods between 24 and 50 months, which is very realistic. But the simulated variability is weaker than the observed and is also asymmetric in the sense of the amplitude of the warm and cold events.

  18. The Regional Earth System Model (RegESM) using RegCM4 coupled with the MITgcm ocean model: First assessments over the MED-CORDEX domain

    NASA Astrophysics Data System (ADS)

    Mariotti, Laura; Utku Turunçoǧlu, Ufuk; Farneti, Riccardo; Sannino, Gianmaria; Vittoria Struglia, Maria; Carillo, Adriana; Giorgi, Filippo

    2016-04-01

    In the framework of global climate studies, there is an increasingly growing concern about the vulnerability of the Mediterranean region, where high population density and intense exploitation activities pose severe questions on the sustainability of terrestrial water management, both for the present and the future. Ocean modeling studies suggest that the Mediterranean thermohaline circulation could be weakened in conditions of global greenhouse warming, an event which would undoubtedly affect regional climate, possibly triggering global feedback processes. Experiments with the atmosphere-ocean coupled system confirmed that a good comprehension of Mediterranean processes requires the explicit inclusion of the feedbacks between the atmospheric and the oceanic components, thus achieving a complete, fully coupled description of the Mediterranean hydrological cycle, at the same time gaining new insights in our current ability to reproduce the atmospheric hydrological processes and to close the hydrological balance. These issues are addressed by the upgraded PROTHEUS system which was jointly developed by ENEA and ICTP. Here we present a first evaluation of the performances of the new PROTHEUS system (called PROTHEUS 2.0) composed by the regional climate model RegCM4 (Giorgi et al. 2012) coupled with both the ocean model MITgcm (Marshall J. et al. 1997a,b) and the HD river model (Max-Planck's HD model; Hagemann and Dümenil, 1998) using RegESM (Regional Earth System Model) as a driver. The three-component (atmosphere, ocean and river routing) fully coupled model exchanges sea surface temperature (SST) from the ocean to the atmospheric model, surface wind stress, energy and freshwater fluxes from the atmosphere to the ocean model, surface and sub-surface runoff from the atmospheric component to the river routing model (Max-Planck's HD model; Hagemann and Dümenil, 1998). In order to have water conservation within the system, the river routing component sends the

  19. Second-order closure models for supersonic turbulent flows

    NASA Technical Reports Server (NTRS)

    Speziale, Charles G.; Sarkar, Sutanu

    1991-01-01

    Recent work on the development of a second-order closure model for high-speed compressible flows is reviewed. This turbulent closure is based on the solution of modeled transport equations for the Favre-averaged Reynolds stress tensor and the solenoidal part of the turbulent dissipation rate. A new model for the compressible dissipation is used along with traditional gradient transport models for the Reynolds heat flux and mass flux terms. Consistent with simple asymptotic analyses, the deviatoric part of the remaining higher-order correlations in the Reynolds stress transport equations are modeled by a variable density extension of the newest incompressible models. The resulting second-order closure model is tested in a variety of compressible turbulent flows which include the decay of isotropic turbulence, homogeneous shear flow, the supersonic mixing layer, and the supersonic flat-plate turbulent boundary layer. Comparisons between the model predictions and the results of physical and numerical experiments are quite encouraging.

  20. Multi-agent-based Order Book Model of financial markets

    NASA Astrophysics Data System (ADS)

    Preis, T.; Golke, S.; Paul, W.; Schneider, J. J.

    2006-08-01

    We introduce a simple model for simulating financial markets, based on an order book, in which several agents trade one asset at a virtual exchange continuously. For a stationary market the structure of the model, the order flow rates of the different kinds of order types and the used price time priority matching algorithm produce only a diffusive price behavior. We show that a market trend, i.e. an asymmetric order flow of any type, leads to a non-trivial Hurst exponent for the price development, but not to "fat-tailed" return distributions. When one additionally couples the order entry depth to the prevailing trend, also the stylized empirical fact of "fat tails" can be reproduced by our Order Book Model.

  1. Tropical Indian Ocean surface salinity bias in Climate Forecasting System coupled models and the role of upper ocean processes

    NASA Astrophysics Data System (ADS)

    Parekh, Anant; Chowdary, Jasti S.; Sayantani, Ojha; Fousiya, T. S.; Gnanaseelan, C.

    2016-04-01

    In the present study sea surface salinity (SSS) biases and seasonal tendency over the Tropical Indian Ocean (TIO) in the coupled models [Climate Forecasting System version 1 (CFSv1) and version 2 (CFSv2)] are examined with respect to observations. Both CFSv1 and CFSv2 overestimate SSS over the TIO throughout the year. CFSv1 displays improper SSS seasonal cycle over the Bay of Bengal (BoB), which is due to weaker model precipitation and improper river runoff especially during summer and fall. Over the southeastern Arabian Sea (AS) weak horizontal advection associated with East Indian coastal current during winter limits the formation of spring fresh water pool. On the other hand, weaker Somali jet during summer results for reduced positive salt tendency in the central and eastern AS. Strong positive precipitation bias in CFSv1 over the region off Somalia during winter, weaker vertical mixing and absence of horizontal salt advection lead to unrealistic barrier layer during winter and spring. The weaker stratification and improper spatial distribution of barrier layer thickness (BLT) in CFSv1 indicate that not only horizontal flux distribution but also vertical salt distribution displays large discrepancies. Absence of fall Wyrtki jet and winter equatorial currents in this model limit the advection of horizontal salt flux to the eastern equatorial Indian Ocean. The associated weaker stratification in eastern equatorial Indian Ocean can lead to deeper mixed layer and negative Sea Surface Temperature (SST) bias, which in turn favor positive Indian Ocean Dipole bias in CFSv1. It is important to note that improper spatial distribution of barrier layer and stratification can alter the air-sea interaction and precipitation in the models. On the other hand CFSv2 could produce the seasonal evolution and spatial distribution of SSS, BLT and stratification better than CFSv1. However CFSv2 displays positive bias in evaporation over the whole domain and negative bias in

  2. Coupled model of INM-IO global ocean model, CICE sea ice model and SCM OIAS framework

    NASA Astrophysics Data System (ADS)

    Bayburin, Ruslan; Rashit, Ibrayev; Konstantin, Ushakov; Vladimir, Kalmykov; Gleb, Dyakonov

    2015-04-01

    Status of coupled Arctic model of ocean and sea ice is presented. Model consists of INM IO global ocean component of high resolution, Los Alamos National Laboratory CICE sea ice model and a framework SCM OIAS for the ocean-ice-atmosphere-land coupled modeling on massively-parallel architectures. Model is currently under development at the Institute of Numerical Mathematics (INM), Hydrometeorological Center (HMC) and P.P. Shirshov Institute of Oceanology (IO). Model is aimed at modeling of intra-annual variability of hydrodynamics in Arctic and. The computational characteristics of the world ocean-sea ice coupled model governed by SCM OIAS are presented. The model is parallelized using MPI technologies and currently can use efficiently up to 5000 cores. Details of programming implementation, computational configuration and physical phenomena parametrization are analyzed in terms of intercoupling complex. Results of five year computational experiment of sea ice, snow and ocean state evolution in Arctic region on tripole grid with horizontal resolution of 3-5 kilometers, closed by atmospheric forcing field from repeating "normal" annual course taken from CORE1 experiment data base are presented and analyzed in terms of the state of vorticity and warm Atlantic water expansion.

  3. Effects of Southern Hemisphere Wind Changes on the Meridional Overturning Circulation in Ocean Models.

    PubMed

    Gent, Peter R

    2016-01-01

    Observations show that the Southern Hemisphere zonal wind stress maximum has increased significantly over the past 30 years. Eddy-resolving ocean models show that the resulting increase in the Southern Ocean mean flow meridional overturning circulation (MOC) is partially compensated by an increase in the eddy MOC. This effect can be reproduced in the non-eddy-resolving ocean component of a climate model, providing the eddy parameterization coefficient is variable and not a constant. If the coefficient is a constant, then the Southern Ocean mean MOC change is balanced by an unrealistically large change in the Atlantic Ocean MOC. Southern Ocean eddy compensation means that Southern Hemisphere winds cannot be the dominant mechanism driving midlatitude North Atlantic MOC variability. PMID:26163010

  4. Reconstructing the carbonate compensation depth from 0 to 100 Ma using ocean ion concentrations and bathymetry models

    NASA Astrophysics Data System (ADS)

    Davis, Joel; Lithgow-Bertelloni, Carolina

    2014-05-01

    The oceans play an important part in regulating the carbon cycle and climate system, acting as a buffer between the carbon in the atmosphere and the deep earth. Of all dissolved inorganic carbon (DIC) in the ocean, only carbonate can exist in a solid state (mostly as calcite). In the near-surface ocean, calcite is supersaturated and thus precipitates. Deeper in the ocean, the solubility of calcite increases and all is entirely dissolved at the carbonate compensation depth (CCD), where the rate of falling carbonate equals the rate of dissolution. The CCD today is around 4.5 km depth, though previous work that looked at the composition of sediments on the ocean floor has suggested that CCD was different in the past (e.g. Pälike et al., 2012; Sclater et al., 1977). These studies mostly show the CCD decreasing to shallower depths through the Cenozoic and the Mesozoic. The deepening of the CCD through time is consistent with the decrease in atmospheric CO2 over time shown in the GEOCARB models (Berner, 1987; Berner and Kothavala, 2001; Berner, 2006); more carbon is being stored in the ocean as sediment. We look at the evolution of the CCD since 100 Ma by focusing on changes in the volume of the ocean basins. We combine recent advancements in determining palaeobathymetry into the Mesozoic from reconstructed ages of the ocean floor (Müller et al., 2008) in conjunction with a geochemical model by Boudreau et al. (2010) for the average CCD today, applying it from 0 to 100 Ma. A history of global ocean ion concentrations produced by Tyrrell and Zeebe (2004) was used. Various assumptions about productivity rates, solubility constants and other conditions in the past oceans were necessary to make a first order working model. The model was found to be very sensitive to even minor changes in the dissolved concentration of carbonate. In the reconstruction where the surface saturation state was decreased going back to 100 Ma, the CCD gradually deepens with time, consistent with

  5. First and Higher Order Effects on Zero Order Radiative Transfer Model

    NASA Astrophysics Data System (ADS)

    Neelam, M.; Mohanty, B.

    2014-12-01

    Microwave radiative transfer model are valuable tool in understanding the complex land surface interactions. Past literature has largely focused on local sensitivity analysis for factor priotization and ignoring the interactions between the variables and uncertainties around them. Since land surface interactions are largely nonlinear, there always exist uncertainties, heterogeneities and interactions thus it is important to quantify them to draw accurate conclusions. In this effort, we used global sensitivity analysis to address the issues of variable uncertainty, higher order interactions, factor priotization and factor fixing for zero-order radiative transfer (ZRT) model. With the to-be-launched Soil Moisture Active Passive (SMAP) mission of NASA, it is very important to have a complete understanding of ZRT for soil moisture retrieval to direct future research and cal/val field campaigns. This is a first attempt to use GSA technique to quantify first order and higher order effects on brightness temperature from ZRT model. Our analyses reflect conditions observed during the growing agricultural season for corn and soybeans in two different regions in - Iowa, U.S.A and Winnipeg, Canada. We found that for corn fields in Iowa, there exist significant second order interactions between soil moisture, surface roughness parameters (RMS height and correlation length) and vegetation parameters (vegetation water content, structure and scattering albedo), whereas in Winnipeg, second order interactions are mainly due to soil moisture and vegetation parameters. But for soybean fields in both Iowa and Winnipeg, we found significant interactions only to exist between soil moisture and surface roughness parameters.

  6. A comparison of zero-order, first-order, and Monod biotransformation models

    SciTech Connect

    Bekins, B.A.; Warren, E.; Godsy, E.M.

