Science.gov

Sample records for ore deposits

  1. Evolution of ore deposits on terrestrial planets

    NASA Technical Reports Server (NTRS)

    Burns, R. G.

    1991-01-01

    Ore deposits on terrestrial planets materialized after core formation, mantle evolution, crustal development, interactions of surface rocks with the hydrosphere and atmosphere, and, where life exists on a planet, the involvement of biological activity. Core formation removed most of the siderophilic and chalcophilic elements, leaving mantles depleted in many of the strategic and noble metals relative to their chondritic abundances. Basaltic magma derived from partial melting of the mantle transported to the surface several metals contained in immiscible silicate and sulfide melts. Magmatic ore deposits were formed during cooling, fractional crystallization and density stratification from the basaltic melts. Such ore deposits found in earth's Archean rocks were probably generated during early histories of all terrestrial planets and may be the only types of igneous ores on Mars. Where plate tectonic activity was prevalent on a terrestrial planet, temporal evolution of ore deposits took place. Repetitive episodes of subduction modified the chemical compositions of the crust and upper mantles, leading to porphyry copper and molybdenum ores in calc-alkaline igneous rocks and granite-hosted tin and tungsten deposits. Such plate tectonic-induced mineralization in relatively young igneous rocks on earth may also have produced hydrothermal ore deposits on Venus in addition to the massive sulfide and cumulate chromite ores associated with Venusian mafic igneous rock. Sedimentary ore deposits resulting from mechanical and chemical weathering in reducing atmospheres in Archean earth included placer deposits (e.g., uraninite, gold, pyrite ores). Chromite, ilmenite, and other dense unreactive minerals could also be present on channel floors and in valley networks on Mars, while banded iron formations might underlie the Martian northern plains regions. As oxygen evolved in earth's atmosphere, so too did oxide ores. By analogy, gossans above sulfide ores probably occur on Mars

  2. Oil shales, evaporites and ore deposits

    NASA Astrophysics Data System (ADS)

    Eugster, Hans P.

    1985-03-01

    The relationships between oil shales, evaporites and sedimentary ore deposits can be classified in terms of stratigraphic and geochemical coherence. Oil shale and black shale deposition commonly follows continental red beds and is in turn followed by evaporite deposition. This transgressive-regressive sequence represents an orderly succession of depositional environments in space and time and results in stratigraphic coherence. The amount of organic carbon of a sediment depends on productivity and preservation, both of which are enhanced by saline environments. Work on Great Salt Lake. Utah, allows us to estimate that only 5% of TOC originally deposited is preserved. Inorganic carbonate production is similar to TOC production, but preservation is much higher. Oil shales and black shales commonly are enriched in heavy metals through scavenging by biogenic particles and complexation by organic matter. Ore deposits are formed from such rocks through secondary enrichment processes, establishing a geochemical coherence between oil shales and ore deposits. The Permian Kupferschiefer of N. Europe is used as an example to define a Kupferschiefer type (KST) deposit. Here oxygenated brines in contact with red beds become acidified through mineral precipitation and acquire metals by dissolving oxide coatings. Oxidation of the black shale leads to further acid production and metal acquisition and eventually to sulfide deposition along a reducing front. In order to form ore bodies, the stratigraphic coherence of the red bed-black shale-evaporite succession must be joined by the geochemical coherence of the ore body-evaporite-black shale association. The Cretaceous Cu-Zn deposits of Angola, the Zambian Copperbelt as well as the Creta, Oklahoma, deposits are other KST examples. In the Zambian Copperbelt, evaporites are indicated by the carbonate lenticles thought to be pseudomorphs after gypsum-anhydrite nodules. MVT deposits are also deposited by acid brines, but at more

  3. Metalliferous black shales and related ore deposits

    SciTech Connect

    Grauch, R.I. ); Huyck, H.L.O. )

    1990-01-01

    This book comprises papers and extended abstracts dealing with a variety of topics including the geochemistry and organic geochemistry of several black shale formations: the nature of modern Black Sea sediments: metal- organic complexes in ore fluids; black shales related to disseminated gold deposits; vanadium concentrations and molybdenum-nickel deposits; and the problem of defining metalliferous black shales.

  4. Physical-chemical conditions of ore deposition

    USGS Publications Warehouse

    Barton, P.B., Jr.

    1981-01-01

    Ore deposits form under a wide range of physical and chemical conditions, but those precipitating from hot, aqueous fluids-i.e. the hydrothermal deposits-form generally below 700??C and at pressures of only 1 or 2 kbar or less. Natural aqueous fluids in rocks may extract metal and sulfur from a variety of rock types or may acquire them as a residual heritage from a crystallizing silicate magma. Ore-forming hydrothermal fluids never appear as hot springs (except in deep, submarine situations) because they boil, mix with surface waters, and cool, thereby losing their ore-bearing ability before reaching the surface. Mineral systems function as chemical buffers and indicators just as buffers and indicators function in a chemical laboratory. By reading the record written in the buffer/indicator assemblages of minerals one can reconstruct many aspects of the former chemical environment. By studying the record of changing conditions one may deduce information regarding the processes functioning to create the succession of chemical environments and the ore deposits they represent. The example of the OH vein at Creede, Colorado, shows a pH buffered by the K-feldspar + muscovite + quartz assemblage and the covariation of S2 and O2 buffered by the assemblage chlorite + pyrite + quartz. Boiling of the ore fluid led to its oxidation to hematite-bearing assemblages and simultaneously produced an intensely altered, sericitic capping over the vein in response to the condensation of vapors bearing acidic components. The solubility of metals as calculated from experimental and theoretical studies of mineral solubility appears too low by at least one or two powers of ten to explain the mineralization at Creede. In contrast to Creede where the mineral stabilities all point to a relatively consistent chemistry, the Mississippi Valley type deposits present a puzzle of conflicting chemical clues that are impossible to reconcile with any single equilibrium situation. Thus we must

  5. Mixing from below in hydrothermal ore deposits

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Gomez-Rivas, Enrique; Markl, Gregor; Walter, Bejamin

    2014-05-01

    Unconformity-related hydrothermal ore deposits typically show indications of mixing of two end-member fluids: (a) hot, deep, rock-buffered basement brines and (b) colder fluids derived from the surface or overlying sediments. The hydromechanics of bringing these fluids together from above and below remain unclear. Classical percolative Darcy-flow models are inconsistent with (1) fluid overpressure indicated by fracturing and brecciation, (2) fast fluid flow indicated by thermal disequilibrium, and (3) strong fluid composition variations on the mm-scale, indicated by fluid inclusion analyses (Bons et al. 2012; Fusswinkel et al. 2013). We propose that fluids first descend, sucked down by desiccation reactions in exhumed basement. Oldest fluids reach greatest depths, where long residence times and elevated temperatures allow them the extensively equilibrate with their host rock, reach high salinity and scavenge metals, if present. Youngest fluids can only penetrate to shallower depths and can (partially) retain signatures from their origin, for example high Cl/Br ratios from the dissolution of evaporitic halite horizons. When fluids are released from all levels of the crustal column, these fluids mix during rapid ascent to form hydrothermal ore deposits. Mixing from below provides a viable hydromechanical mechanism to explain the common phenomenon of mixed shallow and deep fluids in hydrothermal ore deposits. Bons, P.D., Elburg, M.A., Gomez-Rivas, E. 2012. A review of the formation of tectonic veins and their microstructures. J. Struct. Geol. doi:10.1016/j.jsg.2012.07.005 Fusswinkel, T., Wagner, T., Wälle, M., Wenzel, T., Heinrich, C.A., Markl, M. 2013. Fluid mixing forms basement-hosted Pb-Zn deposits: Insight from metal and halogen geochemistry of individual fluid inclusions. Geology. doi:10.1130/G34092.1

  6. Compositional Variability of Rutile in Hydrothermal Ore Deposits

    NASA Astrophysics Data System (ADS)

    Clark, J. R.; Williams-Jones, A. E.

    2009-05-01

    Rutile is a relatively common accessory phase in many geological environments, and although it is almost always composed dominantly of TiO2, it is also associated with a wide range of minor and trace element substitutions. The most prominent minor elements that occur in rutile are Fe, Cr, V, Nb and Ta. Like Ti, the latter two elements are essentially immobile in most non-magmatic metallic ore deposits, and their concentrations in rutile are largely influenced by precursor mineral compositions. Iron, Cr and V concentrations vary considerably in rutile hosted by ore deposits, and reflect combinations of precursor mineral composition and the bulk chemistry of the local mineralized or altered rock environment. However, in hydrothermal alteration zones, rutile compositions are clearly anomalous compared to those in unaltered host rocks, and have distinctive elemental associations and substitutions in different types of ore deposits. We have evaluated the mineral chemistry of rutile in >40 ore deposits worldwide. In general, rutile in volcanogenic massive sulfide deposits contains Sn (and locally W, Sb and/or Cu). Rutile from mesothermal and related gold deposits invariably contains W, and in some of the larger and more important deposits, also contains Sb and/or V. Tungsten-bearing detrital rutile grains from the Witwatersrand suggest that paleoplacer mineralization may have had a mesothermal/orogenic gold source. In some magmatic-hydrothermal Pd-Ni-Cu deposits, rutile contains Ni and Cu. Rutile associated with granite-related Sn deposits has strongly elevated concentrations of Sn and W, and granite-pegmatite W-Sn deposits contain rutile with these elements plus Nb and Ta. The Olympic Dam deposit hosts rutile that is enriched in W, Sn and Cu. Rutile associated with porphyry and skarn Cu and Cu-Au deposits tends to contain elevated W, Cu (and sometimes V). Although many ore deposits have well-defined and diagnostic rutile compositions, there are some compositional

  7. Application of natural analog studies to exploration for ore deposits

    SciTech Connect

    Gustafson, D.L.

    1995-09-01

    Natural analogs are viewed as similarities in nature and are routinely utilized by exploration geologists in their search for economic mineral deposits. Ore deposit modeling is undertaken by geologists to direct their exploration activities toward favorable geologic environments and, therefore, successful programs. Two types of modeling are presented: (i) empirical model development based on the study of known ore deposit characteristics, and (ii) concept model development based on theoretical considerations and field observations that suggest a new deposit type, not known to exist in nature, may exist and justifies an exploration program. Key elements that are important in empirical model development are described, and examples of successful applications of these natural analogs to exploration are presented. A classical example of successful concept model development, the discovery of the McLaughlin gold mine in California, is presented. The utilization of natural analogs is an important facet of mineral exploration. Natural analogs guide explorationists in their search for new discoveries, increase the probability of success, and may decrease overall exploration expenditure.

  8. Geochemical peculiarities of ores from the largest Natalka gold deposit in Northeastern Russia

    NASA Astrophysics Data System (ADS)

    Volkov, A. V.; Murashov, K. Yu.; Sidorov, A. A.

    2016-02-01

    This study of the behavior of trace and rare earth elements in ores from the Natalka gold deposit allows us to draw several conclusions. It is suggested that ore formation is related to the regional metamorphism of the host terrigenous carbonaceous rocks, which could be the major source for trace and rare earth elements. Minor enrichment of the Natalka ores in W is evidence of the contribution of magmatic fluid, which could be superimposed on early quartz veins, in ore formation. Our results support the metamorphic-magmatic model of formation of economic gold-quartz deposits of the Yana-Kolyma Belt. The similarity of metasomatites of the Natalka deposit with disseminated gold-sulfide refractory ores from the Nezhdaninskoe and Bakyrchik deposits points to the possible presence of such ores in the Natalka deposit. Our data are important for forecasting regional metallogenic reconstructions, search, and evaluation of gold deposits.

  9. Precambrian rift: genesis of strata-bound ore deposits.

    PubMed

    Kanasewich, E R

    1968-09-01

    Study of deep seismic reflections has detected a Precambrian rift valley below flat-lying sediments in southern Alberta. The anomalous magnetic and gravity trends show that the rift is continuous across Alberta and British Columbia (through the Kimberley lead-zinc field) and possibly the Coeur d'Alene mining district of Idaho. There is evidence that these ore bodies were deposited in a Precambrian rift under conditions similar to those prevailing in the hot-brine areas of the modern Red Sea. PMID:17812797

  10. Analytical fingerprint for tantalum ores from African deposits

    NASA Astrophysics Data System (ADS)

    Melcher, F.; Graupner, T.; Sitnikova, M.; Oberthür, T.; Henjes-Kunst, F.; Gäbler, E.; Rantitsch, G.

    2009-04-01

    Kibaran age either show flat patterns for most tantalites, rising values from the LREE to the HREE, or trough-like patterns. Eu anomalies are strongly negative in columbite-tantalite from the Alto Ligonha Province in Mozambique, from the Namaqualand Province (Namibia, South Africa), and from Zimbabwe. Four main age populations of coltan deposits in Africa were revealed: (1) Archean (>2.5 Ga), (2) Paleoproterozoic (2.1-1.9 Ga), (3) early Neoproterozoic ("Kibaran", 1.0-0.9 Ga), and (4) late Neoproterozoic to early Paleozoic (Pan-African; ca. 0.6-0.4 Ga). Currently, we focus on the resolution of the fingerprinting system from region via ore province down to deposit scale, establishing a large and high-quality analytical data base, and developing fast-screening and low-cost methods. Analytical flow-charts and identification schemes for coltan ores will be presented at the Conference. The analytical results obtained so far indicate that a certification scheme including fingerprinting of sources of coltan ores is feasible. The methodology developed is capable to assist in the establishment of a control instrument in an envisaged certification of the production and trade chain of coltan.

  11. Exploration and local forecast of gold-ore deposits based on typomorphic properties of pyrite

    NASA Astrophysics Data System (ADS)

    Pshenichkin, A. Ya; Ananyev, Yu S.; Bushmano, A. I.; Abramova, R. N.

    2015-11-01

    The article describes the data in exploration and local forecast of gold-ore deposits based on typomorphic pyrite properties. The pyrite properties: crystal shape, impurity-elements and thermal EMF change in relation to the deposit formation conditions are consistent with the mineralogical and geochemical zoning of ore bodies and deposits. In this case, it is possible to evaluate the ore zone erosion, prospectivity and productivity of the ore bodies at depth and flanks. Mineralogical sampling on pyrite and gold should be conducted on the basis of other methods during exploration and mining.

  12. Morphostructural and constitutional features of titanomagnetite in iron ore of the Pudozhgorsky deposit

    NASA Astrophysics Data System (ADS)

    Bystrov, I. G.; Pirogov, B. I.; Yakushina, O. A.

    2015-11-01

    Ti-bearing iron ore of the Pudozhgorsky deposit has been studied in detail using laboratory mineralogical analytical methods in order to determine the morphostructural and constitutional features of titanomagnetite. The genesis of the ore and gangue mineral intergrowths has been established, as well as typomorphic attributes of three titanomagmetite varieties differing in degree of heterogeneity. The behavior of ore in technological processes is controlled by exsolution structures of titanomagnetite with ilmenite formation. The possibility of the complex development of this ore has been shown. Titanomagnetites of major mineral assemblages pertaining to various types of Tiand V-bearing iron ores are compared.

  13. Hybrid gravity survey to search for submarine ore deposit

    NASA Astrophysics Data System (ADS)

    Araya, A.; Kanazawa, T.; Fujimoto, H.; Shinohara, M.; Yamada, T.; Mochizuki, K.; Iizasa, K.; Ishihara, T.; Omika, S.

    2011-12-01

    Along with seismic surveys, gravity survey is a useful method to profile the underground density structure. We propose a hybrid gravity survey using gravimeters and gravity gradiometers to detect submarine ore deposits as density anomalies by towing the instruments using an AUV (Autonomous Underwater Vehicle) or an ROV (Remotely Operated Vehicle). Gravimeters measure the regional density structure below the seafloor, whereas gravity gradiometers are sensitive to localized mass distribution. A gravity gradiometer comprises two accelerometers arranged with a vertical separation, and a gravity gradient can be obtained from the acceleration difference. Compared to gravimeters, gravity gradiometers are insensitive to common disturbances such as parallel acceleration, thermal drift, and apparent gravity effect (Eötvös effect). We made two accelerometers using astatic pendulums, and obtained common acceleration reduction more than two orders of magnitude. With these pendulums of 500-mm separation, resolution of 7E (=7x10^{-9}(1/s^2)), enough to detect a typical ore deposit buried 50m below the seafloor, was evaluated. During measurements using a submersible mobile object, instrument orientation is required to be controlled to keep verticality and to reduce centrifugal force associated with rotation of the instrument. Using a gyro and a tiltmeter, angular rotation was shown to be controlled within 0.001deg/s which corresponds to 0.3E in effective gravity gradient due to the centrifugal force. In this paper, target of this research, details of the instruments and their performance, and development for the submarine gravity survey using an AUV will be presented.

  14. Ore-fluid evolution at the Getchell Carlin-type gold deposit, Nevada, USA

    USGS Publications Warehouse

    Cline, J.S.; Hofstra, A.A.

    2000-01-01

    Minerals and fluid-inclusion populations were examined using petrography, microthermometry, quadrupole mass-spectrometer gas analyses and stable-isotope studies to characterize fluids responsible for gold mineralization at the Getchell Carlin-type gold deposit. The gold-ore assemblage at Getchell is superimposed on quartz-pyrite vein mineralization associated with a Late-Cretaceous granodiorite stock that intruded Lower-Paleozoic sedimentary rocks. The ore assemblage, of mid-Tertiary age, consists of disseminated arsenian pyrite that contains submicrometer gold, jasperoid quartz, and later fluorite and orpiment that fill fractures and vugs. Late ore-stage realgar and calcite enclose ore-stage minerals. Pre-ore quartz trapped fluids with a wide range of salinities (1 to 21 wt.% NaCl equivalent), gas compositions (H2O, CO2, and CH4), and temperatures (120 to >360??C). Oxygen- and hydrogen-isotope ratios indicate that pre-ore fluids likely had a magmatic source, and were associated with intrusion of the granodiorite stock and related dikes. Ore-stage jasperoid contains moderate salinity, aqueous fluid inclusions trapped at 180 to 220??C. Ore fluids contain minor CO2 and trace H2S that allowed the fluid to react with limestone host rocks and transport gold, respectively. Aqueous inclusions in fluorite indicate that fluid temperatures declined to ~175??C by the end of ore-stage mineralization. As the hydrothermal system collapsed, fluid temperatures declined to 155 to 115??C and realgar and calcite precipitated. Inclusion fluids in ore-stage minerals have high ??D(H2O) and ??18O(H2O) values that indicate that the fluid had a deep source, and had a metamorphic or magmatic origin, or both. Late ore-stage fluids extend to lower ??D(H2O) values, and have a wider range of ??18O(H2O) values suggesting dilution by variably exchanged meteoric waters. Results show that deeply sourced ore fluids rose along the Getchell fault system, where they dissolved carbonate wall rocks and

  15. Analog Experiments on Sulfide Foams in Magmatic Ore Deposits

    NASA Astrophysics Data System (ADS)

    Leitch, A. M.; Dahn, D.; Zavala, K.

    2009-05-01

    Metal sulfides form as an immiscible phase from silicate magmas. Dynamic mingling and unmingling of the two phases is important for the development of economic deposits: mingling promotes enrichment of the sulfide in valuable metals, and subsequent unmingling generates massive sulfide. Analog experiments were carried out to investigate mingling processes in immiscible systems, using oil, water and small beads to represent magma, sulfide liquid and silicate crystals. Stirring or injection led to the formation of a foam of analog sulfide droplets within an analog silicate framework. We propose that the partial collapse of such a foam explains massive sulfide lenses at the Voisey's Bay magmatic sulfide deposit, and that crystallization of silicate crystals in the remaining foam walls generates 'net-textured' ores. In the experiments, solid particles had a profound effect on unmingling: analog sulfide droplets were stably contained within analog crystal-rich magma and did not coalesce. We therefore suggest that 'net' and 'leopard' textures in disseminated sulfides indicate mingling of sulfide with crystal-poor magma, whereas isolated disseminated patches of sulfide indicate mingling with a crystal-rich magma.

  16. Sulfur- and carbon-isotope composition of the ores and rocks of the lead-zinc deposits of the Sardana ore node (Southeastern Yakutia)

    SciTech Connect

    Grinenko, L.N.; Zairi, N.M.; Ponomarev, V.G.; Ruchkin, G.V.; Tychinskii, A.A.

    1980-10-01

    Variations in sulfur isotopes from the sulfides of ores and rocks, and also carbon isotopes of the carbonate rocks of the Sardana ore node were examined. The deposition of the ores probably took place from solutions (brines of subsurface waters), heated in the thermal field of dikes and rising along fault zones. During the reduction of the oxidized forms of sulfur and transportation of the ore-forming elements, carbon dioxide gases, associated with petroleum occurrences, played a probable role.

  17. Localization conditions and ore mineralogy of the Ulziit hydrogenic uranium deposit, Mongolia

    NASA Astrophysics Data System (ADS)

    Grechukhin, M. N.; Doinikova, O. A.; Ignatov, P. A.; Rassulov, V. A.

    2016-05-01

    Information on the speciation of uranium minerals in ore of the recently discovered Ulziit uranium deposit in Mongolia is given for the first time. The ore composition has been studied by analytical scanning electron microscopy and local laser luminescent spectroscopy. The ore formed as a result of epigenetic redox processes. Transition from permeable variegated fan sediments to poorly permeable gray-colored coalbearing lacustrine-boggy sediments is the main ore-controlling factor. High-tech uranium mining with borehole in-situ leaching is feasible.

  18. Sedimentary carbonate-hosted giant Bayan Obo REE-Fe-Nb ore deposit of Inner Mongolia, China; a cornerstone example for giant polymetallic ore deposits of hydrothermal origin

    USGS Publications Warehouse

    Chao, E.C.T.; Back, J.M.; Minkin, J.A.; Tatsumoto, M.; Junwen, Wang; Conrad, J.E.; McKee, E.H.; Zonglin, Hou; Qingrun, Meng; Shengguang, Huang

    1997-01-01

    Detailed, integrative field and laboratory studies of the textures, structures, chemical characteristics, and isotopically determined ages and signatures of mineralization of the Bayan Obo deposit provided evidence for the origin and characteristics favorable for its formation and parameters necessary for defining giant polymetallic deposits of hydrothermal origin. Bayan Obo is an epigenetic, metasomatic, hydrothermal rare earth element (REE)-Fe-Nb ore deposit that is hosted in the metasedimentary H8 dolostone marble of the Middle Proterozoic Bayan Obo Group. The metasedimentary sequence was deposited on the northern continental slope of the North China craton. The mine area is about 100 km south of the suture marking Caledonian subduction of the Mongolian oceanic plate from the north beneath the North China craton. The mineralogy of the deposit is very complex, consisting of more than 120 different minerals, some of which are epigenetic minerals introduced by hydrothermal solutions, and some of which are primary and secondary metamorphic minerals. The major REE minerals are monazite and bastnaesite, whereas magnetite and hematite are the dominant Fe-ore minerals, and columbite is the most abundant Nb mineral. Dolomite, alkali amphibole, fluorite, barite, aegirine augite, apatite, phlogopite, albite, and microcline are the most widespread gangue minerals. Three general types of ores occur at Bayan Obo: disseminated, banded, and massive ores. Broad zoning of these ore types occurs in the Main and East Orebodies. Disseminated ores are in the outermost zone, banded ores are in the intermediate zone, and massive ores are in the cores of the orebodies. On the basis of field relations, host rocks, textures, structures, and mineral assemblages, many varieties of these three types of ores have been recognized and mapped. Isotopic dating of monazite, bastnaesite, aeschynite, and metamorphic and metasomatic alkali amphiboles associated with the deposit provides constraints

  19. Rock-magnetism and ore microscopy of the magnetite-apatite ore deposit from Cerro de Mercado, Mexico

    NASA Astrophysics Data System (ADS)

    Alva-Valdivia, L. M.; Goguitchaichvili, A.; Urrutia-Fucugauchi, J.; Caballero-Miranda, C.; Vivallo, W.

    2001-03-01

    Rock-magnetic and microscopic studies of the iron ores and associated igneous rocks in the Cerro de Mercado, Mexico, were carried out to determine the magnetic mineralogy and origin of natural remanent magnetization (NRM), related to the thermo-chemical processes due to hydrothermalism. Chemical remanent magnetization (CRM) seems to be present in most of investigated ore and wall rock samples, replacing completely or partially an original thermoremanent magnetization (TRM). Magnetite (or Ti-poor titanomagnetite) and hematite are commonly found in the ores. Although hematite may carry a stable CRM, no secondary components are detected above 580°, which probably attests that oxidation occurred soon enough after the extrusion and cooling of the ore-bearing magma. NRM polarities for most of the studied units are reverse. There is some scatter in the cleaned remanence directions of the ores, which may result from physical movement of the ores during faulting or mining, or from perturbation of the ambient field during remanence acquisition by inhomogeneous internal fields within these strongly magnetic ore deposits. The microscopy study under reflected light shows that the magnetic carriers are mainly titanomagnetite, with significant amounts of ilmenite-hematite minerals, and goethite-limonite resulting from alteration processes. Magmatic titanomagnetites, which are found in igneous rocks, show trellis, sandwich, and composite textures, which are compatible with high temperature (deuteric) oxy-exsolution processes. Hydrothermal alteration in ore deposits is mainly indicated by martitization in oxide minerals. Grain sizes range from a few microns to >100 mm, and possible magnetic state from single to multidomain, in agreement with hysteresis measurements. Thermal spectra, continuous susceptibility measurements, and IRM (isothermal remanent magnetization) acquisition suggest a predominance of spinels as magnetic carriers, most probably titanomagnetites with low

  20. Mineralogical and geochemical characteristics of the Noamundi-Koira basin iron ore deposits (India)

    NASA Astrophysics Data System (ADS)

    Mirza, Azimuddin; Alvi, Shabbar Habib; Ilbeyli, Nurdane

    2015-04-01

    India is one of the richest sources of iron ore deposits in the world; and one of them is located in the Noamundi-Koira basin, Singhbhum-Orissa craton. The geological comparative studies of banded iron formation (BIF) and associated iron ores of Noamundi-Koira iron ore deposits, belonging to the iron ore group in eastern India, focus on the study of mineralogy and major elemental compositions along with the geological evaluation of different iron ores. The basement of the Singhbhum-Orissa craton is metasedimentary rocks which can be traced in a broadly elliptical pattern of granitoids, surrounded by metasediments and metavolcanics of Greenstone Belt association. The Singhbhum granitoid is intrusive into these old rocks and to younger, mid Archaean metasediments, including iron formations, schists and metaquartzites and siliciclastics of the Precambrian Iron Ore Group (Saha et al., 1994; Sharma, 1994). The iron ore of Noamundi-Koira can be divided into seven categories (Van Schalkwyk and Beukes 1986). They are massive, hard laminated, soft laminated, martite-goethite, powdery blue dust and lateritic ore. Although it is more or less accepted that the parent rock of iron ore is banded hematite jasper (BHJ), the presence of disseminated martite in BHJ suggests that the magnetite of protore was converted to martite. In the study area, possible genesis of high-grade hematite ore could have occurred in two steps. In the first stage, shallow, meteoric fluids affect primary, unaltered BIF by simultaneously oxidizing magnetite to martite and replacing quartz with hydrous iron oxides. In the second stage of supergene processes, deep burial upgrades the hydrous iron oxides to microplaty hematite. Removal of silica from BIF and successive precipitation of iron resulted in the formation of martite- goethite ore. Soft laminated ores were formed where precipitation of iron was partial or absent. The leached out space remains with time and the interstitial space is generally filled

  1. First native silica findings in bismuth from garnet skarns of Ribny Log - 2 gold ore target in Topolninsk ore deposit (Gorny Altai)

    NASA Astrophysics Data System (ADS)

    Cherkasova, T.; Timkin, T.; Savinova, O.

    2015-02-01

    The nanomineralogic investigation results of ore minerals in metasomatites (garnet skarns) of Ribny Log- 2 gold ore in Topolninsk ore deposit (Gorny Altai) revealed the native silica impurities (Si) of 1 - 5 nm within the grains of native bismuth (Bi). Polished sections were examined by using Tescan Vega 3 scanning electron microscope (SEM) with Oxford energy-dispersive spectrometer at the Department of Geology and Mineral Exploration, Institute of Natural Resources, Tomsk Polytechnic University.

  2. Environmental Mineralogy of the Kursk Iron Ore Deposit

    NASA Astrophysics Data System (ADS)

    Posukhova, Tatiana V.; Riakhovskaya, Sofiya K.

    The development of new technologies is one of the most effective ways to solve environmental problems related to ore-dressing. Complex mineralogical investigations are able to help in improving this process. In collaboration with researchers from the IPKON institute, we have developed an electrochemical method to improve the properties of crushed ores prepared for the wet magnetic separation. This article studies the samples before and after application of the electrochemical method. Surfaces of mineral grains investigated by the scanning electron microscopy show differences in flocculation. Measured polarization curves showed unequal electrochemical processes on surfaces of magnetite, hematite, and martite particles. X-ray analysis and Mössbauer data also confirmed the changes in compositions of the ores before and after using the electrochemical method. Magnetic properties of the studied species to be compared before and after the application of method showed relevant increase in parameters such as magnetic viscosity (Svo), breaking saturation field (Hcr), magnetic susceptibility (χ), and specific magnetization (Is).

  3. Morphology of orebodies and genesis of uranium deposits in the Khiagda ore field

    NASA Astrophysics Data System (ADS)

    Kochkin, B. T.; Novgorodtsev, A. A.; Tarasov, N. N.; Martynenko, V. G.

    2014-11-01

    The localization controls of uranium lodes at deposits in the Khiagda ore field are considered in this paper on the basis of detailed documentation of borehole cores, geological sections, and maps. Detailed mapping has been carried out at four of eight deposits of the ore field; additionally, three deposits were studied fragmentary using separate sections and boreholes. We have shown that the idea of the lenticular shape of ore-bodies in section and their ribbonlike shape in plan view only partially corresponds to reality. The revealed morphological features of orebodies along with spatial relationships with epigenetic alteration of host rocks and faults indicate that mineralization was formed by mixing of the oxygen- and uranium-bearing subsurface water descending downdip the seam and the reductive subsurface water ascending from the basement along faults. The available data on the composition of subsurface water currently contained in the basement of ore field give grounds to assume that water similar in composition could have participated in uranium ore deposition. The special properties of this water, interacting for a long time with flows of formation water under conditions of the local geological setting, have imparted those features to the studied deposits, which differentiate them from other economic sandstone-hosted deposits, including those localized in paleovalleys.

  4. The Klyuchevskoe gold ore deposit (Eastern Transbaikalia): Formation conditions and petrogeochemical features of rocks and ores

    NASA Astrophysics Data System (ADS)

    Abramov, B. N.

    2015-09-01

    It was found that the magma chambers in the Amudzhikan complex (J3) were characterized by close degrees of their differentiation and occurred at depths corresponding to the lower continental crust. The formation of explosive breccias proceeded during each period of the ore-forming process. The magma chambers of early breccias occurred at great depths. The late breccias contain carbonate cement and are characterized by an increased REE content.

  5. Complexity of Ore-controlling Fracture System of Dajishan Tungsten Deposit, China

    NASA Astrophysics Data System (ADS)

    LIU, Ningqiang; YU, Chongwen

    To understand the complexity of the development and evolution of ore-controlling fracture system in Dajishan tungsten deposit, Quannan County, Jiangxi Province, we collected rock samples in different depth of deposit and carried out experimental work on rock acoustic emission. Results show that the sequence of rock acoustic emission events follows a clear process of occurrence, quiescence, and burst. The onset and development of fracture system has a cascade of avalanches-punctuated equilibrium hierarchic fractal structure, and the breaking process is very discontinuous, the energy released is also discontinuous, and it becomes smaller with the increase of depth, which reflects the development of mineralization. The author applies the theory of complexity to study the ore-controlling fractures of the vein-type tungsten ore deposits in Dajishan. The following conclusions are drawn. The dynamics of the onset and development of fracture system is similar to the ore-forming system. That is, it consists of the self-organization arising from the coupling of random motion, the coherent behavior produced by interaction between subsystems, the realization of cooperative synchronization, the occurrence of critical transition point, and the attainment of self-organized criticality. These result from the coupling and interaction of physical movement of minerals, time, and space. The formation of vein-type tungsten ore deposit in Dajishan is closely related to critical rupture of ore-controlling fracture system and its avalanches-punctuated equilibrium cascade fractal growth, that is, metallogenic model of vein-type tungsten ore deposit in Dajishan follows generalized "five-storeyed type" metallogenic model.

  6. Banded sulfide-magnetite ores of Mauk copper massive sulfide deposit, Central Urals: Composition and genesis

    NASA Astrophysics Data System (ADS)

    Safina, N. P.; Maslennikov, V. V.; Maslennikova, S. P.; Kotlyarov, V. A.; Danyushevsky, L. V.; Large, R. R.; Blinov, I. A.

    2015-05-01

    The results of investigation of metamorphosed sulfide-magnetite ores from the Mauk deposit located within the Main Ural Fault at the junction of Tagil and Magnitogorsk massive sulfide zones are discussed. The ore-hosting sequence comprises metamorphic rocks formed from basalt, carbonaceous and carbonaceous-cherty siltstone, and lenticular serpentinized ultramafic bodies. The ores of the deposit are represented by banded varieties and less frequent breccia. The clastic origin of the banded ore is indicated by load casts at the bottom of sulfide beds, alternation of sulfide and barren beds, and the truncation of the growth zones of pyrite crystals. Pyrite, pyrrhotite, chalcopyrite, sphalerite, and magnetite are the major minerals of the banded ores. The internal structure of the listed minerals testifies to the deep metamorphic recrystallization of primary hydrothermal-sedimentary ores accompanied with deformation. Cubanite, pyrrhotite, mackinawite, greigite, and gold are enclosed in metacrysts of pyrite, magnetite, and chalcopyrite. The accessory minerals of the Pb-Bi-Te, Bi-Te, and Ag-Te systems as well as uraninite have been found at the Mauk deposit for the first time. Magnetite predominantly replaces pyrite and less frequently chalcopyrite, pyrrhotite, and gangue minerals. It was established that the major carriers of As and Co are crystals of metamorphic pyrite. Chalcopyrite is the major carrier of Zn, Sn, Te, Pb, Bi, and Ag. Admixture of Fe and Cu is typical of sphalerite, and Se and Ni are characteristic of pyrrhotite. Ti, V, Mn, Sb, As, Ba, and U are concentrated in magnetite. The banded ores of the Mauk deposit are suggested as having been transformed in several stages: diagenesis, anadiagenesis, epidiagenesis ( t < 300°C), and amphibolite facies metamorphism ( t > 500°C).

  7. Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise

    USGS Publications Warehouse

    Francheteau, Jean; Needham, H.D.; Choukroune, P.; Juteau, Tierre; Seguret, M.; Ballard, Richard D.; Fox, P.J.; Normark, William; Carranza, A.; Cordoba, D.; Guerrero, J.; Rangin, C.; Bougault, H.; Cambon, P.; Hekinian, R.

    1979-01-01

    Massive ore-grade zinc, copper and iron sulphide deposits have been found at the axis of the East Pacific Rise. Although their presence on the deep ocean-floor had been predicted there was no supporting observational evidence. The East Pacific Rise deposits represent a modern analogue of Cyprus-type sulphide ores associated with ophiolitic rocks on land. They contain at least 29% zinc metal and 6% metallic copper. Their discovery will provide a new focus for deep-sea exploration, leading to new assessments of the concentration of metals in the upper layers of the oceanic crust. ?? 1979 Nature Publishing Group.

  8. Mineralogical and geochemical characteristics of the Noamundi-Koira basin iron ore deposits (India)

    NASA Astrophysics Data System (ADS)

    Mirza, Azimuddin; Alvi, Shabbar Habib; Ilbeyli, Nurdane

    2015-04-01

    India is one of the richest sources of iron ore deposits in the world; and one of them is located in the Noamundi-Koira basin, Singhbhum-Orissa craton. The geological comparative studies of banded iron formation (BIF) and associated iron ores of Noamundi-Koira iron ore deposits, belonging to the iron ore group in eastern India, focus on the study of mineralogy and major elemental compositions along with the geological evaluation of different iron ores. The basement of the Singhbhum-Orissa craton is metasedimentary rocks which can be traced in a broadly elliptical pattern of granitoids, surrounded by metasediments and metavolcanics of Greenstone Belt association. The Singhbhum granitoid is intrusive into these old rocks and to younger, mid Archaean metasediments, including iron formations, schists and metaquartzites and siliciclastics of the Precambrian Iron Ore Group (Saha et al., 1994; Sharma, 1994). The iron ore of Noamundi-Koira can be divided into seven categories (Van Schalkwyk and Beukes 1986). They are massive, hard laminated, soft laminated, martite-goethite, powdery blue dust and lateritic ore. Although it is more or less accepted that the parent rock of iron ore is banded hematite jasper (BHJ), the presence of disseminated martite in BHJ suggests that the magnetite of protore was converted to martite. In the study area, possible genesis of high-grade hematite ore could have occurred in two steps. In the first stage, shallow, meteoric fluids affect primary, unaltered BIF by simultaneously oxidizing magnetite to martite and replacing quartz with hydrous iron oxides. In the second stage of supergene processes, deep burial upgrades the hydrous iron oxides to microplaty hematite. Removal of silica from BIF and successive precipitation of iron resulted in the formation of martite- goethite ore. Soft laminated ores were formed where precipitation of iron was partial or absent. The leached out space remains with time and the interstitial space is generally filled

  9. The Gas Hills uranium district and some probable controls for ore deposition

    USGS Publications Warehouse

    Zeller, Howard Davis

    1957-01-01

    Uranium deposits occur in the upper coarse-grained facies of the Wind River formation of Eocene age in the Gas Hills district of the southern part of the Wind River Basin. Some of the principal deposits lie below the water table in the unoxidized zone and consist of uraninite and coffinite occurring as interstitial fillings in irregular blanket-like bodies. In the near-surface deposits that lie above the water table, the common yellow uranium minerals consist of uranium phosphates, silicates, and hydrous oxides. The black unoxidized uraninite -coffinite ores show enrichment of molybdenum, arsenic, and selenium when compared to the barren sandstone. Probable geologic controls for ore deposits include: 1) permeable sediments that allowed passage of ore-bearing solutions; 2) numerous faults that acted as impermeable barriers impounding the ore -bearing solutions; 3) locally abundant pyrite, carbonaceous material, and natuial gas containing hydrogen sulfide that might provide a favorable environment for precipitation of uranium. Field and laboratory evidence indicate that the uranium deposits in the Gas Hills district are very young and related to the post-Miocene to Pleistocene regional tilting to the south associated with the collapse of the Granite Mountains fault block. This may have stopped or reversed ground water movement from a northward (basinward) direction and alkaline ground water rich in carbonate could have carried the uranium into the favorable environment that induced precipitation.

  10. The origin of Cu/Au ratios in porphyry-type ore deposits.

    PubMed

    Halter, Werner E; Pettke, Thomas; Heinrich, Christoph A

    2002-06-01

    Microanalysis of major and trace elements in sulfide and silicate melt inclusions by laser-ablation inductively coupled plasma mass spectrometry indicates a direct link between a magmatic sulfide liquid and the composition of porphyry-type ore deposits. Copper (Cu), gold (Au), and iron (Fe) are first concentrated in a sulfide melt during magmatic evolution and then released to an ore-forming hydrothermal fluid exsolved late in the history of a magma chamber. The composition of sulfide liquids depends on the initial composition and source of the magma, but it also changes during the evolution of the magma in the crust. Magmatic sulfide melts may exert the dominant direct control on the economic metal ratios of porphyry-type ore deposits. PMID:12052953

  11. Study of ore deposits by the dynamic systems investigation methods: 1. Calculation of the correlation dimension

    NASA Astrophysics Data System (ADS)

    Rodkin, M. V.; Shatakhtsyan, A. R.

    2015-05-01

    The method for calculating the fractal correlation dimension is applied for analyzing the data on the locations of large and extralarge ore deposits. The approach implemented in this study differs by a few of important points from that commonly used, e.g., in the calculations of the correlation dimension for a set of the epicenters (hypocenters) of the earthquakes. Firstly, we demonstrate the possibility and advisability of obtaining different dimension estimates for different spatial scales. Such a separation turned out to be useful in distinguishing between the regularities in the location of ore deposits on the scale of an ore cluster, ore province, and entire continent. Secondly, we introduce a new notion, a mixed correlation dimension, and use it for different types of the objects (e.g., Au and Ag). The standard formula for calculating the correlation dimension is trivially generalized on this case. It is shown that the values of the correlation dimension can be lower and higher than the dimension of the hosting medium. The cases when the correlation dimension is higher than that of the hosting medium are interpreted as a "mutual repulsion" of the deposits of the two mentioned types. In contrast, the small correlation dimensions indicate that the deposits of the corresponding types tend to have spatially close locations. The calculations are conducted for the spherical Earth. The method is applied to the data on the large and extralarge world-class ore deposits from the Largest Mineral Deposits of the World (LMDs) geoinformation system (GIS). Different patterns of the studied behavior are illustrated by the model examples.

  12. Structural controls on the formation and transposition of the Malmberget apatite iron ore deposit, northern Sweden

    NASA Astrophysics Data System (ADS)

    Bauer, Tobias; Sarlus, Zimer; Andersson, Joel; Kearney, Thomas

    2015-04-01

    The Malmberget mine is the World's second largest underground iron ore operation. It is composed of approximately 20 apatite iron ore bodies, whereas 13 ore bodies with 5-245 Mt each are presently mined. The massive magnetite ore is hosted within volcanic and volcaniclastic rocks. Host rocks within the entire area were subject to intense hydrothermal alteration. The ore reserves at beginning of 2012 totalled 290 Mt at 44 percent iron. Together with Kiruna and Svappavaara these three deposits stands for more than 90 percent of the iron ore production in Europe. An on-going collaborative research project aims at unravelling the structural geometries, relationships and control on ore formation and ore body transposition at different scales in the Gällivare district in general and in the Malmberget mine in particular. Recent results show the three-dimensional crustal architecture of the Malmberget deposit which has undergone at least two separate deformation events. The first deformation event (D1) resulted in the formation of a strong and penetrative cleavage (S1) forming a varyingly intense banding within the volcanic rocks. The D1-event coincides with the amphibolite facies peak metamorphism in the area. Distinct, biotite-rich D1 shear zones are spatially related to the majority of the S1-parallel massive magnetite bodies. These D1 shear zones seem to be responsible for a strong strain partitioning during D1. A second compressional event (D2) resulted in open to close folding of the S1 fabric, the D1 shear zones and the related ore bodies. The result is an asymmetric F2-synform with moderately south-west-plunging fold axis. Furthermore, distinct D2 high strain zones are responsible for local transposition of S1 fabrics, tight to isoclinal folding and channeling or re-mobilization of hydrothermal alteration minerals. Both deformation events are accompanied by syn- and late-tectonic granitic intrusions forming both foliated and unfoliated and commonly boudinaged

  13. Ore-forming processes in the Drazhnoe gold-quartz deposit (Eastern Yakutia, Russia)

    NASA Astrophysics Data System (ADS)

    Aristov, V. V.; Prokofiev, V. Yu.; Imamendinov, B. N.; Kryazhev, S. G.; Alekseev, V. Yu.; Sidorov, A. A.

    2015-09-01

    Themobarogeochemical investigations revealed that quartz from the Drazhnoe deposit was formed in mesothermal conditions at depths of 3-4 km from carbon dioxide-water fluids with wide salinity variations and an admixture of methane. Several types of fluids are distinguishable on the basis of the composition of extracts: hydrocarbonate-sodium, highly diluted, and late sulfate-hydrocarbonate-sodium with elevated salinity. Ore minerals precipitated in the thermostatic environments against the background of fluid heterogenization due to a probably significant pressure drop and mixing of different solutions. Metamorphic processes related to the early collision stage provided no substantial impact on the composition and potential of gold ore mineralization.

  14. Bio-mineralization and potential biogeochemical processes in bauxite deposits: genetic and ore quality significance

    NASA Astrophysics Data System (ADS)

    Laskou, Magdalini; Economou-Eliopoulos, Maria

    2013-08-01

    The Parnassos-Ghiona bauxite deposit in Greece of karst type is the 11th largest bauxite producer in the world. The mineralogical, major and trace-element contents and δ18O, δ12C, δ34S isotopic compositions of bauxite ores from this deposit and associated limestone provide valuable evidence for their origin and biogeochemical processes resulting in the beneficiation of low grade bauxite ores. The organic matter as thin coal layers, overlying the bauxite deposits, within limestone itself (negative δ12C isotopic values) and the negative δ34S values in sulfides within bauxite ores point to the existence of the appropriate circumstances for Fe bio-leaching and bio-mineralization. Furthermore, a consortium of microorganisms of varying morphological forms (filament-like and spherical to lenticular at an average size of 2 μm), either as fossils or presently living and producing enzymes, is a powerful factor to catalyze the redox reactions, expedite the rates of metal extraction and provide alternative pathways for metal leaching processes resulting in the beneficiation of bauxite ore.

  15. Formation conditions of high-grade beryllium ore at the Snezhnoe deposit, Eastern Sayan

    NASA Astrophysics Data System (ADS)

    Damdinova, L. B.; Smirnov, S. Z.; Damdinov, B. B.

    2015-11-01

    The structure and formation conditions of beryllium ore, as well as the fluorite and fluorite-microcline bodies at the Snezhnoe deposit in Eastern Sayan have been revealed and studied using geological, mineralogical, petrographic, and thermobarogeochemical methods. It has been established that the stringer and breccia ores were largely formed as a result of filling of open cavities (voids and fissures) rather than of replacement of low-Ca host rocks. Three types of high-grade ore consist of almost the same set of minerals in different proportions. Calcium and fluorine necessary for fluorite formation in three main types of ore have been supplied with the near-neutral high-F solutions (type I) and the solutions of elevated alkalinity (II, III types) in the form of complex compounds like Na2CaF 4 0 , Ca2Cl3F0, etc. Beryllium minerals were deposited within a temperature interval from ≥340 to 230°C due to the cooling of the solution and binding of F into fluorite with the breakdown of Be fluorine complexes and intense deposition of Be minerals.

  16. REE Mineralization in Kiruna-type Magnetite-Apatite Ore Deposits: Magmatism and Metasomatism

    NASA Astrophysics Data System (ADS)

    Harlov, D. E.

    2015-12-01

    ,K)Cl) fluids originating in the surrounding country rock or as fluids associated with metamorphic events such as regional albitization or actinolization. The abundance of (Y+REE)-bearing minerals in these deposits suggests that in addition to being mined for their Fe ore, they could also be economically mined for (Y+REE) as well.

  17. Discrimination of iron ore deposits of granulite terrain of Southern Peninsular India using ASTER data

    NASA Astrophysics Data System (ADS)

    Rajendran, Sankaran; Thirunavukkarasu, A.; Balamurugan, G.; Shankar, K.

    2011-04-01

    This work describes a new image processing technique for discriminating iron ores (magnetite quartzite deposits) and associated lithology in high-grade granulite region of Salem, Southern Peninsular India using visible, near-infrared and short wave infrared reflectance data of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Image spectra show that the magnetite quartzite and associated lithology of garnetiferrous pyroxene granulite, hornblende biotite gneiss, amphibolite, dunite, and pegmatite have absorption features around spectral bands 1, 3, 5, and 7. ASTER band ratios ((1 + 3)/2, (3 + 5)/4, (5 + 7)/6) in RGB are constructed by summing the bands representing the shoulders of absorption features as a numerator, and the band located nearest the absorption feature as a denominator to map iron ores and band ratios ((2 + 4)/3, (5 + 7)/6, (7 + 9)/8) in RGB for associated lithology. The results show that ASTER band ratios ((1 + 3)/2, (3 + 5)/4, (5 + 7)/6) in a Red-Green-Blue (RGB) color combination identifies the iron ores much better than previously published ASTER band ratios analysis. A Principal Component Analysis (PCA) is applied to reduce redundant information in highly correlated bands. PCA (3, 2, and 1 for iron ores and 5, 4, 2 for granulite rock) in RGB enabled the discrimination between the iron ores and garnetiferrous pyroxene granulite rock. Thus, this image processing technique is very much suitable for discriminating the different types of rocks of granulite region. As outcome of the present work, the geology map of Salem region is provided based on the interpretation of ASTER image results and field verification work. It is recommended that the proposed methods have great potential for mapping of iron ores and associated lithology of granulite region with similar rock units of granulite regions of Southern Peninsular India. This work also demonstrates the ability of ASTER's to provide information on iron ores, which is valuable

  18. Lead and zinc dust depositions from ore trains characterised using lead isotopic compositions.

    PubMed

    Kristensen, L J; Taylor, M P; Morrison, A L

    2015-03-01

    This study investigates an unusual source of environmental lead contamination - the emission and deposition of lead and zinc concentrates along train lines into and out of Australia's oldest silver-lead-zinc mine at Broken Hill, Australia. Transport of lead and zinc ore concentrates from the Broken Hill mines has occurred for more than 125 years, during which time the majority was moved in uncovered rail wagons. A significant amount of ore was lost to the adjoining environments, resulting in soil immediately adjacent to train lines elevated with concentrations of lead (695 mg kg(-1)) and zinc (2230 mg kg(-1)). Concentrations of lead and zinc decreased away from the train line and also with depth shown in soil profiles. Lead isotopic compositions demonstrated the soil lead contained Broken Hill ore in increasing percentages closer to the train line, with up to 97% apportioned to the mined Broken Hill ore body. SEM examination showed ceiling dusts collected from houses along the train line were composed of unweathered galena particles, characteristic of the concentrate transported in the rail wagons. The loss of ore from the uncovered wagons has significantly extended the environmental footprint of contamination from local mining operations over an area extending hundreds of kilometres along each of the three train lines. PMID:25627173

  19. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits

    NASA Astrophysics Data System (ADS)

    Deditius, Artur P.; Reich, Martin; Kesler, Stephen E.; Utsunomiya, Satoshi; Chryssoulis, Stephen L.; Walshe, John; Ewing, Rodney C.

    2014-09-01

    The ubiquity of Au-bearing arsenian pyrite in hydrothermal ore deposits suggests that the coupled geochemical behaviour of Au and As in this sulfide occurs under a wide range of physico-chemical conditions. Despite significant advances in the last 20 years, fundamental factors controlling Au and As ratios in pyrite from ore deposits remain poorly known. Here we explore these constraints using new and previously published EMPA, LA-ICP-MS, SIMS, and μ-PIXE analyses of As and Au in pyrite from Carlin-type Au, epithermal Au, porphyry Cu, Cu-Au, and orogenic Au deposits, volcanogenic massive sulfide (VHMS), Witwatersrand Au, iron oxide copper gold (IOCG), and coal deposits. Pyrite included in the data compilation formed under temperatures from ∼30 to ∼600 °C and in a wide variety of geological environments. The pyrite Au-As data form a wedge-shaped zone in compositional space, and the fact that most data points plot below the solid solubility limit defined by Reich et al. (2005) indicate that Au1+ is the dominant form of Au in arsenian pyrite and that Au-bearing ore fluids that deposit this sulfide are mostly undersaturated with respect to native Au. The analytical data also show that the solid solubility limit of Au in arsenian pyrite defined by an Au/As ratio of 0.02 is independent of the geochemical environment of pyrite formation and rather depends on the crystal-chemical properties of pyrite and post-depositional alteration. Compilation of Au-As concentrations and formation temperatures for pyrite indicates that Au and As solubility in pyrite is retrograde; Au and As contents decrease as a function of increasing temperature from ∼200 to ∼500 °C. Based on these results, two major Au-As trends for Au-bearing arsenian pyrite from ore deposits are defined. One trend is formed by pyrites from Carlin-type and orogenic Au deposits where compositions are largely controlled by fluid-rock interactions and/or can be highly perturbed by changes in temperature and

  20. Evaluation of feasibility of static tests applied to Küre VMS ore deposits

    NASA Astrophysics Data System (ADS)

    Demirel, Cansu; Çelik Balci, Nurgül; Şeref Sönmez, M.

    2015-04-01

    Küre volcanogenic massive sulfide (VMS) ore deposits have been mined for its copper content for over centuries. However, there is no published data on AMD around Küre VMS ore deposits. This study investigates the sources of acid producing mechanisms in Küre, using field and laboratorial approaches. Geochemical static tests to predict AMD generation are widely applied to mining sites for assessing potential environmental consequences. However, there are well known limitations of these methods particularly resulting from assumptions used for calculations. To test the feasibility of the methods to predict potential of AMD generation of Küre (VMS) copper deposits, for the first time, acid production and neutralization potential of various mine wastes of Küre (VMS) copper deposits were determined. To test our static test results, in situ and laboratory geochemical data were also obtained from the groundwater discharges from Bakibaba underground mining tunnels. Feasibility study showed that, despite a few inconsistencies, static tests were suitable for predicting generation of AMD around Küre copper mining site and reflected well the site conditions. The current study revealed that pulp density, defined as solid/liquid ratio and used for static tests, is an important limiting factor to predict reliable data for AMD generation. In this study, we also determined surface waters affected by AMD are predicted to have a pH value between 3 and 5, with an average of pH 4. Excessive concentrations of manganese, copper, cobalt and sulfate are also noted with considerable amounts of iron and zinc, which can reach to toxic levels. Moreover, iron and zinc were found to be the controlling the fate of metals by precipitation and co-precipitation, due to their relatively depleted concentrations at redox shifting zones. Key words: Küre pyritic copper ore, Bakibaba mining tunnels, volcanogenic massive sulfide ore deposits, acid production potential, neutralization potential

  1. Prospecting For Magnetite Ore Deposits With A Innovative Sensor's of Unique Fundamentally New Magnetometer.

    NASA Astrophysics Data System (ADS)

    Emelianenko, T. I.; Tachaytdinov, R. S.; Sarichev, V. F.; Kotov, B. V.; Susoeva, G. N.

    After careful study of principles and abilities of all existing magnetmeters of all three revolutions in magnetic prospecting we have come to the conclusion that they cannot solve local guestions of the magnetic prospecting or determine centre coordinates of magnetite ore body before drilling Electromagnetism lows and achievents magnetprospectings and radioelectronics of all 20th century serve as a theoretical base of the "locator". While creating this cardinally new magnetmeter , we borrowed different things from radio-prospectors, magnetprospectors, wireless operators and combined all of them while creating the "locators''. The "locators' construction is bas ed on the "magnetic intensification" principle ,owing to which this "locators" are characterised by hight sensitiveness and ability to determine centers of even little commercial magnetite ore deposits with relatively weak magnetic anomalies. The main advantage of the "locators" over existing ones is that it can solve local questions determine centre coordinates. A remarkably simple locator construction determine direction of the on-surface measurings towards the ore body centre and gives approximate prognosis resourses before/withour/ drilling. The "locators" were worked out for the first time in history , they have 2 licences. The fundamental design and drawbacks of the existing magnetometers have been inherited from the original magnetometre dating back two or three hundred years. The developers of the existing magnetometres have all gone along the same well- beaten track of replacing the primitive sensor in the form of a piece of ore hung on a string at first by an arrow sensor and later by magnetically oriented protons and quanta, with amplification of the sensors' OUTPUT signal. Furthermore, all the existing magnetometres are imperfect in that they, lacking the directivity of the ground-level magnetic measurements, only record the overall magnetic vector field generated by all the ore bodies around the

  2. Metallogeny of the Great Basin: crustal evolution, fluid flow, and ore deposits

    USGS Publications Warehouse

    Hofstra, Albert H.; Wallace, Alan R.

    2006-01-01

    The Great Basin physiographic province in the Western United States contains a diverse assortment of world-class ore deposits. It currently (2006) is the world's second leading producer of gold, contains large silver and base metal (Cu, Zn, Pb, Mo, W) deposits, a variety of other important metallic (Fe, Ni, Be, REE's, Hg, PGE) and industrial mineral (diatomite, barite, perlite, kaolinite, gallium) resources, as well as petroleum and geothermal energy resources. Ore deposits are most numerous and largest in size in linear mineral belts with complex geology. U.S. Geological Survey (USGS) scientists are in the final year of a research project initiated in the fall of 2001 to increase understanding of relations between crustal evolution, fluid flow, and ore deposits in the Great Basin. Because of its substantial past and current mineral production, this region has been the focus of numerous investigations over the past century and is the site of ongoing research by industry, academia, and state agencies. A variety of geoinformatic tools was used to organize, reinterpret, and display, in space and time, the large amounts of geologic, geophysical, geochemical, and hydrologic information deemed pertinent to this problem. This information, in combination with concentrated research on (1) critical aspects of the geologic history, (2) an area in northern Nevada that encompasses the major mineral belts, and (3) important mining districts and deposits, is producing new insights about the interplay between key tectonic events, hydrothermal fluid flow, and ore genesis in mineral belts. The results suggest that the Archean to Holocene history of the Great Basin was punctuated by several tectonic events that caused fluids of different origins (sea water, basinal brine, meteoric water, metamorphic water, magmatic water) to move through the crust. Basement faults reactivated during these events localized deformation, sedimentation, magmatism, and hydrothermal fluid flow in overlying

  3. The formation of ore mineral deposits on the Moon: A feasibility study

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence A.; Lu, Fengxiang

    1992-01-01

    Most of the ore deposits on Earth are the direct result of formation by hydrothermal solutions. Analogous mineral concentrations do not occur on the Moon, however, because of the absence of water. Stratified ore deposits form in layered instrusives on Earth due to fractional crystallization of magma and crystal settling of high-density minerals, particularly chromium in the mineral chromite. We have evaluated the possibility of such mineral deposition on the Moon, based upon considerations of 'particle settling velocities' in lunar vs. terrestrial magmas. A first approximation of Stoke's Law would seem to indicate that the lower lunar gravity (1/6 terrestrial) would result in slower crystal settling on the Moon. However, the viscosity of the silicate melt is the most important factor affecting the settling velocity. The viscosities of typical lunar basaltic melts are 10-100 times less than their terrestrial analogs. These lower viscosities result from two factors: (1) lunar basaltic melts are typically higher in FeO and lower in Al2O3, Na2O, and K2O than terrestrial melts; and (2) lunar igneous melts and phase equilibria tend to be 100-150 C higher than terrestrial, largely because of the general paucity of water and other volatile phases on the Moon. Therefore, particle settling velocities on the Moon are 5-10 times greater than those on Earth. It is highly probable that stratiform ore deposits similar to those on Earth exist on the Moon. The most likely ore minerals involved are chromite, ilmenite, and native FeNi metal. In addition, the greater settling velocities of periodotite in lunar magmas indicate that the buoyancy effects of the melt are less than on Earth. Consequently, the possibility is considerably less than on Earth of deep-seated volcanism transporting upper mantle/lower crustal xenoliths to the surface of the Moon, such as occurs in kimberlites on Earth.

  4. Investigation of LANDSAT imagery on correlations between ore deposits and major shield structures in Finland

    NASA Technical Reports Server (NTRS)

    Tuominen, H. V. (Principal Investigator); Kuosmanen, V.

    1977-01-01

    The author has identified the following significant results. Several regional lineaments appear to correlate with the distribution of ore deposits and showings. Combined study of LANDSAT summer and winter mosaics and color composites of geological, geomorphological, and geophysical maps makes the correlation more perceptible. The revealed pattern of significant lineaments in northern Finland is fairly regular. The most significant lineaments seen in LANDSAT mosaics are not detectable in single images.

  5. Evolution of volcanic and tectonic features in caldera settings and their importance in the localization of ore deposits

    USGS Publications Warehouse

    Rytuba, J.J.

    1994-01-01

    Many calderas are located along regionally important fault zones that are intermittently active before and after the caldera cycle. In mineralized calderas, the ore deposits are controlled by structures developed during caldera formation and by regional faults which intersect and reactivate the caldera-related structures. The paper discusses the importance of the different stages of caldera formation in connection with the localization of ore deposits. -from Author

  6. Manganese deposits in northeastern European Russia and the Urals: Isotope geochemistry, genesis, and evolution of ore formation

    NASA Astrophysics Data System (ADS)

    Kuleshov, V. N.; Brusnitsyn, A. I.; Starikova, E. V.

    2014-09-01

    Based on new data on the lithology, mineralogy, chemistry, and isotopic composition of manganese carbonate ores and rocks at the deposits and occurrences in the Novaya Zemlya Archipelago, the Pai-Khoi, and the Urals, as well as using data from the literature, the main Phanerozoic basins of manganese deposition have been established in the geological history of Laurasia, Pangea, and Siberian paleocontinents. The formation conditions of manganese ore gradually changed from hydrothermal-sedimentary in the Middle Paleozoic to sedimentary-diagenetic in Mesozoic and Cenozoic. The ore was also formed under catagenetic conditions. Carbon of oxidized organic matter plays a substantial role in the formation of manganese carbonates.

  7. Characterization of U ore from a roll-front U deposit: Implications of dominant U-Ti mineral for ore genesis and post solution-mining U immobilization

    NASA Astrophysics Data System (ADS)

    Brown, S. T.; Basu, A.; Christensen, J. N.; Reimus, P. W.; Heikoop, J. M.; WoldeGabriel, G. W.; Hartmann, M.; DePaolo, D. J.

    2015-12-01

    Reductive immobilization of dissolved U(VI) is an important process that gives rise to roll-front U deposits as well as offers a remediation strategy after in situ recovery (ISR) mining of roll-fronts by oxidative dissolution of the U ore. About 25% of the global and over 90% of all U resources in the United States consist of roll-front deposits. Accordingly, ~50% of global U mining and almost all current U mining in the United States is ISR mining. Therefore, it is important to identify the U immobilization pathways for an improved understanding of the U ore genesis and postmining U(VI) remediation. Here, we characterize (XRD, XRF, SEM/EDS, QEMSCAN) the U ore from a roll-front U deposit and sediments downgradient of the ore from an ISR site at Rosita, TX, USA. The dominant U mineral in Rosita U ore is brannerite (nominally U4+Ti2O6, up to 0.032 wt%), followed by coffinite and U-oxides. The U mineralized sand is composed of quartz (41-53%), calcite (15-30%), plagioclase (11-19%), microcline (2-9%), clinoptilolite (0.5-7%) with minor amounts of pyrite/marcasite (2-7%) and clays/micas (1-4%), and very little organic C (<0.1%). Ore zone samples contain minor amounts (<2%) of hematite, V-oxides/V-Ti-Fe-oxides and sulfidized Fe-Ti oxides with variable Fe, Ti and S ratios locally hosting low levels of U. The dominant sulfide mineral is marcasite. We observe a complex relationship between U-Ti minerals and sulfide/silicate phases where U minerals occur as inclusions, irregularly developed veins or intergrowths. Except for the U concentrations, the downgradient sediments are compositionally similar to the ore and contain abundant smectite/illite (7-45%). The predominance of brannerite implies direct reduction of U(VI) on surfaces of reduced Fe-Ti oxides as a major ore-forming mechanism. Our results reveal an as yet unidentified mechanism of ore genesis that differs from the current model that presupposes the sulfidized Fe-Ti oxides as the main reductant of U

  8. Palaeoproterozoic metavolcanic and metasedimentary succession hosting the Dannemora iron ore deposits, Bergslagen region, Sweden

    NASA Astrophysics Data System (ADS)

    Dahlin, P.

    2012-04-01

    The Dannemora inlier constitutes some of the best preserved primary structures and textures in the metavolcanic and metasedimentary rocks in the Bergslagen region. The aim for this study was to define and interpret the primary textures and deposition environment to obtain a better understanding of the palaeoenvironment in which the Dannemora iron ore deposit formed. In addition, the region has been subjected to at least two fold episodes therefore the establishment of stratigraphy and younging directions were crucial for structural interpretations. The Bergslagen region, located in the south-central Sweden, represents a back-arc setting active c. 1.9 Ga and consisted of numerous large calderas, that accommodated pyroclastic deposits of great thicknesses. The Dannemora inlier is composed of the supracrustal the Dannemora Formation, which is dominated by of metavolcanic rocks and subordinated by marble. The succession is 700-800 m and is divided into a lower and an upper member. The latter hosts the second largest iron ore deposit in the Bergslagen region. The ore is hosted by manganiferous skarn and dolomitic carbonate (marble) and is situated within uppermost part of the upper member positioned in an isoclinal syncline. From reflection seismic imaging and 3-D processing, the ore has been interpreted to reach depths of c. 2000 m. The presence of an anticline west of the ore bearing syncline is suggested by the geochemical similarities of rock units. Undisturbed layers of ash-siltstone with normal grading and fluid-escape structures, units of pyroclastic density currents and ash-fall in the eastern part of the Dannemora inlier indicate subaqueous deposition below wave base of the upper member. Reworking of the volcaniclastic deposits is evident in e.g. channels and cross-bedding, on the other hand, implies deposition above wave base of the upper member in the central part of Dannemora inlier. The thickness of the marble in the eastern part is c. 80 m and in the

  9. Ore petrology and geochemistry of Tertiary gold telluride deposits of the Colorado mineral belt

    SciTech Connect

    Saunders, J.A.; Romberger, S.B.

    1985-01-01

    Epithermal gold telluride deposits from the Colorado mineral belt share a number of similarities: relationship to alkalic stocks; high fluorine and CO/sub 2/ content; and similar paragenesis. Petrography of deposits in the Jamestown, Cripple Creek, and La Plata districts has resulted in a composite paragenesis: early Fe-Cu-Pb-Zn sulfides + hematite; tetrahedrite; high Te tellurides; low Te tellurides; late native gold. Fluid inclusion studies suggest telluride deposition occurred below 200/sup 0/C from low salinity. Gangue and alteration mineralogy indicates the ore fluids were near neutral pH during telluride deposition. The presence of hematite and locally barite suggest relatively oxidizing conditions. Evaluation of thermodynamic stabilities of tellurides and aqueous tellurium species indicates that progressive oxidation is consistent with the observed ore mineral paragenesis. Available data on gold bisulfide and chloride complexes suggest neither were important in the transport of gold in these systems. Thermodynamic data suggest the ditelluride ion (Te/sub 2//sup 2 -/) predominates in the range of inferred physiochemical conditions for the transport and deposition of gold in these systems. Inferred complexes such as AuTe/sub 2//sup -/ could account for the gold transport, and oxidation would be the most effective mechanism of precipitation of gold telluride or native gold. Published data suggest the associated alkalic stocks may be the ultimate source of the metals, since they are enriched in Au, Ag, Te, As, and Bi.

  10. Origin of high-grade gold ore, source of ore fluid components, and genesis of the Meikle and neighboring Carlin-type deposits, Northern Carlin Trend, Nevada

    USGS Publications Warehouse

    Emsbo, P.; Hofstra, A.H.; Lauha, E.A.; Griffin, G.L.; Hutchinson, R.W.

    2003-01-01

    The Meikle mine exploits one of the world's highest grade Carlin-type gold deposits with reserves of ca. 220 t gold at an average grade of 24.7 g/t. Locally, gold grades exceed 400 g/t. Several geologic events converged at Meikle to create these spectacular gold grades. Prior to mineralization, a Devonian hydrothermal system altered the Bootstrap limestone to Fe-rich dolomite. Subsequently the rocks were brecciated by faulting and Late Jurassic intrusive activity. The resulting permeability focused flow of late Eocene Carlin-type ore fluids and allowed them to react with the Fe-rich dolomite. Fluid inclusion data and mineral assemblages indicate that these fluids were hot (ca. 220??C),of moderate salinity (400 g/t. Petrographic observations, geochemical data, and stable isotope results from the Meikle mine and other deposits at the Goldstrike mine place important constraints on genetic models for Meikle and other Carlin-type gold deposits on the northern Carlin trend. The ore fluids were meteoric water (??D = -135???, ??18O = -5???) that interacted with sedimentary rocks at a water/rock ratio of ca. 1 and temperatures of ca. 220??C. The absence of significant silicification suggests that there was little cooling of the ore fluids during mineralization. These two observations strongly suggest that ore fluids were not derived from deep sources but instead flowed parallel to isotherms. The gold was transported by H2S (??34S = 9???), which was derived from Paleozoic sedimentary rocks. The presence of auriferous sedimentary exhalative mineralization in the local stratigraphic sequence raises the possibility that preexisting concentrations of gold contributed to the Carlin-type deposits. Taken together our observations suggest that meteoric water evolved to become an ore fluid by shallow circulation through previously gold- and sulfur-enriched rocks. Carlin-type gold deposits formed where these fluids encountered permeable, reactive Fe-rich rocks.

  11. Seeking the mantle contribution for the formation of giant ore deposits: Contemporaneous alkaline lamproites and carbonatites in the Kalmakyr and Muruntau ore districts, Tienshan, Uzbekistan

    NASA Astrophysics Data System (ADS)

    Seltmann, Reimar; Choulet, Flavien

    2014-05-01

    The decline in discoveries of ore deposits contrasted by the rising demand for e-tech metals requires the global mining industry to continuously seek innovation in exploration. Unravelling the source of metals is among the crucial questions in exploration targeting and geologists have often had to recourse to indirect determinations based on the nature of the magma conveying the metals. The relative contributions of mantle and crust in metallogenic processes and the origin of the magmas from either shallow or deep mantle are not fully understood in the current models of ore genesis. To help to resolve this dilemma, research must establish the link between anorogenic (within-plate) and orogenic processes by using a holistic approach featuring crustal processes, mantle dynamics and crust-mantle interactions that may contribute to the magma fertilization. To achieve this, our study focuses on indicators for the involvement of deep-mantle intrusions (lamproites, lamprophyres, etc.), which have the potential to encapsulate pristine samples of the mantle (xenoliths) during magma ascent [1,2]. The Tienshan belt hosting many giant ore deposits is quite exemplary for understanding mantle-crust interactions and identifying the nature of mantle contribution to ore systems. Sr-Nd-Hf-Pb isotope systematics on granitoids [3] showed a variation of crustal to mixed signatures, indicating involvement of both older crustal sources and mantle-derived material, but the mantle source is not clearly assessed. As objects for our case study in Uzbekistan we choose the Kalmakyr Cu-Au porphyry deposit (~ 315 Ma; Chatkal-Kurama continental arc of Middle Tienshan) and the Muruntau orogenic Au deposit (~290 Ma, Turkestan-Alai / Kyzylkum accretionary complex of South Tienshan) to investigate the impact of associated alkaline magmas on the ore-bearing intrusions and mineralization. Field observations and geochronological data shed light on the spatial and temporal relationships between the

  12. The world-class Jinding Zn-Pb deposit: ore formation in an evaporite dome, Lanping Basin, Yunnan, China

    NASA Astrophysics Data System (ADS)

    Leach, David L.; Song, Yu-Cai; Hou, Zeng-Qian

    2016-07-01

    The Jinding Zn-Pb sediment-hosted deposit in western Yunnan, China, is the fourth largest Zn deposit in Asia. Based on field observations of the ore textures, breccias, and the sandstone host rocks, the ores formed in a dome that was created by the diapiric migration of evaporites in the Lanping Basin during Paleogene deformation and thrust loading. Most of the ore occurs in sandstones that are interpreted to be a former evaporite glacier containing a mélange of extruded diapiric material, including breccias, fluidized sand, and evaporites that mixed with sediment from a fluvial sandstone system. A pre-ore hydrocarbon and reduced sulfur reservoir formed in the evaporite glacier that became the chemical sink for Zn and Pb in a crustal-derived metalliferous fluid. In stark contrast to previous models, the Jinding deposit does not define a unique class of ore deposits; rather, it should be classified as MVT sub-type hosted in a diapiric environment. Given that Jinding is a world-class ore body, this new interpretation elevates the exploration potential for Zn-Pb deposit in other diapir regions in the world.

  13. Paleomagnetic and mineral magnetic studies of zinc-lead ore deposits in the Metaline (Washington state, USA) and Midlands (Ireland) ore fields

    NASA Astrophysics Data System (ADS)

    Pannalal, Shanmugam Johari

    Carbonate-hosted Zn-Pb deposits of the Metaline (USA) and Irish Midlands (Ireland) ore fields exhibit features of both MVT and SEDER deposits, and therefore, play an important role in the debate over genetic models for MVT - SEDER deposits, including the structural controls on ore mineralization, syngenetic versus epigenetic models, and the origin and migration pathways for hydrothermal fluids. The genetic controversy arises largely because of the lack of direct dates on mineralization. Paleomagnetic analyses on samples of host rock and ore mineralization from 38 sites (400 specimens) in the Metaline Zn-Pb district, Washington (USA), using the known thermal history and the paleoarc method of paleomagnetic dating, indicate coeval postfolding magnetizations acquired during the Middle Jurassic (166+/-6 Ma), in the waning stages of the Nevadan Orogeny. The thermal (Th) and alternating field (AF) step demagnetization, saturation isothermal anaylses (SIRM), and artificial specimens' tests show that the characteristic remanent magnetizations (ChRM) is carried mostly by pseudosingle (PSD) to single domain (SD) pyrrhotite that records a primary chemical remanent magnetization (CRM) in ore and a secondary ChRM in host specimens. Furthermore, the paleomagnetic Middle Jurassic age suggests an epigenetic origin for ore formation of the Zn-Pb mineralization at the Pend Oreille Mine that coincides with the timing of cooling from the regional Nevadan orogenic heating episode. Paleomagnetic analyses of the least thermally affected (conodont alteration indices (CAI) of <3) Lower Carboniferous rocks at 18 sites (231 specimens) from Northern Ireland indicate posttilting ChRMs in magnetite and pyrrhotite that record a secondary CRM that was acquired ˜3 to 4 Ma after limestone deposition. Also, paleomagnetic analyses of host rock and ore specimens in 46 sites (705 specimens) from the Galmoy and Lisheen Zn-Pb deposits from the Irish Midlands give stable postfolding ChRM, that reside in

  14. The Granites gold deposits, Northern Territory, Australia: evidence for an early syn-tectonic ore genesis

    NASA Astrophysics Data System (ADS)

    Adams, G. J.; Both, R. A.; James, P.

    2007-01-01

    The ore deposits of The Granites goldfield are shear-hosted within Palaeoproterozoic amphibolite facies metasedimentary rocks in the Tanami Region, Northern Territory, Australia. The ore bodies are located within a 5- to 35-m thick sequence of steeply dipping unit of metamorphosed iron-rich metasedimentary rocks. Deformation at The Granites was complex and is characterized by five successive deformation phases (D1-5). Shear veins (central and oblique) are the dominant type of vein geometry, with minor development of extensional veins and reverse-fault related veins. Four generations of syn-tectonic veins, corresponding to D1, D3, D4, and D5, have been recognized and are comprised of quartz, quartz-carbonate, calc-silicate, and calcite. In addition, two generations of disseminated sulfide-arsenide mineralization, dominated by pyrrhotite, arsenopyrite, and loellingite, with minor pyrite, chalcopyrite and rare marcasite, formed syn-D1 and syn- to post-D3. Textural and structural evidence indicates deposition of gold was contemporaneous with the syn-D1 veins and sulfide-arsenide mineralization. Four hydrothermal phases are proposed for the formation of the veins and disseminated sulfide-arsenide assemblages. The first phase (D1) was responsible for transport and deposition of the majority of the gold. Minor remobilization and deposition of gold occurred during the D3 and D4 phases. Little is known about the nature of the D1 ore fluid, although a relatively low sulfur content is indicated by the assemblage pyrrhotite-arsenopyrite-loellingite+rare pyrite. The growth of amphibolite facies metamorphic minerals andalusite and almandine garnet during D1 indicates a high temperature for the fluid. The D3 hydrothermal phase coincided with peak metamorphism. D4 fluids were hypersaline, high temperature, CO2-poor, and H2S-poor.

  15. Age of uranium ores at Ranger and Jabiluka unconformity vein deposits, Northern Territory, Australia

    SciTech Connect

    Ludwig, K.R.; Grauch, R.I.; Nutt, C.J.; Frishman, D.; Nash, J.T.; Simmons, K.R.

    1985-01-01

    The Ranger and Jabiluka uranium deposits are the largest in the Alligator Rivers Uranium Field (ARUF), which contains at least 20% of the world's low-cost uranium reserves. Ore occurs in early Proterozoic metasediments, below an unconformity with sandstones of the 1.65 Ga Kombolgie Formation. This study uses U-Pb isotope data from over 60 whole-rock drill core samples that contained a variety of mineral assemblages and textures. Data for Ranger samples indicate a well-defined age of 1.74 +/-.02 Ga. This 1.74 Ga age is distinctly pre-Kombolgie, so the Ranger deposit cannot have been formed by processes requiring its presence. This Ranger age is consistent, however, with mineralization related to heating associated with either the emplacement of early post-metamorphic granites, or possibly with intrusion of the nearby Oenpelli Dolerite. In contrast, data for the least-altered Jabiluka ores yield a concordia-intercept age of 1.44 +/-.02 Ga--significantly younger than the Ranger age, and also younger than the Komobolgie. This age may correspond to a regional thermal event, as indicated both by mafic dikes of roughly this age and a zircon lower-intercept age from a nearby granite-gneiss. Thus, together with the well-defined approx.900 Ma age of ores at the Nabarlek deposit, there are at least 3 distinct periods of major U-mineralization in the ARUF. Data for both Ranger and Jabiluka indicate the same, profound isotopic disturbance at some time in the interval of 0.4-0.6 Ga. Possibly this time corresponds to the development of basins and associated basalt flows to the W and SW, a suggested by Crick et. al. (1980).

  16. Chemical Equilibrium of the Dissolved Uranium in Groundwaters From a Spanish Uranium-Ore Deposit

    SciTech Connect

    Garralon, Antonio; Gomez, Paloma; Turrero, Maria Jesus; Buil, Belen; Sanchez, Lorenzo

    2007-07-01

    The main objectives of this work are to determine the hydrogeochemical evolution of an uranium ore and identify the main water/rock interaction processes that control the dissolved uranium content. The Mina Fe uranium-ore deposit is the most important and biggest mine worked in Spain. Sageras area is located at the north part of the Mina Fe, over the same ore deposit. The uranium deposit was not mined in Sageras and was only perturbed by the exploration activities performed 20 years ago. The studied area is located 10 Km northeast of Ciudad Rodrigo (Salamanca) at an altitude over 650 m.a.s.l. The uranium mineralization is related to faults affecting the metasediments of the Upper Proterozoic to Lower Cambrian schist-graywacke complex (CEG), located in the Centro-Iberian Zone of the Hesperian Massif . The primary uranium minerals are uraninite and coffinite but numerous secondary uranium minerals have been formed as a result of the weathering processes: yellow gummite, autunite, meta-autunite, torbernite, saleeite, uranotile, ianthinite and uranopilite. The water flow at regional scale is controlled by the topography. Recharge takes place mainly in the surrounding mountains (Sierra Pena de Francia) and discharge at fluvial courses, mainly Agueda and Yeltes rivers, boundaries S-NW and NE of the area, respectively. Deep flows (lower than 100 m depth) should be upwards due to the river vicinity, with flow directions towards the W, NW or N. In Sageras-Mina Fe there are more than 100 boreholes drilled to investigate the mineral resources of the deposit. 35 boreholes were selected in order to analyze the chemical composition of groundwaters based on their depth and situation around the uranium ore. Groundwater samples come from 50 to 150 m depth. The waters are classified as calcium-bicarbonate type waters, with a redox potential that indicates they are slightly reduced (values vary between 50 to -350 mV). The TOC varies between <0.1 and 4.0 mgC/L and the dissolved

  17. Tectonophysics of hydrothermal ore formation: an example of the Antei Mo-U deposit, Transbaikalia

    NASA Astrophysics Data System (ADS)

    Petrov, V. A.; Rebetsky, Yu. L.; Poluektov, V. V.; Burmistrov, A. A.

