Sample records for ore deposit formation

  1. Evolution of ore deposits on terrestrial planets

    NASA Astrophysics Data System (ADS)

    Burns, R. G.

    Ore deposits on terrestrial planets materialized after core formation, mantle evolution, crustal development, interactions of surface rocks with the hydrosphere and atmosphere, and, where life exists on a planet, the involvement of biological activity. Core formation removed most of the siderophilic and chalcophilic elements, leaving mantles depleted in many of the strategic and noble metals relative to their chondritic abundances. Basaltic magma derived from partial melting of the mantle transported to the surface several metals contained in immiscible silicate and sulfide melts. Magmatic ore deposits were formed during cooling, fractional crystallization and density stratification from the basaltic melts. Such ore deposits found in earth's Archean rocks were probably generated during early histories of all terrestrial planets and may be the only types of igneous ores on Mars. Where plate tectonic activity was prevalent on a terrestrial planet, temporal evolution of ore deposits took place. Repetitive episodes of subduction modified the chemical compositions of the crust and upper mantles, leading to porphyry copper and molybdenum ores in calc-alkaline igneous rocks and granite-hosted tin and tungsten deposits. Such plate tectonic-induced mineralization in relatively young igneous rocks on earth may also have produced hydrothermal ore deposits on Venus in addition to the massive sulfide and cumulate chromite ores associated with Venusian mafic igneous rock. Sedimentary ore deposits resulting from mechanical and chemical weathering in reducing atmospheres in Archean earth included placer deposits (e.g., uraninite, gold, pyrite ores). Chromite, ilmenite, and other dense unreactive minerals could also be present on channel floors and in valley networks on Mars, while banded iron formations might underlie the Martian northern plains regions. As oxygen evolved in earth's atmosphere, so too did oxide ores. By analogy, gossans above sulfide ores probably occur on Mars

  2. Evolution of ore deposits on terrestrial planets

    NASA Technical Reports Server (NTRS)

    Burns, R. G.

    1991-01-01

    Ore deposits on terrestrial planets materialized after core formation, mantle evolution, crustal development, interactions of surface rocks with the hydrosphere and atmosphere, and, where life exists on a planet, the involvement of biological activity. Core formation removed most of the siderophilic and chalcophilic elements, leaving mantles depleted in many of the strategic and noble metals relative to their chondritic abundances. Basaltic magma derived from partial melting of the mantle transported to the surface several metals contained in immiscible silicate and sulfide melts. Magmatic ore deposits were formed during cooling, fractional crystallization and density stratification from the basaltic melts. Such ore deposits found in earth's Archean rocks were probably generated during early histories of all terrestrial planets and may be the only types of igneous ores on Mars. Where plate tectonic activity was prevalent on a terrestrial planet, temporal evolution of ore deposits took place. Repetitive episodes of subduction modified the chemical compositions of the crust and upper mantles, leading to porphyry copper and molybdenum ores in calc-alkaline igneous rocks and granite-hosted tin and tungsten deposits. Such plate tectonic-induced mineralization in relatively young igneous rocks on earth may also have produced hydrothermal ore deposits on Venus in addition to the massive sulfide and cumulate chromite ores associated with Venusian mafic igneous rock. Sedimentary ore deposits resulting from mechanical and chemical weathering in reducing atmospheres in Archean earth included placer deposits (e.g., uraninite, gold, pyrite ores). Chromite, ilmenite, and other dense unreactive minerals could also be present on channel floors and in valley networks on Mars, while banded iron formations might underlie the Martian northern plains regions. As oxygen evolved in earth's atmosphere, so too did oxide ores. By analogy, gossans above sulfide ores probably occur on Mars

  3. The formation of ore mineral deposits on the Moon: A feasibility study

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence A.; Lu, Fengxiang

    1992-01-01

    Most of the ore deposits on Earth are the direct result of formation by hydrothermal solutions. Analogous mineral concentrations do not occur on the Moon, however, because of the absence of water. Stratified ore deposits form in layered instrusives on Earth due to fractional crystallization of magma and crystal settling of high-density minerals, particularly chromium in the mineral chromite. We have evaluated the possibility of such mineral deposition on the Moon, based upon considerations of 'particle settling velocities' in lunar vs. terrestrial magmas. A first approximation of Stoke's Law would seem to indicate that the lower lunar gravity (1/6 terrestrial) would result in slower crystal settling on the Moon. However, the viscosity of the silicate melt is the most important factor affecting the settling velocity. The viscosities of typical lunar basaltic melts are 10-100 times less than their terrestrial analogs. These lower viscosities result from two factors: (1) lunar basaltic melts are typically higher in FeO and lower in Al2O3, Na2O, and K2O than terrestrial melts; and (2) lunar igneous melts and phase equilibria tend to be 100-150 C higher than terrestrial, largely because of the general paucity of water and other volatile phases on the Moon. Therefore, particle settling velocities on the Moon are 5-10 times greater than those on Earth. It is highly probable that stratiform ore deposits similar to those on Earth exist on the Moon. The most likely ore minerals involved are chromite, ilmenite, and native FeNi metal. In addition, the greater settling velocities of periodotite in lunar magmas indicate that the buoyancy effects of the melt are less than on Earth. Consequently, the possibility is considerably less than on Earth of deep-seated volcanism transporting upper mantle/lower crustal xenoliths to the surface of the Moon, such as occurs in kimberlites on Earth.

  4. Variscan ore formation and metamorphism at the Felbertal scheelite deposit (Austria): constraining tungsten mineralisation from Re-Os dating of molybdenite

    NASA Astrophysics Data System (ADS)

    Raith, Johann G.; Stein, Holly J.

    2006-10-01

    The Felbertal scheelite deposit in the Eastern Alps has been regarded as the type locality for stratabound scheelite deposits. It is hosted by a Cambro-Ordovician metavolcanic arc sequence with minor Variscan granitoids (˜ 340 Ma) in the central Tauern Window. Re-Os model ages for molybdenite from the Felbertal tungsten deposit range between ˜ 358 and ˜ 336 Ma and record several pulses of magmatic-hydrothermal-metamorphic molybdenite formation. Molybdenite ages from the K2 orebody, a scheelite-rich quartz mylonite in the Western ore field, indicate that both mineralisation and mylonite are Variscan in age and suggest that the shear zone was active for ˜ 20 million years. Early stage tungsten mineralisation ( Scheelite 1) in quartzitic ores in the Eastern ore field, which is free of molybdenite, yielded very low to near blank levels of Re and Os and thus could not be dated. However, molybdenite from scheelite-quartz stringers, previously interpreted as a feeder stockwork to quartzitic scheelite ore of presumed Cambrian age, yielded Variscan Re-Os ages of ˜ 342 and ˜ 337 Ma. Dating of molybdenite contained in scheelite ores thus far provides no indication of a Cambrian component to the tungsten mineralisation. Our data are consistent with a model of either granite intrusion-related ore formation and coeval metamorphic overprint during the Early Carboniferous or, alternatively, molybdenite formation may be exclusively attributed to Variscan metamorphism (see Stein 2006).

  5. Geochemical features of the ore-bearing medium in uranium deposits in the Khiagda ore field

    NASA Astrophysics Data System (ADS)

    Kochkin, B. T.; Solodov, I. N.; Ganina, N. I.; Rekun, M. L.; Tarasov, N. N.; Shugina, G. A.; Shulik, L. S.

    2017-09-01

    The Neogene uranium deposits of the Khiagda ore field (KOF) belong to the paleovalley variety of the hydrogene type and differ from other deposits of this genetic type in the geological and geochemical localization conditions. The contemporary hydrogeochemical setting and microbiological composition of ore-bearing medium are discussed. The redox potential of the medium (Eh is as low as-400 mV) is much lower than those established at other hydrogenic deposits, both ancient Late Mesozoic and young Late Alpine, studied with the same methods in Russia, Uzbekistan, and southern Kazakhstan. The pH of subsurface water (6.86-8.13) differs in significant fluctuations both between neighboring deposits and within individual ore lodes. Hydrogen-forming and denitrifying bacteria are predominant in microbiological populations, whereas sulfate-reducing bacteria are low-active. The consideration of these factors allowed us to describe the mechanism of uranium ore conservation as resulting from the development of the cryolithic zone, which isolates ore lodes from the effect of the external medium. Carbonated water supplied from the basement along fault zones also participates in the formation of the present-day hydrogeochemical setting. Based on the features of the ore-bearing medium, we propose a method of borehole in situ acid leaching to increase the efficiency of mining in the Khiagda ore field.

  6. The role of magmas in the formation of hydrothermal ore deposits

    USGS Publications Warehouse

    Hedenquist, Jeffrey W.; Lowenstern, Jacob B.

    1994-01-01

    Magmatic fluids, both vapour and hypersaline liquid, are a primary source of many components in hydrothermal ore deposits formed in volcanic arcs. These components, including metals and their ligands, become concentrated in magmas in various ways from various sources, including subducted oceanic crust. Leaching of rocks also contributes components to the hydrothermal fluid—a process enhanced where acid magmatic vapours are absorbed by deeply circulating meteoric waters. Advances in understanding the hydrothermal systems that formed these ore deposits have come from the study of their active equivalents, represented at the surface by hot springs and volcanic fumaroles.

  7. The physical hydrogeology of ore deposits

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Appold, M.S.

    2012-01-01

    Hydrothermal ore deposits represent a convergence of fluid flow, thermal energy, and solute flux that is hydrogeologically unusual. From the hydrogeologic perspective, hydrothermal ore deposition represents a complex coupled-flow problem—sufficiently complex that physically rigorous description of the coupled thermal (T), hydraulic (H), mechanical (M), and chemical (C) processes (THMC modeling) continues to challenge our computational ability. Though research into these coupled behaviors has found only a limited subset to be quantitatively tractable, it has yielded valuable insights into the workings of hydrothermal systems in a wide range of geologic environments including sedimentary, metamorphic, and magmatic. Examples of these insights include the quantification of likely driving mechanisms, rates and paths of fluid flow, ore-mineral precipitation mechanisms, longevity of hydrothermal systems, mechanisms by which hydrothermal fluids acquire their temperature and composition, and the controlling influence of permeability and other rock properties on hydrothermal fluid behavior. In this communication we review some of the fundamental theory needed to characterize the physical hydrogeology of hydrothermal systems and discuss how this theory has been applied in studies of Mississippi Valley-type, tabular uranium, porphyry, epithermal, and mid-ocean ridge ore-forming systems. A key limitation in the computational state-of-the-art is the inability to describe fluid flow and transport fully in the many ore systems that show evidence of repeated shear or tensional failure with associated dynamic variations in permeability. However, we discuss global-scale compilations that suggest some numerical constraints on both mean and dynamically enhanced crustal permeability. Principles of physical hydrogeology can be powerful tools for investigating hydrothermal ore formation and are becoming increasingly accessible with ongoing advances in modeling software.

  8. RELATIONSHIP OF URANIUM ORE DEPOSITS TO PETROLEUM AND GAS-BEARING STRUCTURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, R.T.

    eposits are located on producing or breached oil and gas structures, or in the immediate vicinity of such structures. Individual deposits associated with these structures contain ore reserves which may exceed one million tons. Data derived from a study of the known deposits should be useful in evaluating the potentiality of other areas where similar structural relations and abnormal radioactivity are known to exist. Uranium deposits located in producing oil or gas fields include a deposit of more than one million tons of uranium ore on a single salt dome in Texas, and uranium deposits in the Poison Basin, Wyoming,more » which are situated over a producing naturalgas structure, having a potential of 100,000 to 200,000 tons. Important uranium mining districts are also located near producing oil fields or near structures which may have contained oil at some time in the past. The Gas Hills district to Wyoming is on the flanks of a breached anticline and within one mile of natural-gas seeps. Deposits in the Brown's Park formation near Maybell, Colorado, are witin 10 miles of producing oil wells and natural-gas seeps are known within one mile of some of the uranium mines; and at Morrison, Colorado, uranium ore is associated with tar seeps. On th Colorado Plateau, large ore bodies with total reserves of at least 30 million tons of 0.3% U/sub 3/O/sub 8/ ore in the Ambrosia Lake district near Grants, New Mexico, and produce ore associated with asphaltite.'' The uraniferous asphaltite'' ore at Temple Mountain, Utah has been known for nearly 50 years. At both Circle Cliffs and the Inter- River area in Utah, uranium ore is associated with asphaltic material on anticlinal structures. Many other deposits are on breached strucIn Wyoming, uranium deposits in Tertiary sandstone and arkose generally lack carbon trash, but are located near oil or gas structures that contain hydrocarbons and natural gases capable of precititating uranium. Also, many uranium deposits on the Colorado

  9. Dzhida Ore District: Geology, Structural and Metallogenic Regionalization, Genetic Types of Ore Deposits, Geodynamic Conditions of Their Formation, Forecast, and Outlook for Development

    NASA Astrophysics Data System (ADS)

    Gordienko, I. V.; Gorokhovsky, D. V.; Smirnova, O. K.; Lantseva, V. S.; Badmatsyrenova, R. A.; Orsoev, D. A.

    2018-01-01

    Based on complex structural, rheological, and metallogenic studies, taking into account the results of earlier subject-specific, prospecting, mapping, and exploration works, it has been established that the geological structure of the district was caused by the ensimatic evolution of the Vendian-Early Paleozoic Dzhida island-arc system, in which oceanic and island-arc complexes served as a melanocratic basement for Late Paleozoic-Mesozoic active within-plate (riftogenic) processes, which gave rise to the formation of ore deposits and occurrences of strategic mineral commodities (Mo, W, Au, Pt, Ag, and rare elements, including REE). Mantle plumes and flows of deep-seated transmagmatic solutions (ore-forming fluids) played a critical role in these processes, the significance of which increases in upper crustal swarms of dikes and fault systems. The forecasts and development prospects of the Dzhida ore district envisage the expansion of geological prospecting and exploration, scientific research, and technological testing of ore for insight into strategic mineral commodities, as well as reanimation of mining within the areas of the Dzhida's large territorial and industrial complex (TIC) in eastern Siberia.

  10. The Krásná Hora, Milešov, and Příčovy Sb-Au ore deposits, Bohemian Massif: mineralogy, fluid inclusions, and stable isotope constraints on the deposit formation

    NASA Astrophysics Data System (ADS)

    Němec, Matěj; Zachariáš, Jiří

    2018-02-01

    The Krásná Hora-Milešov and Příčovy districts (Czech Republic) are the unique examples of Sb-Au subtype orogenic gold deposits in the Bohemian Massif. They are represented by quartz-stibnite veins and massive stibnite lenses grading into low-grade, disseminated ores in altered host rocks. Gold postdates the stibnite and is often replaced by aurostibite. The ore zones are hosted by hydrothermally altered dikes of lamprophyres (Krásná Hora-Milešov) or are associated with local strike-slip faults (Příčovy). Formation of Sb-Au deposits probably occurred shortly after the main gold-bearing event (348-338 Ma; Au-only deposits) in the central part of the Bohemian Massif. Fluid inclusion analyses suggest that stibnite precipitated at 250 to 130 °C and gold at 200 to 130 °C from low-salinity aqueous fluids. The main quartz gangue hosting the ore precipitated from the same type of fluid at about 300 °C. Early quartz-arsenopyrite veins are not associated with the Sb-Au deposition and formed from low-salinity, aqueous-carbonic fluid at higher pressure and temperature ( 250 MPa, 400 °C). The estimated oxygen isotope composition of the ore-bearing fluid (4 ± 1‰ SMOW; based on post-ore calcite) suggests its metamorphic or mixed magmatic-metamorphic origin and excludes the involvement of meteoric water. Rapid cooling of warm hydrothermal fluids reacting with "cold" host rock was probably the most important factor in the formation of both stibnite and gold.

  11. Mineralogical and geochemical characteristics of the Noamundi-Koira basin iron ore deposits (India)

    NASA Astrophysics Data System (ADS)

    Mirza, Azimuddin; Alvi, Shabbar Habib; Ilbeyli, Nurdane

    2015-04-01

    India is one of the richest sources of iron ore deposits in the world; and one of them is located in the Noamundi-Koira basin, Singhbhum-Orissa craton. The geological comparative studies of banded iron formation (BIF) and associated iron ores of Noamundi-Koira iron ore deposits, belonging to the iron ore group in eastern India, focus on the study of mineralogy and major elemental compositions along with the geological evaluation of different iron ores. The basement of the Singhbhum-Orissa craton is metasedimentary rocks which can be traced in a broadly elliptical pattern of granitoids, surrounded by metasediments and metavolcanics of Greenstone Belt association. The Singhbhum granitoid is intrusive into these old rocks and to younger, mid Archaean metasediments, including iron formations, schists and metaquartzites and siliciclastics of the Precambrian Iron Ore Group (Saha et al., 1994; Sharma, 1994). The iron ore of Noamundi-Koira can be divided into seven categories (Van Schalkwyk and Beukes 1986). They are massive, hard laminated, soft laminated, martite-goethite, powdery blue dust and lateritic ore. Although it is more or less accepted that the parent rock of iron ore is banded hematite jasper (BHJ), the presence of disseminated martite in BHJ suggests that the magnetite of protore was converted to martite. In the study area, possible genesis of high-grade hematite ore could have occurred in two steps. In the first stage, shallow, meteoric fluids affect primary, unaltered BIF by simultaneously oxidizing magnetite to martite and replacing quartz with hydrous iron oxides. In the second stage of supergene processes, deep burial upgrades the hydrous iron oxides to microplaty hematite. Removal of silica from BIF and successive precipitation of iron resulted in the formation of martite- goethite ore. Soft laminated ores were formed where precipitation of iron was partial or absent. The leached out space remains with time and the interstitial space is generally filled

  12. Ore microscopy of the Paoli silver-copper deposit, Oklahoma

    USGS Publications Warehouse

    Thomas, C.A.; Hagni, R.D.; Berendsen, P.

    1991-01-01

    The Paoli silver-copper deposit is located in south-central Oklahoma, 56 km south-southeast from Norman, Oklahoma. It was mined for high-grade silver-copper near the beginning of this century, and intensive exploratory drilling during the early 1970's delineated unmined portions of the deposit. A collaborative study between the U.S.G.S., the Kansas Geological Survey, and the University of Missouri-Rolla was undertaken to provide new information on the character of red bed copper deposits of the Midcontinent region. The Paoli deposit has been interpreted to occur as a roll-front type of deposit. The silver and copper mineralization occurs within paleochannels in the Permian Wellington Formation. The silver-copper interfaces appear to be controlled by oxidation-reduction interfaces that are marked by grey to red color changes in the host sandstone. Ore microscopic examinations of polished thin sections show that unoxidized ore consists of chalcocite, digenite, chalcopyrite, covellite and pyrite; and oxidized ores are characterized by covellite, bornite, hematite and goethite. In sandstone-hosted ores, chalcocite and digenite replace dolomite and border clastic quartz grains. In siltstone-hosted ores, the copper sulfide grains have varied shapes; most are irregular in shape and 5-25 ??m across, others have euhedral shapes suggestive of pyrite crystal replacements, and some are crudely spherical and are 120-200 ??m across. Chalcopyrite is the predominant copper sulfide at depth. Covellite and malachite replace chalcocite and digenite near the surface. Silver only occurs as native silver; most as irregularly shaped grains 40-80 ??m across, but some as cruciform crystals that are up to 3.5 mm across. The native silver has been deposited after copper sulfides, and locally replaces chalcocite. Surficial nodules of pyrite, malachite and hematite locally are present in outcrops at the oxidation-reduction fronts. Polished sections of the nodules show that malachite forms a

  13. Geology and Ore Deposits of the Uncompahgre (Ouray) Mining District, Southwestern Colorado

    USGS Publications Warehouse

    Burbank, Wilbur Swett; Luedke, Robert G.

    2008-01-01

    The Uncompahgre mining district, part of the Ouray mining district, includes an area of about 15 square miles (mi2) on the northwestern flank of the San Juan Mountains in southwestern Colorado from which ores of gold, silver, copper, lead, and zinc have had a gross value of $14 to 15 million. Bedrock within the district ranges in age from Proterozoic to Cenozoic. The oldest or basement rocks, the Uncompahgre Formation of Proterozoic age, consist of metamorphic quartzite and slate and are exposed in a small erosional window in the southern part of the district. Overlying those rocks with a profound angular unconformity are Paleozoic marine sedimentary rocks consisting mostly of limestones and dolomites and some shale and sandstone that are assigned to the Elbert Formation and Ouray Limestone, both of Devonian age, and the Leadville Limestone of Mississippian age. These units are, in turn, overlain by rocks of marine transitional to continental origin that are assigned to the Molas and Hermosa Formations of Pennsylvanian age and the Cutler Formation of Permian age; these three formations are composed predominantly of conglomerates, sandstones, and shales that contain interbedded fossiliferous limestones within the lower two-thirds of the sequence. The overlying Mesozoic strata rest also on a pronounced angular unconformity upon the Paleozoic section. This thick Mesozoic section, of which much of the upper part was eroded before the region was covered by rocks of Tertiary age, consists of the Dolores Formation of Triassic age, the Entrada Sandstone, Wanakah Formation, and Morrison Formation all of Jurassic age, and the Dakota Sandstone and Mancos Shale of Cretaceous age. These strata dominantly consist of shales, mudstones, and sandstones and minor limestones, breccias, and conglomerates. In early Tertiary time the region was beveled by erosion and then covered by a thick deposit of volcanic rocks of mid-Tertiary age. These volcanic rocks, assigned to the San Juan

  14. Evolution of volcanic and tectonic features in caldera settings and their importance in the localization of ore deposits

    USGS Publications Warehouse

    Rytuba, J.J.

    1994-01-01

    Many calderas are located along regionally important fault zones that are intermittently active before and after the caldera cycle. In mineralized calderas, the ore deposits are controlled by structures developed during caldera formation and by regional faults which intersect and reactivate the caldera-related structures. The paper discusses the importance of the different stages of caldera formation in connection with the localization of ore deposits. -from Author

  15. Mixing from below in hydrothermal ore deposits

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Gomez-Rivas, Enrique; Markl, Gregor; Walter, Bejamin

    2014-05-01

    Unconformity-related hydrothermal ore deposits typically show indications of mixing of two end-member fluids: (a) hot, deep, rock-buffered basement brines and (b) colder fluids derived from the surface or overlying sediments. The hydromechanics of bringing these fluids together from above and below remain unclear. Classical percolative Darcy-flow models are inconsistent with (1) fluid overpressure indicated by fracturing and brecciation, (2) fast fluid flow indicated by thermal disequilibrium, and (3) strong fluid composition variations on the mm-scale, indicated by fluid inclusion analyses (Bons et al. 2012; Fusswinkel et al. 2013). We propose that fluids first descend, sucked down by desiccation reactions in exhumed basement. Oldest fluids reach greatest depths, where long residence times and elevated temperatures allow them the extensively equilibrate with their host rock, reach high salinity and scavenge metals, if present. Youngest fluids can only penetrate to shallower depths and can (partially) retain signatures from their origin, for example high Cl/Br ratios from the dissolution of evaporitic halite horizons. When fluids are released from all levels of the crustal column, these fluids mix during rapid ascent to form hydrothermal ore deposits. Mixing from below provides a viable hydromechanical mechanism to explain the common phenomenon of mixed shallow and deep fluids in hydrothermal ore deposits. Bons, P.D., Elburg, M.A., Gomez-Rivas, E. 2012. A review of the formation of tectonic veins and their microstructures. J. Struct. Geol. doi:10.1016/j.jsg.2012.07.005 Fusswinkel, T., Wagner, T., Wälle, M., Wenzel, T., Heinrich, C.A., Markl, M. 2013. Fluid mixing forms basement-hosted Pb-Zn deposits: Insight from metal and halogen geochemistry of individual fluid inclusions. Geology. doi:10.1130/G34092.1

  16. Ore Deposits Mined for Critical Elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verplanck, Philip; Kelley, Karen

    Summary of deposit types containing critical elements, including, cobalt, gallium, germanium, indium, niobium, PGE, REE, rhenium, selenium, and tellurium. Includes information about ore deposit type, mineralogy, geologic setting, example deposits and districts, concentration ranges per reported resource, grade, and additional deposit notes. References are also included.

  17. The Gas Hills uranium district and some probable controls for ore deposition

    USGS Publications Warehouse

    Zeller, Howard Davis

    1957-01-01

    Uranium deposits occur in the upper coarse-grained facies of the Wind River formation of Eocene age in the Gas Hills district of the southern part of the Wind River Basin. Some of the principal deposits lie below the water table in the unoxidized zone and consist of uraninite and coffinite occurring as interstitial fillings in irregular blanket-like bodies. In the near-surface deposits that lie above the water table, the common yellow uranium minerals consist of uranium phosphates, silicates, and hydrous oxides. The black unoxidized uraninite -coffinite ores show enrichment of molybdenum, arsenic, and selenium when compared to the barren sandstone. Probable geologic controls for ore deposits include: 1) permeable sediments that allowed passage of ore-bearing solutions; 2) numerous faults that acted as impermeable barriers impounding the ore -bearing solutions; 3) locally abundant pyrite, carbonaceous material, and natuial gas containing hydrogen sulfide that might provide a favorable environment for precipitation of uranium. Field and laboratory evidence indicate that the uranium deposits in the Gas Hills district are very young and related to the post-Miocene to Pleistocene regional tilting to the south associated with the collapse of the Granite Mountains fault block. This may have stopped or reversed ground water movement from a northward (basinward) direction and alkaline ground water rich in carbonate could have carried the uranium into the favorable environment that induced precipitation.

  18. Sedimentary carbonate-hosted giant Bayan Obo REE-Fe-Nb ore deposit of Inner Mongolia, China; a cornerstone example for giant polymetallic ore deposits of hydrothermal origin

    USGS Publications Warehouse

    Chao, E.C.T.; Back, J.M.; Minkin, J.A.; Tatsumoto, M.; Junwen, Wang; Conrad, J.E.; McKee, E.H.; Zonglin, Hou; Qingrun, Meng; Shengguang, Huang

    1997-01-01

    Detailed, integrative field and laboratory studies of the textures, structures, chemical characteristics, and isotopically determined ages and signatures of mineralization of the Bayan Obo deposit provided evidence for the origin and characteristics favorable for its formation and parameters necessary for defining giant polymetallic deposits of hydrothermal origin. Bayan Obo is an epigenetic, metasomatic, hydrothermal rare earth element (REE)-Fe-Nb ore deposit that is hosted in the metasedimentary H8 dolostone marble of the Middle Proterozoic Bayan Obo Group. The metasedimentary sequence was deposited on the northern continental slope of the North China craton. The mine area is about 100 km south of the suture marking Caledonian subduction of the Mongolian oceanic plate from the north beneath the North China craton. The mineralogy of the deposit is very complex, consisting of more than 120 different minerals, some of which are epigenetic minerals introduced by hydrothermal solutions, and some of which are primary and secondary metamorphic minerals. The major REE minerals are monazite and bastnaesite, whereas magnetite and hematite are the dominant Fe-ore minerals, and columbite is the most abundant Nb mineral. Dolomite, alkali amphibole, fluorite, barite, aegirine augite, apatite, phlogopite, albite, and microcline are the most widespread gangue minerals. Three general types of ores occur at Bayan Obo: disseminated, banded, and massive ores. Broad zoning of these ore types occurs in the Main and East Orebodies. Disseminated ores are in the outermost zone, banded ores are in the intermediate zone, and massive ores are in the cores of the orebodies. On the basis of field relations, host rocks, textures, structures, and mineral assemblages, many varieties of these three types of ores have been recognized and mapped. Isotopic dating of monazite, bastnaesite, aeschynite, and metamorphic and metasomatic alkali amphiboles associated with the deposit provides constraints

  19. Geochemical Peculiarities of Galena and Sphalerite from Polymetallic Deposits of the Dal'negorskii Ore Region (Primorsky Krai, Russia)

    NASA Astrophysics Data System (ADS)

    Rogulina, L. I.; Moiseenko, V. G.; Ponomarchuk, V. A.

    2018-04-01

    New data on the composition of the major minerals from the skarn and vein polymetallic deposits of the Dal'negorskii ore region are reported. Analysis of galena and sphalerite was carried out by the X-ray fluorescent energy-dispersive method of synchrotron radiation for the first time. It is shown that the minor elements in major minerals of different deposits are typomorphic. Among these elements are Fe, Cu, Ni, Cd, Ag, Sn, and Sb, as well as In in sphalerite and Te in galena. The high concentrations of Ag, Cu, Te, Cd, and In in the extracted minerals indicate the complex character of mineralization. The compositional patterns of ore minerals characterize the sequence of mineral formation from the skarn to vein ores, and the sequence of deposits from the mesothermal to epithermal conditions. This provides geochemical evidence for the stage model of the formation of mineralization in the Dal'negorskii ore region.

  20. The Bairendaba silver polymetallic deposit in Inner Mongolia, China: characteristics of ore-forming fluid and genetic type of ore deposit

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Xie, Yuling; Wu, Haoran

    2018-02-01

    Bairendaba silver-polymetallic deposit is located in the middle south of the Xing Meng orogenic belt, and in the silver-polymetallic metallogenic belt on the west slope of the southern of Great Xing’an Range. Based on studying of the fluid inclusion, we discuss the characteristics of ore-forming fluid and the metallic genesis of the Bairendaba silver-polymetallic deposit. By means of the analysis of the fluid inclusions, homogenization temperature, salinity and composition were studied in quartz and fluorite. The result is as the follows: with homogenization temperatures of fluid inclusions in quartz veins being 196∼312 °C, the average 244.52 °C, and fluid salinity 2.90∼9.08 wt%NaCl; with homogenization temperatures of fluid inclusions in fluorite being 127∼306 °C, the average 196.92 °C, and fluid salinity 2.90∼9.34 wt% NaCl. The ore-forming fluid is mainly composed of water and the gas. The results of laser Raman analysis show that the gas phase is mainly CH4. It shows that the ore-forming fluid is characterized by medium-low temperature and low-salinity system. The temperature of ore-forming fluid is from high to low, and the salinity from high to low, and the meteoric water or metamorphic water is added during deposit. According to the geological characteristics of the mining area, it is considered that the genetic type of the ore deposit should be the fault-controlled and the medium-low temperature hydrothermal deposit related to magmatic hydrothermal activities.

  1. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits

    NASA Astrophysics Data System (ADS)

    Deditius, Artur P.; Reich, Martin; Kesler, Stephen E.; Utsunomiya, Satoshi; Chryssoulis, Stephen L.; Walshe, John; Ewing, Rodney C.

    2014-09-01

    The ubiquity of Au-bearing arsenian pyrite in hydrothermal ore deposits suggests that the coupled geochemical behaviour of Au and As in this sulfide occurs under a wide range of physico-chemical conditions. Despite significant advances in the last 20 years, fundamental factors controlling Au and As ratios in pyrite from ore deposits remain poorly known. Here we explore these constraints using new and previously published EMPA, LA-ICP-MS, SIMS, and μ-PIXE analyses of As and Au in pyrite from Carlin-type Au, epithermal Au, porphyry Cu, Cu-Au, and orogenic Au deposits, volcanogenic massive sulfide (VHMS), Witwatersrand Au, iron oxide copper gold (IOCG), and coal deposits. Pyrite included in the data compilation formed under temperatures from ∼30 to ∼600 °C and in a wide variety of geological environments. The pyrite Au-As data form a wedge-shaped zone in compositional space, and the fact that most data points plot below the solid solubility limit defined by Reich et al. (2005) indicate that Au1+ is the dominant form of Au in arsenian pyrite and that Au-bearing ore fluids that deposit this sulfide are mostly undersaturated with respect to native Au. The analytical data also show that the solid solubility limit of Au in arsenian pyrite defined by an Au/As ratio of 0.02 is independent of the geochemical environment of pyrite formation and rather depends on the crystal-chemical properties of pyrite and post-depositional alteration. Compilation of Au-As concentrations and formation temperatures for pyrite indicates that Au and As solubility in pyrite is retrograde; Au and As contents decrease as a function of increasing temperature from ∼200 to ∼500 °C. Based on these results, two major Au-As trends for Au-bearing arsenian pyrite from ore deposits are defined. One trend is formed by pyrites from Carlin-type and orogenic Au deposits where compositions are largely controlled by fluid-rock interactions and/or can be highly perturbed by changes in temperature and

  2. Ores and Climate Change - Primary Shareholders

    NASA Astrophysics Data System (ADS)

    Stein, Holly J.; Hannah, Judith L.

    2015-04-01

    Many in the economic geology community concern themselves with details of ore formation at the deposit scale, whether tallying fluid inclusion data to get at changes in ore-forming fluids or defining structures that aid and abet mineralization. These compilations are generally aimed at interpretation of events at the site of ore formation, with the goal being assignment of the deposit to a sanctioned ore deposit model. While providing useful data, this approach is incomplete and does not, by itself, serve present-day requirements for true interdisciplinary science. The ore-forming environment is one of chaos and disequilibrium at nearly all scales (Stein, 2014). Chaos and complexity are documented by variably altered rocks, veins or disseminated mineralization with multi-generational fluid histories, erratic and unusual textures in host rocks, and the bitumen or other hydrocarbon products entwined within many ore deposits. This should give pause to our drive for more data as a means to find "the answer". The answer lies in the kind of data collected and more importantly, in the way we interpret those data. Rather than constructing an ever-increasing catalog of descriptive mutations on sanctioned ore deposit models (e.g., IOGC or Iron-Oxide Copper Gold deposits), the way forward is to link source and transport of metals, sulfur, and organic material with regional and ultimately whole Earth chemical evolution. Important experimental work provides chemical constraints in controlled and behaved environments. To these data, we add imagination and interpretation, always tying back to field observations. In this paper, several key points are made by way of ore deposit examples: (1) many IOCG deposits are outcomes of profound changes in the chemistry of the Earth's surface, in the interplay of the atmosphere, hydrosphere, biosphere, and lithosphere; (2) the redox history of Fe in deep earth may be ultimately expressed in the ore-forming sequence; and (3) the formation of

  3. Sulphur isotope constraints on formation conditions of the Luiswishi ore deposit, Democratic Republic of Congo (DRC)

    NASA Astrophysics Data System (ADS)

    Lerouge, C.; Cailteux, J.; Kampunzu, A. B.; Milesi, J. P.; Fléhoc, C.

    2005-07-01

    Luiswishi is a Congo-type Neoproterozoic sediment-hosted stratiform Cu-Co ore deposit of the Central Africa Copperbelt, located northwest of Lubumbashi (DRC). The ores form two main Cu-Co orebodies hosted by the Mines Subgroup, one in the lower part of the Kamoto Formation and the other at the base of the Dolomitic Shales Formation. Sulphides occur essentially as early parallel layers of chalcopyrite and carrolite, and secondarily as late stockwork sulphides cross-cutting the bedding and the early sulphide generation. Both types of stratiform and stockwork chalcopyrite and carrolite were systematically analyzed for sulphur isotopes, along the lithostratigraphic succession of the Mine Series. The quite similar δ 34S values of stratiform sulphides and late stockwork sulphides suggest an in situ recrystallization or a slight remobilization of stockwork sulphides without attainment of isotopic equilibrium between different sulphide phases (chalcopyrite and carrolite). The distribution of δ 34S values (-14.4‰ to +17.5‰) combined with the lithology indicates a strong stratigraphic control of the sulphur isotope signature, supporting bacterial sulphate reduction during early diagenesis of the host sediments, in a shallow marine to lacustrine environment. Petrological features combined with sulphur isotopic data of sulphides at Luiswishi and previous results on nodules of anhydrite in the Mine Series indicate a dominant seawater/lacustrine origin for sulphates, precluding a possible hydrothermal participation. The high positive δ 34S values of sulphides in the lower orebody at Luiswishi, hosted in massive chloritic-dolomitic siltite (known as Grey R.A.T.), fine-grained stratified dolostone (D.Strat.) and silicified-stromatolitic dolomites alternating with chloritic-dolomitic silty beds (R.S.F.), suggest that they were probably deposited during a period of regression in a basin cut off from seawater. The variations of δ 34S values (i.e. the decrease of δ 34S values

  4. Physical-chemical conditions of ore deposition

    USGS Publications Warehouse

    Barton, P.B.

    1981-01-01

    Ore deposits form under a wide range of physical and chemical conditions, but those precipitating from hot, aqueous fluids-i.e. the hydrothermal deposits-form generally below 700??C and at pressures of only 1 or 2 kbar or less. Natural aqueous fluids in rocks may extract metal and sulfur from a variety of rock types or may acquire them as a residual heritage from a crystallizing silicate magma. Ore-forming hydrothermal fluids never appear as hot springs (except in deep, submarine situations) because they boil, mix with surface waters, and cool, thereby losing their ore-bearing ability before reaching the surface. Mineral systems function as chemical buffers and indicators just as buffers and indicators function in a chemical laboratory. By reading the record written in the buffer/indicator assemblages of minerals one can reconstruct many aspects of the former chemical environment. By studying the record of changing conditions one may deduce information regarding the processes functioning to create the succession of chemical environments and the ore deposits they represent. The example of the OH vein at Creede, Colorado, shows a pH buffered by the K-feldspar + muscovite + quartz assemblage and the covariation of S2 and O2 buffered by the assemblage chlorite + pyrite + quartz. Boiling of the ore fluid led to its oxidation to hematite-bearing assemblages and simultaneously produced an intensely altered, sericitic capping over the vein in response to the condensation of vapors bearing acidic components. The solubility of metals as calculated from experimental and theoretical studies of mineral solubility appears too low by at least one or two powers of ten to explain the mineralization at Creede. In contrast to Creede where the mineral stabilities all point to a relatively consistent chemistry, the Mississippi Valley type deposits present a puzzle of conflicting chemical clues that are impossible to reconcile with any single equilibrium situation. Thus we must

  5. Geological characteristics and ore-forming process of the gold deposits in the western Qinling region, China

    NASA Astrophysics Data System (ADS)

    Liu, Jiajun; Liu, Chonghao; Carranza, Emmanuel John M.; Li, Yujie; Mao, Zhihao; Wang, Jianping; Wang, Yinhong; Zhang, Jing; Zhai, Degao; Zhang, Huafeng; Shan, Liang; Zhu, Laimin; Lu, Rukui

    2015-05-01

    , changes of physico-chemical conditions resulted in fluid immiscibility that played a key role in gold and sulfide deposition. The geochemical and mineralogical characteristics of the Carlin-type deposits in the western Qinling region are similar to those in the Carlin trend, Nevada, USA. Gold deposits such as La'erma and Jinlongshan occur mostly in the southeastern margin of the western Qinling regionic region whereas some deposits occur in its eastern part. These deposits are hosted in slightly metamorphosed Cambrian to Triassic sedimentary rocks, showing structurally- and stratigraphically-controlled features. The deposits mainly contain submicroscopic and microscopic gold in arsenian pyrite and arsenopyrite, with characteristic ore-forming elements of Au-As-Sb-Ba. The ore-forming fluids are early-stocked formation water and later-recharged meteoric water. Meteoric water apparently evolved in ore-forming fluids by circulation, indicating the extensional setting, and led to the deposition of Au and other elements in cool reactive permeable rocks at shallow levels, forming the disseminated ores. Carlin-like gold deposits occur between the Shang-Dan suture and the Fengxian-Zhen'an fault. The host rocks are mainly sedimentary rocks that underwent reconstruction through reworking by structural metamorphism. These deposits are structurally controlled by brittle-ductile shear zone and occur adjacent to granitoid plutons. The most important characteristic that differ to the orogenic and Carlin-type gold deposits is the genetic relationship with the synchronous magmatism. Gold occurs mainly as microscopic gold. Pyrite and arsenian pyrite can be recognized as gold-bearing minerals. The ore-forming fluids are main magmatic water mixed with metamorphic and/or formation water. Similar to orogenic gold deposits, fluid immiscibility caused the deposition of gold Carlin-like gold deposits.

  6. Physical and chemical controls on ore shoots - insights from 3D modeling of an orogenic gold deposit

    NASA Astrophysics Data System (ADS)

    Vollgger, S. A.; Tomkins, A. G.; Micklethwaite, S.; Cruden, A. R.; Wilson, C. J. L.

    2016-12-01

    Many ore deposits have irregular grade distributions with localized elongate and well-mineralized rock volumes commonly referred to as ore shoots. The chemical and physical processes that control ore shoot formation are rarely understood, although transient episodes of elevated permeability are thought to be important within the brittle and brittle-ductile crust, due to faulting and fracturing associated with earthquake-aftershock sequences or earthquake swarms. We present data from an orogenic gold deposit in Australia where the bulk of the gold is contained in abundant fine arsenopyrite crystals associated with a fault-vein network within tight upright folds. The deposit-scale fault network is connected to a deeper network of thrust faults (tens of kilometers long). Using 3D implicit modeling of geochemical data, based on radial basis functions, gold grades and gold-arsenic element ratios were interpolated and related to major faults, vein networks and late intrusions. Additionally, downhole bedding measurements were used to model first order (mine-scale) fold structures. The results show that ore shoot plunges are not parallel with mine-scale or regional fold plunges, and that bedding parallel faults related to flexural slip folding play a pivotal role on ore shoot attitudes. 3D fault slip and dilation tendency analysis indicate that fault reactivation and formation of linking faults are associated with large volumes of high-grade ore. We suggest slip events on the large-scale thrust network allowed mineralizing fluids to rapidly migrate over large distances and become supersaturated in elements such as gold, promoting widespread precipitation and high nucleation densities of arsenopyrite upon fluid-rock interaction at trap sites within the deposit.

  7. Raman Spectroscopic Characterisation of Australian Banded Iron Formation and Iron Ore

    NASA Astrophysics Data System (ADS)

    Wells, M. A.; Ramanaidou, E. R.

    2012-04-01

    In Australia and world-wide over the past 5-10 years, declining reserves of premium, high-grade (>64% Fe), low-P bearing iron ore, have seen iron ore producers increase their utilisation of lower Fe-grade, higher P/Al/Si ore. In Australia, the channel iron deposits (CID), bedded iron deposits (BID) and, more recently, BIF-derived magnetite iron deposits (MID) have seen increased usage driven mainly by the increased demand from Chinese steel mills (Ramanaidou and Wells, 2011). Efficient exploitation and processing of these lower-grade iron ores requires a detailed understanding of their iron oxide and gangue mineralogy and geochemistry. The common Fe-bearing minerals (e.g., hematite, magnetite, goethite and kenomagnetite) in these deposits, as well as gangue minerals such as quartz and carbonates, are all strongly Raman active (e.g., de Faria et al., 1997). Their distinct Raman spectra enable them to be easily detected and mapped in situ in either unprepared material or samples prepared as polished blocks. In this paper, using representative examples of Australian CID ore, martite-goethite bedded iron deposit (BID) ore and banded iron formation (BIF) examined as polished blocks, we present a range of Raman spectra of the key iron ore minerals, and discuss how Raman spectroscopy can be applied to characterising iron ore mineralogy. Raman imaging micrographs, obtained using a StreamLine Plus Raman imaging system, clearly identified the main Fe-oxide and gangue components in the CID, BID and BIF samples when compared to optical micrographs. Raman analysis enabled the unequivocal identification of diamond in the CID ore as a contaminant from the polishing paste used to prepare the sample, and confirmed the presence of hematite in the BID ore in the form of martite, which can be morphologically similar to magnetite and, thus, difficult to otherwise distinguish. Image analysis of Raman mineral maps could be used to quantify mineral abundance based on the number of 'pixels

  8. Remote sensing strategic exploration of large or superlarge gold ore deposits

    NASA Astrophysics Data System (ADS)

    Yan, Shouxun; Liu, Qingsheng; Wang, Hongmei; Wang, Zhigang; Liu, Suhong

    1998-08-01

    To prospect large or superlarge gold ore deposits, blending of remote sensing techniques and modern metallogenitic theories is one of the effective measures. The theory of metallogeny plays a director role before and during remote sensing technique applications. The remote sensing data with different platforms and different resolutions can be respectively applied to detect direct or indirect metallogenic information, and to identify the ore-controlling structure, especially, the ore-controlling structural assemblage, which, conversely, usually are the new conditions to study and to modify the metallogenic model, and to further develop the exploration model of large or superlarge ore deposits. Guidance by an academic idea of 'adjustment structure' which is the conceptual model of transverse structure, an obscured ore- controlling transverse structure has been identified on the refined TM imagery in the Hadamengou gold ore deposit, Setai Hyperspectral Geological Remote Sensing Testing Site (SHGRSTS), Wulashan mountains, Inner Mongolia, China. Meanwhile, The MAIS data has been applied to quickly identify the auriferous alteration rocks with Correspondence Analysis method and Spectral Angle Mapping (SAM) technique. The theoretical system and technical method of remote sensing strategic exploration of large or superlarge gold ore deposits have been demonstrated by the practices in the SHGRSTS.

  9. A geochemical assessment of possible lunar ore formation

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; Colson, Russell O.; Vaniman, David

    1991-01-01

    The Moon apparently formed without appreciable water or other relatively volatile materials. Interior concentrations of water or other volatile substances appear to be extremely low. On Earth, water is important to the genesis of nearly all types of ores. Thus, some have reasoned that only abundant elements would occur in ore concentrations. The definition and recognition of ores on the Moon challenge the imaginations and the terrestrial perceptions of ore bodies. Lunar ores included solar-wind soaked soils, which contain abundant but dilute H, C, N, and noble gases (including He-3). Oxygen must be mined; soils contain approximately 45 percent (wt). Mainstream processes of rock formation concentrated Si, Mg, Al, Fe, and Ca, and possibly Ti and Cr. The highland surface contains approximately 70 percent (wt) feldspar (mainly CaAl2Si2O8), which can be separated from some highland soils. Small fragments of dunite were collected; dunite may occur in walls and central peaks of some craters. Theoretical extensions of observations of lunar samples suggest that the Moon may have produced ores of trace elements. Some small fragments have trace-element concentrations 10(exp 4) times higher than the lunar average, indicating that effective geochemical separations occurred; processes included fractional crystallization, silicate immiscibility, vaporization and condensation, and sulfide metamorphism. Operations of these processes acting on indigenous materials and on meteoritic material in the regolith could have produced ores. Infalling carbonaceous meteorites and comets have added water and hydrocarbons that may have been cold-trapped. Vesicles in basalts, pyroclastic beads, and reported transient events suggest gag emission from the lunar interior; such gas might concentrate and transport rare elements. Large impacts may disperse ores or produce them through deposition of heat at depth and by vaporization and subsequent condensation. The main problem in assessing lunar

  10. Stratigraphy of Upper Cretaceous and Cenozoic deposits of the Bakchar iron ore deposit (southwestern Siberia): New data

    NASA Astrophysics Data System (ADS)

    Lebedeva, N. K.; Kuzmina, O. B.; Sobolev, E. S.; Khazina, I. V.

    2017-01-01

    The results of complex palynological and microfaunistic studies of Upper Cretaceous and Cenozoic deposits of the Bakchar iron ore deposit are presented. Geochronologically, the age of the deposits varies from Campanian to Quaternary. It was established that the Slavgorod, Gan'kino, and Jurki (?) formations contain four biostratons in the rank of beds with dinocysts and three biostratons in the rank of beds with spores and pollen. The Cenozoic continental deposits contain four biostratons in the rank of beds, containing spores and pollen. As a result of the study, a large stratigraphic gap in the Cretaceous-Paleogene boundary deposits, covering a significant part of the Maastrichtian, Paleocene, Ypresian, and Lutetian stages of the Eocene, was established. The remnants of a new morphotype of heteromorphic ammonites of genus Baculites were first described in deposits of the Slavgorod Formation (preliminarily, upper Campanian). The distribution features of the different palynomorph groups in the Upper Cretaceous-Cenozoic deposits in the area of study due to transgressive-regressive cycles and climate fluctuations were revealed.

  11. Mineralogy and fluid inclusions study of carbonate-hosted Mississippi valley-type Ain Allega Pb-Zn-Sr-Ba ore deposit, Northern Tunisia

    NASA Astrophysics Data System (ADS)

    Abidi, R.; Slim-Shimi, N.; Somarin, A.; Henchiri, M.

    2010-05-01

    The Ain Allega Pb-Zn-Sr-Ba ore deposit is located in the flysch zone on the Eastern edge of the Triassic diapir of Jebel Hamra. It is part of the extrusive Triassic evaporate formation along the Ghardimaou-Cape Serrat faults. The ore body consists of argilic-dolomite breccias surrounded by argilo-gypsum Triassic formation, which forms the hanging wall of the deposit, and rimmed by the Paleocene marls. The ore minerals show a cap-rock type mineralization with different styles particularly impregnation in dolomite, cement of breccias, replacement ore and open space filling in the dissolution cavities and fractures. Ore minerals include sphalerite, galena, marcasite and pyrite. Principal gangue minerals are composed of barite, celestite, calcite, dolomite and quartz. The ore minerals are hosted by the Triassic carbonate rocks which show hydrothermal alteration, dissolution and brecciation. X-ray - crystallographic study of barite-celestite mineral series shows that pure barite and celestite are the abundant species, whereas strontianiferous barite (85-96.5% BaSO 4) and barian-celestite (95% SrSO 4) are minor. Primary and secondary mono-phase (liquid only) fluid inclusions are common in celestite. Microthermometric analyses in two-phases (liquid and vapour) fluid inclusions suggest that gangue and ore minerals were precipitated by a low-temperature (180 °C) saline (16.37 wt.% NaCl equivalent) solution originated possibly from a basinal brine with some input from magmatic or metamorphic fluid. Based on geology, mineralogy, texture and fluid characteristics, the Ain Allega deposit is classified as a carbonate-hosted Mississippi valley-type deposit.

  12. The formation age of ores from the Pebble Cu-Au-Mo giant deposit (Alaska, United States)

    NASA Astrophysics Data System (ADS)

    Kremenetskii, A. A.; Popov, V. S.; Gromalova, N. A.

    2012-02-01

    Zircons from the porphyry-like quartz-diorite boss of the Pebble Cu-Au-Mo deposit (southwest Alaska) have been examined. By their appearance and internal structure (cathode luminescence and electron probing), the zircons have been subdivided into four genetic groups: (1) xenogenic detrital (mainly rounded); (2) magmatogene (protolith crystal in the center and growth zone at the edge); (3) hydrothermally altered (with new-formed regeneration edges in growth zones); (4) metamict-altered (unconsolidated center of the crystal and sectoring in growth zones). Based on SHRIMP U-Pb dating for the principal heterogeneous elements in every group, the following stages of ore formation have been identified for the Pebble deposit: (a) crystallization of quartz diorite-porphyry bosses (95-92 Ma, the concordant age is 94.7 ± 1.5 Ma); (b) late magmatic metasomatic alterations with copper-molybdenum mineralization (92-85 Ma, the concordant age is 90.15 ± 0.78 Ma); (c) postmagmatic argillization with epithermal gold-sulfide mineralization (82-80 Ma, the concordant age is 82.9 ± 2.7 Ma).

  13. Geology and ore deposits of the Section 23 Mine, Ambrosia Lake District, New Mexico

    USGS Publications Warehouse

    Granger, H.C.; Santos, E.S.

    1982-01-01

    The section 23 mine is one of about 18 large uranium mines opened in sandstones of the fluvial Westwater Canyon Member of the Jurassic Morrison Formation in the Ambrosia Lake mining district during the early 1960s. The Ambrosia Lake district is one of several mining districts within the Grants mineral belt, an elongate zone containing many uranium deposits along the southern flank of the San Juan basin. Two distinct types of ore occur in the mine. Primary ore occurs as peneconcordant layers of uranium-rich authigenic organic matter that impregnates parts of the reduced sandstone host rocks and which are typically elongate in an east-southeast direction subparallel both to the sedimentary trends and to the present-day regional strike of the strata. These are called prefault or trend ores because of their early genesis and their elongation and alinement. A second type of ore in the mine is referred to as postfault, stacked, or redistributed ore. Its genesis was similar to that of the roll-type deposits in Tertiary rocks of Wyoming and Texas. Oxidation, related to the development of a large tongue of oxidized rock extending from Gallup to Ambrosia Lake, destroyed much of the primary ore and redistributed it as massive accumulations of lower grade ores bordering the redox interface at the edge of the tongue. Host rocks in the southern half of sec. 23 (T. 14 N., R. 10 W.) are oxidized and contain only remnants of the original, tabular, organic-rich ore. Thick bodies of roll-type ore are distributed along the leading edge of the oxidized zone, and pristine primary ore is found only near the north edge of the section. Organic matter in the primary ore was derived from humic acids that precipitated in the pores of the sandstones and fixed uranium as both coffinite and urano-organic compounds. Vanadium, molybdenum, and selenium are also associated with the ore. The secondary or roll-type ores are essentially free of organic carbon and contain uranium both as coffinite and

  14. Regularities of spatial association of major endogenous uranium deposits and kimberlitic dykes in the uranium ore regions of the Ukrainian Shield

    NASA Astrophysics Data System (ADS)

    Kalashnyk, Anna

    2015-04-01

    During exploration works we discovered the spatial association and proximity time formation of kimberlite dykes (ages are 1,815 and 1,900 Ga for phlogopite) and major industrial uranium deposits in carbonate-sodium metasomatites (age of the main uranium ore of an albititic formation is 1,85-1,70 Ga according to U-Pb method) in Kirovogradsky, Krivorozhsky and Alekseevsko-Lysogorskiy uranium ore regions of the Ukrainian Shield (UkrSh) [1]. In kimberlites of Kirovogradsky ore region uranium content reaches 18-20 g/t. Carbon dioxide is a major component in the formation of hydrothermal uranium deposits and the formation of the sodium in the process of generating the spectrum of alkaline ultrabasic magmas in the range from picritic to kimberlite and this is the connection between these disparate geochemical processes. For industrial uranium deposits in carbonate-sodium metasomatitics of the Kirovogradsky and Krivorozhsky uranium ore regions are characteristic of uranyl carbonate introduction of uranium, which causes correlation between CO2 content and U in range of "poor - ordinary - rich" uranium ore. In productive areas of uranium-ore fields of the Kirovogradsky ore region for phlogopite-carbonate veinlets of uranium ore albitites deep δ13C values (from -7.9 to -6.9o/oo) are characteristic. Isotope-geochemical investigation of albitites from Novokonstantynovskoe, Dokuchaevskoe, Partyzanskoe uranium deposits allowed obtaining direct evidence of the involvement of mantle material during formation of uranium albitites in Kirovogradsky ore region [2]. Petrological characteristics of kimberlites from uranium ore regions of the UkrSh (presence of nodules of dunite and harzburgite garnet in kimberlites, diamonds of peridotite paragenesis, chemical composition of indicator minerals of kimberlite, in particular Gruzskoy areas pyropes (Cr2O3 = 6,1-7,1%, MgO = 19,33-20,01%, CaO = 4,14-4,38 %, the content of knorringite component of most grains > 50mol%), chromites (Cr2O3 = 45

  15. Blasting preparation for selective mining of complex structured ore deposition

    NASA Astrophysics Data System (ADS)

    Marinin, M. A.; Dolzhikov, V. V.

    2017-10-01

    Technological features of ore mining in the open pit development for processing of complex structured ore deposit of steeply falling occurrence have been considered. The technological schemes of ore bodies mining under different conditions of occurrence, consistency and capacity have been considered and offered in the paper. These technologies permit to reduce losses and dilution, but to increase the completeness and quality of mined ore. A method of subsequent selective excavation of ore bodies has been proposed. The method is based on the complex use of buffer-blasting technology for the muck mass and the principle of trim blasting at ore-rock junctions.

  16. Geology and ore deposits of the Pioche district, Nevada

    USGS Publications Warehouse

    Westgate, L.G.; Knopf, Adolph

    1932-01-01

    LOCATION AND SURFACE FEATURES The Bristol Range, Highland, and Ely Range quadrangles make up the larger part of a. rectangular area 35 miles north and south by 24 miles east and west, which lies 19 miles west of the Nevada-Utah line and about 250 miles southwest of Salt Lake City. The district lies within the Great Basin, a semiarid region of alternating mountain ranges and intermontane plains floored largely by outwash from the mountains. The plain, which slopes away from the ranges, stands between 4,700 and 6,000 feet above the sea. The Bristol and Highland Ranges, which are separated only by a low gap, form an almost continuous north-south range that rises about 2,500 feet above the highest part of the surrounding plain, to general altitudes of 8,000 to 9,000 feet, though the highest point, Highland Peak, reaches 9,395 feet. A lower range, the Ely Range, with a northwesterly trend, lies farther east and nearly in touch with the Bristol-Highland Range. The town of Pioche lies midway on the. eastern foot of the Ely Range. ROOKS OF THE PIOOHB REGION The rocks of the ranges are Paleozoic sediments, Tertiary (?) lavas and intrusive rocks, and Pliocene (?) tuffs. The Paleozoic sediments have a total thickness of nearly 18,000 feet. Over 8,000 feet of the Cambrian has been measured without reaching its base. The lowest Cambrian formation is a quartzite, of which only the upper 1,500 feet is exposed, and this is followed by 1,200 feet of shale, 400 feet of limestone, aoid 150 feet of shale. Above this second shale the upper three-fourths of the Cambrian consists of limestone and dolomitic limestone. It is in the quartzite and in the limestone interbedded in and bounding the shales that the main ore bodies of the district have been found. Above the Cambrian comes 1,795 feet of Ordovician limestone, with some interbedded dolomite and with a 50-foot quartzite a, third of the way down from the top; 75 feet of Silurian dolomite; 3,000 feet of Middle Devonian dolomite with

  17. Rational design of bottom blocks for development of ore deposits systems with caving of ore and enclosing rocks

    NASA Astrophysics Data System (ADS)

    Versilov, S. O.; Posylniy, Yu V.; Shurygin, D. N.; Tretyak, A. Ya

    2017-10-01

    The assessment of the geological conditions of development of existing ore deposits was made. For testing ore deposits in difficult mining and geological conditions, the authors proposed the system of development, accompanied by collapse of the mechanical ore with the use of feeders of active action that could be manufactured directly in the mine in accordance with the specific conditions of occurrence of minerals. The paper demonstrates the technology of manufacture of load-bearing structures of the feeder directly in the mine at the scene of the breaking of the first layer of ore, as well as the dynamics of the ore and the choice of parameters of concrete feeders. A new design of the bottom block was proposed, the idea of technical solution of which consists in the fact that it is offered to undergo the production of the smallest possible cross section, which is determined only by the dimensions of the conveyors to deliver ore. And before the explosion of fans of production wells, it is necessary to produce local collapse of the roof production to increase its height at the place of production of ore by blasting wellheads in two or three rows.

  18. Simulation of geochemical processes responsible for the formation of the Zhezqazghan deposit

    NASA Astrophysics Data System (ADS)

    Ryzhenko, B. N.; Cherkasova, E. V.

    2014-05-01

    Physicochemical computer simulation of water-rock systems at a temperature of 25-150°C and under a pressure of up to 600 bar has been carried out for quantitative description of the mineralization formation conditions at sandstone- and shale-hosted copper deposits. The simulation is based on geological and geochemical information concerning the Zhezqazghan deposit and considers (i) a source of ore matter, (ii) composition of the fluid that transfers ore matter to the ore formation zone, and (iii) factors of ore concentration. It has been shown that extraction of copper from minerals of rocks and its accumulation in aqueous solution are optimal at a high mass ratio of rock to water (R/W > 10), Eh of +200 to -100 mV, and an obligatory content of chloride ions in the aqueous phase. The averaged ore-bearing fluid Cl95SO44//Ca50(Na + K)30Mg19 (eq %), pH ˜ 4, mineralization of up to 400 g/L, is formed by the interaction of red sandstone beds with a sedimentogenic brine (a product of metamorphism of seawater in carbonate rocks enriched in organic matter). The ore concentration proceeds in the course of cooling from 150 to 50°C during filtration of ore-bearing fluid through red sandstone beds in the rock-water system thermodynamically opened with respect to the reductive components.

  19. Automated recognition of stratigraphic marker shales from geophysical logs in iron ore deposits

    NASA Astrophysics Data System (ADS)

    Silversides, Katherine; Melkumyan, Arman; Wyman, Derek; Hatherly, Peter

    2015-04-01

    The mining of stratiform ore deposits requires a means of determining the location of stratigraphic boundaries. A variety of geophysical logs may provide the required data but, in the case of banded iron formation hosted iron ore deposits in the Hamersley Ranges of Western Australia, only one geophysical log type (natural gamma) is collected for this purpose. The information from these logs is currently processed by slow manual interpretation. In this paper we present an alternative method of automatically identifying recurring stratigraphic markers in natural gamma logs from multiple drill holes. Our approach is demonstrated using natural gamma geophysical logs that contain features corresponding to the presence of stratigraphically important marker shales. The host stratigraphic sequence is highly consistent throughout the Hamersley and the marker shales can therefore be used to identify the stratigraphic location of the banded iron formation (BIF) or BIF hosted ore. The marker shales are identified using Gaussian Processes (GP) trained by either manual or active learning methods and the results are compared to the existing geological interpretation. The manual method involves the user selecting the signatures for improving the library, whereas the active learning method uses the measure of uncertainty provided by the GP to select specific examples for the user to consider for addition. The results demonstrate that both GP methods can identify a feature, but the active learning approach has several benefits over the manual method. These benefits include greater accuracy in the identified signatures, faster library building, and an objective approach for selecting signatures that includes the full range of signatures across a deposit in the library. When using the active learning method, it was found that the current manual interpretation could be replaced in 78.4% of the holes with an accuracy of 95.7%.

  20. Barite-polymetallic mineralization of Zmeinogorsk ore district and some genetic aspects of its formation

    NASA Astrophysics Data System (ADS)

    Bestemianova, K. V.; Grinev, O. M.

    2017-12-01

    Zmeinogorsky ore district is located in the northwest part of Ore Altai megatrough, which has long-lasting history of its development and complicated geological structure. Within the ore district, which is the northwest part of the devonian Zmeinogorsk-Bystrushinsky trough, ore mineralization is associated with the system of northwest border faults and cross branch faults. There were four main stages and five phases of minerogenesis. The first stage is the stage of oregenesis beginning and quartz-chlorite-sericite wall-rock alteration rocks formation. Ore deposition and intense tectonics took place during the second stage. The third stage is the most longstanding and productive ore formation stage. There are five distinct minerogenesis phases within this stage. The fourth stage expressed in erosion development and supergene alteration of already formed ore bodies with oxidation zone formation. Main ore minerals are pyrite, chalcopyrite, sphalerite and galena. Minor minerals are tetrahedrite, bornite, tennantite and chalcocite. Precious metals minerals are acanthite, gold, electrum, gold and silver amalgams. Barren minerals are barite, quartz, calcite, gypsum. According to obtained data average isotopic composition of third stage sulphides is: pyrite -0,2‰, chalcopyrite 0‰, galena +0,5‰, sphalerite -1,2‰ for the first complex; chalcopyrite -1,9‰, galena -3,4‰, sphalerite -2,3‰, tetrahedrite -3,7‰ for the second complex; tennantite -12,8‰, bornite -8,9‰ for the third complex. Sulfur isotopic compoisiton variations indicate source inhomogeneity. Thus, there was dominant source change from mantle one in the beginning to crustal one in the end. Main oregenesis stages took place in the range of temperatures between 170 and 210°С and in the mineral-forming solutions salinity range between 3 and 10 wt % NaCl equiv.

  1. Ore-fluid evolution at the Getchell Carlin-type gold deposit, Nevada, USA

    USGS Publications Warehouse

    Cline, J.S.; Hofstra, A.A.

    2000-01-01

    Minerals and fluid-inclusion populations were examined using petrography, microthermometry, quadrupole mass-spectrometer gas analyses and stable-isotope studies to characterize fluids responsible for gold mineralization at the Getchell Carlin-type gold deposit. The gold-ore assemblage at Getchell is superimposed on quartz-pyrite vein mineralization associated with a Late-Cretaceous granodiorite stock that intruded Lower-Paleozoic sedimentary rocks. The ore assemblage, of mid-Tertiary age, consists of disseminated arsenian pyrite that contains submicrometer gold, jasperoid quartz, and later fluorite and orpiment that fill fractures and vugs. Late ore-stage realgar and calcite enclose ore-stage minerals. Pre-ore quartz trapped fluids with a wide range of salinities (1 to 21 wt.% NaCl equivalent), gas compositions (H2O, CO2, and CH4), and temperatures (120 to >360??C). Oxygen- and hydrogen-isotope ratios indicate that pre-ore fluids likely had a magmatic source, and were associated with intrusion of the granodiorite stock and related dikes. Ore-stage jasperoid contains moderate salinity, aqueous fluid inclusions trapped at 180 to 220??C. Ore fluids contain minor CO2 and trace H2S that allowed the fluid to react with limestone host rocks and transport gold, respectively. Aqueous inclusions in fluorite indicate that fluid temperatures declined to ~175??C by the end of ore-stage mineralization. As the hydrothermal system collapsed, fluid temperatures declined to 155 to 115??C and realgar and calcite precipitated. Inclusion fluids in ore-stage minerals have high ??D(H2O) and ??18O(H2O) values that indicate that the fluid had a deep source, and had a metamorphic or magmatic origin, or both. Late ore-stage fluids extend to lower ??D(H2O) values, and have a wider range of ??18O(H2O) values suggesting dilution by variably exchanged meteoric waters. Results show that deeply sourced ore fluids rose along the Getchell fault system, where they dissolved carbonate wall rocks and

  2. The late cretaceous Donlin Creek gold deposit, Southwestern Alaska: Controls on epizonal ore formation

    USGS Publications Warehouse

    Goldfarb, R.J.; Ayuso, R.; Miller, M.L.; Ebert, S.W.; Marsh, E.E.; Petsel, S.A.; Miller, L.D.; Bradley, D.; Johnson, Chad; McClelland, W.

    2004-01-01

    The Donlin Creek gold deposit, southwestern Alaska, has an indicated and inferred resource of approximately 25 million ounces (Moz) Au at a cutoff grade of 1.5 g/t. The ca. 70 Ma deposit is hosted in the Late Cretaceous Kuskokwim flysch basin, which developed in the back part of the are region of an active continental margin, on previously accreted oceanic terranes and continental fragments. A hypabyssal, mainly rhyolitic to rhyodacitic, and commonly porphyritic, 8- ?? 3-km dike complex, part of a regional ca. 77 to 58 Ma magmatic arc, formed a structurally competent host for the mineralization. This deposit is subdivided into about one dozen distinct prospects, most of which consist of dense quartz ?? carbonate veinlet networks that fill north-northeast-striking extensional fractures in the northeast-trending igneous rocks. The sulfide mineral assemblage is dominated by arsenopyrite, pyrite, and, typically younger, stibnite; gold is refractory within the arsenopyrite. Sericitization, carbonatization, and suffidation were the main alteration processes. Fluid inclusion studies of the quartz that hosts the resource indicate dominantly aqueous ore fluids with also about 3 to 7 mol percent CO2 ?? CH4 and a few tenths to a few mole percent NaCl + KCl. The gold-bearing fluids were mainly homogeneously trapped at approximately 275?? to 300??C and at depths of 1 to 2 km. Some of the younger stibnite may have been deposited by late-stage aqueous fluids at lower temperature. Measured ??18O values for the gold-bearing quartz range between 11 and 25 per mil; the estimated ??18O fluid values range from 7 to 12 per mil, suggesting a mainly crustally derived fluid. A broad range of measured ??D values for hydrothermal micas, between -150 and -80 per mil, is suggestive of a contribution from devolatilization of organic matter and/or minor amounts of mixing with meteoric fluids. Gold-associated hydrothermal sulfide minerals are characterized by ??34S values mainly between -16 and

  3. Numerical Approaches about the Morphological Description Parameters for the Manganese Deposits on the Magnesite Ore Surface

    NASA Astrophysics Data System (ADS)

    Bayirli, Mehmet; Ozbey, Tuba

    2013-07-01

    Black deposits usually found at the surface of magnesite ore or limestone as well as red deposits in quartz veins are named as natural manganese dendrites. According to their geometrical structures, they may take variable fractal shapes. The characteristic origins of these morphologies have rarely been studied by means of numerical analyses. Hence, digital images of magnesite ore are taken from its surface with a scanner. These images are then converted to binary images in the form of 8 bits, bitmap format. As a next step, the morphological description parameters of manganese dendrites are computed by the way of scaling methods such as occupied fractions, fractal dimensions, divergent ratios, and critical exponents of scaling. The fractal dimension and the scaling range are made dependent on the fraction of the particles. Morphological description parameters can be determined according to the geometrical evaluation of the natural manganese dendrites which are formed independently from the process. The formation of manganese dendrites may also explain the stochastic selected process in the nature. These results therefore may be useful to understand the deposits in quartz vein parameters in geophysics.

  4. The origin of Cu/Au ratios in porphyry-type ore deposits.

    PubMed

    Halter, Werner E; Pettke, Thomas; Heinrich, Christoph A

    2002-06-07

    Microanalysis of major and trace elements in sulfide and silicate melt inclusions by laser-ablation inductively coupled plasma mass spectrometry indicates a direct link between a magmatic sulfide liquid and the composition of porphyry-type ore deposits. Copper (Cu), gold (Au), and iron (Fe) are first concentrated in a sulfide melt during magmatic evolution and then released to an ore-forming hydrothermal fluid exsolved late in the history of a magma chamber. The composition of sulfide liquids depends on the initial composition and source of the magma, but it also changes during the evolution of the magma in the crust. Magmatic sulfide melts may exert the dominant direct control on the economic metal ratios of porphyry-type ore deposits.

  5. Geochemical Modeling of Zinc Silicate Ore Formation from Sedimentary Hydrothermal Fluids

    NASA Astrophysics Data System (ADS)

    Appold, M. S.

    2008-12-01

    Sediment-hosted zinc deposits dominated by willemite (Zn2SiO4) instead of sphalerite (ZnS) are known from several prominent occurrences worldwide, including Vazante, Brazil, the Aroona Trend, Australia, Kabwe, Zambia, Berg Aukas, Namibia, and Abu Samar, Sudan. Although willemite-dominant zinc deposits appear to be much less common and are on average smaller than sphalerite-dominant zinc deposits, they nonetheless represent major enrichments of zinc in the Earth's crust, reaching sizes on the order of 1's to 10's of millions of tons and grades commonly between 20 and 40%. Sediment-hosted willemite- and sphalerite-dominant deposits share many similarities including their predominantly carbonate host rocks, gangue mineralogy, presumed derivation from sedimentary basinal brines, and spatial proximity. However, the conditions and processes that led to one style of mineralization versus the other have only recently begun to be investigated. The current study presents solubility, reaction path, and reactive transport modeling results that attempt to define more clearly the conditions that favor willemite ore formation in sedimentary basins, with a focus on the Vazante deposit. Solubility calculations for willemite and sphalerite as a function of temperature, pH, salinity, and oxidation potential were carried out using a simple 3 molal NaCl solution saturated with respect to quartz. The results show that (1) willemite solubility is relatively insensitive to changes in temperature and oxidation potential whereas sphalerite solubility decreases sharply with decreasing temperature and oxidation potential, (2) willemite solubility decreases more strongly than sphalerite with increasing pH, (3) willemite and sphalerite have a similar strong decrease in solubility with decreasing salinity. The results support a previously proposed genetic model for a willemite-dominant, sphalerite-subordinate ore body like Vazante in which a hot, acidic, metal-rich ore fluid mixed with a cooler

  6. The role of the thermal convection of fluids in the formation of unconformity-type uranium deposits: the Athabasca Basin, Canada

    NASA Astrophysics Data System (ADS)

    Pek, A. A.; Malkovsky, V. I.

    2017-05-01

    In the global production of uranium, 18% belong to the unconformity-type Canadian deposits localized in the Athabasca Basin. These deposits, which are unique in terms of their ore quality, were primarily studied by Canadian and French scientists. They have elaborated the diagenetic-hydrothermal hypothesis of ore formation, which suggests that (1) the deposits were formed within a sedimentary basin near an unconformity surface dividing the folded Archean-Proterozoic metamorphic basement and a gently dipping sedimentary cover, which is not affected by metamorphism; (2) the spatial accommodation of the deposits is controlled by the rejuvenated faults in the basement at their exit into the overlying sedimentary sequence; the ore bodies are localized above and below the unconformity surface; (3) the occurrence of graphite-bearing rocks is an important factor in controlling the local structural mineralization; (4) the ore bodies are the products of uranium precipitation on a reducing barrier. The mechanism that drives the circulation of ore-forming hydrothermal solutions has remained one of the main unclear questions in the general genetic concept. The ore was deposited above the surface of the unconformity due to the upflow discharge of the solution from the fault zones into the overlying conglomerate and sandstone. The ore formation below this surface is a result of the downflow migration of the solutions along the fault zones from sandstone into the basement rocks. A thermal convective system with the conjugated convection cells in the basement and sedimentary fill of the basin may be a possible explanation of why the hydrotherms circulate in the opposite directions. The results of our computations in the model setting of the free thermal convection of fluids are consistent with the conceptual reasoning about the conditions of the formation of unique uranium deposits in the Athabasca Basin. The calculated rates of the focused solution circulation through the fault

  7. Contrasting hydrological processes of meteoric water incursion during magmatic-hydrothermal ore deposition: An oxygen isotope study by ion microprobe

    NASA Astrophysics Data System (ADS)

    Fekete, Szandra; Weis, Philipp; Driesner, Thomas; Bouvier, Anne-Sophie; Baumgartner, Lukas; Heinrich, Christoph A.

    2016-10-01

    Meteoric water convection has long been recognized as an efficient means to cool magmatic intrusions in the Earth's upper crust. This interplay between magmatic and hydrothermal activity thus exerts a primary control on the structure and evolution of volcanic, geothermal and ore-forming systems. Incursion of meteoric water into magmatic-hydrothermal systems has been linked to tin ore deposition in granitic plutons. In contrast, evidence from porphyry copper ore deposits suggests that crystallizing subvolcanic magma bodies are only affected by meteoric water incursion in peripheral zones and during late post-ore stages. We apply high-resolution secondary ion mass spectrometry (SIMS) to analyze oxygen isotope ratios of individual growth zones in vein quartz crystals, imaged by cathodo-luminescence microscopy (SEM-CL). Existing microthermometric information from fluid inclusions enables calculation of the oxygen isotope composition of the fluid from which the quartz precipitated, constraining the relative timing of meteoric water input into these two different settings. Our results confirm that incursion of meteoric water directly contributes to cooling of shallow granitic plutons and plays a key role in concurrent tin mineralization. By contrast, data from two porphyry copper deposits suggest that downward circulating meteoric water is counteracted by up-flowing hot magmatic fluids. Our data show that porphyry copper ore deposition occurs close to a magmatic-meteoric water interface, rather than in a purely magmatic fluid plume, confirming recent hydrological modeling. On a larger scale, the expulsion of magmatic fluids against the meteoric water interface can shield plutons from rapid convective cooling, which may aid the build-up of large magma chambers required for porphyry copper ore formation.

  8. Geology and ore deposits of the Casto quadrangle, Idaho

    USGS Publications Warehouse

    Ross, Clyde P.

    1934-01-01

    The study of the Casto quadrangle was undertaken as the first item in a project to obtain more thorough knowledge of the general geology of southcentral Idaho on which to base study of the ore deposits of t he region. The quadrangle conta ins fragmentary exposures of Algonkian and Paleozoic sedimentary rocks, extensive deposits of old volcanic strata, presumably Permian, not heretofore recognized in this part of Idaho, and a thick succession of Oligocene(?) lava and pyroclastic rocks. The Idaho batholith and its satellites extend into the quadrangle, and in addition there a re large masses of Tertiary granitic rock, not previously distinguished in Idaho, and many Tertiary dikes, some of which are genetically associated with contact-metamorphic deposits. The area contains injection gneiss of complex origin, largely related to the Idaho batholith but in part resulting from injection by ~he Tertiary granitic rocks under relatively light load. Orogenic movement took place in Algonkian, Paleozoic, and Tertiary time. There is a summit peneplain or par tial peneplain of Tertiary, perhaps Pliocene age, and the erosional history since its elevation has been complex. The ore deposits include lodes and placers. The lodes are related to both the Idaho batholith and the Tert iary intrusive rocks and have yielded gold and copper ore of a total value of about 1,000,000. Placers, largely formed in an interglacial inter val, have yielded about an equal amount. There has been some prospecting but almost no production since 1916.

  9. Ore deposits in Africa and their relation to the underlying mantle

    NASA Technical Reports Server (NTRS)

    Liu, H.-S.

    1981-01-01

    African magmatism is largely related to the tensional stress regimes of the crust which are induced by the hotter upwelling mantle rocks. These mantle rocks may provide emanating forces and thermal energy for the upward movements of primary ore bodies with fluid inclusions in the tensional stress regimes of the crust. In this paper, the Goddard Earth Gravity Model is used to calculate a detailed subcrustal stress system exerted by mantle convection under Africa. The resulting system is found to be correlated with the African metallogenic provinces. Recognition of the full spectrum of ore deposits in Africa that may be associated with the hotter upwelling mantle rocks has provided an independent evidence to support the hypothesis of mantle-derived heat source for ore deposits.

  10. Analysis of variance in investigations on anisotropy of Cu ore deposits

    NASA Astrophysics Data System (ADS)

    Namysłowska-Wilczyńska, B.

    1986-10-01

    The problem of variability of copper grades and ore thickness in the Lubin copper ore deposit in southwestern Poland is presented. Results of statistical analysis of variations of ledge parameters carried out for three exploited regions of the mine, representing different types of lithological profile show considerable differences. Variability of copper grades occurs in vertical profiles, as well as on extension of field (the copper-bearing series). Against the background of a complex, well-substantiated description of the spatial variability in the Lubin deposit, a methodology is presented that has been applied for the determination of homogeneous ore blocks. The method is a two-factorial (cross) analysis of variance with the special tests of Tukey, Scheffe and Duncan. Blocks of homogeneous sandstone ore have dimensions of up to 160,000 m2 and 60,000 m2 in the case of the Cu content parameter and 200,000 m2 and 10,000 m2 for the thickness parameter.

  11. Testing ore deposit models using in situ U-Pb geochronology of hydrothermal monazite: Paleoproterozoic gold mineralization in northern Australia

    NASA Astrophysics Data System (ADS)

    Rasmussen, Birger; Sheppard, Stephen; Fletcher, Ian R.

    2006-02-01

    The inability to establish absolute ages for gold deposition in the Pine Creek orogen of northern Australia has led to conflicting ore deposit models, ranging from intrusion related, which predict that gold mineralization was synchronous with granite magmatism (ca. 1835 1820 Ma), to orogenic, which place ore deposition nearly 100 m.y. later. Here we present ion microprobe U-Pb geochronology for a mineralized quartz reef from Tom's Gully mine, Mount Bundey, Northern Territory, Australia, and nearby granitic rocks and associated contact aureoles. Isotopic dating of zircon and monazite indicates that intrusion and contact metamorphism occurred ca. 1825 Ma, whereas hydrothermal monazite from the auriferous quartz reef gives a mean 207Pb/206Pb age of 1780 ± 10 Ma, interpreted as the time of gold mineralization. Mineralization therefore postdated intrusion by ˜45 m.y. and preceded a postulated ca. 1740 1730 Ma cratonwide orogenic gold event by ˜50 m.y. Hence, neither the intrusion-related model nor the recently proposed orogenic model is applicable. Combined with a reevaluation of age data from the nearby Goodall gold deposit, our data suggest that mineralization coincides with, and may be related to, an episode of regional low-grade metamorphism, deformation, and fluid circulation (Shoobridge event). Our results demonstrate the importance of high-precision in situ geochronology and detailed petrography for deciphering age relationships in ore deposits, and of testing the veracity of models for ore formation.

  12. Formation and resulfidization of a South Texas roll-type uranium deposit

    USGS Publications Warehouse

    Goldhaber, Martin B.; Reynolds, Richard L.; Rye, Robert O.

    1979-01-01

    Core samples from a roll type uranium deposit in Live Oak County, south Texas have been studied and results are reported for Se, Mo, FeS2 and organic-carbon distribution, sulfide mineral petrology, and sulfur isotopic composition of iron-disulfide phases. In addition, sulfur isotopic compositions of dissolved sulfate and sulfide from the modern ground water within the ore bearing sand have been studied. The suite of elements in the ore sand and their geometric relationships throughout the deposit are those expected for typical roll-type deposits with well-developed oxidation-reduction interfaces. However, iron-disulfide minerals are abundant in the altered tongue, demonstrating that this interval has been sulfidized after mineralization (resulfidized or rereduced). Iron disulfide minerals in the rereduced interval differ mineralogically and isotopically from those throughout the remainder of the deposit. The resulfidized sand contains dominantly pyrite that is enriched in 34S, whereas the sand beyond the altered tongue contains abundant marcasite that is enriched in the light isotope, 32S. Textural relationships between pyrite and marcasite help to establish relative timing of iron disulfide formation. In reduced rock outside the altered tongue, three distinct generations of iron disulfide are present. The oldest of these generations consists largely of pyrite with lesser amounts of marcasite. A major episode of marcasite formation contemporaneous with ore genesis postdates the oldest pyrite generation but predates a younger pyrite generation. Resulfidization probably led to the final pyrite stage recognized beyond the altered tongue. Stable isotope data establish that the source of sulfur for the resulfidization was fault-leaked H2S probably derived from the Edwards Limestone of Cretaceous age which underlies the deposit. The deposit formed in at least two stages: (1) a pre-ore process of host rock sulfidization which produced disseminated pyrite as the dominant

  13. Geology and ore deposits of the Klondike Ridge area, Colorado

    USGS Publications Warehouse

    Vogel, John David

    1960-01-01

    part of the basal sandstone unit of the Salt Wash member of the Morrison formation. Most deposits are in a narrow, elongate mineral belt' that cuts obliquely across Klondike Ridge. The remaining deposits probably form a second 'mineral belt' lying about ? mile to the north. Manganese and copper deposits show both stratigraphic and structural controls of mineralization. Most manganese deposits are in red beds near Tertiary faults; most copper deposits, on the other hand, are in brown sandstone, limestone, or gray-green shale and, like manganese, are in or near Tertiary faults. The manganese and copper deposits are hydrothermal in origin and were formed in the roots of an ancient hot springs system, now deeply eroded. The ore-bearing solutions probably consisted of dilute, carbonate-sulfate ground water heated by the near-surface intrusion of small bodies of igneous rock. These solutions obtained their metals by leaching the wallrock; little, if any, material was added by the intrusives. The deposits were formed near the surface under conditions of hydrostatic pressure, and temperatures and pressures in the ore-bearing solutions were probably low. The early solutions were weakly alkaline and reducing in character. A convection cell was established as mineralization progressed, and surface water mingled at depth with the solutions. As a result of mixing and oxidation, the pH of the solution decreased in later stages of mineralization and the Eh rose.

  14. Alunite in the Pascua-Lama high-sulfidation deposit: Constraints on alteration and ore deposition using stable isotope geochemistry

    USGS Publications Warehouse

    Deyell, C.L.; Leonardson, R.; Rye, R.O.; Thompson, J.F.H.; Bissig, T.; Cooke, D.R.

    2005-01-01

    the deposit and probably formed from oxidation of H2S during boiling of the magmatic ore fluids. Coarsely crystalline magmatic steam alunite (8.4 Ma) is restricted to the near-surface portion of Brecha Central. Postmineral alunite ?? jarosite were previosly interpreted to be supergene crosscutting veins and overgrowths, although stable isotope data suggest a mixed magmatic-meteoric origin for this late-stage alteration. Only late jarosite veinlets (8.0 Ma) associated with fine-grained pseudocubic alunite have a supergene isotopic signature. The predominanca of magmatic fluids recorded throughout the paragenesis of the Pascua system is atypical for high-sulfidation deposits, which typically envolve significant meteoric water in near-surface and peripheral alteration and, in some systems, even ore deposition. A Pascua, the strong magmatic signature of both alteration and main-stage (alunite-pyrite-enargite assemblage) ore is attributed to limited availability of meteoric fluids. This is in agreement with published data for the El Indio-Pascua belt, indicating an event of uplift and subsequent pediment incision, as well as a transition from semiarid to arid climatic conditions, during the formation of the deposit in the mid to late Miocene. ?? 2005 Society of Economic Geologists, Inc.

  15. The importance of dissolved free oxygen during formation of sandstone-type uranium deposits

    USGS Publications Warehouse

    Granger, Harry Clifford; Warren, C.G.

    1979-01-01

    One factor which distinguishes t, he genesis of roll-type uranium deposits from the Uravan Mineral Belt and other sandstone-type uranium deposits may be the presence and concentration of dissolved free oxygen in the ore-forming. solutions. Although dissolved oxygen is a necessary prerequisite for the formation of roll-type deposits, it is proposed that a lack of dissolved oxygen is a prerequisite for the Uravan deposits. Solutions that formed both types of deposits probably had a supergene origin and originated as meteoric water in approximate equilibrium with atmospheric oxygen. Roll-type deposits were formed where the Eh dropped abruptly following consumption of the oxygen by iron sulfide minerals and creation of kinetically active sulfur species that could reduce uranium. The solutions that formed the Uravan deposits, on the other hand, probably first equilibrated with sulfide-free ferrous-ferric detrital minerals and fossil organic matter in the host rock. That is, the uraniferous solutions lost their oxygen without lowering their Eh enough to precipitate uranium. Without oxygen, they then. became incapable of oxidizing iron sulfide minerals. Subsequent localization and formation of ore bodies from these oxygen-depleted solutions, therefore, was not necessarily dependent on large reducing capacities.

  16. Rock-magnetism and ore microscopy of the magnetite-apatite ore deposit from Cerro de Mercado, Mexico

    NASA Astrophysics Data System (ADS)

    Alva-Valdivia, L. M.; Goguitchaichvili, A.; Urrutia-Fucugauchi, J.; Caballero-Miranda, C.; Vivallo, W.

    2001-03-01

    Rock-magnetic and microscopic studies of the iron ores and associated igneous rocks in the Cerro de Mercado, Mexico, were carried out to determine the magnetic mineralogy and origin of natural remanent magnetization (NRM), related to the thermo-chemical processes due to hydrothermalism. Chemical remanent magnetization (CRM) seems to be present in most of investigated ore and wall rock samples, replacing completely or partially an original thermoremanent magnetization (TRM). Magnetite (or Ti-poor titanomagnetite) and hematite are commonly found in the ores. Although hematite may carry a stable CRM, no secondary components are detected above 580°, which probably attests that oxidation occurred soon enough after the extrusion and cooling of the ore-bearing magma. NRM polarities for most of the studied units are reverse. There is some scatter in the cleaned remanence directions of the ores, which may result from physical movement of the ores during faulting or mining, or from perturbation of the ambient field during remanence acquisition by inhomogeneous internal fields within these strongly magnetic ore deposits. The microscopy study under reflected light shows that the magnetic carriers are mainly titanomagnetite, with significant amounts of ilmenite-hematite minerals, and goethite-limonite resulting from alteration processes. Magmatic titanomagnetites, which are found in igneous rocks, show trellis, sandwich, and composite textures, which are compatible with high temperature (deuteric) oxy-exsolution processes. Hydrothermal alteration in ore deposits is mainly indicated by martitization in oxide minerals. Grain sizes range from a few microns to >100 mm, and possible magnetic state from single to multidomain, in agreement with hysteresis measurements. Thermal spectra, continuous susceptibility measurements, and IRM (isothermal remanent magnetization) acquisition suggest a predominance of spinels as magnetic carriers, most probably titanomagnetites with low

  17. Sources of Matter and Ore-Producing Fluid of the Tamunyer Gold-Sulfide Deposit (Northern Urals): Isotope Results

    NASA Astrophysics Data System (ADS)

    Zamyatina, D. A.; Murzin, V. V.

    2018-02-01

    The Tamunyer deposit is a typical example of gold-sulfide mineralization located in the lower lithologic-stratigraphic unit (S2-D1) of the Auerbach volcanic-plutonic belt. The latter comprises island-arc andesitic volcano-sediments, volcanics, and comagmatic intrusive formations. Carbonates have demonstrated intermediate values of δ13C between marine limestone and mantle. The quartz δ18O is in the range of 15.3-17.2‰. The δ34S of sulfides from the beresitized volcano-sedimentary rocks and ores varies widely from -7.5 to 12‰. The calculated isotope compositions of H2O, CO2, and H2S of the ore-bearing fluid imply two major sources of matter contributing to ore genesis: local rocks and foreign fluid. The ore-bearing fluid was formed by interaction and isotope equilibration between a deep magmatic fluid and marine carbonates (W/R 1), with the contribution of sulfur from the volcano-sedimentary rocks.

  18. Application of natural analog studies to exploration for ore deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustafson, D.L.

    1995-09-01

    Natural analogs are viewed as similarities in nature and are routinely utilized by exploration geologists in their search for economic mineral deposits. Ore deposit modeling is undertaken by geologists to direct their exploration activities toward favorable geologic environments and, therefore, successful programs. Two types of modeling are presented: (i) empirical model development based on the study of known ore deposit characteristics, and (ii) concept model development based on theoretical considerations and field observations that suggest a new deposit type, not known to exist in nature, may exist and justifies an exploration program. Key elements that are important in empirical modelmore » development are described, and examples of successful applications of these natural analogs to exploration are presented. A classical example of successful concept model development, the discovery of the McLaughlin gold mine in California, is presented. The utilization of natural analogs is an important facet of mineral exploration. Natural analogs guide explorationists in their search for new discoveries, increase the probability of success, and may decrease overall exploration expenditure.« less

  19. Geology and ore fluid geochemistry of the Jinduicheng porphyry molybdenum deposit, East Qinling, China

    NASA Astrophysics Data System (ADS)

    Li, Hongying; Ye, Huishou; Wang, Xiaoxia; Yang, Lei; Wang, Xiuyuan

    2014-01-01

    Jinduicheng deposit is a giant Mesozoic porphyry Mo system deposit in the East Qinling molybdenum belt, Shaanxi Province, China. The mineralization is associated with the I-type Jinduicheng granite porphyry. Both the porphyry stock and country rocks underwent intense hydrothermal alteration. The alteration, with increasing distance from the parent intrusion, changes from silicification, through potassic and phyllic assemblages, carbonation, to propylitic assemblages. Molybdenite, the dominant ore mineral, occurs in veinlets, most of which are hosted by the altered country rocks, with less than 25% of the ore in the porphyry body. The hydrothermal system comprises four stages, including pre-ore quartz and K-feldspar; two ore stages of quartz, K-feldspar, molybdenite, and Pb- And Zn-bearing sulfides; and post-ore quartz and carbonate. Six main types of primary fluid inclusions are present in hydrothermal quartz, including two-phase aqueous, one-phase aqueous, three-phase CO2-bearing, CO2-dominated fluid inclusions, gas inclusions, and melt inclusions. The homogenization temperatures of fluid inclusions range from 210 to 290 °C in the pre-ore stage, 150-310 °C in ore stage I, 150-360 °C in the ore stage II, and 195-325 °C in the post-ore stage quartz. Estimated salinities of the ore-forming fluids range from 6.9 to 13.5, 4.3 to 12.3, 6.2 to 12.4, and 3.4 to 9.9 wt.% NaCl equiv. in stages 1-4, respectively. The δ34S values of pyrite in the two ore stages range from 2.8‰ to 4.3‰, whereas the δ34S values of molybdenite range from 2.9‰ to 6.2‰. The data suggest both magmatic and crustal sources of sulfur. The δD and δ18O values for the hydrothermal fluids are -57.2‰ to -84.4‰ and 8.0‰ to -3.2‰, respectively. The fluid inclusion and stable data indicate that the pre-ore hydrothermal fluids were mostly of magmatic origin, but the fluids responsible for ore deposition were mixed magmatic and meteoric, and eventually meteoric water dominated the system

  20. Metallogeny of the Great Basin: crustal evolution, fluid flow, and ore deposits

    USGS Publications Warehouse

    Hofstra, Albert H.; Wallace, Alan R.

    2006-01-01

    The Great Basin physiographic province in the Western United States contains a diverse assortment of world-class ore deposits. It currently (2006) is the world's second leading producer of gold, contains large silver and base metal (Cu, Zn, Pb, Mo, W) deposits, a variety of other important metallic (Fe, Ni, Be, REE's, Hg, PGE) and industrial mineral (diatomite, barite, perlite, kaolinite, gallium) resources, as well as petroleum and geothermal energy resources. Ore deposits are most numerous and largest in size in linear mineral belts with complex geology. U.S. Geological Survey (USGS) scientists are in the final year of a research project initiated in the fall of 2001 to increase understanding of relations between crustal evolution, fluid flow, and ore deposits in the Great Basin. Because of its substantial past and current mineral production, this region has been the focus of numerous investigations over the past century and is the site of ongoing research by industry, academia, and state agencies. A variety of geoinformatic tools was used to organize, reinterpret, and display, in space and time, the large amounts of geologic, geophysical, geochemical, and hydrologic information deemed pertinent to this problem. This information, in combination with concentrated research on (1) critical aspects of the geologic history, (2) an area in northern Nevada that encompasses the major mineral belts, and (3) important mining districts and deposits, is producing new insights about the interplay between key tectonic events, hydrothermal fluid flow, and ore genesis in mineral belts. The results suggest that the Archean to Holocene history of the Great Basin was punctuated by several tectonic events that caused fluids of different origins (sea water, basinal brine, meteoric water, metamorphic water, magmatic water) to move through the crust. Basement faults reactivated during these events localized deformation, sedimentation, magmatism, and hydrothermal fluid flow in overlying

  1. Isotopic composition of Pb in ore deposits of the Betic Cordillera, Spain; origin and relationship to other European deposits

    USGS Publications Warehouse

    Arribas , Antonio; Tosdal, Richard M.

    1994-01-01

    The Betic Cordillera in southern Spain is a complex Alpine fold belt that resulted from the Cretaceous through Cenozoic collision of Africa with Europe. The region is illustrative of one of the characteristics of the Alpine-Mediterranean orogen: the occurrence over a limited area of mineral deposits with a wide variety of host rocks, mineralization ages, and styles. The metamorphic basement in the Betic zone is characterized by a nappe structure of superimposed tectonostratigraphic units and consists of lower Paleozoic to Lower Triassic clastic metasedimentary rocks. This is overlain by Middle to Upper Triassic platform carbonate rocks with abundant strata-bound F-Pb-Zn-(Ba) deposits (e.g., Sierra de Gador, Sierra Alhamilla). Cretaceous to Paleogene subduction-related compression in southeastern Spain was followed by Miocene postcollisional extension and resulted in the formation of the Almeria-Cartagena volcanic belt and widespread hydrothermal activity and associated polymetallic mineralization. Typical Miocene hydrothermal deposits include volcanic-hosted Au (e.g., Rodalquilar) and Ag-rich base metal (e.g., Cabo de Gata, Mazarron) deposits as well as complex polymetallic veins, mantos, and irregular replacement bodies which are hosted by Paleozoic and Mesozoic metamorphic rocks and Neogene sedimentary and volcanic rocks (e.g., Cartagena, Sierra Almagrera, Sierra del Aguilon, Loma de Bas).Lead isotope compositions were measured on sulfide samples from nine ore districts and from representative fresh samples of volcanic and basement rock types of the region. The results have been used to evaluate ore-forming processes in southeastern Spain with emphasis on the sources of metals. During a Late Triassic mineralizing event, Pb was leached from Paleozoic clastic metasedimentary rocks and incorporated in galena in strata-bound F-Pb-Zn-(Ba) deposits ( 206 Pb/ 204 Pb = 18.332 + or - 12, 207Pb/ 204 Pb = 15.672 + or - 12, 208 Pb/ 204 Pb = 38.523 + or - 46). The second

  2. Mineralogy and ore fluid chemistry of the Roc Blanc Ag deposit, Jebilet Hercynian massif, Morocco

    NASA Astrophysics Data System (ADS)

    Essarraj, Samira; Boiron, Marie-Christine; Cathelineau, Michel; Tarantola, Alexandre; Leisen, Mathieu; Hibti, Mohamed

    2017-03-01

    forming model proposed for the Roc Blanc deposit is: (i) the penetration of sedimentary brines coming from the adjacent basins into the basement (i.e. Hercynian formations), where they extracted Ag probably from abundant mafic rocks; ii) the ore deposition in structural traps below the post Hercynian unconformity thanks to brine mixing with low salinity fluids. The fluid circulation probably is related to the Atlasic rifting coeval with the Atlantic Triassic opening. Such a model contrasts with the previous one relating the Roc Blanc to the Hercynian granitic intrusions in the Jebilet. Ag deposition occurred during reworking of the early structures associated with the Hercynian orogenic events and metamorphic fluid circulation which led to the early Fe-As uneconomic stages forming the main N-S quartz veins. Similarities between The Roc Blanc Ag deposit and the major Ag deposits from Anti-Atlas south of Morocco strongly suggest that they resulted from a unique and large fluid circulation event and a major period of metal deposition.

  3. REE Mineralization in Kiruna-type Magnetite-Apatite Ore Deposits: Magmatism and Metasomatism

    NASA Astrophysics Data System (ADS)

    Harlov, D. E.