    1998-03-01

    Under some conditions, a first-order kinetic model is a poor representation of biodegradation in contaminated aquifers. Although it is well known that the assumption of first-order kinetics is valid only when substrate concentration, S, is much less than the half-saturation constant, K{sub S}, this assumption is often made without verification of this condition. The authors present a formal error analysis showing that the relative error in the first-order approximation is S/K{sub S} and in the zero-order approximation the error is K{sub S}/S. They then examine the problems that arise when the first-order approximation is used outside the range for which it is valid. A series of numerical simulations comparing results of first- and zero-order rate approximations to Monod kinetics for a real data set illustrates that if concentrations observed in the field are higher than K{sub S}, it may be better to model degradation using a zero-order rate expression. Compared with Monod kinetics, extrapolation of a first-order rate to lower concentrations under-predicts the biotransformation potential, while extrapolation to higher concentrations may grossly over-predict the transformation rate. A summary of solubilities and Monod parameters for aerobic benzene, toluene, and xylene (BTX) degradation shows that the a priori assumption of first-order degradation kinetics at sites contaminated with these compounds is not valid. In particular, out of six published values of K{sub S} for toluene, only one is greater than 2 mg/L, indicating that when toluene is present in concentrations greater than about a part per million, the assumption of first-order kinetics may be invalid. Finally, the authors apply an existing analytical solution for steady-state one-dimensional advective transport with Monod degradation kinetics to a field data set.

  7. Experimental design for three interrelated Marine Ice-Sheet and Ocean Model Intercomparison Projects

    NASA Astrophysics Data System (ADS)

    Asay-Davis, X. S.; Cornford, S. L.; Durand, G.; Galton-Fenzi, B. K.; Gladstone, R. M.; Gudmundsson, G. H.; Hattermann, T.; Holland, D. M.; Holland, D.; Holland, P. R.; Martin, D. F.; Mathiot, P.; Pattyn, F.; Seroussi, H.

    2015-11-01

    Coupled ice sheet-ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of marine ice sheets and tidewater glaciers, from process studies to future projections of ice mass loss and sea level rise. The Marine Ice Sheet-Ocean Model Intercomparison Project (MISOMIP) is a community effort aimed at designing and coordinating a series of model intercomparison projects (MIPs) for model evaluation in idealized setups, model verification based on observations, and future projections for key regions in the West Antarctic Ice Sheet (WAIS). Here we describe computational experiments constituting three interrelated MIPs for marine ice sheet models and regional ocean circulation models incorporating ice shelf cavities. These consist of ice sheet experiments under the Marine Ice Sheet MIP third phase (MISMIP+), ocean experiments under the ice shelf-ocean MIP second phase (ISOMIP+) and coupled ice sheet-ocean experiments under the MISOMIP first phase (MISOMIP1). All three MIPs use a shared domain with idealized bedrock topography and forcing, allowing the coupled simulations (MISOMIP1) to be compared directly to the individual component simulations (MISMIP+ and ISOMIP+). The experiments, which have qualitative similarities to Pine Island Glacier Ice Shelf and the adjacent region of the Amundsen Sea, are designed to explore the effects of changes in ocean conditions, specifically the temperature at depth, on basal melting and ice dynamics. In future work, differences between model results will form the basis for evaluation of the participating models.

  8. A new derivation of the shallow water equations in geographical coordinates and their application to the global barotropic ocean model (the DEBOT model)

    NASA Astrophysics Data System (ADS)

    Einšpigel, David; Martinec, Zdeněk

    2015-08-01

    The purpose of this paper is to present a new global barotropic ocean model-the DEBOT model. The model is based on the shallow water equations which we newly express in geographical coordinates. The derivation includes the boundary conditions and the Reynolds tensor in a form used commonly in oceanography. The numerical model employs finite differences on an Arakawa-C grid in space and a generalized forward-backward scheme in time with a combined third-order Adams-Bashforth and fourth-order Adams-Moulton step. The validity of the model is demonstrated by the tests based on conservation integral invariants. As a practical application, we present ocean circulation simulations generated by the lunisolar tidal force.

  9. Advances in ocean modeling for climate change research

    NASA Astrophysics Data System (ADS)

    Holland, William R.; Capotondi, Antonietta; Holland, Marika M.

    1995-07-01

    An adequate understanding of climate variability and the eventual prediction of climate change are among the most urgent and far-reaching efforts of the scientific community. The climate system is in an ever-changing state with vast impact on mankind in all his activities. Both short and long-term aspects of climate variability are of concern, and the unravelling of "natural" variability from "man-induced" climate change is required to prepare for and ameliorate, if possible, the potentially devastating aspects of such change. In terms of scientific effort, the climate community can be thought of as the union of the disciplinary sciences of meteorology, oceanography, sea ice and glaciology, and land surface processes. Since models are based upon mathematical and numerical constructs, mathematics and computer sciences are also directly involved. In addition, some of the problems of man-induced climate change (release of greenhouse gases, the ozone-hole problem, etc.) are basically chemical in nature, and the expertise of the atmospheric and oceanic chemist is also required. In addition, some part of the response to climate perturbations will arise in the biological world, due to upsetting the balance in the great food web that binds communities together on both the land and the sea. Thus, the problems to be solved are extraordinarily complex and require the efforts of many kinds of scientist.

  10. Eddy permitting simulation of the global ocean model COCO4.3 driven by the CORE inter- annual forcing

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Hasumi, H.; Komuro, Y.; Sakamoto, T. T.

    2008-12-01

    We are developing ocean component of the CCSR/NIES/FRCGC climate model to conduct high-resolution global warming simulations under IPCC scenarios. This presentation focuses on the performance and the behavior and role of eddies in the global ocean. The Ocean model is CCSR Ocean Component Model (COCO) version 4.3, which is a z-coordinate, free-surface primitive equation ocean model with multi-category sea ice model. The geographical North Pole is moved to 40W, 77N on Greenland and the geographical South Pole is moved to 40E, 77S. The computational domain covers global ocean, with zonal grid spacing of 0.28125 degree and meridional grid spacing of 0.1875 degree. There are 50 vertical levels excluding the bottom boundary layer, and 7 of which are within the sigma-coordinate (~42m). The model employs the momentum advection algorithm of Ishizaki and Motoi (1991), which is a pseudo-enstrophy preserving scheme with a consideration for up-/down-sloping advection. The model's tracer advection is based on the second-order moment (SOM) advection scheme of Prather, M. J. (1986). The vertical mixing of momentum and tracers is represented by a harmonic form. The coefficients are calculated by the parameterization of Noh and Kim (1999), but the formulation is slightly modified (see K1-developers, 2004). As background diffusivity, a minimum value is set for each level, suggested by Tsujino et al. (2000). The Smagorinsky's (1963) biharmonic viscosity is applied for the lateral momentum mixing, and its coefficient is dependent on the grid width and the strain rate, and its controlled by a single non- dimensional parameter whose values is taken to be 2.5. The constant coefficient biharmonic diffusion is applied with the coefficient value of 1.0E9 m4/s. The model is driven by the inter-annual forcing data set adopted by common ocean-ice reference experiments (CORE). The results are reported by focusing on heat transport in strong eddy activity regions, such as the Kuroshio

  11. SENSITIVITY OF THE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION MULTILAYER MODEL TO INSTRUMENT ERROR AND PARAMETERIZATION UNCERTAINTY

    EPA Science Inventory

    The response of the National Oceanic and Atmospheric Administration multilayer inferential dry deposition velocity model (NOAA-MLM) to error in meteorological inputs and model parameterization is reported. Monte Carlo simulations were performed to assess the uncertainty in NOA...

  12. Building Higher-Order Markov Chain Models with EXCEL

    ERIC Educational Resources Information Center

    Ching, Wai-Ki; Fung, Eric S.; Ng, Michael K.

    2004-01-01

    Categorical data sequences occur in many applications such as forecasting, data mining and bioinformatics. In this note, we present higher-order Markov chain models for modelling categorical data sequences with an efficient algorithm for solving the model parameters. The algorithm can be implemented easily in a Microsoft EXCEL worksheet. We give a…

  13. Trends in Ocean Irradiance using a Radiative Model Forced with Terra Aerosols and Clouds

    NASA Technical Reports Server (NTRS)

    Gregg, Watson; Casey, Nancy; Romanou, Anastasia

    2010-01-01

    Aerosol and cloud information from MODIS on Terra provide enhanced capability to understand surface irradiance over the oceans and its variability. These relationships can be important for ocean biology and carbon cycles. An established radiative transfer model, the Ocean-Atmosphere Spectral Irradiance Model (OASIM) is used to describe ocean irradiance variability on seasonal to decadal time scales. The model is forced with information on aerosols and clouds from the MODIS sensor on Terra and Aqua. A 7-year record (2000-2006) showed no trends in global ocean surface irradiance or photosynthetic available irradiance (PAR). There were significant (P<0.05) negative trends in the Mediterranean Sea, tropical Pacific) and tropical Indian Oceans, of -7.0, -5.0 and -2.7 W/sq m respectively. Global interannual variability was also modest. Regional interannual variability was quite large in some ocean basins, where monthly excursions from climatology were often >20 W/sq m. The trends using MODIS data contrast with results from OASIM using liquid water path estimates from the International Satellite Cloud Climatology Project (ISCCP). Here, a global trend of -2 W/sq m was observed, largely dues to a large negative trend in the Antarctic -12 W/sq m. These results suggest the importance of the choice of liquid water path data sets in assessments of medium-length trends in ocean surface irradiance. The choices also impact the evaluation of changes in ocean biogeochemistry.

  14. Three-dimensional turbulent bottom density currents from a high-order nonhydrostatic spectral element model.

    SciTech Connect

    Ozgokmen, T.; Fischer, P.; Duan, J.; Iliescu, T.; Mathematics and Computer Science; Univ. of Miami; IIT; Virginia Polytechnic Inst. and State Univ.

    2004-09-01

    Overflows are bottom gravity currents that supply dense water masses generated in high-latitude and marginal seas into the general circulation. Oceanic observations have revealed that mixing of overflows with ambient water masses takes place over small spatial and time scales. Studies with ocean general circulation models indicate that the strength of the thermohaline circulation is strongly sensitive to representation of overflows in these models. In light of these results, overflow-induced mixing emerges as one of the prominent oceanic processes. In this study, as a continuation of an effort to develop appropriate process models for overflows, nonhydrostatic 3D simulations of bottom gravity are carried out that would complement analysis of dedicated observations and large-scale ocean modeling. A parallel high-order spectral-element Navier-Stokes solver is used as the basis of the simulations. Numerical experiments are conducted in an idealized setting focusing on the startup phase of a dense water mass released at the top of a sloping wedge. Results from 3D experiments are compared with results from 2D experiments and laboratory experiments, based on propagation speed of the density front, growth rate of the characteristic head at the leading edge, turbulent overturning length scales, and entrainment parameters. Results from 3D experiments are found to be in general agreement with those from laboratory tank experiments. In 2D simulations, the propagation speed is approximately 20% slower than that of the 3D experiments and the head growth rate is 3 times as large, Thorpe scales are 1.3-1.5 times as large, and the entrainment parameter is up to 2 times as large as those in the 3D experiments. The differences between 2D and 3D simulations are entirely due to internal factors associated with the truncation of the Navier-Stokes equations for 2D approximation.

  15. Adaptive Error Estimation in Linearized Ocean General Circulation Models

    NASA Technical Reports Server (NTRS)

    Chechelnitsky, Michael Y.

    1999-01-01

    representation error, i.e. the dominance of the mesoscale eddies in the T/P signal, which are not part of the 21 by 1" GCM. Therefore, the impact of the observations on the assimilation is very small even after the adjustment of the error statistics. This work demonstrates that simult&neous estimation of the model and measurement error statistics for data assimilation with global ocean data sets and linearized GCMs is possible. However, the error covariance estimation problem is in general highly underdetermined, much more so than the state estimation problem. In other words there exist a very large number of statistical models that can be made consistent with the available data. Therefore, methods for obtaining quantitative error estimates, powerful though they may be, cannot replace physical insight. Used in the right context, as a tool for guiding the choice of a small number of model error parameters, covariance matching can be a useful addition to the repertory of tools available to oceanographers.