    2015-07-01

    The Antei deposit of the southeastern Transbaikalian region is one of the largest uranium mines in Russia. It is hosted by the Late Paleozoic granitic basement of the Streltsovskaya caldera and was formed as a result of Late Mesozoic tectonothermal activity. Vein and stockwork-disseminated molybdenum-uranium mineralization at this deposit is controlled by zones of intense hydrothermal alteration, cataclasis, brecciation, and intense fracturing along steeply dipping faults, which acted as conduits for mineralizing fluids and hosts to the ore bodies. The upper edge of the ore-bearing zone is located at a depth of 400 m, and its lower edge was intersected at a depth of 1300 m from the day surface. The conditions of ore localization were determined using structural-geological and petrophysical studies coupled with numerical modeling of the effects of gravitational body forces at purely elastic and postcritical elastoplastic deformational stages. The dynamics of the tectonic stress field in the rock massif was reconstructed using the results of mapping of morphogenetic and kinematic characteristics of fault and fracture systems, as well as data on petrography and mineralogy of rocks and vein-filling material. It was shown that the fault framework of the deposit was formed in four tectonic stages, three of which took place in the geologic past and one of which reflects recent geologic history. Each tectonic stage was characterized by different parameters of the tectonic stress-strain field, fault kinematics, and conditions of mineral formation. The following types of metasomatic rocks are recognized within the deposit: high-temperature K-feldspar rocks and albitites (formed during the Late Paleozoic as the primary structural elements of a granitic massif) and Late Mesozoic low-temperature preore (hydromicatized rocks), synore (hematite, albite, chlorite, and quartz) and postore (kaolinite-smectite) rocks. The following petrophysical parameters were determined for all

  18. Alunite in the Pascua-Lama high-sulfidation deposit: Constraints on alteration and ore deposition using stable isotope geochemistry

    USGS Publications Warehouse

    Deyell, C.L.; Leonardson, R.; Rye, R.O.; Thompson, J.F.H.; Bissig, T.; Cooke, D.R.

    2005-01-01

    The Pascua-Lama high-sulfidation system, located in the El Indio-Pascua belt of Chile and Argentina, contains over 16 million ounces (Moz) Au and 585 Moz Ag. The deposit is hosted primarily in granite rocks of Triassic age with mineralization occurring in several discrete Miocene-age phreatomagmatic breccias and related fracture networks. The largest of these areas is Brecha Central, which is dominated by a mineralizing assemblage of alunite-pyrite-enargite and precious metals. Several stages of hydrothermal alteration related to mineralization are recognized, including all types of alunite-bearing advanced argillic assemblages (magmatic-hydrothermal, steam-heated, magmatic steam, and supergene). The occurrence of alunite throughout the paragenesis of this epithermal system is unusual and detailed radiometric, mineralogical, and stable isotope studies provide constraints on the timing and nature of alteration and mineralization of the alunite-pyiite-enargite assemblage in the deposit. Early (preore) alteration occurred prior to ca. 9 Ma and consists of intense silicic and advanced argillic assemblages with peripheral argillic and widespread propylitic zones. Alunite of this stage occurs as fine intergrowths of alunite-quartz ?? kaolinite, dickite, and pyrophyllite that selectively replaced feldspars in the host rock. Stable isotope systematics suggest a magmatic-hydrothermal origin with a dominantly magmatic fluid source. Alunite is coeval with the main stage of Au-Ag-Cu mineralization (alunite-pyrite-enargite assemblage ore), which has been dated at approximately 8.8 Ma. Ore-stage alunite has an isotopic signature similar to preore alunite, and ?? 34Salun-py data indicate depositional temperatures of 245?? to 305??C. The ??D and ?? 18O data exclude significant involvement of meteoric water during mineralization and indicate that the assemblage formed from H2S-dominated magmatic fluids. Thick steam-heated alteration zones are preserved at the highest elevations in

  19. Ore formation at the Kupol epithermal gold-silver deposit in northeastern Russia deduced from fluid inclusion study

    NASA Astrophysics Data System (ADS)

    Volkov, A. V.; Prokof'ev, V. Yu.; Savva, N. E.; Sidorov, A. A.; Bayankin, M. A.; Uyutnov, K. V.; Kolova, E. E.

    2012-07-01

    The Kupol epithermal gold-silver deposit-the largest of this type of mineralization in northeastern Russia-is situated in the outer zone of the Okhotsk-Chukotka volcanic belt. The results of thermobarogeochemical study of fluid inclusions in quartz from ore veins at the Kupol deposit are compared with the data on the Dvoinoi and Arykvaam deposits. The study of aqueous extracts from fluid inclusions revealed that the chemical compositions of ore-forming fluids at the Dvoinoi and Kupol deposits are similar in most elements. The only substantial difference is that fluids from the Kupol deposit are considerably enriched in sulfate, as is characteristic of the alunite-subtype of epithermal high-sulfidation mineralization. The salinity of aqueous solutions filling inclusions in amethyst and quartz from ore veins at the Kupol and Dvoinoi deposits is two-three times higher than the salinity of fluid inclusions from the barren veins at the Arykvaam occurrence. The data obtained support the hypothesis put forward earlier that fumaroles and solfataras played a part in ore deposition at the Kupol deposit.

  20. 3D Geological Model of Nihe ore deposit Constrained by Gravity and Magnetic Modeling

    NASA Astrophysics Data System (ADS)

    Qi, Guang; Yan, Jiayong; Lv, Qingtan; Zhao, Jinhua

    2016-04-01

    We present a case study on using integrated geologic model in mineral exploration at depth. Nihe ore deposit in Anhui Province, is deep hidden ore deposit which was discovered in recent years, this finding is the major driving force of deep mineral exploration work in Luzong. Building 3D elaborate geological model has the important significance for prospecting to deep or surround in this area, and can help us better understand the metallogenic law and ore-controlling regularity. A 3D geological model, extending a depth from +200m to -1500m in Nihe ore deposit, has been compiled from surface geological map, cross-section, borehole logs and amounts of geological inference. And then the 3D geological models have been given physical property parameter for calculating the potential field. Modelling the potential response is proposed as means of evaluating the viability of the 3D geological models, and the evidence of making small changes to the uncertain parts of the original 3D geological models. It is expected that the final models not only reproduce supplied prior geological knowledge, but also explain the observed geophysical data. The workflow used to develop the 3D geologic model in this study includes the three major steps, as follows: (1) Determine the basic information of Model: Defining the 3D limits of the model area, the basic geological and structural unit, and the tectonic contact relations and the sedimentary sequences between these units. (2) 3D model construction: Firstly, a series of 2D geological cross sections over the model area are built by using all kinds of prior information, including surface geology, borehole data, seismic sections, and local geologists' knowledge and intuition. Lastly, we put these sections into a 3D environment according to their profile locations to build a 3D model by using geostatistics method. (3) 3D gravity and magnetic modeling: we calculate the potential field responses of the 3D model, and compare the predicted and

  1. Understanding Cu release into environment from Kure massive sulfide ore deposits, Kastamonu, NW Turkey

    NASA Astrophysics Data System (ADS)

    Demirel, Cansu; Sonmez, Seref; Balci, Nurgul

    2014-05-01

    Covering a wide range on the earth's crust, oxidation of metal sulfide minerals have vital environmental impacts on the aquatic environment, causing one of the major environmental problems known as acid mine drainage (AMD). Located in the Kastamonu province of the Western Black Sea region, Kure district is one of the major copper mining sites in Turkey. Mining activities in the area heads back to ancient times, such that operation is thought to be started with the Roman Empire. Currently, only the underground mining tunnels of Bakibaba and Asikoy are being operated. Thus, mining heaps and ores of those pyritic deposits have been exposed to the oxidative conditions for so long. As a result of weathering processes of past and recent heaps of the Kure volcanic massive sulfide deposits in addition to the main ore mineral (chalcopyrite), significant amount of metals, especially Cu, are being released into the environment creating undesirable environmental conditions. In order to elucidate Cu release mechanisms from Kure pyritic ore deposits and mining wastes, field and laboratory approaches were used. Surface water and sediment samples from the streams around the mining and waste sites were collected. Groundwater samples from the active underground mining site were also collected. Physical parameters (pH, Eh, T°C, and EC) of water samples were determined in situ and in the laboratory using probes (WTW pH 3110, WTW Multi 9310 and CRISON CM 35). Metal and ion concentrations of the water samples were analysed using ICP-MS and DR 2800 spectrophotometer, respectively. High Cu, Co, Zn and Fe concentrations were determined in the water samples with pH values ranging from 2.9- 4. Cu concentrions ranges from 345 ppm to 36 ppm in the water samples. Consistent with the water samples, high Cu, Fe, Zn and Co were also determined in the sediment samples. Laboratory chalcopyrite oxidation experiments under the conditions representing the field site were set up as biological and

  2. Processes of ore genesis at the world-class Yuchiling molybdenum deposit, Henan province, China

    NASA Astrophysics Data System (ADS)

    Zhang, Juan; Ye, Hui-shou; Zhou, Ke; Meng, Fang

    2014-01-01

    The Yuchiling molybdenum deposit is one of the most significant porphyry molybdenum systems in the eastern Qinling of central China. The mineralization is mainly hosted by a porphyritic granite and associated cryptoexplosive breccia. Hydrothermal alteration minerals include K-feldspar, sericite, pyrite, chlorite, epidote, carbonate, kaolinite, fluorite, and gypsum. Ore minerals are dominated by molybdenite and pyrite, with lesser amounts of chalcopyrite, galena, scheelite, wolframite, ilmenite, leucoxene, native gold, sphalerite, and hematite. The δ34S compositions of sulfide minerals range from -6.0‰ to +4.0‰. The deposit is characterized by four hydrothermal stages: quartz-K-feldspar (stage I), molybdenite-quartz (stage II), pyrite-sericite-quartz (stage III), and quartz-carbonate (stage IV). Microthermometric studies of fluid inclusions show that the fluids evolved gradually during the ore-forming process. Homogenization temperatures, salinities, and minimum pressure estimates for the inclusions from each mineralization stage evolved as follows: (1) stage I: homogenization temperatures = 203.7-525.8 °C, salinities = 2.96-10.49 and 29.66 wt.% NaCl equiv., and minimum pressures = 101.9-196.2 MPa; (2) stage II: homogenization temperatures = 173.6-448.6 °C, salinities = 1.81-9.74 wt.% NaCl equiv., and minimum pressures = 93.1-172.0 MPa; (3) stage III: homogenization temperatures = 130.1-386.0 °C, salinities = 1.40-9.73 and 34.07 wt.% NaCl equiv., and minimum pressures = 95.5-142.5 MPa; (4) stage IV: homogenization temperatures = 170-230 °C and salinities = 0.18-5.71 wt.% NaCl equiv. Various fluid inclusions were observed to contain H2O, CO2, CH4, SO2, C2H2, C2H4, C2H6, and (or) H2S, as well as solids that include halite, sylvite, anhydrite, chalcopyrite, hematite, molybdenite, and jamesonite. The δ18O and δD of the hydrothermal fluids vary from -4.4‰ to +8.5‰ and -81‰ to -61‰, respectively. Microthermometric and stable isotope data indicate that

  3. Fluid mixing and ore deposition during the geodynamic evolution of the Sierra Almagrera (Betics, Spain)

    NASA Astrophysics Data System (ADS)

    Dyja, Vanessa; Tarantola, Alexandre; Hibsch, Christian; Boiron, Marie-Christine; Cathelineau, Michel

    2013-04-01

    Marine and continental intramountaineous basins developed during the Neogene orographic evolution of the Betico-rifan orogenic wedge, as well as the related uplifted ranges within the Sierra Almagrera Metamorphic Core Complexes (MCC). The NNE-SSW striking trans-Alboran transcurrent fault system crosscuts the MCC post-dating the extensional exhumation stages recorded in the metamorphic fabric. Iron ores (± Pb, Cu, Zn) are encountered either as stratabound ore deposits in the Neogene basins or as vein networks crosscutting the metamorphic fabric of graphitic phyllites from the Sierra Almagrera. These Late Miocene ore deposits are related to the activity of the N-S striking Palomares fault segment of the Trans-Alboran fault system. Three sets of quartz veins (Vα, Vαβ and Vβ) and one set of mineralized vein (Vγ, siderite, barite) are distinguished. The Vα and Vαβ respectively are totally or partially transposed into the foliation. The Vβ and Vγ veins are discordant to the foliation. The problem addressed in this study concerns the nature of the fluids involved in the metal deposits and their relationships with the main reservoir fluids, e.g. the deep metamorphic fluids, the basinal fluids, and eventually the recharge meteoric fluids. This study focuses thus on the evolution of the fluids at different stages of ductile-brittle exhumation of the metamorphic ranges (Sierras) and their role during the exhumation and later on in relation with the hydrothermalism and metal deposition at a regional scale. Paleofluids were studied as inclusions in quartz, siderite and barite from veins by microthermometry and Raman spectroscopy, and a stable isotope study is in progress. Earliest fluids recorded in (Vαβ) quartz veins are H2O- NaCl + CaCl2 (17 wt. %) - (traces of CO2, CH4, N2) metamorphic brines trapped at the ductile brittle transition at a minimum trapping temperatures (Th) of 340 °C. Older metamorphic fluids in (Vα) veins were lost during the complete

  4. Relations between ore deposits and granites resulting from low degree of melting of the continental crust

    NASA Astrophysics Data System (ADS)

    Cuney, Michel

    2015-04-01

    Ore deposits present three major types of relations with granites: syn-magmatic mineralization disseminated in the granites themselves (such as rare metal granites or pegmatites), magmatic-hydrothermal mineralization occurring as veins within the granites or in enclosing rocks (such as porphyry type deposits), and deposits generated by hydrothermal fluids of variable origin and occurring within the granites or their vicinity soon or much later than granite emplacement (such as vein-type uranium deposits). Besides this diversity of relations between granites and mineral deposits there is also a large diversity of magma types which may in relation with mineral deposits. We will focus our contribution on magmas produced by moderate degree of partial melting within the continental crust leading to the formation of anatectic pegmatoids for very low rate of partial melting and peraluminous leucogranites for low rate of partial melting. The major processes controlling the solubility of the metals in these magmas will be reviewed. The role of metal enrichment: (i) in the sources lithologies, (ii) as external input by fluids liberated during granulitisation of metasediments by a carbonic wave, (iii) extraction from enclosing metamorphic rocks, will be discussed.

  5. Jasperoid float and stream cobbles as tools in geochemical exploration for hydrothermal ore deposits

    USGS Publications Warehouse

    Lovering, T.G.

    1981-01-01

    Fragments of silicified rocks that are associated with deposits of base and precious metals may be transported as cobbles and pebbles in alluvium far downstream from the source outcrop. These rocks commonly exhibit certain characteristics which distinguish them from other detrital siliceous material, and may thus serve as a useful tool in reconnaissance geochemical exploration. The predominant characteristics of jasperoid samples, classified according to genesis, type of host rock, and proximity to base and precious metal deposits have been tabulated from a large master file containing descriptive and analytical information on jasperoid samples representing more than a hundred areas in the United States. Jasperoid that is genetically and spatially associated with ore deposits is generally dark gray or brown in color, brecciated, phaneritic, and vuggy. Jasperoids associated with lead and zinc deposits exhibit extensive halos of lead and silver anomalies, and more restricted zinc and gold anomalies. Those related to copper deposits show extensive copper, silver, and gold anomalies, and more restricted bismuth and molybdenum anomalies. Jasperoid related to gold deposits tends to exhibit extensive gold and silver anomalies and more restricted titanium, barium, vanadium, molybdenum, and rare-earth element anomalies. ?? 1981.

  6. Geological characteristics and ore-forming process of the gold deposits in the western Qinling region, China

    NASA Astrophysics Data System (ADS)

    Liu, Jiajun; Liu, Chonghao; Carranza, Emmanuel John M.; Li, Yujie; Mao, Zhihao; Wang, Jianping; Wang, Yinhong; Zhang, Jing; Zhai, Degao; Zhang, Huafeng; Shan, Liang; Zhu, Laimin; Lu, Rukui

    2015-05-01

    The western Qinling, belonging to the western part of the Qinling-Dabie-Sulu orogen between the North China Block and South China Block, is one of the most important gold regions in China. Isotopic dates suggest that the Mesozoic granitoids in the western Qinling region emplaced during the Middle-Late Triassic, and the deposits formed during the Late Triassic. Almost all gold deposits in the western Qinling region are classified as orogenic, Carlin-type, and Carlin-like gold deposits, and they are the products of Qinling Orogenesis caused by the final collision between the North China Block and the South China Block. The early subduction of the Mian-Lue oceanic crust and the latter collision between South Qinling Terrane and the South China Block along the Mian-Lue suture generated lithosphere-scale thermal anomalies to drive orogen-scale hydrothermal systems. The collision-related magmatism also provided heat source for regional ore-forming fluids in the Carlin-like gold deposits. Orogenic gold deposits such as Huachanggou, Liziyuan, and Baguamiao lie between the Shang-Dan and Mian-Lue sutures and are confined to WNW-trending brittle-ductile shear zones in Devonian and Carboniferous greenschist-facies metasedimentary rocks that were highly-deformed and regionally-metamorphosed. These deposits are typical orogenic gold deposits and formed within a Late Triassic age. The deposits show a close relationship between Au and Ag. Ores contain mainly microscopic gold, and minor electrum and visible gold, along with pyrite. The ore-forming fluids were main metamorphic fluids. Intensive tectonic movements caused by orogenesis created fluid-migrating channels for precipitation locations. Although some orogenic gold deposits occur adjacent to granitoids, mineralization is not synchronous with magmatism; that is, the granitoids have no genetic relations to orogenic gold deposits. As ore-forming fluids converged into dilated fractures during the extension stage of orogenesis

  7. Geology and ore deposits of the Monument Valley area, Apache and Navajo counties, Arizona: Part II

    USGS Publications Warehouse

    Witkind, I.J.; Thaden, R.E.

    1958-01-01

    In 1951 and 1952, the U.S. Geological Survey conducted a program of uranium investigations and geologic mapping in the Monument Valley area, Apache and Navajo Counties, Ariz. About 700 square miles were mapped on the Navajo Indian Reservation. A resource appraisal of the area was an inherent part of the program, and is detailed in this report. Production of vanadium and uranium is from two areas, the Monument No. 1 mine area in Navajo County, and the Monument No. 2 mine area in Apache County. In the period 1942-53 about 200,300 tons of ore was produced from these two areas. This ore yielded about 1,700,000 pounds of U3O8 and about 6,500,000 pounds of V2O5. The grade ranged from 0.15 percent U3O8 to 0.60 percent U3O8, and from 0.38 percent V2O5 to 3.02 percent V2O5. The vanadium-uranium ratio is about 4:1. The ore deposits are composed principally of the hydrous calcium-uranium vanadate tyuyamunite in basal channel sediments of the Shinarump member off the Chinle formation. Four types of ore bodies are present: (1) rods, (2) tabular ore bodies, (3) corvusite-type ore bodies, and (4) rolls. The reserves of uranium- and vanadium-bearing material are classed as measured, indicated, inferred, and potential. The reserves are further divided into three grade classes for material 1 foot or more thick: (1) 0.10 percent U3O8 and 1.00 percent V2O5 and above; (2) 0.05 percent U3O8 and 0.50 percent V2O5 and less than 0.10 percent U3O8 and 1.00 percent V2O5; and (3) 0.01 percent U3O8 and 0.10 percent V2O5 and less than 0.05 percent U3O8 and 0.05 percent V2O5. Measured reserves as of June 1953, in the Monument Valley area, Arizona, (all in the Monument No. 2 mine) total about 36,000 tons. Indicated reserves in the first grade class amount to about 62,000 tons. In this same grade class inferred reserves total about 3,000,000 tons. In the second grade class indicated and inferred reserves amount to about 2,000,000 tons. Inferred reserves in the third grade class total about 345

  8. Variations in the uranium isotopic compositions of uranium ores from different types of uranium deposits

    NASA Astrophysics Data System (ADS)

    Uvarova, Yulia A.; Kyser, T. Kurt; Geagea, Majdi Lahd; Chipley, Don

    2014-12-01

    Variations in 238U/235U and 234U/238U ratios were measured in uranium minerals from a spectrum of uranium deposit types, as well as diagenetic phosphates in uranium-rich basins and peraluminous rhyolites and associated autunite mineralisation from Macusani Meseta, Peru. Mean δ238U values of uranium minerals relative to NBL CRM 112-A are 0.02‰ for metasomatic deposits, 0.16‰ for intrusive, 0.18‰ for calcrete, 0.18‰ for volcanic, 0.29‰ for quartz-pebble conglomerate, 0.29‰ for sandstone-hosted, 0.44‰ for unconformity-type, and 0.56‰ for vein, with a total range in δ238U values from -0.30‰ to 1.52‰. Uranium mineralisation associated with igneous systems, including low-temperature calcretes that are sourced from U-rich minerals in igneous systems, have low δ238U values of ca. 0.1‰, near those of their igneous sources, whereas uranium minerals in basin-hosted deposits have higher and more variable values. High-grade unconformity-related deposits have δ238U values around 0.2‰, whereas lower grade unconformity-type deposits in the Athabasca, Kombolgie and Otish basins have higher δ238U values. The δ234U values for most samples are around 0‰, in secular equilibrium, but some samples have δ234U values much lower or higher than 0‰ associated with addition or removal of 234U during the past 2.5 Ma. These δ238U and δ234U values suggest that there are at least two different mechanisms responsible for 238U/235U and 234U/238U variations. The 234U/238U disequilibria ratios indicate recent fluid interaction with the uranium minerals and preferential migration of 234U. Fractionation between 235U and 238U is a result of nuclear-field effects with enrichment of 238U in the reduced insoluble species (mostly UO2) and 235U in oxidised mobile species as uranyl ion, UO22+, and its complexes. Therefore, isotopic fractionation effects should be reflected in 238U/235U ratios in uranium ore minerals formed either by reduction of uranium to UO2 or chemical

  9. Ore petrography of a sedimentary uranium deposit, Live Oak County, Texas

    SciTech Connect

    Bomber, B.J.; Ledger, E.B.; Tieh, T.T.

    1986-01-01

    Samples from the McLean 5 open-pit uranium mine, a small high-grade deposit located along a normal fault in the Miocene Oakville sandstone of Live Oak County, Texas, have been studied for uranium abundance, distribution, and nature of occurrence on the microscopic level. The host sandstone is composed of quartz, feldspars, and volcanic rock fragments, cemented by sparry calcite. Authigenic minerals include iron disulfide minerals (dominantly pyrite and some marcasite) and small amounts of clays, Ti oxides, and opal. High-grade ore (to 3% U) occurs along the fault, decreasing to less than 1,000 ppm within 10 m from the fault. The ore mineral is amorphous pitchblende and exhibits botryoidal morphology. The microscopic occurrence of uranium, documented by fission-track mapping of petrographic thin sections, is presented in detail. Uranium occurs abundantly as grain coatings and fillings in intergranular spaces in samples with high uranium content, where calcite cement has been partially or totally leached as mineralization proceeded. Lesser amounts are adsorbed onto leucoxene (microcrystalline anatase), mud clasts, and altered igneous rock fragments. Adsorbed uranium is the major code of occurrence in samples, with lower uranium contents farther from the orebody. Textural relations indicate that iron sulfides formed both before and after mineralization. Initial mineralization was by adsorption onto aggregates of fine particles of Ti oxide and clay minerals of various origins. With dissolution of cement and continued uranium influx, uranium precipitated as grain coatings and pore fillings.

  10. Rhenium in ores of the Mikheevskoe porphyry Cu-Mo deposit, South Urals

    NASA Astrophysics Data System (ADS)

    Plotinskaya, O. Yu.; Grabezhev, A. I.; Seltmann, R.

    2015-03-01

    The distribution of Re in ores of the Mikheevskoe Mo-Cu deposit in the South Urals is studied. It is established that the grade of Re in the ores usually does not exceed 0.5 g/t. A positive correlation between concentrations of Re and Mo (correlation coefficient 0.94), and Re and Cu (correlation coefficient 0.52) is found. EMPA of individual flakes of molybdenite showed that a Re content higher than the detection limit has been measured in most flakes studied, as a rule as high as 0.4-0.5 wt %, but occasionally reaching 1.34 wt %. Re within flakes of molybdenite is irregularly distributed. Patchy, linear, and concentric-zoned patterns of zones with elevated Re content (usually 0.5-1 wt % Re, sometimes higher) are found against the lower content (up to 0.2 wt % Re) that is regularly distributed within the flake. Later hydrothermal processes and mechanical deformation of flakes result in epigenetic Re redistribution in molybdenite that leads to homogenization of molybdenite composition and smoothing of primary pattern, or removal of Re from molybdenite.

  11. Precipitation of lead-zinc ores in the Mississippi Valley-type deposit at Treves, Cevennes region of southern France

    USGS Publications Warehouse

    Leach, D.; Macquar, J.-C.; Lagneau, V.; Leventhal, J.; Emsbo, P.; Premo, W.

    2006-01-01

    The Trèves zinc–lead deposit is one of several Mississippi Valley-type (MVT) deposits in the Cévennes region of southern France. Fluid inclusion studies show that the ore was deposited at temperatures between approximately 80 and 150°C from a brine that derived its salinity mainly from the evaporation of seawater past halite saturation. Lead isotope studies suggest that the metals were extracted from local basement rocks. Sulfur isotope data and studies of organic matter indicate that the reduced sulfur in the ores was derived from the reduction of Mesozoic marine sulfate by thermochemical sulfate reduction or bacterially mediated processes at a different time or place from ore deposition. The large range of δ34S values determined for the minerals in the deposit (12.2–19.2‰ for barite, 3.8–13.8‰ for sphalerite and galena, and 8.7 to −21.2‰ for pyrite), are best explained by the mixing of fluids containing different sources of sulfur. Geochemical reaction path calculations, based on quantitative fluid inclusion data and constrained by field observations, were used to evaluate possible precipitation mechanisms. The most important precipitation mechanism was probably the mixing of fluids containing different metal and reduced sulfur contents. Cooling, dilution, and changes in pH of the ore fluid probably played a minor role in the precipitation of ores. The optimum results that produced the most metal sulfide deposition with the least amount of fluid was the mixing of a fluid containing low amounts of reduced sulfur with a sulfur-rich, metal poor fluid. In this scenario, large amounts of sphalerite and galena are precipitated, together with smaller quantities of pyrite precipitated and dolomite dissolved. The relative amounts of metal precipitated and dolomite dissolved in this scenario agree with field observations that show only minor dolomite dissolution during ore deposition. The modeling results demonstrate the important control of the reduced

  12. A deposit model for Mississippi Valley-Type lead-zinc ores: Chapter A in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Leach, David L.; Taylor, Ryan D.; Fey, David L.; Diehl, Sharon F.; Saltus, Richard W.

    2010-01-01

    This report also describes the geoenvironmental characteristic of MVT deposits. The response of MVT ores in the supergene environment is buffered by their placement in carbonate host rocks which commonly results in near-neutral associated drainage water. The geoenvironmental features and anthropogenic mining effects presented in this report illustrates this important environmental aspect of MVT deposits which separates them from other deposit types (especially coal, VHMS, Cu-porphyry, SEDEX, acid-sulfate polymetallic vein).

  13. Significance of oil-like hydrocarbons in metamorphic and ore-deposit rocks

    SciTech Connect

    Price, L.C.

    1996-10-01

    Carbonaceous rocks (0.7-45.0% carbon content) from both greenschist metamorphism and hydrothermal-ore deposition were solvent-extracted and the resulting extracts characterized by standard analyses. Blank runs showed no contamination from laboratory procedures. The recovered HCS are in low, but significant, concentrations (0.5-50 ppm, rock weight). Moreover, the composition of these HCS (including biomarkers) resemble that of mature crude oils and do not have the ultra-mature characteristics expected from their high temperature environs. This strongly suggests that HCS will survive in even higher-rank rocks. These data contradict petroleum-geochemical paradigm regarding an inferred thermal instability of HCS and also bear on natural gas origins (e.g. - the hypothesized cracking of oil to gas), rock-water-HC interactions, petroleum-geochemical models, and other related topics.

  14. Mineral-petrochemical wallrock alteration of rocks in Bericul gold-ore deposit (Kuznetsk Alatau)

    NASA Astrophysics Data System (ADS)

    Kucherenko, I.; Yuxuan, Zhang; Abramova, R.

    2015-11-01

    The distribution of mineral associations in near-veined zonal propylite-beresite metasomatic columns of mesothermal Bericul gold-ore deposit was analyzed. However, the polymineral composition in the inner (axial and adjacent with it rear) zones is inconsistent to the existing metasomatic column theoretical model. According to Korzhinskii metasomatic zoning theory, implied monomineral (quartz) and binary-mineral (quartz, sericite) compositions are characteristic of axial and rear zones, respectively. In common with above- mentioned facts, the zoning formation of differential component mobility is influenced by two additional factors: counter diffusion of components from fractured fluids into pores and diffusion mechanism of mass transfer it's from pores fluids into fractured of rock-fluid systems.

  15. Contrasting hydrological processes of meteoric water incursion during magmatic-hydrothermal ore deposition: An oxygen isotope study by ion microprobe

    NASA Astrophysics Data System (ADS)

    Fekete, Szandra; Weis, Philipp; Driesner, Thomas; Bouvier, Anne-Sophie; Baumgartner, Lukas; Heinrich, Christoph A.

    2016-10-01

    Meteoric water convection has long been recognized as an efficient means to cool magmatic intrusions in the Earth's upper crust. This interplay between magmatic and hydrothermal activity thus exerts a primary control on the structure and evolution of volcanic, geothermal and ore-forming systems. Incursion of meteoric water into magmatic-hydrothermal systems has been linked to tin ore deposition in granitic plutons. In contrast, evidence from porphyry copper ore deposits suggests that crystallizing subvolcanic magma bodies are only affected by meteoric water incursion in peripheral zones and during late post-ore stages. We apply high-resolution secondary ion mass spectrometry (SIMS) to analyze oxygen isotope ratios of individual growth zones in vein quartz crystals, imaged by cathodo-luminescence microscopy (SEM-CL). Existing microthermometric information from fluid inclusions enables calculation of the oxygen isotope composition of the fluid from which the quartz precipitated, constraining the relative timing of meteoric water input into these two different settings. Our results confirm that incursion of meteoric water directly contributes to cooling of shallow granitic plutons and plays a key role in concurrent tin mineralization. By contrast, data from two porphyry copper deposits suggest that downward circulating meteoric water is counteracted by up-flowing hot magmatic fluids. Our data show that porphyry copper ore deposition occurs close to a magmatic-meteoric water interface, rather than in a purely magmatic fluid plume, confirming recent hydrological modeling. On a larger scale, the expulsion of magmatic fluids against the meteoric water interface can shield plutons from rapid convective cooling, which may aid the build-up of large magma chambers required for porphyry copper ore formation.

  16. Sulphur isotope constraints on formation conditions of the Luiswishi ore deposit, Democratic Republic of Congo (DRC)

    NASA Astrophysics Data System (ADS)

    Lerouge, C.; Cailteux, J.; Kampunzu, A. B.; Milesi, J. P.; Fléhoc, C.

    2005-07-01

    Luiswishi is a Congo-type Neoproterozoic sediment-hosted stratiform Cu-Co ore deposit of the Central Africa Copperbelt, located northwest of Lubumbashi (DRC). The ores form two main Cu-Co orebodies hosted by the Mines Subgroup, one in the lower part of the Kamoto Formation and the other at the base of the Dolomitic Shales Formation. Sulphides occur essentially as early parallel layers of chalcopyrite and carrolite, and secondarily as late stockwork sulphides cross-cutting the bedding and the early sulphide generation. Both types of stratiform and stockwork chalcopyrite and carrolite were systematically analyzed for sulphur isotopes, along the lithostratigraphic succession of the Mine Series. The quite similar δ 34S values of stratiform sulphides and late stockwork sulphides suggest an in situ recrystallization or a slight remobilization of stockwork sulphides without attainment of isotopic equilibrium between different sulphide phases (chalcopyrite and carrolite). The distribution of δ 34S values (-14.4‰ to +17.5‰) combined with the lithology indicates a strong stratigraphic control of the sulphur isotope signature, supporting bacterial sulphate reduction during early diagenesis of the host sediments, in a shallow marine to lacustrine environment. Petrological features combined with sulphur isotopic data of sulphides at Luiswishi and previous results on nodules of anhydrite in the Mine Series indicate a dominant seawater/lacustrine origin for sulphates, precluding a possible hydrothermal participation. The high positive δ 34S values of sulphides in the lower orebody at Luiswishi, hosted in massive chloritic-dolomitic siltite (known as Grey R.A.T.), fine-grained stratified dolostone (D.Strat.) and silicified-stromatolitic dolomites alternating with chloritic-dolomitic silty beds (R.S.F.), suggest that they were probably deposited during a period of regression in a basin cut off from seawater. The variations of δ 34S values (i.e. the decrease of δ 34S values

  17. Oxidation potential and state of some vanadium ores and the relation of woody material to their deposition

    USGS Publications Warehouse

    Pommer, Alfred Michael

    1956-01-01

    Oxidation potential studies with a multiple pH-potential recorder designed and constructed for this purpose demonstrated that some uranium-vanadium ores in the Colorado Plateau were in a reduced state when deposited. Any oxidation which took place occurred after deposition. Experimental and theoretical reducing studies on fresh wood, wood degraded by burial for 450 years, and lignite, indicate that such ores may have been deposited by reduction of oxidized vanadium solutions by woody material. A vanadium (III) mineral, V2O(OH)4, was prepared synthetically by reduction of a vanadium (V) solution with wood. This is the only reported synthesis of any reduced vanadium mineral by any method. It was shown that the origin of almost all vanadium deposits currently of commercial importance involves life processes and products.

  18. Structural characteristics of chalcopyrite from a Cu(Au) ore deposit in the Carajás Mineral Province, Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro, Andreza Aparecida; Lima, Diana Quintão; Duarte, Hélio Anderson; Murad, Enver; Pereira, Márcio César; de Freitas Suita, Marcos Tadeu; Ardisson, José Domingos; Fabris, José Domingos

    2011-11-01

    Mössbauer spectra and X-ray diffraction data show a chalcopyrite from the Cristalino Cu(Au) deposit in the Carajás Mineral Province in northern Brazil to consist of a single, tetragonal phase. This is in stark contrast to a previously described chalcopyrite from the Camaquã copper mine in southern Brazil, obviously reflecting differences in mineral (and thus ore deposit) genesis.

  19. Ore genesis and fluid evolution of the Daheishan giant porphyry molybdenum deposit, NE China

    NASA Astrophysics Data System (ADS)

    Zhou, Ling-li; Zeng, Qing-dong; Liu, Jian-ming; Friis, Henrik; Zhang, Zuo-lun; Duan, Xiao-xia; Chu, Shao-xiong

    2015-01-01

    The Daheishan giant porphyry Mo deposit is located at the eastern segment of the CAOB, NE China. The ore-bearing intrusion of Daheishan deposit is a Jurassic granitic complex that includes Changgangling biotite granodiorite, Qiancuoluo seriate granodiorite, and Qiancuoluo granodioritic porphyry. Mineralization consists of disseminated, breccia and veined types. The hydrothermal fluids show significant magmatic signatures, as evidenced by the hydrogen and oxygen isotopic compositions of quartz and sulfur isotopic characteristics of ores. Consistence of lead isotopic compositions of the sulfides and the Daheishan intrusive complex further indicate a close relationship between the mineralization and magma. The fluid inclusions in quartz comprise of predominant aqueous two-phase as well as gas-rich fluid inclusions and a small number of daughter mineral-bearing inclusions. The gas species in the fluid inclusions are H2O, CO2, N2, CH4, C2H6, Ar∗ and minor H2S; the liquid compositions are SO42-, Cl-, Na+, K+, Ca2+ and Mg2+. Raman spectroscopy on individual fluid inclusions reveals a main gaseous composition of H2O, minor H2S and CO2. The fluid system in Daheishan Mo deposit can be described as NaCl-KCl-H2O type. Fluid inclusion microthermometry reveals subsolidus homogenization temperatures for fluid inclusions in the magmatic quartz phenocrysts (Th = 400-450 °C, salinities = ∼21 eq. wt.%), suggesting an obliteration of higher temperature history of the porphyry system by the superimposed processes. Most of the mineralization occurred at temperature range of 220-360 °C, or higher. The temperature and salinity decreased to 100-170 °C and 0-15 eq. wt.%, respectively, when the hydrothermal fluid activities were gradually ending. No distinct evolution pattern based on the homogenization temperature or stable isotopic analyses is observed among the different mineralization stages. Mineralization was supposed to be related to the multi-phased boiling of fluids, instead

  20. Geological and geochemical studies of the Shujiadian porphyry Cu deposit, Anhui Province, Eastern China: Implications for ore genesis

    NASA Astrophysics Data System (ADS)

    Wang, Shiwei; Zhou, Taofa; Yuan, Feng; Fan, Yu; White, Noel C.; Lin, Fengjie

    2015-05-01

    Most porphyry deposits in the world occur in magmatic arc settings and are related to subduction of oceanic plates. A small proportion of porphyry deposits occur in intracontinental settings, however they are still poorly understood. Shujiadian, a newly-discovered porphyry Cu deposit, is located in the Middle-Lower Yangtze River Valley metallogenic belt and belongs to the intracontinental class. The deposit has classic alteration zones defined by a core of potassic alteration and local Ca-silicate alteration, which is overprinted by a feldspar-destructive alteration zone and cut by veins containing epidote and chlorite. Wallrocks of the deposit are unreactive quartz-rich sedimentary rocks. Three main paragenetic stages have been recognized based on petrographic observations; silicate stage, quartz-sulfide stage, and sulfide-carbonate stage. Quartz + pyrite + chalcopyrite ± molybdenite veins, and quartz + chalcopyrite + pyrite veins of the quartz-sulfide stage contribute most of the copper, and chalcopyrite + chlorite ± pyrite ± pyrrhotite ± quartz ± illite veins of the sulfide-carbonate stage also contribute part of the copper; all the mineralized veins are associated with feldspar-destructive alteration. Investigations on the fluid inclusions in Shujiadian indicate that the ore-forming fluids had four evolutionary episodes: immiscibility and overpressure in the silicate stage, boiling in the quartz-sulfide stage and mixing with meteoric water in the sulfide-carbonate stage. Sulfur and strontium isotope studies suggest that ore metals were mainly derived from magmatic-hydrothermal fluids, and combined with our study of fluid inclusions, we infer that decompression, changes in oxygen fugacity and sulfur content were the main factors that caused Cu precipitation. Compared with porphyry deposits in magmatic arc settings, there are some differences in the ore-bearing rock, alteration, and the composition of ore-forming fluids.

  1. Seismic response of ore deposits in Kevitsa and Outokumpu mining areas: new insights from data mining and seismic forward modeling

    NASA Astrophysics Data System (ADS)

    Hellqvist, Niina; Koivisto, Emilia; Komminaho, Kari; Tuomi, Hilkka; Malehmir, Alireza; Kukkonen, Ilmo; Heikkinen, Pekka; Voipio, Teemu; Wijns, Chris

    2015-04-01

    The Kevitsa Ni-Cu-PGE disseminated sulfide deposit is hosted by the Kevitsa mafic to ultramafic intrusion located within the Central Lapland Greenstone Belt in northern Finland. The Outokumpu semi-massive to massive polymetallic (Cu-Co-Zn-Ni-Ag-Au) sulfide deposits are hosted by ophiolite-derived altered ultramafic rocks within the Raahe-Ladoga Belt in eastern Finland. Extensive, excellent quality 2D reflection seismic data have been collected at both sites in the 2000s. In addition, there is a 3D seismic data set available from Kevitsa. The ore deposits of Kevitsa and Outokumpu have different mineralization styles, grades and scales and thus have different kinds of seismic responses as well. Imaging disseminated ore deposits with the reflection seismic method is complicated, as, for example, the Kevitsa disseminated ore itself does not have dimensions detectable with the method. However, it has been suggested that subtle localised magmatic layering within the Kevitsa intrusion controls the sub-horizontal layering and spatial extent of the disseminated sulfides, and that this magmatic layering is detectable with the reflection seismic method. Initial results from data mining via SOM (Self-Organizing Maps) analysis and seismic forward modeling of the magmatic layering within the Kevitsa intrusion are used to test these hypotheses. In the case of Outokumpu-type deposits seismic forward modeling results confirm that the semi-massive to massive ore could potentially be seen directly in the seismic data, if the deposits meet the size, thickness, and presentation constraints required for reflection or diffraction.

  2. Cesium and strontium tolerant Arthrobacter sp. strain KMSZP6 isolated from a pristine uranium ore deposit.

    PubMed

    Swer, Pynskhem Bok; Joshi, Santa Ram; Acharya, Celin

    2016-12-01

    Arthrobacter sp. KMSZP6 isolated from a pristine uranium ore deposit at Domiasiat located in North-East India exhibited noteworthy tolerance for cesium (Cs) and strontium (Sr). The strain displayed a high minimum inhibitory concentration (MIC) of 400 mM for CsCl and for SrCl2. Flow cytometric analysis employing membrane integrity indicators like propidium iodide (PI) and thiazole orange (TO) indicated a greater sensitivity of Arthrobacter cells to cesium than to strontium. On being challenged with 75 mM of Cs, the cells sequestered 9612 mg Cs g(-1) dry weight of cells in 12 h. On being challenged with 75 mM of Sr, the cells sequestered 9989 mg Sr g(-1) dry weight of cells in 18 h. Heat killed cells exhibited limited Cs and Sr binding as compared to live cells highlighting the importance of cell viability for optimal binding. The association of the metals with Arthrobacter sp. KMSZP6 was further substantiated by Field Emission-Scanning Electron Microscopy (FE-SEM) coupled with Energy dispersive X-ray (EDX) spectroscopy. This organism tolerated up to 1 kGy (60)Co-gamma rays without loss of survival. The present report highlights the superior tolerance and binding capacity of the KMSZP6 strain for cesium and strontium over other earlier reported strains and reveals its potential for bioremediation of nuclear waste. PMID:27620733

  3. Ore transport and deposition in the Red Sea geothermal system: a geochemical model

    USGS Publications Warehouse

    Shanks, Wayne C., III; Bischoff, J.L.

    1977-01-01

    Thermodynamic calculation of distribution of dissolved aqueous species in the Red Sea geothermal brine provides a model of ore transport and deposition in good agreement with observed accumulations of base metal sulfides, anhydrite, and barite. The Red Sea brine is recirculated seawater that acquires high salinity by low-temperature interaction with Miocene evaporites and is subsequently heated to temperatures in excess of 200??C by interaction with recent rift zone intrusive rocks. At temperatures up to 250??C, NaSO-4 and MgSO04 are the dominant sulfur-bearing species. H2S forms by inorganic sulfate reduction at the higher temperatures but is maintained at a uniform concentration of about 2 ppm by the strength of the sulfate complexes. Chloride complexes solubilize metals at the higher temperatures, and thus sulfide and metals are carried together into the Atlantis II Deep. Below 150??C, the brine becomes supersaturated with respect to chalcopyrite, sphalerite, galena, and iron monosulfide due to chloride-complex dissociation. Sulfide precipitation rates, based on the rate of brine influx, are in good agreement with measured sedimentation rates. Anhydrite precipitates as crystalline fissure infillings from high-temperature inflowing brine. Barite forms from partial oxidation of sulfides at the interface between the lower hot brine and the transitional brine layer. ?? 1977.

  4. Boiling, colloid nucleation and aggregation, and the genesis of bonanza Au-Ag ores of the sleeper deposit, Nevada

    NASA Astrophysics Data System (ADS)

    Saunders, J. A.; Schoenly, P. A.

    1995-06-01

    A deep “parent” composition for bonanza oreforming fluids at the Sleeper deposit was calculated by the computer program SOLVEQ using fluid-inclusion microthermometric and gas data, and by assuming equilibrium with the following minerals present in vein samples below the bonanza zones: gold, chalcedony, adularia, pyrite, chalcopyrite, and acanthite. The calculated dissolved gold content of 295 ppb is approximately 2 orders of magnitude higher than that assumed for typical geothermal systems. Thus, a gold-enriched fluid appears to have been a principal factor in the genesis of bonanza Au-Ag ores at the Sleeper deposit. Geochemical modelling of possible ore-forming processes using the computer program CHILLER, with the reconstructed ore-forming solution as a starting composition, indicates that boiling most closely reproduces observed minerals and their relative abundances in bonanza ores. The constraint imposed by the association of amorphous silica with gold precludes all of the mixing scenarios modelled, such as mixing with cold and steam-heated groundwaters (acid-sulfate, CO2-rich). Modelling indicates that boiling of a gold-rich deep solution leads to rapid gold precipitation, and that the amount of gold precipitated initially is large relative to other minerals. These factors apparently led to nucleation of colloidal gold particles instead of in-situ gold deposition or coprecipitation with other phases. Gold colloids apparently were entrained in the upward-flowing hydrothermal solutions and grew as they travelled. Upon reaching a critical size (10 100 nm?), they were deposited due to orthokinetic aggregation at an elevation and temperature at which amorphous silica was nucleating and aggregating.

  5. Microfracturing and fluid mixing in granites: W (Sn) ore deposition at Vaulry (NW French Massif Central)

    NASA Astrophysics Data System (ADS)

    Vallance, Jean; Cathelineau, Michel; Marignac, Christian; Boiron, Marie-Christine; Fourcade, Serge; Martineau, François; Fabre, Cécile

    2001-07-01

    The Vaulry W-(Sn) mineralisation, located at the eastern boundary of the Blond rare metal leucogranite, is contained in a set of subvertical quartz veins, locally with muscovite and minor quartz selvages. The sequence of deposition was: (1) milky quartz, predominantly as fracture filling, generally affected by subsequent ductile deformation; (2) hyaline quartz-wolframite-cassiterite; (3) minor sulphides. Other sets of quartz veinlets, although generally barren are observed in the Blond massif. Fluid migration at the microscopic scale within the granite and in the vicinity of quartz fractures was constrained by studying the geometry of fluid-inclusion planes and fluid-inclusion chemistry in and outside the mineralised area. Three major sets of subvertical fluid-inclusion planes are recognised: a N050°-060°E set, mostly developed in the veins and in the immediate vicinity, a N110°-130°E set, regionally developed in the granite and a N140-160°E set of local extent. As a whole, the density of FIP decreases from the mineralised zones toward the barren part of the pluton, except for the N140°-160°E set. These are locally abundant around quartz veinlets with similar orientations that form a broad "N-S" band near the Blond locality. Mineralising fluids observed as primary inclusions in cassiterite and in undeformed hyaline quartz are mostly aqueous, with moderate salinity and a minor volatile component, at variance with many other W-(Sn) deposits in the Variscan belt. Ore deposition occurred around 315°C, at an estimated depth of 5.5 km, under hydrostatic to slightly suprahydrostatic pressures. It resulted from fluid mixing, in the central part of a large hydrothermal system, between two end-members: (i) a hot (425-430°C) moderately saline fluid, that contained a diluted volatile component and, although Na-dominated, minor amounts of Li and Ca. The estimated δ18O indicates that this fluid was completely equilibrated with the tectono-magmatic pile (pseudo

  6. Monzonitoid magmatism of the Glukhoe gold ore deposit (Primorye): U-Pb, SHRIMP dating, petrochemical and minor-element compositions, and peculiar features of noble metal mineralization

    NASA Astrophysics Data System (ADS)

    Sakhno, V. G.; Kovalenko, S. V.; Barinov, N. N.; Lyzganov, A. V.; Kuznetsov, Yu. A.

    2015-11-01

    Monzogabbrodiorites and monzodiorites from the Tatibin Group of Central Sikhote Alin (Primorye), which hosts the Glukhoe gold ore deposit, are considered with discussion of the most important data on the geological structure and composition of magmatic complexes and the results of U-Pb and SHRIMP dating. It is first established that mineral associations of the gold ore deposit include native Pt, Cu, and other compounds and mineral associations. Their formation conditions of both scientific and practical significance are analyzed.

  7. [Physiological Properties of Acidithiobacillus ferrooxidans Strains Isolated from Sulfide Ore Deposits in Kazakhstan].

    PubMed

    Kanaeva, Z K; Bulaev, A G; Kanaev, A T; Kondrat'eva, T F

    2015-01-01

    Acidithiobacillus ferroxidans strains were isolated from acidophilic microbial communities of Kazakhstan sulfide ore deposits. Their biotechnologically important properties (optimal and maximal growth temperatures and resistance to NaCl) were determined. While temperature optima of the strains were the same (30-32 degrees C), temperature ranges were different. Thus, strain TFBK oxidized iron very poorly at 37 degrees C, while for strain TFV, the iron oxidation rate at this temperature was insignificantly lower than at lesser temperatures. NaCl inhibited the oxidative activity of both strains. Iron oxidation by strain TFV was inhibited at 5 g/L NaCl and was suppressed almost completely at 20 g/L. Iron oxidation by strain TFBK was inhibited by NaCl to a lesser degree, so that iron oxidation rate was relatively high at 10 g/L, while at 20 g/L NaCl the process was not suppressed completely, although the oxidation rate was low. Sulfur oxidation by these strains was less affected by NaCl than oxidation of ferrous iron. Sulfur oxidation by strain TFV was considerably inhibited only at 20 g/L NaCl, but was not suppressed completely. Sulfur oxidation by strain TFBK was more affected by NaCl. At 10 g/L NaCl the oxidation rate was much lower than at lower NaCl concentrations (sulfate concentrations after 6 days of oxidation at 5 and 10 g/L NaCl were -130 and -100 mM, respectively). While sulfur oxidation by strain TFBK was considerably inhibited at 10 and 20 g/L NaCl, similar to strain TFV it was not suppressed completely. Our results indicate the adaptation of the species A. ferrooxidans to a broad range of growth conditions. PMID:26263692

  8. Ore formation in porphyry-type deposits during incrementally built magma chamber and fluid sparging

    NASA Astrophysics Data System (ADS)

    Vigneresse, J. L.; Bachmann, O.; Huber, C.; Parmigiani, A.; Dufek, J.; Campos, E.

    2012-04-01

    Porphyry-type mineralizations are commonly associated with an underlying magma chamber from which a volatile phase exsolves from the crystallizing magma. We suggest a model of fluid sparging during multiple successive intrusions yielding metals concentration within the gas phase. Metals enrichment by 3-4 orders of magnitude takes place during the magmatic stage prior to hydrothermal effects, resulting from a competition between diffusion and advection of the volatile phase. The model explains why a single intrusion is not efficient enough to lead to economically viable ore deposit, though it also involves a gas phase percolating within a crystalline mush. During multiple intrusions, metals segregate from the new melt to the gas phase by diffusion, as long as the gas has not overcome a critical saturation level (about 20 % gas). Adding gas exsolved, about 4 % at each new magma recharge, overcomes this level. Then, the diffusion process switches toward advection, since the bubbles get interconnected, enhancing the transport of a gas phase enriched in metals. Once advected, the enriched gas phase turns into hydrothermal circulation during which metals condensate. Two non-dimensional numbers, Péclet and Stefan numbers, respectively rule diffusion and advection of elements while heat is lost through cooling. The model also examines the total duration of the process that re-establishes after 4-6 recharges in magma. It also provides an explanation why intrusions are barren or enriched, although they result from similar conditions of magma genesis. Development of a zoned alteration pattern may serve as a guide for prospection.

  9. Origin of the giant Allard Lake ilmenite ore deposit (Canada) by fractional crystallization, multiple magma pulses and mixing

    NASA Astrophysics Data System (ADS)

    Charlier, Bernard; Namur, Olivier; Malpas, Simon; de Marneffe, Cédric; Duchesne, Jean-Clair; Vander Auwera, Jacqueline; Bolle, Olivier

    2010-06-01

    The late-Proterozoic Allard Lake ilmenite deposit is located in the Havre-Saint-Pierre anorthosite complex, part of the allochtonous polycyclic belt of the Grenville Province. Presently the world's largest Fe-Ti oxide deposit, it had a pre-mining amount in excess of 200 Mt at grades over 60 wt.% hemo-ilmenite. The main ore body is a funnel-shaped intrusion, measuring 1.03 × 1.10 km and 100-300 m-thick. Two smaller bodies are separated by faults and anorthosite. The ore is an ilmenite-rich norite (or ilmenitite) made up of hemo-ilmenite (Hem 22.6-29.4, 66.2 wt.% on average), andesine plagioclase (An 45-50), aluminous spinel and locally orthopyroxene. Whole-rock chemical compositions are controlled by the proportions of ilmenite and plagioclase ± orthopyroxene which supports the cumulate origin of the deposit. Ore-forming processes are further constrained by normal and reverse fractionation trends of Cr concentration in cumulus ilmenite that reveal multiple magma emplacements and alternating periods of fractional crystallization and magma mixing. Mixing of magmas produced hybrids located in the stability field of ilmenite resulted in periodic crystallization of ilmenite alone. The unsystematic differentiation trends in the Allard Lake deposit, arising from a succession of magma pulses, hybridisation, and the fractionation of hemo-ilmenite alone or together with plagioclase suggest that the deposit formed within a magma conduit. This dynamic emplacement mechanism associated with continuous gravity driven accumulation of Fe-Ti oxides and possibly plagioclase buoyancy in a fractionating ferrobasalt explains the huge concentration of hemo-ilmenite. The occurrence of sapphirine associated with aluminous spinel and high-alumina orthopyroxene (7.6-9.1 wt.% Al 2O 3) lacking exsolved plagioclase supports the involvement of a metamorphic overprint during the synchronous Ottawan orogeny, which is also responsible for strong textural equilibration and external granule of

  10. Enumeration and characterization of microorganisms associated with the uranium ore deposit at Cigar Lake, Canada; Informal report

    SciTech Connect

    Francis, A.J.; Joshi-Tope, G.; Gillow, J.B.; Dodge, C.J.

    1994-03-01

    The high-grade uranium deposit at Cigar Lake, Canada, is being investigated as a natural analog for the disposal of nuclear fuel waste. Geochemical aspects of the site have been studied in detail, but the microbial ecology has not been fully investigated. Microbial populations in an ore sample and in groundwater samples from the vicinity of the ore zone were examined to determine their effect on uranium mobility. Counts of the total number of bacteria and of respiring bacteria were obtained by direct microscopy, and the viable aerobic and anaerobic bacteria were assessed as colony forming units (CFUs) by the dilution plating technique. In addition, the population distribution of denitrifiers, fermenters, iron- and sulfur-oxidizers, iron- and sulfate-reducers, and methanogens was determined by the most probable number (MPN) technique.

  11. Ore mineralogy of the Serra Pelada Au-Pd-Pt deposit, Carajás, Brazil and implications for ore-forming processes

    NASA Astrophysics Data System (ADS)

    Berni, Gabriel V.; Heinrich, Christoph A.; Lobato, Lydia M.; Wall, Vic

    2016-01-01

    Serra Pelada is a world-class hydrothermal Au-Pd-Pt deposit located at the eastern border of the Amazon craton, northern Brazil. The rocks at Serra Pelada have experienced intense tropical weathering for about 70 Ma, but drill core samples preserve the primary mineralogy and hydrothermal alteration features, with extreme grades of Au, Pd and Pt individually reaching hundreds of parts per million (ppm) by weight. Mineralization at Serra Pelada occurs in hydrothermally altered metasiltstones and dolomitic metasandstones at the hinge zone of a recumbent syncline, comprising zones of hematite, chlorite-carbon, argillic, and siliceous alteration. The main hydrothermal gangue minerals are quartz, kaolinite, sericite, amesite, hematite, monazite, florencite and variable amounts of highly reflective carbonaceous matter. Hydrothermal carbon input is evident from precipitated carbon occurring along crenulation planes and veinlets associated with the precious metals. Ore and accessory minerals include a variety of sulphide, selenide, arsenide, sulphate and oxide minerals, including gold with variable metal contents, palladian gold, fischesserite, sudovikovite, sperrylite, selenian braggite, isomertieite, mertieite-II and secondary Au-Pt-Pd alloys. The composition of fischesserite varies from the ideal formula (Ag3AuSe2) towards a more Ag-rich composition, indicating a disordered solid solution form that is stable only above 260 °C, consistent with the high thermal maturity of associated carbonaceous matter approaching graphite. Primary ore and gangue minerals at Serra Pelada comprise a suite of elements that are best transported in oxidising conditions and precipitated upon reduction. This suggests that fluid mixing between a highly oxidised (metal carrier) and a reduced fluid was a key process for high-grade noble metal precipitation at Serra Pelada.

  12. Ore mineralogy of the Serra Pelada Au-Pd-Pt deposit, Carajás, Brazil and implications for ore-forming processes

    NASA Astrophysics Data System (ADS)

    Berni, Gabriel V.; Heinrich, Christoph A.; Lobato, Lydia M.; Wall, Vic

    2016-08-01

    Serra Pelada is a world-class hydrothermal Au-Pd-Pt deposit located at the eastern border of the Amazon craton, northern Brazil. The rocks at Serra Pelada have experienced intense tropical weathering for about 70 Ma, but drill core samples preserve the primary mineralogy and hydrothermal alteration features, with extreme grades of Au, Pd and Pt individually reaching hundreds of parts per million (ppm) by weight. Mineralization at Serra Pelada occurs in hydrothermally altered metasiltstones and dolomitic metasandstones at the hinge zone of a recumbent syncline, comprising zones of hematite, chlorite-carbon, argillic, and siliceous alteration. The main hydrothermal gangue minerals are quartz, kaolinite, sericite, amesite, hematite, monazite, florencite and variable amounts of highly reflective carbonaceous matter. Hydrothermal carbon input is evident from precipitated carbon occurring along crenulation planes and veinlets associated with the precious metals. Ore and accessory minerals include a variety of sulphide, selenide, arsenide, sulphate and oxide minerals, including gold with variable metal contents, palladian gold, fischesserite, sudovikovite, sperrylite, selenian braggite, isomertieite, mertieite-II and secondary Au-Pt-Pd alloys. The composition of fischesserite varies from the ideal formula (Ag3AuSe2) towards a more Ag-rich composition, indicating a disordered solid solution form that is stable only above 260 °C, consistent with the high thermal maturity of associated carbonaceous matter approaching graphite. Primary ore and gangue minerals at Serra Pelada comprise a suite of elements that are best transported in oxidising conditions and precipitated upon reduction. This suggests that fluid mixing between a highly oxidised (metal carrier) and a reduced fluid was a key process for high-grade noble metal precipitation at Serra Pelada.

  13. Hydrothermal alteration and the chemistry of ore-forming fluids in an unconformity-type uranium deposit

    SciTech Connect

    Komninou, A.; Sverjensky, D.A.

    1995-07-01

    Compositions of hydrothermal chlorite and fine-grained white mica from the inner and outer alteration halos in the Koongarra U deposit were analyzed by electron microprobe and analytical electron microscopy. Analyses show that although chlorite and white mica compositions vary considerably outside the main ore zone, they are uniform inside the ore zone. Ore-zone chlorite has a ratio of Fe/(Fe + Mg) of 0.25 and low octahedral occupancy (average 5.5 per formula unit), which may represent a mixture of di- and trioctahedral chlorite. White mica has a typical K + Na atomic content of 0.85 per formula unit. These compositions were used to calculate the activity ratios a{sub Fe{sup +2}}/a{sub H{sup +}}{sup 2}, a{sub Mg{sup +2}}/a{sub H{sup +}}{sup 2}, a{sub K{sup +}}/a{sub H{sup +}}, and a{sub Na{sup +}}/a{sub H{sup +}} for the hydrothermal fluids associated with deposition of uraninite. Hydrothermal apatite analyses in conjunction with salinities suggested from fluid inclusion studies were used to calculate the pH of the fluids during the pre-ore alteration. The calculated pH values range from 4.8 to 6.0. Finally, the coexistence of chlorite with quartz and hematite was used to calculate oxygen fugacities. The calculated values are about 2 log units higher than for the hematite-magnetite buffer at 200{degrees}C. Consequently, the oxidation state of the fluid lay in the hematite field and U was probably transported as uranyl complexes.

  14. Metallogeny of the northeastern Pacific Rim: an example of the distribution of ore deposits along a growing continental margin

    USGS Publications Warehouse

    Goldfarb, R.J.; Hart, C.J.; Mortensen, J.K.

    1999-01-01

    The distribution of mineral deposits within northwestern North America (Alaska, Yukon, and northern British Columbia) allows for an in-depth examination of the metallogenic patterns of a growing continental margin. A more complete understanding of the tectonic evolution of this part of the Pacific Rim, achieved over the last 15 to 20 years, now allows for the placement of ore systems into a well-defined plate tectonic framework. Ore deposits older than about 185 Ma represent hydrothermal systems that were active in the platform/shelf environment of ancestral North America's miogeocline or hydrothermal systems developed in oceanic arcs and continental fragments more distal to the craton. These include important SEDEX, VMS, and pre-accretionary porphyry deposits. In contrast, most mineral deposits younger than about 185 Ma were formed within the growing Cordilleran orogen, as terranes were accreted to the continental margin during interactions between the North America and Pacific/Farallon/Kula plates. Such syn- to post-accretionary mineralised systems include many large lode gold and porphyry/skarn systems.

  15. Genesis of basalt-hosted massive sulphide deposits from the Trondheim and Sulitjelma districts, Norway: ore lead isotopic considerations

    NASA Astrophysics Data System (ADS)

    Fox, J. S.; Farquhar, R.; Rui, I.; Cook, N.

    1988-10-01

    Lead isotopic ratios of bulk sulphides from eleven stratigraphically equivalent deposits from the Köli Nappe sequence in the Trondheim district, and eleven from the Köli sequence at Sulitjelma Norway, have been determined. When plotted on 207Pb/204Pb-206Pb/204Pb diagrams, the data define a linear trend extending from the mantle to the upper crustal model growth curves of Doe and Zartman (1979). Moreover, the data from both districts lie on the same trend. This isotopic trend is interpreted as resulting from the mixing of lead from a mantle source (probably the host basalts) with that of an upper-crustal end member (either sialic basement or the terrigenous sediments surrounding the host basalts). It is also concluded that the deposits in both camps formed more or less contemporaneously. The isotopic mixing line is comparable with that obtained from Besshi ore pyrites in Japan, for which an aulacogenic depositional environment, similar to that found today in the Gulf of California, has been proposed (Fox 1984). It is concluded that a similar depositional environment was responsible for the Trondheim and Sulitjelma ores, although an ensialic back-arc basin, or other possible environments, cannot be entirely ruled out.

  16. Mantle heat drives hydrothermal fluids responsible for carbonate-hosted base metal deposits: evidence from 3He/4He of ore fluids in the Irish Pb-Zn ore district

    NASA Astrophysics Data System (ADS)

    Davidheiser-Kroll, B.; Stuart, F. M.; Boyce, A. J.

    2014-06-01

    There is little consensus on whether carbonate-hosted base metal deposits, such as the world-class Irish Zn + Pb ore field, formed in collisional or extensional tectonic settings. Helium isotopes have been analysed in ore fluids trapped in sulphides samples from the major base metal deposits of the Irish Zn-Pb ore field in order to quantify the involvement of mantle-derived volatiles that require melting to be realised, as well as test prevailing models for the genesis of the ore fields. 3He/4He ratios range up to 0.2 R a, indicating that a small but clear mantle helium contribution is present in the mineralising fluids trapped in galena and marcasite. Sulphides from ore deposits with the highest fluid inclusion temperatures (~200 °C) also have the highest 3He/4He (>0.15 R a). Similar 3He/4He are recorded in fluids from modern continental regions that are undergoing active extension. By analogy, we consider that the hydrothermal fluids responsible for the carbonate-hosted Irish base metal mineralization circulated in thinned continental crust undergoing extension and demonstrate that enhanced mantle heat flow is ultimately responsible for driving fluid convection.

  17. Boron isotope evidence for the involvement of non-marine evaporites in the origin of the Broken Hill ore deposits

    USGS Publications Warehouse

    Slack, J.F.; Palmer, M.R.; Stevens, B.P.J.

    1989-01-01

    IDENTIFYING the palaeogeographic setting and mode of origin of stratabound ore deposits can be difficult in high-grade metamorphic terranes, where the effects of metamorphism may obscure the nature of the protoliths. Here we report boron isotope data for tourmalines from the early Proterozoic Broken Hill block, in Australia, which hosts giant lead-zinc-silver sulphide deposits. With one exception the 11B/10B ratios are lower than those for all other tourmalines from massive sulphide deposits and tour-malinites elsewhere in the world. We propose that these low ratios reflect leaching of boron from non-marine evaporitic borates by convecting hydrothermal fluids associated with early Proterozoic continental rifting. A possible modern analogue is the Salton Sea geothermal field in California. ?? 1989 Nature Publishing Group.

  18. Geology and ore deposits of the Mahd Adh Dhahab District, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Luce, Robert W.; Bagdady, Abdulaziz; Roberts, Ralph Jackson

    1976-01-01

    The principal ore minerals are pyrite, chalcopyrite, sphalerite, galena, and minor tetrahedrite, argentite, and native gold and silver. The gold and silver occurs finely disseminated in the veins and in the altered selvages of the veins. Widespread potassic and propylitic alteration accompanied the ore-forming processes. Potassium feldspar was introduced during an early stage of vein formation. Isotopic analyses of lead in vein potassium feldspar and galena yield a model age of about 900-1050 million years with the possibility of the original lead source having been remobilized about 600 million years ago. Chlorite and carbonate are also prominent vein minerals.

  19. Geochemical constraints on the origin of the Kicking Horse and Monarch Mississippi Valley-type lead-zinc ore deposits, southeast British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Vandeginste, Veerle; Swennen, Rudy; Gleeson, Sarah A.; Ellam, Rob M.; Osadetz, Kirk; Roure, François

    2007-11-01

    Two Mississippi Valley-type (MVT) ore deposits, Kicking Horse and Monarch, have been studied with the aim of comparing the ores at the two localities and to characterize the origin of the mineralizing fluids and the ore formation process(es). Both deposits are hosted by the Middle Cambrian Cathedral Formation carbonate host rocks, Kicking Horse on the north and Monarch on the south flank of the Kicking Horse valley near Field (SE British Columbia). The ore bodies are situated at the transition of (western) basinal to (eastern) shallow-water strata of the paleo-Pacific passive margin succession in the Cordilleran Foreland Province of the Western Canada Sedimentary Basin. Both deposits are related spatially to normal faults. In both localities, the ore minerals are dominated by pyrite, sphalerite, and galena. Dolomite, minor quartz, and calcite are also present in close association with the ores. The salinity (21-30 wt% NaCl eq.) and homogenization temperatures (63-182°C) measured in fluid inclusions in carbonate, quartz, and sphalerite lie within the typical range of MVT fluid conditions. The good stoichiometry (50-53 mol% CaCO3), low δ18O values (-21 to -14‰ Vienna Peedee belemnite) and relatively high homogenization temperatures (>95°C) of the dolomite suggest the dolomites were formed under burial diagenesis. The ore-forming fluids probably interacted with siliciclastic units, based on elevated Li contents and 87Sr/86Sr ratios, which are highest in the dolomite type after the main ore stage. We propose that the ores formed from the mixing of a downward-infiltrating, sulfur-bearing halite-dissolution fluid with an upward-migrating, metal-rich evaporated seawater fluid, which had already undergone minor mixing with a dilute fluid.

  20. The Balmat-Edwards zinc-lead deposits-synsedimentary ore from Mississippi valley-type fluids.

    USGS Publications Warehouse

    Whelan, J.F.; Rye, R.O.; Delorraine, W.

    1984-01-01

    The Balmat-Edwards Zn-Pb district in New York is in Mid-Proterozoic Grenville marbles. Tabular to podiform, generally conformable massive sphalerite-galena orebodies occur at various horizons in the approx 1 km-thick marbles. Metamorphism obscured or obliterated most primary characteristics, whose reconstruction is attempted through detailed S, C, and O isotope studies of the Fowler orebody, and trace element and S isotope studies of sphalerite concentrates and composite ore samples from 22 orebodies. Sulphur isotope data reflect equilibration at near peak metamorphism with some indication of re-equilibration during retrograde metamorphism. The carbon and oxygen isotope composition of gangue carbonates suggests derivation from the host marbles. The oxygen isotope composition of gangue quartz is compatible with a chert origin or metamorphism-equilibration with other minerals. Sulphur and lead isotopes and sulphide mineralogy suggests that the ore fluids were evolved basin brines, chemically like those responsible for Mississippi Valley-type deposits. The large stratigraphic span (> 600 m) of the Balmat orebodies may be due to basin dewatering of million-year intervals. Stratigraphically increasing 34S values of evaporite-anhydrite are postulated to record hydrothermal events and to imply bacterial sulphate reduction on an unusually large scale. Such a stratigraphic increase may be a general exploration guide where sediment-hosted exhalative deposits or Mississippi Valley-type deposits occur.-G.J.N.

  1. Mineralogical study of sediment-hosted gold deposits in the Yangshan ore field, Western Qinling Orogen, Central China

    NASA Astrophysics Data System (ADS)

    Liang, Jinlong; Sun, Weidong; Zhu, Sanyuan; Li, He; Liu, Yulong; Zhai, Wei

    2014-05-01

    The Yangshan gold ore field is located in the southern subzone of the Western Qinling Orogen. Mineralization is confined by the east-west-striking Anchanghe thrust fault zone. These subparallel faults constitute a branch of the regional Mianlue structural zone, crosscutting Middle Devonian carbonaceous carbonate and clastic rock sequences, an ore-bearing unit locally named the Sanhekou Formation. The metasedimentary clastic and carbonate rocks containing fine-grained sulfides are the main host rocks of the deposit, with minor mineralization occurring as coarse-grained pyrite-quartz veinlets in black shale and as dissemination in some plagiogranite dykes. Electron microprobe (EMPA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses show that arsenian pyrite and arsenopyrite are the major hosts for gold with tens of ppm up to weight percent levels of Au, and the Au contents in arsenopyrite are one order of magnitude higher than those in pyrite. A negative correlation of As and S in arsenian pyrite is consistent with the substitution of As for S in the mineral. Both arsenian pyrite and arsenopyrite in the Yangshan ore field show chemical zonations with middle parts (mantle) enriched in As and Au relative to cores and the outermost rims, reflecting the chemical evolution of ore-forming fluids. High resolution transmission electron microscopy (HRTEM) analysis failed to identify any nanoparticle of native gold even in the highest Au parts of arsenopyrite. This observation combined with the relatively homogenous distribution of Au, a positive correlation of As and Au, and Au/As ratios below the solubility limit of gold in arsenian pyrite and arsenopyrite, suggests that invisible gold is likely present as structurally bound Au+1 in sulfides, although our work cannot exclude the existence of Au nanoparticles in arsenian pyrite as identified in American Carlin-type gold deposits. Submicron native gold may be much more easily found in

  2. An overview of the geology and major ore deposits of Central Africa: Explanatory note for the 1:4,000,000 map “Geology and major ore deposits of Central Africa”

    NASA Astrophysics Data System (ADS)

    Milesi, J. P.; Toteu, S. F.; Deschamps, Y.; Feybesse, J. L.; Lerouge, C.; Cocherie, A.; Penaye, J.; Tchameni, R.; Moloto-A-Kenguemba, G.; Kampunzu, H. A. B.; Nicol, N.; Duguey, E.; Leistel, J. M.; Saint-Martin, M.; Ralay, F.; Heinry, C.; Bouchot, V.; Doumnang Mbaigane, J. C.; Kanda Kula, V.; Chene, F.; Monthel, J.; Boutin, P.; Cailteux, J.

    2006-04-01

    This paper is prepared within the frameworks of IGCP Project 470 and the associated BRGM scientific project "Africa 1999-2004" to accompany the 1:4,000,000 scale map "Geology and major ore deposits of Central Africa, presented at the 20th Colloquium of African Geology in Orleans in June 2004. It incorporates geological and metallogenic data from eight countries in Central Africa (Angola, Cameroon, Chad, Central African Republic, Congo Brazzaville, Democratic Republic of Congo (DRC), Equatorial Guinea and Zambia). The map is a harmonised and geo-referenced preliminary map, based on a GIS at 1:2,000,000 scale, and focusses on the spatial and temporal distribution of selected major deposits.

  3. The origin of terrestrial pisoliths and pisolitic iron ore deposits: Raindrops and sheetwash in a semi-arid environment

    NASA Astrophysics Data System (ADS)

    Lascelles, Desmond F.

    2016-07-01

    Ooliths evidently form by chemical precipitation in limnic, paralic, fluvial and marine environments, pisoliths, however, appear to be restricted to terrestrial environments. Typically composed of iron, aluminium and manganese sesquioxides with minor admixtures of quartz and kaolinite, they are widely distributed in tropical to subtropical regions overlying deeply weathered soil profiles. Although iron-, aluminium- and manganese-rich end members are important sources of these metals, their genesis is still enigmatic; their formation has never been observed or produced experimentally and current models for their origin are little more than guesses. A new model is presented based on a unique personal observation in which pisoliths are formed by the action of charged raindrops during thunderstorms impacting on dry deeply weathered powdery soils. The pisoliths are transported across pediments by sheetwash, accumulating as thick deposits in the valley floors. Pisolites are characteristically unfossiliferous and typically clearly pedogenic. The absence of fine depositional layering, fossil seeds, leaves and pollen in pisolites is explained by bioturbation and the action of soil organisms during extended pedogenesis while the major coarse bedding features derive from erosional and depositional events in the evolution of the pediment. Pisolitic iron ores (aka channel iron deposits, CID) are a special case of transported pisolitic ferricrust that form an important resource of medium grade iron ore (57-60 wt% Fe) in the Pilbara Region of Western Australia. Apart from minor deposits in the northern Yilgarn Province of Western Australia, they have not been found elsewhere. They differ from normal transported ferricrust and terrestrial pisolites not only in the exceptionally high iron and low alumina and silica content but also in containing abundant fossilised wood particles.

  4. Studies of disseminated gold deposits near Carlin, Nevada: Evidence for a deep geologic setting of ore formation

    SciTech Connect

    Kuehn, C.A.

    1989-01-01

    The Carlin gold deposit occurs in the upper 175 meters of the Siluro-Devonian Roberts Mountains Formation in Eureka County, Nevada. Pre-, syn- and post-gold episodes are distinguished by (1) hydrocarbon maturation, (2) gold mineralization and alteration and (3) subsequent oxidation. Mineralization post-dates Early Cretaceous dikes which cut zones of thermally mature petroleum residue. Preore P-T conditions of 155 {+-} 20 C and 0.6 to 1.4 kb are defined by coexisting saline aqueous and methane-rich fluid inclusions. Main Gold Ore Stage (MGOS) alteration of pyrite-bearing unaltered calcareous carbonaceous argillaceous siltstones progresses from K-feldspar silt and calcite destruction, then dolomite dissolution, and finally illite conversion to dickite/kaolinite in intensely altered silicified zones near hydrothermal conduits. MGOS fluids are acid from elevated CO{sub 2} contents (5-10 mole percent), and also contain appreciable H{sub 2}S, 3 {+-} 1 wt% NaCl and {delta}{sup 18}O{sub H2O} values +5{per thousand} to {gt} +9{per thousand}. CO{sub 2}-exsolution occurs at 215 {+-} 30{degree}C and 800 {+-} 400 bars during portions of MGOS time and constrains ore formation to minimum depths of 4.4 {+-} 2.2 km. Late Gold Ore Stage (LGOS) fluids are non-boiling and gas-poor with {lt}1.5 wt% NaCl and {delta}{sup 18}O{sub H2O} values {le}-4{per thousand} to -3{per thousand}. As LGOS fluids flood the system, calcite {delta}{sup 18}O values shift from near whole-rocks at +12 {+-} 3{per thousand} to 0 {+-} 1{per thousand} in veinlets containing unoxidized As {+-} Sb-phases. Gas-rich MGOS fluids may result from buried intrusions, contact aueroles, or deeper low-grade metamorphism. Deposition may occur in throttling zones where conditions change abruptly from lithostatic to hydrostatic.

  5. Paragenetic link between organic matter and late-stage ore deposition in the Sweetwater mine, Viburnum Trend, southeast Missouri

    SciTech Connect

    Niewendorp, C.A. ); Clendenin, C.W.

    1993-03-01

    At the Sweetwater mine bitumen exudes from mine walls as a tacky liquid and is present as spherical blebs in vugs throughout the Bonneterre Formation. Bitumen blebs occur as overgrowths on older mineral phases and are frequently over-grown by late vug-filling sulfides. Slickensided bitumen interlayered with deformed galena occurs in Middle Bonneterre Formation collapse breccias. Anthraxolite, a coal-like bitumen, has also been identified in these collapse breccias and is commonly overgrown by cubic-form galena in vugs. Petrographic examination, verified by SEM analysis, reveals inclusions of dendritic-form galena intimately intergrown in such anthraxolite samples; pyrite and chalcopyrite also occur as inclusions. The presence of sulfide inclusions in anthraxolite establishes a direct paragenetic link between organic matter and ore deposition. Generation of bituminous material appears to correspond to a major period of solution-induced brecciation during main-stage mineralization. Observations indicate that precipitation of dendritic-form galena in anthraxolite coincides with subsequent deposition of cubic-form galena. Such a paragenetic link supports the proposal that nonbiologic sulfate reduction by organic matter has occurred and is a precipitation mechanism for sulfide ores in the Viburnum Trend.

  6. Geophysical model of the Cu-Mo porphyry ore deposit at Copper Flat Mine, Hillsboro, Sierra County, New Mexico

    NASA Astrophysics Data System (ADS)

    Gutierrez, Adrian Emmanuel Gutierrez

    A 3D gravity model of the Copper Flat Mine was performed as part of the exploration of new resources in at the mine. The project is located in the Las Animas Mining District in Sierra County, New Mexico. The mine has been producing ore since 1877 and is currently owned by the New Mexico Copper Corporation, which plans o bringing the closed copper mine back into production with innovation and a sustainable approach to mining development. The Project is located on the Eastern side of the Arizona-Sonora-New Mexico porphyry copper Belt of Cretaceous age. Copper Flat is predominantly a Cretaceous age stratovolcano composed mostly of quartz monzonite. The quartz monzonite was intruded by a block of andesite alter which a series of latite dikes creating veining along the topography where the majority of the deposit. The Copper Flat deposit is mineralized along a breccia pipe where the breccia is the result of auto-brecciation due to the pore pressure. There have been a number of geophysical studies conducted at the site. The most recent survey was a gravity profile on the area. The purpose of the new study is the reinterpretation of the IP Survey and emphasizes the practical use of the gravity geophysical method in evaluating the validity of the previous survey results. The primary method used to identify the deposit is gravity in which four Talwani models were created in order to created a 3D model of the ore body. The Talwani models have numerical integration approaches that were used to divide every model into polygons. The profiles were sectioned into polygons; each polygon was assigning a specific density depending on the body being drawn. Three different gridding techniques with three different filtering methods were used producing ten maps prior to the modeling, these maps were created to establish the best map to fit the models. The calculation of the polygons used an exact formula instead of the numerical integration of the profile made with a Talwani approach. A

  7. Lacustrine-humate model for primary uranium ore deposits, Grants uranium region, New Mexico.

    USGS Publications Warehouse

    Turner-Peterson, C. E.

    1985-01-01

    It is concluded that the primary ore formation in the Morrison formation of the San Juan basin, formed during late Jurassic and early Cretaceous, was related to humic-rich pore fluids. The fluids were derived from lacustrine mud-flat facies of the Brushy basin and 'K' shales. The fluids moved into the Westwater Canyon member and the Jackpile sandstone. -K.A.R.

  8. Genesis of sediment-hosted disseminated-gold deposits by fluid mixing and sulfidization: Chemical-reaction-path modeling of ore-depositional processes documented in the Jerritt Canyon district, Nevada

    NASA Astrophysics Data System (ADS)

    Hofstra, A. H.; Leventhal, J. S.; Northrop, H. R.; Landis, G. P.; Rye, R. O.; Birak, D. J.; Dahl, A. R.

    1991-01-01

    Integrated geologic, geochemical, fluid-inclusion, and stableisotope studies of the gold deposits in the Jerritt Canyon district, Nevada, provide evidence that gold deposition was a consequence of both fluid mixing and sulfidization of host-rock iron. Chemical-reaction-path models of these ore-depositional processes confirm that the combination of fluid mixing, including simultaneous cooling, dilution, and oxidation of the ore fluid, and wall-rock reaction, with sulfidization of reactive iron in the host rock, explains the disseminated nature and small size of the gold and the alteration zonation, mineralogy, and geochemistry observed at Jerritt Canyon and at many other sediment-hosted disseminated gold deposits.