    2015-12-01

    Magnetite-apatite ore bodies of the Kiruna type occur worldwide and are generally associated with volcanic rocks or volcanism. They also show strong evidence of extensive metasomatism over a wide P-T range. Notable examples include the Kiirunavaara ore body, northern Sweden (Harlov et al., 2002, Chem. Geol., 191, 47-72); the Grängesberg ore body, central Sweden (Jonsson et al., 2010, NGF abstracts, vol 1, 88-89); the Mineville ore body, Adirondacks, New York, USA (McKeown and Klemc, 1956, U.S. Geol Sur Bull (1956), pp. 9-23); the Pea Ridge ore body, SE Missouri, USA (Kerr, 1998, MS Thesis, Univ. Windsor, Windsor, Ontario, Canada 113 pp); the Jurassic Marcona ore body in south-central Peru (Chen et al., 2010, Econ Geol, 105, 1441-1456); and a collection of ore bodies from the Bafq Region, central Iran (Daliran et al., 2010, Geol. Assoc. Canada, Short Course Notes, v. 20, p.147-159). In these ore bodies, low Th and U monazite, xenotime, allanite, REE carbonates, and/or REE fluorides are commonly associated with the apatite as inclusions, rim grains, or as independent grains in the surrounding mineral matrix. High contrast BSE imaging, coupled with EMPA and LA-ICPMS, indicates that the apatite has experienced fluid-induced alteration in the form of (Y+REE) + Na + Si + Cl depletion implying that it served as the source for the (Y+REE) (e.g. Kiirunavaara, northern Sweden; Harlov et al., 2002). Formation of monazite and xenotime associated with fluorapatite, as inclusions or rim grains, has experimentally been demonstrated to originate from the fluorapatite as the result of fluid-aided, coupled dissolution-reprecipitation processes (Harlov et al., 2005, Contrib. Mineral. Petrol. 150, 268-286). This is explains the low Th and U content of the monazite and xenotime. Fluid sources could range from 700-900 °C, residual, acidic (HCl, H2HSO4) grain boundary fluids, remaining after the last stages of ore body crystallization, to later stage, cooler (< 600 °C) (H2O-CO2-(Na

  4. New insight into the origin of manganese oxide ore deposits in the Appalachian Valley and Ridge of northeastern Tennessee and northern Virginia, USA

    USGS Publications Warehouse

    Carmichael, Sarah K.; Doctor, Daniel H.; Wilson, Crystal G.; Feierstein, Joshua; McAleer, Ryan J.

    2017-01-01

    Manganese oxide deposits have long been observed in association with carbonates within the Appalachian Mountains, but their origin has remained enigmatic for well over a century. Ore deposits of Mn oxides from several productive sites located in eastern Tennessee and northern Virginia display morphologies that include botryoidal and branching forms, massive nodules, breccia matrix cements, and fracture fills. The primary ore minerals include hollandite, cryptomelane, and romanèchite. Samples of Mn oxides from multiple localities in these regions were analyzed using electron microscopy, X-ray analysis, Fourier transform infrared spectroscopy, and trace and rare earth element (REE) geochemistry. The samples from eastern Tennessee have biological morphologies, contain residual biopolymers, and exhibit REE signatures that suggest the ore formation was due to supergene enrichment (likely coupled with microbial activity). In contrast, several northern Virginia ores hosted within quartz-sandstone breccias exhibit petrographic relations, mineral morphologies, and REE signatures indicating inorganic precipitation, and a likely hydrothermal origin with supergene overprinting. Nodular accumulations of Mn oxides within weathered alluvial deposits that occur close to breccia-hosted Mn deposits in Virginia show geochemical signatures that are distinct from the breccia matrices and appear to reflect remobilization of earlier-emplaced Mn and concentration within supergene traps. Based on the proximity of all of the productive ore deposits to mapped faults or other zones of deformation, we suggest that the primary source of all of the Mn may have been deep seated, and that Mn oxides with supergene and/or biological characteristics resulted from the local remobilization and concentration of this primary Mn.

  5. Bio-mineralization and potential biogeochemical processes in bauxite deposits: genetic and ore quality significance

    NASA Astrophysics Data System (ADS)

    Laskou, Magdalini; Economou-Eliopoulos, Maria

    2013-08-01

    The Parnassos-Ghiona bauxite deposit in Greece of karst type is the 11th largest bauxite producer in the world. The mineralogical, major and trace-element contents and δ18O, δ12C, δ34S isotopic compositions of bauxite ores from this deposit and associated limestone provide valuable evidence for their origin and biogeochemical processes resulting in the beneficiation of low grade bauxite ores. The organic matter as thin coal layers, overlying the bauxite deposits, within limestone itself (negative δ12C isotopic values) and the negative δ34S values in sulfides within bauxite ores point to the existence of the appropriate circumstances for Fe bio-leaching and bio-mineralization. Furthermore, a consortium of microorganisms of varying morphological forms (filament-like and spherical to lenticular at an average size of 2 μm), either as fossils or presently living and producing enzymes, is a powerful factor to catalyze the redox reactions, expedite the rates of metal extraction and provide alternative pathways for metal leaching processes resulting in the beneficiation of bauxite ore.

  6. Modeling the formation of porphyry-copper ores

    USGS Publications Warehouse

    Ingebritsen, Steven E.

    2012-01-01

    Porphyry-copper ore systems, the source of much of the world's copper and molybdenum, form when metal-bearing fluids are expelled from shallow, degassing magmas. On page 1613 of this issue, Weis et al. (1) demonstrate that self-organizing processes focus metal deposition. Specifically, their simulation studies indicate that ores develop as consequences of dynamic variations in rock permeability driven by injection of volatile species from rising magmas. Scenarios with a static permeability structure could not reproduce key field observations, whereas dynamic permeability responses to magmatic-fluid injection localized a metal-precipitation front where enrichment by a factor of 103 could be achieved [for an overview of their numerical-simulation model CSMP++, see (2)].

  7. Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise

    USGS Publications Warehouse

    Francheteau, Jean; Needham, H.D.; Choukroune, P.; Juteau, Tierre; Seguret, M.; Ballard, Richard D.; Fox, P.J.; Normark, William; Carranza, A.; Cordoba, D.; Guerrero, J.; Rangin, C.; Bougault, H.; Cambon, P.; Hekinian, R.

    1979-01-01

    Massive ore-grade zinc, copper and iron sulphide deposits have been found at the axis of the East Pacific Rise. Although their presence on the deep ocean-floor had been predicted there was no supporting observational evidence. The East Pacific Rise deposits represent a modern analogue of Cyprus-type sulphide ores associated with ophiolitic rocks on land. They contain at least 29% zinc metal and 6% metallic copper. Their discovery will provide a new focus for deep-sea exploration, leading to new assessments of the concentration of metals in the upper layers of the oceanic crust. ?? 1979 Nature Publishing Group.

  8. Iron isotope fractionation during hydrothermal ore deposition and alteration

    NASA Astrophysics Data System (ADS)

    Markl, Gregor; von Blanckenburg, Friedhelm; Wagner, Thomas

    2006-06-01

    Iron isotopes fractionate during hydrothermal processes. Therefore, the Fe isotope composition of ore-forming minerals characterizes either iron sources or fluid histories. The former potentially serves to distinguish between sedimentary, magmatic or metamorphic iron sources, and the latter allows the reconstruction of precipitation and redox processes. These processes take place during ore formation or alteration. The aim of this contribution is to investigate the suitability of this new isotope method as a probe of ore-related processes. For this purpose 51 samples of iron ores and iron mineral separates from the Schwarzwald region, southwest Germany, were analyzed for their iron isotope composition using multicollector ICP-MS. Further, the ore-forming and ore-altering processes were quantitatively modeled using reaction path calculations. The Schwarzwald mining district hosts mineralizations that formed discontinuously over almost 300 Ma of hydrothermal activity. Primary hematite, siderite and sulfides formed from mixing of meteoric fluids with deeper crustal brines. Later, these minerals were partly dissolved and oxidized, and secondary hematite, goethite and iron arsenates were precipitated. Two types of alteration products formed: (1) primary and high-temperature secondary Fe minerals formed between 120 and 300 °C, and (2) low-temperature secondary Fe minerals formed under supergene conditions (<100 °C). Measured iron isotope compositions are variable and cover a range in δ56Fe between -2.3‰ and +1.3‰. Primary hematite ( δ56Fe: -0.5‰ to +0.5‰) precipitated by mixing oxidizing surface waters with a hydrothermal fluid that contained moderately light Fe ( δ56Fe: -0.5‰) leached from the crystalline basement. Occasional input of CO 2-rich waters resulted in precipitation of isotopically light siderite ( δ56Fe: -1.4 to -0.7‰). The difference between hematite and siderite is compatible with published Fe isotope fractionation factors. The observed

  9. Constraints on the composition of ore fluids and implications for mineralising events at the Cleo gold deposit, Eastern Goldfields Province, Western Australia

    USGS Publications Warehouse

    Brown, S.M.; Johnson, C.A.; Watling, R.J.; Premo, W.R.

    2003-01-01

    The Cleo gold deposit, 55 km south of Laverton in the Eastern Goldfields Province of Western Australia, is characterised by banded iron-formation (BIF)-hosted ore zones in the gently dipping Sunrise Shear Zone and high-grade vein-hosted ore in the Western Lodes. There is evidence that gold mineralisation in the Western Lodes (which occurred at ca 2655 Ma) post-dates the majority of displacement along the Sunrise Shear Zone, but it remains uncertain if the ore in both structures formed simultaneously or separately. Overall, the Pb, Nd, Sr, C. O and S isotopic compositions of ore-related minerals from both the Western Lodes and ore zones in the Sunrise Shear Zone are similar. Early low-salinity aqueous-carbonic fluids and late high-salinity fluids with similar characteristics are trapped in inclusions in quartz veins from both the Sunrise Shear Zone and the Western Lodes. The early CO2, CO2-H2O, and H2O- dominant inclusions are interpreted as being related to ore formation, and to have formed from a single low-salinity aqueous-carbonic fluid as a result of intermittent fluid immiscibility. Homogenisation temperatures indicate that these inclusions were trapped at approximately 280??C and at approximately 4 km depth, in the deeper epizonal range. Differences between the ore zones are detected in the trace-element composition of gold samples, with gold from the Sunrise Shear Zone enriched in Ni, Pb, Sn, Te and Zn, and depleted In As, Bi, Cd, Cu and Sb, relative to gold from the Western Lodes. Although there are differences in gold composition between the Sunrise Shear Zone and Western Lodes, and hence the metal content of ore fluids may have varied slightly between the different ore zones, no other systematic fluid or solute differences are detected between the ore zones. Given the fact that the ore fluids in each zone have very similar bulk properties, the considerable differences in gold grade, sulfide mineral abundance, and ore textures between the two ore zones

  10. Precipitation of lead-zinc ores in the Mississippi Valley-type deposit at Treves, Cevennes region of southern France

    USGS Publications Warehouse

    Leach, D.; Macquar, J.-C.; Lagneau, V.; Leventhal, J.; Emsbo, P.; Premo, W.

    2006-01-01

    The Trèves zinc–lead deposit is one of several Mississippi Valley-type (MVT) deposits in the Cévennes region of southern France. Fluid inclusion studies show that the ore was deposited at temperatures between approximately 80 and 150°C from a brine that derived its salinity mainly from the evaporation of seawater past halite saturation. Lead isotope studies suggest that the metals were extracted from local basement rocks. Sulfur isotope data and studies of organic matter indicate that the reduced sulfur in the ores was derived from the reduction of Mesozoic marine sulfate by thermochemical sulfate reduction or bacterially mediated processes at a different time or place from ore deposition. The large range of δ34S values determined for the minerals in the deposit (12.2–19.2‰ for barite, 3.8–13.8‰ for sphalerite and galena, and 8.7 to −21.2‰ for pyrite), are best explained by the mixing of fluids containing different sources of sulfur. Geochemical reaction path calculations, based on quantitative fluid inclusion data and constrained by field observations, were used to evaluate possible precipitation mechanisms. The most important precipitation mechanism was probably the mixing of fluids containing different metal and reduced sulfur contents. Cooling, dilution, and changes in pH of the ore fluid probably played a minor role in the precipitation of ores. The optimum results that produced the most metal sulfide deposition with the least amount of fluid was the mixing of a fluid containing low amounts of reduced sulfur with a sulfur-rich, metal poor fluid. In this scenario, large amounts of sphalerite and galena are precipitated, together with smaller quantities of pyrite precipitated and dolomite dissolved. The relative amounts of metal precipitated and dolomite dissolved in this scenario agree with field observations that show only minor dolomite dissolution during ore deposition. The modeling results demonstrate the important control of the reduced

  11. Environment of ore deposition in the Creede mining district, San Juan Mountains, Colorado: Part VI. Maximum duration for mineralization of the OH vein

    USGS Publications Warehouse

    Campbell, W.R.; Barton, P.B.

    2005-01-01

    The rate at which ore deposits form is one of the least well established parameters in all of economic geology. However, increased detail in sampling, improved technology of dating, and sophistication in modeling are reducing the uncertainties and establishing that ore formation, at least for the porphyry copper-skarn-epithermal base and precious metals deposit package, may take place in surprisingly brief intervals. This contribution applies another approach to examine the duration of mineralization. The degree to which compositional gradients within single crystals has flattened through solid-state diffusion offers a measure of the thermal dose (that is temperature combined with time) that the crystals have been subjected to since deposition. Here we examine the steepness of gradients in iron content within individual single sphalerite crystals from the epithermal silver-lead-zinc deposit in the OH vein at Creede, Colorado. Two initial textures are considered: growth-banded crystals and compositionally contrasting overgrowths that succeed crosscutting dissolution or fractured surfaces. The model used estimates the maximum possible time by assuming a perfectly sharp original compositional step, and it asks how long it would take at a known temperature for the gradient measured today to have formed. Applying the experimentally determined diffusion rates of Mizuta (1988a) to compositional gradients (ranging from 0.4-2.2 mol % FeS/??m) measured by the electron microprobe in 2-??m steps on banded sphalerite formed early in the paragenetic history yields a maximum duration of less than ???10,000 yr. Sphalerite from a solution unconformity in a position midway through the paragenetic sequence is indistinguishable from instantaneous deposition, supporting the conclusion of rapid ore formation. While this formation interval seems very brief, it is consistent with less well constrained estimates using entirely different criteria. ?? 2005 Society of Economic Geologists, Inc.

  12. Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly D.; Roebbert, Yvonne; Weyer, Stefan; Bernier-Latmani, Rizlan; Borch, Thomas

    2017-06-01

    Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U(VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (~58-89%) of U is bound as U(IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U(VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotope signatures, consistent with largely biotic reduction of U(VI) to U(IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U(IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.

  13. Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits

    PubMed Central

    Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly D.; Roebbert, Yvonne; Weyer, Stefan; Bernier-Latmani, Rizlan; Borch, Thomas

    2017-01-01

    Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U(VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (∼58-89%) of U is bound as U(IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U(VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotope signatures, consistent with largely biotic reduction of U(VI) to U(IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U(IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment. PMID:28569759

  14. Biogenic non-crystalline U (IV) revealed as major component in uranium ore deposits

    DOE PAGES

    Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly D.; ...

    2017-06-01

    Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U (VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U (IV) generated through biologically mediated U (VI) reduction is the predominant U (IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (~58-89%) of U is bound as U (IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U (VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotopemore » signatures, consistent with largely biotic reduction of U (VI) to U (IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U (IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.« less

  15. Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits.

    PubMed

    Bhattacharyya, Amrita; Campbell, Kate M; Kelly, Shelly D; Roebbert, Yvonne; Weyer, Stefan; Bernier-Latmani, Rizlan; Borch, Thomas

    2017-06-01

    Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U (VI) ) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U (IV)  generated through biologically mediated U (VI)  reduction is the predominant U (IV)  species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (∼58-89%) of U is bound as U (IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U (VI) represent only minor components. The uranium deposit exhibited mostly 238 U-enriched isotope signatures, consistent with largely biotic reduction of U (VI) to U (IV) . This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U (IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.

  16. Biogenic non-crystalline U (IV) revealed as major component in uranium ore deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly D.

    Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U (VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U (IV) generated through biologically mediated U (VI) reduction is the predominant U (IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (~58-89%) of U is bound as U (IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U (VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotopemore » signatures, consistent with largely biotic reduction of U (VI) to U (IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U (IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.« less

  17. Multiple Sulfate Isotopic Evidence on the Formation of Oxide Copper Ore at Spence, Atacama Desert, Northern Chile

    NASA Astrophysics Data System (ADS)

    Sun, T.; Bao, H.; Reich, M.; Palacios, C.

    2007-12-01

    In the Atacama Desert of northern Chile, one of the world's richest metallogenic provinces, porphyry copper deposits are characterized by the unique occurrence of atacamite in their oxidized zones. The origin and formation of the oxide zone of these copper deposits is, however, controversial. It was proposed that Cl-rich deep formation water pumping-up events along faults by earthquakes, after onset of the hyperaridity, were required (Cameron et al., 2007). Their model would imply that supplies of saline deep formation water from fractures to the surface should have left behind a homogeneous or fracture-controlled salt profile from surface down to the oxide zone. While no excluding the deep formation water model in other deposit, here we propose that, in our sampling region, the alternative saline source, which is critical for atacamite formation, could be locally evaporated groundwater, Cl-rich salts leached from arid surface by meteoric water, or brines from eastern salar basins at a time when the climate in northern Chile was changing from arid to hyperarid. At this climate transition, arid- requiring minerals such as atacamite in the oxide zone were formed and, more importantly, preserved upon evaporation beneath the surface alluvial deposits. Since salt accumulation at the surface remain active during hyperarid condition, our model would predict that water-soluble salt profile from surface to the oxide zone should have a characteristic pattern: salts with an atmospheric component on the surface gradually transitioning to salts of the oxide ore zone on the bottom and a mixing zone in between. To test these two alternative models, we focus on sulfate salts, one of the common water-soluble salts in arid environments. An added advantage is that sulfate accumulated on desert surface has a secondary atmospheric component that bears a unique triple oxygen isotope signature, easily distinguishable from sulfate formed by the oxidation of sulfide minerals at the oxide

  18. Prospecting For Magnetite Ore Deposits With A Innovative Sensor's of Unique Fundamentally New Magnetometer.

    NASA Astrophysics Data System (ADS)

    Emelianenko, T. I.; Tachaytdinov, R. S.; Sarichev, V. F.; Kotov, B. V.; Susoeva, G. N.

    After careful study of principles and abilities of all existing magnetmeters of all three revolutions in magnetic prospecting we have come to the conclusion that they cannot solve local guestions of the magnetic prospecting or determine centre coordinates of magnetite ore body before drilling Electromagnetism lows and achievents magnetprospectings and radioelectronics of all 20th century serve as a theoretical base of the "locator". While creating this cardinally new magnetmeter , we borrowed different things from radio-prospectors, magnetprospectors, wireless operators and combined all of them while creating the "locators''. The "locators' construction is bas ed on the "magnetic intensification" principle ,owing to which this "locators" are characterised by hight sensitiveness and ability to determine centers of even little commercial magnetite ore deposits with relatively weak magnetic anomalies. The main advantage of the "locators" over existing ones is that it can solve local questions determine centre coordinates. A remarkably simple locator construction determine direction of the on-surface measurings towards the ore body centre and gives approximate prognosis resourses before/withour/ drilling. The "locators" were worked out for the first time in history , they have 2 licences. The fundamental design and drawbacks of the existing magnetometers have been inherited from the original magnetometre dating back two or three hundred years. The developers of the existing magnetometres have all gone along the same well- beaten track of replacing the primitive sensor in the form of a piece of ore hung on a string at first by an arrow sensor and later by magnetically oriented protons and quanta, with amplification of the sensors' OUTPUT signal. Furthermore, all the existing magnetometres are imperfect in that they, lacking the directivity of the ground-level magnetic measurements, only record the overall magnetic vector field generated by all the ore bodies around the

  19. Origin of high-grade gold ore, source of ore fluid components, and genesis of the Meikle and neighboring Carlin-type deposits, Northern Carlin Trend, Nevada

    USGS Publications Warehouse

    Emsbo, P.; Hofstra, A.H.; Lauha, E.A.; Griffin, G.L.; Hutchinson, R.W.

    2003-01-01

    The Meikle mine exploits one of the world's highest grade Carlin-type gold deposits with reserves of ca. 220 t gold at an average grade of 24.7 g/t. Locally, gold grades exceed 400 g/t. Several geologic events converged at Meikle to create these spectacular gold grades. Prior to mineralization, a Devonian hydrothermal system altered the Bootstrap limestone to Fe-rich dolomite. Subsequently the rocks were brecciated by faulting and Late Jurassic intrusive activity. The resulting permeability focused flow of late Eocene Carlin-type ore fluids and allowed them to react with the Fe-rich dolomite. Fluid inclusion data and mineral assemblages indicate that these fluids were hot (ca. 220??C),of moderate salinity (400 g/t. Petrographic observations, geochemical data, and stable isotope results from the Meikle mine and other deposits at the Goldstrike mine place important constraints on genetic models for Meikle and other Carlin-type gold deposits on the northern Carlin trend. The ore fluids were meteoric water (??D = -135???, ??18O = -5???) that interacted with sedimentary rocks at a water/rock ratio of ca. 1 and temperatures of ca. 220??C. The absence of significant silicification suggests that there was little cooling of the ore fluids during mineralization. These two observations strongly suggest that ore fluids were not derived from deep sources but instead flowed parallel to isotherms. The gold was transported by H2S (??34S = 9???), which was derived from Paleozoic sedimentary rocks. The presence of auriferous sedimentary exhalative mineralization in the local stratigraphic sequence raises the possibility that preexisting concentrations of gold contributed to the Carlin-type deposits. Taken together our observations suggest that meteoric water evolved to become an ore fluid by shallow circulation through previously gold- and sulfur-enriched rocks. Carlin-type gold deposits formed where these fluids encountered permeable, reactive Fe-rich rocks.

  20. Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits

    USGS Publications Warehouse

    Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly; Roebbert, Yvonne; Weyer, Stefan; Bernier-Latmani, Rizlan; Borch, Thomas

    2017-01-01

    Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U(VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (∼58-89%) of U is bound as U(IV)to C-containing organic functional groups or inorganic carbonate, while uraninite and U(VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotope signatures, consistent with largely biotic reduction of U(VI) to U(IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U(IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.

  1. Textural, compositional, and sulfur isotope variations of sulfide minerals in the Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska: Implications for Ore Formation

    USGS Publications Warehouse

    Kelley, K.D.; Leach, D.L.; Johnson, C.A.; Clark, J.L.; Fayek, M.; Slack, J.F.; Anderson, V.M.; Ayuso, R.A.; Ridley, W.I.

    2004-01-01

    The Red Dog Zn-Pb deposits are hosted in organic-rich mudstone and shale of the Mississippian Kuna Formation. A complex mineralization history is defined by four sphalerite types or stages: (1) early brown sphalerite, (2) yellow-brown sphalerite, (3) red-brown sphalerite, and (4) late tan sphalerite. Stages 2 and 3 constitute the main ore-forming event and are volumetrically the most important. Sulfides in stages 1 and 2 were deposited with barite, whereas stage 3 largely replaces barite. Distinct chemical differences exist among the different stages of sphalerite. From early brown sphalerite to later yellow-brown sphalerite and red-brown sphalerite, Fe and Co content generally increase and Mn and Tl content generally decrease. Early brown sphalerite contains no more than 1.9 wt percent Fe and 63 ppm Co, with high Mn (up to 37 ppm) and Tl (126 ppm), whereas yellow-brown sphalerite and red-brown sphalerite contain high Fe (up to 7.3 wt %) and Co (up to 382 ppm), and low Mn (<27 ppm) and Tl (<37 ppm). Late tan sphalerite has distinctly lower Fe (< 0.9 wt %) and higher Tl (up to 355 ppm), Mn (up to 177 ppm), and Ge (426 ppm), relative to earlier sphalerite. Wide ranges in concentrations of Ag, Cu, Pb, and Sb characterize all sphalerite types, particularly yellow-brown sphalerite and red-brown sphalerite, and most likely reflect submicroscopic inclusions of galena, chalcopyrite and/or tetrahedrite in the sphalerite. In situ ion microprobe sulfur isotope analyses show a progression from extremely low ??34S values for stage 1 (as low as -37.20???) to much higher values for yellow-brown sphalerite (mean of 3.3???; n = 30) and red-brown sphalerite (mean of 3.4; n = 20). Late tan sphalerite is isotopically light (-16.4 to -27.2???). The textural, chem ical, and isotopic data indicate the following paragenesis: (1) deposition of early brown sphalerite with abundant barite, minor pyrite, and trace galena immediately beneath the sea floor in unconsolidated mud; (2) deposition

  2. Sedimentary exhalative nickel-molybdenum ores in south China

    USGS Publications Warehouse

    Lott, D.A.; Coveney, R.M.; Murowchick, J.B.; Grauch, R.I.

    1999-01-01

    Unique bedded Ni-Mo ores hosted by black shales were discovered in localized paleobasins along the Yangzte platform of southern China in 1971. Textural evidence and radiometric dates imply ore formation during sedimentation of black shales that grade into readily combustible beds, termed stone coals, which contain 10 to 15 percent organic carbon. Studies of 427 fluid inclusions indicate extreme variation in hydrothermal brine salinities that were contained by Proterozoic dolostones underlying the ore zone in Hunan and Guizhou. Variations of fluid inclusion salinities, which range from 0.1 to 21.6 wt percent NaCl equiv, are attributed to differences in the compositions of brines in strata underlying the ore bed, complicated by the presence of seawater and dilute fluids that represent condensates of vapors generated by boiling of mineralizing fluids or Cambrian meteoric water. The complex processes of ore deposition led to scattered homogenization temperatures ranging from 100??to 187??C within the Hunan ore zone and from 65??to 183??C within the Guizhou ore zone. While living organisms probably did not directly accumulate metals in situ in sufficient amounts to explain the unusually high grades of the deposits, sulfur isotope ratios indicate that bacteria, now preserved as abundant microfossils, provided sufficient sulfide for the ores by reduction of seawater sulfate. Such microbiota may have depended on vent fluids and transported organic matter for key nutrients and are consistent with a sedex origin for the ores. Vent fluids interacted with organic remains, including rounded fragments of microbial mats that were likely transported to the site of ore deposition by the action of waves and bottom currents prior to replacement by ore minerals.

  3. The role of metasomatism in the balance of halogens in ore-forming process at porphyry Cu-Mo deposits

    NASA Astrophysics Data System (ADS)

    Berzina, A. N.

    2009-04-01

    Volatile components play an important role in the evolution of ore-magmatic systems and their ore potential. Of special interest are fluorine and chlorine compounds that principally control the transportation of ore elements by the fluid in a magmatic process and under high-temperature hydrothermal conditions. Study of the evolution of fluorine-chlorine activity in the ore-forming process and their source is usually based on analysis of their magmatic history, whereas the additional source of fluorine and chlorine released during metasomatic alteration of rocks hosting mineralization is poorly discussed in the existing literature. Based on microprobe data on Cl and F abundances in halogen-containing minerals (biotite, amphibole, apatite, titanite) in intrusive rocks and their hydrothermally altered varieties, the role of metasomatic processes in the balance of volatiles in the ore-forming system is discussed by the example of porphyry Cu-Mo deposits of Siberia (Russia) and Mongolia. Two groups of the deposits are considered: copper-molybdenum (Erdenetiin Ovoo, Mongolia and Aksug, Russia) with prevailing propylitic and phyllic alteration and molybdenum-copper (Sora, Russia), with predominant potassic alteration. All types of hydrothermal alterations have led to drastic decrease in Cl contents in metasomatic minerals as compared with halogen-containing magmatic minerals. All studied deposits (particularly those where propylitic and phyllic alteration were developed) show a nearly complete chlorine removal from altered halogen-containing rock-forming minerals (biotite and amphibole). The Cl content in amphibole decreases several times at the stage of replacement with actinolite in the process of propylitization. In the later chlorites (ripidolite and brunsvigite) that replace amphibole, actinolite, and biotite, chlorine is not detected by microprobe (detection limit 0.01-0.02% Cl). Chlorine was also not detected in white micas (muscovite-phengite series) in quartz

  4. Fluid evolution and ore genesis of the Dalingshang deposit, Dahutang W-Cu ore field, northern Jiangxi Province, South China

    NASA Astrophysics Data System (ADS)

    Peng, Ning-Jun; Jiang, Shao-Yong; Xiong, Suo-Fei; Pi, Dao-Hui

    2018-02-01

    The Dalingshang W-Cu deposit is located in the North section of the Dahutang ore field, northern Jiangxi Province, South China. Vein- and breccia-style tungsten-copper mineralization is genetically associated with Mesozoic S-type granitic rocks. Infrared and conventional microthermometric studies of both gangue and ore minerals show that the homogenization temperatures for primary fluid inclusions in wolframite ( 340 °C) are similar to those in scheelite ( 330 °C), but about 40 °C higher than those of apatite ( 300 °C) and generally 70 °C higher than those in coexisting quartz ( 270 °C). Laser Raman analysis identifies CH4 and N2 without CO2 in fluid inclusions in scheelite and coexisting quartz, while fluid inclusions in quartz of the sulfide stage have variable CO2 content. The ore-forming fluids overall are characterized by high- to medium-temperature, low-salinity, CH4, N2, and/or CO2-bearing aqueous fluids. Chalcopyrite, muscovite, and sphalerite are the most abundant solids recognized in fluid inclusions from different ores. The H-O-S-Pb isotope compositions favor a dominantly magmatic origin for ores and fluids, while some depleted δ34S values (- 14.4 to - 0.9‰) of sulfides from the sulfide stage are most likely produced by an increase of oxygen fugacity, possibly caused by inflow of oxidized meteoric waters. The microthermometric data also indicate that a simple cooling process formed early scheelite and wolframite. However, increasing involvement of meteoric waters and fluid mixing may trigger a successive deposition of base metal sulfides. Fluid-rock interaction was critical for scheelite mineralization as indicated by in-situ LA-ICP-MS analysis of trace elements in scheelite.

  5. Structural evolution of the Mount Wall region in the Hamersley province, Western Australia and its control on hydrothermal alteration and formation of high-grade iron deposits

    NASA Astrophysics Data System (ADS)

    Dalstra, Hilke J.

    2014-10-01

    The discovery of two relatively small but high-grade iron ore deposits near Mt Wall, an intensely faulted part of the southwestern Hamersley province provides unique insights into the structural control on ore formation in this region. The deposits have many geological features typical of the high grade microplaty hematite group which also contains the much larger Mt Tom Price, Paraburdoo and Mt Whaleback deposits. The deposits are structurally controlled along early normal faults and contain abundant microplaty hematite and martite, and are largely confined to the Dales Gorge member of the Brockman Iron Formation. In addition to the microplaty hematite-martite ore, there are martite-goethite ores and rare magnetite-goethite or magnetite-hematite ores. Below the modern weathering surface, hydrothermally altered zones in wallrock BIF from the Lower Dales Gorge member contain magnetite, hematite and carbonate/talc bearing mineral assemblages. A staged ore genesis model involving early extension and fluid circulation along normal faults, hypogene silica leaching and carbonate alteration, followed by deep meteoric oxidation with microplaty hematite formation and finally weathering can explain most features of the Mt Wall deposits. The role of deformation was to provide pathways for mineralising fluids and initiate the seed points for the mineralised systems. High grade iron in the Wellthandalthaluna deposit is situated between the NW to NNW trending Boolgeeda Creek fault and a synthetic joining splay, the Northern fault. Both are high angle normal faults and formed during early extension in this part of the province. Faults are characterised by localised small scale deformation and brecciation, deep carbonate alteration and oxidation. Recent weathering has penetrated deeply into the fault zones, converting the carbonate-rich assemblages into goethite. Mineralisation in the Arochar deposit is situated in the overlap or relay zone between two segments of the Mt Wall

  6. Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran) using REE geochemistry

    NASA Astrophysics Data System (ADS)

    Mokhtari, Mir Ali Asghar; Zadeh, Ghader Hossein; Emami, Mohamad Hashem

    2013-06-01

    Rare earth elements in apatites of different ore types show characteristic patterns which are related to different modes of formation of the ores. Most of the apatite-bearing iron ores are associated with alkaline magmas with LREE/HREE fractionation varying from moderate to steep. Iron-apatite deposits in Posht-e-Badam Block (Central Iran) have a high concentration of REE (more than 1000 ppm up to 2.5%), and show a strong LREE/HREE ratio with a pronounced negative Eu anomaly. This REE pattern is typical of magmatic apatite and quiet distinct from sedimentary apatites (phosphorites) which have a low REE contents and Ce negative anomalies. On the other hand, they are comparable to the REE patterns of apatites in Kiruna-type iron ores in different parts of the world. The REE patterns of apatites, iron-apatite ores and iron ores are similar and only have different REE contents. This similarity indicates a genetic relation for these rocks. Most of the iron-apatite deposits in Central Iran have similar REE patterns too, which in turn show a genetic relation for all of these deposits. This similarity indicates a similar origin and processes in their genesis. There are some small intrusions around some of the iron-apatite deposits that are petrographically identified as syenite and gabbro. These intrusions also have REE patterns similar to that of iron-apatite ores. This demonstrates a genetic relation between these intrusions and iron-apatite ores. The REE patterns of apatites in different deposits of Posht-e-Badam Block iron-apatite ores show an affinity to alkaline to sub-alkaline magmas and rifting environment. The alkaline host rocks of Central Iran iron-apatite ores are clearly related to an extensional setting where rifting was important (SSE-NNW fault lines). A probable source for this large scale ore forming processes is relatively low partial melting of mantle rocks. The ores have originated by magmatic differentiation as a late phase in the volcanic cycle

  7. Silicophosphate Sorbents, Based on Ore-Processing Plants' Waste in Kazakhstan

    ERIC Educational Resources Information Center

    Kubekova, Sholpan N.; Kapralova, Viktoria I.; Telkov, Shamil A.

    2016-01-01

    The problem of ore-processing plants' waste and man-made mineral formations (MMF) disposal is very important for the Republic of Kazakhstan. The research of various ore types (gold, polymetallic, iron-bearing) MMF from a number of Kazakhstan's deposits using a complex physical and chemical methods showed, that the waste's main components are…

  8. Variations in the uranium isotopic compositions of uranium ores from different types of uranium deposits

    NASA Astrophysics Data System (ADS)

    Uvarova, Yulia A.; Kyser, T. Kurt; Geagea, Majdi Lahd; Chipley, Don

    2014-12-01

    precipitation in the form of U6+ minerals. The δ238U values of uranium ore minerals from a variety of deposits are controlled by the isotopic signature of the uranium source, the efficiency of uranium reduction in the case of UO2 systems, and the degree to which uranium was previously removed from the fluid, with less influence from temperature of ore formation and later alteration of the ore. Uranium isotopes are potentially superb tracers of redox in natural systems.

  9. Analytical fingerprint for tantalum ores from African deposits

    NASA Astrophysics Data System (ADS)

    Melcher, F.; Graupner, T.; Sitnikova, M.; Oberthür, T.; Henjes-Kunst, F.; Gäbler, E.; Rantitsch, G.

    2009-04-01

    Kibaran age either show flat patterns for most tantalites, rising values from the LREE to the HREE, or trough-like patterns. Eu anomalies are strongly negative in columbite-tantalite from the Alto Ligonha Province in Mozambique, from the Namaqualand Province (Namibia, South Africa), and from Zimbabwe. Four main age populations of coltan deposits in Africa were revealed: (1) Archean (>2.5 Ga), (2) Paleoproterozoic (2.1-1.9 Ga), (3) early Neoproterozoic ("Kibaran", 1.0-0.9 Ga), and (4) late Neoproterozoic to early Paleozoic (Pan-African; ca. 0.6-0.4 Ga). Currently, we focus on the resolution of the fingerprinting system from region via ore province down to deposit scale, establishing a large and high-quality analytical data base, and developing fast-screening and low-cost methods. Analytical flow-charts and identification schemes for coltan ores will be presented at the Conference. The analytical results obtained so far indicate that a certification scheme including fingerprinting of sources of coltan ores is feasible. The methodology developed is capable to assist in the establishment of a control instrument in an envisaged certification of the production and trade chain of coltan.

  10. Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Structural controls on hydrothermal alteration and ore mineralization

    USGS Publications Warehouse

    Berger, Byron R.; Henley, Richard W.

    2011-01-01

    High-sulfidation copper–gold lode deposits such as Chinkuashih, Taiwan, Lepanto, Philippines, and Goldfield, Nevada, formed within 1500 m of the paleosurface in volcanic terranes. All underwent an early stage of extensive advanced argillic silica–alunite alteration followed by an abrupt change to spatially much more restricted stages of fracture-controlled sulfide–sulfosalt mineral assemblages and gold–silver mineralization. The alteration as well as ore mineralization stages of these deposits were controlled by the dynamics and history of syn-hydrothermal faulting.At the Sulfate Stage, aggressive advanced argillic alteration and silicification were consequent on the in situ formation of acidic condensate from magmatic vapor as it expanded through secondary fracture networks alongside active faults. The reduction of permeability at this stage due to alteration decreased fluid flow to the surface, and progressively developed a barrier between magmatic-vapor expansion constrained by the active faults and peripheral hydrothermal activity dominated by hot-water flow. In conjunction with the increased rock strength resulting from alteration, subsequent fault-slip inversion in response to an increase in compressional stress generated new, highly permeable fractures localized by the embrittled, altered rock. The new fractures focused magmatic-vapor expansion with much lower heat loss so that condensation occurred. Sulfide Stage sulfosalt, sulfide, and gold–silver deposition then resulted from destabilization of vapor phase metal species due to vapor decompression through the new fracture array. The switch from sulfate to sulfide assemblages is, therefore, a logical consequence of changes in structural permeability due to the coupling of alteration and fracture dynamics rather than to changes in the chemistry of the fluid phase at its magmatic source.

  11. Ore Deposits of the Jerome and Bradshaw Mountains Quadrangles, Arizona

    USGS Publications Warehouse

    Lindgren, Waldemar; Heikes, V.C.

    1926-01-01

    In the summer of 1922, at the request of the Director of the United States Geological Survey, I undertook an examination of the ore deposits in the Jerome and Bradshaw Mountains quadrangles, Ariz. (See fig. 1.) The object of this work was not a detailed investigation of each deposit but rather a coordination and classification of the occurrences and an attempt to ascertain their origin and economic importance. Almost all the deposits occur in pre-Cambrian rocks or in rocks that are not readily differentiated from the pre-Cambrian. In the northern part of the Jerome quadrangle there are large areas of almost horizontal Paleozoic beds, and in both quadrangles there are also large areas of lava flows of Tertiary age. Finally there are wide spaces occupied by Tertiary tuff and limestone, or by Tertiary and Quaternary wash filling the valleys between the mountain ranges. But all these rocks except the pre-Cambrian are practically barren of ore deposits, and the problem therefore narrowed itself to an examination of the pre-Cambrian areas. This task was greatly facilitated by the careful work of Jaggar and Palache, set forth in the Bradshaw Mountains folio,l in which the southern quadrangle of the two under present consideration is mapped geologically and described, and which also includes a comprehensive though brief discussion of the mineral deposits. There is no published geologic map of the Jerome quadrangle, but I had the opportunity through the courtesy of Dr. G. M. Butler, Director of the Arizona Bureau of Mines, to use a manuscript map of this area prepared for the State by Mr. L. E. Reber, jr., and Mr. Olaf Jenkins.

  12. A deposit model for Mississippi Valley-Type lead-zinc ores: Chapter A in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Leach, David L.; Taylor, Ryan D.; Fey, David L.; Diehl, Sharon F.; Saltus, Richard W.

    2010-01-01

    This report also describes the geoenvironmental characteristic of MVT deposits. The response of MVT ores in the supergene environment is buffered by their placement in carbonate host rocks which commonly results in near-neutral associated drainage water. The geoenvironmental features and anthropogenic mining effects presented in this report illustrates this important environmental aspect of MVT deposits which separates them from other deposit types (especially coal, VHMS, Cu-porphyry, SEDEX, acid-sulfate polymetallic vein).

  13. Geodynamic and climate controls in the formation of Mio-Pliocene world-class oxidized cobalt and manganese ores in the Katanga province, DR Congo

    NASA Astrophysics Data System (ADS)

    Decrée, Sophie; Deloule, Étienne; Ruffet, Gilles; Dewaele, Stijn; Mees, Florias; Marignac, Christian; Yans, Johan; de Putter, Thierry

    2010-10-01

    The Katanga province, Democratic Republic of Congo, hosts world-class cobalt deposits accounting for ~50% of the world reserves. They originated from sediment-hosted stratiform copper and cobalt sulfide deposits within Neoproterozoic metasedimentary rocks. Heterogenite, the main oxidized cobalt mineral, is concentrated as “cobalt caps” along the top of silicified dolomite inselbergs. The supergene cobalt enrichment process is part of a regional process of residual ore formation that also forms world-class “manganese cap” deposits in western Katanga, i.e., the “black earths” that are exploited by both industrial and artisanal mining. Here, we provide constraints on the genesis and the timing of these deposits. Ar-Ar analyses of oxidized Mn ore and in situ U-Pb SIMS measurements of heterogenite yield Mio-Pliocene ages. The Ar-Ar ages suggest a multi-phase process, starting in the Late Miocene (10-5 Ma), when the metal-rich substratum was exposed to the action of meteoric fluids, due to major regional uplift. Further oxidation took place in the Pliocene (3.7-2.3 Ma) and formed most of the observed deposits under humid conditions: Co- and Mn-caps on metal-rich substrata, and coeval Fe laterites on barren areas. These deposits formed prior to the regional shift toward more arid conditions in Central Africa. Arid conditions still prevailed during the Quaternary and resulted in erosion and valley incision, which dismantled the metal-bearing caps and led to ore accumulation in valleys and along foot slopes.

  14. Chapter C: Hydrothermal Enrichment of Gallium in Zones of Advanced Argillic Alteration-Examples from the Paradise Peak and McDermitt Ore Deposits, Nevada

    USGS Publications Warehouse

    Rytuba, James J.; John, David A.; Foster, Andrea; Ludington, Steven D.; Kotlyar, Boris

    2003-01-01

    Gallium is produced as a byproduct from bauxite and zinc sulfide ores and rarely from primary Ga ores. High Ga contents (>60 ppm) can occur in zones of advanced argillic alteration consisting of alunite+kaolinite+quartz associated with quartz-alunite (high sulfidation Au-Ag) deposits. In a magmatic-hydrothermal environment, the zones of advanced argillic alteration associated with quartz-alunite (high sulfidation) Au-Ag deposits have the highest Ga contents (max 120 ppm). In these Au deposits, Ga is enriched in the zone of alunite+kaolinite alteration and depleted in the zone of quartz-rich alteration within acid-leached rocks. Peripheral zones of argillic alteration have Ga contents and Al/Ga ratios similar to those in unaltered volcanic rocks. The zones of advanced argillic alteration that formed in a steam-heated environment in association with hot-spring-type Hg-Au deposits are not Ga enriched, and residual silicified zones have very low Ga contents. The McDermitt Hg and Paradise Peak Au-Hg deposits, Nev., have zones of advanced argillic alteration that are Ga enriched. At the Paradise Peak Au-Hg deposits, Ga is enriched in the zone of alunite+jarosite alteration that formed in a magmatic-hydrothermal environment. Ga is depleted in the zone of opal+alunite alteration formed in a steam-heated environment, in residual silicified zones formed in a magmatic-hydrothermal environment, and in zones of supergene jarosite alteration. At the McDermitt Hg deposit, Ga is enriched in the zone of alunite+kaolinite alteration below the zone of adularia-quartz alteration that coincides with the Hg ore body. The spatial relation of Ga enrichment to alunite-kaolinite alteration suggests that formation in a magmatic-hydrothermal environment. X-ray-absorption spectra of Ga-enriched samples from the McDermitt Hg deposit are similar to that of gallium sulfate and support the association of Ga enrichment with alunite alteration.

  15. Geology, ore facies and sulfur isotopes geochemistry of the Nudeh Besshi-type volcanogenic massive sulfide deposit, southwest Sabzevar basin, Iran

    NASA Astrophysics Data System (ADS)

    Maghfouri, Sajjad; Rastad, Ebrahim; Mousivand, Fardin; Lin, Ye; Zaw, Khin

    2016-08-01

    The southwest Sabzevar basin is placed in the southwestern part of a crustal domain known as the Sabzevar zone, at the north of Central Iranian microcontinent. This basin hosts abundant mineral deposits; particularly of the Mn exhalative and Cu-Zn volcanogenic massive sulfide (VMS) types. The evolution of this basin is governed by the Neo-tethys oceanic crust subduction beneath the Central Iranian microcontinent and by the resulting continental arc (Sanandaj-Sirjan) and back-arc (Sabzevar-Naien). This evolution followed two major sequences: (I) Lower Late Cretaceous Volcano-Sedimentary Sequence (LLCVSS), which is indicated by fine-grained siliciclastic sediments, gray basic coarse-grained different pyroclastic rocks and bimodal volcanism. During this stage, tuff-hosted stratiform, exhalative Mn deposits (Nudeh, Benesbourd, Ferizy and Goft), oxide Cu deposits (Garab and Ferizy) and Cu-Zn VMS (Nudeh, Chun and Lala) deposits formed. (II) Upper Late Cretaceous Sedimentary Dominated Sequence (ULCSS), including pelagic limestone, marly tuff, silty limestone and marl with minor andesitic tuff rocks. The economically most important Mn (Zakeri and Cheshmeh-sefid) deposits of Sabzevar zone occur within the marly tuff of this sequence. The Nudeh Cu-Zn volcanogenic massive sulfide (VMS) deposit is situated in the LLCVSS. The host-rock of deposits consists of alkali olivine basalt flow and tuffaceous silty sandstone. Mineralization occurs as stratiform blanket-like and tabular orebodies. Based on ore body structure, mineralogy, and ore fabric, we recognize three different ore facies in the Nudeh deposit: (1) a stringer zone, consisting of a discordant mineralization of sulfides forming a stockwork of sulfide-bearing quartz veins cutting the footwall volcano-sedimentary rocks; (2) a massive ore, consisting of massive replacement pyrite, chalcopyrite, sphalerite and Friedrichite with magnetite; (3) bedded ore, with laminated to disseminated pyrite, and chalcopyrite

  16. Physicochemical formation conditions of silver sulfoselenides at the Rogovik deposit, Northeastern Russia

    NASA Astrophysics Data System (ADS)

    Zhuravkova, T. V.; Palyanova, G. A.; Kravtsova, R. G.

    2015-07-01

    The chemical compositions of acanthite, naumannite, and associated ore minerals have been studied from the samples of polychronous Au-Ag ores at the Rogovik deposit. The following admixtures have been detected: S in naumannite (0-2.9 wt %), Se in acanthite (0-7.45 wt %), argyrodite (~4.8 wt %), and galena (~3.1 wt %), and Fe in sphalerite (~1.2 wt %). The physicochemical parameters of ore formation have been reconstructed on the basis of mineralogical and geochemical data and thermodynamic calculations. Eh-pH (25°C, 1 bar), log fO2-pH, log fS2- T, log fSe2- T, and log fS2-log fSe2 (100-300°C, 1-300 bars) diagrams for the Ag-S-Se-H2O system with the stability fields of Ag sulfoselenides Ag2S1- x Se x of various composition (step x = 0.25, where 0 ≤ x ≤ 1) have been calculated for the first time. It has been established that Ag sulfoselenides of the naumannite series from polychronous ores of the Rogovik deposit precipitated below 70-133°C under reductive conditions (log fO2 =-65…-50) from near-neutral solutions containing elevated Se and relatively lowered S. It has been established that Ag sulfoselenides of acanthite series were formed later then naumannite but in the same range of log fO2 values at temperatures below 110-177°C from solutions with high S concentration and relatively lowered concentration of Se. The complex composition of the studied Au-Ag ores, whose characteristic feature is extremely variable mineralogy, is confirmed.

  17. Occurrence of Uranium Ores in the Schist Formation of the Pre-Ordovician Portugal; OCCURENCE DE MINERAIS D'URANIUM DANS LES FORMATIONS DE SCHISTES ANTE-ORDOVICIENS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobato, C.P.; Ferrao, C.N.

    1959-10-31

    The occurrence of uranium ores in concentrations of economical interest in the pre-ordovician schists was noted by the first time, in the region of Pinhel, in November 1958. The occurrence is situated in a zone of graphitic brown-greyish schists which are enclosed in a formation of gneiss with tourmaline near the contact of the latter with the hercinian granite, which constitutes the Beiras' Massif. The uraniferous mineralization is constituted by autunite down to the depth which has been reached by the explorntion work. The radiometric study and the sampling taken nt the depth of about ten meters suggest the continuitymore » of the structure and the persistence of the mineralization associated with it. The structural type and the distribution of the mineralization in the joints and the brecciated zone of the schists suggest that the deposition of uranium ore is not syngenetic, but, rather, that it is attribated to the circulation of mineralized solutions through the breakage produced along the hypothermal veilns, in a posterior reopening connected to the last movements of the alpidic orogenesis. The content obtained in the sampling reveals the existence of an enlarged ore deposit following the directions of the schistosity, wfth an extension of 140 meters and with the medium content of 0.27% U/sub 3/O/ sub 8/. (auth)« less

  18. Magnetic properties of the Bled El Hadba phosphate-bearing formation (Djebel Onk, Algeria): Consequences of the enrichment of the phosphate ore deposit

    NASA Astrophysics Data System (ADS)

    Bezzi, Nacer; Aïfa, Tahar; Merabet, Djoudi; Pivan, Jean-Yves

    2008-02-01

    To improve the enrichment of the Thanetian marine phosphate ore deposit from the quarry of Bled El Hadba (Djebel Onk, Algeria) before its exploitation, we first conducted a joint study using different techniques for comparison. These studies reveal that magnetic minerals play a significant role within the matrix of the central productive unit which is squeezed between two other units. Magnetic separation procedures show that there are some positive correlations between magnetic susceptibility and grain size fraction (80-250 μm). These dolomite-rich fractions are more clearly separated. Different tools were used to characterize the magnetic minerals (X-ray, microprobe, differential scanning calorimetry, thermogravimetric and thermomagnetic analyses). They show correlations between magnetic phases and the presence of associated magnetic minerals within the matrix or included in the phosphate ore deposit. They enabled us to distinguish a series of magnetic minerals (magnetite, hematite, maghemite, goethite, ilmenite, pyrite, iron-titanium oxide and titanium oxide sulphate) and to determine that Fe and Ti are prevalent in the separated fractions, following the same variation as Mg. The phosphorous (phosphate) rate is higher in the non-magnetic material, especially in the layers that are rich in dolomitic carbonates (upper and lower units), which could be trapped within the dolomitic matrix, while Magnesium (dolomite) is more important in the magnetic fraction. The separation of phosphate elements and dolomite carbonates is effective and therefore the ore can be enriched through magnetic procedures. Comparison between products enriched by magnetic separation, flotation and calcination showed important differences, chemically, economically and technically speaking.

  19. Stratabound copper-silver deposits of the Mesoproterozoic Revett formation, Montana and Idaho

    USGS Publications Warehouse

    Boleneus, David E.; Appelgate, Larry M.; Stewart, John H.; Zientek, Michael L.

    2005-01-01

    The western Montana copper belt in western Montana and northern Idaho contains several large stratabound copper-silver deposits in fine- to medium-grained quartzite beds of the Revett Formation of the Mesoproterozoic (1,470-1,401 Ma) Belt Supergroup. Production from the deposits at the Troy Mine and lesser production from the Snowstorm Mine has yielded 222,237 tons Cu and 1,657.4 tons Ag. Estimates of undeveloped resources, mostly from the world-class Rock Creek-Montanore deposits, as well as lesser amounts at the Troy Mine, total more than 2.9 million tons Cu and 2,600 tons Ag in 406 million tons of ore.The Rock Creek-Montanore and Troy deposits, which are currently the most significant undeveloped resources identified in the copper belt, are also among the largest stratabound copper-silver deposits in North America and contain about 15 percent of the copper in such deposits in North America. Worldwide, stratabound copper-silver deposits contain 23 percent of all copper resources and are the second-most important global source of the metal after porphyry copper deposits.The Revett Formation, which consists of subequal amounts of argillite, siltite, and quartzite, is informally divided into lower, middle, and upper members on the basis of the proportions of the dominant rock types. The unit thickness increases from north to south, from 1,700 ft near the Troy Mine, 55 mi north of Wallace, Idaho, to more than 5,300 ft at Wallace, Idaho, in the Coeur d'Alene Trough south of the Osburn Fault, a major right-lateral strike-slip fault.Mineral deposits in the Revett Formation occur mostly in the A-D beds of the lower member and in the middle quartzite of the upper member. The deposits are concentrated along a preore pyrite/hematite interface in relatively coarse grained, thick quartzite beds that acted as paleoaquifers for ore fluids. The deposits are characterized by mineral zones (alteration-mineral assemblages) that are a useful guide to the locations of mineral

  20. Four magnetite generations in the Precambrian Varena Iron Ore deposit, SE Lithuania, as a result of rock-fluid interactions

    NASA Astrophysics Data System (ADS)

    Skridlaite, Grazina; Prusinskiene, Sabina; Siliauskas, Laurynas

    2017-04-01

    Iron ores in Precambrian crystalline basement of the Varena area, SE Lithuania, were discovered during the detail geological-geophysical exploration in 1982-1992. They are covered with 210-500 m thick sediments. The Varena Iron Ore deposit (VIOD) may yield from 71 to 219.6 million tons of iron ore according to different economic evaluations (Marfin, 1996). They were assumed to be of metasomatic and hydrothermal origin, however several other hypotheses explaining the VIOZ origin, e.g. as a layered mafic or carbonatite intrusions were also suggested. Magnetites of the VIOD were thoroughly investigated by the Cameca SX100 microprobe at the Warsaw University and by the Quanta 250 Energy Dispersive Spectroscopy (EDS) at the Nature Research Centre in Vilnius, Lithuania. Four generations of magnetite were distinguished in the studied serpentine-magnetite ores (D8 drilling) and were compared with the earlier studied and reference magnetites. The earliest, spinel inclusion-rich magnetite cores (Mag-1) have the highest trace element contents (in wt%): Si (0.032), Al (0.167-0.248), Mg (0.340-0.405), Ti (0.215-0.254), V (0.090-0.138) etc. They might have formed during an early metamorphism and/or related skarn formation. Voluminous second magnetite (Mag-2) replacing olivine, pyroxenes, spinel and other skarn minerals at c. 540o C (Magnetite-Ilmenite geothermometer) has much lower trace element abundances, probably washed out by hydrothermal fluids. The latest magnetites (Mag-3 and Mag-4) overgrow the earlier ones and occur near or within the sulfide veins (Mag-4). As was observed from microtextures, the Mag-3 and Mag-4 have originated from the late thermal reworking by dissolution-reprecipitation processes. To imply an origin of the studied magnetites, they were compared to the earlier studied magmatic-metamorphic (1058 drilling), presumably skarn (982 drilling) magnetites from the studied area and plotted in the major magnetite ore type fields according to Dupuis and Beaudoin

  1. A unique ore-placer cluster with high-Hg gold mineralization in the Amur region (Russia)

    NASA Astrophysics Data System (ADS)

    Stepanov, V. A.; Moyseenko, V. G.; Melnikov, A. V.

    2017-02-01

    This work presents the geological structure and a description of gold-ore manifestations and gold placers in the Un'ya-Bom ore-placer cluster of the Amur gold-bearing province. The host rocks are Late Paleozoic and Mesozoic black-shale formations. Intrusive formations are rare. The sublatitudinal Un'ya thrust fault, along which Paleozoic sandstones overlap Mesozoic flyschoid deposits, is regarded as an orecontrolling structure. Gold-quartz and low-sulfide ores are confined to quartz-vein zones. Ore minerals are arsenopyrite, scheelite, ferberite, galena, and native gold. Gold-ore manifestations and placers contain high-Hg native gold. The high Hg content in native gold is explained by the occurrence of the eroded frontal part of the gold-ore pipe in the ore cluster, a source of native gold.

  2. Genesis of Silica-Carbonate Type Mercury Ore Deposits in Coast Range California from Mantle Derived Fluids

    NASA Astrophysics Data System (ADS)

    Rytuba, J. J.; Kirby, S. H.; Kellner, C. R.

    2016-12-01

    In the Coast Range of California 51 major mercury (Hg) deposits and numerous smaller Hg occurrences began forming when subduction transitioned to the transpressive continental-transform kinematics of the San Andreas Fault System. The Hg deposits become progressively younger to the north reflecting the change in tectonic environment as the Mendocino Triple Junction moved 400 km northward since the Miocene to its present location in northern California. The silica-carbonate mercury deposits are vein and replacement ore bodies developed within and adjacent to serpentinite that was emplaced along regional faults and altered to an assemblage of silica and carbonate minerals. The initial alteration process consists of the addition of carbonate to the serpentinite followed by introduction of silica into the central core. The peripheral zone of calcite-dolomite veining may extend for several kilometers outward from a mercury deposit. The large Hg deposits formed in structural traps, such as antiformal structures, and the ores locally extend into adjacent clastic metasedimentary rocks. The mineralogy of the primary ores is simple consisting of cinnabar, metacinnabar and elemental Hg. The deposits formed from low-temperature, <120oC, CO2-CH4-H2S-rich fluids. The hydrothermal fluids are consistent with a mantle source water derived from the former forearc during subduction and after the transition to transpressive continental-transform boundary as proposed by Kirby et al. (EPS, 2014). Some of the silica-carbonate Hg deposits are overprinted by younger hot spring type Hg mineralization associated temporally with volcanic vents. These Hg deposits have distinctly different types of alteration and geochemistry and formed in the near surface from meteoric waters.

  3. Composition and origin of Early Cambrian Tiantaishan phosphorite-Mn carbonate ores, Shaanxi Province, China

    USGS Publications Warehouse

    Hein, J.R.; Fan, D.; Ye, J.; Liu, T.; Yeh, H.-W.

    1999-01-01

    The Tiantaishan phosphorite-Mn carbonate ores occur in the Early Cambrian Tananpo Formation in complexly folded and faulted rocks located in southern Shaanxi Province. About 65 x 106 tonnes of 17% P2O5 ore reserves exist and Mn-ore reserves are about 8.3 x 106 tonnes of +18% Mn. The stratigraphic sequence in ascending order consists of black phyllite, black to gray phosphorite ore, black phyllite, rhodochrostone ore, Mn mixed-carbonates, and dolostone. Data are presented from microprobe mineral chemistry, whole-rock chemistry, stable isotopes of carbonates, X-ray mineralogy, petrographic and SEM observations, and statistical analysis of chemical data. The dominant ore-forming minerals are hydroxy- and carbonate fluorapatite and Ca rhodochrosite, with Mg kutnahorite and dolomite comprising the Mn mixed-carbonate section. Pyrite occurs in all rock types and alabandite (MnS) occurs throughout the rhodochrostone section. The mean P2O5 content of phosphorite is 31% and argillaceous phosphorite is 16%, while the mean MnO content of rhodochrostone ore is 37%. Phosphorite ores are massive, spheroidal, laminated, and banded, while rhodochrostone ores have oolitic, spheroidal, and granular fabrics. The most distinguishing characteristics of the ores are high total organic carbon (TOC) contents (mean 8.4%) in the phosphorite and high P2O5 contents (mean 2.7%) in the rhodochrostone ore. The atypically high TOC contents in the Tiantaishan phosphorite probably result from very strong productivity leading to high sedimentation rates accompanied by weak reworking of sediments; poor utilization of the organic matter by bacteria; and/or partial replacement of bacterial or algal mats by the apatite. The depositional setting of the ores was the margin of an epicontinental seaway created as a direct consequence of global processes that included break-up of a supercontinent, formation of narrow seaways, creation of extensive continental shelves, overturn of stagnant, metal-rich deep

  4. Isotopic evidence for organic matter oxidation by manganese reduction in the formation of stratiform manganese carbonate ore

    USGS Publications Warehouse

    Okita, P.M.; Maynard, J.B.; Spiker, E. C.; Force, E.R.

    1988-01-01

    Unlike other marine-sedimentary manganese ore deposits, which are largely composed of manganese oxides, the primary ore at Molango (Hidalgo State, Mexico) is exclusively manganese carbonate (rhodochrosite, Mn-calcite, kutnahorite). Stable isotope studies of the carbonates from Molango provide critical new information relevant to the controversy over syngenetic and diagenetic models of stratiform manganese deposit formation. Negative ??13C values for carbonates from mineralized zones at Molango are strongly correlated with manganese content both on a whole rock scale and by mineral species. Whole rock ??13C data fall into three groups: high-grade ore = -16.4 to -11.5%.; manganese-rich, sub-ore-grade = -5.2 to 0%.; and unmineralized carbonates = 0 to +2.5%. (PDB). ??18O data show considerable overlap in values among the three groups: +4.8 to -2.8, -5.4 to -0.3%., and -7.4 to +6.2 (PDB), respectively. Isotopic data for individual co-existing minerals suggest a similar separation of ??13C values: ??13C values from calcite range from -1.1 to +0.7%. (PDB), whereas values from rhodochrosite are very negative, -12.9 to -5.5%., and values from kutnahorite or Mn-calcite are intermediate between calcite and rhodochrosite. 13C data are interpreted to indicate that calcite (i.e. unmineralized carbonate) formed from a normal marine carbon reservoir. However, 13C data for the manganese-bearing carbonates suggest a mixed seawater and organic source of carbon. The presence of only trace amounts of pyrite suggests sulfate reduction may have played a minor part in oxidizing organic matter. It is possible that manganese reduction was the predominant reaction that oxidized organic matter and that it released organic-derived CO2 to produce negative ??13C values and manganese carbonate mineralization. ?? 1988.

  5. Lead and zinc dust depositions from ore trains characterised using lead isotopic compositions.

    PubMed

    Kristensen, L J; Taylor, M P; Morrison, A L

    2015-03-01

    This study investigates an unusual source of environmental lead contamination - the emission and deposition of lead and zinc concentrates along train lines into and out of Australia's oldest silver-lead-zinc mine at Broken Hill, Australia. Transport of lead and zinc ore concentrates from the Broken Hill mines has occurred for more than 125 years, during which time the majority was moved in uncovered rail wagons. A significant amount of ore was lost to the adjoining environments, resulting in soil immediately adjacent to train lines elevated with concentrations of lead (695 mg kg(-1)) and zinc (2230 mg kg(-1)). Concentrations of lead and zinc decreased away from the train line and also with depth shown in soil profiles. Lead isotopic compositions demonstrated the soil lead contained Broken Hill ore in increasing percentages closer to the train line, with up to 97% apportioned to the mined Broken Hill ore body. SEM examination showed ceiling dusts collected from houses along the train line were composed of unweathered galena particles, characteristic of the concentrate transported in the rail wagons. The loss of ore from the uncovered wagons has significantly extended the environmental footprint of contamination from local mining operations over an area extending hundreds of kilometres along each of the three train lines.

  6. Paragenetic and minor- and trace-element studies of Mississippi Valley-type ore deposits of the Silesian-Cracow district, Poland

    USGS Publications Warehouse

    Viets, J.G.; Leach, D.L.; Lichte, F.E.; Hopkins, R.T.; Gent, C.A.; Powell, J.W.

    1996-01-01

    Paragenetic and minor- and trace-element studies were conducted on samples of epigenetic ore and gangue minerals collected from mines and drill core in the Silesian-Cracow (S-C) district of southern Poland. Four discrete mineral suites representing four mineralizing stages can be identified throughout the district. The earliest epigenetic minerals deposited during stage 1 consist of a late dolomite cement together with minor pyrite and marcasite. Stage 2 was the first ore-forming stage and included repetitive deposition of sphalerite and galena in a variety of morphologies. Stage 3 abruptly followed the first ore stage and deposited marcasite and pyrite with variable amounts of late sphalerite and galena. In the samples studied, minerals deposited during stage 3 are predominately marcasite-pyrite with minor sphalerite and galena in the Pomorzany and Olkusz mines, whereas, at the Trzebionka mine, stage 3 mineralization deposited mostly galena and sphalerite with little marcasite or pyrite. Stage 4 minerals include contains barite, followed by calcite, with very minor pyrite and a rare, late granular sphalerite. Compared to other major Mississippi Valley-type (MVT) districts of the world, the Silesian-Cracow district contains sphalerite with the second largest range in Ag concentrations and the largest range in Fe and Cd concentrations of any district. Unlike in other districts, very wide ranges in minor- and trace-element concentrations are also observed in paragenetically equivalent samples collected throughout the district. This wide range indicates that the minor- and trace-element content of the ore-forming environment was highly variable, both spatially and temporally, and suggests that the hydrologic system that the ore fluids traversed from their basinal source was very complex. Throughout the district, a significant increase in Tl, Ge, and As concentrations is accompanied by a lightening of sulfur isotopes between stage 2 and stage 3 minerals. This change

  7. Porphyry-Style Petropavlovskoe Gold Deposit, the Polar Urals: Geological Position, Mineralogy, and Formation Conditions

    NASA Astrophysics Data System (ADS)

    Vikentyev, I. V.; Mansurov, R. Kh.; Ivanova, Yu. N.; Tyukova, E. E.; Sobolev, I. D.; Abramova, V. D.; Vykhristenko, R. I.; Trofimov, A. P.; Khubanov, V. B.; Groznova, E. O.; Dvurechenskaya, S. S.; Kryazhev, S. G.

    2017-11-01

    Geological and structural conditions of localization, hydrothermal metasomatic alteration, and mineralization of the Petropavlovskoe gold deposit (Novogodnenskoe ore field) situated in the northern part of the Lesser Ural volcanic-plutonic belt, which is a constituent of the Middle Paleozoic island-arc system of the Polar Urals, are discussed. The porphyritic diorite bodies pertaining to the late phase of the intrusive Sob Complex play an ore-controlling role. The large-volume orebodies are related to the upper parts of these intrusions. Two types of stringer-disseminated ores have been revealed: (1) predominant gold-sulfide and (2) superimposed low-sulfide-gold-quartz ore markedly enriched in Au. Taken together, they make up complicated flattened isometric orebodies transitory to linear stockworks. The gold potential of the deposit is controlled by pyrite-(chlorite)-albite metasomatic rock of the main productive stage, which mainly develops in a volcanic-sedimentary sequence especially close to the contacts with porphyritic diorite. The relationships between intrusive and subvolcanic bodies and dating of individual zircon crystals corroborate a multistage evolution of the ore field, which predetermines its complex hydrothermal history. Magmatic activity of mature island-arc plagiogranite of the Sob Complex and monzonite of the Kongor Complex initiated development of skarn and beresite alterations accompanied by crystallization of hydrothermal sulfides. In the Early Devonian, due to emplacement of the Sob Complex at a depth of approximately 2 km, skarn magnetite ore with subordinate sulfides was formed. At the onset of the Middle Devonian, the large-volume gold porphyry Au-Ag-Te-W ± Mo,Cu stockworks related to quartz diorite porphyry—the final phase of the Sob Complex— were formed. In the Late Devonian, a part of sulfide mineralization was redistributed with the formation of linear low-sulfide quartz vein zones. Isotopic geochemical study has shown that the

  8. Lead isotope studies of the Guerrero composite terrane, west-central Mexico: implications for ore genesis

    NASA Astrophysics Data System (ADS)

    Potra, Adriana; Macfarlane, Andrew W.

    2014-01-01

    New thermal ionization mass spectrometry and multi-collector inductively coupled plasma mass spectrometry Pb isotope analyses of three Cenozoic ores from the La Verde porphyry copper deposit located in the Zihuatanejo-Huetamo subterrane of the Guerrero composite terrane are presented and the metal sources are evaluated. Lead isotope ratios of 3 Cenozoic ores from the El Malacate and La Esmeralda porphyry copper deposits located in the Zihuatanejo-Huetamo subterrane and of 14 ores from the Zimapan and La Negra skarn deposits from the adjoining Sierra Madre terrane are also presented to look for systematic differences in the lead isotope trends and ore metal sources among the proposed exotic tectonostratigraphic terranes of southern Mexico. Comparison among the isotopic signatures of ores from the Sierra Madre terrane and distinct subterranes of the Guerrero terrane supports the idea that there is no direct correlation between the distinct suspect terranes of Mexico and the isotopic signatures of the associated Cenozoic ores. Rather, these Pb isotope patterns are interpreted to reflect increasing crustal contribution to mantle-derived magmas as the arc advanced eastward onto a progressively thicker continental crust. The lead isotope trend observed in Cenozoic ores is not recognized in the ores from Mesozoic volcanogenic massive sulfide and sedimentary exhalative deposits. The Mesozoic ores formed prior to the amalgamation of the Guerrero composite terrane to the continental margin, which took place during the Late Cretaceous, in intraoceanic island arc and intracontinental marginal basin settings, while the Tertiary deposits formed after this event in a continental arc setting. Lead isotope ratios of the Mesozoic and Cenozoic ores appear to reflect these differences in tectonic setting of ore formation. Most Pb isotope values of ores from the La Verde deposit (206Pb/204Pb = 18.674-18.719) are less radiogenic than those of the host igneous rocks, but plot within the

  9. Depositional environments of the uranium-bearing Cutler Formations, Lisbon Valley, Utah

    USGS Publications Warehouse

    Campbell, John A.; Steele-Mallory, Brenda A.

    1979-01-01

    The Cutler Formation in Lisbon Valley, San Juan County, Utah, is composed predominantly of fluvial arkosic sandstones, siltstones, shales, and mudstones that were deposited by meandering streams that flowed across a flood plain and tidal flat close to sea level. Two types of channel deposits are recognized from their sedimentary structures: meandering and distributary. The flood plain was occasionally transgressed by a shallow sea from the west, resulting in the deposition of several thin limestones and marine sandstones. The marine sandstones were deposited as longshore bars. Wind transported sand along the shoreline of the shallow sea, forming a coastal dune field. Marine sandstones and eolian sandstones are more common in the upper Cutler in the southern part of the area, whereas in the central and northern part of the area the formation is predominantly fluvial. Crossbed orientation indicates that Cutler streams flowed S. 67? W. on the the average, whereas marine currents moved sediment S. 36? E. and N. 24? W., and wind transported sand S. 800 E. The uranium in the Cutler is found in the central and northern part of the area, in the upper part of the formation, in small fluvial sandstone bodies that were deposited predominantly in a distributary environment. No uranium is known in the marine or eolian sandstones. Petrographically, the uranium-bearing sandstones are identical to other Cutler fluvial sandstones except that they contain less calcite and more clay and are slightly coarser grained. Ore formation has modified the host sandstones very little.

  10. Geological and geochemical studies of the Shujiadian porphyry Cu deposit, Anhui Province, Eastern China: Implications for ore genesis

    NASA Astrophysics Data System (ADS)

    Wang, Shiwei; Zhou, Taofa; Yuan, Feng; Fan, Yu; White, Noel C.; Lin, Fengjie

    2015-05-01

    Most porphyry deposits in the world occur in magmatic arc settings and are related to subduction of oceanic plates. A small proportion of porphyry deposits occur in intracontinental settings, however they are still poorly understood. Shujiadian, a newly-discovered porphyry Cu deposit, is located in the Middle-Lower Yangtze River Valley metallogenic belt and belongs to the intracontinental class. The deposit has classic alteration zones defined by a core of potassic alteration and local Ca-silicate alteration, which is overprinted by a feldspar-destructive alteration zone and cut by veins containing epidote and chlorite. Wallrocks of the deposit are unreactive quartz-rich sedimentary rocks. Three main paragenetic stages have been recognized based on petrographic observations; silicate stage, quartz-sulfide stage, and sulfide-carbonate stage. Quartz + pyrite + chalcopyrite ± molybdenite veins, and quartz + chalcopyrite + pyrite veins of the quartz-sulfide stage contribute most of the copper, and chalcopyrite + chlorite ± pyrite ± pyrrhotite ± quartz ± illite veins of the sulfide-carbonate stage also contribute part of the copper; all the mineralized veins are associated with feldspar-destructive alteration. Investigations on the fluid inclusions in Shujiadian indicate that the ore-forming fluids had four evolutionary episodes: immiscibility and overpressure in the silicate stage, boiling in the quartz-sulfide stage and mixing with meteoric water in the sulfide-carbonate stage. Sulfur and strontium isotope studies suggest that ore metals were mainly derived from magmatic-hydrothermal fluids, and combined with our study of fluid inclusions, we infer that decompression, changes in oxygen fugacity and sulfur content were the main factors that caused Cu precipitation. Compared with porphyry deposits in magmatic arc settings, there are some differences in the ore-bearing rock, alteration, and the composition of ore-forming fluids.

  11. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: An integrated genetic model

    NASA Astrophysics Data System (ADS)

    Li, Yan Hei Martin; Zhao, Wen Winston; Zhou, Mei-Fu

    2017-10-01

    Regolith-hosted rare earth element (REE) deposits, also called ion-adsorption or weathered crust elution-deposited REE deposits are distributed over Jiangxi, Guangdong, Fujian, Hunan, Guangxi and Yunnan provinces in South China. In general, these deposits can be categorized into the HREE-dominated type, for example the famous Zudong deposit in southern Jiangxi province and the LREE-dominated type, such as the Heling and Dingnan deposits in southern Jiangxi province. Most of these deposits form from weathering of biotite and muscovite granites, syenites, monzogranites, granodiorites, granite porphyries, and rhyolitic tuffs. The parent rocks are generally peraluminous, siliceous, alkaline and contain a variety of REE-bearing minerals. Mostly, REE patterns of regolith are inherited from the parent rocks, and therefore, characteristics of the parent rocks impose a significant control on the ore formation. Data compilation shows that autometasomatism during the latest stage of granite crystallization is likely essential in forming the HREE-enriched granites, whereas LREE-enriched granites could form through magmatic differentiation. These deposits are normally two- to three-fold, but could be up to ten-fold enrichment in REE compared to the parent granites, where the maximum enrichment usually occurs from the lower B to the upper C horizon. Ce shows different behavior with the other REEs. Strongly positive Ce anomalies commonly occur at the upper part of weathering profiles, likely due to oxidation of Ce3+ to Ce4+ and removal of Ce from soil solutions through precipitation of cerianite. Vertical pH and redox gradients in weathering crusts facilitate dissolution of REE-bearing minerals at shallow level and fixation of REE at depth through either adsorption on clay minerals or precipitation of secondary minerals. At the same time, mass removal of major elements plays an important role in concentrating REE in regolith. Combination of mass removal and eluviation

  12. Hybrid gravity survey to search for submarine ore deposit

    NASA Astrophysics Data System (ADS)

    Araya, A.; Kanazawa, T.; Fujimoto, H.; Shinohara, M.; Yamada, T.; Mochizuki, K.; Iizasa, K.; Ishihara, T.; Omika, S.

    2011-12-01

    Along with seismic surveys, gravity survey is a useful method to profile the underground density structure. We propose a hybrid gravity survey using gravimeters and gravity gradiometers to detect submarine ore deposits as density anomalies by towing the instruments using an AUV (Autonomous Underwater Vehicle) or an ROV (Remotely Operated Vehicle). Gravimeters measure the regional density structure below the seafloor, whereas gravity gradiometers are sensitive to localized mass distribution. A gravity gradiometer comprises two accelerometers arranged with a vertical separation, and a gravity gradient can be obtained from the acceleration difference. Compared to gravimeters, gravity gradiometers are insensitive to common disturbances such as parallel acceleration, thermal drift, and apparent gravity effect (Eötvös effect). We made two accelerometers using astatic pendulums, and obtained common acceleration reduction more than two orders of magnitude. With these pendulums of 500-mm separation, resolution of 7E (=7x10^{-9}(1/s^2)), enough to detect a typical ore deposit buried 50m below the seafloor, was evaluated. During measurements using a submersible mobile object, instrument orientation is required to be controlled to keep verticality and to reduce centrifugal force associated with rotation of the instrument. Using a gyro and a tiltmeter, angular rotation was shown to be controlled within 0.001deg/s which corresponds to 0.3E in effective gravity gradient due to the centrifugal force. In this paper, target of this research, details of the instruments and their performance, and development for the submarine gravity survey using an AUV will be presented.

  13. A synthesis of mineralization styles and geodynamic settings of the Paleozoic and Mesozoic metallic ore deposits in the Altay Mountains, NW China

    NASA Astrophysics Data System (ADS)

    Yang, Fuquan; Geng, Xinxia; Wang, Rui; Zhang, Zhixin; Guo, Xuji

    2018-06-01

    The Altay Mountains within the Xinjiang region of northwestern China hosts major metallic ore deposits. Here we review the geological characteristics, metallogenic features and tectonic settings of these deposits. The metallic ore deposits in the Altay Mountains occur mainly within four regions: North Altay, Central Altay, South Altay and Erqis. We recognize seven types of metallic ore deposits in the Altay Mountains: VMS, submarine volcanogenic iron, magmatic, skarn, pegmatite, hydrothermal vein (Cu-Zn, Fe) and orogenic gold. Among these types, the VMS, pegmatite, orogenic gold and skarn deposits are the most common. Most of the rare metal pegmatite deposits are distributed in Central Altay, with only a few in South Altay. The VMS, submarine volcanogenic type iron and skarn-type deposits are distributed in South Altay, whereas the orogenic-type gold deposits are distributed in the Erqis Fault belt. The hydrothermal vein-type deposits occur in the Erqis Fault belt and Chonghu'er Basin in South Altay. Magmatic-type deposits are mostly in the Erqis Fault belt and Central Altay. Based on isotopic age data, the VMS, submarine volcanogenic-type Fe and skarn-type Cu, Pb, Zn, Fe mineralization occurred during Early-Middle Devonian (∼410-377 Ma), orogenic-type Au, magmatic-type Cu-Ni, and a small number of skarn-type Fe, hydrothermal vein-type Cu-Zn, pegmatite-type rare-metal deposits in Early-Middle Permian (293-261 Ma), pegmatite-type rare-metal deposits, few skarn-type Fe deposit in Early-Middle Triassic (248-232 Ma), and dominantly represented by pegmatite-type rare-metal deposits in Late Triassic-Early Jurassic (223-180 Ma). The metallic ore deposits in the Altay Mountains formed in various tectonic settings, such as the Early-Middle Devonian continental arc and oceanic island arc, Early-Middle Permian post-collisional extensional setting, and Triassic-Early Jurassic intracontinental setting.

  14. First find of platinum group metals in the ore of Kirganik copper-porphyry deposit (Kamchatka)

    NASA Astrophysics Data System (ADS)

    Sidorov, E. G.; Ignatyev, E. K.; Chubarov, V. M.

    2017-08-01

    The Kirganik copper-porphyry deposit is situated in the central part of the Sredinnyi Mountain Range of Kamchatka and is confined to fields of development of potassic orthoclase metasomatite and hypabyssal intrusions of shonkinite. Platinum group metals (PGMs), such as merenskyite, kotulskite, keithconnite, and temagamite, were discovered in the chalcopyrite-bornite and chalcopyrite-bornite-chalcosine ore of the deposit for the first time.

  15. Lead-isotopic, sulphur-isotopic, and trace-element studies of galena from the Silesian-Cracow Zn-Pb ores, polymetallic veins from the Gory Swietokrzyskie MTS, and the Myszkow porphyry copper deposit, Poland

    USGS Publications Warehouse

    Church, S.E.; Vaughn, R.B.; Gent, C.A.; Hopkins, R.T.

    1996-01-01

    Lead-isotopic data on galena samples collected from a paragenetically constrained suite of samples from the Silesian-Cracow ore district show no regional or paragenetically controlled lead-isotopic trends within the analytical reproducibility of the measurements. Furthermore, the new lead-isotopic data agree with previously reported lead-isotopic results (R. E. Zartman et al., 1979). Sulfur-isotopic analyses of ores from the Silesian-Cracow district as well as from vein ore from the Gory Swietokrzyskie Mts. and the Myszkow porphyry copper deposit, when coupled with trace-element data from the galena samples, clearly discriminate different hydrothermal ore-forming events. Lead-isotopic data from the Permian and Miocene evaporite deposits in Poland indicate that neither of these evaporite deposits were a source of metals for the Silesian-Cracow district ores. Furthermore, lead-isotopic data from these evaporite deposits and the shale residues from the Miocene halite samples indicate that the crustal evolution of lead in the central and western European platform in southern Poland followed normal crustal lead-isotopic growth, and that the isotopic composition of crustal lead had progressed beyond the lead-isotopic composition of lead in the Silesian-Cracow ores by Permian time. Thus, Mesozoic and Tertiary sedimentary flysch rocks can be eliminated as viable source rocks for the metals in the Silesian-Cracow Mississippi Valley-type (MVT) deposits. The uniformity of the isotopic composition of lead in the Silesian-Cracow ores, when coupled with the geologic evidence that mineralization must post-date Late Jurassic faulting (E. Gorecka, 1991), constrains the geochemical nature of the source region. The source of the metals is probably a well-mixed, multi-cycle molasse sequence of sedimentary rocks that contains little if any Precambrian metamorphic or granitic clasts (S. E. Church, R. B. Vaughn, 1992). If ore deposition was post Late Jurassic (about 150 m. y.) or later

  16. SHRIMP U-Pb ages of xenotime and monazite from the Spar Lake red bed-associated Cu-Ag deposit, western Montana: Implications for ore genesis

    USGS Publications Warehouse

    Aleinikoff, John N.; Hayes, Timothy S.; Evans, Karl V.; Mazdab, Frank K.; Pillers, Renee M.; Fanning, C. Mark

    2012-01-01

    Xenotime occurs as epitaxial overgrowths on detrital zircons in the Mesoproterozoic Revett Formation (Belt Supergroup) at the Spar Lake red bed-associated Cu-Ag deposit, western Montana. The deposit formed during diagenesis of Revett strata, where oxidizing metal-bearing hydrothermal fluids encountered a reducing zone. Samples for geochronology were collected from several mineral zones. Xenotime overgrowths (1–30 μm wide) were found in polished thin sections from five ore and near-ore zones (chalcocite-chlorite, bornite-calcite, galena-calcite, chalcopyrite-ankerite, and pyrite-calcite), but not in more distant zones across the region. Thirty-two in situ SHRIMP U-Pb analyses on xenotime overgrowths yield a weighted average of 207Pb/206Pb ages of 1409 ± 8 Ma, interpreted as the time of mineralization. This age is about 40 to 60 m.y. after deposition of the Revett Formation. Six other xenotime overgrowths formed during a younger event at 1304 ± 19 Ma. Several isolated grains of xenotime have 207Pb/206Pb ages in the range of 1.67 to 1.51 Ga, and thus are considered detrital in origin. Trace element data can distinguish Spar Lake xenotimes of different origins. Based on in situ SHRIMP analysis, detrital xenotime has heavy rare earth elements-enriched patterns similar to those of igneous xenotime, whereas xenotime overgrowths of inferred hydrothermal origin have hump-shaped (i.e., middle rare earth elements-enriched) patterns. The two ages of hydrothermal xenotime can be distinguished by slightly different rare earth elements patterns. In addition, 1409 Ma xenotime overgrowths have higher Eu and Gd contents than the 1304 Ma overgrowths. Most xenotime overgrowths from the Spar Lake deposit have elevated As concentrations, further suggesting a genetic relationship between the xenotime formation and Cu-Ag mineralization.

  17. A new model for tabular-type uranium deposits

    USGS Publications Warehouse

    Sanford, R.F.

    1992-01-01

    Tabular-type uranium deposits occur as tabular, originally subhorizontal bodies entirely within reduced fluvial sandstones of Late Silurian age or younger. This paper proposes that belts of tabular-type uranium deposits formed in areas of mixed local and regional groundwater discharge shortly after deposition of the host sediments. The general characteristics of tabular-type uranium deposits indicate that their essential feature was the formation at a density-stratified ground-water interface in areas of local and regional ground-water discharge. Reconstruction of the paleohydrogeology is the key to understanding the formation of these deposits. Geologic ground-water controls that favor discharge, such as the pinch-out of major aquifers, are also favorable for uranium ore. The combination of topographic and geologic features that both cause discharge is most favorable for ore deposition. -from Author

  18. Fluid inclusion characteristics and geological significance of the Dajinshan W-Sn polymetallic deposit in Yunfu, Guangdong Province

    NASA Astrophysics Data System (ADS)

    Yu, Zhangfa; Chen, Maohong; Zhao, Haijie

    2015-05-01

    The Dajinshan tungsten-tin polymetallic deposit is a quartz-vein-type ore deposit located in Western Guangdong Province. The ore bodies show a fairly simple shape and mainly occur as tungsten-tin polymetallic-bearing sulfide quartz veins, including quartz vein, quartz-greisens, and sulfide quartz veins, and their distribution is spatially related to Dajinshan granitoids. The formation of the deposit experienced three stages: a wolframite-molybdenite-quartz stage, a wolframite-cassiterite-sulfide-quartz stage, and a fluorite-calcite-carbonate stage. Based on detailed petrographic observations, we conducted microthermometric and Raman microspectroscopic studies of fluid inclusions formed at different ore-forming stages in the Dajinshan tungsten-tin polymetallic deposit, identifying four dominant types of fluid inclusions: aqueous two-phase inclusions, CO2-bearing inclusions, solid or daughter mineral-bearing inclusions, and gas-rich inclusions. The gas compositions of ore-forming fluids in the Dajinshan tungsten-tin polymetallic deposit are mostly CO2, CH4, and H2O. The hydrogen, oxygen, and sulfur isotopic data imply that the ore-forming fluids in the Dajinshan tungsten-tin polymetallic deposit were mainly derived from magmatic fluids, mixed with meteoric water in the ore-formation process. These results indicate that the fluid mixing and boiling led to the decomposition of the metal complex in ore-forming fluids and ore deposition.

  19. Krasnotur'insk Skarn copper ore field, Northern Urals: The U-Pb age of ore-controlling diorites and their place in the regional metallogeny

    NASA Astrophysics Data System (ADS)

    Grabezhev, A. I.; Ronkin, Yu. L.; Puchkov, V. N.; Gerdes, A.; Rovnushkin, M. Yu.

    2014-06-01

    The Krasnotur'insk skarn copper ore field known from the theoretical works of Academician K.S. Korzhinskii is located in the western part of the Tagil volcanic zone (in the area of the town of Krasnotur'insk). The ore field is composed of layered Devonian (Emsian) volcanosedimentary rocks intruded by small plutons of quartz diorites, diorites, and gabbrodiorites. Widespread pre-ore and intra-ore dikes of similar composition control the abundance of the andradite skarns formed after limestones and the magnetitesulfide and sulfide ore bodies formed after skarns. The LA-ICP-MS U-Pb concordant age of zircon from the quartz diorite of the Vasil'evsko-Moskalevskii pluton calculated by 16 analyses (16 crystals) is 407.7 ± 1.6 Ma (MSWD = 1.5). Taking into account the geological and petrogeochemical similarity of diorites of small plutons and intra-ore dikes, it is assumed that this age corresponds to the period of formation of the ore-magmatic system of the Krasnotur'insk skarn copper ore field. It was probably formed somewhat earlier than the Auerbakh montzonitic pluton and the accompanying skarn magnetite deposits in the south.

  20. The Balmat-Edwards zinc-lead deposits-synsedimentary ore from Mississippi valley-type fluids.

    USGS Publications Warehouse

    Whelan, J.F.; Rye, R.O.; Delorraine, W.

    1984-01-01

    The Balmat-Edwards Zn-Pb district in New York is in Mid-Proterozoic Grenville marbles. Tabular to podiform, generally conformable massive sphalerite-galena orebodies occur at various horizons in the approx 1 km-thick marbles. Metamorphism obscured or obliterated most primary characteristics, whose reconstruction is attempted through detailed S, C, and O isotope studies of the Fowler orebody, and trace element and S isotope studies of sphalerite concentrates and composite ore samples from 22 orebodies. Sulphur isotope data reflect equilibration at near peak metamorphism with some indication of re-equilibration during retrograde metamorphism. The carbon and oxygen isotope composition of gangue carbonates suggests derivation from the host marbles. The oxygen isotope composition of gangue quartz is compatible with a chert origin or metamorphism-equilibration with other minerals. Sulphur and lead isotopes and sulphide mineralogy suggests that the ore fluids were evolved basin brines, chemically like those responsible for Mississippi Valley-type deposits. The large stratigraphic span (> 600 m) of the Balmat orebodies may be due to basin dewatering of million-year intervals. Stratigraphically increasing 34S values of evaporite-anhydrite are postulated to record hydrothermal events and to imply bacterial sulphate reduction on an unusually large scale. Such a stratigraphic increase may be a general exploration guide where sediment-hosted exhalative deposits or Mississippi Valley-type deposits occur.-G.J.N.

  1. Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types

    USGS Publications Warehouse

    Groves, D.I.; Goldfarb, R.J.; Gebre-Mariam, M.; Hagemann, S.G.; Robert, F.

    1998-01-01

    The so-called 'mesothermal' gold deposits are associated with reginally metamorphosed terranes of all ages. Ores were formed during compressional to transpressional deformation processes at convergent plate margins in accretionary and collisional orogens. In both types of orogen, hydrated marine sedimentary and volcanic rocks have been added to continental margins during tens to some 100 million years of collision. Subduction-related thermal events, episodically raising geothermal gradients within the hydrated accretionary sequences, initiate and drive long-distance hydrothermal fluid migration. The resulting gold-bearing quartz veins are emplaced over a unique depth range for hydrothermal ore deposits, with gold deposition from 15-20 km to the near surface environment. On the basis of this broad depth range of formation, the term 'mesothermal' is not applicable to this deposit types as a whole. Instead, the unique temporal and spatial association of this deposit type with orogeny means that the vein systems are best termed orogenic gold deposits. Most ores are post-orogenic with respect to to tectonism of their immediate host rocks, but are simultaneously syn-orogenic with respect to ongoing deep-crustal, subduction-related thermal processes and the prefix orogenic satisfies both these conditions. On the basis of their depth of formation, the orogenic deposits are best subdivided into epizonal (12 km) classes.

  2. The composition of fluid inclusions in ore and gangue minerals from the Silesian-Cracow Mississippi Valley-type Zn-Pb deposits Poland: Genetic and environmental implications

    USGS Publications Warehouse

    Viets, J.G.; Hofstra, A.H.; Emsbo, P.; Kozlowski, A.

    1996-01-01

    The composition of fluids extracted from ore and gangue sulfide minerals that span most of the paragenesis of the Silesian-Cracow district was determined using a newly developed ion chromatographic (IC) technique. Ionic species determined were Na+, NH+4, Ca2+, Mg2+, K+, Rb+, Sr2+, Ba2+, Cl-, Br-, F-, I-, PO3-4, CO2-3, HS-, S2O2-3, SO2-4, NO-3, and acetate. Mineral samples included six from the Pomorzany mine and one from the Trzebionka mine which are hosted in the Triassic Muschelkalk Formation, and two samples of drill core from mineralized Upper Devonian strata. Nine paragenetically identifiable sulfide minerals occur throughout the Silesian-Cracow district. These include from earliest to latest: early iron sulfides, granular sphalerite, early galena, light-banded sphalerite, galena, dark-banded sphalerite, iron sulfides, late dark-banded sphalerite with late galena, and late iron sulfides. Seven of the minerals were sampled for fluid inclusion analysis in this study. Only the early iron sulfides and the last galena stage were not sampled. Although the number of analyses are limited to nine samples and two replicates and there is uncertainty about the characteristics of the fluid inclusions analyzed, the data show clear temporal trends in the composition of the fluids that deposited these minerals. Fluid inclusions in minerals deposited later in the paragenesis have significantly more K+, Br-, NH+4, and acetate but less Sr2+ than those deposited earlier in the paragenesis. The later minerals are also characterized by isotopically lighter sulfur and significantly more Tl and As in the solid minerals. The change in ore-fluid chemistry is interpreted to reflect a major change in the hydrologic regime of the district. Apparently, the migrational paths of ore fluids from the Upper Silesian basin changed during ore deposition and the fluids which deposited early minerals reacted with aquifers with very different geochemical characteristics than those that deposited

  3. Geological controls on refractory ore in an orogenic gold deposit, Macraes mine, New Zealand

    NASA Astrophysics Data System (ADS)

    Petrie, B. S.; Craw, D.; Ryan, C. G.

    2005-07-01

    The Macraes mine is hosted in an orogenic (mesothermal) gold deposit in metasedimentary rocks of the Otago Schist belt. Much gold occurs within altered schist with minimal silica-addition, and this study focuses on altered schist ore types. The unmineralized host schists are chemically and mineralogically uniform in composition, but include two end-member rock types: feldspathic schist and micaceous schist. Both rock types have undergone hydrothermal alteration along a shallow-dipping foliation-parallel shear zone, but their different rheological properties have affected the style of mineralisation. Micaceous schist has been extensively recrystallized and hydrothermally altered during ductile deformation, to form ores characterized by abundant, disseminated millimetre-scale pyrite cubes (typically 1 2 wt% S) and minor silicification. The earliest pyrite contained Ni and/or As in solid solution and no gold was imaged in these pyrites or later arsenopyrite grains. The ore type is refractory and gold recovery by cyanide leaching is less than 50%, with lowest recovery in rocks that have been less affected by later brittle deformation. In contrast, hydrothermally altered feldspathic schist is characterized by mineralised black microshears and veinlets formed during shear-zone related brittle deformation. Microsheared ore has relatively low sulphur content (<0.7 wt%) and muscovite has been illitised during hydrothermal alteration. Pyrite and arsenopyrite in microshears are fractured and deformed, and contain 1 10 μm blebs of gold. Later pyrite veinlets also contain micron- to submicron-scale inclusions of sphalerite, chalcopyrite, galena, and gold (≤10 microns). Gold in microsheared ore is more readily recoverable than in the refractory ore, although encapsulation of the fine gold grains inhibits cyanidation. Both microsheared ore and disseminated pyritic ore pass laterally into mineralised black shears, which contain hydrothermal graphite and late-stage cataclastic

  4. A unique ore-placer area of the Amur region with high-Hg gold

    NASA Astrophysics Data System (ADS)

    Melnikov, A. V.; Stepanov, V. A.; Moiseenko, V. G.

    2017-10-01

    This work presents the geological structure and a description of the gold-ore occurrences and gold placers of the Un'ya-Bom ore-placer cluster of the Amur gold-bearing province. The host rocks are Late Paleozoic and Mesozoic black shales. Intrusive formations occur rarely. The sublatitudinal Un'ya Thrust is the principal ore-controlling structure. Paleozoic sandstones are thrust over Mesozoic flysch deposits along the Un'ya Thrust. The gold-ore occurrences are represented by quartz-vein zones. The ores are gold-quartz, low-sulfide. Ore minerals are arsenopyrite, scheelite, ferberite, galena, and native gold. High-Hg native gold was revealed in the ore occurrences and placers. The high Hg content in native gold is explained by the presence of the frontal part of the gold-bearing column located within the cluster; the rich placers were formed due to crushing of this column.

  5. The origin or the Archean Jardine iron formation-hosted lode gold deposit. Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ping, Liu.

    1992-06-09

    While there is considerable controversy concerning the origin of greenstone-hosted lode gold deposits of Archean age, there is a general consensus that these deposits are epigenetic. By contrast, iron formation-hosted lode gold deposits of Archean or Proterozoic age are considered either epigenetic or syngenetic. At least three genetic models have been proposed for these gold deposits: a syngenetic model involving simultaneous deposition of gold and the iron formation; an epigenetic model involving a later introduction of gold, arsenic, and sulfur into the iron formation; and a multistage model involving primary concentration of gold during deposition of iron formation followed bymore » remobilization and reconcentration of gold during later events. The Jardine district is one of only three Archean lode gold districts in the United States that have reserves of greater than 300,000 ounces of gold. The other two are the South Pass-Atlantic City district, Wyoming, and the Ropes mine, Michigan. The fact that two of the three districts are in the Wyoming province suggests that the province might be an Archean gold province similar to Archean provinces in Canada. Placer gold was discovered near Jardine in 1866, and gold quartz veins were mined in the 1880's at Mineral Hill. Exploration by the Jardine Joint Venture has concentrated on the Jardine area, including Crevasse Mountain, where minor lode gold mineralization occurs in quartz-biotite schists. In order to complement previous geochemical, mineralogical, petrological and structural studies, the present study has concentrated on fluid inclusion, stable isotope, and electron microprobe studies with the intention of determining: (1) the source of the ore-forming fluids and gold, and (2) the genetic relationship between gold mineralization and iron formation, alteration and metamorphism.« less

  6. The origin or the Archean Jardine iron formation-hosted lode gold deposit. Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ping, Liu

    1992-06-09

    While there is considerable controversy concerning the origin of greenstone-hosted lode gold deposits of Archean age, there is a general consensus that these deposits are epigenetic. By contrast, iron formation-hosted lode gold deposits of Archean or Proterozoic age are considered either epigenetic or syngenetic. At least three genetic models have been proposed for these gold deposits: a syngenetic model involving simultaneous deposition of gold and the iron formation; an epigenetic model involving a later introduction of gold, arsenic, and sulfur into the iron formation; and a multistage model involving primary concentration of gold during deposition of iron formation followed bymore » remobilization and reconcentration of gold during later events. The Jardine district is one of only three Archean lode gold districts in the United States that have reserves of greater than 300,000 ounces of gold. The other two are the South Pass-Atlantic City district, Wyoming, and the Ropes mine, Michigan. The fact that two of the three districts are in the Wyoming province suggests that the province might be an Archean gold province similar to Archean provinces in Canada. Placer gold was discovered near Jardine in 1866, and gold quartz veins were mined in the 1880`s at Mineral Hill. Exploration by the Jardine Joint Venture has concentrated on the Jardine area, including Crevasse Mountain, where minor lode gold mineralization occurs in quartz-biotite schists. In order to complement previous geochemical, mineralogical, petrological and structural studies, the present study has concentrated on fluid inclusion, stable isotope, and electron microprobe studies with the intention of determining: (1) the source of the ore-forming fluids and gold, and (2) the genetic relationship between gold mineralization and iron formation, alteration and metamorphism.« less

  7. GEOLOGY, SULFUR ISOTOPES AND THE ORIGIN OF THE HEATH STEELE ORE DEPOSITS, NEWCASTLE, N.B., CANADA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechow, E.