  16. Performance Optimization of NEMO Oceanic Model at High Resolution

    NASA Astrophysics Data System (ADS)

    Epicoco, Italo; Mocavero, Silvia; Aloisio, Giovanni

    2014-05-01

    The NEMO oceanic model is based on the Navier-Stokes equations along with a nonlinear equation of state, which couples the two active tracers (temperature and salinity) to the fluid velocity. The code is written in Fortan 90 and parallelized using MPI. The resolution of the global ocean models used today for climate change studies limits the prediction accuracy. To overcome this limit, a new high-resolution global model, based on NEMO, simulating at 1/16° and 100 vertical levels has been developed at CMCC. The model is computational and memory intensive, so it requires many resources to be run. An optimization activity is needed. The strategy requires a preliminary analysis to highlight scalability bottlenecks. It has been performed on a SandyBridge architecture at CMCC. An efficiency of 48% on 7K cores (the maximum available) has been achieved. The analysis has been also carried out at routine level, so that the improvement actions could be designed for the entire code or for the single kernel. The analysis highlighted for example a loss of performance due to the routine used to implement the north fold algorithm (i.e. handling the points at the north pole of the 3-poles Grids): indeed an optimization of the routine implementation is needed. The folding is achieved considering only the last 4 rows on the top of the global domain and by applying a rotation pivoting on the point in the middle. During the folding, the point on the top left is updated with the value of the point on bottom right and so on. The current version of the parallel algorithm is based on the domain decomposition. Each MPI process takes care of a block of points. Each process can update its points using values belonging to the symmetric process. In the current implementation, each received message is placed in a buffer with a number of elements equal to the total dimension of the global domain. Each process sweeps the entire buffer, but only a part of that computation is really useful for the

  17. Ontology-Based Modelling of Ocean Satellite Images

    NASA Astrophysics Data System (ADS)

    Almendros-Jiménez, Jesús M.; Piedra, José A.; Cantón, Manuel

    In this paper we will define an ontology about the semantic content of ocean satellite images in which we are able to represent types of ocean structures, spatial and morphological concepts, and knowledge about measures of temperature, chrolophyll concentration, among others. Such ontology will provide the basis of a classification system based on the low-level features of images. We have tested our approach using the Protegé semantic web tool.

  18. Internal pressure gradient errors in σ-coordinate ocean models in high resolution fjord studies

    NASA Astrophysics Data System (ADS)

    Berntsen, Jarle; Thiem, Øyvind; Avlesen, Helge

    2015-08-01

    Terrain following ocean models are today applied in coastal areas and fjords where the topography may be very steep. Recent advances in high performance computing facilitate model studies with very high spatial resolution. In general, numerical discretization errors tend to zero with the grid size. However, in fjords and near the coast the slopes may be very steep, and the internal pressure gradient errors associated with σ-models may be significant even in high resolution studies. The internal pressure gradient errors are due to errors when estimating the density gradients in σ-models, and these errors are investigated for two idealized test cases and for the Hardanger fjord in Norway. The methods considered are the standard second order method and a recently proposed method that is balanced such that the density gradients are zero for the case ρ = ρ(z) where ρ is the density and z is the vertical coordinate. The results show that by using the balanced method, the errors may be reduced considerably also for slope parameters larger than the maximum suggested value of 0.2. For the Hardanger fjord case initialized with ρ = ρ(z) , the errors in the results produced with the balanced method are orders of magnitude smaller than the corresponding errors in the results produced with the second order method.

  19. Impact of variable seawater conductivity on motional induction simulated with an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Irrgang, C.; Saynisch, J.; Thomas, M.

    2016-01-01

    Carrying high concentrations of dissolved salt, ocean water is a good electrical conductor. As seawater flows through the Earth's ambient geomagnetic field, electric fields are generated, which in turn induce secondary magnetic fields. In current models for ocean-induced magnetic fields, a realistic consideration of seawater conductivity is often neglected and the effect on the variability of the ocean-induced magnetic field unknown. To model magnetic fields that are induced by non-tidal global ocean currents, an electromagnetic induction model is implemented into the Ocean Model for Circulation and Tides (OMCT). This provides the opportunity to not only model ocean-induced magnetic signals but also to assess the impact of oceanographic phenomena on the induction process. In this paper, the sensitivity of the induction process due to spatial and temporal variations in seawater conductivity is investigated. It is shown that assuming an ocean-wide uniform conductivity is insufficient to accurately capture the temporal variability of the magnetic signal. Using instead a realistic global seawater conductivity distribution increases the temporal variability of the magnetic field up to 45 %. Especially vertical gradients in seawater conductivity prove to be a key factor for the variability of the ocean-induced magnetic field. However, temporal variations of seawater conductivity only marginally affect the magnetic signal.

  20. The DEBOT Model, a New Global Barotropic Ocean Tidal Model: Test Computations and an Application in Related Geophysical Disciplines

    NASA Astrophysics Data System (ADS)

    Einspigel, D.; Sachl, L.; Martinec, Z.

    2014-12-01

    We present the DEBOT model, which is a new global barotropic ocean model. The DEBOT model is primarily designed for modelling of ocean flow generated by the tidal attraction of the Moon and the Sun, however it can be used for other ocean applications where the barotropic model is sufficient, for instance, a tsunami wave propagation. The model has been thoroughly tested by several different methods: 1) synthetic example which involves a tsunami-like wave propagation of an initial Gaussian depression and testing of the conservation of integral invariants, 2) a benchmark study with another barotropic model, the LSGbt model, has been performed and 3) results of realistic simulations have been compared with data from tide gauge measurements around the world. The test computations prove the validity of the numerical code and demonstrate the ability of the DEBOT model to simulate the realistic ocean tides. The DEBOT model will be principaly applied in related geophysical disciplines, for instance, in an investigation of an influence of the ocean tides on the geomagnetic field or the Earth's rotation. A module for modelling of the secondary poloidal magnetic field generated by an ocean flow is already implemented in the DEBOT model and preliminary results will be presented. The future aim is to assimilate magnetic data provided by the Swarm satellite mission into the ocean flow model.

  1. Global Bathymetric Prediction For Ocean Modeling and Marine Geophysics

    NASA Technical Reports Server (NTRS)

    Sandwell, David T.; Smith, Walter H. F.; Sichoix, Lydie; Frey, Herbert V. (Technical Monitor)

    2001-01-01

    We proposed to construct a complete bathymetric map of the oceans at a 3-10 km resolution by combining all of the available depth soundings collected over the past 30 years with high resolution marine gravity information provided by the Geosat, ERS-1/2, and Topex/Poseidon altimeters. Detailed bathymetry is essential for understanding physical oceanography and marine geophysics. Currents and tides are controlled by the overall shapes of the ocean basins as well as the smaller sharp ocean ridges and seamounts. Because erosion rates are low in the deep oceans, detailed bathymetry reveals the mantle convection patterns, the plate boundaries, the cooling/subsidence of the oceanic lithosphere, the oceanic plateaus, and the distribution of off-ridge volcanoes. We proposed to: (1) Accumulate all available depth soundings collected over the past 30 years; (2) Use the short wavelength (< 160 km) satellite gravity information to interpolate between sparse ship soundings; (3) Improve the resolution of the marine gravity field using enhanced estimates along repeat altimeter profiles together with the dense altimeter measurements; (4) Refine/improve bathymetric predictions using the improved resolution gravity field and also by investigating computer-intensive methods for bathymetric prediction such as inverse theory; and (5) Produce a 'Globe of the Earth' similar to the globe of Venus prepared by the NASA Magellan investigation. This will also include the best available digital land data.

  2. Atmospheric Turbulence Modeling for Aerospace Vehicles: Fractional Order Fit

    NASA Technical Reports Server (NTRS)

    Kopasakis, George (Inventor)

    2015-01-01

    An improved model for simulating atmospheric disturbances is disclosed. A scale Kolmogorov spectral may be scaled to convert the Kolmogorov spectral into a finite energy von Karman spectral and a fractional order pole-zero transfer function (TF) may be derived from the von Karman spectral. Fractional order atmospheric turbulence may be approximated with an integer order pole-zero TF fit, and the approximation may be stored in memory.

  3. Bayesian Model Comparison for the Order Restricted RC Association Model

    ERIC Educational Resources Information Center

    Iliopoulos, G.; Kateri, M.; Ntzoufras, I.

    2009-01-01

    Association models constitute an attractive alternative to the usual log-linear models for modeling the dependence between classification variables. They impose special structure on the underlying association by assigning scores on the levels of each classification variable, which can be fixed or parametric. Under the general row-column (RC)…

  4. Stable static structures in models with higher-order derivatives

    SciTech Connect

    Bazeia, D.; Lobão, A.S.; Menezes, R.

    2015-09-15

    We investigate the presence of static solutions in generalized models described by a real scalar field in four-dimensional space–time. We study models in which the scalar field engenders higher-order derivatives and spontaneous symmetry breaking, inducing the presence of domain walls. Despite the presence of higher-order derivatives, the models keep to equations of motion second-order differential equations, so we focus on the presence of first-order equations that help us to obtain analytical solutions and investigate linear stability on general grounds. We then illustrate the general results with some specific examples, showing that the domain wall may become compact and that the zero mode may split. Moreover, if the model is further generalized to include k-field behavior, it may contribute to split the static structure itself.

  5. Planar ordering in the plaquette-only gonihedric Ising model

    NASA Astrophysics Data System (ADS)

    Mueller, Marco; Janke, Wolfhard; Johnston, Desmond A.

    2015-05-01

    In this paper we conduct a careful multicanonical simulation of the isotropic 3d plaquette ("gonihedric") Ising model and confirm that a planar, fuki-nuke type order characterises the low-temperature phase of the model. From consideration of the anisotropic limit of the model we define a class of order parameters which can distinguish the low- and high-temperature phases in both the anisotropic and isotropic cases. We also verify the recently voiced suspicion that the order parameter like behaviour of the standard magnetic susceptibility χm seen in previous Metropolis simulations was an artefact of the algorithm failing to explore the phase space of the macroscopically degenerate low-temperature phase. χm is therefore not a suitable order parameter for the model.

  6. Assessment of climate sensitivity to the representation of aerosols in a coupled ocean-atmosphere model

    NASA Astrophysics Data System (ADS)

    Watson, Laura; Michou, Martine; Nabat, Pierre; Saint-Martin, David

    2016-04-01

    Atmospheric aerosols can significantly affect the Earth's radiative balance due to absorption, scattering, and indirect effects upon the climate system. Although our understanding of aerosol properties has improved over recent decades, aerosol radiative forcing remains as one of the largest uncertainties when projecting future climate change. A coupled ocean-atmosphere general circulation model was used to perform sensitivity tests in order to investigate how the representation of aerosols within the model can affect decadal climate variability. These tests included looking at the difference between using constant emissions versus using emissions that evolve over a period of thirty years; examining the impacts of including indirect effects from sea salt and organics; altering the aerosol optical properties; and using an interactive aerosol scheme versus using 2-D climatologies. The results of these sensitivity tests show how modifying certain aspects of the aerosol scheme can significantly modify radiative flux and global surface temperature.

  7. Cloud-radiative effects on implied oceanic energy transports as simulated by atmospheric general circulation models

    SciTech Connect

    Gleckler, P.J.; Randall, D.A.; Boer, G.

    1994-03-01

    This paper reports on energy fluxes across the surface of the ocean as simulated by fifteen atmospheric general circulation models in which ocean surface temperatures and sea-ice boundaries are prescribed. The oceanic meridional energy transport that would be required to balance these surface fluxes is computed, and is shown to be critically sensitive to the radiative effects of clouds, to the extent that even the sign of the Southern Hemisphere ocean energy transport can be affected by the errors in simulated cloud-radiation interactions.

  8. Assimilation of TOPEX/POSEIDON Altimeter Data into a Global Ocean Circulation Model: Are the Results Any Good?

    NASA Technical Reports Server (NTRS)

    Fukumori, I.; Fu, L. L.; Chao, Y.

    1998-01-01

    The feasibility of assimilating satellite altimetry data into a global ocean general ocean general circulation model is studied. Three years of TOPEX/POSEIDON data is analyzed using a global, three-dimensional, nonlinear primitive equation model.

  9. Cosmic acceleration in a model of fourth order gravity

    NASA Astrophysics Data System (ADS)

    Banerjee, Shreya; Jayswal, Nilesh; Singh, Tejinder P.