  9. Paleomagnetism, rock magnetism and opaque mineralogy of iron ore deposits from southern Mexico and their implications for quantitative modelling of magnetometric data

    SciTech Connect

    Alva-Valdivia, L.M.; Fucugauchi, Urrutia, J.; Bohnel, H.; Moran Zenteno, D.J. )

    1990-06-01

    Paleomagnetism, Rock Magnetism and Opaque Mineralogy of Iron Ore Deposits from Southern Mexico and Their Implications for Quantitative Modelling of Magnetometric Data. The tectonic history of the Pacific continental margin is critical for understanding their mineral deposits. The margin presents intrusive and volcanic activity characteristic of magmatic arcs of subduction zones, which are genetically related with deposits of Cu, Fe, Mo, Au, and Ag. Although the tectonic history has been complex, involving oblique plate subduction, lateral movements, accretion of magmatic arcs and oceanic plateaux, and lateral displacements of major blocks, the mineral deposits are spatially distributed along elongated belts that roughly follow the margin. The authors have conducted paleomagnetic, rock magnetic, and petrological studies of the iron ore deposits to investigate genesis, magnetic mineralogy, stratigraphic relationships, metamorphism, and applications on quantitative modelling of magnetometric data. The remanent magnetization and susceptibility data are necessary for interpretation of magnetic anomalies. The results permit a comparison of the mineral deposits along the continental margin.

  10. High-grade iron ore deposits of the Mesabi Range, Minnesota-product of a continental-scale proterozoic ground-water flow system

    USGS Publications Warehouse

    Morey, G.B.

    1999-01-01

    The Mesabi Range along the north edge of the Paleoproterozoic Penokean orogen in northern Minnesota has produced 3.6 billion metric tons of ore since its discovery in 1890. Of that amount, 2.3 billion metric tons were extracted from hematite- or geothite-rich deposits generally referred to as 'high-grade' ores. The high-grade ores formed as the Biwabik Iron-Formation was oxidized, hydrated, and leached by solutions flowing along open faults and fractures. The source of the ore-forming solutions has been debated since it was first proposed that the ores were weathering products formed by descending meteoritic ground-water flowing in late Mesozoic time. Subsequently others believed that the ores were better explained by ascending solutions, possbily hydrothermal solutions of pre-Phanerzoic age. Neither Wolff nor Gruner could reconcile their observations with a reasonable source for the solutions. In this paper, I build on modern mapping of the Mesabi Range and mine-specific geologic observations summarized in the literature to propose a conceptual model in which the high-grade ores formed from ascending solutions that were part of continent-scale topographic or gravity-driven ground-water system. I propose that the ground-water system was active during the later stages of the development of a coupled fold and thrust belt and foreland basin that formed during the Penokean orogen.

  11. Reconstructions of subducted ocean floor along the Andes: a framework for assessing Magmatic and Ore Deposit History

    NASA Astrophysics Data System (ADS)

    Sdrolias, M.; Müller, R.

    2006-05-01

    The South American-Antarctic margin has been characterised by numerous episodes of volcanic arc activity and ore deposit formation throughout much of the Mesozoic and Cenozoic. Although its Cenozoic subduction history is relatively well known, placing the Mesozoic arc-related volcanics and the emplacement of ore bodies in their plate tectonic context remains poorly constrained. We use a merged moving hotspot (Late Cretaceous- present) and palaeomagnetic /fixed hotspot (Early Cretaceous) reference frame, coupled with reconstructed spreading histories of the Pacific, Phoenix and Farallon plates to understand the convergence history of the South American and Antarctic margins. We compute the age-area distribution of oceanic lithosphere through time, including subducting oceanic lithosphere and estimate convergence rates along the margin. Additionally, we map the location and migration of spreading ridges along the margin and relate this to processes on the overriding plate. The South American-Antarctic margin in the late Jurassic-early Cretaceous was dominated by rapid convergence, the subduction of relatively young oceanic lithosphere (< 35 m.y. old) and extensive arc volcanism on the overriding plate. Additionally, our reconstructed position of the Farallon-Phoenix ridge during this period corresponds with the emplacement of several ore bodies in southern South America, similar to formation of Miocene to recent ore deposits in the northern Andes due to aseismic ridge subduction. A change in absolute motion of the Pacific plate after ~120 Ma, led to a significant decrease in the convergence rate and the southward migration of the Farallon-Phoenix ridge and this may have contributed to the cessation of back- arc spreading in the "Rocas Verdes" in southern South America. The speed of subduction increased again along the South American-Antarctic margin at ~105 Ma after another change in tectonic regime. Newly created crust from the Farallon-Phoenix ridge continued to be

  12. Mineralogy and fluid inclusions study of carbonate-hosted Mississippi valley-type Ain Allega Pb-Zn-Sr-Ba ore deposit, Northern Tunisia

    NASA Astrophysics Data System (ADS)

    Abidi, R.; Slim-Shimi, N.; Somarin, A.; Henchiri, M.

    2010-05-01

    The Ain Allega Pb-Zn-Sr-Ba ore deposit is located in the flysch zone on the Eastern edge of the Triassic diapir of Jebel Hamra. It is part of the extrusive Triassic evaporate formation along the Ghardimaou-Cape Serrat faults. The ore body consists of argilic-dolomite breccias surrounded by argilo-gypsum Triassic formation, which forms the hanging wall of the deposit, and rimmed by the Paleocene marls. The ore minerals show a cap-rock type mineralization with different styles particularly impregnation in dolomite, cement of breccias, replacement ore and open space filling in the dissolution cavities and fractures. Ore minerals include sphalerite, galena, marcasite and pyrite. Principal gangue minerals are composed of barite, celestite, calcite, dolomite and quartz. The ore minerals are hosted by the Triassic carbonate rocks which show hydrothermal alteration, dissolution and brecciation. X-ray - crystallographic study of barite-celestite mineral series shows that pure barite and celestite are the abundant species, whereas strontianiferous barite (85-96.5% BaSO 4) and barian-celestite (95% SrSO 4) are minor. Primary and secondary mono-phase (liquid only) fluid inclusions are common in celestite. Microthermometric analyses in two-phases (liquid and vapour) fluid inclusions suggest that gangue and ore minerals were precipitated by a low-temperature (180 °C) saline (16.37 wt.% NaCl equivalent) solution originated possibly from a basinal brine with some input from magmatic or metamorphic fluid. Based on geology, mineralogy, texture and fluid characteristics, the Ain Allega deposit is classified as a carbonate-hosted Mississippi valley-type deposit.

  13. Hydrothermal alteration, ore fluid characteristics, and gold depositional processes along a trondhjemite-komatiite contact at Tarmoola, Western Australia

    USGS Publications Warehouse

    Duuring, P.; Hagemann, S.G.; Cassidy, K.F.; Johnson, C.A.

    2004-01-01

    Tarmoola is a structurally controlled Archean orogenic gold deposit hosted in greenschist facies metamorphosed komatiite and trondhjemite in the Leonora district of the Eastern Goldfields province, Yilgarn craton. High-grade (>1 g/t Au) orebodies are located in komatiite wall rock adjacent to the eastern and northeastern margins of the asymmetrical, north-south-striking, Tarmoola trondhjemite intrusion. Gold-bearing veins post-date trondhjemite emplacement (ca. 2700 Ma), quartz diorite dikes (ca. 2667 Ma), and regional greenschist facies metamorphism. Textures and crosscutting relationships in gold-bearing veins indicate two stages of hydrothermal fluid infiltration associated with a single gold-related hydrothermal event: a volumetrically dominant, but gold-poor, stage I fluid and a gold-rich stage II fluid. Gold-bearing veins contain stage I milky quartz and pyrite that are overprinted by stage II quartz-ankerite-muscovite-chalcopyrite-sphalerite-galena-gold-tellurides ?? albite ?? chlorite ?? fuchsite ?? epidote ?? scheelite. Stage I hydrothermal alteration assemblages are different in trondhjemite and komatiite due to contrasting reactions between a common ore fluid and disparate wall-rock chemistry. Stage II fluid-wall rock interaction was minor compared to stage I and is indicated by the overprinting of stage I mineral assemblages by stage II microveins. Wall-rock alteration proximal to veins in trondhjemite is characterized by replacement of igneous plagioclase, amphibole, biotite, and metamorphic chlorite by hydrothermal quartz, muscovite, ankerite, calcite, pyrite, chalcopyrite, sphalerite, galena, tellurides, and gold, whereas in proximal alteration in komatiite, metamorphic chlorite and talc are replaced by ankerite, quartz, muscovite, albite, chlorite, fuchsite, pyrite, chalcopyrite, sphalerite, galena, tellurides, and gold. The stage II fluid was enriched in H2O, CO2, Si, Ca, K, Na, S, Au, Ag, Cu, Pb, W, Bi, As, Mo, Zn, and Te. Based on fluid inclusion

  14. Extraction and separation of nickel and cobalt from saprolite laterite ore by microwave-assisted hydrothermal leaching and chemical deposition

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Gao, Jian-ming; Yue, Yi; Peng, Ben; Que, Zai-qing; Guo, Min; Zhang, Mei

    2013-07-01

    Extraction and separation of nickel and cobalt from saprolite laterite ore were studied by using a method of microwave-assisted hydrothermal leaching and chemical deposition. The effects of leaching temperature and time on the extraction efficiencies of Ni2+ and Co2+ were investigated in detail under microwave conditions. It is shown that the extraction efficiencies of Ni2+ and Co2+ from the ore pre-roasted at 300°C for 5 h were 89.19% and 61.89% when the leaching temperature and time were about 70°C and 60 min, respectively. For the separation process of Ni and Co, the separation of main chemical components was performed by adjusting the pH values of sulfuric leaching solutions using a NaOH solution based on the different pH values of precipitation for metal hydroxides. The final separation efficiencies of Ni and Co were 77.29% and 65.87%, respectively. Furthermore, the separation efficiencies of Fe of 95.36% and Mg of 92.2% were also achieved at the same time.

  15. Diversity, metal resistance and uranium sequestration abilities of bacteria from uranium ore deposit in deep earth stratum.

    PubMed

    Islam, Ekramul; Sar, Pinaki

    2016-05-01

    Metal resistance and uranium (U) sequestration abilities of bacteria residing in subsurface U ore was investigated using 122 pure culture strains isolated through enrichment. The cumulative frequencies of isolates resistant to each metal tested were as follows: As(V), 74%; Zn, 58%; Ni, 53%; Cd, 47%; Cr(VI), 41%; Co, 40%; Cu, 20%; and Hg, 4%. 16S rRNA gene analysis revealed that isolated bacteria belonged to 14 genera with abundance of Arthrobacter, Microbacterium, Acinetobacter and Stenotrophomonas. Cobalt did not interfere with the growth of most of the bacterial isolates belonging to different groups while U allowed growth of four different genera of which Stenotrophomonas and Microbacterium showed high U tolerance. Interestingly, tolerance to Ni, Zn, Cu, and Hg was observed only in Microbacterium, Arthrobacter, Paenibacillus¸ and Acinetobacter, respectively. However, Microbacterium was found to be dominant when isolated from other five different metal enrichments including U. Uranium removal study showed that 84% of the test bacteria could remove more than 50mgUg(-1) dry weight from 80 or 160mgL(-1) U within 48h. In general, Microbacterium, Arthrobacter and Acinetobacter could remove a higher amount of U. High resolution transmission electron microscopy (HRTEM) study of U exposed cells revealed that accumulated U sequestered mostly around the cell periphery. The study highlights that indigenous U ore deposit bacteria have the potential to interact with U, and thus could be applied for bioremediation of U contaminated sites or wastes. PMID:26796528

  16. Genesis and Paleo-ecological Interpretation of Swamp Ore Deposits at Sahara Paleo-lakes of East Niger

    NASA Astrophysics Data System (ADS)

    Felix-Henningsen, Peter

    In formerly vegetated flat lake-shore areas of Pleistocene and Holocene paleo-lake depressions in the Sahara of East Niger (Ténéré, Tchigai mountains and in the Erg of Bilma), ancient dune sands are covered by rampart-like or flat beds of individual or networked rhizoconcretions. The massive goethite accumulation, which partly includes an outer fringe of lepidocrocite, impregnated the ancient dune sands. Apart from Fe, P, Ca, and Mg, other heavy metals were also concentrated. The formation and morphological differentiation of these swamp ores were generally bound at vegetated shallow water areas of paleo-lakes in ancient dune fields. Accordingly, the swamp ores of the Ténéré, which has flat to undulating relief, display a large dissemination. In contrast, in the Erg of Bilma the high altitude and steep slopes of ancient dune ridges led to steeper shore areas of the paleo-lakes, at which beds of rhizoconcretions were unable to develop. The oxides were formed by oxidation of Fe2 + -ions from the lake water and concentrated around the roots in the upper root zone of the swamp vegetation. The lack of oxygen in the warm lake water of the shore region, as well as the decomposition of vegetation residues, excluded high redox potentials within the deeper water near the subhydric soil surface. Hence, the formation of rhizoconcretions can only be explained by the specific physiological characteristics of the swamp vegetation, which was able to supply oxygen to the roots through an aerenchyma. The release of surplus oxygen from such roots obviously caused high redox potentials at the root surface and in the neighbouring root environment. As a result precipitation of Fe and Mn oxides occurred, which adsorbed nutrients and heavy metals from the soil solution. The redistribution of the ions from the reduced sediments of the lake basin into the root zone of the shore area resulted from diffusion and mass flow. Paleo-climatically, the swamp ore deposits denote humid periods

  17. Stratification Studies with Sub Grade Iron Ore from Deposit No. 10 and 11A, Bacheli Complex, Bailadila, Chhattisgarh, India

    NASA Astrophysics Data System (ADS)

    Venkateswara Rao, Gottumukkala; Markandeya, Ravvala; Sharma, Satish Kumar

    2016-06-01

    Experiments were carried out with two different sizes of (-30 + 6 and -6 + 1 mm) sub grade iron ore sample from Deposit No. 10 and 11A, Bacheli Complex, Bailadila, India to study the stratification behaviour at optimised parameters in a under bed air pulsed jig at 1, 2, 5, 10, 15 and 20 minutes residence time. This paper deals with the rate at which stratification takes place and determines the optimum stratification time (residence time) for above two size fractions. Average apparent density along with Jig Stratification Index (JSI) of both the size fractions was calculated. It was observed that the stratification rate is high for fines (-6 + 1 mm) and stratification index was higher for lump (-30 + 6 mm) when compared with the other size fraction. The maximum JSI observed was 0.35 for lump (-30 + 6 mm) and 0.30 for fines (-6 + 1 mm).

  18. The role of the Antofagasta-Calama Lineament in ore deposit deformation in the Andes of northern Chile

    NASA Astrophysics Data System (ADS)

    Palacios, Carlos; Ramírez, Luis E.; Townley, Brian; Solari, Marcelo; Guerra, Nelson

    2007-02-01

    During the Late Jurassic-Early Oligocene interval, widespread hydrothermal copper mineralization events occurred in association with the geological evolution of the southern segment of the central Andes, giving rise to four NS-trending metallogenic belts of eastward-decreasing age: Late Jurassic, Early Cretaceous, Late Paleocene-Early Eocene, and Late Eocene-Early Oligocene. The Antofagasta-Calama Lineament (ACL) consists of an important dextral strike-slip NE-trending fault system. Deformation along the ACL system is evidenced by a right-lateral displacement of the Late Paleocene-Early Eocene metallogenic belts. Furthermore, clockwise rotation of the Early Cretaceous Mantos Blancos copper deposit and the Late Paleocene Lomas Bayas porphyry copper occurred. In the Late Eocene-Early Oligocene metallogenic belt, a sigmoidal deflection and a clockwise rotation is observed in the ACL. The ACL is thought to have controlled the emplacement of Early Oligocene porphyry copper deposits (34-37 Ma; Toki, Genoveva, Quetena, and Opache), whereas it deflected the Late Eocene porphyry copper belt (41-44 Ma; Esperanza, Telégrafo, Centinela, and Polo Sur ore deposits). These observations suggest that right-lateral displacement of the ACL was active during the Early Oligocene. We propose that the described structural features need to be considered in future exploration programs within this extensively gravel-covered region of northern Chile.

  19. A precise 232Th-208Pb chronology of fine-grained monazite: Age of the Bayan Obo REE-Fe-Nb ore deposit, China

    USGS Publications Warehouse

    Wang, Jingyuan; Tatsumoto, M.; Li, X.; Premo, W.R.; Chao, E.C.T.

    1994-01-01

    We have obtained precise Th-Pb internal isochron ages on monazite and bastnaesite for the world's largest known rare earth elements (REE)-Fe-Nb ore deposit, the Bayan Obo of Inner Mongolia, China. The monazite samples, collected from the carbonate-hosted ore zone, contain extremely small amounts of uranium (less than 10 ppm) but up to 0.7% ThO2. Previous estimates of the age of mineralization ranged from 1.8 to 0.255 Ga. Magnetic fractions of monazite and bastnaesite samples (<60-??m size) showed large ranges in 232Th 204Pb values (900-400,000) and provided precise Th-Pb internal isochron ages for paragenetic monazite mineralization ranging from 555 to 398 Ma within a few percent error (0.8% for two samples). These results are the first indication that REE mineralization within the giant Bayan Obo ore deposit occurred over a long period of time. The initial lead isotopic compositions (low 206Pb 204Pb and high 208Pb 204Pb) and large negative ??{lunate}Nd values for Bayan Obo ore minerals indicate that the main source(s) for the ores was the lower crust which was depleted in uranium, but enriched in thorium and light rare earth elements for a long period of time. Zircon from a quartz monzonite, located 50 km south of the ore complex and thought to be related to Caledonian subduction, gave an age of 451 Ma, within the range of monazite ages. Textural relations together with the mineral ages favor an epigenetic rather than a syngenetic origin for the orebodies. REE mineralization started around 555 Ma (disseminated monazite in the West, the Main, and south of the East Orebody), but the main mineralization (banded ores) was related to the Caledonian subduction event ca. 474-400 Ma. ?? 1994.

  20. The source of phosphate in the oxidation zone of ore deposits: Evidence from oxygen isotope compositions of pyromorphite

    NASA Astrophysics Data System (ADS)

    Burmann, Fabian; Keim, Maximilian F.; Oelmann, Yvonne; Teiber, Holger; Marks, Michael A. W.; Markl, Gregor

    2013-12-01

    Pyromorphite (Pb5[PO4]3Cl) is an abundant mineral in oxidized zones of lead-bearing ore deposits and due to its very low solubility product effectively binds Pb during supergene alteration of galena (PbS). The capacity of a soil or near-surface fluid to immobilize dissolved Pb depends critically on the availability of phosphate in this soil or fluid. Potential phosphorus sources in soil include (i) release during biological processes, i.e. leaching from litter/lysis of microbial cells (after intracellular enzyme activity) in soil and hydrolysis from soil organic matter by extracellular enzymes and (ii) inorganic phosphate from the dissolution of apatite in the adjacent basement rocks. Intracellular enzyme activity in plants/microorganisms associated with kinetic fractionation produces an oxygen isotope composition distinctly different from inorganic processes in soil. This study presents the first oxygen isotope data for phosphate (δ18OP) in pyromorphite and a comprehensive data set for apatite from crystalline rocks. We investigated 38 pyromorphites from 26 localities in the Schwarzwald (Southwest Germany) and five samples from localities outside the Schwarzwald in addition to 12 apatite separates from gneissic and granitic host rocks. Pyromorphites had δ18OP values between +10‰ and +19‰, comparable to literature data on δ18OP in the readily available P fraction in soil (resin-extractable P) from which minerals potentially precipitate in soils. δ18OP values below the range of equilibrium isotope fractionation can be attributed either to apatites that formed geochemically (δ18OP of apatites:+6‰ to +9‰) or less likely to biological processes (extracellular enzyme activity). However, for most of our samples isotopic equilibrium with ambient water was indicated, which suggests biological activity. Therefore, we conclude that the majority of pyromorphites in oxidized zones of ore bodies formed from biologically cycled phosphate. This study highlights that

  1. Tertiary meteoric hydrothermal systems and their relation to ore deposition, northwestern United States and southern British Columbia

    NASA Astrophysics Data System (ADS)

    Criss, Robert E.; Fleck, Robert J.; Taylor, Hugh P., Jr.

    1991-07-01

    U-bearing Eocene "porphyry" plutons; and (6) Miocene epithermal deposits, most prominently the Au and Ag bearing veins at Silver City and DeLamar, Idaho, the Hg deposits at the McDermitt caldera, Nevada and Oregon, and at Weiser, Idaho, and Au deposits in the Western Cascade Range and Lake County, Oregon. A close spatial association has been demonstrated between ore deposits and rocks having anomalous δ18O values and low δD values. The most important deposits are associated with relatively small (generally 5-300 km2) zones of low δ18O values, and they are particularly closely linked with zones of very steep 18O/16O gradients in the altered rocks. These associations hold much promise for the use of δ18O and δD contour maps in future exploration efforts.

  2. A Long-Lived Porphyry Ore Deposit and Associated Upper Crustal Silicic Magma Body, Bajo de la Alumbrera, Argentina

    NASA Astrophysics Data System (ADS)

    Harris, A. C.; Allen, C. M.; Reiners, P. W.; Dunlap, W. J.; Cooke, D. R.; Campbell, I. H.; White, N. C.

    2004-05-01

    Porphyry Cu deposits form within and adjacent to small porphyritic intrusions that are apophyses to larger silicic magma bodies that reside in the upper parts of the Earth's crusts. Centred on these intrusions are hydrothermal systems of exsolved magmatic fluid with a carapace of convectively circulating meteoric water. We have applied several different dating techniques to assess the longevity of the magmatic-hydrothermal system and to define the cooling history of porphyry intrusions at the Bajo de la Alumbrera porphyry Cu-Au deposit, Argentina. The closure temperatures of these techniques range from 800oC (zircon U-Pb) to ~70oC (apatite (U-Th)/He; Fig. 1). The resulting cooling history indicates that the magmatic-hydrothermal system cooled to ca. 200oC by ~1.5 m.y. after the last porphyry intrusion (i.e., 6.96±0.09 Ma; U-Pb zircon age). Based on (U-Th)/He apatite data (closure temperature ~60-70oC), exposure and cessation of the system occurred before 4 Ma. The longevity of the magmatic-hydrothermal system indicated by these results is inconsistent with accepted mechanisms for porphyry Cu deposit formation. Depending on wallrock permeability, depth and cooling method, a 2 km wide by 3 km high intrusion has been predicted to cool between 0.01 to 0.1 m.y. (marked as the grey interval; Cathles et al., 1997 Economic Geology). We have obtained numerous age determinations younger than the U-Pb zircon age of the last known intrusion at Bajo de la Alumbrera. These imply that simple cooling of the small, mineralized porphyries did not happen. For the magmatic-hydrothermal system to have been sustained for longer than 0.1 m.y., either 1) younger small intrusions have been episodically emplaced below the youngest known intrusions, thus prolonging heat flow, or 2) fluids derived from a deeper and larger parental intrusion have been episodically discharged through the ore deposit long after the porphyry intrusion had lost its available heat. In either case, the longevity of

  3. Constraints on the composition of ore fluids and implications for mineralising events at the Cleo gold deposit, Eastern Goldfields Province, Western Australia

    USGS Publications Warehouse

    Brown, S.M.; Johnson, C.A.; Watling, R.J.; Premo, W.R.

    2003-01-01

    The Cleo gold deposit, 55 km south of Laverton in the Eastern Goldfields Province of Western Australia, is characterised by banded iron-formation (BIF)-hosted ore zones in the gently dipping Sunrise Shear Zone and high-grade vein-hosted ore in the Western Lodes. There is evidence that gold mineralisation in the Western Lodes (which occurred at ca 2655 Ma) post-dates the majority of displacement along the Sunrise Shear Zone, but it remains uncertain if the ore in both structures formed simultaneously or separately. Overall, the Pb, Nd, Sr, C. O and S isotopic compositions of ore-related minerals from both the Western Lodes and ore zones in the Sunrise Shear Zone are similar. Early low-salinity aqueous-carbonic fluids and late high-salinity fluids with similar characteristics are trapped in inclusions in quartz veins from both the Sunrise Shear Zone and the Western Lodes. The early CO2, CO2-H2O, and H2O- dominant inclusions are interpreted as being related to ore formation, and to have formed from a single low-salinity aqueous-carbonic fluid as a result of intermittent fluid immiscibility. Homogenisation temperatures indicate that these inclusions were trapped at approximately 280??C and at approximately 4 km depth, in the deeper epizonal range. Differences between the ore zones are detected in the trace-element composition of gold samples, with gold from the Sunrise Shear Zone enriched in Ni, Pb, Sn, Te and Zn, and depleted In As, Bi, Cd, Cu and Sb, relative to gold from the Western Lodes. Although there are differences in gold composition between the Sunrise Shear Zone and Western Lodes, and hence the metal content of ore fluids may have varied slightly between the different ore zones, no other systematic fluid or solute differences are detected between the ore zones. Given the fact that the ore fluids in each zone have very similar bulk properties, the considerable differences in gold grade, sulfide mineral abundance, and ore textures between the two ore zones

  4. Regularities of spatial association of major endogenous uranium deposits and kimberlitic dykes in the uranium ore regions of the Ukrainian Shield

    NASA Astrophysics Data System (ADS)

    Kalashnyk, Anna

    2015-04-01

    During exploration works we discovered the spatial association and proximity time formation of kimberlite dykes (ages are 1,815 and 1,900 Ga for phlogopite) and major industrial uranium deposits in carbonate-sodium metasomatites (age of the main uranium ore of an albititic formation is 1,85-1,70 Ga according to U-Pb method) in Kirovogradsky, Krivorozhsky and Alekseevsko-Lysogorskiy uranium ore regions of the Ukrainian Shield (UkrSh) [1]. In kimberlites of Kirovogradsky ore region uranium content reaches 18-20 g/t. Carbon dioxide is a major component in the formation of hydrothermal uranium deposits and the formation of the sodium in the process of generating the spectrum of alkaline ultrabasic magmas in the range from picritic to kimberlite and this is the connection between these disparate geochemical processes. For industrial uranium deposits in carbonate-sodium metasomatitics of the Kirovogradsky and Krivorozhsky uranium ore regions are characteristic of uranyl carbonate introduction of uranium, which causes correlation between CO2 content and U in range of "poor - ordinary - rich" uranium ore. In productive areas of uranium-ore fields of the Kirovogradsky ore region for phlogopite-carbonate veinlets of uranium ore albitites deep δ13C values (from -7.9 to -6.9o/oo) are characteristic. Isotope-geochemical investigation of albitites from Novokonstantynovskoe, Dokuchaevskoe, Partyzanskoe uranium deposits allowed obtaining direct evidence of the involvement of mantle material during formation of uranium albitites in Kirovogradsky ore region [2]. Petrological characteristics of kimberlites from uranium ore regions of the UkrSh (presence of nodules of dunite and harzburgite garnet in kimberlites, diamonds of peridotite paragenesis, chemical composition of indicator minerals of kimberlite, in particular Gruzskoy areas pyropes (Cr2O3 = 6,1-7,1%, MgO = 19,33-20,01%, CaO = 4,14-4,38 %, the content of knorringite component of most grains > 50mol%), chromites (Cr2O3 = 45

  5. The Kharapeh orogenic gold deposit: Geological, structural, and geochemical controls on epizonal ore formation in West Azerbaijan Province, Northwestern Iran

    USGS Publications Warehouse

    Niroomand, Shojaeddin; Goldfarb, Richard J.; Moore, Farib; Mohajjel, Mohammad; Marsh, Erin E.

    2011-01-01

    The Kharapeh gold deposit is located along the northwestern margin of the Sanandaj–Sirjan Zone (SSZ) in the West Azerbaijan province, Iran. It is an epizonal orogenic gold deposit formed within the deformed zone between central Iran and the Arabian plate during the Cretaceous–Tertiary Zagros orogeny. The deposit area is underlain by Cretaceous schist and marble, as well as altered andesite and dacite dikes. Structural analysis indicates that the rocks underwent tight to isoclinal recumbent folding and were subsequently co-axially refolded to upright open folds during a second deformation. Late- to post-tectonic Cenozoic granites and granodiorites occur northeast of the deposit area. Mineralization mainly is recognized within NW-trending extensional structures as veins and breccia zones. Normal faults, intermediate dikes, and quartz veins, oriented subparallel to the axial surface of the Kharapeh antiform, indicate synchronous extension perpendicular to the fold axis during the second folding event. The gold-bearing quartz veins are >1 km in length and average about 6 m in width; breccia zones are 10–50 m in length and ≤1 m in width. Hydrothermal alteration mainly consists of silicification, sulfidation, chloritization, sericitization, and carbonatization. Paragenetic relationships indicate three distinct stages—replacement and silicification, brecciation and fracture filling, and cataclastic brecciation—with the latter two being gold-rich. Fluid inclusion data suggest mineral deposition at temperatures of at least 220–255°C and depths of at least 1.4–1.8 km, from a H2O–CO2±CH4 fluid of relatively high salinity (12–14 wt.% NaCl equiv.), which may reflect metamorphism of passive margin carbonate sequences. Ore fluid δ18O values between about 7‰ and 9‰ suggest no significant meteoric water input, despite gold deposition in a relatively shallow epizonal environment. Similarities to other deposits in the SSZ suggest that the deposit formed as

  6. Petrophysical zoning elements of Chertovo Koryto gold-ore deposit (Patom Upland, Eastern Siberia)

    NASA Astrophysics Data System (ADS)

    Sokolov, S. V.; Kolmakov, Y. V.; Terre, D. A.

    2015-11-01

    The paper considers magnetic susceptibility (χ) and electrode potentials (EP) of rocks in the Chertovo Koryto deposit. Carbon-bearing substance is found in all the studied samples, but in some cases, this substance supplies EP (-150 ÷ -400 mV). In these samples χ rarely exceeds 40·10-5 SI units, while, in other samples χ is 8-10 (up to 30) times higher. Less intensive EP (-20 ÷ -240 mV) is furnished due to the sulfides in this deposit. Rocks with polarized carbon-bearing substance do not contain magnetic pyrrhotine and are negative linear EP anomalies. Rocks in which carbon-bearing substance is associated with pyrrhotine are revealed as magnetic anomalies. The adjacent rocks determine petrophysical zoning of the Chertovo Koryto deposit. The combination of negative linear EP anomalies and magnetic anomalies is a potential indicator and can define the multi-stage formation of the deposit itself.

  7. Deep-Sea Magnetics on Active and Fossil Hydrothermal Sites: a Tool to Detect and Characterize Submarine Ore Deposits

    NASA Astrophysics Data System (ADS)

    Dyment, J.; Szitkar, F.; Fouquet, Y.; Choi, Y.

    2011-12-01

    Since the first discoveries of hydrothermal sites at mid-ocean ridges in the 70s, international efforts in the deep seafloor exploration have unravelled a wide variety of hydrothermal sites in terms of geological settings, physical parameters, and biological communities as well. Such efforts, coordinated in the InterRidge program since 1992, are becoming even more important when the increasing need in metals for developing economies makes the exploitation of metal sulfides accumulated at deep-sea hydrothermal sites a realistic target. The usual method to find hydrothermal sites is to detect the associated chemical plumes enriched in manganese, methane, hydrogen, helium 3, in the water column. How efficient it has been proven, such a method is limited to the search for active hydrothermal vents. Active vents, however, are not the best places for mining the seafloor, because (1) they host massive sulfides deposits in the making and may not represent the largest accumulation; (2) they are still very hot and would rapidly damage the mining tools; and, last but not the least, (3) they host fragile and precious ecosystem that could be dramatically affected by mining operations. Methods to find fossil hydrothermal sites (i.e. colder and devoid of specific ecosystems) include systematic rock sampling - a very tedious endeavour - and high resolution, near seafloor geophysical surveys. Existing magnetic surveys on basalt-hosted, peridotite-hosted and sediment-hosted sites revealed different types of signatures, which reflect the magnetizations of the host rock and the ore deposit, among others. Basalt-hosted sites exhibit negative magnetic anomalies, i.e. a deficit of magnetization, due to thermal demagnetization and hydrothermal alteration of the highly magnetic basalt, whereas both peridotite-hosted and sediment-hosted sites show positive anomalies, i.e. an excess of magnetization, clearly associated with the ore deposit. Results from recent cruises Serpentine (R

  8. Timing of the formation of the Changba-Lijiagou Pb-Zn ore deposit, Gansu Province, China: Evidence from Rb-Sr isotopic dating of sulfides

    NASA Astrophysics Data System (ADS)

    Hu, Qiaoqing; Wang, Yitian; Mao, Jingwen; Wei, Ran; Liu, Shengyou; Ye, Dejin; Yuan, Qunhu; Dou, Ping

    2015-05-01

    The giant Changba-Lijiagou Pb-Zn deposit is located in the north of the Xihe-Chengxian (abbreviated as "Xicheng") ore cluster in Gansu Province, China. The orebodies in the deposit are mainly hosted in the marble, dolomitic marble, and biotite-calcite-quartz schist of the Middle Devonian Anjiacha Formation. The genesis of the deposit has previously been argued to be of SEDEX type (sedimentary exhalative type) or of epigenetic hydrothermal type. This paper reports results of Rb-Sr isotopic dating on sphalerite and pyrite taken from the main orebody, which yield an isochron age of 222.3 ± 2.2 Ma for eight sphalerite samples, and 222.0 ± 3.0 Ma for the eight sphalerite samples combined with four pyrite samples, indicating that the deposit formed during the Late Triassic. The (87Sr/86Sri) value of the sphalerite is 0.71370 ± 0.00013, and that of the sphalerite and pyrite is 0.71371 ± 0.00014, which are identical within experimental error, suggesting that the ore metals are derived mainly from the continental crust. By integrating the present results with the regional geology, we propose that the Changba-Lijiagou Pb-Zn deposit is a product of regional hydrothermal mineralization processes, forced by tectono-magmatic activities, which took place in the Xicheng ore cluster during Triassic orogenic processes.

  9. Dal'negosrk skarn deposit, Sikhote-Alin: Stages and sources of matter for borosilicate ores

    NASA Astrophysics Data System (ADS)

    Karas', O. A.; Ratkin, V. V.

    2014-04-01

    The danburite orebody at the northeastern wall of the open pit of the Dal'negorsk borosilicate deposit is studied. The comparative mineralogical-, isotopic-, and thermobarogeochemical analyses of danburite from the Levoberezhnyi area and datolite of the late skarn stage from the Tsentral'nyi open pit confirms that danburite is a result of the early borosilicate stage of formation of the deposit. Combined with previously published data, it is concluded that marine sedimentary rocks or Early Cretaceous arkose sandstones from the matrix of the Taukhin accretionary prism could be the source of boron.

  10. Geochemistry of dispersed organic matter in gold-ore deposits of black shale formations

    NASA Astrophysics Data System (ADS)

    Budyak, A. E.; Goryachev, N. A.; Razvozzhaeva, E. A.; Spiridonov, A. M.; Sotskaya, O. T.; Bryukhanova, N. N.

    2015-08-01

    Bitumens from carbonaceous shales of various ages of the Baikal-Patom highlands and the Degdekan deposit (Yana-Kolyma folded system) were considered. It was determined that bitumens of the Bodaibo synclinorium are mainly represented by asphaltenes, asphaltogenic acids, and hydrocarbons; bitumens of the Degdekan field are represented predominantly by hydrocarbons.

  11. Origin of stratiform sediment-hosted manganese carbonate ore deposits: Examples from Molango, Mexico, and TaoJiang, China

    USGS Publications Warehouse

    Okita, P.M.; Shanks, Wayne C., III

    1992-01-01

    Carbonate and sulfide minerals from the Molango, Mexico, and TaoJiang, China, Mn deposits display similar and distinctive ??34S and ??13C patterns in intervals of manganese carbonate mineralization. ??13C-values for Mn-bearing carbonate range from -17.8 to +0.5??? (PDB), with the most negative values occurring in high-grade ore zones that are composed predominantly of rhodochrosite. In contrast, calcite from below, within and above Mn-carbonate zones at Molango has ??13C???0??? (PDB). Markedly negative ??13C data indicate that a large proportion of the carbon in Mn-carbonates was derived from organic matter oxidation. Diagenetic reactions using MnO2 and SO2-4 to oxidize sedimentary organic matter were the principle causes of such 12C enrichment. Pyrite content and sulfide ?? 34S-values also show distinctive variations. In unmineralized rocks, very negative ??34S-values (avg. < -21??? CDT) and abundant pyrite content suggest that pyrite formed from diagenetic, bacteriogenic sulfate reduction. In contrast, Mn-bearing horizons typically contain only trace amounts of pyrite (e.g., <0.5 wt% S with ??34S-values 34S-enriched, in some cases to nearly the value for contemporaneous seawater. 34S-enriched pyrite from the Mn-carbonate intervals indicates sulfide precipitation in an environment that underwent extensive SO2-4 reduction, and was largely a closed system with regard to exchange of sulfate and dissolved sulfide with normal seawater. The occasional occurrence of 34S-depleted pyrite within Mn-carbonate zones dominated by 34S-enriched pyrite is evidence that closed-system conditions were intermittent and limited to local pore waters and did not involve entire sedimentary basins. Mn-carbonate precipitation may have occluded porosity in the surficial sediments, thus establishing an effective barrier to SO2-4 exchange with overlying seawater. Similar isotopic and mineralogic characteristics from both the Molango and TaoJiang deposits, widely separated in geologic time and

  12. Systematics of hydrothermal alteration at the volcanic-hosted Falun Zn-Pb-Cu-(Au-Ag) deposit - implications for ore genesis, structure and exploration in a 1.9 Ga ore district, Fennoscandian Shield, Sweden

    NASA Astrophysics Data System (ADS)

    Kampmann, Tobias C.; Jansson, Nils J.; Stephens, Michael B.; Majka, Jarosław

    2016-04-01

    The Palaeoproterozoic, volcanic-hosted Falun Zn-Pb-Cu-(Au-Ag) sulphide deposit was mined for base and precious metals during several centuries, until its closure in 1992. The deposit is located in a 1.9 Ga ore district in the Bergslagen lithotectonic unit, Fennoscandian Shield, south-central Sweden. Both the ores and their host rock underwent polyphase ductile deformation, and metamorphism under amphibolite facies and later retrograde conditions at 1.9-1.8 Ga (Svecokarelian orogenic system). This study has the following aims: (i) Classify styles and intensities of alteration in the hydrothermally altered zone at Falun; (ii) identify precursor rocks to hydrothermally altered rocks and their spatial distribution at the deposit; (iii) evaluate the chemical changes resulting from hydrothermal alteration using mass change calculations; and (iv) assess the pre-metamorphic alteration assemblages accounting for the observed metamorphic mineral associations in the altered rocks at Falun. Results will have implications for both the ore-genetic and structural understanding of the deposit, as well as for local and regional exploration. Metamorphic mineral associations in the altered rocks include biotite-quartz-cordierite-(anthophyllite) and, more proximally, quartz-anthophyllite-(biotite-cordierite/almandine), biotite-cordierite-(anthophyllite) and biotite-almandine-(anthophyllite). The proximal hydrothermally altered zone corresponds to intense chlorite-style alteration. Subordinate dolomite or calcite marble, as well as calc-silicate (tremolite, diopside) rocks are also present at the deposit. Metavolcanic rocks around the deposit are unaltered, weakly sericitized or sodic-altered. Immobile-element (e.g. Zr, TiO2, Al2O3, REE) systematics of the silicate-rich samples at and around the deposit suggest that the precursors to the hydrothermally altered rocks at Falun were predominantly rhyolitic in composition, dacitic rocks being subordinate and mafic-intermediate rocks

  13. Hydrothermal zebra dolomite in the Great Basin, Nevada--attributes and relation to Paleozoic stratigraphy, tectonics, and ore deposits

    USGS Publications Warehouse

    Diehl, S.F.; Hofstra, A.H.; Koenig, A.E.; Emsbo, P.; Christiansen, W.; Johnson, Chad

    2010-01-01

    In other parts of the world, previous workers have shown that sparry dolomite in carbonate rocks may be produced by the generation and movement of hot basinal brines in response to arid paleoclimates and tectonism, and that some of these brines served as the transport medium for metals fixed in Mississippi Valley-type (MVT) and sedimentary exhalative (Sedex) deposits of Zn, Pb, Ag, Au, or barite. Numerous occurrences of hydrothermal zebra dolomite (HZD), comprised of alternating layers of dark replacement and light void-filling sparry or saddle dolomite, are present in Paleozoic platform and slope carbonate rocks on the eastern side of the Great Basin physiographic province. Locally, it is associated with mineral deposits of barite, Ag-Pb-Zn, and Au. In this paper the spatial distribution of HZD occurrences, their stratigraphic position, morphological characteristics, textures and zoning, and chemical and stable isotopic compositions were determined to improve understanding of their age, origin, and relation to dolostone, ore deposits, and the tectonic evolution of the Great Basin. In northern and central Nevada, HZD is coeval and cogenetic with Late Devonian and Early Mississippian Sedex Au, Zn, and barite deposits and may be related to Late Ordovician Sedex barite deposits. In southern Nevada and southwest California, it is cogenetic with small MVT Ag-Pb-Zn deposits in rocks as young as Early Mississippian. Over Paleozoic time, the Great Basin was at equatorial paleolatitudes with episodes of arid paleoclimates. Several occurrences of HZD are crosscut by Mesozoic or Cenozoic intrusions, and some host younger pluton-related polymetallic replacement and Carlin-type gold deposits. The distribution of HZD in space (carbonate platform, margin, and slope) and stratigraphy (Late Neoproterozoic Ediacaran-Mississippian) roughly parallels that of dolostone and both are prevalent in Devonian strata. Stratabound HZD is best developed in Ediacaran and Cambrian units, whereas

  14. Beyond the obvious limits of ore deposits: The use of mineralogical, geochemical, and biological features for the remote detection of mineralization

    USGS Publications Warehouse

    Kelley, D.L.; Kelley, K.D.; Coker, W.B.; Caughlin, B.; Doherty, M.E.

    2006-01-01

    Far field features of ore deposits include mineralogical, geochemical, or biological attributes that can be recognized beyond the obvious limits of the deposits. They can be primary, if formed in association with mineralization or alteration processes, or secondary, if formed from the interaction of ore deposits with the hydrosphere and biosphere. This paper examines a variety of far field features of different ore deposit types and considers novel applications to exploration and discovery. Primary far field features include mineral and rock chemistry, isotopic or element halos, fluid pathways and thermal anomalies in host-rock sequences. Examples include the use of apatite chemistry to distinguish intrusive rocks permissive for iron oxide copper gold (IOCG) and porphyry deposits; resistate mineral (e.g., rutile, tourmaline) chemistry in exploration for volcanogenic massive sulfide (VMS), orogenic gold, and porphyry deposits; and pyrite chemistry to vector toward sedimentary exhalative (sedex) deposits. Distinctive whole-rock geochemical signatures also can be recognized as a far field feature of porphyry deposits. For example, unique Sr/Y ratios in whole-rock samples, used to distinguish barren versus fertile magmas for Cu mineralization, result from the differentiation of oxidized hydrous melts. Anomalous concentrations of halogen elements (Cl, Br, and I) have been found for distances of up to 200 m away from some mineralized centers. Variations in isotopic composition between ore-bearing and barren intrusions and/or systematic vertical and lateral zonation in sulfur, carbon, or oxygen isotope values have been documented for some deposit types. Owing to the thermal aureole that extends beyond the area of mineralization for some deposits, detection of paleothermal effects through methods such as conodont alteration indices, vitrinite or bitumen reflectance, illite crystallinity, and apatite or zircon thermochronology studies also can be valuable, particularly for

  15. The distribution of trace elements in a range of deep-sea sulphide ore deposits and their impact on seafloor mining

    NASA Astrophysics Data System (ADS)

    Fallon, E. K.; Scott, T. B.; Brooker, R. A.

    2015-12-01

    Acid rock drainage is a natural weathering process that is often exacerbated by mining activities, common in onshore sulphide ore deposits, that can lead to considerable environmental impact. A similar 'weathering process' occurs at seafloor massive sulphide (SMS) ore deposits. In contrast to the onshore situation, the expected consequence in the marine environment is often considered to be oxide formation, negligible metal release and minimal net acid generation due to the high buffering capacity of seawater and low solubility of iron at near neutral pH. However, no dissolution studies exist that emulate the true composition of sulphide ore deposits that either sit passively on the seafloor or are actively mined in this colder, more saline, and alkaline environment. In particular, these deposits will include a variety of minerals, and it is the interaction of these minerals and inclusions in regards to galvanic cells that can subsequently increase the dissolution of metals into the water column. Any heavy metal release that is not balanced by subsequent oxidation and precipitation, has the potential to produce toxicity for benthic ecosystems, bioaccumulation and dispersal through currents. The present work has sought to provide a pilot investigation on the deep sea weathering of sulphide minerals, by identifying the mineral phases, trace elements and potential galvanic couples that may arise in sulphide mineral samples collected from various tectonic settings. Samples have been analysed using EMPA and LA-ICPMS in order to identify the range of trace elements and toxins that may be contributed to the water column, especially heavy metals and environmental toxins (e.g. Fe, Cu, Zn, Pb, Co, Ni, Cd, As, Sb, Sn, Hg). Our observations raise important questions about which ore deposits could have more or less environmental impact during any mining activity. These observations will be used to design oxidative dissolution experiments at deep-sea conditions utilising the

  16. Mineral paragenesis, geochemistry and geochronology investigations of the Carlin-type gold deposits at the Goldstrike property, northern Nevada: Implications for ore genesis, igneous petrogenesis and mineral exploration

    NASA Astrophysics Data System (ADS)

    Almeida, Carolina Michelin De

    The Goldstrike property is located in northern Nevada and contains one of the largest and highest-grade Carlin-type gold deposits. The majority of the Eocene Au mineralization (e.g., Ore I) is hosted in intensely altered Paleozoic lower plate impure carbonate rocks, and is characterized by strong to moderate silicification, higher calculated pyrite and ore-related element concentrations (e.g., As, Cu, Hg, Ni, Tl, Sb, W, and Zn) than Ore II, which is weakly altered. However, both ore types contain similar Au concentration in whole rock and pyrite chemistry analyses. Lithogeochemical and microprobe data suggest that the Paleozoic sedimentary rocks may have been a major source of Cd, Mo, Ni, U, V, and Zn and minor As, Cu, Hg, and Se. The Jurassic lamprophyre dikes might have been a significant source of Ba, Co, and Se, and minor Au, and some of the Jurassic and Eocene intrusive rocks may have provided some Fe. Moreover, the Eocene magmas are interpreted to be the main source of auriferous mineralizing fluids. Trace element abundances and ratios of the Jurassic intrusive rocks suggest that they are shoshonitic and formed from a metasomatized mantle-derived magma, crystal fractionation, and crustal contamination. The Eocene dikes, also shoshonitic, are considerably more evolved and contaminated than the studied Jurassic rocks. Furthermore, Ar-Ar results show that the Jurassic rocks were negligibly affected by the Eocene thermal event, and that temperature of mineralizing fluids were below the closure temperature of biotite (< 350°C). A magmatic-related model is proposed to explain the formation of the Carlin-type gold deposits at the studied area. In this model, Au and the ore-related elements were exsolved along with volatiles by degassing of a deep and large plutonic complex during its early stage of crystallization. As these magmatic-hydrothermal fluids moved upward along major conduits (e.g., NNW-striking faults), they may have interacted with a Fe-rich fluid

  17. Origin and evolution of ore-forming fluids in the Hemushan magnetite-apatite deposit, Anhui Province, Eastern China, and their metallogenic significance

    NASA Astrophysics Data System (ADS)

    Luo, Gan; Zhang, Zhiyu; Du, Yangsong; Pang, Zhenshan; Zhang, Yanwen; Jiang, Yongwei

    2015-12-01

    The Middle-Lower Yangtze River Metallogenic Belt in the northern Yangtze Block is one of the most important economic mineral districts in China. The Hemushan deposit is a medium-class Fe deposit located in the southern part of the Ningwu iron ore district of the Middle-Lower Yangtze River Metallogenic Belt. The Fe-orebodies are mainly hosted in the contact zone between diorite and Triassic marble. The actinolite-phlogopite-apatite-magnetite ore shows metasomatic/filling textures and disseminated/mesh-vein structures. Based on evidences and petrographic observations, the ore-forming process can be divided into three distinct periods-the early metallogenic period (albite-diopside stage), the middle metallogenic period (magnetite stage and hematite stage), and the late metallogenic period (quartz-pyrite stage and carbonate stage). Fluid inclusion studies show four types of inclusions: type I daughter mineral-bearing three-phase inclusions (L + V + S), type II vapor-rich two-phase inclusions (L + V), type III liquid-rich two phase inclusions (L + V), and minor type IV liquid-phase inclusions (L). Apatites from the magnetite stage contain type I, type II and type III inclusions; anhydrites from the hematite stage mainly contain abundant type II inclusions and relatively less type I inclusions; quartz and calcite from the late metallogenic stage are mainly characterized by type III inclusions. Laser Raman spectroscopy and microthermometry of fluid inclusions show that the ore-forming fluids broadly correspond to unsaturated NaCl-H2O system. From the magnetite stage to the carbonate stage, the ore-forming fluids evolved from moderate-high temperature (average 414 °C), moderate salinity (average 25.01 wt.% NaCl equiv.) conditions to low temperature (average 168 °C), low salinity (average 6.18 wt.% NaCl equiv.) conditions. Hydrogen and oxygen isotopic studies indicate that the ore-forming fluid during the early stage of middle metallogenic period was mainly of magmatic

  18. Sulfuric acid karst and its relationship to hydrocarbon reservoir porosity, native sulfur deposits, and the origin of Mississippi Valley-type ore deposits

    SciTech Connect

    Hill, C.A. , Albuquerque, NM )

    1993-03-01

    The Delaware Basin of southeastern New Mexico and West Texas contains hydrocarbons and native sulfur in the basin and sulfuric acid-formed caves and Mississippi Valley-type (MVT) ore deposits around the margins of the basin. Hydrocarbons reacting with sulfate evaporite rock produced hydrogen sulfide gas, which gas oxidized to native sulfur in the basin and which gas also migrated from basin to reef and accumulated there in structural and stratigraphic traps. In the reduced zone of the carbonate reef margin the H[sub 2]S combined with metal-chloride complexes to form MVTs, and in the oxidized zone later in time the H[sub 2]S formed sulfuric acid which dissolved out the famous caves of the region (e.g., Carlsbad Cavern, Lechuguilla Cave). Sulfuric acid karst can be recognized by the discontinuity, large size, and spongework nature of its cave passages, and by the presence of native sulfur, endellite, and large gypsum deposits within these caves. Sulfuric acid oilfield karst refers to cavernous porosity filled with hydrocarbons and can be produced by the mixing of waters of different H[sub 2]S content or by the oxidation of H[sub 2]S to sulfuric acid. Sulfur and carbon-oxygen isotopes have been used to establish and trace the sequence of related hydrocarbon, sulfur, MVT, and karst events in the Delaware Basin.

  19. Magmatic ore deposits in layered intrusions - Descriptive model for reef-type PGE and contact-type Cu-Ni-PGE deposits

    USGS Publications Warehouse

    Zientek, Michael L.

    2012-01-01

    Layered, ultramafic to mafic intrusions are uncommon in the geologic record, but host magmatic ore deposits containing most of the world's economic concentrations of platinum-group elements (PGE) (figs. 1 and 2). These deposits are mined primarily for their platinum, palladium, and rhodium contents (table 1). Magmatic ore deposits are derived from accumulations of crystals of metallic oxides, or immiscible sulfide, or oxide liquids that formed during the cooling and crystallization of magma, typically with mafic to ultramafic compositions. "PGE reefs" are stratabound PGE-enriched lode mineralization in mafic to ultramafic layered intrusions. The term "reef" is derived from Australian and South African literature for this style of mineralization and used to refer to (1) the rock layer that is mineralized and has distinctive texture or mineralogy (Naldrett, 2004), or (2) the PGE-enriched sulfide mineralization that occurs within the rock layer. For example, Viljoen (1999) broadly defined the Merensky Reef as "a mineralized zone within or closely associated with an unconformity surface in the ultramafic cumulate at the base of the Merensky Cyclic Unit." In this report, we will use the term PGE reef to refer to the PGE-enriched mineralization, not the host rock layer. Within a layered igneous intrusion, reef-type mineralization is laterally persistent along strike, extending for the length of the intrusion, typically tens to hundreds of kilometers. However, the mineralized interval is thin, generally centimeters to meters thick, relative to the stratigraphic thickness of layers in an intrusion that vary from hundreds to thousands of meters. PGE-enriched sulfide mineralization is also found near the contacts or margins of layered mafic to ultramafic intrusions (Iljina and Lee, 2005). This contact-type mineralization consists of disseminated to massive concentrations of iron-copper-nickel-PGE-enriched sulfide mineral concentrations in zones that can be tens to hundreds

  20. Paragenetic and minor- and trace-element studies of Mississippi Valley-type ore deposits of the Silesian-Cracow district, Poland

    USGS Publications Warehouse

    Viets, J.G.; Leach, D.L.; Lichte, F.E.; Hopkins, R.T.; Gent, C.A.; Powell, J.W.

    1996-01-01

    Paragenetic and minor- and trace-element studies were conducted on samples of epigenetic ore and gangue minerals collected from mines and drill core in the Silesian-Cracow (S-C) district of southern Poland. Four discrete mineral suites representing four mineralizing stages can be identified throughout the district. The earliest epigenetic minerals deposited during stage 1 consist of a late dolomite cement together with minor pyrite and marcasite. Stage 2 was the first ore-forming stage and included repetitive deposition of sphalerite and galena in a variety of morphologies. Stage 3 abruptly followed the first ore stage and deposited marcasite and pyrite with variable amounts of late sphalerite and galena. In the samples studied, minerals deposited during stage 3 are predominately marcasite-pyrite with minor sphalerite and galena in the Pomorzany and Olkusz mines, whereas, at the Trzebionka mine, stage 3 mineralization deposited mostly galena and sphalerite with little marcasite or pyrite. Stage 4 minerals include contains barite, followed by calcite, with very minor pyrite and a rare, late granular sphalerite. Compared to other major Mississippi Valley-type (MVT) districts of the world, the Silesian-Cracow district contains sphalerite with the second largest range in Ag concentrations and the largest range in Fe and Cd concentrations of any district. Unlike in other districts, very wide ranges in minor- and trace-element concentrations are also observed in paragenetically equivalent samples collected throughout the district. This wide range indicates that the minor- and trace-element content of the ore-forming environment was highly variable, both spatially and temporally, and suggests that the hydrologic system that the ore fluids traversed from their basinal source was very complex. Throughout the district, a significant increase in Tl, Ge, and As concentrations is accompanied by a lightening of sulfur isotopes between stage 2 and stage 3 minerals. This change

  1. Relation of ERTS-1 detected geologic structure to known economic ore deposits

    NASA Technical Reports Server (NTRS)

    Rich, E. I.

    1973-01-01

    A preliminary analysis of ERTS-1 imagery of the Northern Coast Ranges and Sacramento Valley, California, has disclosed a potentially important fracture system which may be one of the controlling factors in the location of known mercury deposits in the Coast Ranges and which appears to be associated with some of the oil and gas fields within the Sacramento Valley. Recognition of this fracture system may prove to be an extremely useful exploration tool, hence careful analysis of subsequent ERTS imagery might delineate areas for field evaluation.

  2. Rock chemistry and fluid inclusion studies as exploration tools for ore deposits in the Sila batholith, southern Italy

    USGS Publications Warehouse

    de Vivo, B.; Ayuso, R.A.; Belkin, H.E.; Lima, A.; Messina, A.; Viscardi, A.

    1991-01-01

    The Sila batholith is the focus of an extensive petrogenetic research program, which includes an assessment of its potential to host granite-related ore deposits. Univariate and multivariate statistical techniques were applied to major- and minor-element rock geochemical data. The analysis indicates that the highest potential for mineralization occurs in corundum-normative, peraluminous, unfoliated, relatively late-stage plutons. The plutons are enriched in Rb, Nb, Ta and U, but depleted in Fe, Mg and Sr. The K/Rb, Ba/Rb, Rb/Sr and Rb3/Ba??Sr??K indices and high R-factor scores of Si-K-Rb are typical of mineralized granitic rocks. A reconnaissance fluid inclusion study indicates that the sub-solidus rock was infiltrated by solutions of widely different temperatures (50-416??C) and variable salinities (0 to ???26 wt.% NaCl equivalent). The higher-temperature solutions probably represent granite or magmatic-related Hercynian fluids, whereas the lower-temperature fluids may be either Hercynian or Alpine in age. Fluids with characteristics typical of mineralized "porphyry" systems have not been recognized. ?? 1991.

  3. The Reocín zinc-lead deposit, Spain: paleomagnetic dating of a late Tertiary ore body

    USGS Publications Warehouse

    Symons, David T. A.; Lewchuk, Michael T.; Kawasaki, Kazuo; Velasco, Francisco; Leach, David L.

    2009-01-01

    The Reocín mine in northern Spain’s Basque–Cantabrian basin exploited a world-class Mississippi Valley-type Zn–Pb deposit. Its epigenetic mineralization is in Urgonian 116 ± 1 Ma dolomitized limestones of the Santillana syncline, which was formed by Oligocene and mid Miocene pulses of the Pyrenean orogeny. Paleomagnetic results (22 sites, 274 specimens) in mineralization isolated a stable remanence (ChRM) in pyrrhotite and minor magnetite inclusions in ore specimens, Zn concentrate, and tailings. A fold test shows that the ChRM is substantially post-folding. The mineralization’s paleopole lies on the European apparent polar wander path and indicates that the mineralization was formed at 15 ± 10 Ma. We postulate that brines originated in underlying Triassic and Lower Cretaceous sedimentary rocks and were driven upward into the host rocks by the hydraulic gradient created by the nearby Asturian massif.

  4. Measurement of uranium series radionuclides in rock and groundwater at the Koongarra ore deposit, Australia, by gamma spectrometry

    SciTech Connect

    Yanase, Nobuyuki; Sekine, Keiichi

    1995-12-31

    Gamma spectrometry without any self-absorption correction was developed to measure low energy gamma rays emitted by uranium and actinium series radionuclides in rock samples and groundwater residues collected at the Koongarra ore deposit, Australia. Thin samples were prepared to minimize the self-absorption by uranium in the samples. The present method gave standard deviations of 0.9 to 18% for the measurements of concentrations of uranium and actinium series radionuclides. The concentrations of {sup 238}U, {sup 230}Th and {sup 235}U measured by gamma spectrometry were compared with those by alpha spectrometry that requires a complicated chemical separation procedure. The results obtained by both methods were in fairly good agreement, and it was found that the gamma spectrometry is applicable to rock and groundwater samples having uranium content sup to 8.1% (10{sup 3} B1/g) and 3 Bq/l of {sup 238}U, respectively. The detection limits were calculated to be of the order of 10{sup {minus}2} Bq/g for rock samples and 10{sup {minus}1} Bq/l for groundwater samples. The concentrations of uranium and actinium series radionuclides can be determined precisely in these samples using gamma spectrometry without any self-absorption correction.

  5. Genesis of sediment-hosted disseminated-gold deposits by fluid mixing and sulfidization: chemical-reaction-path modeling of ore- depositional processes documented in the Jerritt Canyon district, Nevada

    USGS Publications Warehouse

    Hofstra, A.H.

    1991-01-01

    Integrated geologic, geochemical, fluid-inclusion, and stable-isotope studies of the gold deposits in the Jerritt Canyon district, Nevada, provide evidence that gold deposition was a consequence of both fluid mixing and sulfidization of host-rock iron. Chemical-reaction-path models of these ore-depositional processes confirm that the combination of fluid mixing, including simultaneous cooling, dilution, and oxidation of the ore fluid, and wall-rock reaction, with sulfidization of reactive iron in the host rock, explains the disseminated nature and small size of the gold and the alteration zonation, mineralogy, and geochemistry observed at Jerritt Canyon and at many other sediment-hosted disseminated gold deposits. -Authors

  6. Alfred E. Bergeat (1866-1924): a distinguished volcanologist and ore deposit researching scientist at the mining academies of Freiberg (Saxony) and Clausthal (Harz mountains) in Germany

    NASA Astrophysics Data System (ADS)

    Pfaffl, Fritz A.

    2010-06-01

    Alfred E. Bergeat, originated from a family, who produced gold-glance in a factory (porcelain painting), studied mineralogy and geology at the University of Munich from 1886 to 1892. Due to the results of his habilitation work on the volcanism of island arcs, especially of the Stromboli volcanic island in the Tyrrhenian Sea, he became a recognized volcanologist and specialist in volcanic petrography. He further became an explorer of syngenetic, epigenetic and deuterogenic ore deposits at the mining academies (Bergakademien) of Freiberg (Saxony) and Clausthal (Harz mountains). He described these ore deposits in a two-volume manual (1904-1906) which was summarized again in 1913. After his early death in 1924, the two manuals “Die Vulkane” (1925) and “Vulkankunde” (1927) were posthumously published by his colleague and friend Karl Sapper (1866-1945).

  7. High-resolution acoustic mapping to understand the ore deposit in the Bayonnaise knoll caldera, Izu-Ogasawara arc

    NASA Astrophysics Data System (ADS)

    Honsho, Chie; Ura, Tamaki; Asada, Akira; Kim, Kangsoo; Nagahashi, Kenji

    2015-04-01

    We collected deep-sea multibeam, side scan, and subbottom profiler data using an autonomous underwater vehicle at the Bayonnaise knoll, a submarine caldera located in the rift zone of the Izu-Ogasawara arc. We aimed to reveal topographic and geological features and the origin of a hydrothermal field called the Hakurei site in the caldera. We performed seafloor classification by textural analysis using calibrated side-scan sonar data, which provided an effective means to understand the geology and to highlight potential areas of hydrothermal constructions. The high-resolution bathymetric map illustrates that the Hakurei hydrothermal field is distributed over a landslide landform in the caldera wall. The distribution of hydrothermal vents indicates that the slip surface has served as a major route of hydrothermal fluids. The radial alignment of chimneys and mounds indicates radial routes of hydrothermal fluid and/or belching along fragile lines in the landslide landform. Various postcaldera activities are inferred including the formation of a lava dome, a pyroclastic cone, and subsequent phreatic explosions. A general volcano-tectonic structure extending across the caldera in a NW-SE direction is interpreted as an inferred boundary fault of the North Myojin Rift. Analogous to the Hokuroku basin and land kuroko deposits, it is suggested that the main contributing factor in the formation of kuroko deposits was volcano-tectonic activity that dominated the margin of the back-arc rift basin. The intersections between the margin of a rift basin and the surrounding knolls have a high potential for ore-forming areas.

  8. Giant iron-ore deposits of the Hamersley province related to the breakup of Paleoproterozoic Australia: New insights from in situ SHRIMP dating of baddeleyite from mafic intrusions

    NASA Astrophysics Data System (ADS)

    Müller, Stefan G.; Krapež, Bryan; Barley, Mark E.; Fletcher, Ian R.

    2005-07-01

    Banded iron formations of the ca. 2770 2405 Ma Hamersley province of Western Australia were locally upgraded to high-grade hematite ores during the Early Paleoproterozoic by a combination of hypogene and supergene processes after the initial rise of atmospheric oxygen. Ore genesis was associated with the stratigraphic break between the Lower and Upper Wyloo Groups of the Ashburton province, and has been variously linked to the Ophthalmian orogeny, late-orogenic extensional collapse, and anorogenic continental extension. Small-spot in situ Pb/Pb dating of baddeleyite by sensitive high-resolution ion microprobe (SHRIMP) has resolved the ages of two key suites of mafic intrusions, constraining for the first time the tectonic evolution of the Ashburton province and the age and setting of iron-ore formation. Mafic sills dated as ca. 2208 Ma were folded during the Ophthalmian orogeny and then cut by the unconformity at the base of the Lower Wyloo Group. A mafic dike swarm that intrudes the Lower Wyloo Group and has a close genetic relationship to iron ore is ca. 2008 Ma, slightly younger than a new syneruptive 2031 ± 6 Ma zircon age for the Lower Wyloo Group. These new ages constrain the Ophthalmian orogeny to the period between ca. 2208 and 2031 Ma, before Lower Wyloo Group extension, sedimentation, and flood-basalt volcanism. The ca. 2008 Ma dikes pre s ent a new maximum age for iron-ore genesis and deposition of the Upper Wyloo Group, thereby linking ore genesis to a ca. 2050 2000 Ma period of continental extension similarly recorded by Paleoproterozoic terrains worldwide well after the initial oxidation of the atmosphere by ca. 2320 Ma.

  9. Geochronological U-PB zircon dating of two ore-bearing magma pulses: stratifrom and non-stratiform bodies in the Fedorov deposit (Kola Peninsula).

    NASA Astrophysics Data System (ADS)

    Nitkina, E.

    2009-04-01

    The Kola Peninsula is one of the unique geological provinces both in Russia and in the world, where platinum and palladium deposits have been discovered. The highest level of noble metal concentration has been found in the ore of the Fedorov-Pana massif. Presently, the several deposits within the Fedorov block contain first hundreds of tons of estimated platinum metal resources, allowing us to ascribe the intrusion to the class of large deposits (Mitrofanov, 2005). The Fedorov-Pana massif is situated in the central part of the Kola Peninsula and is one of 14 major Early Proterozoic layered massifs of the Northern belt occurring at the border between Early Proterozoic volcano-sedimentary rift sequences and Achean basement gneisses (Zagorodny, Radchenko, 1983; Bayanova, 2004). The isotope-geochronological data corroborate the geological-petrological conclusions made on the basis of prospecting works on the polyphase history of the Fedorov-Pana massif. At present, the following ages have been defined for the different stages of the massif evolution: 2526 - 2516 Ma (Nitkina, 2006) - pyroxenite and gabbro of the Fedorov magma chamber; 2501 - 2496- 2485 Ma (Bayanova, 2004; Nitkina, 2006) - gabbro-norite and gabbro of the main phase of the West-Pana block magma chamber and early disseminated platinum-metal mineralization and relatively rich Cu-Ni sulphide mineralization in the basal part of the massif; ca. 2470 Ma (Bayanova, 2004) - pegmatoid gabbro-anothosite and, probably, fluid-associated rich platinum-metal ores of the Lower Layered Horizon (Malaya Pana deposit); ca. 2450 Ma (Bayanova, 2004) - anorthositic injections and, probably, local lens-like rich Pt-Pd accumulations of the Upper layered Horizon. The Fedorov deposit represents the western part of the massif with the exposed area of about 45 km2 and occurs as a lopolith-like body (Shissel et al., 2002; Mitrofanov, 2005; Mitrofanov et al., 2005). The stratigraphy of the deposit consists of the following zones: 50

  10. Host-rock controlled epigenetic, hydrothermal metasomatic origin of the Bayan Obo REEFe-Nb ore deposit, Inner Mongolia, P.R.C.

    USGS Publications Warehouse

    Chao, E.C.T.; Back, J.M.; Minkin, J.A.; Yinchen, R.

    1992-01-01

    Bayan Obo, a complex rare earth element (REE)FeNb ore deposit, located in Inner Mongolia, P.R.C. is the world's largest known REE deposit. The deposit is chiefly in a marble unit (H8), but extends into an overlying unit of black shale, slate and schist unit (H9), both of which are in the upper part of the Middle Proterozoic Bayan Obo Group. Based on sedimentary structures, the presence of detrital quartz and algal fossil remains, and the 16-km long geographic extent, the H8 marble is a sedimentary deposit, and not a carbonatite of magmatic origin, as proposed by some previous investigators. The unit was weakly regionally metamorphosed (most probably the lower part of the green schist facies) into marble and quartzite prior to mineralization. Tectonically, the deposit is located on the northern flank of the Sino-Korean craton. Many hypotheses have been proposed for the origin of the Bayan Obo deposit; the studies reported here support an epigenetic, hydrothermal, metasomatic origin. Such an origin is supported by field and laboratory textural evidence; 232Th/208Pb internal isochron mineral ages of selected monazite and bastnaesite samples; 40Ar/39Ar incremental heating minimum mineral ages of selected alkali amphiboles; chemical compositions of different generations of both REE ore minerals and alkali amphiboles; and evidence of host-rock influence on the various types of Bayan Obo ores. The internal isochron ages of the REE minerals indicate Caledonian ages for various episodes of REE and Fe mineralization. No evidence was found to indicate a genetic relation between the extensive biotite granitic rocks of Hercynian age in the mine region and the Bayan Obo are deposit, as suggested by previous workers. ?? 1992.

  11. Sources of ore-forming fluids and formation environments of orogenic Au deposits in the Main Uralian Fault zone (Southern Urals)

    NASA Astrophysics Data System (ADS)

    Znamenskii, S. E.; Puchkov, V. N.; Michurin, S. V.

    2015-09-01

    The analysis of stable S, C, and O isotopes in minerals combined with the results of structural studies of orogenic gold deposits in carbonaceous shales of the Main Uralian Fault in the South Urals reveals that orogenic gold mineralization was formed during two stages of Late Paleozoic collisional deformations: early (thrust formation) and late (wrench faulting). The leading role in hydrothermal ore-forming systems of the first stage belonged to fluids of metamorphic origin, while at the second sage they were magmatogenic.

  12. Evolution of volcanic rocks and associated ore deposits in the Marysvale volcanic field, Utah

    USGS Publications Warehouse

    Cunningham, Charles G.; Steven, Thomas A.; Rowley, Peter D.; Naeser, Charles W.; Mehnert, Harald H.; Hedge, Carl E.; Ludwig, Kenneth R.

    1994-01-01

    A geological account on the igneous activity and associated mineral deposition in the volcanic field of Marysvale in Utah is presented. Three episodes (34-22 Ma, 22-14 Ma and 9-5 Ma) involved in the volcanic rock eruption and associated mineralization are described. The first episode is believed to have occurred during the time of tectonic convergence when two contrasting suites of rocks, Mount Dutton Formation and Bullion Canyon Volcanics, erupted concurrently. Mineralization during this period was sparse. In the second episode, change from intermediate to bimodal volcanism occurred. During the third episode, basaltic compositions did not change. Although major element constituent had rhyolites similar to that of the second episode, rhyolites had a marked radiogenic isotope characteristic difference.

  13. Positive feedback between strain localization and fluid flow at the ductile-brittle transition leading to Pb-Zn-Fe-Cu-Ag ore deposits in Lavrion (Greece)

    NASA Astrophysics Data System (ADS)

    Scheffer, Christophe; Tarantola, Alexandre; Vanderhaeghe, Olivier

    2016-04-01

    At the crustal scale, the ductile-brittle transition (DBT) might correspond to a physical barrier that separates a deep reservoir of metamorphic and magmatic fluids from a shallow reservoir of surficial fluids. Rock rheology, and thus the location of the DBT, is mainly governed by lithology, temperature and the presence/absence of fluids. Accordingly, the position of the DBT potentially evolves during orogenic evolution owing to thermal evolution and fluid circulation. In turn rocks are transferred across it during burial and exhumation. These processes induce connections between fluid reservoirs which might play a role on ore deposition. In this contribution, we discuss the impact of lithological heterogeneities on deformation, fluid flow and ore deposition based on the example of the Lavrion low-angle top-to-the-SSW detachment accommodating gravitational collapse of the Hellenides orogenic belt in Greece. The Lavrion peninsula, localized along the western boundary of the Attic-Cycladic Metamorphic Core Complex, is characterized by Pb-Zn-Fe-Cu-Ag ore mineralization mainly concentrated along a lithological contact (marble/schists) below and within a detachment shear zone. The mylonitic marble below the detachment shear zone is composed of white layers of pure marble alternating with blue layers containing impurities (SiO2, Al2O3, organic matter…). Development of the mylonitic fabric in competent impure blue marble is associated with its preferred dolomitization related to focused fluid infiltration. This mylonitic marble is cross-cut by several cataclastic horizons preferentially developed within the more competent impure blue marble and newly-crystallized dolomitic horizon. These cataclasites are invaded by fluorite and calcite gangue minerals showing locally Mn, Pb, Zn, Fe oxides and/or hydroxides, sphalerite, Ag-galena, Ag-sulfur and native Ag. Oxygen and carbon stable isotopes performed on marble sections point out decarbonation with magmatic contribution and

  14. Sulfur-containing particles emitted by concealed sulfide ore deposits: an unknown source of sulfur-containing particles in the atmosphere

    NASA Astrophysics Data System (ADS)

    Cao, J.; Li, Y.; Jiang, T.; Hu, G.

    2014-11-01

    Sources of sulfur dioxide, sulfates, and organic sulfur compounds, such as fossil fuels, volcanic eruptions, and animal feeding operations, have attracted considerable attention. In this study, we collected particles carried by geogas flows ascending through soil, geogas flows above the soil that had passed through the soil, and geogas flows ascending through deep faults of concealed sulfide ore deposits and analyzed them using transmission electron microscopy. Numerous crystalline and amorphous sulfur-containing particles or particle aggregations were found in the ascending geogas flows. In addition to S, the particles contained O, Ca, K, Mg, Fe, Na, Pb, Hg, Cu, Zn, As, Ti, Sr, Ba, Si, etc. Such particles are usually a few to several hundred nanometers in diameter with either regular or irregular morphology. The sulfur-containing particles originated from deep-seated weathering or faulting products of concealed sulfide ore deposits. The particles suspended in the ascending geogas flow migrated through faults from deep-seated sources to the atmosphere. This is a previously unknown source of the atmospheric particles. This paper reports, for the first time, the emission of sulfur-containing particles into the atmosphere from concealed sulfide ore deposits. The climatic and ecological influences of these sulfur-containing particles and particle aggregations should to be assessed.

  15. Sulfur-containing particles emitted by concealed sulfide ore deposits: an unknown source of sulfur-containing particles in the atmosphere

    NASA Astrophysics Data System (ADS)

    Cao, J. J.; Li, Y. K.; Jiang, T.; Hu, G.

    2015-06-01

    Sources of sulfur dioxide, sulfates, and organic sulfur compounds, such as fossil fuels, volcanic eruptions, and animal feeding operations, have attracted considerable attention. In this study, we collected particles carried by geogas flows ascending through soil, geogas flows above the soil that had passed through the soil, and geogas flows ascending through deep faults of concealed sulfide ore deposits, and analysed them using transmission electron microscopy. Numerous crystalline and amorphous sulfur-containing particles or particle aggregations were found in the ascending geogas flows. In addition to S, the particles contained O, Ca, K, Mg, Fe, Na, Pb, Hg, Cu, Zn, As, Ti, Sr, Ba, Si, etc. Such particles are usually a few to several hundred nanometres in diameter with either regular or irregular morphology. The sulfur-containing particles originated from deep-seated weathering or faulting products of concealed sulfide ore deposits. The particles suspended in the ascending geogas flow migrated through faults from deep-seated sources to the atmosphere. This is a previously unknown source of the atmospheric particles. This paper reports, for the first time, the emission of sulfur-containing particles into the atmosphere from concealed sulfide ore deposits. The climatic and ecological influences of these sulfur-containing particles and particle aggregations should be assessed.

  16. Geochronology, petrogenesis and tectonic settings of pre- and syn-ore granites from the W-Mo deposits (East Kounrad, Zhanet and Akshatau), Central Kazakhstan

    NASA Astrophysics Data System (ADS)

    Li, GuangMing; Cao, MingJian; Qin, KeZhang; Evans, Noreen J.; Hollings, Pete; Seitmuratova, Eleonora Yusupovha

    2016-05-01

    There is significant debate regarding the mineralization ages of the East Kounrad, Zhanet and Akshatau W-Mo deposits of Central Kazakhstan, and the petrogenesis and tectono-magmatic evolution of the granites associated with these deposits. To address these issues, we present molybdenite Re-Os dating, zircon U-Pb dating, whole rock geochemistry as well as Sr-Nd-Pb and zircon O-Hf isotopic analyses on the pre-mineralization and ore-forming granites. U-Pb dating of zircons from pre-mineralization granitic rocks yield Late Carboniferous ages of 320-309 Ma, whereas ore-forming granites have Early Permian ages of 298-285 Ma. Molybdenite Re-Os isotopic data indicate a mineralization age of ~ 296 Ma at East Kounrad, ~ 294 Ma at Akshatau and ~ 285 Ma at Zhanet. The pre-ore and ore-forming granites are high-K calc-alkaline, metaluminous to slightly peraluminous I-type granites. The pre-mineralization granites are relatively unfractionated, whereas the ore-forming granites are highly fractionated. The fractionating mineral phases are probably K-feldspar, apatite, Ti-bearing phases and minor plagioclase. The pre-mineralization and ore-forming rocks are characterized by similar Sr-Nd-Pb-Hf-O isotopic compositions ((87Sr/86Sr)i = 0.70308-0.70501, εNd (t) = - 0.5 to + 2.8, 207Pb/204Pb = 15.60-15.82, zircon εHf (t) = + 1.2 to + 15.6 and δ18O = + 4.6 to + 10.3‰), whole rock TDMC (Nd) (840-1120 Ma) and zircon TDMC (Hf) (320-1240 Ma). The isotopic characteristics are consistent with a hybrid magma source caused by 10-30% assimilation of ancient crust by juvenile lower crust. The geochronology and geochemistry of these granites show that the Late Carboniferous pre-mineralization granitic rocks formed during subduction, whereas the Early Permian ore-forming, highly fractionated granite probably underwent significant fractionation with a restite assemblage of K-feldspar, apatite, Ti-bearing phases and minor plagioclase and developed during collision between the Yili and Kazakhstan

  17. Genesis and formation conditions of deposits in the unique Strel'tsovka Molybdenum-Uranium ore field: New mineralogical, geochemical, and physicochemical evidence

    NASA Astrophysics Data System (ADS)

    Aleshin, A. P.; Velichkin, V. I.; Krylova, T. L.

    2007-10-01

    The ambiguity of genetic interpretations of uranium ore formation at Mo-U deposits of the Strel’tsovka ore field led us to perform additional geochemical, mineralogical, and thermobarogeochemical studies. As a result, it has been established that closely related U and F were progressively gained in the Late Mesozoic volcanic rocks from the older basic volcanics (170 Ma) to the younger silicic igneous rocks (140 Ma). The Early Cretaceous postmagmatic hydrothermal epoch (140-125 Ma) is subdivided into preore, uranium ore, and first and second postore stages. The primary brannerite-pitchblende ore was formed in association with fluorite. At the first postore stage, this assemblage was replaced by a U-Si metagel, which was previously identified as coffinite. The metagel shows a wide compositional variation; its fine structure has been studied. The preore metasomatic alteration and related veined mineralization were formed under the effect of sodium (bicarbonate)-chloride solution at a temperature of 250-200°C. The uranium ore formation began with albitization and hematitization of rocks affected by supercritical fluid at 530-500°C; brannerite and pitchblende precipitated at 350-300°C. The chondrite-normalized REE patterns of pitchblende hosted in trachybasalt, trachydacite, and granite demonstrate a pronounced Sm-Nd discontinuity and a statistically significant tetrad effect of W type. These attributes were not established in REE patterns of rhyolites derived from the upper crustal magma chamber. This circumstance and a chronological gap of 5 Ma between silicic volcanism and ore formation do not allow us to suggest that uranium was derived from this magma chamber. According to the proposed model, the evolved silicic Li-F magma was a source of uranium. U4+, together with REE, was fractionated into the fluid phase as complex fluoride compounds. The uranium mineralization was deposited at a temperature barrier. It is suggested that hydromica alteration and the

  18. REE, trace elements, Sr, Pb, C, and O isotopes in a zoned skarn ore deposit

    SciTech Connect

    Langmuir, C.; LeHuray, A.; Fairbanks, R.; Meinert, L.

    1985-01-01

    The Groundhog skarn in the Central Mining District, New Mexico, is zoned along its >2km length adjacent to a dike swarm which trends NE toward the Santa Rita porphyry Cu deposit. Isotopes and trace elements in whole rocks and mineral separates from skarn and adjacent carbonate allow the study of the source of the metals and the systematics of trace element behavior in a skarn system. (1) /sup 87/Sr//sup 86/Sr ratios are uniform (.7083 +/- 1) in the carbonate host, but they range up to .714 in hydrothermal calcite and pyx from the skarn, values distinct from both Santa Rita (.706) and carbonate. (2) delta/sup 18/O (SMOW) in carbonate ranges from (+6.3 -+ 23) and is correlated positively with delta/sup 13/C (-5.6-+2.4) and negatively with /sup 87/Sr//sup 86/Sr. Several trace elements also correlate with delta/sup 18/O. (3) Pb isotopes in galenas lie on the regression line for southwestern New Mexico Proterozoic crust. PbS from the skarn closest to Santa Rita has isotope ratios identical to PbS from the Santa Rita pit. (4) Most of the REE are not in gar or pyx. REE abundances are <1X chondrites after HC1 leaches, but in unleached samples can be >20X chondrites. All pyx separates have deep negative Ce and very deep Eu anomalies. Sr isotopes show that neither Santa Rita magma nor carbonate is the sole source of Sr. Pb isotopes are consistent with a Santa Rita source. The Ce anomaly suggests a seawater source for the REE. The data show that many of the metals in the skarn are not derived from the Santa Rita porphyry, and suggest that different elements may be derived from different source rocks.