    The Heath Steele mine is located 35 miles northwest of Newcastle, New Brunswick, Canada. Middle Ordovician Tetagouche Group rocks, consisting of siliceous and basic volcanic rocks, and fine-grained quartz sericite schists and porphyry, have been folded into a steeply plunging recumbent anticline. The ore deposits of zinc, lead, and copper are associated with minor folding and/or sheared dilatent zones at or near the contact between porphyry and fine-grained senicitic schist. Mineralogically the sulfide bodies consist of early, euhedral arsenopyrite, magnetite, and pyrite, followed by interstitial pyrrhotite, sphalerite, chalcopyrite and galena. Minor minerals are ternantite-tetrahedrite, bismuthinite, marcasite, hematite, and some graphite.more » Supergene minerals consist of chalcocite, covellite, and marcasite with a little native silver. Little hypogene replacement has taken place between the minerals, which show a "porphyritic" texture. Sulfur isotope ratios were determined for over 150 sulfide and sulfate specimens from five of the seven ore bodies, and from granite, acid and basic volcanics, porphyry, and sediments. The results indicate that there is no detectable fractionation either during hypogene mineralization or supergene enrichment. The spread (21.82 to 22.02) covered by the ratios is narrow, and suggestive of a well homogenized source of mineral solutions. The enrichment of S/sup 34/ in the ore sulfides and the presence of graphite, evident from mineralographic studies and mass spectrometric analysis, suggests reduction of original sulfates (known to be enriched in S/sup 34/) by organic carbon at temperatures in excess of 500 deg C. A calculation based on the isotopic exchange reaction between sulfide and sulfate under equilibrium conditions and the spread of the ratios indicates a temperature of 700 to 800 deg C for the source. Finally the ratios determined for sulfides in a gneissic granite close to Heath Steele have the same ratio as the ore

  8. Advances in understanding the tectonic evolution of the Santa Rosalia Basin and its stratiform ore deposits: Results of the Baja Basins Research Experience for Undergraduates

    NASA Astrophysics Data System (ADS)

    Niemi, T. M.; Busby, C.; Murowchick, J. B.; Martinez Gutierrez, G.; Antinao Rojas, J. L.; Graettinger, A.; Dorsey, R. J.

    2017-12-01

    Studies conducted during the three years of the Baja Basins REU program made progress toward solving a number of geologic questions in the Santa Rosalía Basin (SRB) of central Baja California. Geochemistry and 40Ar/39Ar geochronology on volcanic rocks within the SRB record the transition from subduction (13.32-9.95 Ma) to rifting (younger than 9.42 Ma) prior to deposition of the upper Miocene Boleo Formation. In contrast, magnesian andesite lavas and intrusions on the south margin of the SRB are dated at 6.1 +/- 0.3 Ma, and may have provided the heat engine for Boleo basin mineralization, which occurs in stratabound layers called "mantos". Mineralizing fluids in the Boleo Fm had near-neutral pH, evolved from a low Eh to more oxidizing conditions, were relatively low-temperature (near ambient T during manto ore deposition), and likely derived the Cu, Zn, Co, and Mn by leaching of mafic minerals in the volcanic rocks underlying the basin. Deposition of the ores was driven by oxidation as warm spring fluids vented to subaerial or near-shore marine environments, producing blankets of precipitated oxides interlayered with detrital fine to very coarse clastic beds. Integration of geologic map and fault data with detailed sedimentology and stratigraphic analysis provides evidence for syn-basinal tilting in two orthogonal directions during deposition of the Boleo Formation and Plio-Quaternary Tirabuzón, Infierno, and Santa Rosalia formations. Pronounced tilting toward the SE is revealed by southeastward thickening and coarsening of deposits in the Boleo Formation, and was synchronous with northeastward tilting and thickening due to slip on a network of NW-striking oblique normal faults. We hypothesize that the basin formed, subsided, and deformed as a pull-apart basin in a releasing step-over between two propagating transform faults that opened the late Miocene Gulf of California. The neotectonic evolution and uplift history of the SRB is documented through mapping of

  9. Computer finds ore

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Artificial intelligence techniques are being used for the first time to evaluate geophysical, geochemical, and geologic data and theory in order to locate ore deposits. After several years of development, an intelligent computer code has been formulated and applied to the Mount Tolman area in Washington state. In a project funded by the United States Geological Survey and the National Science Foundation a set of computer programs, under the general title Prospector, was used successfully to locate a previously unknown ore-grade porphyry molybdenum deposit in the vicinity of Mount Tolman (Science, Sept. 3, 1982).The general area of the deposit had been known to contain exposures of porphyry mineralization. Between 1964 and 1978, exploration surveys had been run by the Bear Creek Mining Company, and later exploration was done in the area by the Amax Corporation. Some of the geophysical data and geochemical and other prospecting surveys were incorporated into the programs, and mine exploration specialists contributed to a set of rules for Prospector. The rules were encoded as ‘inference networks’ to form the ‘expert system’ on which the artificial intelligence codes were based. The molybdenum ore deposit discovered by the test is large, located subsurface, and has an areal extent of more than 18 km2.

  10. Beyond the obvious limits of ore deposits: The use of mineralogical, geochemical, and biological features for the remote detection of mineralization

    USGS Publications Warehouse

    Kelley, D.L.; Kelley, K.D.; Coker, W.B.; Caughlin, B.; Doherty, M.E.

    2006-01-01

    Far field features of ore deposits include mineralogical, geochemical, or biological attributes that can be recognized beyond the obvious limits of the deposits. They can be primary, if formed in association with mineralization or alteration processes, or secondary, if formed from the interaction of ore deposits with the hydrosphere and biosphere. This paper examines a variety of far field features of different ore deposit types and considers novel applications to exploration and discovery. Primary far field features include mineral and rock chemistry, isotopic or element halos, fluid pathways and thermal anomalies in host-rock sequences. Examples include the use of apatite chemistry to distinguish intrusive rocks permissive for iron oxide copper gold (IOCG) and porphyry deposits; resistate mineral (e.g., rutile, tourmaline) chemistry in exploration for volcanogenic massive sulfide (VMS), orogenic gold, and porphyry deposits; and pyrite chemistry to vector toward sedimentary exhalative (sedex) deposits. Distinctive whole-rock geochemical signatures also can be recognized as a far field feature of porphyry deposits. For example, unique Sr/Y ratios in whole-rock samples, used to distinguish barren versus fertile magmas for Cu mineralization, result from the differentiation of oxidized hydrous melts. Anomalous concentrations of halogen elements (Cl, Br, and I) have been found for distances of up to 200 m away from some mineralized centers. Variations in isotopic composition between ore-bearing and barren intrusions and/or systematic vertical and lateral zonation in sulfur, carbon, or oxygen isotope values have been documented for some deposit types. Owing to the thermal aureole that extends beyond the area of mineralization for some deposits, detection of paleothermal effects through methods such as conodont alteration indices, vitrinite or bitumen reflectance, illite crystallinity, and apatite or zircon thermochronology studies also can be valuable, particularly for

  11. Reactive flow models of the Anarraaq Zn-Pb-Ag deposit, Red Dog district, Alaska

    USGS Publications Warehouse

    Schardt, C.; Garven, G.; Kelley, K.D.; Leach, D.L.

    2008-01-01

    The Red Dog ore deposit district in the Brooks Range of northern Alaska is host to several high-grade, shale-hosted Zn + Pb deposits. Due to the complex history and deformation of these ore deposits, the geological and hydrological conditions at the time of formation are poorly understood. Using geological observations and fluid inclusion data as constraints, numerical heat and fluid flow simulations of the Anarraaq ore deposit environment and coupled reactive flow simulations of a section of the ore body were conducted to gain more insight into the conditions of ore body formation. Results suggest that the ore body and associated base metal zonation may have formed by the mixing of oxidized, saline, metal-bearing hydrothermal fluids (<200??C) with reducing, HS-rich pore fluids within radiolarite-rich host rocks. Sphalerite and galena concentrations and base metal sulfide distribution are primarily controlled by the nature of the pore fluids, i.e., the extent and duration of the HS- source. Forward modeling results also predict the distribution of pyrite and quartz in agreement with field observations and indicate a reaction front moving from the initial mixing interface into the radiolarite rocks. Heuristic mass calculations suggest that ore grades and base metal accumulation comparable to those found in the field (18% Zn, 5% Pb) are predicted to be reached after about 0.3 My for initial conditions (30 ppm Zn, 3 ppm Pb; 20% deposition efficiency). ?? Springer-Verlag 2008.

  12. High-grade iron ore at Windarling, Yilgarn Craton: a product of syn-orogenic deformation, hypogene hydrothermal alteration and supergene modification in an Archean BIF-basalt lithostratigraphy

    NASA Astrophysics Data System (ADS)

    Angerer, Thomas; Hagemann, Steffen G.; Danyushevsky, Leonid

    2013-08-01

    Banded iron formation (BIF)-hosted iron ore deposits in the Windarling Range are located in the lower greenstone succession of the Marda-Diemals greenstone belt, Southern Cross domain, Yilgarn Craton and constitute a total hematite-martite-goethite ore resource of minimum 52 Mt at 60 wt.% Fe (0.07 P). Banded iron formation is interlayered with high-Mg basalts at Windarling and precipitated during episodes of volcanic quiescence. Trace element content and the rare earth element (REE) ratios Y/Ho (42 to 45), Sm/Yb (1.5), together with positive La and Gd anomalies in `least-altered' hematite-magnetite-metachert-BIF indicate the precipitation from Archean seawater that was fertilised by hydrothermal vent fluids with a basaltic HREE-Y signature. Hypogene iron ore in sub-greenschist facies metamorphosed BIF formed during three distinct stages: ore stage 1 was a syn- to post-metamorphic, syn-D1, Fe-Ca-Mg-Ni-Co-P-REE metasomatism that produced local Ni-REE-rich Fe-dolomite-magnetite alteration in BIF. Hydrothermal alteration was induced by hot fluid flow controlled by brittle-ductile reactivation of BIF-basalt margins and crosscutting D1 faults. The Ni-Co-rich content of dolomite and a shift in REE ratios in carbonate-altered BIF towards Archean mafic rock signature (Y/Ho to 31 to 40, Sm/Yb to 1 to 2 and Gd/Gd* to 1.2 to 1.4) suggest that high-Mg basalts in the Windarling Range were the primary source of introduced metals. During ore stage 2, a syn-deformational and likely acidic and oxidised fluid flow along BIF-basalt margins and within D1 faults leached carbonate and precipitated lepidoblastic and anhedral/granoblastic hematite. High-grade magnetite-hematite ore is formed during this stage. Ore stage 3 hydrothermal specular hematite (spcH)-Fe-dolomite-quartz alteration was controlled by a late-orogenic, brittle, compressional/transpressional stage (D4; the regional-scale shear-zone-related D3 is not preserved in Windarling). This minor event remobilised iron oxides

  13. Chemical Equilibrium of the Dissolved Uranium in Groundwaters From a Spanish Uranium-Ore Deposit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garralon, Antonio; Gomez, Paloma; Turrero, Maria Jesus

    2007-07-01

    The main objectives of this work are to determine the hydrogeochemical evolution of an uranium ore and identify the main water/rock interaction processes that control the dissolved uranium content. The Mina Fe uranium-ore deposit is the most important and biggest mine worked in Spain. Sageras area is located at the north part of the Mina Fe, over the same ore deposit. The uranium deposit was not mined in Sageras and was only perturbed by the exploration activities performed 20 years ago. The studied area is located 10 Km northeast of Ciudad Rodrigo (Salamanca) at an altitude over 650 m.a.s.l. Themore » uranium mineralization is related to faults affecting the metasediments of the Upper Proterozoic to Lower Cambrian schist-graywacke complex (CEG), located in the Centro-Iberian Zone of the Hesperian Massif . The primary uranium minerals are uraninite and coffinite but numerous secondary uranium minerals have been formed as a result of the weathering processes: yellow gummite, autunite, meta-autunite, torbernite, saleeite, uranotile, ianthinite and uranopilite. The water flow at regional scale is controlled by the topography. Recharge takes place mainly in the surrounding mountains (Sierra Pena de Francia) and discharge at fluvial courses, mainly Agueda and Yeltes rivers, boundaries S-NW and NE of the area, respectively. Deep flows (lower than 100 m depth) should be upwards due to the river vicinity, with flow directions towards the W, NW or N. In Sageras-Mina Fe there are more than 100 boreholes drilled to investigate the mineral resources of the deposit. 35 boreholes were selected in order to analyze the chemical composition of groundwaters based on their depth and situation around the uranium ore. Groundwater samples come from 50 to 150 m depth. The waters are classified as calcium-bicarbonate type waters, with a redox potential that indicates they are slightly reduced (values vary between 50 to -350 mV). The TOC varies between <0.1 and 4.0 mgC/L and the

  14. Ore-forming fluid system of bauxite in WZD area of northern Guizhou province, China

    NASA Astrophysics Data System (ADS)

    Cui, Tao

    2017-12-01

    The ore-forming fluid system of bauxite in Wuchuan-Zheng,an-Daozhen (short for WZD) Area of northern Guizhou Province was studied from the perspective of deposit formation mechanism. It was discovered that ore-forming fluids were mainly effective for transporting and leaching during the formation of bauxite. The means of transport mainly included colloidal transport, suspended transport and gravity flow transport. In the course of their leaching, fluids had a range of chemical reactions, as a result of which elements such as silicon and iron migrated downwards. In this process, properties of fluids changed as well.

  15. Use of structural geology in exploration for and mining of sedimentary rock-hosted Au deposits

    USGS Publications Warehouse

    Peters, Stephen G.

    2001-01-01

    Structural geology is an important component in regional-, district- and orebody-scale exploration and development of sedimentary rock-hosted Au deposits.Identification of timing of important structural events in an ore district allows analysis and classification of fluid conduits and construction of genetic models for ore formation.The most practical uses of structural geology deal with measurement and definition of various elements that comprise orebodies, which can then be directly applied to ore-reserve estimation,ground control,grade control, safety issues,and mine planning.District- and regional-scale structural studies are directly applicable to long-term strategic planning,economic analysis,and land ownership. Orebodies in sedimentary rock-hosted Au deposits are discrete, hypogene, epigenetic masses usually hosted in a fault zone,breccia mass, or lithologic bed or unit. These attributes allow structural geology to be directly applied to the mining and exploration of sedimentary rock-hosted Au deposits. Internal constituents in orebodies reflect unique episodes relating to ore formation.The main internal constituents in orebodies are ore minerals, gangue, and alteration minerals that usually are mixed with one another in complex patterns, the relations among which may be used to interpret the processes of orebody formation and control.Controls of orebody location and shape usually are due to structural dilatant zones caused by changes in attitude, splays, lithologic contacts,and intersections of the host conduit or unit.In addition,conceptual parameters such as district fabric,predictable distances, and stacking also are used to understand the geometry of orebodies.Controls in ore districts and location and geometry of orebodies in ore districts can be predicted to various degrees by using a number of qualitative concepts such as internal and external orebody plunges,district plunge, district stacking, conduit classification, geochemical, geobarometric and

  16. Evidence for microbial activity in the formation of carbonate-hosted Zn-Pb deposits

    NASA Astrophysics Data System (ADS)

    Kucha, H.; Raith, J.

    2009-04-01

    *Kucha H **Raith J *University of Mining and Metallurgy, Faculty of Geology, Geophysics and Environmental Protection, Mickiewicza 30, PL-30-059 Krakow, Poland. ** University of Leoben, Department of Applied Geosciences and Geophysics, A-8700 Leoben, Peter Tunner Str. 5, Austria Evidence for microbial activity in the formation of carbonate-hosted Zn-Pb deposits To date evaluation of bacterial processes in the formation of carbonate-hosted Zn-Pb deposits is largely based on sulphur isotope evidence. However, during a past few years, textural criteria, have been established, which support the bacterial origin of many of these deposits. This has received a strong support from micro-, and nano-textures of naturally growing bacterial films in a flooded tunnel within carbonates that host the Piquette Zn-Pb deposit (Druschel et al., 2002). Bacterial textures, micro- and nano textures found in carbonate-hosted Zn-Pb deposits are: i)wavy bacterial films up to a few mm thick to up to a few cm long composed of peloids, ii)semimassive agglomeration of peloids in the carbonate matrix, and iii)solitary peloids dispersed in the carbonate matrix. Peloids are usually composed of a distinct 50-90um core most often made up of Zn-bearing calcite surrounded by 30-60um thick dentate rim composed of ZnS. Etching of Zn-carbonate cores reveals 1 - 2um ZnS filaments, and numerous 15 to 90nm large ZnS nano-spheres (Kucha et al., 2005). In massive ore composite Zn-calcite - sphalerite peloids are entirely replaced by zinc sulphide, and form peloids ghosts within banded sulphide layers. Bacterially derived micro- and nano-textures have been observed in the following carbonate-hosted Zn-Pb deposits: 1)Irish-type Zn-Pb deposits. In the Navan deposit the basic sulphur is isotopically light bacteriogenic S (Fallick at al., 2001). This is corroborated by semimassive agglomerations of composite peloids (Zn-calcite-ZnS corona or ZnS core-melnikovite corona). Etching of Zn-calcite core reveals globular

  17. Gold in the Black Hills, South Dakota, and how new deposits might be found

    USGS Publications Warehouse

    Norton, James Jennings

    1974-01-01

    Of the recorded production of 34,694,552 troy ounces of gold mined in South Dakota through 1971, about 90 percent has come from Precambrian ore bodies in the Homestake mine at Lead in the northern Black Hills. Most of the rest has come from ore deposited in the Deadwood Formation (Cambrian) by hydrothermal replacement during early Tertiary igneous activity. About 99 percent of the total production has been within a radius of 5 miles (8 km) of Lead. Elsewhere, prospecting has been intense, both in the Precambrian rocks, which are exposed over an area 61 by 26 miles (98 by 42 km), and in nearby Paleozoic rocks. All the known ore bodies have been found either at the surface or in subsurface workings of operating mines. Efforts to find totally new deposits have been modest and sporadic; no comprehensive and systematic program has ever been attempted. Obviously, any exploration program should be aimed at finding a new deposit resembling the Homestake in the Precambrian, but discovery in the Deadwood of a new group of ore bodies containing several hundred thousand ounces of gold would certainly be worthwhile. Evidence has long been available that the Deadwood deposits and the Homestake deposit are somehow related. Current opinion is that (1) the Homestake ore is mainly Precambrian, (2) a trivial amount of Homestake ore is Tertiary, (3)gold in Deadwood basal conglomerate is largely of placer origin, and (4) the gold of replacement deposits in the Deadwood and in other rock units came originally from sources similar to the Homestake deposit or its parent materials. Homestake ore is virtually entirely contained in a unit of iron-formation locally known as the Homestake Formation, which seemingly had more gold in the original sediments than similar rocks exposed elsewhere in the Black Hills. Gold, sulfur, and other constituents were subsequently concentrated in ore shoots in zones of dilation caused by cross folds that deformed earlier major folds. These ore shoots are in

  18. Mesoarchean BIF and iron ores of the Badampahar greenstone belt, Iron Ore Group, East Indian Shield

    NASA Astrophysics Data System (ADS)

    Ghosh, Rupam; Baidya, Tapan Kumar

    2017-12-01

    Banded iron formations (BIFs) are chemically precipitated sedimentary rock characterized by alternating Fe-rich and Si-rich bands. The origin of BIF has remained controversial despite years of diligent research. Most models proposed for the BIF origin are based on the observations of well-preserved Neoarchean to Paleoproterozoic BIFs. The present paper is focused on the origin of Mesoarchean BIFs present in the Badampahar greenstone belt (3.3-3.1 Ga), East Indian Shield. Here, BIF is interlayered with metavolcanic rocks, quartzite, phyllite and chert representing a typical greenstone sequence. Geochemical and sedimentological evidence suggest deposition of BIF below the wave base as part of a back-arc basin with insignificant detrital input. Interaction of seawater and volcanogenic high temperature hydrothermal fluids, generated from back-arc spreading centre, supplied metals for BIF deposition. Distinctly negative Ce anomalies in some lower BIF horizons indicate Fe2+ oxidation in an oxygenated hydrosphere and derivation of free oxygen from microbial photosynthesis. Subsequent stages of deformation, metamorphism, hydrothermal and supergene processes after deposition led to the formation of the iron ore bodies at present.

  19. Structural controls and evolution of gold-, silver-, and REE-bearing copper-cobalt ore deposits, Blackbird district, east-central Idaho: Epigenetic origins

    USGS Publications Warehouse

    Lund, K.; Tysdal, Russell G.; Evans, Karl V.; Kunk, Michael J.; Pillers, Renee M.

    2011-01-01

    Textural data at all scales indicate that the host sites for veins and the tectonic evolution of both host rocks and mineral deposits were kinematically linked to Late Cretaceous regional thrust faulting. Heat, fluids, and conduits for generation and circulation of fluids were part of the regional crustal thickening. The faulting also juxtaposed metaevaporite layers in the Mesoproterozoic Yellowjacket Formation over Blackbird district host rocks. We conclude that this facilitated chemical exchange between juxtaposed units resulting in leaching of critical elements (Cl, K, B, Na) from metaevaporites to produce brines, scavenging of metals (Co, Cu, etc) from rocks in the region, and, finally, concentrating metals in the lower-plate ramp structures. Although the ultimate source of the metals remains undetermined, the present Cu-Co ± Au (± Ag ± Ni ± REE) Blackbird ore deposits formed during Late Cretaceous compressional deformation.

  20. The roles of organic matter in the formation of uranium deposits in sedimentary rocks

    USGS Publications Warehouse

    Spirakis, C.S.

    1996-01-01

    Because reduced uranium species have a much smaller solubility than oxidized uranium species and because of the strong association of organic matter (a powerful reductant) with many uranium ores, reduction has long been considered to be the precipitation mechanism for many types of uranium deposits. Organic matter may also be involved in the alterations in and around tabular uranium deposits, including dolomite precipitation, formation of silicified layers, iron-titanium oxide destruction, dissolution of quartz grains, and precipitation of clay minerals. The diagenetic processes that produced these alterations also consumed organic matter. Consequently, those tabular deposits that underwent the more advanced stages of diagenesis, including methanogenesis and organic acid generation, display the greatest range of alterations and contain the smallest amount of organic matter. Because of certain similarities between tabular uranium deposits and Precambrian unconformity-related deposits, some of the same processes might have been involved in the genesis of Precambrian unconformity-related deposits. Hydrologic studies place important constraints on genetic models of various types of uranium deposits. In roll-front deposits, oxidized waters carried uranium to reductants (organic matter and pyrite derived from sulfate reduction by organic matter). After these reductants were oxidized at any point in the host sandstone, uranium minerals were reoxidized and transported further down the flow path to react with additional reductants. In this manner, the uranium ore migrated through the sandstone at a rate slower than the mineralizing ground water. In the case of tabular uranium deposits, the recharge of surface water into the ground water during flooding of lakes carried soluble humic material to the water table or to an interface where humate precipitated in tabular layers. These humate layers then established the chemical conditions for mineralization and related

  1. Antimony ore in the Fairbanks district, Alaska

    USGS Publications Warehouse

    Killeen, Pemberton Lewis; Mertie, John B.

    1951-01-01

    Antimony-bearing ores in the Fairbanks district, Alaska, are found principally in two areas, the extremities of which are at points 10 miles west and 23 miles northeast of Fairbanks; and one of two minor areas lies along this same trend 30 miles farther to the northeast. These areas are probably only local manifestations of mineralization that affected a much broader area and formed antimony-bearing deposits in neighboring districts, the closest of which is 50 miles away. The ores were exposed largely as a result of lode gold mining, but at two periods in the past, high prices for antimony ore warranted an independent production and about 2500 tons of stibnite ore was shipped. The sulfide deposits occupy the same fractures along which a gold-quartz mineralization of greater economic importance occurred; and both are probably genetically related to igneous rocks which intrude the schistose country rock. The sulfide is in part contemporaneous with some late-stage quartz in which it occurs as disseminated crystals; and in part the latest filling in the mineralized zones where it forms kidney-shaped masses of essentially solid sulfide. One extremely long mass must have contained nearly 100 tons of ore, but the average of the larger kidneys is closer to several tons. Much of the ore is stibnite, with quartz as a minor impurity, and assays show the tenor to vary from 40 to 65 percent antimony. Sulphantimonites are less abundant but likewise occur as disseminated crystals and as kidney-shaped bodies. Antimony oxides appear on the weathered surface and along fractures within the sulfide ore. Deposits containing either stibnite or sulphantimonite are known at more than 50 localities, but only eighteen have produced ore and the bulk of this came from the mines. The geology of the deposit, and the nature, extent, and period of the workings are covered in the detailed descriptions of individual occurrences. Several geologic and economic factors, which greatly affect

  2. Tourmaline as a recorder of ore-forming processes

    USGS Publications Warehouse

    Slack, John F.; Trumbull, Robert B.

    2011-01-01

    Tourmaline occurs in diverse types of hydrothermal mineral deposits and can be used to constrain the nature and evolution of ore-forming fl uids. Because of its broad range in composition and retention of chemical and isotopic signatures, tourmaline may be the only robust recorder of original mineralizing processes in some deposits. Microtextures and in situ analysis of compositional and isotopic variations in ore-related tourmaline provide valuable insights into hydrothermal systems in seafl oor, sedimentary, magmatic, and metamorphic environments. Deciphering the hydrothermal record in tourmaline also holds promise for aiding exploration programs in the search for new ore deposits.

  3. Geology and ore deposits of the Mahd Adh Dhahab District, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Luce, Robert W.; Bagdady, Abdulaziz; Roberts, Ralph Jackson

    1976-01-01

    The principal ore minerals are pyrite, chalcopyrite, sphalerite, galena, and minor tetrahedrite, argentite, and native gold and silver. The gold and silver occurs finely disseminated in the veins and in the altered selvages of the veins. Widespread potassic and propylitic alteration accompanied the ore-forming processes. Potassium feldspar was introduced during an early stage of vein formation. Isotopic analyses of lead in vein potassium feldspar and galena yield a model age of about 900-1050 million years with the possibility of the original lead source having been remobilized about 600 million years ago. Chlorite and carbonate are also prominent vein minerals.

  4. Spatial evolution of Zn-Fe-Pb isotopes of sphalerite within a single ore body: A case study from the Dongshengmiao ore deposit, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Gao, Zhaofu; Zhu, Xiangkun; Sun, Jian; Luo, Zhaohua; Bao, Chuang; Tang, Chao; Ma, Jianxiong

    2018-01-01

    Analyses of sphalerite minerals from the characteristic brecciated Zn-Pb ores of the main ore body in the giant Dongshengmiao deposit have revealed variations in δ66Zn from 0.17 to 0.40‰ and in δ56Fe from -1.78 to -0.35‰. Further, the investigated pyrrhotite samples have iron that is isotopically similar to that of associated sphalerite minerals. The most distinctive pattern revealed by the zinc and iron isotope data is the lateral trend of increasing δ66Zn and δ56Fe values from southwest to northeast within the main ore body. The lead isotopic homogeneity of ore sulfides from the main ore body suggests that there is only one significant source for metal, thus precluding the mixing of multiple metal sources as the key factor controlling spatial variations of zinc and iron isotopes. The most likely control on spatial variations is Rayleigh fractionation during hydrothermal fluid flow, with lighter Zn and Fe isotopes preferentially incorporated into the earliest sulfides to precipitate from fluids. Precipitations of sphalerite and pyrrhotite have played vital roles in the Zn and Fe isotopic variations, respectively, of the ore-forming system. Accordingly, the larger isotopic variability for Fe than Zn within the same hydrothermal system perhaps resulted from a larger proportion of precipitation for pyrrhotite than for sphalerite. The lateral trend pattern revealed by the zinc and iron isotope data is consistent with the occurrence of a cystic-shaped breccia zone, which is characterized by marked elevation in Cu. The results further confirm that Zn and Fe isotopes can be used as a vectoring tool for mineral prospecting.

  5. Thallium-rich pyrite ores from the Apuan Alps, Tuscany, Italy:constraints for their origin and environmental concerns

    NASA Astrophysics Data System (ADS)

    D'Orazio, Massimo; Biagioni, Cristian; Dini, Andrea; Vezzoni, Simone

    2017-06-01

    The southern sector of the Apuan Alps (AA) massif, Tuscany, Italy, is characterized by the occurrence of a series of baryte-pyrite-iron oxide orebodies whose Tl-rich nature was recognized only recently. The geochemistry of the pyrite ore was investigated through inductively coupled plasma mass spectrometry. In addition, lead isotope data for selected pyrite ores from AA were collected. Pyrite ores are characterized by a complex geochemistry, with high concentrations of Tl (up to 1100 μg/g) coupled with high As and Sb contents; the Co/Ni ratio is always <1. Geochemical data of pyrite and marcasite ore samples from other mining districts of Tuscany have been collected in order to compare them with those from the AA. These samples usually have very low Tl content (less than 2 μg/g) and high to very high Co/Ni and As/Sb ratios. Only some samples from the Sb-Hg ore deposits showed very high Tl concentrations (up to 3900 μg/g). Another difference is related to the lead isotope composition, with pyrite ores from AA markedly less radiogenic than those from the other deposits from Tuscany. Geochemical data of pyrite ores from AA give new insights on the genesis of the baryte-pyrite-iron oxide orebodies, relating their formation to low-temperature hydrothermal systems active during early Paleozoic; in addition, these data play a fundamental role in assessing the environmental impact of these deposits.

  6. Host-rock controlled epigenetic, hydrothermal metasomatic origin of the Bayan Obo REEFe-Nb ore deposit, Inner Mongolia, P.R.C.

    USGS Publications Warehouse

    Chao, E.C.T.; Back, J.M.; Minkin, J.A.; Yinchen, R.

    1992-01-01

    Bayan Obo, a complex rare earth element (REE)FeNb ore deposit, located in Inner Mongolia, P.R.C. is the world's largest known REE deposit. The deposit is chiefly in a marble unit (H8), but extends into an overlying unit of black shale, slate and schist unit (H9), both of which are in the upper part of the Middle Proterozoic Bayan Obo Group. Based on sedimentary structures, the presence of detrital quartz and algal fossil remains, and the 16-km long geographic extent, the H8 marble is a sedimentary deposit, and not a carbonatite of magmatic origin, as proposed by some previous investigators. The unit was weakly regionally metamorphosed (most probably the lower part of the green schist facies) into marble and quartzite prior to mineralization. Tectonically, the deposit is located on the northern flank of the Sino-Korean craton. Many hypotheses have been proposed for the origin of the Bayan Obo deposit; the studies reported here support an epigenetic, hydrothermal, metasomatic origin. Such an origin is supported by field and laboratory textural evidence; 232Th/208Pb internal isochron mineral ages of selected monazite and bastnaesite samples; 40Ar/39Ar incremental heating minimum mineral ages of selected alkali amphiboles; chemical compositions of different generations of both REE ore minerals and alkali amphiboles; and evidence of host-rock influence on the various types of Bayan Obo ores. The internal isochron ages of the REE minerals indicate Caledonian ages for various episodes of REE and Fe mineralization. No evidence was found to indicate a genetic relation between the extensive biotite granitic rocks of Hercynian age in the mine region and the Bayan Obo are deposit, as suggested by previous workers. ?? 1992.

  7. A conceptual model of the copper-porphyry ore formation based on joint analysis of deep 3D geophysical models: Sorskoe complex (Russia) case study

    NASA Astrophysics Data System (ADS)

    Spichak, Viacheslav V.; Goidina, Alexandra G.

    2017-12-01

    Joint analysis of deep three-dimensional models of the electrical resistivity, seismic velocity, and density of the complex hosting the Sorskoe Cu-Mo deposit (Russia) is carried out aimed at finding geophysical markers characterizing the areas of ore generation, transportation and deposition. The three-dimensional lithology model of the study area is built based on the empirical relationship between the silica content of the rocks and seismic velocities. It is in agreement with geological and geochemical studies provided in this area earlier and could be used as a basis for forecasting locations of the copper-molybdenum ore deposits at depth. A conceptual model of the copper-porphyry complex explaining the mechanisms of ore generation, transportation from the lower to the upper crust and deposition in the upper crust is suggested. In particular, it is supposed that post-magmatic supercritical gas-water ore-bearing fluids are upwelling through the plastic crust due to the sliding of the fluid films along the cleavage planes of the foliated rocks while at the depths of the brittle upper crust this mechanism could be changed by volumetric fluid transportation along the network of large pores and cracks.

  8. Iron disulfide minerals and the genesis of roll-type uranium deposits.

    USGS Publications Warehouse

    Reynolds, R.L.; Goldhaber, M.B.

    1983-01-01

    Studies of the distribution of and textural relationships among pyrite and marcasite in host rocks for a number of roll-type sedimentary U deposits have enabled identification of several generations of FeS2 minerals. A critical factor influencing mineral formation is the complex relationship of pH and the S species that are precursors of FeS2 minerals. The presence or absence of intrinsic organic matter for bacterial sulphate reduction also plays a key role. In deposits lacking such organic matter, the pre-ore is often euhedral pyrite and the ore-stage is marcasite. In contrast, in deposits containing organic matter the pre-ore is pyrite occurring as framboids or as replacements of plant material, and the ore-stage is also pyrite. These contrasting FeS2 assemblages and their respective modes of origin are consistent with previously proposed biogenic and nonbiogenic theories of the genesis of roll-type U deposits. -J.E.S.

  9. Rhenium in ores of the Mikheevskoe porphyry Cu-Mo deposit, South Urals

    NASA Astrophysics Data System (ADS)

    Plotinskaya, O. Yu.; Grabezhev, A. I.; Seltmann, R.

    2015-03-01

    The distribution of Re in ores of the Mikheevskoe Mo-Cu deposit in the South Urals is studied. It is established that the grade of Re in the ores usually does not exceed 0.5 g/t. A positive correlation between concentrations of Re and Mo (correlation coefficient 0.94), and Re and Cu (correlation coefficient 0.52) is found. EMPA of individual flakes of molybdenite showed that a Re content higher than the detection limit has been measured in most flakes studied, as a rule as high as 0.4-0.5 wt %, but occasionally reaching 1.34 wt %. Re within flakes of molybdenite is irregularly distributed. Patchy, linear, and concentric-zoned patterns of zones with elevated Re content (usually 0.5-1 wt % Re, sometimes higher) are found against the lower content (up to 0.2 wt % Re) that is regularly distributed within the flake. Later hydrothermal processes and mechanical deformation of flakes result in epigenetic Re redistribution in molybdenite that leads to homogenization of molybdenite composition and smoothing of primary pattern, or removal of Re from molybdenite.

  10. Discrimination of iron ore deposits of granulite terrain of Southern Peninsular India using ASTER data

    NASA Astrophysics Data System (ADS)

    Rajendran, Sankaran; Thirunavukkarasu, A.; Balamurugan, G.; Shankar, K.

    2011-04-01

    This work describes a new image processing technique for discriminating iron ores (magnetite quartzite deposits) and associated lithology in high-grade granulite region of Salem, Southern Peninsular India using visible, near-infrared and short wave infrared reflectance data of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Image spectra show that the magnetite quartzite and associated lithology of garnetiferrous pyroxene granulite, hornblende biotite gneiss, amphibolite, dunite, and pegmatite have absorption features around spectral bands 1, 3, 5, and 7. ASTER band ratios ((1 + 3)/2, (3 + 5)/4, (5 + 7)/6) in RGB are constructed by summing the bands representing the shoulders of absorption features as a numerator, and the band located nearest the absorption feature as a denominator to map iron ores and band ratios ((2 + 4)/3, (5 + 7)/6, (7 + 9)/8) in RGB for associated lithology. The results show that ASTER band ratios ((1 + 3)/2, (3 + 5)/4, (5 + 7)/6) in a Red-Green-Blue (RGB) color combination identifies the iron ores much better than previously published ASTER band ratios analysis. A Principal Component Analysis (PCA) is applied to reduce redundant information in highly correlated bands. PCA (3, 2, and 1 for iron ores and 5, 4, 2 for granulite rock) in RGB enabled the discrimination between the iron ores and garnetiferrous pyroxene granulite rock. Thus, this image processing technique is very much suitable for discriminating the different types of rocks of granulite region. As outcome of the present work, the geology map of Salem region is provided based on the interpretation of ASTER image results and field verification work. It is recommended that the proposed methods have great potential for mapping of iron ores and associated lithology of granulite region with similar rock units of granulite regions of Southern Peninsular India. This work also demonstrates the ability of ASTER's to provide information on iron ores, which is valuable

  11. Understanding Cu release into environment from Kure massive sulfide ore deposits, Kastamonu, NW Turkey

    NASA Astrophysics Data System (ADS)

    Demirel, Cansu; Sonmez, Seref; Balci, Nurgul

    2014-05-01

    Covering a wide range on the earth's crust, oxidation of metal sulfide minerals have vital environmental impacts on the aquatic environment, causing one of the major environmental problems known as acid mine drainage (AMD). Located in the Kastamonu province of the Western Black Sea region, Kure district is one of the major copper mining sites in Turkey. Mining activities in the area heads back to ancient times, such that operation is thought to be started with the Roman Empire. Currently, only the underground mining tunnels of Bakibaba and Asikoy are being operated. Thus, mining heaps and ores of those pyritic deposits have been exposed to the oxidative conditions for so long. As a result of weathering processes of past and recent heaps of the Kure volcanic massive sulfide deposits in addition to the main ore mineral (chalcopyrite), significant amount of metals, especially Cu, are being released into the environment creating undesirable environmental conditions. In order to elucidate Cu release mechanisms from Kure pyritic ore deposits and mining wastes, field and laboratory approaches were used. Surface water and sediment samples from the streams around the mining and waste sites were collected. Groundwater samples from the active underground mining site were also collected. Physical parameters (pH, Eh, T°C, and EC) of water samples were determined in situ and in the laboratory using probes (WTW pH 3110, WTW Multi 9310 and CRISON CM 35). Metal and ion concentrations of the water samples were analysed using ICP-MS and DR 2800 spectrophotometer, respectively. High Cu, Co, Zn and Fe concentrations were determined in the water samples with pH values ranging from 2.9- 4. Cu concentrions ranges from 345 ppm to 36 ppm in the water samples. Consistent with the water samples, high Cu, Fe, Zn and Co were also determined in the sediment samples. Laboratory chalcopyrite oxidation experiments under the conditions representing the field site were set up as biological and

  12. Sulfur isotope and trace element data from ore sulfides in the Noranda district (Abitibi, Canada): implications for volcanogenic massive sulfide deposit genesis

    NASA Astrophysics Data System (ADS)

    Sharman, Elizabeth R.; Taylor, Bruce E.; Minarik, William G.; Dubé, Benoît; Wing, Boswell A.

    2015-06-01

    We examine models for volcanogenic massive sulfide (VMS) mineralization in the ~2.7-Ga Noranda camp, Abitibi subprovince, Superior Province, Canada, using a combination of multiple sulfur isotope and trace element data from ore sulfide minerals. The Noranda camp is a well-preserved, VMS deposit-rich area that is thought to represent a collapsed volcanic caldera. Due to its economic value, the camp has been studied extensively, providing a robust geological framework within which to assess the new data presented in this study. We explore previously proposed controls on mineralization within the Noranda camp and, in particular, the exceptional Au-rich Horne and Quemont deposits. We present multiple sulfur isotope and trace element compositional data for sulfide separates representing 25 different VMS deposits and "showings" within the Noranda camp. Multiple sulfur isotope data for this study have δ34SV-CDT values of between -1.9 and +2.5 ‰, and Δ33SV-CDT values of between -0.59 and -0.03 ‰. We interpret the negative Δ33S values to be due to a contribution of sulfur that originated as seawater sulfate to form the ore sulfides of the Noranda camp VMS deposits. The contribution of seawater sulfate increased with the collapse and subsequent evolution of the Noranda caldera, an inference supported by select trace and major element analyses. In particular, higher concentrations of Se occur in samples with Δ33S values closer to 0 ‰, as well as lower Fe/Zn ratios in sphalerite, suggesting lower pressures and temperatures of formation. We also report a relationship between average Au grade and Δ33S values within Au-rich VMS deposits of the Noranda camp, whereby higher gold grades are associated with near-zero Δ33S values. From this, we infer a dominance of igneous sulfur in the gold-rich deposits, either leached from the volcanic pile and/or directly degassed from an associated intrusion.

  13. Fluid mixing and ore deposition during the geodynamic evolution of the Sierra Almagrera (Betics, Spain)

    NASA Astrophysics Data System (ADS)

    Dyja, Vanessa; Tarantola, Alexandre; Hibsch, Christian; Boiron, Marie-Christine; Cathelineau, Michel

    2013-04-01

    Marine and continental intramountaineous basins developed during the Neogene orographic evolution of the Betico-rifan orogenic wedge, as well as the related uplifted ranges within the Sierra Almagrera Metamorphic Core Complexes (MCC). The NNE-SSW striking trans-Alboran transcurrent fault system crosscuts the MCC post-dating the extensional exhumation stages recorded in the metamorphic fabric. Iron ores (± Pb, Cu, Zn) are encountered either as stratabound ore deposits in the Neogene basins or as vein networks crosscutting the metamorphic fabric of graphitic phyllites from the Sierra Almagrera. These Late Miocene ore deposits are related to the activity of the N-S striking Palomares fault segment of the Trans-Alboran fault system. Three sets of quartz veins (Vα, Vαβ and Vβ) and one set of mineralized vein (Vγ, siderite, barite) are distinguished. The Vα and Vαβ respectively are totally or partially transposed into the foliation. The Vβ and Vγ veins are discordant to the foliation. The problem addressed in this study concerns the nature of the fluids involved in the metal deposits and their relationships with the main reservoir fluids, e.g. the deep metamorphic fluids, the basinal fluids, and eventually the recharge meteoric fluids. This study focuses thus on the evolution of the fluids at different stages of ductile-brittle exhumation of the metamorphic ranges (Sierras) and their role during the exhumation and later on in relation with the hydrothermalism and metal deposition at a regional scale. Paleofluids were studied as inclusions in quartz, siderite and barite from veins by microthermometry and Raman spectroscopy, and a stable isotope study is in progress. Earliest fluids recorded in (Vαβ) quartz veins are H2O- NaCl + CaCl2 (17 wt. %) - (traces of CO2, CH4, N2) metamorphic brines trapped at the ductile brittle transition at a minimum trapping temperatures (Th) of 340 °C. Older metamorphic fluids in (Vα) veins were lost during the complete

  14. Compositional variation of glauconites in Upper Cretaceous-Paleogene sedimentary iron-ore deposits in South-eastern Western Siberia

    NASA Astrophysics Data System (ADS)

    Rudmin, Maxim; Banerjee, Santanu; Mazurov, Aleksey

    2017-06-01

    Glauconite occurs either as unaltered greenish or as altered brownish variety in Upper Cretaceous-Palaeocene sediments in the southeastern corner of Western Siberia. Studied section within the Bakchar iron-ore deposit includes Ipatovo, Slavgorod, Gan'kino and Lyulinvor formations, which are represented by sandstones, siltstones, claystones and oolitic ironstones of coastal-marine facies. The origin of unaltered glauconite is explained by the ;verdissement theory;. Transgressions during Lower Coniacian, Santonian and Campanian favored the formation of unaltered glauconites in dysoxic to anoxic conditions. Subaerial exposure of glauconite resulted in leaching of potassium, oxidation of iron and formation of iron hydroxides in Upper Coniacian, Maastrichtian and Palaeocene. Glauconite ultimately converts to leptochlorite and hydrogoethite by this alteration. Abundant microscopic gold inclusions, besides sulphides, sulphates, oxides and silicates characterize this glauconite. Mineral inclusions include precious, rare metals and non-ferrous metals. The concentration of gold in glauconite may be as high as 42.9 ppb. Abundant inclusions of various compositions in glauconites indicate enrichment of marine sediments in precious and non-precious metals. While major element composition of glauconites is affected by subaerial exposure, the broadly similar micro-inclusions in both altered and unaltered varieties are possibly related to the comparatively immobile nature of REE and trace elements.

  15. New data on the substantial composition of Kalba rare metal deposits

    NASA Astrophysics Data System (ADS)

    Oitseva, T. A.; Dyachkov, B. A.; Vladimirov, A. G.; Kuzmina, O. N.; Ageeva, O. V.

    2017-12-01

    Geotectonic position, features of the geological structure and rare metal specialization of the Kalba-Narym granitoid belt formed in the Hercynian cycle in the postcollision (orogenic) geodynamic situation are considered. A geological-genetic model for the formation of the leading type of rare-metal pegmatite deposits (Ta, Nb, Be, Li, etc.) is presented. They are spatially and genetically related mainly to the granitoids of the 1st phase of the Kalba complex, P1 (Bakennoye, Jubilee, Belaya Gora, etc.). The rhythmically pulsating orientation of the process of pegmatite formation with the introduction of ore-bearing fluids (H2O, F, B, Cl, Ta, Nb, Be, etc.) is emphasized from the intracamera focus of a semi-closed magmatic system. The preferred location of ore pegmatite veins in granitoids of moderate basicity occupying an intermediate position in the petrochemical composition between normal granites and granodiorites geochemically specialized in Li, Rb, Cs, Sn, Nb, Ta. The leading ore-controlling role of the latitudinal deep faults of the ancient site in the distribution of rare-metal ore fields and deposits (Ognevsk-Bakennoye, Asubulak, Belogorsk, etc.) is determined. There is a zonal structure of pegmatite veins, a gradual development of mineral complexes from the graphic and oligoclase-microcline (non-ore) to microcline-albite and color albite-spodumene (ore). The mineralization of pegmatite veins is determined by the degree of intensity of the manifestation in them of metasomatic processes (microclinization, alibitization, greisenization, spodumenization, tourmalinization, etc.) and the identification of the main ore minerals (tantalite-columbite, cassiterite, spodumene and beryl). The diversity of the material composition of rare-metal pegmatites containing many unique minerals (cleavelandite, lepidolite, ambligonite, color tourmaline, spodumene, pollucite, etc.) is reflected, which brings them closer to the pegmatite deposits of foreign countries (Koktogai

  16. Integrate metalogenic database with GIS geological project (deposite Au-Ag Far East Russia). WEB-GIS approach.

    NASA Astrophysics Data System (ADS)

    Kucharenko, Evgeniy; Asavin, Alex

    2015-04-01

    Resource depletion has forced us to search for new ore deposit and reanalyze old mineral deposits. This is the main aim of metallogenic studies. Synthesis information about features resources work out deposit and emerging fields will play a key role in future. Development of metallogeny databases is one of the most difficult tasks for Earth sciences. Database needs to enter a large number of parameters describing the object of study - mine or ore occurrence. Majority of these parameters belong to different areas of geological knowledge. It can be ore mineralogy, geochemistry, lithology of host rocks, tectonic characteristics ore-controlling structures, geochemical parameters of ore processes, geochronological data on age of geological formations and processes of ore formation and some others. However, the cartographic materials of various scales apart from diverse documentation and numerical information are of a great importance. The adopted framework for the analysis of large-scale metallogeny has several levels: 1. The ore body (usually 1: 50000, 1: 100000) 2. The ore field, the field (1: 200000) 3. The ore cluster (1: 500000) Researchers can vary scheme and scale values, but fundamentally three levels of scale describing the location and geological structures controlling the placement of ore are included at least. Attention should be pay to the system of description the ore deposit. It is necessary to create the universal scheme for development of metallogeny information systems and set up the universal algorithm of ore deposit description. There is its own order of importance of used features and a form of description for each type of deposits and ore and genetic group and ore element. Lack of definition in the classification of a particular metallogenic object makes the choice of algorithm description justified quite weakly. It is quite notable that available features which used for description of different deposit (even of the same genetic group) are not of

  17. Stratabound tungsten deposits in the Alps revisited in the light of new age data

    NASA Astrophysics Data System (ADS)

    Raith, Johann

    2013-04-01

    Correct genetic models are vital for successful exploration of mineral deposits. Key information for deciding on the validity of a genetic model proposed for an ore deposit comes from geochronology. In this presentation we will demonstrate how absoute age determination of ore minerals and associated host rocks with conventional and in-situ dating techniques using the U-Pb, Sm-Nd and Re-Os systems have changed our understanding about the formation of stratiform/stratabound scheelite deposits, a rather unique class of tungsten deposits. This will be demonstrated for tungsten deposits in the Alpine orogen, with focus on the Felbertal scheelite deposit in the Eastern Alps, which is the type locality for this class of tungsten deposits. Genetic models, first propagated in the 1970-ties, postulated a syngenetic/syndiagenetic formation of this and similar deposits by exhalative-hydrothermal processes related to Early Palaeozoic mafic volcanism with subsequent magmatic as well as metamorphic reworking and mobilisation during the Variscan and Alpine orogeny. Discovery of Felbertal has boosted world-wide exploration for this type of W deposit, however without success. No second economic deposit of this type was ever discovered, likely because of inadequate exploration models that were based on a wrong genetic concept. Some essential aspects controlling formation of tungsten deposits in the Eastern Alps are: (1) They are restricted to some Early Palaeozoic terranes now incorporated in the Alpine orogen (pre-Alpine Penninic units, Celtic terrane within the Austroalpine units); this could indicate a selective geochemical pre-concentration of W in some parts of the pre-Alpine crust. (2) Collision-related Variscan magmatism with emplacement of a geochemically highly anomalous metagranitoid at c. 340 Ma ("K1 orthogneiss") proved to be crucial for the Felbertal deposit. (3) A new in-situ U-Pb age of c. 340 Ma for "Scheelite 1" (previously thought to be c. 520 Ma) confirms that at

  18. Geochemical and stable isotopic data on barren and mineralized drill core in the Devonian Popovich Formation, Screamer sector of the Betze-Post gold deposit, northern Carlin trend, Nevada

    USGS Publications Warehouse

    Christiansen, William D.; Hofstra, Albert H.; Zohar, Pamela B.; Tousignant, Gilles

    2011-01-01

    The Devonian Popovich Formation is the major host for Carlin-type gold deposits in the northern Carlin trend of Nevada. The Popovich is composed of gray to black, thin-bedded, calcareous to dolomitic mudstone and limestone deposited near the carbonate platform margin. Carlin-type gold deposits are Eocene, disseminated, auriferous pyrite deposits characterized by acid leaching, sulfidation, and silicification that are typically hosted in Paleozoic calcareous sedimentary rocks exposed in windows through siliceous sedimentary rocks of the Roberts Mountains allochthon. The Carlin trend currently is the largest gold producer in the United States. The Screamer ore zone is a tabular body on the periphery of the huge Betze-Post gold deposit. Screamer is a good place to study both the original lithogeochemistry of the Popovich Formation and the effects of subsequent alteration and mineralization because it is below the level of supergene oxidation, mostly outside the contact metamorphic aureole of the Jurassic Goldstrike stock, has small, high-grade ore zones along fractures and Jurassic dikes, and has intervening areas with lower grade mineralization and barren rock. In 1997, prior to mining at Screamer, drill core intervals from barren and mineralized Popovich Formation were selected for geochemical and stable isotope analysis. The 332, five-foot core samples analyzed are from five holes separated by as much as 2000 feet (600 meters). The samples extend from the base of the Wispy unit up through the Planar and Soft sediment deformation units into the lower part of the upper Mud unit of the Popovich Formation.

  19. Geochemical contrasts between Late Triassic ore-bearing and barren intrusions in the Weibao Cu-Pb-Zn deposit, East Kunlun Mountains, NW China: constraints from accessory minerals (zircon and apatite)

    NASA Astrophysics Data System (ADS)

    Zhong, Shihua; Feng, Chengyou; Seltmann, Reimar; Li, Daxin; Dai, Zhihui

    2017-12-01

    The Weibao copper-lead-zinc skarn deposit is located in the northern East Kunlun terrane, NW China. Igneous intrusions in this deposit consist of barren diorite porphyry (U-Pb zircon age of 232.0 ± 2.0 Ma) and ore-bearing quartz diorite and pyroxene diorite (U-Pb zircon ages of 223.3 ± 1.5 and 224.6 ± 2.9 Ma, respectively). Whole-rock major and trace element and accessory mineral (zircon and apatite) composition from these intrusions are studied to examine the different geochemical characteristics of ore-bearing and barren intrusions. Compared to the barren diorite porphyry, the ore-bearing intrusions have higher Ce4+/Ce3+ ratios of zircon and lower Mn contents of apatite, indicating higher oxidation state. Besides, apatite from the ore-bearing intrusions shows higher Cl contents and lower F/Cl ratios. These characteristics collectively suggest the higher productivity of ore-bearing quartz diorite and pyroxene diorite. When compared with ore-bearing intrusions from global porphyry Cu deposits, those from Cu-Pb-Zn skarn deposits display lower Ce4+/Ce3+ and EuN/EuN* ratios of zircon and lower Cl and higher F/Cl ratios of apatite. We conclude that these differences reflect a general geochemical feature, and that zircon and apatite composition is a sensitive tool to infer economic potential of magmas and the resulting mineralization types in intrusion-related exploration targets.

  20. The Kharapeh orogenic gold deposit: Geological, structural, and geochemical controls on epizonal ore formation in West Azerbaijan Province, Northwestern Iran

    USGS Publications Warehouse

    Niroomand, Shojaeddin; Goldfarb, Richard J.; Moore, Farib; Mohajjel, Mohammad; Marsh, Erin E.

    2011-01-01

    The Kharapeh gold deposit is located along the northwestern margin of the Sanandaj–Sirjan Zone (SSZ) in the West Azerbaijan province, Iran. It is an epizonal orogenic gold deposit formed within the deformed zone between central Iran and the Arabian plate during the Cretaceous–Tertiary Zagros orogeny. The deposit area is underlain by Cretaceous schist and marble, as well as altered andesite and dacite dikes. Structural analysis indicates that the rocks underwent tight to isoclinal recumbent folding and were subsequently co-axially refolded to upright open folds during a second deformation. Late- to post-tectonic Cenozoic granites and granodiorites occur northeast of the deposit area. Mineralization mainly is recognized within NW-trending extensional structures as veins and breccia zones. Normal faults, intermediate dikes, and quartz veins, oriented subparallel to the axial surface of the Kharapeh antiform, indicate synchronous extension perpendicular to the fold axis during the second folding event. The gold-bearing quartz veins are >1 km in length and average about 6 m in width; breccia zones are 10–50 m in length and ≤1 m in width. Hydrothermal alteration mainly consists of silicification, sulfidation, chloritization, sericitization, and carbonatization. Paragenetic relationships indicate three distinct stages—replacement and silicification, brecciation and fracture filling, and cataclastic brecciation—with the latter two being gold-rich. Fluid inclusion data suggest mineral deposition at temperatures of at least 220–255°C and depths of at least 1.4–1.8 km, from a H2O–CO2±CH4 fluid of relatively high salinity (12–14 wt.% NaCl equiv.), which may reflect metamorphism of passive margin carbonate sequences. Ore fluid δ18O values between about 7‰ and 9‰ suggest no significant meteoric water input, despite gold deposition in a relatively shallow epizonal environment. Similarities to other deposits in the SSZ suggest that the deposit formed as

  1. Ore deposits and epithermal evidences associated with intra-magmatic faults at Aïn El Araâr-Oued Belif ring structure (NW of Tunisia)

    NASA Astrophysics Data System (ADS)

    Aissa, Wiem Ben; Aissa, Lassaâd Ben; Amara, Abdesslem Ben Haj; Tlig, Said; Alouani, Rabah

    2017-03-01

    Hydrothermal ore deposits at Aïn El Araâr-Oued Belif location are classified as epithermal deposits type. The ore bodies are hosted by upper Turonian (8-9 M.y) volcanic rhyodacitic complex. Polymetallic sulfide orebodies are mainly concentrated within intra-magmatic faults. Petrographic, XRD, and TEM-STEM investigations revealed that ore minerals are essentially, arsenopyrite, pyrite, chalcopyrite, pyrrhotite, hematite, goethite and magnetite with Au, Ag and Pt trace metals. Gangue minerals are mainly adularia, quartz, sericite, alunite, tridymite, chlorite, phlogopite and smectite. Epithermal alteration is well zoned with four successive characteristic zones: (1) zone of quartz-adularia-sericite and rare alunite; (2) zone of kaolinite and plagioclase albitization; (3) intermediate zone of illite-sericite; (4) sapropelic alteration type zone of chlorite-smectite and rare illite. This can be interpreted as a telescoping of two different acidity epithermal phases; low sulfidation (adularia-sericite) and high sulfidation (quartz-alunite), separated in time or due to a gradual increase of fluids acidity and oxicity within the same mineralization phase. Brecciated macroscopic facies with fragments hosting quartz-adularia-sericite minerals (low-sulfidation phase) without alunite, support the last hypothesis. Geodynamic context and mineral alteration patterns are closely similar to those of Maria Josefa gold mine at SE of Spain which exhibit a volcanic-hosted epithermal ore deposit in a similar vein system, within rhyolitic ignimbrites, altered to an argillic assemblage (illite-sericite abundant and subordinate kaolinite) that grades outwards into propylitic alteration (Sanger-von Oepen et al. (1990)). Mineralogical and lithologic study undertaken in the volcanic host rock at Aïn El Araâr-Oued Belif reveals a typical epithermal low-sulfidation and high-sulfidation ore deposits with dominance of low-sulfidation. Host rocks in these systems range from silicic to

  2. Ordovician reef-hosted Jiaodingshan Mn-Co deposit and Dawashan Mn deposit, Sichuan Province, China

    USGS Publications Warehouse

    Fan, Delian; Hein, James R.; Ye, Jie

    1999-01-01

    The Jiaodingshan Mn-Co and Dawashan Mn deposits are located in the approximately 2-m thick Daduhe unit of the Wufengian strata of Late Ordovician (Ashgill) age. Paleogeographic reconstruction places the deposits at the time of their formation in a gulf between Chengdu submarine rise and the Kangdian continent. The Jiaodingshan and Dawashan deposits occur in algal-reef facies, the former in an atoll-like structure and the latter in a pinnacle reef. Ores are mainly composed of rhodochrosite, kutnahorite, hausmannite, braunite, manganosite, and bementite. Dark red, yellowish-pink, brown, green-gray, and black ores are massive, banded, laminated, spheroidal, and cryptalgal (oncolite, stromatolite, algal filaments) boundstones. Blue, green, and red algal fossils show in situ growth positions. Samples of high-grade Jiaodingshan and Dawashan ores assay as much as 66.7% MnO. Jiaodingshan Mn carbonate ores have mean contents of Ba, Co, and Pb somewhat higher than in Dawashan ores. Cobalt is widely distributed and strongly enriched in all rock types as compared to its crustal mean content. Cobalt is correlated with Cu, Ni, and MgO in both deposits and additionally with Ba and Zn in the Dawashan deposit. The δ13C(PDB) values of Mn carbonate ores (-7.8 to -16.3‰) indicate contributions of carbon from both seawater bicarbonate and the bacterial degradation of organic matter, the latter being 33% to 68%, assuming about -24‰ for the δ13C(PDB) of the organic matter. Host limestones derived carbon predominantly from seawater bicarbonate δ1313C(PDB) of +0.2 to -7‰). NW-trending fault zones controlled development of lithofacies, whereas NE-trending fault zones provided pathways for movement of fluids. The source of Co, Ni, and Cu was mainly from weathering of mafic and ultramafic rocks on the Kangdian continent, whereas contemporaneous volcanic eruptions were of secondary importance. The reefs were likely mineralized during early diagenesis under shallow burial. The reefs

  3. Investigation of LANDSAT imagery on correlations between ore deposits and major shield structures in Finland

    NASA Technical Reports Server (NTRS)

    Tuominen, H. V. (Principal Investigator); Kuosmanen, V.

    1977-01-01

    The author has identified the following significant results. Several regional lineaments appear to correlate with the distribution of ore deposits and showings. Combined study of LANDSAT summer and winter mosaics and color composites of geological, geomorphological, and geophysical maps makes the correlation more perceptible. The revealed pattern of significant lineaments in northern Finland is fairly regular. The most significant lineaments seen in LANDSAT mosaics are not detectable in single images.

  4. Hydrothermal alteration, ore fluid characteristics, and gold depositional processes along a trondhjemite-komatiite contact at Tarmoola, Western Australia

    USGS Publications Warehouse

    Duuring, P.; Hagemann, S.G.; Cassidy, K.F.; Johnson, C.A.

    2004-01-01

    studies and stage II mineral equilibria, gold deposited from a homogeneous, neutral to slightly alkaline (pH 5.1-5.5), reduced, low-salinity (<5.5 wt % NaCl equiv) fluid that had a bulk composition of 78 mole percent H2O and 21 mole percent CO2, and trace amounts of CH4, C2H6, H2, Ar, H2S, and He. Gold deposition occurred at 300?? ?? 50??C and 0.5 to 3.0 kbars. Assuming lithostatic fluid pressures, gold precipitated at a 2- to 10-km depth. Stage II gray quartz ??18Ofluid values range from 5.9 to 7.5 per mil, whereas ??Dfluid values calculated from the dehydration of muscovite grains and measured directly from bulk fluid inclusion analyses of stage II gray quartz have ranges of -9 to -35 and -27 to -28 per mil, respectively. Hydrothermal ore fluids were transported from greater crustal depths to the site of gold deposition during the district-scale D3 event by shallowly W dipping, reverse brittle-ductile shear zones in supracrustal rock and along the steeply east dipping trondhjemite contact. Associated subhorizontal east-west shortening caused the reactivation of the eastern trondhjemite margin and subparallel foliation, which facilitated the transport of hydrothermal fluids and the generation of gold-bearing veins and hydrothermal alteration zones in komatiite. East-west-striking fractures in trondhjemite aided the lateral migration of ore fluids away from trondhjemite margins and the formation of east-west-striking gold-bearing veins and broad alteration zones. Gold was most likely transported in the stage II fluid as bisulfide complexes. The sulfidation of trondhjemite and komatiite wall rock by the stage II fluid caused the destabilization of An bisulfide complexes and gold deposition. Potassium, Ca, and CO2 metasomatism of komatiite wall rock may have enhanced gold deposition via the acidification of the stage II fluid. The physicochemical characteristics of the Tarmoola ore fluid and relative timing of gold mineralization are consistent with the Yilgarn-wide,

  5. Mineralogical and geochemical studies on the Central Seruyan Pb-Zn deposits in Central Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Lee, I.; Choi, B.; KIM, Y.; Moon, I.

    2017-12-01

    The Central Seruyan Pb-Zn deposit is located in Seruyan, Central Kalimantan Province in Indonesia. This deposit has been developed since last year and is still being investigated. The Pb-Zn deposit consists of two formations, Pinoh and Kuayan formation. The former is a metamorphic unit hosting schist, phyllite and gneiss, and the latter is a pyroclastic and volcanic unit includes intermediate volcanic rocks such as dacite, tuff and breccia. Most host rocks of the deposit is composed of the silicified porphyritic dacite and silicified phyllite and covered by silicified tuff. The joints and fractures within the wall rock has E-W trends. The Seruyan Pb-Zn deposit is considered as hydrothermal breccia type.In this study, we observe ore minerals and host rocks to understand the genesis of the Pb-Zn deposit with geochemical data. Pyrite, chalcopyrite, sphalerite and galena are major ore minerals and covellite and bornite are also observed as minor sulfide minerals. These ore minerals, except pyrite, usually occur within quartz or calcite veins indicating the influence of hydrothermal fluid. In the host rocks, dacite, has the altered minerals like sericite, chlorite, epidote and some clay minerals of hydrothermal origin. All minerals occur as massive form. Only some pyrites have an euhedral form. Small amount of Au, Ag and Mo are detected in major ore minerals in the EPMA (electron probe X-ray microanalyzer) analyses.

  6. A precise 232Th-208Pb chronology of fine-grained monazite: Age of the Bayan Obo REE-Fe-Nb ore deposit, China

    USGS Publications Warehouse

    Wang, Jingyuan; Tatsumoto, M.; Li, X.; Premo, W.R.; Chao, E.C.T.

    1994-01-01

    We have obtained precise Th-Pb internal isochron ages on monazite and bastnaesite for the world's largest known rare earth elements (REE)-Fe-Nb ore deposit, the Bayan Obo of Inner Mongolia, China. The monazite samples, collected from the carbonate-hosted ore zone, contain extremely small amounts of uranium (less than 10 ppm) but up to 0.7% ThO2. Previous estimates of the age of mineralization ranged from 1.8 to 0.255 Ga. Magnetic fractions of monazite and bastnaesite samples (<60-??m size) showed large ranges in 232Th 204Pb values (900-400,000) and provided precise Th-Pb internal isochron ages for paragenetic monazite mineralization ranging from 555 to 398 Ma within a few percent error (0.8% for two samples). These results are the first indication that REE mineralization within the giant Bayan Obo ore deposit occurred over a long period of time. The initial lead isotopic compositions (low 206Pb 204Pb and high 208Pb 204Pb) and large negative ??{lunate}Nd values for Bayan Obo ore minerals indicate that the main source(s) for the ores was the lower crust which was depleted in uranium, but enriched in thorium and light rare earth elements for a long period of time. Zircon from a quartz monzonite, located 50 km south of the ore complex and thought to be related to Caledonian subduction, gave an age of 451 Ma, within the range of monazite ages. Textural relations together with the mineral ages favor an epigenetic rather than a syngenetic origin for the orebodies. REE mineralization started around 555 Ma (disseminated monazite in the West, the Main, and south of the East Orebody), but the main mineralization (banded ores) was related to the Caledonian subduction event ca. 474-400 Ma. ?? 1994.

  7. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes

    NASA Astrophysics Data System (ADS)

    Knipping, Jaayke L.; Bilenker, Laura D.; Simon, Adam C.; Reich, Martin; Barra, Fernando; Deditius, Artur P.; Wälle, Markus; Heinrich, Christoph A.; Holtz, François; Munizaga, Rodrigo

    2015-12-01

    Iron oxide-apatite (IOA) deposits are an important source of iron and other elements (e.g., REE, P, U, Ag and Co) vital to modern society. However, their formation, including the namesake Kiruna-type IOA deposit (Sweden), remains controversial. Working hypotheses include a purely magmatic origin involving separation of an Fe-, P-rich, volatile-rich oxide melt from a Si-rich silicate melt, and precipitation of magnetite from an aqueous ore fluid, which is either of magmatic-hydrothermal or non-magmatic surface or metamorphic origin. In this study, we focus on the geochemistry of magnetite from the Cretaceous Kiruna-type Los Colorados IOA deposit (∼350 Mt Fe) located in the northern Chilean Iron Belt. Los Colorados has experienced minimal hydrothermal alteration that commonly obscures primary features in IOA deposits. Laser ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) transects and electron probe micro-analyzer (EPMA) wavelength-dispersive X-ray (WDX) spectrometry mapping demonstrate distinct chemical zoning in magnetite grains, wherein cores are enriched in Ti, Al, Mn and Mg. The concentrations of these trace elements in magnetite cores are consistent with igneous magnetite crystallized from a silicate melt, whereas magnetite rims show a pronounced depletion in these elements, consistent with magnetite grown from an Fe-rich magmatic-hydrothermal aqueous fluid. Further, magnetite grains contain polycrystalline inclusions that re-homogenize at magmatic temperatures (>850 °C). Smaller inclusions (<5 μm) contain halite crystals indicating a saline environment during magnetite growth. The combination of these observations are consistent with a formation model for IOA deposits in northern Chile that involves crystallization of magnetite microlites from a silicate melt, nucleation of aqueous fluid bubbles on magnetite surfaces, and formation and ascent of buoyant fluid bubble-magnetite aggregates. Decompression of the fluid-magnetite aggregate

  8. Difference in rockburst hazard in ore and coal mines

    NASA Astrophysics Data System (ADS)

    Lovchikov, AV

    2018-03-01

    In the Russian mining and engineering literature, in most cases, there is no difference in the assessment of the rockburst hazards in metal and coal mines. Nevertheless, it exists, in view of the difference in geological and geotechnical conditions of coal and ore deposits. Since ore deposits occur in the solid magmatic or metamorphic rock masses, the strongest induced earthquakes are much more powerful in ore mines than in coal mines. The main difference of rockbursting lies in the difference of natural stress state: gravity stress state in the coal fields and gravity-and-tectonic stress state in ore mines. The actual stresses are mostly vertical in the first case and horizontal in the second case, which conditions the difference in rockburst hazard in coal and ore mines.

  9. Geology and mineral deposits of the Minnie Moore and Bullion mineralized areas, Blaine County, Idaho

    USGS Publications Warehouse

    Link, Paul Karl; Worl, Ronald G.

    2001-01-01

    In the early 1880?s the discovery of rich ores in the Minnie Moore and Bullion mineralized areas sparked a rush to settle and develop the Wood River valley. Silver and lead discoveries in these areas spurred the boom in mining after completion of the Oregon Short Line Railroad to Hailey in 1883. In both areas the ore comprises galena, sphalerite, and tetrahedrite in a gangue of siderite, calcite, or quartz. Minor goldbearing quartz veins are also present. The ore is in fissure and replacement veins along fracture systems that formed in Late Cretaceous time, after intrusion of nearby granodiorite or quartz diorite stocks. The ore formed under mesothermal conditions and heat was supplied by the nearby plutons. In the Minnie Moore area, the mineralized veins are cut by low-angle normal faults that are of probable Eocene age. In the Minnie Moore mineralized area, the host rock is the middle part of the Devonian Milligen Formation, (the informal Lucky Coin limestone and Triumph argillite), which is the same stratigraphic level as the host ore in the rich Triumph mine northeast of Hailey. In the Bullion mineralized area, the ore is hosted by the lower member of the Middle Pennsylvanian to Lower Permian Dollarhide Formation. Rich ore was mined in several tunnels that reached the Mayflower vein, a northwest-striking mineralized shear zone. The deposits are thought to be mainly mesothermal veins that formed in association with Cretaceous magmatism. The syngenetic stratiform model of ore formation has often been applied to these deposits, however, no evidence of syngenetic mineralization was found in this study. Faulting has displaced most of the major orebodies and thus has made mining these deposits a challenge.

  10. Ore genesis of the Wusihe carbonate-hosted Zn-Pb deposit in the Dadu River Valley district, Yangtze Block, SW China: evidence from ore geology, S-Pb isotopes, and sphalerite Rb-Sr dating

    NASA Astrophysics Data System (ADS)

    Xiong, Suo-Fei; Gong, Yong-Jun; Jiang, Shao-Yong; Zhang, Xiao-Jing; Li, Qian; Zeng, Guo-Ping

    2018-01-01

    The Wusihe carbonate-hosted Zn-Pb deposit (3.7 Mt. Zn + Pb at a grade of 8.6% Zn and 2.0% Pb) is the largest deposit in the Dadu River Valley district of the Sichuan-Yunnan-Guizhou metallogenic province of southwest China. Three types of orebodies occur: (1) stratiform, banded and lamellar, within dolomite of the Neoproterozoic Dengying Formation; (2) vein type; and (3) breccia type. Four stages of mineralization are distinguished: (i) pyrite stage, (ii) pyrite-pyrrhotite-galena-sphalerite-bitumen stage, (iii) sphalerite-galena stage, and (iv) bitumen-calcite stage. Sphalerite and galena from stages II and III show δ34S ranges from +7.1 to +9.7‰ and +9.1 to +13.1‰, respectively. High-precision in situ lead isotope analyses of sulfides show 208Pb/204Pb, 207Pb/204Pb, and 206Pb/204Pb ratios of 37.938 to 38.336, 15.579 to 15.682, and 17.951 to 18.195, respectively, which suggest a mixing of lead from the basement and the host rocks. Rb-Sr isotope analyses for six sphalerite samples of stage II yielded an isochron age of 411 ± 10 Ma (MSWD = 1.4). Combining all available ore geology and geochemical data, together with fluid inclusion data reported previously, we suggest that the Wusihe deposit is a Mississippi Valley-type (MVT) deposit.

  11. In situ strontium and sulfur isotope investigation of the Ni-Cu-(PGE) sulfide ore-bearing Kevitsa intrusion, northern Finland

    NASA Astrophysics Data System (ADS)

    Luolavirta, Kirsi; Hanski, Eero; Maier, Wolfgang; Lahaye, Yann; O'Brien, Hugh; Santaguida, Frank

    2018-01-01

    The 2.06-Ga Kevitsa mafic-ultramafic intrusion in northern Finland hosts a large disseminated Ni-Cu-PGE deposit. The deposit occurs in the ultramafic olivine-pyroxene cumulates and shows a range in Ni tenors varying from 4-7 wt% (regular ore) to > 10 wt% (Ni-PGE ore). There are also a metal-poor sulfide mineralization (false ore) and contact mineralization that are uneconomic (Ni tenor < 4 wt%). The obtained 87Sr/86Sr(i) values of the Kevitsa ultramafic cumulates are highly radiogenic (> 0.7045) in comparison to the estimated depleted mantle Sr isotope ratio of 0.702 at 2.06 Ga. The sulfur δ 34S values are generally higher than + 2‰, which together with the Sr isotope data imply involvement of crustal material in the genesis of the Kevitsa intrusion and its ores. The 87Sr/86Sr(i) values obtained from the ore-bearing domain of the intrusion show stratigraphic variation and exceed 0.7050, with the maximum value reaching up to 0.7109. In contrast, in rocks around the ore domain, the initial Sr isotope compositions remain more or less constant (0.7047-0.7060) throughout the intrusive stratigraphy. The isotope data suggest that the ore-bearing domain of the intrusion represents a dynamic site with multiple injections of variably contaminated magma, whereas the surrounding part of the intrusion experienced a less vigorous emplacement history. No correlation is observed between the strontium and sulfur isotope compositions. This is explained by bulk assimilation of the silicate magma in a deeper staging magma chamber and variable assimilation of sulfur during magma transport into the Kevitsa magma chamber. The low level of metals in false ore and the Ni-depleted nature of its olivine suggest that some sulfides may have precipitated and deposited in the feeder conduit during the initial stage of magma emplacement. Cannibalization of early-formed sulfides by later magma injections may have been important in the formation of the economic ore deposit.

  12. The dilemma of the Jiaodong gold deposits: Are they unique?

    USGS Publications Warehouse

    Goldfarb, Richard J.; Santosh, M.

    2013-01-01

    The ca. 126–120 Ma Au deposits of the Jiaodong Peninsula, eastern China, define the country's largest gold province with an overall endowment estimated as >3000 t Au. The vein and disseminated ores are hosted by NE- to NNE-trending brittle normal faults that parallel the margins of ca. 165–150 Ma, deeply emplaced, lower crustal melt granites. The deposits are sited along the faults for many tens of kilometers and the larger orebodies are associated with dilatational jogs. Country rocks to the granites are Precambrian high-grade metamorphic rocks located on both sides of a Triassic suture between the North and South China blocks. During early Mesozoic convergent deformation, the ore-hosting structures developed as ductile thrust faults that were subsequently reactivated during Early Cretaceous “Yanshanian” intracontinental extensional deformation and associated gold formation.Classification of the gold deposits remains problematic. Many features resemble those typical of orogenic Au including the linear structural distribution of the deposits, mineralization style, ore and alteration assemblages, and ore fluid chemistry. However, Phanerozoic orogenic Au deposits are formed by prograde metamorphism of accreted oceanic rocks in Cordilleran-style orogens. The Jiaodong deposits, in contrast, formed within two Precambrian blocks approximately 2 billion years after devolatilization of the country rocks, and thus require a model that involves alternative fluid and metal sources for the ores. A widespread suite of ca. 130–123 Ma granodiorites overlaps temporally with the ores, but shows a poor spatial association with the deposits. Furthermore, the deposit distribution and mineralization style is atypical of ores formed from nearby magmas. The ore concentration requires fluid focusing during some type of sub-crustal thermal event, which could be broadly related to a combination of coeval lithospheric thinning, asthenospheric upwelling, paleo-Pacific plate

  13. The Russell gold deposit, Carolina Slate Belt, North Carolina

    USGS Publications Warehouse

    Klein, T.L.; Cunningham, C.G.; Logan, M.A.V.; Seal, R.R.

    2007-01-01

    Gold deposits have been mined in the Carolina slate belt from the early 1800s to recent times, with most of the production from large mines in South Carolina. The Russell mine, one of the larger producers in North Carolina, is located in the central Uwharrie Mountains, and produced over 470 kg of gold. Ore grades averaged about 3.4 grams per tonne (g/ t), with higher-grade zones reported. The Russell deposit is interpreted to be a sediment-hosted, gold-rich, base-metal poor, volcanogenic massive sulfide deposit in which gold was remobilized, in part, during Ordovician metamorphism. The ore was deposited syngenetically with laminated siltstones of the late Proterozoic Tillery Formation that have been metamorphosed to a lower greenschist facies. The Tillery Formation regionally overlies subaerial to shallow marine rhyolitic volcanic and volcaniclastic rocks of the Uwharrie Formation and underlies the marine volcanic and sedimentary rocks of the Cid Formation. Recent mapping has shown that a rhyolitic dome near the Russell mine was extruded during the deposition of the lower part of the Tillery Formation, at about the same time as ore deposition. Relict mafic, rock fragments present in the ore zones suggest contemporaneous bimodal (rhyolite-basalt) volcanism. The maximum formation age of the Russell deposit is younger than 558 Ma, which is similar to that of the larger, well known Brewer, Haile, and Ridgeway deposits of South Carolina. Gold was mined from at least six zones that are parallel to the regional metamorphic foliation. These strongly deformed zones consist of northeast-trending folds, high-angle reverse faults, and asymmetric doubly plunging folds overturned to the southeast. The dominant structure at the mine is an asymmetric doubly plunging anticline with the axis trending N 45?? E, probably related to late Ordovician (456 ?? 2 Ma) regional metamorphism and deformation. Two stages of pyrite growth are recognized. Stage 1, primary, spongy pyrite, is

  14. Paleomagnetic Constraints on the age of the Lisheen Zn-Pb Deposit, Ireland: A Pre- Variscan Metamorphosed "MVT" Versus an Epigenetic Variscan Model for Ore Genesis

    NASA Astrophysics Data System (ADS)

    Pannalal, S. J.; Symons, D. T.; Sangster, D. F.

    2009-05-01

    Lower Carboniferous carbonate units in the Irish Midlands host major Zn-Pb ore deposits in two units, the Navan Group and the Waulsortian Limestone. The age and, therefore, the genesis of these ore deposits remains controversial because of the lack of absolute geochronological constraints. In addition, the effect of the Early Permian Variscan thermal episode, observed by elevated conodont color alteration indices in all Carboniferous strata in Ireland, on the Zn-Pb ore deposits is not clearly understood. This paleomagnetic study was undertaken to date and, thereby, constrain the genesis of the Waulsortian Limestone-hosted Lisheen Zn- Pb ore deposit. Specimens (432) from 12 sites in ore mineralization and 10 sites in host rocks at Lisheen were subjected to alternating-field and thermal step demagnetization protocols. Analysis of these specimens isolated a well-defined stable shallow and southerly-up paleomagnetic characteristic remanent magnetization (ChRM) direction. Saturation remanence tests, thermal decay data, and a paleomagnetic tilt test indicate a post-folding ChRM that is carried dominantly by single-domain magnetite. The ChRM directions from 8 host rock and 11 Zn-Pb mineralized sites are indistinguishable at 95% confidence, and give a mean paleopole at 41.6° S, 18.8° W (dp = 1.7°, dm = 3.3° ) with a paleomagnetic age of 277 ± 7 (2 σ) Ma on the apparent polar wander path for Laurentia in European coordinates. This Early Permian magnetization postdates peak-Variscan orogenic heating to ˜ 350° C in the surrounding region, suggesting two basic genetic models for Lisheen's Zn-Pb mineralization i.e. Variscan and metamorphosed pre-Variscan. The Variscan model, our preferred interpretation, suggests that the Zn-Pb mineralizing event occurred at 277 Ma during cooling from the regional Variscan thermal episode. This model, in conjunction with other thermal data, supports an entirely epigenetic origin that invokes a topographically-driven fluid flow, either

  15. The indirect electrochemical refining of lunar ores

    NASA Technical Reports Server (NTRS)

    Semkow, Krystyna W.; Sammells, Anthony F.

    1987-01-01

    Recent work performed on an electrolytic cell is reported which addresses the implicit limitations in various approaches to refining lunar ores. The cell uses an oxygen vacancy conducting stabilized zirconia solid electrolyte to effect separation between a molten salt catholyte compartment where alkali metals are deposited, and an oxygen-evolving anode of composition La(0.89)Sr(0.1)MnO3. The cell configuration is shown and discussed along with a polarization curve and a steady-state current-voltage curve. In a practical cell, cathodically deposited liquid lithium would be continuously removed from the electrolytic cell and used as a valuable reducing agent for ore refining under lunar conditions. Oxygen would be indirectly electrochemically extracted from lunar ores for breathing purposes.

  16. Robotic complex for the development of thick steeply-inclined coal seams and ore deposits

    NASA Astrophysics Data System (ADS)

    Nikitenko, M. S.; Malakhov, Yu V.; Neogi, Biswarup; Chakraborty, Pritam; Banerjee, Dipesu

    2017-09-01

    Proposal for the formulation of robotic complexes for steeply inclined coal seams as a basis of the supportive-enclosing walking module and power support with a controlled outlet for mining industry has been represented in this literature. In mining industry, the available resource base reserves and mineral deposits are concentrated deep down the earth crust leading towards a complicated geological condition i.e. abrupt ore bedding and steeply inclined strata with the high gas content and fire hazard of thick coal stratum, heading against an unfavorable and sometimes human labor life risk during subversive mining. Prevailing towards the development of effective robotic complexes based on the means of “unmanned technologies” for extraction of minerals from hard-to-reach deposits and make sure the safety of underground staff during sublevel mining technology.

  17. Regional Crustal Structures and Their Relationship to the Distribution of Ore Deposits in the Western United States, Based on Magnetic and Gravity Data

    USGS Publications Warehouse

    Hildenbrand, T.G.; Berger, B.; Jachens, R.C.; Ludington, S.

    2000-01-01

    Upgraded gravity and magnetic databases and associated filtered-anomaly maps of western United States define regional crustal fractures or faults that may have guided the emplacement of plutonic rocks and large metallic ore deposits. Fractures, igneous intrusions, and hydrothermal circulation tend to be localized along boundaries of crustal blocks, with geophysical expressions that are enhanced here by wavelength filtering. In particular, we explore the utility of regional gravity and magnetic data to aid in understanding the distribution of large Mesozoic and Cenozoic ore deposits, primarily epithermal and porphyry precious and base metal deposits and sediment-hosted gold deposits in the western United States cordillera. On the broadest scale, most ore deposits lie within areas characterized by low magnetic properties. The Mesozoic Mother Lodge gold belt displays characteristic geophysical signatures (regional gravity high, regional low-to-moderate background magnetic field anomaly, and long curvilinear magnetic highs) that might serve as an exploration guide. Geophysical lineaments characterize the Idaho-Montana porphyry belt and the La Caridad-Mineral Park belt (from northern Mexico to western Arizona) and thus indicate a deep-seated control for these mineral belts. Large metal accumulations represented by the giant Bingham porphyry copper and the Butte polymetallic vein and porphyry copper systems lie at intersections of several geophysical lineaments. At a more local scale, geophysical data define deep-rooted faults and magmatic zones that correspond to patterns of epithermal precious metal deposits in western and northern Nevada. Of particular interest is an interpreted dense crustal block with a shape that resembles the elliptical deposit pattern partly formed by the Carlin trend and the Battle Mountain-Eureka mineral belt. We support previous studies, which on a local scale, conclude that structural elements work together to localize mineral deposits within

  18. Magmatic ore deposits in layered intrusions - Descriptive model for reef-type PGE and contact-type Cu-Ni-PGE deposits

    USGS Publications Warehouse

    Zientek, Michael L.

    2012-01-01

    Layered, ultramafic to mafic intrusions are uncommon in the geologic record, but host magmatic ore deposits containing most of the world's economic concentrations of platinum-group elements (PGE) (figs. 1 and 2). These deposits are mined primarily for their platinum, palladium, and rhodium contents (table 1). Magmatic ore deposits are derived from accumulations of crystals of metallic oxides, or immiscible sulfide, or oxide liquids that formed during the cooling and crystallization of magma, typically with mafic to ultramafic compositions. "PGE reefs" are stratabound PGE-enriched lode mineralization in mafic to ultramafic layered intrusions. The term "reef" is derived from Australian and South African literature for this style of mineralization and used to refer to (1) the rock layer that is mineralized and has distinctive texture or mineralogy (Naldrett, 2004), or (2) the PGE-enriched sulfide mineralization that occurs within the rock layer. For example, Viljoen (1999) broadly defined the Merensky Reef as "a mineralized zone within or closely associated with an unconformity surface in the ultramafic cumulate at the base of the Merensky Cyclic Unit." In this report, we will use the term PGE reef to refer to the PGE-enriched mineralization, not the host rock layer. Within a layered igneous intrusion, reef-type mineralization is laterally persistent along strike, extending for the length of the intrusion, typically tens to hundreds of kilometers. However, the mineralized interval is thin, generally centimeters to meters thick, relative to the stratigraphic thickness of layers in an intrusion that vary from hundreds to thousands of meters. PGE-enriched sulfide mineralization is also found near the contacts or margins of layered mafic to ultramafic intrusions (Iljina and Lee, 2005). This contact-type mineralization consists of disseminated to massive concentrations of iron-copper-nickel-PGE-enriched sulfide mineral concentrations in zones that can be tens to hundreds

  19. Mineral types of hydrothermal alteration zones in the Dukat ore field and their relationships to leucogranite and epithermal gold-silver ore, northeastern Russia

    NASA Astrophysics Data System (ADS)

    Filimonova, L. G.; Trubkin, N. V.; Chugaev, A. V.

    2014-05-01

    The paper considers the localization of potassic and propylitic hydrothermal alteration zones in the domal volcanic-plutonic structure controlling the position of the Dukat ore field with the eponymous unique epithermal Au-Ag deposit. Comprehensive mineralogical and geochemical data on rocks and minerals in hydrothermal alteration zones and associated intrusions have shown that quartz-jarosite-sericite, quartz-pyrite-sericite, and quartz-adularia-chlorite alterations were formed with the participation of fluid flows related to a fingerlike projection of a high-K leucogranite porphyry intrusion with large phenocrysts. These hydrothermal alterations developed in the rifted graben under conditions of divergent plate boundaries, whereas quartz-clinozoisite-calcite, epidote-chlorite, and garnet-calcite-chlorite alterations were linked to K-Na leucogranite intrusive bodies and developed under conditions of convergent plate boundaries reactivated as a result of formation of the marginal Okhotsk-Chukotka volcanic belt. Phase separation and coagulation of specific portions of ascending fluids resulted in the formation and stabilization of small-sized particles of native silver and other ore components, which enabled involvement in flows of secondary geothermal solutions and ore-forming fluids. The Sr, Nd, and Pb isotopic compositions of rocks and minerals from the hydrothermal alteration zones, associated intrusions, and economic orebodies at the Dukat deposit indicate that their components have been derived from the juvenile continental crust, which was altered in pre-Cretaceous periods of endogenic activity. The components of gangue minerals of potassic and propylitic hydrothertmal alterations and associated intrusions have been taken from deep sources differing in 87Sr/86Sr and 143Nd/144Nd at similar U/Pb and Th/Pb ratios. Chalcophile lead in products of hydrothermal activity and melanocratic inclusions in leucogranite has been taken from regions with elevated U/Pb and

  20. Positive feedback between strain localization and fluid flow at the ductile-brittle transition leading to Pb-Zn-Fe-Cu-Ag ore deposits in Lavrion (Greece)

    NASA Astrophysics Data System (ADS)

    Scheffer, Christophe; Tarantola, Alexandre; Vanderhaeghe, Olivier

    2016-04-01

    At the crustal scale, the ductile-brittle transition (DBT) might correspond to a physical barrier that separates a deep reservoir of metamorphic and magmatic fluids from a shallow reservoir of surficial fluids. Rock rheology, and thus the location of the DBT, is mainly governed by lithology, temperature and the presence/absence of fluids. Accordingly, the position of the DBT potentially evolves during orogenic evolution owing to thermal evolution and fluid circulation. In turn rocks are transferred across it during burial and exhumation. These processes induce connections between fluid reservoirs which might play a role on ore deposition. In this contribution, we discuss the impact of lithological heterogeneities on deformation, fluid flow and ore deposition based on the example of the Lavrion low-angle top-to-the-SSW detachment accommodating gravitational collapse of the Hellenides orogenic belt in Greece. The Lavrion peninsula, localized along the western boundary of the Attic-Cycladic Metamorphic Core Complex, is characterized by Pb-Zn-Fe-Cu-Ag ore mineralization mainly concentrated along a lithological contact (marble/schists) below and within a detachment shear zone. The mylonitic marble below the detachment shear zone is composed of white layers of pure marble alternating with blue layers containing impurities (SiO2, Al2O3, organic matter…). Development of the mylonitic fabric in competent impure blue marble is associated with its preferred dolomitization related to focused fluid infiltration. This mylonitic marble is cross-cut by several cataclastic horizons preferentially developed within the more competent impure blue marble and newly-crystallized dolomitic horizon. These cataclasites are invaded by fluorite and calcite gangue minerals showing locally Mn, Pb, Zn, Fe oxides and/or hydroxides, sphalerite, Ag-galena, Ag-sulfur and native Ag. Oxygen and carbon stable isotopes performed on marble sections point out decarbonation with magmatic contribution and

  1. CO2-rich and CO2-poor ore-forming fluids of porphyry molybdenum systems in two contrasting geologic setting: evidence from Shapinggou and Zhilingtou Mo deposits, South China

    NASA Astrophysics Data System (ADS)

    Ni, P.

    2017-12-01

    Porphyry deposits are the world most important source of Mo, accounting for more than 95% of world Mo production. Porphyry Mo deposits have been classified into Climax type and Endako type. The Climax type was generally formed in an intra-continental setting, and contain high contents of Mo (0.15-0.45 wt.%) and F (0.5-5 wt.%). In contrast, the Endako type was generated in a continental arc setting and featured by low concentrations of Mo (0.05-0.15 wt.%) and F (0.05-0.15 wt.%). The systematic comparison of ore fluids in two contrasting tectonic environments is still poorly constrained. In this study, the Shapinggou and Zhilingtou Mo deposits in South China were selected to present the contrasting ore-forming fluid features. The fluid inclusion study of Shapinggou Mo deposit suggest: Early barren quartz veins contain fluid inclusions with salinities of 7.9-16.9 wt% NaCl equiv . CO2 contents are high enough to be detected by Raman. Later molybdenite-quartz veins contain vapor-type fluid inclusions with lower salinities (0.1-7.4 wt% NaCl equiv) but higher CO2-contents, coexisting with brine inclusions with 32.9-50.9 wt% NaCl equiv. The fluid inclusion study on Zhilintou Mo deposit suggest : Early barren quartz veins contain mostly intermediate density fluid inclusions with salinities of 5.3-14.1 wt% NaCl equiv, whereas main-stage quartz-molybdenite veins contain vapor-rich fluid inclusions of 0.5-6.2 wt% NaClequiv coexisting with brine inclusions of 38.6-44.8 wt% NaCl equiv. In contrast to the Shapinggou Mo deposit, the fluid inclusions at Shizitou contain only minor amounts of CO2. This study suggests the two porphyry molybdenum deposits experienced a similar fluid evolution trend, from single-phase fluids at the premineralization stage to two-phase fluids at the mineralization stage. Fluid boiling occurred during the ore stage and probably promoted a rapid precipitation of molybdenite. Intensive phyllic alteration, CO2-poor ore-forming fluids, and continental arc

  2. Geology and recognition criteria for sandstone uranium deposits in mixed fluvial-shallow marine sedimentary sequences, South Texas. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, S.S.; Smith, R.B.

    1981-01-01

    Uranium deposits in the South Texas Uranium Region are classical roll-type deposits that formed at the margin of tongues of altered sandstone by the encroachment of oxidizing, uraniferous solutions into reduced aquifers containing pyrite and, in a few cases, carbonaceous plant material. Many of the uranium deposits in South Texas are dissimilar from the roll fronts of the Wyoming basins. The host sands for many of the deposits contain essentially no carbonaceous plant material, only abundant disseminated pyrite. Many of the deposits do not occur at the margin of altered (ferric oxide-bearing) sandstone tongues but rather occur entirely within reduced,more » pyurite-bearing sandstone. The abundance of pyrite within the sands probably reflects the introduction of H/sub 2/S up along faults from hydrocarbon accumulations at depth. Such introductions before ore formation prepared the sands for roll-front development, whereas post-ore introductions produced re-reduction of portions of the altered tongue, leaving the deposit suspended in reduced sandstone. Evidence from three deposits suggests that ore formation was not accompanied by the introduction of significant amounts of H/sub 2/S.« less

  3. Identifying potential disaster zones around the Verkhnekamskoye potash deposit (Russia) using advanced information technology (IT)

    NASA Astrophysics Data System (ADS)

    Royer, J. J.; Filippov, L. O.

    2017-07-01

    This work aims at improving the exploitation of the K, Mg, salts ore of the Verkhnekamskoye deposit using advanced information technology (IT) such as 3D geostatistical modeling techniques together with high performance flotation. It is expected to provide a more profitable exploitation of the actual deposit avoiding the formation of dramatic sinkholes by a better knowledge of the deposit. The GeoChron modelling method for sedimentary formations (Mallet, 2014) was used to improve the knowledge of the Verkhnekamskoye potash deposit, Perm region, Russia. After a short introduction on the modern theory of mathematical modelling applied to mineral resources exploitation and geology, new results are presented on the sedimentary architecture of the ore deposit. They enlighten the structural geology and the fault orientations, a key point for avoiding catastrophic water inflows recharging zone during exploitation. These results are important for avoiding catastrophic sinkholes during exploitation.

  4. Iron-ore resources of the United States including Alaska and Puerto Rico, 1955

    USGS Publications Warehouse

    Carr, Martha S.; Dutton, Carl E.

    1959-01-01

    The importance of iron ore, the basic raw material of steel, as a fundamental mineral, resource is shown by the fact that about 100 million long tons of steel is used annually in the economy of the United States, as compared with a combined total of about 5 million long tons of copper, lead, zinc, and aluminum. Satisfying this annual demand for steel requires about 110 million tons of iron ore and 70 million tons of scrap iron and steel. The average annual consumption of iron ore in the United States from 1951 to 1955, inclusive, was about 110 million long tons, which is about twice the annual average from 1900 to 1930. Production of iron ore in the United States in this 5-year period averaged approximately 100 million long tons annually, divided by regions as follows (in percent): Lake Superior, 84.1; southeastern, 6.7; western, 6.7; northeastern, 1.4; and central and gulf, 1.1. Mining of iron ore began in the American Colonies about 1619, and for 225 years it was limited to eastern United States where fuel and markets were readily available. Production of iron ore from the Lake Superior region began in 1846; the region became the leading domestic source by 1890, and the Mesabi range in Minnesota has been the world's most productive area since 1896. Proximity of raw materials, water transportation, and markets has resulted in centralization of the country's iron and steel industry in the lower Great Lakes area. Increased imports of iron ore being delivered to eastern United States as well as demands for steel in nearby markets have given impetus to expansion in the steel-making capacity in this area. The four chief iron-ore minerals - hematite, liminite, magnetite, and siderite - are widely distributed but only locally form deposits of sufficient tonnage and grade to be commercially valuable at the present time. The iron content of these minerals, of which hematite is the most important, ranges from 48 percent in siderite to 72 percent in magnetite, but as these

  5. The north-subducting Rheic Ocean during the Devonian: consequences for the Rhenohercynian ore sites

    NASA Astrophysics Data System (ADS)

    von Raumer, Jürgen F.; Nesbor, Heinz-Dieter; Stampfli, Gérard M.