    2015-10-01

    We investigate a fourth order model of gravity, having a free length parameter, and no cosmological constant or dark energy. We consider cosmological evolution of a flat Friedmann universe in this model for the case that the length parameter is of the order of the present Hubble radius. By making a suitable choice for the present value of the Hubble parameter, and the value of the third derivative of the scale factor (the jerk), we find that the model can explain cosmic acceleration to the same degree of accuracy as the standard concordance model. If the free length parameter is assumed to be time dependent, and of the order of the Hubble parameter of the corresponding epoch, the model can still explain cosmic acceleration, and provides a possible resolution of the cosmic coincidence problem. We work out the effective equation of state, and its time evolution, in our model. The fourth order correction terms are proportional to the metric, and hence mimic the cosmological constant. We also compare redshift drift in our model, with that in the standard model. The equation of state and the redshift drift serve to discriminate our model from the standard model.

  10. Carbon dioxide induced ocean climatic change and tracer experiment with an atmosphere-ocean general circulation model

    SciTech Connect

    Jiang, Xingjian.

    1991-01-01

    The principal objective of this study is to determine whether or not the penetration of a passive tracer is analogous to the penetration of a greenhouse-gas-induced heating. The Atmosphere Ocean General Circulation Model (A-O GCM) has been used to study CO2-induced climate change and the penetration of passive tracers into the world ocean. The present climate and a 2 x CO2 climate have been simulated. The passive tracers tritium, CFC-11, CFC-12 and a 'passive CO2- induced heating' are simulated. The CO2-induced active and passive warmings are larger in the subtropics and high latitudes than in the tropics. The largest difference between the active and passive CO2-induced heatings occur in the North Atlantic deep ocean, with maximum cooling about -1.5C for the active case in layer four of the ocean (1150m). There is no hemispherically asymmetric warming as that found by Manabe et al. (1990) and Stouffer et al. (1990). The convective overturning and large-scale sinking motion are responsible for the large penetration of CO2-induced warming in high latitudes. The CO2-induced circulation changes show that the North Atlantic thermohaline circulation is significantly weakened due to the penetration of CO2-induced heating. Associated with this change, the strength of North Atlantic conveyor belt is reduced, which results in a large warming in the upper ocean and cooling in the deep layers. The characteristic response time ranges from 40-50 years for the active CO2-induced climate change, and 70-160 years for passive CO2-induced climate change. The physical processes controlling the geochemical tracer penetration are very similar to those for the CO2-induced heating. There is not a single tracer which penetrates into the ocean exactly like the active CO2-induced heating in terms of distribution, transport or physical process. CFC's may be the best candidate as a surrogate for the CO2-induced oceanic climate study.

  11. Upper ocean model of dissolved atmospheric gases. Annual report, 1 August 1991--31 July 1992

    SciTech Connect

    Schudlich, R.; Emerson, S.

    1992-12-31

    The goal of this project is to estimate the rate of biological oxygen production at Hawaiian Ocean Time-series station ALOHA in the central North Pacific ocean. Our approach is to use an upper ocean model together with measurements to interpret an annual cycle of temperature, salinity, dissolved oxygen, argon, nitrogen, and the stable isotope ratio of oxygen at station ALOHA. This project represents the first upper ocean geochemical study in which model predictions are verifiable by independent measurements. Using the model, we will be able to assess the relative roles played by physical processes (air-sea gas exchange, air injection by bubbles, temperature-induced changes in gas solubility, trapping below the mixed layer, and diffusion) and biological processes (photosynthesis, respiration, and nutrient recycling) in producing the observed distribution of dissolved atmospheric gases. The long term goal of this project is to understand the utility of chemical tracers for quantifying biological processes in the ocean.

  12. Sensitivity of a climatologically-driven sea ice model to the ocean heat flux

    NASA Technical Reports Server (NTRS)

    Parkinson, C. L.; Good, M. R.

    1982-01-01

    Ocean heat flux sensitivity was studied on a numerical model of sea ice covering the Weddell Sea region of the southern ocean. The model is driven by mean monthly climatological atmospheric variables. For each model run, the ocean heat flux is uniform in both space and time. Ocean heat fluxes below 20 W m to the minus 2 power do not provide sufficient energy to allow the ice to melt to its summertime thicknesses and concentrations by the end of the 14 month simulation, whereas ocean heat fluxes of 30 W m to the minus 2 power and above result in too much ice melt, producing the almost total disappearance of ice in the Weddell Sea by the end of the 14 months. These results are dependent on the atmospheric forcing fields.

  13. Further development and testing of a second-order bulk boundary layer model. Master's thesis

    SciTech Connect

    Krasner, R.D.

    1993-05-03

    A one-layer bulk boundary layer model is developed. The model predicts the mixed layer values of the potential temperature, mixing ratio, and u- and v-momentum. The model also predicts the depth of the boundary layer and the vertically integrated turbulence kinetic energy (TKE). The TKE is determined using a second-order closure that relates the rate of dissipation to the TKE. The fractional area covered by rising motion sigma and the entrainment rate (E) are diagnostically determined. The model is used to study the clear convective boundary layer (CBL) using data from the Wangara, Australia boundary layer experiment. The Wangara data is also used as an observation base to validate model results. A further study is accomplished by simulating the planetary boundary layer (PBL) over an ocean surface. This study is designed to find the steady-state solutions of the prognostic variable.

  14. Scientific development of a massively parallel ocean climate model. Progress report, 1991--1992

    SciTech Connect

    Semtner, A.J. Jr.; Chervin, R.M.

    1992-09-01

    A thorough examination was made of existing results from the global ocean model with high resolution. Additional experiments were chosen to help investigate the sensitivity of global ocean circulation and its associated transports of heat and salt to proposed changes in high-latitude buoyancy forcing and wind forcing.

  15. Detection and Modeling of Non-Tidal Oceanic Effects on the Earth's Rotation Rate

    NASA Technical Reports Server (NTRS)

    Marcus, S. L.; Chao, Y.; Dickey, J. O.; Gegout, P.

    1998-01-01

    Sub-decadal changes in the Earth's rotation rate, and hence in the length-of-day (LOD), are largely controlled by variations in atmospheric angular momentum. Results from two oceanic general circulation models (OGCMs), forced by observed wind stress and heat flux for the years 1992-1994, show that ocean current and mass distribution changes also induce detectable LOD variations.

  16. EUMELI oligotrophic site: response of an upper ocean model to climatological and ECMWF atmospheric forcing

    NASA Astrophysics Data System (ADS)

    Dadou, Isabelle C.; Garçon, Véronique C.

    1993-11-01

    Within the frame of the EUMELI program—component of FRANCE-JGOFS—in the Northeast tropical Atlantic ocean, we investigate the potential of a one-dimensional eddy-kinetic-energy model (Gaspar et al., 1990, GGL) to characterize the vertical dynamics of the oceanic mixed layer (ML) at the EUMELI oligotrophic site (21°N, 31°W) north of the Cape Verde Frontal Zone. The atmospheric forcings used are derived from two different sources: the operational Atmospheric General Circulation Model of ECMWF (over two 12-month periods: August 1985-July 1986 and the full year 1990) and climatologies (Esbensen and Kushnir, EK, 1981; Hsiung, H, 1986; Oort, 1983). At the site, depending on the data base, the annual mean of the total energy flux at the ocean-atmosphere interface differs in sign and intensity and its monthly evolution presents significant variation both in amplitude and timing of the maximum. The monthly wind stress evolution due to the regular north-east trade winds prevailing in this region is quite consistent as derived by the different data sources. In our area, a net evaporation rate occurs throughout the year. The simulated ML depth, based on GGL's ML depth definition, is always shallower than climatological observations of ML depth, whatever the surface atmospherical forcing used, the exception being the simulation performed with the atypical ECMWF85-86 forcing. The simulated SST's using H forcing compare rather well (within 1°C) with the observed SST's of the climatologies of Lamb and EK. Sampling experiments on the surface boundary conditions showed that simulated evolutions of the ML depth and SST differ quite significantly due to differences in data bases rather than differences in forcing frequencies. An error analysis on the ocean surface energy fluxes and the prescription of evaporation and precipitation rates under various forms demonstrate the crucial need for heat, momentum and freshwater fluxes estimates as accurate as possible. From the

  17. Empirical and modeled synoptic cloud climatology of the Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Newell, J. P.; Schweiger, A.; Crane, R. G.

    1986-01-01

    A set of cloud cover data were developed for the Arctic during the climatically important spring/early summer transition months. Parallel with the determination of mean monthly cloud conditions, data for different synoptic pressure patterns were also composited as a means of evaluating the role of synoptic variability on Arctic cloud regimes. In order to carry out this analysis, a synoptic classification scheme was developed for the Arctic using an objective typing procedure. A second major objective was to analyze model output of pressure fields and cloud parameters from a control run of the Goddard Institue for Space Studies climate model for the same area and to intercompare the synoptic climatatology of the model with that based on the observational data.

  18. Role of the Ocean-Atmosphere interactions for the Atlantic Multidecadal Variability in an idealized coupled model

    NASA Astrophysics Data System (ADS)

    Jamet, Quentin; Huck, Thierry; de Verdière, Alain Colin; Arzel, Olivier; Campin, Jean-Michel

    2015-04-01

    The role of the ocean-atmosphere interactions in the multidecadal variability of the Atlantic Meridional Overturning Circulation (AMOC) is investigated in an idealized coupled configuration of the MIT General Circulation Model. The flat-bottom ocean, composed of an Atlantic-like small basin, a Pacific-like large basin, and an unblocked Antarctic-like circumpolar channel, is coupled to a global atmospheric model (SPEEDY). In order to better represent the atmospheric dynamics and its interactions with the ocean, three set-ups, with horizontal resolution of about 4°, 2° and 1° (at the equator) in both the ocean and atmosphere models, are compared. They show a linearly increasing North Atlantic Oscillation-like variability. At all resolutions, the AMOC undergoes a spontaneous variability on multidecadal time scales between 30-40 yr, with an additional higher frequency in the highest resolution set-up. The AMOC variability responds to temperature anomalies along the western boundary through the thermal wind relationship. These temperature anomalies result from the propagation of large-scale baroclinic Rossby waves across the small basin. The unstable region responsible for the growth of Rossby waves through baroclinic instability, diagnosed using a temperature variance budget, shifts from the eastern boundary at coarse resolution (4°) to the western boundary at higher resolution (2° and 1°). An earlier study, performed with the same coarse resolution set-up (4°), has shown that the AMOC does not participate to the growth of Rossby waves, but passively reacts to these waves. The AMOC being mainly connected to the western boundary dynamics, its role in setting large scale baroclinic Rossby waves might be different between the coarse resolution set-ups (4°) and the higher resolution set-ups (2° and 1°). The ocean-atmosphere interactions are strongly enhanced in the highest resolution set-up (1°), with the development of a significant correlation of about 0

  19. Observational and energetics constraints on the non-conservation of potential/Conservative Temperature and implications for ocean modelling

    NASA Astrophysics Data System (ADS)

    Tailleux, Rémi

    2015-04-01

    This paper seeks to elucidate the fundamental differences between the nonconservation of potential temperature and that of Conservative Temperature, in order to better understand the relative merits of each quantity for use as the heat variable in numerical ocean models. The main result is that potential temperature is found to behave similarly to entropy, in the sense that its nonconservation primarily reflects production/destruction by surface heat and freshwater fluxes; in contrast, the nonconservation of Conservative Temperature is found to reflect primarily the overall compressible work of expansion/contraction. This paper then shows how this can be exploited to constrain the nonconservation of potential temperature and entropy from observed surface heat fluxes, and the nonconservation of Conservative Temperature from published estimates of the mechanical energy budgets of ocean numerical models. Finally, the paper shows how to modify the evolution equation for potential temperature so that it is exactly equivalent to using an exactly conservative evolution equation for Conservative Temperature, as was recently recommended by IOC et al. (2010). This result should in principle allow ocean modellers to test the equivalence between the two formulations, and to indirectly investigate to what extent the budget of derived nonconservative quantities such as buoyancy and entropy can be expected to be accurately represented in ocean models.