  19. Evidence for participation of microbial mats in the deposition of the siliciclastic ‘ore formation’ in the Copperbelt of Zambia

    NASA Astrophysics Data System (ADS)

    Porada, H.; Druschel, G.

    2010-10-01

    The Copperbelt of Zambia is the world's largest sediment-hosted stratiform copper province, hosted in siliciclastic sediments of the Roan Group, which forms the basal part of the Neoproterozoic-Paleozoic Katanga Supergroup. Much of the ore deposition occurred between 880 Ma and 780 Ma, on a rimmed platform consisting of a carbonate barrier, a lagoonal basin and tidal flats grading into sabkhas in the hinterland. Various sedimentary structures developed in the ore formation at the Mindola Open Pit mine, are herein considered to be microbially induced and are identified as microbial shrinkage cracks, wrinkle structures, mat deformation structures, petees, concentric microfaults, and microbial mat chips. The occurrence of these structures in all ore formation units at the Mindola Mine suggests microbial mats grew on the paleo-sediment surface throughout deposition of the cupriferous succession. As these structures require cohesive layers, the mats were likely of the cyanobacterial type, that grew in the well aerated intertidal to lower supratidal zones. Cyanobacterial mats typically consist of a surface layer of filamentous cyanobacteria underlain by anaerobic, heterotrophic sulfate reducing bacteria (SRB). A distinct sulfide mineral zonation, developed in all major deposits of the Copperbelt, ranges from barren supratidal (sabkha) sediments, through chalcocite in the lower supratidal zone, to bornite followed by chalcopyrite in the intertidal zone, and pyrite in the subtidal zone and anoxic lagoonal depotcentre. This sequence of minerals can be modelled as a paragenetic sequence of mineralization resulting from the progressive reduction of a source fluid, indicating that geochemical conditions of ore formation, at least, are produced by the activity of SRB.

  20. Complex, multiple ore fluids in the world class southeast Missouri Pb-Zn-Cu MVT deposits: Sulfur isotope evidence

    SciTech Connect

    Burstein, I.B.; Shelton, K.L. ); Gregg, J.M.; Hagni, R.D. . Dept. of Geology Geophysics)

    1993-03-01

    More than 625 sulfur isotope data from all of the mines in the Viburnum Trend Pb-Zn-Cu MVT district of southeast Missouri have identified large temporal variations of sulfur isotope composition within the complex mineral paragenesis of each mine as well as large spatial variations in sulfur isotope composition within and among mines. The general trend of [delta][sup 34]S values with increasing paragenetic time is: Early pyrite, [minus]9 to [minus]1[per thousand]; Early bornite-chalcopyrite, [minus]9 to +16[per thousand]; Massive chalcopyrite, [minus]14 to +9[per thousand]; Main sphalerite, +12 to +26[per thousand]; Cuboctahedral galena, +5 to +22[per thousand]; Main marcasite, [minus]19 to +9[per thousand]; Cubic galena, [minus]2 to +13[per thousand] Late sphalerite, +6 to +13[per thousand]; Late marcasite, +10 to +19[per thousand]; Late chalcopyrite, +2 to +33[per thousand]. Spatial correlation of [delta][sup 34]S values of the Main stages of sulfide mineralization in the West Fork mine may indicate that the cuboctahedral galena in this mine was precipitated from a Pb-rich, S-poor fluid that incorporated sulfur from reaction with earlier marcasite. In the rest of the district, ore precipitation may have occurred by mixing of Pb-rich, S-poor fluids with Pb-poor, S-rich fluids. Complex mineral parageneses and sulfur isotope systematics within the southeast Missouri Pb-Zn-Cu MVT deposits are compatible with multiple, metal-specific fluids and multiple precipitation mechanisms, as well as multiple sulfur sources.

  1. Environment of ore deposition in the Creede mining district, San Juan Mountains, Colorado: Part VI. Maximum duration for mineralization of the OH vein

    USGS Publications Warehouse

    Campbell, W.R.; Barton, P.B.

    2005-01-01

    The rate at which ore deposits form is one of the least well established parameters in all of economic geology. However, increased detail in sampling, improved technology of dating, and sophistication in modeling are reducing the uncertainties and establishing that ore formation, at least for the porphyry copper-skarn-epithermal base and precious metals deposit package, may take place in surprisingly brief intervals. This contribution applies another approach to examine the duration of mineralization. The degree to which compositional gradients within single crystals has flattened through solid-state diffusion offers a measure of the thermal dose (that is temperature combined with time) that the crystals have been subjected to since deposition. Here we examine the steepness of gradients in iron content within individual single sphalerite crystals from the epithermal silver-lead-zinc deposit in the OH vein at Creede, Colorado. Two initial textures are considered: growth-banded crystals and compositionally contrasting overgrowths that succeed crosscutting dissolution or fractured surfaces. The model used estimates the maximum possible time by assuming a perfectly sharp original compositional step, and it asks how long it would take at a known temperature for the gradient measured today to have formed. Applying the experimentally determined diffusion rates of Mizuta (1988a) to compositional gradients (ranging from 0.4-2.2 mol % FeS/??m) measured by the electron microprobe in 2-??m steps on banded sphalerite formed early in the paragenetic history yields a maximum duration of less than ???10,000 yr. Sphalerite from a solution unconformity in a position midway through the paragenetic sequence is indistinguishable from instantaneous deposition, supporting the conclusion of rapid ore formation. While this formation interval seems very brief, it is consistent with less well constrained estimates using entirely different criteria. ?? 2005 Society of Economic Geologists, Inc.

  2. Introduction to ore geology

    SciTech Connect

    Evans, A.M.

    1987-01-01

    This textbook on ore geology is for second and third year undergraduates and closely parallels the undergraduate course given in this subject at England's University of Leicester. The volume covers three major areas: (1) principles of ore geology, (2) examples of the most important types of ore deposits, and (3) mineralization in space and time. Many chapters have been thoroughly revised for this edition and a chapter on diamonds has been added. Chapters on greisen and pegmatite have also been added, the former in response to the changing situation in tin mining following the recent tin crisis, and the latter in response to suggestions from geologists in a number of overseas countries. Some chapters have been considerably expanded and new sections added, including disseminated gold deposits and unconformity-associated uranium deposits. The author also expands on the importance of viewing mineral deposits from an economic standpoint.

  3. Photosynthesis and oxidative stress in the restinga plant species Eugenia uniflora L. exposed to simulated acid rain and iron ore dust deposition: potential use in environmental risk assessment.

    PubMed

    Neves, Natália Rust; Oliva, Marco Antonio; da Cruz Centeno, Danilo; Costa, Alan Carlos; Ribas, Rogério Ferreira; Pereira, Eduardo Gusmão

    2009-06-01

    The Brazilian sandy coastal plain named restinga is frequently subjected to particulate and gaseous emissions from iron ore factories. These gases may come into contact with atmospheric moisture and produce acid rain. The effects of the acid rain on vegetation, combined with iron excess in the soil, can lead to the disappearance of sensitive species and decrease restinga biodiversity. The effects of iron ore dust deposition and simulated acid rain on photosynthesis and on antioxidant enzymes were investigated in Eugenia uniflora, a representative shrub species of the restinga. This study aimed to determine the possible utility of this species in environmental risk assessment. After the application of iron ore dust as iron solid particulate matter (SPM(Fe)) and simulated acid rain (pH 3.1), the 18-month old plants displayed brown spots and necrosis, typical symptoms of iron toxicity and injuries caused by acid rain, respectively. The acidity of the rain intensified leaf iron accumulation, which reached phytotoxic levels, mainly in plants exposed to iron ore dust. These plants showed the lowest values for net photosynthesis, stomatal conductance, transpiration, chlorophyll a content and electron transport rate through photosystem II (PSII). Catalase and superoxide dismutase activities were decreased by simulated acid rain. Peroxidase activity and membrane injury increased following exposure to acid rain and simultaneous SPM(Fe) application. Eugenia uniflora exhibited impaired photosynthetic and antioxidative metabolism in response to combined iron and acid rain stresses. This species could become a valuable tool in environmental risk assessment in restinga areas near iron ore pelletizing factories. Non-invasive evaluations of visual injuries, photosynthesis and chlorophyll a fluorescence, as well as invasive biochemical analysis could be used as markers. PMID:19321190

  4. Geological, fluid inclusion and isotopic studies of the Yinshan Cu-Au-Pb-Zn-Ag deposit, South China: Implications for ore genesis and exploration

    NASA Astrophysics Data System (ADS)

    Wang, Guo-Guang; Ni, Pei; Wang, Ru-Cheng; Zhao, Kui-Dong; Chen, Hui; Ding, Jun-Ying; Zhao, Chao; Cai, Yi-Tao

    2013-09-01

    The Yinshan Cu-Au-Pb-Zn-Ag deposit is located in Dexing, South China. Ore bodies are primarily hosted in low-grade phyllite of the Neoproterozoic Shuangqiaoshan Group along EW- and NNW-striking fault zones. Pb-Zn-Ag mineralization is dictated by Jurassic rhyolitic quartz porphyries (ca. 172 Ma), whereas Cu-Au mineralization is associated with Jurassic dacite porphyries (ca. 170 Ma). The main ore minerals are pyrite, chalcopyrite, galena, sphalerite, tetrahedrite-tennatite, gold, silver, and silver sulphosalt, and the principal gangue minerals are quartz, sericite, calcite, and chlorite. Two-phase liquid-rich (type I), two-phase vapor-rich (type II), and halite-bearing (type III) fluid inclusions can be observed in the hydrothermal quartz-sulfides veins. Type I inclusions are widespread and have homogenization temperatures of 187-303 °C and salinities of 4.2-9.5 wt.% NaCl equivalent in the Pb-Zn-Ag mineralization, and homogenization temperatures of 196-362 °C and salinities of 3.5-9.9 wt.% NaCl equivalent in the Cu-Au mineralization. The pervasive occurrence of type I fluid inclusions with low-moderate temperatures and salinities implies that the mineralizing fluids formed in epithermal environments. The type II and coexisting type III inclusions, from deeper levels below the Cu-Au ore bodies, share similar homogenization temperatures of 317-448 °C and contrasting salinities of 0.2-4.2 and 30.9-36.8 wt.% NaCl equivalent, respectively, which indicates that boiling processes occurred. The sulfur isotopic compositions of sulfides (δ34S = -1.7‰ to +3.2‰) suggest a homogeneous magmatic sulfur source. The lead isotopes of sulfides (206Pb/204Pb = 18.01-18.07; 207Pb/204Pb = 15.55-15.57; and 208Pb/204Pb = 38.03-38.12) are consistent with those of volcanic-subvolcanic rocks (206Pb/204Pb = 18.03-18.10; 207Pb/204Pb = 15.56-15.57; and 208Pb/204Pb = 38.02-38.21), indicating a magmatic origin for lead in the ore. The oxygen and hydrogen isotope compositions (δ18O = +7.8

  5. Source of ore-forming fluids of the Tianbaoshan Pb-Zn deposit, Southwest China: constrains from C-O, S, and He-Ar isotopes

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Zhang, Jun; Zhong, Wenbin

    2016-04-01

    The Sichuan-Yunnan-Guizhou (SYG) metallogenic province is one of the most important areas for Pb-Zn resources in China. The metallogenic sources of these Pb-Zn deposits have long been debated. In this study, we provide integrated C-O-S-He-Ar isotopic data of the typical Tianbaoshan Pb-Zn deposit, with an aim to constrain the sources of ore-forming fluids. The Tianbaoshan deposit a large-sized Pb-Zn deposit in SYG metallogenic province, Southwest China. The proven resources include 2.6 Mt metals of Zn+Pb with average grades of 10.09% Zn and 1.50% Pb. The orebodies are hosted within the carbonates of the Ediacaran Dengying Formation. Ore minerals consist mainly of sphalerite, galena, chalcopyrite, and pyrite. Gangue minerals are dominated by calcite and dolomite. The calcite samples from the Tianbaoshan deposit yield homogeneous δ13CV ‑PDBvalues of -1.70‰ to -1.60‰ (average -1.63), with δ18OV ‑SMOW values ranging from 12.9‰ to 15.2‰ (average 14.4). The C-O isotopic data suggest the hydrothermal fluids may be originated from a mixed source involving both mantle and carbonate wall rocks. The δ34S values of the sphalerite, galena and chalcopyrite samples vary from 3.32‰ to 5.71‰ -0.36‰ to 1.31‰ and 4.5‰ to 4.7‰ respectively, indicating a magmatic source for sulfur. The 3He/4He ratios of chalcopyrite samples range from 0.01 to 0.32 Ra which is slightly higher than the crustal ratios (0.05 Ra), but obviously lower than that of mantle fluids (6 to 9 Ra). The 40Ar/36Ar ratios range from 345.0 to 669.1, which are slightly higher than that of air (298.5). The He-Ar isotopic compositions suggest that the ore-forming fluids are dominantly derived from the crust, with litter contamination from mantle-derived fluids. In combination with the C-O, S, and He-Ar isotopic data, we propose the ore-forming fluids of the Tianbaoshan deposit were derived by mixing of crustal and mantle fluids. And the metallogenic process may be genetically related to the

  6. Origin of the ore-forming fluids and metals of the Bangpu porphyry Mo-Cu deposit of Tibet, China: Constraints from He-Ar, H-O, S and Pb isotopes

    NASA Astrophysics Data System (ADS)

    Wang, Liqiang; Tang, Juxing; Cheng, Wenbin; Chen, Wei; Zhang, Zhi; Lin, Xin; Luo, Maocheng; Yang, Chao

    2015-05-01

    The Bangpu porphyry Mo-Cu deposit is a representative Mo-dominated deposit besides the Sharang porphyry Mo deposit in the Gangdese metallogenic belt. The Mo-Cu mineralization has a close relationship with the monzogranite porphyry and diorite porphyrite. We identify three stages during the ore formation: a pre-ore stage, a main-ore stage with Mo-Cu deposited dominantly, and a post-ore stage. In this study, He-Ar, H-O, S and Pb isotopic compositions of the Bangpu deposit were determined. Based on these determinations, integrated isotope geochemistry studies were performed to constrain the possible sources of the ore-forming fluids and metals. The 3He/4He and 40Ar/36Ar ratios of fluid inclusions exhibit a range of 0.12209-0.36370 Ra and 275.6-346.1, respectively. The 4He and 40Ar concentrations vary from 1.51 to 3.57 (10-7 cm3 STP g-1) and 0.49 to 9.31 (10-7 cm3 STP g-1), respectively. He-Ar isotopic compositions suggest dominantly crustal-derived fluid with minor amount of meteoric water in the main ore stage. The δ18Ofluid and δDfluid values vary from -1.3‰ to 3.9‰ and -140.5‰ to -73.7‰, respectively, indicating that magma fluids mixed with meteoric water. The average δ34S value of the sulfides (0.3‰) in the main-ore stage is close to the ore-forming porphyries, indicating a magmatic source. The lead isotopic components of ore sulfides exhibit restricted ranges with 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of 18.450-18.728, 15.602-5.672, and 38.715-39.211, respectively and μ values in the range of and 9.46-9.58, indicating ore-forming metals of primarily an upper crust source with a small amount of mantle materials. Compared to the Bangpu deposit, the ore metals derived from mantle are even greater in the Jiama and Qulong deposits, which leads to Cu being the dominant mineralization in the Jiama and Qulong deposit.

  7. Coupled Heat and Fluid Flow Modeling of the Earth's Largest Zinc Ore Deposit at Red Dog, Alaska: Implications for Structurally-Focused, Free Convection in Submarine Sedimentary Basins

    NASA Astrophysics Data System (ADS)

    Garven, G.; Dumoulin, J. A.; Bradley, D. A.; Young, L. E.; Kelley, K. D.; Leach, D. L.

    2002-12-01

    Crustal heat flow can provide a strong mechanism for driving groundwater flow, particularly in submarine basins where other mechanisms for driving pore fluid flow such as topography, compaction and crustal deformation are too weak or too slow to have a significant effect on disturbing conductive heat flow. Fault zones appear to play a crucial role in focusing fluid migration in basins, as inferred in ancient rocks by many examples of hydrothermal deposits of sediment-hosted ores worldwide. Many rift-hosted deposits of lead, zinc, and barite ore appear to have formed at or near the seafloor by focused venting of hot basinal fluids and modified seawater, although the geophysical nature of these systems is not so well known. For example, the upper Kuna Formation, a finely laminated, black, organic-rich siliceous mudstone and shale in the Western Brooks Range of northwest Alaska, is host to the largest resources of zinc yet discovered in the Earth's crust, containing ore reserves in excess of 175 Mt averaging about 16% Zn and 5% Pb. Although situated today in a highly-deformed series of structural allocthonous plates thrusted during the Jurassic to Cretaceous Brookian Orogeny, the stratiform ores are thought to have formed much earlier in the anoxic, mud-rich Carboniferous-age Kuna Basin when adjacent carbonate platforms were drowned by rifting and tectonic subsidence. Fluid inclusion studies of ore-stage sphalerite and gangue minerals indicate sub-seafloor mineralization temperatures less than 200oC and most likely between 120 to 150 oC, during a period of sediment diagenesis and extensional faulting. We have constructed fully-coupled numerical models of heat and fluid flow to test hydrologic theories for free convection, submarine venting and subsequent ore formation, as constrained by paleoheat flow and petrologic observations. A finite element grid was designed and adapted for a cross section of the Kuna Basin, geologically restored to latest Mississippian time

  8. The composition of fluid inclusions in ore and gangue minerals from the Silesian-Cracow Mississippi Valley-type Zn-Pb deposits Poland: Genetic and environmental implications

    USGS Publications Warehouse

    Viets, J.G.; Hofstra, A.H.; Emsbo, P.; Kozlowski, A.

    1996-01-01

    The composition of fluids extracted from ore and gangue sulfide minerals that span most of the paragenesis of the Silesian-Cracow district was determined using a newly developed ion chromatographic (IC) technique. Ionic species determined were Na+, NH+4, Ca2+, Mg2+, K+, Rb+, Sr2+, Ba2+, Cl-, Br-, F-, I-, PO3-4, CO2-3, HS-, S2O2-3, SO2-4, NO-3, and acetate. Mineral samples included six from the Pomorzany mine and one from the Trzebionka mine which are hosted in the Triassic Muschelkalk Formation, and two samples of drill core from mineralized Upper Devonian strata. Nine paragenetically identifiable sulfide minerals occur throughout the Silesian-Cracow district. These include from earliest to latest: early iron sulfides, granular sphalerite, early galena, light-banded sphalerite, galena, dark-banded sphalerite, iron sulfides, late dark-banded sphalerite with late galena, and late iron sulfides. Seven of the minerals were sampled for fluid inclusion analysis in this study. Only the early iron sulfides and the last galena stage were not sampled. Although the number of analyses are limited to nine samples and two replicates and there is uncertainty about the characteristics of the fluid inclusions analyzed, the data show clear temporal trends in the composition of the fluids that deposited these minerals. Fluid inclusions in minerals deposited later in the paragenesis have significantly more K+, Br-, NH+4, and acetate but less Sr2+ than those deposited earlier in the paragenesis. The later minerals are also characterized by isotopically lighter sulfur and significantly more Tl and As in the solid minerals. The change in ore-fluid chemistry is interpreted to reflect a major change in the hydrologic regime of the district. Apparently, the migrational paths of ore fluids from the Upper Silesian basin changed during ore deposition and the fluids which deposited early minerals reacted with aquifers with very different geochemical characteristics than those that deposited

  9. An investigation into heterogeneity in a single vein-type uranium ore deposit: Implications for nuclear forensics.

    PubMed

    Keatley, A C; Scott, T B; Davis, S; Jones, C P; Turner, P

    2015-12-01

    Minor element composition and rare earth element (REE) concentrations in nuclear materials are important as they are used within the field of nuclear forensics as an indicator of sample origin. However recent studies into uranium ores and uranium ore concentrates (UOCs) have shown significant elemental and isotopic heterogeneity from a single mine site such that some sites have shown higher variation within the mine site than that seen between multiple sites. The elemental composition of both uranium and gangue minerals within ore samples taken along a single mineral vein in South West England have been measured and reported here. The analysis of the samples was undertaken to determine the extent of the localised variation in key elements. Energy Dispersive X-ray spectroscopy (EDS) was used to analyse the gangue mineralogy and measure major element composition. Minor element composition and rare earth element (REE) concentrations were measured by Electron Probe Microanalysis (EPMA). The results confirm that a number of key elements, REE concentrations and patterns used for origin location do show significant variation within mine. Furthermore significant variation is also visible on a meter scale. In addition three separate uranium phases were identified within the vein which indicates multiple uranium mineralisation events. In light of these localised elemental variations it is recommended that representative sampling for an area is undertaken prior to establishing the REE pattern that may be used to identify the originating mine for an unknown ore sample and prior to investigating impact of ore processing on any arising REE patterns. PMID:26301831

  10. The source of phosphate in the oxidation zone of ore deposits: Evidence from oxygen isotope compositions of pyromorphite

    NASA Astrophysics Data System (ADS)

    Burmann, Fabian; Keim, Maximilian F.; Oelmann, Yvonne; Teiber, Holger; Marks, Michael A. W.; Markl, Gregor

    2013-12-01

    Pyromorphite (Pb5[PO4]3Cl) is an abundant mineral in oxidized zones of lead-bearing ore deposits and due to its very low solubility product effectively binds Pb during supergene alteration of galena (PbS). The capacity of a soil or near-surface fluid to immobilize dissolved Pb depends critically on the availability of phosphate in this soil or fluid. Potential phosphorus sources in soil include (i) release during biological processes, i.e. leaching from litter/lysis of microbial cells (after intracellular enzyme activity) in soil and hydrolysis from soil organic matter by extracellular enzymes and (ii) inorganic phosphate from the dissolution of apatite in the adjacent basement rocks. Intracellular enzyme activity in plants/microorganisms associated with kinetic fractionation produces an oxygen isotope composition distinctly different from inorganic processes in soil. This study presents the first oxygen isotope data for phosphate (δ18OP) in pyromorphite and a comprehensive data set for apatite from crystalline rocks. We investigated 38 pyromorphites from 26 localities in the Schwarzwald (Southwest Germany) and five samples from localities outside the Schwarzwald in addition to 12 apatite separates from gneissic and granitic host rocks. Pyromorphites had δ18OP values between +10‰ and +19‰, comparable to literature data on δ18OP in the readily available P fraction in soil (resin-extractable P) from which minerals potentially precipitate in soils. δ18OP values below the range of equilibrium isotope fractionation can be attributed either to apatites that formed geochemically (δ18OP of apatites:+6‰ to +9‰) or less likely to biological processes (extracellular enzyme activity). However, for most of our samples isotopic equilibrium with ambient water was indicated, which suggests biological activity. Therefore, we conclude that the majority of pyromorphites in oxidized zones of ore bodies formed from biologically cycled phosphate. This study highlights that

  11. Evolution of Ore Deposits and Technology Transfer Project: Isotope and Chemical Methods in Support of the U.S. Geological Survey Science Strategy, 2003-2008

    USGS Publications Warehouse

    Rye, Robert O.; Johnson, Craig A.; Landis, Gary P.; Hofstra, Albert H.; Emsbo, Poul; Stricker, Craig A.; Hunt, Andrew G.; Rusk, Brian G.

    2010-01-01

    Principal functions of the U.S. Geological Survey (USGS) Mineral Resources Program are providing assessments of the location, quantity, and quality of undiscovered mineral deposits, and predicting the environmental impacts of exploration and mine development. The mineral and environmental assessments of domestic deposits are used by planners and decisionmakers to improve the stewardship of public lands and public resources. Assessments of undiscovered mineral deposits on a global scale reveal the potential availability of minerals to the United States and other countries that manufacture goods imported to the United States. These resources are of fundamental relevance to national and international economic and security policy in our globalized world economy. Performing mineral and environmental assessments requires that predictions be made of the likelihood of undiscovered deposits. The predictions are based on geologic and geoenvironmental models that are constructed for the diverse types of mineral deposits from detailed descriptions of actual deposits and detailed understanding of the processes that formed them. Over the past three decades the understanding of ore-forming processes has benefited greatly from the integration of laboratory-based geochemical tools with field observations and other data sources. Under the aegis of the Evolution of Ore Deposits and Technology Transfer Project (referred to hereinafter as the Project), a 5-year effort that terminated in 2008, the Mineral Resources Program provided state-of-the-art analytical capabilities to support applications of several related geochemical tools to ore-deposit-related studies. The analytical capabilities and scientific approaches developed within the Project have wide applicability within Earth-system science. For this reason the Project Laboratories represent a valuable catalyst for interdisciplinary collaborations of the type that should be formed in the coming years for the United States to meet

  12. Chapter C: Hydrothermal Enrichment of Gallium in Zones of Advanced Argillic Alteration-Examples from the Paradise Peak and McDermitt Ore Deposits, Nevada

    USGS Publications Warehouse

    Rytuba, James J.; John, David A.; Foster, Andrea; Ludington, Steven D.; Kotlyar, Boris

    2003-01-01

    Gallium is produced as a byproduct from bauxite and zinc sulfide ores and rarely from primary Ga ores. High Ga contents (>60 ppm) can occur in zones of advanced argillic alteration consisting of alunite+kaolinite+quartz associated with quartz-alunite (high sulfidation Au-Ag) deposits. In a magmatic-hydrothermal environment, the zones of advanced argillic alteration associated with quartz-alunite (high sulfidation) Au-Ag deposits have the highest Ga contents (max 120 ppm). In these Au deposits, Ga is enriched in the zone of alunite+kaolinite alteration and depleted in the zone of quartz-rich alteration within acid-leached rocks. Peripheral zones of argillic alteration have Ga contents and Al/Ga ratios similar to those in unaltered volcanic rocks. The zones of advanced argillic alteration that formed in a steam-heated environment in association with hot-spring-type Hg-Au deposits are not Ga enriched, and residual silicified zones have very low Ga contents. The McDermitt Hg and Paradise Peak Au-Hg deposits, Nev., have zones of advanced argillic alteration that are Ga enriched. At the Paradise Peak Au-Hg deposits, Ga is enriched in the zone of alunite+jarosite alteration that formed in a magmatic-hydrothermal environment. Ga is depleted in the zone of opal+alunite alteration formed in a steam-heated environment, in residual silicified zones formed in a magmatic-hydrothermal environment, and in zones of supergene jarosite alteration. At the McDermitt Hg deposit, Ga is enriched in the zone of alunite+kaolinite alteration below the zone of adularia-quartz alteration that coincides with the Hg ore body. The spatial relation of Ga enrichment to alunite-kaolinite alteration suggests that formation in a magmatic-hydrothermal environment. X-ray-absorption spectra of Ga-enriched samples from the McDermitt Hg deposit are similar to that of gallium sulfate and support the association of Ga enrichment with alunite alteration.

  13. Hydrothermal alteration of organic matter in uranium ores, Elliot Lake, Canada: Implications for selected organic-rich deposits

    SciTech Connect

    Mossman, D.J.; Nagy, B.; Davis, D.W.

    1993-07-01

    Organic matter in the uraniferous Matinenda Formation, Elliot Lake, is preserved in the forms of syngenetic kerogen and solid bitumen as it is in many of the Oklo uranium deposits and in the Witwatersrand gold-uranium ores. The Elliot Lake kerogen is a vitrinite-like material considered to be remnants of the Precambrian cyanobacterial mats. The kerogen at Elliot Lake has reflectances (in oil) ranging from 2.63-7.31% RO{sub max}, high aromaticity, relatively low (0.41-0.60) atomic H/C ratios, and it contains cryptocrystalline graphite. Bitumen, present primarily as dispersed globules (up to 0.5 mm dia.), has reflectances from 0.72-1.32% RO{sub max}, atomic H/C ratios of 0.71-0.81, and is somewhat less aromatic than the kerogen. Overall similarity in molecular compositions indicates that liquid bitumen was derived from kerogen by processes similar to hydrous pyrolysis. The carbon isotopic composition of kerogen ({minus}15.62 to {minus}24.72%), and the now solid bitumen ({minus}25.91 to {minus}33.00%) are compatible with these processes. Despite having been subjected to several thermal episodes, ca. 2.45 Ga old kerogen of microbiological origin here survived as testimony of the antiquity of life on Earth. U-Pb isotopic data from discrete kerogen grains at Elliot Lake form a scattered array intersecting concordia at 2130 {+-} 100 Ma, correspond to the Nipissing event. U-Pb systems were totally reset by this event. Uranium and lead show subsequently partial mobility, the average of which is indicated by the lower concordia intersect of 550 {+-} 260 Ma. The migrated bitumen contains virtually no uranium and thorium but has a large excess of {sup 206}Pb, which indicates that the once liquid bitumen must have acted as a sink for mobile intermediate decay products of {sup 238}U. Emplacement of the Nipissing diabase may have been responsible for producing the bitumen and, indirectly, for its enrichment in {sup 206}Pb as a result of outgassing of {sup 222}Rn.

  14. Mineralogical and geochemical constraints on environmental impacts from waste rock at Taojiang Mn-ore deposit, central Hunan, China

    NASA Astrophysics Data System (ADS)

    Peng, Bo; Piestrzynski, Adam; Pieczonka, Jadwiga; Xiao, Meilian; Wang, Yaozhu; Xie, Shurong; Tang, Xiaoyan; Yu, Changxun; Song, Zhi

    2007-07-01

    The mineralogy and geochemistry of the waste rocks distributed at Taojiang Mn-ore deposit, central Hunan province, China, were studied using X-ray powder diffraction (XRD), electron microprobe analysis (EMPA) fitted with energy dispersive spectrometer (EDS) and inductively coupled plasma mass spectrum (atomic emission spectra) ICP-MS (AES), with the aim of predicting the environmental impacts of weathering of the waste rocks. The mineralogical results from microscope observation and XRD and EMPA studies show that the waste rock is composed of black shale and minor Mn carbonates. The oxidation of sulfide minerals such as galena, pyrite and chalcopyrite is accompanied by decomposition of Mn carbonates and K-feldspar during exposure to atmospheric O2. The geochemical characteristics of major, rare earth elements (REE) and trace elements of the waste rocks also show that the waste rock can be divided into black shale and Mn carbonate, and both of them are currently under chemical weathering. The major alkalies and alkaline elements (Ca, Mg, Na, K, Rb, Sr and Cs) and major elements (Fe, S and P) and heavy metals (Sc, V, Cr, Th, U, Sn, Co, Ni, Cu, Zn, Pb, Mo, Cd, Sb, an Tl) are being released during weathering. The mobility of alkalis and alkaline elements Ca, Mg, Na, K, Rb, Sr and Cs is controlled by decomposition of Mn carbonates. The dispersion of Cr, Sc and Th (U) might be related to weathering of K-feldspar, and the release of the heavy metals Co, Ni, Cu, Zn, Pb, Mo, Cd Sb and Tl is dominated by the breaking of sulfide minerals. The REE of the waste rocks and surrounding soils and the spidery distribution patterns of heavy metals in the waste rocks, the surrounding soils and the surface waters show that weathering of the waste rocks and bedrock might be the sources of heavy metal contamination for the surrounding soils and surface water system for the mining area. This is predicted by the mass-balance calculation by using Zr as an immobile element. Therefore, it is

  15. Nickel dispersion and enrichment at the bottom of the regolith: formation of pimelite target-like ores in rock block joints (Koniambo Ni deposit, New Caledonia)

    NASA Astrophysics Data System (ADS)

    Cathelineau, Michel; Quesnel, Benoît; Gautier, Pierre; Boulvais, Philippe; Couteau, Clément; Drouillet, Maxime

    2016-02-01

    In New Caledonian Ni deposits, the richest Ni silicate ores occur in fractures within the bedrock and saprolite, generally several tens of meters to hundred meters below the present-day surface. Fracture-related Ni silicate ore accounts for high Ni grades, at least a few weight percent above the average exploited grade (2.5 %). These Ni-rich veins are affected by active dissolution-precipitation processes at the level of the water table. Ni in solution is precipitated as silicates in thin layer cementing joints. This mineralization is characterized by chemical and mineralogical concentric zoning with an outer green rim around an inner white zone composed, from the edge to the centre of the block, (i) a highly oxidized and altered zone, (ii) a green pure Ni-rich pimelite zone, (iii) a zone (limited to a few centimetres) with a mixture of Ni-poor kerolite and Ni-rich pimelite and intermediate colours and (iv) a large white Mg-kerolite mineralization zone. This study proposes that the concentric zonation results from evapo-precipitation process related to alternate periods of hydration and drying, induced by water table movements. This extensive dispersion of Ni in concentrically zoned ores can partly explain the rather monotonous Ni grade of the bulk exploitation at the base of the regolith with values between 2 and 3 wt%.

  16. Strontium isotope constraint on the genesis of crude oils, oil-field brines and Kuroko ore deposits from the Green Tuff region of northeastern Japan

    NASA Astrophysics Data System (ADS)

    Nakano, Takanori; Kajiwara, Yoshimichi; Farrell, Clifton W.

    1989-10-01

    Crude oils from Akita to northern Niigata oil fields in the Green Tuff region of northeastern Japan have distinctly uniform 87Sr/86Sr ratios (0.7080-0.7082), while those from the southern Niigata oil field contain more radiogenic strontium (0.7095-0.7102). The regional variation in the strontium isotopic composition of crude oils is also reflected in their sulfur contents and sulfur isotopic compositions, and may be attributed to the regional heterogeneity of marine organic sediments from which the crude oils were ultimately derived. The 87Sr/86Sr ratios of most oil-field brines (0.7061-0.7084), however, are different from and vary more locally than those of the accompanying crude oils. This finding supports the view that strontium, and by inference some other dissolved solutes in the brines, may have evolved during diagenesis by reaction of a connate and/or a meteoric water with rocks in the Green Tuff region. Barites in the sulfide ore and anhydrites and gypsums in the sulfate (sekko) ore from the Fukazawa and Kosaka Kuroko deposits in the Hokuroku district are divided by the 87Sr/86Sr ratio of 0.7081 (±0.0001), which is identical to that of crude oils from nearby oil fields. This similarity in ratios lends support to the conclusion that the Kuroko base metal deposits and crude oil deposits were ultimately derived from a common organic sediment named PUMOS (Primitive Undifferentiated Metalliferous Organic Sediments).

  17. Occurrence of copper, gold, silver,uranium, tungsten, tin ore deposits in the Late Proterozoic aulacogen mobile melt of southeast China

    SciTech Connect

    Ma, X.H.

    1985-01-01

    In the early period of the late Proterozoic Era (1100 m.y. +/-) an aulacogen mobile belt was formed in the southeast of China. It extends about 1000 km crossing the Yantze Platform and Jiangnan Foldbelt in NNE-NE direction and adjoins the south China geosyncline basement. This belt shows some features of geology and mineralization similar to the Adelaide geosyncline and the Zambia-Zaire Copper-uranium belt. Within the belt, there are about 9000 to 12,000 m polystratotype strata and continuous sediments of the Late Proterozoic Erathem, including alkaline and meta-alkaline volcanic products of 4 epochs of mainly marine facies. A great number of ore-forming elements, such as Cu, U, Pb, Zn, Au, Ag, Fe, Co, Ni, Mn, P, and W, Sn, TR etc., were deposited and enriched in the whole volcano-sedimentary sequency at various times and in various places. A few of them have become syngenetic deposits, but most of them have been transformed into large-scale ore deposits or mineralization fields or areas of copper and gold, lead-zinc and silver, uranium, tungsten, tin, and other metals.

  18. The Sarylakh and Sentachan gold-antimony deposits, Sakha-Yakutia: A case of combined mesothermal gold-quartz and epithermal stibnite ores

    NASA Astrophysics Data System (ADS)

    Bortnikov, N. S.; Gamynin, G. N.; Vikent'eva, O. V.; Prokof'ev, V. Yu.; Prokop'ev, A. V.

    2010-10-01

    New mineralogical, thermobarometric, isotopic, and geochemical data provide evidence for long and complex formation history of the Sarylakh and Sentachan Au-Sb deposits conditioned by regional geodynamics and various types of ore mineralization, differing in age and source of ore matter combined in the same ore-localizing structural units. The deposits are situated in the Taryn metallogenic zone of the East Yakutian metallogenic belt in the central Verkhoyansk-Kolyma Fold Region. They are controlled by the regional Adycha-Taryn Fault Zone that separates the Kular-Nera Terrane and the western part of the Verkhoyansk Fold-Thrust Belt. The fault extends along the strike of the northwest-trending linear folds and is deep-rooted and repeatedly reactivated. The orebodies are mineralized crush zones accompanied by sulfidated (up to 100 m wide) quartz-sericite metasomatic rocks and replacing dickite-pyrophyllite alteration near stibnite veinlets. Two stages of low-sulfide gold-quartz and stibnite mineralization are distinguished. The formation conditions of the early milk white quartz in orebodies with stibnite mineralization at the Sarylakh and Sentachan deposits are similar: temperature interval 340-280°C, salt concentration in fluids 6.8-1.6 wt % NaCl equiv, fluid pressure 3430-1050 bar, and sodic bicarbonate fluid composition. The ranges of fluid salinity overlapped at both deposits. In the late regenerated quartz that attends stibnite mineralization, fluid inclusions contain an aqueous solution with salinity of 3.2 wt % NaCl equiv and are homogenized into liquid at 304-189°C. Syngenetic gas inclusions contain nitrogen 0.19 g/cm3 in density. The pressure of 300 bar is estimated at 189°C. The composition of the captured fluid is characterized as K-Ca bicarbonatesulfate. The sulfur isotopic composition has been analyzed in pyrite and arsenopyrite from ore and metasomatic zones, as well as in coarse-, medium-, and fine-grained stibnite varieties subjected to

  19. The Carlin-type gold deposits of the "golden triangle" of SW China: Pb and S isotopic constraints for the ore genesis

    NASA Astrophysics Data System (ADS)

    Chen, Maohong; Zhang, Zhiqiang; Santosh, M.; Dang, Yuan; Zhang, Wei

    2015-05-01

    The Yunnan-Guizhou-Guangxi "golden triangle" is considered as one of the important regions for Carlin-type (or Carlin-like) gold deposits in China. Gold deposits in this region can be grouped into lode type controlled by faults and layer-like type controlled by host strata. Arsenopyrite is one of the major gold-bearing minerals in these deposits. Here we report the S and Pb isotopic composition of arsenopyrites from the fault-controlled Lannigou and Jinya gold deposits and the stratabound Shuiyindong gold deposits, with a view to trace the sources of sulfur and lead, and to evaluate the genetic aspects of gold mineralization. The average δ34S values of arsenopyrites are 11.7‰ for Lannigou, 6.7‰ for Shuiyindong and -5.3‰ for Jinya, which are slightly lower to that of diagenetic pyrite in the host rocks of each deposit. The δ34S values of arsenopyrites show significant variation among the different deposits (-9.0‰ to +17.1‰), which indicate a sedimentary origin for sulfur, followed by local fluid-rock interaction. The Pb isotopic composition of arsenopyrites from these deposits shows a narrow range (206Pb/204Pb = 18.494-18.813, 207Pb/204Pb = 15.630-15.748, 208Pb/204Pb = 38.559-38.884), indicating that the different deposits have the same source of lead. Based on a comparison with Pb isotopic ratios of diagenetic pyrite, arsenopyrite and Late Cretaceous magmatic rocks from this region reported in previous studies, we infer that the lead was sourced from the sediments rather than from magmatic intrusions. The formation of the Carlin-type gold deposits are therefore correlated with the evolution of the Youjiang basin from rifting to closure, and involved four distinct stages leading to the concentration of the gold ores.

  20. Magnetic properties of the Bled El Hadba phosphate-bearing formation (Djebel Onk, Algeria): Consequences of the enrichment of the phosphate ore deposit

    NASA Astrophysics Data System (ADS)

    Bezzi, Nacer; Aïfa, Tahar; Merabet, Djoudi; Pivan, Jean-Yves

    2008-02-01

    To improve the enrichment of the Thanetian marine phosphate ore deposit from the quarry of Bled El Hadba (Djebel Onk, Algeria) before its exploitation, we first conducted a joint study using different techniques for comparison. These studies reveal that magnetic minerals play a significant role within the matrix of the central productive unit which is squeezed between two other units. Magnetic separation procedures show that there are some positive correlations between magnetic susceptibility and grain size fraction (80-250 μm). These dolomite-rich fractions are more clearly separated. Different tools were used to characterize the magnetic minerals (X-ray, microprobe, differential scanning calorimetry, thermogravimetric and thermomagnetic analyses). They show correlations between magnetic phases and the presence of associated magnetic minerals within the matrix or included in the phosphate ore deposit. They enabled us to distinguish a series of magnetic minerals (magnetite, hematite, maghemite, goethite, ilmenite, pyrite, iron-titanium oxide and titanium oxide sulphate) and to determine that Fe and Ti are prevalent in the separated fractions, following the same variation as Mg. The phosphorous (phosphate) rate is higher in the non-magnetic material, especially in the layers that are rich in dolomitic carbonates (upper and lower units), which could be trapped within the dolomitic matrix, while Magnesium (dolomite) is more important in the magnetic fraction. The separation of phosphate elements and dolomite carbonates is effective and therefore the ore can be enriched through magnetic procedures. Comparison between products enriched by magnetic separation, flotation and calcination showed important differences, chemically, economically and technically speaking.

  1. Leaching of silica bands and concentration of magnetite in Archean BIF by hypogene fluids: Beebyn Fe ore deposit, Yilgarn Craton, Western Australia

    NASA Astrophysics Data System (ADS)

    Duuring, Paul; Hagemann, Steffen

    2013-03-01

    The ~2,752-Ma Weld Range greenstone belt in the Yilgarn Craton of Western Australia hosts several Fe ore deposits that provide insights into the role of early hypogene fluids in the formation of high-grade (>55 wt% Fe) magnetite-rich ore in banded iron formation (BIF). The 1.5-km-long Beebyn orebody comprises a series of steeply dipping, discontinuous, <50-m-thick lenses of magnetite-(martite)-rich ore zones in BIF that extend from surface to vertical depths of at least 250 m. The ore zones are enveloped by a 3-km-long, 150-m-wide outer halo of hypogene siderite and ferroan dolomite in BIF and mafic igneous country rocks. Ferroan chlorite characterises 20-m-wide proximal alteration zones in mafic country rocks. The magnetite-rich Beebyn orebody is primarily the product of hypogene fluids that circulated through reverse shear zones during the formation of an Archean isoclinal fold-and-thrust belt. Two discrete stages of hypogene fluid flow caused the pseudomorphic replacement of silica-rich bands in BIF by Stage 1 siderite and magnetite and later by Stage 2 ferroan dolomite. The resulting carbonate-altered BIF is markedly depleted in SiO2 and enriched in CaO, MgO, LOI, P2O5 and Fe2O3(total) compared with the least-altered BIF. Subsequent reactivation of these shear zones and circulation of hypogene fluids resulted in the leaching of existing hypogene carbonate minerals and the concentration of residual magnetite-rich bands. These Stage 3 magnetite-rich ore zones are depleted in SiO2 and enriched in K2O, CaO, MgO, P2O5 and Fe2O3(total) relative to the least-altered BIF. Proximal wall rock hypogene alteration zones in mafic igneous country rocks (up to 20 m from the BIF contact) are depleted in SiO2, CaO, Na2O, and K2O and are enriched in Fe2O3(total), MgO and P2O5 compared with distal zones. Recent supergene alteration affects all rocks within about 100 m below the present surface, disturbing hypogene mineral and the geochemical zonation patterns associated with

  2. Structural controls and evolution of gold-, silver-, and REE-bearing copper-cobalt ore deposits, Blackbird district, east-central Idaho: Epigenetic origins

    USGS Publications Warehouse

    Lund, K.; Tysdal, R.G.; Evans, K.V.; Kunk, M.J.; Pillers, R.M.

    2011-01-01

    Textural data at all scales indicate that the host sites for veins and the tectonic evolution of both host rocks and mineral deposits were kinematically linked to Late Cretaceous regional thrust faulting. Heat, fluids, and conduits for generation and circulation of fluids were part of the regional crustal thickening. The faulting also juxtaposed metaevaporite layers in the Mesoproterozoic Yellowjacket Formation over Blackbird district host rocks. We conclude that this facilitated chemical exchange between juxtaposed units resulting in leaching of critical elements (Cl, K, B, Na) from metaevaporites to produce brines, scavenging of metals (Co, Cu, etc) from rocks in the region, and, finally, concentrating metals in the lower-plate ramp structures. Although the ultimate source of the metals remains undetermined, the present Cu-Co ± Au (± Ag ± Ni ± REE) Blackbird ore deposits formed during Late Cretaceous compressional deformation.

  3. Lead and Sulfur isotopic constraints on the origin of Pb-Zn ore deposits and tectonic evolution of the Central Tauride Belt, Turkey

    NASA Astrophysics Data System (ADS)

    Ghosh, N.; Ciftci, E.; Basu, A. R.

    2010-12-01

    A number of hydrothermal, epigenetic, carbonate-hosted vein type Pb-Zn and barite-Pb-Zn deposits are found in the Central Tauride Mountains of Turkey. The Central Tauride Belt typically exhibits vein type Pb-Zn mineralizations that are currently productive and have been mined since historical times. These deposits are characterized by sphalerite, galena, pyrite and minor to trace amounts of chalcopyrite, tetrahedrite (fahlore) as primary ore minerals, and cerussite, smithsonite, anglesite, hemimorphite, hydrozincite as secondary ore minerals with calcite, dolomite, quartz and barite as the gangue minerals. In most of these deposits, galena is the only primary sulfide mineral phase due to its relatively greater stability under surface conditions. In this study, we report the lead isotope ratios of galena samples with 206Pb/204Pb ranging from 18.48 to 19.06, 207Pb/204Pb from 15.66 to15.85 and 208Pb/204Pb from 38.60 to 39.43. In general, these values are less radiogenic and differ from the isotopic composition of the Mississippi Valley Type deposits. In 206Pb/204Pb versus 207Pb/204Pb and 206Pb/204Pb versus 208Pb/204Pb plots, the data typically fall in the arc-like domains such as the Sunda Arc with lead isotope ratios falling between a mantle and a crustal component. This is also indicated in a 207Pb/206Pb versus 208Pb/206Pb plot where the data show a strong positive correlation between Enriched Mantle II (EM-II) and Depleted MORB Mantle (DMM) components. Also, single stage lead isotope model ages range from 200 to 258 Ma (Average model age of 229 ± 17 Ma), with majority of samples falling in the late Triassic period indicating the time of mineralization of the deposits. The measured δ34S values of galena samples from the Central Tauride belt range between -6 and +11.4 ‰V-CDT (majority of the samples between 0 and +8 ‰V-CDT) that suggests a deeper source of origin involving leaching of both isotopically lighter and heavier sulfur from mantle-derived magmatic

  4. Spatial and temporal distribution of Cu-Au-Mo ore deposits along the western Tethyan convergent margin: a link with the 3D subduction dynamics

    NASA Astrophysics Data System (ADS)

    Menant, A.; Bertrand, G.; Loiselet, C.; Guillou-Frottier, L.; Jolivet, L.

    2012-12-01

    Emplacement conditions of mineralized systems in subduction and post-subduction environments and the sources of metals such as Cu, Mo and Au have been considered in the past. However, despite their importance in exploration strategies at the continental scale, interrelationships between distribution of ore systems and subduction dynamics are still partly unclear. Along the western Tethyan convergent margin, where Tertiary subduction history is well constrained, porphyry, epithermal and skarn ore deposits show a variable evolution of their spatial distribution. Using different and complementary database on European and Middle East ore deposits, three metallogenic episodes have been highlighted: (1) a late Cretaceous - Paleocene phase characterized by a copper mineralization within the Balkan chain and in the Kaçkar mountains (eastern Turkey), (2) an Eocene phase with a few copper ore deposits in eastern Turkey and small Caucasia and (3) an Oligocene - Neogene phase with a more southern distribution along the margin and mainly constituted by epithermal Au systems in the west (Carpathians, Rhodope, Aegean and western Turkey) and by porphyry copper deposits in the east (Zagros). These changes are suspected to be controlled by complex and evolving subduction dynamics. Using paleogeographic tools, it turned out that, in the eastern Mediterranean area, the late Cretaceous - Paleocene and Oligocene - Neogene metallogenic episodes are coeval with a significant decrease of the Africa - Eurasia convergence rate, from about 1.5 to 0.4 cm/yr. Indeed, compressional tectonics in the volcanic arc domain, associated with a high convergent rate, promote the storage of large volumes of metal-rich magma and the development of an extensive MASH (melting, assimilation, storage and homogenization) zone. When this convergence rate decreases, a stress relaxation occurs in the overriding crust, inducing the ascent of a sufficient flux of this fertile magma and allowing the formation of

  5. SHRIMP U-Pb ages of xenotime and monazite from the Spar Lake red bed-associated Cu-Ag deposit, western Montana: Implications for ore genesis

    USGS Publications Warehouse

    Aleinikoff, John N.; Hayes, Timothy S.; Evans, Karl V.; Mazdab, Frank K.; Pillers, Renee M.; Fanning, C. Mark

    2012-01-01

    Xenotime occurs as epitaxial overgrowths on detrital zircons in the Mesoproterozoic Revett Formation (Belt Supergroup) at the Spar Lake red bed-associated Cu-Ag deposit, western Montana. The deposit formed during diagenesis of Revett strata, where oxidizing metal-bearing hydrothermal fluids encountered a reducing zone. Samples for geochronology were collected from several mineral zones. Xenotime overgrowths (1–30 μm wide) were found in polished thin sections from five ore and near-ore zones (chalcocite-chlorite, bornite-calcite, galena-calcite, chalcopyrite-ankerite, and pyrite-calcite), but not in more distant zones across the region. Thirty-two in situ SHRIMP U-Pb analyses on xenotime overgrowths yield a weighted average of 207Pb/206Pb ages of 1409 ± 8 Ma, interpreted as the time of mineralization. This age is about 40 to 60 m.y. after deposition of the Revett Formation. Six other xenotime overgrowths formed during a younger event at 1304 ± 19 Ma. Several isolated grains of xenotime have 207Pb/206Pb ages in the range of 1.67 to 1.51 Ga, and thus are considered detrital in origin. Trace element data can distinguish Spar Lake xenotimes of different origins. Based on in situ SHRIMP analysis, detrital xenotime has heavy rare earth elements-enriched patterns similar to those of igneous xenotime, whereas xenotime overgrowths of inferred hydrothermal origin have hump-shaped (i.e., middle rare earth elements-enriched) patterns. The two ages of hydrothermal xenotime can be distinguished by slightly different rare earth elements patterns. In addition, 1409 Ma xenotime overgrowths have higher Eu and Gd contents than the 1304 Ma overgrowths. Most xenotime overgrowths from the Spar Lake deposit have elevated As concentrations, further suggesting a genetic relationship between the xenotime formation and Cu-Ag mineralization.

  6. How two gravity-gradient inversion methods can be used to reveal different geologic features of ore deposit - A case study from the Quadrilátero Ferrífero (Brazil)

    NASA Astrophysics Data System (ADS)

    Carlos, Dionísio U.; Uieda, Leonardo; Barbosa, Valeria C. F.

    2016-07-01

    Airborne gravity gradiometry data have been recently used in mining surveys to map the 3D geometry of ore deposits. This task can be achieved by different gravity-gradient inversion methods, many of which use a voxel-based discretization of the Earth's subsurface. To produce a unique and stable solution, an inversion method introduces particular constraints. One constraining inversion introduces a depth-weighting function in the first-order Tikhonov regularization imposing a smoothing on the density-contrast distributions that are not restricted to near-surface regions. Another gravity-gradient inversion, the method of planting anomalous densities, imposes compactness and sharp boundaries on the density-contrast distributions. We used these two inversion methods to invert the airborne gravity-gradient data over the iron-ore deposit at the southern flank of the Gandarela syncline in Quadrilátero Ferrífero (Brazil). Because these methods differ from each other in the particular constraint used, the estimated 3D density-contrast distributions reveal different geologic features of ore deposit. The depth-weighting smoothing inversion reveals variable dip directions along the strike of the retrieved iron-ore body. The planting anomalous density inversion estimates a compact iron-ore mass with a single density contrast, which reveals a variable volume of the iron ore along its strike increasing towards the hinge zone of the Gandarela syncline which is the zone of maximum compression. The combination of the geologic features inferred from each estimate leads to a synergistic effect, revealing that the iron-ore deposit is strongly controlled by the Gandarela syncline.

  7. Chalcophile element (Ni, Cu, PGE, and Au) variations in the Tamarack magmatic sulfide deposit in the Midcontinent Rift System: implications for dynamic ore-forming processes

    NASA Astrophysics Data System (ADS)

    Taranovic, Valentina; Ripley, Edward M.; Li, Chusi; Rossell, Dean

    2016-03-01

    The Tamarack magmatic sulfide deposit is hosted by the Tamarack Intrusive Complex (1105.6 ± 1.2 Ma) in the Midcontinent Rift System. The most important sulfide mineralization in the Complex occurs in the northern part, which consists of two separate intrusive units: an early funnel-shaped layered peridotite body containing relatively fine-grained olivine (referred to as the FGO Intrusion) at the top, and a late gabbro-troctolite-peridotite dike-like body containing relatively coarse-grained olivine (referred to as the CGO Intrusion) at the bottom. Disseminated, net-textured, and massive sulfides occur in the base of the FGO Intrusion as well as in the upper part of the CGO Intrusion. The widest part of the CGO Intrusion also hosts a large semi-massive (net-textured) sulfide ore body locally surrounded by disseminated sulfide mineralization. Small massive sulfide veins occur in the footwall of the FGO Intrusion and in the wall rocks of the CGO dike. The sulfide mineralization is predominantly composed of pyrrhotite, pentlandite, and chalcopyrite, plus minor magnetite. Pyrrhotite containing the highest Ni and Co contents occurs in the FGO disseminated sulfides and in the CGO semi-massive sulfide ores, respectively. The most important platinum-group minerals associated with the base metal sulfides are sperrylite (PtAs2), sudburyite (PdSb), and michenerite (PdBiTe). Nickel shows a strong positive correlation with S in all types of sulfide mineralization, and Cu shows a strong positive correlation with S in the disseminated sulfide mineralization. At a given S content, the concentrations of Pt, Pd, and Au in the CGO disseminated sulfides are significantly higher than those in the FGO disseminated sulfides. The semi-massive sulfide ores are characterized by significantly higher IPGE (Ir, Os, Ru, and Rh) concentrations than most of the massive sulfide ores. With few exceptions, all of the various textural types of sulfide mineralization collectively show a good positive

  8. Lead isotope study of Zn-Pb ore deposits associated with the Basque-Cantabrian basin and Paleozoic basement, Northern Spain

    NASA Astrophysics Data System (ADS)

    Velasco, F.; Pesquera, A.; Herrero, J. M.

    1996-01-01

    A total of forty-three galena samples from syngenetic and epigenetic Pb-Zn mineralizations emplaced in the Lower Cretaceous Basque-Cantabrian basin and Paleozoic basement of the Cinco Villas massif in the western Pyrenees, have been analyzed for Pb-isotopic composition. Galena from sedex mineralizations hosted in Carboniferous clastic rocks in the Cinco Villas massif display an homogeneous lead isotopic signature (206Pb/2044Pb ≈ 18.43, 207Pb/204Pb ≈ 15.66, 208Pb/ 204Pb ≈ 38.69) suggesting a single lead reservoir. These values are slightly more radiogenic than lead from other European Hercynian deposits, possibly reflecting the influence of a more evolved upper crustal source. Underlying Paleozoic sediments are proposed as lead source for the Cinco Villas massif ores. Analyses from twenty-six galena samples from the four strata-bound ore districts hosted in Mesozoic rocks reveal the existence of two populations regarding their lead isotopic composition. Galena from the western Santander districts (e.g., Reocin) is characterized by more radiogenic isotope values (206Pb/204Pb ≈ 18.74, 207Pb/204Pb ≈ 15.67, 208Pb/ 204Pb ≈ 38.73) than those from the central and eastern districts (Troya-Legorreta, Central and Western Vizcaya, 206Pb/204Pb ≈ 18.59, 207Pb/204Pb ≈ 15.66, 208Pb/ 204Pb ≈ 38.73). In all districts, the most likely source for these mineralizations was the thick sequence of Lower Cretaceous clastic sediments. The existence of two separate lead isotopic populations could be the result of regional difference in the composition of the basement rocks and the clastic sediments derived of it or different evolution histories. In both sub-basins, isotopic ratios indicate an increase in crustal influence as the age of the ores decreases.

  9. Processing Gold Quarry refractory ores

    NASA Astrophysics Data System (ADS)

    Hausen, D. M.

    1989-04-01

    The Gold Quarry deposit is the largest sediment-hosted gold deposit yet discovered on the Carlin trend in northern Nevada. However, despite the locale's vast reserves, the gold is difficult to extract from portions of the deposit. Detailed, ongoing mineralogical analyses assure proper treatment of the ore.

  10. Sulfur isotope and trace element data from ore sulfides in the Noranda district (Abitibi, Canada): implications for volcanogenic massive sulfide deposit genesis

    NASA Astrophysics Data System (ADS)

    Sharman, Elizabeth R.; Taylor, Bruce E.; Minarik, William G.; Dubé, Benoît; Wing, Boswell A.

    2015-06-01

    We examine models for volcanogenic massive sulfide (VMS) mineralization in the ~2.7-Ga Noranda camp, Abitibi subprovince, Superior Province, Canada, using a combination of multiple sulfur isotope and trace element data from ore sulfide minerals. The Noranda camp is a well-preserved, VMS deposit-rich area that is thought to represent a collapsed volcanic caldera. Due to its economic value, the camp has been studied extensively, providing a robust geological framework within which to assess the new data presented in this study. We explore previously proposed controls on mineralization within the Noranda camp and, in particular, the exceptional Au-rich Horne and Quemont deposits. We present multiple sulfur isotope and trace element compositional data for sulfide separates representing 25 different VMS deposits and "showings" within the Noranda camp. Multiple sulfur isotope data for this study have δ34SV-CDT values of between -1.9 and +2.5 ‰, and Δ33SV-CDT values of between -0.59 and -0.03 ‰. We interpret the negative Δ33S values to be due to a contribution of sulfur that originated as seawater sulfate to form the ore sulfides of the Noranda camp VMS deposits. The contribution of seawater sulfate increased with the collapse and subsequent evolution of the Noranda caldera, an inference supported by select trace and major element analyses. In particular, higher concentrations of Se occur in samples with Δ33S values closer to 0 ‰, as well as lower Fe/Zn ratios in sphalerite, suggesting lower pressures and temperatures of formation. We also report a relationship between average Au grade and Δ33S values within Au-rich VMS deposits of the Noranda camp, whereby higher gold grades are associated with near-zero Δ33S values. From this, we infer a dominance of igneous sulfur in the gold-rich deposits, either leached from the volcanic pile and/or directly degassed from an associated intrusion.

  11. Geological, geochronological, and mineralogical constraints on the genesis of the Chengchao skarn Fe deposit, Edong ore district, Middle-Lower Yangtze River Valley metallogenic belt, eastern China

    NASA Astrophysics Data System (ADS)

    Yao, Lei; Xie, Guiqing; Mao, Jingwen; Lü, Zhicheng; Zhao, Caisheng; Zheng, Xianwei; Ding, Ning

    2015-04-01

    The Edong ore district is located within the westernmost Middle-Lower Yangtze River Valley metallogenic belt (MLYRB), and hosts the largest concentration of skarn Fe deposits in China, although the origin of these deposits remains controversial. The Chengchao deposit is the largest skarn Fe deposit so far discovered within the MLYRB, and provides a good opportunity to address the debate surrounding the origin of these skarn Fe deposits. Here, we present geological, geochronological, and mineralogical data from the Chengchao skarn deposit and associated intrusions, and discuss the relationships between granitoids and mineralization in the Chengchao deposit. The NW-SE-striking orebodies in the study area have porphyritic quartz monzonite and/or granite footwalls, and Triassic marble or diorite hangingwalls, indicating a spatial relationship between these intrusions and Fe mineralization. Zircon U-Pb data from the granite, porphyritic quartz monzonite, diorite, and porphyritic diabase dike within the deposit show ages of 129 ± 1, 128 ± 1, 140 ± 1, and 126 ± 1 Ma, respectively. These ages and the previously reported ages on the timing of mineralization suggest that the porphyritic quartz monzonite and granite are coeval with the formation of the skarn Fe deposit. Our data confirm that the granitic rocks are temporally associated with Fe mineralization. The prograde substage of skarn development is characterized by two stages of andradite (Adr98-38Grs61-2Prp2-0Sps1-0Alm1-0) and diopside (Di95-61Hd37-5Jo3-0), including an early stage of garnet and pyroxene formation that is genetically associated with the mineralization. The early stage garnets are more andradite-rich (Adr98-50Grs49-2Prp1-0Sps1-0Alm0) than the late veinlet garnets characterized by intermediate grandite compositions (Adr67-37Grs61-31Prp2-0Sps1-0Alm1-0). The early stage pyroxenes (Di95-74Hd26-5Jo1-0) are compositionally distinct from the late stage pyroxenes (Di84-61Hd37-16Jo3-0). Compositional

  12. Multiphase origin of the Cu Co ore deposits in the western part of the Lufilian fold-and-thrust belt, Katanga (Democratic Republic of Congo)

    NASA Astrophysics Data System (ADS)

    Dewaele, S.; Muchez, Ph.; Vets, J.; Fernandez-Alonzo, M.; Tack, L.

    2006-12-01

    A multiphase origin of the Cu-Co ores in the western part of the Lufilian fold-and-thrust belt in Central Africa is proposed based on literature, satellite image interpretations and petrographic and fluid inclusion analyses on samples from the stratiform mineralization of Kamoto and Musonoi (DR Congo). The various mineral occurrences in the Katanga Copperbelt can be classified in distinct categories: stratiform, supergene enrichment and vein-type. The stratiform mineralization form the largest group and can be found mainly in Lower Roan (R-2) rocks, which can be identified as ridges on satellite imagery. Ore deposits outside the R-2 occur along lineaments and result often from supergene enrichment. The main phase of the stratiform mineralization in the Katanga Copperbelt occurred during diagenesis preceding the Lufilian orogeny. Petrographic observation identified various mineralizing phases, which played a role in the formation of these stratiform mineralization. Mineralization started during early diagenesis, but mainly occurred during further burial. After the formation of early diagenetic pyrite, the circulation of diagenetic Cu-Co-rich fluids resulted in the formation of the main mineralization. Preliminary microthermometric investigation of primary inclusions in authigenic quartz, associated with the main stage of stratiform mineralization, indicates that an H 2O-NaCl fluid with a minimum temperature between 80 and 195 °C and a salinity between 8.4 and 18.4 eq. wt% NaCl circulated during the main phase of mineralization. Numerous faults and fractures formed during the Lufilian orogeny cut the stratiform mineralization. They are, however, at Kamoto and Musonoi only associated with minor sulphides. Supergene alteration along faults and fractures resulted in an enrichment of the mineralization, with the formation of secondary Cu-oxides, -carbonates and -silicates. The importance of the interaction of various processes for the formation of economic Cu-Co ore

  13. Lead-isotopic compositions of diverse igneous rocks and ore deposits from southwestern New Mexico and their implications for early Proterozoic crustal evolution in the western United States.

    USGS Publications Warehouse

    Stacey, J.S.; Hedlund, D.C.

    1983-01-01

    Basement rocks in this area are 1750 m.y. old and extend northward through Colorado to Utah. Galena data show that the fraction of older sialic lead in these rocks increases toward the the Archaean craton in Wyoming. The crust apparently developed southward from Wyoming in stages at 2400 m.y. ago or before, 2100 m.y. ago and 1750 m.y. ago. The Laramide alkali to calc-alkaline rocks and their associated porphyry Cu and massive replacement deposits have similar 206Pb/204Pb ratios and are the least radiogenic in the region; their 206Pb/204Pb ratios are all 18.0. Pb isotopes in this region offer some criteria for prospecting purposes. The 206Pb/204Pb values for the larger ore deposits related to Laramide activity are all <18.0, particularly for the larger ones. Within the mid- Tertiary group, the same criteria apply - i.e. the largest deposits have the lowest 206Pb/204Pb ratios. -L.C.H.

  14. How metallic is the binding state of indium hosted by excess-metal chalcogenides in ore deposits?

    NASA Astrophysics Data System (ADS)

    Ondina Figueiredo, Maria; Pena Silva, Teresa; Oliveira, Daniel; Rosa, Diogo

    2010-05-01

    Discovered in 1863, indium is nowadays a strategic scarce metal used both in classical technologic fields (like low melting-temperature alloys and solders) and in innovative nano-technologies to produce "high-tech devices" by means of new materials, namely liquid crystal displays (LCDs), organic light emitting diodes (OLEDs) and the recently introduced transparent flexible thin-films manufactured with ionic amorphous oxide semiconductors (IAOS). Indium is a typical chalcophile element, seldom forming specific minerals and occurring mainly dispersed within polymetallic sulphides, particularly with excess metal ions [1]. The average content of indium in the Earth's crust is very low but a further increase in its demand is still expected in the next years, thus focusing a special interest in uncovering new exploitation sites through promising polymetallic sulphide ores - e.g., the Iberian Pyrite Belt (IPB) [2] - and in improving recycling technologies. Indium recovery stands mostly on zinc extraction from sphalerite, the natural cubic sulphide which is the prototype of so-called "tetrahedral sulphides" where metal ions fill half of the available tetrahedral sites within the cubic closest packing of sulphur anions where the double of unfilled interstices are available for further in-filling. It is worth remarking that such packing array is particularly suitable for accommodating polymetallic cations by filling closely located interstitial sites [3] as happens in excess-metal tetrahedral sulphides - e.g. bornite, ideally Cu5FeS4, recognized as an In-carrying mineral [4]. Studying the tendency towards In-In interactions able of leading to the formation of polycations would efficiently contribute to understand indium crystal chemistry and the metal binding state in natural chalcogenides. Accordingly, an X-ray absorption near-edge spectroscopy (XANES) study at In L3-edge was undertaken using the instrumental set-up of ID21 beamline at the ESRF (European Synchrotron

  15. Scheelite geochemical signatures by LA-ICP-MS and potential for rare earth elements from Hutti Gold Mines and fingerprinting ore deposits

    NASA Astrophysics Data System (ADS)

    Raju, P. V. S.; Hart, Craig J. R.; Sangurmath, P.

    2016-02-01

    Scheelite (CaWO4), with gold and REE enrichments, is found in appreciable concentrations in the world class Hutti Gold deposit, Eastern Dharwar Craton (EDC), India. We used in situ Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS) to determine the rare earth elements in scheelite and utilize results to fingerprint the extensions/continuity of auriferous ore shoots/lodes/reefs. The Hutti Gold deposit is briefly compared to southern African gold deposits and corroborates in terms of geochemistry, structural, chemical alterations and REE contents in scheelite etc… The scheelite samples from Hutti are enriched in light rare earth elements (LREE) up to 11 ppm and depleted in heavy rare earth elements(HREE) up to 6.50 ppm with positive to negative europium anomaly. The total REE (∑ REE + Y) of the scheelite samples is up to 35 ppm. The ratio of LREE/HREE values is 1.80. The results for the REEs indicate: (1) considerable differences in the ΣREEs amongst the sample suite (2) most samples are dominated by a single chondrite-normalized (CN) pattern, but rarely a second pattern is present; 3) although the type of CN REE patterns vary (e.g., convex MREE, LREE enrichment), there is a similarity among deposit types; and 4) both positive and negative 'Eu' anomalies are observed; 5) positive correlations between MREE and HREE suggesting a strong influence of magmatic fluids. These initial results suggest that the minor and trace-element chemistry of scheelite may offer the potential to discriminate and identify deposit types based on its geochemical fingerprinting.

  16. Geochemical and Nd isotopic constraints on provenance and depositional setting of the Shihuiding Formation in the Shilu Fe-Co-Cu ore district, Hainan Province, South China

    NASA Astrophysics Data System (ADS)

    Yu, Liangliang; Zou, Shaohao; Cai, Jianxin; Xu, Deru; Zou, Fenghui; Wang, Zhilin; Wu, Chuanjun; Liu, Meng

    2016-04-01

    The Shihuiding Formation, a subordinate succession hosting the Fe-Co-Cu ores, is a suite of Neoproterozoic terrigenous clastic rocks occurring in the Shilu Fe-Co-Cu ore district of the Hainan Island, South China. Integrated petrographical, geochemical, and Nd isotopic analyses have been carried out on 23 sandstone specimens of the Shihuiding Formation in order to understand their provenance and the tectonic setting of their deposition. The samples can be divided into two groups, quartzose sandstones (13 samples) and ferruginous sandstones (10 samples). The ferruginous sandstones have average SiO2 and Fetotal contents of 77.23 wt.% and 18.09 wt.%, respectively, and this contrasts with the higher average SiO2 (94.04 wt.%) and lower Fetotal (2.67 wt.%) contents of the quartzose sandstones. The bivariant Th/Sc and Zr/Sc ratios indicate a predominantly recycled sedimentary provenance, and the low to medium degrees of weathering are commonly indicated by an average chemical index of maturity (CIM) of 81 and an average chemical index of alteration (CIA) of 68. The Shihuiding Formation sandstones have REE contents of 21-249 ppm, with LREE/HREE = 9.18 and δEu = 0.67. The εNd (970 Ma) values of -5.7 to -3.4, and model (TDM) ages of 2099-1773 Ma are compatible with a source mainly from the Paleo- to Mesoproterozoic Baoban Group, a suite of metamorphosed sedimentary rocks intruded by ca. 1450 Ma granites. Quantitative provenance modeling indicates that the Shihuiding Formation sandstones are best modeled with a mixture of 29% plagioclase-amphibole gneiss (29 P), 38% quartz-muscovite schist (38 Q), and 33% granite (33 G) detritus. Mixing the εNd values of the sandstones, calculated at 970 Ma, indicates that the sediment received 22-47% (average 34%) of its detritus from the Baoban Group quartz-muscovite schists. Components from hydrothermal fluids may also have been involved during deposition of the Shihuiding Formation sandstones, as revealed by a bivariant Al/(Al + Fe + Mn

  17. Field Vectors to Metamorphosed Ores: A Prelude to Finding Currently Concealed Volcano-Plutonic Arc Settings and Their Mineral Deposits in The Grenville Province

    NASA Astrophysics Data System (ADS)

    Corriveau, L.; Bonnet, A.; van Breemen, O.

    2004-05-01

    Recent mineral deposits synthesis highlights the largely barren nature of the high-grade metamorphic terrains of the Canadian Shield in terms of large mining camps. No where is the gap most startling than in the Grenville Province even though a lot of its Paleo- to Mesoproterozoic crust consists of magmatic arcs renown worldwide to host IOCG, VHMS and Porphyry Cu deposits. All these deposit types have significant alteration halos that can serve as vectors to ore. The use of such vectors forced a complete reinterpretation of the nature of the La Romaine domain in the eastern Grenville Province. Mapped in the 70's as being a metasedimentary basin with >500 km2 of meta-arkose and minor pelite, quartzite, conglomerate and marble, the domain is herein reassessed as a major 1.5 Ga Pinwarian continental magmatic arc fertile in Cu-sulphides and Fe-oxides mineralizing systems. The original markers used to prognosticate a sedimentary origin can now be demonstrated to be a series of rhyolitic to dacitic lapillistone, sericitized tuff with Al nodules and veins, Al gneiss locally with lapilli textures, garnetite, ironstones and calc-silicate rocks. The distribution, paragenesis and mode of the Al-, Fe- and Ca-rich units significantly depart from those of normal metasediments but are very diagnostic of metamorphosed hydrothermal alteration zones and meta-exhalites. Mapping alteration vectors provided clues to search for and find the volcanic rocks concealed among the composite granitic gneiss, the zones of hydrothermal leaching (e.g., sericitic, argillic and advanced argillic alterations) and discharge, the cap rocks, and the Cu mineralization. Spatial and stratigraphic relationships provided a means to compare their settings with ore deposit models. Roof pendants of Ba-rich meta-exhalite in surrounding 1.5 Ga granitic plutons and intrusion of 1495 Ma Qtz-Kfs porphyry across hydrothermally altered 1500 Ma tuffs attest to coeval hydrothermal activity and sub-volcanic plutons. The

  18. Gas-exchange chamber analysis of elemental mercury deposition/emission to alluvium, ore, and mine tailings.

    PubMed

    Miller, Matthieu B; Gustin, Mae Sexauer

    2015-07-01

    Deposition of mercury (Hg) from the atmosphere is an important source of this contaminant to terrestrial ecosystems. Once deposited, all forms of Hg can be retained or emitted back to the atmosphere. Distinguishing between volatilization of geogenic or indigenous Hg and that deposited from the atmosphere is difficult. Field flux measurements in the general area of two industrial scale gold mining operations, showed local deposition of Hg emitted from point and nonpoint sources, and subsequent re-emission. The work presented in this paper investigated deposition/emission of elemental Hg to and from alluvium and two mine materials before, during, and after exposure to high air concentrations, for both wet and dry conditions, using a laboratory gas exchange chamber and a Hg permeation source. In general, results showed a range in mean elemental Hg deposition velocities ranging from 0.13 to 0.46 cm s(-1) that varied with material. A significant influence of atmospheric ozone (O3) on flux was observed that depended on the material and whether wet or dry. A synergistic relationship existed between O3 and light promoting Hg flux, and flux was also influenced by material grain size, chemistry, and primary mineralogy. PMID:25880343

  19. The genesis of ores

    SciTech Connect

    Brimhall, G. )

    1991-05-01

    Human history and technology have been shaped by metals. How did they become concentrated in minable deposits located so conveniently near the earth's surface The author explains the mechanisms of fluid transport-by magma, water and even air and wind-responsible for the chemical and physical interactions that created bodies of metallic ores throughout geologic history. From their formation to their modification at the surface of the earth, ore deposits are geologically transitory and reflect dynamic processes within the earth as well as atmospheric and climatic influences on hydrologic systems. As highly reactive supracrustal systems, they then serve as geochemical sensors providing a powerful record and set of tracer elements for deducing the history, transport paths and forces operative in the crust.

  20. Early Permian stage of formation of gold-ore deposits of northeastern Transbaikalia: Isotope-geochronological (Rb-Sr and 39Ar-40Ar) data for the Uryakh ore field

    NASA Astrophysics Data System (ADS)

    Chugaev, A. V.; Nosova, A. A.; Abramov, S. S.; Chernyshev, I. V.; Bortnikov, N. S.; Larionova, Yu. O.; Goltsman, Yu. V.; Moralev, G. V.; Volfson, A. A.

    2015-08-01

    This work presents the first results of geochronological study of metasomatic rocks accompanying gold-bearing quartz veins of the Uryakh ore field (UOF). Based on the Rb-Sr and 39Ar-40Ar geochronological data, it is shown that hydrothermal metasomatic processes in the ore field occurred about 280 Ma ago (Early Permian) and they are correlated with the terminal phases of formation of the Angara-Vitim batholith.

  1. Application of low-temperature thermochronology to hydrothermal ore deposits: Formation, preservation and exhumation of epithermal gold systems from the Eastern Rhodopes, Bulgaria

    NASA Astrophysics Data System (ADS)

    Márton, István; Moritz, Robert; Spikings, Richard

    2010-03-01

    New low-temperature thermochronological data have been used to quantify the protracted, Eocene-Miocene cooling histories of upper and lower plate rocks of the Kesebir-Kardamos extensional dome, Eastern Rhodopes, Bulgaria. 40Ar/ 39Ar and apatite fission-track data reveal that the lower plate has experienced continuous cooling and exhumation, since the Late Eocene. Muscovite 40Ar/ 39Ar plateau ages of 36.90 ± 0.16 Ma and 37.28 ± 0.19 Ma (2 σ) from metamorphic rocks of the footwall reveal the approximate time span during which they cooled below ˜ 350 °C during exhumation caused by detachment faulting. The sedimentary rock-hosted gold mineralization, which represents a thermal event at ˜ 250-220 °C, developed during the early stage of basin formation between 34.71 ± 0.16 Ma and 35.36 ± 0.21 Ma (adularia 40Ar/ 39Ar plateau ages; 2 σ). The termination of hydrothermal mineral deposition at Ada Tepe occurred contemporaneously with the earliest phase of calc-alkaline type magmatism at Iran Tepe (33.97 ± 0.36 Ma to 34.62 ± 0.46 Ma, hornblende and biotite 40Ar/ 39Ar plateau ages, 2 σ). Thermal history modelling of apatite fission-track data shows that the lower plate rocks cooled through ˜ 120 °C at ˜ 18.3 ± 1.9 Ma (1 σ). A time-temperature model obtained from zircon and apatite fission-track data from the upper plate reveals that it was being buried during the late Eocene. At ˜ 33-30 Ma, a dramatic change of the time-temperature path was caused by the initiation of horst-graben structures, resulting in rapid exhumation of the upper plate. Our new thermochronological data reveal many aspects of the mechanisms of formation of sedimentary rock-hosted gold deposits. The heat accumulated during sedimentary burial of the upper plate is a plausible heat source to drive hydrothermal fluid circulation and ore formation. The development of large half-graben basins in the hanging walls of detachment faults, accompanied by a favourable climate, may have created a

  2. Textures, paragenesis and wall-rock alteration of lode-gold deposits in the Charters Towers district, north Queensland: implications for the conditions of ore formation

    NASA Astrophysics Data System (ADS)

    Kreuzer, Oliver P.

    2006-01-01

    Ore deposits of the Charters Towers Goldfield (CTGF) are mainly hosted by fault-fill veins. Extensional (˜8% of all veins) and stockwork-like (˜3%) veins are less common and of little economic significance. Crosscutting relationships and published structural and geochronological data indicate a Late Silurian to Early Devonian timing of gold mineralization, coincident with regional shortening (D4) and I-type magmatism. Paragenetic relationships, which are uniform in veins everywhere within the CTGF, suggest that vein formation commenced with the deposition of large volumes of buck quartz (stage I), followed by buck and comb quartz, and significant pyrite and arsenopyrite precipitation (stage II). Gold was introduced during stage III, after earlier sphalerite and coincident with galena and chalcopyrite. Narrow, discontinuous calcite veins of stage IV mark the waning of gold-related hydrothermal activity or a later unrelated episode. Ore zones within the veins are everywhere composed of comb and/or gray quartz, calcite and/or ankerite and bands or clusters of fractured pyrite that are spatially associated with galena, sphalerite or chalcopyrite. Low-grade or barren vein sections, on the other hand, are mainly composed of milky buck quartz with little evidence for modification, overprinting or interaction with later fluids. Gold-related hydrothermal wall-rock alteration is symmetrically zoned, displaying proximal sericite-ankerite and distal epidote-chlorite-hematite assemblages that may be taken to imply wall-rock interaction with near neutral fluids (pH 5-6). Isocon plots assuming immobile Al, P, Ti, Y and Zr consistently indicate As, K, Pb, S and Zn enrichment and Na, Si and Sr depletion in altered wall-rock specimens relative to the least altered rocks. Alteration assemblages, quartz textures, fault rocks and published fluid inclusion and stable isotope data imply that the veins were formed under conditions of episodic fluid overpressuring (˜0.9-3.8 kbar), at a

  3. Lead-isotopic, sulphur-isotopic, and trace-element studies of galena from the Silesian-Cracow Zn-Pb ores, polymetallic veins from the Gory Swietokrzyskie MTS, and the Myszkow porphyry copper deposit, Poland

    USGS Publications Warehouse

    Church, S.E.; Vaughn, R.B.; Gent, C.A.; Hopkins, R.T.