    2017-10-01

    Base metal mining in the Rhenohercynian Zone has a long history. Middle-Upper Devonian to Lower Carboniferous sediment-hosted massive sulfide deposits (SHMS), volcanic-hosted massive sulfide deposits (VHMS) and Lahn-Dill-type iron, and base metal ores occur at several sites in the Rhenohercynian Zone that stretches from the South Portuguese Zone, through the Lizard area, the Rhenish Massif and the Harz Mountain to the Moravo-Silesian Zone of SW Bohemia. During Devonian to Early Carboniferous times, the Rhenohercynian Zone is seen as an evolving rift system developed on subsiding shelf areas of the Old Red continent. A reappraisal of the geotectonic setting of these ore deposits is proposed. The Middle-Upper Devonian to Early Carboniferous time period was characterized by detrital sedimentation, continental intraplate and subduction-related volcanism. The large shelf of the Devonian Old Red continent was the place of thermal subsidence with contemporaneous mobilization of rising thermal fluids along activated Early Devonian growth faults. Hydrothermal brines equilibrated with the basement and overlying Middle-Upper Devonian detrital deposits forming the SHMS deposits in the southern part of the Pyrite Belt, in the Rhenish Massif and in the Harz areas. Volcanic-hosted massive sulfide deposits (VHMS) formed in the more eastern localities of the Rhenohercynian domain. In contrast, since the Tournaisian period of ore formation, dominant pull-apart triggered magmatic emplacement of acidic rocks, and their metasomatic replacement in the apical zones of felsic domes and sediments in the northern part of the Iberian Pyrite belt, thus changing the general conditions of ore precipitation. This two-step evolution is thought to be controlled by syn- to post-tectonic phases in the Variscan framework, specifically by the transition of geotectonic setting dominated by crustal extension to a one characterized by the subduction of the supposed northern slab of the Rheic Ocean

  6. The Influence of the Ufimian Tectonic Concentric Structure on the Hydrocarbon Migration and Ore Genesis

    NASA Astrophysics Data System (ADS)

    Filippov, V. A.

    2018-01-01

    The Ufimian tectonic concentric structure (UTC) is a regional structure with concentric and zonal structure of the internal gravity field. In the Neoproterozoic this structure was at higher hypsometric level relative to the Bashkir Meganticlinorium. The most significant uplift of this tectonic concentric structure happened at the beginning of the Karatau time ( 825 Ma) and was accompanied by the formation of a ring fractured zone, favorable for hydrocarbon migration from the Lower Riphean black shales. Due to this, bitumens with higher Mo content in the Neoproterozoic and Paleozoic deposits are confined spatially to this zone. The bitumenosity of the Neoproterozoic deposits on the southern slope of the Ufimian tectonic concentric structure could have contributed to the formation of complex Cu-Ag-Mo-Re ores (copper sands) at the upper boundary of terrigenous red deposits of the Zilmerdak Formation. Positive structures identified in the Neoproterozoic deposits near the margin of the Ufimian tectonic concentric structure are considered to be promising for searching for hydrocarbon fields.

  7. Sediment-hosted Pb-Zn Deposits: a global perspective

    USGS Publications Warehouse

    Leach, David L.; Sangster, Donald F.; Kelley, Karen D.; Large, R; Garven, G.; Allen, Craig R.

    2005-01-01

    district. Zinc grades are approximately the same for both, whereas Pb and Ag grades are about 25 percent greater for SEDEX deposits. The largest difference between SEDEX and MVT deposits is their Cu content. Three times as many SEDEX deposits have reported Cu contents, and the median Cu value of SEDEX deposits is nearly double that of MVT deposits. Furthermore, grade-tonnage values for MVT deposits compared to a subset of SEDEX deposits hosted in carbonate rocks are virtually indistinguishable. The distribution of MVT deposits through geologic time shows that they are mainly a Phanerozoic phenomenon. The ages of SEDEX deposits are grouped into two major groups, one in the Proterozoic and another in the Phanerozoic, MVT deposits dominantly formed in platform carbonate sequences typically located within extensional zones inboard of orogenic belts, whereas SEDEX deposits formed in intracontinental or failed rifts, and rifted continental margins. The ages of MVT ores are generally tens of millions of years younger than their host rocks; however, a few are close <~5 m.y.) to the age of their host rocks. In the absence of direct dates for SEDEX deposits, their age of formation is generally constnuned by relationships to sedimentary or diagenetic features in the rocks. These studies suggest that deposition of SEDEX ores was coeval with sedimentation or early diagenesis, whereas some deposits formed at least 20 m.y. after sedimentation. Fluid inclusion, isotopic studies, and deposit modeling suggest that MVf and SEDEX deposits formed from basin brines with similar temperatures of mainly 90° to 200°C and lO to 30 wt percent NaCI equiv. Lead isotope compositions for MVT and SEDEX deposits show that Pb was mainly derived from a variety of crustal sources. Lead isotope compositions do not provide critelia that distinguish MVT from SEDEX subtypes. However, sulfur isotope compositions for sphalerite and galena show an apparent difference. SEDEX and MVf sulfur isotope compositions

  8. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits

    PubMed Central

    Wen, Hanjie; Zhu, Chuanwei; Zhang, Yuxu; Cloquet, Christophe; Fan, Haifeng; Fu, Shaohong

    2016-01-01

    Lead-zinc deposits are often difficult to classify because clear criteria are lacking. In recent years, new tools, such as Cd and Zn isotopes, have been used to better understand the ore-formation processes and to classify Pb-Zn deposits. Herein, we investigate Cd concentrations, Cd isotope systematics and Zn/Cd ratios in sphalerite from nine Pb-Zn deposits divided into high-temperature systems (e.g., porphyry), low-temperature systems (e.g., Mississippi Valley type [MVT]) and exhalative systems (e.g., sedimentary exhalative [SEDEX]). Our results showed little evidence of fractionation in the high-temperature systems. In the low-temperature systems, Cd concentrations were the highest, but were also highly variable, a result consistent with the higher fractionation of Cd at low temperatures. The δ114/110Cd values in low-temperature systems were enriched in heavier isotopes (mean of 0.32 ± 0.31‰). Exhalative systems had the lowest Cd concentrations, with a mean δ114/110Cd value of 0.12 ± 0.50‰. We thus conclude that different ore-formation systems result in different characteristic Cd concentrations and fraction levels and that low-temperature processes lead to the most significant fractionation of Cd. Therefore, Cd distribution and isotopic studies can support better understanding of the geochemistry of ore-formation processes and the classification of Pb-Zn deposits. PMID:27121538

  9. Geochronology, petrogenesis and tectonic settings of pre- and syn-ore granites from the W-Mo deposits (East Kounrad, Zhanet and Akshatau), Central Kazakhstan

    NASA Astrophysics Data System (ADS)

    Li, GuangMing; Cao, MingJian; Qin, KeZhang; Evans, Noreen J.; Hollings, Pete; Seitmuratova, Eleonora Yusupovha

    2016-05-01

    There is significant debate regarding the mineralization ages of the East Kounrad, Zhanet and Akshatau W-Mo deposits of Central Kazakhstan, and the petrogenesis and tectono-magmatic evolution of the granites associated with these deposits. To address these issues, we present molybdenite Re-Os dating, zircon U-Pb dating, whole rock geochemistry as well as Sr-Nd-Pb and zircon O-Hf isotopic analyses on the pre-mineralization and ore-forming granites. U-Pb dating of zircons from pre-mineralization granitic rocks yield Late Carboniferous ages of 320-309 Ma, whereas ore-forming granites have Early Permian ages of 298-285 Ma. Molybdenite Re-Os isotopic data indicate a mineralization age of 296 Ma at East Kounrad, 294 Ma at Akshatau and 285 Ma at Zhanet. The pre-ore and ore-forming granites are high-K calc-alkaline, metaluminous to slightly peraluminous I-type granites. The pre-mineralization granites are relatively unfractionated, whereas the ore-forming granites are highly fractionated. The fractionating mineral phases are probably K-feldspar, apatite, Ti-bearing phases and minor plagioclase. The pre-mineralization and ore-forming rocks are characterized by similar Sr-Nd-Pb-Hf-O isotopic compositions ((87Sr/86Sr)i = 0.70308-0.70501, εNd (t) = - 0.5 to + 2.8, 207Pb/204Pb = 15.60-15.82, zircon εHf (t) = + 1.2 to + 15.6 and δ18O = + 4.6 to + 10.3‰), whole rock TDMC (Nd) (840-1120 Ma) and zircon TDMC (Hf) (320-1240 Ma). The isotopic characteristics are consistent with a hybrid magma source caused by 10-30% assimilation of ancient crust by juvenile lower crust. The geochronology and geochemistry of these granites show that the Late Carboniferous pre-mineralization granitic rocks formed during subduction, whereas the Early Permian ore-forming, highly fractionated granite probably underwent significant fractionation with a restite assemblage of K-feldspar, apatite, Ti-bearing phases and minor plagioclase and developed during collision between the Yili and Kazakhstan

  10. Organic matter diagenesis as the key to a unifying theory for the genesis of tabular uranium-vanadium deposits in the Morrison Formation, Colorado Plateau

    USGS Publications Warehouse

    Hansley, P.L.; Spirakis, C.S.

    1992-01-01

    Interstitial, epigenetic amorphous organic matter is intimately associated with uranium in the Grants uranium region and is considered essential to genetic models for these deposits. In contrast, uranium minerals are intimately associated with authigenic vanadium chlorite and vanadium oxides in amorphous organic matter-poor ores of the Slick Rock and Henry Mountains mining districts and therefore, in some genetic models amorphous organic matter is not considered crucial to the formation of these deposits. Differences in organic matter content can be explained by recognizing that amorphous organic matter-poor deposits have been subjected to more advanced stages of diagenesis than amorphous organic matter-rich deposits. Evidence that amorphous organic matter was involved in the genesis of organic matter-poor, as well as organic matter-rich, deposits is described. -from Authors

  11. Characterization and timing of the different types of fluids present in the barren and ore-veins of the W-Sn deposit of Panasqueira, Central Portugal

    NASA Astrophysics Data System (ADS)

    Noronha, F.; Doria, A.; Dubessy, J.; Charoy, B.

    1992-01-01

    The Panasqueira W-Sn deposit is the largest quartz-vein type deposit of the Iberian Peninsula and the most important wolframite deposit in Western Europe. The ore-veins are almost exclusively sub-horizontal. Besides ore-bearing sub-horizontal veins, the Panasqueira mine also contains barren quartz veins. There are essentially two generations of barren quartz: quartz, contemporaneous with the earliest regional metamorphism (QI), and recrystallized quartz, contemporaneous with the thermal metamorphism related to the granite intrusion (QII). Fluid inclusion studies (microthermometry and Raman) were undertaken in order to distinguish fluids contemporaneous with the barren quartz from those contemporaneous with the ore-bearing quartz (QIII). Fluid inclusion data indicate that the barren and ore-bearing quartz fluids are dominantly aqueous (93 to 98 mol% H2O), with a nearly constant bulk salinity (8 to 12 wt% eq. NaCl), with the quantity of volatile component (determined by Raman spectrometry) higher in QIII, but never greater than 5 mol%. However, the CO2/CH4 + N2 ratio is different for each type of quartz. Volatiles are dominated by CH4 (10 to 96 mol% ZCH4 and/or N2 (3 to 87 mol% ZN2) in the barren quartz and by CO2 (60 to 73 mol% ZCO2) in ore-bearing quartz. The bulk chemical composition of the fluids in QIII is comparable to that found commonly in hydrothermal fluids associated with wolframite mineralization, where Na>K>Ca and HCO3>Cl>SO4. A dispersion in TH (226 to 350 °C) found in QIII, together with a variation in the degree of filling (0.5 to 0.7) and with the consequent variation of fluid densities (0.70 to 0.79), may result from changes in the fluid pressure regime below lithostatic pressure, suggesting vein filling related to tectonic events.

  12. Zircon U-Pb and Hf-O isotopes trace the architecture of polymetallic deposits: A case study of the Jurassic ore-forming porphyries in the Qin-Hang metallogenic belt, China

    NASA Astrophysics Data System (ADS)

    Zhao, Panlao; Yuan, Shunda; Mao, Jingwen; Santosh, M.; Zhang, Dongliang

    2017-11-01

    The Qin-Hang intra-continental porphyry-skarn Cu polymetallic belt (QHMB) is among the economically important metallogenic belts in South China. The significant differences in the size and metal assemblage of the Jurassic magmatic-hydrothermal ore deposits in this belt remain as an enigma. Here we employ zircon U-Pb and Hf-O isotopes of the Tongshanling and Baoshan Cu-Pb-Zn deposits in the central part of the QHMB to investigate the contrasting metallogenic architecture. Our SIMS zircon U-Pb data indicate that the Tongshanling and Baoshan granodiorite formed at 160 Ma. These rocks show high Mg# values, and negative zircon εHf(t) and high δ18O values suggesting that the magmas of the granodiorite porphyries were mainly generated through the anatexis of older crustal components triggered by the input of mantle-derived magma. The minor content of amphibole phenocrysts, low Sr/Y ratios, negative Eu anomaly, and low zircon Ce4 +/Ce3 + ratios indicate that the porphyries are relatively less oxidized with less water content compared with the ore-bearing porphyries in the Dexing and Yuanzhuding porphyry Cu deposits in the northern and southern part of the QHMB, suggesting that high magmatic water content and oxidation state are important prerequisites for the formation of large size porphyry-skarn copper deposits in the QHMB. The positive correlation between zircon εHf(t) values with the Cu reserves, as well as zircon δ18O values with the Cu/(Cu + Pb + Zn) ratios of the deposits indicate that the magmatic sources exerted a first-order control on the volume and metal assemblage of deposits in the QHMB. The Hf and Nd isotope contour maps indicate that the central part of the QHMB has high potential for Pb-Zn-dominated magmatic-hydrothermal deposits, whereas the northern and southern part of the QHMB are prospective for large Cu deposits. Our results have important implications in formulating regional exploration strategies for Jurassic porphyry-skarn Cu-Pb-Zn deposits in

  13. Deep Ore-controlling Role Beneath the Collision-related Deposit Zone in South Tibetan Plateau, Preliminary Results Revealed by Magnetotelluric Data

    NASA Astrophysics Data System (ADS)

    Xie, C.; Jin, S.; Wei, W.; Ye, G.; Fang, Y.; Zhang, L.; Dong, H.; Yin, Y.

    2017-12-01

    The Tibetan plateau is the largest and most recent plateau orogenic belt in the world, and the south part is expected as the ongoing India-Eurasia continental collision zone. The collision-related deposit zones which are distributed in south plateau could be roughly divided into three parts: the porphyry deposit in the Gangdese magmatic belt, the chromite deposit along the Yarlung-Zangbo suture (YZS) and the prospective deposit along the gneiss domes in the Tethys Himalayan. The deep ore-controlling role of those deposit zones is still remain controversial. Previous magnetotelluric (MT) data deployed from Himalayan to Gangdese terrane were inverted using a three dimensional (3D) MT inversion algorithm ModEM. The results show that the resistivity cover layers above -10 km are distributed along the whole profiles, whereas small and sporadic conductors could be also imaged. The middle to lower crust beneath -25 km is imaged as large scale but discontinuous conductive zones which have a central resistivity less than 10 ohm·m. We suggest the middle to lower crustal conductors could be interpreted as partial melting. This hypothesis is supported by some previous geological and geochemical studies. The Metallogenesis and partial melting play an important role in promoting each other. For the metallogenesis, the high water content is one of the prominent factors, and could be released on breakdown of amphibole in eclogite and garnet amphibolite during melting. On the other hand, the increasing of the water content would probably advance partial melting. The results indicate that the deep process and magmatism beneath different deposit zones are probably varying. We studied the rheological characteristics from the perspective of subsurface electrical structures. We hope by comparative analysis, the process of `origins - migration -formation' for the system of deep `magma - rheology - deposition' would be better understood.

  14. Possible lunar ores

    NASA Technical Reports Server (NTRS)

    Gillett, Stephen L.

    1991-01-01

    Despite the conventional wisdom that there are no lunar ores, geochemical considerations suggest that local concentrations of useful rare elements exist on the Moon in spite of its extreme dryness. The Moon underwent protracted igneous activity in its history, and certain magmatic processes can concentrate incompatible elements even if anhydrous. Such processes include: (1) separation of a magma into immiscible liquid phases (depending on composition, these could be silicate-silicate, silicate-oxide, silicate-sulfide, or silicate-salt); (2) cumulate deposits in layered igneous intrusions; and (3) concentrations of rare, refractory, lithophile elements (e.g., Be, Li, Zr) in highly differentiated, silica-rich magmas, as in the lunar granites. Terrestrial mining experience indicates that the single most important characteristic of a potential ore is its concentration of the desire element. The utility of a planet as a resource base is that the welter of interacting processes over geologic time can concentrate rare element automatically. This advantage is squandered if adequate exploration for ores is not first carried out.

  15. First discovery of high-mercury silver in ores of the Rogovik gold-silver deposit (Northeastern Russia)

    NASA Astrophysics Data System (ADS)

    Makshakov, A. S.; Kravtsova, R. G.; Goryachev, N. A.; Pal'yanova, G. A.; Pavlova, L. A.

    2017-09-01

    New data on mercurial mineralization are presented, and a detailed characteristic is given for the first discovery of mercurous silver in ores of the Rogovik gold-silver deposit (the Omsukchan trough, Northeastern Russia). It was found that native silver in the examined ores occurs as finely-dispersed inclusions in quartz filling microcracks and interstitions. It also occurs in associations with kustelite, Ag sulfosalts and selenides, selenitic acanthite, and argyrodite. The mercury admixture varies from "not detected" in the central parts of grains to 0.22-1.70 wt % along the edges, or, in independent grains, to the appearance of Ag amalgams containing 10.20-24.61 wt % of Hg. The xenomorph form of grains of 50 μm or less in size prevails. It is assumed that the appearance of mercurial mineralization is caused by the superposition of products of the young Hg-bearing Dogda-Erikit belt upon the more ancient Ag-bearing Omsukchan trough.

  16. Geology, geochemistry, and genesis of the Greens Creek massive sulfide deposit, Admiralty Island, southeastern Alaska

    USGS Publications Warehouse

    Taylor, Cliff D.; Johnson, Craig A.

    2010-01-01

    In 1996, a memorandum of understanding was signed by representatives of the U.S. Geological Survey and Kennecott Greens Creek Mining Company to initiate a cooperative applied research project focused on the Greens Creek massive sulfide deposit in southeastern Alaska. The goals of the project were consistent with the mandate of the U.S. Geological Survey Mineral Resources Program to maintain a leading role in national mineral deposits research and with the need of Kennecott Greens Creek Mining Company to further development of the Greens Creek deposit and similar deposits in Alaska and elsewhere. The memorandum enumerated four main research priorities: (1) characterization of protoliths for the wall rocks, and elucidation of their alteration histories, (2) determination of the ore mineralogy and paragenesis, including metal residences and metal zonation within the deposit, (3) determination of the ages of events important to ore formation using both geochronology and paleontology, and (4) development of computer models that would allow the deposit and its host rocks to be examined in detail in three dimensions. The work was carried out by numerous scientists of diverse expertise over a period of several years. The written results, which are contained in this Professional Paper, are presented by 21 authors: 13 from the U.S. Geological Survey, 4 from Kennecott Greens Creek Mining Company, 2 from academia, and 2 from consultants. The Greens Creek deposit (global resource of 24.2 million tons at an average grade of 13.9 percent zinc, 5.1 percent lead, 0.15 troy ounce per ton gold, and 19.2 troy ounces per ton silver at zero cutoff) formed in latest Triassic time during a brief period of rifting of the Alexander terrane. The deposit exhibits a range of syngenetic, diagenetic, and epigenetic features that are typical of volcanogenic (VMS), sedimentary exhalative (SEDEX), and Mississippi Valley-type (MVT) genetic models. In the earliest stages of rifting, formation of

  17. The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings

    USGS Publications Warehouse

    Groves, David I.; Goldfarb, Richard J.; Santosh, M.

    2016-01-01

    In contrast to their province scale similarities, the different giant gold deposit styles show contrasting critical controls at the district to deposit scale. For orogenic gold deposits, the giants appear to have formed by conjunction of a greater number of parameters to those that control smaller deposits, with resultant geometrical and lithostratigraphic complexity as a guide to their location. There are few giant IRGS due to their inferior fluid-flux systems relative to orogenic gold deposits, and those few giants are essentially preservational exceptions. Many Carlin-type deposits are giants due to the exceptional conjunction of both structural and lithological parameters that caused reactive and permeable rocks, enriched in syngenetic gold, to be located below an impermeable cap along antiformal “trends”. Hydrocarbons probably played an important role in concentrating metal. The supergiant Post-Betze deposit has additional ore zones in strain heterogeneities surrounding the pre-gold Goldstrike stock. All unequivocal IOCG deposits are giant or near-giant deposits in terms of gold-equivalent resources, partly due to economic factors for this relatively poorly understood, low Cu-Au grade deposit type. The supergiant Olympic Dam deposit, the most shallowly formed deposit among the larger IOCGs, probably owes its origin to eruption of volatile-rich hybrid magma at surface, with formation of a large maar and intense and widespread brecciation, alteration and Cu-Au-U deposition in a huge rock volume.

  18. Deposit formation in hydrocarbon rocket fuels

    NASA Technical Reports Server (NTRS)

    Roback, R.; Szetela, E. J.; Spadaccini, L. J.

    1981-01-01

    An experimental program was conducted to study deposit formation in hydrocarbon fuels under flow conditions that exist in high-pressure, rocket engine cooling systems. A high pressure fuel coking test apparatus was designed and developed and was used to evaluate thermal decomposition (coking) limits and carbon deposition rates in heated copper tubes for two hydrocarbon rocket fuels, RP-1 and commercial-grade propane. Tests were also conducted using JP-7 and chemically-pure propane as being representative of more refined cuts of the baseline fuels. A parametric evaluation of fuel thermal stability was performed at pressures of 136 atm to 340 atm, bulk fuel velocities in the range 6 to 30 m/sec, and tube wall temperatures in the range 422 to 811 K. Results indicated that substantial deposit formation occurs with RP-1 fuel at wall temperatures between 600 and 800 K, with peak deposit formation occurring near 700 K. No improvements were obtained when deoxygenated JP-7 fuel was substituted for RP-1. The carbon deposition rates for the propane fuels were generally higher than those obtained for either of the kerosene fuels at any given wall temperature. There appeared to be little difference between commercial-grade and chemically-pure propane with regard to type and quantity of deposit. Results of tests conducted with RP-1 indicated that the rate of deposit formation increased slightly with pressure over the range 136 atm to 340 atm. Finally, lating the inside wall of the tubes with nickel was found to significantly reduce carbon deposition rates for RP-1 fuel.

  19. Mississippi Valley-type lead-zinc deposits through geological time: Implications from recent age-dating research

    USGS Publications Warehouse

    Leach, D.L.; Bradley, D.; Lewchuk, Michael T.; Symons, David T. A.; De Marsily, G.; Brannon, J.

    2001-01-01

    Remarkable advances in age dating Mississippi Valley-type (MVT) lead-zinc deposits provide a new opportunity to understand how and where these deposits form in the Earth's crust. These dates are summarized and examined in a framework of global tectonics, paleogeography, fluid migration, and paleoclimate. Nineteen districts have been dated by paleomagnetic and/or radiometric methods. Of the districts that have both paleomagnetic and radiometric dates, only the Pine Point and East Tennessee districts have significant disagreements. This broad agreement between paleomagnetic and radiometric dates provides added confidence in the dating techniques used. The new dates confirm the direct connection between the genesis of MVT lead-zinc ores with global-scale tectonic events. The dates show that MVT deposits formed mainly during large contractional tectonic events at restricted times in the history of the Earth. Only the deposits in the Lennard Shelf of Australia and Nanisivik in Canada have dates that correspond to extensional tectonic events. The most important period for MVT genesis was the Devonian to Permian time, which corresponds to a series of intense tectonic events during the assimilation of Pangea. The second most important period for MVT genesis was Cretaceous to Tertiary time when microplate assimilation affected the western margin of North America and Africa-Eurasia. There is a notable paucity of MVT lead-zinc ore formation following the breakup of Rodinia and Pangea. Of the five MVT deposits hosted in Proterozoic rocks, only the Nanisivik deposit has been dated as Proterozoic. The contrast in abundance between SEDEX and MVT lead-zinc deposits in the Proterozoic questions the frequently suggested notion that the two types of ores share similar genetic paths. The ages of MVT deposits, when viewed with respect to the orogenic cycle in the adjacent orogen suggest that no single hydrologic model can be universally applied to the migration of the ore fluids

  20. Two types of ore-bearing mafic complexes of the Early Proterozoic East-Scandinavian LIP and their ore potential

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Felix; Zhirov, Dmitry; Bayanova, Tamara; Korchagin, Alexey; Chaschin, Victor

    2015-04-01

    magma generate single volcano-plutonic rock series. For intrusive ore bodies rock differentiation with the formation of syngenetic wehrlite-clinopyroxenite-gabbro- orthoclase gabbro sequence is typical. Upper mantle source of the depleted magma is characterized by the following isotope indicators: ɛNd(T) +0.5 to +4, ISr= 87Sr/86Sr 0.703-0.704. Ore-bearing intrusive bodies are injected in the upper part of the Early Palaeoproterozoic volcano-sedimentary cross-section. Ores are located in the basement of intrusions and in the redeposited veined bodies, including offset setting. Numerous Ni-Cu deposits with total reserves and resources of several million tons of Nickel equivalent (with an average grade ≥ 0,3%) have been explored, and some of them now is mining. As a result of our research, the complex of indicators and criteria is suggested for predicting the occurrence, for regional exploration target selection and for regional resource evaluation of PGE and base metals. The studies are supported by the Russian Foundation for Basic Research (project nos. 13-05-12055).

  1. Geostatistical Approach to Estimating the Gold Ore Characteristics and Gold Reserves: A Case Study Daksa Area, Quang Nam Province, Viet Nam

    NASA Astrophysics Data System (ADS)

    Luan Truong, Xuan; Luong Le, Van; Quang Truong, Xuan

    2015-04-01

    Daksa gold deposit is the biggest gold deposits in Vietnam. The Daksa geological structure complicated, distributed mainly metamorphosed sedimentary NuiVu formation (PR3-?1nv2). The sulfide gold ore bodies distributed in quartz schist, quartz - biotite related to faut and distribution wing anticline. The gold ore bodies form circuits, network circuits, circuits lenses; fill the cup surface layer of the developing northeast - southwest; is the less than or west longitude north - SE. The results show that, Au and accompanying elements (Ag, Pb and Zn) have correlated pretty closely. All of its consistent with the logarithmic distribution standard, in accordance with the law of distribution of content mineral rare. The structure functions have nugget effect and spherical models with show that Au and accompanying elements special variation are changes. Au contents shown local anisotropy, no clearly anisotropy (K=1,17) and weakly anisotropy (K=1,4). Intensity mineralization of the ore bodies are quite high with demand spherical conversion coefficient ranging from 0.49 to 0.75 and from 0.66 to 0.97 (for other body). With nugget effects, ore bodies shown that it is consistent with mineralization in the ore bodies study, ore erasable, micro vein, infilling fractures in quartz vein. All of variogram presents local anisotropy, indicated gold mineralization at study area has least two-mineralization stages, consistent with the analysis of mineralography samples. By the results of the structure function study, the authors present the system optimization for exploration deposit and used to evaluate gold reserves by Ordinary Kriging. High accuracy of Kriging estimation results are expressed in the minimum Kriging variance, by compare the results calculated by some other methods (such as distance inverse weighting method, ..) and specially compare to the results of a some blocks have been exploited. Key words: Geostat and gold deposits VN. Daksa and gold mineralization. Geostat

  2. Application of LANDSAT satellite imagery for iron ore prospecting in the western desert of Egypt

    NASA Technical Reports Server (NTRS)

    Elshazly, E. M.; Abdel-Hady, M. A.; Elghawaby, M. A.; Khawasik, S. M. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. The delineation of the geological units and geological structures through image interpretation, corroborated by field observations and structural analysis, led to the discovery of new iron ore deposits. A new locality for iron ore deposition, namely Gebel Qalamun, was discovered, as well as new occurrences within the already known iron ore region of Bahariya Oasis.

  3. Ironstone deposits hosted in Eocene carbonates from Bahariya (Egypt)-New perspective on cherty ironstone occurrences

    NASA Astrophysics Data System (ADS)

    Afify, A. M.; Sanz-Montero, M. E.; Calvo, J. P.

    2015-11-01

    This paper gives new insight into the genesis of cherty ironstone deposits. The research was centered on well-exposed, unique cherty ironstone mineralization associated with Eocene carbonates from the northern part of the Bahariya Depression (Egypt). The economically important ironstones occur in the Naqb Formation (Early Eocene), which is mainly formed of shallow marine carbonate deposits. Periods of lowstand sea-level caused extensive early dissolution (karstification) of the depositional carbonates and dolomitization associated with mixing zones of fresh and marine pore-water. In faulted areas, the Eocene carbonate deposits were transformed into cherty ironstone with preservation of the precursor carbonate sedimentary features, i.e. skeletal and non-skeletal grain types, thickness, bedding, lateral and vertical sequential arrangement, and karst profiles. The ore deposits are composed of iron oxyhydroxides, mainly hematite and goethite, chert in the form of micro- to macro-quartz and chalcedony, various manganese minerals, barite, and a number of subordinate sulfate and clay minerals. Detailed petrographic analysis shows that quartz and iron oxides were coetaneous and selectively replaced carbonates, the coarse dolomite crystals having been preferentially transformed into quartz whereas the micro-crystalline carbonates were replaced by the iron oxyhydroxides. A number of petrographic, sedimentological and structural features including the presence of hydrothermal-mediated minerals (e.g., jacobsite), the geochemistry of the ore minerals as well as the structure-controlled location of the mineralization suggest a hydrothermal source for the ore-bearing fluids circulating through major faults and reflect their proximity to centers of magmatism. The proposed formation model can contribute to better understanding of the genetic mechanisms of formation of banded iron formations (BIFs) that were abundant during the Precambrian.

  4. Magnetite as the indicator of ore genesis for the Huangshaping polymetallic deposit, southern Hunan Province, China

    NASA Astrophysics Data System (ADS)

    Ding, T.; Ma, D.; Lu, J.; Zhang, R.

    2017-12-01

    Huangshaping polymetallic deposit, located in southern Hunan Province, China, hosts abundant W-Mo-Pb-Zn mineralization which linked with the skarn system located between late Mesozoic high-K calc-alkaline to shoshonitic granitoids and the Carboniferous carbonate in this deposit. In this study, concentrations of trace and minor elements of the magnetites from different skarn stages are obtained by in situ LA-ICP-MS analysis, in order to further understand the polymetallic mineralization processes within this deposit. The generally high concentrations of spinel elements, including Mg, Al, Ti, Mn, V, Cr, Co, Ni, Ga, Ge, and Sn, in all magnetites from this deposit suggest that these elements are incorporated into magnetite lattice by substituting Fe3+ and/or Fe2+. However, the various concentrations of Na, Si, K, Ca, and W elements in magnetites, combining the abnormal time-resolved analytical signals of LA-ICP-MS analyses, suggest that these elements are significantly affected by the fluid inclusions in magnetites. Two groups of magnetites can be further distinguished based on their trace and minor elements concentrations: Group-1 magnetites, including those in medium grain garnets and calcite, have obvious lower Na, Si, K, Ca, Sn, W, but higher Mg, Al, Ti, V, Co, Ni, Zn concentrations compared with Group-2 magnetites, which including those in coarse grain garnets, tremolite, and bulk magnetite ores. This suggests that the hydrothermal fluids where Group-2 magnetites precipitated are evolved magmatic fluids which have undergone the crystal fractionation during the early skarn stages (eg. Garnet and tremolite), the high Na, Si, K, and Ca in the hydrothermal fluids probably result from the dissolution of the host rocks, such as limestone, sandstone, and evaporite horizons in this deposit. However, the Group-1 magnetites probably precipitated in the hydrothermal fluids with low salinity, which result the low Na, Si, K, and Ca in these magnitites. Furthermore, these

  5. Geochemistry of the Nsuta Mn deposit in Ghana: Implications for the Paleoproterozoic atmosphere and ocean chemistry

    NASA Astrophysics Data System (ADS)

    Goto, K. T.; Ito, T.; Suzuki, K.; Kashiwabara, T.; Takaya, Y.; Shimoda, G.; Nozaki, T.; Kiyokawa, S.; Tetteh, G. M.; Nyame, F. K.

    2013-12-01

    Oxygenation of the atmosphere and oceans has influenced the evolution of ocean chemistry and diversification of early life. A number of large manganese (Mn) deposits are distributed in the Paleoproterozoic sedimentary successions that were formed during the great oxidation event (GOE) around 2.4-2.2 Ga (Meynard, 2010). Due to the high redox potential of Mn, occurrences of Mn deposits have been regarded as important evidence for a highly oxidized environment during the Paleoproterozoic (Kirschvink et al., 2000). Furthermore, because Mn oxides strongly adsorb various elements, including bioessential elements such as Mo, formation of large Mn deposits may have affected the seawater chemical composition and ecology during the Paleoproterozoic. However, the genesis of each Mn deposit is poorly constrained, and the relationships among the formation of Mn deposits, the evolution of atmospheric and ocean chemistry, and the diversification of early life are still ambiguous. In this study, we report the Re-Os isotope compositions, rare earth element (REE) compositions, and abundance of manganophile elements in the Mn carbonate ore and host sedimentary rock samples collected from the Nsuta Mn deposit of the Birimian Supergroup, Ghana. The Nsuta deposit is one of the largest Paleoproterozoic Mn deposits, although its genesis remains controversial (Melcher et al., 1995; Mucke et al., 1999). The composite Re-Os isochron age (2149 × 130 Ma) of the Mn carbonate and sedimentary rock samples was consistent with the depositional age of the sedimentary rocks (~2.2 Ga) presumed from the U-Pb zircon age of volcanic rocks (Hirdes and Davis, 1998), suggesting that the timing of Mn ore deposition was almost equivalent to the host rock sedimentation. The PAAS-normalized REE pattern showed a positive Eu anomaly in all samples and a positive Ce anomaly only in the Mn carbonate ore. These REE patterns indicate the possible contribution of Eu-enriched fluids derived from hydrothermal activity

  6. Geophysical model of the Cu-Mo porphyry ore deposit at Copper Flat Mine, Hillsboro, Sierra County, New Mexico

    NASA Astrophysics Data System (ADS)

    Gutierrez, Adrian Emmanuel Gutierrez

    A 3D gravity model of the Copper Flat Mine was performed as part of the exploration of new resources in at the mine. The project is located in the Las Animas Mining District in Sierra County, New Mexico. The mine has been producing ore since 1877 and is currently owned by the New Mexico Copper Corporation, which plans o bringing the closed copper mine back into production with innovation and a sustainable approach to mining development. The Project is located on the Eastern side of the Arizona-Sonora-New Mexico porphyry copper Belt of Cretaceous age. Copper Flat is predominantly a Cretaceous age stratovolcano composed mostly of quartz monzonite. The quartz monzonite was intruded by a block of andesite alter which a series of latite dikes creating veining along the topography where the majority of the deposit. The Copper Flat deposit is mineralized along a breccia pipe where the breccia is the result of auto-brecciation due to the pore pressure. There have been a number of geophysical studies conducted at the site. The most recent survey was a gravity profile on the area. The purpose of the new study is the reinterpretation of the IP Survey and emphasizes the practical use of the gravity geophysical method in evaluating the validity of the previous survey results. The primary method used to identify the deposit is gravity in which four Talwani models were created in order to created a 3D model of the ore body. The Talwani models have numerical integration approaches that were used to divide every model into polygons. The profiles were sectioned into polygons; each polygon was assigning a specific density depending on the body being drawn. Three different gridding techniques with three different filtering methods were used producing ten maps prior to the modeling, these maps were created to establish the best map to fit the models. The calculation of the polygons used an exact formula instead of the numerical integration of the profile made with a Talwani approach. A

  7. Boron isotope evidence for the involvement of non-marine evaporites in the origin of the Broken Hill ore deposits

    USGS Publications Warehouse

    Slack, J.F.; Palmer, M.R.; Stevens, B.P.J.

    1989-01-01

    IDENTIFYING the palaeogeographic setting and mode of origin of stratabound ore deposits can be difficult in high-grade metamorphic terranes, where the effects of metamorphism may obscure the nature of the protoliths. Here we report boron isotope data for tourmalines from the early Proterozoic Broken Hill block, in Australia, which hosts giant lead-zinc-silver sulphide deposits. With one exception the 11B/10B ratios are lower than those for all other tourmalines from massive sulphide deposits and tour-malinites elsewhere in the world. We propose that these low ratios reflect leaching of boron from non-marine evaporitic borates by convecting hydrothermal fluids associated with early Proterozoic continental rifting. A possible modern analogue is the Salton Sea geothermal field in California. ?? 1989 Nature Publishing Group.

  8. Magma Fertility is the First-Order Factor for the Formation of Porphyry Cu±Au Deposits

    NASA Astrophysics Data System (ADS)

    Park, J. W.; Campbell, I. H.; Malaviarachchi, S. P. K.; Cocker, H.; Nakamura, E.; Kay, S. M.

    2017-12-01

    Magma fertility, the metal abundance in magma, has been considered to be one of the key factors for the formation of porphyry Cu±Au deposits. In this study we provide clear evidence to support the hypothesis that the platinum group element (PGE) can be used to distinguish barren from ore-bearing Cu±Au felsic suites. We determined the PGE contents of three barren volcanic and subvolcanic suites from Argentina and Japan, and compare the results with two porphyry Cu-bearing subvolcanic suites from Chile and two porphyry Cu-Au-bearing suites from Australia. The barren suites are significantly depleted in PGE abundances by the time of fluid exsolution, which is attributed to early sulfide saturation at mid to lower crust depths or assimilation of chalcophile element-poor crustal materials. Barren magma, produced by melting continental crust, may have been initially deficient in chalcophile elements. In contrast, the Cu±Au ore-bearing suites contain at least an order of magnitude higher PGE contents than those of the barren suites by the time of fluid saturation. They are characterized by late sulfide saturation in a shallow magma chamber, which allows the chalcophile elements to concentrate in the fractionating magma from which they are sequestered by ore-forming fluids. We suggest the Pd/MgO and Pd/Pt ratios of igneous rocks can be used as magma fertility indicators, and to distinguish between barren, porphyry Cu and porphyry Cu-Au magmatic systems.

  9. Tectono-Magmatic Cycles and Geodynamic Settings of Ore-Bearing System Formation in the Southern Cis-Argun Region

    NASA Astrophysics Data System (ADS)

    Petrov, V. A.; Andreeva, O. V.; Poluektov, V. V.; Kovalenko, D. V.

    2017-11-01

    The ore-bearing geological structural units of the southern Cis-Argun region are considered in the context of varying geodynamic regimes related to the Proterozoic, Caledonian, and Hercynian tectono-magmatic cycles, as well as during the Late Mesozoic within-plate tectono-magmatic activity, which give rise to the formation of subalkaline igneous rocks of the Shakhtama Complex with Au, Cu-Mo, Pb-Zn-Ag metallogenic specialization; volcano-plutonic complexes of calderas with Mo-U, Pb-Zn, and fluorite ores; and rare-metal granite of the Kukulbei Complex with a Sn-W-Li-Ta spectrum of mineralization. The comparative geochemical characteristics inherent to Mesozoic ore-bearing felsic igneous rocks are considered, as well as geodynamic settings of ore-bearing fluido-magmatic systems, taking into consideration new data on geochemistry of bimodal trachybasalt-trachydacite series and rhyolite of the Turga Series, which fill the Strel'tsovka Caldera, whose trend of evolution is defined as a reference for geological history of the studied territory. The geodynamic conditions, phase composition, and geochemistry of rocks along with metallogenic specialization of Mesozoic volcano-plutonic complexes of southern Cis-Argun region are close to those of the Great Khingan Belt in northeastern China and eastern Mongolia.

  10. Evolution of Ore Deposits and Technology Transfer Project: Isotope and Chemical Methods in Support of the U.S. Geological Survey Science Strategy, 2003-2008

    USGS Publications Warehouse

    Rye, Robert O.; Johnson, Craig A.; Landis, Gary P.; Hofstra, Albert H.; Emsbo, Poul; Stricker, Craig A.; Hunt, Andrew G.; Rusk, Brian G.

    2010-01-01

    Principal functions of the U.S. Geological Survey (USGS) Mineral Resources Program are providing assessments of the location, quantity, and quality of undiscovered mineral deposits, and predicting the environmental impacts of exploration and mine development. The mineral and environmental assessments of domestic deposits are used by planners and decisionmakers to improve the stewardship of public lands and public resources. Assessments of undiscovered mineral deposits on a global scale reveal the potential availability of minerals to the United States and other countries that manufacture goods imported to the United States. These resources are of fundamental relevance to national and international economic and security policy in our globalized world economy. Performing mineral and environmental assessments requires that predictions be made of the likelihood of undiscovered deposits. The predictions are based on geologic and geoenvironmental models that are constructed for the diverse types of mineral deposits from detailed descriptions of actual deposits and detailed understanding of the processes that formed them. Over the past three decades the understanding of ore-forming processes has benefited greatly from the integration of laboratory-based geochemical tools with field observations and other data sources. Under the aegis of the Evolution of Ore Deposits and Technology Transfer Project (referred to hereinafter as the Project), a 5-year effort that terminated in 2008, the Mineral Resources Program provided state-of-the-art analytical capabilities to support applications of several related geochemical tools to ore-deposit-related studies. The analytical capabilities and scientific approaches developed within the Project have wide applicability within Earth-system science. For this reason the Project Laboratories represent a valuable catalyst for interdisciplinary collaborations of the type that should be formed in the coming years for the United States to meet

  11. Co-Cu-Au deposits in metasedimentary rocks-A preliminary report

    USGS Publications Warehouse

    Slack, J.F.; Causey, J.D.; Eppinger, R.G.; Gray, J.E.; Johnson, C.A.; Lund, K.I.; Schulz, K.J.

    2010-01-01

    A compilation of data on global Co-Cu-Au deposits in metasedimentary rocks refines previous descriptive models for their occurrence and provides important information for mineral resource assessments and exploration programs. This compilation forms the basis for a new classification of such deposits, which is speculative at this early stage of research. As defined herein, the Co-Cu-Au deposits contain 0.1 percent or more by weight of Co in ore or mineralized rock, comprising disseminated to semi-massive Co-bearing sulfide minerals with associated Fe- and Cu-bearing sulfides, and local gold, concentrated predominantly within rift-related, siliciclastic metasedimentary rocks of Proterozoic age. Some deposits have appreciable Ag ? Bi ? W ? Ni ? Y ? rare earth elements ? U. Deposit geometry includes stratabound and stratiform layers, lenses, and veins, and (or) discordant veins and breccias. The geometry of most deposits is controlled by stratigraphic layering, folds, axial-plane cleavage, shear zones, breccias, or faults. Ore minerals are mainly cobaltite, skutterudite, glaucodot, and chalcopyrite, with minor gold, arsenopyrite, pyrite, pyrrhotite, bismuthinite, and bismuth; some deposits have appreciable tetrahedrite, uraninite, monazite, allanite, xenotime, apatite, scheelite, or molybdenite. Magnetite can be abundant in breccias, veins, or stratabound lenses within ore or surrounding country rocks. Common gangue minerals include quartz, biotite, muscovite, K-feldspar, albite, chlorite, and scapolite; many deposits contain minor to major amounts of tourmaline. Altered wall rocks generally have abundant biotite or albite. Mesoproterozoic metasedimentary successions constitute the predominant geologic setting. Felsic and (or) mafic plutons are spatially associated with many deposits and at some localities may be contemporaneous with, and involved in, ore formation. Geoenvironmental data for the Blackbird mining district in central Idaho indicate that weathering of

  12. Lead Isotope Geochemistry of Mississippi Valley-Type Pb-Zn Deposits of the Ozark Region, U.S. Midcontinent: Constraints on the Origin of Ore Metals

    NASA Astrophysics Data System (ADS)

    Potra, A.

    2015-12-01

    The Ozark region of the U.S. midcontinent is one of the world's most important provinces of MVT mineralization, hosting world-class ore deposits. The ores in the Tri-State (TS) and Northern Arkansas (NA) districts, dominated by sphalerite, are mainly hosted by platform carbonate rocks and vary in age from Ordovician and Mississippian for NA and Mississippian for TS. The deposits are considered to have formed from a regional hydrothermal flow system consisting of sedimentary brines discharged from the Arkoma basin and adjacent platform during the Late Pennsylvanian to Early Permian Ouachita orogeny. New MC-ICP-MS Pb isotope analyses of sphalerites are presented in order to compare and contrast the isotopic signature of ores from the NA and TS districts with those from other MVT districts from central and eastern US and trace metal sources. The Pb isotope ratios of ores from the TS District (208Pb/204Pb between 40.7443 and 41.2626; 207Pb/204Pb between 15.8633 and 15.9571; 206Pb/204Pb between 21.8373 and 22.1956) plot in an area that is superimposed on the Pb isotope field defined by samples from the Central Missouri District, suggesting similar metal sources. The sphalerites are less radiogenic than samples from the Upper Mississippi Valley District, but more radiogenic than samples from any other MVT district. Sphalerites from the NA District have lower Pb isotope values (208Pb/204Pb between 39.4633 and 40.8863; 207Pb/204Pb between 15.8216 and 15.9176; 206Pb/204Pb between 20.2396 and 21.6438) than the TS District ores; they plot below the field defined by samples from the Illinois-Kentucky district and overlap the field defined by ores from the Southeast Missouri (Viburnum and Old Lead Belt) district, implying similar metal sources. Current data suggest that basement of Grenvillian age (1 - 1.2 by), thought to be present in Arkansas, to the south of the Viburnum Trend, may be a likely source of the radiogenic Pb component. Pb data from ores in the NA and the

  13. Comparison of the Ores of Swambo and Kalongwe with Shinkolobwe; LES GITES DE SWAMBO ET DE KALONGWE COMPARES A SHINKOLOBWE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derriks, J.J.; Oosterbosch, R.

    1959-10-31

    Swambo is a small uraniferous deposit discovered recently to the east of Shimkolobwe. The mineralization found is localized in the breccia and the epontes'' of a transverse fault affecting a layer of the ore series. This layer is part of an anticline alignment which can be followed from Shinkolobwe to Kalongwe and the length of which is level with the schisto-dolomitric stratum. The discovery of the ore deposit was made hy the application of radiometric methods. A prelimiary series of borings showed that the usable mineralization extends 125 m under the surface. The development by mining has gone to themore » hydrostatic level. From a genetic viewpoint, the ore deposit is similar to that of Shinkolobwe, but it is less important. Kalongwe is a cupro-cobaltic ore deposit lying to the southeast of Kolwezi. The deposit is principally localized in a fault which intersects a small layer of the ore series. The greso-dolomitic stratum at the base of this series is impregnated with powdered black uranium oxides in the neighhorhood of the fault. The mineralization extends to 80 m of depth. The ore deposit was developed by mining to a depth of 42 m. The genesis of the deposit is comparable to that of Shinkolobwe, hat the Kalongwe ores are distinguished by the relative abundance of copper and the absence of nickel. (tr- auth)« less

  14. The volcanic-sedimentary sequence of the Lousal deposit, Iberian Pyrite Belt (Portugal)

    NASA Astrophysics Data System (ADS)

    Rosa, Carlos; Rosa, Diogo; Matos, Joao; Relvas, Jorge

    2010-05-01

    dominant fragmentation mechanism. Unlike many locations of the IPB, fiamme-rich pyroclastic units were not identified at Lousal. The ore deposits occur in close proximity with this volcanic centre that may have driven hydrothermal circulation that led to ore formation. The volcanic rocks show intense chloritic alteration, indicating that the mineralizing event occurred after most of the rhyolitic units have emplaced. The massive sulfides show abundant sedimentary structures which is not typical in the massive sulfide deposits of the IPB. The Lousal 50 Mt massive sulfide deposit consists of at least 11 ore bodies and was exploited until 1988 mainly for pyrite. The ores mined averaged 0.7% Cu, 0.8%Pb e 1.4%Zn (Strauss, 1971). These relatively low base metal grades led to an evaluation of the contents and distribution of high-tech element in the ore bodies, which would improve the economic viability of mining the deposit. This evaluation is currently focusing on the distribution and mineralogy of selenium, as ores mined in the past were known to be rich in this element. This work benefits from research projects INCA (PTDC/CTE-GIN/67027/2006; Characterization of crucial mineral resources for the development of renewable energy technologies: The Iberian Pyrite Belt ores as a source of indium and other high-technology elements) and project ARCHYMEDES II (POCTI/CTA/45873/2002), both funded by the Fundação para a Ciência e Tecnologia. REFERENCES Strauss, G.K., 1970. Sobre la geologia de la provincia piritifera del Suroeste de la Peninsula Iberica y sus yacimientos, en especial sobre la mina de pirita de Lousal (Portugal): Memoria del IGME 77, 1-266. Tornos, F., 2006. Environment of formation and styles of volcanogenic massive sulfides: The Iberian Pyrite Belt. Ore Geology Reviews 28, 259-307.

  15. Sedimentary exhalative (sedex) zinc-lead-silver deposit model

    USGS Publications Warehouse

    Emsbo, Poul; Seal, Robert R.; Breit, George N.; Diehl, Sharon F.; Shah, Anjana K.

    2016-10-28

    This report draws on previous syntheses and basic research studies of sedimentary exhalative (sedex) deposits to arrive at the defining criteria, both descriptive and genetic, for sedex-type deposits. Studies of the tectonic, sedimentary, and fluid evolution of modern and ancient sedimentary basins have also been used to select defining criteria. The focus here is on the geologic characteristics of sedex deposit-hosting basins that contain greater than 10 million metric tons of zinc and lead. The enormous size of sedex deposits strongly suggests that basin-scale geologic processes are involved in their formation. It follows that mass balance constraints of basinal processes can provide a conceptual underpinning for the evaluation of potential ore-forming mechanisms and the identification of geologic indicators for ore potential in specific sedimentary basins. Empirical data and a genetic understanding of the physicochemical, geologic, and mass balance conditions required for each of these elements are used to establish a hierarchy of quantifiable geologic criteria that can be used in U.S. Geological Survey national assessments.  In addition, this report also provides a comprehensive evaluation of environmental considerations associated with the mining of sedex deposits.

  16. Effects of simulated deposition of acid mist and iron ore particulate matter on photosynthesis and the generation of oxidative stress in Schinus terebinthifolius Radii and Sophora tomentosa L.

    PubMed

    Kuki, Kacilda Naomi; Oliva, Marco Antônio; Pereira, Eduardo Gusmão; Costa, Alan Carlos; Cambraia, José

    2008-09-15

    Particulate matter is a natural occurrence in the environment, but some industries, such as the iron ore sector, can raise the total amount of particles in the atmosphere. This industry is primarily a source of iron and sulfur dioxide particulates. The effects of the pollutants from the iron ore industries on representatives of restinga vegetation in a Brazilian coastal ecosystem were investigated using physiological and biochemical measures. Two species, Schinus terebinthifolius and Sophora tomentosa, were exposed to simulated deposition of acid mist and iron ore particulate matter in acrylic chambers in a greenhouse. Parameters such as gas exchange, fluorescence emission, chlorophyll content, total iron content, antioxidant enzyme activity and malondialdehyde content were assessed in order to evaluate the responses of the two species. Neither treatment was capable of inducing oxidative stress in S. terebinthifolius. Nevertheless, the deposition of iron ore particulates on this species increased chlorophyll content, the maximum quantum efficiency of photosystem II and the electron transport rate, while iron content was unaltered. On the other hand, S. tomentosa showed a greater sensitivity to the treatments. Plants of S. tomentosa that were exposed to acid mist had a decrease in photosynthesis, while the deposition of iron particulate matter led to an increase in iron content and membrane permeability of the leaves. The activities of antioxidant enzymes, such as catalases and superoxide dismutase, were enhanced by both treatments. The results suggested that the two restinga species use different strategies to overcome the stressful conditions created by the deposition of particulate matter, either solid or wet. It seems that while S. terebinthifolius avoided stress, S. tomentosa used antioxidant enzyme systems to partially neutralize oxidative stress. The findings also point to the potential use of S. tomentosa as a biomarker species under field conditions.

  17. Origin of the Lengshuigou porphyry-skarn Cu deposit in the Zha-Shan district, South Qinling, central China, and implications for differences between porphyry Cu and Mo deposits

    NASA Astrophysics Data System (ADS)

    Xie, Guiqing; Mao, Jingwen; Wang, Ruiting; Meng, Deming; Sun, Jia; Dai, Junzhi; Ren, Tao; Li, Jianbi; Zhao, Haijie

    2017-04-01

    Porphyry Cu and Mo deposits are two economically important types of metal deposits worldwide, but factors controlling their difference remain enigmatic. Compared with the well-studied large porphyry Mo province in the south margin of the North China Block (S-NCB), the origin of newly discovered porphyry Cu deposits in the South Qinling (SQB) is poorly constrained. Integrated zircon LA-ICPMS U-Pb and molybdenite Re-Os ages and geological evidence indicate three stages of magmatism at Lengshuigou: (1) late Neoproterozoic (718 to 704 Ma) quartz diorite + albitite + granite association during the pre-ore stage, (2) 146 to 145 Ma granodiorite porphyry during the syn-ore stage, and (3) 145 Ma granite porphyry during the post-ore stage. Elemental and Sr-Nd isotopic evidence provide important constraints on their magma source. Pre-ore Neoproterozoic quartz diorite + albitite + granite was derived by re-melting of a mixture of crustal and juvenile mantle materials, and stronger fractional crystallization was involved in these ore-hosting intrusions than in contemporary granitoids hosted in the Douling Group. Syn-ore granodiorite porphyry was derived from mantle-derived magma with contributions from different proportions of crustal components. Post-ore granite porphyry was derived mainly from a crustal source. Nearly contemporaneous porphyry Cu and Mo systems were identified in Qinling Province, including the 147-139 Ma porphyry Mo systems in the S-NCB and 150-146 Ma porphyry Cu systems in the SQB. Granitic stocks related to porphyry Cu systems in the SQB are characterized by moderate SiO2 contents (58.01-69.07 %) and less radiogenic Nd-Hf isotopes (ɛNd(t) = -3.8 to -6.3, ɛHf(t) = -4.5 to +1.6), whereas the granitic stocks related to porphyry Mo deposits in the S-NCB have high SiO2 concentrations (64.00-76.00 %) and more radiogenic Nd-Hf isotopes (ɛNd(t) = -18.0 to -11.6, ɛHf(t) = -26.3 to -13.5). In addition, molybdenite from the Chigou and Lengshuigou porphyry Cu

  18. Early Jurassic mafic dykes from the Aigao uranium ore deposit in South China: Geochronology, petrogenesis and relationship with uranium mineralization

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Zhao, Kui-Dong; Chen, Wei; Jiang, Shao-Yong

    2018-05-01

    Mafic dykes are abundant and widely distributed in many granite-hosted uranium ore deposits in South China. However, their geochronology, petrogenesis and relationship with uranium mineralization were poorly constrained. In this study, apatite U-Pb dating, whole-rock major and trace element and Sr-Nd-Pb isotope analysis were conducted for the dolerite dykes from the Aigao uranium ore deposit. Apatite U-Pb isotopic data indicate that the mafic dykes were emplaced at Early Jurassic (189 ± 4 Ma), which provides new evidence for the rarely identified Early Jurassic magmatism in South China. Pyroxene from the dykes is mainly augite, and plagioclase belongs to albite. The dolerite samples have relatively low SiO2 contents (45.33-46.79 wt%), relatively high total alkali contents (K2O + Na2O = 4.11-4.58 wt%) and Al2O3 contents (13.39-13.80 wt%), and medium MgO contents (4.29-5.16 wt%). They are enriched in Nb, Ta, Ti, rare earth elements and depleted in Rb, K, Sr, Th, showing the typical OIB-like geochemical affinity. All the dolerite samples show homogeneous Sr-Nd-Pb isotopic compositions, with (87Sr/86Sr)i varying from 0.706049 to 0.707137, εNd(t) from +4.6 to +5.2, 206Pb/204Pb from 19.032 to 19.126 and 207Pb/204Pb from 15.641 to 15.653. The mafic dykes in the Aigao deposit should be derived from the partial melting of the asthenospheric mantle and formed in a within-plate extensional environment. The emplacement age of the mafic dykes is older than the uranium mineralization age. Therefore, CO2 in ore-forming fluids couldn't originate from the basaltic magma as suggested by previous studies. The dolerite dykes might only provide a favorable reducing environment to promote the precipitation of uraninite from oxidize hydrothermal fluids.

  19. Gold paragenesis and chemistry at Batu Hijau, Indoneisa: implications for gold-rich porphyry copper deposits

    NASA Astrophysics Data System (ADS)

    Arif, J.; Baker, T.

    2004-10-01

    Gold is an important by-product in many porphyry-type deposits but the distribution and chemistry of gold in such systems remains poorly understood. Here we report the results of petrographic, electron microprobe, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and flotation test studies of gold and associated copper sulfides within a paragenetic framework from the world-class Batu Hijau (914 mt @ 0.53% Cu, 0.40 g/t Au) porphyry copper gold deposit, Indonesia. Unlike many other porphyry copper gold deposits, early copper minerals (bornite digenite chalcocite) are well preserved at Batu Hijau and the chalcopyrite pyrite overprint is less developed. Hence, it provides an excellent opportunity to study the entire gold paragenesis of the porphyry system. In 105 polished thin sections, 699 native gold grains were identified. Almost all of the native gold grains occurred either within quartz veins, attached to sulfide, or as free gold along quartz or silicate grain boundaries. The native gold grains are dominantly round in shape and mostly 1 12 μm in size. The majority of gold was deposited during the formation of early ‘A’ veins and is dominantly associated with bornite rather than chalcopyrite. The petrographic and LA-ICP-MS study results indicate that in bornite-rich ores gold mostly occurs within copper sulfide grains as invisible gold (i.e., within the sulfide structure) or as native gold grains. In chalcopyrite-rich ores gold mostly occurs as native gold grains with lesser invisible gold. Petrographic observations also indicate a higher proportion of free gold (native gold not attached to any sulfide) in chalcopyrite-rich ores compared to bornite rich ores. The pattern of free gold distribution appears to correlate with the flotation test data, where the average gold recovery value from chalcopyrite-rich ores is consistently lower than bornite-rich ores. Our data suggest that porphyry copper-gold deposits with chalcopyrite-rich ores

  20. Some limitations on the possible composition of the ore-forming fluid

    USGS Publications Warehouse

    Barton, Paul B.

    1956-01-01

    The activity rations of various important anions (S, CO3, SO4, OH, F, and Cl) in hydrothermal solutions at the time of deposition are evaluated using a simple thermodynamic technique. The rations are interpreted in the light of the mineralogy of ore deposits and limites are placed on the variability of each ratio in hydrothermal solutions. All of the calculations are made for 25°C and cautious extrapolation to higher temperatures seems justified; however, additional data for elevated temperatures and pressures are needed before more than approximate values may be assigned to these ratios in the ore-forming fluid. The calculated partial pressure of CO2 in the ore fluid is generally less than one atmosphere, which suggests that a dense CO2 phase cannot be considered an importatn ore fluid for most deposits. The partial pressure of H2S is usually less than 10-4 atmospheres which makes it extremely difficult to defend the heory that metals (other than the easily complexible mercury, arsenic, antimony, and perhaps fols and silver) are transported in quantity as complex sulfide and hydrosulfides. The sulfate to sulfide ration is such that the oxidation potential at the time of deposition is defined by the following equation: Eh (in volts) = 0.22 ± 0.04 - 0.059 pH.

  1. Alfred E. Bergeat (1866-1924): a distinguished volcanologist and ore deposit researching scientist at the mining academies of Freiberg (Saxony) and Clausthal (Harz mountains) in Germany

    NASA Astrophysics Data System (ADS)

    Pfaffl, Fritz A.

    2010-06-01

    Alfred E. Bergeat, originated from a family, who produced gold-glance in a factory (porcelain painting), studied mineralogy and geology at the University of Munich from 1886 to 1892. Due to the results of his habilitation work on the volcanism of island arcs, especially of the Stromboli volcanic island in the Tyrrhenian Sea, he became a recognized volcanologist and specialist in volcanic petrography. He further became an explorer of syngenetic, epigenetic and deuterogenic ore deposits at the mining academies (Bergakademien) of Freiberg (Saxony) and Clausthal (Harz mountains). He described these ore deposits in a two-volume manual (1904-1906) which was summarized again in 1913. After his early death in 1924, the two manuals “Die Vulkane” (1925) and “Vulkankunde” (1927) were posthumously published by his colleague and friend Karl Sapper (1866-1945).

  2. Formation of Neogenic Ores on the Dump-Heaps of Old Uranium Mines and on the Mine-Head of Mines under Exploitation; FORMATION DE MINERAUX NEOGENES SUR LES HALDES D'ANCIENNES MINES D'URANIUM ET SUR LE CARREAU DES MINES EN EXPLOITATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chervet, J.

    1960-01-01

    The major degradations suffered by primary and secondary uranium ores under the weathering action of air and water are assessed. Pyritic ores were found to be the most vunerable. The interactions between pynite oxidation products and urantferous compounds often lead to the formation of neogentc ores. (C.J.G.)

  3. Fertility of Rare-Metal Peraluminous Granites and Formation Conditions of Tungsten Deposits

    NASA Astrophysics Data System (ADS)

    Syritso, L. F.; Badanina, E. V.; Abushkevich, V. S.; Volkova, E. V.; Terekhov, A. V.

    2018-01-01

    The tungsten distribution in rocks of the Kukulbei Complex in eastern Transbaikal region results in a high potential of rare-metal peraluminous granites (RPG) for W mineralization and displays a different behavior of W in Li-F and "standard" RPG. These subtypes differ in the behavior of W in melt, spatial localization of mineralization, and the timing of wolframite crystallization relative to the age of the parental granitic rocks. The significant of W concentration is assumed to be due to fractionation of the Li-F melt; however, wolframite mineralization in Li-F enriched granite is not typical in nature. The results of experiments and our calculations of W solubility in granitic melt show that wolframite hardly ever crystallizes directly from melt; it likely migrates in the fluid phase and is then removes from the magma chamber to the host rocks, where secondary concentration takes place in exocontact greisens and quartz-cassiterite-wolframite veins. At the same time, the isotopic age of accessory wolframite (139.5 ± 2.1 Ma) within the Orlovka massif of Li-F granite is close to the formation age of the massif (140.6 ± 2.9 Ma). A different W behavior is recorded in the RPG subtype with a low lithium and fluorine concentration, exemplified by the Spokoininsky massif. There is no significant W gain in the melt. All varieties of wolframite mineralization in the Spokoininsky massif are derived from greisens, veins, and pegmatoids yielding the same crystallization ages (139.5 ± 1.1 Ma), which are 0.9-1.8 Ma later (taking into account the mean-square weighted deviation) than the Spokoininsky granite formation (144.5 ± 1.4 Ma). Perhaps this period corresponds to the time of transition from the magmatic stage to hydrothermal alteration. Comparison of the isotope characteristics (Rb-Sr and Sm-Nd isotope systems) of rocks and the associated ore minerals (wolframite, cassiterite) from all examined deposits shows a depletion in ɛNd values for ore minerals relative to the

  4. Stable Te isotope fractionation in tellurium-bearing minerals from precious metal hydrothermal ore deposits

    NASA Astrophysics Data System (ADS)

    Fornadel, Andrew P.; Spry, Paul G.; Haghnegahdar, Mojhgan A.; Schauble, Edwin A.; Jackson, Simon E.; Mills, Stuart J.

    2017-04-01

    reduced vapor to a solid is necessary to form the common tellurides and native tellurium in ore-forming systems. Our data suggest that these sorts of reactions during mineralization may account for a ∼3‰ range of δ130/125Te values. Based on the data ranges for Te minerals from various ore deposits, the underpinning geologic processes responsible for mineralization seem to have primary control on the magnitude of fractionation, with tellurides in epithermal gold deposits showing a narrower range of isotope values than those in orogenic gold and volcanogenic massive sulfide deposits.

  5. Spatial-temporal and genetic relationships between gold and antimony mineralization at gold-sulfide deposits of the Ob-Zaisan folded zone

    NASA Astrophysics Data System (ADS)

    Kalinin, Yu. A.; Naumov, E. A.; Borisenko, A. S.; Kovalev, K. R.; Antropova, A. I.

    2015-05-01

    The Ob-Zaisan folded zone is a fragment of a single structure composed of Paleozoic sedimentary and volcanogenic rocks (mainly black shale), which was formed at the margin of the Siberian continent and features a common set of magmatic complexes and mineral systems. However, there are some differences that determine the specific geological and metallogenic features of the Irtysh-Zaisan and Kolyvan-Tomsk fragments of the Ob-Zaisan folded zone. In the gold deposits of the West Kalba and Kolyvan-Tomsk auriferous belt, the main gold-sulfide mineralization is controlled by zones of shearing and dynamic metamorphism in carbonaceous carbonate-terrigenous rocks. This type of mineralization was formed in tectonic blocks in a compressional setting. Antimony mineralization is characterized by brecciated textures and the vein-like morphology of ore bodies, reflecting extensional tectonics. At some deposits (Zherek, Mirazh, Dalny), Sb mineralization is spatially separated from the main gold-sulfide ores and shows cross-cutting relations to the principal ore-controlling structures. In other gold deposits, stibnite is spatially associated with disseminated gold-sulfide ores and forms mineral assemblages with Ni, Co, Au, Pb, and Fe (Alimbet, Zhanan, Legostaevskoe, Semiluzhenskoe, and Kamenskoe deposits). This study reveals no direct correlation between Au and Sb in gold-sulfide ores of these deposits. SEM analysis indicated the absence of free gold in stibnite veins. However, atomic absorption and electron microprobe analysis indicated the presence of "invisible gold" from a few ppm to several tens of ppm in the stibnite. High gold contents in the gold-sulfide ores overprinted by antimony mineralization (Suzdalskoe, Zhanan, and Legostaevskoe deposits) can be explained by the processes of regeneration and redeposition. The results of microstructural observations, isotope geochronology, studies of mineral assemblages and fluid inclusions in the ores from gold deposits of the Ob

  6. Heavy Metal Enrichments in the Kimberley Bedrocks: Evidence of AN Ore Deposit at the Source?

    NASA Astrophysics Data System (ADS)

    Payre, V.; Fabre, C.; Sautter, V.; Mangold, N.; Cousin, A.; Le Deit, L.; Goetz, W.; Forni, O.; Gasnault, O.; Wiens, R. C.; Maurice, S.

    2017-12-01

    Three years ago, the Curiosity rover reached a sedimentary formation called Kimberley that is compositionally very different from previous and subsequent analyses. These sandstones contain elevated amounts of K2O with an average of 2.1 wt. % according to ChemCam instrument [1], explained by the occurrence of potassic minerals: a sandstone named Windjana has been analyzed by CheMin instrument, showing large amounts of sanidine [2]. Mafic minerals (augite, pigeonite, magnetite) and minor phases including F-apatites and sulfides have also been identified [2]. ChemCam analyzed several points where micas may have been sampled [1,3-4]. All these minerals are thought to be detrital having originated from igneous sources like potassic and mafic rocks in the northern rim [1-4]. High Zn and Cu contents (up to 2000ppm and 1010ppm, respectively) have been measured in these K-bedrocks [5-7]. The ChemCam instrument allows the analysis of materials with depth: a LIBS point is ablated by 30-150 laser-shots, measuring the composition of the first micrometers [8]. These depth profiles show evidences of the occurrence of a Cu-phase within K-spars. In a potassic sandstone containing up to 1010 ppm of Cu and 250 ppm of Ge according to ChemCam and APXS analysis respectively, a Cu-phase is potentially hosted in clays or micas. These high values would be related to local hydrothermalism at the igneous source region of the Kimberley detrital minerals [5,9]. These observations and the occurrence of 800 ppm of Cu in a porphyric alkali feldspar within a trachyandesite [10], suggest that these Cu enrichments may be due to a porphyry copper deposit at the source region of the potassic minerals. Another hypothesis is the presence of an ore deposit related to an impact-induced hydrothermalism. Hence, circulation of high temperature fluids would have happened at the magmatic source region of the Kimberley minerals, favoring the formation of a metallic deposit. [1] Le Deit et al, JGR 121, 784

  7. Geology of the manganese deposits of Cuba

    USGS Publications Warehouse

    Simons, Frank S.; Straczek, John A.

    1958-01-01

    Deposits of manganese ore have been found in five of the six provinces of Cuba and have been reported from the sixth.  Only Oriente and Pinar del Rio provinces have more than a few known deposits and only the deposits of Oriente have yielded any appreciable amount of ore.

  8. Exploration for uranium deposits in the Atkinson Mesa area, Montrose County, Colorado

    USGS Publications Warehouse

    Brew, Daniel Allen

    1954-01-01

    The U.S. Geological Survey explored the Atkinson Mesa area for uranium- and vanadium-bearing deposits from July 2, 1951, to June 18, 1953, with 397 diamond-drill holes that totaled 261,251 feet. Sedimentary rocks of Mesozoic age are exposed in the Atkinson Mesa area. They are: the Brushy Basin member of the Upper Jurassic Morrison formation, the Lower Cretaceous Burro Canyon formation, and the Upper and Lower Cretaceous Dakota sandstone. All of the large uranium-vanadium deposits discovered by Geological Survey drilling are in a series of sandstone lenses in the upper part of the Salt Wash member of the Jurassic Morrison formation. The deposits are mainly tabular and blanket-like, but some elongate pod-shaped masses, locally called "rolls" may be present. The mineralized material consists of sandstone impregnated with a uranium mineral which is probably coffinite, spme carnotite, and vanadium minerals, thought to be mainly corvusite and montroseite. In addition,, some mudstone and carbonaceous material is similarly impregnated. Near masses of mineralized material the sandstone is light gray or light brown, is generally over 40 feet thick, and usually contains some carbonaceous material and abundant disseminated pyrite or limonite stain. Similarly, the mudstone in contact with the ore-bearing sandstone near bodies of mineralized rock is commonly blue gray, as compared to its dominant red color away from ore deposits. Presence and degree of these features are useful guides in exploring for new deposits.

  9. Cerro de Pasco and other massive sulfide deposits of central Peru

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheney, E.S.

    1985-01-01

    The famous Cerro de Pasco Pb-Zn-Ag deposit historically has been considered to be hydrothermally derived from an adjacent Tertiary volcanic vent. However, texturally massive pyrite-chert and pyrite-sphalerite-galena in the deposit have the same strike and cross folds as the adjacent pre-Tertiary strata. Both the deposit and the strata are cut by one of the large Longitudinal Faults. Both dikes and pyrite-enargite veins associated with the vent cut the massive sulfides; fragments of massive pyrite occur in the vent. A few examples of laminated pyrite and chert, banded pyrite and chert, banded pyrite and sphalerite, and banded pyrite, sphalerite, and galenamore » are preserved in the massive sulfide portion of the deposit. The deposit has the composition and zoning patterns typical of shale-hosted massive sulfides. Cerro de Pasco probably in part of the pelitic Devonian Excelsior formation. The Colquijirca deposit 8 km to the south and the San Cristobal district 110 km to the south likewise have been considered to be Tertiary volcanic hydrothermal deposits. Colquijirca consists of stratigraphically controlled mantos of layered pyrite, chert and tuff in the Tertiary Calera formation. The mantos of the San Cristobal district are along the upper contact of the pyritic, Permian, Catalina felsic volcanic rocks; some ore consists of laminated pyrite and sphalerite. Tertiary plutons are conspicuously absent at San Cristobal, and the ores are brecciated by Tertiary folding.« less

  10. Potash ore reserves in the proposed Waste Isolation Pilot Plant area, Eddy County, southeastern New Mexico

    USGS Publications Warehouse

    John, Charles B.; Cheeseman, R.J.; Lorenz, J.C.; Millgate, M.L.

    1978-01-01

    The proposed Waste Isolation Pilot Plant (WIPP) area includes about 18,960 acres in Tps. 22 and 23 S., Rs. 30 and 31 E., New Mexico Principal Meridian, Eddy County, southeastern New Mexico. It is located within the Carlsbad Mining District about 25 miles east of Carlsbad. The WIPP area is immediately south of the Capitan Limestone subcrop, which formed the northern margin of the Delaware basin in Permian time. During Late Permian (Ochoan) time, gypsum, anhydrite, and halite were deposited in the seas of the Delaware basin to form the Castile Formation. These deposits have a maximum thickness of about 2,000 feet and grade upward into the more argillaceous beds of the Salado Formation. The Salado Formation contains abundant sulfate minerals, notably anhydrite and polyhalite. The potash ore minerals, langbeinite and sylvite, occur in the upper part of the Salado Formation in the McNutt potash zone, a local name applied to a potassium-rich zone.

  11. The contribution of lateritization processes to the formation of the kaolin deposits from eastern Amazon

    NASA Astrophysics Data System (ADS)

    da Costa, Marcondes Lima; Sousa, Daniel José Lima; Angélica, Rômulo Simões

    The eastern region of the Amazon is home to the most important kaolin bauxite producing district in Brazil, referred to as the Paragominas-Capim kaolin bauxite district, which has a reserve of at least 1.0 billion tons of high-quality kaolin used in the paper coating industry. The kaolin deposits are closely related to sedimentary rocks of the Parnaíba basin and their lateritic cover. Two large deposits are already being mined: IRCC (Ipixuna) and PPSA (Paragominas). The geology of the IRCC mine is comprised of the kaolin-bearing lower unit (truncated mature laterite succession derived from the Ipixuna/Itapecuru formation) and the upper unit (immature lateritized Barreiras formation). The lower kaolin unit is characterized by a sandy facies at the bottom and a soft (ore) with flint facies at the top. It is formed by kaolinite, quartz, some iron oxi-hydroxides, mica and several accessories and heavy minerals. The <2 μm kaolinite crystallites only correspond to 41.3-58.3% of the soft kaolin, and large booklets of 15-300 μm are common. The degree of structure order of kaolinite decreases towards the flint kaolin. The chemical composition of the soft kaolin is similar to the theoretical chemical composition of kaolinite, with low iron content, and can be well correlated to most kaolin deposits in the region. The distribution pattern of chemical elements from sandy to flint kaolin (lower unit) suggests a lateritic evolution and erosive truncation. This is quite distinct from the upper unit, which has a mineralogical and chemical pathway relating it to a complete immature lateritic profile. The geological evolution of the IRCC kaolin is similar to that of other deposits in the eastern Amazon region, being comprised of: parent rocks formed in an estuarine marine and fluvio-laccustrine environment during the early Cretaceous; establishment of mature lateritization with the formation of kaolin in the Eocene; marine transgression and regression - (Pirabas and Barreiras

  12. Tellurium, a guide to mineral deposits

    USGS Publications Warehouse

    Watterson, J.R.; Gott, G.B.; Neuerburg, G.J.; Lakin, H.W.; Cathrall, J.B.

    1977-01-01

    Te dispersion patterns are useful in exploring for different types of mineral deposits and in providing additional information about known ore deposits. The Te content of rocks is given for five mining districts in the western United States: Coeur d'Alene, Idaho; Robinson, near Ely, Nevada; Montezuma, Colorado; Crater Creek area, Colorado; Cripple Creek, Colorado. Many of the analyses were obtained by use of a new analytical method sensitive to 0.001 ppm Te. The principal ore deposits in the Coeur d'Alene district, Idaho, are Pb-Zn-Ag replacement veins in Precambrian rocks of the Belt Supergroup. Te dispersion patterns show the outlines of the original mineral belts, the effects of intrusive events, the location of ore deposits, the displacements caused by post-ore faulting, and the borders of the 780-km2 district. The disseminated porphyry Cu deposits of the Robinson mining district, Nevada, are associated with Cretaceous quartz monzonite stocks that have intruded Palaeozoic carbonate rocks. Te is present in rock samples in concentrations as high as 10,000 ppm and forms a halo around the areas containing the Cu deposits. The alteration zones in the porphyry Mo district near Montezuma, Colorado, are developed around several small Tertiary intrusions occurring along a regional shear zone. Te haloes reflect the locations of porphyry intrusives, individual deposits and their ore shoots, and the pattern and intensity of adjacent alteration. The Te content of soils over the Montezuma stock is higher than, and varies independently from, the Te content of adjacent outcrops. Soils generally contain more Te than adjacent outcropping rocks. Soil may collect gaseous Te compounds from mineral deposits. The Crater Creek area is a northwestern extension of the Summitville mining district, Colorado. Te dispersion patterns radiate out from exposed Cu-Pb-Zn veins, from an outcrop of molybdenite stockwork veins and from associated iron-stained altered rock. Te haloes intensify

  13. Analysis of borehole geophysical information across a uranium deposit in the Jackson Group, Karnes County, Texas

    USGS Publications Warehouse

    Daniels, Jeffrey J.; Scott, James Henry; Smith, Bruce D.

    1979-01-01

    Borehole geophysical studies across a uranium deposit in the Jackson Group, South Texas, show the three geochemical environments often associated with uranium roll-type deposits: an altered (oxidized) zone, an ore zone, and an unaltered (reduced) zone. Mineralogic analysis of the total sulfides contained in the drill core shows only slight changes in the total sulfide content among the three geochemical regimes. However, induced polarization measurements on the core samples indicate that samples obtained from the reduced side of the ore zone are more electrically polarizable than those from the oxidized side of the ore zone, and therefore probably contain more pyrite. Analysis of the clay-size fraction in core samples indicates that montmorillonite is the dominant clay mineral. High resistivity values within the ore zone indicate the presence of calcite cement concentrations that are higher than those seen outside of the ore zone. Between-hole resistivity and induced polarization measurements show the presence of an extensive zone of calcite cement within the ore zone, and electrical polarizable material (such as pyrite) within and on the reduced side of the ore zone. A quantitative analysis of the between-hole resistivity data, using a layered-earth model, and a qualitative analysis of the between-hole induced polarization measurements showed that mineralogic variations among the three geochemical environments were more pronounced than were indicated by the geophysical and geologic well logs. Uranium exploration in the South Texas Coastal Plain area has focused chiefly in three geologic units: the Oakville Sandstone, the Catahoula Tuff, and the Jackson Group. The Oakville Sandstone and the Catahoula Tuff are of Miocene age, and the Jackson Group is of Eocene age (Eargle and others, 1971). Most of the uranium mineralization in these formations is low grade (often less than 0.02 percent U3O8) and occurs in shallow deposits that are found by concentrated exploratory

  14. Copper Deposits in Sedimentary and Volcanogenic Rocks

    USGS Publications Warehouse

    Tourtelot, Elizabeth B.; Vine, James David

    1976-01-01

    Copper deposits occur in sedimentary and volcanogenic rocks within a wide variety of geologic environments where there may be little or no evidence of hydrothermal alteration. Some deposits may be hypogene and have a deep-seated source for the ore fluids, but because of rapid cooling and dilution during syngenetic deposition on the ocean floor, the resulting deposits are not associated with hydrothermal alteration. Many of these deposits are formed at or near major tectonic features on the Earth's crust, including plate boundaries, rift valleys, and island arcs. The resulting ore bodies may be stratabound and either massive or disseminated. Other deposits form in rocks deposited in shallow-marine, deltaic, and nonmarine environments by the movement and reaction of interstratal brines whose metal content is derived from buried sedimentary and volcanic rocks. Some of the world's largest copper deposits were probably formed in this manner. This process we regard as diagenetic, but some would regard it as syngenetic, if the ore metals are derived from disseminated metal in the host-rock sequence, and others would regard the process as epigenetic, if there is demonstrable evidence of ore cutting across bedding. Because the oxidation associated with diagenetic red beds releases copper to ground-water solutions, red rocks and copper deposits are commonly associated. However, the ultimate size, shape, and mineral zoning of a deposit result from local conditions at the site of deposition - a logjam in fluvial channel sandstone may result in an irregular tabular body of limited size; a petroleum-water interface in an oil pool may result in a copper deposit limited by the size and shape of the petroleum reservoir; a persistent thin bed of black shale may result in a copper deposit the size and shape of that single bed. The process of supergene enrichment has been largely overlooked in descriptions of copper deposits in sedimentary rocks. However, supergene processes may be

  15. Re-Os sulfide geochronology of the Red Dog sediment-hosted Zn-Pb-Ag deposit, Brooks Range, Alaska

    USGS Publications Warehouse

    Morelli, R.M.; Creaser, R.A.; Selby, D.; Kelley, K.D.; Leach, D.L.; King, A.R.

    2004-01-01

    The Red Dog sediment-hosted deposit in the De Long Mountains of northern Alaska is the largest Zn producer in the world. Main stage mineralization is characterized by massive sulfide ore and crosscutting subvertical veins. Although the vein mineralization is clearly younger than the massive ore, the exact temporal relationship between the two is unclear. Re-Os geochronology of pyrite is used to determine the absolute age of main stage ore at Red Dog. A 10-point isochron on both massive and vein pyrite yields an age of 338.3 ?? 5.8 Ma and is interpreted to represent the age of main stage ore. The Re-Os data indicate that both massive and vein ore types are coeval within the resolution of the technique. Formation of the Red Dog deposit was associated with extension along a passive continental margin, and therefore the Re-Os age of main stage ore constrains the timing of rifting as well as the age of the host sedimentary rocks. Sphalerite from both massive and vein ore yields imprecise ages and shows a high degree of scatter compared to pyrite. We suggest that the Re-Os systematics of sphalerite can be disturbed and that this mineral is not reliable for Re-Os geochronology. ?? 2004 by Economic Geology.

  16. Bog iron formation in the Nassawango Creek watershed, Maryland, USA

    USGS Publications Warehouse

    Bricker, O.P.; Newell, Wayne L.; Simon, N.S.; ,

    2004-01-01

    The Nassawango bog ores in the modern environment for surficial geochemical processes were studied. The formation of Nassawango bog ores was suggested to be due to inorganic oxidation when groundwater rich in ferrous iron emerges into the oxic, surficial environment. It was suggested that the process, providing a phosphorus sink, may be an unrecognized benefit for mitigating nutrient loading from agricultural lands. It is found that without the effect of iron fixing bacteria, bog deposites could not form at significant rates.

  17. Stratiform chromite deposit model

    USGS Publications Warehouse

    Schulte, Ruth F.; Taylor, Ryan D.; Piatak, Nadine M.; Seal, Robert R.

    2010-01-01

    Stratiform chromite deposits are of great economic importance, yet their origin and evolution remain highly debated. Layered igneous intrusions such as the Bushveld, Great Dyke, Kemi, and Stillwater Complexes, provide opportunities for studying magmatic differentiation processes and assimilation within the crust, as well as related ore-deposit formation. Chromite-rich seams within layered intrusions host the majority of the world's chromium reserves and may contain significant platinum-group-element (PGE) mineralization. This model of stratiform chromite deposits is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. The model focuses on features that may be common to all stratiform chromite deposits as a way to gain insight into the processes that gave rise to their emplacement and to the significant economic resources contained in them.

  18. Control of Rock Mechanics in Underground Ore Mining

    NASA Astrophysics Data System (ADS)

    Golik, V. I.; Efremenkov, A. B.

    2017-07-01

    Performance indicators in underground mining of thick iron fields can be insufficient since geo-mechanic specifics of ore-hosting fields might be considered inadequately, as a consequence, critical deformations and even earth’s surface destruction are possible, lowering the indicators of full subsurface use, this way. The reason for it is the available approach to estimating the performance of mining according to ore excavation costs, without assessing losses of valuable components and damage to the environment. The experimental approach to the problem is based on a combination of methods to justify technical capability and performance of mining technology improvement with regard to geomechanical factors. The main idea of decisions to be taken is turning geo-materials into the condition of triaxial compression via developing the support constructions of blocked up structural rock block. The study was carried out according to an integrated approach based on the analysis of concepts, field observations, and simulation with the photo-elastic materials in conditions of North Caucasus deposits. A database containing information on the deposit can be developed with the help of industrial experiments and performance indicators of the field can be also improved using the ability of ore-hosting fields to develop support constructions, keeping the geo-mechanical stability of the system at lower cost, avoiding ore contamination at the processing stage. The proposed model is a specific one because an adjustment coefficient of natural and anthropogenic stresses is used and can be adopted for local conditions. The relation of natural to anthropogenic factors can make more precise the standards of developed, prepared and ready to excavation ore reserves relying on computational methods. It is possible to minimize critical stresses and corresponding deformations due to dividing the ore field into sectors safe from the standpoint of geo-mechanics, and using less cost

  19. In-situ Pb isotope analysis of Fe-Ni-Cu sulphides by laser ablation multi-collector ICPMS: New insights into ore formation in the Sudbury impact melt sheet

    NASA Astrophysics Data System (ADS)

    Darling, J. R.; Storey, C. D.; Hawkesworth, C. J.; Lightfoot, P. C.

    2012-12-01

    Laser-ablation (LA) multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) is ideally suited to in situ determination of isotope ratios in sulphide minerals. Using samples of magmatic sulphide ore from the Sudbury impact structure, we test LA-MC-ICPMS analytical protocols that aim to meet a range of analytical challenges in the analysis of Pb isotopes. These include: potential matrix sensitive isotopic fractionation; interferences on Pb isotopes; low melting points of many sulphide minerals; the availability of standards. Magmatic sulphides of wide ranging mineralogy (pyrrhotite, pentlandite, chalcopyrite, pyrite and sphalerite) were analysed for Pb isotopic composition, using the silicate glass NIST SRM 610 as an external standard to correct for instrumental mass-fractionation. Despite matrix sensitive melting and re-deposition around ablation pits, several lines of evidence indicate that all analyses are accurate, within typical analytical uncertainties of 0.003-2% (2σ), and that the defined approach is insensitive to compositional diversity in sample matrix: (a) laser ablation and dissolution based measurements of sulphide powders are in agreement; (b) analyses from each sample define isochron ages within uncertainty of the known crystallization age (1850 Ma); (c) the results of sulphide measurements by laser ablation are consistent with age-corrected feldspar analyses from the same samples. The results have important implications for ore formation in Sudbury. The Pb isotope data regressions are consistent with age corrected feldspar analyses from each respective sample, which together with time integrated Th/U ratios that match whole rock values (3.1, 4.0 and 6.1 for the Worthington, Copper Cliff and Parkin Offset Dykes, respectively) indicate chemical equilibrium between the silicate and sulphide systems during ore formation. The sulphides within each respective sample have indistinguishable model initial Pb isotope ratios (207Pb/204Pbm

  20. A genetic link between magnetite mineralization and diorite intrusion at the El Romeral iron oxide-apatite deposit, northern Chile

    NASA Astrophysics Data System (ADS)

    Rojas, Paula A.; Barra, Fernando; Reich, Martin; Deditius, Artur; Simon, Adam; Uribe, Francisco; Romero, Rurik; Rojo, Mario

    2018-01-01

    El Romeral is one of the largest iron oxide-apatite (IOA) deposits in the Coastal Cordillera of northern Chile. The Cerro Principal magnetite ore body at El Romeral comprises massive magnetite intergrown with actinolite, with minor apatite, scapolite, and sulfides (pyrite ± chalcopyrite). Several generations of magnetite were identified by using a combination of optical and electron microscopy techniques. The main mineralization event is represented by zoned magnetite grains with inclusion-rich cores and inclusion-poor rims, which form the massive magnetite ore body. This main magnetite stage was followed by two late hydrothermal events that are represented by magnetite veinlets that crosscut the massive ore body and by disseminated magnetite in the andesite host rock and in the Romeral diorite. The sulfur stable isotope signature of the late hydrothermal sulfides indicates a magmatic origin for sulfur (δ34S between - 0.8 and 2.9‰), in agreement with previous δ34S data reported for other Chilean IOA and iron oxide-copper-gold deposits. New 40Ar/39Ar dating of actinolite associated with the main magnetite ore stage yielded ages of ca. 128 Ma, concordant within error with a U-Pb zircon age for the Romeral diorite (129.0 ± 0.9 Ma; mean square weighted deviation = 1.9, n = 28). The late hydrothermal magnetite-biotite mineralization is constrained at ca. 118 Ma by 40Ar/39Ar dating of secondary biotite. This potassic alteration is about 10 Ma younger than the main mineralization episode, and it may be related to post-mineralization dikes that crosscut and remobilize Fe from the main magnetite ore body. These data reveal a clear genetic association between magnetite ore formation, sulfide mineralization, and the diorite intrusion at El Romeral (at 129 Ma), followed by a late and more restricted stage of hydrothermal alteration associated with the emplacement of post-ore dikes at ca. 118 Ma. Therefore, this new evidence supports a magmatic-hydrothermal model for the

  1. [Mechanisms of immune deposit formation in glomerulonephritis].

    PubMed

    Bussolati, B; Camussi, G

    1996-03-01

    Recent experimental studies allowed the identification of several mechanisms of immune deposit formation, which are able to reproduce the morphological and clinical pattern of human glomerulonephritis. Moreover, it was shown that most of the lesions considered, in the past, as due to circulating immune complexes (IC), are instead caused by the "in situ" formation of IC. As a result of these studies, the following schematic classification was proposed: 1) immune deposits formed by glomerular localization of IC primarily formed in the circulation; 2) immune deposits formed "in situ" by reaction of circulating antibodies with fixed structural antigens; 3) immune deposits formed "in situ" by antibodies reactive with movable structural antigens; 4) immune deposits formed "in situ" by antibodies reactive with sequestered antigens leaking out of tissues; 5) IC formed "in situ" by antibodies reactive with exogenous or non-glomerular endogenous antigens planted in the glomeruli; 6) ANCA-associated glomerular disease.

  2. The F'derik-Zouerate iron district: Mesoarchean and Paleoproterozoic iron formation of the Tiris Complex, Islamic Republic of Mauritania

    USGS Publications Warehouse

    Taylor, Cliff D.; Finn, Carol A.; Anderson, Eric D.; Bradley, Dwight C.; Joud, Mohamed; Taleb Mohamed, Ahmed; Horton, John D.; Johnson, Craig A.; Bouabdellah, Mohammed; Slack, John F.

    2016-01-01

    High-grade hematitic iron ores (of HIF, containing 60-65 wt%Fe) have been mined in Mauritania since 1952 from Superior-type iron deposits of the F'derik-Zouerate district.  Depletion of the high-grade ores in recent years has resulted in new exploration projects focused on lower-grade magnetite ores occurring in Algoma-type banded iron formation (of BIF, containing ca. 35 wt% Fe).  Mauritania is the seventeenth largest iron producer in the world and currently has about 1.1 Gt of crude iron ore reserves. 

  3. Uranium deposits at Shinarump Mesa and some adjacent areas in the Temple Mountain district, Emery County, Utah

    USGS Publications Warehouse

    Wyant, Donald G.

    1953-01-01

    Deposits of uraniferous hydrocarbons are associated with carnotite in the Shinarump conglomerate of Triassic age at Shinarump Mesa and adjacent areas of the Temple Mountain district in the San Rafael Swell of Emery County, Utah. The irregular ore bodies of carnotite-bearing sandstone are genetically related to lenticular uraniferous ore bodies containing disseminated asphaltitic and humic hydrocarbon in permeable sandstones and were localized indirectly by sedimentary controls. Nearly non-uraniferous bitumen commonly permeates the sandstones in the Shinarump conglomerate and the underlying Moekopi formation in the area. The ore deposits at Temple Mountain have been altered locally by hydrothermal solutions, and in other deposits throughout the area carnotite has been transported by ground and surface water. Uraniferous asphaltite is thought to be the non-volatile residue of an original weakly uraniferous crude oil that migrated into the San Rafael anticline; the ore metals concentrated in the asphaltite as the oil was devolatilized and polymerized. Carnotite is thought to have formed from the asphaltite by ground water leaching. It is concluded that additional study of the genesis of the asphaltitic uranium ores in the San Rafael Swell, of the processes by which the hydrocarbons interact and are modified (such as heat, polymerization, and hydrogenation under the influence of alpha-ray bombardment), of petroleum source beds, and of volcanic intrusive rocks of Tertiary age are of fundamental importance in the continuing study of the uranium deposits on the Colorado Plateau.

  4. Significance of the precambrian basement and late Cretaceous thrust nappes on the location of tertiary ore deposits in the Oquirrh Mountains, Utah

    USGS Publications Warehouse

    Tooker, Edwin W.

    2005-01-01

    The Oquirrh Mountains are located in north central Utah, in the easternmost part of the Basin and Range physiographic province, immediately south of the Great Salt Lake. The range consists of a northerly trending alignment of peaks 56 km long. Tooele and Rush Valleys flank the Oquirrh Mountains on the western side and Salt Lake and Cedar Valleys lie on the eastern side. The world class Bingham mine in the central part of the range hosts disseminated copper-bearing porphyry, skarn, base-and precious-metal vein and replacement ore deposits. The district includes the outlying Barneys Canyon disseminated-gold deposits. Disseminated gold in the Mercur mining district in the southern part of the range has become exhausted. The Ophir and Stockton base- and precious-metal mining districts in the range north of Mercur also are inactive. A geologic map of the range (Tooker and Roberts, 1998), available at a scale of 1:50,000, is a summation of U.S. Geological Survey (USGS) studies. Information about the range and its mining areas is scattered. This report summarizes map locations, new stratigraphic and structural data, and reexamined data from an extensive published record. Unresolved controversial geological interpretations are considered, and, for the first time, the complete geological evidence provides a consistent regional basis for the location of the ore deposits in the range. The geological setting and the siting of mineral deposits in the Oquirrh Mountains began with the formation of a Precambrian craton. Exposures of folded Proterozoic basement rocks of the craton, in the Wasatch Mountains east of Salt Lake City, were accreted and folded onto an Archean crystalline rock terrane. The accretion suture lies along the north flank of the Uinta Mountains. The western part of the accreted block was offset to northern Utah along a north-trending fault lying approximately along the Wasatch Front (Nelson and others, 2002), thereby creating a prominant basement barrier or

  5. Te-Rich argyrodite occurrence in Roşia Montană ore deposit, Apuseni Mountains, Romania

    NASA Astrophysics Data System (ADS)

    Bailly, Laurent; Tămaş, Călin-Gabriel; Minuţ, Adrian

    2005-06-01

    A new argyrodite occurrence has been discovered in the Roşia Montană ore deposit located in the South Apuseni Mountains, Romania. Argyrodite is associated with common base metal sulfides and sulfosalts (galena, sphalerite, chalcopyrite, tetrahedrite ± alabandite, pyrite, and marcasite), tellurides (hessite, altaite, sylvanite) and rare electrum grains in the Ag-rich Cârnicel vein hosted by an extracraterial phreatomagmatic breccia within the Cârnic massif. SEM and EPMA analyses revealed that this argyrodite is Te-rich and a mean Ag 8.04Ge 0.9Te 2.07S 3.77 formula was calculated. This phase could be the germaniferous equivalent of the previously-described Te-rich canfieldite. To cite this article: L. Bailly et al., C. R. Geoscience 337 (2005).

  6. 2D Inversion of DCR and Time Domain IP data: an example from ore exploration

    NASA Astrophysics Data System (ADS)

    Adrian, J.; Tezkan, B.

    2015-12-01

    Ore deposits often appear as disseminated sulfidic materials. Exploring these deposits with the Direct Current Resistivity (DCR) method alone is challenging because the resistivity signatures caused by disseminated material is often hard to detect. The Time-domain Induced Polarization (TDIP) method, on the other hand, is qualified to detect areas with disseminated sulfidic ores due to large electrode polarization effects which result in large chargeability anomalies. By employing both methods we gain information about both, the resistivity and the chargeability distribution of the subsurface.On the poster we present the current state of the development of a 2D smoothness constraint inversion algorithm for DCR and TDIP data. The implemented forward algorithm uses a Finite Element approach with an unstructured mesh. The model parameters resistivity and chargeability are connected by either a simple conductivity pertubation approach or a complex conductivity approach.As a case study, the 2D inversion results of DCR/TDIP and RMT data obtained during a survey on a sulfidic copper ore deposit in Turkey are presented. The presence of an ore deposit is indicated by areas with low resistivity and significantly high chargeability in the inversion models.This work is part of the BMBF/TUEBITAK funded project ``Two-dimensional joint interpretation of Radiomagnetotellurics (RMT), Direct Current Resistivity (DCR) and Induced Polarization (IP) data: an example from ore exploration''.