  20. Customised search and comparison of in situ, satellite and model data for ocean modellers

    NASA Astrophysics Data System (ADS)

    Hamre, Torill; Vines, Aleksander; Lygre, Kjetil

    2014-05-01

    For the ocean modelling community, the amount of available data from historical and upcoming in situ sensor networks and satellite missions, provides an rich opportunity to validate and improve their simulation models. However, the problem of making the different data interoperable and intercomparable remains, due to, among others, differences in terminology and format used by different data providers and the different granularity provided by e.g. in situ data and ocean models. The GreenSeas project (Development of global plankton data base and model system for eco-climate early warning) aims to advance the knowledge and predictive capacities of how marine ecosystems will respond to global change. In the project, one specific objective has been to improve the technology for accessing historical plankton and associated environmental data sets, along with earth observation data and simulation outputs. To this end, we have developed a web portal enabling ocean modellers to easily search for in situ or satellite data overlapping in space and time, and compare the retrieved data with their model results. The in situ data are retrieved from a geo-spatial repository containing both historical and new physical, biological and chemical parameters for the Southern Ocean, Atlantic, Nordic Seas and the Arctic. The satellite-derived quantities of similar parameters from the same areas are retrieved from another geo-spatial repository established in the project. Both repositories are accessed through standard interfaces, using the Open Geospatial Consortium (OGC) Web Map Service (WMS) and Web Feature Service (WFS), and OPeNDAP protocols, respectively. While the developed data repositories use standard terminology to describe the parameters, especially the measured in situ biological parameters are too fine grained to be immediately useful for modelling purposes. Therefore, the plankton parameters were grouped according to category, size and if available by element. This grouping

  1. The Annual Cycle of Arctic Ice and Ocean Heat and Freshwater Fluxes, Measured and Modelled

    NASA Astrophysics Data System (ADS)

    Bacon, S.; Aksenov, Y.; Tsubouchi, T.

    2014-12-01

    Paucity of measurements means that quantifying and evaluating the Arctic thermal and hydrological cycles is problematic. For example: atmospheric reanalyses are not well constrained by observations; for river runoff measurements, there are un-gauged flows to consider; and until the relatively recent advent of autonomous measurement systems, ocean measurements outside the summer melt season were rare. We have assembled a complete and continuous Arctic Ocean boundary measurement array from moored installations in four ocean gateways: Fram, Davis and Bering Straits, and the Barents Sea Opening. Occasionally "patching" with coupled ice-ocean general circulation model (GCM) output is required; if so, the output water properties are validated and calibrated against climatology. This approach enables application of inverse modeling methods through the use of conservation constraints, and consequent generation of a set of 12 monthly-mean ocean (including sea ice) fluxes of freshwater and heat spanning a full calendar year. We will present results from a single annual cycle (2005-6). We have also transferred the design of the Arctic Ocean Boundary Array to the GCM environment, where we have calculated the mean annual cycles (from ca. 30-year model runs) both of net surface fluxes (atmosphere-ocean and land-ocean, including sea ice) and equivalent ice and ocean boundary fluxes of freshwater and heat, at two model resolutions (1/4 degree and 1/12 degree global mean) and for two different surface forcing data sets. We will show the resulting comparisons of the mean annual cycles of measured and modeled Arctic freshwater and heat fluxes, and also show the modeled mean annual cycle of heat and freshwater storage. We believe that the integral boundary array formed by sustained measurements in the four named ocean gateways should be a cornerstone of any Arctic environmental monitoring system.

  2. A comprehensive validation toolbox for regional ocean models - Outline, implementation and application to the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Jandt, Simon; Laagemaa, Priidik; Janssen, Frank

    2014-05-01

    The systematic and objective comparison between output from a numerical ocean model and a set of observations, called validation in the context of this presentation, is a beneficial activity at several stages, starting from early steps in model development and ending at the quality control of model based products delivered to customers. Even though the importance of this kind of validation work is widely acknowledged it is often not among the most popular tasks in ocean modelling. In order to ease the validation work a comprehensive toolbox has been developed in the framework of the MyOcean-2 project. The objective of this toolbox is to carry out validation integrating different data sources, e.g. time-series at stations, vertical profiles, surface fields or along track satellite data, with one single program call. The validation toolbox, implemented in MATLAB, features all parts of the validation process - ranging from read-in procedures of datasets to the graphical and numerical output of statistical metrics of the comparison. The basic idea is to have only one well-defined validation schedule for all applications, in which all parts of the validation process are executed. Each part, e.g. read-in procedures, forms a module in which all available functions of this particular part are collected. The interface between the functions, the module and the validation schedule is highly standardized. Functions of a module are set up for certain validation tasks, new functions can be implemented into the appropriate module without affecting the functionality of the toolbox. The functions are assigned for each validation task in user specific settings, which are externally stored in so-called namelists and gather all information of the used datasets as well as paths and metadata. In the framework of the MyOcean-2 project the toolbox is frequently used to validate the forecast products of the Baltic Sea Marine Forecasting Centre. Hereby the performance of any new product

  3. Multivariable frequency weighted model order reduction for control synthesis

    NASA Technical Reports Server (NTRS)

    Schmidt, David K.

    1989-01-01

    Quantitative criteria are presented for model simplification, or order reduction, such that the reduced order model may be used to synthesize and evaluate a control law, and the stability robustness obtained using the reduced order model will be preserved when controlling the full-order system. The error introduced due to model simplification is treated as modeling uncertainty, and some of the results from multivariate robustness theory are brought to bear on the model simplification problem. A numerical procedure developed previously is shown to lead to results that meet the necessary criteria. The procedure is applied to reduce the model of a flexible aircraft. Also, the importance of the control law itself, in meeting the modeling criteria, is underscored. An example is included that demonstrates that an apparently robust control law actually amplifies modest modeling errors in the critical frequency region, and leads to undesirable results. The cause of this problem is associated with the canceling of lightly damped transmission zeroes in the plant. An attempt is made to expand on some of the earlier results and to further clarify the theoretical basis behind the proposed methodology.

  4. Oceanic influence on seasonal malaria outbreaks over Senegal and Sahel. Predictability using S4CAST model

    NASA Astrophysics Data System (ADS)

    Diouf, Ibrahima; Deme, Abdoulaye; Rodriguez-Fonseca, Belen; Suárez-Moreno, Roberto; Cisse, Moustapha; Ndione, Jacques-André; Thierno Gaye, Amadou

    2014-05-01

    Senegal and, in general, West African regions are affected by important outbreaks of diseases with destructive consequences for human population, livestock and country's economy. The vector-borne diseases such as mainly malaria, Rift Valley Fever and dengue are affected by the interanual to decadal variability of climate. Analysis of the spatial and temporal variability of climate parameters and associated oceanic patterns is important in order to assess the climate impact on malaria transmission. In this study, the approach developed to study the malaria-climate link is predefined by the QWeCI project (Quantifying Weather and Climate Impacts on Health in Developing Countries). Preliminary observations and simulations results over Senegal Ferlo region, confirm that the risk of malaria transmission is mainly linked to climate parameters such as rainfall, temperature and relative humidity; and a lag of one to two months between the maximum of malaria and the maximum of climate parameters as rainfall is observed. As climate variables are able to be predicted from oceanic SST variability in remote regions, this study explores seasonal predictability of malaria incidence outbreaks from previous sea surface temperatures conditions in different ocean basins. We have found causal or coincident relationship between El Niño and malaria parameters by coupling LMM UNILIV malaria model and S4CAST statistiscal model with the aim of predicting the malaria parameters with more than 6 months in advance. In particular, El Niño is linked to an important decrease of the number of mosquitoes and the malaria incidence. Results from this research, after assessing the seasonal malaria parameters, are expected to be useful for decision makers to better access to climate forecasts and application on health in the framework of rolling back malaria transmission.

  5. Arctic Amplification Feedback Analysis in CMIP5 Models: Land Surfaces, Arctic Ocean and Seasonality

    NASA Astrophysics Data System (ADS)

    Laine, A.; Yoshimori, M.; Abe-Ouchi, A.

    2014-12-01

    The Arctic region is the region where surface warming associated with atmospheric green-house gas concentration increase is expected to be the greatest. This particularity is already being observed currently and is also simulated by climate models. Feedback mechanisms associated with this particularly strong warming, or Artic Amplification, are multiple. The relative role of the different feedbacks are not easy to evaluate precisely using direct model outputs. In this study, we use the "radiative kernels" method (Soden et al, 2008) to perform a multi-model intercomparison analysis. The radiative decomposition is performed at the surface instead of the top of atmosphere in order to consider surface temperature changes specifically. The kernels are derived from the MIROC3.2 model. The intercomparison includes 32 CMIP5 coupled models, whose outputs are analyzed for changes from the late 20th to the late 21st centuries following the rcp4.5 scenario. We consider results separately for land and oceanic surfaces, as the mechanisms and orders of magnitude differ substantially for these two types of surface. We also consider seasons separately as we show that seasonality in the feedback processes is determinant.

  6. Statistically accurate low-order models for uncertainty quantification in turbulent dynamical systems.

    PubMed

    Sapsis, Themistoklis P; Majda, Andrew J

    2013-08-20

    A framework for low-order predictive statistical modeling and uncertainty quantification in turbulent dynamical systems is developed here. These reduced-order, modified quasilinear Gaussian (ROMQG) algorithms apply to turbulent dynamical systems in which there is significant linear instability or linear nonnormal dynamics in the unperturbed system and energy-conserving nonlinear interactions that transfer energy from the unstable modes to the stable modes where dissipation occurs, resulting in a statistical steady state; such turbulent dynamical systems are ubiquitous in geophysical and engineering turbulence. The ROMQG method involves constructing a low-order, nonlinear, dynamical system for the mean and covariance statistics in the reduced subspace that has the unperturbed statistics as a stable fixed point and optimally incorporates the indirect effect of non-Gaussian third-order statistics for the unperturbed system in a systematic calibration stage. This calibration procedure is achieved through information involving only the mean and covariance statistics for the unperturbed equilibrium. The performance of the ROMQG algorithm is assessed on two stringent test cases: the 40-mode Lorenz 96 model mimicking midlatitude atmospheric turbulence and two-layer baroclinic models for high-latitude ocean turbulence with over 125,000 degrees of freedom. In the Lorenz 96 model, the ROMQG algorithm with just a single mode captures the transient response to random or deterministic forcing. For the baroclinic ocean turbulence models, the inexpensive ROMQG algorithm with 252 modes, less than 0.2% of the total, captures the nonlinear response of the energy, the heat flux, and even the one-dimensional energy and heat flux spectra. PMID:23918398

  7. Surface Expression Models for Aqueous Oceanic Activity on Titan

    NASA Astrophysics Data System (ADS)

    Clark, B.

    Drawing upon analogs from the rocky planets with geological features, subsurface acquifers and magmatism, the range of surface manifestations of a subsurface ocean on Titan comprise a series of models. Cryovolcanism of aqueous eutectics will produce flows which may be detectable as sporadic outcrops from the hydrocarbon-rich regolith, exhumed by aeolian and/or fluid processes. Solidification of extruded cryomagma, especially if containing a significant water component, should exhibit fractional crystallization of solutes in late-freeze ponds and flow fronts. Abundant higher- Z elements such as Si, S and Fe, as influenced by the Eh-pH field of the liquid phase, might be in evidence, demonstrating communication among the principal mantle components of such bodies. Consequent availability of potential nutrients and chemical energy sources would be a key indicator for habitability by chemoautolithotrophs on Titan. With near-surface mobility and sensing, LIBS as well as active and passive IR mapping spectrometry are all possible in the environment of Titan's lower atmosphere. Although some remote measurements are infeasible because of the atmosphere, near- surface naturally radioactive rock-forming elements such as K, U, and Th could be detected with gamma ray spectrometry. Touch-and-go techniques developed for small- body sampling can provide material for onboard GC, MS, XRD, microscopy and other miniaturized analytical techniques. Surface dwell times of minutes would enable contact XRF with detection of critical element ratio's such as S/Cl, K/Ca, and Mg/Si/Fe, and Raman spectroscopy for organic and mineralogical analysis, . Longer contact times would permit electromagnetic depth sounding. Many IR and particle- detection sensors operate ideally at or near the low temperatures intrinsic to the Titan atmosphere, simplifying those aspects of instrument development. Exploration of Titan by in situ and mobility techniques would capitalize on the investments and lessons