    1996-01-01

    Lead-isotopic data on galena samples collected from a paragenetically constrained suite of samples from the Silesian-Cracow ore district show no regional or paragenetically controlled lead-isotopic trends within the analytical reproducibility of the measurements. Furthermore, the new lead-isotopic data agree with previously reported lead-isotopic results (R. E. Zartman et al., 1979). Sulfur-isotopic analyses of ores from the Silesian-Cracow district as well as from vein ore from the Gory Swietokrzyskie Mts. and the Myszkow porphyry copper deposit, when coupled with trace-element data from the galena samples, clearly discriminate different hydrothermal ore-forming events. Lead-isotopic data from the Permian and Miocene evaporite deposits in Poland indicate that neither of these evaporite deposits were a source of metals for the Silesian-Cracow district ores. Furthermore, lead-isotopic data from these evaporite deposits and the shale residues from the Miocene halite samples indicate that the crustal evolution of lead in the central and western European platform in southern Poland followed normal crustal lead-isotopic growth, and that the isotopic composition of crustal lead had progressed beyond the lead-isotopic composition of lead in the Silesian-Cracow ores by Permian time. Thus, Mesozoic and Tertiary sedimentary flysch rocks can be eliminated as viable source rocks for the metals in the Silesian-Cracow Mississippi Valley-type (MVT) deposits. The uniformity of the isotopic composition of lead in the Silesian-Cracow ores, when coupled with the geologic evidence that mineralization must post-date Late Jurassic faulting (E. Gorecka, 1991), constrains the geochemical nature of the source region. The source of the metals is probably a well-mixed, multi-cycle molasse sequence of sedimentary rocks that contains little if any Precambrian metamorphic or granitic clasts (S. E. Church, R. B. Vaughn, 1992). If ore deposition was post Late Jurassic (about 150 m. y.) or later

  4. Geographical Coincidence of High Heat Flow, High Seismicity, and Upwelling, with Hydrocarbon Deposits, Phosphorites, Evaporites, and Uranium Ores

    PubMed Central

    Libby, L. M.; Libby, W. F.

    1974-01-01

    Oil deposits occur in deep sediments, and appear to be organic matter that has been transformed through the action of geothermal heat and pressure. Deep sediments, rich in biological remains, are created by ocean upwelling, caused in part by high geothermal heat flow through the sea bottom. Such regions correlate with enhanced seismic activity. We look for correlations of seismicity, high heat flux, petroleum, uranium, phosphates, and salts, deposited from abundant plant life. These may be useful in discovering more petroleum and coal. We estimate that the known world reserves of petroleum and coal are about 10-4 of the total of buried biogenic carbon. Images PMID:16592185

  5. Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Structural controls on hydrothermal alteration and ore mineralization

    USGS Publications Warehouse

    Berger, B.R.; Henley, R.W.

    2011-01-01

    High-sulfidation copper-gold lode deposits such as Chinkuashih, Taiwan, Lepanto, Philippines, and Goldfield, Nevada, formed within 1500. m of the paleosurface in volcanic terranes. All underwent an early stage of extensive advanced argillic silica-alunite alteration followed by an abrupt change to spatially much more restricted stages of fracture-controlled sulfide-sulfosalt mineral assemblages and gold-silver mineralization. The alteration as well as ore mineralization stages of these deposits were controlled by the dynamics and history of syn-hydrothermal faulting. At the Sulfate Stage, aggressive advanced argillic alteration and silicification were consequent on the in situ formation of acidic condensate from magmatic vapor as it expanded through secondary fracture networks alongside active faults. The reduction of permeability at this stage due to alteration decreased fluid flow to the surface, and progressively developed a barrier between magmatic-vapor expansion constrained by the active faults and peripheral hydrothermal activity dominated by hot-water flow. In conjunction with the increased rock strength resulting from alteration, subsequent fault-slip inversion in response to an increase in compressional stress generated new, highly permeable fractures localized by the embrittled, altered rock. The new fractures focused magmatic-vapor expansion with much lower heat loss so that condensation occurred. Sulfide Stage sulfosalt, sulfide, and gold-silver deposition then resulted from destabilization of vapor phase metal species due to vapor decompression through the new fracture array. The switch from sulfate to sulfide assemblages is, therefore, a logical consequence of changes in structural permeability due to the coupling of alteration and fracture dynamics rather than to changes in the chemistry of the fluid phase at its magmatic source. ?? 2010.

  6. Origin of the ore-forming fluids of the Tongchang porphyry Cu-Mo deposit in the Jinshajiang-Red River alkaline igneous belt, SW China: Constraints from He, Ar and S isotopes

    NASA Astrophysics Data System (ADS)

    Xu, Leiluo; Bi, Xianwu; Hu, Ruizhong; Tang, Yongyong; Jiang, Guohao; Qi, Youqiang

    2014-01-01

    The Jinshajiang-Red River alkaline igneous belt with abundant Cu-Mo-Au mineralization, in the eastern Indian-Asian collision zone, is an important Cenozoic magmatic belt formed under an intra-continental strike-slip system in southwestern (SW) China. The Tongchang deposit is a representative porphyry Cu-Mo deposit in southern segment of the Jinshajiang-Red River alkaline igneous belt, with 8621 t Cu @ 1.24 wt.% and 17,060 t Mo @ 0.218 wt.%. In this study, He, Ar and S isotopic compositions of the Tongchang deposit were determined. He and Ar isotopic compositions suggest that the ore-forming fluids, with 3He/4He ratios varying from 0.17 to 1.50 Ra and 40Ar/36Ar ratios from 299.1 to 347.3 for the deposit, are a mixture between a crust-derived fluid (MASW) with near atmospheric Ar and crustal He, and a mantle-derived fluid. However, the δ34S values of the hydrothermal pyrite samples ranging from 1.0‰ to 1.5‰ with an average of 1.2‰, indicate that the sulfur in the ore-forming fluids of the Tongchang deposit was primarily derived from the magma or indirectly mantle-derived without assimilation of crustal sulfur. In combination with previously published He and Ar isotopic data of the Yulong and Machangqing deposits in northern and central segments of the Jinshajiang-Red River alkaline igneous belt, respectively, the ore-forming fluids of the Yulong and Machangqing deposits are obviously richer in 3He and 40Ar, and poorer in 36Ar in comparison with the Tongchang deposit, implying that more mantle-derived fluids were involved in the ore-forming fluids of the Yulong and Machangqing deposits than those for the Tongchang deposit. This might be one of the most important factors producing larger scales of mineralization in the Yulong and Machangqing deposits than the Tongchang deposit.

  7. Ore geology and fluid inclusion geochemistry of the Tiemurt Pb-Zn-Cu deposit, Altay, Xinjiang, China: A case study of orogenic-type Pb-Zn systems

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zheng, Yi; Chen, YanJing

    2012-04-01

    The Tiemurt Pb-Zn-Cu deposit is hosted in a Devonian volcanic-sedimentary basin of the Altay orogenic belt, and is thus interpreted to have formed by sea-floor hydrothermal exhalation in previous studies. Our investigation discovered that the deposit is not stratiform or stratabound, but structure-controlled instead. The hydrothermal ore-forming process can be divided into the early, middle and late stage, represented by pyrite-quartz, polymetallic sulfide-quartz and carbonate-quartz veinlets, respectively. The early-stage veins and contained minerals are structurally deformed and brecciated, suggesting a compressional or transpressional tectonic regime. The middle-stage veinlets intrude and infill the fissures of the early-stage assemblages, and show no deformation, suggesting a tensional shear setting. The late-stage veinlets mostly infill open-space fissures that crosscut veins and replacements formed in the earlier stages. Four types of fluid inclusions (FIs), including aqueous (type W), carbonic-aqueous (type C), pure carbonic (type PC) and solid-bearing (type S), are identified at the Tiemurt deposit. The early-stage minerals contain the C- and W-type primary FIs that are totally homogenized at temperatures of 330-390 °C with low salinities of 0.8-11.9 wt.% NaCl eqv.; whilst the late-stage quartz or calcite contains only the W-type FIs with homogenization temperatures of 118-205 °C, and salinities of 1.4-3.4 wt.% NaCl eqv. This indicates that the ore fluid system evolved from CO2-rich, probably metamorphic to CO2-poor, meteoric fluids; and that a significant CO2-escape must have occurred. All the four types of FIs can be only observed in the middle-stage minerals, and even in a microscopic domain of a crystal, representing an association trapped from a boiling fluid system. These FIs homogenize at temperatures ranging from 270 to 330 °C, with two salinity clusters of 1.9-14.5 and 37.4-42.4 wt.% NaCl eqv., respectively. This implies that metal precipitation

  8. The Paleozoic Ozbak-Kuh carbonate-hosted Pb-Zn deposit of East Central Iran: Isotope (C, O, S, Pb) geochemistry and ore genesis

    NASA Astrophysics Data System (ADS)

    Ehya, Farhad

    2014-02-01

    Lead and zinc mineralization occurs in dolostones of the Middle Devonian Sibzar Formation at Ozbak-Kuh, which is located 150 km north of Tabas city in East Central Iran. The ore is composed of galena, sphalerite and calcite, with subordinate dolomite and bitumen. Wall-rock alterations include carbonate recrystallization and dolomitization. Microscopic studies reveal that the host rock is replaced by galena and sphalerite. The Pb-Zn mineralization is epigenetic and stratabound. The δ13C values of hydrothermal calcite samples fall in the narrow range between -0.3‰ and 0.8‰. The δ18O values in calcite display a wider range, between -14.5‰ and -11.9‰. The δ13C and δ18O values overlap with the oxygen and carbon isotopic compositions of Paleozoic seawater, indicating the possible important participation of Paleozoic seawater in the ore-forming fluid. The δ18O signature corresponds to a spread in temperature of about 70 °C in the ore-bearing fluid. The δ13C values indicate that the organic materials within the host rocks did not contribute significantly in the hydrothermal fluid. The δ34S values of galena and sphalerite samples occupy the ranges of 12.2‰-16.0‰ and 12.1-16.8‰, respectively. These values reveal that the seawater sulfate is the most probable source of sulfur. The reduced sulfur was most likely supplied through thermochemical sulfate reduction. The sulfur isotope ratios of co-precipitated sphalerite-galena pairs suggest that deposition of the sulfide minerals took place under chemical disequilibrium conditions. The 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of the galena samples represent average values of 18.08, 15.66, and 38.50, respectively. These ratios indicate that galena Pb likely originated from an orogenic source in which supracrustal rocks with high 238U/204Pb and 232Th/204Pb ratios are dominant. The average lead isotope model age portrays Cambrian age. This model age is not coeval with the host rocks, which are of middle

  9. Ore Petrology and Alteration of the West Ansil Volcanic-hosted Massive Sulphide Deposit of the Noranda Mining Camp, Rouyn-Noranda, Quebec

    NASA Astrophysics Data System (ADS)

    Boucher, Stephanie M.

    The West Ansil deposit was the first Cu discovery in 25 years in the Noranda Central Camp. It has a combined indicated and inferred resource of ˜1.2 Mt. Grades for the indicated resource are 3.4% Cu, 0.4% Zn, 1.4 g/t Au and 9.2 g/t Ag. The bulk of the resource is located in three massive sulphide lenses (Upper, Middle and Lower) that are entirely within the Rusty Ridge Formation above the Lewis exhalite. The mineralization in all three ore lenses consists of massive pyrrhotite + chalcopyrite +/- magnetite. Semi-massive sphalerite is restricted to the upper and lower parts of the Middle lens. Massive magnetite occurs at the center of the Upper and Middle lenses, where it replaces massive pyrrhotite. A striking feature of West Ansil is the presence of abundant colloform and nodular pyrite (+/-marcasite) in the massive sulphides. Late-stage replacement of massive pyrrhotite by colloform pyrite and marcasite, occurs mostly along the upper and lower contacts of the lenses.

  10. Estimating gold-ore mineralization potential within Topolninsk ore field (Gorny Altai)

    NASA Astrophysics Data System (ADS)

    Timkin, T.; Voroshilov, V.; Askanakova, O.; Cherkasova, T.; Chernyshov, A.; Korotchenko, T.

    2015-11-01

    Based on the results of ore and near-ore metasomatite composition analysis, the factors and indicators of gold-ore mineralization potential were proposed. Integration of the obtained data made it possible to outline magmatic, structural, and lithological factors, as well as direct and indirect indicators of gold-ore mineralization. Applying multidimensional analysis inherent to geochemical data, the spatial structure was investigated, as well as the potential mineralization was identified. Based on the developed and newly-identified mineralization, small (up to medium-sized) mineable gold-ore deposits in skarns characterized by complex geological setting was identified.

  11. A mixture of mantle and crustal derived He-Ar-C-S ore-forming fluids at the Baogutu reduced porphyry Cu deposit, western Junggar

    NASA Astrophysics Data System (ADS)

    Cao, MingJian; Qin, KeZhang; Li, GuangMing; Evans, Noreen J.; He, HuaiYu; Jin, LuYing

    2015-02-01

    Most large to huge porphyry Cu deposits (PCDs) are oxidized, making the Baogutu reduced porphyry Cu deposit (RPCD) a relative rarity. CH4-bearing ore-forming fluids formed at several hydrothermal stages, however, their source is still unclear. To address this issue, isotopic investigations of sulfide He-Ar-S and calcite C were conducted. Fluid inclusions hosted in sulfides (arsenopyrite, chalcopyrite and pyrite) showed 3He/4He ratios of 0.06-0.30 Ra (Ra is the 3He/4He ratio of air = 1.39 × 10-6), 40Ar/36Ar of 311-405, 40Ar∗/4He of 0.06-1.01, and F4He ratios of 902-11,074 (sample BGT-Py 2 yielded a ratio of 100), indicating a predominantly crustal source for the fluids with minor mantle input (less than 5%). The δ13C values of carbonate yielded a value of -7.8‰ (n = 3), implying that CO2 was probably sourced from mantle or juvenile lower crust. According to the restricted sulfide δ34S values, the total S isotopic composition of the hydrothermal system was estimated to be 0.0-0.5‰, suggesting that the sulfur was derived from mantle or lower crust magmatic source. According to the published granitoids Nd isotopic compositions at the Baogutu RPCD, fairly young TDM model ages (450-650 Ma) suggest that the granitoids were derived from partial melting of a juvenile basaltic lower crust. Thus, we propose that small proportion of mantle-derived fluids (less than 5%), probably rise up and then mix with the fluids of juvenile lower crust under an extensional tectonic setting, forming the mantle-derived Sr-Nd-Pb-S-C but crustal He-Ar isotopic compositions.

  12. The coupled geochemistry of Au and As in pyrite from ore deposits and geothermal fields: monitoring fluid evolution and external forcing factors in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Reich, M.; Deditius, A.; Tardani, D.; Sanchez-Alfaro, P.

    2014-12-01

    Gold and arsenic incorporation into pyrite (FeS2) is strongly coupled in different types of ore deposits, including Carlin-type Au, porphyry Cu, epithermal Au, orogenic Au, volcanogenic massive sulphide (VMS) and iron-oxide Cu-Au (IOCG), among others. Despite significant advances in the last decades, the fundamental factors controlling Au and As partition in pyrite from hydrothermal systems formed under different tectonic settings and crustal levels remain poorly known. Furthermore, the complexity of pyrite microtextures and growth features suggest multi-stage growth that may be useful to monitor changes in fluid composition related to episodic pumping of fluids. Here we report a comprehensive database of EMPA, SIMS, LA-ICP-MS and micro-PIXE Au-As analyses that cover temperature conditions of pyrite formation from ~30ºC to ~600ºC. The global pyrite Au-As data form a wedge-shaped zone in compositional space, and show that the solid solubility limit of Au in arsenian pyrite is independent of the geochemical environment of pyrite formation and rather depends on its crystal-chemical properties and post-depositional alteration. Compilation of Au-As concentrations and formation temperatures for pyrite indicates that Au and As solubility is retrograde in this mineral, as Au and As contents decrease with increasing temperature from ~200-500ºC. Based on these results, we define one Au-As trend formed by pyrites from Carlin-type and orogenic Au deposits where compositions are largely controlled by fluid-rock-interactions and can be highly perturbed by changes of temperature or subsequent alteration. The second trend consists of pyrites from porphyry Cu, epithermal Au deposits and geothermal systems, which are characterized by compositions that preserve the Au/As signature of mineralizing magmatic-hydrothermal fluids. The well-developed oscillatory zoning in pyrite detected in these systems, where Cu-rich, Au-As-depleted growth zones alternate with Cu-poor, Au

  13. Mineralogical, fluid inclusion, and stable isotope constraints on mechanisms of ore deposition at the Samgwang mine (Republic of Korea)—a mesothermal, vein-hosted gold-silver deposit

    NASA Astrophysics Data System (ADS)

    Yoo, Bong Chul; Lee, Hyun Koo; White, Noel C.

    2010-02-01

    The Samgwang mine is located in the Cheongyang gold district (Cheonan Metallogenic Province) of the Republic of Korea. It consists of eight massive, gold-bearing quartz veins that filled NE- and NW-striking fractures along fault zones in Precambrian granitic gneiss of the Gyeonggi massif. Their mineralogy and paragenesis allow two separate vein-forming episodes to be recognized, temporally separated by a major faulting event. The ore minerals occur in quartz and calcite of stage I, associated with fracturing and healing of veins. Hydrothermal wall-rock alteration minerals of stage I include Fe-rich chlorite (Fe/(Fe+Mg) ratios 0.74-0.81), muscovite, illite, K-feldspar, and minor arsenopyrite, pyrite, and carbonates. Sulfide minerals deposited along with electrum during this stage include arsenopyrite, pyrite, pyrrhotite, sphalerite, marcasite, chalcopyrite, galena, argentite, pyrargyrite, and argentian tetrahedrite. Only calcite was deposited during stage II. Fluid inclusions in quartz contain three main types of C-O-H fluids: CO2-rich, CO2-H2O, and aqueous inclusions. Quartz veins related to early sulfides in stage I were deposited from H2O-NaCl-CO2 fluids (1,500-5,000 bar, average 3,200) with T htotal values of 200°C to 383°C and salinities less than about 7 wt.% NaCl equiv. Late sulfide deposition was related to H2O-NaCl fluids (140-1,300 bar, average 700) with T htotal values of 110°C to 385°C and salinities less than about 11 wt.% NaCl equiv. These fluids either evolved through immiscibility of H2O-NaCl-CO2 fluids as a result of a decrease in fluid pressure, or through mixing with deeply circulated meteoric waters as a result of uplift or unloading during mineralization, or both. Measured and calculated sulfur isotope compositions (δ34SH2S = 1.5 to 4.8‰) of hydrothermal fluids from the stage I quartz veins indicate that ore sulfur was derived mainly from a magmatic source. The calculated and measured oxygen and hydrogen isotope compositions (δ18OH2O

  14. LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac - Saint-Salvy deposit (France): Insights into incorporation mechanisms and ore deposition processes

    NASA Astrophysics Data System (ADS)

    Belissont, Rémi; Boiron, Marie-Christine; Luais, Béatrice; Cathelineau, Michel

    2014-02-01

    sphalerite varies from -2.07 ± 0.37‰ to +0.91 ± 0.16‰ (2σ SD) and positively correlates with bulk Ge content. This indicates considerable Ge isotopic fractionation within sphalerite during low-T hydrothermal deposition and zoning processes, associated with possible microscale open system fluid mixing. The trace element features in sphalerite from Saint-Salvy compared with those of other deposits confirm their use as discriminators among genetic types of ores (e.g., high In contents for magmatic-related deposits, and Ge for low-temperature deposits). The LA-ICP-MS technique is revealed to be a powerful tool to measure in situ trace and minor elements occurring as solid solutions in sphalerite. The 74Ge isotope is most relevant for Ge analysis using the LA-ICP-MS, as this isotope shows the lowest isobaric interferences. Principal component analysis (PCA) of LA-ICP-MS dataset revealed an antithetic distribution of element clusters in sphalerite: Cu and trace elements Ge, Sb, Ag, and As are enriched and positively correlated in sector zoning whereas Fe, Cd, In and Sn are enriched in dark brown rhythmic bands. This distribution implies crystallographic controls on the incorporation of trace elements. Regardless of the zoning type, all spots considered, notable coupled substitutions have been suggested from binary scatter plots: 2Zn2+ ↔ Cu+ + Sb3+ and 3Zn2+ ↔ Ge4+ + 2Ag+. Also, the data suggest the substitution 3Zn2+ ↔ In3+ + Sn3+ + □ although Sn oxidation state needs verification using appropriate methods (e.g., XAS, μ-XANES/EXAFS). Fe and Cd are mainly involved in direct Zn2+ ↔ (Fe2+, Cd2+) substitutions. Noticeably, in all spots, Cu content approaches the sum of all available tri- and tetravalent cations. In this way, Cu (occurring as Cu+) could provide charge-balance for the entire broad set of coupled substitution mechanisms responsible for incorporation of the whole range of trace elements in Saint-Salvy sphalerite, especially Ge, Ga and Sb. Germanium

  15. Elemental imaging of organic matter and associated metals in ore deposits using micro PIXE and micro-EBS

    NASA Astrophysics Data System (ADS)

    Fuchs, S.; Przybylowicz, W. J.; Williams-Jones, A. E.

    2014-01-01

    Micro-PIXE and micro-EBS analyses were carried out on samples from the Au-U-bearing Carbon Leader Reef of the Witwatersrand in South Africa to investigate the role of organic matter in the formation of this deposit. Micro-PIXE and Micro-EBS shows a very complex metal distribution within the bitumen nodules and their interstitial spaces. The style of the gold distribution and its association with epigenetic minerals (REE phosphates, phyllosilicates) indicates that all observed gold migrated in aqueous solution and precipitated by reduction on the surfaces of the bitumen nodules. Uraninite occurrences are confined to the bitumen nodules, which supports the argument of a uraninite paleo-placer; however the pervasive distribution of uranium also supports the argument that uraninite is derived from organo-metallic complexes. This study shows that micro-PIXE is a powerful tool to characterize metals associated with hydrocarbons. However, the organic matrix, the complexity of the obtained spectra and the small size of the minerals have significant influence on the reliability of the quantitative data. Due to highly variable amounts of heavy metals (U, Au, Pb) the obtained micro-EBS results are of questionable quality.

  16. In situ Sr isotope analysis of apatite by LA-MC-ICPMS: constraints on the evolution of ore fluids of the Yinachang Fe-Cu-REE deposit, Southwest China

    NASA Astrophysics Data System (ADS)

    Zhao, Xin-Fu; Zhou, Mei-Fu; Gao, Jian-Feng; Li, Xiao-Chun; Li, Jian-Wei

    2015-10-01

    Apatite is a ubiquitous accessory mineral in a variety of rocks and hydrothermal ores. Strontium isotopes of apatite are well known to retain petrogenetic information and have been widely used to investigate the origin of igneous rocks, but such attempts have rarely been made to constrain ore-forming processes of hydrothermal systems. We here report in situ LA-MC-ICPMS Sr isotope data of apatite from the ~1660-Ma Yinachang Fe-Cu-REE deposit, Southwest China. The formation of this deposit was coeval to the emplacement of regionally distributed doleritic intrusions within a continental-rift setting. The deposit has a paragenetic sequence consisting of sodic alteration (stage I), magnetite mineralization (stage II), Cu sulfide and REE mineralization (stage III), and final barren calcite veining (stage IV). The stage II and III assemblages contain abundant apatite, allowing to investigate the temporal evolution of the Sr isotopic composition of the ore fluids. Apatite of stage II (Apt II) is associated with fluorite, magnetite, and siderite, whereas apatite from stage III (Apt III) occurs intimately intergrown with ankerite and Cu sulfides. Apt II has 87Sr/86Sr ratios varying from 0.70377 to 0.71074, broadly compatible with the coeval doleritic intrusions (0.70592 to 0.70692), indicating that ore-forming fluids responsible for stage II magnetite mineralization were largely equilibrated with mantle-derived mafic rocks. In contrast, Apt III has distinctly higher 87Sr/86Sr ratios from 0.71021 to 0.72114, which are interpreted to reflect external radiogenic Sr, likely derived from the Paleoproterozoic strata. Some Apt III crystals have undergone extensive metasomatism indicated by abundant monazite inclusions. The metasomatized apatite has much higher 87Sr/86Sr ratios up to 0.73721, which is consistent with bulk-rock Rb-Sr isotope analyses of Cu ores with 87Sr/86Sri from 0.71906 to 0.74632. The elevated 87Sr/86Sr values of metasomatized apatite and bulk Cu ores indicate

  17. Recent massive sulfide deposits of the Semenov ore district, Mid-Atlantic Ridge, 13°31' N: Associated rocks of the oceanic core complex and their hydrothermal alteration

    NASA Astrophysics Data System (ADS)

    Pertsev, A. N.; Bortnikov, N. S.; Vlasov, E. A.; Beltenev, V. E.; Dobretsova, I. G.; Ageeva, O. A.

    2012-09-01

    The oceanic core complexes and large-offset detachment faults characteristic of the slow-spreading Mid-Atlantic Ridge are crucial for the structural control of large hydrothermal systems, including those forming sub-seafloor polymetallic sulfide mineralization. The structural-geological, petrographic, and mineralogical data are considered for the oceanic core complex enclosing the Semenov-1, -2, -3, -4, and -5 inactive hydrothermal sulfide fields recently discovered on the Mid-Oceanic Ridge at 13°31' N. The oceanic core complex is composed of serpentinized and talc-replaced peridotites and sporadic gabbroic rocks, however, all hydrothermal fields reveal compositional indications of basaltic substrate. The volcanic structures superposed on the oceanic core complex are marked by outcrops of pillow lavas with fresh quenched glass. Dolerites regarded as volcanic conduits seem to represent separate dike swarms. The superposed volcanic structures develop largely along the near-latitudinal high-angle tectonic zone controlling the Semenov-1, -2, -5, and -3 hydrothermal sulfide fields. The manifestations of hydrothermal metasomatic alteration are diverse. The widespread talcose rocks with pyrrhotite-pyrite mineralization after serpentinite, as well as finding of talc-chlorite metabasalt are interpreted as products of hydrothermal activity in the permeable zone of detachment fault. Chloritization and brecciation of basalts with superposed quartz or opal, barite, and pyrite or chalcopyrite mineralization directly related to the sub-seafloor sulfide deposition. The native copper mineralization in almost unaltered basalts at the Semenov-4 field is suggested to precipitate from ore-forming fluids before they reach the level of sub-seafloor sulfide deposition. Amphibolites with plagiogranite veinlets are interpreted as tectonic fragments of the highest-temperature portions of hydrothermal systems, where partial melting of basic rocks in the presence of aqueous fluid with

  18. The sources of our iron ores. II

    USGS Publications Warehouse

    Burchard, E.F.

    1933-01-01

    In this instalment** the iron ore deposits of the Lake Superior States, which normally furnish about 80 per cent, of the annual output of the United States, are described together with historical notes on discovery and transportation of ore. Deposits in the Mississippi Valley and Western States are likewise outlined and the sources of imported ore are given. Reviewing the whole field, it is indicated that the great producing deposits of the Lake Superior and southern Appalachian regions are of hematite in basin areas of sedimentary rocks, that hydrated iron oxides and iron carbonates are generally found in undisturbed comparatively recent sediments, and that magnetite occurs in metamorphic and igneous rocks; also that numerical abundance of deposits is not a criterion as to their real importance as a source of supply. Statistics of production of iron ore and estimates of reserves of present grade conclude the paper.

  19. Environment of ore deposition in the creede mining district, San Juan Mountains, Colorado: Part V. Epithermal mineralization from fluid mixing in the OH vein

    USGS Publications Warehouse

    Hayba, D.O.

    1997-01-01

    Detailed fluid inclusion studies on coarse-grained sphalerite from the OH vein, Creede, Colorado, have shown that the abrupt color changes between growth zones correspond to abrupt changes in the nature of the ore fluids. Within each growth zone, however, the composition of the fluids remained constant. The base of a distinctive orange-brown growth zone marks a sharp increase in both temperature and salinity relative to the preceding yellow-white zone. The orange-brown growth zone can be correlated along much of the vein and is believed to represent a time-stratigraphic interval. Along the vein, temperatures and salinities of fluid inclusions within this interval show a systematic decrease from about 285??C and 11.5 wt percent NaCl equiv near the base of the vein to about 250??C and 8 wt percent NaCl equiv, respectively, near the top of the vein. The iron concentration of this sphalerite growth zone shows a similar pattern, decreasing from about 2.8 to 1.2 mole percent FeS. When plotted on an enthalpy-salinity diagram, the fluid inclusion data define a spatial trend indicating the progressive mixing of deeply circulating hydrothermal brines with overlying, dilute ground waters. The hydrothermal brines entered the OH vein from below at a temperature, salinity, and density of approximately 285??C, 11.5 wt percent NaCl equiv, and 860 kg/m3, respectively, whereas the overlying ground waters appear to have been preheated to roughly 150??C and had an assumed salinity of 0 wt percent and a density of 920 kg/m3. The greater density of the heated ground water promoted mixing with the hydrothermal brine within the open fractures, causing sphalerite deposition. Although there were also episodes of boiling during vein mineralization, boiling appears unimportant for this sphalerite. Isotopic evidence and geochemical modeling studies also indicate that mixing was the depositional mechanism for sphalerite. An important aspect of the mixing hydrology of the Creede system involves

  20. Constraints of mineralogical characterization of gold ore: Implication for genesis, controls and evolution of gold from Kundarkocha gold deposit, eastern India

    NASA Astrophysics Data System (ADS)

    Sahoo, P. R.; Venkatesh, A. S.

    2015-01-01

    Gold mineralization in Kundarkocha gold deposit occurs in the eastern Indian Craton that is hosted by sheared quartz-carbonate-sulfide veins emplaced within the graphitic schist, carbonaceous phyllite and talc-chlorite-serpentine schist belongs to Gorumahisani-Badampahar schist belt of Iron Ore Group. Gold mineralization exhibits both lithological and structural controls in the study area, albeit the stratigraphic control is more ubiquitously observed. Detailed mineralogical characterization coupled with electron probe microanalysis of the sulfide phases reveal the occurrences of gold in three distinct forms (i) as lattice-bound form within sulfides especially enriched in arsenopyrite, loellingite, pyrite, pyrrhotite and chalcopyrite in decreasing order of abundance; (ii) as micro inclusions or nano-scale gold inclusions within pyrite and arsenopyrite especially along the growth zones and micro-fractures as substrates and (iii) as free milling nugget gold grains either along the grain boundaries of sulfides or within the host rocks. Three generations of pyrite (Py-I, Py-II and Py-III) and arsenopyrite (Asp-I, Asp-II, Asp-III) have been identified based on textural, morphological characteristics and mineral chemistry. The lattice-bound gold content in pyrite and arsenopyrite varies from 600 to 2700 ppm and 900 to 3600 ppm respectively and increase in concentration of such refractory gold is seen in the order of chalcopyrite > pyrrhotite > pyrite > loellingite/arsenopyrite. The evolutionary stages of different forms of gold include remobilization of the lattice-bound grains in pyrite and arsenopyrite (Py-I and Asp-I) and re-concentration along the zoned-pyrite and arsenopyrite (Py-II and Asp-II) and ultimately as native gold/nuggets surrounding the sulfides as well as within the main mineralized zone. Lattice-bound gold distribution could have resulted due to metamorphic devolatilization reactions which are further aided by the influx of hydrothermal fluids. These

  1. A Paleozoic anorthosite massif related to rutile-bearing ilmenite ore deposits, south of the Polochic fault, Chiapas Massif Complex, Mexico

    NASA Astrophysics Data System (ADS)

    Cisneros, A.; Ortega-Gutiérrez, F.; Weber, B.; Solari, L.; Schaaf, P. E.; Maldonado, R.

    2013-12-01

    The Chiapas Massif Complex in the southern Maya terrane is mostly composed of late Permian igneous and meta-igneous rocks. Within this complex in southern Mexico and in the adjacent San Marcos Department of Guatemala, south of the Polochic fault, several small outcrops (~10 km2) of a Phanerozoic andesine anorthosite massif were found following an E-W trend similar to the Polochic-Motagua Fault System. Such anorthosites are related to rutile-bearing ilmenite ore deposits and hornblendite-amphibolite bands (0.1-3 meters thick). The anorthosites show recrystallization and metamorphic retrogression (rutile with titanite rims), but no relicts of high-grade metamorphic minerals such as pyroxene or garnet have been found. In Acacoyagua, Chiapas, anorthosites are spatially related to oxide-apatite rich mafic rocks; in contrast, further to the west in Motozintla, they are related to monzonites. Zircons from these monzonites yield a Permian U-Pb age (271.2×1.4 Ma) by LA-MC-ICPMS. Primary mineral assemblage of the anorthosites include mostly medium to fine-grained plagioclase (>90%) with rutile and apatite as accessory minerals, occasionally with very low amounts of quartz. Massive Fe-Ti oxide lenses up to tens of meters in length and few meters thick are an ubiquitous constituent of these anorthosites and their mineralogy include ilmenite (with exsolution lamellae of Ti-magnetite), rutile, magnetite, clinochlore, ×spinel, ×apatite, ×zircon and srilankite (Ti2ZrO6, first finding of this phase in Mexico). Rutile occurs within the massive ilmenite in two morphological types: (1) fine-grained (5-40 μm) rutile along ilmenite grain boundaries or fractures, and (2) coarse-grained rutile (<5 mm) as discrete grains, whereas magnetite and srilankite only appear as small grains along ilmenite boundaries. Zircon is present as discontinuously aligned small grains (10-40 μm) forming rims around many rutile and ilmenite grains. Attempts to date zircon rims by U-Pb using LA

  2. Genetic implications of regional and temporal trends in ore fluid geochemistry of Mississippi Valley-type deposits in the Ozark region

    USGS Publications Warehouse

    Viets, J.G.; Leach, D.L.

    1990-01-01

    Fluids extracted from aqueous fluid inclusions in epigenetic gangue and ore minerals record the migration of huge volumes of highly saline fluids throughout the stratigraphic section of the Ozark region. The extracted fluids share many similarities regionally, but there are significant temporal differences which define two geochemically distinct end-member ore-forming fluids, referred to as the Viburnum Trend main stage or Viburnum Trend type and the Tri-State type. Possible explanations for the origins of these two end-member fluids are discussed. -from Authors

  3. Uranium mill ore dust characterization

    SciTech Connect

    Knuth, R.H.; George, A.C.

    1980-11-01

    Cascade impactor and general air ore dust measurements were taken in a uranium processing mill in order to characterize the airborne activity, the degree of equilibrium, the particle size distribution and the respirable fraction for the /sup 238/U chain nuclides. The sampling locations were selected to limit the possibility of cross contamination by airborne dusts originating in different process areas of the mill. The reliability of the modified impactor and measurement techniques was ascertained by duplicate sampling. The results reveal no significant deviation from secular equilibrium in both airborne and bulk ore samples for the /sup 234/U and /sup 230/Th nuclides. In total airborne dust measurements, the /sup 226/Ra and /sup 210/Pb nuclides were found to be depleted by 20 and 25%, respectively. Bulk ore samples showed depletions of 10% for the /sup 226/Ra and /sup 210/Pb nuclides. Impactor samples show disequilibrium of /sup 226/Ra as high as +-50% for different size fractions. In these samples the /sup 226/Ra ratio was generally found to increase as particle size decreased. Activity median aerodynamic diameters of the airborne dusts ranged from 5 to 30 ..mu..m with a median diameter of 11 ..mu..m. The maximum respirable fraction for the ore dusts, based on the proposed International Commission on Radiological Protection's (ICRP) definition of pulmonary deposition, was < 15% of the total airborne concentration. Ore dust parameters calculated for impactor duplicate samples were found to be in excellent agreement.

  4. 2.8-Ma ash-flow caldera at Chegem River in the northern Caucasus Mountains (Russia), contemporaneous granites, and associated ore deposits

    USGS Publications Warehouse

    Lipman, P.W.; Bogatikov, O.A.; Tsvetkov, A.A.; Gazis, C.; Gurbanov, A.G.; Hon, K.; Koronovsky, N.V.; Kovalenko, V.I.; Marchev, P.

    1993-01-01

    Diverse latest Pliocene volcanic and plutonic rocks in the north-central Caucasus Mountains of southern Russia are newly interpreted as components of a large caldera system that erupted a compositionally zoned rhyolite-dacite ash-flow sheet at 2.83 ?? 0.02 Ma (sanidine and biotite 40Ar/39Ar). Despite its location within a cratonic collision zone, the Chegem system is structurally and petrologically similar to typical calderas of continental-margin volcanic arcs. Erosional remnants of the outflow Chegem Tuff sheet extend at least 50 km north from the source caldera in the upper Chegem River. These outflow remnants were previously interpreted by others as erupted from several local vents, but petrologic similarities indicate a common origin and correlation with thick intracaldera Chegem Tuff. The 11 ?? 15 km caldera and associated intrusions are superbly exposed over a vertical range of 2,300 m in deep canyons above treeline (elev. to 3,800 m). Densely welded intracaldera Chegem Tuff, previously described by others as a rhyolite lava plateau, forms a single cooling unit, is > 2 km thick, and contains large slide blocks from the caldera walls. Caldera subsidence was accommodated along several concentric ring fractures. No prevolcanic floor is exposed within the central core of the caldera. The caldera-filling tuff is overlain by andesitic lavas and cut by a 2.84 ?? 0.03-Ma porphyritic granodiorite intrusion that has a cooling age analytically indistinguishable from that of the tuffs. The Eldjurta Granite, a pluton exposed low in the next large canyon (Baksan River) 10 km to the northwest of the caldera, yields variable K-feldspar and biotite ages (2.8 to 1.0 Ma) through a 5-km vertical range in surface and drill-hole samples. These variable dates appear to record a prolonged complex cooling history within upper parts of another caldera-related pluton. Major W-Mo ore deposits at the Tirniauz mine are hosted in skarns and hornfels along the roof of the Eldjurta Granite

  5. Tectonic breccias--conduits for ore-bearing and metasomatic fluids in the Jabiluka unconformity-type uranium-gold deposit, Northern Territory, Australia

    SciTech Connect

    Nutt, C.J.; Grauch, R.I.

    1985-01-01

    The distribution of strata-bound uranium ore in the highly chloritized Early Proterozoic metasedimentary rocks at Jabiluka, Australia, is controlled by shear zones associated with repeated episodes of brittle deformation. Based on extensive study of drill-hole core, the authors proposed tectonic control of ore distribution contrasts with most previous Jabiluka models that emphasize carbonate solution and collapse as the primary cause of brecciation. The strata-bound character of the ore, which is predominantly in chlorite, chlorite+graphite, and siliceous breccias, is a function of the susceptibility of specific rock types to shear and fracture. The siliceous breccias, which may in part be preferentially brecciated and silicified magnesite and dolomite, commonly contain fragments of sheared and strained quartz in recrystallized quartz matrix. Mineralized schist fragments and broken uraninite veins in breccias indicate that some of the brecciation occurred after a major mineralizing event. Brecciated zones and fractures are cemented and filled by quartz and by Mg-rich chlorite and 7A amesite. The presence of at least three generations of quartz in siliceous breccias and a number of optically, and in some cases chemically, distinguishable chlorites in chlorite breccias indicates that repeated pulses of fluids moved through the broken rocks. The circulation of these fluids redistributed and possibly further concentrated preexisting ore.

  6. U-Pb zircon, geochemical and Sr-Nd-Hf-O isotopic constraints on age and origin of the ore-bearing intrusions from the Nurkazgan porphyry Cu-Au deposit in Kazakhstan

    NASA Astrophysics Data System (ADS)

    Shen, Ping; Pan, Hongdi; Seitmuratova, Eleonora; Jakupova, Sholpan

    2016-02-01

    Nurkazgan, located in northeastern Kazakhstan, is a super-large porphyry Cu-Au deposit with 3.9 Mt metal copper and 229 tonnage gold. We report in situ zircon U-Pb age and Hf-O isotope data, whole rock geochemical and Sr-Nd isotopic data for the ore-bearing intrusions from the Nurkazgan deposit. The ore-bearing intrusions include the granodiorite porphyry, quartz diorite porphyry, quartz diorite, and diorite. Secondary ion mass spectrometry (SIMS) zircon U-Pb dating indicates that the granodiorite porphyry and quartz diorite porphyry emplaced at 440 ± 3 Ma and 437 ± 3 Ma, respectively. All host rocks have low initial 87Sr/86Sr ratios (0.70338-0.70439), high whole-rock εNd(t) values (+5.9 to +6.3) and very high zircon εHf(t) values (+13.4 to +16.5), young whole-rock Nd and zircon Hf model ages, and consistent and slightly high zircon O values (+5.7 to +6.7), indicating that the ore-bearing magmas derived from the mantle without old continental crust involvement and without marked sediment contamination during magma emplacement. The granodiorite porphyry and quartz diorite porphyry are enriched in large ion lithophile elements (LILE) and light rare earth elements (LREE) and depleted in high-field strength elements (HFSE), Eu, Ba, Nb, Sr, P and Ti. The diorite and quartz diorite have also LILE and LREE enrichment and HFSE, Nb and Ti depletion, but have not negative Eu, Ba, Sr, and P anomalies. These features suggest that the parental magma of the granodiorite porphyry and quartz diorite porphyry originated from melting of a lithospheric mantle and experienced fractional crystallization, whereas the diorite and quartz diorite has a relatively deeper lithospheric mantle source region and has not experienced strong fractional crystallization. Based on these, together with the coeval ophiolites in the area, we propose that a subduction of the Balkhash-Junggar oceanic plate took place during the Early Silurian and the ore-bearing intrusions and associated Nurkazgan

  7. Ores and Climate Change - Primary Shareholders

    NASA Astrophysics Data System (ADS)

    Stein, Holly J.; Hannah, Judith L.

    2015-04-01

    Many in the economic geology community concern themselves with details of ore formation at the deposit scale, whether tallying fluid inclusion data to get at changes in ore-forming fluids or defining structures that aid and abet mineralization. These compilations are generally aimed at interpretation of events at the site of ore formation, with the goal being assignment of the deposit to a sanctioned ore deposit model. While providing useful data, this approach is incomplete and does not, by itself, serve present-day requirements for true interdisciplinary science. The ore-forming environment is one of chaos and disequilibrium at nearly all scales (Stein, 2014). Chaos and complexity are documented by variably altered rocks, veins or disseminated mineralization with multi-generational fluid histories, erratic and unusual textures in host rocks, and the bitumen or other hydrocarbon products entwined within many ore deposits. This should give pause to our drive for more data as a means to find "the answer". The answer lies in the kind of data collected and more importantly, in the way we interpret those data. Rather than constructing an ever-increasing catalog of descriptive mutations on sanctioned ore deposit models (e.g., IOGC or Iron-Oxide Copper Gold deposits), the way forward is to link source and transport of metals, sulfur, and organic material with regional and ultimately whole Earth chemical evolution. Important experimental work provides chemical constraints in controlled and behaved environments. To these data, we add imagination and interpretation, always tying back to field observations. In this paper, several key points are made by way of ore deposit examples: (1) many IOCG deposits are outcomes of profound changes in the chemistry of the Earth's surface, in the interplay of the atmosphere, hydrosphere, biosphere, and lithosphere; (2) the redox history of Fe in deep earth may be ultimately expressed in the ore-forming sequence; and (3) the formation of

  8. Application of LANDSAT satellite imagery for iron ore prospecting in the western desert of Egypt

    NASA Technical Reports Server (NTRS)

    Elshazly, E. M.; Abdel-Hady, M. A.; Elghawaby, M. A.; Khawasik, S. M. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. The delineation of the geological units and geological structures through image interpretation, corroborated by field observations and structural analysis, led to the discovery of new iron ore deposits. A new locality for iron ore deposition, namely Gebel Qalamun, was discovered, as well as new occurrences within the already known iron ore region of Bahariya Oasis.

  9. Hydrothermal alteration, fluid inclusions and stable isotope systematics of the Alvo 118 iron oxide-copper-gold deposit, Carajás Mineral Province (Brazil): Implications for ore genesis

    NASA Astrophysics Data System (ADS)

    Torresi, Ignacio; Xavier, Roberto Perez; Bortholoto, Diego F. A.; Monteiro, Lena V. S.

    2012-03-01

    The Alvo 118 iron oxide-copper-gold (IOCG) deposit (170 Mt at 1.0 wt.% Cu, 0.3 g/t Au) lies in the southern sector of the Itacaúnas Shear Belt, Carajás Mineral Province, along a WNW-ESE-striking, 60-km-long shear zone, close to the contact of the ~2.76-Ga metavolcano-sedimentary Itacaiúnas Supergroup and the basement (~3.0 Ga Xingu Complex). The Alvo 118 deposit is hosted by mafic and felsic metavolcanic rocks and crosscutting granitoid and gabbro intrusions that have been subjected to the following hydrothermal alteration sequence towards the ore zones: (1) poorly developed sodic alteration (albite and scapolite); (2) potassic alteration (biotite or K-feldspar) accompanied by magnetite formation and silicification; (3) widespread, pervasive chlorite alteration spatially associated with quartz-carbonate-sulphide infill ore breccia and vein stockworks; and (4) local post-ore quartz-sericite alteration. The ore assemblage is dominated by chalcopyrite (~60%), bornite (~10%), hematite (~20%), magnetite (10%) and subordinate chalcocite, native gold, Au-Ag tellurides, galena, cassiterite, F-rich apatite, xenotime, monazite, britholite-(Y) and a gadolinite-group mineral. Fluid inclusion studies in quartz point to a fluid regime composed of two distinct fluid types that may have probably coexisted within the timeframe of the Cu-Au mineralizing episode: a hot (>200°C) saline (32.8‰ to 40.6 wt.% NaCl eq.) solution, represented by salt-bearing aqueous inclusions, and a lower temperature (<200°C), low to intermediate salinity (<15 wt.% NaCl eq.) aqueous fluid defined by two-phase (LH2O + VH2O) fluid inclusions. This trend is very similar to those defined for other IOCG systems of the Carajás Mineral Province. δ 18OH2O values in equilibrium with calcite (-1.0‰ to 7.5‰ at 277°C to 344°C) overlap the lower range for primary magmatic waters, but the more 18O-depleted values also point to the involvement of externally derived fluids, possibly of meteoric origin

  10. Relationship between metamorphism and ore formation at the Sukhoi Log gold deposit hosted in black slates from the data of U-Th-Pb isotopic SHRIMP-dating of accessory minerals

    NASA Astrophysics Data System (ADS)

    Yudovskaya, M. A.; Distler, V. V.; Rodionov, N. V.; Mokhov, A. V.; Antonov, A. V.; Sergeev, S. A.

    2011-02-01

    The formation conditions and age of the Sukhoi Log gold deposit are considered on the basis of new isotopic-geochemical data. The U-Pb isotopic study of zircon and monazite from high-grade ore and host black slates at the Sukhoi Log deposit was carried out with SIMS technique using a SHRIMP II instrument. Two generations of monazite are distinguished on the basis of optical and scanning electron microscopy, cathodoluminescence, and micro X-ray spectroscopy. Monazite I is characterized by black opaque porphyroblasts with microinclusions of minerals pertaining to metamorphic slates and structural attributes of pre- and synkinematic formation. Monazite II occurs only within the ore zone as transparent crystals practically free of inclusions and as rims around monazite I. The REE contents are widely variable in both generations. Porphyroblastic monazite I differs in low U and Th (0.01-0.7 wt % ThO2) contents, whereas transparent monazite II contains up to 4 wt % ThO2. The average weighted U-Pb isotopic age of monazite I is 650 ± 8.1 Ma (MSWD = 1.6; n = 9) and marks the time of metamorphism or catagenesis. The U-Pb age estimates of synore monazite II cover the interval of 486 ± 18 to 439 ± 17 Ma. Zircons of several populations from 0.5 to 2.6 Ga in age are contained in the ore. Most detrital zircon grains have porous outer rims composed of zircon and less frequent xenotime with numerous inclusions of minerals derived from slates. The peaks of 206Pb/238U ages in the most abundant zircon populations fall on 570 and 630 Ma and correspond to the age of newly formed metamorphic mineral phases. The discordant isotopic ages indicate that the U-ThPb isotopic system of ancient detrital zircons was disturbed 470-440 Ma ago in agreement with isotopic age of monazite II and the Rb-Sr whole -rock isochron age of black slates (447 ± 6 Ma). The new data confirm the superimposed character of the gold-quartz-sulfide mineralization at the deposit. Black shales of the Khomolkho

  11. Detrital zircon U-Pb ages of the Proterozoic metaclastic-sedimentary rocks in Hainan Province of South China: New constraints on the depositional time, source area, and tectonic setting of the Shilu Fe-Co-Cu ore district

    NASA Astrophysics Data System (ADS)

    Wang, Zhilin; Xu, Deru; Hu, Guocheng; Yu, Liangliang; Wu, Chuanjun; Zhang, Zhaochong; Cai, Jianxin; Shan, Qiang; Hou, Maozhou; Chen, Huayong

    2015-12-01

    The Shilu Fe-Co-Cu ore district, located at Hainan Province of South China, is well known for high-grade hematite-rich Fe ores and also two Precambrian host successions, i.e. the Shilu Group and the overlying Shihuiding Formation. This district has been interpreted as a banded iron formation (BIF) deposit-type, but its depositional time, source area and depositional setting have been in debate due to poor geochronological work. Detrital zircon U-Pb dating aided by cathodoluminescence imaging has been carried out on both the Shilu Group and Shihuiding Formation. Most of the zircon grains from both the successions are subrounded to rounded in morphology and have age spectra between 2000 Ma and 900 Ma with two predominant peaks at ca. 1460-1340 Ma and 1070 Ma, and three subordinate peaks at ca. 1740-1660 Ma, 1220 Ma and 970 Ma. The similar age distribution suggests the same depositional system for both successions. Linked to the geological and paleontological signatures, the Shihuiding Formation is better re-interpreted as the top, i.e. Seventh member of the Shilu Group, rather than a distinct Formation. The youngest statistical zircon age peaks for both successions, i.e. ca. 1070-970 Ma may define the maximum depositional time of the Shilu Group and interbedded BIFs. At least two erosional sources are required for deposition of the studied detrital zircons, with one proximal to provide the least abraded zircons and the other distal or recycled to offer the largely abraded zircons. The predominance of rounded or subrounded zircons over angular zircons probably implies a relatively stable tectonic setting during deposition. Given the Precambrian tectonics of Hainan Island, a retro-arc foreland basin is proposed for the deposition of the Shilu Group and interbedded BIFs. In comparison with those from the South China and other typical Grenvillian orogens, the detrital zircon age populations reveal that Hainan Island had crystalline basement similar to neither the Yangtze

  12. [Infrared Spectra Characteristics of the Silicate Nickel Ores: A Comparison Study on Different Ore Samples from Indonesia and China].

    PubMed

    Yang, Meng-li; Fu, Wei; Wang, Bao-hua; Zhang, Ya-qian; Huang, Xiao-rong; Niu, Hu-jie

    2015-03-01

    The silicate nickel ores developed in the lateritic nickel deposit, from Kolonodale, Sulawesi Island, Indonesia, and Yuanjiang, Yunnan province, China, were selected for the present study. The X-ray diffraction and Fourier infrared spectra were used to analyze the mineralogical attribute of laterite nickel ores from two different places. The results show that these two different silicate nickel ores have unique infrared spectra characteristics individually, which contributes to the ore classification. The silicate nickel ores from Kolonodale deposit, Indonesia, can be classified as the serpentine type, the montmorillonite + serpentine type, and the garnierite type. While, the silicate nickel ores from Yuanjiang deposit, China, can be classified as the serpentine type and the talc + serpentine type. Moreover, the mineral crystallinity of Yuanjiang nickel ores is generally better than Kolonodale nickel ores. According to the advantage of infrared absorption spectra in distinguishing mineral polytypes, it can be determined that lizardite is the main mineral type in the silicate nickel ores of the two deposits, and there is no obvious evidence of chrysotile and antigorite's existence. The characteristic of infrared absorption spectra also shows that frequency change of OH libration indicates Ni (Fe) replacing Mg in the serpentine type nickel-bearing mineral, that is, OH libration of serpentine moves to higher frequency, with the proportion of Ni (Fe) replacing Mg increasing. PMID:26117869

  13. Tourmaline as a recorder of ore-forming processes

    USGS Publications Warehouse

    Slack, J.F.; Trumbull, R.B.

    2011-01-01

    Tourmaline occurs in diverse types of hydrothermal mineral deposits and can be used to constrain the nature and evolution of ore-forming fl uids. Because of its broad range in composition and retention of chemical and isotopic signatures, tourmaline may be the only robust recorder of original mineralizing processes in some deposits. Microtextures and in situ analysis of compositional and isotopic variations in ore-related tourmaline provide valuable insights into hydrothermal systems in seafl oor, sedimentary, magmatic, and metamorphic environments. Deciphering the hydrothermal record in tourmaline also holds promise for aiding exploration programs in the search for new ore deposits.

  14. 3D modelling and sheath folding at the Falun pyritic Zn-Pb-Cu-(Au-Ag) sulphide deposit and implications for exploration in a 1.9 Ga ore district, Fennoscandian Shield, Sweden

    NASA Astrophysics Data System (ADS)

    Kampmann, Tobias C.; Stephens, Michael B.; Weihed, Pär

    2016-06-01

    Altered and mineralized rocks at the Falun pyritic Zn-Pb-Cu-(Au-Ag) sulphide deposit, situated in the Palaeoproterozoic Bergslagen ore district in the south-western part of the Fennoscandian Shield, have been metamorphosed at low-pressure, amphibolite-facies conditions and affected by ductile deformation. Using combined surface mapping of lithology and structure, drill core logging and microstructural work, the polyphase (D1 and D2) ductile deformation is demonstrated and a 3D model for the deposit created. Mineral associations include quartz, biotite, cordierite, anthophyllite, and minor almandine, andalusite and chlorite in silicate-rich altered rock, calcite or dolomite in marble and tremolite-actinolite or diopside-hedenbergite in skarn. The silicate minerals show varying growth patterns during the different phases of the tectonothermal evolution, with considerable static grain growth occurring between D1 and D2, and even after D2. F2 sheath folding along axes that plunge steeply to the SSE, parallel to a mineral stretching lineation and the dip direction of the S2 foliation, is suggested as a key deformation mechanism forming steeply plunging, cone- to rod-shaped mineralized bodies. This contrasts with a previous structural model invoking fold interference. A major shear zone with talc-chlorite-(quartz-biotite) mineral association separates the northern and southern structural domains at the deposit and bounds the polymetallic massive sulphides to the north.

  15. 3D modelling and sheath folding at the Falun pyritic Zn-Pb-Cu-(Au-Ag) sulphide deposit and implications for exploration in a 1.9 Ga ore district, Fennoscandian Shield, Sweden

    NASA Astrophysics Data System (ADS)

    Kampmann, Tobias C.; Stephens, Michael B.; Weihed, Pär

    2016-01-01

    Altered and mineralized rocks at the Falun pyritic Zn-Pb-Cu-(Au-Ag) sulphide deposit, situated in the Palaeoproterozoic Bergslagen ore district in the south-western part of the Fennoscandian Shield, have been metamorphosed at low-pressure, amphibolite-facies conditions and affected by ductile deformation. Using combined surface mapping of lithology and structure, drill core logging and microstructural work, the polyphase (D1 and D2) ductile deformation is demonstrated and a 3D model for the deposit created. Mineral associations include quartz, biotite, cordierite, anthophyllite, and minor almandine, andalusite and chlorite in silicate-rich altered rock, calcite or dolomite in marble and tremolite-actinolite or diopside-hedenbergite in skarn. The silicate minerals show varying growth patterns during the different phases of the tectonothermal evolution, with considerable static grain growth occurring between D1 and D2, and even after D2. F2 sheath folding along axes that plunge steeply to the SSE, parallel to a mineral stretching lineation and the dip direction of the S2 foliation, is suggested as a key deformation mechanism forming steeply plunging, cone- to rod-shaped mineralized bodies. This contrasts with a previous structural model invoking fold interference. A major shear zone with talc-chlorite-(quartz-biotite) mineral association separates the northern and southern structural domains at the deposit and bounds the polymetallic massive sulphides to the north.

  16. Research of Geochemical Associations of Nephelin Ores

    NASA Astrophysics Data System (ADS)

    Vulf, M.; Simonov, K.; Sazonov, A.

    The instant paper concerns research of distribution petrogenic chemical members in urtit ore body of Kia-Shaltyrsk deposit. Rocks of the deposit are ore for producing alum earth. Actuality of the subject based on outlooks of detection noble metal ore-bearing (Au, Pt, Pd, Rh, Ru) in alkaline rocks of Siberia, including rocks of Kia-Shaltyrsk deposit (Kuznetsk Alatau). The main purpose of analysis of distribution of members is directed to detection of a non-uniformity of distribution of substance and segments enriched with alum earth and noble members. The basic solved problems are following: o Creation regression models of ore body; o Definition of cumulative distribution functions of members in a contour of ore body; o The analysis of the obtained outcomes in geologic terms. For construction regression models the full-scale data was used, which was presented by the results of the spectral and silicate analyses of gold and petrogenic members containing 130 assays arranged in ore body. A non-linear multiparameter model of the ore body based on components of nephelin ore using neural net approach was constructed. For each member the corresponding distribution function is produced. The model is constructed on the following members: Au, Al2O3, SiO2, Fe2O3, CaO, MgO, SO3, R2O ((Na2O+K2O) -1) and losses of burning. The error of model forecasting membersS concentrations was from 0.02 up to 20%. Large errors basically connected with assays located near contact of ore body and ad- jacent strata or with very high concentrations of members; also they can be connected with different genesis of rocks or superposition of other processes. The analysis of concentrations of members and normalised absolute errors of the fore- cast has shown, that all members can be sectioned into two groups: first: Al2O3, SiO2, R2O, Fe2O3 and second: Au, losses of burning, CaO, MgO, SO3. The distribution of 1 gold is tightly connected with calcium and losses of burning and spatially linked with zones

  17. Antimony ore in the Fairbanks district, Alaska

    USGS Publications Warehouse

    Killeen, Pemberton Lewis; Mertie, John B., Jr.

    1951-01-01

    Antimony-bearing ores in the Fairbanks district, Alaska, are found principally in two areas, the extremities of which are at points 10 miles west and 23 miles northeast of Fairbanks; and one of two minor areas lies along this same trend 30 miles farther to the northeast. These areas are probably only local manifestations of mineralization that affected a much broader area and formed antimony-bearing deposits in neighboring districts, the closest of which is 50 miles away. The ores were exposed largely as a result of lode gold mining, but at two periods in the past, high prices for antimony ore warranted an independent production and about 2500 tons of stibnite ore was shipped. The sulfide deposits occupy the same fractures along which a gold-quartz mineralization of greater economic importance occurred; and both are probably genetically related to igneous rocks which intrude the schistose country rock. The sulfide is in part contemporaneous with some late-stage quartz in which it occurs as disseminated crystals; and in part the latest filling in the mineralized zones where it forms kidney-shaped masses of essentially solid sulfide. One extremely long mass must have contained nearly 100 tons of ore, but the average of the larger kidneys is closer to several tons. Much of the ore is stibnite, with quartz as a minor impurity, and assays show the tenor to vary from 40 to 65 percent antimony. Sulphantimonites are less abundant but likewise occur as disseminated crystals and as kidney-shaped bodies. Antimony oxides appear on the weathered surface and along fractures within the sulfide ore. Deposits containing either stibnite or sulphantimonite are known at more than 50 localities, but only eighteen have produced ore and the bulk of this came from the mines. The geology of the deposit, and the nature, extent, and period of the workings are covered in the detailed descriptions of individual occurrences. Several geologic and economic factors, which greatly affect

  18. Tourmaline in the central Swedish ore district

    NASA Astrophysics Data System (ADS)

    Hellingwerf, R. H.; Gatedal, K.; Gallagher, V.; Baker, J. H.

    1994-06-01

    More than 40 recently discovered tourmaline occurrences have been investigated in the Mid-Proterozoic Bergslagen ore district of central Sweden. Some are spatially associated with ores, others with zones of leaching, remobilization and migmatization. Among the tourmaline-bearing ore deposits are the Dammberg ZnPb-Fe sulphide deposit, the Sala Pb-Zn-Ag deposit, the Dalkarlsberg, Pershyttan and Håksberg Fe oxide deposits, the Leja Cu deposit, and the Zinkgruvan Zn-Pb-Ag deposit. Tourmaline has been recorded a) as tourmalinites and tourmaline-bearing chemical sediments; b) in tourmaline-bearing skarns; c) in tourmaline-quartz veins; d) as disseminations along the foliation in schists; e) in tourmaline pegmatites; f) in tourmalinized haloes in metavolcanites along tourmaline pegmatites; and g) in late joints. Tourmalinites, tourmaline-bearing chemical sediments and tourmaline-bearing skarns are spatially associated with sulphide and oxide mineralizations. The dravite components in these tourmalines are proportional to the size of Zn-Pb sulphide mineralizations. Tourmalines from quartz veins close to and within ore deposits contain high Zr and Cr contents. With increasing distance away from these deposits, the Zr and Cr contents fall significantly. Tourmalines from pegmatites have inherited a number of trace element enrichments through partial melting and assimilation of volcaniclastic sediments into granitic melts. Despite magmatic homogenization, Zn contents in these tourmalines reflect the proximity of Zn-Pb-sulphide deposits, decreasing away from them. Tourmalines from late joints with Zn contents above the 100 ppm level are also indicative for the proximity of Zn-Pb sulphide mineralizations. Thus, some trace elements in these tourmalines may represent suitable exploration tools.

  19. Appraisal of the accuracy of U.S. Geological Survey ore reserve estimates for uranium-vanadium deposits on the Colorado Plateau

    USGS Publications Warehouse

    Bush, Alfred Lerner; Stager, Harold Keith

    1954-01-01

    The U.S. Geological Survey has made estimates of the reserves of uranium and vanadium in the carnotite deposits explored by Geological Survey drilling on the Colorado Plateau. This report presents an appraisal of the accuracy of the reserve estimates for deposits in the Uravan mineral belt, the causes of inaccuracy, and the significance of the estimates in terms of the total known reserves of the region.

  20. Field study and three-dimensional reconstruction of thrusts and strike-slip faults in the Central Andes: implications for deep-seated geothermal circulation and ore deposits exploration

    NASA Astrophysics Data System (ADS)

    Norini, Gianluca; Groppelli, Gianluca; Giordano, Guido; Baez, Walter; Becchio, Raul; Viramonte, Jose; Arnosio, Marcelo

    2014-05-01

    The Puna plateau (NW Argentina), located in the back-arc of the Central Andes, is a plateau characterized by both orogen-parallel and orogen-oblique deformation styles, extensive magmatic and geothermal activity, and the broad occurrence of igneous and hydrothermal ore-forming minerals. In this area, like in other convergent margins, the behaviour of the magma-tectonics interplay can affect the circulation of hydrothermal fluids, so that the full comprehension of the tectonic control on the magmas and fluids paths in the continental crust is crucial to plan the geothermal and ore exploration. In this study, we present a structural analysis of the back-arc portion of the orogen-oblique Calama-Olacapato-El Toro fault system and the surrounding orogen-parallel thrust faults in the central-eastern Puna Plateau, comprising the Cerro Tuzgle-Tocomar geothermal volcanic area, with high geothermal potential, and silicic calderas and domes associated with epithermal ore deposits. We also focused on the tectonic and volcanotectonic structures of the Chimpa and Tuzgle stratovolcanoes, two of the most important polygenetic volcanic centres of the plateau. Morphostructural analysis and field mapping reveal the geometry, kinematics and dynamics of the tectonic structures of the studied area. These data and the available stratigraphic and geophysical data have been integrated with the software MOVE and PETREL in a three-dimensional reconstruction of the main fault planes, showing their attitude and intersections at depth. As a result of our study, we show that despite different geometry and kinematics of the Calama-Olacapato-El Toro fault system and the thrust faults, they formed and evolved under the same progressive evolving dynamic state, forming a single tectonic system and accommodating crustal shortening of a thickened crust. In this frame, the crust underwent simultaneous deformation along both the low-angle thrust faults and the vertical transcurrent strike-slip faults

  1. Reduction kinetics of aqueous U(VI) in acidic chloride brines to uraninite by methane, hydrogen or C-graphite under hydrothermal conditions: Implications for the genesis of unconformity-related uranium ore deposits

    NASA Astrophysics Data System (ADS)

    Dargent, Maxime; Truche, Laurent; Dubessy, Jean; Bessaque, Gilles; Marmier, Hervé

    2015-10-01

    The formation of hydrothermal uranium ore deposits involves the reduction of dissolved U(VI)(aq) to uraninite. However, the nature of the reducing agent and the kinetics of such a process are currently unknown. These questions are addressed through dedicated experiments performed under conditions relevant for the genesis of unconformity-related uranium (URU) deposits. We tested the efficiency of the following potential reductants supposed to be involved in the reaction: H2, CH4, C-graphite and dissolved Fe(II). Results demonstrate the great efficiency of H2, CH4 and C-graphite to reduce U(VI)(aq) into uraninite in acidic chloride brines, unlike dissolved Fe(II). Times needed for H2 (1.4 bar), CH4 (2.4 bar) and C-graphite (water/carbon mass ratio = 10) to reduce 1 mM of U(VI)(aq) in an acidic brine (1 m LiCl, pH ≈ 1 fixed by HCl) to uraninite at 200 °C are 12 h, 3 days and 4 months, respectively. The effects of temperature (T) between 100 °C and 200 °C, H2 partial pressure (0.14, 1.4, and 5.4 bar), salinity (0.1, 1 and 3.2 m LiCl) and pH at 25 °C (0.8 and 3.3) on the reduction rate were also investigated. Results show that increasing temperature and H2 partial pressure increase the reaction rate, whereas increasing salinity or pH have the reverse effect. The reduction of uranyl to uraninite follows an apparent zero-order with respect to time, whatever the considered electron donor. From the measured rate constants, the following values of activation energy (Ea), depending on the nature of the electron donor, have been derived: EaC-graphite = 155 ± 3 kJ mol-1, EaCH4 = 143 ± 6 kJ mol-1, and EaH2 = 124 ± 15 kJ mol-1 at T < 150 °C and 32 ± 6 kJ mol-1 at T > 150 °C. An empirical relationship between the reaction rate, the hydrogen partial pressure, the uranyl speciation, and the temperature is also proposed. This allows an estimation of the time of formation of a giant U ore deposit such as McArthur River (Canada). The duration of the mineralizing event is

  2. An evaporated seawater origin for the ore-forming brines in unconformity-related uranium deposits (Athabasca Basin, Canada): Cl/Br and δ 37Cl analysis of fluid inclusions

    NASA Astrophysics Data System (ADS)

    Richard, Antonin; Banks, David A.; Mercadier, Julien; Boiron, Marie-Christine; Cuney, Michel; Cathelineau, Michel

    2011-05-01

    Analyses of halogen concentration and stable chlorine isotope composition of fluid inclusions from hydrothermal quartz and carbonate veins spatially and temporally associated with giant unconformity-related uranium deposits from the Paleoproterozoic Athabasca Basin (Canada) were performed in order to determine the origin of chloride in the ore-forming brines. Microthermometric analyses show that samples contain variable amounts of a NaCl-rich brine (Cl concentration between 120,000 and 180,000 ppm) and a CaCl 2-rich brine (Cl concentration between 160,000 and 220,000 ppm). Molar Cl/Br ratios of fluid inclusion leachates range from ˜100 to ˜900, with most values between 150 and 350. Cl/Br ratios below 650 (seawater value) indicate that the high salinities were acquired by evaporation of seawater. Most δ 37Cl values are between -0.6‰ and 0‰ (seawater value) which is also compatible with a common evaporated seawater origin for both NaCl- and CaCl 2-rich brines. Slight discrepancies between the Cl concentration, Cl/Br, δ 37Cl data and seawater evaporation trends, indicate that the evaporated seawater underwent secondary minor modification of its composition by: (i) mixing with a minor amount of halite-dissolution brine or re-equilibration with halite during burial; (ii) dilution in a maximum of 30% of connate and/or formation waters during its migration towards the base of the Athabasca sandstones; (iii) leaching of chloride from biotites within basement rocks and (iv) water loss by hydration reactions in alteration haloes linked to uranium deposition. The chloride in uranium ore-forming brines of the Athabasca Basin has an unambiguous dominantly marine origin and has required large-scale seawater evaporation and evaporite deposition. Although the direct evidence for evaporative environments in the Athabasca Basin are lacking due to the erosion of ˜80% of the sedimentary pile, Cl/Br ratios and δ 37Cl values of brines have behaved conservatively at the basin

  3. Zircon U-Pb ages and Sr-Nd-Hf isotopes of the highly fractionated granite with tetrad REE patterns in the Shamai tungsten deposit in eastern Inner Mongolia, China: Implications for the timing of mineralization and ore genesis

    NASA Astrophysics Data System (ADS)

    Jiang, Si-Hong; Bagas, Leon; Hu, Peng; Han, Ning; Chen, Chun-Liang; Liu, Yuan; Kang, Huan

    2016-09-01

    The Shamai tungsten deposit is located in the eastern part of the Central Asian Orogenic Belt (CAOB). Tungsten mineralization is closely related to the emplacement of fine- to medium-grained biotite monzogranite (G1) and porphyritic biotite monzogranite (G2) in the Shamai Granite. NW-trending joints and faults host orebodies in the Shamai Granite and Devonian hornfels. The mineralization is characterized by a basal veinlet zone progressing upwards to a thick vein zone followed by a mixed zone, a veinlet zone, and a thread vein zone at the top. The ore-related alteration typically consists of muscovite, greisen, and hornfels. In order to constrain the timing of the Shamai mineralization and discuss the ore genesis, muscovite Ar-Ar, molybdenite Re-Os, and zircon U-Pb geochronological, geochemical, and Sr-Nd-Hf isotopic studies were completed on the deposit. The U-Pb zircon dating yielded weighted mean ages of 153 ± 1 Ma for G1 and 146 ± 1 Ma for G2. Muscovite from a wolframite-bearing quartz vein yielded an Ar-Ar plateau age of 140 ± 1 Ma, whereas two molybdenite samples yielded identical Re-Os model ages of 137 ± 2 Ma. These two ages are younger than the two monzogranites, suggesting a prolonged magmatic-hydrothermal interaction during tungsten mineralization. Major and trace element geochemistry shows that both G1 and G2 are characterized by high SiO2 and K2O contents, high A/CNK values (1.08-1.40), a spectacular tetrad effect in their REE distribution patterns, and non-CHARAC (charge-and-radius-controlled) trace element behavior. This suggests that both G1 and G2 are highly differentiated peraluminous rocks with strong hydrothermal interaction. The Nd-Hf isotope data for the Shamai Granite (εNd(t) between - 1.9 and + 7.4, ɛHf(t) from 5.2 to 12.8) are largely compatible with the general scenario for much of the Phanerozoic granite emplaced in the CAOB. It is here suggested that the Shamai Granite originated from partial melting of a juvenile lower crust with

  4. Oxidized and reduced mineral assemblages in greenstone belt rocks of the St. Ives gold camp, Western Australia: vectors to high-grade ore bodies in Archaean gold deposits?

    NASA Astrophysics Data System (ADS)

    Neumayr, Peter; Walshe, John; Hagemann, Steffen; Petersen, Klaus; Roache, Anthony; Frikken, Peter; Horn, Leo; Halley, Scott

    2008-03-01

    Hydrothermal sulfide-oxide-gold mineral assemblages in gold deposits in the Archaean St. Ives gold camp in Western Australia indicate extremely variable redox conditions during hydrothermal alteration and gold mineralization in space and time. Reduced alteration assemblages (pyrrhotite-pyrite) occur in deposits in the southwest of the camp (e.g., Argo, Junction deposits) and moderately to strongly oxidized assemblages (magnetite-pyrite, hematite-pyrite) occur in deposits in the Central Corridor in the northeast (e.g., North Orchin, Revenge deposits). Reduced mineral assemblages flank the Central Corridor of oxidized deposits and, locally, cut across it along E-W trending faults. Oxidized mineral assemblages in the Central Corridor are focused on gravity lows which are interpreted to reflect abundant felsic porphyritic intrusions at about 1,000 m below present surface. Hydrothermal magnetite predates and is synchronous with early phases of gold-associated albite-carbonate-pyrite-biotite-chlorite hydrothermal alteration. Later-stage, gold-associated pyrite is in equilibrium with hematite. The spatial distribution and temporal sequence of iron sulfides and oxides with gold indicate the presence of at least two spatially restricted but broadly synchronous hydrothermal fluids with contrasting redox states. Sulfur isotope constraints support the argument that the different mineral assemblages reflect differences in redox conditions. The δ 34S values for pyrite for the St. Ives gold camp range between -8.4‰ and +5.1‰ with the negative values occurring in oxidized magnetite-rich domains and slightly negative or positive values occurring in reduced, pyrrhotitic domains. Preliminary spatial and paragenetic analysis of the distribution of iron sulfides and oxides in the St. Ives camp suggests that gold grades are highest where the redox state of the hydrothermal alteration assemblages switches from relatively reduced pyrrhotite-pyrite to relatively oxidized magnetite

  5. Sedimentary exhalative nickel-molybdenum ores in south China

    USGS Publications Warehouse

    Lott, D.A.; Coveney, R.M., Jr.; Murowchick, J.B.; Grauch, R.I.

    1999-01-01

    Unique bedded Ni-Mo ores hosted by black shales were discovered in localized paleobasins along the Yangzte platform of southern China in 1971. Textural evidence and radiometric dates imply ore formation during sedimentation of black shales that grade into readily combustible beds, termed stone coals, which contain 10 to 15 percent organic carbon. Studies of 427 fluid inclusions indicate extreme variation in hydrothermal brine salinities that were contained by Proterozoic dolostones underlying the ore zone in Hunan and Guizhou. Variations of fluid inclusion salinities, which range from 0.1 to 21.6 wt percent NaCl equiv, are attributed to differences in the compositions of brines in strata underlying the ore bed, complicated by the presence of seawater and dilute fluids that represent condensates of vapors generated by boiling of mineralizing fluids or Cambrian meteoric water. The complex processes of ore deposition led to scattered homogenization temperatures ranging from 100??to 187??C within the Hunan ore zone and from 65??to 183??C within the Guizhou ore zone. While living organisms probably did not directly accumulate metals in situ in sufficient amounts to explain the unusually high grades of the deposits, sulfur isotope ratios indicate that bacteria, now preserved as abundant microfossils, provided sufficient sulfide for the ores by reduction of seawater sulfate. Such microbiota may have depended on vent fluids and transported organic matter for key nutrients and are consistent with a sedex origin for the ores. Vent fluids interacted with organic remains, including rounded fragments of microbial mats that were likely transported to the site of ore deposition by the action of waves and bottom currents prior to replacement by ore minerals.

  6. Invisible gold distribution on pyrite and ore-forming fluid process of the Huangshan orogenic-type gold deposit of Zhejiang, SE China: implications from mineralogy, trace elements, impurity and fluid inclusion studies

    NASA Astrophysics Data System (ADS)

    Sundarrajan, Vijay Anand; Li, Zilong; Hu, Yizhou; Fu, Xuheng; Zhu, Yuhuo

    2016-07-01

    The Huangshan orogenic-type gold deposit in Zhejiang of SE China occurred in quartz-pyrite veins. It is hosted by phyllonite that underwent greenschist-facies metamorphism along a large Jiangshan-Shaoxing tectonic belt with a NE-SW direction. Trace elemental characteristics, ore-forming process and invisible gold on different forms of pyrite and quartz are studied. The Au associated pyrite can be classified into two categories; recrystallized pyrite and euhedral pyrite. The precipitation of invisible Au on pyrite is mainly derived by Co and Ni with AuHS2 - complex in the mineralizing fluids in different events. The XPS results revealed that valence states of Au3+ replaced 2Fe2+ in the pyrite and Au0 replaced Si4+ in the quartz structure. The electron paramagnetic resonance and trace elemental results suggested that the element pairs of Ge-Li-Al in quartz and Mn-Co-Ni in pyrite have distinct impurities as identified. A fluid inclusion study showed that the auriferous quartz is characterized by low-saline and CO2-rich fluids. Coexistence of the type I-type III inclusions and same range of homogenization temperature with different mode are evidences of immiscible fluid process. The temperature-pressure values of ca. 250 °C/1250 bar and ca. 220 °C/780 bar for gold precipitation have been calculated by intersection of coexisting fluids during the entrapment. The Huangshan orogenic-type gold deposit may be associated with the Wuyi-Yunkai orogeny during the early Paleozoic, including an upper-mid greenschist-facies metamorphism (450-420 Ma). All the features suggest that the Huangshan gold deposit is probably a product linking with the early Paleozoic orogeny in South China.

  7. Magmatogenic manganese ores of the South Minusa Intermontane Trough

    NASA Astrophysics Data System (ADS)

    Kassandrov, E. G.; Mazurov, M. P.

    2009-10-01

    The first data on the mineral composition and formation conditions of manganese ore at the Chapsordag and Malosyrsky deposits in the Askiz ore district of Khakassia are integrated and systematized. The detailed mineralogical mapping of the deposits has been carried out. The identification of minerals and examination of the ore microstructure were performed with optical microscopy in transmitted and reflected light and using SEM/EDS, EMPA, XRD, IRS, and other methods. It was established that the ore mineralization is spatially and genetically related to the Early Devonian magmatism and accompanying hydrothermal activity and metasomatism. Syngenetic braunite was detected for the first time in elevated amounts reaching an economic level in the devitrified groundmass of volcanic rocks, in cement of lava breccia, and in fragments in pyroclastic rocks. By analogy with iron deposits, this magmatogenic type of manganese mineralization is regarded as ore lavas and tuffs combined with metasomatic and hydrothermal mineral assemblages into a strata-bound orebearing complex and as a source of hydrothermal metasomatic ore. The elevated Mn content in magmatic melts of the Early Devonian trachybasalt-trachyandesite-trachydacite association is caused by assimilation of Riphean and Lower Cambrian high-Mn carbonate sequences in crustal magma chambers. In contours of economic orebodies, the hydrothermal economic ore is recognized as sites of massive, patchy and impregnated, brecciated, stringer-disseminated, and disseminated varieties. High-grade massive ore occurs as stratiform and branching bodies up to 1.5 m thick and a few tens of meters long and as smaller pocketlike bodies. Braunite and pyrolusite (polianite) are major ore minerals varying in size, degree of crystallinity, and character of intergrowths with associating minerals. Gangue minerals include carbonates, sulfates, albite, quartz, chlorite, actinolite, piemontite, and okhotskite, a Mn-pumpellyite identified in Russia

  8. Geologic map of Kundelan ore deposits and prospects, Zabul Province, Afghanistan; modified from the 1971 original map compilations of K.I. Litvinenko and others

    USGS Publications Warehouse

    Tucker, Robert D.; Peters, Stephen G.; Stettner, Will R.; Masonic, Linda M.; Moran, Thomas W.

    2015-01-01

    Elevations on the cross sections are derived from the original Soviet topography and may not match the Global Digital Elevation Model (GDEM) topography used on the redrafted map of this report. Most hydrography derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) has not been included on our redrafted version of the map because of a poor fit with alluvial deposits from the unmodified original Soviet map (graphical supplement no. 18; Litvinenko and others, 1971).

  9. Geochemical signatures of possible deep-seated ore deposits in Tertiary volcanic centers, Arizona and New Mexico, U.S.A.

    USGS Publications Warehouse

    Watts, K.C., Jr.; Hassemer, J.R.

    1989-01-01

    A reconnaissance geochemical survey of stream drainages within 21,000 km2 of southeastern Arizona and southwestern New Mexico shows broad zones of low-level to moderate contrast anomalies, many associated with mid-Tertiary eruptive centers and Tertiary fault zones. Of these eruptive centers, few are known to contain metallic deposits, and most of those known are minor. This, however, may be more a function of shallow erosion level than an indication of the absence of mineralization, since hydrothermal alteration and Fe-Mn-oxide staining are widespread, and geochemical anomalies are pervasive over a larger part of the region than outcrop observations would predict. Accordingly, interpretations of the geochemical data use considerations of relative erosion levels, and inferred element zonalities, to focus on possible undiscovered deposits in the subsurface of base-, precious-, and rare-metal deposits of plutonic-volcanic association. In order to enhance the identification of specific deep targets, we use the empirically determined ratio: Ag+Mn+Pb+Zn+Ba Au+Mo+Cu+Bi+W This ratio is based on reported metal contents of nonmagnetic heavy-mineral samples from the drainage sediment, determined by emission spectrographic analysis. Before the ratio was computed for each sample site, the data were normalized to a previously estimated regional threshold value. A regional isopleth map was then prepared, using a cell-averaging computer routine, with contours drawn at the 25th, 50th, 75th, 80th, 90th, 95th and 99th percentiles of the computed data. ?? 1989.