  7. Geological and Geochemical Characteristics of Skarn Type Lead-Zinc Deposit in Baoshan Block, Yunnan Province

    NASA Astrophysics Data System (ADS)

    Yao, Xue; Wang, Peng

    2017-11-01

    Baoshan block is an important Pb-Zn-Fe-Cu polymetallic ore-concentration area which is located in southern of the Sanjiang metallogenic belt in western Yunnan. The article is studying about the geological and geochemical characteristics of the skarn type lead-zinc deposit in Baoshan block. The skarn-type lead-zinc deposit Baoshan block is characterized by skarn and skarn marble, and the orebodies are layered, or bedded along the interlayer fault, which are significantly controlled by structure. The research about Stable isotope S, H and O indicates that the ore-forming fluids are mainly derived from magmatic water, partly mixed with parts of metamorphic water and atmospheric precipitation. The initial Sr isotopic Sr87/Sr86 ratio suggests that the ore-forming materials derived from deep concealed magmatic rock, age of Rb-Sr mineralization is similar to that of Yanshanian granite. In conclusion, the Yanshanian tectonic-magmatic-fluid coupling mineralization of Yanshan formation is the main reason for the skarn-type lead-zinc deposit in the Baoshan block.

  8. Carbon-oxygen isotopes and rare earth elements as an exploration vector for Carlin-type gold deposits: A case study of the Shuiyindong gold deposit, Guizhou Province, SW China

    NASA Astrophysics Data System (ADS)

    Tan, Qin-Ping; Xia, Yong; Wang, Xueqiu; Xie, Zhuo-Jun; Wei, Dong-Tian

    2017-10-01

    The Shuiyindong gold deposit is a deeply concealed strata-bound Carlin-type deposit in southwestern Guizhou Province, China. The deposit lies on the eastern limb of the Huijiabao anticline with ores mainly along the anticline axis and hosted in bioclastic limestone, containing calcite veins, of the Permian Longtan Formation units. In this study, we measured carbon and oxygen isotopic ratios and rare earth element (REE) concentrations of the host rocks and calcite veins along a profile across the Shuiyindong deposit. Orebodies in the upper unit of the Longtan Formation have higher δ18O values (20.6-22.4‰) and lower δ13C values (-3.7 to -0.5‰) than the country rocks (δ18O: 18.8-21.4‰; δ13C: -0.7 to 0.8‰). However, there are no obvious trends of δ18O and δ13C values from the country rocks to the orebodies in the middle unit of the Longtan Formation. The spatial distribution of the calcite veins displays distinct halos of δ13C and δ18O values and REE concentrations. Calcite veins along the anticlinal axis and major reverse fault are enriched in Middle REE (Sm, Eu, Gd, and Tb) and 18O and depleted in 13C. Surficial veining calcite-filled fractures/faults that connect to deep concealed strata-bound gold mineralization systems can be vectors toward deep ores in southwestern Guizhou Province, China.

  9. Mineral deposits of Central America, with a section on manganese deposits of Panama

    USGS Publications Warehouse

    Roberts, Ralph Jackson; Irving, Earl Montgomery; Simons, F.S.

    1957-01-01

    The mineral deposits of Central America were studied between 1942 and 1945, in cooperation with the United States Department of State and the Foreign Economic Administration. Emphasis was originally placed on the study of strategic-mineral deposits, especially of antimony, chromite, manganese, quartz, and mica, but deposits of other minerals that offered promise of significant future production were also studied. A brief appraisal of the base-metal deposits was made, and deposits of iron ore in Honduras and of lead and zinc ores in Guatemala were mapped. In addition, studies were made of the regional geology of some areas, data were collected from many sources, and a new map of the geology of Central America was compiled.

  10. Deposits of the Peruvian Pisco Formation compared to layered deposits on Mars

    NASA Astrophysics Data System (ADS)

    Sowe, M.; Bishop, J. L.; Gross, C.; Walter, S.

    2013-09-01

    Deposits of the Peruvian Pisco Formation are morphologically similar to the mounds of Juventae Chasma at the equatorial region on Mars (Fig. 1). By analyzing these deposits, we hope to gain information about the environmental conditions that prevailed during sediment deposition and erosion, hence conditions that might be applicable to the Martian layered and hydrated deposits. Mariner 9 data of the Martian mid-latitudes have already shown evidence of the wind-sculptured landforms that display the powerful prevailing eolian regime [1]. In addition, [2] reported on similarities between Martian erosional landforms and those of the rainless coastal desert of central Peru from the Paracas peninsula to the Rio Ica. As indicated by similar erosional patterns, hyper-arid conditions and unidirectional winds must have dominated at least after deposition of the sediments, which are intermixed volcaniclastic materials and evaporate minerals at both locations. Likewise, variations in composition are displayed by alternating layers of different competence. The Pisco formation bears yardangs on siltstones, sandstones and clays with volcaniclastic admixtures [3] whereas the presence of sulphate minerals and the omnipresent mafic mineralogy has been reported for the layered mounds of Juventae Chasma equally [4]. Likewise, a volcanic airfall deposition and lacustrine formation have been proposed for the sulphate-rich deposits of Juventae Chasma [5,6]. In order to find out about potential spectral similarities, we performed a detailed spectral analysis of the surface by using LANDSAT and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) VNIR/ SWIR data (visible to near-infrared and shortwave infrared region).

  11. Geology and timing of mineralization at the Cangshang gold deposit, north-western Jiaodong Peninsula, China

    USGS Publications Warehouse

    Zhang, X.; Cawood, Peter A.; Wilde, S.A.; Liu, R.; Song, H.; Li, W.; Snee, L.W.

    2003-01-01

    The Cangshang gold deposit of the northwestern Jiaodong Peninsula contains reserves of greater than 50 tonnes (t) and is developed by the largest open pit gold mine in China. This deposit is a Jiaojia-style (i.e. disseminated-and-veinlet) deposit. It is controlled by the San-Cang fault zone, which trends ???040?? and dips 40-75??SE at the mine site. The main (no. 1) orebody lies between a hanging wall of Precambrian metamorphic rocks (mainly amphibolite) of the Fenzishan Group and a footwall composed of the Mesozoic Linglong granitoid. The ore zone is mainly composed of pyritized, sericitized and silicified granitoid, which has undergone variable degrees of cataclasis. SHRIMP U-Pb dating of zircon indicates that the protolith of the hanging wall amphibolite was formed at 2530 ?? 17 Ma and underwent metamorphism at 1852 ?? 37 Ma. The footwall granodiorite has been dated at 166 ?? 4 Ma, whereas zircons from the ore zone yield a younger age of 154 ?? 5 Ma. Cathodoluminescence images of zircons from the granodiorite and ore zone show oscillatory zonation indicative of an igneous origin for both and the ages of these zircons, therefore, are all interpreted to be representative of magmatic crystallization. Dating of sericite by 40Ar-39Ar has been used to directly determine the timing of formation of the Cangshang deposit, providing the first time absolute age on formation of the Jiaojia-style gold deposits. The well-defined age of 121.3 ?? 0.2 Ma provides the precise timing of gold mineralization at the Cangshang deposit. This age is consistent with those of Linglong-style (vein type) gold mineralization, also from the north-western Jiaodong Peninsula, at between 126 and 120 Ma. Therefore, our work indicates that both styles of gold deposits in the Jiaodong Peninsula were formed during the same mineralization event.

  12. Formation of the Wiesloch Mississippi Valley-type Zn-Pb-Ag deposit in the extensional setting of the Upper Rhinegraben, SW Germany

    USGS Publications Warehouse

    Pfaff, Katharina; Hildebrandt, Ludwig H.; Leach, David L.; Jacob, Dorrit E.; Markl, Gregor

    2010-01-01

    The Mississippi Valley-type (MVT) Zn-Pb-Ag deposit in the Wiesloch area, Southwest Germany, is controlled by graben-related faults of the Upper Rhinegraben. Mineralization occurs as vein fillings and irregular replacement ore bodies consisting of sphalerite, banded sphalerite, galena, pyrite, sulfosalts (jordanite and geocronite), barite, and calcite in the Middle Triassic carbonate host rock. Combining paragenetic information, fluid inclusion investigations, stable isotope and mineral chemistry with thermodynamic modeling, we have derived a model for the formation of the Wiesloch deposit. This model involves fluid mixing between ascending hot brines (originating in the crystalline basement) with sedimentary formation waters. The ascending brines originally had a near-neutral pH (around 6) and intermediate oxidation state, reflecting equilibrium with granites and gneisses in the basement. During fluid ascent and cooling, the pH of the brine shifted towards more acidic (around 4) and the oxidation state increased to conditions above the hematite-magnetite buffer. These chemical characteristics contrast strongly with those of the pore and fracture fluid residing in the limestone aquifer, which had a pH between 8 and 9 in equilibrium with calcite and was rather reduced due to the presence of organic matter in the limestone. Mixing between these two fluids resulted in a strong decrease in the solubility of silver-bearing sphalerite and galena, and calcite. Besides Wiesloch, several Pb-Zn deposits are known along the Upper Rhinegraben, including hydrothermal vein-type deposits like Badenweiler and the Michael mine near Lahr. They all share the same fluid origin and formation process and only differ in details of their host rock and fluid cooling paths. The mechanism of fluid mixing also seems to be responsible for the formation of other MVT deposits in Europe (e.g., Reocin, Northern Spain; Treves, Southern France; and Cracow-Silesia, Poland), which show notable

  13. Did the Kiruna iron ores form as a result of a metasomatic or igneous process? New U-Pb and Nd data for the iron oxide apatite ores and their host rocks in the Norrbotten region of northern Sweden

    NASA Astrophysics Data System (ADS)

    Westhues, A.; Hanchar, J. M.; Whitehouse, M. J.; Fisher, C. M.

    2012-12-01

    A number of iron deposits near Kiruna in the Norrbotten region of northern Sweden are of the iron oxide apatite (IOA) type of deposits; also referred to as Kiruna-type deposits. They are commonly considered a subgroup or end-member of iron oxide copper gold (IOCG) deposits, containing no economic grades of copper or gold. Both IOCG and IOA deposits are characterized by abundant low-Ti Fe oxides, an enrichment in REE, and intense sodium and potassium wall-rock alteration adjacent to the ores. Deposits of these types are of a great economic importance, not only for iron, but also for other elements such as rare earth elements (REE) or uranium. Kiruna, the type locality of the IOA type of mineral deposits, is the focus of this study. Despite a century-long mining history and 2500 Mt of iron ore produced in the region to date (with grades of 30 to 70 wt.% Fe), the genesis of these deposits is poorly understood: theories of a magmatic vs. a hydrothermal or metasomatic origin have been debated, and the timing of mineralization of the ores in the Norbotten region has never been directly dated. The results anticipated from this study will provide a better understanding of the nature of the IOA type of mineral deposits and their relation to IOCG deposits such as Olympic Dam in Australia. An array of geochemical methods is used in order to gain insights on the emplacement history of the host rocks, their subsequent alteration, and the ore genesis of these deposits. This includes in situ U/Pb geochronology of zircon, monazite, and titanite to constrain the timing between host rock emplacement, alteration and mineralization. Isotopic data from whole rocks and in situ at mineral scale will provide constraints on the involvement of hydrothermal fluids and their possible sources, as well as on the sources of Fe, U, and the REE. Newly obtained Sm-Nd isotopic data points to distinct source differences between host rocks, ore and alteration related samples. Preliminary in situ U

  14. Use of the high-resolution satellite images for detection of fractures related to the ore deposits

    NASA Astrophysics Data System (ADS)

    Cruz-Mondaca, M.; Soto-Pinto, C. A.; Arellano-Baeza, A. A.

    2012-12-01

    The Aster and GeoEye satellite high-resolution images were used to detect the structures related to the fracturing of the upper crust in the North of Chile. In particular, lineament analysis has been applied to detect the presence of epithermal fluids of low sulfurization associated with the Paleozoic ore deposits. These results have been compared with the location of the minerals altered by the presence of geothermal fluids detected using the spectral libraries. Later, the presence of fractures has been corroborated during recognition of fractures in situ and the geochemical analysis of samples of minerals altered by the presence of fluids. It was shown that the results obtained are relevant for the gold vein detection.

  15. Yellow Canary uranium deposits, Daggett County, Utah

    USGS Publications Warehouse

    Wilmarth, Verl Richard

    1953-01-01

    The Yellow Canary uranium deposit is on the west side of Red Creek Canyon in the northern part of the Uinta Mountains, Daggett County, Utah. Two claims have been developed by means of an adit, three opencuts, and several hundred feet of bulldozer trenches. No uranium ore has been produced from this deposit. The deposit is in the pre-Cambrian Red Creek quartzite. This formation is composed of intercalated beds of quartzite, hornblendite, garnet schist, staurolite schist, and quartz-mica schist and is intruded by dioritic dikes. A thick unit of highly fractured white quartzite near the top of the formation contains tyuyamunite as coatings on fracture surfaces. The tyuyamunite is associated with carnotite, volborthite, iron oxides, azurite, malachite, brochantite, and hyalite. The uranium and vanadium minerals are probably alteration products of primary minerals. The uranium content of 15 samples from this property ranged from 0.000 to 0.57 percent.

  16. Gold deposits of the Carolina Slate Belt, southeastern United States--Age and origin of the major gold producers

    USGS Publications Warehouse

    Foley, Nora K.; Ayuso, Robert A.

    2012-01-01

    Gold- and iron sulfide-bearing deposits of the southeastern United States have distinctive mineralogical and geochemical features that provide a basis for constructing models of ore genesis for exploration and assessment of gold resources. The largest (historic) deposits, in approximate million ounces of gold (Moz Au), include those in the Haile (~ 4.2 Moz Au), Ridgeway (~1.5 Moz Au), Brewer (~0.25 Moz Au), and Barite Hill (0.6 Moz Au) mines. Host rocks are Late Proterozoic to early Paleozoic (~553 million years old) metaigneous and metasedimentary rocks of the Carolina Slate Belt that share a geologic affinity with the classic Avalonian tectonic zone. The inferred syngenetic and epithermal-subvolcanic quartz-porphyry settings occur stratigraphically between sequences of metavolcanic rocks of the Persimmon Fork and Uwharrie Formations and overlying volcanic and epiclastic rocks of the Tillery and Richtex Formations (and regional equivalents). The Carolina Slate Belt is highly prospective for many types of gold ore hosted within quartz-sericite-pyrite altered volcanic rocks, juvenile metasedimentary rocks, and in associated shear zones. For example, sheared and deformed auriferous volcanogenic massive sulfide deposits at Barite Hill, South Carolina, and in the Gold Hill trend, North Carolina, are hosted primarily by laminated mudstone and felsic volcanic to volcaniclastic rocks. The high-sulfidation epithermal style of gold mineralization at Brewer and low-sulfidation gold ores of the Champion pit at Haile occur in breccias associated with subvolcanic quartz porphyry and within crystal-rich tuffs, ash flows, and subvolcanic rhyolite. The Ridgeway and Haile deposits are primarily epithermal replacements and feeder zones within (now) metamorphosed crystal-rich tuffs, volcaniclastic sediments, and siltstones originally deposited in a marine volcanic-arc basinal setting. Recent discoveries in the region include (1) extensions of known deposits, such as at Haile where

  17. Summary of the mineralogy of the Colorado Plateau uranium ores

    USGS Publications Warehouse

    Weeks, Alice D.; Coleman, Robert Griffin; Thompson, Mary E.

    1956-01-01

    In the Colorado Plateau uranium has been produced chiefly from very shallow mines in carnotite ores (oxidized vanadiferous uranium ores) until recent deeper mining penetrated black unoxidized ores in water-saturated rocks and extensive exploration has discovered many deposits of low to nonvanadiferous ores. The uranium ores include a wide range from highly vanadiferous and from as much as one percent to a trace of copper, and contain a small amount of iron and traces of lead, zinc, molybdenum, cobalt, nickel, silver, manganese, and other metals. Recent investigation indicates that the carnotite ores have been derived by progressive oxidation of primary (unoxidized) black ores that contain low-valent uranium and vanadium oxides and silicates. The uranium minerals, uraninite and coffinite, are associated with coalified wood or other carbonaceous material. The vanadium minerals, chiefly montroseite, roscoelite, and other vanadium silicates, occur in the interstices of the sandstone and in siltstone and clay pellets as well as associated with fossil wood. Calcite, dolomite, barite and minor amounts of sulfides, arsenides, and selenides occur in the unoxidized ore. Partially oxidized vanadiferous ore is blue black, purplish brown, or greenish black in contrast to the black or dark gray unoxidized ore. Vanadium combines with uranium to form rauvite. The excess vanadium is present in corvusite, fernandinite, melanovanadite and many other quadrivalent and quinquevalent vanadium minerals as well as in vanadium silicates. Pyrite and part or all of the calcite are replaced by iron oxides and gypsum. In oxidized vanadiferous uranium ores the uranium is fixed in the relatively insoluble minerals carnotite and tyuyamunite, and the excess vanadium commonly combines with one or more of the following: calcium, sodium, potassium, magnesium, aluminum, iron, copper, manganese, or barium, or rarely it forms the hydrated pentoxide. The relatively stable vanadium silicates are little

  18. Paragenesis and chemistry of multistage tourmaline formation in the sullivan Pb-Zn-Ag deposit, British Columbia

    USGS Publications Warehouse

    Jiang, S.-Y.; Palmer, M.R.; Slack, J.F.; Shaw, D.R.

    1998-01-01

    /rock conditions, rather than control by the chemical composition of the original host sediments. Rare Fe-rich schorl within the bedded Pb-Zn-Ag ores is believed to have formed on the sea floor by reaction of an Fe-rich brine pool with detrital aluminous sediments. Postore emplacement of gabbro sills and local dikes in the footwall produced Fe-rich hydrothermal fluids, which were responsible for formation of minor Fe-rich dravite-schorl which overprinted earlier dravite. Postore, but synsedimentary, hydrothermal alteration involving entrained seawater was responsible for deposition of dravite and uvite in the hanging wall and for dravite in the brown tourmalinites of the shallow footwall. Mg-rich dravite-uvite associated with chlorite and in discordant rims on schorl in the bedded ores formed by sulfide-silicate reactions during greenschist facies regional metamorphism.

  19. Development of Technology for Enrichment of Silver Containing Ores

    NASA Astrophysics Data System (ADS)

    Shekiladze, Asmati; Kavtelashvili, Otari; Bagnashvili, Mamuka

    2016-10-01

    The progress of Georgian economics is substantially associated with a development of new deposits of mineral resources. Among them is the David-Gareji deposit where at present the intensive searching geological works are performed. The work goal involves the elaboration of the technology for processing of silver-containing quartz-barite ores. Without its development the mining of more valuable gold-polymetallic ores is impossible. Because of ore complexity silver and barite are considered in a common technological aspect. The investigations were carried out on the representative samples of quartz-barite ores containing 78-88 g/ton of silver and 27-29 % of silver is a nugget in the form of the simple sulphides and chlorides. The ore is characterized by fine coalescence of barite and ore-generating minerals. Non-ferrous metals haven't any industrial value because of their very low content. Therefore, for the processing of the ores under study the direct selective scheme of flotation enrichment was chosen and the formula of optimal reagent regime was elaborated. Potassium xanthogenate is used as a collector for flotation of silver minerals and pine oil- as a foaming agent. The effect of the pulp - pH and medium temperature on silver flotation was studied. It was established that the silver is actively floats in neutral medium. For barite flotation the various collectors were tested: sulfidezid cotton oil-soap stock, soaps of fatty acids and alkyl sulphates of C12 - C16 row, among the “Baritol” is the most efficient one. Depression of the barren rock was carried out by liquid glass in alkaline medium. The effect of pulp pH on barite flotation has been investigated. The best results were obtained at pH=8.5. The increase of the pulp alkalinity has no essential effect on the indexes of the barite enrichment. Conditional concentrate of the barite is obtained by two fold purification of the main flotation concentrate by the addition of the liquid glass to the re

  20. Long-Term Planning for Open Pits for Mining Sulphide-Oxide Ores in Order to Achieve Maximum Profit

    NASA Astrophysics Data System (ADS)

    Kržanović, Daniel; Conić, Vesna; Stevanović, Dejan; Kolonja, Božo; Vaduvesković, Jovan

    2017-12-01

    Profitable exploitation of mineralised material from the earth's crust is a complex and difficult task that depends on a comprehensive planning process. Answering the question of how to plan production depends on the geometry of the deposit, as well as the concentration, distribution, and type of minerals in it. The complex nature of mineral deposits largely determines the method of exploitation and profitability of mining operations. In addition to unit operating costs and metal prices, the optimal recovery of and achievement of maximum profit from deposits of sulphide-oxide ores also depend, to a significant extent, on the level of technological recovery achieved in the ore processing procedure. Therefore, in defining a long-term development strategy for open pits, special attention must be paid to the selection of an optimal procedure for ore processing in order to achieve the main objective: maximising the Net Present Value (NPV). The effect of using two different processes, flotation processing and hydrometallurgical methods (bioleaching acid leaching), on determining the ultimate pit is shown in the case of the Kraku Bugaresku-Cementacija sulphide-oxide ore deposit in eastern Serbia. Analysis shows that the application of hydrometallurgical methods of processing sulphide-oxide ore achieved an increase in NPV of 20.42%.

  1. Mercury from mineral deposits and potential environmental impact

    USGS Publications Warehouse

    Rytuba, J.J.

    2003-01-01

    Mercury deposits are globally distributed in 26 mercury mineral belts. Three types of mercury deposits occur in these belts: silica-carbonate, hot-spring, and Almaden. Mercury is also produced as a by-product from several types of gold-silver and massive sulfide deposits, which account for 5% of the world's production. Other types of mineral deposits can be enriched in mercury and mercury phases present are dependent on deposit type. During processing of mercury ores, secondary mercury phases form and accumulate in mine wastes. These phases are more soluble than cinnabar, the primary ore mineral, and cause mercury deposits to impact the environment more so than other types of ore deposits enriched in mercury. Release and transport of mercury from mine wastes occur primarily as mercury-enriched particles and colloids. Production from mercury deposits has decreased because of environmental concerns, but by-product production from other mercury-enriched mineral deposits remains important.

  2. Genesis of sediment-hosted stratiform copper cobalt deposits, central African Copperbelt

    NASA Astrophysics Data System (ADS)

    Cailteux, J. L. H.; Kampunzu, A. B.; Lerouge, C.; Kaputo, A. K.; Milesi, J. P.

    2005-07-01

    data on sulphides suggest the derivation of sulphur essentially from the bacterial reduction of seawater sulphates. The mineralizing brines were generated from sea water in sabkhas or hypersaline lagoons during the deposition of the host rocks. Changes of Eh-pH and salinity probably were critical for concentrating copper-cobalt and nickel mineralisation. Compressional tectonic and related metamorphic processes and supergene enrichment have played variable roles in the remobilisation and upgrading of the primary mineralisation. There is no evidence to support models assuming that metals originated from: (1) Katangan igneous rocks and related hydrothermal processes or; (2) leaching of red beds underlying the orebodies. The metal sources are pre-Katangan continental rocks, especially the Palaeoproterozoic low-grade porphyry copper deposits known in the Bangweulu block and subsidiary Cu-Co-Ni deposits/occurrences in the Archaean rocks of the Zimbabwe craton. These two sources contain low grade ore deposits portraying the peculiar metal association (Cu, Co, Ni, U, Cr, Au, Ag, PGE) recorded in the Katangan sediment-hosted ore deposits. Metals were transported into the basin dissolved in water. The stratiform deposits of Congo and Zambia display features indicating that syngenetic and early diagenetic processes controlled the formation of the Neoproterozoic Copperbelt of central Africa.

  3. Toward an integrated genetic model for vent-distal SEDEX deposits

    NASA Astrophysics Data System (ADS)

    Sangster, D. F.

    2018-04-01

    of the sediment column or sinks into it. Metal sulfide precipitation occurs when bacterially produced H2S, diffusing upward from anoxic conditions within the sediment, reacts with metal-bearing chloride complexes in the ore-forming fluid. Since H2S is produced by bacterial sulfate reduction within the first 2 m of the sediment column even where overlain by oxic water, sulfide precipitation will always occur within the anoxic sediment regardless of where the ore-forming fluid comes to rest. Because of the high porosity of the sediment, replacement is precluded as a mechanism of sulfide emplacement in favour of void filling. Detailed textural analyses of the HYC and Howards Pass deposits have demonstrated the abundance of pre-exhalative framboidal pyrite and provide evidence for sulfate-reducing bacteria operating in these basins under normal steady-state conditions before arrival of the ore-forming fluids. The sudden presence of ore-forming fluid, however, dramatically changes the formerly steady-state situation of the local bacterial environment. A major result of this new condition is recorded in the sulfur isotope compositions of the sulfides. Whereas pre-exhalative framboidal pyrite is isotopically light, ore-stage sulfides are significantly heavier and display a reduced fractionation relative to contemporaneous seawater sulfate. Much of the reduced fractionation is linked to the increase in H2S production by sulfate-reducing bacteria. The major factor contributing to this increase is the life-saving action of sulfate-reducing bacteria during which the metal toxicity is mitigated by removal of the toxic ions by precipitating them out as sulfides. Several scenarios representing hypothetical thermochemical sulfate reduction (TSR) conditions convincingly demonstrate the extreme improbability that TSR played a role in formation of vent-distal deposits. A wide range of depositional environments is suggested by host rocks which range from impure carbonate to calcareous

  4. Properties influencing fat, oil, and grease deposit formation.

    PubMed

    Keener, Kevin M; Ducoste, Joel J; Holt, Leon M

    2008-12-01

    Fat, oil, and grease (FOG) deposits are the reported cause of 50 to 75% of sanitary sewer overflows in the United States, resulting in 1.8 X 10(6) m3 (500 mil. gal) of raw wastewater released into the environment annually. The objective of this research was to characterize the chemical and physical properties of FOG deposits. Twenty-three cities from around the United States contributed FOG samples for the study. The FOG deposits showed a wide range in yield strength (4 to 34 kPa), porosity (10 to 24%), and moisture content (10 to 60%), suggesting uncontrolled formation processes. A majority of these deposits display hard, sandstonelike texture, with distinct layering effects, suggesting a discontinuous formation process. The results found that 84% of FOG deposits contained high concentrations of saturated fatty acids and calcium, suggesting preferential accumulation.

  5. Leach of the weathering crust elution-deposited rare earth ore for low environmental pollution with a combination of (NH4)2SO4 and EDTA.

    PubMed

    Tang, Jie; Qiao, Jiyang; Xue, Qiang; Liu, Fei; Chen, Honghan; Zhang, Guochen

    2018-05-01

    High concentration of ammonium sulfate, a typical leaching agent, was often used in the mining process of the weathering crust elution-deposited rare earth ore. After mining, a lot of ammonia nitrogen and labile heavy metal fractions were residual in tailings, which may result in a huge potential risk to the environment. In this study, in order to achieve the maximum extraction of rare earth elements and reduce the labile heavy metal, extraction effect and fraction changes of lanthanum (La) and lead (Pb) in the weathering crust elution-deposited rare earth ore were studied by using a compound agent of (NH 4 ) 2 SO 4 -EDTA. The extraction efficiency of La was more than 90% by using 0.2% (NH 4 ) 2 SO 4 -0.005 M EDTA, which was almost same with that by using 2.0% (NH 4 ) 2 SO 4 solution. In contrast, the extraction efficiency of Pb was 62.3% when use 0.2% (NH 4 ) 2 SO 4 -0.005 M EDTA, which is much higher than that (16.16%) achieved by using 2.0% (NH 4 ) 2 SO 4 solution. The released Pb fractions were mainly acid extractable and reducible fractions, and the content of reducible fraction being leached accounted for 70.45% of the total reducible fraction. Therefore, the use of 0.2% (NH 4 ) 2 SO 4 -0.005 M EDTA can not only reduce the amount of (NH 4 ) 2 SO 4 , but also decrease the labile heavy metal residues in soil, which provides a new way for efficient La extraction with effective preventing and controlling environmental pollution in the process of mining the weathering crust elution-deposited rare earth ore. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Temporal evolution of the giant Salobo IOCG deposit, Carajás Province (Brazil): constraints from paragenesis of hydrothermal alteration and U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    deMelo, Gustavo H. C.; Monteiro, Lena V. S.; Xavier, Roberto P.; Moreto, Carolina P. N.; Santiago, Erika S. B.; Dufrane, S. Andrew; Aires, Benevides; Santos, Antonio F. F.

    2017-06-01

    The giant Salobo copper-gold deposit is located in the Carajás Province, Amazon Craton. Detailed drill core description, petrographical studies, and U-Pb SHRIMP IIe and LA-ICP-MS geochronology unravel its evolution regarding the host rocks, hydrothermal alteration and mineralization. Within the Cinzento Shear Zone, the deposit is hosted by orthogneisses of the Mesoarchean Xingu Complex (2950 ± 25 and 2857 ± 6.7 Ma) and of the Neoarchean Igarapé Gelado suite (2763 ± 4.4 Ma), which are crosscut by the Old Salobo granite. Remnants of the Igarapé Salobo metavolcanic-sedimentary sequence are represented by a quartz mylonite with detrital zircon populations (ca. 3.1-3.0, 2.95, 2.86, and 2.74 Ga). High-temperature calcic-sodic hydrothermal alteration (hastingsite-actinolite) was followed by silicification, iron-enrichment (almandine-grunerite-magnetite), tourmaline formation, potassic alteration with biotite, copper-gold ore formation, and later Fe-rich hydrated silicate alteration. Myrmekitic bornite-chalcocite and magnetite comprise the bulk of copper-gold ore. All these alteration assemblages have been overprinted by post-ore hematite-bearing potassic and propylitic alteration, which is also recognized in the Old Salobo granite. In the central zone of the deposit the mylonitized Igarapé Gelado suite rocks yield an age of 2701 ± 30 Ma. Zircon ages of 2547 ± 5.3 and 2535 ± 8.4 Ma were obtained for the Old Salobo granite and for the high-grade copper ore, respectively. A U-Pb LA-ICP-MS monazite age (2452 ± 14 Ma) from the copper-gold ore indicates hydrothermal activity and overprinting in the Siderian. Therefore, a protracted tectono-thermal event due to the reactivation of the Cinzento Shear Zone is proposed for the evolution of the Salobo deposit.

  7. Fluid inclusion, rare earth element geochemistry, and isotopic characteristics of the eastern ore zone of the Baiyangping polymetallic Ore district, northwestern Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Feng, Caixia; Bi, Xianwu; Liu, Shen; Hu, Ruizhong

    2014-05-01

    conditions of seawater sulfate reduction to sulfur. (4) The C-O isotopic analyses yield δ13C values from ca. zero to -10‰, and a wider range of δ18O values from ca. +6 to +24‰, suggestive of mixing between mantle-derived magma and marine carbonate sources during the evolution of ore-forming fluids, although potential contributions from organic carbon and basinal brine sources should also be considered. These data indicate that ore-forming fluids were derived from a mixture of organism, basinal brine, and mantle-derived magma sources, and as such, the eastern ore zone of the Baiyangping polymetallic ore deposit should be classified as a “Lanping-type” ore deposit.

  8. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes.

    PubMed

    Weis, P; Driesner, T; Heinrich, C A

    2012-12-21

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.

  9. Porphyry-Copper Ore Shells Form at Stable Pressure-Temperature Fronts Within Dynamic Fluid Plumes

    NASA Astrophysics Data System (ADS)

    Weis, P.; Driesner, T.; Heinrich, C. A.

    2012-12-01

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.

  10. Timing of multiple hydrothermal events in the iron oxide-copper-gold deposits of the Southern Copper Belt, Carajás Province, Brazil

    NASA Astrophysics Data System (ADS)

    Moreto, Carolina P. N.; Monteiro, Lena V. S.; Xavier, Roberto P.; Creaser, Robert A.; DuFrane, S. Andrew; Melo, Gustavo H. C.; Delinardo da Silva, Marco A.; Tassinari, Colombo C. G.; Sato, Kei

    2015-06-01

    The Southern Copper Belt, Carajás Province, Brazil, hosts several iron oxide-copper-gold (IOCG) deposits, including Sossego, Cristalino, Alvo 118, Bacuri, Bacaba, Castanha, and Visconde. Mapping and U-Pb sensitive high-resolution ion microprobe (SHRIMP) IIe zircon geochronology allowed the characterization of the host rocks, situated within regional WNW-ESE shear zones. They encompass Mesoarchean (3.08-2.85 Ga) TTG orthogneiss, granites, and remains of greenstone belts, Neoarchean (ca. 2.74 Ga) granite, shallow-emplaced porphyries, and granophyric granite coeval with gabbro, and Paleoproterozoic (1.88 Ga) porphyry dykes. Extensive hydrothermal zones include albite-scapolite, biotite-scapolite-tourmaline-magnetite alteration, and proximal potassium feldspar, chlorite-epidote and chalcopyrite formation. U-Pb laser ablation multicollector inductively coupled mass spectrometry (LA-MC-ICP-MS) analysis of ore-related monazite and Re-Os NTIMS analysis of molybdenite suggest multiple Neoarchean (2.76 and 2.72-2.68 Ga) and Paleoproterozoic (2.06 Ga) hydrothermal events at the Bacaba and Bacuri deposits. These results, combined with available geochronological data from the literature, indicate recurrence of hydrothermal systems in the Southern Copper Belt, including 1.90-1.88-Ga ore formation in the Sossego-Curral ore bodies and the Alvo 118 deposit. Although early hydrothermal evolution at 2.76 Ga points to fluid migration coeval with the Carajás Basin formation, the main episode of IOCG genesis (2.72-2.68 Ga) is related to basin inversion coupled with Neoarchean (ca. 2.7 Ga) felsic magmatism. The data suggest that the IOCG deposits in the Southern Copper Belt and those in the Northern Copper Belt (2.57-Ga Salobo and Igarapé Bahia-Alemão deposits) do not share a common metallogenic evolution. Therefore, the association of all IOCG deposits of the Carajás Province with a single extensive hydrothermal system is precluded.

  11. Petrogenesis of Ore-Bearing and Ore-Barren Intermediate-Acid Intrusive Rocks from Jilongshan Au-Cu Skarn Deposit , the Middle-Lower Yangtze River Metallogenic Belt, Eastern China and their Geological Implications

    NASA Astrophysics Data System (ADS)

    Zhan, X.; Wei, J.; Chen, M.; Zhao, X.

    2017-12-01

    Jilongshan Au-Cu skarn deposit in Edong-Jiurui ore district , Middle-Lower Yangtze River Metallogenic Belt(MLYRB) , eastern China ,contains 44 t gold and 32 Mt of copper ores. The mineralization is dominated by massive skarn ores, most of which occurs along the contact zone between the lower Triassic dolomitic limestones and Jilongshan granodioritic intrusion. However, Baiguoshu pluton, no more than 1 km western, has been not found any mineralized occurrence with the same strata. The ore-bearing and ore-barren intrusive rocks are granodiorite porphyries, could not be identified by petrographic characters. Besides, Zircon U-Pb dating results demonstrate that Jilongshan and Baiguoshu intrusion emplaced at 140 ± 1Ma and 141 ± 1 Ma respectively, coeval with the Early Cretaceous magmatism in Edong-Jiurui area. Elements geochemistry present that they are both characterized by high Al2O3, rich Na2O (Na2O/K2O>1.0), enrichment of LILE (Rb, Ba, K, Sr) and depletion of HFSE (Nb, Ta), and weak negative Eu anomalies, which suggest they may be originated from partial melting of enriched mantle and associated with crust-mantle interaction ,evidenced by the Sr-Nd-Hf isotopic composition as well. Although the two are partly geochemically similar with each other, they have some obvious differences. The former have higher K2O and Y, Yb ,lower MgO, and Cr, Ni contents, and more obvious differentiation degree between light and heavy REEs with (La/Yb)N=10.55-15.95 than the latter with (La/Yb)N=8.67-10.47. It is indicated that the magmas of the Jilongshan intrusive rocks were probably derived from deeper source than that of the Baiguoshu, also supported by mineralogical data of biotite. In addition, Jilongshan intrusive rocks have a relatively higher initial Nd (ɛNd (t) = -8.2 - -9.4) and Sr ((87Sr/86Sr)i=0.70822-0.70897) isotopic composition than Baiguoshu (-9.2 - -9.7 and 0.70855-0.70881), as same as Lu-Hf isotopic composition. Therefore, combined with previous studies, we suggest

  12. Chemical and Sr isotopic characterization of North America uranium ores: Nuclear forensic applications

    DOE PAGES

    Balboni, Enrica; Jones, Nina; Spano, Tyler; ...

    2016-08-31

    This study reports major, minor, and trace element data and Sr isotope ratios for 11 uranium ore (uraninite, UO 2+x) samples and one processed uranium ore concentrate (UOC) from various U.S. deposits. The uraninite investigated represent ores formed via different modes of mineralization (e.g., high- and low-temperature) and within various geological contexts, which include magmatic pegmatites, metamorphic rocks, sandstone-hosted, and roll front deposits. In situ trace element data obtained by laser ablation-ICP-MS and bulk sample Sr isotopic ratios for uraninite samples investigated here indicate distinct signatures that are highly dependent on the mode of mineralization and host rock geology. Relativemore » to their high-temperature counterparts, low-temperature uranium ores record high U/Th ratios (>1000), low total rare earth element (REE) abundances (<1 wt%), high contents (>300 ppm) of first row transition metals (Sc, Ti, V, Cr, Mn, Co, Ni), and radiogenic 87Sr/ 86Sr ratios (>0.7200). Comparison of chondrite normalized REE patterns between uraninite and corresponding processed UOC from the same locality indicates identical patterns at different absolute concentrations. Lastly, this result ultimately confirms the importance of establishing geochemical signatures of raw, uranium ore materials for attribution purposes in the forensic analysis of intercepted nuclear materials.« less

  13. Chemical and Sr isotopic characterization of North America uranium ores: Nuclear forensic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balboni, Enrica; Jones, Nina; Spano, Tyler

    This study reports major, minor, and trace element data and Sr isotope ratios for 11 uranium ore (uraninite, UO 2+x) samples and one processed uranium ore concentrate (UOC) from various U.S. deposits. The uraninite investigated represent ores formed via different modes of mineralization (e.g., high- and low-temperature) and within various geological contexts, which include magmatic pegmatites, metamorphic rocks, sandstone-hosted, and roll front deposits. In situ trace element data obtained by laser ablation-ICP-MS and bulk sample Sr isotopic ratios for uraninite samples investigated here indicate distinct signatures that are highly dependent on the mode of mineralization and host rock geology. Relativemore » to their high-temperature counterparts, low-temperature uranium ores record high U/Th ratios (>1000), low total rare earth element (REE) abundances (<1 wt%), high contents (>300 ppm) of first row transition metals (Sc, Ti, V, Cr, Mn, Co, Ni), and radiogenic 87Sr/ 86Sr ratios (>0.7200). Comparison of chondrite normalized REE patterns between uraninite and corresponding processed UOC from the same locality indicates identical patterns at different absolute concentrations. Lastly, this result ultimately confirms the importance of establishing geochemical signatures of raw, uranium ore materials for attribution purposes in the forensic analysis of intercepted nuclear materials.« less

  14. Occurrence model for volcanogenic beryllium deposits: Chapter F in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Foley, Nora K.; Hofstra, Albert H.; Lindsey, David A.; Seal, Robert R.; Jaskula, Brian W.; Piatak, Nadine M.

    2012-01-01

    involvement of magmatic water in an otherwise meteoric water-dominated hydrothermal system, indicate that magmatic volatiles contributed to mineralization. At the type locality, hydrothermal alteration of dolomite clasts formed layered nodules of calcite, opal, fluorite, and bertrandite, the latter occurring finely intergrown with fluorite. Alteration assemblages and elemental enrichments in the tuff and surrounding volcanic rocks include regional diagenetic clays and potassium feldspar and distinctive hydrothermal halos of anomalous fluorine, lithium, molybdenum, niobium, tin, and tantalum, and intense potassium feldspathization with sericite and lithium-smectite in the immediate vicinity of Be ore. Formation of volcanogenic Be deposits is due to the coincidence of multiple factors that include an appropriate Be-bearing source rock, a subjacent pluton that supplied volatiles and heat to drive convection of meteoric groundwater, a depositional site characterized by the intersection of normal faults with permeable tuff below a less permeable cap rock, a fluorine-rich ore fluid that facilitated Be transport (for example, BeF42- complex), and the existence of a chemical trap that caused fluorite and bertrandite to precipitate at the former site of carbonate lithic clasts in the tuff.

  15. Prediction of ore fluid metal concentrations from solid solution concentrations in ore-stage calcite: Application to the Illinois-Kentucky and Central Tennessee Mississippi Valley-type districts

    NASA Astrophysics Data System (ADS)

    Smith-Schmitz, Sarah E.; Appold, Martin S.

    2018-03-01

    Knowledge of the concentrations of Zn and Pb in Mississippi Valley-type (MVT) ore fluids is fundamental to understanding MVT deposit origin. Most previous attempts to quantify the concentrations of Zn and Pb in MVT ore fluids have focused on the analysis of fluid inclusions. However, these attempts have yielded ambiguous results due to possible contamination from secondary fluid inclusions, interferences from Zn and Pb in the host mineral matrix, and uncertainties about whether the measured Zn and Pb signals represent aqueous solute or accidental solid inclusions entrained within the fluid inclusions. The purpose of the present study, therefore, was to try to determine Zn and Pb concentrations in MVT ore fluids using an alternate method that avoids these ambiguities by calculating Zn and Pb concentrations in MVT ore fluids theoretically based on their solid solution concentrations in calcite. This method was applied to the Illinois-Kentucky and Central Tennessee districts, which both contain ore-stage calcite. Experimental partition coefficient (D) values from Rimstidt et al. (1998) and Tsusue and Holland (1966), and theoretical thermodynamic distribution coefficient (KD) values were employed in the present study. Ore fluid concentrations of Zn were likely most accurately predicted by Rimstidt et al. (1998) D values, based on their success in predicting known fluid inclusion concentrations of Mg and Mn, and likely also most accurately predicted ore fluid concentrations of Fe. All four of these elements have a divalent ionic radius smaller than that of Ca2+ and form carbonate minerals with the calcite structure. For both the Illinois-Kentucky and the Central Tennessee district, predicted ore fluid Zn and Fe concentrations were on the order of up to 10's of ppm. Ore fluid concentrations of Pb could only be predicted using Rimstidt et al. (1998) D values. However, these concentrations are unlikely to be reliable, as predicted ore fluid concentrations of Sr and Ba

  16. A deposit model for magmatic iron-titanium-oxide deposits related to Proterozoic massif anorthosite plutonic suites

    USGS Publications Warehouse

    Woodruff, Laurel G.; Nicholson, Suzanne W.; Fey, David L.

    2013-01-01

    This descriptive model for magmatic iron-titanium-oxide (Fe-Ti-oxide) deposits hosted by Proterozoic age massif-type anorthosite and related rock types presents their geological, mineralogical, geochemical, and geoenvironmental attributes. Although these Proterozoic rocks are found worldwide, the majority of known deposits are found within exposed rocks of the Grenville Province, stretching from southwestern United States through eastern Canada; its extension into Norway is termed the Rogaland Anorthosite Province. This type of Fe-Ti-oxide deposit dominated by ilmenite rarely contains more than 300 million tons of ore, with between 10- to 45-percent titanium dioxide (TiO2), 32- to 45-percent iron oxide (FeO), and less than 0.2-percent vanadium (V). The origin of these typically discordant ore deposits remains as enigmatic as the magmatic evolution of their host rocks. The deposits clearly have a magmatic origin, hosted by an age-constrained unique suite of rocks that likely are the consequence of a particular combination of tectonic circumstances, rather than any a priori temporal control. Principal ore minerals are ilmenite and hemo-ilmenite (ilmenite with extensive hematite exsolution lamellae); occurrences of titanomagnetite, magnetite, and apatite that are related to this deposit type are currently of less economic importance. Ore-mineral paragenesis is somewhat obscured by complicated solid solution and oxidation behavior within the Fe-Ti-oxide system. Anorthosite suites hosting these deposits require an extensive history of voluminous plagioclase crystallization to develop plagioclase-melt diapirs with entrained Fe-Ti-rich melt rising from the base of the lithosphere to mid- and upper-crustal levels. Timing and style of oxide mineralization are related to magmatic and dynamic evolution of these diapiric systems and to development and movement of oxide cumulates and related melts. Active mines have developed large open pits with extensive waste-rock piles, but

  17. Geochronological framework of the early Paleozoic Bainaimiao Cu-Mo-Au deposit, NE China, and its tectonic implications

    NASA Astrophysics Data System (ADS)

    Zhou, Zhen-Hua; Mao, Jing-Wen; Ma, Xing-Hua; Che, He-Wei; Ou'yang, He-Gen; Gao, Xu

    2017-08-01

    The Bainaimiao Cu-Mo-Au deposit of NE China is an important ore deposit in the middle section of the northern margin of the North China Craton. The early Paleozoic Bainaimiao Group is the main ore-hosting rock. The mineralization at the deposit shows features of porphyry alteration and late-stage orogenesis and transformation. Zircon LA-ICP-MS U-Pb age data indicate that the ages of the Third and Fifth formations of the Bainaimiao Group are 492.7 ± 2.9 Ma (MSWD = 0.53) and 488.9 ± 3.1 Ma (MSWD = 0.92), respectively. The age of quartz diorite that intrudes the Bainaimiao Group is 459.3 ± 6.4 Ma (MSWD = 2.20). Molybdenite samples from massive Cu-Mo-bearing ores and quartz veins in the southern ore belt yield a Re-Os isochron age of 438.2 ± 2.7 Ma (MSWD = 0.16), which is consistent with the Re-Os isochron age of molybdenite in the northern ore belt, implying that the two ore belts belong to the same mineralization system. Muscovite from a post-magmatic Cu-Mo-bearing quartz-calcite vein yields an Ar-Ar isochron age of 422.5 ± 3.9 Ma (MSWD = 0.64) with an initial 40Ar/36Ar ratio of 286 ± 21. The well-defined plateau age of the muscovite is 422.4 ± 2.6 Ma (MSWD = 0.05), which represents the time of the post-magmatic orogenic transformation event. Based on our new age data and previous findings, we propose that the Bainaimiao Cu-Mo-Au deposit formed in an active continental margin setting and experienced four stages of ore mineralization: (1) a Late Cambrian-Middle Ordovician volcanic-sedimentary stage; (2) a Late Ordovician porphyry mineralization stage; (3) a Late Silurian regional metamorphism stage; and (4) an orogenic transformation stage. Subhedral and euhedral Paleoproterozoic (2402-1810 Ma) inherited zircons indicate that the Bainaimiao Group has a tectonic affinity with the North China Craton. The Central Asian Orogenic Belt, which is closely related to the complex closure of the Paleo-Asian Ocean, is favorable for prospecting for Paleozoic porphyry Cu

  18. The Genesis of Precious and Base Metal Mineralization at the Miguel Auza Deposit, Zacatecas, Mexico

    NASA Astrophysics Data System (ADS)

    Findley, A. A.; Olivo, G. R.; Godin, L.

    2009-05-01

    The Miguel Auza mine located in Zacatecas State, Mexico, is a vein-type polymetallic epithermal deposit hosted in deformed argillite, siltstone and, greywacke of the Cretaceous Caracol Formation. Silver-rich base metal veins (0.2 m to >1.5 m wide) are spatially associated with the NE-striking, steeply SE- dipping (70-80°) Miguel Auza fault over a strike length of 1.6 km and a depth of 460 m. A 2 km2 monzonitic stock located in the proximity of the mineralized zones, has previously been interpreted as the source of the mineralizing fluids. Four distinct structural stages are correlated with hydrothermal mineral deposition: (I) The Pre-ore stage is characterized by normal faulting, fracturing of host rock, and rotation of bedding planes. This stage consists of quartz, illite, chlorite, +/- pyrite alteration of sedimentary wall rocks. (II) The Pyrite-vein stage is associated with reverse-sense reactivation of early normal faults, dilation of bedding planes/fractures, and deposition of generally barren calcite + pyrite veinlets. (III) The Main-ore stage is related to the development of reverse-fault- hosted massive sulphide veins. During this stage three phases of mineral deposition are recorded: early pyrite and arsenopyrite, intermediate chalcopyrite, pyrite, arsenopyrite, and base metals, and late base metals and Ag-bearing minerals. Associated gangue minerals during the main ore stage are quartz, muscovite, calcite and chlorite. (IV) The Post-ore stage involves late NW-SE striking block faulting, brecciation and calcite veining. Later supergene oxidation of veins led to deposition of Fe-oxides and hydroxides, commonly filling fractures or replacing early-formed sulphide assemblages. The various vein types display classic epithermal textures including open space filling, banding, comb quartz and brecciation. The Ag-bearing minerals comprise pyrargyrite [Ag3(Sb,As)S3], argentotennantite [(Cu,Ag)10(Zn,Fe)2(Sn,As)4S13], polybasite-pearceite [(Ag,Cu)16(Sb,As)2S11], and

  19. Granite-related Yangjiashan tungsten deposit, southern China

    NASA Astrophysics Data System (ADS)

    Xie, Guiqing; Mao, Jingwen; Li, Wei; Fu, Bin; Zhang, Zhiyuan

    2018-04-01

    The Yangjiashan scheelite-bearing deposit (38,663 metric tons of WO3 with an average ore grade of 0.70% WO3) is hosted in quartz veins in a biotite monzogranite intrusion and surrounding slate in the Xiangzhong Metallogenic Province of southern China. The monzogranite has a zircon SHRIMP U-Pb age of 406.6 ± 2.8 Ma (2σ, n = 20, MSWD = 1.4). Cassiterite coexisting with scheelite yields a weighted mean 206Pb/238U age of 409.8 ± 5.9 Ma (2σ, n = 30, MSWD = 0.20), and molybdenite intergrown with scheelite yields a weighted mean Re-Os age of 404.2 ± 3.2 Ma (2σ, n = 3, MSWD = 0.10). These results suggest that the Yangjiashan tungsten deposit is temporally related to the Devonian intrusion. The δD and calculated δ18OH2O values of quartz intergrown with scheelite range from - 87 to - 68‰, and - 1.2 to 3.4‰, respectively. Sulfides have a narrow range of δ34S values of - 2.9 to - 0.7‰ with an average value of - 1.6‰ (n = 16). The integration of geological, stable isotope, and geochronological data, combined with the quartz-muscovite greisen style of ore, supports a magmatic-hydrothermal origin for the tungsten mineralization. Compared to the more common tungsten skarn, quartz-wolframite vein, and porphyry tungsten deposits, as well as orogenic gold deposits worldwide, the Yangjiashan tungsten deposit is an unusual example of a granite-related, gold-poor, scheelite-bearing quartz vein type of deposit. The calcium needed for the formation of scheelite is derived from the sericitization of calcic plagioclase in the monzogranite and Ca-bearing psammitic country rocks, and the relatively high pH, reduced and Ca-rich mineralizing fluid may be the main reasons for the formation of scheelite rather than wolframite at Yangjiashan.

  20. The Myszkow porphyry copper-molybdenum deposit, Poland

    USGS Publications Warehouse

    Chaffee, M.A.; Eppinger, R.G.; Lason, K.; Slosarz, J.; Podemski, M.

    1994-01-01

    The porphyry copper-molybdenum deposit at Myszkow, south-central Poland, lies in the Cracow-Silesian orogenic belt, in the vicinity of a Paleozoic boundary between two tectonic plates. The deposit is hosted in a complex that includes early Paleozoic metasedimentary rocks intruded in the late Paleozoic by a predominantly granodioritic pluton. This deposit exhibits many features that are typical of porphyry copper deposits associated with calc-alkaline intrusive rocks, including ore- and alteration-mineral suites, zoning of ore and alteration minerals, fluid-inclusion chemistry, tectonic setting, and structural style of veining. Unusual features of the Myszkow deposit include high concentrations of tungsten and the late Paleozoic (Variscan) age. -Authors

  1. Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore

    NASA Astrophysics Data System (ADS)

    Sun, Yong-sheng; Han, Yue-xin; Li, Yan-feng; Li, Yan-jun

    2017-02-01

    To reveal the formation and characteristics of metallic iron grains in coal-based reduction, oolitic iron ore was isothermally reduced in various reduction times at various reduction temperatures. The microstructure and size of the metallic iron phase were investigated by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and a Bgrimm process mineralogy analyzer. In the results, the reduced Fe separates from the ore and forms metallic iron protuberances, and then the subsequent reduced Fe diffuses to the protuberances and grows into metallic iron grains. Most of the metallic iron grains exist in the quasi-spherical shape and inlaid in the slag matrix. The cumulative frequency of metallic iron grain size is markedly influenced by both reduction time and temperature. With increasing reduction temperature and time, the grain size of metallic iron obviously increases. According to the classical grain growth equation, the growth kinetic parameters, i.e., time exponent, growth activation energy, and pre-exponential constant, are estimated to be 1.3759 ± 0.0374, 103.18 kJ·mol-1, and 922.05, respectively. Using these calculated parameters, a growth model is established to describe the growth behavior of metallic iron grains.

  2. The Darzi-Vali bauxite deposit, West-Azarbaidjan Province, Iran: Critical metals distribution and parental affinities

    NASA Astrophysics Data System (ADS)

    Khosravi, Maryam; Abedini, Ali; Alipour, Samad; Mongelli, Giovanni

    2017-05-01

    The Darzi-Vali bauxite deposit, located 20 km east of Bukan, in northwestern Iran, occurs as discontinuous layers and lenses within the Upper Permian carbonate rocks of the Ruteh Formation. These layers extend laterally for over ∼1 km and vary in thickness ranging from 2 to 17 m. We studied the chemical variations in a selected stratigraphic section throughout the deposit, focusing in particular on numbers of selected special metals that make the deposit of potential economic importance. The critical elements Co, Ga, Nb, Ta, LREEs, and HREEs, along with transition metal Ni, are variously depleted throughout the deposit with respect to Ti, which is assumed to be a less mobile element. Among the critical elements, Cr has only demonstrated conservative behavior. Factor analysis suggests that the factors controlling the distribution of LREEs and HREEs in the ore, which most likely depend on the local composition of groundwater during weathering, are different from those controlling the distribution of other critical elements. Further, the Darzi-Vali ore has ΣREE contents (773 ppm) much higher with respect to other deposits located in NW of Iran, making this deposit worthy of further investigations. As for parental affinity, the Eu anomalies show negligible fluctuations (0.82-0.94) all along the deposit confirming that bauxitization does not affect the effectiveness of this provenance proxy. The average Eu/Eu* value (0.89) of the ore is relatively far afield from that of the average carbonate bedrock (1.3) and close to that of the average mafic protolith (0.94), and similar results are also obtained using the Sm/Nd and Tb/Tb* proxies. Bivariate plots of Eu anomaly versus Sm/Nd and Tb anomalies further support the idea that mafic rocks are probably related to the volcanic activities. These volcanic activities affected the Iranian platform during the Upper Permian as proposed for other bauxite deposits in northwestern Iran. These mafic rocks were the probable precursor

  3. Radioactive rare-earth deposit at Scrub Oaks mine, Morris County, New Jersey

    USGS Publications Warehouse

    Klemic, Harry; Heyl, A.V.; Taylor, Audrey R.; Stone, Jerome

    1959-01-01

    A deposit of rare-earth minerals in the Scrub Oaks iron mine, Morris County, N. J., was mapped and sampled in 1955. The rare-earth minerals are mainly in coarse-grained magnetite ore and in pegmatite adjacent to it. Discrete bodies of rare-earth-bearing magnetite ore apparently follow the plunge of the main magnetite ore body at the north end of the mine. Radioactivity of the ore containing rare earths is about 0.2 to 0.6 mllliroentgens per hour. The principal minerals of the deposit are quartz, magnetite, hematite, albiteoligoclase, perthite and antiperthite. Xenotime and doverite aggregates and bastnaesite with intermixed leucoxene are the most abundant rare-earth minerals, and zircon, sphene, chevkinite, apatite, and monazite are of minor abundance in the ore. The rare-earth elements are partly differentiated into cerium-rich bastnaesite, chevkinite, and monazite, and yttrium-rich xenotime and doverite. Apatite, zircon, and sphene contain both cerium and yttrium group earths. Eleven samples of radioactive ore and rock average 0.009 percent uranium, 0.062 percent thorium, 1.51 percent combined rare-earth oxides including yttrium oxide and 24.8 percent iron. Scatter diagrams of sample data show a direct correlation between equivalent uranium, uranium, thorium, and combined rare^ earth oxides. Both cerium- and yttrium-group earths are abundant in the rare-earth minerals. Radioactive magnetite ore containing rare-earth minerals probably formed as a variant of the magnetite mineralization that produced the main iron ore of the Scrub Oaks deposit. The rare-earth minerals and the iron ore were deposited contemporaneously. Zircon crystals, probably deposited at the same time, have been determined by the Larsen method to be about 550 to 600 million years old (late Precambrian age). Uranium, thorium, and rare-earth elements are potential byproducts of iron in the coarse-grained magnetite ore.

  4. Discriminating fluid source regions in orogenic gold deposits using B-isotopes

    NASA Astrophysics Data System (ADS)

    Lambert-Smith, James S.; Rocholl, Alexander; Treloar, Peter J.; Lawrence, David M.

    2016-12-01

    The genesis of orogenic gold deposits is commonly linked to hydrothermal ore fluids derived from metamorphic devolatilization reactions. However, there is considerable debate as to the ultimate source of these fluids and the metals they transport. Tourmaline is a common gangue mineral in orogenic gold deposits. It is stable over a very wide P-T range, demonstrates limited volume diffusion of major and trace elements and is the main host of B in most rock types. We have used texturally resolved B-isotope analysis by secondary ion mass spectrometry (SIMS) to identify multiple fluid sources within a single orogenic gold ore district. The Loulo Mining District in Mali, West Africa hosts several large orogenic gold ore bodies with complex fluid chemistry, associated with widespread pre-ore Na- and multi-stage B-metasomatism. The Gara deposit, as well as several smaller satellites, formed through partial mixing between a dilute aqueous-carbonic fluid and a hypersaline brine. Hydrothermal tourmaline occurs as a pre-ore phase in the matrix of tourmalinite units, which host mineralization in several ore bodies. Clasts of these tourmalinites occur in mineralized breccias. Disseminated hydrothermal and vein hosted tourmaline occur in textural sites which suggest growth during and after ore formation. Tourmalines show a large range in δ11B values from -3.5 to 19.8‰, which record a change in fluid source between paragenetic stages of tourmaline growth. Pre-mineralization tourmaline crystals show heavy δ11B values (8-19.8‰) and high X-site occupancy (Na ± Ca; 0.69-1 apfu) suggesting a marine evaporite source for hydrothermal fluids. Syn-mineralization and replacement phases show lighter δ11B values (-3.5 to 15.1‰) and lower X-site occupancy (0.62-0.88 apfu), suggesting a subsequent influx of more dilute fluids derived from devolatilization of marine carbonates and clastic metasediments. The large, overlapping range in isotopic compositions and a skew toward the

  5. Comparison of the mineralogy of the Boss-Bixby, Missouri copper-iron deposit, and the Olympic Dam copper-uranium-gold deposit, South Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandom, R.T.; Hagni, R.D.; Allen, C.R.

    1985-01-01

    An ore microscopic examination of 80 polished sections prepared from selected drill core specimens from the Boss-Bixby, Missouri copper-iron deposit has shown that its mineral assemblage is similar to that of the Olympic Dam (Roxby Downs) copper-uranium-gold deposit in South Australia. A comparison with the mineralogy reported for Olympic Dam shows that both deposits contain: 1) the principal minerals, magnetite, hematite, chalcopyrite, and bornite, 2) the cobalt-bearing phases, carrollite and cobaltian pyrite, 3) the titanium oxides, rutile and anatase, 4) smaller amounts of martite, covellite, and electrum, 5) fluorite and carbonates, and 6) some alteration minerals. The deposits also aremore » similar with regard to the sequence of mineral deposition: 1) early oxides, 2) then sulfide minerals, and 3) a final oxide generation. The deposits, however, are dissimilar with regard to their host rock lithologies and structural settings. The Boss-Bixby ores occupy breccia zones within a hydrothermally altered basic intrusive and intruded silicic volcanics, whereas the Olympic Dam ores are contained in sedimentary breccias in a graben or trough. Also, some minerals have been found thus far to occur at only one of the deposits. The similarity of mineralogy in these deposits suggests that they were formed from ore fluids that had some similarities in character and that the St. Francois terrane of Missouri is an important region for further exploration for deposits with this mineral assemblage.« less

  6. Genetic characteristics of fluid inclusions in sphalerite from the Silesian-Cracow ores, Poland

    USGS Publications Warehouse

    Kozlowski, A.; Leach, D.L.; Viets, J.G.

    1996-01-01

    Fluid inclusion studies in sphalerite from early-stage Zn-Pb mineralization in the Silesian-Cracow region (southern Poland), yielded homogenization temperatures (Th) from 80 to 158??C. Vertical thermal gradient of the parent fluids was 6 to 10??C, and the ore crystallization temperature ranges varied from <10??C at deep levels to 25??C at shallow levels. The peculiarities of formation of primary and secondary fluid inclusions from organic-matter-bearing water-dominated medium, position of the inclusions in crystals, features of secondary inclusions, the inclusion refilling phenomena, their formation on recrystallization of ores, and Th distribution in single fissure fillings were considered. The ore-forming fluids were liquid-hydrocarbon-bearing aqueous solutions of Na-Ca-Cl type with lower Ca contents in the south and higher Ca contents in the north of the region. The ore-forming fluids had salinities from nul to about 23 weight percent of NaCl equivalent. Three types of fluids were recognized, that mixed during ore precipitation: a) ascending fluids of low-to-moderate salinity and high, b) formation brines of high salinity and moderate Th, and c) descending waters of low salinity and low-to-moderate Th.

  7. U-Pb zircon, geochemical and Sr-Nd-Hf-O isotopic constraints on age and origin of the ore-bearing intrusions from the Nurkazgan porphyry Cu-Au deposit in Kazakhstan

    NASA Astrophysics Data System (ADS)

    Shen, Ping; Pan, Hongdi; Seitmuratova, Eleonora; Jakupova, Sholpan

    2016-02-01

    Nurkazgan, located in northeastern Kazakhstan, is a super-large porphyry Cu-Au deposit with 3.9 Mt metal copper and 229 tonnage gold. We report in situ zircon U-Pb age and Hf-O isotope data, whole rock geochemical and Sr-Nd isotopic data for the ore-bearing intrusions from the Nurkazgan deposit. The ore-bearing intrusions include the granodiorite porphyry, quartz diorite porphyry, quartz diorite, and diorite. Secondary ion mass spectrometry (SIMS) zircon U-Pb dating indicates that the granodiorite porphyry and quartz diorite porphyry emplaced at 440 ± 3 Ma and 437 ± 3 Ma, respectively. All host rocks have low initial 87Sr/86Sr ratios (0.70338-0.70439), high whole-rock εNd(t) values (+5.9 to +6.3) and very high zircon εHf(t) values (+13.4 to +16.5), young whole-rock Nd and zircon Hf model ages, and consistent and slightly high zircon O values (+5.7 to +6.7), indicating that the ore-bearing magmas derived from the mantle without old continental crust involvement and without marked sediment contamination during magma emplacement. The granodiorite porphyry and quartz diorite porphyry are enriched in large ion lithophile elements (LILE) and light rare earth elements (LREE) and depleted in high-field strength elements (HFSE), Eu, Ba, Nb, Sr, P and Ti. The diorite and quartz diorite have also LILE and LREE enrichment and HFSE, Nb and Ti depletion, but have not negative Eu, Ba, Sr, and P anomalies. These features suggest that the parental magma of the granodiorite porphyry and quartz diorite porphyry originated from melting of a lithospheric mantle and experienced fractional crystallization, whereas the diorite and quartz diorite has a relatively deeper lithospheric mantle source region and has not experienced strong fractional crystallization. Based on these, together with the coeval ophiolites in the area, we propose that a subduction of the Balkhash-Junggar oceanic plate took place during the Early Silurian and the ore-bearing intrusions and associated Nurkazgan

  8. Using marine magnetic survey data to identify a gold ore-controlling fault: a case study in Sanshandao fault, eastern China

    NASA Astrophysics Data System (ADS)

    Yan, Jiayong; Wang, Zhihui; Wang, Jinhui; Song, Jianhua

    2018-06-01

    The Jiaodong Peninsula has the greatest concentration of gold ore in China and is characterized by altered tectonite-type gold ore deposits. This type of gold deposit is mainly formed in fracture zones and is strictly controlled by faults. Three major ore-controlling faults occur in the Jiaodong Peninsula—the Jiaojia, Zhaoping and Sanshandao faults; the former two are located on land and the latter is located near Sanshandao and its adjacent offshore area. The discovery of the world’s largest marine gold deposit in northeastern Sanshandao indicates that the shallow offshore area has great potential for gold prospecting. However, as two ends of the Sanshandao fault extend to the Bohai Sea, conventional geological survey methods cannot determine the distribution of the fault and this is constraining the discovery of new gold deposits. To explore the southwestward extension of the Sanshandao fault, we performed a 1:25 000 scale marine magnetic survey in this region and obtained high-quality magnetic survey data covering 170 km2. Multi-scale edge detection and three-dimensional inversion of magnetic anomalies identify the characteristics of the southwestward extension of the Sanshandao fault and the three-dimensional distribution of the main lithologies, providing significant evidence for the deployment of marine gold deposit prospecting in the southern segment of the Sanshandao fault. Moreover, three other faults were identified in the study area and faults F2 and F4 are inferred as ore-controlling faults: there may exist other altered tectonite-type gold ore deposits along these two faults.

  9. Potential for cobalt recovery from lateritic ores in Europe

    NASA Astrophysics Data System (ADS)

    Herrington, R.

    2012-04-01

    Cobalt is one of the 'critical metals' identified under the EU Raw Materials Initiative. Annually the global mine production of cobalt is around 55,000 tonnes,with Europe's industries consuming around 30% of that figure. Currently Europe produces around 27 tonnes of cobalt from mines in Finland although new capacity is planned. Co-bearing nickel laterite ores being mined in Greece, Macedonia and Kosovo where the cobalt is currently not being recovered (ores have typical analyses of 0.055% Co and >1% Ni,). These ores are currently treated directly in pyrometallurgical plants to recover the contained nickel and this process means there is no separate cobalt product produced. Hydrometallurgical treatment of mineralogically suitable laterite ores can recover the cobalt; for example Cuba recovers 3,500 tonnes of cobalt from its laterite mining operations, which are of a similar scale to the current European operations. Implementation of hydrometallurgical techniques is in its infancy in Europe with one deposit in Turkey planning to use atmospheric heap leaching to recover nickel and copper from oxide-dominated ores. More widespread implementation of these methods to mineralogically suitable ore types could unlock the highly significant undeveloped resources (with metal contents >0.04% Co and >1% Ni), which have been defined throughout the Balkans eastwards into Turkey. At a conservative estimate, this region has the potential to supply up to 30% of the EU cobalt requirements.

  10. Effective Processing of the Iron Ores

    NASA Astrophysics Data System (ADS)

    Kuskov, Vadim; Kuskova, Yana; Udovitsky, Vladimir

    2017-11-01

    Effective technology for a complex wasteless processing of the iron ores has been designed and includes three main components (plats): comminution plant, briquette plant, pigment plant. The comminution is done per energy effective technology. Using of briquetting for ores clotting enables the costs cut and brings to a higher level of environmental safety of the process. Briquette formation can be done as a regular pressing, as an extrusion. Developed technology allows to produce high quality competitively products for metallurgy industry and red iron oxide pigments. The whole production line impacts the environment in a minimal manner.

  11. On the origin of the livingstonite deposits at Huitzuco, Guerrero, Mexico

    USGS Publications Warehouse

    Tunell, G.; Learned, R.E.; Lawrence, E.F.

    1976-01-01

    Livingstonite is the principal ore mineral in the deposits of the Huitzuco District in the State of Guerrero, Mexico. The ore is found in the lower part of the Morelos Formation, which consists of a thick bed of sedimentary anhydrite containing lenses of dolomite and dolomite breccia. In the unweathered ore practically all the mercury is in the livingstonite, whereas the antimony occurs partly in the livingstonite and partly in stibnite. Native sulfur forms pockets as much as 30 centimeters in diameter in the ore and is also found in gypsum on the surface away from the ore. It appears that the deposition of livingstonite, rather than of the combination of cinnabar and stibnite that is more usual in other districts, was caused by the native sulfur present in considerable quantity scattered through the sedimentary dolomite and anhydrite above, below, and in the ore. Since the formula of livingstonite is actually HgSb4S8 (not HgSb4S7 as was previously supposed), it is not stable in solutions containing only HgS, Sb2S3, Na2S, and H2O. It has been proved by one of us, experimentally, that in order to form livingstonite, the solutions must contain elemental sulfur in addition to HgS, Sb2S3, Na2S, and H2O. In such solutions the solubility of mercuric sulfide is extremely low. However, the problem of transport is overcome if the elemental sulfur is already present in the wall rock. In that case, the reaction of the elemental sulfur with a solution containing mercuric sulfide and antimony sulfide, but not saturated with either, would precipitate livingstonite, as was proved by our experimental work. ?? 1976 Springer-Verlag.

  12. Particle formation in SiOx film deposition by low frequency plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tomoyo; Sakamoto, Naoshi; Shimozuma, Mitsuo; Yoshino, Masaki; Tagashira, Hiroaki

    1998-01-01

    Dust particle formation dynamics in the process of SiOx film deposition from a SiH4 and N2O gas mixture by a low frequency plasma enhanced chemical vapor deposition have been investigated using scanning electron microscopy and laser light scattering. The deposited films are confirmed to be SiOx from the measurements of Auger electron spectroscopy, x-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. It is observed by scanning electron microscopy that particles are deposited on Si substrate at the plasma power frequency f=5 kHz and above both with and without substrate heating (400 °C), while no particle is deposited below f=1 kHz. Moreover, the laser light scattering indicates that particles are generated at the plasma power frequency of f=3 kHz and above in the gas phase, and that they are not generated in the gas phase at below f=3 kHz. Properties (the refractive index, resistivity, and Vickers hardness) of the films with particles are inferior to those of the films without particles. This article has revealed experimentally the effect of plasma power frequency on SiOx particle formation and makes a contribution to the explication of the particle formation mechanism. We suggest that high-quality film deposition with the low frequency plasma enhanced chemical vapor deposition method is attained at f=1 kHz or less without substrate heating.

  13. Critical elements in Carlin, epithermal, and orogenic gold deposits

    USGS Publications Warehouse

    Goldfarb, Richard J.; Hofstra, Albert H.; Simmons, Stuart F.

    2016-01-01

    Carlin, epithermal, and orogenic gold deposits, today mined almost exclusively for their gold content, have similar suites of anomalous trace elements that reflect similar low-salinity ore fluids and thermal conditions of metal transport and deposition. Many of these trace elements are commonly referred to as critical or near-critical elements or metals and have been locally recovered, although typically in small amounts, by historic mining activities. These elements include As, Bi, Hg, In, Sb, Se, Te, Tl, and W. Most of these elements are now solely recovered as by-products from the milling of large-tonnage, base metal-rich ore deposits, such as porphyry and volcanogenic massive sulfide deposits.A combination of dominance of the world market by a single country for a single commodity and a growing demand for many of the critical to near-critical elements could lead to future recovery of such elements from select epithermal, orogenic, or Carlin-type gold deposits. Antimony continues to be recovered from some orogenic gold deposits and tellurium could potentially be a primary commodity from some such deposits. Tellurium and indium in sphalerite-rich ores have been recovered in the past and could be future commodities recovered from epithermal ores. Carlin-type gold deposits in Nevada are enriched in and may be a future source for As, Hg, Sb, and/or Tl. Some of the Devonian carbonaceous host rocks in the Carlin districts are sufficiently enriched in many trace elements, including Hg, Se, and V, such that they also could become resources. Thallium may be locally enriched to economic levels in Carlin-type deposits and it has been produced from Carlin-like deposits elsewhere in the world (e.g., Alsar, southern Macedonia; Lanmuchang, Guizhou province, China). Mercury continues to be recovered from shallow-level epithermal deposits, as well as a by-product of many Carlin-type deposits where refractory ore is roasted to oxidize carbon and pyrite, and mercury is then

  14. Sulfur Isotopic Composition of Sulfides in Skarn and Vein Mineralization of the Dal'negorsk Ore Region (Primorye)

    NASA Astrophysics Data System (ADS)

    Rogulina, L. I.; Moiseenko, V. G.; Odarichenko, E. G.; Voropayeva, E. N.

    2018-03-01

    The S isotopic composition in the ore-forming minerals galena and sphalerite was studied in different Ag-Pb-Zn deposits of the region. It was pointed out that the δ34S modal values range from-1.2 to +6.7‰ in the minerals with a positive value for the skarn mineralization. In the flyschoid formation, the vein-type mineralization is characterized by negative and positive values. The narrow range of δ34S values indicates the marginal-continental type of the mineralization and the multiple origins of its sources.

  15. Multiple episodes of mineralization revealed by Re-Os molybdenite geochronology in the Lala Fe-Cu deposit, SW China

    NASA Astrophysics Data System (ADS)

    Zhu, Zhimin; Tan, Hongqi; Liu, Yingdong; Li, Chao

    2018-03-01

    The Lala Fe-Cu deposit is one of the largest iron oxide-copper-gold (IOCG) deposits in the Kangdian copper belt, southwest China. The paragenetic sequence of the Lala deposit includes six hydrothermal stages: pre-ore pervasive Na alteration (I); magnetite stage with K-feldspar and apatite (II); polymetallic disseminated/massive magnetite-sulfide stage (III); banded magnetite-sulfide stage (IV); sulfide vein stage (V); and late quartz-carbonate vein stage (VI). Fifteen molybdenite separates from stages III to VI were analyzed for Re-Os dating. Our new Re-Os data, together with previous studies, identify four distinct hydrothermal events at the Lala deposit. Molybdenite from the stage III disseminated to massive chalcopyrite-magnetite ores yielded a weighted average Re-Os age of 1306 ± 8 Ma (MSWD = 1.1, n = 6) which represents the timing of main ore formation. Molybdenite from the stage IV-banded magnetite-chalcopyrite ores yielded a weighted average Re-Os age of 1086 ± 8 Ma (MSWD = 2.2, n = 7), i.e., a second ore-forming event. Molybdenite from the stage V sulfide veins yielded a weighted average Re-Os age of 988 ± 8 Ma (MSWD = 1.3, n = 7) which represents the timing of a third hydrothermal event. Molybdenite from the quartz-carbonate veins (stage VI) yielded a weighted average Re-Os age at 835 ± 4 Ma (MSWD = 0.66, n = 10) and documented the timing of a late hydrothermal event. Our results indicate that the Lala deposit formed during multiple, protracted mineralization events over several hundred million years. The first three Mesoproterozoic mineralization events are coeval with intra-continental rifting (breakup of the supercontinent Nuna) and share a temporal link to other IOCG-style deposits within the Kangdian Copper Belt, and the last Neoproterozoic hydrothermal event is coeval with the Sibao orogeny which culminated with the amalgamation of the Yangtze Block with the Cathaysia Block at 860-815 Ma.

  16. Genesis of the Permian karstic Pingguo bauxite deposit, western Guangxi, China

    NASA Astrophysics Data System (ADS)

    Liu, Xuefei; Wang, Qingfei; Zhang, Qizuan; Yang, Shujuan; Liang, Yayun; Zhang, Ying; Li, Yan; Guan, Tao

    2017-10-01

    More than 0.5 billion tons of late Permian bauxite overlies the karstic topography of the Maokou Formation of western Guangxi in China. Here, we provide new mineralogical, geochemical, Sr-Nd-Pb isotopic, and pyrite S isotope and trace element compositional data for the Pingguo bauxite deposit, aiming to further our understanding of the genesis of Permian bauxite. The Pingguo bauxite contains three distinct layers: a lower layer dominated by ferric clay or weathered iron ore, a middle layer of cryptocrystalline and oolitic bauxite ore, and an upper layer dominated by argillaceous bauxite. The bauxite ore is mainly diaspore, pyrite, chamosite, and anatase, whereas the argillaceous bauxite contains diaspore, kaolinite, pyrophyllite, pyrite, and anatase. Two types of pyrite have been identified within the bauxite: fine-grained and framboidal pyrite (Py1) occurring in aggregates and coarse-grained and euhedral pyrite (Py2). Py1 is enriched in trace elements and is thought to have a diagenetic origin, whereas Py2 is deficient in trace elements and is considered to have formed by later recrystallization. The S isotopic composition of pyrite (-34.11 to -18.91‰) and visible ovoid microorganisms within the bauxite provide evidences of microbial activity during bauxite formation. The Sr-Nd-Pb isotopic composition of the bauxite indicates that these ores were generated by the weathering of basalts belonging to the Emeishan Large Igneous Province (LIP) and limestones of the Maokou Formation. Microorganisms were likely to have enhanced the dissolution and weathering of the parent rock and facilitated the precipitation of diaspore under near-surface conditions.

  17. Geological reconnaissance of some Uruguayan iron and manganese deposits in 1962

    USGS Publications Warehouse

    Wallace, Roberts Manning

    1976-01-01

    Three mineralized areas lie in an area near the town of Minas de Corrales in the Departamento de Rivera; they are the Cerro Amelia, the Cerro de Papagayo, and the Cerro Iman. The Cerro Amelia is composed of small bands of iron-rich rock separated by an amphibolitic or mafic rock. Selective mining would be necessary to extract the 31,000 tons per meter of depth of iron-rich rock that ranges from 15 to 40 percent metallic iron. The Cerro de Papagayo district contains many small, rich deposits of ferruginous manganese ore. The ratio of Mn to Fe varies widely within each small deposit as well as from deposit to deposit. Some ferruginous manganese ore contains 50-55 percent manganese dioxide. Although there are many thousands of tons of ore in the district, small-scale mining operations are imperative. One deposit, the Cerro Avestuz manganese mine, was visited. The manganese ore body lies within contorted highly metamorphosed itabirite that contains both hard low grade and soft high grade ferruginous manganese ores estimated to average 40 percent Mn. About 38,000 tons of manganese ore is present in this deposit. The Cerro Iman is a large block of itabirite that contains about 40 percent Fe. The grade is variable and probably runs from less than 35 percent Fe to more than 50 percent Fe. No exploration has been done on this deposit. It is recommended that the Cerro de Iman area be geologically mapped in detail, and that a geological reconnaissance be made of the area that is between the Cuchilla de Corrales and the Cuchilla de Areycua/Cuchilla del Cerro Pelado area.

  18. Hydrothermal zebra dolomite in the Great Basin, Nevada--attributes and relation to Paleozoic stratigraphy, tectonics, and ore deposits

    USGS Publications Warehouse

    Diehl, S.F.; Hofstra, A.H.; Koenig, A.E.; Emsbo, P.; Christiansen, W.; Johnson, Chad

    2010-01-01

    In other parts of the world, previous workers have shown that sparry dolomite in carbonate rocks may be produced by the generation and movement of hot basinal brines in response to arid paleoclimates and tectonism, and that some of these brines served as the transport medium for metals fixed in Mississippi Valley-type (MVT) and sedimentary exhalative (Sedex) deposits of Zn, Pb, Ag, Au, or barite. Numerous occurrences of hydrothermal zebra dolomite (HZD), comprised of alternating layers of dark replacement and light void-filling sparry or saddle dolomite, are present in Paleozoic platform and slope carbonate rocks on the eastern side of the Great Basin physiographic province. Locally, it is associated with mineral deposits of barite, Ag-Pb-Zn, and Au. In this paper the spatial distribution of HZD occurrences, their stratigraphic position, morphological characteristics, textures and zoning, and chemical and stable isotopic compositions were determined to improve understanding of their age, origin, and relation to dolostone, ore deposits, and the tectonic evolution of the Great Basin. In northern and central Nevada, HZD is coeval and cogenetic with Late Devonian and Early Mississippian Sedex Au, Zn, and barite deposits and may be related to Late Ordovician Sedex barite deposits. In southern Nevada and southwest California, it is cogenetic with small MVT Ag-Pb-Zn deposits in rocks as young as Early Mississippian. Over Paleozoic time, the Great Basin was at equatorial paleolatitudes with episodes of arid paleoclimates. Several occurrences of HZD are crosscut by Mesozoic or Cenozoic intrusions, and some host younger pluton-related polymetallic replacement and Carlin-type gold deposits. The distribution of HZD in space (carbonate platform, margin, and slope) and stratigraphy (Late Neoproterozoic Ediacaran-Mississippian) roughly parallels that of dolostone and both are prevalent in Devonian strata. Stratabound HZD is best developed in Ediacaran and Cambrian units, whereas

  19. Formation and deposition of volcanic sulfate aerosols on Mars

    NASA Technical Reports Server (NTRS)

    Settle, M.

    1979-01-01

    The paper considers the formation and deposition of volcanic sulfate aerosols on Mars. The rate limiting step in sulfate aerosol formation on Mars is the gas phase oxidation of SO2 by chemical reactions with O, OH, and HO2; submicron aerosol particles would circuit Mars and then be removed from the atmosphere by gravitational forces, globally dispersed, and deposited over a range of equatorial and mid-latitudes. Volcanic sulfate aerosols on Mars consist of liquid droplets and slurries containing sulfuric acid; aerosol deposition on a global or hemispheric scale could account for the similar concentrations of sulfur within surficial soils at the two Viking lander sites.

  20. Manganese and ferromanganese ores from different tectonic settings in the NW Himalayas, Pakistan

    NASA Astrophysics Data System (ADS)

    Tahir Shah, Mohammad; Moon, Charles J.

    2007-02-01

    In Pakistan manganese and ferromanganese ores have been reported from the Hazara area of North West Frontier Province, Waziristan agencies in the Federally Administered Tribal Areas and the Lasbela-Khuzdar regions of Baluchistan. This study is focused on comparison of mineralogy and geochemistry of the continental ferromanganese ores of Hazara and the ophiolitic manganese ores of the Waziristan area of Pakistan. In the Hazara area, ferromanganese ores occur at Kakul, Galdanian and Chura Gali, near Abbottabad, within the Hazira Formation of the Kalachitta-Margala thrust belt of the NW Himalayas of the Indo-Pakistan Plate. The Cambrian Hazira Formation is composed of reddish-brown ferruginous siltstone, with variable amounts of clay, shale, ferromanganese ores, phosphorite and barite. In Waziristan, manganese ores occur at Shuidar, Mohammad Khel and Saidgi, within the Waziristan ophiolite complex, on the western margin of the Indo-Pakistan Plate in NW Pakistan. These banded and massive ores are hosted by metachert and overlie metavolcanics. The ferromanganese ores of the Hazara area contain variable amount of bixbyite, partridgeite, hollandite, pyrolusite and braunite. Bixbyite and partridgeite are the dominant Mn-bearing phases. Hematite dominates in Fe-rich ores. Gangue minerals are iron-rich clay, alumino-phosphate minerals, apatite, barite and glauconite are present in variable amounts, in both Fe-rich and Mn-rich varieties. The texture of the ore phases indicates greenschist facies metamorphism. The Waziristan ores are composed of braunite, with minor pyrolusite and hollandite. Hematite occurs as an additional minor phase in the Fe-rich ores of the Shuidar area. The only silicate phase in these ores is cryptocrystalline quartz. The chemical composition of the ferromanganese ores in Hazara suggests that the Mn-Fe was contributed by both hydrogenous and hydrothermal sources, while the manganese ores of Waziristan originated only from a hydrothermal source. It is

  1. Formation of Si-Al-Mg-Ca-rich zoned magnetite in an end-Permian phreatomagmatic pipe in the Tunguska Basin, East Siberia

    NASA Astrophysics Data System (ADS)

    Neumann, Else-Ragnhild; Svensen, Henrik H.; Polozov, Alexander G.; Hammer, Øyvind

    2017-12-01

    Magma-sediment interactions in the evaporite-rich Tunguska Basin resulted in the formation of numerous phreatomagmatic pipes during emplacement of the Siberian Traps. The pipes contain magnetite-apatite deposits with copper and celestine mineralization. We have performed a detailed petrographic and geochemical study of magnetite from long cores drilled through three pipe breccia structures near Bratsk, East Siberia. The magnetite samples are zoned and rich in Si (≤5.3 wt% SiO2), Ca, Al, and Mg. They exhibit four textural types: (1) massive ore in veins, (2) coating on breccia clasts, (3) replacement ore, and (4) reworked ore at the crater base. The textural types have different chemical characteristics. "Breccia coating" magnetite has relatively low Mg content relative to Si, as compared to the other groups, and appears to have formed at lower oxygen fugacity. Time series analyses of MgO variations in microprobe transects across Si-bearing magnetite in massive ore indicate that oscillatory zoning in the massive ore was controlled by an internal self-organized process. We suggest that hydrothermal Fe-rich brines were supplied from basalt-sediment interaction zones in the evaporite-rich sedimentary basin, leading to magnetite ore deposition in the pipes. Hydrothermal fluid composition appears to be controlled by proximity to dolerite fragments, temperature, and oxygen fugacity. Magnetite from the pipes has attributes of iron oxide-apatite deposits (e.g., textures, oscillatory zoning, association with apatite, and high Si content) but has higher Mg and Ca content and different mineral assemblages. These features are similar to magnetite found in skarn deposits. We conclude that the Siberian Traps-related pipe magnetite deposit gives insight into the metamorphic and hydrothermal effects following magma emplacement in a sedimentary basin.

  2. Exploration for uranium deposits in the Spring Creek Mesa area, Montrose County, Colorado

    USGS Publications Warehouse

    Roach, Carl Houston

    1954-01-01

    4. The “ore-bearing sandstone” in the vicinity of relatively unoxidized ore deposits commonly contains sparse to abundant disseminated pyrite. In the vicinity of oxidized deposits it commonly contains abundant limonite spots and widespread limonite staining.

  3. The Reocín zinc-lead deposit, Spain: paleomagnetic dating of a late Tertiary ore body

    USGS Publications Warehouse

    Symons, David T. A.; Lewchuk, Michael T.; Kawasaki, Kazuo; Velasco, Francisco; Leach, David L.

    2009-01-01

    The Reocín mine in northern Spain’s Basque–Cantabrian basin exploited a world-class Mississippi Valley-type Zn–Pb deposit. Its epigenetic mineralization is in Urgonian 116 ± 1 Ma dolomitized limestones of the Santillana syncline, which was formed by Oligocene and mid Miocene pulses of the Pyrenean orogeny. Paleomagnetic results (22 sites, 274 specimens) in mineralization isolated a stable remanence (ChRM) in pyrrhotite and minor magnetite inclusions in ore specimens, Zn concentrate, and tailings. A fold test shows that the ChRM is substantially post-folding. The mineralization’s paleopole lies on the European apparent polar wander path and indicates that the mineralization was formed at 15 ± 10 Ma. We postulate that brines originated in underlying Triassic and Lower Cretaceous sedimentary rocks and were driven upward into the host rocks by the hydraulic gradient created by the nearby Asturian massif.

  4. Fe-U-PGE-Au-Ag-Cu Deposits of the Udokan-Chiney Region (East Siberia, Russia)

    NASA Astrophysics Data System (ADS)

    Gongalskiy, B.; Krivolutskaya, N.; Murashov, K.; Nistratov, S.; Gryazev, S.

    2012-04-01

    Introduction. Cupriferous sandstones-shales and magmatic copper-nickel deposits mark out the western and southern boundaries of the Siberian Craton accordingly. Of special interest are the Paleoproterozoic deposits of the Udokan-Chiney mining district (Gongalskiy, Krivolutskaya, 2008). Copper reserves and resources of this region are estimated at more than 50 Mt. Half of them is concentrated at the unique Udokan Deposit and the second half is distributed among sedimentary (Unkur, Pravoingamakitskoye, Sakinskoye, Krasnoye, Burpala) and magmatic deposits of the Chiney (Rudnoye, Verkhnechineyskoye, Kontaktovoye), Luktur and Maylav massifs. Results. It was established that the ores are characterized by similarity in chemical composition (main, major and rare elements that are Ag, Au, PGE) and mineral assemblages with varying proportions. It is important to emphasize that Fe role in mineralization was previously ignored. Meanwhile the Udokan deposit contains 10 Mt of magnetite metacrystals so as chalcocite ores may contain up to 50% magnetite too. It has been recently found that the Chiney titanomagnetite ores comprise commercially significant uranium and rare-earth metal concentrations (Makaryev et al., 2011). Thus the Udokan-Chiney region comprises Cu, Fe, Ti, V, U, REE, Ag, Au, PGE. These deposits differ from similar objects, the Olympic Dam in particular, by a much smaller content of fluid-bearing minerals. Copper mineralization at the Udokan is represented by chalcocite-bornite ores. They occur as ore beds conformable with sedimentary structures or as cross-cutting veins. The central zones of the former are often brecciated. They are rimmed by fine magnetite, bornite, and chalcocite dissemination. Bornite-chalcopyrite and chalcopyrite-pyrite veins are known at the lower levels of the Udokan ore bed. Such ore compositions are predominant in other ore deposits in sedimentary rocks (Pravoingamakitskoye, Unkur) and have a hydrothermal origin. Silver grades are up to

  5. Resource potential for commodities in addition to Uranium in sandstone-hosted deposits: Chapter 13

    USGS Publications Warehouse

    Breit, George N.

    2016-01-01

    Sandstone-hosted deposits mined primarily for their uranium content also have been a source of vanadium and modest amounts of copper. Processing of these ores has also recovered small amounts of molybdenum, rhenium, rare earth elements, scandium, and selenium. These deposits share a generally common origin, but variations in the source of metals, composition of ore-forming solutions, and geologic history result in complex variability in deposit composition. This heterogeneity is evident regionally within the same host rock, as well as within districts. Future recovery of elements associated with uranium in these deposits will be strongly dependent on mining and ore-processing methods.

  6. An ore genetic model for the Lubin—Sieroszowice mining district, Poland

    NASA Astrophysics Data System (ADS)

    Wodzicki, A.; Piestrzyński, A.

    1994-04-01

    The Lubin-Sieroszowice mining district is a world-class copper-silver, stratabound ore deposit that lies near the Lower-Upper Permian boundary. It transgresses the Werra dolomite, the Kupferschiefer organicrich shale and the Weissliegendes sandstone, which overlie barren Rotliegendes sandstone. On the basis of underground and microscope observations and light stable isotope data, and thermodynamic calculations, a new ore genesis model is proposed whereby ore minerals were deposited in the following stages: Stage 0 was synsedimentary or earliest diagenetic and contains 100s ppm of base metals trapped by clay minerals, and minor sulphides. Stage I was early diagenetic and contains 1000s ppm base metals. It is characterized by bornite and overlying chalcopyrite + pyrite that lie a short distance above the Rotliegendes/Weissliegendes contact. The sulphides were deposited near the interface between an overlying, buffered, reducing fluid (1), largely derived from the Kupferschiefer, and an oxidizing fluid (2) in the Rotliegendes. Stage II is the main ore-forming stage. This stage is late diagenetic, peneconcordant, lies near the Kupferschiefer/Weissliegendes contact, and contains several percent base metals.It is associated with the hematite-bearing Rote Fäule facies and is characterized by vertical zonation. A central chalcocite zone is flanked above and below by bornite and chalcopyrite. Silver occurs with all the above sulphides. Galena and sphalerite occur mainly just above copper zone, whereas pyrite is usually present in the upper part of the copper zone and together with galena and sphalerite. Metals were transported in a copper-rich oxidizing fluid (3), which probably originated deep in the Permian basin, reacted with organic matter in the Kupferschiefer, and mixed with reducing fluid (1) in the Weissliegendes, resulting in the observed mineral zonation. Stage III is late diagenetic, discordant and is represented by massive and dispersed chalcocite ore present

  7. 40 CFR 440.50 - Applicability; description of the titanium ore subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) mills beneficiating titanium ores by electrostatic methods, magnetic and physical methods, or flotation methods; and (c) mines engaged in the dredge mining of placer deposits of sands containing rutile... methods in conjunction with electrostatic or magnetic methods). ...

  8. Book review: Economic geology: Principles and practice: Metals, minerals, coal and hydrocarbons—Introduction to formation and sustainable exploitation of mineral deposits

    USGS Publications Warehouse

    Anderson, Eric

    2013-01-01

    This volume, available in both hardcover and paperback, is an English translation of the fifth edition of the German language text Mineralische und Energie-Rohstoffe. The book provides an extensive overview of natural resources and societal issues associated with extracting raw materials. The comprehensive list of raw materials discussed includes metals, industrial minerals, coal, and hydrocarbons. The book is divided into four parts: (1) “Metalliferous ore deposits,” (2) “Nonmetallic minerals and rocks,” (3) “Practice of economic geology,” and (4) “Fossil energy raw materials—coal, oil, and gas.” These sections are bound by a brief introduction and an extensive list of up-to-date references as well as an index. Each chapter begins with a concise synopsis and concludes with a summary that contains useful suggestions for additional reading. All figures are grayscale images and line drawings; however, several have been grouped together and reproduced as color plates. Also included is a companion website (www.wiley.com/go/pohl/geology) that contains additional resources, such as digital copies of figures, tables, and an expanded index, all available for download in easy-to-use formats.Economic Geology: Principles and Practice: Metals, Minerals, Coal and Hydrocarbons—Introduction to Formation and Sustainable Exploitation of Mineral Deposits. Walter l. Pohl. 2011. Wiley-Blackwell. Pp. 663. ISBN 978-1-4443-3663-4 (paperback).

  9. ORE CONVEYANCE SYSTEM AND ADIT. LOOKING WEST. ORE FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ORE CONVEYANCE SYSTEM AND ADIT. LOOKING WEST. ORE FROM THE MINES ABOVE AT THE RIDGELINE AND TO THE RIGHT WAS CONVEYED TO THIS AREA AND DUMPED INTO THE SHAFT AT CENTER. THIS SHAFT OPENS INTO THE ADIT AT BOTTOM CENTER. THERE IS ANOTHER SHAFT OPENING INTO THE ADIT JUST ABOVE THE ADIT BEHIND THE STONE WALL. THE ORE WAS LOADED INTO TRAM CARS INSIDE THE ADIT AND CONVEYED ON TRACKS TO THE TRESTLE LEADING TO THE PRIMARY ORE BIN AT THE TRAM TERMINAL. TRACKS CAN BE SEEN LEADING FROM THE ADIT AND TO THE LEFT. THE ORE WAS THEN DUMPED INTO A CHUTE AT THE END OF THE TRESTLE CARRYING IT INTO THE ORE BIN AT THE TRAM TERMINAL(SEE CHUTE ON CA-291-30). - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  10. Depositional environments of the Cache, Lower Lake, and Kelseyville Formations, Lake County, California

    USGS Publications Warehouse

    Rymer, Michael J.; Roth, Barry; Bradbury, J. Platt; Forester, Richard M.