  8. Compact Two-State-Variable Second-Order Memristor Model.

    PubMed

    Kim, Sungho; Kim, Hee-Dong; Choi, Sung-Jin

    2016-06-01

    A key requirement for using memristors in functional circuits is a predictive physical model to capture the resistive switching behavior, which shall be compact enough to be implemented using a circuit simulator. Although a number of memristor models have been developed, most of these models (i.e., first-order memristor models) have utilized only a one-state-variable. However, such simplification is not adequate for accurate modeling because multiple mechanisms are involved in resistive switching. Here, a two-state-variable based second-order memristor model is presented, which considers the axial drift of the charged vacancies in an applied electric field and the radial vacancy motion caused by the thermophoresis and diffusion. In particular, this model emulates the details of the intrinsic short-term dynamics, such as decay and temporal heat summation, and therefore, it accurately predicts the resistive switching characteristics for both DC and AC input signals. PMID:27152649

  9. Adult and offspring size in the ocean over 17 orders of magnitude follows two life history strategies.

    PubMed

    Neuheimer, A B; Hartvig, M; Heuschele, J; Hylander, S; Kiørboe, T; Olsson, K H; Sainmont, J; Andersen, K H

    2015-12-01

    Explaining variability in offspring vs. adult size among groups is a necessary step to determine the evolutionary and environmental constraints shaping variability in life history strategies. This is of particular interest for life in the ocean where a diversity of offspring development strategies is observed along with variability in physical and biological forcing factors in space and time. We compiled adult and offspring size for 407 pelagic marine species covering more than 17 orders of magnitude in body mass including Cephalopoda, Cnidaria, Crustaceans, Ctenophora, Elasmobranchii, Mammalia, Sagittoidea, and Teleost. We find marine life following one of two distinct strategies, with offspring size being either proportional to adult size (e.g., Crustaceans, Elasmobranchii, and Mammalia) or invariant with adult size (e.g., Cephalopoda, Cnidaria, Sagittoidea, Teleosts, and possibly Ctenophora). We discuss where these two strategies occur and how these patterns (along with the relative size of the offspring) may be shaped by physical and biological constraints in the organism's environment. This adaptive environment along with the evolutionary history of the different groups shape observed life history strategies and possible group-specific responses to changing environmental conditions (e.g., production and distribution). PMID:26909435

  10. Emulation of a couple atmosphere-ocean general circulation model with a simple climate model

    NASA Astrophysics Data System (ADS)

    Ishizaki, Y.; Emori, S.; Oki, T.; Shiogama, H.; Yokohata, T.; Yoshimori, M.

    2013-12-01

    Simple climate models have been used to investigate uncertainty of future projections under a very wide range of emission scenarios because the use of Atmosphere-ocean general circulation models (AOGCMs) requires very huge computer resources to project future climate changes under many different socio-economic scenarios. We developed a simple climate model, and investigated the ability of the simple climate model to emulate global mean surface air temperature (SAT) changes of an AOGCM (MIROC5) in a representative concentration pathway (RCP8.5). Some previous research indicated that climate sensitivity, ocean vertical diffusion and anthropogenic aerosol forcing (direct and indirect effects of sulfate aerosol, black carbon and organic carbon) are essentially important factors to emulate of global mean SAT changes of AOGCMs. We, therefore, estimate these important factors in the simple climate model using a Metropolis-Hastings Markov chain Monte Carlo (MCMC) approach, and compared the results of the emulation of the simple climate model with those of AIM/impact[policy] simple climate model. Although root mean square error (RMSE) in decadal means of global mean SAT changes during the period of 2001-2100 in the AIM/impact[policy] simple climate model are large (0.6), the RMSE in our new simple climate model are dramatically improved (0.02). Thus, the estimation of these important factors by a MCMC is very useful for emulation of AOGCMs by the use of simple climate models.

  11. A High-Order Multiscale Global Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Nair, Ram

    2016-04-01

    The High-Order Method Modeling Environment (HOMME), developed at NCAR, is a petascale hydrostatic framework, which employs the cubed-sphere grid system and high-order continuous or discontinuous Galerkin (DG) methods. Recently, the HOMME framework is being extended to a non-hydrostatic dynamical core, named as the "High-Order Multiscale Atmospheric Model (HOMAM)." The spatial discretization is based on DG or high-order finite-volume methods. Orography is handled by the terrain-following height-based coordinate system. To alleviate the stringent CFL stability requirement resulting from the vertical aspects of the dynamics, an operator-splitting time integration scheme based on the horizontally explicit and vertically implicit (HEVI) philosophy is adopted for HOMAM. Preliminary results with the benchmark test cases proposed in the Dynamical Core Model Intercomparison project (DCMIP) test-suite will be presented in the seminar.

  12. Emergent smectic order in simple active particle models

    NASA Astrophysics Data System (ADS)

    Romanczuk, Pawel; Chaté, Hugues; Chen, Leiming; Ngo, Sandrine; Toner, John

    2016-06-01

    Novel ‘smectic-P’ behavior, in which self-propelled particles form rows and move on average along them, occurs generically within the orientationally ordered phase of simple models that we simulate. Both apolar (head–tail symmetric) and polar (head–tail asymmetric) models with aligning and repulsive interactions exhibit slow algebraic decay of smectic order with system size up to some finite length scale, after which faster decay occurs. In the apolar case, this scale is that of an undulation instability of the rows. In the polar case, this instability is absent, but traveling fluctuations disrupt the rows in large systems and motion and smectic order may spontaneously globally rotate. These observations agree with a new hydrodynamic theory which we present here. Variants of our models also exhibit active smectic ‘A’ and ‘C’ order, with motion orthogonal and oblique to the layers respectively.

  13. Use of weather research and forecasting model outputs to obtain near-surface refractive index structure constant over the ocean.

    PubMed

    Qing, Chun; Wu, Xiaoqing; Li, Xuebin; Zhu, Wenyue; Qiao, Chunhong; Rao, Ruizhong; Mei, Haipin

    2016-06-13

    The methods to obtain atmospheric refractive index structure constant (Cn2) by instrument measurement are limited spatially and temporally and they are more difficult and expensive over the ocean. It is useful to forecast Cn2 effectively from Weather Research and Forecasting Model (WRF) outputs. This paper introduces a method that WRF Model is used to forecast the routine meteorological parameters firstly, and then Cn2 is calculated based on these parameters by the Bulk model from the Monin-Obukhov similarity theory (MOST) over the ocean near-surface. The corresponding Cn2 values measured by the micro-thermometer which is placed on the ship are compared with the ones forecasted by WRF model to determine how this method performs. The result shows that the forecasted Cn2 is consistent with the measured Cn2 in trend and the order of magnitude as a whole, as well as the correlation coefficient is up to 77.57%. This method can forecast some essential aspects of Cn2 and almost always captures the correct magnitude of Cn2, which experiences fluctuations of two orders of magnitude. Thus, it seems to be a feasible and meaningful method that using WRF model to forecast near-surface Cn2 value over the ocean. PMID:27410347

  14. Sensitivity of the glacial ocean to Heinrich events from different iceberg sources, as modeled by a coupled atmosphere-iceberg-ocean model

    NASA Astrophysics Data System (ADS)

    Levine, Richard C.; Bigg, Grant R.

    2008-12-01

    We introduce explicit icebergs from a dynamic and thermodynamic iceberg model into an intermediate complexity climate model, which includes the coupled atmosphere-ocean system. This modeling approach allows iceberg meltwater to be injected into the ocean on the basis of thermodynamical considerations along the iceberg trajectories. Icebergs are seeded from known ice sheets in both hemispheres. Adding icebergs to the present-day climate model has a minimal impact, but during the Last Glacial Maximum (LGM), Atlantic overturning strength is reduced by a third, while producing a model state that is consistent with a steady state climate. We test the sensitivity of the model at the LGM to additional Heinrich event-scale fluxes of icebergs from three possible sources: Hudson Strait, the Gulf of Saint Lawrence, and the Norwegian Channel Ice Stream (NCIS). The sensitivity of the ocean is similar for all locations, with differences dominated by the length of the iceberg meltwater pathways to the main ocean convection region. The NCIS events result in more variability and a distinctly different, more northerly, salinity anomaly. We compare these results to a more typical modeling approach, whereby meltwater is injected directly into the ocean at the iceberg source locations, and find that these floods overestimate the oceanic response compared to the iceberg events. Our results suggest that 0.3-0.4 Sv of additional freshwater flux, either as icebergs or freshwater, is required to shut down the North Atlantic meridional overturning, a larger freshwater flux than sometimes suggested because of the localized nature of the release of the freshwater.

  15. Mean Sea Level Derived from Altimetry and Wind-Driven Numerical Models in the Indian Ocean

    NASA Technical Reports Server (NTRS)

    Perigaud, C.; Delecluse, P.; Greiner, E.; Rogel, P.

    1995-01-01

    Wind-driven model skill in simulating sea level variations in the Indian Ocean depends on our knowledge of the mean ocean dynamic topography. This is demonstrated by running the nonlinear or linear version of a shallow-water model driven by observed winds over Geosat and TOPEX periods. Geosat variations are assimilated in the nonlinear shallow-water model with the objective of obtaining topography data.

  16. Mixed boundary conditions versus coupling with an energy-moisture balance model for a zonally averaged ocean climate model

    SciTech Connect

    Bjornsson, H.; Mysak, L.A.; Schmidt, G.A.

    1997-10-01

    The Wright and Stocker oceanic thermohaline circulation model is coupled to a recently developed zonally averaged energy moisture balance model for the atmosphere. The results obtained with this coupled model are compared with those from an ocean-only model that employs mixed boundary conditions. The ocean model geometry uses either one zonally averaged interhemispheric basin (the {open_quotes}Atlantic{close_quotes}) or two zonally averaged basins (roughly approximating the Atlantic and the Pacific Oceans) connected by a parameterized Antarctic Circumpolar Current. The differences in the steady states and their linear stability are examined over a wide range of parameters. The presence of additional feedbacks between the ocean circulation and the atmosphere and hydrological cycle in the coupled model produces significant differences between the latter and the ocean-only model, in both the one-basin and two-basin geometries. The authors conclude that due to the effects produced by the feedbacks in the coupled model, they must have serious reservations about the results concerning long-term climate variability obtained from ocean-only models. Thus, to investigate long-term climatic variability a coupled model is necessary. 31 refs., 15 figs., 7 tabs.

  17. Ocean sequestration of carbon dioxide: modeling the deep ocean release of a dense emulsion of liquid Co2-in-water stabilized by pulverized limestone particles.

    PubMed

    Golomb, D; Pennell, S; Ryan, D; Barry, E; Swett, P

    2007-07-01

    The release into the deep ocean of an emulsion of liquid carbon dioxide-in-seawater stabilized by fine particles of pulverized limestone (CaCO3) is modeled. The emulsion is denser than seawater, hence, it will sink deeper from the injection point, increasing the sequestration period. Also, the presence of CaCO3 will partially buffer the carbonic acid that results when the emulsion eventually disintegrates. The distance that the plume sinks depends on the density stratification of the ocean, the amount of the released emulsion, and the entrainment factor. When released into the open ocean, a plume containing the CO2 output of a 1000 MW(el) coal-fired power plant will typically sink hundreds of meters below the injection point. When released from a pipe into a valley on the continental shelf, the plume will sink about twice as far because of the limited entrainment of ambient seawater when the plume flows along the valley. A practical system is described involving a static mixer for the in situ creation of the CO2/seawater/pulverized limestone emulsion. The creation of the emulsion requires significant amounts of pulverized limestone, on the order of 0.5 tons per ton of liquid CO2. That increases the cost of ocean sequestration by about $13/ ton of CO2 sequestered. However, the additional cost may be compensated by the savings in transportation costs to greater depth, and because the release of an emulsion will not acidify the seawater around the release point. PMID:17695916

  18. Glacial-interglacial variability in ocean oxygen and phosphorus in a global biogeochemical model

    NASA Astrophysics Data System (ADS)

    Palastanga, V.; Slomp, C. P.; Heinze, C.