  10. The large Bystrinskoe Cu-Au-Fe deposit (Eastern Trans-Baikal Region): Russia's first example of a skarn-porphyry ore-forming system related to adakite

    NASA Astrophysics Data System (ADS)

    Kovalenker, V. A.; Abramov, S. S.; Kiseleva, G. D.; Krylova, T. L.; Yazykova, Yu. I.; Bortnikov, N. S.

    2016-06-01

    The Bystrinskoe skarn-porphyry Cu-Au-Fe deposit (Eastern Trans-Baikal Region) is confined to skarn zones, which were formed along the contact of granitoids referred to the Shakhtama intrusive complex (J2-3), with terrigenous-carbonate sedimentary rocks. Commercial (Cu-Au-Fe ± W, Mo) mineralization was formed due to the regional postcollision development involving the intrusion of porphyritic granitoids, the derivatives of oxidized adakite highly magnesian magmas enriched in water, sulfur, and metals, which could develop under melting of garnet-bearing amphibolite in the mafic lower crustal arc.

  11. Evolution of ore forming fluid in the orogenic type gold deposit in Tavt, Mongolia: trace element geochemistry and fluid inclusions in quartz

    NASA Astrophysics Data System (ADS)

    Lee, K.; Oyungerel, S.; Lee, I.

    2011-12-01

    The Tavt gold deposit of Dzhida-Selengisky metallogenic belt is located in the Dzhida terrane, northern Mongolia. This deposit commonly occurs with massive auriferous quartz veins that contain sulfides and less commonly occurs with disseminated- and stockwork-type quartz veins. Such gold-bearing quartz veins have an average grade of 6.3 g/t Au, 29.4 g/t Ag, and 1.3% Cu. This gold deposit is composed of three stages of quartz vein groups. The first stage quartz group is widely spread with medium to large grain size, showing white-grey and milky white colors. It underwent intensive cataclasis with strong cuts via fractures and includes a small amount of sulfides, secondary minerals and Au. The second stage quartz group is grey and includes an oxidation zone. The oxidation zone distributed on the outside of the vein is brown and green-grey; it is also enriched with sulfide minerals containing gold. This quartz group is located in a brittle and cataclastic zone with the first stage quartz group. The main mineralization process for gold is related to this second stage quartz group. The transition between the first and second groups is not clear, and their contact relationship is complex. The third stage quartz group is transparent to translucent, and has small euhedral crystals that were formed in the second stage quartz group. The third stage of quartz is partly associated with chlorite and montmorillonite that was formed in the latest stage. Each generation of quartz was analyzed by SEM-CL, EPMA, and ICP-MS. Fluid inclusion data were collected from the USGS gas-flow heating/freezing stage and Raman-spectroscopy. The electron microprobe data show the distribution of Al, Ca, K and Fe among distinguished CL intensities and textures of quartz from different stages. The prepared pure quartz samples were analyzed by ICP-MS. The analysis also shows different patterns of trace elements according to the quartz stages.

  12. Microgranular enclaves in island-arc andesites: A possible link between known epithermal Au and potential porphyry Cu-Au deposits in the Tulasu ore cluster, western Tianshan, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaobo; Xue, Chunji; Symons, David T. A.; Zhang, Zhaochong; Wang, Honggang

    2014-05-01

    The successful exploration for porphyry copper deposit in western Tianshan, Xinjiang, faces great challenge. Tulasu basin is an important epithermal gold ore cluster in western Tianshan, which was formed in a southwest-Pacific-type island-arc setting during the late Paleozoic by the southward subduction of the North Tianshan ocean beneath the Yili plate. Porphyry Cu-Au deposits are possibly to be found at depth or adjacent to these epithermal gold deposits. Some sulfide-mineralized microgranular enclaves of monzonite porphyry and microdiorite were found in andesites of the Tawuerbieke gold district, Tulasu basin. The enclaves are randomly distributed, with generally round or subangular shape and commonly clearly defined within their host andesite, and have a chilled surrounding margin of andesite. The monzonite porphyry enclaves (MPE) exhibit porphyritic texture with the phenocrysts of plagioclase and K-feldspar. The microdiorite enclaves (MDE) are mainly composed of plagioclase and hornblende with an aplitic texture and massive structure. The host andesites show porphyritic texture, with the phenocrysts major of plagioclase, minor of hornblende and clinopyroxene. The groundmass consists of short-column plagioclase and minor clinopyroxene with a hyalopilitic texture. Zircon grains from a MPE sample yield a weighted 206Pb/238U age of 356.2 ± 4.3 Ma (n = 13, MSWD = 1.11), which is effectively coincident with the 360.5 ± 3.4 Ma (n = 20, MSWD = 0.61) of an andesite sample within analytical error, indicating that they were coeval. In addition, the MPE, MDE and the andesite samples share similar normalized incompatible element and rare earth element patterns that are characterized by a pronounced enrichment of large ion lithophile elements and a deficit of high field strength elements. Moreover, the samples show similar Nd isotope compositions to the contemporary andesites and basaltic andesites. Detailed petrology, geochronology and geochemistry studies suggest that

  13. Origin of sedimentary humic acids, potential carriers of ore-forming elements

    NASA Astrophysics Data System (ADS)

    Hatcher, P. G.

    Humic acids are complex, macromolecular organic components of sediments and are defined by their solubility in dilute alkali insolubility in dilute acid. Because of their general structural characteristics (for example, their high proportion of oxygen functional groups), humic acids can complex with inorganic cations and may be important in forming ore deposits. In some instances (such as uranium ores), ore bodies are believed to have originated by mobilization of an ore-forming element complexed with humic acids and subsequent precipitation. Knowledge of the mechanism for the formation of humic acids is being applied to two major ore deposits. Carlin-type gold ores from Nevada show that humic acids may have been precursors. This suggests that the humic acids could have played a major role in the transport and accumulation of the ore.

  14. Jurassic ash-flow sheets, calderas, and related intrusions of the Cordilleran volcanic arc in southeastern Arizona: implications for regional tectonics and ore deposits

    USGS Publications Warehouse

    Lipman, P.W.; Hagstrum, J.T.

    1992-01-01

    Volcanologic, petrologic, and paleomagnetic studies of widespread Jurassic ash-flow sheets in the Huachuca-southern Dragoon Mountains area have led to identification of four large source calderas and associated comagnetic intracaldera intrusions. Stratigraphic, facies, and contact features of the caldera-related tuffs also provide constraints on the locations, lateral displacements, and very existence for some major northwest-trending faults and inferred regional thrusts in southeastern Arizona. Silicic alkalic compositions of the Jurassic caldera-related, ash-flow tuffs; bimodal associated mafic magmatism; and interstratified coarse sedimentary deposits provide evidence for synvolcanic extension and rifting within the Cordilleran magmatic arc. Gold-copper mineralization is associated with subvolcanic intrusions at several of the Jurassic calderas. -from Authors

  15. Fluid inclusion and stable isotope studies of the Mesloula Pb-Zn-Ba ore deposit, NE Algeria: Characteristics and origin of the mineralizing fluids

    NASA Astrophysics Data System (ADS)

    Laouar, Rabah; Salmi-Laouar, Sihem; Sami, Lounis; Boyce, Adrian J.; Kolli, Omar; Boutaleb, Abdelhak; Fallick, Anthony E.

    2016-09-01

    In the Saharan Atlas (NE Algeria), the Triassic evaporitic formation was brought to the surface through the thick Cretaceous and Tertiary sedimentary cover as diapirs due to the effect of Atlasic tectonic events. The diapir piercing began in the Jurassic and has continued through present day. Many outcrops of several square kilometres are distributed in a large area (approximately 80 km wide) that extends northeasterly over 300 km towards Tunisia. The diapiric evaporitic formation is often accompanied by the emplacement of Pb-Zn-Ba-F mineralization. The Mesloula massif is an example of these deposits. Fluid inclusion and sulphur, carbon and oxygen isotope studies were carried out on Pb-Zn-Ba mineralization and associated gangue carbonates. Gypsum of the Triassic formation was also analysed for its sulphur isotope composition to show the role of evaporates in the generation of this typical peridiapiric deposit. Gypsum from the Triassic formation showed a narrow range of δ34SVCDT values, ranging from +14.6 to +15.5‰ (n = 8). This range is comparable to that of Triassic seawater sulphates. Sulphide minerals yielded δ34SVCDT values between 0 and + 11.7‰ (n = 15), indicating that sulphide sulphur was likely derived from Triassic sulphates through thermochemical sulphate reduction (TSR) because fluid inclusion microthermometric measurements yielded a mean temperature of 150 °C. Residual sulphate in such a system would have been enriched in 34S; this is reflected in the barite δ34SVCDT values, which range from +21.1 to +33.5‰ (n = 5). The δ13CVPDB values of calcite minerals, ranging from +2.1 to +6.3‰ (n = 4), indicate an inorganic carbon origin, likely from the host carbonate rocks. δ18OVSMOW values were between +21.9 and + 24.9‰, indicating that the most likely source of mineralizing fluids was formation water.

  16. Oligocene shoshonitic rocks of the Rogozna Mts. (Central Balkan Peninsula): Evidence of petrogenetic links to the formation of Pb-Zn-Ag ore deposits

    NASA Astrophysics Data System (ADS)

    Borojević Šoštarić, S.; Cvetković, V.; Neubauer, F.; Palinkaš, L. A.; Bernroider, M.; Genser, J.

    2012-09-01

    This study focuses on age and evolution of the Oligocene quartz latite of the Rogozna Mts. (Central Balkan Peninsula), in order to better understand the link between magmatism and formation of Pb-Zn ± Ag mineralization. New 40Ar/39Ar biotite and amphibole plateau ages suggest that the Rogozna Mts. quartz latite originated through a continuous volcanic episode from 27.3 ± 0.1 to 29.5 ± 0.1 Ma which was immediately followed by a hydrothermal phase. The quartz latites are hypocrystalline porphyritic with phenocrysts and microphenocrysts (~ 60 vol.%) of plagioclase (An37-49), biotite Mg# [100 × Mg / (Mg + Fetot)] < 50, calcic amphibole, quartz, sanidine clinopyroxene and phlogopite (Mg# = 79 to 84). The rocks display numerous disequilibrium textures, such as: sieved plagioclase phenocrysts, dissolution effects on quartz, phlogopitized biotite and amphibole crystals, and phlogopite microphenocrysts showing effects of incomplete growth (or dissolution?) and biotitization. The Rogozna Mts. quartz latites are shoshonitic in character with Na2O/K2O < 1, high LILE/HFSE ratios, strong depletions at Nb and Ti and K, Pb and U peaks on primitive mantle-normalized diagrams. They are similar to other potassic/ultrapotassic rocks in this region, in particular to those of Veliki Majdan and Rudnik (West Serbia), which are also related to Pb-Zn deposits. The evolution of the Rogozna Mts. quartz latite is modeled using a trace element binary mixing model adopting a lamproite magma and a dacite-like calc-alkaline melt as end-members. The model implies that a fractionating magma chamber (~ 4.5-9.5 km) undergoes cooling in the range of > 850 °C-~720 °C and injection of lamproite-like melts. The injection causes an increase of temperature and a decrease of viscosity of the resulting hybrid magma, facilitating its upwelling and triggering pyroclastic eruptions. The addition of new volatiles by lamproitic melts most probably established the conditions for a hydrothermal phase above the

  17. Uranium (U)-Tolerant Bacterial Diversity from U Ore Deposit of Domiasiat in North-East India and Its Prospective Utilisation in Bioremediation

    PubMed Central

    Kumar, Rakshak; Nongkhlaw, Macmillan; Acharya, Celin; Joshi, Santa Ram

    2013-01-01

    Uranium (U)-tolerant aerobic chemo-heterotrophic bacteria were isolated from the sub-surface soils of U-rich deposits in Domiasiat, North East India. The bacterial community explored at molecular level by amplified ribosomal DNA restriction analysis (ARDRA) resulted in 51 distinct phylotypes. Bacterial community assemblages at the U mining site with the concentration of U ranging from 20 to 100 ppm, were found to be most diverse. Representative bacteria analysed by 16S rRNA gene sequencing were affiliated to Firmicutes (51%), Gammaproteobacteria (26%), Actinobacteria (11%), Bacteroidetes (10%) and Betaproteobacteria (2%). Representative strains removed more than 90% and 53% of U from 100 μM and 2 mM uranyl nitrate solutions, respectively, at pH 3.5 within 10 min of exposure and the activity was retained until 24 h. Overall, 76% of characterized isolates possessed phosphatase enzyme and 53% had PIB-type ATPase genes. This study generated baseline information on the diverse indigenous U-tolerant bacteria which could serve as an indicator to estimate the environmental impact expected to be caused by mining in the future. Also, these natural isolates efficient in uranium binding and harbouring phosphatase enzyme and metal-transporting genes could possibly play a vital role in the bioremediation of metal-/radionuclide-contaminated environments. PMID:23080407

  18. Deep magnetic anomaly sources interpreted as Otanmäki type Iron ore reserves

    NASA Astrophysics Data System (ADS)

    Korhonen, Juha; Kukkonen, Ilmo

    2013-04-01

    In Otanmäki ore province of Central Finland vertically integrated magnetization is estimated from two aeromagnetic coverages of different altitudes and by varying overall models of regional field. Petrophysically and geochemically determined magnetization of the mined deposits and correlation between it and ore concentration is used to evaluate iron ore reserves in the deeper part of known ore fields. Further, similar analysis is made to nearby magnetically anomalous areas covered by weakly magnetic metasediments, to estimate potential ore reserves at unexposed formations.

  19. Environment of ore deposition in the Creede mining district, San Juan Mountains, Colorado; Part IV, source of fluids, from oxygen, hydrogen, and carbon isotope studies

    USGS Publications Warehouse

    Bethke, P.M.; Rye, R.O.

    1979-01-01

    The hydrogen isotopic composition of fluids responsible for formation of the near-surface silver-base metal vein deposits at Creede was measured by direct analysis of inclusion fluids in sphalerite, quartz, and rhodochrosite and was estimated from analyses of illite and chlorite. The oxygen isotopic composition was determined directly on inclusion fluids in sphalerite and was estimated from analyses of quartz, illite, rhodochrosite, siderite, and adularia. The carbon isotopic composition was estimated from analyses of rhodochrosite and siderite. The ranges in isotopic composition for water and CO2 in the fluids associated with the formation of each of the minerals is given below (number of determinations given in parentheses):Mineral delta D (sub H2) O ppm delta 18 O (sub H2) O ppm delta 13 C (sub CO2) ppmSphalerite -81 to -54 (4) -10.1 to -4.5 (4)Quartz -97 to -86 (4) -5.9 to 1.8 (18)Illite -62 to -50 (8) -1.6 to 1.2(7)Chlorite -64 to -55 (10) -2.2 to 0.8 (10)Adularia 4.2 (1)Rhodochrosite -82 to -78 (2) 4.2 to 9.4 (9) -5.7 to -4.2 (9)Siderite 4.9 to 9.9 (6) -6.9 to -2.7 (6)The delta D (sub H2) O and delta 18 O (sub H2) O values of fluids associated with the formation of sphalerite, quartz, illite/chlorite, and carbonate minerals differ substantially from one another, and these differences appear to have been maintained throughout the depositional history, regardless of the positions of the minerals in the paragenetic sequence.The data suggest that waters from three coexisting reservoirs fed the vein system alternately and episodically during vein formation, and apparently there was little mixing of the fluids from the different reservoirs. The hydrogen, oxygen, and carbon isotope data suggest that the carbonate waters were deep seated, probably dominantly magmatic, in origin. The sphalerite and illite/chlorite waters must have been dominantly meteoric in origin and substantially oxygen shifted by exchange with the volcanic country rocks. The quartz waters were

  20. 38. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE FROM THE GEORGE M. CARL.' VIEW LOOKING EAST. (Also see OH-18-14, OH-18-39, and OH-18-40) - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  1. 14. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. HULETT ORE UNLOADERS IN MOTION; UNLOADING CANADIAN RED ORE FROM THE 'GEORGE M. CAR.' VIEW LOOKING EAST. (Also see OH-18-38, OH-18-39, and OH-18-40.) - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  2. Pressure leaching las cruces copper ore

    NASA Astrophysics Data System (ADS)

    Berezowsky, R. M.; Xue, T.; Collins, M. J.; Makwana, M.; Barton-Jones, I.; Southgate, M.; Maclean, J. K.

    1999-12-01

    A hydrometallurgical process was developed for treating the Las Cruces massive sulfide-ore deposit located near Seville, Spain. A two-stage countercurrent leach process, consisting of an atmospheric leach and a pressure leach, was developed to effectively leach copper from the copper-bearing minerals and to generate a solution suitable for the subsequent solvent-extraction and copper-electrowinning operations. The results of batch and continuous miniplant tests are presented.

  3. Uranium ore rolls in the United States

    USGS Publications Warehouse

    Harshman, E.N.

    1970-01-01

    About 40% of the uranium ore reserves in the United States, minable at $8 per pound of contained U3O8, are in roll-type deposits in the State of Wyoming. The host rocks are arkosic sandstones, deposited in intermontane basins under fluvial conditions, and derived from the granitic cores of mountain ranges that flank the basins. The host rocks are Eocene and possibly Paleocene in age and are, or were, overlain by a sequence of continental tuffaceous siltstones, sandstones and conglomerates 400 - 700 m thick.

  4. Sulfur isotope geochemistry of ore and gangue minerals from the Silesian-Cracow Mississippi Valley-type ore district, Poland

    USGS Publications Warehouse

    Leach, D.L.; Vets, J.G.; Gent, C.A.

    1996-01-01

    Studies of the sulfur isotopic composition of ore and gangue minerals from the Silesian-Cracow Zn-Pb district were conducted to gain insights into processes that controlled the location and distribution of the ore deposits. Results of this study show that minerals from the Silesian-Cracow ore district have the largest range of sulfur isotope compositions in sulfides observed from any Mississippi Valley-type ore district in the world. The ??34S values for sulfide minerals range from +38 to -32 per mil for the entire paragenetic sequence but individual stages exhibit smaller ranges. There is a well developed correlation between the sulfur isotope composition and paragenetic stage of ore deposition. The first important ore stage contains mostly positive ??34S values, around 5 per mil. The second stage of ore formation are lower, with a median value of around -5 to -15 per mil, and with some values as low as -32 per mil. Late stage barite contains isotopically heavy sulfur around +32 per mil. The range in sulfur isotope compositions can be explained by contributions of sulfur from a variety of source rocks together with sulfur isotope fractionations produced by the reaction paths for sulfate reduction. Much of the variation in sulfur isotope compositions can be explained by bacterial reduction of sedimentary sulfate and disequilibrium reactions by intermediate-valency sulfur species, especially in the late-stage pyrite and sphalerite. Organic reduction of sulfate and thermal release of sulfur from coals in the Upper Silesian Coal Basin may have been important contributors to sulfur in the ore minerals. The sulfur isotopic data, ore mineral textures, and fluid inclusion data, are consistent with the hypothesis that fluid mixing was the dominant ore forming mechanism. The rather distinct lowering of ?? 34S values in sulfides from stage 2 to stage 3 is believed to reflect some fundamental change in the source of reduced sulfur and/or hydrology of the ore

  5. Hauling urban ore

    SciTech Connect

    Lueck, P.A. )

    1991-05-01

    This paper reports that during the last few years, many railroads have viewed this country's growing MSW disposal problem as mountains of urban ore, referring to the potential revenues in its transportation. Much to the chagrin of the railroads, however, few endeavors to mine this new market have panned out. The MSW disposal problem is most acute in the Northeast, where numerous urban landfills were due to close early this year. Unfortunately, large-scale mass movement of MSW by railroads in the Northeast have failed to materialize. At least one railroad in the West is actively transporting MSW via rail. On April 1, 1991, the Union Pacific (UP) began transporting MSW in double stack containers from Seattle, Wash., to a landfill in Arlington, Ore. Working with Washington Waste Systems, the UP upgraded part of its trackage and dedicated space and equipment to serve that city's disposal needs.

  6. [Periodic bioleaching of refractory gold-bearing pyrite ore].

    PubMed

    Vardanian, N S; Nagdalian, S Z

    2009-01-01

    The main characteristics of a periodic bioleaching of the refractory gold-bearing pyrite ore from the Tandzut deposit (Armenia) with the help of moderate thermophilic bacterium Sulfobacillus thermosulfidooxi-dans subsp. asporogenes and original thermotolerant strains Leptospirillum spp. were studied. The optimal pH for oxidizing the ore by S. thermosulfidooxidans subsp. asporogenes was 1.8; the pulp density providing maximal iron leaching rate was 10%. The intensity of oxidation processes decreased at higher ore concentrations. When using S. thermosulfidooxidans subsp. asporogenes, the largest amount of iron passed into the solution at the initial oxidant (Fe3+) concentration of 1.3 g/l. Cocultivation of S. thermosulfidooxidans subsp. asporogenes and Leptospirillum spp. increased the degree of pyrite ore leaching to 98.4% vs. 34.1% in the case of the former bacterium alone. PMID:19764614

  7. ORE CONVEYANCE SYSTEM AND ADIT. LOOKING WEST. ORE FROM THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ORE CONVEYANCE SYSTEM AND ADIT. LOOKING WEST. ORE FROM THE MINES ABOVE AT THE RIDGELINE AND TO THE RIGHT WAS CONVEYED TO THIS AREA AND DUMPED INTO THE SHAFT AT CENTER. THIS SHAFT OPENS INTO THE ADIT AT BOTTOM CENTER. THERE IS ANOTHER SHAFT OPENING INTO THE ADIT JUST ABOVE THE ADIT BEHIND THE STONE WALL. THE ORE WAS LOADED INTO TRAM CARS INSIDE THE ADIT AND CONVEYED ON TRACKS TO THE TRESTLE LEADING TO THE PRIMARY ORE BIN AT THE TRAM TERMINAL. TRACKS CAN BE SEEN LEADING FROM THE ADIT AND TO THE LEFT. THE ORE WAS THEN DUMPED INTO A CHUTE AT THE END OF THE TRESTLE CARRYING IT INTO THE ORE BIN AT THE TRAM TERMINAL(SEE CHUTE ON CA-291-30). - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  8. Geology of the manganese deposits of Cuba

    USGS Publications Warehouse

    Simons, Frank S.; Straczek, John A.

    1958-01-01

    Deposits of manganese ore have been found in five of the six provinces of Cuba and have been reported from the sixth.  Only Oriente and Pinar del Rio provinces have more than a few known deposits and only the deposits of Oriente have yielded any appreciable amount of ore.

  9. Gold in the Brunswick No. 12 volcanogenic massive sulfide deposit, Bathurst Mining Camp, Canada: Evidence from bulk ore analysis and laser ablation ICP-MS data on sulfide phases

    NASA Astrophysics Data System (ADS)

    McClenaghan, Sean H.; Lentz, David R.; Martin, Jillian; Diegor, Wilfredo G.

    2009-07-01

    The 329-Mt Brunswick No. 12 volcanogenic massive sulfide deposit (total resource of 163 Mt at 10.4% Zn, 4.2% Pb, 0.34% Cu, and 115 g/t Ag) is hosted within a Middle Ordovician bimodal volcanic and sedimentary sequence. Massive sulfides are for the most part syngenetic, and the bulk of the sulfide ore occurs as a Zn-Pb-rich banded sulfide facies that forms an intimate relationship with a laterally extensive Algoma-type iron formation and defines the Brunswick Horizon. Zone refining of stratiform sulfides is considered to have resulted in the development of a large replacement-style Cu-rich basal sulfide facies, which is generally confined between the banded sulfide facies and an underlying stringer sulfide zone. Complex polyphase deformation and associated lower- to upper-greenschist facies regional metamorphism is responsible for the present geometry of the deposit. Textural modification has resulted in a general increase in grain size through the development of pyrite and arsenopyrite porphyroblasts, which tend to overprint primary mineral assemblages. Despite the heterogeneous ductile deformation, primary features have locally been preserved, such as fine-grained colloform pyrite and base and precious metal zonation within the Main Zone. Base metal and trace element abundances in massive sulfides from the Brunswick No. 12 deposit indicate two distinct geochemical associations. The basal sulfide facies, characterized by a proximal high-temperature hydrothermal signature (Cu-Co-Bi-Se), contains generally low Au contents averaging 0.39 ppm ( n = 34). Conversely, Au is enriched in the banded sulfide facies, averaging 1.1 ppm Au ( n = 21), and is associated with an exhalative suite of elements (Zn-Pb-As-Sb-Ag-Sn). Finely laminated sulfide lenses hosted by iron formation at the north end of the Main Zone are further enriched in Au, averaging 1.7 ppm ( n = 41) and ranging up to 8.2 ppm. Laser ablation inductively coupled plasma-mass spectrometry (ICP-MS) analyses of

  10. Ferride geochemistry of Swedish precambrian iron ores

    NASA Astrophysics Data System (ADS)

    Loberg, B. E. H.; Horndahl, A.-K.

    1983-10-01

    Chemical analysis for major and trace elements have been performed on 30 Swedish Precambrian iron ores and on some from Iran and Chile. The Swedish ores consist of apatite iron ores, quartz-banded iron ores, skarn and limestone iron ores from the two main ore districts of Sweden, the Bergslagen and the Norrbotten province. Some Swedish titaniferous iron ores were also included in the investigation. The trace element data show that the Swedish ores can be subdivided into two major groups: 1. orthomagmatic and exhalative, 2. sedimentary. Within group 1 the titaniferous iron ores are distinguished by their high Ti-contents. From the ferride contents of the Kiruna apatite iron ores, the ores are considered to be mobilization products of skarn iron ores from the Norbotten province.

  11. New isotopic evidence bearing on bonanza (Au-Ag) epithermal ore-forming processes

    NASA Astrophysics Data System (ADS)

    Saunders, James A.; Mathur, Ryan; Kamenov, George D.; Shimizu, Toru; Brueseke, Matthew E.

    2016-01-01

    New Cu, S, and Pb isotope data provide evidence for a magmatic source of metal(loid)s and sulfur in epithermal Au-Ag deposits even though their ore-forming solutions are composed primarily of heated meteoric (ground) waters. The apparent isotopic discrepancy between ore metals and ore-forming solutions, and even between the ore and associated gangue minerals, indicates two different sources of epithermal ore-forming constituents: (1) a shallow geothermal system that not only provides the bulk of water for the ore-forming solutions but also major chemical constituents leached from host rocks (silica, aluminum, potassium, sodium, calcium) to make gangue minerals and (2) metals and metalloids (As, Te, Sb, etc.) and sulfur (±Se) derived from deeper magma bodies. Isotopic data are consistent with either vapor-phase transport of metal(loids) and sulfur and their subsequent absorption by shallow geothermal waters or formation of metallic (Au, Ag, Cu phases) nanoparticles at depth from magmatic fluids prior to encountering the geothermal system. The latter is most consistent with ore textures that indicate physical transport and aggregation of nanoparticles were significant ore-forming processes. The recognition that epithermal Au-Ag ores form in tectonic settings that produce magmas capable of releasing metal-rich fluids necessary to form these deposits can refine exploration strategies that previously often have focused on locating fossil geothermal systems.

  12. Potential for cobalt recovery from lateritic ores in Europe

    NASA Astrophysics Data System (ADS)

    Herrington, R.

    2012-04-01

    Cobalt is one of the 'critical metals' identified under the EU Raw Materials Initiative. Annually the global mine production of cobalt is around 55,000 tonnes,with Europe's industries consuming around 30% of that figure. Currently Europe produces around 27 tonnes of cobalt from mines in Finland although new capacity is planned. Co-bearing nickel laterite ores being mined in Greece, Macedonia and Kosovo where the cobalt is currently not being recovered (ores have typical analyses of 0.055% Co and >1% Ni,). These ores are currently treated directly in pyrometallurgical plants to recover the contained nickel and this process means there is no separate cobalt product produced. Hydrometallurgical treatment of mineralogically suitable laterite ores can recover the cobalt; for example Cuba recovers 3,500 tonnes of cobalt from its laterite mining operations, which are of a similar scale to the current European operations. Implementation of hydrometallurgical techniques is in its infancy in Europe with one deposit in Turkey planning to use atmospheric heap leaching to recover nickel and copper from oxide-dominated ores. More widespread implementation of these methods to mineralogically suitable ore types could unlock the highly significant undeveloped resources (with metal contents >0.04% Co and >1% Ni), which have been defined throughout the Balkans eastwards into Turkey. At a conservative estimate, this region has the potential to supply up to 30% of the EU cobalt requirements.

  13. Can I Trust ORE Reports?

    ERIC Educational Resources Information Center

    Feedback, 1984

    1984-01-01

    This issue of FEEDBACK, a newsletter produced by the the Austin Independent School District Office of Research and Evaluation (ORE), illustrates the accuracy, validity, and fairness of ORE reports. The independence of the reports is explained. Internal and external quality controls are used to ensure reliability and accuracy of the reports.…

  14. A geochemical assessment of possible lunar ore formation

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; Colson, Russell O.; Vaniman, David

    1991-01-01

    The Moon apparently formed without appreciable water or other relatively volatile materials. Interior concentrations of water or other volatile substances appear to be extremely low. On Earth, water is important to the genesis of nearly all types of ores. Thus, some have reasoned that only abundant elements would occur in ore concentrations. The definition and recognition of ores on the Moon challenge the imaginations and the terrestrial perceptions of ore bodies. Lunar ores included solar-wind soaked soils, which contain abundant but dilute H, C, N, and noble gases (including He-3). Oxygen must be mined; soils contain approximately 45 percent (wt). Mainstream processes of rock formation concentrated Si, Mg, Al, Fe, and Ca, and possibly Ti and Cr. The highland surface contains approximately 70 percent (wt) feldspar (mainly CaAl2Si2O8), which can be separated from some highland soils. Small fragments of dunite were collected; dunite may occur in walls and central peaks of some craters. Theoretical extensions of observations of lunar samples suggest that the Moon may have produced ores of trace elements. Some small fragments have trace-element concentrations 10(exp 4) times higher than the lunar average, indicating that effective geochemical separations occurred; processes included fractional crystallization, silicate immiscibility, vaporization and condensation, and sulfide metamorphism. Operations of these processes acting on indigenous materials and on meteoritic material in the regolith could have produced ores. Infalling carbonaceous meteorites and comets have added water and hydrocarbons that may have been cold-trapped. Vesicles in basalts, pyroclastic beads, and reported transient events suggest gag emission from the lunar interior; such gas might concentrate and transport rare elements. Large impacts may disperse ores or produce them through deposition of heat at depth and by vaporization and subsequent condensation. The main problem in assessing lunar

  15. Siliceous sedimentary rock-hosted ores and petroleum

    SciTech Connect

    Hein, J.R.

    1987-01-01

    Geological, biological, oceanographic, and geochemical principles involved in forming mineral deposits associated with siliceous rocks are integrated in this collection. The book emerged from a decade of research by 142 scientists from 33 countries who worked with the International Geological Correlations Project under editor James R. Hein. It reveals how several economic ores and petroleum were formed in siliceous sediments in coastal ocean basins. This collection places each ore-deposit type into a genetic model emphasizing coastal upwelling; displays all chert occurrences on paleographic maps for each period of the Phanerozoic; covers phosphate, uranium, diatomite, manganese, iron, barite, and petroleum deposits; and gives the first evidence of a bacterially mediated, diagenetic origin for manganese deposits.

  16. Supergene processes and uranium ore formation in the Ronneburg ore field, Germany

    NASA Astrophysics Data System (ADS)

    Bolonin, A. V.; Gradovsky, I. F.

    2012-04-01

    The Ordovician-Lower Carboniferous sequence of slightly metamorphosed gray carbonate-terrigenous rocks contains the Silurian black cherty shales enriched in carbon (6-9%), pyrite (6-7%), and uranium (˜30 ppm). The uranium ore is localized at the pinch-out of areal and linear zones of the Early Permian supergene (exogenic) oxidation of rocks expressed in reddening (hematitization). U, As, Sb, Cu, Ni, Mo, and Ag have been removed from the oxidized black shales and concentrated in the cementation zone in form of pitchblende and sulfides in wall-rock disseminations and veinlets largely hosted in carbonate-bearing rocks. In the Late Permian, during deposition of the upper Rotliegende and Zechstein, the fractures in the basement were filled with carbonates and sulfates; uranium was partly redeposited along with enrichment in Pb and Zn. Mesozoic and Cenozoic supergene processes altered uranium ore insignificantly.

  17. Reinforcement core facilitates O-ring installation

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Reinforcement core holds O-ring in place within a structure while adjacent parts are being assembled. The core in the O-ring adds circumferential rigidity to the O-ring material. This inner core does not appreciably affect the sectional elasticity or gland-sealing characteristics of the O-ring.

  18. Krasnotur'insk Skarn copper ore field, Northern Urals: The U-Pb age of ore-controlling diorites and their place in the regional metallogeny

    NASA Astrophysics Data System (ADS)

    Grabezhev, A. I.; Ronkin, Yu. L.; Puchkov, V. N.; Gerdes, A.; Rovnushkin, M. Yu.

    2014-06-01

    The Krasnotur'insk skarn copper ore field known from the theoretical works of Academician K.S. Korzhinskii is located in the western part of the Tagil volcanic zone (in the area of the town of Krasnotur'insk). The ore field is composed of layered Devonian (Emsian) volcanosedimentary rocks intruded by small plutons of quartz diorites, diorites, and gabbrodiorites. Widespread pre-ore and intra-ore dikes of similar composition control the abundance of the andradite skarns formed after limestones and the magnetitesulfide and sulfide ore bodies formed after skarns. The LA-ICP-MS U-Pb concordant age of zircon from the quartz diorite of the Vasil'evsko-Moskalevskii pluton calculated by 16 analyses (16 crystals) is 407.7 ± 1.6 Ma (MSWD = 1.5). Taking into account the geological and petrogeochemical similarity of diorites of small plutons and intra-ore dikes, it is assumed that this age corresponds to the period of formation of the ore-magmatic system of the Krasnotur'insk skarn copper ore field. It was probably formed somewhat earlier than the Auerbakh montzonitic pluton and the accompanying skarn magnetite deposits in the south.

  19. Microbial reduction of iron ore

    DOEpatents

    Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

    1989-11-14

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.

  20. Microbial reduction of iron ore

    DOEpatents

    Hoffmann, Michael R.; Arnold, Robert G.; Stephanopoulos, Gregory

    1989-01-01

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry.

  1. A genetic reinterpretation of the Falun and Åmmeberg ore types, Bergslagen, Sweden

    NASA Astrophysics Data System (ADS)

    Sundblad, K.

    1994-06-01

    The stratiform sulphide and oxide ores of Bergslagen, south-central Sweden, constitute the largest concentration of base metal and iron ores in northern Europe. They are hosted by Early Proterozoic metamorphosed volcanic and sedimentary successions, which (together with later granitoids) belong to the Svecofennian Domain. An earlier genetic model suggested that two principal types of sulphide ores existed in Bergslagen (Falun and Åmmeberg), which had been formed through two contrasting granitoid-related processes, whereas the iron oxide ores were considered exhalative-volcanogenic. The prevailing view for the Bergslagen ores is that all stratiform sulphide (and oxide) ores were formed by exhalative-volcanogenic processes from one homogenous metal source. In this paper are presented new high-precision determinations of the ore lead isotopic composition of twentytwo stratiform sulphide and oxide ores in Bergslagen (among them Falun, Zinkgruvan-Åmmeberg and Dannemora), in order to provide an improved base for their genesis. The results show that significant variations in metal sources existed in Bergslagen for the volcanogenic ores. Most ores (including the Falun Cu-Zn-Pb deposit) were formed from a major isotopic reservoir that occurs in the interior parts of Bergslagen. This source is defined as the Falun reservoir and is dominated by calcalkaline felsic volcanic rocks. A variable input from a more evolved source component (recycled pre-Svecofennian crustal components) is locally important in sedimentdominated areas, particularly the Stockholm archipelago. A third source, representing relatively primitive metabasalts, influenced the lead isotopic pattern of ores in westernmost Bergslagen. The composition of the Zinkgruvan (Åmmeberg) ore lead is distinctly different from that of the Falun reservoir, but forms, together with other sulphide deposits along the southern margin of Bergslagen, a pronounced linear trend in standard isotope diagrams. The linear trend is

  2. The mechanism of formation of the seafloor massive sulfide ore body beneath the seafloor at HAKUREI Site in Izena Caldera, Middle Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Yoshizumi, R.; Urabe, T.

    2012-12-01

    The first seafloor hydrothermal activity in northwest Pacific was found at the northeastern rim of the Izena Caldera (Jade Site), Middle Okinawa Trough in 1988 (Halbach et al.,1989). The tectonic setting of the sulfide occurrence, even though small in amount, is similar to that of Kuroko deposits which are the volcanogenic massive sulfide (VMS) deposits found in volcano-sedimentary units in northern Japan. Later, large seafloor massive sulfide (SMS) ore bodies were discovered above and beneath the seafloor in the central part of the Izena Caldera (HAKUREI Site). The ore reserve is estimated to be 5million tons based on some 100 short (<20 meters), dense drillings (Japan Oil, Gas and Metals National Corporation (JOGMEC), 2011), and is regarded as the biggest "proven" SMS deposit in the world. It is worthy to note that the HAKUREI ore deposit can be divided into Ore A (Upper ore bodies) and the Ore B (Lower ore bodies) which are separated by silt and pumice-rich sedimentary layer of a few meter in thickness. The Upper ore bodies are composed of sulfide "mounds" and "chimneys", which are commonly observed in hydrothermal areas. However, the nature of the Lower ore bodies remain uninvestigated. We conducted two research cruises at the HAKUREI site in 2011: TAIGA11 cruise of Exploration Vessel Hakurei-Maru NO.2 (JOGMEC) with Benthic Multicoreing System (BMS) and NT11-15 cruise of R/V Natshushima with ROV Hyper Dolphin (JAMSTEC). In the former cruise, a core (H-1) 5.4m in length was drilled to intersect both the Upper and Lower ore bodies which are separated by sediment using BMS. While, in latter cruise, volcanic rocks (aphyric rhyolite) and sulfide ores (Upper ore) were collected using Hyper Dolphin. The obtained sulfide ores were served for examination with the ore microscopy, electron probe microanalyzer (EPMA) and heating stage for fluid inclusions in barite in ore. Sphalerite and galena dominate at upper part of the Lower ore, while chalcopyrite and covellite

  3. Correspondence of ores of silver and gold with basement terranes in the American southwest

    NASA Astrophysics Data System (ADS)

    Titley, S. R.

    1991-04-01

    The ratios of silver to gold produced from epigenetic ore districts of the American southwest reveal a consistency of value ranges, differing by an order of magnitude, that may be identified with either one or the other of two geologic terranes in which the ores occur. A discriminating value of the ratio is about 17.5∶1, the ratio of crustal abundance given by Ahrens (1965). (No further significance is attributed to this value, at this time, beyond the fact that it appears to establish a reasonable separation of values on the basis of geographic occurrence.) Ores relatively enriched in Ag occur in terranes floored by thick Proterozoic clastic and Paleozoic marine successions, and ores relatively enriched in Au lie above or within a Proterozoic basement dominated by maficfelsic volcanic (arc) successions. Proterozoic granites occur in each region. The values of the ratio are broadly consistent within each terrane, irrespective of the age of ore formation, the ore deposit style, associated igneous rocks, structural control, differing interpreted styles of subduction, and weathering histories. These characteristics and associations support a hypothesis that metallogenic signatures of ore districts in this region are fundamentally related to the crust in which the ores occur.

  4. Ore and coal beneficiation method

    SciTech Connect

    Abadi, K.

    1987-10-27

    This patent describes a method for the separation of iron pyrite from a pulverized mineral ore comprising iron pyrites as a first constituent and a second constituent selected from the group consisting of coal and non-ferrous metal ores by air froth flotation of an aqueous pulp of the pulverized mineral ore. The improvement comprises incorporating in the pulp from about 0.02 to about 1 pound per ton of mineral of a composition comprising hydroxyacetic acid, xanthan gum, sodium silicate, and water wherein the acid content of the composition is from about 0.1 to about 69 percent by weight of the composition, the xanthan gum is from about 0.01 to about 10 percent by weight of the composition; and the ratio by weight of sodium silicate to hydroxyacetic acid is in the range of from about 0 to about 0.5.

  5. SRB O-ring free response analysis

    NASA Technical Reports Server (NTRS)

    Moore, Carleton J.

    1986-01-01

    The free response of viton O-rings were investigated. Two different response mechanisms of viton O-rings are identified and a theoretical representation of the two mechanisms is compared with experimental results for various temperatures.

  6. Conical O-ring seal

    DOEpatents

    Chalfant, G.G. Jr.

    A shipping container for radioactive or other hazardous materials has a conical-shaped closure containing grooves in the conical surface thereof and an O-ring seal incorporated in each of such grooves. The closure and seal provide a much stronger, tighter and compact containment than with a conventional flanged joint.

  7. Conical O-ring seal

    DOEpatents

    Chalfant, Jr., Gordon G.

    1984-01-01

    A shipping container for radioactive or other hazardous materials which has a conical-shaped closure containing grooves in the conical surface thereof and an O-ring seal incorporated in each of such grooves. The closure and seal provide a much stronger, tighter and compact containment than with a conventional flanged joint.

  8. Osmium isotope constraints on ore metal recycling in subduction zones

    PubMed

    McInnes; McBride; Evans; Lambert; Andrew

    1999-10-15

    Veined peridotite xenoliths from the mantle beneath the giant Ladolam gold deposit on Lihir Island, Papua New Guinea, are 2 to 800 times more enriched in copper, gold, platinum, and palladium than surrounding depleted arc mantle. Gold ores have osmium isotope compositions similar to those of the underlying subduction-modified mantle peridotite source region, indicating that the primary origin of the metals was the mantle. Because the mantle is relatively depleted in gold, copper, and palladium, tectonic processes that enhance the advective transport and concentration of these fluid soluble metals may be a prerequisite for generating porphyry-epithermal copper-gold deposits. PMID:10521343

  9. Origin of the granites and related Sn and Pb-Zn polymetallic ore deposits in the Pengshan district, Jiangxi Province, South China: constraints from geochronology, geochemistry, mineral chemistry, and Sr-Nd-Hf-Pb-S isotopes

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Jiang, Shao-Yong; Luo, Lan; Zhao, Kui-Dong; Ma, Liang

    2016-05-01

    The Pengshan Sn and Pb-Zn polymetallic deposits are located in the south margin of the Jiujiang-Ruichang (Jiurui) district of the Middle-Lower Yangtze River Metallogenic Belt in South China. Four large deposits include Huangjinwa, Zengjialong, Jianfengpo, and Zhangshiba, the former three are Sn-dominant deposits which occur as stratiform orebodies in the contact zones of the Pengshan granites and within the country rock strata, whereas Zhangshiba consists of stratiform Pb-Zn orebodies within the Precambrian metasedimentary strata. In this study, we present results on zircon U-Pb ages, major and trace elements, and mineral chemistry as well as Sr-Nd-Hf isotope data of the granites, Pb and S isotopes of both the Sn-dominant and Pb-Zn dominant deposits, and U-Pb dating of cassiterite from the Pengshan district. SHRIMP and LA-ICP-MS zircon U-Pb dating shows that the Pengshan granites were emplaced in the Early Cretaceous (129-128 Ma), which is in good agreement with the U-Pb dating (130-128 Ma) of cassiterite from the Jianfengpo Sn deposit. The Pengshan granites consist mainly of weakly peraluminous highly fractionated I-type affinity granitic rocks. Detailed elemental and isotopic data suggest that the granites formed by partial melting of Mesoproterozoic metamorphic basement materials with minor input of mantle-derived melts. The mineral chemistry of biotite demonstrates that the Pengshan granitic magma had a low oxygen fugacity, thereby precluding the tin dominantly partitioning into the rock-forming silicate minerals and favoring accumulation in the exsolved residual liquid during magma crystallization stages. Sulfur isotopes show a relatively heavy sulfur isotopic composition from 5.8 to 17.6 ‰, and no difference for sulfur isotopes between the Sn deposits (5.8-13.4 ‰, Huangjinwa, Zengjialong, Jianfengpo) and the Pb-Zn deposit (mostly 7.1-13.0 ‰, except for one 17.6 ‰, Zhangshiba). The sulfur isotope data of pyrite from the host sedimentary rocks show

  10. Mineralogy and geochemistry of banded iron formation and iron ores from eastern India with implications on their genesis

    NASA Astrophysics Data System (ADS)

    Roy, Subrata; Venkatesh, A. S.

    2009-12-01

    The geological complexities of banded iron formation (BIF) and associated iron ores of Jilling-Langalata iron ore deposits, Singhbhum-North Orissa Craton, belonging to Iron Ore Group (IOG) eastern India have been studied in detail along with the geochemical evaluation of different iron ores. The geochemical and mineralogical characterization suggests that the massive, hard laminated, soft laminated ore and blue dust had a genetic lineage from BIFs aided with certain input from hydrothermal activity. The PAAS normalized REE pattern of Jilling BIF striking positive Eu anomaly, resembling those of modern hydrothermal solutions from mid-oceanic ridge (MOR). Major part of the iron could have been added to the bottom sea water by hydrothermal solutions derived from hydrothermally active anoxic marine environments. The ubiquitous presence of intercalated tuffaceous shales indicates the volcanic signature in BIF. Mineralogical studies reveal that magnetite was the principal iron oxide mineral, whose depositional history is preserved in BHJ, where it remains in the form of martite and the platy hematite is mainly the product of martite. The different types of iron ores are intricately related with the BHJ. Removal of silica from BIF and successive precipitation of iron by hydrothermal fluids of possible meteoric origin resulted in the formation of martite-goethite ore. The hard laminated ore has been formed in the second phase of supergene processes, where the deep burial upgrades the hydrous iron oxides to hematite. The massive ore is syngenetic in origin with BHJ. Soft laminated ores and biscuity ores were formed where further precipitation of iron was partial or absent.

  11. PGE distribution in sulfide ores from ultramafic massifs of the central East Sayan Mountains, Southern Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Kolotilina, T. B.; Mekhonoshin, A. S.; Orsoev, D. A.

    2016-01-01

    Data on the composition of sulfide ores from ultramafic massifs in the central East Sayan Mountains and on the regularities of platinum group elements (PGE) in these ores are presented. It is found that the highest PGE contents are characteristic for net-textured and massive ores from the Zhelos massif: total PGE content there is up to 15 ppm, with Pd/Pt = 3-8, for Ni and Cu contents of 1.5-2.8 and 0.5-2.7 wt%, respectively. In the disseminated ores of the Zhelos massif, PGE contents vary from 1 to 7 ppm, at Ni and Cu contents varying in the ranges of 0.5-1.0 and 0.2-0.4 wt %, respectively. In the Tokty-Oi massif, disseminated ores are characterized by higher absolute PGE contents (1.6 to 3.3 ppm) at similar Ni content. PGE tenor of disseminated ores is higher compared to that of massive and net-textured ones. In the cross-sections of both massifs, net-textured and massive ores of an essentially pyrrhotine composition are found at the contact between ultramafic and host rocks. Total PGE in these ores is up to 12 ppm. The obtained data on sulfur isotopes indicate the common, well-homogenized sources, and close physical-chemical depositional conditions of all ore types.

  12. Novel Binders and Methods for Agglomeration of Ore

    SciTech Connect

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski; J. A. Gurtler

    2006-09-30

    Heap leaching is one of the methods being used to recover metal from low grade ore deposits. The main problem faced during heap leaching is the migration of fine grained particles through the heap, forming impermeable beds which result in poor solution flow. The poor solution flow leads to less contact between the leach solution and the ore, resulting in low recovery rates. Agglomeration of ore into coarse, porous masses prevents fine particles from migrating and clogging the spaces and channels between the larger ore particles. Currently, there is one facility in the United States which uses agglomeration. This operation agglomerates their ore using leach solution (raffinate), but is still experiencing undesirable metal recovery from the heaps due to agglomerate breakdown. The use of a binder, in addition to the leach solution, during agglomeration would help to produce stronger agglomerates that did not break down during processing. However, there are no known binders that will work satisfactorily in the acidic environment of a heap, at a reasonable cost. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. Increasing copper recovery in heap leaching by the use of binders and agglomeration would result in a significant decrease in the amount of energy consumed. Assuming that 70% of all the leaching heaps would convert to using agglomeration technology, as much as 1.64*10{sup 12} BTU per year would be able to be saved if a 25% increase in copper recovery was experienced, which is equivalent to saving approximately 18% of the energy currently being used in leaching heaps. For every week a leach cycle was decreased, a savings of as much as 1.23*10{sup 11} BTU per week would result. This project has identified several acid-resistant binders and agglomeration procedures. These binders and experimental procedures will be able to be used for use in improving the energy efficiency of

  13. Composition and origin of Early Cambrian Tiantaishan phosphorite-Mn carbonate ores, Shaanxi Province, China

    USGS Publications Warehouse

    Hein, J.R.; Fan, D.; Ye, J.; Liu, T.; Yeh, H.-W.

    1999-01-01

    The Tiantaishan phosphorite-Mn carbonate ores occur in the Early Cambrian Tananpo Formation in complexly folded and faulted rocks located in southern Shaanxi Province. About 65 x 106 tonnes of 17% P2O5 ore reserves exist and Mn-ore reserves are about 8.3 x 106 tonnes of +18% Mn. The stratigraphic sequence in ascending order consists of black phyllite, black to gray phosphorite ore, black phyllite, rhodochrostone ore, Mn mixed-carbonates, and dolostone. Data are presented from microprobe mineral chemistry, whole-rock chemistry, stable isotopes of carbonates, X-ray mineralogy, petrographic and SEM observations, and statistical analysis of chemical data. The dominant ore-forming minerals are hydroxy- and carbonate fluorapatite and Ca rhodochrosite, with Mg kutnahorite and dolomite comprising the Mn mixed-carbonate section. Pyrite occurs in all rock types and alabandite (MnS) occurs throughout the rhodochrostone section. The mean P2O5 content of phosphorite is 31% and argillaceous phosphorite is 16%, while the mean MnO content of rhodochrostone ore is 37%. Phosphorite ores are massive, spheroidal, laminated, and banded, while rhodochrostone ores have oolitic, spheroidal, and granular fabrics. The most distinguishing characteristics of the ores are high total organic carbon (TOC) contents (mean 8.4%) in the phosphorite and high P2O5 contents (mean 2.7%) in the rhodochrostone ore. The atypically high TOC contents in the Tiantaishan phosphorite probably result from very strong productivity leading to high sedimentation rates accompanied by weak reworking of sediments; poor utilization of the organic matter by bacteria; and/or partial replacement of bacterial or algal mats by the apatite. The depositional setting of the ores was the margin of an epicontinental seaway created as a direct consequence of global processes that included break-up of a supercontinent, formation of narrow seaways, creation of extensive continental shelves, overturn of stagnant, metal-rich deep

  14. Modeling the formation of porphyry-copper ores

    USGS Publications Warehouse

    Ingebritsen, Steven E.

    2012-01-01

    Porphyry-copper ore systems, the source of much of the world's copper and molybdenum, form when metal-bearing fluids are expelled from shallow, degassing magmas. On page 1613 of this issue, Weis et al. (1) demonstrate that self-organizing processes focus metal deposition. Specifically, their simulation studies indicate that ores develop as consequences of dynamic variations in rock permeability driven by injection of volatile species from rising magmas. Scenarios with a static permeability structure could not reproduce key field observations, whereas dynamic permeability responses to magmatic-fluid injection localized a metal-precipitation front where enrichment by a factor of 103 could be achieved [for an overview of their numerical-simulation model CSMP++, see (2)].

  15. Softened-Stainless-Steel O-Rings

    NASA Technical Reports Server (NTRS)

    Marquis, G. A.; Waters, William I.

    1993-01-01

    In fabrication of O-ring of new type, tube of 304 stainless steel bent around mandril into circle and welded closed into ring. Ring annealed in furnace to make it soft and highly ductile. In this condition, used as crushable, deformable O-ring seal. O-ring replacements used in variety of atmospheres and temperatures, relatively inexpensive, fabricated with minimum amount of work, amenable to one-of-a-kind production, reusable, and environmentally benign.

  16. Uranium mining: ore treatment and environmental control. January 1966-May 1981 (citations from the Metals abstracts data base). Report for Jan 66-May 81

    SciTech Connect

    Not Available

    1981-05-01

    Various processes for the beneficiation of uranium bearing ores are presented. Included are acidic and bacterial leaching, chlorination, solvent extraction, and precipitation. Analytical techniques for the determination of uranium in ores and leachates, and for processes such as solution mining of deep mineral deposits, are also described. (Contains 75 citations fully indexed and including a title list.)

  17. Two types of ore-bearing mafic complexes of the Early Proterozoic East-Scandinavian LIP and their ore potential

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Felix; Zhirov, Dmitry; Bayanova, Tamara; Korchagin, Alexey; Chaschin, Victor

    2015-04-01

    Two types of the ore-bearing mafic complexes are allotted in the East-Scandinavian large igneous province (LIP). They differ in geodynamic setting, structure, isotope geochemistry, petrology and mineralogy. The PGE-bearing mafic-ultramafic layered intrusions are associated with the first complex. They have been formed at an initial (pre-rift) stage of LIP. Features of origin of this complex are: 1) large-scale, protracted, and multiple episodes of deep mantle plume or asthenosphere upwelling; 2) the vast non-subduction-type basaltic magma in an intraplate continental setting; 3) low-sulfide Pt-Pd (with Ni, Cu, Au, Co and Rh) mineralization in different geological setting (reef- and contact type etc.); 4) anomalously high concentrations of PGEs in the bulk sulfides, inferred platinum distribution coefficient between silicate and sulfide melts of >100000. Deep mantle magma source is enriched in ore components (fertile source) and lithophile elements. It is reflected in the isotope indicators such as ɛNd(T) from -1 to -3, ISr(87Sr/86Sr) from 0.702 to 0.704, 3Не/4Не = (10 ^-5 ÷ 10 ^-6). Magma and ore sources differ from those of Mid-Ocean Ridge basalts (MORB), subduction-related magma but are similar to EM-I. Ore-bearing mafic complexes formed during a long period of time and by different episodes (2490±10 Ma; 2470±10 Ma; 2450±10 Ma; 2400±10 Ma), and by mixing between the boninitic an anorthositic magmas. It is known about 10 deposits and occurrences in Kola region with total reserves and resources about 2000 tons in palladium equivalent (with an average content ≥2-3 ppm). Intrusions with the rich sulfide Ni-Cu ore (with Co and poor PGE) are associated with the second mafic complex. Ore-controlling mafic-ultramafic intrusions are formed at a final stage of the intracontinental rifting of the Transitional period (2200-1980 Ma). Initial magma is depleted and similar to the MORB in terms of rare earths distribution. Enriched ferropicritic Fe-Ti derivatives of

  18. Hyperion image analysis and linear spectral unmixing to evaluate the grades of iron ores in parts of Noamundi, Eastern India

    NASA Astrophysics Data System (ADS)

    Magendran, T.; Sanjeevi, S.

    2014-02-01

    This paper reports the results of a study to differentiate iron ores in terms of their grades, using the hyperspectral (EO-1 Hyperion) image data, covering a mineralized belt in the Noamundi area, eastern India. The study involves hyperspectral data collection, pre-processing (reduction of atmospheric and solar flux effects), generation of spectral curves from the image for the iron ore deposits, extraction of key spectral parameters and linear spectral unmixing for mapping iron ore abundance. Spectral curves for iron ore deposits extracted from the Hyperion image pixels exhibit strong absorption at 850-900 nm and 2150-2250 nm wavelengths, which is typical of iron ores. The strength of the absorption features in the continuum removed spectra varies spatially in the image around the mining areas, indicating differences in composition/grade of the iron ores. Spectral parameters such as the depth, width, area and wavelength position of the absorption features, derived from image spectra in the 850-900 nm and 2150-2250 nm regions, correlate well with the concentration of iron-oxide and alumina (gangue) in the ore samples obtained from the mine face. Well defined correlations are evident between the concentration of iron oxide and (i) the depth of NIR absorption feature (R2 = 0.883); (ii) the width of NIR absorption feature (R2 = 0.912); and (iii) the area of the NIR absorption feature and (R2 = 0.882). Further, the linear spectral unmixing resulted in an iron ore abundance map which, in conjunction with the image- and laboratory-spectra, helped in assessing the grades of iron ores in the study area. Thus, this study demonstrates the feasibility of discriminating grades of iron ores based on spectral information derived from spaceborne hyperspectral imagery.

  19. Evolutionary and geological factors controlling endogenic uranium mineralization and the potential for the discovery of new ore districts

    NASA Astrophysics Data System (ADS)

    Mashkovtsev, G. A.; Miguta, A. K.; Shchetochkin, V. N.

    2015-03-01

    The exhaustion of known surface and near-surface high-grade uranium deposits poses the serious problem of prospecting and exploration of new large endogenic deposits. A comparison of large data sets for endogenic deposits from the world's major uranium districts allowed the authors to develop an evolutionary geological model of large-scale uranium ore genesis, which reflects the succession and nature of preore, ore-forming, and post-ore processes. The study reveals a combination of general (recurrent) factors controlling the formation of ore districts with large-scale uranium mineralization regardless of the genesis and timing of the mineralization. At the same time, these factors depend on the regional setting and can vary considerably among deposits of the same type localized in different tectonic blocks with different characteristics and structural evolution. In connection with this, the exploration of major genetic types of deposits requires the application of specified criteria. Along with the consideration of the evolutionary geological model of ore formation, the study discusses a variety of tectono-magmatic, mineralogical, geochemical, radiogeochemical, and physicochemical factors and indications in three uranium districts (the Streltsovskoe, Elkon, and Central Ukrainian districts), which can form the basis for further uranium prospecting and exploration. Using a combination of favorable prerequisite conditions the study compares the possibilities for the discovery of large endogenic uranium deposits in several regions of Russia.

  20. Effect of polydisperse sintering ore on the pelletizing of fine concentrates

    NASA Astrophysics Data System (ADS)

    Trushko, V. L.; Utkov, V. A.

    2016-01-01

    An addition of the polydisperse Yakovlevo deposit sintering ore on the efficiency of pelletizing and, hence, the gas permeability of a sintering mixture containing fine concentrates is studied. This sintering ore is found to have unique properties, which make it possible to increase the iron content in a sinter and to improve the gas permeability of a sintering mixture significantly (by a factor of 2-4). As a result, the sintering machine capacity can be substantially increased, the strength of the sinter can be increased at a lower fuel flow rate and lower lime consumption, and the blast furnace capacity can be substantially improved at lower consumption of expensive coke. Therefore, this version of using the Yakovlevo deposit sintering ore has a high economic efficiency.

  1. Porphyry-copper ore shells form at stable pressure-temperature fronts within dynamic fluid plumes.

    PubMed

    Weis, P; Driesner, T; Heinrich, C A

    2012-12-21

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production. PMID:23160957

  2. Raman Spectroscopic Characterisation of Australian Banded Iron Formation and Iron Ore

    NASA Astrophysics Data System (ADS)

    Wells, M. A.; Ramanaidou, E. R.

    2012-04-01

    In Australia and world-wide over the past 5-10 years, declining reserves of premium, high-grade (>64% Fe), low-P bearing iron ore, have seen iron ore producers increase their utilisation of lower Fe-grade, higher P/Al/Si ore. In Australia, the channel iron deposits (CID), bedded iron deposits (BID) and, more recently, BIF-derived magnetite iron deposits (MID) have seen increased usage driven mainly by the increased demand from Chinese steel mills (Ramanaidou and Wells, 2011). Efficient exploitation and processing of these lower-grade iron ores requires a detailed understanding of their iron oxide and gangue mineralogy and geochemistry. The common Fe-bearing minerals (e.g., hematite, magnetite, goethite and kenomagnetite) in these deposits, as well as gangue minerals such as quartz and carbonates, are all strongly Raman active (e.g., de Faria et al., 1997). Their distinct Raman spectra enable them to be easily detected and mapped in situ in either unprepared material or samples prepared as polished blocks. In this paper, using representative examples of Australian CID ore, martite-goethite bedded iron deposit (BID) ore and banded iron formation (BIF) examined as polished blocks, we present a range of Raman spectra of the key iron ore minerals, and discuss how Raman spectroscopy can be applied to characterising iron ore mineralogy. Raman imaging micrographs, obtained using a StreamLine Plus Raman imaging system, clearly identified the main Fe-oxide and gangue components in the CID, BID and BIF samples when compared to optical micrographs. Raman analysis enabled the unequivocal identification of diamond in the CID ore as a contaminant from the polishing paste used to prepare the sample, and confirmed the presence of hematite in the BID ore in the form of martite, which can be morphologically similar to magnetite and, thus, difficult to otherwise distinguish. Image analysis of Raman mineral maps could be used to quantify mineral abundance based on the number of 'pixels

  3. The dating of ore genesis with using of sulfides: new opportunities of Sm-Nd method

    NASA Astrophysics Data System (ADS)

    Ekimova, N.; Serov, P.; Bayanova, T.

    2012-04-01

    not able to significantly influence on the results of Sm-Nd analysis. For the first time with sulfide minerals as minerals-geochronometers in Sm-Nd method have been dated impregnated and brecciform ores of the following objects - Pilguyarvi Cu-Ni deposits, Pechenga (1965 ± 87 Ma); impregnated (2433 ± 83 Ma) and redeposited (1903 ± 24 Ma) ores of Ahmavaara intrusion; ore gabbronorites of Penikat intrusion (2426±38 Ma (Ekimova et.al., 2011); gabbro-anorthosite ore (2476 ± 41 Ma, which agrees well with the U-Pb zircon age - 2470 ± 9 Ma (Bayanova, 2004)) and gabbronorites (2483 ± 86 Ma) of Kievei deposit and Fedorova Tundra metagabbroids (2494 ± 54 Ma). For these ores, except redeposited Ahmavaara ore, justified their crystallization from the melt, the simultaneous crystallization of the bulk rock. Thus, studies have shown quite correct, supported by other geochronological and instrumental methods, results, and given the opportunity to determine the time frames of the main ore genesis industrially important platinum metal objects. These studies were supported by the RFBR 10-05-00058, 11-05-00570, OFI-M 11-05-12028.

  4. Extraction of copper from an oxidized (lateritic) ore using bacterially catalysed reductive dissolution.

    PubMed

    Nancucheo, Ivan; Grail, Barry M; Hilario, Felipe; du Plessis, Chris; Johnson, D Barrie

    2014-01-01

    An oxidized lateritic ore which contained 0.8 % (by weight) copper was bioleached in pH- and temperature-controlled stirred reactors under acidic reducing conditions using pure and mixed cultures of the acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans. Sulfur was provided as the electron donor for the bacteria, and ferric iron present in goethite (the major ferric iron mineral present in the ore) acted as electron acceptor. Significantly more copper was leached by bacterially catalysed reductive dissolution of the laterite than in aerobic cultures or in sterile anoxic reactors, with up to 78 % of the copper present in the ore being extracted. This included copper that was leached from acid-labile minerals (chiefly copper silicates) and that which was associated with ferric iron minerals in the lateritic ore. In the anaerobic bioreactors, soluble iron in the leach liquors was present as iron (II) and copper as copper (I), but both metals were rapidly oxidized (to iron (III) and copper (II)) when the reactors were aerated. The number of bacteria added to the reactors had a critical role in dictating the rate and yield of copper solubilised from the ore. This work has provided further evidence that reductive bioprocessing, a recently described approach for extracting base metals from oxidized deposits, has the potential to greatly extend the range of metal ores that can be biomined. PMID:24687752

  5. Genesis of ion-adsorption type REE ores in Thailand

    NASA Astrophysics Data System (ADS)

    Sanematsu, K.; Yoshiaki, K.; Watanabe, Y.

    2012-04-01

    Ion-adsorption type REE deposits, which have been economically mined only in southern China, are predominant supply sources for HREE in the world. The ore bodies consist of weathered granites called ion-adsorption ores. The majority of REE (>50 %) are electrostatically adsorbed onto weathering products in the ores and they can be extracted by ion exchange using an electrolyte solution (e.g., ammonium sulfate solution). Recently the occurrences of ion-adsorption ores have been reported in Indochina, SE Asia. In this study, we discuss geochemical and mineralogical characteristics of parent granites and weathered granites in Thailand in order to reveal the genesis of ion-adsorption ores. Permo-Triassic and Cretaceous-Paleogene granite plutons are distributed from northern Thailand to western Indonesia through eastern Myanmar and Peninsular Malaysia. They are mostly ilmenite-series calcalkaline biotite or hornblende-biotite granites. REE contents of the granites range from 60 to 600 ppm and they are relatively high in Peninsula Thailand. REE-bearing minerals consist mainly of apatite, zircon, allanite, titanite, monazite and xenotime. Some I-type granites contain REE fluorocarbonate (probably synchysite-(Ce)) in cavities and cracks in feldspars and it is the dominant source of REE for ion-adsorption ores because the fluorocarbonate is easily soluble during weathering. In contrast, insoluble monazite and xenotime are not preferable for ion-adsorption ores although they are common ore minerals of placer REE deposits. Weathered granites show REE contents ranging from 60 to 1100 ppm in Thailand because REE are relatively immobile compared with mobile elements (e.g., Na, K, Ca). In the weathered granites, REE are contained in residual minerals and secondary minerals and are adsorbed onto the surface of weathering products. A weathering profile of granite with ion-adsorption type mineralization can be divided into upper and lower parts based on REE enrichment and Ce

  6. Chromite ore processing residue in Hudson County, New Jersey.

    PubMed Central

    Burke, T; Fagliano, J; Goldoft, M; Hazen, R E; Iglewicz, R; McKee, T

    1991-01-01

    Chromite ore processing residue occurs at over 130 sites in Hudson County, New Jersey. Many of these sites are in urban residential areas. This waste is a result of 70 years of chromate and bichromate chemical manufacturing. At least 15% of the sites contain total chromium concentrations greater than 10,000 mg/kg, with hexavalent content ranging from about 1 to 50%. Continuing leaching of this waste results in yellow-colored surface water runoff and yellow deposits on the soil surface and inside basement walls. The chemistry, environmental fate, health effects, and human exposure potentials for this waste are described. Images FIGURE 1. PMID:1935843

  7. 43 CFR 9239.5-1 - Ores.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Ores. 9239.5-1 Section 9239.5-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR TECHNICAL SERVICES (9000) TRESPASS Kinds of Trespass § 9239.5-1 Ores. (a) For...

  8. 43 CFR 9239.5-1 - Ores.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Ores. 9239.5-1 Section 9239.5-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR TECHNICAL SERVICES (9000) TRESPASS Kinds of Trespass § 9239.5-1 Ores. (a) For...

  9. 43 CFR 9239.5-1 - Ores.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Ores. 9239.5-1 Section 9239.5-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR TECHNICAL SERVICES (9000) TRESPASS Kinds of Trespass § 9239.5-1 Ores. (a) For...

  10. 43 CFR 9239.5-1 - Ores.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Ores. 9239.5-1 Section 9239.5-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR TECHNICAL SERVICES (9000) TRESPASS Kinds of Trespass § 9239.5-1 Ores. (a) For...

  11. Ore-blending optimization model for sintering process based on characteristics of iron ores

    NASA Astrophysics Data System (ADS)

    Wu, Sheng-Li; Oliveira, Dauter; Dai, Yu-Ming; Xu, Jian

    2012-03-01

    An ore-blending optimization model for the sintering process is an intelligent system that includes iron ore characteristics, expert knowledge and material balance. In the present work, 14 indices are proposed to represent chemical composition, granulating properties and high temperature properties of iron ores. After the relationships between iron ore characteristics and sintering performance are established, the "two-step" method and the simplex method are introduced to build the model by distinguishing the calculation of optimized blending proportion of iron ores from that of other sintering materials in order to improve calculation efficiency. The ore-blending optimization model, programmed by Access and Visual Basic, is applied to practical production in steel mills and the results prove that the present model can take advantage of the available iron ore resource with stable sinter yield and quality performance but at a lower cost.

  12. Study of Munella Ores. (puka Region, Albania)

    NASA Astrophysics Data System (ADS)

    Liçaj, Engjell; Mandili, Jorgo; Tabaku, Boran; Thomo, Niko

    2010-01-01

    The study of Munella ores is based on four analysis (A, B, Cand cores). They represent different types of minerals in the Munella area. Cores were taken by the geologist of Puka Geological Enterprise. A Core: It represents an ore with pyrite and chalcopyrite where copper and sulfur contents are 0.77 and 8.2% respectively. B Core: This core represents an ore with spharelites and pyrite where zinc content is 1.5% and 2.9% sulfur one. C Core: It is a chalcopyrite ore, massive in nature, where copper content is 2.01% and 36% sulfur one. D Core: It also represents copper- zinc—sulfur ore where their content is 0.66, 1.00 and 4.28% respectively. Each core is studied individually by selective schema to have copper, zinc and pyrite concentrates. Copper and pyrite concentrates will be the first material for pyro- metallurgical industry.

  13. Fluid inclusion, rare earth element geochemistry, and isotopic characteristics of the eastern ore zone of the Baiyangping polymetallic Ore district, northwestern Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Feng, Caixia; Bi, Xianwu; Liu, Shen; Hu, Ruizhong

    2014-05-01

    conditions of seawater sulfate reduction to sulfur. (4) The C-O isotopic analyses yield δ13C values from ca. zero to -10‰, and a wider range of δ18O values from ca. +6 to +24‰, suggestive of mixing between mantle-derived magma and marine carbonate sources during the evolution of ore-forming fluids, although potential contributions from organic carbon and basinal brine sources should also be considered. These data indicate that ore-forming fluids were derived from a mixture of organism, basinal brine, and mantle-derived magma sources, and as such, the eastern ore zone of the Baiyangping polymetallic ore deposit should be classified as a “Lanping-type” ore deposit.

  14. 25. FRONT END LOADERS MOMENTARILY IN REPOSE IN THE ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. FRONT END LOADERS MOMENTARILY IN REPOSE IN THE ORE STORAGE YARD. AN ORE BRIDGE THAT FORMERLY TRANSFERRED ORE WITHIN THE STORAGE YARD WAS DESTROYED BY A BLIZZARD IN 1978. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  15. 36. ORE DOCK, LOOKING WEST. HULETT UNLOADERS AWAIT THE NEXT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. ORE DOCK, LOOKING WEST. HULETT UNLOADERS AWAIT THE NEXT ORE BOAT. BY LATE WINTER, THE ORE STORAGE YARD SEEN AT LEFT WILL BE DEPLETED. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  16. The Role of Groundwater Flow and Faulting on Hydrothermal Ore Formation in Sedimentary Basins

    NASA Astrophysics Data System (ADS)

    Garven, G.

    2006-05-01

    Sediment-hosted ore formation is thought to occur as a normal outcome of basin evolution, due to deep groundwater flow, heat transport, and reactive mass transport ---all of which are intimately coupled. This paper reviews recent attempts to understand the hydrologic and geochemical processes forming some of the world's largest sediment-hosted ores. Several questions still dominate the literature (driving forces for flows, source and controls on metal acquisition, concentrations of ore-forming components, timing and duration, role of faults, effects of transient flows). This paper touches upon all of these questions. Coupled reactive transport models have been applied for understanding the genesis of sandstone-hosted uranium ores of North America and Australia, red-bed copper ores of North America and northern Europe, carbonate-hosted MVT lead-zinc ores of the U.S. Midcontinent and northwestern Canada, and the carbonate- hosted lead-zinc ores of Ireland and southeast France. Good progress has been made in using these computational methods for comparing and contrasting both carbonate hosted (MVT and Irish types) and shale- hosted (SEDEX type) Pb-Zn deposits. The former are mostly associated with undeformed carbonate platforms associated with distal orogenic belts and the later are mostly associated with extensional basins and failed rifts that are heavily faulted. Two giant ore provinces in extensional basins provide good examples of structural control on reactive mass transport: shale-hosted Pb-Zn ores of the Proterozoic McArthur basin, Australia, and shale-hosted Pb-Zn-Ba ores of the Paleozoic Kuna basin, Alaska. For the McArthur basin, hydrogeologic simulations of thermally-driven free convection suggest a strong structural control on fluid flow created by the north-trending fault systems that dominate this Proterozoic extensional basin. Brines appear to have descended to depths of a few kilometers along the western side of the basin, migrated laterally to the

  17. Catalytic decomposition of tar derived from wood waste pyrolysis using Indonesian low grade iron ore as catalyst

    NASA Astrophysics Data System (ADS)

    Wicakso, Doni Rahmat; Sutijan, Rochmadi, Budiman, Arief

    2016-06-01

    Low grade iron ore can be used as an alternative catalyst for bio-tar decomposition. Compared to other catalysts, such as Ni, Rd, Ru, Pd and Pt, iron ore is cheaper. The objective of this research was to investigate the effect of using low grade iron ore as catalyst for tar catalytic decomposition in fixed bed reactor. Tar used in this experiment was pyrolysis product of wood waste while the catalyst was Indonesian low grade iron ore. The variables studied were temperatures between 500 - 600 °C and catalyst weight between 0 - 40 gram. The first step, tar was evaporated at 450 °C to produce tar vapor. Then, tar vapor was flowed to fixed bed reactor filled low grade iron ore. Gas and tar vapor from reactor was cooled, then the liquid and uncondensable gas were analyzed by GC/MS. The catalyst, after experiment, was weighed to calculate total carbon deposited into catalyst pores. The results showed that the tar components that were heavy and light hydrocarbon were decomposed and cracked within the iron ore pores to from gases, light hydrocarbon (bio-oil) and carbon, thus decreasing content tar in bio-oil and increasing the total gas product. In conclusion, the more low grade iron ore used as catalyst, the tar content in the liquid decrease, the H2 productivity increased and calorimetric value of bio-oil increased.

  18. Extraction of reduced alteration information based on Aster data: a case study of the Bashibulake uranium ore district

    NASA Astrophysics Data System (ADS)

    Ye, Fa-wang; Liu, De-chang

    2008-12-01

    Practices of sandstone-type uranium exploration in recent years in China indicate that the uranium mineralization alteration information is of great importance for selecting a new uranium target or prospecting in outer area of the known uranium ore district. Taking a case study of BASHIBULAKE uranium ore district, this paper mainly presents the technical minds and methods of extracting the reduced alteration information by oil and gas in BASHIBULAKE ore district using ASTER data. First, the regional geological setting and study status in BASHIBULAKE uranium ore district are introduced in brief. Then, the spectral characteristics of altered sandstone and un-altered sandstone in BASHIBULAKE ore district are analyzed deeply. Based on the spectral analysis, two technical minds to extract the remote sensing reduced alteration information are proposed, and the un-mixing method is introduced to process ASTER data to extract the reduced alteration information in BASHIBULAKE ore district. From the enhanced images, three remote sensing anomaly zones are discovered, and their geological and prospecting significances are further made sure by taking the advantages of multi-bands in SWIR of ASTER data. Finally, the distribution and intensity of the reduced alteration information in Cretaceous system and its relationship with the genesis of uranium deposit are discussed, the specific suggestions for uranium prospecting orientation in outer of BASHIBULAKE ore district are also proposed.

  19. Characterisation and Processing of Some Iron Ores of India

    NASA Astrophysics Data System (ADS)

    Krishna, S. J. G.; Patil, M. R.; Rudrappa, C.; Kumar, S. P.; Ravi, B. P.

    2013-10-01

    Lack of process characterization data of the ores based on the granulometry, texture, mineralogy, physical, chemical, properties, merits and limitations of process, market and local conditions may mislead the mineral processing entrepreneur. The proper implementation of process characterization and geotechnical map data will result in optimized sustainable utilization of resource by processing. A few case studies of process characterization of some Indian iron ores are dealt with. The tentative ascending order of process refractoriness of iron ores is massive hematite/magnetite < marine black iron oxide sands < laminated soft friable siliceous ore fines < massive banded magnetite quartzite < laminated soft friable clayey aluminous ore fines < massive banded hematite quartzite/jasper < massive clayey hydrated iron oxide ore < manganese bearing iron ores massive < Ti-V bearing magnetite magmatic ore < ferruginous cherty quartzite. Based on diagnostic process characterization, the ores have been classified and generic process have been adopted for some Indian iron ores.

  20. 63,65Cu NMR Method in a Local Field for Investigation of Copper Ore Concentrates

    NASA Astrophysics Data System (ADS)

    Gavrilenko, A. N.; Starykh, R. V.; Khabibullin, I. Kh.; Matukhin, V. L.

    2015-01-01

    To choose the most efficient method and ore beneficiation flow diagram, it is important to know physical and chemical properties of ore concentrates. The feasibility of application of the 63,65Cu nuclear magnetic resonance (NMR) method in a local field aimed at studying the properties of copper ore concentrates in the copper-iron-sulfur system is demonstrated. 63,65Cu NMR spectrum is measured in a local field for a copper concentrate sample and relaxation parameters (times T1 and T2) are obtained. The spectrum obtained was used to identify a mineral (chalcopyrite) contained in the concentrate. Based on the experimental data, comparative characteristics of natural chalcopyrite and beneficiated copper concentrate are given. The feasibility of application of the NMR method in a local field to explore mineral deposits is analyzed.

  1. Application of the Geo-Anomaly Unit Concept in Quantitative Delineation and Assessment of Gold Ore Targets in Western Shandong Uplift Terrain, Eastern China

    SciTech Connect

    Chen Yongqing Zhao Pengda; Chen Jianguo; Liu Jiping

    2001-03-15

    A number of large and giant ore deposits have been discovered within the relatively small areas of lithospheric structure anomalies, including various boundary zones of tectonic plates. The regions have become the well-known intercontinental ore-forming belts, such as the circum-Pacific gold-copper, copper-molybdenum, and tungsten-tin metallogenic belts. These belts are typical geological anomalous areas. An investigation into the hydrothermal ore deposits in different regions in the former Soviet Union illustrated that the geologic structures of ore fields of almost all major commercial deposits have distinct features compared with the neighboring areas. These areas with distinct features are defined as geo-anomalies. A geo-anomaly refers to such a geologic body or a combination of bodies that their composition, texture-structure, and genesis are significantly different from those of their surroundings. A geo-anomaly unit (GU) is an area containing distinct features that can be delineated with integrated ore-forming information using computer techniques on the basis of the geo-anomaly concept. Herein, the GU concept is illustrated by a case study of delineating the gold ore targets in the western Shandong uplift terrain, eastern China. It includes: (1) analyses of gold ore-forming factors; (2) compilation of normalized regional geochemical map and extraction of geochemical anomalies; (3) compilation of gravitational and aeromagnetic tectonic skeleton map and extraction of gravitational and aeromagnetic anomalies; (4) extraction of circular and linear anomalies from remote-sensing Landsat TM images; (5) establishment of a geo-anomaly conceptual model associated with known gold mineralization; (6) establishment of gold ore-forming favorability by computing techniques; and (7) delineation and assessment of ore-forming units. The units with high favorability are suggested as ore targets.

  2. Sr isotopic evidence for fluid mixing in ore-stage dolomites, Pine Point, Northwest Territories, Canada

    NASA Astrophysics Data System (ADS)

    Gleeson, S. A.; Gromek, P.; Simonetti, A.

    2009-05-01

    The carbonate hosted Pb-Zn deposits of the Pine Point district (Northwest Territories) are located close to the eastern edge of the present day Western Canadian Sedimentary Basin. The deposits have been classified as Mississippi Valley Type deposits and are thought to have formed as the result of basin-wide fluid flow in the Presqu'ile barrier, the host to the ore deposits. Laser multi-collector ICP-MS study of 87Sr/86Sr ratios of ore- related dolomites from Pine Point indicate two sources of Sr were present in the mineralizing system. Fluid "A" has a range in Sr isotopic values from 0.07070 to 0.7120 and is a brine derived from Middle Devonian seawater which has undergone some interaction with clastic units in the basin. Fluid "B" has is more enriched in 87Sr and has 87Sr/86Sr ratios up to up to 0.7152, values similar to those found in Canadian Shield Brines, and represents a fluid which has interacted with crystalline basement rocks. The presence of this second Sr source in the ore forming system suggests that sulfide deposition at Pine Point occurred as a result of fluid mixing.

  3. Origin of marcasite and its implications regarding the genesis of roll-front uranium deposits

    USGS Publications Warehouse

    Goldhaber, Martin B.; Reynolds, Richard L.