    1988-01-01

    We describe the depositional environments of the Cache, Lower Lake, and Kelseyville Formations in light of habitat preferences of recovered mollusks, ostracodes, and diatoms. Our reconstruction of paleoenvironments for these late Cenozoic deposits provides a framework for an understanding of basin evolution and deposition in the Clear Lake region. The Pliocene and Pleistocene Cache Formation was deposited primarily in stream and debris flow environments; fossils from fine-grained deposits indicate shallow, fresh-water environments with locally abundant aquatic vegetation. The fine-grained sediments (mudstone and siltstone) were probably deposited in ponds in abandoned channels or shallow basins behind natural levees. The abandoned channels and shallow basins were associated with the fluvial systems responsible for deposition of the bulk of the technically controlled Cache Formation. The Pleistocene Lower Lake Formation was deposited in a water mass large enough to contain a variety of local environments and current regimes. The recovered fossils imply a lake with water depths of 1 to 5 m. However, there is strong support from habitat preferences of the recovered fossils for inferring a wide range of water depths during deposition of the Lower Lake Formation; they indicate a progressively shallowing system and the culmination of a desiccating lacustrine system. The Pleistocene Kelseyville Formation represents primarily lacustrine deposition with only minor fluvial deposits around the margins of the basin. Local conglomerate beds and fossil tree stumps in growth position within the basin indicate occasional widespread fluvial incursions and depositional hiatuses. The Kelseyville strata represent a large water mass with a muddy and especially fluid substrate having permanent or sporadic periods of anoxia. Central-lake anoxia, whether permanent or at irregular intervals, is the simplest way to account for the low numbers of benthic organisms recovered from the

  11. The geology, mineralogy and paragenesis of the Castrovirreyna lead-zinc-silver deposits, Peru

    USGS Publications Warehouse

    Lewis, Richard Wheatley

    1964-01-01

    The Castrovirreyna mining district lies in the Andean Cordillera of South Central Peru, and has been worked sporadically since its discovery in 1591. Supergene silver ores were first mined. Currently the district produces about 20,000 tons of lead-zinc ore and 5000 tons of silver ore annually. The district is underlain by Tertiary andesitic rocks interbedded with basalts and intruded by small bodies of quartz latite porphyry. The terrane reflects recent glaciation and is largely covered by glacial debris. The ore deposits are steeply dipping veins that strike N. 60? E. to S. 50? E., and average 60 centimeters wide and 300 meters long. The principal veins are grouped around three centers, lying 5 kilometers apart along a line striking N. 55? E. They are, from east to west: San Genaro, Caudalosa, and La Virreyna. A less important set of veins, similarly aligned, lies 2 kilometers to the north. Most of the veins were worked to depths of about 30 meters, the limit of supergene enrichment; but in the larger veins hypogene ores have been worked to depths of over 150 meters. Galena, sphalerite, chalcopyrite, and tetrahedrite are common to all veins, but are most abundant in the westernmost veins at La Virreyna. In the center of the district, around Caudalosa, land sulfantimonides are the commonest ore minerals, and at the eastern end, around San Genaro and Astohuaraca, silver sulfosalts predominate. Supergene enrichment of silver is found at shallow depths in all deposits. Silver at San Genaro, however, was concentrated towards the surface by migration along hypogene physico-chemical gradients in time and space, as vein material was reworked by mineralizing fluids. The pattern of wallrock alteration throughout the district grades from silicification and scricitization adjacent to the veins, through argillization and propylitization, to widespread chloritization farther away. Mineralization can be divided into three stages: 1) Preparatory stage, characterized by

  12. Nitrile O-ring Cracking: A Case of Vacuum Flange O-ring Failures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dees, Craig

    2016-07-01

    A review of recent nitrile O-ring failures in ISO-KF vacuum flange connections in glovebox applications is presented. An investigation of a single “isolated” o-ring failure leads to the discovery of cracked nitrile o-rings in a glovebox atmospheric control unit. The initial cause of the o-ring failure is attributed to ozone degradation. However, additional investigation reveals nitrile o-ring cracking on multiple gloveboxes and general purpose piping, roughly 85% of the nitrile o-rings removed for inspection show evidence of visible cracking after being in service for 18 months or less. The results of material testing and ambient air testing is presented, elevatedmore » ozone levels are not found. The contributing factors of o-ring failure, including nitrile air sensitivity, inadequate storage practices, and poor installation techniques, are discussed. A discussion of nitrile o-ring material properties, the benefits and limitations, and alternate materials are discussed. Considerations for o-ring material selection, purchasing, storage, and installation are presented in the context of lessons learned from the nitrile o-ring cracking investigation. This paper can be presented in 20 minutes and does not require special accommodations or special audio visual devices.« less

  13. Bioleaching of manganese by Aspergillus sp. isolated from mining deposits.

    PubMed

    Mohanty, Sansuta; Ghosh, Shreya; Nayak, Sanghamitra; Das, Alok Prasad

    2017-04-01

    A comprehensive study on fungus assisted bioleaching of manganese (Mn) was carried out to demonstrate Mn solubilization of collected low grade ore from mining deposits of Sanindipur, Odisha, India. A native fungal strain MSF 5 was isolated and identified as Aspergillus sp. by Inter Transcribed Spacer (ITS) sequencing. The identified strain revealed an elevated tolerance ability to Mn under varying optimizing conditions like initial pH (2, 3, 4, 5, 6, 7), carbon sources (dextrose, sucrose, fructose and glucose) and pulp density (2%, 3%, 4%, 5% and 6%). Bioleaching studies carried out under optimized conditions of 2% pulp density of Mn ore at pH 6, temperature 37 °C and carbon dosage (dextrose) resulted with 79% Mn recovery from the ore sample within 20 days. SEM-EDX characterization of the ore sample and leach residue was carried out and the micrographs demonstrated porous and coagulated precipitates scattered across the matrix. The corresponding approach of FTIR analysis regulating the Mn oxide formation shows a distinctive peak of mycelium cells with and without treated Mn, resulting with generalized vibrations like MnO x stretching and CH 2 stretch. Thus, our investigation endeavors' the considerate possible mechanism involved in fungal surface cells onto Mn ore illustrating an alteration in cellular Mn interaction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Quantifying fat, oil, and grease deposit formation kinetics.

    PubMed

    Iasmin, Mahbuba; Dean, Lisa O; Ducoste, Joel J

    2016-01-01

    Fat, oil, and grease (FOG) deposits formed in sanitary sewers are calcium-based saponified solids that are responsible for a significant number of nationwide sanitary sewer overflows (SSOs) across United States. In the current study, the kinetics of lab-based saponified solids were determined to understand the kinetics of FOG deposit formation in sewers for two types of fat (Canola and Beef Tallow) and two types of calcium sources (calcium chloride and calcium sulfate) under three pH (7 ± 0.5, 10 ± 0.5, and ≈14) and two temperature conditions (22 ± 0.5 and 45 ± 0.5 °C). The results of this study displayed quick reactions of a fraction of fats with calcium ions to form calcium based saponified solids. Results further showed that increased palmitic fatty acid content in source fats, the magnitude of the pH, and temperature significantly affect the FOG deposit formation and saponification rates. The experimental data of the kinetics were compared with two empirical models: a) Cotte saponification model and b) Foubert crystallization model and a mass-action based mechanistic model that included alkali driven hydrolysis of triglycerides. Results showed that the mass action based mechanistic model was able to predict changes in the rate of formation of saponified solids under the different experimental conditions compared to both empirical models. The mass-action based saponification model also revealed that the hydrolysis of Beef Tallow was slower compared to liquid Canola fat resulting in smaller quantities of saponified solids. This mechanistic saponification model, with its ability to track the saponified solids chemical precursors, may provide an initial framework to predict the spatial formation of FOG deposits in municipal sewers using system wide sewer collection modeling software. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Lead Isotope Characteristics of the Mindyak Gold Deposit, Southern Urals: Evidence for the Source of Metals

    NASA Astrophysics Data System (ADS)

    Chugaev, A. V.; Znamensky, S. E.

    2018-01-01

    The isotopic composition of Pb in pyrite of the Mindyak orogenic gold deposit located in the Main Ural Fault Zone, the Southern Urals, has been studied by the high-precision MC-ICP-MS method. Orebodies at the deposit are composed of early pyrite and late polysulfide-carbonate-quartz mineral assemblages. The orebodies are localized in olistostrome with carbonaceous clayey-cherty cement. Pyrites from early and late mineral assemblages are close in Pb isotope ratios. For early pyrite 206Pb/204Pb = 18.250-18.336, 207Pb/204Pb = 15.645-15.653, 208Pb/204Pb = 38.179-38.461; while for late pyrite 206Pb/204Pb = 18.102-18.378, 207Pb/204Pb = 15.635-15.646, 208Pb/204Pb = 38.149-38.320. The model parameters μ2 (238U/204Pb = 9.91 ± 2), ω2 (232Th/204Pb = 38.5 ± 4), and 232Th/238U = 3.88 ± 3 indicate that an upper crustal Pb source played a leading role in ore formation. Carbonaceous shale as an olistostrome cement and syngenetic sulfide mineralization are considered to be the main Pb sources of both early and late mineral assemblages. An additional recept in apparently magmatic lead is suggested for the late veinlet mineralization. The involvement of lead from several sources in ore formation is consistent with the genetic model, which assumes a two-stage formation of orebodies at the Mindyak deposit.

  16. The uranium deposit at the Yellow Canary claims, Daggett County, Utah

    USGS Publications Warehouse

    Wilmarth, V.R.; Vickers, R.C.; McKeown, F.A.; Beroni, E.P.

    1952-01-01

    The Yellow Canary claims uranium deposit is on the west side of Red Creek Canyon in the northern part of the Uinta Mountains, Daggett County, Utah. The claims have been developed by two adits, three open cuts, and several hundred deep of bulldozer trenches. No uranium ore has been produced from this deposit. The uranium deposit at the Yellow Canary claims is in the Red Creek quartzite of pre-Cambrian age. The formation is composed of intercalated beds of quartzite, hornblendite, garnet schist, staurolite schist, and quartz-mica schist and is intruded by diorite dikes. A thick unit of highly fractured white quatrzite at the top of the formation contains tyutamunite as coatings on fracture surfaces. The tyutamunite is associated with carnotite, volborthite, iron oxides, azurite, malachite, brochantite, and hyalite. The secondary uranium and vanadium minerals are believed to be alteration products of primary minerals. The uranium content of 15 samples from this property ranged from 0.000 to 0.57 percent.

  17. Diversity, metal resistance and uranium sequestration abilities of bacteria from uranium ore deposit in deep earth stratum.

    PubMed

    Islam, Ekramul; Sar, Pinaki

    2016-05-01

    Metal resistance and uranium (U) sequestration abilities of bacteria residing in subsurface U ore was investigated using 122 pure culture strains isolated through enrichment. The cumulative frequencies of isolates resistant to each metal tested were as follows: As(V), 74%; Zn, 58%; Ni, 53%; Cd, 47%; Cr(VI), 41%; Co, 40%; Cu, 20%; and Hg, 4%. 16S rRNA gene analysis revealed that isolated bacteria belonged to 14 genera with abundance of Arthrobacter, Microbacterium, Acinetobacter and Stenotrophomonas. Cobalt did not interfere with the growth of most of the bacterial isolates belonging to different groups while U allowed growth of four different genera of which Stenotrophomonas and Microbacterium showed high U tolerance. Interestingly, tolerance to Ni, Zn, Cu, and Hg was observed only in Microbacterium, Arthrobacter, Paenibacillus¸ and Acinetobacter, respectively. However, Microbacterium was found to be dominant when isolated from other five different metal enrichments including U. Uranium removal study showed that 84% of the test bacteria could remove more than 50mgUg(-1) dry weight from 80 or 160mgL(-1) U within 48h. In general, Microbacterium, Arthrobacter and Acinetobacter could remove a higher amount of U. High resolution transmission electron microscopy (HRTEM) study of U exposed cells revealed that accumulated U sequestered mostly around the cell periphery. The study highlights that indigenous U ore deposit bacteria have the potential to interact with U, and thus could be applied for bioremediation of U contaminated sites or wastes. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Tourmaline in Appalachian - Caledonian massive sulphide deposits and its exploration significance.

    USGS Publications Warehouse

    Slack, J.F.

    1982-01-01

    Tourmaline is a common gangue mineral in several types of stratabound mineral deposits, including some massive base-metal sulphide ores of the Appalachian - Caledonian orogen. It is most abundant (sometimes forming massive foliated tourmalinite) in sediment-hosted deposits, such as those at the Elizabeth Cu mine and the Ore Knob Cu mine (North Carolina, USA). Trace amounts of tourmaline occur associated with volcanic-hosted deposits in the Piedmont and New England and also in the Trondheim district. Tourmaline associated with the massive sulphide deposits are Mg- rich dravites with major- and trace-element compositions significantly different from schorl. It is suggested that the necessary B was produced by submarine exhalative processes as a part of the same hydrothermal system that deposited the ores. An abundance of dravite in non-evaporitic terrains is believed to indicate proximity to former subaqueous fumarolic centres.-R.A.H.

  19. New observations on the Ni-Co ores of the southern Arburese Variscan district (SW Sardinia, Italy)

    NASA Astrophysics Data System (ADS)

    Naitza, Stefano; Secchi, Francesco; Oggiano, Giacomo; Cuccuru, Stefano

    2015-04-01

    Among the European Variscan regions, the Arburese district, located in the Paleozoic basement of SW Sardinia (Italy) is remarkable for its metallogenic complexity, and offers good opportunities to investigate time/space and genetic links between post-collisional Variscan intrusive magmatism and mineral deposits. The district hosts a large variety of mineral deposits and occurrences, which include the Pb-Zn (Cu, Ag) mesothermal veins of the Montevecchio Lode System, one of the largest and richest Variscan hydrothermal ore deposit of Europe, now exhausted. Ore deposits are genetically related to the emplacement of the Late Variscan (304±1 Ma) Arbus Pluton, a granitoid composite intrusion ranging from monzogabbroic to granodioritic and to peraluminous leucogranitic rock-types. After more than a century of geological studies in the area, several metallogenic issues are still unresolved; among them, the occurrence in the southern sectors of little known polymetallic Ni-Co-(Pb-Zn-Cu-Ag-Bi) veins, a kind of mineralization quite unusual for the Sardinian basement. These hydrothermal deposits are hosted by very low-grade metamorphic rocks at short distance from the intrusion, where contact effect generate also hornfels. Spatial, structural and textural characters of the hydrothermal system are coherent and in apparent continuity with those of the Montevecchio Lode System. Ni-Co ores are hosted by a system of parallel, 1-2 m thick high-angle veins that discontinuously follow the southwestern and southern contacts of the Arbus Pluton for about 7 km. They constantly dip SSW, sideways with respect to the pluton contact, and show a prevalence of fracture infilling (banded and brecciated) textures, with alternating quartz and siderite bands, cockades and frequent inclusions of wallrock fragments. Wallrocks are usually silicified, bleached and/or sericitized. Systematic studies of ore textures and parageneses from different veins along the system have been performed by standard

  20. Depositional environments and controls of Juncal Formation, southern San Rafael Mountains, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, T.J.

    1987-05-01

    The lower to middle Eocene Juncal Formation, north of the Santa Ynez fault in easternmost Santa Barbara County, represents the onset of marine sedimentation following an approximately 20-m.y. hiatus. The Juncal paraconformably overlies the upper Campanian Unnamed sandstone and is gradationally overlain by the middle Eocene Matilija Formation. Access to the Juncal exposures of this area was considerably enhanced by the Wheeler fire of July 1985. Facies analysis of both the vertical and lateral exposures of the Juncal Formation (approx. 1400 m thick) indicate that the Juncal represents coalescing outer-fan depositional lobes. This interpretation is based on the lateral continuitymore » of sandstone beds, presence of thickening-upward cycles, and high-concentration sediment gravity flows, bathyal fauna, and regional associations. Local channelization (to 10 m deep) represents the extension of a mid-fan channel over its associated depositional lobe. Outcrops are subparallel to depositional strike in the eastern part of the study area and form a broad syncline in the western part. Together, these exposures allow documentation of the depositional lobes vertically, laterally, and longitudinally. Outer-fan deposits of the Juncal Formation are part of a progradational basin-filling episode. The Juncal grades upward into the outer- to mid-fan depositions of the lower Matilija Formation. The upper Matilija Formation shoals upward into deltaic facies. This regressive sedimentary sequence was probably initiated by the major sea level fall which occurred near the early/middle Eocene boundary and coincides with the onset of fan sedimentation elsewhere along the California margin. Within the study area, depositional lobe activity was probably governed by either minor fluctuations in relative sea level or channel switching up-system.« less

  1. U redox fronts and kaolinisation in basement-hosted unconformity-related U ores of the Athabasca Basin (Canada): late U remobilisation by meteoric fluids

    NASA Astrophysics Data System (ADS)

    Mercadier, Julien; Cuney, Michel; Cathelineau, Michel; Lacorde, Mathieu

    2011-02-01

    Proterozoic basement-hosted unconformity-related uranium deposits of the Athabasca Basin (Saskatchewan, Canada) were affected by significant uranium redistribution along oxidation-reduction redox fronts related to cold and late meteoric fluid infiltration. These redox fronts exhibit the same mineralogical and geochemical features as the well-studied uranium roll-front deposits in siliclastic rocks. The primary hydrothermal uranium mineralisation (1.6-1.3 Ga) of basement-hosted deposits is strongly reworked to new disseminated ores comprising three distinctly coloured zones: a white-green zone corresponding to the previous clay-rich alteration halo contemporaneous with hydrothermal ores, a uranium front corresponding to the uranium deposition zone of the redox front (brownish zone, rich in goethite) and a hematite-rich red zone marking the front progression. The three zones directly reflect the mineralogical zonation related to uranium oxides (pitchblende), sulphides, iron minerals (hematite and goethite) and alumino-phosphate-sulphate (APS) minerals. The zoning can be explained by processes of dissolution-precipitation along a redox interface and was produced by the infiltration of cold (<50°C) meteoric fluids to the hydrothermally altered areas. U, Fe, Ca, Pb, S, REE, V, Y, W, Mo and Se were the main mobile elements in this process, and their distribution within the three zones was, for most of them, directly dependent on their redox potential. The elements concentrated in the redox fronts were sourced by the alteration of previously crystallised hydrothermal minerals, such as uranium oxides and light rare earth element (LREE)-rich APS. The uranium oxides from the redox front are characterised by LREE-enriched patterns, which differ from those of unconformity-related ores and clearly demonstrate their distinct conditions of formation. Uranium redox front formation is thought to be linked to fluid circulation episodes initiated during the 400-300 Ma period during

  2. Application of the Geo-Anomaly Unit Concept in Quantitative Delineation and Assessment of Gold Ore Targets in Western Shandong Uplift Terrain, Eastern China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Yongqing, E-mail: ydonglai@mail.cgs.gov.cn; Zhao Pengda; Chen Jianguo

    2001-03-15

    A number of large and giant ore deposits have been discovered within the relatively small areas of lithospheric structure anomalies, including various boundary zones of tectonic plates. The regions have become the well-known intercontinental ore-forming belts, such as the circum-Pacific gold-copper, copper-molybdenum, and tungsten-tin metallogenic belts. These belts are typical geological anomalous areas. An investigation into the hydrothermal ore deposits in different regions in the former Soviet Union illustrated that the geologic structures of ore fields of almost all major commercial deposits have distinct features compared with the neighboring areas. These areas with distinct features are defined as geo-anomalies. Amore » geo-anomaly refers to such a geologic body or a combination of bodies that their composition, texture-structure, and genesis are significantly different from those of their surroundings. A geo-anomaly unit (GU) is an area containing distinct features that can be delineated with integrated ore-forming information using computer techniques on the basis of the geo-anomaly concept. Herein, the GU concept is illustrated by a case study of delineating the gold ore targets in the western Shandong uplift terrain, eastern China. It includes: (1) analyses of gold ore-forming factors; (2) compilation of normalized regional geochemical map and extraction of geochemical anomalies; (3) compilation of gravitational and aeromagnetic tectonic skeleton map and extraction of gravitational and aeromagnetic anomalies; (4) extraction of circular and linear anomalies from remote-sensing Landsat TM images; (5) establishment of a geo-anomaly conceptual model associated with known gold mineralization; (6) establishment of gold ore-forming favorability by computing techniques; and (7) delineation and assessment of ore-forming units. The units with high favorability are suggested as ore targets.« less

  3. The Itataia phosphate-uranium deposit (Ceará, Brazil) new petrographic, geochemistry and isotope studies

    NASA Astrophysics Data System (ADS)

    Veríssimo, César Ulisses Vieira; Santos, Roberto Ventura; Parente, Clóvis Vaz; Oliveira, Claudinei Gouveia de; Cavalcanti, José Adilson Dias; Nogueira Neto, José de Araújo

    2016-10-01

    The Itataia phosphate-uranium deposit is located in Santa Quitéria, in central Ceará State, northeastern Brazil. Mineralization has occurred in different stages and involves quartz leaching (episyenitization), brecciation and microcrystalline phase formation of concretionary apatite. The last constitutes the main mineral of Itatiaia uranium ore, namely collophane. Collophanite ore occurs in massive bodies, lenses, breccia zones, veins or episyenite in marble layers, calc-silicate rocks and gneisses of the Itataia Group. There are two accepted theories on the origin of the earliest mineralization phase of Itataia ore: syngenetic (primary) - where the ore is derived from a continental source and then deposited in marine and coastal environments; and epigenetic (secondary) - whereby the fluids are of magmatic, metamorphic and meteoric origin. The characterization of pre- or post-deformational mineralization is controversial, since the features of the ore are interpreted as deformation. This investigation conducted isotopic studies and chemical analyses of minerals in marbles and calc-silicate rocks of the Alcantil and Barrigas Formations (Itataia Group), as well as petrographic and structural studies. Analysis of the thin sections shows at least three phosphate mineral phases associated with uranium mineralizaton: (1) A prismatic fluorapatite phase associated with chess-board albite, arfvedsonite and ferro-eckermannite; (2) a second fluorapatite phase with fibrous radial or colloform habits that replaces calcium carbonate in marble, especially along fractures, with minerals such as quartz, chlorite and zeolite also identified in calc-silicate rocks; and (3) an younger phosphate phase of botryoidal apatite (fluorapatite and hydroxyapatite) related with clay minerals and probably others calcium and aluminum phosphates. Detailed isotopic analysis carried out perpendicularly to the mineralized levels and veins in the marble revealed significant variation in isotopic

  4. Mineralogical and geochemical features of the alteration processes of magmatic ores in the Beni Bousera ultramafic massif (north Morocco)

    NASA Astrophysics Data System (ADS)

    Hajjar, Zaineb; Gervilla, Fernando; Essaifi, Abderrahim; Wafik, Amina

    2017-08-01

    The Beni Bousera ultramafic massif (Internal Rif, Morocco) is characterized by the presence of two types of small-scale magmatic mineralizations (i) a mineralization consisting mainly of chromite and Ni arsenides associated to orthopyroxene and cordierite (Cr-Ni ores), and (ii) a mineralization mainly composed of magmatic Fe-Ni-Cu sulfides containing variable amounts of graphite and chromite associated to phlogopite, clinopyroxène and plagioclase (S-G ores). Theses ores underwent High-T (450-550 °C) and Low-T (150-300 °C) alteration processes. The High-T alteration processes are tentatively related to intrusion of leucogranite dykes. They are preserved in the Galaros Cr-Ni ore deposit where nickeline is partly dissolved and transformed to maucherite, and orthopyroxene alters to phlogopite. Ni and Co were mobilized to the fluid phase, rising up their availability and promoting their diffusion into chromite and phlogopite, which have significantly higher contents in Ni and Co in phlogopite-rich ores than in orthopyroxene- and nickeline-rich ones. The Low-T alteration processes are related to serpentinization/weathering spatially associated with a regional shear zone. They affected both the Cr-Ni and S-G ores. In the Cr-Ni ores, Ni-arsenides were completely leached out while chromite is fractured within a matrix of chlorite, vermiculite and Ni-rich serpentine. In S-G ores, the silicates were altered into amphibole, Fe-rich chlorite and pectolite in clinopyroxene- and plagioclase-bearing ores while sulfides were completely leached out in phlogopite-bearing ores where iron oxides and hydroxides, and Fe-rich vermiculite were deposited. Chromite composition is not affected by the Low-T alteration processes.

  5. Mineralogy, alteration patterns, geochemistry, and fluid properties of the Ag-Au epithermal deposit Nová Baňa, Slovakia

    NASA Astrophysics Data System (ADS)

    Majzlan, Juraj; Berkh, Khulan; Kiefer, Stefan; Koděra, Peter; Fallick, Anthony E.; Chovan, Martin; Bakos, František; Biroň, Adrián; Ferenc, Štefan; Lexa, Jaroslav

    2018-02-01

    part, primary fluid inclusions gave homogenization temperatures of 160-180 °C and similar low salinities. The secondary inclusions, however, show salinities up to 24 wt% NaCl eq., interpreted as fluid boiling almost to dryness. Isotopic composition of quartz and clay minerals is recalculated to fluid composition of -5.6 to -0.6 ‰ δ18Ofluid and -80 to -36 ‰ δDfluid, indicating mixed character of hydrothermal fluids falling between the compositions of magmatic and meteoric waters, with predominance of meteoric waters. Assuming hydrostatic pressure in the fluids, the measured data suggest paleodepths of ore formation of 50-170 m in the SW part of the ore deposit, 130-420 m in the SE and N parts, and a range of 120-470 m for the central part. These observations, comparison with other epithermal deposits in the Central Slovak volcanic field, and additional data from published literature show that Nová Baňa is a low- to intermediate sulfidation epithermal deposit, genetically associated to late rhyolitic volcanic activity in this area.

  6. Coke Deposition and Smoke Formation in Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Hibbard, R. R.; Wear, J. D.

    1956-01-01

    In the early development of jet engines, it was occasionally found that excessive amounts of coke or other carbonaceous deposits were formed in the combustion chamber. Sometimes a considerable amount of smoke was noted in the-exhaust gases. Excessive coke deposits may adversely affect jet-engine performance in several ways. The formation of excessive amounts of coke on or just downstream of a fuel nozzle (figs. 116(a) and (b)) changes the fuel-spray pattern and possibly affects combustor life and performance. Similar effects on performance can result from the deposition of coke on primary-air entry ports (fig. 116(c)). Sea-level or altitude starting may be impaired by the deposition of coke on spark-plug electrodes (fig. 116(b)), deposits either grounding the electrodes completely or causing the spark to occur at positions other than the intended gap. For some time it was thought that large deposits of coke in turbojet combustion chambers (fig. 116(a)) might break away and damage turbine blades; however, experience has indicated that for metal blades this problem is insignificant. (Cermet turbine blades may be damaged by loose coke deposits.) Finally, the deposition of coke may cause high-temperature areas, which promote liner warping and cracking (fig. 116(d)) from excessive temperature gradients and variations in thermal-expansion rates. Smoke in the exhaust gases does not generally impair engine performance but may be undesirable from a tactical or a nuisance standpoint. Appendix B of reference 1 and references 2 to 4 present data obtained from full-scale engines operated on test stands and from flight tests that indicate some effects on performance caused by coke deposits and smoke. Some information about the mechanism of coke formation is given in reference 5 and chapter IX. The data indicate that (1) high-boiling fuel residuals and partly polymerized products may be mixed with a large amount of smoke formed in the gas phase to account for the consistency

  7. 38. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE FROM THE GEORGE M. CARL.' VIEW LOOKING EAST. (Also see OH-18-14, OH-18-39, and OH-18-40) - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  8. 14. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE FROM THE 'GEORGE M. CAR.' VIEW LOOKING EAST. (Also see OH-18-38, OH-18-39, and OH-18-40.) - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  9. Sandbox experiments on Uraninite Ore: ERT and SP measurments.

    NASA Astrophysics Data System (ADS)

    Singh, R. K.

    2015-12-01

    Nuclear energy, considering its own intrinsic merits, would be a leading source for meeting the energy requirement in present and future scenario. Concealed Uranium deposits under sedimentary cover, with poor surface indications calls for reorientation of survey with large inputs involving integrated geophysical approach. Sand Box experiments have been carried out over Uraninite ore. The tank is a glass fish tank (height 39 cm, length 75 cm, width 30 cm). It was filled with sand up to 35 cm high. The sand was saturated from below to minimize the entrapment of the gas bubbles. The average size for sand grains is ~ 0.295mm. The formation factor of the sand is 3.5, with a negligible surface conductivity because of the coarse nature of the sand grains. The dimension of considered Uraninite ore sample is 4cm x 4cm x 4cm. The depth of top of the ore sample is kept at 3cm. In this paper both resistivity and self-potential measurements were carried out for possible detection of Uraninite. The resistivity measurements were made with 64 non-polarizable electrodes using Electrical Resistivity Tomography (ERT) equipment of FlashRes Universal developed by ZZ Resistivity Imaging Pty. Ltd. We have used screws of length 3cm as electrodes. The separation between these electrodes are ~ 1cm. The resistivity tomography results clearly outlines the target Uraninite body. The resistivity tomography results also detects small heterogeneities associated with air bubbles possibly due to unsaturated pore spaces. SP measurements were made using two non-polarizing Pb/PbCl2 electrodes and a Fluke 289 voltmeter (sensitivity 0.001 mV, internal impedance 100 MOhm). The reference electrode was located on the corner of the sandbox. The other electrode was used to scan the electrical potential at the surface of the sand. SP measurements were made with a spacing of 3 cm over the same ERT profile. The SP results also shows a dip (or a low SP anomaly) over the target ore body sample. Thus, both SP and

  10. Late Paleozoic SEDEX deposits in South China formed in a carbonate platform at the northern margin of Gondwana

    NASA Astrophysics Data System (ADS)

    Qiu, Wenhong Johnson; Zhou, Mei-Fu; Liu, Zerui Ray

    2018-05-01

    SEDEX sulfide deposits hosted in black shale and carbonate are common in the South China Block. The Dajiangping pyrite deposit is the largest of these deposits and is made up of stratiform orebodies hosted in black shales. Sandstone interlayered with stratiform orebodies contains detrital zircon grains with the youngest ages of 429 Ma. Pyrite from the orebodies has a Re-Os isochron age of 389 ± 62 Ma, indicative of formation of the hosting strata and syngenetic pyrite ores in the mid-late Devonian. The hosting strata is a transgression sequence in a passive margin and composed of carbonaceous limestone in the lower part and black shales in the upper part. The ore-hosting black shales have high TOC (total organic carbon), Mo, As, Pb, Zn and Cd, indicating an anoxic-euxinic deep basin origin. The high redox proxies, V/(V + Ni) > 0.6 and V/Cr > 1, and the positive correlations of TOC with Mo and V in black shales are also consistent with an anoxic depositional environment. The Dajiangping deposit is located close to the NE-trending Wuchuan-Sihui fault, which was active during the Devonian. The mid-late Devonian mineralization age and the anoxic-euxinic deep basinal condition of this deposit thus imply that the formation of this deposit was causally linked to hydrothermal fluid exhalation in an anoxic fault-bounded basin that developed in a carbonate platform of the South China Block. The regional distribution of many Devonian, stratiform, carbonaceous sediment-hosted sulfide deposits along the NE-trending fault-bounded basins in South China, similar to the Dajiangping deposit, indicates that these deposits formed at a basin developed in the passive margin setting of the South China Block during the Devonian. This environment was caused by the break-up and northward migration of the South China Block from Gandwana.

  11. Precambrian Sulphide Deposits

    NASA Astrophysics Data System (ADS)

    Doe, Bruce R.

    1984-04-01

    This book is dedicated to Howard S. Robinson, who was born and educated in the United States, but who spent his professional career in Canada with McIntyre Porcupine Mines, concentrating on Precambrian mineral deposits. Although his career in mineral exploration was distinguished, his major contribution to earth science was probably as one of the founders of the Geological Association of Canada, an institution to which he made a bequest in his will. With this background, the strong emphasis on Canadian Precambrian mineral deposits should come as no surprise; of the 23 papers in this book, 21 are solely or primarily devoted to Canadian deposits. The two exceptions—those describing the Balmat, N.Y., zinc mines (at times the largest zinc producer in the United States) and the Crandon, Wisconsin, volcanogenic zinc-copper massive-sulfide deposit (the largest deposit of its kind found in the 1970s)—are each within a couple of hundred kilometers of the Canadian border. Although the title of the book is more expansive than the actual topics discussed, Canada is rich in Precambrian rocks and ore bodies, and Canadian scientists have been especially alert to tectonic influences in the formation of mineral deposits. These features, plus the fact that the country contains a very well exposed expanse of Archean rocks which is the largest in the world, facilitate the study of early crustal evolution and make the book of particular interest to geophysicists.

  12. High REE and Y concentrations in Co-Cu-Au ores of the Blackbird district, Idaho

    USGS Publications Warehouse

    Slack, J.F.

    2006-01-01

    Analysis of 11 samples of strata-bound Co-Cu-Au ore from the Blackbird district in Idaho shows previously unknown high concentrations of rare earth elements (REE) and Y, averaging 0.53 wt percent ???REE + Y oxides. Scanning electron microscopy indicates REE and Y residence in monazite, xenotime, and allanite that form complex intergrowths with cobaltite, suggesting coeval Co and REE + Y mineralization during the Mesoproterozoic. Occurrence of high REE and Y concentrations in the Blackbird ores, together with previously documented saline-rich fluid inclusions and Cl-rich biotite, suggest that these are not volcanogenic massive sulfide or sedimentary exhalative deposits but instead are iron oxide-copper-gold (IOCG) deposits. Other strata-bound Co deposits of Proterozoic age in the North American Cordillera and elsewhere in the world may have potential for REE and Y resources. IOCG deposits with abundant light REE should also be evaluated for possible unrecognized heavy REE and Y mineralization. ?? 2006 by Economic Geology.

  13. Gold deposits and occurrences of the Greater Caucasus, Georgia Republic: Their genesis and prospecting criteria

    USGS Publications Warehouse

    Kekelia, S.A.; Kekelia, M.A.; Kuloshvili, S.I.; Sadradze, N.G.; Gagnidze, N.E.; Yaroshevich, V.Z.; Asatiani, G.G.; Doebrich, J.L.; Goldfarb, R.J.; Marsh, E.E.

    2008-01-01

    The south-central part of the Greater Caucasus region, Georgia Republic, represents an extremely prospective region for significant orogenic gold deposits. Gold-bearing quartz veins are concentrated in two extensive WNW-trending belts, the Mestia-Racha and Svaneti districts, within the northern margin of the Southern Slope Zone of the Great Caucasus orogen. This metalliferous region is dominated by Early to Middle Jurassic slates, which are part of a terrane that likely accreted to the continental margin from late Paleozoic to Jurassic. The slates were subsequently intruded by both Middle to Late Jurassic and Neogene granitoids. Quartz veins in the more carbonaceous slate units are most consistently enriched in As, Au, Hg, Sb, and W, and show mineralization styles most consistent with typical orogenic gold deposits. Quartz veins in the Mestia-Racha district were mined in Soviet times for As, Sb, and W, but many of these are now being recognized as gold resource targets. The veins occur in the footwall of a thrust fault between the Southern Slope zone and an earlier accreted terrane, the Main Zone, to the north. Many veins in the district continue along strike for > 1??km and some cut Neogene intrusions, constraining ore formation to the most recent 4 to 5??million years. Gold deposition thus correlates with final collision of the Arabian plate to the south and uplift of the ore-hosting Greater Caucasus. The Zopkhito deposit, previously mined for antimony, contains an estimated 55??t Au at a cutoff grade of 0.5??g/t. The veins are localized in an area where smaller-order structures show a major change in strike from N-S to more E-W trends. A pyrite-arsenopyrite ore stage includes gold concentrated in both sulfide phases; it is overprinted by a later stibnite-dominant stage. Fluid-inclusion studies of ore samples from the Zopkhito deposit indicate minimum trapping temperatures of 300 to 350????C and 200 to 300????C for the two stages, respectively, and minimum

  14. Dzhezkazgan and associated sandstone copper deposits of the Chu-Sarysu basin, Central Kazakhstan

    USGS Publications Warehouse

    Box, Stephen E.; Seltmann, Reimar; Zientek, Michael L.; Syusyura, Boris; Creaser, Robert A.; Dolgopolova, Alla

    2012-01-01

    Sandstone-hosted copper (sandstone Cu) deposits occur within a 200-km reach of the northern Chu-Sarysu basin of central Kazakhstan (Dzhezkazgan and Zhaman-Aibat deposits, and the Zhilandy group of deposits). The deposits consist of Cu sulfide minerals as intergranular cement and grain replacement in 10 ore-bearing members of sandstone and conglomerate within a 600- to 1,000-m thick Pennsylvanian fluvial red-bed sequence. Copper metal content of the deposits ranges from 22 million metric tons (Mt, Dzehzkazgan) to 0.13Mt (Karashoshak in the Zhilandy group), with average grades of 0.85 to 1.7% Cu and significant values for silver (Ag) and rhenium (Re). Broader zones of iron reduction (bleaching) of sandstones and conglomerates of the red-bed sequence extend over 10 km beyond each of the deposits along E-NE-trending anticlines, which began to form in the Pennsylvanian. The bleached zones and organic residues within them are remnants of ormer petroleum fluid accumulations trapped by these anticlines. Deposit sites along these F1anticlines are localized at and adjacent to the intersections of nearly orthogonal N-NW-trending F2synclines. These structural lows served to guide the flow of dense ore brines across the petroleum-bearing anticlines, resulting in ore sulfide precipitation where the two fluids mixed. The ore brine was sourced either from the overlying Early Permian lacustrine evaporitic basin, whose depocenter occurs between the major deposits, or from underlying Upper Devonian marine evaporites. Sulfur isotopes indicate biologic reduction of sulfate but do not resolve whether the sulfate was contributed from the brine or from the petroleum fluids. New Re-Os age dates of Cu sulfides from the Dzhezkazgan deposit indicate that mineralization took place between 299 to 309 Ma near the Pennsylvanian-Permian age boundary. At the Dzhezkazgan and some Zhilandy deposits, F2fold deformation continued after ore deposition. Copper orebodies in Lower Permian

  15. Metal organic chemical vapor deposition of environmental barrier coatings for the inhibition of solid deposit formation from heated jet fuel

    NASA Astrophysics Data System (ADS)

    Mohan, Arun Ram

    Solid deposit formation from jet fuel compromises the fuel handling system of an aviation turbine engine and increases the maintenance downtime of an aircraft. The deposit formation process depends upon the composition of the fuel, the nature of metal surfaces that come in contact with the heated fuel and the operating conditions of the engine. The objective of the study is to investigate the effect of substrate surfaces on the amount and nature of solid deposits in the intermediate regime where both autoxidation and pyrolysis play an important role in deposit formation. A particular focus has been directed to examining the effectiveness of barrier coatings produced by metal organic chemical vapor deposition (MOCVD) on metal surfaces for inhibiting the solid deposit formation from jet fuel degradation. In the first part of the experimental study, a commercial Jet-A sample was stressed in a flow reactor on seven different metal surfaces: AISI316, AISI 321, AISI 304, AISI 347, Inconel 600, Inconel 718, Inconel 750X and FecrAlloy. Examination of deposits by thermal and microscopic analysis shows that the solid deposit formation is influenced by the interaction of organosulfur compounds and autoxidation products with the metal surfaces. The nature of metal sulfides was predicted by Fe-Ni-S ternary phase diagram. Thermal stressing on uncoated surfaces produced coke deposits with varying degree of structural order. They are hydrogen-rich and structurally disordered deposits, spherulitic deposits, small carbon particles with relatively ordered structures and large platelets of ordered carbon structures formed by metal catalysis. In the second part of the study, environmental barrier coatings were deposited on tube surfaces to inhibit solid deposit formation from the heated fuel. A new CVD system was configured by the proper choice of components for mass flow, pressure and temperature control in the reactor. A bubbler was designed to deliver the precursor into the reactor

  16. ID ICPMS Lu-Hf Geochronology of Apatite from Iron-Oxide Apatite (IOA) Deposits, Northern Chilean Iron Belt.

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Vervoort, J. D.; Barra, F.; Palma, G.

    2017-12-01

    Determining the age of mineralization of ore deposits is important for understanding the mechanisms and timing of ore formation. In many cases, however, conventional dateable mineral phases (e.g., zircon, monazite) are lacking in the ore mineral assemblages. For example, Iron Oxide Apatite (IOA) and Iron Oxide Gold Copper Gold (IOCG) deposits have the remaining fundamental question as to whether they have formed by hydrothermal or magmatic processes, or some combination of the two. In these deposits, the mineralization of iron oxide is often accompanied by the growth of apatites, which typically have REE concentrations of tens to several thousand ppm and which makes them potentially amenable to dating by the Lu-Hf isochron method. These apatites, however, also have very low concentrations of Hf, which makes determination of precise Hf isotope compositions challenging. In this study, we attempted to date these deposits using the apatite Lu-Hf isochron method, using procedures modified from that of Münker et al., 2001 and Barfod et al., 2003 and report the first Lu-Hf ages for apatites from Carmen, Fresia, and Mariela IOA deposits in northern Chilean Iron Belt. The concentration of Hf in analyzed apatite is 0.001 ppm. To ensure at least 0.5ng of Hf is collected for MS analysis, 0.5g apatite was dissolved for each sample. A single stage of Ln-spec resin chromatographic columns was used to separate Hf from REEs as multi stages of separation columns would decrease the Hf yield considerably. Using these procedures, we determined a Lu-Hf apatite age for the Carmen deposit of 130.0±1.7 Ma, which is in accordance with a previously published U-Pb apatite age of 131.0±1.0 Ma (Gelcich et al., 2005). The apatites from Fresia and Mariela yield Lu-Hf ages of 132.8±5.3 Ma and 117.3±0.4 Ma respectively. The lower points on the isochrons are either a low Lu/Hf phase (actinolite, magnetite) or bulk earth ratios. These are some of the first Lu-Hf ages of directly dating apatite

  17. Iron Ore Industry Emissions as a Potential Ecological Risk Factor for Tropical Coastal Vegetation

    NASA Astrophysics Data System (ADS)

    Kuki, Kacilda N.; Oliva, Marco A.; Pereira, Eduardo G.

    2008-07-01

    In the coastal zone of the Espírito Santo state, Brazil, fragments of restinga, which form a natural ecosystem, share their space with an increasing number of iron ore industries. The iron ore dust and SO2 originating from the industry processing activities can interfere with the vegetation of the adjacent ecosystems at various levels. This study was undertaken in order to evaluate the effects of industry emissions on representative members of the restinga flora, by measuring physiological and phenological parameters. Foliar samples of Ipomoea pes caprae, Canavalia rosea, Sophora tomentosa, and Schinus terebinthifolius were collected at three increasing distances from an ore industry (1.0, 5.0, and 15.0 km), and were assessed for their dust deposition, chlorophyll, and Fe content. Phenological monitoring was focused on the formation of shoots, flowers, and fruits and was also performed throughout the course of a year. The results showed that the edaphic characteristics and the mineral constitutions of the plants were affected by industry emissions. In addition, the chlorophyll content of the four species increased with proximity to the industry. Phenological data revealed that the reproductive effort, as measured by fruit production, was affected by emissions and S. tomentosa was the most affected species. The use of an integrative approach that combines biochemical and ecological data indicates that the restinga flora is under stress due to industry emissions, which on a long-term basis may put the ecosystem at risk.

  18. Iron ore industry emissions as a potential ecological risk factor for tropical coastal vegetation.

    PubMed

    Kuki, Kacilda N; Oliva, Marco A; Pereira, Eduardo G

    2008-07-01

    In the coastal zone of the Espírito Santo state, Brazil, fragments of restinga, which form a natural ecosystem, share their space with an increasing number of iron ore industries. The iron ore dust and SO(2) originating from the industry processing activities can interfere with the vegetation of the adjacent ecosystems at various levels. This study was undertaken in order to evaluate the effects of industry emissions on representative members of the restinga flora, by measuring physiological and phenological parameters. Foliar samples of Ipomoea pes caprae, Canavalia rosea, Sophora tomentosa, and Schinus terebinthifolius were collected at three increasing distances from an ore industry (1.0, 5.0, and 15.0 km), and were assessed for their dust deposition, chlorophyll, and Fe content. Phenological monitoring was focused on the formation of shoots, flowers, and fruits and was also performed throughout the course of a year. The results showed that the edaphic characteristics and the mineral constitutions of the plants were affected by industry emissions. In addition, the chlorophyll content of the four species increased with proximity to the industry. Phenological data revealed that the reproductive effort, as measured by fruit production, was affected by emissions and S. tomentosa was the most affected species. The use of an integrative approach that combines biochemical and ecological data indicates that the restinga flora is under stress due to industry emissions, which on a long-term basis may put the ecosystem at risk.

  19. [Biooxidation of gold-bearing sulfide ore and subsequent biological treatment of cyanidation residues].

    PubMed

    Kanaev, A T; Bulaev, A G; Semenchenko, G V; Kanaeva, Z K; Shilmanova, A A

    2016-01-01

    The percolation biooxidation parameters of ore from the Bakyrchik deposit were studied. An investigation of the technological parameters (such as the concentration of leaching agents, irrigation intensity, and pauses at various stages of the leaching) revealed the optimal mode for precious metal extraction. The stages of the ore processing were biooxidation, gold extraction by cyanidation or thiosulfate leaching, and biological destruction of cyanide. The gold and silver recovery rates by cyanidation were 64.0 and 57.3%, respectively. The gold and silver recovery rates by thiosulfate leaching were 64.0 and 57.3%, respectively. Gold and silver recovery rates from unoxidized ore (control experiment) by cyanidation were 20.9 and 26.8%, respectively. Thiosulfate leaching of unoxidized ore allowed the extraction of 38.8 and 24.2% of the gold and silver, respectively. Cyanidation residues were treated with bacteria of the genus Alcaligenes in order to destruct cyanide.

  20. An investigation into heterogeneity in a single vein-type uranium ore deposit: Implications for nuclear forensics.

    PubMed

    Keatley, A C; Scott, T B; Davis, S; Jones, C P; Turner, P

    2015-12-01

    Minor element composition and rare earth element (REE) concentrations in nuclear materials are important as they are used within the field of nuclear forensics as an indicator of sample origin. However recent studies into uranium ores and uranium ore concentrates (UOCs) have shown significant elemental and isotopic heterogeneity from a single mine site such that some sites have shown higher variation within the mine site than that seen between multiple sites. The elemental composition of both uranium and gangue minerals within ore samples taken along a single mineral vein in South West England have been measured and reported here. The analysis of the samples was undertaken to determine the extent of the localised variation in key elements. Energy Dispersive X-ray spectroscopy (EDS) was used to analyse the gangue mineralogy and measure major element composition. Minor element composition and rare earth element (REE) concentrations were measured by Electron Probe Microanalysis (EPMA). The results confirm that a number of key elements, REE concentrations and patterns used for origin location do show significant variation within mine. Furthermore significant variation is also visible on a meter scale. In addition three separate uranium phases were identified within the vein which indicates multiple uranium mineralisation events. In light of these localised elemental variations it is recommended that representative sampling for an area is undertaken prior to establishing the REE pattern that may be used to identify the originating mine for an unknown ore sample and prior to investigating impact of ore processing on any arising REE patterns. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Application of a feedforward neural network in the search for kuroko deposits in the Hokuroku District, Japan

    USGS Publications Warehouse

    Singer, Donald A.; Kouda, Ryoichi

    1996-01-01

    A feedforward neural network with one hidden layer and five neurons was trained to recognize the distance to kuroko mineral deposits. Average amounts per hole of pyrite, sericite, and gypsum plus anhydrite as measured by X-rays in 69 drillholes were used to train the net. Drillholes near and between the Fukazawa, Furutobe, and Shakanai mines were used. The training data were selected carefully to represent well-explored areas where some confidence of the distance to ore was assured. A logarithmic transform was applied to remove the skewness of distance and each variable was scaled and centered by subtracting the median and dividing by the interquartile range. The learning algorithm of annealing plus conjugate gradients was used to minimize the mean squared error of the scaled distance to ore. The trained network then was applied to all of the 152 drillholes that had measured gypsum, sericite, and pyrite. A contour plot of the neural net predicted distance to ore shows fairly wide areas of 1 km or less to ore; each of the known deposit groups is within the 1 km contour. The high and low distances on the margins of the contoured distance plot are in part the result of boundary effects of the contouring algorithm. For example, the short distances to ore predicted west of the Shakanai (Hanaoka) deposits are in basement. However, the short distances to ore predicted northeast of Furotobe, just off the figure, coincide with the location of the Nurukawa kuroko deposit and the Omaki deposit, south of the Shakanai-Hanaoka deposits, seems to be on an extension of short distance to ore contour, but is beyond the 3 km limit from drillholes. Also of interest are some areas only a few kilometers from the Fukazawa and Shakanai groups of deposits that are estimated to be many kilometers from ore, apparently reflecting the network's recognition of the extreme local variability of the geology near some deposits.

  2. Preliminary investigation of the elemental variation and diagenesis of a tabular uranium deposit, La Sal Mine, San Juan County, Utah

    USGS Publications Warehouse

    Brooks, Robert A.; Campbell, John A.

    1976-01-01

    Ore in the La Sal mine, San Juan County, Utah, occurs as a typical tabular-type uranium deposit of the-Colorado Plateau. Uranium-vanadium occurs in the Salt Wash Member of the Jurassic Morrison Formation. Chemical and petrographic analyses were used to determine elemental variation and diagenetic aspects across the orebody. Vanadium is concentrated in the dark clay matrix, which constitutes visible ore. Uranium content is greater above the vanadium zone. Calcium, carbonate carbon, and lead show greater than fifty-fold increase across the ore zone, whereas copper and organic carbon show only a several-fold increase. Large molybdenum concentrations are present in and above the tabular layer, and large selenium concentrations occur below the uranium zone within the richest vanadium zone. Iron is enriched in the vanadium horizon. Chromium is depleted from above the ore and strongly enriched below. Elements that vary directly with the vanadium content include magnesium, iron, selenium, zirconium, strontium, titanium, lead, boron, yttrium, and scandium. The diagenetic sequence is as follows: (1) formation of secondary quartz overgrowths as cement; (2) infilling and lining of remaining pores with amber opaline material; (3) formation of vanadium-rich clay matrix, which has replaced overgrowths as well as quartz grains; (4) replacement of overgrowths and detrital grains by calcite; (5) infilling of pores with barite and the introduction of pyrite and marcasite.

  3. Photosynthesis and oxidative stress in the restinga plant species Eugenia uniflora L. exposed to simulated acid rain and iron ore dust deposition: potential use in environmental risk assessment.

    PubMed

    Neves, Natália Rust; Oliva, Marco Antonio; da Cruz Centeno, Danilo; Costa, Alan Carlos; Ribas, Rogério Ferreira; Pereira, Eduardo Gusmão

    2009-06-01

    The Brazilian sandy coastal plain named restinga is frequently subjected to particulate and gaseous emissions from iron ore factories. These gases may come into contact with atmospheric moisture and produce acid rain. The effects of the acid rain on vegetation, combined with iron excess in the soil, can lead to the disappearance of sensitive species and decrease restinga biodiversity. The effects of iron ore dust deposition and simulated acid rain on photosynthesis and on antioxidant enzymes were investigated in Eugenia uniflora, a representative shrub species of the restinga. This study aimed to determine the possible utility of this species in environmental risk assessment. After the application of iron ore dust as iron solid particulate matter (SPM(Fe)) and simulated acid rain (pH 3.1), the 18-month old plants displayed brown spots and necrosis, typical symptoms of iron toxicity and injuries caused by acid rain, respectively. The acidity of the rain intensified leaf iron accumulation, which reached phytotoxic levels, mainly in plants exposed to iron ore dust. These plants showed the lowest values for net photosynthesis, stomatal conductance, transpiration, chlorophyll a content and electron transport rate through photosystem II (PSII). Catalase and superoxide dismutase activities were decreased by simulated acid rain. Peroxidase activity and membrane injury increased following exposure to acid rain and simultaneous SPM(Fe) application. Eugenia uniflora exhibited impaired photosynthetic and antioxidative metabolism in response to combined iron and acid rain stresses. This species could become a valuable tool in environmental risk assessment in restinga areas near iron ore pelletizing factories. Non-invasive evaluations of visual injuries, photosynthesis and chlorophyll a fluorescence, as well as invasive biochemical analysis could be used as markers.

  4. Taolin Zn-Pb-fluorite deposit, People's Republic of China: an example of some problems in fluid inclusion research on mineral deposits.

    USGS Publications Warehouse

    Roedder, E.; Howard, K.W.

    1988-01-01

    The ore in this large Zn-Pb-fluorite deposit in NE Hunan Province occurs as open space-filling in a major fault zone between granite and metasedimentary rocks. Following barren, pre-ore quartz, three stages of ore deposition are recognized. Studies on 400 fluid inclusions from all four stages show homogenization T of 120-200oC (av. approx 160o) and salinities of 0-14 wt.% equiv. NaCl (av. 7.7) . These results differ considerably from some previously published sulphur isotopic T (221-344oC), and data for five inclusions that are more saline (9.0-7.7 wt.% equiv. NaCl) and hotter (up to 345oC) (M.A. 85M/2835, 87M/0888).-R.A.H.

  5. Gemstone deposits of Serbia

    NASA Astrophysics Data System (ADS)

    Miladinović, Zoran; Simić, Vladimir; Jelenković, Rade; Ilić, Miloje

    2016-06-01

    Gemstone minerals in Serbia have never been regarded as an interesting and significant resource. Nevertheless, more than 150 deposits and occurrences have been recorded and some of them preliminarily explored in the last 50 years. The majority of deposits and occurrences are located within the Serbo-Macedonian metallogenic province and the most significant metallogenic units at the existing level of knowledge are the Fruska Gora ore district, Cer ore district, Sumadija metallogenic zone, Kopaonik metallogenic zone and Lece-Halkidiki metallogenic zone. The most important genetic type of deposits is hydrothermal, particularly in case of serpentinite/peridotite as host/parent rock. Placer deposits are also economically important. The dominant gemstones are silica minerals: chalcedony (Chrysoprase, carnelian, bluish chalcedony etc.), jasper (picture, landscape, red etc.), common opal (dendritic, green, milky white etc.), silica masses (undivided), and quartz (rock crystal, amethyst etc.). Beside silica minerals significant gemstones in Serbia include also beryl (aquamarine), garnet (almandine and pyrope), tourmaline, fluorite, rhodochrosite, carbonate-silica breccia, carbonate-silica onyx, silicified wood, howlite, serpentinite, marble onyx, and kyanite. This paper aims to present an overview of Serbian gemstone deposits and occurrences and their position based on a simplified gemstone metallogenic map of Serbia, as well as genetic-industrial classification of gemstone deposits and gemstone varieties.

  6. The preliminary result of the δ65Cu and δ34S values of major ore minerals in the Erdenetiin-Ovoo Cu-Mo porphyry deposit, Northern Mongolia

    NASA Astrophysics Data System (ADS)

    KIM, Y.; Lee, I.; Oyungerel, S.; Jargal, L.; Tsedenbal, T.; Ryu, J. S.

    2016-12-01

    The copper isotope (δ65Cu) and sulfur isotope (δ34S) compositions of major ore minerals from the Erdenetiin-Ovoo Cu-Mo porphyry deposit were measured to trace sources of copper and sulfur, and to evaluate the precipitation environment of ore minerals. The major ore minerals are pyrite, chalcopyrite, molybdenite and chalcocite developed in the QSP (Quartz-Sericite-Pyrite) alteration zone. The sulfide minerals such as sphalerite and covellite, and carbonate ore minerals like malachite, azurite are also identified. The copper isotope ratios (65Cu/63Cu) of copper ore minerals (chalcopyrite, chalcocite, malachite, azurite, covellite and chrysocolla) were analyzed by the MC-ICPMS in KBSI located in Ochang, South Korea. The measured δ65Cu values relative to NIST 976 range from -1.01 ‰ to 5.76 ‰. The average δ65Cu values of sulfide minerals such as chalcopyrite (1.03 ‰), chalcocite (0.62 ‰) and covellite (0.51 ‰) seem to be relatively lower than those of carbonate and silicate Cu minerals such as malachite (0.24 ‰), azurite (2.17 ‰) and chrysocolla (5.76 ‰). The sulfur isotope ratios (34S/32S) of major sulfide minerals were measured by EA-CF-IRMS (Elemental Analyzer - Continuous Flow - Isotope Ratio Mass Spectrometer) in NCIRF, Seoul National University. The average δ34SV-CDT value is -1.1 ‰ indicating the magmatic signature of sulfur. There is the difference of δ34S values between sulfide minerals. While the δ34S values of pyrite, chalcopyrite and molybdenite range from -0.9 to 0.8 ‰, the δ34S values of chalcocite range from -2.6 ‰ to -1.4 ‰. These lower values might be attributed to the sulfur isotope fractionation during its precipitation.

  7. Culturable microorganisms associated with Sishen iron ore and their potential roles in biobeneficiation.

    PubMed

    Adeleke, Rasheed; Cloete, T E; Khasa, D P

    2012-03-01

    With one of the largest iron ore deposits in the world, South Africa is recognised to be among the top ten biggest exporters of iron ore. Increasing demand and consumption of this mineral triggered search for processing technologies, which can be utilised to "purify" the low-grade iron ore minerals that contain high levels of unwanted potassium (K) and phosphorus (P). This study investigated a potential biological method that can be further developed for the full biobeneficiation of low-grade iron ore minerals. Twenty-three bacterial strains that belong to Proteobacteria, Firmicutes, Bacteroidetes and Actinobateria were isolated from the iron ore minerals and identified with sequence homology and phylogenetic methods. The abilities of these isolates to lower the pH of the growth medium and solubilisation of tricalcium phosphate were used to screen them as potential mineral solubilisers. Eight isolates were successfully screened with this method and utilised in shake flask experiments using iron ore minerals as sources of K and P. The shake flask experiments revealed that all eight isolates have potentials to produce organic acids that aided the solubilisation of the iron ore minerals. In addition, all eight isolates produced high concentrations of gluconic acid followed by relatively lower concentrations of acetic, citric and propanoic acid. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) analyses also indicated extracellular polymeric substances could play a role in mineral solubilisation.

  8. Geology and geochemistry of the Reocín zinc-lead deposit, Basque-Cantabrian Basin, Northern Spain

    USGS Publications Warehouse

    Velasco, Francisco; Herrero, Jose Miguel; Yusta, Inaki; Alonso, Jose Antonio; Seebold, Ignacio; Leach, David

    2003-01-01

    fluids responsible for sulfide deposition and the infilling of karst cavities were broadly contemporaneous, indicating a post-Albian age. Vitrinite reflectance data are consistent with previously measured fluid inclusion temperatures and indicate temperatures of ore deposition that were less than 100??C. Carbon and oxygen isotopic data from samples of regional limestone, host-rock dolostone and ore-stage dolomite suggest an early hydrothermal alteration of limestone to dolostone. This initial dolomitization was followed by a second period of dolomite formation produced by the mixing of basinal metal-rich fluids with local modified seawater. Both dolomitization events occurred under similar conditions from fluids exhibiting characteristics of basinal brines. The ??34S values of sulfides are between -1.8 and +8.5 per mil, which is consistent with thermochemical sulfate reduction involving organic matter as the main source of reduced sulfur. Galena lead isotope compositions are among the most radiogenic values reported for Zn-Pb occurrences in Europe, and they are distinct from values reported for galena from other Basque-Cantabrian deposits. This suggests that a significant part of the lead was scavenged from the local underlying Asturian sediments. The stratigraphic and structural setting, timing of epigenetic mineralization, mineralogy, and isotopic geochemistry of sulfide and gangue minerals of the Reoci??n deposit are consistent with the features of most of Mississippi Valley-type ore deposits.

  9. Zircon-pyrochlore ores of Proterozoic Gremyakha-Vyrmes polyphase massif, Kola Peninsula: source and evolution

    NASA Astrophysics Data System (ADS)

    Sorokhtina, Natalia; Belyatsky, Boris; Antonov, Anton; Kononkova, Natalia; Lepekhina, Elena; Kogarko, Lia

    2017-04-01

    zircon has polygenetic nature: some relics inherited from foidolite crystallized at about 800°C, whereas the newly formed - at 600°C [Watson et al., 2006]. The time interval of the magmatic massif formation may be estimated as long as 80-100 Ma only. The basic-ultrabasic rocks and foidolites were intruded consistently at 1982 ± 6 Ma and 1894±12 according to SHRIMP-II U-Pb zircon dating, but the whole-rock Sm-Nd isotope dating has resulted in 1879±99 Ma and reflects the impact of alkaline granite intrusion (1871±9 Ma). The late differentiates from alkaline magma crystallization were the main source of rare metals for zircon-pyrochlore ores of alkaline metasomatites. The metasomatic rocks (aegirinites, albitites) and carbonatites were formed as late as 1910 ± 15 Ma (SHRIMP-II U-Pb zircon, titanite, pyrochlore). While some pyrochlore grains from metasomatites are showed that U-Pb age of ore formation is 1766 ± 24 and 1764 ± 19 respectively. That can be attributed to additional source of rare metals connected with fluids formed during regional metamorphism 1750 m.y. ago [Glebovitskii et al., 2014]. The last probable source of rare-metal material and ore-deposit evolution stage (recrystallization) is established by individual pyrochlore grain Sm-Nd and U-Pb systems and evidences tectono-thermal activity at the Paleozoic plume magmatism, which was followed by structural and chemical mineral changes. The research was done within the framework of the scientific program of Russian Academy of Sciences and state contract K41.2014.014 with Sevzapnedra. References: Watson E. B., Wark D. A., Thomas J. B. Crystallization thermometers for zircon and rutile // Contrib. Mineral. Petrol. 2006. 151, 413-433. Glebovitskii V.A., Bushmin S.A., Belyatsky B.V., Bogomolov E.S., Borozdin A.P., Savva E.V., Lebedeva Y.M. Rb-Sr age of metasomatism and ore formation in the low-temperature shear zones of the Fenno-Karelian craton, Baltic Shield // Petrology. 2014. 22(2). 184-204. Sorokhtina N

  10. Mechanism of unintentionally produced persistent organic pollutant formation in iron ore sintering.

    PubMed

    Sun, Yifei; Liu, Lina; Fu, Xin; Zhu, Tianle; Buekens, Alfons; Yang, Xiaoyi; Wang, Qiang

    2016-04-05

    Effects of temperature, carbon content and copper additive on formation of chlorobenzenes (CBzs) and polychlorinated biphenyls (PCBs) in iron ore sintering were investigated. By heating simulated fly ash (SFA) at a temperature range of 250-500°C, the yield of both CBzs and PCBs presented two peaks of 637ng/g-fly ash at 350°C and 1.5×10(5)ng/g-fly ash at 450°C for CBzs, and 74ng/g-fly ash at 300°C and 53ng/g-fly ash at 500°C. Additionally, in the thermal treatment of real fly ash (RFA), yield of PCBs displayed two peak values at 350°C and 500°C, however, yield of CBzs showed only one peak at 400°C. In the thermal treatment of SFA with a carbon content range of 0-20wt% at 300°C, both CBzs and PCBs obtained the maximum productions of 883ng/g-fly ash for CBzs and 127ng/g-fly ash for PCBs at a 5wt% carbon content. Copper additives also affected chlorinated aromatic formation. The catalytic activity of different copper additives followed the orders: CuCl2∙2H2O>Cu2O>Cu>CuSO4>CuO for CBzs, and CuCl2∙2H2O>Cu2O>CuO>Cu>CuSO4 for PCBs. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Geology and ore deposits of the Leadville mining district, Colorado

    USGS Publications Warehouse

    Emmons, S.F.; Irving, J.D.; Loughlin, G.F.

    1927-01-01

    Adequate treatment of so large and so extensively developed a district as that of Leadville necessitates a voluminous report, in which the practical questions of prime interest to the commercial world can not be systematically answered until the data on which they depend are discussed. Many readers will no doubt wish to turn at once to the chapter on ore reserves, which will give them an appraisal of the district, without bothering with geologic detail. For those who wish a brief general account, a summary of the principal chapters of the report is presented below.

  12. A new stratigraphic model for the deposition of the Dammam Formation

    NASA Astrophysics Data System (ADS)

    Lokier, Stephen; Fiorini, Flavia; Min, Jina

    2017-04-01

    In recent years, mixed siliciclastic-carbonate successions have increasingly become targets for hydrocarbon exploration and production activities. Despite the abundance of these successions throughout the Middle East, there have been very few attempts to employ quantitative techniques to interpret their depositional settings and to develop constrained sequence stratigraphic models for their deposition. This study focuses on the Eocene age Dammam Formation that crops out on the flanks of the Jebel Hafeet anticline south of Al Ain in the United Arab Emirates. The Dammam Formation comprises units alternating between poorly-lithified, easily-weathered, siliciclastic and marly horizons and well-lithified limestones. These units were deposited in a foreland basin that formed in association with the Late Cretaceous obduction of the Semail Ophiolite onto the northeastern margin of the Arabian Plate. The Paleogene infilling of this basin is recorded in the shallowing-upward sedimentary sequence of the lithologies of the Pabdeh Group. This succession records the transition from marine carbonate sedimentation, through increasingly evaporitic-dominated units during the late Eocene to early Miocene to a fluvial-alluvial system by mid to late Miocene times. The Dammam Formation was deposited in an open shallow-marine setting strongly influenced by the influx of siliciclastic material sourced from the close-by uplifted massif of the obducted ophiolite. The skeletal assemblage of the Dammam Formation is dominated by Nummulites and Assilina larger benthic foraminifera along with subordinate smaller foraminifera, echinoids, bivalves, corals, bryozoan, gastropods, echinoids and calcareous algae. Previous studies of the Dammam Formation have employed the biotic component in the reconstruction of water depth. However, these studies neglected to consider that turbidity, associated with the abundant siliciclastic component, resulted in a reduction in the depth of the euphotic zone and a

  13. Petrography and geochemistry of the primary ore zone of the Kenticha rare metal granite-pegmatite field, Adola Belt, Southern Ethiopia: Implications for ore genesis and tectonic setting

    NASA Astrophysics Data System (ADS)

    Mohammedyasin, Mohammed Seid; Desta, Zerihun; Getaneh, Worash

    2017-10-01

    The aim of this work is to evaluate the genesis and tectonic setting of the Kenticha rare metal granite-pegmatite deposit using petrography and whole-rock geochemical analysis. The samples were analysed for major elements, and trace and rare earth elements by ICP-AES and ICP-MS, respectively. The Kenticha rare metal granite-pegmatite deposit is controlled by the N-S deep-seated normal fault that allow the emplacement of the granite-pegmatite in the study area. Six main mineral assemblages have been identified: (a) alaskitic granite (quartz + microcline + albite with subordinate muscovite), (b) aplitic layer (quartz + albite), (c) muscovite-quartz-microcline-albite pegmatite, (d) spodumene-microcline-albite pegmatite, partly albitized or greisenized, (e) microcline-albite-green and pink spodumene pegmatite with quartz-microcline block, which is partly albitized and greisenized, and (f) quartz core. This mineralogical zonation is also accompanied by variation in Ta ore concentration and trace and rare earth elements content. The Kenticha granite-pegmatite is strongly differentiated with high SiO2 (72-84 wt %) and enriched with Rb (∼689 ppm), Be (∼196 ppm), Nb (∼129 ppm), Ta (∼92 ppm) and Cs (∼150 ppm) and depleted in Ba and Sr. The rare earth element (REE) patterns of the primary ore zone (below 60 m depth) shows moderate enrichment in light REE ((La/Yb)N = ∼8, and LREE/HREE = ∼9.96) and negative Eu-anomaly (Eu/Eu* = ∼0.4). The whole-rock geochemical data display the Within Plate Granite (WPG) and syn-Collisional Granite (syn-COLG) suites and interpret as its formation is crustal related melting. The mineralogical assemblage, tectonic setting and geochemical signatures implies that the Kenticha rare metal bearing granite pegmatite is formed by partial melting of metasedimentary rocks during post-Gondwana assembly and further tantalite enrichment through later hydrothermal-metasomatic processes.

  14. Geochemical and mineralogical composition of bog iron ore as a resource for prehistoric iron production - A case study of the Widawa catchment area in Eastern Silesia, Poland

    NASA Astrophysics Data System (ADS)

    Thelemann, Michael; Bebermeier, Wiebke; Hoelzmann, Philipp

    2016-04-01

    Spreading from the Near East in the declining Bronze Age from the 2nd millennium BCE onwards, the technique of iron smelting reached Eastern Silesia, Poland, in approximately the 2nd century BCE (pre-Roman Iron Age). At this time the region of the Widawa catchment area was inhabited by the Przeworsk culture. While the older moraine landscape of the study area lacks ores from geological rock formations, bog iron ores were relatively widespread and, due to their comparatively easy accessibility, were commonly exploited for early iron production. In this poster the mineralogical and elemental composition of local bog iron ore deposits and iron slag finds, as a by-product of the smelting process, are investigated. The crystalline mineralogical composition of local bog iron ores is dominated by quartz (SiO2) and goethite (α FeO(OH)), in contrast to slag samples in which fayalite (Fe2SiO4), wüstite (FeO) and quartz, with traces of goethite, represent the main minerals. Ores and slags are both characterized by notable hematite (Fe2O3), magnetite (Fe3O4) and maghemite (γ-Fe2O3) contents. Analyzed bog iron ore samples show iron contents of up to 64.9 mass% Fe2O3 (45.4 mass% Fe), whereas the iron contents of bloomery slags vary between 48.7 and 72.0 mass% FeO (37.9 and 56.0 mass% Fe). A principal component analysis of the element contents, which were quantified by portable energy-dispersive X-ray fluorescence spectrometry (p-ED-XRF), indicates local variations in the elemental composition. Our results show that bog iron ores are relatively widely distributed with spatially varying iron contents along the Widawa floodplain but present-day formation conditions (e.g. different ground-water levels) are negatively affected by modern land-use practices, such as agriculture and melioration measures.

  15. Nickel-cobalt laterites: a deposit model: Chapter H in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Marsh, Erin; Anderson, Eric J.; Gray, Floyd

    2013-01-01

    Nickel-cobalt (Ni-Co) laterite deposits are supergene enrichments of Ni±Co that form from intense chemical and mechanical weathering of ultramafic parent rocks. These regolith deposits typically form within 26 degrees of the equator, although there are a few exceptions. They form in active continental margins and stable cratonic settings. It takes as little as one million years for a laterite profile to develop. Three subtypes of Ni-Co laterite deposits are classified according to the dominant Ni-bearing mineralogy, which include hydrous magnesium (Mg)-silicate, smectite, and oxide. These minerals form in weathering horizons that begin with the unweathered protolith at the base, saprolite next, a smectite transition zone only in profiles where drainage is very poor, followed by limonite, and then capped with ferricrete at the top. The saprolite contains Ni-rich hydrous Mg-silicates, the Ni-rich clays occur in the transition horizon, and Ni-rich goethite occurs in the limonite. Although these subtypes of deposits are the more widely used terms for classification of Ni-Co laterite deposits, most deposits have economic concentrations of Ni in more than one horizon. Because of their complex mineralogy and heterogeneous concentrations, mining of these metallurgically complex deposits can be challenging. Deposits range in size from 2.5 to about 400 million tonnes, with Ni and Co grades of 0.66–2.4 percent (median 1.3) and 0.01–0.15 percent (median 0.08), respectively. Modern techniques of ore delineation and mineralogical identification are being developed to aid in streamlining the Ni-Co laterite mining process, and low-temperature and low-pressure ore processing techniques are being tested that will treat the entire weathered profile. There is evidence that the production of Ni and Co from laterites is more energy intensive than that of sulfide ores, reflecting the environmental impact of producing a Ni-Co laterite deposit. Tailings may include high levels of

  16. Hydrothermal ore-forming processes in the light of studies in rock- buffered systems: II. Some general geologic applications

    USGS Publications Warehouse

    Hemley, J.J.; Hunt, J.P.

    1992-01-01

    The experimental metal solubilities for rock-buffered hydrothermal systems provide important insights into the acquisition, transport, and deposition of metals in real hydrothermal systems that produced base metal ore deposits. Water-rock reactions that determine pH, together with total chloride and changes in temperature and fluid pressure, play significant roles in controlling the solubility of metals and determining where metals are fixed to form ore deposits. Deposition of metals in hydrothermal systems occurs where changes such as cooling, pH increase due to rock alteration, boiling, or fluid mixing cause the aqueous metal concentration to exceed saturation. Metal zoning results from deposition occurring at successive saturation surfaces. Zoning is not a reflection simply of relative solubility but of the manner of intersection of transport concentration paths with those surfaces. Saturation surfaces will tend to migrate outward and inward in prograde and retrograde time, respectively, controlled by either temperature or chemical variables. -from Authors

  17. Age constraints on the hydrothermal history of the Prominent Hill iron oxide copper-gold deposit, South Australia

    NASA Astrophysics Data System (ADS)

    Bowden, Bryan; Fraser, Geoff; Davidson, Garry J.; Meffre, Sebastien; Skirrow, Roger; Bull, Stuart; Thompson, Jay

    2017-08-01

    The Mesoproterozoic Prominent Hill iron-oxide copper-gold deposit lies on the fault-bound southern edge of the Mt Woods Domain, Gawler Craton, South Australia. Chalcocite-bornite-chalcopyrite ores occur in a hematitic breccia complex that has similarities to the Olympic Dam deposit, but were emplaced in a shallow water clastic-carbonate package overlying a thick andesite-dacite pile. The sequence has been overturned against the major, steep, east-west, Hangingwall Fault, beyond which lies the clastic to potentially evaporitic Blue Duck Metasediments. Immediately north of the deposit, these metasediments have been intruded by dacite porphyry and granitoid and metasomatised to form magnetite-calc-silicate skarn ± pyrite-chalcopyrite. The hematitic breccia complex is strongly sericitised and silicified, has a large sericite ± chlorite halo, and was intruded by dykes during and after sericitisation. This paper evaluates the age of sericite formation in the mineralised breccias and provides constraints on the timing of granitoid intrusion and skarn formation in the terrain adjoining the mineralisation. The breccia complex contains fragments of granitoid and porphyry that are found here to be part of the Gawler Range Volcanics/Hiltaba Suite magmatic event at 1600-1570 Ma. This indicates that some breccia formation post-dated granitoid intrusion. Monazite and apatite in Fe-P-REE-albite metasomatised granitoid, paragenetically linked with magnetite skarn formation north of the Hangingwall Fault, grew soon after granitoid intrusion, although the apatite experienced U-Pb-LREE loss during later fluid-mineral interaction; this accounts for its calculated age of 1544 ± 39 Ma. To the south of the fault, within the breccia, 40Ar-39Ar ages yield a minimum age of sericitisation (+Cu+Fe+REE) of dykes and volcanics of ˜1575 Ma, firmly placing Prominent Hill ore formation as part of the Gawler Range Volcanics/Hiltaba Suite magmatic event within the Olympic Cu-Au province of the

  18. Translocation of the retinal pigment epithelium and formation of sub-retinal pigment epithelium deposit induced by subretinal deposit

    PubMed Central

    Zhao, Lian; Wang, Zhenfang; Liu, Yun; Song, Ying; Li, Yiwen; Laties, Alan M.

    2007-01-01

    Purpose A cardinal pathological feature of age-related macular degeneration (AMD) is the deposition of extracellular material between the retinal pigment epithelium (RPE) and Bruch's membrane, pathologically described as sub-RPE deposits. Both the presence and local organization of these deposits contribute to the clinical manifestations of AMD, including localized deposits clinically recognized as drusen. The biogenesis of sub-RPE deposits remains elusive. This work explores the pathological processes of sub-RPE deposit formation. Methods Matrigel was injected to the subretinal space of rats to create an amorphous deposit. Tissue sections were examined by light or confocal microscopy. Results In the presence of the subretinal deposit of Matrigel, RPE cells leave Bruch's membrane to migrate toward photoreceptors and then form a new layer between the deposit and photoreceptors, resulting in RPE translocation. The new RPE layer displaces the deposit to the sub-RPE location and therefore it becomes a sub-RPE deposit. The RPE mobilization requires the presence of photoreceptors. Bruch's membrane devoid of RPE attachment becomes vulnerable to invasion by new blood vessels from the choroid. Conclusions Our work supports a novel model of sub-RPE deposit formation in which excessive material first accumulates in the subretinal space, disrupting the physical contact between RPE cells and photoreceptors. To restore the contact, RPE cells migrate toward photoreceptors and form a new layer. The subretinal material is consequently displaced to the sub-RPE location and becomes sub-RPE deposit. Our data also provide evidence that the presence of sub-RPE deposit is sufficient to induce choroidal neovascularization to penetrate Bruch's membrane. PMID:17615538

  19. Technological pretreatment of the synchysite non-oxidized ore

    NASA Astrophysics Data System (ADS)

    Munkhtsetseg, B.; Burmaa, G.

    2013-06-01

    Mongolia has rich deposits of rare, precious, and poly-metallic ores. Nowadays, it is important to research separation of rare earth elements oxides concentrates from the ores, analyze their unique physical chemical characteristics, and purified it. Our investigation on raw materials focuses on rare earth non-oxidized ores. Main mineral in this rock sample is Synchysite (LnCa(CO3)2F. We did technological and thermal pretreatment: direct sulphurization (H2SO4), sulphurization with subsequent roasting (800°C+H2SO4), sulphurization prior to roasting (H2SO4+650°C). Sulphurization method based on dissolution of rare earth mineral into sulfuric acid (93%) according to the reaction. The amount of rare earth element oxides is almost 10 times greater (29.16%) after direct sulphurization process, almost 8 times greater (21.14%) after sulphurization with subsequent roasting, and almost 20 times greater (44.62%) after sulphurization prior to roasting process. After those technological pretreatment raw material's micro elements Thorium and Uranium contents are reduced as follows: H2SO4>800°C+H2SO4>H2SO4+650°C. These results show that cerium group rare earth elements have very good solubility in water at +2°C temperature and decreasing micro elements content uranium and thorium good pretreatment condition is prior to roasting (H2SO4+650°C) of synchysite non-oxidized ore.

  20. The deep structure of a sea-floor hydrothermal deposit

    USGS Publications Warehouse

    Zierenberg, R.A.; Fouquet, Y.; Miller, D.J.; Bahr, J.M.; Baker, P.A.; Bjerkgard, T.; Brunner, C.A.; Duckworth, R.C.; Gable, R.; Gieskes, J.; Goodfellow, W.D.; Groschel-Becker, H. M.; Guerin, G.; Ishibashi, J.; Iturrino, G.; James, R.H.; Lackschewitz, K.S.; Marquez, L.L.; Nehlig, P.; Peter, J.M.; Rigsby, C.A.; Schultheiss, P.; Shanks, Wayne C.; Simoneit, B.R.T.; Summit, M.; Teagle, D.A.H.; Urbat, M.; Zuffa, G.G.

    1998-01-01

    Hydrothermal circulation at the crests of mid-ocean ridges plays an important role in transferring heat from the interior of the Earth. A consequence of this hydrothermal circulation is the formation of metallic ore bodies known as volcanic-associated massive sulphide deposits. Such deposits, preserved on land, were important sources of copper for ancient civilizations and continue to provide a significant source of base metals (for example, copper and zinc). Here we present results from Ocean Drilling Program Leg 169, which drilled through a massive sulphide deposit on the northern Juan de Fuca spreading centre and penetrated the hydrothermal feeder zone through which the metal-rich fluids reached the sea floor. We found that the style of feeder-zone mineralization changes with depth in response to changes in the pore pressure of the hydrothermal fluids and discovered a stratified zone of high-grade copper-rich replacement mineralization below the massive sulphide deposit. This copper-rich zone represents a type of mineralization not previously observed below sea-floor deposits, and may provide new targets for land-based mineral exploration.

  1. Geochemistry and geochronology of ore-bearing and barren intrusions in the Luanchuan ore fields of East Qinling metallogenic belt, China: Diverse tectonic evolution and implications for mineral exploration

    NASA Astrophysics Data System (ADS)

    Xue, Fei; Wang, Gongwen; Santosh, M.; Yang, Fan; Shen, Zhiwei; Kong, Liang; Guo, Nana; Zhang, Xuhuang; Jia, Wenjuan

    2018-05-01

    The Luanchuan ore fields form part of the East Qinling metallogenic belt in central China. In this study, we compare two ore-bearing intrusions, the Shibaogou granitic pluton (SBG) and the Zhongyuku granitic pluton (ZYK), with the ore-barren Laojunshan intrusion (LJS) from the Luanchuan ore field. Geochemically, all the three intrusions are characterized by high-Si, high-K, and alkalis, together with moderate-ASI, exhibiting I-type granite features. The rocks, especially the ore-related plutons also show enrichment in LREEs. Mineral chemistry of biotite from the intrusions exhibits similar features of high Si and Mg, and low Al and Fe. Zircon grains from the ZYK intrusion yielded a U-Pb age of 149.6 ± 2.4 Ma. The zircon grains show εHf (t) values and two stage model ages (TDM2) in the range of -16.8 to -19.7 and 1998-2156 Ma respectively. The biotite composition and Hf isotopic data indicate that the magma was derived by re-melting of deep crustal material with minor input of mantle components. We evaluate the results to understand the physico-chemical conditions, petrogenesis, and tectonic setting, and their implications for mineral exploration. The ore-bearing plutons show wide ranges of temperature and oxygen fugacity, favoring Mo-W mineralization. In addition, estimates on pressure and depth of emplacement suggest that lower solidification pressure in a decompressional setting contributed to the evolution of magmatic hydrothermal deposits. Our data suggest that the ZYK has the highest potential for Mo-W mineralization. The ore-bearing plutons of ZYK and SBG were formed in a transitional tectonic setting from compression to extension, with the large-scale metallogeny triggered by slab melts at ca. 145 Ma. However, the ore-barren LJS batholith formed in an extension-related geodynamic setting at ∼115 Ma. Our study shows that different tectonic settings and consequent physico-chemical conditions dictated the ore potential of the intrusions in the Luanchuan ore

  2. Sedimentary architecture and depositional environment of Kudat Formation, Sabah, Malaysia

    NASA Astrophysics Data System (ADS)

    Ghaheri, Samira; Suhaili, Mohd; Sapari, Nasiman; Momeni, Mohammadsadegh

    2017-12-01

    Kudat Formation originated from deep marine environment. Three lithofacies association of deep marine turbidity channel was discovered in three Members of the Kudat Formation in Kudat Peninsula, Sabah, Malaysia. Turbidite and deep marine architecture elements was described based on detailed sedimentological studies. Four architecture elements were identified based on each facies association and their lithology properties and character: inner external levee that was formed by turbidity flows spill out from their confinement of channel belt; Lobes sheet that was formed during downslope debris flows associated with levee; Channel fill which sediments deposited from high to low density currents with different value of sediment concentration; and overbank terrace which was formed by rapid suspension sedimentation. The depositional environment of Kudat Formation is shelf to deep marine fan.

  3. Molybdenite Re/Os dating, zircon U-Pb age and geochemistry of granitoids in the Yangchuling porphyry W-Mo deposit (Jiangnan tungsten ore belt), China: Implications for petrogenesis, mineralization and geodynamic setting

    NASA Astrophysics Data System (ADS)

    Mao, Jingwen; Xiong, Bikang; Liu, Jun; Pirajno, Franco; Cheng, Yanbo; Ye, Huishou; Song, Shiwei; Dai, Pan

    2017-08-01

    The Yangchuling W-Mo deposit, located in the Jiangnan porphyry-skarn (JNB) tungsten ore belt, is the first recognized typical porphyry W-Mo deposit in China in the 1980's. Stockworks and disseminated W-Mo mineralization occur in the roof pendant of a 0.3 km2 monzogranitic porphyry stock that intruded into a granodiorite stock, hosted by Neoproterozoic phyllite and slate. LA-ICPMS zircon U-Pb analyses suggest that of the monzogranitic porphyry and granodiorite were formed at 143.8 ± 0.5 Ma and 149.8 ± 0.6 Ma, respectively. Six molybdenite samples yielded a Re-Os weighted mean age of 146.4 ± 1.0 Ma. Geochemical data show that both granodiorite and monzogranitic porphyry are characterized by enrichment of large ion lithophile elements (LILE) relative to high field strength elements (HFSE), indicating a peraluminous nature (A/CNK = 1.01-1.08). Two granitoids are characterized by a negative slope with significant light REE/heavy REE fractionation [(La/Yb)N = 8.38-23.20] and negative Eu anomalies (Eu/Eu* = 0.69-0.76). The P2O5 contents of the Yangchuling granitoids range from 0.12% to 0.17% and exhibit a negative correlation with SiO2, reflecting that they are highly fractionated I-type. They have high initial 87Sr/86Sr ratios (0.7104-0.7116), low negative εNd(t) (- 5.05 to - 5.67), and homogeneous εHf(t) between - 1.39 and - 2.17, indicating similar sources. Additionally, two-stage Nd model ages (TDM2) of 1.3-1.4 Ga and two-stage Hf model ages (TDM2) of 1.2-1.3 Ga are consistent, indicating that Neoproterozoic crustal rocks of the Shuangqiaoshan Group could have contributed to form the Yangchuling magmas. Considering the two groups of parallel Late Mesozoic ore belts, namely the Jiangnan porphyry-skarn tungsten belt (JNB) in the south and the Middle-Lower Yangtze River porphyry-skarn Cu-Au-Mo-Fe ore belt (YRB) in the north, the Nanling granite-related W-Sn ore belt (NLB) in the south, the neighboring Qin-Hang porphyry-skarn Cu-Mo-hydrothermal Pb-Zn-Ag ore belt (QHB

  4. Hydrogen Plasma Processing of Iron Ore

    NASA Astrophysics Data System (ADS)

    Sabat, Kali Charan; Murphy, Anthony B.

    2017-06-01

    Iron is currently produced by carbothermic reduction of oxide ores. This is a multiple-stage process that requires large-scale equipment and high capital investment, and produces large amounts of CO2. An alternative to carbothermic reduction is reduction using a hydrogen plasma, which comprises vibrationally excited molecular, atomic, and ionic states of hydrogen, all of which can reduce iron oxides, even at low temperatures. Besides the thermodynamic and kinetic advantages of a hydrogen plasma, the byproduct of the reaction is water, which does not pose any environmental problems. A review of the theory and practice of iron ore reduction using a hydrogen plasma is presented. The thermodynamic and kinetic aspects are considered, with molecular, atomic and ionic hydrogen considered separately. The importance of vibrationally excited hydrogen molecules in overcoming the activation energy barriers, and in transferring energy to the iron oxide, is emphasized. Both thermal and nonthermal plasmas are considered. The thermophysical properties of hydrogen and argon-hydrogen plasmas are discussed, and their influence on the constriction and flow in the of arc plasmas is considered. The published R&D on hydrogen plasma reduction of iron oxide is reviewed, with both the reduction of molten iron ore and in-flight reduction of iron ore particles being considered. Finally, the technical and economic feasibility of the process are discussed. It is shown that hydrogen plasma processing requires less energy than carbothermic reduction, mainly because pelletization, sintering, and cokemaking are not required. Moreover, the formation of the greenhouse gas CO2 as a byproduct is avoided. In-flight reduction has the potential for a throughput at least equivalent to the blast furnace process. It is concluded that hydrogen plasma reduction of iron ore is a potentially attractive alternative to standard methods.

  5. Arc-related porphyry molybdenum deposit model: Chapter D in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Taylor, Ryan D.; Hammarstrom, Jane M.; Piatak, Nadine M.; Seal, Robert R.

    2012-01-01

    Geoenvironmental concerns are generally low because of low volumes of sulfide minerals. Most deposits are marginally acid-generating to non-acid-generating with drainage waters being near-neutral pH because of the acid generating potential of pyrite being partially buffered by late-stage calcite-bearing veins. The low ore content results in a waste:ore ratio of nearly 1:1 and large tailings piles from the open-pit method of mining.

  6. Composition and genesis of the Konevinsky gold deposit, Eastern Sayan, Russia

    NASA Astrophysics Data System (ADS)

    Damdinov, B. B.; Zhmodik, S. M.; Roshchektaev, P. A.; Damdinova, L. B.

    2016-03-01

    The Konevinsky gold deposit in southeast Eastern Sayan is distinguished from most known deposits in this region (Zun-Kholba, etc.) by the geological setting and composition of mineralization. To elucidate the cause of the peculiar mineralization, we have studied the composition, formation conditions, and origin of this deposit, which is related to the Ordovician granitoid pluton 445-441 Ma in age cut by intermediate and basic dikes spatially associated with metavolcanic rocks of the Devonian-Carboniferous Ilei Sequence. Four mineral assemblages are recognized: (1) quartz-pyrite-molybdenite, (2) quartz-gold-pyrite, (3) gold-polysulfide, and (4) telluride. Certain indications show that the ore was formed as a result of the superposition of two distinct mineral assemblages differing in age. The first stage dated at ~440 Ma is related to intrusions generating Cu-Mo-Au porphyry mineralization and gold-polysulfide veins. The second stage is controlled by dikes pertaining to the Devonian-Carboniferous volcanic-plutonic association. The second stage is characterized by gain of Hg and Te and formation of gold-mercury-telluride paragenesis.

  7. The physical hydrology of magmatic-hydrothermal systems: High-resolution 18O records of magmatic-meteoric water interaction from the Yankee Lode tin deposit (Mole Granite, Australia)

    NASA Astrophysics Data System (ADS)

    Fekete, Szandra; Weis, Philipp; Driesner, Thomas; Heinrich, Christoph A.; Baumgartner, Lukas; Bouvier, Anne-Sophie

    2016-04-01

    Magmatic-hydrothermal ore deposits are important economic Cu, Au, Mo and Sn resources (Sillitoe, 2010, Kesler, 1994). The ore formation is a result of superimposed enrichment processes and metals can precipitate due to fluid-rock interaction and/or temperature drop caused by convection or mixing with meteoric fluid (Heinrich and Candela 2014). Microthermometry and LA-ICP MS trace element analyses of fluid inclusions of a well-characterized quartz sample from the Yankee Lode quartz-cassiterite vein deposit (Mole Granite, Australia) suggest that tin precipitation was driven by dilution of hot magmatic water by meteoric fluids (Audétat et al.1998). High resolution in situ oxygen isotope measurements of quartz have the potential to detect changing fluid sources during the evolution of a hydrothermal system. We analyzed the euhedral growth zones of this previously well-studied quartz sample. Growth temperatures are provided by Audétat et al. (1998) and Audétat (1999). Calculated δ 18O values of the quartz- and/or cassiterite-precipitating fluid show significant variability through the zoned crystal. The first and second quartz generations (Q1 and Q2) were precipitated from a fluid of magmatic isotopic composition with δ 18O values of ˜ 8 - 10 ‰. δ 18O values of Q3- and tourmaline-precipitating fluids show a transition from magmatic δ 18O values of ˜ 8 ‰ to ˜ -5 ‰. The outermost quartz-chlorite-muscovite zone was precipitated from a fluid with a significant meteoric water component reflected by very light δ 18O values of about -15 ‰ which is consistent with values found by previous studies (Sun and Eadington, 1987) using conventional O-isotope analysis of veins in the distal halo of the granite intrusion. Intense incursion of meteoric water during Q3 precipitation (light δ 18O values) agrees with the main ore formation event, though the first occurrence of cassiterite is linked to Q2 precipitating fluid with magmatic-like isotope signature. This

  8. Origin of stratiform sediment-hosted manganese carbonate ore deposits: Examples from Molango, Mexico, and TaoJiang, China

    USGS Publications Warehouse

    Okita, P.M.; Shanks, Wayne C.

    1992-01-01

    Carbonate and sulfide minerals from the Molango, Mexico, and TaoJiang, China, Mn deposits display similar and distinctive ??34S and ??13C patterns in intervals of manganese carbonate mineralization. ??13C-values for Mn-bearing carbonate range from -17.8 to +0.5??? (PDB), with the most negative values occurring in high-grade ore zones that are composed predominantly of rhodochrosite. In contrast, calcite from below, within and above Mn-carbonate zones at Molango has ??13C???0??? (PDB). Markedly negative ??13C data indicate that a large proportion of the carbon in Mn-carbonates was derived from organic matter oxidation. Diagenetic reactions using MnO2 and SO2-4 to oxidize sedimentary organic matter were the principle causes of such 12C enrichment. Pyrite content and sulfide ?? 34S-values also show distinctive variations. In unmineralized rocks, very negative ??34S-values (avg. < -21??? CDT) and abundant pyrite content suggest that pyrite formed from diagenetic, bacteriogenic sulfate reduction. In contrast, Mn-bearing horizons typically contain only trace amounts of pyrite (e.g., <0.5 wt% S with ??34S-values 34S-enriched, in some cases to nearly the value for contemporaneous seawater. 34S-enriched pyrite from the Mn-carbonate intervals indicates sulfide precipitation in an environment that underwent extensive SO2-4 reduction, and was largely a closed system with regard to exchange of sulfate and dissolved sulfide with normal seawater. The occasional occurrence of 34S-depleted pyrite within Mn-carbonate zones dominated by 34S-enriched pyrite is evidence that closed-system conditions were intermittent and limited to local pore waters and did not involve entire sedimentary basins. Mn-carbonate precipitation may have occluded porosity in the surficial sediments, thus establishing an effective barrier to SO2-4 exchange with overlying seawater. Similar isotopic and mineralogic characteristics from both the Molango and TaoJiang deposits, widely separated in geologic time and

  9. Isotope geochemistry of mercury in source rocks, mineral deposits and spring deposits of the California Coast Ranges, USA

    NASA Astrophysics Data System (ADS)

    Smith, Christopher N.; Kesler, Stephen E.; Blum, Joel D.; Rytuba, James J.

    2008-05-01

    We present here the first study of the isotopic composition of mercury in rocks, ore deposits, and active spring deposits from the California Coast Ranges, a part of Earth's crust with unusually extensive evidence of mercury mobility and enrichment. The Franciscan Complex and Great Valley Sequence, which form the bedrock in the California Coast Ranges, are intruded and overlain by Tertiary volcanic rocks including the Clear Lake Volcanic Sequence. These rocks contain two types of mercury deposits, hot-spring deposits that form at shallow depths (< 300 m) and silica-carbonate deposits that extend to depths of 1000 m. Active springs and geothermal areas continue to precipitate Hg and Au and are modern analogues to the fossil hydrothermal systems preserved in the ore deposits. The Franciscan Complex and Great Valley Sequence contain clastic sedimentary rocks with higher concentrations of mercury than volcanic rocks of the Clear Lake Volcanic Field. Mean mercury isotopic compositions ( δ202Hg) for all three rock units are similar, although the range of values in Franciscan Complex rocks is greater than in either Great Valley or Clear Lake rocks. Hot spring and silica-carbonate mercury deposits have similar average mercury isotopic compositions that are indistinguishable from averages for the three rock units, although δ202Hg values for the mercury deposits have a greater variance than the country rocks. Precipitates from spring and geothermal waters in the area have similarly large variance and a mean δ202Hg value that is significantly lower than the ore deposits and rocks. These observations indicate that there is little or no isotopic fractionation (< ± 0.5‰) during release of mercury from its source rocks into hydrothermal solutions. Isotopic fractionation does appear to take place during transport and concentration of mercury in deposits, however, especially in their uppermost parts. Boiling of hydrothermal fluids, separation of a mercury-bearing CO 2 vapor

  10. Isotope geochemistry of mercury in source rocks, mineral deposits and spring deposits of the California Coast Ranges, USA

    USGS Publications Warehouse

    Smith, C.N.; Kesler, S.E.; Blum, J.D.; Rytuba, J.J.

    2008-01-01

    We present here the first study of the isotopic composition of mercury in rocks, ore deposits, and active spring deposits from the California Coast Ranges, a part of Earth's crust with unusually extensive evidence of mercury mobility and enrichment. The Franciscan Complex and Great Valley Sequence, which form the bedrock in the California Coast Ranges, are intruded and overlain by Tertiary volcanic rocks including the Clear Lake Volcanic Sequence. These rocks contain two types of mercury deposits, hot-spring deposits that form at shallow depths (< 300??m) and silica-carbonate deposits that extend to depths of 1000??m. Active springs and geothermal areas continue to precipitate Hg and Au and are modern analogues to the fossil hydrothermal systems preserved in the ore deposits. The Franciscan Complex and Great Valley Sequence contain clastic sedimentary rocks with higher concentrations of mercury than volcanic rocks of the Clear Lake Volcanic Field. Mean mercury isotopic compositions (??202Hg) for all three rock units are similar, although the range of values in Franciscan Complex rocks is greater than in either Great Valley or Clear Lake rocks. Hot spring and silica-carbonate mercury deposits have similar average mercury isotopic compositions that are indistinguishable from averages for the three rock units, although ??202Hg values for the mercury deposits have a greater variance than the country rocks. Precipitates from spring and geothermal waters in the area have similarly large variance and a mean ??202Hg value that is significantly lower than the ore deposits and rocks. These observations indicate that there is little or no isotopic fractionation (< ?? 0.5???) during release of mercury from its source rocks into hydrothermal solutions. Isotopic fractionation does appear to take place during transport and concentration of mercury in deposits, however, especially in their uppermost parts. Boiling of hydrothermal fluids, separation of a mercury-bearing CO2 vapor

  11. Invisible and microscopic gold in pyrite: Methods and new data for massive sulfide ores of the Urals

    NASA Astrophysics Data System (ADS)

    Vikentyev, I. V.

    2015-07-01

    Au speciation in sulfides (including "invisible" Au), which mostly controls the loss of Au during ore dressing, is discussed. Modern methods of analysis of Au speciation, with discussion of limitations by locality and sensitivity, are reviewed. The results of sulfide investigation by the methods of scanning and transmission electron microscopy, mass spectrometric analysis with laser ablation (LA-ICP-MS), the thermochemical method (study of ionic Au speciation), and automated "quantitative mineralogy," are demonstrated for weakly metamorphosed VHMS deposits of the Urals (Galkinsk and Uchaly). Significant content of Au is scattered in sulfides, such as pyrite, chalcopyrite, and sphalerite, with quantitative predomination of pyrite. The portion of such "invisible" gold ranges from <10% (Galkinsk deposit) to 85% (Uchaly deposit). Major part of "invisible" gold occurs as micron- to nanoscale particles of Au minerals. The portion of gold structurally bound in pyrite lattice (from the bulk concentration of Au in pyrite) is estimated to be from few % (the Galkinsk deposit) to 20-25% (the Uchaly deposit). The presence of As and Sb in pyrite and sphalerite, as well as other trace elements (Te, Co, Mn, Cu, Hg, and Ag in both as well as Fe in sphalerite) stimulates the incorporation of Au in sulfide, but mostly in defect-associated, not isomorphic form. Micron particles of Ag sulfosalts (pyrargyrite, freibergite, stephanite, polybasite, pyrostilpnite, argentotetrahedrite, pearceite, proustite), Au-Ag alloys (from gold of high fineness to küstelite), Ag and Au-Ag tellurides (hessite, empressite, calaverite), and occasional Au-Ag sulfides (petrovskaite, uytenbogaardtite) were registered in the areas of Au enrichment of both deposits; selenotelluride (kurilite) particles were found on the Galkinsk deposit. Nanoscale (1-50 nm) native gold (spherical and disk-shaped particles, flakes) with a monocrystal diffraction pattern of some particles and a ring diffraction pattern of other

  12. A geologic assessment of potential lunar ores

    NASA Technical Reports Server (NTRS)

    Mckay, D. S.; Williams, R. J.