    2013-02-01

    Increased transfer of particulate matter from continental shelves to the open ocean during glacials may have had a major impact on the biogeochemistry of the ocean. Here, we assess the response of the coupled oceanic cycles of oxygen, carbon, phosphorus, and iron to the input of particulate organic carbon and reactive phosphorus from shelves. We use a biogeochemical ocean model and specifically focus on the Last Glacial Maximum (LGM). When compared to an interglacial reference run, our glacial scenario with shelf input shows major increases in ocean productivity and phosphorus burial, while mean deep-water oxygen concentrations decline. There is a downward expansion of the oxygen minimum zones (OMZs) in the Atlantic and Indian Ocean, while the extension of the OMZ in the Pacific is slightly reduced. Oxygen concentrations below 2000 m also decline but bottom waters do not become anoxic. The model simulations show when shelf input of particulate organic matter and particulate reactive P is considered, low oxygen areas in the glacial ocean expand, but concentrations are not low enough to generate wide scale changes in sediment biogeochemistry and sedimentary phosphorus recycling. Increased reactive phosphorus burial in the open ocean during the LGM in the model is related to dust input, notably over the southwest Atlantic and northwest Pacific, whereas input of material from shelves explains higher burial fluxes in continental slope and rise regions. Our model results are in qualitative agreement with available data and reproduce the strong spatial differences in the response of phosphorus burial to glacial-interglacial change. Our model results also highlight the need for additional sediment core records from all ocean basins to allow further insight into changes in phosphorus, carbon and oxygen dynamics in the ocean on glacial-interglacial timescales.

  19. Higher-Order Latent Trait Models for Cognitive Diagnosis

    ERIC Educational Resources Information Center

    de la Torre, Jimmy; Douglas, Jeffrey A.

    2004-01-01

    Higher-order latent traits are proposed for specifying the joint distribution of binary attributes in models for cognitive diagnosis. This approach results in a parsimonious model for the joint distribution of a high-dimensional attribute vector that is natural in many situations when specific cognitive information is sought but a less informative…

  20. Latent Partially Ordered Classification Models and Normal Mixtures

    ERIC Educational Resources Information Center

    Tatsuoka, Curtis; Varadi, Ferenc; Jaeger, Judith

    2013-01-01

    Latent partially ordered sets (posets) can be employed in modeling cognitive functioning, such as in the analysis of neuropsychological (NP) and educational test data. Posets are cognitively diagnostic in the sense that classification states in these models are associated with detailed profiles of cognitive functioning. These profiles allow for…

  1. Constraints on the neodymium (Nd) oceanic cycle in the Mediterranean Sea using a high resolution coupled model

    NASA Astrophysics Data System (ADS)

    Ayache, Mohamed; Jeandel, Catherine; Dutay, Jean-claude; Arsouze, Thomas

    2015-04-01

    Neodymium isotopic composition (Nd IC) is a tracer of oceanic circulation and lithogenic inputs to the ocean. An extensive compilation of published Nd isotopic values was realized in order to establish a database and a map of ɛNd and Nd concentrations characterizing all the Mediterranean margins. This was built based on different kinds of samples: riverine solid discharge deposited on the shelf, sedimentary material collected along the margins and geological material above or close to an oceanic margin (following Jeandel et al., 2007). The margin Nd isotopic signatures vary from non-radiogenic values around the Gulf of Lions (Nd IC values between -11.5 and -10), to radiogenic values around the Aegean and the Levantine sub-basins (Nd IC up to +6). Such West-East variation was also observed in the seawater data, which are becoming more radiogenic along the eastward circulation in the Mediterranean Sea (Tachikawa et al., 2004). The Nd budget proposed by these authors raised the hypothesis that the exchange of Nd along the margins could play a significant role in driving the oceanic distribution of this tracer. On a more global scale, it was further demonstrated and modelled that dissolved/particulate exchanges between continental margin sediments and open ocean (termed boundary exchange, BE), could be the dominant source-sink terms that determine the distribution of neodymium isotopes in the global ocean (Lacan and Jeandel, 2005a, Arsouze et al 2009). But this global scale study with it low-resolution configuration ORCA2 (2° of horizontal resolution) could not resolve many local and regional-scale features Our purpose is to test this hypothesis for the first time in the Mediterranean Sea by using a high resolution regional coupled model (1/12° of horizontal resolution). In a first approach we considered that boundary exchange is the only term governing Nd distribution in the Mediterranean Sea (other sources have been neglected). This aimed to validate the "Boundary

  2. A Fractional Order Recovery SIR Model from a Stochastic Process.

    PubMed

    Angstmann, C N; Henry, B I; McGann, A V

    2016-03-01

    Over the past several decades, there has been a proliferation of epidemiological models with ordinary derivatives replaced by fractional derivatives in an ad hoc manner. These models may be mathematically interesting, but their relevance is uncertain. Here we develop an SIR model for an epidemic, including vital dynamics, from an underlying stochastic process. We show how fractional differential operators arise naturally in these models whenever the recovery time from the disease is power-law distributed. This can provide a model for a chronic disease process where individuals who are infected for a long time are unlikely to recover. The fractional order recovery model is shown to be consistent with the Kermack-McKendrick age-structured SIR model, and it reduces to the Hethcote-Tudor integral equation SIR model. The derivation from a stochastic process is extended to discrete time, providing a stable numerical method for solving the model equations. We have carried out simulations of the fractional order recovery model showing convergence to equilibrium states. The number of infecteds in the endemic equilibrium state increases as the fractional order of the derivative tends to zero. PMID:26940822

  3. The relationship between sea-level and bottom pressure variability in an eddy permitting ocean model

    NASA Astrophysics Data System (ADS)

    Bingham, Rory J.; Hughes, Chris W.

    2008-02-01

    We investigate the relationship between sea-level (after application of an inverse-barometer correction) and ocean bottom pressure, in an eddy-permitting ocean model. We find the presence of eddies can disrupt this relationship even on timescales as short as 10-20 days, but only in the regions of most energetic eddy variability. Away from eddies, the relationship is similar to that seen in a coarser-resolution model, with a tight relationship between sea-level and bottom pressure at high frequencies, but with significant correlations between sea-level and bottom pressure at interannual timescales seen only in shelf sea regions. In the deep ocean, regions where sea-level and bottom pressure remain related out to the longest timescales are in the Arctic Ocean and regions of the Southern Ocean, where particularly large amplitude barotropic fluctuations are found but where the mesoscale signal is weak.

  4. Reduced-Order Modeling: New Approaches for Computational Physics

    NASA Technical Reports Server (NTRS)

    Beran, Philip S.; Silva, Walter A.

    2001-01-01

    In this paper, we review the development of new reduced-order modeling techniques and discuss their applicability to various problems in computational physics. Emphasis is given to methods ba'sed on Volterra series representations and the proper orthogonal decomposition. Results are reported for different nonlinear systems to provide clear examples of the construction and use of reduced-order models, particularly in the multi-disciplinary field of computational aeroelasticity. Unsteady aerodynamic and aeroelastic behaviors of two- dimensional and three-dimensional geometries are described. Large increases in computational efficiency are obtained through the use of reduced-order models, thereby justifying the initial computational expense of constructing these models and inotivatim,- their use for multi-disciplinary design analysis.

  5. First-Order Frameworks for Managing Models in Engineering Optimization

    NASA Technical Reports Server (NTRS)

    Alexandrov, Natlia M.; Lewis, Robert Michael

    2000-01-01

    Approximation/model management optimization (AMMO) is a rigorous methodology for attaining solutions of high-fidelity optimization problems with minimal expense in high- fidelity function and derivative evaluation. First-order AMMO frameworks allow for a wide variety of models and underlying optimization algorithms. Recent demonstrations with aerodynamic optimization achieved three-fold savings in terms of high- fidelity function and derivative evaluation in the case of variable-resolution models and five-fold savings in the case of variable-fidelity physics models. The savings are problem dependent but certain trends are beginning to emerge. We give an overview of the first-order frameworks, current computational results, and an idea of the scope of the first-order framework applicability.

  6. Stochastic Stommel box models for the thermohaline structure of the oceans

    NASA Astrophysics Data System (ADS)

    Mandal, Dibyendu; Weiss, Jeffrey B.; Fox-Kemper, Baylor; Zia, Royce K. P.

    2014-03-01

    Bistability of the thermohaline circulation of the oceans has been implicated in various climate shifts in the past. The origin of the bistability lies in ocean-atmosphere interactions, as can be understood from a simple, deterministic two-box model proposed by H. Stommel (1961). Because of the rapidly varying nature of the atmosphere relative to the ocean it is more appropriate to treat the interactions stochastically, but, studies of stochastic Stommel models have been limited. Stochastic Stommel models have the further potential of explaining the features of the global temperature-salinity distribution in the oceans. We propose several such models, of varying complexity, which provide the blueprints to understand both empirical data and general circulation models. We gratefully acknowledge financial support from the National Science Foundation (USA) under grant OCE 1245944.

  7. Variability in a mixed layer ocean model driven by stochastic atmospheric forcing

    SciTech Connect

    Alexander, M.A.; Penland, C.

    1996-10-01

    A stochastic model of atmospheric surface conditions, developed from 30 years of data at Ocean Weather Station P in the northeast Pacific, is used to drive a mixed layer model of the upper ocean. The spectral characteristics of anomalies in the four atmospheric variables: air and dewpoint temperature, wind speed and solar radiation, and many ocean features, including the seasonal cycle are reasonably well reproduced in a 500-year model simulation. However, the ocean model slightly underestimates the range of the mean and standard deviation of both temperature and mixed layer depth over the course of the year. The spectrum of the monthly SST anomalies from the model simulation are in close agreement with observations, especially when atmospheric forcing associated with El Nino is included. The spectral characteristics of the midlatitude SST anomalies is consistent with stochastic climate theory proposed by Frankignoul and Hasselmann (1977) for periods up to {approximately}6 months. 72 refs., 10 figs., 2 tabs.

  8. Scientific development of a massively parallel ocean climate model

    SciTech Connect

    Semtner, A.J. Jr. ); Chervin, R.M. )

    1992-03-01

    Experiments to investigate the sensitivity of global ocean circulation and its associated transports of heat and salt to proposed changes in high-latitude buoyancy forcing and wind forcing. An experiment was designed to improve the representation of water-mass production in areas of known deep-water formation. At the same time, almost all of the deep and abyssal regions of the world ocean were freed from earlier restoring to observed values of temperature and salinity. This convective forcing experiment has been run on the NCAR Y-MP/864 for three years of a planned five-year sensitivity study.

  9. Order reduction for an RNA virus evolution model.

    PubMed

    Korobeinikov, Andrei; Archibasov, Aleksei; Sobolev, Vladimir

    2015-10-01

    A mathematical or computational model in evolutionary biology should necessary combine several comparatively fast processes, which actually drive natural selection and evolution, with a very slow process of evolution. As a result, several very different time scales are simultaneously present in the model; this makes its analytical study an extremely difficult task. However, the significant difference of the time scales implies the existence of a possibility of the model order reduction through a process of time separation. In this paper we conduct the procedure of model order reduction for a reasonably simple model of RNA virus evolution reducing the original system of three integro-partial derivative equations to a single equation. Computations confirm that there is a good fit between the results for the original and reduced models. PMID:26280183

  10. Multiple equilibria, natural variability, and climate transitions in an idealized ocean-atmosphere model

    SciTech Connect

    Saravanan, R.; McWilliams, J.C.

    1995-10-01

    An idealized coupled ocean-atmosphere is constructed to study climatic equilibria and variability. The model focuses on the role of large-scale fluid motions in the climate system. The atmospheric component is an eddy-resolving two-level global primitive equation model with simplified physical parameterizations. The oceanic component is a zonally averaged sector model of the thermohaline circulation. The two components exchange heat and freshwater fluxes synchonously. Coupled integrations are carried out over periods of several centuries to identify the equilibrium states of the ocean-atmosphere system. It is shown that there exist at least three types of equilibria, which are distinguished by whether they have upwelling or downwelling in the polar regions. Each oceanic circulation in the coupled model exhibits natural variability on interdecadal and longer timescales. The dominant interdecadal mode of variability is associated with the advection of oceanic temperature anomalies in the sinking regions. The sensitivity of the coupled model to climatic perturbations is studied. A rapid increase in the greenhouse gas concentrations leads to a collapse of the meridional overtuning in the ocean. Introduction of a large positive surface freshwater anomaly in the high latitudes leads to a temporary suppression of the sinking motion, followed by a rapid recovery, due primarily to the high latitude cooling associated with the reduction of oceanic heat transport. In this evolution, the secondary roles played by the atmospheric heat transport and moisture transport in destablizing the thermohaline circulation are compared, and the former is found to be dominant.