    1979-01-01

    Study of five roll-type uranium deposits (three in Texas and two in Wyoming) has resulted in the recognition of ore-stage marcasite in each deposit. Ore-stage marcasite is identified by its close association with uranium- and vanadium-bearing phases in the ore zones; by its close association with ferroselite at and near the redox boundary in some deposits; by its abundance and distribution across deposits; and by its textural relationships with identifiable pre-ore iron disulfide minerals (primarily pyrite). In deposits that are essentially devoid of fossil vegetal debris, marcasite is the dominant ore-stage sulfide and occurs in a large volume of rock beyond the ore zones. In deposits that contain organic matter, ore-stage pyrite is at least as abundant as ore-stage marcasite. Many factors and processes may lead to the formation of either marcasite or pyrite as an ore-stage mineral in roll-type deposits. One of the dominant factors is the complex interrelationship of pH and sulfur species that are precursors of iron-disulfide minerals. Experimental work and study of geochemical environments analogous to those governing the formation of roll-type deposits indicate that relatively low pH (less than about six) and the presence of elemental sulfur favor marcasite, whereas higher pH and the presence of polysulfide ions favor pyrite. Conditions that favor marcasite as the dominant ore-stage iron disulfide are likely to arise during uranium deposition in host rock without fossil vegetal matter. In host rock containing carbonaceous debris, the presence of polysulfide ions and pH buffering any anaerobic bacterial metabolic processes apparently lead to the formation of ore-stage pyrite.

  4. Gemstone deposits of Serbia

    NASA Astrophysics Data System (ADS)

    Miladinović, Zoran; Simić, Vladimir; Jelenković, Rade; Ilić, Miloje

    2016-06-01

    Gemstone minerals in Serbia have never been regarded as an interesting and significant resource. Nevertheless, more than 150 deposits and occurrences have been recorded and some of them preliminarily explored in the last 50 years. The majority of deposits and occurrences are located within the Serbo-Macedonian metallogenic province and the most significant metallogenic units at the existing level of knowledge are the Fruska Gora ore district, Cer ore district, Sumadija metallogenic zone, Kopaonik metallogenic zone and Lece-Halkidiki metallogenic zone. The most important genetic type of deposits is hydrothermal, particularly in case of serpentinite/peridotite as host/parent rock. Placer deposits are also economically important. The dominant gemstones are silica minerals: chalcedony (Chrysoprase, carnelian, bluish chalcedony etc.), jasper (picture, landscape, red etc.), common opal (dendritic, green, milky white etc.), silica masses (undivided), and quartz (rock crystal, amethyst etc.). Beside silica minerals significant gemstones in Serbia include also beryl (aquamarine), garnet (almandine and pyrope), tourmaline, fluorite, rhodochrosite, carbonate-silica breccia, carbonate-silica onyx, silicified wood, howlite, serpentinite, marble onyx, and kyanite. This paper aims to present an overview of Serbian gemstone deposits and occurrences and their position based on a simplified gemstone metallogenic map of Serbia, as well as genetic-industrial classification of gemstone deposits and gemstone varieties.

  5. 8. EAST ELEVATION OF SKIDOO MILL AND UPPER ORE BIN, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. EAST ELEVATION OF SKIDOO MILL AND UPPER ORE BIN, LOOKING WEST FROM ACCESS ROAD. THE ROADWAY ON THIS LEVEL (CENTER) WAS USED FOR UNLOADING ORE BROUGHT ON BURROWS INTO THE ORE BIN AT THE TOP LEVEL OF THE MILL. THE ORE BIN IN THE UPPER LEFT WAS ADDED LATER WHEN ORE WAS BROUGHT TO THE MILL BY TRUCKS. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  6. Selenium content in sulfide ores from the Chalkidiki peninsula, Greece.

    PubMed

    Nicolaidou, A E

    1998-01-01

    Selenium (Se) was assessed in galena, sphalerite, and pyrite samples. These are components of mixed sulfide ores from the Olympias and Madem Lakkos-Mavres Petres deposits and the Skouries porphyry-copper deposit. We used atomic absorption spectroscopy (AAS) with a hydride generator system. The highest concentration of Se (516 ppm) was found in the fine-grained galena at the -135 level of the Olympias deposits. In the Madem Lakkos-Mavres Petres deposit, the highest concentration of Se (33 ppm) was found in the pyrites of the level 30. The concentration of Se in the arsenopyrites and chalcopyrites is lower than the detection limit of the analytical method (< 100 ppb). The concentrated chalcopyrite from the porphyry copper deposit at Skouries exhibits a significant Se content (average 200 ppm) in contrast to the chalcopyrite from the Olympias and the Madem Lakkos-Mavres Petres. Variations in the Se content of the sulfide minerals studied could be caused by redox-pH and/or temperature conditions, as well as by the difference in crystal structure. The Se found in the areas studied may positively affect the environment. Sulfide minerals are oxidized by microorganisms, infiltrate in the soil-water in the form of selenate or selenite ion, and directly or indirectly influence the human organism. PMID:9726790

  7. Ratio maps of iron ore deposits Atlantic City district, Wyoming

    NASA Technical Reports Server (NTRS)

    Vincent, R. K.

    1973-01-01

    Preliminary results of a spectral rationing technique are shown for a region at the southern end of the Wind River Range, Wyoming. Digital ratio graymaps and analog ratio images have been produced for the test site, but ground truth is not yet available for thorough interpretation of these products. ERTS analog ratio images were found generally better than either ERTS single-channel images or high altitude aerial photos for the discrimination of vegetation from non-vegetation in the test site region. Some linear geological features smaller than the ERTS spatial resolution are seen as well in ERTS ratio and single-channel images as in high altitude aerial photography. Geochemical information appears to be extractable from ERTS data. Good preliminary quantitative agreement between ERTS-derived ratios and laboratory-derived reflectance ratios of rocks and minerals encourage plans to use lab data as training sets for a simple ratio gating logic approach to automatic recognition maps.

  8. Geology and ore deposits of the Philipsburg quadrangle, Montana

    USGS Publications Warehouse

    Emmons, William Harvey; Calkins, Frank Cathcart

    1913-01-01

    Philipsburg lies about midway between the eastern and western limits of the Rocky Mountain system, if the term be used in the broad sense prevailing in the United States. In the general latitude of Montana the system as defined by American usage is bounded on the west by the Columbia River basalt plain and on the east by the Great Plains. The western limit is fairly definite, but on the east there is no very definite line between the plains and mountains; the mountains are fairly continuous west and north of the Philipsburg quadrangle, but to the east and southeast mountains alternate with broad stretches of semiarid lowland. The quadrangle therefore overlaps the line between two physiographic provinces, one characterized by isolated mountain groups, of which the Flint Creek Range is the most westerly, and the other by more continuous elevations, of which the Sapphire Mountains are an example.

  9. Biomining: metal recovery from ores with microorganisms.

    PubMed

    Schippers, Axel; Hedrich, Sabrina; Vasters, Jürgen; Drobe, Malte; Sand, Wolfgang; Willscher, Sabine

    2014-01-01

    Biomining is an increasingly applied biotechnological procedure for processing of ores in the mining industry (biohydrometallurgy). Nowadays the production of copper from low-grade ores is the most important industrial application and a significant part of world copper production already originates from heap or dump/stockpile bioleaching. Conceptual differences exist between the industrial processes of bioleaching and biooxidation. Bioleaching is a conversion of an insoluble valuable metal into a soluble form by means of microorganisms. In biooxidation, on the other hand, gold is predominantly unlocked from refractory ores in large-scale stirred-tank biooxidation arrangements for further processing steps. In addition to copper and gold production, biomining is also used to produce cobalt, nickel, zinc, and uranium. Up to now, biomining has merely been used as a procedure in the processing of sulfide ores and uranium ore, but laboratory and pilot procedures already exist for the processing of silicate and oxide ores (e.g., laterites), for leaching of processing residues or mine waste dumps (mine tailings), as well as for the extraction of metals from industrial residues and waste (recycling). This chapter estimates the world production of copper, gold, and other metals by means of biomining and chemical leaching (bio-/hydrometallurgy) compared with metal production by pyrometallurgical procedures, and describes new developments in biomining. In addition, an overview is given about metal sulfide oxidizing microorganisms, fundamentals of biomining including bioleaching mechanisms and interface processes, as well as anaerobic bioleaching and bioleaching with heterotrophic microorganisms. PMID:23793914

  10. Isotopic and chemical studies of the Viburnum Trend lead ores of southeast Missouri

    SciTech Connect

    Crocetti, C.A.

    1985-01-01

    Lead isotope analyses of galena determine on the ion microprobe were combined with sulfur isotope analyses done by conventional mass spectrometry and fluid inclusion leachate analyses in an effort to determine the origin of the Viburnum Trend lead ores. Fluid inclusion leachate analyses indicate that the composition of the ore forming fluids of the Viburnum Trend is similar to that of typical oil field brines. The relatively elevated K/sup +//Na/sup +/ ratio of the ore forming brines may be due to interaction with the granitic basement or with arkosic sediments. The Br/sup -//Cl/sup -/ ratio of the fluid inclusions suggests that the brines from which the octahedral galena was deposited originated as evaporated seawater, and that the brines from which the cubic galena was deposited derived much of their salinity from the dissolution of halite. A rough correlation between the isotopic composition of lead and sulfur in galena persists throughout the Viburnum Trend. The isotopic data can be explained mostly in terms of the mixing of two end members. The age of the mineralizing event, the physical requirements for the source basin, and the chemical similarities of the ore forming fluids to present day Arkoma Basin brines indicate that the source of the ore forming brines was the Ouachita-Arkoma Basin during the later Carboniferous to Early Permian. The correlation of the isotopic composition of lead and sulfur in the galenas strongly suggests that both elements were transported together in solution. It is proposed that the sulfur was transported in the oxidized state and that sulfate reduction via the oxidation of organic carbon was the mechanism of ore precipitation.

  11. Radioactive deposits of Nevada

    USGS Publications Warehouse

    Lovering, T.G.

    1953-01-01

    Thirty-five occurrences of radioactive rocks had been reported from Nevada prior to 1952. Twenty-five of these had been investigated by the U. S. Geological Survey and the U. S. Atomic Energy Commission. Of those investigated, uranium minerals were identified in 13; two contained a thorium mineral (monazite); the source of radioactivity on 7 properties was not ascertained; and one showed no abnormal radioactivity. Of the other reported occurrences, one is said to contain uraniferous hydrocarbons and 9 are placers containing thorian monazite. Pitchblende occurs at two localities; the East Walker River area, and the Stalin's Present prospect, where it is sparsely disseminated in tabular bodies cutting granitic rocks. Other uranium minerals found in the state include: carnotite, tyuyamunite, autunite, torbernite, gummite, uranophane, kasolite, and an unidentified mineral which may be dumontit. Monazite is the only thorium mineral of possible economic importance that has been reported. From an economic standpoint 9 only 4 of the properties examined showed reserves of uranium ore in 1952; these are: the Green Monster mine, which shipped 5 tons of ore to Marysvale, Utah, during 1951, the Majuba Hill mine, the Stalin's Present prospect, and the West Willys claim in the Washington district. Reserves of ore grade are small on all of these properties and probably cannot be developed commercially unless an ore-buying station is set up nearby. No estimate has been made of thorium reserves and no commercial deposits of thorium are known.

  12. Geology and geochemistry of the Macheng Algoma-type banded iron-formation, North China Craton: Constraints on mineralization events and genesis of high-grade iron ores

    NASA Astrophysics Data System (ADS)

    Wu, Huaying; Niu, Xianglong; Zhang, Lianchang; Pirajno, Franco; Luo, Huabao; Qin, Feng; Cui, Minli; Wang, Changle; Qi, Min

    2015-12-01

    The Macheng iron deposit is located in the eastern Hebei province of the North China Craton (NCC). It is hosted in Neoarchean metamorphic rocks of Baimiaozi formation in the Dantazi Group, consisting of biotite-leptynite, plagioclase-gneiss, plagioclase-amphibolite, migmatite, migmatitic granite and quartz schist. Geochemical analyses of the host biotite leptynite and plagioclase amphibolites show that their protoliths are both volcanics, inferred to be trachytic basalt and basaltic andesite, respectively. Based on the geochemical signature of the host rocks, together with geology of the iron deposit, it is inferred that the Macheng BIF is an Algoma-type iron exhalative formation, formed in an arc-related basin in the Neoarchean. Post-Archean Australian Shale (PAAS)-normalized rare earth elements (REEs) plus yttrium (Y) concentrations of different BIF ores with gneissic, striated and banded structure in the Macheng deposit, show similar patterns with depletions in light rare earth elements (LREEs) and middle rare earth elements (MREEs) relative to heavy rare earth elements (HREEs) and with apparently positive La, Y and Eu anomalies. Y/Ho ratios of the gneissic, striated and banded BIF ores vary from 37 to 56. These geochemical features of the BIF ores reveal their affinity with the sea water and the presence of a high-temperature hydrothermal component, indicating that both the seawater and high temperature hydrothermal fluids derived from alteration of oceanic basalts and komatiites may contribute to formation of the Macheng BIF. Geological, mineralogical and geochemical studies of the Macheng deposit recognized two kinds of high-grade iron ores. One is massive oxidized high-grade ore (Fe2O3T = 74.37-86.20 wt.%), mainly consisting of hematite with some magnetite, which shows geochemical characteristics of the gneissic, striated and banded BIF ores. The other type is magnetite high-grade ore, also massive and consisting of magnetite, with distinct characteristics

  13. Clay mineralogy of the Greenvale Ore Body, Queensland, Australia: Implications for the interpretation of paleoclimate

    SciTech Connect

    Lev, S.; Anderson, K.; Ramirez, B.; Sun, H.; Swank, R.; Yost, D.; Huff, W.; Maynard, J.B. . Dept. of Geology)

    1994-03-01

    A 3--5% nickel enriched laterite in the Greenvale Ore Body of Queensland, Australia, is the result of weathering a serpentinized ultramafic intrusion. Variations in solubilities and drainage, typical of laterite deposits, resulted in the formation of three primary zones: (1) the Saprolite zone, (2) the Intermediate zone, and (3) the Limonite zone. Within these zones, clay mineral species with distinct chemistries and/or mineralogies have been identified, including: Ni-rich Smectite, Halloysite, and Palygorskite. Clay minerals were analyzed using powder X-ray diffraction and SEM. Bulk chemistry was determined by X-ray fluorescence in an attempt to better constrain the chemical conditions at the time of formation of the clay minerals. Results indicate a complex drainage system and history for the Greenvale Ore Body. Based on the distribution of ore grade material, it is apparent that the deposit was initially characterized by fracture controlled drainage. Owing to precipitation of Ni-rich smectite, halloysite, and palygorskite, subsequent alteration of the ore body drainage network and/or local climate can be inferred.

  14. Hydrothermal ore-forming processes in the light of studies in rock- buffered systems: II. Some general geologic applications

    USGS Publications Warehouse

    Hemley, J.J.; Hunt, J.P.

    1992-01-01

    The experimental metal solubilities for rock-buffered hydrothermal systems provide important insights into the acquisition, transport, and deposition of metals in real hydrothermal systems that produced base metal ore deposits. Water-rock reactions that determine pH, together with total chloride and changes in temperature and fluid pressure, play significant roles in controlling the solubility of metals and determining where metals are fixed to form ore deposits. Deposition of metals in hydrothermal systems occurs where changes such as cooling, pH increase due to rock alteration, boiling, or fluid mixing cause the aqueous metal concentration to exceed saturation. Metal zoning results from deposition occurring at successive saturation surfaces. Zoning is not a reflection simply of relative solubility but of the manner of intersection of transport concentration paths with those surfaces. Saturation surfaces will tend to migrate outward and inward in prograde and retrograde time, respectively, controlled by either temperature or chemical variables. -from Authors

  15. Modeling of the fault-controlled hydrothermal ore-forming systems

    SciTech Connect

    Pek, A.A.; Malkovsky, V.I.

    1993-07-01

    A necessary precondition for the formation of hydrothermal ore deposits is a strong focusing of hydrothermal flow as fluids move from the fluid source to the site of ore deposition. The spatial distribution of hydrothermal deposits favors the concept that such fluid flow focusing is controlled, for the most part, by regional faults which provide a low resistance path for hydrothermal solutions. Results of electric analog simulations, analytical solutions, and computer simulations of the fluid flow, in a fault-controlled single-pass advective system, confirm this concept. The influence of the fluid flow focusing on the heat and mass transfer in a single-pass advective system was investigated for a simplified version of the metamorphic model for the genesis of greenstone-hosted gold deposits. The spatial distribution of ore mineralization, predicted by computer simulation, is in reasonable agreement with geological observations. Computer simulations of the fault-controlled thermoconvective system revealed a complex pattern of mixing hydrothermal solutions in the model, which also simulates the development of the modern hydrothermal systems on the ocean floor. The specific feature of the model considered, is the development under certain conditions of an intra-fault convective cell that operates essentially independently of the large scale circulation. These and other results obtained during the study indicate that modeling of natural fault-controlled hydrothermal systems is instructive for the analysis of transport processes in man-made hydrothermal systems that could develop in geologic high-level nuclear waste repositories.

  16. Application of high resolution 2D/3D spectral induced polarization (SIP) in metalliferous ore exploration

    NASA Astrophysics Data System (ADS)

    Chen, R.; Zhao, X.; Yao, H.; He, X.; Zeng, P.; Chang, F.; Yang, Y.; Zhang, X.; Xi, X.; He, L.

    2015-12-01

    Induced polarization (IP) is a powerful tool in metalliferous ore exploration. However, there are many sources, such as clay and graphite, which can generate IP anomaly. Spectral induced polarization (SIP) measures IP response on a wide frequency range. This method provides a way to discriminate IP response generated by metalliferous ore or other objects. The best way to explore metalliferous ore is 3D SIP exploration. However, if we consider the exploration cost and efficiency, we can use SIP profiling to find an anomaly, and then use 2D/3D SIP sounding to characterize the anomaly. Based on above idea, we used a large-scale distributed SIP measurement system which can realize 800 sounding sites in one direction at the same time. This system can be used for SIP profiling, 2D/3D SIP sounding with high efficiency, high resolution, and large depth of investigation (> 1000 m). Qiushuwan copper - molybdenum deposit is located in Nanyang city, Henan province, China. It is only a middle-size deposit although over 100 holes were drilled and over 40 years of exploration were spent because of very complex geological setting. We made SIP measurement over 100 rock and ore samples to discriminate IP responses of ore and rock containing graphite. Then we carried out 7 lines of 2D SIP exploration with the depth of investigation great than 1000 m. The minimum electode spacing for potential difference is only 20 m. And we increase the spacing of current electodes at linear scale. This acquisition setting ensures high density data acquired and high quality data acquisition. Modeling and inversion result proves that we can get underground information with high resolution by our method. Our result shows that there exists a strong SIP response related to ore body in depth > 300 m. Pseudo-3D inversion of five 2D SIP sounding lines shows the location and size of IP anomaly. The new drillings based our result found a big copper-molybdenum ore body in new position with depth > 300 m and

  17. Genesis of Carlin-type gold deposits

    SciTech Connect

    Burton, J.C.; Lawler, J.P.; Ayres, D.E.

    1985-01-01

    Carlin-type deposits are large, disseminated, sediment-hosted gold ore bodies. They are of major economic interest to mining companies because they represent low-cost, bulk-mineable targets. To develop a genetic model for the Carlin-type deposits, the authors have employed a multidisciplinary research program on ten Carlin-type deposits in Nevada and Utah. Studies included rock geochemistry, alteration mineralogy, fluid inclusions, oxygen isotopes, incremental Ar/sup 40/-Ar/sup 38/ age dating, hydrothermal experiments on temperature-stability relationships of gold complexes, and physical properties of host rocks. Their studies demonstrate that Carlin-type deposits are formed at initial temperatures of approximately 250/sup 0/C by acidic, reducing, low salinity, Tertiary, meteoric fluids. Gold is transported as a chloride complex and deposition occurs in response to destabilization of this complex with decreasing temperature. Temperature is the major parameter controlling ore deposition. The physical properties of the host environment place major constraints on ore formation in addition to temperature. In the Carlin systems studied, high porosity host rocks are capped by structural or stratigraphic closures which trap the ore fluid. The deposits do not necessarily form near the surface, and models based solely on analogies to hot springs systems may be misleading.

  18. How many ore-bearing asteroids?

    NASA Astrophysics Data System (ADS)

    Elvis, Martin

    2014-02-01

    A simple formalism is presented to assess how many asteroids contain ore, i.e., commercially profitable material, and not merely a high concentration of a resource. I apply this formalism to two resource cases: platinum group metals (PGMs) and water. Assuming for now that only Ni-Fe asteroids are of interest for PGMs, then 1% of NEOs are rich in PGMs. The dearth of ultra-low delta-v (<4.5 km s-1) NEOs larger than 100 m diameter reduces the ore-bearing fraction to only 1 in 2000 NEOs. As 100 m diameter NEOs are needed to have a value ≥US$1B and the population of near-Earth objects (NEOs) larger than 100 m diameter is 20,000 (Mainzer et al., 2011) the total population of PGM ore-bearing NEOs is roughly 10. I stress that this is a conservative and highly uncertain value. For example, an order of magnitude increase in PGM ore-bearing NEOs occurs if delta-v can be as large as 5.7 km s-1. Water ore for utilization in space is likely to be found in 1/1100 NEOs. NEOs as small as 18 m diameter can be water-ore-bodies because of the high richness of water ( 20%) expected in 25% of carbonaceous asteroids, bringing the number of water-ore-bearing NEOs to 9000 out of the 10 million NEOs of this size. These small NEOs are, however, hard to find with present surveys. There will be 18 water-ore-bearing NEOs >100 m diameter. These estimates are at present highly imprecise and sensitive to small changes, especially in the maximum delta-v allowed. Nonetheless the low values found here mean that much improved determinations of each of the terms of the formalism are urgently needed. If better estimates still find small numbers of ore-bearing NEOs then thorough surveys for NEA discovery and, especially, characterization are needed. Strategies for the two classes are likely to be different.

  19. Copper Deposits in Sedimentary and Volcanogenic Rocks

    USGS Publications Warehouse

    Tourtelot, Elizabeth B.; Vine, James David

    1976-01-01

    Copper deposits occur in sedimentary and volcanogenic rocks within a wide variety of geologic environments where there may be little or no evidence of hydrothermal alteration. Some deposits may be hypogene and have a deep-seated source for the ore fluids, but because of rapid cooling and dilution during syngenetic deposition on the ocean floor, the resulting deposits are not associated with hydrothermal alteration. Many of these deposits are formed at or near major tectonic features on the Earth's crust, including plate boundaries, rift valleys, and island arcs. The resulting ore bodies may be stratabound and either massive or disseminated. Other deposits form in rocks deposited in shallow-marine, deltaic, and nonmarine environments by the movement and reaction of interstratal brines whose metal content is derived from buried sedimentary and volcanic rocks. Some of the world's largest copper deposits were probably formed in this manner. This process we regard as diagenetic, but some would regard it as syngenetic, if the ore metals are derived from disseminated metal in the host-rock sequence, and others would regard the process as epigenetic, if there is demonstrable evidence of ore cutting across bedding. Because the oxidation associated with diagenetic red beds releases copper to ground-water solutions, red rocks and copper deposits are commonly associated. However, the ultimate size, shape, and mineral zoning of a deposit result from local conditions at the site of deposition - a logjam in fluvial channel sandstone may result in an irregular tabular body of limited size; a petroleum-water interface in an oil pool may result in a copper deposit limited by the size and shape of the petroleum reservoir; a persistent thin bed of black shale may result in a copper deposit the size and shape of that single bed. The process of supergene enrichment has been largely overlooked in descriptions of copper deposits in sedimentary rocks. However, supergene processes may be

  20. Mortality among sulfide ore miners

    SciTech Connect

    Ahlman, K.; Koskela, R.S.; Kuikka, P.; Koponen, M.; Annanmaeki, M. )

    1991-01-01

    Lung cancer mortality was studied during 1965-1985 in Outokumpu township in North Karelia, where an old copper mine was located. Age-specific lung cancer death rates (1968-1985) were higher among the male population of Outokumpu than among the North Karelian male population of the same age excluding the Outokumpu district (p less than .01). Of all 106 persons who died from lung cancer during 1965-1985 in Outokumpu township, 47 were miners of the old mine, 39 of whom had worked there for at least three years and been heavily exposed to radon daughters and silica dust. The study cohort consisted of 597 miners first employed between 1954 and 1973 by a new copper mine and a zinc mine, and employed there for at least 3 years. The period of follow-up was 1954-1986. The number of person-years was 14,782. The total number of deaths was 102; the expected number was 72.8 based on the general male population and 97.8 based on the mortality of the male population of North Karelia. The excess mortality among miners was due mainly to ischemic heart disease (IHD); 44 were observed, the expected number was 22.1, based on the general male population, and the North Karelian expected number was 31.2 (p less than .05). Of the 44 miners who died from IHD, 20 were drillers or chargers exposed to nitroglycerin in dynamite charges, but also to several simultaneous stress factors including PAHs, noise, vibration, heavy work, accident risk, and working alone. Altogether 16 tumors were observed in the cohort. Ten of these were lung cancers, the expected number being 4.3. Miners who had died from lung cancer were 35-64 years old, and had entered mining work between 1954 and 1960. Five of the ten lung cancer cases came from the zinc mine (1.7 expected). Three of them were conductors of diesel-powered ore trains.

  1. Sandbox experiments on Uraninite Ore: ERT and SP measurments.

    NASA Astrophysics Data System (ADS)

    Singh, R. K.

    2015-12-01

    Nuclear energy, considering its own intrinsic merits, would be a leading source for meeting the energy requirement in present and future scenario. Concealed Uranium deposits under sedimentary cover, with poor surface indications calls for reorientation of survey with large inputs involving integrated geophysical approach. Sand Box experiments have been carried out over Uraninite ore. The tank is a glass fish tank (height 39 cm, length 75 cm, width 30 cm). It was filled with sand up to 35 cm high. The sand was saturated from below to minimize the entrapment of the gas bubbles. The average size for sand grains is ~ 0.295mm. The formation factor of the sand is 3.5, with a negligible surface conductivity because of the coarse nature of the sand grains. The dimension of considered Uraninite ore sample is 4cm x 4cm x 4cm. The depth of top of the ore sample is kept at 3cm. In this paper both resistivity and self-potential measurements were carried out for possible detection of Uraninite. The resistivity measurements were made with 64 non-polarizable electrodes using Electrical Resistivity Tomography (ERT) equipment of FlashRes Universal developed by ZZ Resistivity Imaging Pty. Ltd. We have used screws of length 3cm as electrodes. The separation between these electrodes are ~ 1cm. The resistivity tomography results clearly outlines the target Uraninite body. The resistivity tomography results also detects small heterogeneities associated with air bubbles possibly due to unsaturated pore spaces. SP measurements were made using two non-polarizing Pb/PbCl2 electrodes and a Fluke 289 voltmeter (sensitivity 0.001 mV, internal impedance 100 MOhm). The reference electrode was located on the corner of the sandbox. The other electrode was used to scan the electrical potential at the surface of the sand. SP measurements were made with a spacing of 3 cm over the same ERT profile. The SP results also shows a dip (or a low SP anomaly) over the target ore body sample. Thus, both SP and

  2. Platinum metals magmatic sulfide ores.

    PubMed

    Naldrett, A J; Duke, J M

    1980-06-27

    Platinum-group elements (PGE) are mined predominantly from deposits that have formed by the segregation of molten iron-nickel-copper sulfides from silicate magmas. The absolute concentrations of PGE in sulfides from different deposits vary over a range of five orders of magnitude, whereas those of other chalcophile elements vary by factors of only 2 to 100. However, the relative proportions of the different PGE in a given deposit are systematically related to the nature of the parent magma. The absolute and relative concentrations of PGE in magmatic sulfides are explained in terms of the degree of partial melting of mantle peridotite required to produce the parent magma and the processes of batch equilibration and fractional segregation of sulfides. The Republic of South Africa and the U.S.S.R. together possess more than 97 percent of the world PGE reserves, but significant undeveloped resources occur in North America. The Stillwater complex in Montana is perhaps the most important example. PMID:17796685

  3. Gold ore-forming fluids of the Tanami region, Northern Australia

    NASA Astrophysics Data System (ADS)

    Mernagh, Terrence P.; Wygralak, Andrew S.

    2007-01-01

    Fluid inclusion studies have been carried out on major gold deposits and prospects in the Tanami region to determine the compositions of the associated fluids and the processes responsible for gold mineralization. Pre-ore, milky quartz veins contain only two-phase aqueous inclusions with salinities ≤19 wt% NaCl eq. and homogenization temperatures that range from 110 to 410°C. In contrast, the ore-bearing veins typically contain low to moderate salinity (<14 wt% NaCl eq.), H2O + CO2 ± CH4 ± N2-bearing fluids. The CO2-bearing inclusions coexist with two-phase aqueous inclusions that exhibit a wider range of salinities (≤21 wt% NaCl eq.). Post-ore quartz and carbonate veins contain mainly two-phase aqueous inclusions, with a last generation of aqueous inclusions being very CaCl2-rich. Salinities range from 7 to 33 wt% NaCl eq. and homogenization temperatures vary from 62 to 312°C. Gold deposits in the Tanami region are hosted by carbonaceous or iron-rich sedimentary rocks and/or mafic rocks. They formed over a range of depths at temperatures from 200 to 430°C. The Groundrush deposit formed at the greatest temperatures and depths (260-430°C and ≤11 km), whereas deposits in the Tanami goldfield formed at the lowest temperatures (≥200°C) and at the shallowest depths (1.5-5.6 km). There is also evidence in the Tanami goldfield for late-stage isothermal mixing with higher salinity (≤21 wt% NaCl eq.) fluids at temperatures between 100 and 200°C. Other deposits (e.g., The Granites, Callie, and Coyote) formed at intermediate depths and at temperatures ranging from 240 to 360°C. All ore fluids contained CO2 ± N2 ± CH4, with the more deeply formed deposits being enriched in CH4 and higher level deposits being enriched in CO2. Fluids from deposits hosted mainly by sedimentary rocks generally contained appreciable quantities of N2. The one exception is the Tanami goldfield, where the quartz veins were dominated by aqueous inclusions with rare CO2-bearing

  4. Arc-related porphyry molybdenum deposit model: Chapter D in Mineral deposit models for resource assessment

    USGS Publications Warehouse

    Taylor, Ryan D.; Hammarstrom, Jane M.; Piatak, Nadine M.; Seal, Robert R., II

    2012-01-01

    Geoenvironmental concerns are generally low because of low volumes of sulfide minerals. Most deposits are marginally acid-generating to non-acid-generating with drainage waters being near-neutral pH because of the acid generating potential of pyrite being partially buffered by late-stage calcite-bearing veins. The low ore content results in a waste:ore ratio of nearly 1:1 and large tailings piles from the open-pit method of mining.

  5. [Biooxidation of a Double-Refractory Gold-Bearing Sulfide Ore Concentrate].

    PubMed

    Bulaev, A G; Kanaeva, Z K; Kanaev, A T; Kondrat'eva, T F

    2015-01-01

    The efficiency of biooxidation for treatment of a double-refractory gold-bearing sulfide ore concentrate from the Bakyrchik deposit (East Kazakhstan) was defined. The experiments were conducted in two different modes, i.e., with the standard liquid medium and the medium imitating the chemical composition of the Bakyrchik deposit groundwater and containing high concentrations of sodium, magnesium, and chloride. The concentrate contained 17.5% of organic carbon, 6% of pyrite and 13% arsenopyrite. Gold content was 57.5 g t@-1@. Direct gold recovery by cyanidation was very low (2.8%). While biooxidation was efficient in both cases (approximately 90% of sulfide sulfur was oxidized), the efficiency of cyanidation was low (39 and 32%, respectively). This fact suggests high efficiency of biooxidation is insufficient for efficient treatment of double-refractory gold-bearing sulfide ore concentrates. PMID:27169245

  6. Mineralogical characterization of the Nkamouna Co-Mn laterite ore, southeast Cameroon

    NASA Astrophysics Data System (ADS)

    Lambiv Dzemua, G.; Gleeson, S. A.; Schofield, P. F.

    2013-02-01

    The Nkamouna property is an oxide laterite deposit developed on serpentinized peridotite in southeast Cameroon. It is enriched in Co and Mn, has sub-economic Ni grades and will be mined primarily for Co. The ore zone is ca. 10 m thick and comprises the lower breccia (˜3 m thick) and ferralite (7-8 m thick) units sandwiched between an 8-m-thick ferricrete overburden and a barren hydrated Mg-silicate saprolite. The ore mineral assemblage includes Mn oxyhydroxides, magnetite, maghemite, ferritchromite, goethite, hematite, kaolinite and gibbsite. Lithiophorite is the most common Mn mineral and is the main host of Co, Mn and a significant proportion of Ni. It occurs as coatings in pores and on other mineral grains and as concretions and impregnations in the matrix. It is invariably associated with gibbsite in the lower breccia and with magnetite and ferritchromite in the ferralite. Although ore in the lower breccia is volumetrically less important than the ferralite, it has the highest grade and Co/Ni ratio. The lithiophorite in the ore zone is authigenic, and its formation was enhanced by influx of Al3+ from the overlying ferricrete. Magnetite and ferritchromite in the ferralite are relicts and contributed to mineralization by enhancing the permeability of the ferralite and providing substrates for the precipitation of the Mn oxyhydroxides. The structure and mode of occurrence of the lithiophorite makes Nkamouna ore amenable to physical beneficiation, producing a concentrate with Co grades 2.3-4.5 times higher than the run-of-mine ore.

  7. Kizilcaören ore-bearing complex with carbonatites (northwestern Anatolia, Turkey): Formation time and mineralogy of rocks

    NASA Astrophysics Data System (ADS)

    Nikiforov, A. V.; Öztürk, H.; Altuncu, S.; Lebedev, V. A.

    2014-02-01

    The results of isotope-geochronological and mineralogical studies of the rocks making up the Kizilcaören fluorite-barite-REE deposit, northwestern Anatolia, Turkey are discussed in the paper. The ore is a constituent of the subvolcanic complex localized in a large fault zone. The complex combines (from earlier to later rocks): (1) phonolite and trachyte stocks, (2) carbonatite and carbonate-silicate dikelike bodies; and (3) fluorite-barite-bastnaesite ore in the form of thick homogeneous veins and cement in breccia. The K-Ar dating of silicate igneous rocks and carbonatites shows that they were formed in the Chattian Age of the Oligocene 25-24 Ma ago. Mineralogical observations show that the ore is the youngest constituent in the rock complex. Supergene alteration deeply transformed ore-bearing rocks, in particular, resulting in leaching of primary minerals, presumably Ca-Mn-Fe carbonates, and in cementation of the residual bastnaesitefluorite framework by Fe and Mn hydroxides. Most of the studied rocks contain pyrochlore, LREE fluorocarbonates, Nb-bearing rutile, Fe-Mg micas, and K-feldspar. The genetic features of the deposit have been considered. In general, the ore-bearing rock complex is compared in the set of rocks and their mineralogy and geochemistry with deposits of the Gallinas Mountains in the United States, the Arshan and Khalyuta deposits in the western Transbaikalia region, and Mushugai-Khuduk deposit in Mongolia. The Kizilcaören deposit represents a variant of postmagmatic mineralization closely related to carbonatite magmatism associated with alkaline and subalkaline intermediate rocks.

  8. Method for extraction of uranium from ores

    SciTech Connect

    Bings, H.; Fischer, P.; Kampf, F.; Pietsch, H.; Thome, R.; Turke, W.; Wargalla, G.; Winkhaus, G.

    1982-11-30

    A method for continuously extracting uranium from ores comprises the steps of: forming a slurry of ore in a leaching solution; heating the slurry while pumping it through a tube reactor at high turbulences characterized by Reynolds numbers in excess of 50,000; supplying gaseous oxygen at high pressures into the tube reactor such that the uranium is substantially completely oxidized in a soluble form but impurities in the slurry are substantially kept from becoming soluble; recovering the uranium oxide solute which is substantially free of impurities.

  9. AMT survey in the Outokumpu ore Belt, Eastern Finland

    NASA Astrophysics Data System (ADS)

    Lahti, Ilkka; Kontinen, Asko; Aatos, Soile; Smirnov, Maxim

    2015-04-01

    conductors indicated by airborne electromagnetic data and regional strike analysis of acquired impedance tensor data. Two-dimensional inversion was done jointly for TE, TM- and Tipper data using the inversion code by Rodi and Mackie (2001). Results are visualized as sounding curves, sections of electrical conductivity and induction vectors. Results show dipping and sub-horizontal conductors southeast of the Outokumpu town. One c. 1 km deep sub-horizontal conductor is verified by a drill hole located approximately 8 km from the town. Gently eastwards dipping conductor was detected in the Miihkali serpentinite area. Conductors are absent in the uppermost ~ 7 km below the Sotkuma gneisses, which consequently represent rather a uplifted fault block than a thrust sheet of the Archaean basement rocks, thus resolving an old debate concerning the crustal structure at Sotkuma. In addition to AMT, high resolution seismic and airborne ZTEM surveys have been recently carried out in the study area providing a good opportunity to compare results from different deep penetrating geophysical methods. References Peltonen, P., Kontinen, A., Huhma, H. and Kuronen, U. 2008. Outokumpu revisited: New mineral deposit model for the mantle peridotite-associated Cu-Co-Zn-Ni-Ag-Au sulphide deposits: Ore Geology Reviews, 33, no. 3-4, 559-617. Rodi, W. and Mackie, R. 2001. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion. Geophysics, 66, 174-187.

  10. Iron deposits in relation to magmatism in China

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaochong; Santosh, M.; Li, Jianwei

    2015-12-01

    China has a rich reserve of iron ores, and hosts most of the major types of iron deposits recognized over the world. However, most of these deposits are low-grade ores (<50% Fe), and the high-grade iron ores only account for ˜1% of the total iron ore resources (Zhang et al., 2014a). During 50s to 70s of the last century, two major research and exploration programmes were implemented on national level in China, focusing on the high-grade iron ores of banded iron formation (BIF) deposits. However, apart from several small deposits, no large high-grade iron deposits under the BIF category were discovered. Thus, the exploration and scientific studies on iron deposits came to a dead-end during 1980's to 2005. In the recent years, however, there has been an increasing demand for iron resources due to China's rapid industrialization and economic development. Thus, a new surge of studies and prospecting of high-grade iron deposits started, which resulted in many advances in our understanding of the formation and exploration of iron deposits.

  11. AERIAL OVERVIEW, LOOKING NORTH, WITH FORMER TCIUS STEEL ORE MINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL OVERVIEW, LOOKING NORTH, WITH FORMER TCI-US STEEL ORE MINE HEADQUARTERS (BOTTOM) AND SUPERINTENDENT'S AND FOREMAN HOUSING ALONG MINNESOTA AVENUE AT CREST OF RED MOUNTAIN (TOP LEFT). - Muscoda Red Ore Mining Community, Bessemer, Jefferson County, AL

  12. 3. DETAIL OF ORE RECEIVING PLATFORM AND GRIZZLY, VIEW TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DETAIL OF ORE RECEIVING PLATFORM AND GRIZZLY, VIEW TO WEST. - Vanadium Corporation of America (VCA) Naturita Mill, Sampling Building & Ore Receiving Platform, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  13. 2. VIEW TO NORTHEAST (ORE RECEIVING PLATFORM OUT OF VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW TO NORTHEAST (ORE RECEIVING PLATFORM OUT OF VIEW TO RIGHT). - Vanadium Corporation of America (VCA) Naturita Mill, Sampling Building & Ore Receiving Platform, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  14. 7. VIEW OF CARRIE No. 3 AND No. 4 ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW OF CARRIE No. 3 AND No. 4 ORE BRIDGE, ORE YARD AND FURNACES FROM THE HOT METAL BRIDGE. - U.S. Steel Homestead Works, Blast Furnace Plant, Along Monongahela River, Homestead, Allegheny County, PA

  15. 4. DETAIL OF ORE RECEIVING PLATFORM AND GRIZZLY, VIEW TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL OF ORE RECEIVING PLATFORM AND GRIZZLY, VIEW TO EAST. - Vanadium Corporation of America (VCA) Naturita Mill, Sampling Building & Ore Receiving Platform, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  16. 1. VIEW TO SOUTH (RETAINING WALL OF ORE RECEIVING PLATFORM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW TO SOUTH (RETAINING WALL OF ORE RECEIVING PLATFORM TO LEFT). - Vanadium Corporation of America (VCA) Naturita Mill, Sampling Building & Ore Receiving Platform, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  17. CONTEXT VIEW ALONG EXISTING PERIMETER TRACKS LOOKING OVER IRON ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXT VIEW ALONG EXISTING PERIMETER TRACKS LOOKING OVER IRON ORE CARS TOWARDS CLEVELAND BULK TERMINAL BUILDINGS. LOOKING SOUTH. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  18. CONTEXT VIEW SHOWING MODERN TRACKS PASSING UNDER HULETTS AND ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXT VIEW SHOWING MODERN TRACKS PASSING UNDER HULETTS AND ORE YARD. LOOKING NORTHEAST. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  19. CONTEXT VIEW ACROSS ORE YARD AT MODERN SELFUNLOADING SHIP UNLOADING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXT VIEW ACROSS ORE YARD AT MODERN SELF-UNLOADING SHIP UNLOADING IN FRONT OF HULETTS. LOOKING SOUTHWEST. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  20. CONTEXT VIEW ACROSS ORE YARD AT MODERN SELFUNLOADING BOOM IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXT VIEW ACROSS ORE YARD AT MODERN SELF-UNLOADING BOOM IN FRONT OF HULETTS. LOOKING SOUTHWEST. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  1. Alteration and ore distribution in the Proterozoic Mines Series, Tenke-Fungurume Cu-Co district, Democratic Republic of Congo

    NASA Astrophysics Data System (ADS)

    Fay, I.; Barton, M. D.

    2012-06-01

    Two sediment-hosted stratiform Cu-Co deposits in the Tenke-Fungurume district of the Central African Copperbelt were examined to evaluate the alteration history of the ore-hosting Mines Series and its implications for ore distribution and processing. Core logging and petrography, focused on lithology and timing relationships, outlined a complex alteration sequence whose earliest features include formation of anhydrite nodules and laths, followed by precipitation of dolomite. Later alteration episodes include at least two silica introductions, accompanied by or alternating with two dolomite introductions into the existing gangue assemblages. One introduction of Cu-Co sulfides accompanied the last episode of dolomite alteration, overprinting an earlier generation of ore whose gangue association was unidentifiable. Sulfides and some carbonates were subsequently modified by supergene oxidation, transport, and reprecipitation to 100-200 m depth. Present-day ore distribution resulted from these successive processes. Ore is concentrated in two shale-dominated units on either side of a cavernous silicified dolomite, which is interpreted as the main conduit for the mineralizing fluids. Sulfide ores precipitated at the redox or sulfidation contacts between this dolomite and the shales. Later, supergene fluids dissolved and moved some of the metals, redepositing them as oxides and carbonates. Solubility differences between Cu and Co in supergene conditions caused them to precipitate separately. Thus, modern ore distribution at Tenke-Fungurume results both from original hypogene lithology- and contact-related precipitation and from supergene oxidation, transport, and Cu-Co decoupling. The supergene fluid flow also redistributed gangue minerals such as dolomite, which has an economically important influence on the processing costs of supergene ores.

  2. Placement Of O-Rings In Solid Rocket Booster

    NASA Technical Reports Server (NTRS)

    Wood, Charles

    1991-01-01

    Brief report proposes to modify placement of O-ring seals in joints of Solid Rocket Booster of Space Shuttle. Modified joint and seal essentially "inside-out" version of old joint and seal. O-rings placed between outer side of tang and clevis. Joint rotation pushes tang harder against O-rings, thereby making even tighter seal. Proposal derived from analysis of Space Shuttle Challenger disaster, attributed to failure of these O-ring seals.

  3. 32. INTERIOR VIEW LOOKING NORTH ON THE ORE BREAKER LEVEL. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. INTERIOR VIEW LOOKING NORTH ON THE ORE BREAKER LEVEL. THE ORE BREAKER, A BLAKE JAW CRUSHER, IS IN THE BOX IN THE LEFT OF THE PHOTOGRAPH, THE ORE TO BE BROKEN IS FED INTO THE OPENING ON THE FLOOR AND NEXT TO ORE BREAKER BOX. THE GRIZZLY BARS ARE ON THE RIGHT AND THE PULLEYS FROM THE POWER SYSTEM ARE OVERHEAD. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA

  4. Process for recovering hydrocarbons from a diatomite-type ore

    SciTech Connect

    Davis, B.W.

    1983-02-15

    A process for recovering hydrocarbons from a diatomite-type ore which comprises contacting the diatomite ore with a C/sub 4/-C/sub 10/ alcohol and thereafter contacting the diatomite ore-alcohol mixture with an aqueous alkaline solution to separate a hydrocarbon-alcohol phase and an alkaline aqueous phase containing the stripped diatomite ore. Thereafter, the alcohol is distilled off from the hydrocarbon phase and recycled back into the initial process.

  5. Types and geological characteristics of iron deposits in China

    NASA Astrophysics Data System (ADS)

    Li, Hou-Min; Li, Li-Xing; Yang, Xiu-Qing; Cheng, Yan-Bo

    2015-05-01

    China has the largest global demand for iron ore resources, with more than 50% of its demand presently being met from foreign sources. Iron resources are abundant in China (ca. 80 billion tons of proven iron ores), but high-grade ores are scarce. Most iron deposits in China are low in grade, with an average grade of 30.62% TFe. The iron deposits in China are divided into six types: sedimentary-metamorphic, magmatic Fe-Ti-(V), volcanic rock-hosted, contact metasomatic-hydrothermal (mostly skarn), sedimentary, and weathering-leaching type. Sedimentary-metamorphic iron deposits, which are mainly distributed in the North China Craton, are dominated by highly metamorphosed and deformed BIF-related iron deposits. Although these ores average only 30.35% TFe, their coarse-grained magnetite is easily recovered during processing. Sedimentary-metamorphic iron deposits are the most common of the iron deposit types in China and account for approximately 56.3% of the proven ore reserves in the country. Iron skarn deposits in China occur along or near the contact zones between Mesozoic intermediate-felsic, medium- to shallow-level intrusions and carbonate country rocks. They are one of the most important suppliers of high-grade magnetite ores in China. Magmatic Fe-Ti-(V) deposits, which formed in Proterozoic basement rocks during the late Paleozoic Hercynian orogeny, are hosted by mafic-ultramafic complexes with Ti-V-rich magnetite as the major iron ore mineral. Volcanic rock-hosted iron deposits are divided into those hosted by marine and continental volcanic rocks, with magnetite as the main ore mineral in both. Marine volcanic rock-hosted iron deposits are mainly distributed in late Paleozoic rocks of the Altaishan and Tianshan Mountains in the Xinjiang Uygur Autonomous Region. Continental volcanic rock-hosted iron deposits are mainly distributed in the Yanshanian (late Mesozoic) Na-rich intermediate-mafic rocks of the Ningwu and Luzong basins in the Middle-Lower Yangtze River

  6. 29. ORE DOCK, LOOKING WEST; AT WORK UNLOADING THE 'GEORGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. ORE DOCK, LOOKING WEST; AT WORK UNLOADING THE 'GEORGE M. HUMPHREY'S' CARGO OF 25,000. TONS OF ORE. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  7. 3. EAGLE MILL, DETAIL OF CRUDE ORE BIN FROM NORTH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. EAGLE MILL, DETAIL OF CRUDE ORE BIN FROM NORTH, c. 1908-10. SHOWS EXPOSED CRUSHER HOUSE IN FRONT OF (SOUTH) CRUDE ORE BIN AND SNOW SHED ADDED OVER TRAM TRACKS. NOTE LACK OF EAST OR WEST CRUDE ORE BINS. CREDIT JW. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  8. 18. VIEW OF CRUDE ORE BINS FROM WEST. WEST CRUDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF CRUDE ORE BINS FROM WEST. WEST CRUDE ORE BIN AND TRESTLE FROM TWO JOHNS TRAMLINE TO SOUTH, CRUDE ORE BIN IN FOREGROUND. MACHINE SHOP IN BACKGROUND. THE TRAM TO PORTLAND PASSED TO NORTH OF MACHINE SHOP. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  9. 6. Looking west showing top of dock: steaming frozen ore ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Looking west showing top of dock: steaming frozen ore which had been put in pockets in December 1959, May 6, 1990. Photographer: unknown - Marquette Ore Dock No. 6, Ore Dock, On pilings in Marquette City Lower Harbor, Marquette, Marquette County, MI

  10. 17. ORE DOCK, LOOKING EAST FROM HULETT NO. 1. WHEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. ORE DOCK, LOOKING EAST FROM HULETT NO. 1. WHEN BUILT IN 1911-1912, THIS WAS THE LARGEST ORE-UNLOADING DOCK ON THE GREAT LAKES. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  11. CONTEXT VIEW ALONG EXISTING PERIMETER TRACKS LOOKING OVER IRON ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXT VIEW ALONG EXISTING PERIMETER TRACKS LOOKING OVER IRON ORE CARS TOWARDS WESTERN SIDE OF CLEVELAND BULK TERMINAL BUILDINGS AND A SELF-UNLOADING IRON ORE SHIP AT DOCK. LOOKING SOUTHWEST. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  12. PROCESS OF RECOVERING URANIUM FROM ITS ORES

    DOEpatents

    Galvanek, P. Jr.

    1959-02-24

    A process is presented for recovering uranium from its ores. The crushed ore is mixed with 5 to 10% of sulfuric acid and added water to about 5 to 30% of the weight of the ore. This pugged material is cured for 2 to 3 hours at 100 to 110 deg C and then cooled. The cooled mass is nitrate-conditioned by mixing with a solution equivalent to 35 pounds of ammunium nitrate and 300 pounds of water per ton of ore. The resulting pulp containing 70% or more solids is treated by upflow percolation with a 5% solution of tributyl phosphate in kerosene at a rate equivalent to a residence time of about one hour to extract the solubilized uranium. The uranium is recovered from the pregnant organic liquid by counter-current washing with water. The organic extractant may be recycled. The uranium is removed from the water solution by treating with ammonia to precipitate ammonium diuranate. The filtrate from the last step may be recycled for the nitrate-conditioning treatment.

  13. Sources of ores of the ferroalloy metals

    USGS Publications Warehouse

    Burchard, E.F.

    1933-01-01

    Since all steel is made with the addition of alloying elements, the record of the metallic raw materials contributory to the steel industry would be far from complete without reference to the ferroalloy metals. This paper, therefore, supplements two preceding arvicles on the sources of our iron ores. The photographs, with the exception of those relating to molybdenum and vanadium, are by the author.

  14. 13. ORE DOCK, LOOKING EAST FROM HULETT NO. 1. WHEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. ORE DOCK, LOOKING EAST FROM HULETT NO. 1. WHEN BUILT IN 1911-1912, THIS WAS THE LARGEST ORE-UNLOADING DOCK ON THE GREAT LAKES. THE DOCK FEATURED FOUR HULETT UNLOADERS, EACH WITH A BUCKET CAPACITY OF 17 TONS; A 15-TON CAPACITY ORE STOCKING AND REHANDLING BRIDGE; AND A ONE-MILLION-TON CAPACITY ORE STORAGE YARD. THE WILLIAM-SEAVER-MORGAN COMPANY OF CLEVELAND BUILT THE DOCK EQUIPMENT. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  15. Paragenesis and conditions of formation of ore minerals from metalliferous breccia pipes, N. Arizona

    SciTech Connect

    Wenrich, K.J.; Pratt, L.M.

    1985-01-01

    Ore deposits within N. Arizona breccia pipes are currently being exploited for U, but at various times during the past century Cu, Pb, Zn, and Ag were mined. These pipes formed as solution-collapses within the Mississippian Redwall Ls and stopped upward through overlying strata. The principal ore minerals are: uraninite, chalcopyrite, chalcocite, tennantite-tetrahedrite, galena, sphalerite, millerite, gersdorffite, siegenite, and molybdenite. Common gangue minerals are marcasite, pyrite, barite, dolomite, calcite and quartz. Marcasite and pyrite appear to have formed prior to the ore minerals, followed closely by chalcopyrite. The Ni and Co phases also appear to be early: gersdorffite crystals are rimmed by later galena. Tennantite-tetrahedrite formed later than both galena and sphalerite; uraninite, the latest ore mineral, consisting fills interstices. Primary fluid inclusions in dolomite, quartz, and sphalerite show filling temperatures from 80 to 145/degree/C and high salinities, averaging 15 wt% NaCl (eq). Secondary inclusions in sphalerite have consistently higher filling temperatures from 105 to 173/degree/C, but similar salinities. Rock-Eval pyrolysis of pyrobitumen yields little or no volatile hydrocarbons (S/sub 1/=0-0.2 mg/gm), but large amounts of pyrolytic hydrocarbons (S/sub 2/=105-216 mg/gm). Temperatures of maximum pyrolytic yield are relatively low (424-430/degree/C), suggesting temperatures did not exceed 150/degree/C following pyrobitumen emplacement. Except for uraninite, the breccia pipes are similar to Mississippi Valley-type (MVT) deposits in mineralogy, fluid-inclusion filling temperatures and salinities, and associated organic material. Because MVT deposits do not host U minerals, a possible two-stage mineralization history of the pipes is suggested, the first by a MVT brine and perhaps a second forming the uraninite.

  16. Did the Kiruna iron ores form as a result of a metasomatic or igneous process? New U-Pb and Nd data for the iron oxide apatite ores and their host rocks in the Norrbotten region of northern Sweden

    NASA Astrophysics Data System (ADS)

    Westhues, A.; Hanchar, J. M.; Whitehouse, M. J.; Fisher, C. M.

    2012-12-01

    A number of iron deposits near Kiruna in the Norrbotten region of northern Sweden are of the iron oxide apatite (IOA) type of deposits; also referred to as Kiruna-type deposits. They are commonly considered a subgroup or end-member of iron oxide copper gold (IOCG) deposits, containing no economic grades of copper or gold. Both IOCG and IOA deposits are characterized by abundant low-Ti Fe oxides, an enrichment in REE, and intense sodium and potassium wall-rock alteration adjacent to the ores. Deposits of these types are of a great economic importance, not only for iron, but also for other elements such as rare earth elements (REE) or uranium. Kiruna, the type locality of the IOA type of mineral deposits, is the focus of this study. Despite a century-long mining history and 2500 Mt of iron ore produced in the region to date (with grades of 30 to 70 wt.% Fe), the genesis of these deposits is poorly understood: theories of a magmatic vs. a hydrothermal or metasomatic origin have been debated, and the timing of mineralization of the ores in the Norbotten region has never been directly dated. The results anticipated from this study will provide a better understanding of the nature of the IOA type of mineral deposits and their relation to IOCG deposits such as Olympic Dam in Australia. An array of geochemical methods is used in order to gain insights on the emplacement history of the host rocks, their subsequent alteration, and the ore genesis of these deposits. This includes in situ U/Pb geochronology of zircon, monazite, and titanite to constrain the timing between host rock emplacement, alteration and mineralization. Isotopic data from whole rocks and in situ at mineral scale will provide constraints on the involvement of hydrothermal fluids and their possible sources, as well as on the sources of Fe, U, and the REE. Newly obtained Sm-Nd isotopic data points to distinct source differences between host rocks, ore and alteration related samples. Preliminary in situ U

  17. High-rate behaviour of iron ore pellet

    NASA Astrophysics Data System (ADS)

    Gustafsson, Gustaf; Häggblad, Hans-Åke; Jonsén, Pär; Nishida, Masahiro

    2015-09-01

    Iron ore pellets are sintered, centimetre-sized spheres of ore with high iron content. Together with carbonized coal, iron ore pellets are used in the production of steel. In the transportation from the pelletizing plants to the customers, the iron ore pellets are exposed to different loading situations, resulting in degradation of strength and in some cases fragmentation. For future reliable numerical simulations of the handling and transportation of iron ore pellets, knowledge about their mechanical properties is needed. This paper describes the experimental work to investigate the dynamic mechanical properties of blast furnace iron ore pellets. To study the dynamic fracture of iron ore pellets a number of split Hopkinson pressure bar tests are carried out and analysed.

  18. Degradation Characteristics of O-rings on Highly Aged GIS

    NASA Astrophysics Data System (ADS)

    Minagawa, Tadao; Nagao, Eiichi; Tsuchie, Ei; Yonezawa, Hiroshi; Takayama, Daisuke; Yamakawa, Yutaka

    Owing to increasing number of highly aged GIS, the investigation of the remaining lifetimes of those systems are becoming more important. Because a lot of O-rings are used in GIS, the study of degradation mechanism and lifetime estimation method of O-ring is essential. In this paper, the information about O-ring degradation mechanism is described, and the statistical method for estimating the remaining lifetime of O-ring is proposed. The degradation of O-ring is mainly subject to chemical reactions triggered by oxygen. Because there are many factors influencing those chemical reactions, the dispersion of degradation rates of O-rings in GIS is very large. Consequently the statistical analysis is one of the effective techniques for lifetime estimation of O-rings in GIS.

  19. DETAIL VIEW OF LOWER TRAM TERMINAL, SECONDARY ORE BIN, CRUSHER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF LOWER TRAM TERMINAL, SECONDARY ORE BIN, CRUSHER FOUNDATION, AND BALL MILL FOUNDATIONS, LOOKING NORTH NORTHWEST. ORE FROM THE MINES WAS DUMPED FROM THE TRAM BUCKETS INTO THE PRIMARY ORE BIN UNDER THE TRAM TERMINAL. A SLIDING CONTROL DOOR INTRODUCED THE INTO THE JAW CRUSHER (FOUNDATIONS,CENTER). THE CRUSHED ORE WAS THEN CONVEYED INTO THE SECONDARY ORE BIN AT CENTER LEFT. A HOLE IN THE FLOOR OF THE ORE BIN PASSED ORE ONTO ANOTHER CONVEYOR THAT BROUGHT IT OUT TO THE BALL MILL(FOUNDATIONS,CENTER BOTTOM). THIS SYSTEM IS MOST LIKELY NOT THE ORIGINAL SET UP, PROBABLY INSTALLED IN THE MINE'S LAST OCCUPATION IN THE EARLY 1940s. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  20. Extraction process and apparatus for hydrocarbon containing ores

    SciTech Connect

    Friedman, R. H.; Eakin, B. E.

    1985-09-03

    There is provided a hydrocarbon extraction process and apparatus for removing hydrocarbons from a hydrocarbon containing ore such as a diatomite ore. The ore is preprocessed to the extent required to produce an extractable ore and subsequently mixed with a carrier to form an ore stream. The carrier may be a nonaqueous solvent and may further comprise a non-porous granular material such as sand. The ore stream is passed in substantially vertical countercurrent flow through a nonaqueous solvent to produce a product-solvent stream and a spent ore stream. The solvent is subsequently separated from the hydrocarbon stream, which may be further upgraded by removal of a heavy portion. This may be accomplished in the presence of a substantial amount of fines.

  1. Process for extracting hydrocarbons from hydrocarbon bearing ores

    SciTech Connect

    Friedman, R.H.; Eakin, B.E.

    1986-02-18

    This patent describes a process for recovering hydrocarbons from a diatomite ore consisting of: reducing the size of the ore to less than about 5 mesh to form a reduced ore; combining the reduced ore with liquid to form ore pellets; treating the ore pellets to form extractable ore pellets; contacting a bed of the extractable pellets with extracting solvent in an extraction zone such that the relative velocity of the solvent to the extractable pellets is at least about one-half gallon per square foot per minute or more to thereby extract hydrocarbons from the extractable pellets and form spent pellets and a hydrocarbon rich solvent stream comprising extracting solvent and extracted hydrocarbons. The extracted hydrocarbons have an ash content of about less than 3 weight percent; and recovering extracting solvent from the spent pellets while retaining the spent pellets in pellet form without release of a significant amount of fines.

  2. Comparison of the native antimony-bearing Paiting gold deposit, Guizhou Province, China, with Carlin-type gold deposits, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Xie, Zhuo-Jun; Xia, Yong; Cline, Jean S.; Yan, Bao-Wen; Wang, Ze-Peng; Tan, Qin-Ping; Wei, Dong-Tian

    2016-03-01

    The Paiting gold deposit, Guizhou Province, China, has been regarded as a Carlin-type gold deposit by several researchers. Alteration and ore-related minerals from the Paiting deposit were examined, and results were compared with the Cortez Hills Carlin-type gold deposit, Nevada, USA. Similarities include the structural and stratigraphic controls on the orebodies in both deposits and the occurrence of invisible gold ionically bound in arsenian pyrite. Significant differences include the following: (1) The gold-bearing mineral in Nevada is arsenian pyrite. However, gold-bearing minerals in the Paiting deposit include arsenopyrite, arsenian pyrite, and trace pyrrhotite. Also, euhedral or subhedral gold-bearing arsenian pyrite at Paiting contains significantly less As, Cu, and Hg than gold-bearing pyrite from Nevada. (2) Alteration in the Paiting deposit displays significantly less decarbonatization. Instead, dolomite precipitation, which has not been described in Nevada deposits, is associated with deposition of gold-bearing sulfide minerals. (3) Stibnite and minor native antimony typify Paiting late-ore-stage minerals, whereas in Nevada, realgar, orpiment, and calcite are common late-ore-stage minerals. Precipitation of native antimony in the Paiting deposit reflects the evolution of a late-ore fluid with unusually low sulfur and oxygen fugacities. Some characteristics of the Paiting gold deposit, including formation of ore-stage dolomite and precipitation from CO2-rich ore fluids at temperatures in excess of 250 °C, are more typical of orogenic deposits than Nevada Carlin deposits. The presence of similarities in the Paiting deposit to both Carlin type and orogenic deposits is consistent with formation conditions intermediate to those typical of Carlin type and orogenic systems.

  3. Two sulphur isotope provinces deduced from ores in the Mount Isa Eastern Succession, Australia

    NASA Astrophysics Data System (ADS)

    Davidson, G. J.; Dixon, G. H.

    1992-01-01

    The sulphur isotopic characteristics of ore deposits in the Australian Mount Isa Eastern Succession are not well known, unlike those of the Western Succession. In this study new detailed analyses are provided for recently discovered Eastern Succession mineralisation, such as the Starra and Osborne BIF-hosted Cu-Au ores, the Dugald River sediment-hosted Pb-Zn prospect, and four vein-hosted Cloncurry-style Cu±Au deposits (Hampden, Mt Elliot/Swan, Mt Cobalt, and the Answer Mine). All of the deposits of the Eastern Succession have δ34Ssulphide between -8 and +9%., regardless of their genesis. Empirically a moderate (δ34S range averaging close to 0%. characterises Starra-style Cu-Au and Pegmont Pb-Zn BIF ores, whereas shear and vein-style Cu mineralisation populations are tighter and do not average close to 0%. This is a particularly surprising result for Dugald River, where a larger isotopic variation more typical of stratiform sediment-hosted Pb-Zn ores in the region might have been expected. By comparison, Western Succession stratiform Pb-Zn and vein-style Cu deposits span a huge range of-15 to 51%. Large sulphur isotope ranges typify sulphate evaporite or organic sulphur-rich sedimentary successions. The lack of such variation in the Eastern Succession in turn suggests that primary evaporite sequences there were halite-dominated but sulphate-poor, and/or contained only limited volumes of organic-sulphur-rich sediment. Eastern Succession sequences were therefore less likely hosts for giant stratiform Pb-Zn deposits, because of their paucity of sulphur, although local sulphur sources permitted small deposits such as Dugald River to develop. Sedimentary conditions were more favourable for the development of sulphur-poor synsedimentary hydrothermal systems such as Starra, Osborne, and Pegmont, although sulphur isotope evidence is equivocal about the origin of these. Epigenetic deposits close to the Williams Batholith (Mt Dore, Hampden) owe their clustering around 0

  4. Precipitation of sulfide ores and organic matter: sulfate reactions at pine point, Canada.

    PubMed

    Powell, T G; Macqueen, R W

    1984-04-01

    Bitumen is a common associate of carbonate-hosted lead-zinc deposits. On the Pine Point lead-zinc property, Northwest Territories, Canada, there are two forms of bitumen. Unaltered bitumens have atomic hydrogen/carbon ratios of about 1.4, sulfur contents of about 7.8 percent, and sulfur isotope ratios ( section sign(34)S) of approximately +4.6 per mil. Altered bitumens occur in proximity to sulfide ore bodies and white sparry dolomite. Their hydrogen/carbon ratios are about 1.02, the sulfur contents average 22 percent, and the section sign(34)S values are about +12.4 per mil. These data indicate that some bitumen has participated in the thermochemical reduction of sulfate to produce hydrogen sulfide required to precipitate the ores. Mass balance considerations show that the amount and degree of alteration of bitumen is more than adequate to account for the reduced sulfur species (lead, zinc, and iron sulfides) deposited at Pine Point. These reactions may provide an important means of generating the large volumes of sulfide necessary to precipitate ore bodies in carbonate rocks. PMID:17783525

  5. Pre-colombian mercury pollution associated with the smelting of argentiferous ores in the Bolivian Andes.

    PubMed

    Cooke, Colin A; Balcom, Prentiss H; Kerfoot, Charles; Abbott, Mark B; Wolfe, Alexander P

    2011-02-01

    The development of the mercury (Hg) amalgamation process in the mid-sixteenth century triggered the onset of large-scale Hg mining in both the Old and New Worlds. However, ancient Hg emissions associated with amalgamation and earlier mining efforts remain poorly constrained. Using a geochemical time-series generated from lake sediments near Cerro Rico de Potosí, once the world's largest silver deposit, we demonstrate that pre-Colonial smelting of Andean silver ores generated substantial Hg emissions as early as the twelfth century. Peak sediment Hg concentrations and fluxes are associated with smelting and exceed background values by approximately 20-fold and 22-fold, respectively. The sediment inventory of this early Hg pollution more than doubles that associated with extensive amalgamation following Spanish control of the mine (1574-1900 AD). Global measurements of [Hg] from economic ores sampled world-wide indicate that the phenomenon of Hg enrichment in non-ferrous ores is widespread. The results presented here imply that indigenous smelting constitutes a previously unrecognized source of early Hg pollution, given naturally elevated [Hg] in economic silver deposits. PMID:21404820

  6. Mining and beneficiation of lunar ores

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Williams, R. J.; Mckay, D. S.; Giles, D.

    1979-01-01

    The beneficiation of lunar plagioclase and ilmenite ores to feedstock grade permits a rapid growth of the space manufacturing economy by maximizing the production rate of metals and oxygen. A beneficiation scheme based on electrostatic and magnetic separation is preferred over conventional schemes, but such a scheme cannot be completely modeled because beneficiation processes are empirical and because some properties of lunar minerals have not been measured. To meet anticipated shipping and processing needs, the peak lunar mining rate will exceed 1000 tons/hr by the fifth year of operation. Such capabilities will be best obtained by automated mining vehicles and conveyor systems rather than trucks. It may be possible to extract about 40 kg of volatiles (60 percent H2O) by thermally processing the less than 20 micron ilmenite concentrate extracted from 130 tons of ilmenite ore. A thermodynamic analysis of an extraction process is presented.

  7. Genetic and biochemical effects induced by iron ore, Fe and Mn exposure in tadpoles of the bullfrog Lithobates catesbeianus.

    PubMed

    Veronez, Alexandra Caroline da Silva; Salla, Rômulo Victor; Baroni, Vinícius Dadalto; Barcarolli, Indianara Fernanda; Bianchini, Adalto; Dos Reis Martinez, Claudia Bueno; Chippari-Gomes, Adriana Regina

    2016-05-01

    For decades, the extraction of minerals has intensified in order to meet the demand of industry. Iron ore deposits are important sources of metals, such as iron (Fe) and manganese (Mn). The particulate ores can be dispersed during extraction, transport and storage, with potential to induce biological impacts. Amphibians are very sensitive to environmental stressors. Therefore, the present study aimed to assess the effects of iron ore, Fe and Mn exposure during the metamorphosis of Lithobates catesbeianus. Endpoints analyzed included morphological (biometrical and developmental analyses), whole body Fe and Mn concentration in, plasma ferritin concentration, erythrocyte DNA damage (measured through comet assay and micronucleus test) and liver activity of enzymes involved in oxidative status [glutathione S-transferase (GST) and catalase (CAT)]. Tadpoles were kept under control condition (no contaminant addition) or exposed to iron ore (3.79mg/L as fine particulate matter); Fe (nominal concentration: 0.51mg/L Fe as C10H12FeN2NaO8; Fe-EDTA); and Mn (nominal concentration: 5.23mg/L Mn as 4H2O.MnCl2) for 30 days. Virtually, no mortality was observed, except for one tadpole found dead in the iron ore treatment. However, tadpoles exposed to iron ore had longer tail than those kept under control conditions while tadpoles exposed to manganese chloride showed higher body length than control ones. Exposure to Fe and Mn induced a delay in tadpole metamorphosis, especially when these metals are presented not as a mixture (iron ore). Tadpoles exposed to iron ore had increased whole body Fe and Mn while those exposed to Fe and Mn accumulated each metal individually. Tadpoles exposed to any of the contaminants tested showed a significant increase in erythrocyte DNA damage and frequency of micronuclei. In addition, they showed higher liver GST activity respect with those kept under control conditions. Plasma ferritin concentration and liver CAT activity were higher only in tadpoles

  8. Geodynamically unusual settings of sedimentary rock and ore formation due to tectonic-decompression effects

    SciTech Connect

    Goryainov, P.M.

    1984-05-01

    The traditional views of terrigenous rocks as products of classical sedimentary cycle, ''mobilization-transport-deposition,'' are not universal. Detrital rocks are sometimes formed due to flaking and fracturation of rocks of rising blocks. The process is produced by tectonic-decompression mechanisms - the origination of a gradient of excessive stress and its discharge. It is incorrect to classify rocks created by this phenomenon with weathering crusts. The origins of certain terrigenous rocks, as well as products of low-temperature chemical processing, are connected with deep-volume decompression (brecciation, stockwork formation, formation of pipes and columns of igneous rocks, and chamber pegmatite and karst formation). The ore concentrations associated with such entities and appearing as stratiform deposits are most likely not exogenous, but they complete the endogenous history of the block concerned. The means and methods tested on typical endogenous deposits may therefore prove valuable in predicting certain varieties of stratiform deposits.

  9. Trace and rare earth elements fractionation in volcanic- and sediment-hosted Mn ores: a study case of Sardinia (western Italy).

    NASA Astrophysics Data System (ADS)

    Sinisi, Rosa

    2015-04-01

    It is widely accepted that, regardless of the geological environment (continental, marine or hydrothermal), the occurrences of clay minerals and/or mineral phases with clay-type crystal structure (as zeolites and Mn-oxides), play a key role in the trace elements and REEs uptake processes. The REE resources are produced mostly from ion-adsorption type REE deposits of southern China that are formed by weathering of granitic rocks and subsequent chemical adsorption of REE on clay minerals. A significant group of minerals with a high metal uptake capacity is represented by Mn oxides. Their "tunnel" structure, in fact, allows both the absorption (inside the minerals) and adsorption (outside the minerals) of cations and anions producing metal accumulations with economic and environmental significance. However, the ores, mainly that forming within sedimentary environment, often have impurities due to presence of minerals unrelated to mineralization. These minerals can significantly alter the compositional features of the ores and suggest misleading conclusions. In Sardinia (Italy, western Mediterranean), Mn-oxide mineralizations occur and recently their origin has been discussed and identified (Sinisi et al. 2012). In this study the mineralogical and chemical compositions of the Sardinian sediment-hosted and volcanic-hosted Mn-ore are exhibit exploring the possibility that they can represent exploitable trace and REE mineralizations. High contents of metals characterize these Mn deposits. Besides some trace elements (Ni, Cr, Zn, Cu, As, Pb, and U) that commonly typify the Mn oxi-hydroxide ores, all rare earth elements showed high concentrations in the Sardinian deposits, comparable to those of the main actually exploited REE sinks. For this reason, a simple statistical data treatment (R-mode Factor Analysis) was performed on fifteen and nineteen samples of sediment-hosted and volcanic-hosted Mn ore respectively, in order to identify both the mineral phases trapping trace

  10. The Idaho cobalt belt, northwestern United States — A metamorphosed Proterozoic exhalative ore district

    NASA Astrophysics Data System (ADS)

    Nold, J. L.

    1990-07-01

    In the Idaho cobalt belt, originally exhalative, stratiform mineralization within the Proterozoic Yellow-jacket Formation has become increasingly coarse-grained and remobilized toward the northwest in the direction of increasing regional metamorphic grade. The Idaho cobalt belt is located about 40 km west of Salmon, Idaho in the northwestern United States. The most important deposit in the district is the Blackbird mine which produced copper-cobalt ore sporadically from the early 1900's until about 1960. The Iron Creek deposit at the southeast end of the belt has undergone greenschist fades, biotite zone metamorphism; zones of disseminated, veinlet and massive sulfides lie more or less parallel to bedding of quartzites and phyllites. The main ore minerals are chalcopyrite and cobaltiferous pyrite. Toward the northwest at the Blackpine mine, remobilization has concentrated most of the mineralization into relatively thin concordant and discordant veins containing chalcopyrite, pyrite and arsenopyrite. The cobalt is reported to occur within arsenopyrite. Further northwest at the Blackbird mine where the Yellowjacket formation has been metamorphosed to the lower amphibolite facies, zones of disseminated and coarse-grained vein ores lie approximately along the same stratigraphic zone. Chalcopyrite, cobaltite, arsenopyrite, pyrite and pyrrhotite are the dominant ore minerals. Up to 0.22 oz. Au/ton was present in some of the ore. In addition, tourmaline-bearing sedimentary rocks (tourmalinites) are associated with some of the Blackbird ores. The Salmon Canyon deposit at the northwest end of the belt has undergone upper amphibolite facies, sillimanite zone metamorphism. In these garnet-sillimanite gneisses, chalcopyrite is found as coarse blebs and cobaltite as large porphyroblastic crystals. Gold occurs in amounts up to 0.02 oz. Au/ton. Elsewhere in the world the two most similar districts are the cobalt-bearing portion of the Zambian-Zairian Copperbelt of central Africa

  11. Manganese oxides and associated minerals as constituents of dispersed mineralization of metasomatic rocks in the Dukat ore field

    NASA Astrophysics Data System (ADS)

    Filimonova, L. G.; Sivtsov, A. V.; Trubkin, N. V.

    2010-08-01

    Lithiophorite and coronadite—varieties of vernadite and todorokite—make up finely dispersed colloform mixtures along with minor grains and nanoparticles of aluminosilicates and ore minerals in metasomatic rocks of the Dukat ore field, which were formed in local areas of fluid and hydrothermal-solution discharge at the upper level of the ore-forming system. Fe-vernadite associates with feroxyhyte, magnetite, apatite, K-feldspar, native silver, and acanthite in greisenized granitoids and with epidote, cerianite, plattnerite, and Fe-chlorite in quartz-garnet-chlorite propylites. Todorokite with high Pb, Tl, and Sn contents associates with epidote, albite, bitumen, and native silver in quartz-epidote-chlorite propylites. Al-vernadite, coronadite, and lithiophorite associate with opal, kaolinite, Fe-chlorite, zincite, uraninite, native silver, and acanthite in argillisites. These data allowed us to estimate the conditions of manganese accumulation in the epithermal ore-forming system and deposition conditions of Mn-rich, finely dispersed mineral mixtures in mineralized zones hosted in metasomatic rocks of the ore field.

  12. Main types of gold ore forming systems and their relationship with the paleogeodynamic settings on the Taimyr Peninsula and the Severnaya Zemlya Archipelago

    NASA Astrophysics Data System (ADS)

    Proskurnin, Vasiliy; Anatoly, Gavrish; Aleksandra, Bagaeva; Petrushkov, Boris; Shneider, Alexey; Saltanov, Vasily; Stepunina, Maria; Proskurnina, Alina

    2014-05-01

    carbonate-terrigenous carbonaceous deposits and tectonic-hydrothermal (propylite-beresite) in plutonic-volcanic complexes (Malinovsky, Gagarinsky, Svetlinsky ore zones). Late Paleozoic - Early Mesozoic manifestations of plutonic - hydrothermal ore-forming systems are associated: for gold - (sulphide) - quartz formation - with development of early deuterogenic diorite- granitoids of the diorite-granodiorite formation (I - type) and confinement to the remote from granites exocontact areas of greenschist facies (Osnovnoy Creek, Lagerninsky ore zones); for gold-bearing copper-molybdenum-porphyry formation - with development of late deuterogenic subalkaline granites of A-type and confinement to the apical areas of massifs (Oleninsky, Shirokinsky, Uboyninsky ore clusters).

  13. Metallogenic events and tectonic setting of the Duobaoshan ore field in Heilongjiang Province, NE China

    NASA Astrophysics Data System (ADS)

    Hao, Yu-Jie; Ren, Yun-Sheng; Duan, Ming-Xin; Tong, Kuang-Yin; Chen, Cong; Yang, Qun; Li, Chao

    2015-01-01

    The Duobaoshan ore field, a major center of metal production in Northeast China, is located in the northeast of the Xing'an-Mongolia Orogenic Belt (the eastern part of the Central Asian Orogenic Belt) and within the northern Greater Xing'an Mountains. Several types of ore deposits are mined in the Duobaoshan region, including the Duobaoshan and Tongshan porphyry copper-molybdenum deposits, the Sankuanggou skarn iron-copper deposit, and the Zhengguang epithermal gold deposit. Zircon grains from the Tongshan granodiorite and porphyritic granite yield laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb weighted mean ages of 475.9 ± 0.8 Ma and 230.9 ± 0.9 Ma to 240.7 ± 0.8 Ma, respectively. The Re-Os isochron age of molybdenites from the Tongshan deposit is 473 ± 4 Ma. Because both field observations and petrographic analysis identified disseminated chalcopyrite, pyrite, and malachite in the porphyritic granite, the isotope dating indicates that the Tongshan deposit underwent at least two magmatic-mineralization events, during the Ordovician and the Triassic. Zircon grains from the metallogenic granodiorite of the Sankuanggou skarn deposit yield an age of 176.1 ± 0.3 Ma, and Re-Os dating of molybdenite gives an age of 173 ± 6 Ma, indicating a Jurassic event. Based on previous research and the new geochemical analysis presented in this study, it is inferred that the magmatism and mineralization of the Sankuanggou deposit were associated with the subduction of the Paleo-Pacific Plate. The Duobaoshan region has therefore experienced at least three major magmatic and mineralization events, during the Ordovician (470-480 Ma), the Triassic (230-240 Ma), and the Early Jurassic (170-180 Ma).

  14. High REE and Y concentrations in Co-Cu-Au ores of the Blackbird district, Idaho

    USGS Publications Warehouse

    Slack, J.F.

    2006-01-01

    Analysis of 11 samples of strata-bound Co-Cu-Au ore from the Blackbird district in Idaho shows previously unknown high concentrations of rare earth elements (REE) and Y, averaging 0.53 wt percent ???REE + Y oxides. Scanning electron microscopy indicates REE and Y residence in monazite, xenotime, and allanite that form complex intergrowths with cobaltite, suggesting coeval Co and REE + Y mineralization during the Mesoproterozoic. Occurrence of high REE and Y concentrations in the Blackbird ores, together with previously documented saline-rich fluid inclusions and Cl-rich biotite, suggest that these are not volcanogenic massive sulfide or sedimentary exhalative deposits but instead are iron oxide-copper-gold (IOCG) deposits. Other strata-bound Co deposits of Proterozoic age in the North American Cordillera and elsewhere in the world may have potential for REE and Y resources. IOCG deposits with abundant light REE should also be evaluated for possible unrecognized heavy REE and Y mineralization. ?? 2006 by Economic Geology.

  15. Reactive flow models of the Anarraaq Zn-Pb-Ag deposit, Red Dog district, Alaska

    USGS Publications Warehouse

    Schardt, C.; Garven, G.; Kelley, K.D.; Leach, D.L.

    2008-01-01

    The Red Dog ore deposit district in the Brooks Range of northern Alaska is host to several high-grade, shale-hosted Zn + Pb deposits. Due to the complex history and deformation of these ore deposits, the geological and hydrological conditions at the time of formation are poorly understood. Using geological observations and fluid inclusion data as constraints, numerical heat and fluid flow simulations of the Anarraaq ore deposit environment and coupled reactive flow simulations of a section of the ore body were conducted to gain more insight into the conditions of ore body formation. Results suggest that the ore body and associated base metal zonation may have formed by the mixing of oxidized, saline, metal-bearing hydrothermal fluids (<200??C) with reducing, HS-rich pore fluids within radiolarite-rich host rocks. Sphalerite and galena concentrations and base metal sulfide distribution are primarily controlled by the nature of the pore fluids, i.e., the extent and duration of the HS- source. Forward modeling results also predict the distribution of pyrite and quartz in agreement with field observations and indicate a reaction front moving from the initial mixing interface into the radiolarite rocks. Heuristic mass calculations suggest that ore grades and base metal accumulation comparable to those found in the field (18% Zn, 5% Pb) are predicted to be reached after about 0.3 My for initial conditions (30 ppm Zn, 3 ppm Pb; 20% deposition efficiency). ?? Springer-Verlag 2008.