    1979-01-01

    Although bulk lunar soil is not a suitable feedstock for extracting metals, certain minerals such as anorthite and ilmenite can be separated and concentrated. These minerals can be considered as potential ores of aluminum, silicon, titanium, andiron. A separation and metal extraction plant could also extract large amounts of oxygen and perhaps hydrogen from these minerals. Anorthie containing 19 percent aluminum and 20 percent silicon can be concentrated from some highland soils where it is present in amounts up to 60 percent. Ilmenite containing 32 percent titanium and 37 percent iron can be concentrated from some mare soils where it is present in amounts up to 10 percent. The ideal mining site would be located at the boundary between a high-titanium mare and a high-aluminum highlands. Such area may exist around the rims of some eastern maria, particularly Tranquilitatis. A location on Earth with raw materials as described above would be considered an economically valuable ore deposit if conventional terrestrial resources were not available.

  13. Challenges facing the North American iron ore industry

    USGS Publications Warehouse

    Jorgenson, J.D.

    2005-01-01

    During the 20th century, the iron ore mining industries of Canada and the United States passed through several periods of transformation. The beginning of the 21st century has seen yet another period of transformation, with the economic failure of a number of steel companies, the acquisition of their facilities by more viable steelmakers, and the consolidation of control within the North American iron ore industry. Changes in Canadian and United States iron ore production and the market control structure involved are analysed. The consolidation of ownership, formation of foreign joint ventures within Nordi America, planned divestitures of upstream activities by steelmakers, and industry changes made to ensure availability of feedstocks will be reviewed. The ttaditional isolation of the Canadian and United States iron ore operations and their strong linkage to downstream steel production will be discussed in the context of a changing global economy. Management-labour conflicts that have taken place and agreements made during 2000 through 2004 will be discussed in the context of the economic environment leading up to these agreements. Cooperative agreements between competing Canadian and United States companies to resolve client needs in processing and blending will be examined. A joint industry-government project designed to use new technology to produce direct reduced iron nuggets of 96 - 98 per cent iron content using non-coking coals will also be assessed. Changes in iron ore transportation methods, ownership and infrastructure will be reviewed for both rail and inland waterway transport between Canadian and United States companies. A brief analysis of social and environmental issues relating to sustainable development of the Canadian-United States iron ore industry will be included.

  14. The North American iron ore industry: a decade into the 21st century

    USGS Publications Warehouse

    Jorgenson, John D.; Perez, A. A

    2011-01-01

    During the 20th century, the iron ore mining industries of Canada and the United States passed through periods of transformation. The beginning of the 21st century has seen another period of transformation, with the failure of a number of steel companies and with consolidation of control within the North American iron ore industry. Canadian and United States iron ore production and the market control structure involved are changing rapidly. Consolidation of ownership, formation of foreign joint ventures, divestitures of upstream activities by steelmakers, and industry changes to ensure availability of feedstocks all played a role in recent developments in the North American iron ore industry. Canadian and U.S. iron ore operations and their strong linkage to downstream production, although isolated, must also be considered within the context of the changing global economy. Projects using new technology to produce direct reduced iron nuggets of 96-98% iron content and other projects designed to produce steel at minesites may once again change the face of the iron ore industry. Social and environmental issues related to sustainable development have had a significant effect on the North American iron ore industry.

  15. 26. NORTHERN VIEW OF ORE YARD WITH ORE BRIDGES IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. NORTHERN VIEW OF ORE YARD WITH ORE BRIDGES IN THE BACKGROUND. BLAST FURNACES ALONG THE RIGHT SIDE. (Martin Stupich) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  16. Mineralogical and geochemical characterization of supergene Cu-Pb-Zn-V ores in the Oriental High Atlas, Morocco

    NASA Astrophysics Data System (ADS)

    Verhaert, Michèle; Bernard, Alain; Dekoninck, Augustin; Lafforgue, Ludovic; Saddiqi, Omar; Yans, Johan

    2017-10-01

    In the Moroccan High Atlas, two sulfide deposits hosted by Jurassic dolostones underwent significant weathering. In the Cu deposit of Jbel Klakh, several stages of supergene mineralization are distinguished: (1) the replacement of hypogene sulfides in the protolith (chalcopyrite) by secondary sulfides in the cementation zone (bornite, digenite, chalcocite, covellite), (2) the formation of oxidized minerals in the saprolite (malachite, azurite, brochantite) where the environment becomes more oxidizing and neutral, and (3) the precipitation of late carbonates (calcite) and iron (hydr-)oxides in the laterite. The precipitation of carbonates is related to the dissolution of dolomitic host rocks, which buffers the fluid acidity due to the oxidation of sulfides. In the Jbel Haouanit Pb-Zn deposit, the mineral assemblage is dominated by typical calamine minerals, Cu minerals (chalcocite, covellite, malachite), and a Cu-Pb-Zn vanadate (mottramite). Galena is successively weathered in anglesite and cerussite. Sphalerite is weathered in smithsonite, which is rapidly replaced by hydrozincite. Late iron (hydr-)oxides are mainly found at the top of both deposits (laterite). Both deposits are thus characterized by specific mineral zoning, from laterite to protolith, related to variations in the mineralogy and ore grades and probably caused by varying Eh-pH conditions.

  17. Gold particle formation via photoenhanced deposition on lithium niobate

    NASA Astrophysics Data System (ADS)

    Zaniewski, A. M.; Meeks, V.; Nemanich, R. J.

    2017-05-01

    In this work, we report on a technique to reduce gold chloride into sub-micron particles and nanoparticles. We use photoelectron transfer from periodically polarized lithium niobate (PPLN) illuminated with above band gap light to drive the surface reactions required for the reduction and particle formation. The particle sizes and distributions on the PPLN surface are sensitive to the solution concentration, with inhibited nucleation and large particles (>150 nm) for both low (2E-8M to 9E-7M) and high (1E-5M to 1E-3M) concentrations of gold chloride. At midrange values of the concentration, nucleation is more frequent, resulting in smaller sized particles (<150 nm). We compare the deposition process to that for silver, which has been previously studied. We find that the reduction of gold chloride into nanoparticles is inhibited compared to silver ion reduction, due to the multi-step reaction required for gold particle formation. This also has consequences for the resulting deposition patterns: while silver deposits into nanowires along boundaries between areas with opposite signed polarizations, such patterning of the deposition is not observed for gold, for a wide range of concentrations studied (2E-8 to 1E-3M).

  18. The Olympic Dam copper-uranium-gold deposit, Roxby Downs, South Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, D.E.; Hudson, G.R.T.

    1983-08-01

    The Olympic Dam copper-uranium-gold deposit appears to be a new type of strata-bound sediment-hosted ore deposit. It is located 650 km north-northwest of Adelaide in South Australia and was discovered in 1975. It has an areal extent exceeding 20 km/sup 2/ with vertical thicknesses of mineralization up to 350 m. The deposit is estimated to contain in excess of 2,000 million metric tons of mineralized material with an average grade of 1.6 percent copper, 0.06 percent uranium oxide, and 0.6 g/metric ton gold. The deposit occurs in the basement beneath 350 m of unmineralized, flat-lying Adelaidean (late Proterozoic) to Cambrianmore » sediments in the Stuart shelf region of South Australia. The host rocks of the deposit are unmetamorphosed and are probably younger than 1,580 m.y. The deposit is spatially related to coincident gravity and magnetic anomalies and the intersection of west-northwest- and north-northwest-trending lineaments. The Proterozoic sediments comprising the local basement sequence are predominantly sedimentary breccias ranging from matrix-poor granite breccias to matrix-rich polymict breccias containing clasts of a variety of rock types. This sequence is over 1 km thick and has been divided into two main units--the Olympic Dam Formation and the Greenfield Formation. The Olympic Dam Formation has five members, three of which are matrix rich. The Greenfield Formation has three members, the lower two being very hematite rich while the upper has a significant volcanic component. Pervasive hematite, chlorite, and sericite alteration of varying intensity affects all the basement sequence.« less

  19. Extraction of copper from an oxidized (lateritic) ore using bacterially catalysed reductive dissolution.

    PubMed

    Nancucheo, Ivan; Grail, Barry M; Hilario, Felipe; du Plessis, Chris; Johnson, D Barrie

    2014-01-01

    An oxidized lateritic ore which contained 0.8 % (by weight) copper was bioleached in pH- and temperature-controlled stirred reactors under acidic reducing conditions using pure and mixed cultures of the acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans. Sulfur was provided as the electron donor for the bacteria, and ferric iron present in goethite (the major ferric iron mineral present in the ore) acted as electron acceptor. Significantly more copper was leached by bacterially catalysed reductive dissolution of the laterite than in aerobic cultures or in sterile anoxic reactors, with up to 78 % of the copper present in the ore being extracted. This included copper that was leached from acid-labile minerals (chiefly copper silicates) and that which was associated with ferric iron minerals in the lateritic ore. In the anaerobic bioreactors, soluble iron in the leach liquors was present as iron (II) and copper as copper (I), but both metals were rapidly oxidized (to iron (III) and copper (II)) when the reactors were aerated. The number of bacteria added to the reactors had a critical role in dictating the rate and yield of copper solubilised from the ore. This work has provided further evidence that reductive bioprocessing, a recently described approach for extracting base metals from oxidized deposits, has the potential to greatly extend the range of metal ores that can be biomined.

  20. Iron Oxide Deposition from Aqueous Solution and Iron Formations on Mars

    NASA Technical Reports Server (NTRS)

    Catling, David; Moore, Jeff

    2000-01-01

    Iron formations are ancient, laminated chemical sediments containing at least 15 wt% Fe. We discuss possible mechanisms for their formation in aqueous environments on early Mars. Such iron oxide deposits may be detectable today.

  1. Stratigraphy and depositional environments of Fox Hills Formation (Late Cretaceous), Williston basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, D.J.

    The Fox Hills Formation (Late Cretaceous, Maestrichtian) was investigated where it crops out along the southern flank of the Williston basin and in the subsurface over the central portion of the basin, using 300 well logs. The formation is conformable and gradational with the underlying Pierre formation and can be either conformable or unconformable with the overlying Hell Creek Formation. The Fox Hills Formation is younger, thicker, and stratigraphically more complex to the east and is comprised of marginal marine sediments deposited during the final Cretaceous regression. To the west, the Fox Hills Formation is an upward-coarsening unit generally 30more » to 45 m thick and usually contains three members: from the base, Trail City, Timber Lake, and Colgate. The lower Fox Hills (Trail City, Timber Lake) is generally dominated by hummocky bedding and contains a variety of trace fossils, most notably Ophiomorpha. The upper Fox Hills (Colgate), where present, is characterized by cross-bedding. To the east, including the type area, the section is generally 80 to 100 m thick and contains four members: from the base, Trail City, Timber Lake, Iron Lightning (Colgate and Bullhead lithofacies), and Linton. In contrast to the section in the west, this section is as much as three times thicker, contains abundant body fossils, generally lacks hummocky bedding, and contains the Bullhead and Linton strata. In the west, the strata represent lower shoreface deposits, predominantly of storm origin (lower Fox Hills), overlain by upper shoreface and fluvial deposits (upper Fox Hills). In the east, the lower Fox Hills contains deposits of the lower shoreface (Trail City) and a barrier bar complex (Timber Lake), overlain by the deltaic deposits of the upper Fox Hills (Iron Lightning, Linton).« less

  2. Characterization of porosity in sulfide ore minerals: A USANS/SANS study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, F.; Zhao, J.; Etschmann, B. E.

    Porosity plays a key role in the formation and alteration of sulfide ore minerals, yet our knowledge of the nature and formation of the residual pores is very limited. Herein, we report the application of ultra-small-angle neutron scattering and small-angle neutron scattering (USANS/SANS) to assess the porosity in five natural sulfide minerals (violarite, marcasite, pyrite, chalcopyrite, and bornite) possibly formed by hydrothermal mineral replacement reactions and two synthetic sulfide minerals (violarite and marcasite) prepared experimentally by mimicking natural hydrothermal conditions. USANS/SANS data showed very different pore size distributions for these minerals. Natural violarite and marcasite tend to possess less poresmore » in the small size range (<100 nm) compared with their synthetic counterparts. This phenomenon is consistent with a higher degree of pore healing or diagenetic compaction experienced by the natural violarite and marcasite. Surprisingly, nanometer-sized (<20 nm) pores were revealed for a natural pyrite cube from La Rioga, Spain, and the sample has a pore volume fraction of ~7.7%. Both chalcopyrite and bornite from the massive sulfide assemblage of the Olympic Dam deposit in Roxby Downs, South Australia, were found to be porous with a similar pore volume fraction (~15%), but chalcopyrite tends to have a higher proportion of nanometer-size pores centered at ~4 nm while bornite tends to have a broader pore size distribution. The specific surface area is generally low for these minerals ranging from 0.94 to 6.28 m2/g, and the surfaces are generally rough as surface fractal behavior was observed for all these minerals. This investigation has demonstrated that USANS/SANS is a very useful tool for analyzing porosity in ore minerals. We believe that with this quantified porosity information a deeper understanding of the complex fluid flow behavior within the porous minerals can be expected.« less

  3. Isotopic evidence for reductive immobilization of uranium across a roll-front mineral deposit

    DOE PAGES

    Brown, Shaun T.; Basu, Anirban; Christensen, John N.; ...

    2016-05-20

    We use uranium (U) isotope ratios to detect and quantify the extent of natural U reduction in groundwater across a roll front redox gradient. Our study was conducted at the Smith Ranch-Highland in situ recovery (ISR) U mine in eastern Wyoming, USA, where economic U deposits occur in the Paleocene Fort Union formation. To evaluate the fate of aqueous U in and adjacent to the ore body, we investigated the chemical composition and isotope ratios of groundwater samples from the roll-front type ore body and surrounding monitoring wells of a previously mined area. The 238U/ 235U of groundwater varies bymore » approximately 3‰ and is correlated with U concentrations. Fluid samples down-gradient of the ore zone are the most depleted in 238U and have the lowest U concentrations. Activity ratios of 234U/ 238U are ~5.5 up-gradient of the ore zone, ~1.0 in the ore zone, and between 2.3 and 3.7 in the down-gradient monitoring wells. High-precision measurements of 234U/ 238U and 238U/ 235U allow for development of a conceptual model that evaluates both the migration of U from the ore body and the extent of natural attenuation due to reduction. We find that the premining migration of U down-gradient of the delineated ore body is minimal along eight transects due to reduction in or adjacent to the ore body, whereas two other transects show little or no sign of reduction in the down-gradient region. Lastly, these results suggest that characterization of U isotopic ratios at the mine planning stage, in conjunction with routine geochemical analyses, can be used to identify where more or less postmining remediation will be necessary.« less

  4. Internal structures and dating of non-sulphide Zn deposits using rock magnetism: insights from the Moroccan High Atlas

    NASA Astrophysics Data System (ADS)

    Charles, Nicolas; Choulet, Flavien; Sizaret, Stanislas; Chen, Yan; Barbanson, Luc; Ennaciri, Aomar; Badra, Lakhlifi; Branquet, Yannick

    2016-01-01

    The renewal of interest in Zn-Pb non-sulphide ores has been induced by mineral processing improvement and leads to new exploration and mining projects in the world. Although the mineralogy is often precisely known, and despite several studies linking ore deposition to regional tectonics, absolute dating of non-sulphide stages is rare and structure of ore bodies was largely disregarded. Geochronological data from non-sulphide ores are essential to timely constrain alteration episodes and to insert supergene ore genesis in the climate and tectonic evolution of the metallogenic province. The access to internal organization of ore could reveal post-mineralization episodes related to supergene evolution. Thus, a rock magnetism study combining anisotropy of magnetic susceptibility (AMS) and palaeomagnetism was performed on four non-sulphide deposits from the Moroccan High Atlas. AMS generally shows similar horizontal magnetic fabrics for ores and the clayey and carbonaceous internal sediments filling karstic cavities. The palaeomagnetic directions of ores and internal sediments are compatible, and the calculated poles are consistent with the last 30 Ma of the Africa apparent polar wander path, with an upper age at 0.78 Ma. The proposed three-step scenario is placed within the evolution of the Moroccan High Atlas belt. Deposition of primary sulphides is contemporaneous with opening of the Tethyan and Atlantic oceans. During the Tertiary, intracontinental deformation gave rise to the High Atlas fold-and-thrust belt and to regional uplift. Finally, Zn-Pb sulphides hosted in carbonates experienced oxidation under an arid climate to form karst-related Zn-Pb non-sulphide ores. These promising results pave the way for an efficient method to constrain the internal fabrics and age of Zn supergene deposits.

  5. Osmium isotope constraints on ore metal recycling in subduction zones

    PubMed

    McInnes; McBride; Evans; Lambert; Andrew

    1999-10-15

    Veined peridotite xenoliths from the mantle beneath the giant Ladolam gold deposit on Lihir Island, Papua New Guinea, are 2 to 800 times more enriched in copper, gold, platinum, and palladium than surrounding depleted arc mantle. Gold ores have osmium isotope compositions similar to those of the underlying subduction-modified mantle peridotite source region, indicating that the primary origin of the metals was the mantle. Because the mantle is relatively depleted in gold, copper, and palladium, tectonic processes that enhance the advective transport and concentration of these fluid soluble metals may be a prerequisite for generating porphyry-epithermal copper-gold deposits.

  6. Ore-forming adakitic porphyry produced by fractional crystallization of oxidized basaltic magmas in a subcrustal chamber (Jiamate, East Junggar, NW China)

    NASA Astrophysics Data System (ADS)

    Hong, Tao; Xu, Xing-Wang; Gao, Jun; Peters, Stephen G.; Zhang, Di; Jielili, Reyaniguli; Xiang, Peng; Li, Hao; Wu, Chu; You, Jun; Liu, Jie; Ke, Qiang

    2018-01-01

    Adakitic intrusions are supposed to have a close genetic and spatial relationship to porphyry Cu deposits. However, the genesis of adakitic intrusions is still under dispute. Here, we describe newly discovered intrusive complex rocks, which are composed of ore-bearing, layered magnetite-bearing gabbroic and adakitic rocks in Jiamate, East Junggar, NW China. These Jiamate Complex intrusions have diagnostic petrologic, geochronologic and geochemical signatures that indicate they were all generated from the same oxidized precursor magma source. Additionally, these layered rocks underwent the same fractional crystallization process as the ore-bearing adakitic rocks in the adjacent Kalaxiangar Porphyry Cu Belt (KPCB) in an oceanic island arc (OIA) setting. The rocks studied for this paper include layered magnetite-bearing gabbroic intrusive rocks that contain: (1) gradual contact changes between lithological units of mafic and intermediate rocks, (2) geochemical signatures that are the same as those found in oceanic island arc (OIA) rocks, (3) typical adakitic geochemistry, and (4) similar characteristics and apparent fractional crystallization relationships of ultra-basic to basic rocks to those in the nearby Beitashan Formation and to ore-bearing adakitic rocks in the KPCB. They also display similar zircon U-Pb and zircon Hf model ages. The Jiamate Complex intrusions contain intergrowths of magnetite and layered gabbro, and the intermediate-acidic intrusions of the Complex display typical adakitic affinities. Moreover, in conjunction with previously published geochronological and geochemistry data of the mafic rocks in the Beitashan Formation and in the KPCB area, additional data generated for the Jiamate Complex intrusions rocks indicate that they were formed from fractional crystallization processes. The Jiamate Complex intrusions most likely were derived from a metasomatized mantle wedge that was underplated at the root of the Saur oceanic island arc (Saur OIA

  7. Ore-forming adakitic porphyry produced by fractional crystallization of oxidized basaltic magmas in a subcrustal chamber (Jiamate, East Junggar, NW China)

    USGS Publications Warehouse

    Hong, Tao; Xu, Xing-Wang; Gao, Jun; Peters, Stephen; Zhang, Di; Jielili, Reyaniguli; Xiang, Peng; Li, Hao; Wu, Chu; You, Jun; Liu, Jie; Ke, Qiang

    2018-01-01

    Adakitic intrusions are supposed to have a close genetic and spatial relationship to porphyry Cu deposits. However, the genesis of adakitic intrusions is still under dispute. Here, we describe newly discovered intrusive complex rocks, which are composed of ore-bearing, layered magnetite-bearing gabbroic and adakitic rocks in Jiamate, East Junggar, NW China. These Jiamate Complex intrusions have diagnostic petrologic, geochronologic and geochemical signatures that indicate they were all generated from the same oxidized precursor magma source. Additionally, these layered rocks underwent the same fractional crystallization process as the ore-bearing adakitic rocks in the adjacent Kalaxiangar Porphyry Cu Belt (KPCB) in an oceanic island arc (OIA) setting. The rocks studied for this paper include layered magnetite-bearing gabbroic intrusive rocks that contain: (1) gradual contact changes between lithological units of mafic and intermediate rocks, (2) geochemical signatures that are the same as those found in oceanic island arc (OIA) rocks, (3) typical adakitic geochemistry, and (4) similar characteristics and apparent fractional crystallization relationships of ultra-basic to basic rocks to those in the nearby Beitashan Formation and to ore-bearing adakitic rocks in the KPCB. They also display similar zircon U-Pb and zircon Hf model ages.The Jiamate Complex intrusions contain intergrowths of magnetite and layered gabbro, and the intermediate-acidic intrusions of the Complex display typical adakitic affinities. Moreover, in conjunction with previously published geochronological and geochemistry data of the mafic rocks in the Beitashan Formation and in the KPCB area, additional data generated for the Jiamate Complex intrusions rocks indicate that they were formed from fractional crystallization processes. The Jiamate Complex intrusions most likely were derived from a metasomatized mantle wedge that was underplated at the root of the Saur oceanic island arc (Saur OIA). The

  8. 3&4D Geomodeling Applied to Mineral Resources Exploration - A New Tool for Targeting Deposits.

    NASA Astrophysics Data System (ADS)

    Royer, Jean-Jacques; Mejia, Pablo; Caumon, Guillaume; Collon-Drouaillet, Pauline

    2013-04-01

    3 & 4D geomodeling, a computer method for reconstituting the past deformation history of geological formations, has been used in oil and gas exploration for more than a decade for reconstituting fluid migration. It begins nowadays to be applied for exploring with new eyes old mature mining fields and new prospects. We describe shortly the 3&4D geomodeling basic notions, concepts, and methodology when applied to mineral resources assessment and modeling ore deposits, pointing out the advantages, recommendations and limitations, together with new challenges they rise. Several 3D GeoModels of mining explorations selected across Europe will be presented as illustrative case studies which have been achieved during the EU FP7 ProMine research project. It includes: (i) the Cu-Au porphyry deposits in the Hellenic Belt (Greece); (ii) the VMS in the Iberian Pyrite Belt including the Neves Corvo deposit (Portugal) and (iii) the sediment-hosted polymetallic Cu-Ag (Au, PGE) Kupferschiefer ore deposit in the Foresudetic Belt (Poland). In each case full 3D models using surfaces and regular grid (Sgrid) were built from all dataset available from exploration and exploitation including geological primary maps, 2D seismic cross-sections, and boreholes. The level of knowledge may differ from one site to another however those 3D resulting models were used to pilot additional field and exploration works. In the case of the Kupferschiefer, a sequential restoration-decompaction (4D geomodeling) from the Upper Permian to Cenozoic was conducted in the Lubin- Sieroszowice district of Poland. The results help in better understanding the various superimposed mineralization events which occurred through time in this copper deposit. A hydro-fracturing index was then calculated from the estimated overpressures during a Late Cretaceous-Early Paleocene up-lifting, and seems to correlate with the copper content distribution in the ore-series. These results are in agreement with an Early Paleocene

  9. Mineralogical, IR-spectral and geochemical monitoring of hydrothermal alteration in a deformed and metamorphosed Jurassic VMS deposit at Arroyo Rojo, Tierra del Fuego, Argentina

    NASA Astrophysics Data System (ADS)

    Biel, C.; Subías, I.; Acevedo, R. D.; Yusta, I.; Velasco, F.

    2012-04-01

    The Arroyo Rojo Zn-Pb-Cu volcanogenic massive sulfide deposit is the main deposit of the Fin del Mundo District in the Fuegian Andes, Argentina. This deposit is hosted by a Middle Jurassic volcanic and volcanoclastic sequence forming the Lemaire Formation. The latter consists, from the base up, of the following: rhyolitic and dacitic porphyritic rocks, ignimbrite, tuff, and flow. It is underlain by a pre-Jurassic basement and overlain by the hyaloclastic andesites of the Yahgán Formation. The Arroyo Rojo consists of stacked lenticular lenses that are associated with disseminated mineralization in both the footwall and the hanging wall. The internal structure of the ore lenses is marked by the occurrence of massive, semi-massive and banded facies, along with stringer and brecciated zones and minor ore disseminations. The mineral assemblage comprises mainly pyrite and sphalerite, with minor amounts of galena and chalcopyrite and rare pyrrhotite, arsenopyrite, tetrahedrite and bournonite. The ores and the volcanic host rocks have metamorphosed to greenschist facies and were overprinted by a penetrative tectonic foliation, which led to the development of mylonitic, and cataclastic textures, recrystallization and remobilization. Primary depositional characteristics and regional and hydrothermal alteration patterns were preserved despite deformation and metamorphism. Therefore, primary banding was preserved between facies boundaries. In addition, some remnants of magmatic origin are recognizable in preserved phenocrysts and volcaniclastic phenoclasts. Most of the volcanic and volcaniclastic rocks of the host sequence show a rhyolitic to rhyo-dacitic composition. Regional seafloor alteration, characterized by the presence of clinozoisite, Fe-chlorite and titanite, along with quartz and albite, is partially obliterated by hydrothermal alteration. The hydrothermal alteration is stratabound with the following assemblages, which developed from the base to top: (1) Quartz

  10. Iron mineralization at the Songhu deposit, Chinese Western Tianshan: a type locality with regional metallogenic implications

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Long; Wang, Yi-Tian; Dong, Lian-Hui; Qin, Ke-Zhang; Evans, Noreen J.; Zhang, Bing; Ren, Yi

    2018-01-01

    Hosted by volcaniclastics of the Carboniferous Dahalajunshan Formation, the Songhu iron deposit is located in the central segment of the Awulale metallogenic belt, Chinese Western Tianshan. Mineralization and alteration are structurally controlled by orogen-parallel NWW-striking faults. Integrating with mineralogical and stable isotopic analyses based on paragenetic relationships, two types of iron mineralization have been identified. The deuteric mineralization (Type I) represented by brecciated, banded, and disseminated-vein ores juxtaposed with potassic-calcic alteration in the inner zone, which was formed from a magmatic fluid generated during the late stages of regional volcanism. In contrast, the volcanic-hydrothermal mineralization (Type II) is characterized by hydrothermal features occurring in massive and agglomerated ores with abundant sulfides, and was generated from the magmatic fluid with seawater contamination. Two volcaniclastic samples from the hanging and footwall of the main orebody yield zircon U-Pb ages of 327.8 ± 3.1 and 332.0 ± 2.0 Ma, respectively, which indicate Middle Carboniferous volcanism. Timing for iron mineralization can be broadly placed in the same epoch. By reviewing geological, mineralogical, and geochemical features of the primary iron deposits in the Awulale metallogenic belt, we propose that the two types of iron mineralization in the Songhu iron deposit are representative regionally. A summary of available geochronological data reveals Middle-Late Carboniferous polycyclic ore-related volcanism, and nearly contemporaneous iron mineralization along the belt. Furthermore, petro-geochemistry of volcanic-volcaniclastic host rocks indicates that partial melting of a metasomatized mantle wedge under a continental arc setting could have triggered the continuous volcanic activities and associated metallogenesis.

  11. Nonlinear metallogeny and the depths of the earth

    NASA Astrophysics Data System (ADS)

    Shcheglov, A. D.; Govorov, I. N.

    This book is concerned with the basic relations regarding a new approach in the field of knowledge of metallogenesis, taking into account the complex character of the mutual dependence between ore deposits, the structure of the earth's crust, and depth relations. The principles of nonlinear metallogeny are examined, giving attention to the development of the metallogenic science during the past few years, the formation of the concept 'nonlinear metallogeny', the main aspects of nonlinear metallogeny, the origin of the ore deposits and the characteristics of ore formations in the mantle, the parallel manifestation of ore-forming processes in the crust, sedimentary-hydrothermal ore formations and their place in nonlinear metallogeny, and various types of rock and ore formations. The structure, composition, and metalliferous characteristics found at various depth zones of the tectonosphere are discussed along with the geochemical and metallogenic heterogeneity in the mantle. General questions of nonlinear metallogeny are also investigated.

  12. MetClass: A software for the visualization and exploitation of Dill's (2010) "chessboard" classification of mineral deposits

    NASA Astrophysics Data System (ADS)

    Kaabeche, Hamza; Chabou, Moulley Charaf; Bendaoud, Abderrahmane; Bodinier, Jean-Louis; Lobry, Olivier; Retif, Fabien

    2016-06-01

    Rising economic value of a large number of metals as a result of their importance for new technologies and industrial development has renewed worldwide interest for mineral exploration and detailed studies of ore deposits. The Dill's (2010) "chessboard" classification of mineral deposits is the most recent attempt to provide an exhaustive overview of all mineral deposits known to date. However, the voluminous Dills review paper is accessible only in print or as PDF file. In this article, we present MetClass, software that provides advanced solutions to perform efficient research and statistics using Dill's classification and the related database. MetClass allows to assemble all results relevant to a given ore deposit on a user-friendly interface. This software is therefore a valuable tool for mineral exploration and research on ore deposits, as well as an educational solution for students in metallogeny.

  13. Development of Ceramic Coating on Metal Substrate using Industrial Waste and Ore Minerals

    NASA Astrophysics Data System (ADS)

    Bhuyan, S. K.; Thiyagarajan, T. K.; Mishra, S. C.

    2017-02-01

    The technological advancement in modern era has a boon for enlightening human life; but also is a bane to produce a huge amount of (industrial) wastes, which is of great concern for utilization and not to create environmental threats viz. polution etc. In the present piece of research work, attempts have been made to utilize fly ash (wastes of thermal power plants) and along with alumina bearing ore i.e. bauxite, for developing plasma spray ceramic coatings on metals. Fly ash and with 10 and 20% bauxite addition is used to deposit plasma spray coatings on a metal substrate. The surface morphology of the coatings deposited at different power levels of plasma spraying investigated through SEM and EDS analysis. The coating thickness is measured. The porosity levels of the coatings are evaluated. The coating hardness isalso measured. This piece of research work will be beneficial for future development and use of industrial waste and ore minerals for high-valued applications.

  14. DEPOSITIONAL RELATIONS OF UMPQUA AND TYEE FORMATIONS (EOCENE), SOUTHWESTERN OREGON.

    USGS Publications Warehouse

    Molenaar, C.M.

    1985-01-01

    The Umpqua Formation (as herein restricted) consists of as much as 10,000 ft of mudstone, sandstone, and conglomerate of nonmarine to deep marine origin. A basaltic basement that underlies the sedimentary rocks in most of the area and was formerly included in the Umpqua is herein considered a separate unit and assigned to the Siletz River Volcanics. A proposal to subdivide the Umpqua into three unconformity-bounded formations in the area west of Roseburg, Oregon, is not recognized in this report because of questionable correlations and limited extent of some units. The Tyee Formation, which conformably overlies the Umpqua, is a predominantly sandstone unit about 6,000 ft thick, deposited in environments ranging from shallow marine and nonmarine deltaic on the south, to slope and deep marine basinal to the north. Deposition across the Umpqua-Tyee boundary contact represents a change in tectonic setting. Refs.

  15. Gondolellid conodonts and depositional setting of the Phosphoria Formation

    USGS Publications Warehouse

    Wardlaw, Bruce R.

    2015-01-01

    The Phosphoria Formation and related rocks were deposited over an 8.9 m.y. interval beginning approximately 274.0Ma and ending approximately 265.1Ma. The Meade Peak Phosphatic Shale Member was deposited in southeastern Idaho and adjacent Wyoming over 5.4 m.y. from approximately 273.2 to 268.6 Ma. The Retort Phosphatic Shale Member was deposited in southwestern Montana and west-central Wyoming over 1.3 m.y. from approximately 267.4 to 266.1Ma. The base of the Roadian Stage of the Middle Permian occurs within the lower phosphate zone of the Meade Peak. The base of the Wordian Stage occurs within the upper phosphate zone of the Meade Peak. The presence of a cool-water brachiopod fauna, cool-water conodont faunas, and the absence of fusulinids throughout the Phosphoria basin indicate the presence of pervasive cool, upwelling waters. Acritarchs are intimately associated with phosphorites and phosphatic shales and may have been the primary organic producer to help drive phosphate production. The gondolellid conodont fauna of the Phosphoria Formation links a geographic cline of Jinogondolella nankingensis from the Delaware basin, West Texas, to the Sverdrup basin, Canadian Arctic, and shows distinct differentiation in species distribution, as do other conodont groups, within the Phosphoria basin. Ten species and two subspecies of gondolellid conodonts are recognized from the Phosphoria Formation and related rocks that belong to Mesogondolella and Jinogondolella.

  16. Enrichment Wastes' Processing of Manganiferous Ores with the Use of Mechanochemical Methods

    ERIC Educational Resources Information Center

    Kubekova, Sholpan N.; Kapralova, Viktoria I.; Ibraimova, Gulnur T.; Batyrbayeva, Aigul A.

    2016-01-01

    The aim of the research is the study of the chemical and phase composition of enrichment wastes of manganiferous ore in Ushkatyn-III deposit and the synthesis of new materials by mechanochemical activation and subsequent heat treatment of the mechanical activation products. The use of XFA, infrared spectroscopy and electron probe microanalysis…

  17. Organic matter in hydrothermal metal ores and hydrothermal fluids

    USGS Publications Warehouse

    Orem, W.H.; Spiker, E. C.; Kotra, R.K.

    1990-01-01

    Massive polymetallic sulfides are currently being deposited around active submarine hydrothermal vents associated with spreading centers. Chemoautolithotrophic bacteria are responsible for the high production of organic matter also associated with modern submarine hydrothermal activity. Thus, there is a significant potential for organic matter/metal interactions in these systems. We have studied modern and ancient hydrothermal metal ores and modern hydrothermal fluids in order to establish the amounts and origin of the organic matter associated with the metal ores. Twenty-six samples from modern and ancient hydrothermal systems were surveyed for their total organic C contents. Organic C values ranged from 0.01% to nearly 4.0% in these samples. Metal ores from modern and ancient sediment-covered hydrothermal systems had higher organic C values than those from modern and ancient hydrothermal systems lacking appreciable sedimentary cover. One massive pyrite sample from the Galapagos spreading center (3% organic C) had stable isotope values of -27.4% (??13C) and 2.1% (??15N), similar to those in benthic siphonophors from active vents and distinct from seep sea sedimentary organic matter. This result coupled with other analyses (e.g. 13C NMR, pyrolysis/GC, SEM) of this and other samples suggests that much of the organic matter may originate from chemoautolithotrophic bacteria at the vents. However, the organic matter in hydrothermal metal ores from sediment covered vents probably arises from complex sedimentary organic matter by hydrothermal pyrolysis. The dissolved organic C concentrations of hydrothermal fluids from one site (Juan de Fuca Ridge) were found to be the same as that of background seawater. This result may indicate that dissolved organic C is effectively scavenged from hydrothermal fluids by biological activity or by co-precipitation with metal ores. ?? 1990.

  18. An evolving magmatic-hydrothermal system in the formation of the Mesozoic Meishan magnetite-apatite deposit in the Ningwu volcanic basin, eastern China

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Hao; Jiang, Man-Rong; Zhang, Xiao-Jun; Xia, Yan; Algeo, Thomas J.; Li, Huan

    2018-06-01

    The Meishan iron deposit contains 338 Mt of iron-ore reserves at 39% Fe and represents the largest magnetite-apatite deposit in the Ningwu Basin of eastern China. Controversy has long existed about whether this deposit had a hydrothermal or iron-oxide melt origin. Iron mineralization is genetically related to plutons that are composed of gabbro-diorite, which were emplaced at 130 ± 1 Ma. These rocks have SiO2 contents of 51.72-54.60 wt%, Na2O contents of 3.47-4.04 wt%, K2O contents of 2.02-2.69 wt%, and K2O/Na2O ratios of 0.51-0.73. These rocks are enriched in LILEs and LREEs and depleted in Nb, Ta, and Ti, which indicates that the magma originated through partial melting of an enriched lithospheric mantle source in a subduction environment. A pattern of decreasing initial Sr isotopic ratios and increasing εNd(t) values with time in Early Cretaceous magmatic rocks of the Ningwu Basin may indicate incorporation of increasing proportions of asthenospheric mantle material into the source magma, which is consistent with the processes of lithospheric thinning and asthenospheric upwelling in eastern China related to Mesozoic subduction of the Paleo-Pacific Plate. Two stages of magnetite are found in the gabbro-diorite: (1) early-crystallized magnetite as euhedral-subhedral crystals in larger clinopyroxene crystals, and (2) later-crystallized magnetite and accompanying ilmenite grains in the voids between plagioclase and clinopyroxene crystals. The formation of magnetite before clinopyroxene, combined with the results of Fe-Ti oxide geothermometry and analysis of magnetite V content, indicates that the oxygen fugacity of the source magma was greater than ΔFMQ +2.2 at an early stage (>640 °C) but decreased to ΔFMQ -2.66 as abundant magnetite crystallized at a later stage (∼489 °C). The early crystallization of magnetite at a high oxygen fugacity does not support a Fenner evolution trend for the primitive magma and diminishes the likelihood of liquid immiscibility

  19. Fault geometry and fluid-rock reaction: Combined controls on mineralization in the Xinli gold deposit, Jiaodong Peninsula, China

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Zhao, Rui; Wang, Qingfei; Liu, Xuefei; Carranza, Emmanuel John M.

    2018-06-01

    The structures and fluid-rock reaction in the Xinli gold deposit, Jiaodong Peninsula, were investigated to further understand their combined controls on the development of permeability associated with ore-forming fluid migration. Orebodies in this deposit are hosted by the moderately SE-to S-dipping Sanshandao-Cangshang fault (SCF). Variations in both dip direction and dip angle along the SCF plane produced fault bends, which controlled the fluid accumulation and ore-shoot formation. Gold mineralizations occurred in early gold-quartz-pyrite and late gold-quartz-polymetallic sulphide stages following pervasive sericitization and silicification alterations. Theoretical calculation indicates that sericitization caused 8-57% volume decrease resulting in the development/enlargement of voids, further increase of grain-scale permeability, and resultant precipitation of the early gold-quartz-pyrite pods, which destroyed permeability. The rock softening produced by alterations promoted activities of SCF secondary faults and formation of new fractures, which rebuilt the permeability and controlled the late gold-quartz-polymetallic sulfide veins. Quantitative studies on permeability distributions show that the southwestern and northeastern bend areas with similar alteration and mineralization have persistent and anti-persistent permeability networks, respectively. These were likely caused by different processes of rebuilding permeability due to different stress states resulting from changes in fault geometry.

  20. The role of impurity ions in the formation of phase composition of Norilsk ore types

    NASA Astrophysics Data System (ADS)

    Mashukov, Anatoly; Mashukova, Alla

    2013-04-01

    Using the methods of X-ray and Mössbauer spectroscopy, scanning electron microscopy, there were studied the samples of Norilsk ore types in order to identify compounds containing Cu and Ni. Depending on elemental composition there were singled out two sample series. Maximum concentration in percentage of selected elements for this series is presented below. 1: Ni (0), Cu (0,42), S (11,2), O (20,2), H (0.02), Fe(46,8), Ca (5,85), Mg (1,75), K (0,47), Na (0). 2: Ni (4,93), Cu (0), S (14,9), O (27,1), H (0,11), Fe (28,1), Ca (14,9), Mg (0), K (0), Na (1,61). The research conducted by using the method of scanning electron microscopy and the X-ray microanalysis showed that iron and sulfur are spread uniformly over the scanned area. Sulfur is absent in the inclusions containing Fe and Ni. There are areas, sizes 8 - 120 microns, strongly enriched by Fe. The inclusions of rectangular and rhomboid shapes sizes 8 - 15 microns contain Ni as the content of Fe increases. There were identified the inclusions having a high content of Cu, with a maximum concentration of Ni. The presence of native elements testifies to the reducing mode of ore formation processes. The phases, containing Cu ? Ni, have a complex composition: pentlandite (FeNiS2), chalcopyrite (CuFeS2), bornite (CuFeS4), nickelhexahydrite (NiSO4 [6H2O]), wroewolfeite (Cu4 (OH) 6 (SO4) • 2H2O), pyrrhotine (Fe7S8), pyrite (FeS2). The position of the absorption lines in the magnetically ordered areas indicates the presence of stoichiometric FeS and CuFeS2. Some of the samples of this group have broadened lines, indicating the existence of various positions of the Fe ions in the sublattices. The ingrowths of CuFeS2 are characterized by the degree of the structure defectiveness, by various impurities, which is reflected in the studied parameters. As regards the other sample series, containing FeS and CuFeS2 in pyrrhotine matrix of Fe 1-xSx, the spectra are the superposition of the unsolved doublet, which shows the

  1. The El Teniente porphyry Cu-Mo deposit from a hydrothermal rutile perspective

    NASA Astrophysics Data System (ADS)

    Rabbia, Osvaldo M.; Hernández, Laura B.; French, David H.; King, Robert W.; Ayers, John C.

    2009-11-01

    Mineralogical, textural, and chemical analyses (EPMA and PIXE) of hydrothermal rutile in the El Teniente porphyry Cu-Mo deposit help to better constrain ore formation processes. Rutile formed from igneous Ti-rich phases (sphene, biotite, Ti-magnetite, and ilmenite) by re-equilibration and/or breakdown under hydrothermal conditions at temperatures ranging between 400°C and 700°C. Most rutile nucleate and grow at the original textural position of its Ti-rich igneous parent mineral phase. The distribution of Mo content in rutile indicates that low-temperature (˜400-550°C), Mo-poor rutile (5.4 ± 1.1 ppm) is dominantly in the Mo-rich mafic wallrocks (high-grade ore), while high-temperature (˜550-700°C), Mo-rich rutile (186 ± 20 ppm) is found in the Mo-poor felsic porphyries (low-grade ore). Rutile from late dacite ring dikes is a notable exception to this distribution pattern. The Sb content in rutile from the high-temperature potassic core of the deposit to its low-temperature propylitic fringe remains relatively constant (35 ± 3 ppm). Temperature and Mo content of the hydrothermal fluids in addition to Mo/Ti ratio, modal abundance and stability of Ti-rich parental phases are key factors constraining Mo content and provenance in high-temperature (≥550°C) rutile. The initial Mo content of parent mineral phases is controlled by melt composition and oxygen fugacity as well as timing and efficiency of fluid-melt separation. Enhanced reduction of SO2-rich fluids and sulfide deposition in the Fe-rich mafic wallrocks influences the low-temperature (≤550°C) rutile chemistry. The data are consistent with a model of fluid circulation of hot (>550°C), oxidized (ƒO2 ≥ NNO + 1.3), SO2-rich and Mo-bearing fluids, likely exsolved from deeper crystallizing parts of the porphyry system and fluxed through the upper dacite porphyries and related structures, with metal deposition dominantly in the Fe-rich mafic wallrocks.

  2. Development of a Chemical Process for Production of Cesium Chloride from a Canadian Pollucite Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, H. W.; Vezina, J. A.; Simard, R.

    1963-01-01

    A chemical process was developed for the production of a high-purity cesium chioride from a pollucite (cesium aluminum silicate) ore from the Manitoba deposit of Chemalloy Minerais Ltd. The history of the deposit, and the present and possible future uses of cesium are briefly reviewed. Laboratory and piiot plant investigations on this ore have shown that a cyclic sulphuric acid leach followed by fractional crystallization will produce a rubidiumfree cesium alum, which can be converted to cesium chloride by thermal decomposition and ion exchange. On the basis of these findings it is concluded that the process is applicable to themore » tonnage production of cesium chloride. Reagent consumption was found to be 3.3 sulphuric acid and 0.3 lb hydrochloric acid per pound of cesium extracted. Overall extraction of cesium was 95 to 96%. (auth)« less

  3. Application of neodymium isotope ratio measurements for the origin assessment of uranium ore concentrates.

    PubMed

    Krajkó, Judit; Varga, Zsolt; Yalcintas, Ezgi; Wallenius, Maria; Mayer, Klaus

    2014-11-01

    A novel procedure has been developed for the measurement of (143)Nd/(144)Nd isotope ratio in various uranium-bearing materials, such as uranium ores and ore concentrates (UOC) in order to evaluate the usefulness and applicability of variations of (143)Nd/(144)Nd isotope ratio for provenance assessment in nuclear forensics. Neodymium was separated and pre-concentrated by extraction chromatography and then the isotope ratios were measured by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The method was validated by the measurement of standard reference materials (La Jolla, JB-2 and BCR-2) and the applicability of the procedure was demonstrated by the analysis of uranium samples of world-wide origin. The investigated samples show distinct (143)Nd/(144)Nd ratio depending on the ore type, deposit age and Sm/Nd ratio. Together with other characteristics of the material in question, the Nd isotope ratio is a promising signature for nuclear forensics and suggests being indicative of the source material, the uranium ore. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Control of autoclave scaling during acid pressure leaching of nickeliferous laterite ore

    NASA Astrophysics Data System (ADS)

    Queneau, P. B.; Doane, R. E.; Cooperrider, M. W.; Berggren, M. H.; Rey, P.

    1984-09-01

    An operating problem encountered at the Moa Bay operation in Cuba, where nickeliferous laterite ore is processed by sulfuric acid pressure leaching, is the formation of alunite and hematite deposits on the autoclave walls. The AMAX Extractive Research & Development, Inc., metallurgical laboratory (Golden, Colorado) has made substantial improvements in the Moa Bay process in the area of metal recovery, energy consumption, and feed versatility. One of the advantages of AMAX's process is its ability to treat substantial portions of nickel-and magnesium-rich serpentine while maintaining acid utilization efficiency. Scale formation is minimized by combining staged acid addition with vigorous agitation and 270 °C operation. This paper describes how advantage can be taken of MgSO4· XH2O precipitation both to inhibit alunite scaling and to disperse hematite scale within the MgSO4 · XH2O matrix. Cooling the autoclave from its 270 ·C operating temperature down to 180 ·C takes advantage of the reverse solubility of magnesium sulfate. The magnesium dissolves, liberating entrained hematite, thus providing a means for control of autoclave scale with minimum process disruption.

  5. Manganese oxides and associated minerals as constituents of dispersed mineralization of metasomatic rocks in the Dukat ore field

    NASA Astrophysics Data System (ADS)

    Filimonova, L. G.; Sivtsov, A. V.; Trubkin, N. V.

    2010-08-01

    Lithiophorite and coronadite—varieties of vernadite and todorokite—make up finely dispersed colloform mixtures along with minor grains and nanoparticles of aluminosilicates and ore minerals in metasomatic rocks of the Dukat ore field, which were formed in local areas of fluid and hydrothermal-solution discharge at the upper level of the ore-forming system. Fe-vernadite associates with feroxyhyte, magnetite, apatite, K-feldspar, native silver, and acanthite in greisenized granitoids and with epidote, cerianite, plattnerite, and Fe-chlorite in quartz-garnet-chlorite propylites. Todorokite with high Pb, Tl, and Sn contents associates with epidote, albite, bitumen, and native silver in quartz-epidote-chlorite propylites. Al-vernadite, coronadite, and lithiophorite associate with opal, kaolinite, Fe-chlorite, zincite, uraninite, native silver, and acanthite in argillisites. These data allowed us to estimate the conditions of manganese accumulation in the epithermal ore-forming system and deposition conditions of Mn-rich, finely dispersed mineral mixtures in mineralized zones hosted in metasomatic rocks of the ore field.

  6. Features structure of iron-bearing strata’s of the Bakchar deposit, Western Siberia

    NASA Astrophysics Data System (ADS)

    Asochakova, E. M.

    2017-12-01

    The ore-bearing strata’s of Bakchar deposit have complicated structural-textural heterogeneity and variable mineral composition. This deposit is one of the most promising areas of localization of sedimentary iron ore. The ore-bearing strata’s are composed mainly of sandstones (sometimes with ferruginous pebbles, less often conglomerates), siltstones and clays. The ironstones are classified according to their lithology and geochemistry into three types: goethite-hydrogoethitic oolitic, glauconite-chloritic and transitional (intermediate) type iron ores. The mineral composition includes many different minerals: terrigenous, authigenic and clayey. Ironstones are characterized by elevated concentrations of many rare and valuable metals present in them as trace elements, additionally alloying (Mn, V, Cr, Ti, Zr, Mo, etc.) and harmful impurities (S, As, Cu, Pb, Zn, P). There are prerequisites for the influence of numerous factors, such as prolonged transgression of the sea, swamping of paleo-river deltas, the appearance of a tectonic fracture zone associated with active bottom tectonics and unloading of catagenetic waters, regression and natural ore enrichment due to the re-washing of slightly-iron rocks. These factors are reflected in the structure of the ore-bearing strata in which rhythmic cycles of ore sedimentation with successive changes in them are distinguished by an association of different mineral composition.

  7. 5. Foreground: ore bridges, ore/coke/limestone bins, Detroit River; background: stock ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Foreground: ore bridges, ore/coke/limestone bins, Detroit River; background: stock house on left, stripper building, BOF. Looking south/southwest - Rouge Steel Company, 3001 Miller Road, Dearborn, MI

  8. Geochemistry of the Patricia Zn-Pb-Ag Deposit (paguanta, NE Chile)

    NASA Astrophysics Data System (ADS)

    Chinchilla Benavides, D.; Merinero Palomares, R.; Piña García, R.; Ortega Menor, L.; Lunar Hernández, R.

    2013-12-01

    are consistent with bulk rock analyses of selected and mineralized samples were similar correlations have been obtained. Ag positive correlations indicate that the formation of Ag-bearing minerals is mainly associated with galena, arsenopyrite and sphalerite occurrence. Au positive correlations indicate that this element occurs in close relationship with Ag-bearing minerals, arsenopyrite and sphalerite. The weak correlation between Cu and Ag and Au indicate that the formation of chalcopyrite is not related with the main stages of Ag-Au mineralization. The main conclusion of this study is that geochemical analyses along drill cores that cut mineralization confirm that the occurrence of Ag and Au in the Paguanta deposit is associated with the formation of galena, arsenopyrite and sphalerite. This study also confirm previous conclusions suggesting that the Patricia Pb-Zn-Ag ore deposit probably represents an example of epithermal mineralization of intermediate sulfidation state, with periods of lower sulfidation state during sphalerite deposition.

  9. Geology of the Barite Hill gold-silver deposit in the southern Carolina slate belt

    USGS Publications Warehouse

    Clark, S.H.B.; Gray, K.J.; Back, J.M.

    1999-01-01

    Barite Hill is a stratiform gold-silver deposit associated with base metal sulfides and barite in greenschist facies rocks. The deposit, southernmost of four recently mined gold deposits in the Carolina slate belt, is located in the Lincolnton-McCormick district of Georgia and South Carolina, which includes several known gold-silver and base metal deposits in a Kuroko-type geological setting along with deposits of kyanite and manganese. Approximately 1,835,000 g of gold was produced mainly from oxidized ores in the Main and Rainsford pits from 1990 until their closing in 1994. Ore is hosted by sericitically altered felsic metavolcanic and metasedimentary rocks of the Late Proterozoic Persimmon Fork Formation. The deposit is stratigraphically below an overturned contact between upper and lower pyroclastic units, which overlie the Lincolnton metarhyolite, an intrusive unit. Gold-silver-rich zones in the Main pit are partly coincident with lenses of siliceous barite rock, but not confined to them, and occur more commonly in pyrite-quartz-altered fragmental rock. The Main pit ore is stratigraphically overlain by a zone of base metal and barite enrichment, which is, in turn, overlain by a talc-tremolite alteration zone locally. Siliceous barite zones are absent in the Rainsford pit, and gold-silver minerals are associated with silicified rocks and chert. The Barite Hill deposit is interpreted to be the result of Kuroko-type, volcanogenic, base metal sulfide mineralization, followed by gold-silver mineralization under epithermal conditions with the following stages of evolution: (1) massive sulfides, barite, and fine-grained siliceous exhalites were deposited during Late Proterozoic to Cambrian submarine volcanism, which was related to plate convergence and subduction in a microcontinental or island-arc setting distant from the North American continental plate; (2) Au-Ag-Te and base and precious metal Te-Se-Bi minerals were deposited either during waning stages of

  10. Novel Binders and Methods for Agglomeration of Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski

    2006-09-30

    Heap leaching is one of the methods being used to recover metal from low grade ore deposits. The main problem faced during heap leaching is the migration of fine grained particles through the heap, forming impermeable beds which result in poor solution flow. The poor solution flow leads to less contact between the leach solution and the ore, resulting in low recovery rates. Agglomeration of ore into coarse, porous masses prevents fine particles from migrating and clogging the spaces and channels between the larger ore particles. Currently, there is one facility in the United States which uses agglomeration. This operationmore » agglomerates their ore using leach solution (raffinate), but is still experiencing undesirable metal recovery from the heaps due to agglomerate breakdown. The use of a binder, in addition to the leach solution, during agglomeration would help to produce stronger agglomerates that did not break down during processing. However, there are no known binders that will work satisfactorily in the acidic environment of a heap, at a reasonable cost. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. Increasing copper recovery in heap leaching by the use of binders and agglomeration would result in a significant decrease in the amount of energy consumed. Assuming that 70% of all the leaching heaps would convert to using agglomeration technology, as much as 1.64*10{sup 12} BTU per year would be able to be saved if a 25% increase in copper recovery was experienced, which is equivalent to saving approximately 18% of the energy currently being used in leaching heaps. For every week a leach cycle was decreased, a savings of as much as 1.23*10{sup 11} BTU per week would result. This project has identified several acid-resistant binders and agglomeration procedures. These binders and experimental procedures will be able to be used for use in improving the energy

  11. Recovery of magnetite from low grade banded magnetite quartzite (BMQ) ore

    NASA Astrophysics Data System (ADS)

    Tripathy, Alok; Bagchi, Subhankar; Rao, Danda Srinivas; Nayak, Bijaya Ketana; Rout, Prashanta Kumar; Biswal, Surendra Kumar

    2018-04-01

    There has been a steady increase of iron ore demand in the last few decades. This growing demand could be countered by use of low grade iron ore after beneficiation. Banded iron formations (BIF) are one of the resources of such low grade iron ores. Banded magnetite quartzite (BMQ) is one such BIF and a source of iron phase mineral in the form of magnetite. In the present study a low grade BMQ ore containing around 25.47% Fe was beneficiated for recovery of magnetite. XRD study shows that quartz, magnetite, hematite, and goethite are the major minerals phases present in the low grade BMQ sample. Unit operations such as crushing, scrubbing, grinding, and magnetic separations were used for recovering magnetite. Based on the large scale beneficiation studies the process flowsheet has been developed for enrichment of magnetite. It was found that with the help of developed process flowsheet it is possible to enrich Fe value up to 65.14% in the concentrate with a yield of 24.59%.

  12. A salt diapir-related Mississippi Valley-type deposit: the Bou Jaber Pb-Zn-Ba-F deposit, Tunisia: fluid inclusion and isotope study

    NASA Astrophysics Data System (ADS)

    Bouhlel, Salah; Leach, David L.; Johnson, Craig A.; Marsh, Erin; Salmi-Laouar, Sihem; Banks, David A.

    2016-08-01

    The Bou Jaber Ba-F-Pb-Zn deposit is located at the edge of the Bou Jaber Triassic salt diapir in the Tunisia Salt Diapir Province. The ores are unconformity and fault-controlled and occur as subvertical column-shaped bodies developed in dissolution-collapse breccias and in cavities within the Late Aptian platform carbonate rocks, which are covered unconformably by impermeable shales and marls of the Fahdene Formation (Late Albian-Cenomanian age). The host rock is hydrothermally altered to ankerite proximal to and within the ore bodies. Quartz, as fine-grained bipyramidal crystals, formed during hydrothermal alteration of the host rocks. The ore mineral assemblage is composed of barite, fluorite, sphalerite, and galena in decreasing abundance. The ore zones outline distinct depositional events: sphalerite-galena, barite-ankerite, and fluorite. Fluid inclusions, commonly oil-rich, have distinct fluid salinities and homogenization temperatures for each of these events: sphalerite-galena (17 to 24 wt% NaCl eq., and Th from 112 to 136 °C); ankerite-barite (11 to 17 wt% NaCl eq., and Th from 100 to 130 °C); fluorite (19 to 21 wt% NaCl eq., Th from 140 to 165 °C). The mean temperature of the ore fluids decreased from sphalerite (125 °C) to barite (115 °C) and increased during fluorite deposition (152 °C); then decreased to ˜110 °C during late calcite precipitation. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of fluid inclusions in fluorite are metal rich (hundreds to thousands ppm Pb, Zn, Cu, Fe) but the inclusions in barite are deficient in Pb, Zn, Cu, Fe. Inclusions in fluorite have Cl/Br and Na/Br ratios of several thousand, consistent with dissolution of halite while the inclusions analysed in barite have values lower than seawater which are indicative of a Br-enriched brine derived from evaporation plus a component of halite dissolution. The salinity of the barite-hosted fluid inclusions is less than obtained simply by the

  13. Study of the various factors influencing deposit formation and operation of gasoline engine injection systems

    NASA Astrophysics Data System (ADS)

    Stepien, Z.

    2016-09-01

    Generally, ethanol fuel emits less pollutants than gasoline, it is completely renewable product and has the potential to reduce greenhouse gases emission but, at the same time can present a multitude of technical challenges to engine operation conditions including creation of very adverse engine deposits. These deposits increasing fuel consumption and cause higher exhaust emissions as well as poor performance in drivability. This paper describes results of research and determination the various factors influencing injector deposits build-up of ethanol-gasoline blends operated engine. The relationship between ethanol-gasoline fuel blends composition, their treatment, engine construction as well as its operation conditions and fuel injectors deposit formation has been investigated. Simulation studies of the deposit formation endanger proper functioning of fuel injection system were carried out at dynamometer engine testing. As a result various, important factors influencing the deposit creation process and speed formation were determined. The ability to control of injector deposits by multifunctional detergent-dispersant additives package fit for ethanol-gasoline blends requirements was also investigated.

  14. Deposit formation and heat transfer in hydrocarbon rocket fuels

    NASA Technical Reports Server (NTRS)

    Giovanetti, A. J.; Spadaccini, L. J.; Szetela, E. J.

    1983-01-01

    An experimental research program was undertaken to investigate the thermal stability and heat transfer characteristics of several hydrocarbon fuels under conditions that simulate high-pressure, rocket engine cooling systems. The rates of carbon deposition in heated copper and nickel-plated copper tubes were determined for RP-1, propane, and natural gas using a continuous flow test apparatus which permitted independent variation and evaluation of the effect on deposit formation of wall temperature, fuel pressure, and fuel velocity. In addition, the effects of fuel additives and contaminants, cryogenic fuel temperatures, and extended duration testing with intermittent operation were examined. Parametric tests to map the thermal stability characteristics of RP-1, commercial-grade propane, and natural gas were conducted at pressures of 6.9 to 13.8 MPa, bulk fuel velocities of 30 to 90 m/s, and tube wall temperatures in the range of 230 to 810 K. Also, tests were run in which propane and natural gas fuels were chilled to 230 and 160 K, respectively. Corrosion of the copper tube surface was detected for all fuels tested. Plating the inside of the copper tubes with nickel reduced deposit formation and eliminated tube corrosion in most cases. The lowest rates of carbon deposition were obtained for natural gas, and the highest rates were obtained for propane. For all fuels tested, the forced-convection heat transfer film coefficients were satisfactorily correlated using a Nusselt-Reynolds-Prandtl number equation.

  15. Lithofacies, depositional environments, and regional stratigraphy of the lower Eocene Ghazij Formation, Balochistan, Pakistan

    USGS Publications Warehouse

    Johnson, Edward A.; Warwick, Peter D.; Roberts, Stephen B.; Khan, Intizar H.

    1999-01-01

    The coal-bearing, lower Eocene Ghazij Formation is exposed intermittently over a distance of 750 kilometers along the western margin of the Axial Belt in north-central Pakistan. Underlying the formation are Jurassic to Paleocene carbonates that were deposited on a marine shelf along the pre- and post-rift northern margin of the Indian subcontinent. Overlying the formation are middle Eocene to Miocene marine and nonmarine deposits capped by Pliocene to Pleistocene collision molasse.The lower part of the Ghazij comprises mostly dark gray calcareous mudrock containing foraminifers and rare tabular to lenticular bodies of very fine grained to finegrained calcareous sandstone. We interpret the lower portion of this part of the Ghazij as outer-shelf deposits, and the upper portion as prodelta deposits. The middle part of the formation conformably overlies the lower part. It comprises medium-gray calcareous mudrock containing nonmarine bivalves, fine- to medium-grained calcareous sandstone, and rare intervals of carbonaceous shale and coal. Sandstone bodies in the middle part, in ascending stratigraphic order, are classified as Type I (coarsening-upward grain size, contain the trace fossil Ophiomorpha, and are commonly overlain by carbonaceous shale or coal), Type II (mixed grain size, display wedge-planar cross stratification, and contain fossil oyster shells and Ophiomorpha), and Type III (finingupward grain size, lenticular shape, erosional bases, and display trough cross stratification). These three types of bodies represent shoreface deposits, tidal channels, and fluvial channels, respectively. Mudrock intervals in the lower portion of this part of the formation contain fossil plant debris and represent estuarine deposits, and mudrock intervals in the upper portion contain fossil root traces and represent overbank deposits. We interpret the middle part of the Ghazij as a lower delta plain sequence. Overlying the middle part of the Ghazij, possibly unconformably, is

  16. Numerical Modeling of Multiphase Fluid Flow in Ore-Forming Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Weis, P.; Driesner, T.; Coumou, D.; Heinrich, C. A.

    2007-12-01

    Two coexisting fluid phases - a variably saline liquid and a vapor phase - are ubiquitous in ore-forming and other hydrothermal systems. Understanding the dynamics of phase separation and the distinct physical and chemical evolution of the two fluids probably plays a key role in generating different ore deposit types, e.g. porphyry type, high and low sulfidation Cu-Mo-Au deposits. To this end, processes within hydrothermal systems have been studied with a refined numerical model describing fluid flow in transient porous media (CSP~5.0). The model is formulated on a mass, energy and momentum conserving finite-element-finite-volume (FEFV) scheme and is capable of simulating multiphase flow of NaCl-H20 fluids. Fluid properties are computed from an improved equation of state (SOWAT~2.0). It covers conditions with temperatures of up to 1000 degrees~C, pressures of up to 500 MPa, and fluid salinities of 0~to 100%~NaCl. In particular, the new set-up allows for a more accurate description of fluid phase separation during boiling of hydrothermal fluids into a vapor and a brine phase. The geometric flexibility of the FEFV-meshes allows for investigations of a large variety of geological settings, ranging from ore-forming processes in magmatic hydrothermal system to the dynamics of black smokers at mid-ocean ridges. Simulations demonstrated that hydrothermal convection patterns above cooling plutons are primarily controlled by the system-scale permeability structure. In porphyry systems, high fluid pressures develop in a stock rising from the magma chamber which can lead to rock failure and, eventually, an increase in permeability due to hydrofracturing. Comparisons of the thermal evolution as inferred from modeling studies with data from fluid inclusion studies of the Pb-Zn deposits of Madan, Bulgaria are in a strikingly good agreement. This indicates that cross-comparisons of field observations, analytical data and numerical simulations will become a powerful tool towards a

  17. Decoupling flood and interflood deposits for delta island formation and channel bifurcation

    NASA Astrophysics Data System (ADS)

    Daniller-Varghese, M. S.; Kim, W.

    2016-12-01

    Channel islands' size and organization dictate delta networks' morphology. To understand their complex network organization, a single channel island node within that network should be investigated first as the fundamental building block. When a sediment-laden flow enters slack water, it loses momentum and carrying capacity, depositing its sediment. As sediment accumulates, flow moves around it and a mouth bar island develops. We present an experimental investigation of island formation and channel bifurcation using the Sediment Transport and Earth-surface Processes (STEP) basin. We made mouth bar deposits and flow bifurcations in transport-limited turbulent conditions. Time-lapse images, elevation scans on the deltaic surface, and a low-cost particle imaging velocimetry system allow us to characterize the flow and depositional evolution of our experimental islands. Using two flow discharges (0.355 l/s, 6 l/s) and uniform sediment, our experiments have two characteristic advection lengths and corresponding deposit types. One, associated with interflood bedload transport, and the other with flood-suspended transport: proximal low-angle deposits and distal steep deposits, respectively. By varying the frequency of floods (one every 20s-20 mins) while keeping sediment and water mass constant across experiments, we are able to control the time and spatial organization of these two deposit types and examine the effect on bifurcation length and bifurcation incidence time. As the interflood flow deposit and flood deposit accumulate sediment over time, the interflood deposit encroaches onto the flood deposit. Flow is routed from the interflood deposit to the flood deposit but does not have the momentum to uniformly cover it. The flow becomes unsteady, and bifurcates around an island. After the bifurcation, the island's vertical aggradation rate also increases. The experiments suggest that the interaction between deposits stemming from different particle advection lengths is

  18. Syn-deformational features of Carlin-type Au deposits

    USGS Publications Warehouse

    Peters, S.G.

    2004-01-01

    Syn-deformational ore deposition played an important role in some Carlin-type Au deposits according to field and laboratory evidence, which indicates that flow of Au-bearing fluids was synchronous with regional-scale deformation events. Gold-related deformation events linked to ore genesis were distinct from high-level, brittle deformation that is typical of many epithermal deposits. Carlin-type Au deposits, with brittle-ductile features, most likely formed during tectonic events that were accompanied by significant fluid flow. Interactive deformation-fluid processes involved brittle-ductile folding, faulting, shearing, and gouge development that were focused along illite-clay and dissolution zones caused by hydrothermal alteration. Alteration along these deformation zones resulted in increased porosity and enhancement of fluid flow, which resulted in decarbonated, significant dissolution, collapse, and volume and mass reduction. Carlin-type Au deposits commonly are hosted in Paleozoic and Mesozoic sedimentary rocks (limestone, siltstone, argillite, shale, and quartzite) on the margins of cratons. The sedimentary basins containing the host rocks underwent tectonic events that influenced the development of stratabound, structurally controlled orebodies. Published by Elsevier Ltd.

  19. Simulation of acid mine drainage generation around Küre VMS Deposits, Northern Turkey

    NASA Astrophysics Data System (ADS)

    Demirel, Cansu; Kurt, Mehmet Ali; Çelik Balci, Nurgül

    2015-04-01

    This study investigated comparative leaching characteristics of acidophilic bacterial strains under shifting environmental conditions at proposed two stages as formation stage or post acidic mine drainage (AMD) generation. At the first stage, initial reactions associated with AMD generation was simulated in shaking flasks containing massive pyritic chalcopyrite ore by using a pure strain Acidithiobacillus ferrooxidans and a mixed culture of Acidithiobacillus sp. mostly dominated by A. ferrooxidans and A. thiooxidans at 26oC. At the second stage, long term bioleaching experiments were carried out with the same strains at 26oC and 40oC to investigate the leaching characteristics of pyritic chalcopyrite ore under elevated heavy metal and temperature conditions. During the experiments, physicochemical characteristics (e.i. Eh, pH, EC) metal (Fe, Co, Cu, Zn) and sulfate concentration of the experimental solution were monitored during 180 days. Significant acid generation and sulfate release were determined during bioleaching of the ore by mixed acidophilic cultures containing both iron and sulfur oxidizers. In the early stage of the experiments, heavy metal release from the ore was caused by generation of acid due to accelerated bacterial oxidation of the ore. Generally high concentrations of Co and Cu were released into the solution from the experiments conducted by pure cultures of Acidithiobacillus ferrooxidans whereas high Zn and Fe was released into the solution from the mixed culture experiments. In the later stage of AMD generation and post AMD, chemical oxidation is accelerated causing excessive amounts of contamination, even exceeding the amounts resulted from bacterial oxidation by mixed cultures. Acidithibacillus ferrooxidans was found to be more effective in leaching Cu, Fe and Co at higher temperatures in contrary to mixed acidophiles that are more prone to operate at optimal moderate conditions. Moreover, decreasing Fe values are noted in bioleaching

  20. Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids

    NASA Astrophysics Data System (ADS)

    Migdisov, Art A.; Williams-Jones, A. E.

    2014-12-01

    New technologies, particularly those designed to address environmental concerns, have created a great demand for the rare earth elements (REE), and focused considerable attention on the processes by which they are concentrated to economically exploitable levels in the Earth's crust. There is widespread agreement that hydrothermal fluids played an important role in the formation of the world's largest economic REE deposit, i.e. Bayan Obo, China. Until recently, many researchers have assumed that hydrothermal transport of the REE in fluorine-bearing ore-forming systems occurs mainly due to the formation of REE-fluoride complexes. Consequently, hydrothermal models for REE concentration have commonly involved depositional mechanisms based on saturation of the fluid with REE minerals due to destabilization of REE-fluoride complexes. Here, we demonstrate that these complexes are insignificant in REE transport, and that the above models are therefore flawed. The strong association of H+ and F- as HF° and low solubility of REE-F solids greatly limit transport of the REE as fluoride complexes. However, this limitation does not apply to REE-chloride complexes. Because of this, the high concentration of Cl- in the ore fluids, and the relatively high stability of REE-chloride complexes, the latter can transport appreciable concentrations of REE at low pH. The limitation also does not apply to sulphate complexes and in some fluids, the concentration of sulphate may be sufficient to transport significant concentrations of REE as sulphate complexes, particularly at weakly acidic pH. This article proposes new models for hydrothermal REE deposition based on the transport of the REE as chloride and sulphate complexes.

  1. Salt deposits in Los Medanos area, Eddy and Lea counties, New Mexico

    USGS Publications Warehouse

    Jones, C.L.; with sections on Ground water hydrology, Cooley; and Surficial Geology, Bachman

    1973-01-01

    The salt deposits of Los Medanos area, in Eddy and Lea Counties, southeastern New Mexico, are being considered for possible use as a receptacle for radioactive wastes in a pilot-plant repository. The salt deposits of the area. are in three evaporite formations: the Castile, Salado, and Rustler Formations, in ascending order. The three formations are dominantly anhydrite and rock salt, but some gypsum, potassium ores, carbonate rock, and fine-grained clastic rocks are present. They have combined thicknesses of slightly more than 4,000 feet, of which roughly one-half belongs to the Salado. Both the Castile and the Rustler are-richer in anhydrite-and poorer in rock salt-than the Salado, and they provide this salt-rich formation with considerable Protection from any fluids which might be present in underlying or overlying rocks. The Salado Formation contains many thick seams of rock salt at moderate depths below the surface. The rock salt has a substantial cover of well-consolidated rocks, and it is very little deformed structurally. Certain geological details essential for Waste-storage purposes are unknown or poorly known, and additional study involving drilling is required to identify seams of rock salt suitable for storage purposes and to establish critical details of their chemistry, stratigraphy, and structure.

  2. Liquid phase products and solid deposit formation from thermally stressed model jet fuels

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Bittker, D. A.

    1984-01-01

    The relationship between solid deposit formation and liquid degradation product concentration was studied for the high temperature (400 C) stressing of three hydrocarbon model fuels. A Jet Fuel Thermal Oxidation Tester was used to simulate actual engine fuel system conditions. The effects of fuel type, dissolved oxygen concentration, and hot surface contact time (reaction time) were studied. Effects of reaction time and removal of dissolved oxygen on deposit formation were found to be different for n-dodecane and for 2-ethylnaphthalene. When ten percent tetralin is added to n-dodecane to give a simpler model of an actual jet fuel, the tetralin inhibits both the deposit formation and the degradation of n-dodecane. For 2-ethylnaphthalene primary product analyses indicate a possible self-inhibition at long reaction times of the secondary reactions which form the deposit precursors. The mechanism of the primary breakdown of these fuels is suggested and the primary products which participate in these precursor-forming reactions are identified. Some implications of the results to the thermal degradation of real jet fuels are given.

  3. Rapid thermal rejuvenation of high-crystallinity magma linked to porphyry copper deposit formation; evidence from the Koloula Porphyry Prospect, Solomon Islands

    NASA Astrophysics Data System (ADS)

    Tapster, S.; Condon, D. J.; Naden, J.; Noble, S. R.; Petterson, M. G.; Roberts, N. M. W.; Saunders, A. D.; Smith, D. J.

    2016-05-01

    high-temperature, less-evolved melt. In contrast, syn-mineralisation melts were most likely remobilised by the percolation of hot volatiles exsolved from contemporaneous less-evolved intrusions cooling beneath the crystalline silicic magma. The evidence for the rapid thermal rejuvenation and long term storage of highly crystalline silicic magmas is consistent with previous studies that indicate two components of exsolved volatiles contribute to ore forming fluids. We conclude that the liberation of crystal-rich porphyry copper deposit forming magmas, and the addition of the chemical components required for ore formation, are intrinsically linked to the volatiles released during the recharge of less-evolved melt into a highly crystalline silicic magma.

  4. A review of biostratigraphic studies in the olistostrome deposits of Karangsambung Formation

    NASA Astrophysics Data System (ADS)

    Hendrizan, Marfasran

    2018-02-01

    Planktonic foraminifera is widely used for marine sediment biostratigraphy. Foraminiferal biostratigraphy of Karangsambung Formation is relatively rare to be investigated by previous researchers. A review of foraminiferal biostratigraphy is expected to be early work to perform a research about the ages of Tertiary rock formations in Karangsambung. The research area is formed by olistostrome process; a sedimentary slide deposit characterized by bodies of harder rock mixed and dispersed in a matrix. Biostratigraphic studies based on foraminifera and nannoplankton in Karangsambung Formation are still qualitative analysis using fossils biomarker. However, the age of this formation is still debatable based on foraminifera and nannofossil analysis. Two explanations of debatable ages in Karangsambung Formation that is possibly developed in Karangsambung area: firstly, Karangsambung Formation is characterized by normal sedimentation in some places and other regions such Kali Welaran and Clebok, Village as a product of olistostrome, and secondly, Karangsambung Formation is olistostrome deposit. However, micropaleontology sampling and analysis in matrix clays from olistostrome were ignored causing biostratigraphical results in those matrix clays occurred in normal sedimentation process and achieving the age of middle Eocene to Oligocene. We suppose previous authors picked samples in matrix of Karangsambung Formation from several river sections, which will make misinterpretation of the age of Karangsambung Formation. The age of middle to late Eocene probably is the dates of the older sediment that was reworked by sliding and sampling process and accumulated in Karangsambung Formation. The date of Karangsambung Fm is in Oligocene period based on a finding of several calcareous nannofossils. Detailed micropaleontological analysis of olistostrome deposits in Karangsambung Formation should be reevaluated for new finding of the accurate dating. Re-evaluation should start from

  5. Deposition conditions and distribution features of native gold individuals in the veins of the Tokur mesothermal deposit, Russia

    NASA Astrophysics Data System (ADS)

    Ostapenko, N. S.; Neroda, O. N.

    2016-05-01

    The paper discusses factors in the deposition and concentration of native gold and the spatial distribution of its individuals within the sufide-poor gold-quartz veins at the mesoabyssal Tokur deposit. The major factors in deposition of gold were sealing of the hydrothermal system, a sudden drop in fluid pressure, and repeated immiscibility in the fluid. Native gold was deposited in relation to initial acts of prolonged and discrete opening and preopening of cavities in three mineral assemblages of the productive association II. Most native gold individuals with a visible size of 0.1-1.5 mm were together with the early generation of quartz 2 on cavity walls adjacent to altered rocks. This is caused by the high content of Au complexes in initial hydrothermal solutions favoring rapid oversaturation during cavity formation. Gold fills interstices between grains of quartz 2 throughout the deposit and mineral assemblages. The vertical-flow distribution of gold has been established in economic veins; the upper and middle levels are enriched in gold, and samples with the greatest gold grade of 100-500 g/t or higher are concentrated there. This is caused both by the predominance of mineral association II at these levels and probable natural flotation of gold grains contained in the gold-gas associate for immiscibility of the hydrothermal fluid at the second stage of the ore-forming process.

  6. Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Chemical controls on alteration and mineralization

    USGS Publications Warehouse

    Henley, R.W.; Berger, B.R.

    2011-01-01

    Large bulk-tonnage high-sulfidation gold deposits, such as Yanacocha, Peru, are the surface expression of structurally-controlled lode gold deposits, such as El Indio, Chile. Both formed in active andesite-dacite volcanic terranes. Fluid inclusion, stable isotope and geologic data show that lode deposits formed within 1500. m of the paleo-surface as a consequence of the expansion of low-salinity, low-density magmatic vapor with very limited, if any, groundwater mixing. They are characterized by an initial 'Sulfate' Stage of advanced argillic wallrock alteration ?? alunite commonly with intense silicification followed by a 'Sulfide' Stage - a succession of discrete sulfide-sulfosalt veins that may be ore grade in gold and silver. Fluid inclusions in quartz formed during wallrock alteration have homogenization temperatures between 100 and over 500 ??C and preserve a record of a vapor-rich environment. Recent data for El Indio and similar deposits show that at the commencement of the Sulfide Stage, 'condensation' of Cu-As-S sulfosalt melts with trace concentrations of Sb, Te, Bi, Ag and Au occurred at > 600 ??C following pyrite deposition. Euhedral quartz crystals were simultaneously deposited from the vapor phase during crystallization of the vapor-saturated melt occurs to Fe-tennantite with progressive non-equilibrium fractionation of heavy metals between melt-vapor and solid. Vugs containing a range of sulfides, sulfosalts and gold record the changing composition of the vapor. Published fluid inclusion and mineralogical data are reviewed in the context of geological relationships to establish boundary conditions through which to trace the expansion of magmatic vapor from source to surface and consequent alteration and mineralization. Initially heat loss from the vapor is high resulting in the formation of acid condensate permeating through the wallrock. This Sulfate Stage alteration effectively isolates the expansion of magmatic vapor in subsurface fracture arrays

  7. Oxygen, hydrogen, sulfur, and carbon isotopes in the Pea Ridge magnetite-apatite deposit, southeast Missouri, and sulfur isotope comparisons to other iron deposits in the region

    USGS Publications Warehouse

    Johnson, Craig A.; Day, Warren C.; Rye, Robert O.

    2016-01-01

    Oxygen, hydrogen, sulfur, and carbon isotopes have been analyzed in the Pea Ridge magnetite-apatite deposit, the largest historic producer among the known iron deposits in the southeast Missouri portion of the 1.5 to 1.3 Ga eastern granite-rhyolite province. The data were collected to investigate the sources of ore fluids, conditions of ore formation, and provenance of sulfur, and to improve the general understanding of the copper, gold, and rare earth element potential of iron deposits regionally. The δ18O values of Pea Ridge magnetite are 1.9 to 4.0‰, consistent with a model in which some magnetite crystallized from a melt and other magnetite—perhaps the majority—precipitated from an aqueous fluid of magmatic origin. The δ18O values of quartz, apatite, actinolite, K-feldspar, sulfates, and calcite are significantly higher, enough so as to indicate growth or equilibration under cooler conditions than magnetite and/or in the presence of a fluid that was not entirely magmatic. A variety of observations, including stable isotope observations, implicate a second fluid that may ultimately have been meteoric in origin and may have been modified by isotopic exchange with rocks or by evaporation during storage in lakes.Sulfur isotope analyses of sulfides from Pea Ridge and seven other mineral deposits in the region reveal two distinct populations that average 3 and 13‰. Two sulfur sources are implied. One was probably igneous melts or rocks belonging to the mafic- to intermediate-composition volcanic suite that is present at or near most of the iron deposits; the other was either melts or volcanic rocks that had degassed very extensively, or else volcanic lakes that had trapped rising magmatic gases. The higher δ34S values correspond to deposits or prospects where copper is noteworthy—the Central Dome portion of the Boss deposit, the Bourbon deposit, and the Vilander prospective area. The correspondence suggests that (1) sulfur either limited the deposition

  8. The Spar Lake strata-Bound Cu-Ag deposit formed across a mixing zone between trapped natural gas and metals-bearing brine

    USGS Publications Warehouse

    Hayes, Timothy S.; Landis, Gary P.; Whelan, Joseph F.; Rye, Robert O.; Moscati, Richard J.

    2012-01-01

    Ore formation at the Spar Lake red bed-associated strata-bound Cu deposit took place across a mixing and reaction zone between a hot oxidized metals-transporting brine and a reservoir of “sour” (H2S-bearing) natural gas trapped in the host sandstones. Fluid inclusion volatile analyses have very high CH4 concentrations (≥1 mol % in most samples), and a sample from the fringe of the deposit has between 18 and 36 mol % CH4. The ratio of CH4/CO2 in fluid inclusions appears to vary regularly across the deposit, with the lowest CH4/CO2 ratios from high-grade chalcocite-bearing ore, and the highest from the chalcopyrite-bearing fringe. The helium R/Ra isotope ratios (0.23–0.98) and concentrations define a mixture between crustal and atmospheric helium. The volatiles in fluid inclusions (CH4, CO2, H2S, SO2, H2, H2O, and other organic gases) and values of fO2 and temperature calculated from the volatiles data all show gradations across the deposit that are completely consistent with such a mixing and reaction zone. Other volatiles from the fluid inclusions (HCl, HF, 3He, Msup>4He, N2, Ar) characterize the brine and give evidence for only shallow crustal fluids with no magmatic influences. The brine entered the gas reservoir from below and along the axis of the deposit and migrated out along bedding to the southwest, northeast, and northwest. Metals-transporting brines may have been fed into the host sandstones from the East Fault, but that remains uncertain. Abundant ore-stage Fe and Mn calcite cements from the reduced fringe have δ13C values as low as −18.4‰, and many values less than −10‰, which indicate that significant carbonate was generated by oxidation of organic carbon from the natural gas. The zone of calcite cements with very low δ13C values approximately envelopes chalcocite-bearing ore. Sulfur isotope data of Cu, Pb, and Fe sulfides and barite indicate derivation of roughly half of the orebody sulfide directly from sour gas H2S. That sour gas H

  9. Continuous Steelmaking Directly from Ore

    NASA Astrophysics Data System (ADS)

    Warner, Noel A.

    2014-12-01

    In-line continuous processing of high-grade hematite ore (crushed ore or fines) with a pure hydrogen reductant is assessed. An appraisal is made of the rate controlling mechanisms involved in the reduction of a pure layer of molten wustite being transported by floating on a molten carrier iron carbon-free medium at temperatures just in excess of the iron melting point. Published research clearly indicates that under these conditions the kinetics are principally controlled by molecular gaseous diffusion. Thus, the rate is essentially not influenced by total gas pressure above 1 atmosphere. Accordingly, on safety grounds it is recommended that high pressure should not be used for hydrogen steelmaking in the future, but the operation should be conducted close to atmospheric pressure with low pressure steam encapsulation of the plant items involved. Using hydrogen as the reductant means that sub-surface nucleation of CO bubbles cannot disrupt continuous processing. The operation is then no different to processing a normal liquid phase. The off-gases from the reduction zone of a melt circulation loop are super-clean and only contaminated with iron vapor. Accordingly, the best available technology becomes available for energy conservation without risk of non-fusible solids deposition. The net result is that the energy requirements are expected to be superior to other potential processes.

  10. How metallic is the binding state of indium hosted by excess-metal chalcogenides in ore deposits?

    NASA Astrophysics Data System (ADS)

    Ondina Figueiredo, Maria; Pena Silva, Teresa; Oliveira, Daniel; Rosa, Diogo

    2010-05-01

    Discovered in 1863, indium is nowadays a strategic scarce metal used both in classical technologic fields (like low melting-temperature alloys and solders) and in innovative nano-technologies to produce "high-tech devices" by means of new materials, namely liquid crystal displays (LCDs), organic light emitting diodes (OLEDs) and the recently introduced transparent flexible thin-films manufactured with ionic amorphous oxide semiconductors (IAOS). Indium is a typical chalcophile element, seldom forming specific minerals and occurring mainly dispersed within polymetallic sulphides, particularly with excess metal ions [1]. The average content of indium in the Earth's crust is very low but a further increase in its demand is still expected in the next years, thus focusing a special interest in uncovering new exploitation sites through promising polymetallic sulphide ores - e.g., the Iberian Pyrite Belt (IPB) [2] - and in improving recycling technologies. Indium recovery stands mostly on zinc extraction from sphalerite, the natural cubic sulphide which is the prototype of so-called "tetrahedral sulphides" where metal ions fill half of the available tetrahedral sites within the cubic closest packing of sulphur anions where the double of unfilled interstices are available for further in-filling. It is worth remarking that such packing array is particularly suitable for accommodating polymetallic cations by filling closely located interstitial sites [3] as happens in excess-metal tetrahedral sulphides - e.g. bornite, ideally Cu5FeS4, recognized as an In-carrying mineral [4]. Studying the tendency towards In-In interactions able of leading to the formation of polycations would efficiently contribute to understand indium crystal chemistry and the metal binding state in natural chalcogenides. Accordingly, an X-ray absorption near-edge spectroscopy (XANES) study at In L3-edge was undertaken using the instrumental set-up of ID21 beamline at the ESRF (European Synchrotron

  11. Specific composition of native silver from the Rogovik Au-Ag deposit, Northeastern Russia

    NASA Astrophysics Data System (ADS)

    Kravtsova, R. G.; Tauson, V. L.; Palyanova, G. A.; Makshakov, A. S.; Pavlova, L. A.

    2017-09-01

    The first data on native silver from the Rogovik Au-Ag deposit in northeastern Russia are presented. The deposit is situated in central part of the Okhotsk-Chukchi Volcanic Belt (OCVB) in the territory of the Omsukchan Trough, unique in its silver resources. Native silver in the studied ore makes up finely dispersed inclusions no larger than 50 μm in size, which are hosted in quartz; fills microfractures and interstices in association with küstelite, electrum, acanthite, silver sulfosalts and selenides, argyrodite, and pyrite. It has been shown that the chemical composition of native silver, along with its typomorphic features, is a stable indication of the various stages of deposit formation and types of mineralization: gold-silver (Au-Ag), silver-base metal (Ag-Pb), and gold-silver-base metal (Au-Ag-Pb). The specificity of native silver is expressed in the amount of trace elements and their concentrations. In Au-Ag ore, the following trace elements have been established in native silver (wt %): up to 2.72 S, up to 1.86 Au, up to 1.70 Hg, up to 1.75 Sb, and up to 1.01 Se. Native silver in Ag-Pb ore is characterized by the absence of Au, high Hg concentrations (up to 12.62 wt %), and an increase in Sb, Se, and S contents; the appearance of Te, Cu, Zn, and Fe is notable. All previously established trace elements—Hg, Au, Sb, Se, Te, Cu, Zn, Fe, and S—are contained in native silver of Au-Ag-Pb ore. In addition, Pb appears, and silver and gold amalgams are widespread, as well as up to 24.61 wt % Hg and 11.02 wt % Au. Comparison of trace element concentrations in native silver at the Rogovik deposit with the literature data, based on their solubility in solid silver, shows that the content of chalcogenides (S, Se, Te) exceeds saturated concentrations. Possible mechanisms by which elevated concentrations of these elements are achieved in native silver are discussed. It is suggested that the appearance of silver amalgams, which is unusual for Au-Ag mineralization

  12. Hydraulic experimental investigation on spatial distribution and formation process of tsunami deposit on a slope

    NASA Astrophysics Data System (ADS)

    Harada, K.; Takahashi, T.; Yamamoto, A.; Sakuraba, M.; Nojima, K.

    2017-12-01

    An important aim of the study of tsunami deposits is to estimate the characteristics of past tsunamis from the tsunami deposits found locally. Based on the tsunami characteristics estimated from tsunami deposit, it is possible to examine tsunami risk assessment in coastal areas. It is considered that tsunami deposits are formed based on the dynamic correlation between tsunami's hydraulic values, sediment particle size, topography, etc. However, it is currently not enough to evaluate the characteristics of tsunamis from tsunami deposits. This is considered to be one of the reasons that the understanding of the formation process of tsunami deposits is not sufficiently understood. In this study, we analyze the measurement results of hydraulic experiment (Yamamoto et al., 2016) and focus on the formation process and distribution of tsunami deposits. Hydraulic experiment was conducted with two-dimensional water channel with a slope. Tsunami was inputted as a bore wave flow. The moving floor section was installed as a seabed slope connecting to shoreline and grain size distribution was set some cases. The water level was measured using ultrasonic displacement gauges, and the flow velocity was measured using propeller current meters and an electromagnetic current meter. The water level and flow velocity was measured at some points. The distribution of tsunami deposit was measured from shoreline to run-up limit on the slope. Yamamoto et al. (2016) reported the measurement results on the distribution of tsunami deposit with wave height and sand grain size. Therefore, in this study, hydraulic analysis of tsunami sediment formation process was examined based on the measurement data. Time series fluctuation of hydraulic parameters such as Froude number, Shields number, Rouse number etc. was calculated to understand on the formation process of tsunami deposit. In the front part of the tsunami, the flow velocity take strong flow from shoreline to around the middle of slope. From

  13. Geologic setting and genesis of the Mule Canyon low-sulfidation epithermal gold-silver deposit, north-central Nevada

    USGS Publications Warehouse

    John, D.A.; Hofstra, A.H.; Fleck, R.J.; Brummer, J.E.; Saderholm, E.C.

    2003-01-01

    The Mule Canyon mine exploited shallow, low-sulfidation, epithermal Au-Ag deposits that lie near the west side of the Northern Nevada rift in northern Lander County, Nevada. Mule Canyon consists of six small deposits that contained premining reserves of about 8.2 Mt at an average grade of 3.81 g Au/tonne. It is an uncommon mafic end member of low-sulfidation Au-Ag deposits associated with tholeiitic bimodal basalt-rhyolite magmatism. The ore is hosted by a basalt-andesite eruptive center that formed between about 16.4 to 15.8 Ma during early mafic eruptions related to regionally extensive bimodal magmatism. Hydrothermal alteration and Au-Ag ores formed at about 15.6 Ma and were tightly controlled by north-northwest- to north-striking high-angle fault and breccia zones developed during rifting, emplacement of mafic dikes, and eruption of mafic lava flows. Hydrothermal alteration assemblages are zoned outward from fluid conduits in the sequence silica-adularia, adularia-smectite, smectite (intermediate argillic), and smectite-carbonate (propylitic). All alteration types contain abundant pyrite and/or marcasite ?? arsenopyrite. Field relations indicate that silica-adularia alteration is superimposed on argillic and propylitic alteration. Little or no steam-heated acid-sulfate alteration is present, probably the result of a near-surface water table during hydrothermal alteration and ore deposition. Two distinct ore types are present at Mule Canyon: early replacement and later open-space filling. Replacement ores consist of disseminated and vesicle-filling pyrite, marcasite, and arsenopyrite in argillically altered or weakly silicified rocks. Ore minerals consist of Au-bearing arsenopyrite and arsenian pyrite overgrowths on earlier-formed pyrite and marcasite. Open-space filling ores include narrow stockwork quartz-adularia veins, banded and crustiform opaline and chalcedonic silica-adularia veins, silica-adularia cemented breccias, and sparse carbonate-pyrite and

  14. Stratigraphy and depositional environments of Fox Hills Formation in Williston basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, D.J.

    The Fox Hills Formation (Maestrichtian), representing part of a regressive wedge deposited during the withdrawal of the sea from the Western Interior at the close of the Cretaceous, consists of marginal marine strata transitional between the offshore deposits of the underlying Pierre Shale and the terrestrial deltaic and coastal deposits of the overlying Hell Creek Formation. An investigation of outcrops of the Fox Hills Formation along the western and southern flanks of the Williston basin and study of over 300 oil and gas well logs from the central part of the basin indicate that the formation can be divided bothmore » stratigraphically and areally. Stratigraphically, the Fox Hills can be divided into lower and upper sequences; the lower includes the Trail City and Timber Lake Members, and the upper sequence includes the Colgate Member in the west and the Iron Lightning and Linton Members in the east. Areally, the formation can be divided into a northeastern and western part, where the strata are 30-45 m thick and are dominated by the lower sequence, and into a southeastern area where both the lower and upper sequences are well developed in a section 80-130 m thick. Typically, the lower Fox Hills consists of upward-coarsening shoreface or delta-front sequences containing hummocky bedding and a limited suite of trace fossils, most notably Ophiomorpha. In the southeast, however, these strata are dominated by bar complexes, oriented northeast-southwest, composed of cross-bedded medium to very fine-grained sand with abundant trace and body fossils. The upper Fox Hills represents a variety of shoreface, deltaic, and channel environments. The strata of the Fox Hills Formation exhibit facies similar to those reported for Upper Cretaceous gas reservoirs in the northern Great Plains.« less

  15. Water quality data at selected sites in the Mississippi Valley-type Zn-Pb ore district of upper Silesia, Poland, 1995-97

    USGS Publications Warehouse

    Wirt, Laurie; Motyka, Jacek; Leach, David; Sass-Gustkiewicz, Maria; Szuwarzynski, Marek; Adamczyk, Zbigniew; Briggs, Paul; Meiers, Al

    2003-01-01

    The water chemistry of aquifers and streams in the Upper Silesia Ore District, Poland are affected by their proximity to zinc, lead, and silver ores and by ongoing mining activities that date back to the 11th century. This report presents hydrologic and water-quality data collected as part of a collaborative research effort of the U.S. Geological Survey and the University of Mining and Metallurgy in Cracow, Poland to study Mississippi-Valley-Type lead-zinc deposits. MVT deposits in the Upper Silesia Ore District (Fig. 1) were selected for detailed study because the Polish mining industry allowed access to collect samples from underground mines and mine-land property. Water-quality samples were collected from streams, springs, wells, underground mine seeps and drains; and mine-tailings ponds. Data include field measurements of specific conductance, pH, water temperature, and dissolved oxygen and laboratory analyses of major and minor inorganic constituents and selected trace-element constituents.

  16. Genetic Pd, Pt, Au, Ag, and Rh mineralogy in Noril'sk sulfide ores

    NASA Astrophysics Data System (ADS)

    Spiridonov, E. M.; Kulagov, E. A.; Serova, A. A.; Kulikova, I. M.; Korotaeva, N. N.; Sereda, E. V.; Tushentsova, I. N.; Belyakov, S. N.; Zhukov, N. N.

    2015-09-01

    The undeformed ore-bearing intrusions of the Noril'sk ore field (NOF) cut through volcanic rocks of the Late Permian-Early Triassic trap association folded in brachysynclines. Due to the nonuniform load on the roof of intrusive bodies, most sulfide melts were squeezed, up to the tops of ore-bearing intrusions; readily fusible Ni-Fe-Cu sulfide melts were almost completely squeezed. In our opinion, not only one but two stages of mineralization developed at the Noril'sk deposits: (i) syntrap magmatic and (ii) epigenetic post-trap metamorphic-hydrothermal. All platinum-group minerals (PGM) and minerals of gold are metasomatic in the Noril'sk ores. They replaced sulfide solid solutions and exsolution structures. All types of PGM and Au minerals occur in the ores, varying in composition from pyrrhotite to chalcopyrite, talnakhite, mooihoekite, and rich in galena; they are localized in the inner and outer contact zones and differ only in the quantitative proportions of ore minerals. The aureoles of PGM and Au-Ag minerals are wider than the contours of sulfide bodies and coincide with halos of fluid impact on orebodies and adjacent host rocks. The pneumatolytic PGM and Au-Ag minerals are correlated in abundance with the dimensions of sulfide bodies. Their amounts are maximal in veins of late fusible ore composed of eutectic PbS ss and iss intergrowths, as well as at their contacts. The Pd and Pt contents in eutectic sulfide ores of NOF are the world's highest. In the process of noble-metal mineral formation, the fluids supply Pd, Pt, Au, As, Sb, Sn, Bi, and a part of Te, whereas Fe, Ni, Cu, Pb, Ag, Rh, a part of Te and Pd are leached from the replaced sulfide minerals. The pneumatolytic PGM of the early stage comprises Pd and Pt intermetallic compounds enriched in Au along with Pd-Pt-Fe-Ni-Cu-Sn-Pb(As) and (Pd,Pt,Au)(Sn,Sb,Bi,Te,As) solid solutions. Pneumatolytic PGM and Au minerals of the middle stage are products of solid-phase transformation and recrystallization of

  17. Depositional sequences and facies in the Torok Formation, National Petroleum Reserve, Alaska (NPRA)

    USGS Publications Warehouse

    Houseknecht, David W.; Schenk, Christopher J.