  11. NEMOTAM: tangent and adjoint models for the ocean modelling platform NEMO

    NASA Astrophysics Data System (ADS)

    Vidard, A.; Bouttier, P.-A.; Vigilant, F.

    2014-10-01

    The tangent linear and adjoint model (TAM) are efficient tools to analyse and to control dynamical systems such as NEMO. They can be involved in a large range of applications such as sensitivity analysis, parameter estimation or the computation of characteristics vectors. TAM is also required by the 4-D-VAR algorithm which is one of the major method in Data Assimilation. This paper describes the development and the validation of the Tangent linear and Adjoint Model for the NEMO ocean modelling platform (NEMOTAM). The diagnostic tools that are available alongside NEMOTAM are detailed and discussed and several applications are also presented.

  12. Projection-Based Reduced Order Modeling for Spacecraft Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Qian, Jing; Wang, Yi; Song, Hongjun; Pant, Kapil; Peabody, Hume; Ku, Jentung; Butler, Charles D.

    2015-01-01

    This paper presents a mathematically rigorous, subspace projection-based reduced order modeling (ROM) methodology and an integrated framework to automatically generate reduced order models for spacecraft thermal analysis. Two key steps in the reduced order modeling procedure are described: (1) the acquisition of a full-scale spacecraft model in the ordinary differential equation (ODE) and differential algebraic equation (DAE) form to resolve its dynamic thermal behavior; and (2) the ROM to markedly reduce the dimension of the full-scale model. Specifically, proper orthogonal decomposition (POD) in conjunction with discrete empirical interpolation method (DEIM) and trajectory piece-wise linear (TPWL) methods are developed to address the strong nonlinear thermal effects due to coupled conductive and radiative heat transfer in the spacecraft environment. Case studies using NASA-relevant satellite models are undertaken to verify the capability and to assess the computational performance of the ROM technique in terms of speed-up and error relative to the full-scale model. ROM exhibits excellent agreement in spatiotemporal thermal profiles (<0.5% relative error in pertinent time scales) along with salient computational acceleration (up to two orders of magnitude speed-up) over the full-scale analysis. These findings establish the feasibility of ROM to perform rational and computationally affordable thermal analysis, develop reliable thermal control strategies for spacecraft, and greatly reduce the development cycle times and costs.

  13. A second-order impact model for forest fire regimes.

    PubMed

    Maggi, Stefano; Rinaldi, Sergio

    2006-09-01

    We present a very simple "impact" model for the description of forest fires and show that it can mimic the known characteristics of wild fire regimes in savannas, boreal forests, and Mediterranean forests. Moreover, the distribution of burned biomasses in model generated fires resemble those of burned areas in numerous large forests around the world. The model has also the merits of being the first second-order model for forest fires and the first example of the use of impact models in the study of ecosystems. PMID:16723147

  14. Unstructured-grid coastal ocean modelling in Southern Adriatic and Northern Ionian Seas

    NASA Astrophysics Data System (ADS)

    Federico, Ivan; Pinardi, Nadia; Coppini, Giovanni; Oddo, Paolo

    2016-04-01

    The Southern Adriatic Northern Ionian coastal Forecasting System (SANIFS) is a short-term forecasting system based on unstructured grid approach. The model component is built on SHYFEM finite element three-dimensional hydrodynamic model. The operational chain exploits a downscaling approach starting from the Mediterranean oceanographic-scale model MFS (Mediterranean Forecasting System, operated by INGV). The implementation set-up has been designed to provide accurate hydrodynamics and active tracer processes in the coastal waters of Southern Eastern Italy (Apulia, Basilicata and Calabria regions), where the model is characterized by a variable resolution in range of 50-500 m. The horizontal resolution is also high in open-sea areas, where the elements size is approximately 3 km. The model is forced: (i) at the lateral open boundaries through a full nesting strategy directly with the MFS (temperature, salinity, non-tidal sea surface height and currents) and OTPS (tidal forcing) fields; (ii) at surface through two alternative atmospheric forcing datasets (ECMWF and COSMOME) via MFS-bulk-formulae. Given that the coastal fields are driven by a combination of both local/coastal and deep ocean forcings propagating along the shelf, the performance of SANIFS was verified first (i) at the large and shelf-coastal scales by comparing with a large scale CTD survey and then (ii) at the coastal-harbour scale by comparison with CTD, ADCP and tide gauge data. Sensitivity tests were performed on initialization conditions (mainly focused on spin-up procedures) and on surface boundary conditions by assessing the reliability of two alternative datasets at different horizontal resolution (12.5 and 7 km). The present work highlights how downscaling could improve the simulation of the flow field going from typical open-ocean scales of the order of several km to the coastal (and harbour) scales of tens to hundreds of meters.

  15. "One-Stop Shopping" for Ocean Remote-Sensing and Model Data

    NASA Technical Reports Server (NTRS)

    Li, P. Peggy; Vu, Quoc; Chao, Yi; Li, Zhi-Jin; Choi, Jei-Kook

    2006-01-01

    OurOcean Portal 2.0 (http:// ourocean.jpl.nasa.gov) is a software system designed to enable users to easily gain access to ocean observation data, both remote-sensing and in-situ, configure and run an Ocean Model with observation data assimilated on a remote computer, and visualize both the observation data and the model outputs. At present, the observation data and models focus on the California coastal regions and Prince William Sound in Alaska. This system can be used to perform both real-time and retrospective analyses of remote-sensing data and model outputs. OurOcean Portal 2.0 incorporates state-of-the-art information technologies (IT) such as MySQL database, Java Web Server (Apache/Tomcat), Live Access Server (LAS), interactive graphics with Java Applet at the Client site and MatLab/GMT at the server site, and distributed computing. OurOcean currently serves over 20 real-time or historical ocean data products. The data are served in pre-generated plots or their native data format. For some of the datasets, users can choose different plotting parameters and produce customized graphics. OurOcean also serves 3D Ocean Model outputs generated by ROMS (Regional Ocean Model System) using LAS. The Live Access Server (LAS) software, developed by the Pacific Marine Environmental Laboratory (PMEL) of the National Oceanic and Atmospheric Administration (NOAA), is a configurable Web-server program designed to provide flexible access to geo-referenced scientific data. The model output can be views as plots in horizontal slices, depth profiles or time sequences, or can be downloaded as raw data in different data formats, such as NetCDF, ASCII, Binary, etc. The interactive visualization is provided by graphic software, Ferret, also developed by PMEL. In addition, OurOcean allows users with minimal computing resources to configure and run an Ocean Model with data assimilation on a remote computer. Users may select the forcing input, the data to be assimilated, the

  16. Application of a Topological Metric for Assessing Numerical Ocean Models with Satellite Observations

    NASA Astrophysics Data System (ADS)

    Morey, S. L.; Dukhovskoy, D. S.; Hiester, H. R.; Garcia-Pineda, O. G.; MacDonald, I. R.

    2015-12-01

    Satellite-based sensors provide a vast amount of observational data over the world ocean. Active microwave radars measure changes in sea surface height and backscattering from surface waves. Data from passive radiometers sensing emissions in multiple spectral bands can directly measure surface temperature, be combined with other data sources to estimate salinity, or processed to derive estimates of optically significant quantities, such as concentrations of biochemical properties. Estimates of the hydrographic variables can be readily used for assimilation or assessment of hydrodynamic ocean models. Optical data, however, have been underutilized in ocean circulation modeling. Qualitative assessments of oceanic fronts and other features commonly associated with changes in optically significant quantities are often made through visual comparison. This project applies a topological approach, borrowed from the field of computer image recognition, to quantitatively evaluate ocean model simulations of features that are related to quantities inferred from satellite imagery. The Modified Hausdorff Distance (MHD) provides a measure of the similarity of two shapes. Examples of applications of the MHD to assess ocean circulation models are presented. The first application assesses several models' representation of the freshwater plume structure from the Mississippi River, which is associated with a significant expression of color, using a satellite-derived ocean color index. Even though the variables being compared (salinity and ocean color index) differ, the MHD allows contours of the fields to be compared topologically. The second application assesses simulations of surface oil transport driven by winds and ocean model currents using surface oil maps derived from synthetic aperture radar backscatter data. In this case, maps of time composited oil coverage are compared between the simulations and satellite observations.

  17. Surface wave effects in the NEMO ocean model: Forced and coupled experiments

    NASA Astrophysics Data System (ADS)

    Breivik, Øyvind; Mogensen, Kristian; Bidlot, Jean-Raymond; Balmaseda, Magdalena Alonso; Janssen, Peter A. E. M.

    2015-04-01

    The NEMO general circulation ocean model is extended to incorporate three physical processes related to ocean surface waves, namely the surface stress (modified by growth and dissipation of the oceanic wavefield), the turbulent kinetic energy flux from breaking waves, and the Stokes-Coriolis force. Experiments are done with NEMO in ocean-only (forced) mode and coupled to the ECMWF atmospheric and wave models. Ocean-only integrations are forced with fields from the ERA-Interim reanalysis. All three effects are noticeable in the extratropics, but the sea-state-dependent turbulent kinetic energy flux yields by far the largest difference. This is partly because the control run has too vigorous deep mixing due to an empirical mixing term in NEMO. We investigate the relation between this ad hoc mixing and Langmuir turbulence and find that it is much more effective than the Langmuir parameterization used in NEMO. The biases in sea surface temperature as well as subsurface temperature are reduced, and the total ocean heat content exhibits a trend closer to that observed in a recent ocean reanalysis (ORAS4) when wave effects are included. Seasonal integrations of the coupled atmosphere-wave-ocean model consisting of NEMO, the wave model ECWAM, and the atmospheric model of ECMWF similarly show that the sea surface temperature biases are greatly reduced when the mixing is controlled by the sea state and properly weighted by the thickness of the uppermost level of the ocean model. These wave-related physical processes were recently implemented in the operational coupled ensemble forecast system of ECMWF.

  18. Modeling the 2004 Indian Ocean Tsunami for Introductory Physics Students

    ERIC Educational Resources Information Center

    DiLisi, Gregory A.; Rarick, Richard A.

    2006-01-01

    In this paper we develop materials to address student interest in the Indian Ocean tsunami of December 2004. We discuss the physical characteristics of tsunamis and some of the specific data regarding the 2004 event. Finally, we create an easy-to-make tsunami tank to run simulations in the classroom. The simulations exhibit three dramatic…

  19. Atmosphere, ocean, and land: Critical gaps in Earth system models

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.; Hartley, Dana

    1992-01-01

    We briefly review current knowledge and pinpoint some of the major areas of uncertainty for the following fundamental processes: (1) convection, condensation nuclei, and cloud formation; (2) oceanic circulation and its coupling to the atmosphere and cryosphere; (3) land surface hydrology and hydrology-vegetation coupling; (4) biogeochemistry of greenhouse gases; and (5) upper atmospheric chemistry and circulation.

  20. Transient response of the Hadley Centre coupled ocean-atmosphere model to increasing carbon dioxide. Part I: Control climate and flux adjustment

    SciTech Connect

    Murphy, J.M.

    1995-01-01

    This paper describes the initialization of an experiment to study the time-dependent response of a high-resolution global coupled ocean-atmosphere general circulation model to a gradual increase in carbon dioxide. The stability of the control integration with respect to climate drift is assessed, and aspects of the model climatology relevant to the simulation of climate change are discussed. The observed variation of oceanic temperature with latitude and depth is basically well simulated, although, in common with other ocean models, the main thermocline is too diffuse. Nevertheless, it is found that large heat and water flux adjustments must be added to the surface layer of the ocean in order to prevent the occurrence of unacceptable climate drift. The ocean model appears to achieve insufficient meridional heat transport, and this is supported by the pattern of the heat flux adjustment term, although errors in the simulated atmosphere-ocean heat flux also contribute to the latter. The application of the flux adjustments restricts climate drift during the 75-year control experiment. However, a gradual warming still occurs in the surface layers of the Southern Ocean because the flux adjustments are inserted as additive terms in this integration and cannot therefore be guaranteed to prevent climate drift completely. 68 refs., 29 figs., 1 tab.