    2002-01-01

    Brookian turbidites (Cretaceous through Tertiary) have become oil exploration objectives on the NorthSlope of Alaska during the past decade, and it is likely this focus will extend into the National Petroleum Reserve-Alaska (NPRA). A regional grid of 2-D seismic data, sparse well control, and field work in the Brooks Range foothills provide constraints for an ongoing effort to establish a sequence stratigraphic framework for Brookian turbidites in the Torok Formation across NPRA. The Torok Formation and overlying Nanushuk Formation (both mostly Albian) display the overall seismic geometry of bottomset-clinoform-topset strata indicating northeastward migration of a shelf margin. Within bottomset and clinoform strata of the Torok, depositional sequences have been identified that represent four distinct phases of shelf-margin sedimentation. (1) Regression, representing low relative sea level, is characterized by the development of an erosional surface on the shelf and upper slope, and the deposition of turbidite channel deposits on the middle to lower slope and submarine fan deposits at the base of slope. These deposits constitute a lowstand systems tract (LST). (2) Transgression, representing rising relative sea level, is characterized by the deposition of a mudstone drape on the basin floor, slope, and outer shelf. This drape comprises relatively condensed facies that constitute a transgressive systems tract (TST). (3) Aggradation, representing high relative sea level, is characterized by the deposition of relatively thick strata on the outer shelf and moderately thick mudstones on the slope. (4) Progradation, also representing high relative sea level, is characterized by the deposition of relatively thin strata on the outer shelf and very thick mudstones on the slope. Together, deposits of the aggradation and progradation phases constitute a highstand systems tract (HST). Large scale geometries of Torok strata vary across the Colville basin. In southern NPRA, high

  18. Titanium minerals of placer deposits as a source for new materials

    NASA Astrophysics Data System (ADS)

    Kotova, Olga; Ponaryadov, Alexey

    2015-04-01

    Heavy mineral deposits are a source of the economic important element titanium, which is contained in ilmenite and leucoxene. The mineral composition of placer titanium ore and localization pattern of ore minerals determine their processing and enriching technologies. New data on the mineralogy of titanium ores from modern coastal-marine placer in Stradbroke Island, Eastern Australia, and Pizhma paleoplacer in Middle Timan, Russia, and materials on their basis are presented. The samples were studied by the following methods: optical-mineralogical (stereomicroscope MBS-10, polarizing microscope POLAM L-311), semiquantitative x-ray phase analysis (x-ray difractometer X'Pert PRO MPD). Besides microprobe (VEGA 3 TESCAN) and x-ray fluorescent analysis (XRF-1800 Shimadzu) were used. By the mineralogical composition ores of the both deposits are complex: enriched by valuable minerals. Apart from main ore concentrates it is possible to obtain accompanying nonmetallic products. This will increase the efficiency of deposit exploitation. Ilmenite dominates in ore sands of Stradbroke Island, and leucoxene dominates in the ores of the Pizhma titanium deposit. Australian ilmenite and its altered varieties are mainly characterized by a very high MnO content (from 5.24 to 11.08 %). The irregular distribution of iron oxides, titanium and manganese in the altered ilmenite was shown in the paper. E.g., in the areas of substitution of ilmenite by pseudorutile the concentrations of the given elements are greatly various due to various ratios of basic components in each grain. Their ratios are equal in the area of rutile evolution. Moreover, the high content of gold, diamonds and also rare earth elements (REE) and rare metals (their forms are not determined) were studied. We found native copper on the surface of minerals composing titanium-bearing sandstones of the Pizhma placer. According to the technological features of rocks (density and magnetic) studied placers are close. The

  19. Depositional architecture and sequence stratigraphy of the Upper Jurassic Hanifa Formation, central Saudi Arabia

    NASA Astrophysics Data System (ADS)

    El-Sorogy, Abdelbaset; Al-Kahtany, Khaled; Almadani, Sattam; Tawfik, Mohamed

    2018-03-01

    To document the depositional architecture and sequence stratigraphy of the Upper Jurassic Hanifa Formation in central Saudi Arabia, three composite sections were examined, measured and thin section analysed at Al-Abakkayn, Sadous and Maashabah mountains. Fourteen microfacies types were identified, from wackestones to boundstones and which permits the recognition of five lithofacies associations in a carbonate platform. Lithofacies associations range from low energy, sponges, foraminifers and bioclastic burrowed offshoal deposits to moderate lithoclstic, peloidal and bioclastic foreshoal deposits in the lower part of the Hanifa while the upper part is dominated by corals, ooidal and peloidal high energy shoal deposits to moderate to low energy peloidal, stromatoporoids and other bioclastics back shoal deposits. The studied Hanifa Formation exhibits an obvious cyclicity, distinguishing from vertical variations in lithofacies types. These microfacies types are arranged in two third order sequences, the first sequence is equivalent to the lower part of the Hanifa Formation (Hawtah member) while the second one is equivalent to the upper part (Ulayyah member). Within these two sequences, there are three to six fourth-order high frequency sequences respectively in the studied sections.

  20. Formation of Archean batholith-hosted gold veins at the Lac Herbin deposit, Val-d'Or district, Canada: Mineralogical and fluid inclusion constraints

    NASA Astrophysics Data System (ADS)

    Rezeau, Hervé; Moritz, Robert; Beaudoin, Georges

    2017-03-01

    The Lac Herbin deposit consists of a network of mineralized, parallel steep-reverse faults within the synvolcanic Bourlamaque granodiorite batholith at Val-d'Or in the Archean Abitibi greenstone belt. There are two related quartz-tourmaline-carbonate fault-fill vein sets in the faults, which consist of subvertical fault-fill veins associated with subhorizontal veins. The paragenetic sequence is characterized by a main vein filling ore stage including quartz, tourmaline, carbonate, and pyrite-hosted gold, chalcopyrite, tellurides, pyrrhotite, and cubanite inclusions. Most of the gold is located in fractures in deformed pyrite and quartz in equilibrium with chalcopyrite and carbonates, with local pyrrhotite, sphalerite, galena, cobaltite, pyrite, or tellurides. Petrography and microthermometry on quartz from the main vein filling ore stage reveal the presence of three unrelated fluid inclusion types: (1) gold-bearing aqueous-carbonic inclusions arranged in three-dimensional intragranular clusters in quartz crystals responsible for the main vein filling stage, (2) barren high-temperature, aqueous, moderately saline inclusions observed in healed fractures, postdating the aqueous-carbonic inclusions, and considered as a remobilizing agent of earlier precipitated gold in late fractures, and (3) barren low-temperature, aqueous, high saline inclusions in healed fractures, similar to the crustal brines reported throughout the Canadian Shield and considered to be unrelated to the gold mineralization. At the Lac Herbin deposit, the aqueous-carbonic inclusions are interpreted to have formed first and to represent the gold-bearing fluid, which were generated contemporaneous with regional greenschist facies metamorphism. In contrast, the high-temperature aqueous fluid dissolved gold from the main vein filling ore stage transported and reprecipitated it in late fractures during a subsequent local thermal event.

  1. Chromite deposits of the north-central Zambales Range, Luzon, Philippines

    USGS Publications Warehouse

    Rossman, D.L.

    1970-01-01

    Peridotite and gabbro form an intrusive complex which is exposed over an area about 35 km wide and 150 km long in the center of the Zambales Range of western Luzon. The Zambales Complex is remarkable for its total known resources, mined and still remaining, of about 15 million metric tons of chromite ore. Twenty percent of Free World production was obtained from this area between 1950 and the end of 1964; in 1960 production reached a high of 606,103 metric tons of refractory-grade ore, mostly from the Coto mine near Masinloc, and 128,426 metric tons of metallurgical ore from the Acoje mine. The United States imports 80 to 90 percent of its refractory-grade chromite from the Philippines, and its basic refractory technology has been designed upon the chemical and physical characteristics of Coto high-alumina chromite ore. Continuation of this pattern will depend upon discovery of additional ore reserves to replace those depleted by mining. The Zambales Ultramafic Complex is of the alpine type in which lenticular or podiform deposits of chromite lie in peridotite or dunite, mostly near Contacts with gabbroic rocks. Layered structures, foliation, and lineation commonly are well developed and transect boundaries between major rock units, including chromite deposits, at any angle. Accordingly, these structures cannot be used as guides in exploration and mining as they are used in stratiform complexes such as the Bushveld, where chromite layers extend for many miles. Probably 90 percent of the known deposits in the Zambales Complex are located in two belts in its northern part. One zone containing high-aluminua refractory-grade deposits extends northeast from the Coto mine and Chromite Reservation No. I along a peridotite contact with olivine gabbro, and another of high-chromium metallurgical grade chromite extends south through the Zambales and Acoje properties, and swings westward around the south side of Mount Lanai along a peridotite contact with norite. The textures

  2. Constraints of C-O-S isotope compositions and the origin of the Ünlüpınar volcanic-hosted epithermal Pb-Zn ± Au deposit, Gümüşhane, NE Turkey

    NASA Astrophysics Data System (ADS)

    Akaryali, Enver; Akbulut, Kübra

    2016-03-01

    The Eastern Pontide Orogenic Belt (EPOB) constitutes one of the best examples of the metallogenic provinces in on the Alpine-Himalayan belt. This study focuses on the genesis of the Ünlüpınar Pb-Zn ± Au deposit in the southern part of the Eastern Pontide Orogenic Belt. The main lithological units in the study area are the Early Carboniferous Kurtoğlu Metamorphic Complex the Late Carboniferous Köse Granitoid and the Early-Middle Jurassic Şenköy Formation. The studied deposit is hosted by the Şenköy Formation, which consists predominantly of basaltic-andesitic rocks and associated pyroclastic rocks that are calc-alkaline in composition. Silicic, sulfidic, argillic, chloritic, hematitic, carbonate and limonite are the most obvious alteration types observed in the deposit site. Ore microscopy studies exhibit that the mineral paragenesis in deposits includes pyrite, chalcopyrite, sphalerite, galena, gold, quartz and calcite. Electron microprobe analyses conducted on sphalerite indicate that the Zn/Cd ratio varies between 84 and 204, and these ratios point at a hydrothermal deposit related to granitic magmas. Fluid inclusion studies in calcite and quartz show that the homogenization temperature of the studied deposit ranges between 90-160 °C and 120-330 °C respectively. The values of sulfur isotope analysis of pyrite, sphalerite and galena minerals vary between 1.6‰ and 5.7‰, and the results of oxygen and carbon isotope analysis range between 8.4‰ and 18‰ and -5‰ and -3.6‰, respectively. The average formation temperature of the ore was calculated as 264 °C with a sulfur isotope geothermometer. All of the data indicate that the Ünlüpınar deposit is an epithermal vein-type mineralization that was formed depending on the granitic magmatism.

  3. Geochronology and petrogenesis of the Qibaoshan Cu-polymetallic deposit, northeastern Hunan Province: Implications for the metal source and metallogenic evolution of the intracontinental Qinhang Cu-polymetallic belt, South China

    NASA Astrophysics Data System (ADS)

    Yuan, Shunda; Mao, Jingwen; Zhao, Panlao; Yuan, Yabin

    2018-03-01

    The recently recognized Qinhang metallogenic belt (QHMB) is an economically important intracontinental Mesozoic porphyry-skarn Cu-polymetallic metallogenic belt in South China. However, the origin of the ore-bearing magma and the major factors controlling the different metal assemblages in the QHMB are still unclear. The Qibaoshan deposit is a large Cu-Au-Pb-Zn-Ag-Fe deposit located at the juncture between the northern and central parts of the QHMB. In this study, new zircon U-Pb ages, Hf-O isotopic data, molybdenite Re-Os ages, and whole-rock geochemical data are combined to constrain the timing of the mineralization and the origin and petrogenesis of the ore-bearing porphyry in the Qibaoshan deposit. The ages obtained from both zircon U-Pb and molybdenite Re-Os dating fall in the Late Jurassic (between 152.7 and 148.3 Ma), revealing that this deposit is significantly younger than previously estimated (227-184 Ma). The Qibaoshan ore-bearing quartz porphyry shows variable negative zircon εHf(t) values (-14.8 to -5.5), high δ18O values (8.4 to 10.8‰), and high Mg# values (69.1 to 73.0), indicating that it formed via the partial melting of ancient crust triggered by the injection of mantle-derived magma. Zircon Hf-O isotopic modeling of the mixing of two extreme endmembers indicates that the magmatic source comprised 70-80% reworked ancient crustal components and 20-30% depleted mantle components. Based on comparisons with other ore-bearing porphyries in the QHMB, a magmatic source dominated by crust-derived material and relatively low oxygen fugacities (ΔFMQ -1.8 to ΔFMQ +0.8) was responsible for the high (Pb + Zn)/Cu ratio in the Qibaoshan deposit, and the Pb, Zn and Ag were mainly derived from the reworked ancient crust. Although four analyses of inherited Neoproterozoic zircons ( 800 Ma) have variable positive εHf(t) values (0.72 to 11.21), indicating that Neoproterozoic juvenile crust was involved in the formation of the Qibaoshan ore-bearing quartz

  4. Copper-silver deposits of the Revett Formation, Montana and Idaho: origin and resource potential

    USGS Publications Warehouse

    Frost, Thomas P.; Zientek, Michael L.

    2006-01-01

    The Revett Formation of northern Idaho and western Montana contains major stratabound copper-silver deposits near Troy, Rock Creek, and Rock Lake, Montana. To help the U.S. Forest Service (USFS) meet its goal of integrating geoscience information into the land-planning process, U.S. Geological Survey (USGS) scientists recently completed a compilation of regional stratigraphy and mineralogy of the Revett Formation and a mineral resource assessment of Revett-type copper-silver deposits. The USGS assessment indicates that a large area of USFS-administered land in northwestern Montana and northern Idaho may contain significant undiscovered Revett-type copper-silver deposits.

  5. Formation of recent Pb-Ag-Au mineralization by potential sub-surface microbial activity

    NASA Astrophysics Data System (ADS)

    Tornos, Fernando; Velasco, Francisco; Menor-Salván, César; Delgado, Antonio; Slack, John F.; Escobar, Juan Manuel

    2014-08-01

    Las Cruces is a base-metal deposit in the Iberian Pyrite Belt, one of the world’s best-known ore provinces. Here we report the occurrence of major Pb-Ag-Au mineralization resulting from recent sub-surface replacement of supergene oxyhydroxides by carbonate and sulphide minerals. This is probably the largest documented occurrence of recent microbial activity producing an ore assemblage previously unknown in supergene mineralizing environments. The presence of microbial features in the sulphides suggests that these may be the first-described natural bacteriomorphs of galena. The low δ13C values of the carbonate minerals indicate formation by deep anaerobic microbial processes. Sulphur isotope values of sulphides are interpreted here as reflecting microbial reduction in a system impoverished in sulphate. We suggest that biogenic activity has produced around 3.1 × 109 moles of reduced sulphur and 1010 moles of CO2, promoting the formation of ca. 1.19 Mt of carbonates, 114,000 t of galena, 638 t of silver sulphides and 6.5 t of gold.

  6. Sedimentology of the Ripogenus Formation, Maine: A Silurian carbonate-siliciclastic depositional system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comrie, T.A.; Caldwell, D.W.

    The Ripogenus Formation of north-central Maine is shallow marine unit of probable Wenlockian age characterized by interbeds of sandstone and limestone less than 50 cm. in thickness and separated by sharp, often erosional, contacts. Reefal material with abundant stromatoporoids is exposed in the eastern part of the formation and is overlain locally by Silurian andesite and Siluro-Devonian redbeds. Sediment size and bed thickness decrease to the west, as does the relative amount of carbonate sediment. Common fossils also include stromatolites, brachiopods, gastropods, crinoids, and corals. Large fossils, notably the stromatoporoids and stromatolites, are often found in growth position, but smallermore » fossils are usually found to have been abraided and transported. The formation was deposited in an area shown by paleogeographic reconstructions to have been located just south of the equator (probably near one or more islands) in the lapetus Ocean prior to its closure. Although sedimentary structures are often not well preserved due to its closure. Although sedimentary structures are often not well preserved due to soft-sedimentary deformation and slight metamorphism, there is some evidence of storm-controlled deposition. Deposition of this unit and other Silurian carbonates found in Maine and the Maritime Provinces are unlike those found throughout N. America in that they are the product of localized deposition in an unstable tectonic environment.« less

  7. High-rate behaviour of iron ore pellet

    NASA Astrophysics Data System (ADS)

    Gustafsson, Gustaf; Häggblad, Hans-Åke; Jonsén, Pär; Nishida, Masahiro

    2015-09-01

    Iron ore pellets are sintered, centimetre-sized spheres of ore with high iron content. Together with carbonized coal, iron ore pellets are used in the production of steel. In the transportation from the pelletizing plants to the customers, the iron ore pellets are exposed to different loading situations, resulting in degradation of strength and in some cases fragmentation. For future reliable numerical simulations of the handling and transportation of iron ore pellets, knowledge about their mechanical properties is needed. This paper describes the experimental work to investigate the dynamic mechanical properties of blast furnace iron ore pellets. To study the dynamic fracture of iron ore pellets a number of split Hopkinson pressure bar tests are carried out and analysed.

  8. Tectonic setting of synorogenic gold deposits of the Pacific Rim

    USGS Publications Warehouse

    Goldfarb, R.J.; Phillips, G.N.; Nokleberg, W.J.

    1998-01-01

    More than 420 million oz of gold were concentrated in circum-Pacific synorogenic quartz loades mainly during two periods of continental growth, one along the Gondwanan margin in the Palaeozoic and the other in the northern Pacific basin between 170 and 50 Ma. These ores have many features in common and can be grouped into a single type of lode gold deposit widespread throughout clastic sedimentary-rock dominant terranes. The auriferous veins contain only a few percent sulphide minerals, have gold:silver ratios typically greater than 1:1, show a distinct association with medium grade metamorphic rocks, and may be associated with large-scale fault zone. Ore fluids are consistently of low salinity and are CO2-rich. In the early and middle Palaeozoic in the southern Pacific basin, a single immense turbidite sequence was added to the eastern margin of Gondwanaland. Deformation of these rocks in southeastern Australia was accompanied by deposition of at least 80 million oz of gold in the Victorian sector of the Lachlan fold belt mainly during the Middle and Late Devonian. Lesser Devonian gold accumulations characterized the more northerly parts of the Gondwanan margin within the Hodgkinson-Broken River and Thomson fold belts. Additional lodes were emplaced in this flyschoid sequence in Devonian or earlier Palaeozoic times in what is now the Buller Terrane, Westland, New Zealand. Minor post-Devonian growth of Gondwanaland included terrane collision and formation of gold-bearing veins in the Permian in Australia's New England fold belt and in the Jurassic-Early Cretaceous in New Zealand's Otago schists. Collision and accretion of dozens of terranes for a 100-m.y.-long period against the western margin of North America and eastern margin of Eurasia led to widespread, lattest Jurassic to Eocene gold veining in the northern Pacific basin. In the former location, Late Jurassic and Early Cretaceous veins and related placer deposits along the western margin of the Sierra Nevada

  9. Ultrafine particles derived from mineral processing: A case study of the Pb-Zn sulfide ore with emphasis on lead-bearing colloids.

    PubMed

    Mikhlin, Yuri; Vorobyev, Sergey; Romanchenko, Alexander; Karasev, Sergey; Karacharov, Anton; Zharkov, Sergey

    2016-03-01

    Although mining and mineral processing industry is a vast source of heavy metal pollutants, the formation and behavior of micrometer- and nanometer-sized particles and their aqueous colloids entered the environment from the technological media has received insufficient attention to date. Here, the yield and characteristics of ultrafine mineral entities produced by routine grinding of the Pb-Zn sulfide ore (Gorevskoe ore deposit, Russia) were studied using laser diffraction analysis (LDA), dynamic light scattering (DLS) and zeta potential measurement, microscopy, X-ray photoelectron spectroscopy, with most attention given to toxic lead species. It was revealed, in particular, that the fraction of particles less that 1 μm in the ground ore typical reaches 0.4 vol. %. The aquatic particles in supernatants were micrometer size aggregates with increased content of zinc, sulfur, calcium as compared with the bulk ore concentrations. The hydrodynamic diameter of the colloidal species decreased with time, with their zeta potentials remaining about -12 mV. The colloids produced from galena were composed of 20-50 nm PbS nanoparticles associated with lead sulfate and thiosulfate, while the surface oxidation products at precipitated galena were largely lead oxyhydroxides. The size and zeta potential of the lead-bearing colloids decreased with time down to about 100 nm and from -15 mV to -30 mV, respectively. And, conversely, lead sulfide nanoparticles were mobilized before the aggregates during redispersion of the precipitates in fresh portions of water. The potential environmental impact of the metal-bearing colloids, which is due to the large-scale production and relative stability, is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Using the chemical analysis of magnetite to constrain various stages in the formation and genesis of the Kiruna-type chadormalu magnetite-apatite deposit, Bafq district, Central Iran

    NASA Astrophysics Data System (ADS)

    Heidarian, Hassan; Lentz, David; Alirezaei, Saeed; Peighambari, Sima; Hall, Douglas

    2016-12-01

    .%), and CaO (<0.034 wt.%; ave. 0.013 wt.%) possibly showing a lower contribution of magmatic fluids in the formation of Mag2. The magnetite Mag3 contains the highest FeO (91.25-93.8 wt.%; average 92.69 wt.%), low to moderate SiO2 (0.008-1.44 wt.%; ave. 0.13 wt.%), Al2O3 (<0.732 wt.%; ave. 0.059 wt.%), and CaO (<0.503 wt.%; ave. 0.072 wt.%), and appears to have formed by recrystallization of the previous two generations. The different major, minor, and trace element compositions of various magnetite generations might be due to an ore-forming fluid that was initially magmatic-hydrothermal and evolved to moderately brine-dominated meteoric fluids. The involvement of a basinal brine is supported by the occurrence of a late phase 34S-enriched pyrite in the Chadormalu deposit.

  11. Self-Ordering and Complexity in Epizonal Mineral Deposits

    NASA Astrophysics Data System (ADS)

    Henley, Richard W.; Berger, Byron R.

    Epizonal base and precious metal deposits makeup a range of familiar deposit styles including porphyry copper-gold, epithermal veins and stockworks, carbonate-replacement deposits, and polymetallic volcanic rock-hosted (VHMS) deposits. They occur along convergent plate margins and are invariably associated directly with active faults and volcanism. They are complex in form, variable in their characteristics at all scales, and highly localized in the earth's crust. More than a century of detailed research has provided an extensive base of observational data characterizing these deposits, from their regional setting to the fluid and isotope chemistry of mineral deposition. This has led to a broad understanding of the large-scale hydrothermal systems within which they form. Low salinity vapor, released by magma crystallization and dispersed into vigorously convecting groundwater systems, is recognized as a principal source of metals and the gases that control redox conditions within systems. The temperature and pressure of the ambient fluid anywhere within these systems is close to its vapor-liquid phase boundary, and mineral deposition is a consequence of short timescale perturbations generated by localized release of crustal stress. However, a review of occurrence data raises questions about ore formation that are not addressed by traditional genetic models. For example, what are the origins of banding in epithermal veins, and what controls the frequency of oscillatory lamination? What controls where the phenomenon of mineralization occurs, and why are some porphyry deposits, for example, so much larger than others? The distinctive, self-organized characteristics of epizonal deposits are shown to be the result of repetitive coupling of fracture dilation consequent on brittle failure, phase separation ("boiling"), and heat transfer between fluid and host rock. Process coupling substantially increases solute concentrations and triggers fast, far

  12. Gum and deposit formation in diesel fuels. Final report, 1984-1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayo, F.R.; Mill, T.

    1988-05-15

    The authors examined two aspects of the stability of diesel fuels in storage: the formation of sediments in suspension, which subsequently clog filters, and the formation of soluble gum, which passes the filters but then forms hard deposits on hot engine parts. Research on fuel stability at SRI during the last 6 years has shown that soluble gum appears first on storage, and then part of it grows into sediment. If the oxidation mixture is agitated gently, the precipitating gum grows on the surface gum, and no loose sediment is formed. Three mechanisms of gum formation were distinguished: (1) amore » process intimately associated with chain propagation and termination during oxidation, (2) a coupling of fuel molecules by decomposing peroxides in the absence of oxygen, and (3) a condensation of naphthols and aldehydes from the oxidation of alkylnaphthalenes. The polymeric oxidation products from a JP-8 fuel are shown to be largely responsible for deposits in the Jet Fuel Thermal Oxidation Tester (JFTOT).« less

  13. Extraction of reduced alteration information based on Aster data: a case study of the Bashibulake uranium ore district

    NASA Astrophysics Data System (ADS)

    Ye, Fa-wang; Liu, De-chang

    2008-12-01

    Practices of sandstone-type uranium exploration in recent years in China indicate that the uranium mineralization alteration information is of great importance for selecting a new uranium target or prospecting in outer area of the known uranium ore district. Taking a case study of BASHIBULAKE uranium ore district, this paper mainly presents the technical minds and methods of extracting the reduced alteration information by oil and gas in BASHIBULAKE ore district using ASTER data. First, the regional geological setting and study status in BASHIBULAKE uranium ore district are introduced in brief. Then, the spectral characteristics of altered sandstone and un-altered sandstone in BASHIBULAKE ore district are analyzed deeply. Based on the spectral analysis, two technical minds to extract the remote sensing reduced alteration information are proposed, and the un-mixing method is introduced to process ASTER data to extract the reduced alteration information in BASHIBULAKE ore district. From the enhanced images, three remote sensing anomaly zones are discovered, and their geological and prospecting significances are further made sure by taking the advantages of multi-bands in SWIR of ASTER data. Finally, the distribution and intensity of the reduced alteration information in Cretaceous system and its relationship with the genesis of uranium deposit are discussed, the specific suggestions for uranium prospecting orientation in outer of BASHIBULAKE ore district are also proposed.

  14. Sulfur isotopes of host strata for Howards Pass (Yukon–Northwest Territories) Zn-Pb deposits implicate anaerobic oxidation of methane, not basin stagnation

    USGS Publications Warehouse

    Johnson, Craig A.; Slack, John F.; Dumoulin, Julie A.; Kelley, Karen Duttweiler; Falck, Hendrik

    2018-01-01

    A new sulfur isotope stratigraphic profile has been developed for Ordovician-Silurian mudstones that host the Howards Pass Zn-Pb deposits (Canada) in an attempt to reconcile the traditional model of a stagnant euxinic basin setting with new contradictory findings. Our analyses of pyrite confirm the up-section 34S enrichment reported previously, but additional observations show parallel depletion of carbonate 13C, an increase in organic carbon weight percent, and a change in pyrite morphology. Taken together, the data suggest that the 34S enrichment reflects a transition in the mechanism of pyrite formation during diagenesis, not isotopic evolution of a stagnant water mass. Low in the stratigraphic section, pyrite formed mainly in the sulfate reduction zone in association with organic matter–driven bacterial sulfate reduction. In contrast, starting just below the Zn-Pb mineralized horizon, pyrite formed increasingly within the sulfate-methane transition zone in association with anaerobic oxidation of methane. Our new insights on diagenesis have implications for (1) the setting of Zn-Pb ore formation, (2) the reliability of redox proxies involving metals, and (3) the source of ore sulfur for Howards Pass, and potentially for other stratiform Zn-Pb deposits contained in carbonaceous strata.

  15. Petrography and trace element signatures in silicates and Fe-Ti-oxides from the Lanjiahuoshan deposit, Panzhihua layered intrusion, Southwest China

    NASA Astrophysics Data System (ADS)

    Gao, Wenyuan; Ciobanu, Cristiana L.; Cook, Nigel J.; Huang, Fei; Meng, Lin; Gao, Shang

    2017-12-01

    Permian mafic-ultramafic layered intrusions in the central part of the Emeishan Large Igneous Province (ELIP), Southwestern China, host Fe-Ti-V-oxide ores that have features which distinguish them from other large layered intrusion-hosted deposits. The origin of these ores is highly debated. Careful petrographic examination, whole rock analysis, electron probe microanalysis, and measurement and mapping of trace element concentrations by laser ablation inductively coupled plasma mass spectrometry in all major and minor minerals (clinopyroxene, plagioclase, olivine, amphibole, titanomagnetite, ilmenite, pleonaste and pyrrhotite) has been undertaken on samples from the Lanjiahuoshan deposit, representing the Middle, Lower and Marginal Zone of the Panzhihua intrusion. Features are documented that impact on interpretation of intrusion petrology and with implications for genesis of the Fe-Ti-V-oxide ores. Firstly, there is evidence, as symplectites between clinopyroxene and plagioclase, for introduction of complex secondary melts. Secondly, reaction between a late hydrothermal fluid and clinopyroxene is recognized, which has led to formation of hydrated minerals (pargasite, phlogopite), as well as a potassium metasomatic event, postdating intrusion solidification, which led to formation of K-feldspar. Lastly, partitioning of trace elements between titanomagnetite and silicates needs to consider scavenging of metals by ilmenite (Mn, Sc, Zr, Nb, Sn, Hf and Ta) and sulfides, as well as the marked partitioning of Co, Ni, Zn, Ga, As and Sb into spinels exsolved from titanomagnetite. The role of these less abundant phases may have been understated in previous studies, highlighting the importance of petrographic examination of complex silicate-oxide-sulfide assemblages, as well as the need for a holistic approach to trace element analysis, acknowledging all minerals within the assemblage.

  16. Preliminary mineralogical data on epithermal ore veins associated with Rosia Poieni porphyry copper deposit, Apuseni Mountains, Romania

    NASA Astrophysics Data System (ADS)

    Iatan, E. L.; Popescu, Gh. C.

    2012-04-01

    Rosia Poieni is the largest porphyry copper (±Au±Mo) deposits associated with Neogene magmatic rocks from the South Apuseni Mountains, being located approximately 8 km northeast of the town of Abrud. During a recent examination of some epithermal mineralized veins, crosscutting the porphyry mineralization from the Roşia Poieni deposit, two species of tellurides and one tellurosulfide minerals were identified. The studied samples were collected from the + 1045 m level, SW side of the open pit and are represented by epithermal veins, crosscutting the porphyry copper mineralized body. The thickness of the veins is almost 4 cm. Following reflected-polarized light microscopy to identify the ore-mineral assemblages, the polished sections were studied with a Scanning Electron Microscope (SEM) equipped with a back-scattered electron (BSE) detector to study fine-sized minerals. Quantitative compositional data were determined using a Cameca SX 50 electron microprobe (EMP). Based on optical microscopy, SEM and EMPA three mineral associations have been separated inside the epithermal vein, from the margins to the centre: 1. quartz+tennantite-tetrahedrite+goldfieldite+pyrite+sphalerite; 2. quartz+pyrite+tellurobismutite; 3. chalcopyrite+hessite+vivianite. Goldfieldite occurs in anhedral grains and it is associated with tennantite-tetrahedrite and quartz. The electron microprobe analysis gave a variable content in Te between 13.28-13.39 wt.%, 43.34 wt.% Cu, 0.1 wt. % Fe, 0.2 wt.% Zn, 14.68 wt.% As, 4.35 wt.% Sb and 24.84 wt.% S. The calculated formula for the goldfieldite is Cu11.8Te1.8(Sb,As)4S13.4. The EPM analyses on tetrahedrite-tennantite revealed a low content in Te (0.02-0.03 wt.%) and 42.23 wt.% Cu, 2.67 wt.% Fe, 7.34 wt.% Zn, 0.04 wt.% Sb, 19.28 wt.% As and 28.4 wt.% S. The calculated formula is Cu9.8(Fe,Zn)2.4(Sb,As,Te)3.8S13. The variable ratio of the Te content may reflect a variable content of Te in the hydrothermal fluids from which the tellurian tetrahedrite

  17. Rare-Earth Elements from Modern Mineral-Organic Associations in the Zone of Sulfide Ore Hypergenesis

    NASA Astrophysics Data System (ADS)

    Vakh, E. A.; Vakh, A. S.; Petukhov, V. I.; Barinov, N. N.

    2018-01-01

    The REE composition of modern mineral-organic associations in the sulfide ore hypergenesis zone of the Berezitovoe deposit in the Russian Far East was studied for the first time. It is shown that the mineral-organic associations widely abundant in the valley of Konstantinovskii Creek and represented by bright brown crusts on the surface of deluvial deposits were formed at the expense of the influence of acid highly mineralized mine waters from the Berezitovoe deposit. The mineral-organic associations found in the Creek valley may be considered as a new indicator for evaluation of the geoecological state of modern technogenic landscapes.

  18. Sandstone type uranium deposits in the Ordos Basin, Northwest China: A case study and an overview

    NASA Astrophysics Data System (ADS)

    Akhtar, Shamim; Yang, Xiaoyong; Pirajno, Franco

    2017-09-01

    This paper provides a comprehensive review on studies of sandstone type uranium deposits in the Ordos Basin, Northwest China. As the second largest sedimentary basin, the Ordos Basin has great potential for targeting sandstone type U mineralization. The newly found and explored Dongsheng and Diantou sandstone type uranium deposits are hosted in the Middle Jurassic Zhilou Formation. A large number of investigations have been conducted to trace the source rock compositions and relationship between lithic subarkose sandstone host rock and uranium mineralization. An optical microscopy study reveals two types of alteration associated with the U mineralization: chloritization and sericitization. Some unusual mineral structures, with compositional similarity to coffinite, have been identified in a secondary pyrite by SEM These mineral phases are proposed to be of bacterial origin, following high resolution mapping of uranium minerals and trace element determinations in situ. Moreover, geochemical studies of REE and trace elements constrained the mechanism of uranium enrichment, displaying LREE enrichment relative to HREE. Trace elements such as Pb, Mo and Ba have a direct relationship with uranium enrichment and can be used as index for mineralization. The source of uranium ore forming fluids and related geological processes have been studied using H, O and C isotope systematics of fluid inclusions in quartz veins and the calcite cement of sandstone rocks hosting U mineralization. Both H and O isotopic compositions of fluid inclusions reveal that ore forming fluids are a mixture of meteoric water and magmatic water. The C and S isotopes of the cementing material of sandstone suggest organic origin and bacterial sulfate reduction (BSR), providing an important clue for U mineralization. Discussion of the ore genesis shows that the greenish gray sandstone plays a crucial role during processes leading to uranium mineralization. Consequently, an oxidation-reduction model for

  19. Catalytic decomposition of tar derived from wood waste pyrolysis using Indonesian low grade iron ore as catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wicakso, Doni Rahmat; Chemical Engineering Department, Faculty of Engineering, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur, Yogyakarta, 55281; Sutijan

    Low grade iron ore can be used as an alternative catalyst for bio-tar decomposition. Compared to other catalysts, such as Ni, Rd, Ru, Pd and Pt, iron ore is cheaper. The objective of this research was to investigate the effect of using low grade iron ore as catalyst for tar catalytic decomposition in fixed bed reactor. Tar used in this experiment was pyrolysis product of wood waste while the catalyst was Indonesian low grade iron ore. The variables studied were temperatures between 500 – 600 °C and catalyst weight between 0 – 40 gram. The first step, tar was evaporatedmore » at 450 °C to produce tar vapor. Then, tar vapor was flowed to fixed bed reactor filled low grade iron ore. Gas and tar vapor from reactor was cooled, then the liquid and uncondensable gas were analyzed by GC/MS. The catalyst, after experiment, was weighed to calculate total carbon deposited into catalyst pores. The results showed that the tar components that were heavy and light hydrocarbon were decomposed and cracked within the iron ore pores to from gases, light hydrocarbon (bio-oil) and carbon, thus decreasing content tar in bio-oil and increasing the total gas product. In conclusion, the more low grade iron ore used as catalyst, the tar content in the liquid decrease, the H{sup 2} productivity increased and calorimetric value of bio-oil increased.« less

  20. Geochronology, fluid inclusions and isotopic characteristics of the Chaganbulagen Pb-Zn-Ag deposit, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Li, Tiegang; Wu, Guang; Liu, Jun; Wang, Guorui; Hu, Yanqing; Zhang, Yunfu; Luo, Dafeng; Mao, Zhihao; Xu, Bei

    2016-09-01

    The large Chaganbulagen Pb-Zn-Ag deposit is located in the Derbugan metallogenic belt of the northern Great Xing'an Range. The vein-style orebodies of the deposit occur in the NWW-trending fault zones. The ore-forming process at the deposit can be divided into three stages: an early quartz-pyrite-arsenopyrite-pyrrhotite-sphalerite-galena-chalcopyrite stage, a middle quartz-carbonate-pyrite-sphalerite-galena-silver-bearing minerals stage, and a late quartz-carbonate-pyrite stage. The sericite sample yielded a 40Ar -39Ar plateau age of 138 ± 1 Ma and an isochron age of 137 ± 3 Ma, and the zircon LA-ICP-MS U-Pb age of monzogranite porphyry was 143 ± 2 Ma, indicating that the ages of mineralization and monzogranite porphyry in the Chaganbulagen deposit should be the Early Cretaceous, and that the mineralization should be slightly later than the intrusion of monzogranite porphyry. There are only liquid inclusions in quartz veins of the Chaganbulagen deposit. Homogenization temperatures, densities, and salinities of the fluid inclusions from the early stage are 261-340 °C, 0.65-0.81 g/cm3, and 0.7-6.3 wt.% NaCl eqv., respectively. Fluid inclusions of the middle stage have homogenization temperatures, densities, and salinities of 209-265 °C, 0.75-0.86 g/cm3, and 0.5-5.7 wt.% NaCl eqv., respectively. For fluid inclusions of the late stage, their homogenization temperatures, densities, and salinities are 173-219 °C, 0.85-0.91 g/cm3, and 0.4-2.7 wt.% NaCl eqv., respectively. The ore-forming fluids of the deposit are generally characterized by moderate temperature and low salinity and density, and belong to an H2O-NaCl ± CO2 ± CH4 system. The δ18Owater values calculated for ore-bearing quartz vary from - 17.9‰ to - 10.8‰, and the δDV-SMOW values from bulk extraction of fluid inclusion waters vary from - 166‰ to - 127‰, suggesting that the ore-forming fluids consist dominantly of meteoric water. The δ34SV-CDT values range from 1.4‰ to 4.1‰. The 206Pb/204

  1. Oxidation and formation of deposit precursors in hydrocarbon fuels

    NASA Technical Reports Server (NTRS)

    Mayo, F. R.; Lan, B.; Cotts, D. B.; Buttrill, S. E., Jr.; St.john, G. A.

    1983-01-01

    The oxidation of two jet turbine fuels and some pure hydrocarbons was studied at 130 C with and without the presence of small amounts of N-methyl pyrrole (NMP) or indene. Tendency to form solid-deposit precursors was studied by measuring soluble gum formation as well as dimer and trimer formation using field ionization mass spectrometry. Pure n-dodecane oxidized fastest and gave the smallest amount of procursors. An unstable fuel oil oxidized much slower but formed large amounts of precursors. Stable Jet A fuel oxidized slowest and gave little precursors. Indene either retarded or accelerated the oxidation of n-dodecane, depending on its concentration, but always caused more gum formation. The NMP greatly retarded n-dodecane oxidation but accelerated Jet A oxidation and greatly increased the latter's gum formation. In general, the additive reacted faster and formed most of the gum. Results are interpreted in terms of classical cooxidation theory. The effect of oxygen pressure on gum formation is also reported.

  2. Occurrence of silver minerals in a silver-rich pocket in the massive sulfide zinc-lead ores in the Edwards mine, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serviss, C.R.; Grout, C.M.; Hagni, R.D.

    1985-01-01

    Ore microscopic examination of uncommon silver-rich ores from the Edwards mine has detected three silver minerals, native silver, freibergite, and argentite, that were previously unreported in the literature from the Balmat-Edwards district. The zinc-lead ore deposits of the Balmat-Edwards District in northern New York are composed of very coarse-grained massive sulfides, principally sphalerite, galena, and pyrite. The typical ores contain small amounts of silver in solid solution galena. Galena concentrates produced from those ores have contained an average of 15 ounces of silver per ton of 60% lead concentrates. In contrast to the typical ore a silver-rich pocket, that measuredmore » three feet by three feet on the vertical mine face and was the subject of this study, contained nearly 1% silver in a zinc ore. Ore microscopic study shows that this ore is especially characterized by abundant, relatively fine-grained chalcopyrite with anhedral pyrite inclusions. Fine-grained sphalerite, native silver, argentite, freibergite and arsenopyrite occur in association with the chalcopyrite and as fracture-fillings in gangue minerals. Geochemically anomalous amounts of tin, barium, chromium, and nickel also are present in the silver-rich pocket. The silver-rich pocket may mark the locus of an early feeder vent or alternatively it may record a hydrothermal event that was superimposed upon the event responsible for the metamorphic ore textures.« less

  3. Geology and geochemistry of Carlin-type gold deposits in China

    USGS Publications Warehouse

    Rui-Zhong, H.; Wen-Chao, S.; Xian-Wu, B.; Guang-Zhi, T.; Hofstra, A.H.

    2002-01-01

    The Carlin-type gold deposits in China lie mostly near the margins of the Proterozoic Yangtze and Aba cratons. Submicron-sized gold in micron-sized arsenian pyrite is disseminated in fractured Cambrian through Triassic carbonaceous shale and carbonate rocks, and is associated with anomalous Hg, Sb, As, U, and Tl. Alteration typically includes silicification, argilization, and sulfidation. Aqueous fluid inclusions contain CO2, have relatively low temperatures of homogenization (250-150 ??C), and salinities (8-2 wt% equiv. NaCl) that typically decrease from early to later stages. The indicated pressures of 105-330x105 Pa correspond to depths in excess of 1.0 to 3.0 km, assuming hydrostatic conditions. The ??D values of fluid inclusions (-87 to -47%) and the calculated ??18 values for water in ore fluids (-2.1 to 16.2%) reflect interactions between meteoric water and sedimentary rocks. The ??13C values of calcite (-9 to 2%) and ??34S values of sulfides (-24 to 17%) suggest that C and S were derived from marine carbonate (and organic carbon) and diagenetic sulfides (and organic sulfur) in the vicinity of the deposits. Geologic relationships and geochronologic evidence indicate the deposits formed during a late phase of the Yanshanian orogeny (140-75 Ma). These gold deposits share much in common with the Carlin-type gold deposits in Nevada, USA. Both occur in carbonaceous, pyritic, sedimentary rocks deposited on extended margins of Precambrian cratons. The smaller Chinese deposits are generally in more siliceous rocks and the larger Nevada deposits in more calcareous rocks. In both countries, the host rocks prior to mineralization were affected by contractional deformation that produced many of the ore-controlling structures and the deposits do not show consistent spatial or genetic relationships with epizonal plutons. However, the Nevada deposits show broad spatial and temporal relationships with shifting patterns of calc-alkaline magmatism. The ore and alteration

  4. Gases and trace elements in soils at the North Silver Bell deposit, Pima County, Arizona

    USGS Publications Warehouse

    Hinkle, M.E.; Dilbert, C.A.

    1984-01-01

    Soil samples were collected over the North Silver Bell porphyry copper deposit near Tucson, Arizona. Volatile elements and compounds in gases derived from the soils and metallic elements in the soils were analyzed in order: (1) to see which volatile constituents of the soils might be indicative of the ore body or the alteration zones; and (2) to distinguish the ore and alteration zones by comparison of trace elements in the soil. Plots of analytical data on trace elements in soils indicated a typical distribution pattern for metals around a porphyry copper deposit, with copper, molybdenum, and arsenic concentrations higher over the ore body, and zinc, lead, and silver concentrations higher over the alteration zones. Higher than average concentrations of helium, carbon disulfide, and sulfur dioxide adsorbed on soils were found over the ore body, whereas higher concentrations of carbon dioxide and carbonyl sulfide were found over the alteration zones. ?? 1984.

  5. The uranium-bearing nickel-cobalt-native silver deposits in the Black Hawk district, Grant County, New Mexico

    USGS Publications Warehouse

    Gillerman, Elliot; Whitebread, Donald H.

    1953-01-01

    The Black Hawk (Bullard Peak) district, Grant County, N. Mex., is 21 miles by road west of Silver City. From 1881 to 1893 more than $1,000,000.00 of high-grade silver ore is reported to have been shipped from the district. Since 1893 there has been no mining in the district except during a short period in 1917 when the Black Hawk mine was rehabilitated. Pre-Cambrian quartz diorite gneiss, which contains inclusions of quartzite, schist, monzonite, and quartz monzonite, is the most widespread rock in the district. The quartz diorite gneiss is intruded by many pre-Cambrian and younger rocks, including diorite granite, diabase, monzonite porphyry and andesite and is overlain by the Upper Cretaceous Beartooth quartzite. The monzonite porphyry, probably of late Cretaceous or early Tertiary age, forms a small stock along the northwestern edge of the district and numerous dikes and irregular masses throughout the district. The ore deposits are in fissure veins that contain silver, cobalt, and uranium. The ore minerals, which include native silver, niccolite, millerite, skutterudite, nickel skutterudite, bismuthinite, pitchblende, and sphalerite, are in a carbonate gangue in narrow, persistent veins, most of which trend northeasterly. Pitchblende has been identified in the Black Hawk and the Alhabra deposits and unidentified radioactive minerals were found at five other localities. The deposits that contain the radioactive minerals constitude a belt 600 to 1,500 feet wide that trends about N. 45° E., and is approximately parallel to the southeastern boundary of the monzonite porphyry stock. All the major ore deposits are in the quartz diorite gneiss in close proximity to the monzonite porphyry. The ore deposits are similar to the deposits at Great Bear Lake, Canada, and Joachimstahl, Czechoslovakia.

  6. Effect of moisture content on the flowability of crushed ores

    NASA Astrophysics Data System (ADS)

    Cabrejos, Francisco

    2017-06-01

    In many mining and industrial processes where large quantities of non-degrading bulk materials such as crushed ores are handled, silos, hoppers, stockpiles and chutes are widely used because they are economical and reliable (if properly designed and operated). However, they are not free of trouble and may experience flow problems such as arching, ratholing, erratic flow, limited storage capacity, limited discharge flow rate, caking, segregation and/or flooding. Moisture content and fine particles significantly affect the flowability of most ores, increasing their cohesive strength and turning them more prone to these problems. The purpose of this article is to highlight a proven, scientific method that can be utilized to ensure reliable storage, flow and discharge of bulk solids in these equipment based on Jenike's flow-of-solids theory and laboratory testing. Knowledge of the flow properties of the material handled provides a design basis to ensure mass flow, avoid arching and prevent the formation of "ratholes". The effect of an increase in water content of the ore is discussed with experimental results.

  7. The copper-cobalt deposits of the Quartzburg district, Grant County, Oregon

    USGS Publications Warehouse

    Vhay, John Stewart

    1960-01-01

    The copper- and cobalt-bearing veins of part of the Quartzburg district are in fracture zones trending about N. 70 degrees E. in folded Permian (?) metavolcanic rocks on the southwest side of a quartz diorite stock. Along many of the veins fine-grained tourmaline and quartz have replaced the country rock. The primary ore minerals are chalcopyrite, glaucodot, safflorite, and cobaltite. The copper- and cobalt-rich parts of the deposits appear to be in separate ore shoots. Gold content is generally higher in the cobalt-bearing parts of the veins than in the copper-rich parts. The Standard mine has developed part of one vein zone. Several other vein zones that crop out may contain as much copper as the Standard vein zone. Further bulldozing and diamond drilling on the surface, and more geologic mapping, sampling, and diamond drilling underground are suggested as means to explore for more ore deposits.

  8. Petrographic and Geochemical Characterization of Ore-Bearing Intrusions of the Noril'sk type, Siberia; With Discussion of Their Origin, Including Additional Datasets and Core Logs

    USGS Publications Warehouse

    Czamanske, Gerald K.

    2002-01-01

    The Noril'sk I, Talnakh, and Kharaelakh intrusions of the Noril'sk district host one of the outstanding metal concentrations in the world; contained Cu-Ni resources are comparable to the deposits at Sudbury, Ontario and the platinum group element (PGE) resource is second only to that of the Bushveld Complex. Our opportunity to cooperatively sample and study this district in Siberian Russia arose in 1990 through a memorandum of understanding between the U.S. Geological Survey and the former Ministry of Geology of the U.S.S.R. The world-class significance of these deposits and the possibility that understanding their geologic context, including construction of a credible 'ore-deposit model,' will lead to discovery of similar deposits elsewhere, inspired extensive studies of the ores, the mafic-intrusions which host them, and associated flood basalts.

  9. Understanding the residence of Co in ore minerals - towards the development of novel Co extraction strategies for laterite deposits

    NASA Astrophysics Data System (ADS)

    Dybowska, Agnieszka; Norman, Rachel; Schofield, Paul; Herrington, Richard

    2017-04-01

    Cobalt has unique properties highly valued for many applications essential to the green economy. It has been classified as a critical raw material due to the particularly high risk of supply shortage and its importance for the value chain. Despite low crustal abundance (25ppm), Co is concentrated by various geological processes to concentrations suitable for mining, however the majority of Co is recovered as a by-product of Cu and Ni processing in three principal geological settings: hydrothermal, magmatic and lateritic. Cobalt-rich laterites, which provide 20% of the world's Co, are mainly processed using energy-inefficient pyrometallurgical techniques or high-pressure acid leaching technologies often optimised for extraction of other elements, which can leave between 50 and 80% of the Co unrecovered. In order to develop more efficient Co extraction strategies, understanding the residence of Co in ore minerals is essential. To this end, we are undertaking a detailed mineralogical, chemical and atomistic-scale characterization of Co in samples from a range of laterite deposits. Bulk samples representative of the average ore material were sourced from a variety of undeveloped laterite deposits: Shevchenko (Kazakhstan), Acoje (Philippines), Nkamouna (Cameroon) and Piauí (Brazil). Bulk chemical and mineralogical characterisation was undertaken with ICP-OES/MS and XRD, followed by spatially resolved chemical and mineralogical imaging at the micron scale using µXRD, EPMA, SEM and synchrotron-based µXRF. The chemical state and local environment of Co were determined using X ray spectroscopy (μXANES and μEXAFS). The total concentrations of Co ranged from 630 to 2780 mg/kg. The ore mineral assemblage in the various samples includes goethite, maghemite, hematite, quartz, talc, serpentines, chlorites, smectites, kaolinite and chromites. Manganese oxide minerals are present but, due to their poor crystallinity and low concentration, are not routinely detectable with bulk

  10. Sulfide minerals as new Sm-Nd geochronometers for ore genesis dating of mafic-ultramafic layered intrusions

    NASA Astrophysics Data System (ADS)

    Serov, Pavel; Ekimova, Nadezhda; Bayanova, Tamara

    2014-05-01

    The main method of dating the ore process was the Re-Os method of sulfides (Luck, Allegre, 1983; Walker et. al., 1991). However, studies of Re-Os systematics of sulfide minerals do not always give the correct ages and showing the disturbances of the Re-Os systematics. At the same time, Sm-Nd age of sulfides in good agreement with the U-Pb dating on zircon and baddeleyite and suggests that the Sm-Nd system of sulfides is more resistant to secondary alteration processes. Our studies have shown that along with rock-forming, ore minerals (sulfides) can be used to determine the ore genesis time of industrially important geological sites, since exactly with the sulfides the industry Pt-Pd mineralization is closely connected. The Sm-Nd investigations steadily employ new minerals-geochronometers. Of these, sulfides of PGE-bearing layered intrusions are quite important in terms of dating the process of ore origin. Studying the REE distribution in the sulfides of MOR hydrothermal sources has shown possible REE presence in the sulfide lattice (Rimskaya-Korsakova et. al., 2003). These are difficult to carry out because the concentrations of Sm and Nd isotopes in sulfides are much lower than chondrites (Rimskaya-Korsakova et. al., 2003). For the first time in Russia with sulfide and rock-forming minerals and WR in Sm-Nd method have been dated impregnated and brecciform ores of the following objects: Pilguyarvi Cu-Ni deposits, Pechenga (1965±87 Ma); impregnated (2433±83 Ma) and redeposited (1903±24 Ma) ores of Ahmavaara intrusion (Finland); ore gabbronorites of Penikat PGE-bearing layered intrusion (2426±38 Ma (Ekimova et.al., 2011); Pt-Pd gabbro-pegmatite ores (2476± 41 Ma, which agrees with the U-Pb zircon age - 2470±9 Ma (Bayanova, 2004) and gabbronorites (2483±86 Ma) of PGE Kievei deposit and Fedorova Tundra metagabbroids (2494±54 Ma); Monchetundra gabbronorites - 2489±49 Ma. In (Kong et. al., 2000) sulfides from two metamorphosed chondrites studied by instrumental

  11. Microbial reduction of iron ore

    DOEpatents

    Hoffmann, Michael R.; Arnold, Robert G.; Stephanopoulos, Gregory

    1989-01-01

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry.

  12. Tectonic environments of South American porphyry copper magmatism through time revealed by spatiotemporal data mining

    NASA Astrophysics Data System (ADS)

    Butterworth, N.; Steinberg, D.; Müller, R. D.; Williams, S.; Merdith, A. S.; Hardy, S.

    2016-12-01

    Porphyry ore deposits are known to be associated with arc magmatism on the overriding plate at subduction zones. While general mechanisms for driving magmatism are well established, specific subduction-related parameters linking episodes of ore deposit formation to specific tectonic environments have only been qualitatively inferred and have not been formally tested. We develop a four-dimensional approach to reconstruct age-dated ore deposits, with the aim of isolating the tectonomagmatic parameters leading to the formation of copper deposits during subduction. We use a plate tectonic model with continuously closing plate boundaries, combined with reconstructions of the spatiotemporal distribution of the ocean floor, including subducted portions of the Nazca/Farallon plates. The models compute convergence rates and directions, as well as the age of the downgoing plate through time. To identify and quantify tectonic parameters that are robust predictors of Andean porphyry copper magmatism and ore deposit formation, we test two alternative supervised machine learning methods; the "random forest" (RF) ensemble and "support vector machines" (SVM). We find that a combination of rapid convergence rates ( 100 km/Myr), subduction obliquity of 15°, a subducting plate age between 25-70 Myr old, and a location far from the subducting trench boundary (>2000 km) represents favorable conditions for porphyry magmatism and related ore deposits to occur. These parameters are linked to the availability of oceanic sediments, the changing small-scale convection around the subduction zone, and the availability of the partial melt in the mantle wedge. When coupled, these parameters could influence the genesis and exhumation of porphyry copper deposits.

  13. Ore genesis dating: implication of Sm-Nd method using sulfide minerals for mafic-ultramafic layered intrusions of Fennoscandian Shield

    NASA Astrophysics Data System (ADS)

    Serov, Pavel; Bayanova, Tamara; Steshenko, Ekaterina; Ekimova, Nadezhda

    2015-04-01

    and brecciform ores of the following objects - Pilguyarvi Cu-Ni deposits, Pechenga (1965±87 Ma); impregnated (2433±83 Ma) and redeposited (1903±24 Ma) ores of Ahmavaara intrusion (Finland); Kolvitsa massif metagabbro (1990±92 Ma, which reflect the age of Sm-Nd system closure in sulfide minerals); olivine orthopyroxenites of Sopcha 'Ore bed' (2442±59 Ma); ore gabbronorites of Penikat PGE-bearing layered intrusion (2426±38 Ma (Ekimova et.al., 2011); Pt-Pd gabbro-pegmatite ores (2476± 41 Ma, which agrees well with the U-Pb zircon age - 2470±9 Ma (Bayanova, 2004) and gabbronorites (2483±86 Ma) of PGE Kievey deposit and Fedorova Tundra metagabbroids (2494±54 Ma); Monchetundra gabbronorites - 2489±49 Ma. All investigations are devoted to memory of academician RAS, professor F. Mitrofanov (Russia), he was a leader of scientific school for geology, geochemistry and metallogenesis of ore deposits. The studies were supported by the RFBR 13-05-00493, OFI-M 13-05-12055, Department of Earth Sciences RAS (programs 2 and 4), IGCP-599.

  14. Mississippi Valley-Type Lead-Zinc Deposit Model

    USGS Publications Warehouse

    Leach, David L.; Taylor, Ryan D.

    2009-01-01

    Mississippi Valley-type (MVT) lead-zinc (Pb+Zn) deposits are found throughout the world, and these deposits are characteristically distributed over hundreds of square kilometers that define individual ore districts. The median size of individual MVT deposits is 7.0 million tonnes with grades of about 7.9 percent Pb+Zn metal. However, MVT deposits usually occur in extensive districts consisting of several to as many as 400 deposits. Nearly one-quarter of the world's sedimentary and volcanic rock-hosted Pb+Zn resources are found in these deposits, with by-product commodities including silver (Ag), copper (Cu), and indium (In) for some deposits. Environmentally, MVT deposits are less of a concern than other types of mineral deposits since the carbonate-host rocks mitigate many environmental concerns.

  15. Genesis of Middle Miocene Yellowstone hotspot-related bonanza epithermal Au-Ag deposits, Northern Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Saunders, J. A.; Unger, D. L.; Kamenov, G. D.; Fayek, M.; Hames, W. E.; Utterback, W. C.

    2008-09-01

    Epithermal deposits with bonanza Au-Ag veins in the northern Great Basin (NGB) are spatially and temporally associated with Middle Miocene bimodal volcanism that was related to a mantle plume that has now migrated to the Yellowstone National Park area. The Au-Ag deposits formed between 16.5 and 14 Ma, but exhibit different mineralogical compositions, the latter due to the nature of the country rocks hosting the deposits. Where host rocks were primarily of meta-sedimentary or granitic origin, adularia-rich gold mineralization formed. Where glassy rhyolitic country rocks host veins, colloidal silica textures and precious metal-colloid aggregation textures resulted. Where basalts are the country rocks, clay-rich mineralization (with silica minerals, adularia, and carbonate) developed. Oxygen isotope data from quartz (originally amorphous silica and gels) from super-high-grade banded ores from the Sleeper deposit show that ore-forming solutions had δ 18O values up to 10‰ heavier than mid-Miocene meteoric water. The geochemical signature of the ores (including their Se-rich nature) is interpreted here to reflect a mantle source for the “epithermal suite” elements (Au, Ag, Se, Te, As, Sb, Hg) and that signature is preserved to shallow crustal levels because of the similar volatility and aqueous geochemical behavior of the “epithermal suite” elements. A mantle source for the gold in the deposits is further supported by the Pb isotopic signature of the gold ores. Apparently the host rocks control the mineralization style and gangue mineralogy of ores. However, all deposits are considered to have derived precious metals and metalloids from mafic magmas related to the initial emergence of the Yellowstone hotspot. Basalt-derived volatiles and metal(loid)s are inferred to have been absorbed by meteoric-water-dominated geothermal systems heated by shallow rhyolitic magma chambers. Episodic discharge of volatiles and metal(loid)s from deep basaltic magmas mixed with

  16. On the origin of the Neoproterozoic Peresopolis graphite deposit, Paraguay Belt, Brazil

    NASA Astrophysics Data System (ADS)

    Manoel, Talitta Nunes; Dexheimer Leite, Jayme Alfredo

    2018-07-01

    The Peresopolis graphite deposit is located northeast of Brasilândia Town in Mato Grosso State (Brazil). It consists of an 1800 m long, 200 m wide low-crystallinity graphite-bearing tabular layer that trends ENE and dips 65°ESE. The deposit is hosted in carbonaceous phyllites, which along with basal metadiamictites and upper metarenites make up the upper unit (Coxipó Formation) of the Cuiabá Group in the late Cryogenian to Cambrian Paraguay Belt (ca. 650-500Ma). The carbonaceous phyllites show a mineral assemblage consisting mostly of graphite-quartz-muscovite-albite and pyrite and dolomite to a lesser extent; alteration minerals include tosudite and kaolinite. XRD analysis confirmed the gangue material and defined the graphite as low-order crystallinity. Carbon isotope data for graphite ore returned a light and very restricted range of δ13Corg between -29 and -28‰ suggesting organic matter as the source of carbon. One hundred and sixty measurements of Raman graphite spectrum returned a well-fit between full width at half maximum parameter (FWHM) which allowed its use as a geothermometer. Resulting temperatures are in the range between 285 and 300 °C ± 30 °C, indicating low-to very-low metamorphic conditions for transformation of organic matter into amorphous graphite. The deposition of the organic matter should have taken place in an outer slope of a glaciomarine system and its transformation into the ore occurred because of deformation and low-grade metamorphism related to the development of the Neoproterozoic Brasiliano/Pan-African Orogeny (850-500Ma).

  17. The specific features of gold ore provinces of the south of Siberia in a magnetic field at ground height and heights of flight of satellite Champ.

    NASA Astrophysics Data System (ADS)

    Litvinova, Tamara; Petrova, Alevtina

    2010-05-01

    The specific features of gold ore provinces of the south of Siberia in a magnetic field at ground height and heights of flight of satellite Champ. T.Litvinova -All-Russian Geological Research Institute (VSEGEI) A. Petrova - St. Petersburg, SPbF IZMIRAN, Russian Academy of Sciences, St. Petersburg For allocation of specific features known gold ore objects (Olimpiadninskoje, Suchoi Log, etc.) is executed the morphological analysis of the magnetic field received on materials of aeromagnetic data and satellite measurements at heights of 100 and 400 km. On the ground data on a map of magnetic anomalies of Russia of scale 1:2 500000 of 50 km on the extended structures crossing known gold ore deposits and promising ore units have been constructed geomagnetic and densitys sections up to depth. On geomagnetic and densitys sections to known large gold ore to deposits are dated deep synvertical the permeable zones described by a synlenticular -layered structure. Extended horizons of not magnetic formations are located on depths about 10, 12, 15-18, 30 and 40 km. On deep densitys sections reference sites ¬ the Suchoi Log, Olimpiadninskoje and Vodorazdelnoje ¬ is characterized by zones of inversion of density. Areas of the loosened breeds are dated to synvertical to deep zones of hydrothermal and fluid study of breeds inside which the loosened lenses in intervals of depths from 2 up to 5 km are formed, 8-13 km, 18-20 and 25-30 km of 35-40 km within the limits of the bottom bark. The analysis of a magnetic field has shown, that gold mineralization in researched region is dated for zones of long-living regional explosive infringements, to permeable terrigenous to thicknesses of depressions, to adjournment depression structures in units of crossing of tectonofluid zones of diagonal orientation. Terrigenous adjournment depression structures are shown on a geomagnetic section as the powerful deflections filled with low-magnetic thicknesses. These deflections are dated to

  18. Synthrusting deposition of the Pennsylvanian and Permian Strathearn Formation, Northern Carlin Trend, Nevada

    USGS Publications Warehouse

    Theodore, T.G.; Berger, V.I.; Singer, D.A.; Harris, A.G.; Stevens, C.H.

    2004-01-01

    The middle Upper Pennsylvanian and middle Lower Permian Strathearn Formation belongs to the overlap assemblage of the Antler orogen in Nevada. At Beaver Peak, near the Carlin Trend of gold deposits, it contains synorogenic conglomerate deposits associated with emplacement of a regionally extensive, 1-km-thick tectonic wedge that is floored by the Coyote thrust. Normal marine conodont biofacies throughout the Strathearn Formation suggest middle shelf or deeper, depositional environments. The allochthon floored by the Coyote thrust has been thrust above a middle Upper Pennsylvanian, lower conglomerate unit of the Strathearn Formation. A middle Lower Permian upper conglomerate unit, the highest unit recognized in the Strathearn Formation, as well as similarly aged dolomitic siltstone, onlap directly onto Ordovician quartzarenite of the Vinini Formation that makes up most of the Coyote allochthon. Quartz grains and quartzarenite fragments of variable roundness and shape in the conglomerate units were derived from the presently adjoining tectonic lobe of mostly quartzarenite that advanced southeast (present geographic coordinates) during the late Paleozoic into the developing Strathearn basin. Chert fragments in the conglomerates probably were derived mostly from Devonian Slaven Chert, including a widespread thick me??lange unit of the Slaven Chert in the footwall of the Coyote thrust.Lithologic and shape ratio data from approximately 4200 clasts at 17 sites of the two major conglomerate units in the Strathearn Formation at Beaver Peak are roughly similar in that they contain only chert and quartzarenite clasts, and chert clasts predominate in both units. They differ in the relative proportion of the two lithologies whereby quartzarenite clasts increase sixfold in the upper unit (middle Lower Permian) versus its content in the lower conglomerate unit. Relations at the unconformity between the upper conglomerate unit and its underlying quartzarenite shows quartzarenite

  19. Remnant colloform pyrite at the haile gold deposit, South Carolina: A textural key to genesis

    USGS Publications Warehouse

    Foley, N.; Ayuso, R.A.; Seal, R.R.

    2001-01-01

    Auriferous iron sulfide-bearing deposits of the Carolina slate belt have distinctive mineralogical and textural features-traits that provide a basis to construct models of ore deposition. Our identification of paragenetically early types of pyrite, especially remnant colloform, crustiform, and layered growth textures of pyrite containing electrum and pyrrhotite, establishes unequivocally that gold mineralization was coeval with deposition of host rocks and not solely related to Paleozoic tectonic events. Ore horizons at the Haile deposit, South Carolina, contain many remnants of early pyrite: (1) fine-grained cubic pyrite disseminated along bedding; (2) fine- grained spongy, rounded masses of pyrite that may envelop or drape over pyrite cubes; (3) fragments of botryoidally and crustiform layered pyrite, and (4) pyritic infilling of vesicles and pumice. Detailed mineral chemistry by petrography, microprobe, SEM, and EDS analysis of replaced pumice and colloform structures containing both arsenic compositional banding and electrum points to coeval deposition of gold and the volcanic host rocks and, thus, confirms a syngenetic origin for the gold deposits. Early pyrite textures are present in other major deposits of the Carolina slate belt, such as Ridgeway and Barite Hill, and these provide strong evidence for models whereby the sulfide ores formed prior to tectonism. The role of Paleozoic metamorphism was to remobilize and concentrate gold and other minerals in structurally prepared sites. Recognizing the significance of paragenetically early pyrite and gold textures can play an important role in distinguishing sulfide ores that form in volcanic and sedimentary environments from those formed solely by metamorphic processes. Exploration strategies applied to the Carolina slate belt and correlative rocks in the eastern United States in the Avalonian basement will benefit from using syngenetic models for gold mineralization.

  20. Genesis of the Abu Marawat gold deposit, central Eastern Desert of Egypt

    NASA Astrophysics Data System (ADS)

    Zoheir, Basem A.; Akawy, Ahmed

    2010-06-01

    Gold mineralisation at the Abu Marawat mine, central Eastern Desert of Egypt, is related to a system of massive and sheared, milky quartz veins cutting a sequence of Neoproterozoic island arc metavolcanic/volcaniclastic rocks and related banded iron formation (BIF). Sulphide-bearing quartz veins and related hydrothermal breccia bodies display a range of textures including sheared, boudinaged and recrystallised quartz, open space filling and microbreccia. These variable textures imply a complex history of crack-seal mechanism characterising the relation between mineral deposition and a major N-S-trending shear zone, during a late brittle-ductile deformation event which affected the area at about 550 Ma. Gold-base metal mineralisation is associated with brecciation and fracturing of the iron ore bands, close to silicified shears and related quartz veins. The auriferous quartz lodes are characterised by the occurrence of visible pyrite-chalcopyrite ± pyrrhotite ± sphalerite ± galena mineralisation. Gold is refractory in pyrite and chalcopyrite, but rare visible gold/electrum and telluride specks were observed in a few samples. Hydrothermal alteration includes pervasive silicification, pyritisation, sericitisation, carbonatisation confined to a delicate set of veins and altered shears, and a more widespread propylitic alteration assemblage (quartz + chlorite + pyrite + calcite ± epidote). Fluid inclusion petrography and microthermometric studies suggest heterogeneous trapping of a low-salinity (1.4-6.7 wt.% eq. NaCl) aqueous solution and a carbonic fluid. Evidence for fluid immiscibility during ore formation includes variable liquid/vapour ratios in inclusions along individual trails and bulk inclusion homogenisation into liquid and occasionally to vapour at comparable temperatures. The trapping conditions of intragranular aqueous-carbonic inclusions approximate 264-378 °C at 700-1300 bar. Similar temperature estimates have been obtained from Al

  1. Trace-fossil and storm-deposit relationships of San Carlos formation, west Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metz, C.L.; Bednarski, S.P.

    1986-05-01

    Two distinct assemblages of trace fossils are preserved in the storm deposits in delta-front facies of the Upper Cretaceous San Carlos Formation, west Texas. The assemblages represent two widely differing responses to storm deposition and sediment-trace-fossil relationships, indicating that other environmental parameters, probably water depth and oxygen levels, influenced trace-fossil distribution within the San Carlos delta front. Evidence of the storm-deposited nature of the sandstones includes a scoured basal contact, planar to hummocky cross-stratification, and a upper contact that is either ripple marked or is gradational with overlying shales.

  2. Microbial reduction of iron ore

    DOEpatents

    Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

    1989-11-14

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.

  3. Oligocene shoshonitic rocks of the Rogozna Mts. (Central Balkan Peninsula): Evidence of petrogenetic links to the formation of Pb-Zn-Ag ore deposits

    NASA Astrophysics Data System (ADS)

    Borojević Šoštarić, S.; Cvetković, V.; Neubauer, F.; Palinkaš, L. A.; Bernroider, M.; Genser, J.

    2012-09-01

    This study focuses on age and evolution of the Oligocene quartz latite of the Rogozna Mts. (Central Balkan Peninsula), in order to better understand the link between magmatism and formation of Pb-Zn ± Ag mineralization. New 40Ar/39Ar biotite and amphibole plateau ages suggest that the Rogozna Mts. quartz latite originated through a continuous volcanic episode from 27.3 ± 0.1 to 29.5 ± 0.1 Ma which was immediately followed by a hydrothermal phase. The quartz latites are hypocrystalline porphyritic with phenocrysts and microphenocrysts (~ 60 vol.%) of plagioclase (An37-49), biotite Mg# [100 × Mg / (Mg + Fetot)] < 50, calcic amphibole, quartz, sanidine clinopyroxene and phlogopite (Mg# = 79 to 84). The rocks display numerous disequilibrium textures, such as: sieved plagioclase phenocrysts, dissolution effects on quartz, phlogopitized biotite and amphibole crystals, and phlogopite microphenocrysts showing effects of incomplete growth (or dissolution?) and biotitization. The Rogozna Mts. quartz latites are shoshonitic in character with Na2O/K2O < 1, high LILE/HFSE ratios, strong depletions at Nb and Ti and K, Pb and U peaks on primitive mantle-normalized diagrams. They are similar to other potassic/ultrapotassic rocks in this region, in particular to those of Veliki Majdan and Rudnik (West Serbia), which are also related to Pb-Zn deposits. The evolution of the Rogozna Mts. quartz latite is modeled using a trace element binary mixing model adopting a lamproite magma and a dacite-like calc-alkaline melt as end-members. The model implies that a fractionating magma chamber (~ 4.5-9.5 km) undergoes cooling in the range of > 850 °C-~720 °C and injection of lamproite-like melts. The injection causes an increase of temperature and a decrease of viscosity of the resulting hybrid magma, facilitating its upwelling and triggering pyroclastic eruptions. The addition of new volatiles by lamproitic melts most probably established the conditions for a hydrothermal phase above the

  4. Apatite Mineral Chemistry From IOA Deposits in Northern Chile

    NASA Astrophysics Data System (ADS)

    Palma, G.; Barra, F.; Reich, M.; Valencia, V.; Simon, A. C.; Vervoort, J. D.

    2017-12-01

    The Carmen, Fresia and Mariela iron-oxide apatite (IOA) deposits of Cretaceous age, located in the Coastal Cordillera of northern Chile, comprise massive bodies of magnetite with minor apatite and actinolite crystals spatially related to diorite intrusions. In order to provide new insights on the origin of Andean IOA deposits, we provide geochemical data of apatite grains collected from these three deposits. All studied apatite grains are zoned with respect to Cl and F, and show a decoupled behaviour between fluorapatite and chlorapatite. Carmen apatite grains are mostly F-rich, whereas in Mariela apatite grains are Cl-rich. Fresia apatite grains show a variable composition between fluorapatite and chlorapatite. Carmen apatite grains show a high REE content reaching up to 7000 ppm, and both Fresia and Mariela have lower REE content (<1400 ppm). REE patterns for all analyzed apatite grains show the typical LREE enrichment relative to the HREE and pronounced negative Eu anomaly, which indicates crystallization of plagioclase in the source magmas [1]. Chlorapatite zones are characterized by high S, Na, Sr and Fe content relative to fluorapatite zones. Notably S and Na show a coupled behaviour with Cl. Conversely LREE are depleted in chlorapatite zones, which is compatible with metasomatism through dissolution-reprecipitation mechanism and formation of monazite inclusions [2]. These results indicate a magmatic origin for fluorapatite in these Andean IOA deposits followed by variable degrees of hydrothermal overprint which resulted in the formation of Cl-rich apatites.[1] Frietsch & Perdahl (1995) Ore Geology Rev. 9 489-510. [2]Harlov et al. (2005) Contrib Mineral Petrol 150: 268-286

  5. Magnetite-apatite mineralization in Khanlogh iron deposit, northwest of Neyshaboor, NE Iran

    NASA Astrophysics Data System (ADS)

    Najafzadeh Tehrani, Parvin; Asghar Calagari, Ali; Velasco Roldan, Francisco; Simmonds, Vartan; Siahcheshm, Kamal

    2016-04-01

    fluids. The high fluorine content of the apatite at Khanlogh may testify to the presence of Ti-fluoride complex in the fluids. Formation of apatite crystals was concurrent with development of titanium lamellae in magnetite. The apatite possesses high REE content which is possibly associated with monazite inclusions. The SEM studies better show these inclusions are occasionally present at the margin of apatite crystals and veins. Based upon field relations, microscopic examinations, and the results of XRD analyses, sodic (albite), propylitic (epidote, chlorite, calcite), and argillic (montmorillonite) alterations are developed in the study area. The principal minerals in these alteration zones are albite, epidote, sericite, chlorite, quartz, calcite, and montmorllonite. Mineralogy, alteration, geochemistry, structure, and texture of the ores at Khanlogh indicate that the magnetite and apatite were chiefly formed by hydrothermal solutions which were enriched in iron mainly transported by F- and Cl- rich fluids. Reference Hou,,T., Zhaochong, Z., Timothy, K., (2011). Gushan magnetite-apatite deposit in the Ningwu basin, Lower Yangtze River Valley, SE China: Hydrothermal or Kiruna-type? Ore geology review, 43, 333-346. Purtov, V.K., Kotelnikova, A.L. (1993). Solubility of titanium in chloride and fluoride hydrothermal solution. International Geology Review 35, 274 -287.

  6. Geochemical Identification of Windblown Dust Deposits in the Upper Permian Brushy Canyon Formation, Southern New Mexico

    NASA Astrophysics Data System (ADS)

    Tice, M. M.; Motanated, K.; Weiss, R.

    2009-12-01

    Windblown dust is a potentially important but difficult-to-quantify source of siliciclastics for sedimentary basins worldwide. Positively identifying windblown deposits requires distinguishing them from other low density suspension transport deposits. For instance, laminated very fine grained sandstones and siltstones of the Upper Permian Brushy Canyon Formation have been variously interpreted as 1) the deposits of slow-moving, low-density turbidity currents, 2) distal overbank deposits of turbidity currents, 3) the deposits of turbulent suspensions transported across a pycnocline (interflows), and 4) windblown dust. This facies forms the bulk of Brushy Canyon Formation slope deposits, so understanding its origin is critical to understanding the evolution of the basin as a whole. We use a geochemical mapping technique (x-ray fluorescence microscopy) to show that these rocks are up to two times enriched in very fine sand sized zircon and rutile grains relative to Bouma A divisions of interbedded turbidites, suggesting substantial turbulence during transport. However, in contrast with the A divisions, the laminated sandstones and siltstones never show evidence of scour or amalgamation, implying that flow turbulence did not interact with underlying beds. Moreover, proximal loess deposits are often characterized by elevated Zr/Al2O3. These observations are most consistent with windblown interpretations for Brushy Canyon Formation slope sediments, and suggest that evolution of this early deepwater slope system was controlled largely by short-distance aeolian transport of very fine sand and silt from the coast. Heavy mineral incorporation into Brushy Canyon Formation slope deposits as reflected in laminae-scale bulk Zr and Ti abundances may preserve a long-term record of local wind intensity during the Upper Permian.

  7. Fluid inclusion and noble gas studies of the Dongping gold deposit, Hebei Province, China: A mantle connection for mineralization?

    USGS Publications Warehouse

    Mao, J.; Li, Y.; Goldfarb, R.; He, Y.; Zaw, K.

    2003-01-01

    The Dongping gold deposit (>100 t Au) occurs about 200 km inboard of the northern margin of the North China craton. The deposit is mainly hosted by syenite of a middle Paleozoic alkalic intrusive complex that was emplaced into Late Archean basement rocks. Both groups of rocks are intruded by Late Jurassic to Early Cretaceous crustal-melt granite dikes and stocks, some within a few kilometers of the deposit. The gold ores were deposited during this latter magmatic period at about 150 Ma, a time that was characterized by widespread regional north-south compression that formed the east-west-trending Yanshan deformational belt. The ores include both the telluride mineral-bearing, low sulfide quartz veins and the highly K-feldspar-altered syenite, with most of the resource concentrated in two orebodies (1 and 70). Fluid inclusion microthermometry indicates heterogeneous trapping of low-salinity (e.g., 5-7 wt % NaCl equiv) fluids that varied from a few to 60 mole percent nonaqueous volatile species. Laser Raman spectroscopy confirms that the vapor phase in these inclusions is dominated by CO2, but may be comprised of as much as 9 mole percent H2S and 20 mole percent N2; methane concentrations in the vapor phase are consistently <1 mole percent. The variable phase ratios are consistent with fluid immiscibility during ore formation. Fluid inclusion trapping conditions are estimated to be 250?? to 375??C and 0.6 to 1.0 kbar. Helium isotope studies of fluid inclusions in ore-stage pyrites indicate He/He ratios of 2.1 to 5.2 Ra (Ra = 1.4 x 10-6 for air) for orebody 1 and 0.3 to 0.8 Ra for orebody 70. The former data suggest that at least 26 to 65 percent mantle helium occurs in the fluids that deposited the veins in orebody 1. The lower values for orebody 70, which is characterized by a more disseminated style of gold mineralization, are interpreted to reflect an increased interaction of ore fluids with surrounding crustal rocks, which may have contributed additional He to

  8. Quartz-pebble-conglomerate gold deposits: Chapter P in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Taylor, Ryan D.; Anderson, Eric D.

    2018-05-17

    Quartz-pebble-conglomerate gold deposits represent the largest repository of gold on Earth, largely due to the deposits of the Witwatersrand Basin, which account for nearly 40 percent of the total gold produced throughout Earth’s history. This deposit type has had a controversial history in regards to genetic models. However, most researchers conclude that they are paleoplacer deposits that have been modified by metamorphism and hydrothermal fluid flow subsequent to initial sedimentation.The deposits are found exclusively within fault-bounded depositional basins. The periphery of these basins commonly consists of granite-greenstone terranes, classic hosts for lode gold that source the detrital material infilling the basin. The gold reefs are typically located along unconformities or, less commonly, at the top of sedimentary beds. Large quartz pebbles and heavy-mineral concentrates are found associated with the gold. Deposits that formed prior to the Great Oxidation Event (circa 2.4 giga-annum [Ga]) contain pyrite, whereas younger deposits contain iron oxides. Uranium minerals and hydrocarbons are also notable features of some deposits.Much of the gold in these types of deposits forms crystalline features that are the product of local remobilization. However, some gold grains preserve textures that are undoubtedly of detrital origin. Other heavy minerals, such as pyrite, contain growth banding that is truncated along broken margins, which indicates that they were transported into place as opposed to forming by in situ growth in a hydrothermal setting.The ore tailings associated with these deposits commonly contain uranium-rich minerals and sulfides. Oxidation of the sulfides releases sulfuric acid and mobilizes various metals into the environment. The neutralizing potential of the tailings is minimal, since carbonate minerals are rare. The continuity of the tabular ore bodies, such as those of the Witwatersrand Basin, has allowed these mines to be the deepest in

  9. Virtual phosphorus ore requirement of Japanese economy.

    PubMed

    Matsubae, Kazuyo; Kajiyama, Jun; Hiraki, Takehito; Nagasaka, Tetsuya

    2011-08-01

    Phosphorus is indispensable for agricultural production. Hence, the consumption of imported food indirectly implies the import of phosphorus resources. The global consumption of agricultural products depends on a small number of ore-producing countries. For sustainable management of phosphorus resources, the global supply and demand network should be clarified. In this study, we propose the virtual phosphorus ore requirement as a new indicator of the direct and indirect phosphorus requirements for our society. The virtual phosphorus ore requirement indicates the direct and indirect demands for phosphorus ore transformed into agricultural products and fertilizer. In this study, the virtual phosphorus ore requirement was evaluated for the Japanese economy in 2005. Importantly, the results show that our society requires twice as much phosphorus ore as the domestic demand for fertilizer production. The phosphorus contained in "eaten" agricultural products was only 12% of virtual phosphorus ore requirement. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Thallium isotope variations in an ore-bearing continental igneous setting: Collahuasi Formation, northern Chile

    NASA Astrophysics Data System (ADS)

    Baker, R. G. A.; Rehkämper, M.; Ihlenfeld, C.; Oates, C. J.; Coggon, R.

    2010-08-01

    Thallium is a highly incompatible element and a large fraction of the bulk silicate Earth Tl budget is, therefore, expected to reside in the continental crust. Nonetheless, the Tl isotope systematics of continental rocks are essentially unexplored at present. Here, we present new Tl isotope composition and concentration data for a suite of 36 intrusive and extrusive igneous rocks from the vicinity of porphyry Cu deposits in the Collahuasi Formation of the Central Andes in northern Chile. The igneous lithologies of the rocks are variably affected by the hydrothermal alteration that accompanied the formation of the Cu deposits. The samples display Tl concentrations that vary by more than an order of magnitude, from 0.1 to 3.2 μg/g, whilst ɛ 205Tl ranges between -5.1 and +0.1 (ɛ 205Tl is the deviation of the 205Tl/ 203Tl isotope ratio of a sample from a standard in parts per 10 4). These variations are primarily thought to be a consequence of hydrothermal alteration processes, including metasomatic transport of Tl, and formation/breakdown of Tl-bearing minerals, which are associated with small but significant Tl isotope effects. The Tl abundances show excellent correlations with both K and Rb concentrations but no co-variation with Cu. This demonstrates that Tl displays only limited chalcophile affinity in the continental crust of the Collahuasi Formation, but behaves as a lithophile element with a distribution that is primarily governed by partitioning of Tl + into K +-bearing phases. Collahuasi samples with propylitic alteration features, which are derived from the marginal parts of the hydrothermal systems, have, on average, slightly lighter Tl isotope compositions than rocks from the more central sericitic and argillic alteration zones. This small but statistically significant difference most likely reflects preferential retention of isotopically heavy Tl in alteration phases, such as white micas and clays, which formed during sericitic and argillic alteration.

  11. Geology and mineral deposits of the Carlile quadrangle, Crook County, Wyoming

    USGS Publications Warehouse

    Bergendahl, M.H.; Davis, R.E.; Izett, G.A.

    1961-01-01

    thickness among all the Fall River units, with the exception of the upper unit. Petrographic studies on selected samples of units from both formations show differences in composition between Lakota and Fall River rocks.The Carlile quadrangle lies immediately east of the monocline that marks the outer limit of the Black Hills uplift, and the rocks in this area have a regional dip of less than 2° outward from the center of the uplift. Superimposed upon the regional uplift are many subordinate structural features anticlines, synclines, domes, basins, and terraces which locally modify the regional features. The most pronounced of these subordinate structural features are the doubly-plunging Pine Ridge, Oil Butte, and Dakota Divide anticlines, and the Eggie Creek syncline. Stress throughout the area was relieved almost entirely through folding; only a few small nearly vertical normal faults were found within the quadrangle.Uranium has been mined from the Carlile deposit, owned by the Homestake Mining Co. The ore minerals, carnotite and tyuyamnuite occur in a sandstone lens that is enclosed within relatively impermeable clayey beds in the mudstone unit of the Lakota formation. The ore also includes unidentified black vanadium minerals and possibly coffinite. Uranium minerals are more abundant in and adjacent to thicker carbonaceous and silty seams in the sandstone lens. A mixture of fine-grained calcium carbonate and calcium sulfate fills the interstices between detrital quartz grains in mineralized sandstone. Selenium and arsenic are more abundant in samples that are high in uranium. Drilling on Thorn Divide about 1 mile west of the Carlile mine has roughly outlined concentrations of a sooty black uranium mineral associated with pyrite In two stratigraphic intervals of the Lakota formation. One is in the same sandstone lens that contains the ore at the Carlile mine; the other is in conglomeratic sandstone near the base of the Lakota. These deposits are relatively deep, and no

  12. Hom-associative Ore extensions

    NASA Astrophysics Data System (ADS)

    Bäck, P.; Richter, J.; Silvestrov, S.

    2018-02-01

    We introduce hom-associative Ore extensions as non-associative, non-unital Ore extensions with a hom-associative multiplication, as well as give some necessary and sufficient conditions when such exist. Within this framework, we also construct a family of hom-associative Weyl algebras as generalizations of the classical analogue, and prove that they are simple.

  13. Manganese Deposits in the Artillery Mountains Region, Mohave County, Arizona

    USGS Publications Warehouse

    Lasky, S.G.; Webber, B.N.

    1944-01-01

    The manganese deposits of the Artillery Mountains region lie within an area of about 25 square miles between the Artillery and Rawhide Mountains, on the west side of the Bill Williams River in west-central Arizona. The richest croppings are on the northeast side of this area, among the foothills of the Artillery Mountains. They are 6 to 10 miles from Alamo. The nearest shipping points are Congress, about 50 miles to the east, and Aguila, about 50 miles to the southeast. The principal manganese deposits are part of a sequence of alluvial fan and playa material, probably of early Pliocene age, which were laid down in a fault basin. They are overlain by later Pliocene (?) basalt flows and sediments and by Quaternary basalt and alluvium. The Pliocene (?) rocks are folded into a shallow composite S1ncline ttat occupies the valley between the Artillery and Rawhide Mountains, and the folded rocks along either side of the valley, together with the overlying Quaternary basalt, are broken by faults that have produced a group of horsts, grabens, and step-fault blocks. The manganiferous beds, lie at two zones, 750 to 1,000 feet apart stratigraphically, each of which is locally as much as 300 to 400 feet thick. The main, or upper, zone contains three kinds of ore - sandstone ore, clay ore, and 'hard' ore. The sandstone and clay ores differ from the associated barren sandstone and clay, with which they are interlayered and into which they grade, primarily in containing a variable proportion of amorphous manganese oxides, besides iron oxides and clayey material such as are present in the barren beds. The 'hard' ore is sandstone that has been impregnated with opal and calcite and in which the original amorphous manganese oxides have been largely converted to psilomelane and manganite. The average manganese content of the sandstone and clay ores is between 3 and 4 percent and that of the 'hard' ore is between 6 and 7 percent. The ore contains an average of 3 percent of iron, 0

  14. Geochemical characteristics of The Emet (Espey-Hisarcik) borate deposits, Kütahya, Turkey

    NASA Astrophysics Data System (ADS)

    Koçak, İ.; Koç, Ş.

    2018-06-01

    Nearly 72% world's borate reserves are in western part of Turkey. The Emet (Kütahya) deposit is one of these deposits. The Emet borate deposit, like other deposits in western Anatolia, was deposited in Miocene lacustrine environment whose formation coincides with volcanic activity started in Paleogene and lasted to the beginning of Quaternary. The borate ore displaying lenticular structure is alternated with claystone, marl, tuff and thin bedded limestone. The mineral paragenesis is composed of colemanite, hydroboracite, Veatchite, dolomite, calcite, montmorillonite and illite. The Emet borate deposit has been the subject of various geologic and mineralogical studies. In the present study major and trace element contents of 60 borate samples from this deposit are discussed. Among the trace elements, significant enrichment was found in As, Se, Sr, Cs, Sb and Li. Element correlations indicate volcanic source for boron (exhalations and hydrothermal solutions) whilst other elements are found to be derived from a terrestrial source. According to REE data, high Ce concentrations and anomalies are generally indicative of oxygenated depositional environment whilst low Ce contents facilitated the lake waters to be low oxygenated as a result of H2S-rich hydrothermal solutions. The weak negative anomaly detected only in the Hisarcık region is attributed to lacking of Eu contribution to the lake due to insufficient alteration on the continent.

  15. Ash formation, deposition, corrosion, and erosion in conventional boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, S.A.; Jones, M.L.

    1995-12-01

    The inorganic components (ash-forming species) associated with coals significantly affect boiler design, efficiency of operation, and lifetimes of boiler parts. During combustion in conventional pulverized fuel boilers, the inorganic components are transformed into inorganic gases, liquids, and solids. This partitioning depends upon the association of the inorganic components in the coal and combustion conditions. The inorganic components are associated as mineral grains and as organically associated elements, and these associations of inorganic components in the fuel directly influence their fate upon combustion. Combustion conditions, such as temperature and atmosphere, influence the volatility and the interaction of inorganic components during combustionmore » and gas cooling, which influences the state and size composition distribution of the particulate and condensed ash species. The intermediate species are transported with the bulk gas flow through the combustion systems, during which time the gases and entrained ash are cooled. Deposition, corrosion, and erosion occur when the ash intermediate species are transported to the heat-transfer surface, react with the surface, accumulate, sinter, and develop strength. Research over the past decade has significantly advanced understanding of ash formation, deposition, corrosion, and erosion mechanisms. Many of the advances in understanding and predicting ash-related issues can be attributed to advanced analytical methods to determine the inorganic composition of fuels and the resulting ash materials. These new analytical techniques have been the key to elucidation of the mechanisms of ash formation and deposition. This information has been used to develop algorithms and computer models to predict the effects of ash on combustion system performance.« less

  16. Zircon U-Pb and molybdenite Re-Os geochronology and geological significance of the Baoshan porphyry Cu polymetallic deposit in Jiangxi province

    NASA Astrophysics Data System (ADS)

    Jia, Liqiong; Wang, Liang

    2017-10-01

    Baoshan porphyry Cu polymetallic deposit belongs to Jiujiang-Ruichang Cu-Au ore field, which is a component part of the Middle-Lower Yangtze River Cu-Au metallogenic belt. The U-Pb LA-MC-TCP MS dating of the zircons from Baoshan granodiorite porphyry yields an age of 147.81±0.48Ma (MSWD=1.07). Six molybdenite samples separated from Baoshan deposit are used for Re-Os dating and obtained the weighted average age of 147.42±0.84Ma and an isochron age of 147.7±1.2Ma. These ages suggest that the mineralization in the Baoshan deposit is genetically associated to the granodiorite porphyry, and the process of rock-and ore-forming is continuous. These data indicate that ages of intrusion and ore-body from Baoshan deposit are almost identical to other typical magmatic intrusion and deposits in Jiujiang-Ruichang metallogenic district. Tt is inferred that the Baoshan deposit was formed in the transition from EW-striking Tndosinian tectonic domain to NE-striking Paleo-Pacific tectonic domain.

  17. A synthesis of magmatic Ni-Cu-(PGE) sulfide deposits in the ∼260 Ma Emeishan large igneous province, SW China and northern Vietnam

    NASA Astrophysics Data System (ADS)

    Wang, Christina Yan; Wei, Bo; Zhou, Mei-Fu; Minh, Dinh Huu; Qi, Liang

    2018-04-01

    Magmatic Ni-Cu-(PGE) sulfide deposits in the ca. 260-Ma Emeishan large igneous province (LIP) are all hosted in relatively small, mafic-ultramafic intrusions with surface areas usually less than 1 km2. These deposits are mainly distributed in the Danba, Panzhihua-Xichang (Panxi), Huili, Yuanmou, Midu, Funing and Jinping regions in SW China and the Ta Khoa region in northern Vietnam. They include Ni-Cu-(PGE) sulfide-dominated, Ni-Cu sulfide-dominated, and PGE-dominated types. Sulfide ores of the Ni-Cu-(PGE) and Ni-Cu sulfide-dominated deposits contain more than 10 vol% sulfides and have low PGE concentrations relative to the ores that contain <3 vol% sulfides in the PGE-dominated deposits. The parental magmas of the host mafic-ultramafic intrusions may have been derived primarily from low-Ti picritic magmas that were produced by high degrees of partial melting of a depleted mantle source. The primary low-Ti picrites of the Emeishan LIP have relatively restricted εNd(t) and γOs(t) isotopic compositions, however, some of the host intrusions exhibit a large range of both εNd(t) (-9.5 to +0.8) and γOs(t) (+5.4 to +77), indicating that they experienced variable degrees of crustal contamination during emplacement. In addition, sulfides from sulfide ores of the Ban Phuc intrusion in northern Vietnam and those from sulfide veins in country rocks have δ34S values ranging from -6.7 to -3.4‰, whereas sulfides from sulfide ores of the Baimazhai No.3, Yingpanjie, Jinbaoshan and Nantianwan intrusions in SW China have highly variable δ34S ranging from -0.2 to +21.4‰, indicating the addition of crustal sulfur into the mantle-derived mafic magmas. Platinum-group minerals (PGM) are abundant in the Ni-Cu-(PGE) sulfide-bearing intrusions, and they span a wide range of composition. More than 130 PGM grains have been identified in the Pt-Pd-rich Jinbaoshan intrusion, whereas only one small froodite (PdBi2) grain was observed in the Ni-Cu sulfide-dominated Baimazhai No. 3

  18. Biostratigraphy and structure of paleozoic host rocks and their relationship to Carlin-type gold deposits in the Jerritt Canyon mining district, Nevada

    USGS Publications Warehouse

    Peters, S.G.; Armstrong, A.K.; Harris, A.G.; Oscarson, R.L.; Noble, P.J.

    2003-01-01

    provided initial pathways for fluid flow and later served as precipitation sites for ore minerals. Alteration, during, and perhaps prior to mineralization, enhanced primary permeability by dissolution, by removal of calcite, and by formation of dolomite. Ore-stage sulfide minerals and alteration minerals commonly precipitated in pore spaces among dolomite grains. Microveinlets and microbrecciation in zones of intense alteration also provided networks of secondary permeability that further enhanced fluid flux and produced additional sites for ore deposition.

  19. Genesis of the central zone of the Nolans Bore rare earth element deposit, Northern Territory, Australia

    NASA Astrophysics Data System (ADS)

    Schoneveld, Louise; Spandler, Carl; Hussey, Kelvin

    2015-08-01

    The Nolans Bore rare earth element (REE) deposit consists of a network of fluorapatite-bearing veins and breccias hosted within Proterozoic granulites of the Reynolds Range, Central Australia. Mineralisation is divided into three zones (north, central, and south-east), with the north and south-east zones consisting of massive REE-bearing fluorapatite veins, with minor brecciation and carbonate infill. The central zone is distinctively different in mineralogy and structure; it features extensive brecciation, a high allanite content, and a large, epidote-rich enveloping alteration zone. The central zone is a reworking of the original solid apatite veins that formed during the Chewings Orogeny at ca. 1525 Ma. These original apatite veins are thought to derive from phosphate-rich magmatic-hydrothermal fluid exsolved from as-yet unrecognised alkaline magmatic bodies at depth. We define four ore breccia types (BX1-4) in the central zone on the basis of detailed petrological and geochemical analysis of drillcore and thin sections. BX1 ore comprises fluorapatite with minor crackle brecciation with carbonate infill and resembles ore of the north and south-east zones. Breccia types BX2, BX3, and BX4 represent progressive stages of ore brecciation and development of calc-silicate mineral (amphibole, epidote, allanite, calcite) infill. Comparison of bulk ore sample geochemistry between breccia types indicates that REEs were not mobilised more than a few centimetres during hydrothermal alteration and brecciation. Instead, most of the REEs were partitioned from the original REE fluorapatite into newly formed allanite, REE-poor fluorapatite and minor REE carbonate in the breccias. Negative europium (Eu) anomalies in the breccia minerals are accounted for by a large positive Eu anomaly in epidote from the alteration zones surrounding the ore breccias. This observation provides a direct link between ore recrystallisation and brecciation, and the formation of the alteration halo in

  20. Stratigraphy, depositional environments, and carbonate petrology of the Toroweap and Kaibab Formations (lower Permian), Grand Canyon region, Arizona

    NASA Astrophysics Data System (ADS)

    Clark, R. A.

    Sediments deposited in northwestern Arizona during Late Leonardian and Early Guadalupian (Permian) were controlled chiefly by an arid climate and the tectonic setting. Eastward thrusting of eugeosynclinal rocks onto miogeosynclinal deposits during Middle Devonian to Early Mississippian had a major influence on shelf sedimentation. The Toroweap and Kaibab formations represent two such platform sequences of northwestern Arizona and southern Utah deposited during this phase of sedimentation. The Toroweap Formation is subdivided into three members and represents sediments deposited during initial transgression, maximum extent of the sea, and regression (Seligman, Brady Canyon, and Woods Ranch members respectively). The Fossil Mountain Member of the Kaibab Formation documents the most extensive phase of sedimentation for all members of the Toroweap and Kaibab formations. The Harrisburg Member documents the final phase of sedimentation at the close of the Paleozoic Era.