  16. Ore petrology of chromite-PGE mineralization in the Kempirsai ophiolite complex

    NASA Astrophysics Data System (ADS)

    Distler, V. V.; Kryachko, V. V.; Yudovskaya, M. A.

    2008-01-01

    The platinum group minerals (PGM) in chromite ores of the Kempirsai ophiolite massif, located south of the Ural Mountains, are extremely varied in composition and represented predominantly by alloys, sulfides, arsenides, and sulfosalts of the iridium-group PGE (IPGE). The earlier Ir-Os-Ru alloys prevail over the later Cu-Os-Ru, Cu-Ir, Ni-Ir, Ni-Os-Ir-Ru, and Ni-Ru-Os-Fe alloys rich in base metals (BM). The earlier Ru-Os disulfides crystallize coevally with Ir-Os-Ru alloys, whereas the later sulfides are represented by compounds with a variable stoichiometry and a wide miscibility of Ni, Cu, Ir, Rh, Os, and Fe. Phase relations of PGE alloys with PGE-BM alloys, sulfides and sulfoarsenides confirm that deposition of these minerals was defined by a general evolution of PGE fractionation in the mineral-forming system but not by a super-imposed process. The leading mechanism of PGM crystallization is thought to be their dendritic growth during gas-transport reactions from low-density gaseous fluid enriched in PGE. The representative technological sampling of 0.5 million tons of an ore showed that the average PGE content in chromite ore is 0.71 ppm which leads to an evaluation of the PGE resources to be no less than 250 tons. Hence, the Kempirsai deposit is not only a giant chromium deposit, but also a giant deposit of IPGE: Ir, Ru, and Os. The size parameters of PGM and their aggregates suggests that the PGE may be recoverable in separate concentrates.

  17. Sulfate Saturated Hydrous Magmas Associated with Hydrothermal Gold Ores

    NASA Astrophysics Data System (ADS)

    Chambefort, I.; Dilles, J. H.; Kent, A. J.

    2007-12-01

    Hydrothermal ore deposits associated with arc magmatism represent important sulfur anomalies. During degassing of magmatic systems the volatile may transport metals and sulfur and produce deposits. The ultimate origin of the magma-derived sulfur is still uncertain. The Yanacocha high-sulfidation epithermal Au deposit, Peru, is hosted by a Miocene volcanic succession (ca. 16 to 8 Ma). Magmatic rocks are highly oxidized >NNO+2 and show a range of composition from andesite to dacite. Two populations of amphibole occur in the Yanacocha dacitic ignimbrite deposits (~7 and 12 wt% Al2O3). Low Al amphiboles crystallized at ~ 1.5-2 kbar and 800°C (Plag-Hb thermobarometry) in equilibrium with plagioclase and pyroxene. High Al amphiboles only contain inclusions of anhydrite associated with apatite (up to 1.2 wt% SO3), and have a higher Cr2O3 content (up to 1000 ppm). We estimate these amphiboles form near the magma's liquidus at P(H2O)> 3kbar and 950 to 1000°C of a basaltic, basaltic andesite ascending magma. Low Al amphibole presents an REE pattern with negative anomalies in Sr, Ti and Eu, characteristic of plagioclase and titanite fractionation in the magma. High Al amphiboles are less enriched in REE and have no Sr, Ti, or Eu anomaly. Rare crystals of high Al amphibole display a low Al rim marked by higher REE contents compared to the core and a negative Eu anomaly. Magmatic sulfate occurrences have been discovered through the 8 m.y. volcanic sequence. Rounded anhydrite crystals are found included within clinopyroxene and both high and low Al amphibole. The rare high Al amphiboles (from the sample RC6) contain up to ~10 vol.%, ~5-80 micrometer-long anhydrite as irregularly shaped (amoeboid) blebs that do not show crystallographic forms and do not follow host cleavages. Extremely rare sulfide inclusions are found in plagioclase (Brennecka, 2006). The major and trace element contents of Yanacocha magmatic anhydrite have been analyzed by electron microprobe and LA

  18. Acid pre-treatment method for in situ ore leaching

    DOEpatents

    Mallon, R.G.; Braun, R.L.

    1975-10-28

    An acid leaching method is described for the recovery of a desired element from a subterranean rubblized body of primary ore containing the element and also having associated therewith a carbonate mineral wherein the rubblized ore body is flooded with an aqueous acidic solution in order to release carbon dioxide from the associated carbonate mineral. After a substantial portion of the available carbon dioxide is released and removed from the ore body, as by venting to the atmosphere, an oxidizing gas is introduced into the flooded, rubblized ore to oxidize the ore and form an acid leach solution effective in the presence of the dissolved oxidizing gas to dissolve the ore and cause the desired element to go into solution. The leach solution is then circulated to the surface where the metal values are recovered therefrom.

  19. Beryllium deposits of the western Seward Peninsula, Alaska

    USGS Publications Warehouse

    Sainsbury, C.L.

    1963-01-01

    Deposits of beryllium ore in the Lost River area of the western Seward Peninsula, Alaska, consist of replacement veins, pipes, and stringer lodes is limestone in a zone about 7 miles long and 2 to 3 miles wide which is faulted and intruded by dikes and stocks. The ores are remarkably alike and typically consist of the following minerals, in percent: fluorite, 45-65; diaspore, 5-10; tourmaline, 0-10; chrysoberyl, 3-10; white mica, 0-5; small amounts of hematite, sulfide minerals, manganese oxide, other beryllium minerals; and traces of minerals not yet identified. The ores generally are cut by late veinlets which are of the same mineralogy as the groundmass ore, or which consist of fluorite, white mica, and euclase. The ores are fine grained, and many of the individual mineral grains, except fluorite, are less than 1 mm in size. The beryllium content of bulk samples of ore ranges from 0.11 to 0.54 percent (0.31 to 1.50 percent BeO). High-grade nodules, composed principally of chrysoberyl, diaspore, fluorite, and mica, contain as much as 6 percent BeO. Geochemical reconnaissance has disclosed other areas of anomalous beryllium in stream sediments elsewhere on the Seward Peninsula, generally around biotite granites that have them associated with tin deposits; additional exploration probably will disclose other deposits.

  20. OVERVIEW OF UPPER TRAM TERMINAL, TRAM TRESTLE, AND PRIMARY ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF UPPER TRAM TERMINAL, TRAM TRESTLE, AND PRIMARY ORE BIN, LOOKING NORTHEAST. REMAINS OF A BLACKSMITH'S FORGE AND WORK CAN BE SEEN JUST BELOW THE ORE BIN (SEE CA-291-32 FOR DETAIL). ROCK FOUNDATIONS LOCATED JUST ABOVE THE ORE BIN AND ALONG THE FIRST RIDGELINE ARE TENT PADS. SEE CA-291-49 (CT) FOR IDENTICAL COLOR TRANSPARENCY. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  1. 37. VIEW NORTH FROM EAST CRUDE ORE BIN TO CRUSHER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. VIEW NORTH FROM EAST CRUDE ORE BIN TO CRUSHER ADDITION AND CRUSHED OXIDIZED ORE BIN. VISIBLE ARE DINGS MAGNETIC PULLEY (CENTER), THE 100-TON STEEL CRUSHED UNOXIDIZED ORE BIN, AND UPPER PORTION OF THE STEPHENS-ADAMSON 25 TON/HR BUCKET ELEVATOR. THE UPPER TAILINGS POND LIES BEYOND THE MILL WITH THE UPPER TAILINGS DAM UNDER THE GRAVEL ROAD IN THE UPPER RIGHT CORNER. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  2. OVERVIEW OF UPPER TRAM TERMINAL, TRAM TRESTLE, AND PRIMARY ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF UPPER TRAM TERMINAL, TRAM TRESTLE, AND PRIMARY ORE BIN, LOOKING NORTHEAST. REMAINS OF A BLACKSMITH'S FORGE AND WORK CAN BE SEEN JUST BELOW THE ORE BIN (SEE CA-291-32 FOR DETAIL). ROCK FOUNDATIONS LOCATED JUST ABOVE THE ORE BIN AND ALONG THE FIRST RIDGELINE ARE TENT PADS. SEE CA-291-24 FOR IDENTICAL B&W NEGATIVE. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  3. Metamorphic mineral assemblages of the Hemlo and Big Bell gold deposits: design or accident

    SciTech Connect

    Stanton, R.L.

    1985-01-01

    The Superior Province of Canada and the Yilgarn Province of Australia are well-known to exhibit remarkable similarities in their petrological nature and constitution, and in their tectonic histories. Not only does this apply to the grosser features of petrogenetic and structural analogy, which are well established, but also to many of the finer elements, the recognition of which has been more recent. Among these smaller-scale analogies is a series of remarkably similar ore types: the small Archean iron formations; the Kirkland Lake/Kalgoorlie precious metal telluride ores and environments; the stratiform, volcanic-associated Cu-Zn-(Pb) sulfide deposits; and the nickel sulfide occurrences of basic/ultrabasic lava association. Recently there has emerged what appears to be yet another of these small-scale but important analogies: the Big Bell-Hemlo stratabound pyritic gold-molybdenum ore type. The recently-discovered deposits of Hemlo, Ontario, seem remarkably similar to the well-known occurrence of the Big Bell Mine in Western Australia. Not only are these two deposits very similar in their volcano-sedimentary environments and ore metal mineralogy, but also in their locally-developed metamorphic mineral assemblages. The two ore bodies exemplify a distinctive ore type which is characterized by an overall sulfide-native metal-sulfate-silicate assemblage. A corollary of the latter is that this ore type, whatever its genetic history, provides yet another example of the potential importance of metamorphic silicates to mineral exploration for stratiform ores in metamorphosed terrains.

  4. TRACE AND POTENTIALLY TOXIC ELEMENTS ASSOCIATED WITH URANIUM DEPOSITS IN SOUTH TEXAS

    EPA Science Inventory

    The environmentally sensitive trace elements molybdenum, arsenic, and selenium are concentrated with uranium in ore deposits in South Texas. Cattle grazing in some pastures in mining areas have contracted molybdenosis, a cattle disease resulting from an imbalance of molybdenum an...

  5. Experimenting With Ore: Creating the Taconite Process; flow chart of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Experimenting With Ore: Creating the Taconite Process; flow chart of process - Mines Experiment Station, University of Minnesota, Twin Cities Campus, 56 East River Road, Minneapolis, Hennepin County, MN

  6. Recovery of Cu and Zn from Complex Sulphide Ore

    NASA Astrophysics Data System (ADS)

    Talapaneni, Trinath; Sarkar, S.; Yedla, N.; Reddy, P. L. N., Dr

    2015-02-01

    Complex Sulphide Ores are often found to be a close mutual association with each other and with the nonmetallic gangue. The beneficiation experiments showed that it would be very difficult to recover Cu and Zn from the lean complex Sulphide ores using traditional ore beneficiation methods. In the present work, leaching of complex sulfide ores in sulfuric acid was investigated by the Electro hydrometallurgy process. The lab-scale experiments were conducted to investigate the influences of pulp-density, electrolyte concentration, particle size, current density and time on recovery of Cu and Zn. The leach liquor obtained after electrolysis was subjected to Atomic Absorption Spectroscopy analysis for the recovery of minerals.

  7. 4. TROJAN MILL, DETAIL OF CRUDE ORE BINS FROM NORTH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. TROJAN MILL, DETAIL OF CRUDE ORE BINS FROM NORTH, c. 1912. SHOWS TIMBER FRAMING UNDER CONSTRUCTION FOR EAST AND WEST CRUDE ORE BINS AT PREVIOUS LOCATION OF CRUSHER HOUSE, AND SNOW SHED PRESENT OVER SOUTH CRUDE ORE BIN WITH PHASE CHANGE IN SNOW SHED CONSTRUCTION INDICATED AT EAST END OF EAST CRUDE ORE BIN. THIS PHOTOGRAPH IS THE FIRST IMAGE OF THE MACHINE SHOP, UPPER LEFT CORNER. CREDIT JW. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  8. Mineral types of hydrothermal alteration zones in the Dukat ore field and their relationships to leucogranite and epithermal gold-silver ore, northeastern Russia

    NASA Astrophysics Data System (ADS)

    Filimonova, L. G.; Trubkin, N. V.; Chugaev, A. V.

    2014-05-01

    The paper considers the localization of potassic and propylitic hydrothermal alteration zones in the domal volcanic-plutonic structure controlling the position of the Dukat ore field with the eponymous unique epithermal Au-Ag deposit. Comprehensive mineralogical and geochemical data on rocks and minerals in hydrothermal alteration zones and associated intrusions have shown that quartz-jarosite-sericite, quartz-pyrite-sericite, and quartz-adularia-chlorite alterations were formed with the participation of fluid flows related to a fingerlike projection of a high-K leucogranite porphyry intrusion with large phenocrysts. These hydrothermal alterations developed in the rifted graben under conditions of divergent plate boundaries, whereas quartz-clinozoisite-calcite, epidote-chlorite, and garnet-calcite-chlorite alterations were linked to K-Na leucogranite intrusive bodies and developed under conditions of convergent plate boundaries reactivated as a result of formation of the marginal Okhotsk-Chukotka volcanic belt. Phase separation and coagulation of specific portions of ascending fluids resulted in the formation and stabilization of small-sized particles of native silver and other ore components, which enabled involvement in flows of secondary geothermal solutions and ore-forming fluids. The Sr, Nd, and Pb isotopic compositions of rocks and minerals from the hydrothermal alteration zones, associated intrusions, and economic orebodies at the Dukat deposit indicate that their components have been derived from the juvenile continental crust, which was altered in pre-Cretaceous periods of endogenic activity. The components of gangue minerals of potassic and propylitic hydrothertmal alterations and associated intrusions have been taken from deep sources differing in 87Sr/86Sr and 143Nd/144Nd at similar U/Pb and Th/Pb ratios. Chalcophile lead in products of hydrothermal activity and melanocratic inclusions in leucogranite has been taken from regions with elevated U/Pb and

  9. Characterization of energy critical elements in ore resources and associated waste tailings: Implications for recovery and remediation

    NASA Astrophysics Data System (ADS)

    McClenaghan, Sean H.

    2015-04-01

    The occurrence of Energy Critical Elements (ECE) in primary ore minerals and their subsequent enrichment in waste tailings is of great metallurgical interest. Recovery of many ECEs, in particular In, Ge, and Ga have come chiefly as a by-product of base-metal production (smelting and refining); these elements are found only at very low levels in the Earth's crust and do not typically form economic deposits on their own. As the ECEs become more important for a growing number of technological applications, it is critical to map the distribution of these elements in ore and waste (gangue) minerals to optimize their recovery and remediation. The characterization and beneficiation of ECEs is best illustrated for Zn-rich ore systems, where a mineral such as sphalerite (ZnS) will concentrate a number of major (Fe, Mn) and important trace elements (Cd, Se, In, Ge, Te, Sn, Bi, Sb, Hg). Interestingly, the mineral chemistry of sphalerite will often differ between different styles of mineralization (i.e., granite-hosted veins versus volcanic-hosted massive sulfides) and can even exhibit considerable variability within a deposit in response to metal zonation across hydrothermal facies. This has significant metallurgical implications for the blending of ore resources, the efficient production of Zn concentrates, and their ultimate value during the smelting and refining stages. Gangue minerals transferred to waste tailings may also exhibit significant enrichment in ECEs and precious metals; including Au in pyrite-arsenopyrite, and rare earth elements in a range of carbonate and phosphate minerals. In situ micro-analytical techniques are ideal for the quantitative measurement of trace elements in ore minerals as well as associated gangue materials. Recent advances in ICP-MS and ICP-OES technology coupled with newer classes of UV Excimer lasers (native 193 nm light) have allowed for more discrete analyses, permitting micro-chemical mapping at small scales (<10 microns). Further

  10. Bioprocessing of ores: Application to space resources

    NASA Technical Reports Server (NTRS)

    Johansson, Karl R.

    1992-01-01

    The role of microorganisms in the oxidation and leaching of various ores (especially those of copper, iron, and uranium) is well known. This role is increasingly being applied by the mining, metallurgy, and sewage industries in the bioconcentration of metal ions from natural receiving waters and from waste waters. It is concluded that bioprocessing using bacteria in closed reactors may be a variable option for the recovery of metals from the lunar regolith. Obviously, considerable research must be done to define the process, specify the appropriate bacteria, determine the necessary conditions and limitations, and evaluate the overall feasibility.

  11. Geostatistical Approach to Estimating the Gold Ore Characteristics and Gold Reserves: A Case Study Daksa Area, Quang Nam Province, Viet Nam

    NASA Astrophysics Data System (ADS)

    Luan Truong, Xuan; Luong Le, Van; Quang Truong, Xuan

    2015-04-01

    Daksa gold deposit is the biggest gold deposits in Vietnam. The Daksa geological structure complicated, distributed mainly metamorphosed sedimentary NuiVu formation (PR3-?1nv2). The sulfide gold ore bodies distributed in quartz schist, quartz - biotite related to faut and distribution wing anticline. The gold ore bodies form circuits, network circuits, circuits lenses; fill the cup surface layer of the developing northeast - southwest; is the less than or west longitude north - SE. The results show that, Au and accompanying elements (Ag, Pb and Zn) have correlated pretty closely. All of its consistent with the logarithmic distribution standard, in accordance with the law of distribution of content mineral rare. The structure functions have nugget effect and spherical models with show that Au and accompanying elements special variation are changes. Au contents shown local anisotropy, no clearly anisotropy (K=1,17) and weakly anisotropy (K=1,4). Intensity mineralization of the ore bodies are quite high with demand spherical conversion coefficient ranging from 0.49 to 0.75 and from 0.66 to 0.97 (for other body). With nugget effects, ore bodies shown that it is consistent with mineralization in the ore bodies study, ore erasable, micro vein, infilling fractures in quartz vein. All of variogram presents local anisotropy, indicated gold mineralization at study area has least two-mineralization stages, consistent with the analysis of mineralography samples. By the results of the structure function study, the authors present the system optimization for exploration deposit and used to evaluate gold reserves by Ordinary Kriging. High accuracy of Kriging estimation results are expressed in the minimum Kriging variance, by compare the results calculated by some other methods (such as distance inverse weighting method, ..) and specially compare to the results of a some blocks have been exploited. Key words: Geostat and gold deposits VN. Daksa and gold mineralization. Geostat

  12. Iron Ore Industry Emissions as a Potential Ecological Risk Factor for Tropical Coastal Vegetation

    NASA Astrophysics Data System (ADS)

    Kuki, Kacilda N.; Oliva, Marco A.; Pereira, Eduardo G.

    2008-07-01

    In the coastal zone of the Espírito Santo state, Brazil, fragments of restinga, which form a natural ecosystem, share their space with an increasing number of iron ore industries. The iron ore dust and SO2 originating from the industry processing activities can interfere with the vegetation of the adjacent ecosystems at various levels. This study was undertaken in order to evaluate the effects of industry emissions on representative members of the restinga flora, by measuring physiological and phenological parameters. Foliar samples of Ipomoea pes caprae, Canavalia rosea, Sophora tomentosa, and Schinus terebinthifolius were collected at three increasing distances from an ore industry (1.0, 5.0, and 15.0 km), and were assessed for their dust deposition, chlorophyll, and Fe content. Phenological monitoring was focused on the formation of shoots, flowers, and fruits and was also performed throughout the course of a year. The results showed that the edaphic characteristics and the mineral constitutions of the plants were affected by industry emissions. In addition, the chlorophyll content of the four species increased with proximity to the industry. Phenological data revealed that the reproductive effort, as measured by fruit production, was affected by emissions and S. tomentosa was the most affected species. The use of an integrative approach that combines biochemical and ecological data indicates that the restinga flora is under stress due to industry emissions, which on a long-term basis may put the ecosystem at risk.

  13. The quantitative analysis of tungsten ore using X-ray microCT: Case study

    NASA Astrophysics Data System (ADS)

    Le Roux, Stephan G.; Du Plessis, Anton; Rozendaal, Abraham

    2015-12-01

    Volumetric quantification of ore minerals is of interest using non-destructive laboratory X-ray tomography, as it allows high throughput, fast analysis, without any/limited sample preparation. This means traditional chemical analysis can still be performed on the same samples, but good information can be provided in a very short time assisting in exploration, mining and beneficiation decision making as well as sample selection for further chemical analysis. This paper describes a case study in which tungsten WO3/scheelite is quantified in 35 mm diameter drill core samples and compared to subsequent traditional chemical analysis for the same samples. The results show a good correlation and indicates that laboratory X-ray CT scanning could replace the more time consuming traditional analytical methods for ore grading purposes in some types of deposits. Different image processing methods are compared for these samples, including an advanced thresholding operation which reduces operator input error. The method should work equally well for other types of ore minerals in which the mineral of interest is the most dense particle in the scan volume, and for which the bulk of the particle sizes are at least 3 times larger than the scan resolution.

  14. The Geohydrology of MVT-Ore Genesis in the Canning Basin, Western Australia

    NASA Astrophysics Data System (ADS)

    Garven, G.; Wallace, M. M.

    2009-05-01

    In the Lennard Shelf, Western Australia, epigenetic MVT-type Pb-Zn mineralization occurs in Middle Devonian evaporitic dolomites which were part of a barrier reef system (Hurley & Lohmann, 1989). Ore mineralization exhibits a strong structural control at the basin scale and normal faults probably controlled pathways for brine and petroleum migration that affected ore deposition (Wallace et al., 1999). For the Canning basin, finite element simulations show that compaction was the most important process for creating overpressures and driving basinal fluids in this thick extensional basin. Basinal fluids are shown to have been driven across the Fitzroy Trough through permeable and deeply buried Silurian-Ordovician aquifer units. The fluids then migrated upwards at rates of m/yr up during periods of episodic extension (Braun, 1992) where fluid flow was channeled by major normal fault zones like the Cadjebut and Pinnacles Faults. Reactive flow simulations test a petroleum-reservoir model for mineralization whereby metal-bearing brines mix with accumulated hydrocarbons (Anderson & Garven, 1987). The results show that compaction-driven flow, as proposed by Beales & Jackson (1966) and Jackson & Beales (1967), works rather well in this ore district--other mechanisms such as sealevel tidal pumping (Cathles, 1988) or topographic drive (Solomon & Groves, 1994) are more tenuous and really unnecessary from a mass transport or geohydrologic basis.

  15. Ore grade decrease as life cycle impact indicator for metal scarcity: the case of copper.

    PubMed

    Vieira, Marisa D M; Goedkoop, Mark J; Storm, Per; Huijbregts, Mark A J

    2012-12-01

    In the life cycle assessment (LCA) of products, the increasing scarcity of metal resources is currently addressed in a preliminary way. Here, we propose a new method on the basis of global ore grade information to assess the importance of the extraction of metal resources in the life cycle of products. It is shown how characterization factors, reflecting the decrease in ore grade due to an increase in metal extraction, can be derived from cumulative ore grade-tonnage relationships. CFs were derived for three different types of copper deposits (porphyry, sediment-hosted, and volcanogenic massive sulfide). We tested the influence of the CF model (marginal vs average), mathematical distribution (loglogistic vs loglinear), and reserve estimate (ultimate reserve vs reserve base). For the marginal CFs, the statistical distribution choice and the estimate of the copper reserves introduce a difference of a factor of 1.0-5.0 and a factor of 1.2-1.7, respectively. For the average CFs, the differences are larger for these two choices, i.e. respectively a factor of 5.7-43 and a factor of 2.1-3.8. Comparing the marginal CFs with the average CFs, the differences are higher (a factor 1.7-94). This paper demonstrates that cumulative grade-tonnage relationships for metal extraction can be used in LCA to assess the relative importance of metal extractions. PMID:23110501

  16. SIMS measurements of. delta. sup 34 S in sulfide minerals from adjacent vein and stratabound ores

    SciTech Connect

    MacFarlane, A.W., ); Shimizu, Nobumichi, )

    1991-02-01

    The effects of sample matrix and secondary ion energy on the instrument fractionation of sulfur isotopes have been studied for troilite, pyrite, and galena using the Caneca IMS-3f ion microprobe. An analytical procedure is described for the measurement of {delta}{sup 34}S on negatively charged sulfur ions from pyrite and galena with are producibility better than {plus minus} 1.5 {per thousand}. Sulfur isotope ratios were measured in pyrite and galena from adjacent stratabound manto orebodies and crosscutting veins in the Hualgayoc district of northern Peru. Isotopic compositions ({delta}{sup 34}S{sub CDT}) of sulfur in pyrite and galena from vein and manto deposits have a total range from {minus}20 to 10 per thousand. Sulfur in manto galenas has a wide range of isotopic compositions and is usually isotopic heavier than pyrite and galena suggests precipitation from separate fluids, consistent with textural evidence that galena is pargentically later than pyrite and often replaces it. The majority of pyrite and galena analyses from vein and manto ores are compatible with precipitation from ore fluids having {delta}{sup 34}S of aqueous sulfur of 0{plus minus} 5 per thousand. This result indicates that the associated igneous rocks may have been the source of sulfur in the ore minerals (as well as of lead). Low values of {delta}{sup 34}S in manto galena may be accounted for by incorporation of sulfur derived from diagenetic iron sulfides.

  17. Total Ore Processing Integration and Management

    SciTech Connect

    Leslie Gertsch

    2006-01-30

    This report outlines the technical progress achieved for project DE-FC26-03NT41785 (Total Ore Processing Integration and Management) during the period 01 October through 31 December of 2005. Graphical analysis of blast patterns according to drill monitor data is continuing. Multiple linear regression analysis of 16 mine and mill variables (powder factor, two modeled size fractions, liberation index, predicted grind, total crude Fe, Satmagan Fe, sat ratio, DSC, geologic blend, ambient temperature, cobbing hours, feeder plugs, and percent feeder run time-of-mill time) indicates that December variations in plant performance are generally predictable (Figure 1). The outlier on December 28th coincides with low cobbing availability and equipment downtime. Mill productivity appeared to be most influenced, as usual, by ore quality as indicated by the liberation index--the higher the liberation index, the lower the throughput. The upcoming quarter will be concerned with wrapping up the work in progress, such as the detailed statistical analyses, and writing a final report. Hibtac Mine engineers are evaluating neural network software to determine its utility for modeling, and eventually predicting, mill throughput.

  18. Some new lead isotope determinations from the proterozoic sulfide ores of central Sweden

    NASA Astrophysics Data System (ADS)

    Johansson, Å.; Rickard, D.

    1985-01-01

    Lead isotope determinations were made on galenas from three strata-bound sulfide ores in the early Proterozoic (Svecokarelian) Bergslagen district of central Sweden and four epigenetic deposits in the Älvdalen and Vansbro districts in the early to middle Proterozoic post-Svecokarelian belt. The leads from the strata-bound Bergslagen deposits show exceptional isotopic homogeneity over large areas. Their isotopic composition suggests the existence of a pre-Svecokarelian crust in the district and is consistent with exhalative-sedimentary ore formation in an active continental margin environment. The Vansbro and Älvdalen leads display constant compositions within each district, but marked divergence between the districts. Their compositions preclude derivation exclusively from recycled Svecokarelian lead and suggest a substantial lead contribution from a mantle-like source. The difference between model ages and geologic ages for many of the deposits, with a small but significant excess of radiogenic lead, suggests a significant deviation of the Fennoscandian Shield from conventional global lead evolution models.

  19. Application of singular value decomposition (SVD) in extraction of gravity components indicating the deeply and shallowly buried granitic complex associated with tin polymetallic mineralization in the Gejiu tin ore field, Southwestern China

    NASA Astrophysics Data System (ADS)

    Chen, Yongqing; Zhang, Lina; Zhao, Binbin

    2015-12-01

    The Gejiu tin polymetallic ore deposit, located at the westernmost end of the Cathaysia Block, is one of the largest tin polymetallic ore deposits in the world. It is associated with a magmatic-hydrothermal ore-forming system triggered by the deeply buried geological structures and concealed granites. A singular value decomposition (SVD) program on a MATLAB platform was effectively used to extract deeply buried geological information reflecting deep-seated geological structures and the concealed granites by decomposing gravity signals within the Gejiu tin polymetallic ore field. Firstly, the gravity signals were decomposed into a few components with different eigenvalues using a singular value decomposition (SVD) approach. Secondly, the thresholds between the eigenvalues of gravity components reflecting deeply and shallowly buried ore-controlling geological structures and/or geological bodies were established by a multifractal method. Finally, the images of gravity components reflecting deeply and shallowly buried ore-controlling geological structures and/or geological bodies were reconstituted. This yielded two layers of significant two dimensional singular value gravity component images that indicate deeply and shallowly buried ore-controlling geological structures and/or geological bodies, respectively. The deep layer of gravity component image reveals a negative gravity anomaly (I) which indicates that the granites exposed in the west ore field, bounded by the Gejiu Fault, may be extended to the east ore field at depth, forming concealed granites (Fig. 4). The shallow layer of gravity component image reveals a structural framework created by two groups of NW-trending and three groups of NE-trending positive gravity component images defining two negative gravity anomalies (I and II), which may reflect existence of the exposed granites in the western ore field (I) and the concealed granites in the eastern ore field (II) (Figs. 5 and 6). Almost all tin

  20. Genetic Pd, Pt, Au, Ag, and Rh mineralogy in Noril'sk sulfide ores

    NASA Astrophysics Data System (ADS)

    Spiridonov, E. M.; Kulagov, E. A.; Serova, A. A.; Kulikova, I. M.; Korotaeva, N. N.; Sereda, E. V.; Tushentsova, I. N.; Belyakov, S. N.; Zhukov, N. N.

    2015-09-01

    The undeformed ore-bearing intrusions of the Noril'sk ore field (NOF) cut through volcanic rocks of the Late Permian-Early Triassic trap association folded in brachysynclines. Due to the nonuniform load on the roof of intrusive bodies, most sulfide melts were squeezed, up to the tops of ore-bearing intrusions; readily fusible Ni-Fe-Cu sulfide melts were almost completely squeezed. In our opinion, not only one but two stages of mineralization developed at the Noril'sk deposits: (i) syntrap magmatic and (ii) epigenetic post-trap metamorphic-hydrothermal. All platinum-group minerals (PGM) and minerals of gold are metasomatic in the Noril'sk ores. They replaced sulfide solid solutions and exsolution structures. All types of PGM and Au minerals occur in the ores, varying in composition from pyrrhotite to chalcopyrite, talnakhite, mooihoekite, and rich in galena; they are localized in the inner and outer contact zones and differ only in the quantitative proportions of ore minerals. The aureoles of PGM and Au-Ag minerals are wider than the contours of sulfide bodies and coincide with halos of fluid impact on orebodies and adjacent host rocks. The pneumatolytic PGM and Au-Ag minerals are correlated in abundance with the dimensions of sulfide bodies. Their amounts are maximal in veins of late fusible ore composed of eutectic PbS ss and iss intergrowths, as well as at their contacts. The Pd and Pt contents in eutectic sulfide ores of NOF are the world's highest. In the process of noble-metal mineral formation, the fluids supply Pd, Pt, Au, As, Sb, Sn, Bi, and a part of Te, whereas Fe, Ni, Cu, Pb, Ag, Rh, a part of Te and Pd are leached from the replaced sulfide minerals. The pneumatolytic PGM of the early stage comprises Pd and Pt intermetallic compounds enriched in Au along with Pd-Pt-Fe-Ni-Cu-Sn-Pb(As) and (Pd,Pt,Au)(Sn,Sb,Bi,Te,As) solid solutions. Pneumatolytic PGM and Au minerals of the middle stage are products of solid-phase transformation and recrystallization of

  1. PROCESS FOR THE CONCENTRATION OF ORES CONTAINING GOLD AND URANIUM

    DOEpatents

    Gaudin, A.M.; Dasher, J.

    1958-06-10

    ABS>A process is described for concentrating certain low grade uranium and gold bearing ores, in which the gangue is mainly quartz. The production of the concentrate is accomplished by subjecting the crushed ore to a froth floatation process using a fatty acid as a collector in conjunction with a potassium amyl xanthate collector. Pine oil is used as the frothing agent.

  2. DETAIL OVERHEAD VIEW OF SECONDARY ORE BIN, CONVEYOR PLATFORM TRAM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OVERHEAD VIEW OF SECONDARY ORE BIN, CONVEYOR PLATFORM TRAM TRESTLE, AND LOADING PLATFORM, LOOKING SOUTHWEST. THE HOLE IN THE ORE BIN FLOOR CAN BE SEEN, AND BALL MILL FOUNDATION AT LOWER LEFT CORNER. SEE CA-291-13 FOR IDENTICAL B&W NEGATIVE. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  3. 15. NORTH ELEVATION OF UPPER ORE BIN, CHUTE, AND JAW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. NORTH ELEVATION OF UPPER ORE BIN, CHUTE, AND JAW CRUSHER, LOOKING SOUTH FROM END OF CONVEYOR PLATFORM. NOTICE THE THREE ORE BIN CONTROL DOORS, CORRESPONDING TO SEPARATE COMPARTMENTS OF THE BIN. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  4. 25. INTERIOR VIEW LOOKING SOUTH IN THE ORE RECEIVING LEVEL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. INTERIOR VIEW LOOKING SOUTH IN THE ORE RECEIVING LEVEL SHOWING THE TRAMWAY TRACKS IN THE FLOOR, ORE CHUTES IN THE FLOOR, NEWER TRACKS COMING IN FROM THE TRESTLE ON THE EAST SIDE OF THE MILL., AND THE WINDING DRUM THE TRAMWAY IN THE BACKGROUND. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA

  5. LOOKING WEST ALONG PASSAGE BETWEEN CRUSHING ROOM AND FINE ORE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOOKING WEST ALONG PASSAGE BETWEEN CRUSHING ROOM AND FINE ORE BIN AREA. NOTE STEEL CUSTOM ORE CHUTES IN BACKGROUND. THE FARTHEST BINS WERE LAST USED FOR STORAGE OF BALL MILL BALLS. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  6. 13. OBLIQUE VIEW OF UPPER ORE BIN, LOOKING WEST NORTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. OBLIQUE VIEW OF UPPER ORE BIN, LOOKING WEST NORTHWEST. THIS ORE BIN WAS ADDED IN THE LATE 1930'S. IT IS TRAPAZOIDAL IN SHAPE, WIDER AT THE REAR THAN THE FRONT, AND DIVIDED INTO THREE BINS, EACH WITH ITS OWN CONTROL DOOR (SEE CA-290-15). - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  7. 25. DETAIL OF STRUCTURAL TIMBERS, ORE BIN, AND STAIRWAY TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. DETAIL OF STRUCTURAL TIMBERS, ORE BIN, AND STAIRWAY TO TOP FLOOR OF MILL, LOOKING SOUTH FROM SECOND FLOOR OF MILL. PORTION OF ORE BIN ON RIGHT, STAIRS ON LEFT. - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  8. TRAM HOUSE INTERIOR, LOOKING SOUTHEAST. NOTE DEPARTING ORE BUCKET "12" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TRAM HOUSE INTERIOR, LOOKING SOUTHEAST. NOTE DEPARTING ORE BUCKET "12" AND SUSPENSION CABLE ANGLING DOWN THROUGH FLOOR AT LOWER LEFT. LARGE LEVER ON SIDE OF BUCKET ALLOWS IT TO BE ROTATED FOR DUMPING ORE. - Shenandoah-Dives Mill, 135 County Road 2, Silverton, San Juan County, CO

  9. 14. OBLIQUE VIEW OF UPPER ORE BIN AND LOADING DECK, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. OBLIQUE VIEW OF UPPER ORE BIN AND LOADING DECK, LOOKING WEST. DETAIL OF SUPPORTING TIMBERS. THE LOCATION OF THIS ORE BIN IN RELATION TO THE MILL CAN BE SEEN IN MANY OF THE MILL OVERVIEWS. (CA-290-4 THROUGH CA-290-8). - Skidoo Mine, Park Route 38 (Skidoo Road), Death Valley Junction, Inyo County, CA

  10. 40. HULETT ORE UNLOADER IN MOTION. VIEW LOOKING EAST. (Also ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. HULETT ORE UNLOADER IN MOTION. VIEW LOOKING EAST. (Also see OH-18-14, OH-18-38, and OH-18-39) - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  11. 27. HULETT ORE UNLOADERS TEMPORARILY IN REPOSE, AS A NEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. HULETT ORE UNLOADERS TEMPORARILY IN REPOSE, AS A NEW SKIP TIES UP AT DOCK. THE UNLOADERS OPERATE ALMOST CONTINUOUSLY DURING THE SHIPPING SEASON, WHICH USUALLY RUNS FROM APRIL UNTIL LATE DECEMBER OR EARLY JANUARY. VIEW HERE IS LOOKING NORTHEAST. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  12. 24. REAR ELEVATION, HULETT ORE UNLOADERS. TRACKS CARRYING THE FRONT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. REAR ELEVATION, HULETT ORE UNLOADERS. TRACKS CARRYING THE FRONT END AND REAR LEGS OF THE HULETT UNLOADERS ARE LAID ON THE DOCK AND REAR WALLS, RESPECTIVELY; BOTH WALLS ARE MADE OF REINFORCED CONCRETE SUPPORTED ON CONCRETE PILES. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  13. 39. HULETT ORE UNLOADER IN MOTION. VIEW LOOKING EAST. (Also ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. HULETT ORE UNLOADER IN MOTION. VIEW LOOKING EAST. (Also see OH-18-14, OH-18-38, and OH-18-40) - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  14. 19. VIEW OF CRUDE ORE BINS FROM EAST. EAST CRUDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. VIEW OF CRUDE ORE BINS FROM EAST. EAST CRUDE ORE BIN IN FOREGROUND WITH DISCHARGE TO GRIZZLY AT BOTTOM OF VIEW. CONCRETE RETAINING WALL TO LEFT (SOUTH) AND BOTTOM (EAST EDGE OF EAST BIN). - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  15. 64. NORTH WALL OF CRUSHED OXIDIZED ORE BIN. THE PRIMARY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    64. NORTH WALL OF CRUSHED OXIDIZED ORE BIN. THE PRIMARY MILL FEEDS AT BOTTOM. MILL SOLUTION TANKS WERE TO THE LEFT (EAST) AND BARREN SOLUTION TANK TO THE RIGHT (WEST) OR THE CRUSHED ORE BIN. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  16. Geochronology and isotopic-geochemical characteristics of magmatic complexes of gold-silver ore-magmatic structures in the Chukotka sector of the Russian Arctic coast

    NASA Astrophysics Data System (ADS)

    Sakhno, V. G.; Grigoriev, N. V.; Kurashko, V. V.

    2016-05-01

    The first results of SHRIMP dating of magmatic complexes and associated gold-silver deposits and ore occurrences (Kupol, Dvoinoe, Moroshka, and others) in the Chukotka sector of the Russian Arctic coast are discussed. The petrological and isotopic-geochronological data are used for reconstructing their formation conditions.

  17. Silver-cobalt mineralization in the Upper Seymchan ore cluster, Northeastern Russia

    NASA Astrophysics Data System (ADS)

    Goryachev, N. A.; Gamyanin, G. N.; Prokof'ev, V. Yu.; Savva, N. E.; Velivetskaya, T. A.; Ignat'ev, A. V.

    2014-09-01

    This paper is focused on the Early Cretaceous Ag-Bi-Co-sulfoarsenide mineralization atypical of northeastern Asia, which contains diverse Co-Ni sulfoarsenides, Se-bearing Bi sulfotellurites, and Ag-Bi-Pb sulfosalts. The Upper Seymchan ore cluster is located at the boundary between the Paleozoic Omulevka Terrane of carbonate platform and the In'yali-Debin Synclinorium of the Kular-Nera Terrane. These ore-bearing sequences are represented by the Middle Jurassic terrigenous rocks that rest upon the Upper Triassic sandshale rocks of the upper structural stage. The sedimentary rocks are cut through by high-Al granitic plutons and younger granite-porphyry dikes. The orebodies that are superposed on igneous rocks were formed during (1) the quartz-chlorite-tourmaline stage of metasomatic alteration, (2) the main economic tourmaline-chlorite-quartz-sulfoarsenide vein stage, (3) the polysulfide-quartz stage with Ag, Se, Bi minerals, and (4) the postore quartz-calcite stage with fluorite. The epithermal veins of festoon chalcedony-like quartz with Sb-bearing arsenopyrite occupy a special position. In particular orebodies, the chlorite-quartz ore veins dominate at the upper levels, whereas the quartz-tourmaline veins occur at the lower levels. Wall-rock alteration is represented by metasomatic chloritization and tourmalinization up to the formation of monomineralic metasomatic zones. Sulfides and sulfoarsenides are distinguished by anomalous enrichment of sulfur in the light isotope (δ34S = -12.8 to -16.7‰) in contrast to the sulfur isotopic composition of Sb-asenopyrite (-1.7‰) from the genetically different epithermal veins. The oxygen isotopic composition of calcite (the third stage) is uniform at all studied deposits and reveals a tendency to updip enrichment in δ18O within a vertical interval of 200 m. Quartz from ore-bearing and epithermal veins has an almost identical δ18O value (±2‰) but differs from quartz at the tin deposits related to granites of the

  18. A new model for tabular-type uranium deposits

    USGS Publications Warehouse

    Sanford, R.F.

    1992-01-01

    Tabular-type uranium deposits occur as tabular, originally subhorizontal bodies entirely within reduced fluvial sandstones of Late Silurian age or younger. This paper proposes that belts of tabular-type uranium deposits formed in areas of mixed local and regional groundwater discharge shortly after deposition of the host sediments. The general characteristics of tabular-type uranium deposits indicate that their essential feature was the formation at a density-stratified ground-water interface in areas of local and regional ground-water discharge. Reconstruction of the paleohydrogeology is the key to understanding the formation of these deposits. Geologic ground-water controls that favor discharge, such as the pinch-out of major aquifers, are also favorable for uranium ore. The combination of topographic and geologic features that both cause discharge is most favorable for ore deposition. -from Author

  19. Low-Sulfide PGE ores in paleoproterozoic Monchegorsk pluton and massifs of its southern framing, Kola Peninsula, Russia: Geological characteristic and isotopic geochronological evidence of polychronous ore-magmatic systems

    NASA Astrophysics Data System (ADS)

    Chashchin, V. V.; Bayanova, T. B.; Mitrofanov, F. P.; Serov, P. A.

    2016-01-01

    New U-Pb and Sm-Nd isotopic geochronological data are reported for rocks of the Monchegorsk pluton and massifs of its southern framing, which contain low-sulfide PGE ores. U-Pb zircon ages have been determined for orthopyroxenite (2506 ± 3 Ma) and mineralized norite (2503 ± 8 Ma) from critical units of Monchepluton at the Nyud-II deposit, metaplagioclasite (2496 ± 4 Ma) from PGE-bearing reef at the Vurechuaivench deposit, and host metagabbronorite (2504.3 ± 2.2. Ma); the latter is the youngest in Monchepluton. In the southern framing of Monchepluton, the following new datings are now available: U-Pb zircon ages of mineralized metanorite from the lower marginal zone (2504 ± 1 Ma) and metagabbro from the upper zone (2478 ± 20 Ma) of the South Sopcha PGE deposit, as well as metanorite from the Lake Moroshkovoe massif (2463.1 ± 2.7 Ma). The Sm-Nd isochron (rock-forming minerals, sulfides, whole-rock samples) age of orthopyroxenite from the Nyud-II deposit (2497 ± 36 Ma) is close to results obtained using the U-Pb method. The age of harzburgite from PGE-bearing 330 horizon reef of the Sopcha massif related to Monchepluton is 2451 ± 64 Ma at initial ɛNd =-6.0. The latter value agrees with geological data indicating that this reef was formed due to the injection of an additional portion of high-temperature ultramafic magma, which experienced significant crustal contamination. The results of Sm-Nd isotopic geochronological study of ore-bearing metaplagioclasite from PGE reef of the Vurechuaivench deposit (2410 ± 58 Ma at ɛNd =-2.4) provide evidence for the appreciable effect of metamorphic and hydrothermal metasomatic alterations on PGE ore formation. The Sm-Nd age of mineralized norite from the Nyud-II deposit is 1940 ± 32 Ma at initial ɛNd =-7.8. This estimate reflects the influence of the Svecofennian metamorphism on the Monchepluton ore-magmatic system, which resulted in the rearrangement of the Sm-Nd system and its incomplete closure. Thus, the new

  20. Room Temperature Aging Study of Butyl O-rings

    SciTech Connect

    Mark Wilson

    2009-08-07

    During testing under the Enhanced Surveillance Campaign in 2001, preliminary data detected a previously unknown and potentially serious concern with recently procured butyl o-rings. All butyl o-rings molded from a proprietary formulation throughout the period circa 1999 through 2001 had less than a full cure. Tests showed that sealing force values for these suspect o-rings were much lower than expected and their physical properties were very sensitive to further post curing at elevated temperatures. Further testing confirmed that these o-rings were approximately 50% cured versus the typical industry standard of > 90% cured. Despite this condition, all suspect o-rings fully conformed to their QC acceptance requirements, including their individual product drawing requirements.

  1. Molecular analysis of bacterial communities in uranium ores and surrounding soils from Banduhurang open cast uranium mine, India: A comparative study.

    PubMed

    Islam, Ekramul; Dhal, Paltu K; Kazy, Sufia K; Sar, Pinaki

    2011-01-01

    Bacterial community structure of heavy metal rich- uranium ores and surrounding soils was explored using 16S rRNA gene based clone library analysis and denaturing gradient gel electrophoresis (DGGE) to provide baseline microbial diversity data on autochthonous communities. Sequence analysis of major ribotypes and/or DGGE bands revealed Proteobacteria and Acidobacteria as the two most frequently present bacterial phyla across the samples, although relative abundance of each phyla and identity of their members at lower taxonomic level showed marked difference. Gammaproteobacteria (Pseudomonas and Escherichia) was most abundant in U-ore samples along with the lineages of β-Proteobacteria (Burkholderia and Janthinobacterium), α-Proteobacteria (Brevundimonas), Bacteroidetes (Spingobacterium), Firmicutes (Peptoniphilus), Actinobacteria (Corynebacterium), uncultured -Acidobacteria, -Chloroflexi and -Cyanobacterium. In contrast to this soil communities were represented by mixed populations predominated by uncultured Acidobacteria along with Gammaproteobacteria (Succinivibrio, Cellovibrio and Legionella), β-Proteobacteria (Rhodocyclus), α-Proteobacteria (Methylocystis and Phenylobacterium), δ-Proteobacteria, unclassified bacteria, uncultured Bacteroidetes, Firmicutes (Bacillus), Cyanobacteria (Scytonema), Actinobacteria (Actinomadura) and candidate division TM7. Principle Component Analyis (PCA) of geochemical data and UPGMA cluster analysis of DGGE profiles were in close agreement showing characteristic relatedness of samples obtained from either ores or soils. Our analysis indicated that soils surrounding the ore deposit bear specific geochemical as well as microbiologial characteristics distinct from the ore deposit and therefore these data obtained at the onset of mining could serve as a baseline of information to gauge the subsequent environmnetal impact of U-mining. PMID:21308598

  2. Petrographic and Geochemical Characterization of Ore-Bearing Intrusions of the Noril'sk type, Siberia; With Discussion of Their Origin, Including Additional Datasets and Core Logs

    USGS Publications Warehouse

    Czamanske, Gerald K., (compiler)

    2002-01-01

    The Noril'sk I, Talnakh, and Kharaelakh intrusions of the Noril'sk district host one of the outstanding metal concentrations in the world; contained Cu-Ni resources are comparable to the deposits at Sudbury, Ontario and the platinum group element (PGE) resource is second only to that of the Bushveld Complex. Our opportunity to cooperatively sample and study this district in Siberian Russia arose in 1990 through a memorandum of understanding between the U.S. Geological Survey and the former Ministry of Geology of the U.S.S.R. The world-class significance of these deposits and the possibility that understanding their geologic context, including construction of a credible 'ore-deposit model,' will lead to discovery of similar deposits elsewhere, inspired extensive studies of the ores, the mafic-intrusions which host them, and associated flood basalts.

  3. PHASE ANALYSES OF URANIUM-BEARING MINERALS FROM THE HIGH GRADE ORE, NOPAL I, PENA BLANCA, MEXICO

    SciTech Connect

    M. Ren; P. Goodell; A. Kelts; E.Y. Anthony; M. Fayek; C. Fan; C. Beshears

    2005-07-11

    The Nopal I uranium deposit is located in the Pena Blanca district, approximately 40 miles north of Chihuahua City, Mexico. The deposit was formed by hydrothermal processes within the fracture zone of welded silicic volcanic tuff. The ages of volcanic formations are between 35 to 44 m.y. and there was secondary silicification of most of the formations. After the formation of at least part of the uranium deposit, the ore body was uplifted above the water table and is presently exposed at the surface. Detailed petrographic characterization, electron microprobe backscatter electron (BSE) imagery, and selected x-ray maps for the samples from Nopal I high-grade ore document different uranium phases in the ore. There are at least two stages of uranium precipitation. A small amount of uraninite is encapsulated in silica. Hexavalent uranium may also have been a primary precipitant. The uranium phases were precipitated along cleavages of feldspars, and along fractures in the tuff. Energy dispersive spectrometer data and x-ray maps suggest that the major uranium phases are uranophane and weeksite. Substitutions of Ca and K occur in both phases, implying that conditions were variable during the mineralization/alteration process, and that compositions of the original minerals have a major influence on later stage alteration. Continued study is needed to fully characterize uranium behavior in these semi-arid to arid conditions.

  4. Deposition of finely disseminated gold mineralization in black shales: A hypothesis of microstructural control

    NASA Astrophysics Data System (ADS)

    Pek, A. A.; Malkovsky, V. I.; Safonov, Yu. G.

    2011-06-01

    The deposition of finely disseminated gold in the deposits hosted in black shales is considered. It is suggested that gold deposition is controlled by microstructure of pore space in host rocks. The pore space structure of tight shales indicates that most pore volume is occupied by nanopores with hundredths of micrometers in characteristic dimension. The balance calculations show that deposition of native gold in nanopore channels of filtration is hampered by shortage of number of atoms necessary to overcome a nucleation threshold of the future gold crystal in the pore volume. When ore-transporting solution meets on its way the cavities (pores, micro- and macrofractures), whose volume is sufficient to overcome the nucleation threshold, the excess content of ore component, which exceeds equilibrium concentration, is released with formation of crystallization centers and further precipitation of gold. The conditions of ore deposition are exemplified in the reference Sukhoi Log deposit hosted in black shales. On the basis on the PT conditions of ore deposition and physical features of fluid heat and mass transfer, it is suggested that ore disseminations were deposited at the early high-temperature stage under a fluid pressure close to lithostatic and at a host rock permeability markedly exceeding its present-day value.

  5. Invisible and microscopic gold in pyrite: Methods and new data for massive sulfide ores of the Urals

    NASA Astrophysics Data System (ADS)

    Vikentyev, I. V.

    2015-07-01

    Au speciation in sulfides (including "invisible" Au), which mostly controls the loss of Au during ore dressing, is discussed. Modern methods of analysis of Au speciation, with discussion of limitations by locality and sensitivity, are reviewed. The results of sulfide investigation by the methods of scanning and transmission electron microscopy, mass spectrometric analysis with laser ablation (LA-ICP-MS), the thermochemical method (study of ionic Au speciation), and automated "quantitative mineralogy," are demonstrated for weakly metamorphosed VHMS deposits of the Urals (Galkinsk and Uchaly). Significant content of Au is scattered in sulfides, such as pyrite, chalcopyrite, and sphalerite, with quantitative predomination of pyrite. The portion of such "invisible" gold ranges from <10% (Galkinsk deposit) to 85% (Uchaly deposit). Major part of "invisible" gold occurs as micron- to nanoscale particles of Au minerals. The portion of gold structurally bound in pyrite lattice (from the bulk concentration of Au in pyrite) is estimated to be from few % (the Galkinsk deposit) to 20-25% (the Uchaly deposit). The presence of As and Sb in pyrite and sphalerite, as well as other trace elements (Te, Co, Mn, Cu, Hg, and Ag in both as well as Fe in sphalerite) stimulates the incorporation of Au in sulfide, but mostly in defect-associated, not isomorphic form. Micron particles of Ag sulfosalts (pyrargyrite, freibergite, stephanite, polybasite, pyrostilpnite, argentotetrahedrite, pearceite, proustite), Au-Ag alloys (from gold of high fineness to küstelite), Ag and Au-Ag tellurides (hessite, empressite, calaverite), and occasional Au-Ag sulfides (petrovskaite, uytenbogaardtite) were registered in the areas of Au enrichment of both deposits; selenotelluride (kurilite) particles were found on the Galkinsk deposit. Nanoscale (1-50 nm) native gold (spherical and disk-shaped particles, flakes) with a monocrystal diffraction pattern of some particles and a ring diffraction pattern of other

  6. New observations on the Ni-Co ores of the southern Arburese Variscan district (SW Sardinia, Italy)

    NASA Astrophysics Data System (ADS)

    Naitza, Stefano; Secchi, Francesco; Oggiano, Giacomo; Cuccuru, Stefano

    2015-04-01

    Among the European Variscan regions, the Arburese district, located in the Paleozoic basement of SW Sardinia (Italy) is remarkable for its metallogenic complexity, and offers good opportunities to investigate time/space and genetic links between post-collisional Variscan intrusive magmatism and mineral deposits. The district hosts a large variety of mineral deposits and occurrences, which include the Pb-Zn (Cu, Ag) mesothermal veins of the Montevecchio Lode System, one of the largest and richest Variscan hydrothermal ore deposit of Europe, now exhausted. Ore deposits are genetically related to the emplacement of the Late Variscan (304±1 Ma) Arbus Pluton, a granitoid composite intrusion ranging from monzogabbroic to granodioritic and to peraluminous leucogranitic rock-types. After more than a century of geological studies in the area, several metallogenic issues are still unresolved; among them, the occurrence in the southern sectors of little known polymetallic Ni-Co-(Pb-Zn-Cu-Ag-Bi) veins, a kind of mineralization quite unusual for the Sardinian basement. These hydrothermal deposits are hosted by very low-grade metamorphic rocks at short distance from the intrusion, where contact effect generate also hornfels. Spatial, structural and textural characters of the hydrothermal system are coherent and in apparent continuity with those of the Montevecchio Lode System. Ni-Co ores are hosted by a system of parallel, 1-2 m thick high-angle veins that discontinuously follow the southwestern and southern contacts of the Arbus Pluton for about 7 km. They constantly dip SSW, sideways with respect to the pluton contact, and show a prevalence of fracture infilling (banded and brecciated) textures, with alternating quartz and siderite bands, cockades and frequent inclusions of wallrock fragments. Wallrocks are usually silicified, bleached and/or sericitized. Systematic studies of ore textures and parageneses from different veins along the system have been performed by standard

  7. Ceramic colorant from untreated iron ore residue.

    PubMed

    Pereira, Oscar Costa; Bernardin, Adriano Michael

    2012-09-30

    This work deals with the development of a ceramic colorant for glazes from an untreated iron ore residue. 6 mass% of the residue was added in suspensions (1.80 g/cm(3) density and 30s viscosity) of white, transparent and matte glazes, which were applied as thin layers (0.5mm) on engobeb and not fired ceramic tiles. The tiles were fired in laboratory roller kiln in a cycle of 35 min and maximum temperatures between 1050 and 1180°C. The residue and glazes were characterized by chemical (XRF) and thermal (DTA and optical dilatometry) analyses, and the glazed tiles by colorimetric and XRD analyses. The results showed that the colorant embedded in the transparent glaze results in a reddish glaze (like pine nut) suitable for the ceramic roof tile industry. For the matte and white glazes, the residue has changed the color of the tiles with temperature. PMID:22795839

  8. Fluorine contamination in yttrium-doped barium zirconate film deposited by atomic layer deposition

    SciTech Connect

    An Jihwan; Beom Kim, Young; Sun Park, Joong; Hyung Shim, Joon; Guer, Turgut M.; Prinz, Fritz B.

    2012-01-15

    The authors have investigated the change of chemical composition, crystallinity, and ionic conductivity in fluorine contaminated yttrium-doped barium zirconate (BYZ) fabricated by atomic layer deposition (ALD). It has been identified that fluorine contamination can significantly affect the conductivity of the ALD BYZ. The authors have also successfully established the relationship between process temperature and contamination and the source of fluorine contamination, which was the perfluoroelastomer O-ring used for vacuum sealing. The total removal of fluorine contamination was achieved by using all-metal sealed chamber instead of O-ring seals.

  9. CFB roasting for gold ore processing

    SciTech Connect

    Hubbard, G.; D'Acierno, J.P.

    1999-07-01

    This paper describes how KTI/Dorr-Oliver applied the results from CFB boiler technology to the design for a CFB mineral processing plant built in Africa in 1992. The whole ore gold roaster plant located in Syama, Mali is presently owned and operated by Randgold of South Africa and it processes over 216 tons per hour of whole gold ore. The plant has operated continuously for over four years. The CFB reactor operates in the turbulent CFB mode of fluidization with over 40 minutes of solids residence time in the dense phase for optimum conversion of the feed material. The success of the plant after four years of operation is in large part due to the choice of the turbulent CFB mode of fluidization. This mode is very flexible in face of significant variations in feed composition and size distribution. Sulfur capture takes place in situ and the sorbent is present naturally in the feed. An electrostatic precipitator is used for particulate removal from the flue gas. The energy balance for the system requires auxiliary fuel oil burned in the CFB reactor. Energy from the 1,200--1,350 F roasted product stream is recovered and recycled back into the CFB using two fluidized bed coolers; one to directly heat the secondary air and the other to indirectly heat the primary fluidizing air. Pilot plant testing and the scale up of pilot plant results to the full scale plant is described. The plant start up including resolution of some unique start up difficulties is covered. A comparison of results for the pilot plant and commercial plant is presented.

  10. Ore minerals textural characterization by hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Picone, Nicoletta; Serranti, Silvia

    2013-02-01

    The utilization of hyperspectral detection devices, for natural resources mapping/exploitation through remote sensing techniques, dates back to the early 1970s. From the first devices utilizing a one-dimensional profile spectrometer, HyperSpectral Imaging (HSI) devices have been developed. Thus, from specific-customized devices, originally developed by Governmental Agencies (e.g. NASA, specialized research labs, etc.), a lot of HSI based equipment are today available at commercial level. Parallel to this huge increase of hyperspectral systems development/manufacturing, addressed to airborne application, a strong increase also occurred in developing HSI based devices for "ground" utilization that is sensing units able to play inside a laboratory, a processing plant and/or in an open field. Thanks to this diffusion more and more applications have been developed and tested in this last years also in the materials sectors. Such an approach, when successful, is quite challenging being usually reliable, robust and characterised by lower costs if compared with those usually associated to commonly applied analytical off- and/or on-line analytical approaches. In this paper such an approach is presented with reference to ore minerals characterization. According to the different phases and stages of ore minerals and products characterization, and starting from the analyses of the detected hyperspectral firms, it is possible to derive useful information about mineral flow stream properties and their physical-chemical attributes. This last aspect can be utilized to define innovative process mineralogy strategies and to implement on-line procedures at processing level. The present study discusses the effects related to the adoption of different hardware configurations, the utilization of different logics to perform the analysis and the selection of different algorithms according to the different characterization, inspection and quality control actions to apply.

  11. Direct Biohydrometallurgical Extraction of Iron from Ore

    SciTech Connect

    T.C. Eisele

    2005-10-01

    A completely novel approach to iron extraction was investigated, based on reductive leaching of iron by anaerobic bacteria. Microorganisms were collected from an anaerobic bog where natural seepage of dissolved iron was observed. This mixed culture was used to reduce insoluble iron in a magnetite ore to the soluble ferrous (Fe{sup +2}) state. While dissolution rates were slow, concentrations of dissolved iron as high as 3487 mg/l could be reached if sufficient time was allowed. A factorial study of the effects of trace nutrients and different forms of organic matter indicated that the best dissolution rates and highest dissolved iron concentrations were achieved using soluble carbohydrate (sucrose) as the bacterial food source, and that nutrients other than nitrogen, phosphorus, potassium, sodium, and acetate were not necessary. A key factor in reaching high levels of dissolved iron was maintaining a high level of carbon dioxide in solution, since the solubility of iron carbonates increases markedly as the quantity of dissolved carbon dioxide increases. Once the iron is dissolved, it has been demonstrated that the ferrous iron can then be electroplated from solution, provided that the concentration of iron is sufficiently high and the hydrogen ion concentration is sufficiently low. However, if the leaching solution is electrolyzed directly, organic matter precipitates at the cathode along with the metallic iron. To prevent this problem, the ferrous iron should be separated from the bulk solution in a more concentrated, purified form. One route to accomplishing this is to take advantage of the change in solubility of ferrous iron as a function of carbon dioxide concentration. By cycling the concentration of carbon dioxide in solution, it is possible to produce an iron-rich concentrate that should be suitable for electrolysis. This represents the first viable hydrometallurgical method for leaching iron directly from ore and producing metallic iron.

  12. Image analyses in bauxitic ores: The case of the Apulian karst bauxites

    NASA Astrophysics Data System (ADS)

    Buccione, Roberto; Sinisi, Rosa; Mongelli, Giovanni

    2015-04-01

    This study concern two different karst bauxite deposits of the Apulia region (southern Italy). These deposits outcrop in the Murge and Salento areas: the Murge bauxite (upper Cretaceous) is a typical canyon-like deposit formed in a karst depression whereas the Salento bauxite (upper Eocene - Oligocene) is the result of the erosion, remobilization and transport of older bauxitic material from a relative distant area. This particular bauxite arrangement gave the name to all the same bauxite deposits which are thus called Salento-type deposits. Bauxite's texture is essentially made of sub-circular concentric aggregates, called ooids, dispersed in a pelitic matrix. The textural properties of the two bauxitic ores, as assessed by SEM-EDX, are different. In the bauxite from the canyon-like deposit the ooids/matrix ratio is higher than in the Salento-type bauxite. Furthermore the ooids in the Salento-like bauxite are usually made by a large core surrounded by a narrow, single, accretion layer, whereas the ooids from the canyon-like deposit have a smaller core surrounded by several alternating layers of Al-hematite and boehmite (Mongelli et al., 2014). In order to explore in more detail the textural features of both bauxite deposits, particle shape analyses were performed. Image analyses and the fractal dimension have been widely used in geological studies including economic geology (e.g. Turcotte, 1986; Meakin, 1991; Deng et al., 2011). The geometric properties evaluated are amounts of ooids, average ooids size, ooids rounding and the fractal dimension D, which depends on the ooids/matrix ratio. D is the slope of a plotting line obtained using a particular counting technique on each sample image. The fractal dimension is slightly lower for the Salento-type bauxites. Since the process which led to the formation of the ooids is related to an aggregation growth involving chemical fractionation (Mongelli, 2002) a correlation among these parameters and the contents of major

  13. Bog Manganese Ore: A Resource for High Manganese Steel Making

    NASA Astrophysics Data System (ADS)

    Pani, Swatirupa; Singh, Saroj K.; Mohapatra, Birendra K.

    2016-06-01

    Bog manganese ore, associated with the banded iron formation of the Iron Ore Group (IOG), occurs in large volume in northern Odisha, India. The ore is powdery, fine-grained and soft in nature with varying specific gravity (2.8-3.9 g/cm3) and high thermo-gravimetric loss, It consists of manganese (δ-MnO2, manganite, cryptomelane/romanechite with minor pyrolusite) and iron (goethite/limonite and hematite) minerals with sub-ordinate kaolinite and quartz. It shows oolitic/pisolitic to globular morphology nucleating small detritus of quartz, pyrolusite/romanechite and hematite. The ore contains around 23% Mn and 28% Fe with around 7% of combined alumina and silica. Such Mn ore has not found any use because of its sub-grade nature and high iron content, and is hence considered as waste. The ore does not respond to any physical beneficiation techniques because of the combined state of the manganese and iron phases. Attempts have been made to recover manganese and iron value from such ore through smelting. A sample along with an appropriate charge mix when processed through a plasma reactor, produced high-manganese steel alloy having 25% Mn within a very short time (<10 min). Minor Mn content from the slag was recovered through acid leaching. The aim of this study has been to recover a value-added product from the waste.

  14. Bog Manganese Ore: A Resource for High Manganese Steel Making

    NASA Astrophysics Data System (ADS)

    Pani, Swatirupa; Singh, Saroj K.; Mohapatra, Birendra K.

    2016-05-01

    Bog manganese ore, associated with the banded iron formation of the Iron Ore Group (IOG), occurs in large volume in northern Odisha, India. The ore is powdery, fine-grained and soft in nature with varying specific gravity (2.8-3.9 g/cm3) and high thermo-gravimetric loss, It consists of manganese (δ-MnO2, manganite, cryptomelane/romanechite with minor pyrolusite) and iron (goethite/limonite and hematite) minerals with sub-ordinate kaolinite and quartz. It shows oolitic/pisolitic to globular morphology nucleating small detritus of quartz, pyrolusite/romanechite and hematite. The ore contains around 23% Mn and 28% Fe with around 7% of combined alumina and silica. Such Mn ore has not found any use because of its sub-grade nature and high iron content, and is hence considered as waste. The ore does not respond to any physical beneficiation techniques because of the combined state of the manganese and iron phases. Attempts have been made to recover manganese and iron value from such ore through smelting. A sample along with an appropriate charge mix when processed through a plasma reactor, produced high-manganese steel alloy having 25% Mn within a very short time (<10 min). Minor Mn content from the slag was recovered through acid leaching. The aim of this study has been to recover a value-added product from the waste.

  15. ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration.

    PubMed

    Beiranvand Pour, Amin; Hashim, Mazlan

    2014-01-01

    This paper provides a review of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and Hyperion data and applications of the data as a tool for ore minerals exploration, lithological and structural mapping. Spectral information extraction from ASTER, ALI, and Hyperion data has great ability to assist geologists in all disciplines to map the distribution and detect the rock units exposed at the earth's surface. The near coincidence of Earth Observing System (EOS)/Terra and Earth Observing One (EO-1) platforms allows acquiring ASTER, ALI, and Hyperion imagery of the same ground areas, resulting accurate information for geological mapping applications especially in the reconnaissance stages of hydrothermal copper and gold exploration, chromite, magnetite, massive sulfide and uranium ore deposits, mineral components of soils and structural interpretation at both regional and district scales. Shortwave length infrared and thermal infrared bands of ASTER have sufficient spectral resolution to map fundamental absorptions of hydroxyl mineral groups and silica and carbonate minerals for regional mapping purposes. Ferric-iron bearing minerals can be discriminated using six unique wavelength bands of ALI spanning the visible and near infrared. Hyperion visible and near infrared bands (0.4 to 1.0 μm) and shortwave infrared bands (0.9 to 2.5 μm) allowed to produce image maps of iron oxide minerals, hydroxyl-bearing minerals, sulfates and carbonates in association with hydrothermal alteration assemblages, respectively. The techniques and achievements reviewed in the present paper can further introduce the efficacy of ASTER, ALI, and Hyperion data for future mineral and lithological mapping and exploration of the porphyry copper, epithermal gold, chromite, magnetite, massive sulfide and uranium ore deposits especially in arid and semi-arid territory. PMID:25674434

  16. Radon emanation from low-grade uranium ore.

    PubMed

    Sahu, Patitapaban; Mishra, Devi Prasad; Panigrahi, Durga Charan; Jha, Vivekanand; Patnaik, R Lokeswara

    2013-12-01

    Estimation of radon emanation in uranium mines is given top priority to minimize the risk of inhalation exposure due to short-lived radon progeny. This paper describes the radon emanation studies conducted in the laboratory as well as inside an operating underground uranium mine at Jaduguda, India. Some of the important parameters, such as grade/(226)Ra activity, moisture content, bulk density, porosity and emanation fraction of ore, governing the migration of radon through the ore were determined. Emanation from the ore samples in terms of emanation rate and emanation fraction was measured in the laboratory under airtight condition in glass jar. The in situ radon emanation rate inside the mine was measured from drill holes made in the ore body. The in situ(222)Rn emanation rate from the mine walls varied in the range of 0.22-51.84 × 10(-3) Bq m(-2) s(-1) with the geometric mean of 8.68 × 10(-3) Bq m(-2) s(-1). A significant positive linear correlation (r = 0.99, p < 0.001) between in situ(222)Rn emanation rate and the ore grade was observed. The emanation fraction of the ore samples, which varied in the range of 0.004-0.089 with mean value of 0.025 ± 0.02, showed poor correlation with ore grade and porosity. Empirical relationships between radon emanation rate and the ore grade/(226)Ra were also established for quick prediction of radon emanation rate from the ore body. PMID:23974076

  17. Re Os isotopic systematics of the Voisey's Bay Ni Cu Co magmatic ore system, Labrador, Canada

    NASA Astrophysics Data System (ADS)

    Lambert, D. D.; Foster, J. G.; Frick, L. R.; Li, C.; Naldrett, A. J.

    1999-06-01

    Re and Os concentrations and Os isotopic compositions have been obtained for massive, matrix, and disseminated sulphide ores from three environments within the Voisey's Bay intrusion (the `Ovoid', Eastern Deeps, and Discovery Hill Zone) in order to assess the role of crustal contamination in the genesis of this large Cu-Ni-Co deposit. These samples have high Re concentrations (148 to 288 ppb, in 100% sulphide) for their common Os concentrations (4.8 to 24 ppb, in 100% sulphide), yielding high Re/Os ratios (12 to 33). These data confirm that the magma parental to the Voisey's Bay ore system was broadly basaltic in major element chemistry rather than picritic, consistent with the low Ni/Cu ratio of the ores (˜1.5). Re-Os isotopic data exhibit a limited spread in 187Re/ 188Os (57 to 157) and define an imprecise 1323±135 Ma `model 3' isochron, likely the result of small R-factor variations within the ore system. The Re-Os isochron age is within error of 1334 Ma U-Pb ages obtained for baddeleyite from the ore-bearing troctolites, demonstrating that whole rock Re-Os isotopic systematics have remained closed since crystallisation. The initial Os isotopic composition of the isochron ( γOs=1040±200) implies significant magma interactions with radiogenic Os that most likely resides in the Nain-Churchill Province crust. These data are, therefore, consistent with the parental magma achieving sulphide saturation as a result of contamination by radiogenic crustal components, with further addition of base and precious metals as a function of R-factor. Analyses of sulphide separates from the Proterozoic Tasiuyak (Churchill) and Archaean Nain gneisses confirm that both units contained significant Os (8.6 ppb and 0.38 ppb, respectively) that was very radiogenic at 1334 Ma ( γOs=1908 and 5202, respectively), yielding crustal residence TCHUR model ages of 2200 to 2400 Ma. However, these model ages may have been affected by Re and/or Os mobility during the 1.85 Ga Torngat and 1

  18. Evidence for a Hematite Ore Body on Mars

    NASA Technical Reports Server (NTRS)

    Lane, M. D.; Christensen, P. R.

    2000-01-01

    The Mars Global Surveyor (MGS) spacecraft was launched from Cape Kennedy in November 1996. MGS was put into orbit around Mars in September of 1997 and has since been sending back data from a suite of instruments, including the Thermal Emission Spectrometer (TES). The TES instrument is an interferometric spectrometer designed to map the surface mineralogy of Mars by measuring the midinfrared emitted radiation over the spectral region of approximately 1600 to 200 per centimeter (appjroximately 6 to 50 microns). This mineralogically sensitive technique utilizes the characteristic intra- and inter-molecular vibrations of minerals that are manifested in the midinfrared spectra. These spectral "fingerprints" are unique because they are dependent upon chemical composition, crystal structure, crystal orientation, and other factors. Midinfrared spectral data received from the MGS-TES instrument have indicated the presence of a large deposit of hematite (alpha-Fe2O3) in Sinus Meridiani, Mars. This hematite ore body, that is accompanied by basalt, is areally extensive, encompassing and area approximately 350 by 500 km. To better understand the geologic context of this large deposit, a detailed laboratory spectroscopic investigation was conducted using more than 20 hematite samples so that their spectra could be compared to the martian spectra. The samples included red and gray polycrystaline hand samples, gray single-crystal hand samples, and red and gray fine- and coarse-grained particulates. The laboratory analyses provided thermal emissivity spectra that, when compared to the hematite emissivity spectra from Mars, suggest the Sinus Meridiani hematite is possibly an exposure of oriented hematite grains. These grains are likely coarser that 10 microns (and may be much larger) and gray in color The characteristic of oriented grains is suggested by the apparent crystal axis-dependence of the energy emitted from the surface of Mars. The strong degree of crystal alignment

  19. Evidence for a Hematite Ore Body on Mars

    NASA Technical Reports Server (NTRS)

    Morris, Richard V.; Lane, M. D.; Christensen, P. R.

    2000-01-01

    The Mars Global Surveyor (MGS) spacecraft was launched from Cape Kennedy in November 1996. MGS was put into orbit around Mars in September of 1997 and has since been sending back data from a suite of instruments, including the Thermal Emission Spectrometer (TES). The TES instrument is an interferometric spectrometer designed to map the surface mineralogy of Mars by measuring the midinfrared emitted radiation over the spectral region of about 1600 to 200 cm(exp -1) (about 6 to 50 microns). This mineralogically sensitive technique utilizes the characteristic intra- and inter-molecular vibrations of minerals that are manifested in the midinfrared spectra. These spectral "fingerprints" are unique because they are dependent upon chemical composition, crystal structure, crystal orientation, and other factors. Midinfrared spectral data received from the MGS-TES instrument have indicated the presence of a large deposit of hematite (alpha-Fe2O3) in Sinus Meridiani, Mars. This hematite ore body, that is accompanied by basalt, is really extensive, encompassing an area about 350 by 500 km. To better understand the geologic context of this large deposit, a detailed laboratory spectroscopic investigation was conducted using more than 20 hematite samples so that their spectra could be compared to the martian spectra. The samples included red and gray polycrystaline hand samples, gray single-crystal hand samples, and red and gray fine- and coarse-grained particulates. The laboratory analyses provided thermal emissivity spectra that, when compared to the hematite emissivity spectra from Mars, suggest the Sinus Meridiani hematite is possibly an exposure of oriented hematite grains. These grains are likely coarser that 10 microns (and may be much larger) and gray in color. The characteristic of oriented grains is suggested by the apparent crystal axis-dependence of the energy emitted from the surface of Mars. The strong degree of crystal alignment exhibited in the emissivity spectra

  20. 36. INTERIOR VIEW LOOKING WEST FROM UNDERNEATH THE ORE BINS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. INTERIOR VIEW LOOKING WEST FROM UNDERNEATH THE ORE BINS LOOKING AT THE BACK SIDE OF THE HENDY CHALLENGE CONTINUOUS ORE FEEDERS, #1 IS ON THE LEFT, #2 IS CENTER, AND #3 IS ON THE RIGHT. THESE ARE USED TO KEEP A CONTINUOUS FLOW OF ORE INTO THE STAMP MILLS. NOTE THE SPARE FEEDER DISKS ON THE FLOOR BOTTOM CENTER AND SPARE STAMP HEADS AND SHOES ON THE FLOOR BOTTOM LEFT OF THE IMAGE. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA

  1. Tourmaline in Appalachian - Caledonian massive sulphide deposits and its exploration significance.

    USGS Publications Warehouse

    Slack, J.F.

    1982-01-01

    Tourmaline is a common gangue mineral in several types of stratabound mineral deposits, including some massive base-metal sulphide ores of the Appalachian - Caledonian orogen. It is most abundant (sometimes forming massive foliated tourmalinite) in sediment-hosted deposits, such as those at the Elizabeth Cu mine and the Ore Knob Cu mine (North Carolina, USA). Trace amounts of tourmaline occur associated with volcanic-hosted deposits in the Piedmont and New England and also in the Trondheim district. Tourmaline associated with the massive sulphide deposits are Mg- rich dravites with major- and trace-element compositions significantly different from schorl. It is suggested that the necessary B was produced by submarine exhalative processes as a part of the same hydrothermal system that deposited the ores. An abundance of dravite in non-evaporitic terrains is believed to indicate proximity to former subaqueous fumarolic centres.-R.A.H.

  2. Formation conditions of paleovalley uranium deposits hosted in upper Eocene-lower Oligocene rocks of Bulgaria

    NASA Astrophysics Data System (ADS)

    Vinokurov, S. F.; Strelkova, E. A.

    2016-03-01

    The uranium deposits of Bulgaria related to the Late Alpine tectonomagmatic reactivation are subdivided into two groups: exogenic-epigenetic paleovalley deposits related to the basins filled with upper Eocene-lower Oligocene volcanic-sedimentary rocks and the hydrothermal deposits hosted in the coeval depressions. The geological and lithofacies conditions of their localization, the epigenetic alteration of rocks, mineralogy and geochemistry of uranium ore are exemplified in thoroughly studied paleovalley deposits of the Maritsa ore district. Argumentation of the genetic concepts providing insights into both sedimentation-diagenetic and exogenic-epigenetic mineralization with development of stratal oxidation zones is discussed. A new exfiltration model has been proposed to explain the origin of the aforementioned deposits on the basis of additional analysis with consideration of archival factual data and possible causes of specific ningyoite uranium ore composition.

  3. Platinum group elements in gold-sulfide and base-metal ores of the Sayan-Baikal Fold Region and possible platinum and palladium speciation in sulfides

    NASA Astrophysics Data System (ADS)

    Mironov, A. G.; Zhmodik, S. M.; Kolesov, G. M.; Mit'kin, V. N.; Damdinov, B. B.; Zayakina, S. B.

    2008-02-01

    The concentration levels and distribution features of the platinum group elements (PGE) in quartz-sulfide and base-metal ores in deposits of the Sayan-Baikal Fold Region (SBFR) are discussed. Microfire assay neutron activation analysis (MF-NAA), which enables one to work on a nondestructive basis and allows one to avoid inaccuracies related to chemical sample preparation, was used as the main analytical technique. Three types of hydrothermal mineralization with elevated grades of PGE (especially Pt, Pd, and Ru) have been identified: (1) pyrite-pyrrhotite (massive sulfide) mineralization hosted in black shales of the Il’chir Sequence; (2) gold-sulfide ores of the Zun-Kholba, Tainsky, Kamenny, and some other gold deposits; and (3) silver-basemetal ores of the Dzhida-Vitim Zone. The PGE contents significantly vary, from global average values to tens of grams per ton. An absence of PGE minerals implies that these elements are finely dispersed in sulfide minerals and native gold. Taking into account difficulties in conversion of PGE into analytical forms, their nonuniform distribution in sulfide minerals, their high affinity to coordination compounds, and experimental results, cluster species of Pt and Pd in major minerals are suggested for the gold-sulfide and silver-base-metal ores in deposits, which are related to suprasubduction ophiolites and island-arc and intraplate settings in the SBFR.

  4. The Myszkow porphyry copper-molybdenum deposit, Poland

    USGS Publications Warehouse

    Chaffee, M.A.; Eppinger, R.G.; Lason, K.; Slosarz, J.; Podemski, M.

    1994-01-01

    The porphyry copper-molybdenum deposit at Myszkow, south-central Poland, lies in the Cracow-Silesian orogenic belt, in the vicinity of a Paleozoic boundary between two tectonic plates. The deposit is hosted in a complex that includes early Paleozoic metasedimentary rocks intruded in the late Paleozoic by a predominantly granodioritic pluton. This deposit exhibits many features that are typical of porphyry copper deposits associated with calc-alkaline intrusive rocks, including ore- and alteration-mineral suites, zoning of ore and alteration minerals, fluid-inclusion chemistry, tectonic setting, and structural style of veining. Unusual features of the Myszkow deposit include high concentrations of tungsten and the late Paleozoic (Variscan) age. -Authors

  5. Ordovician reef-hosted Jiaodingshan Mn-Co deposit and Dawashan Mn deposit, Sichuan Province, China

    USGS Publications Warehouse

    Fan, Delian; Hein, James R.; Ye, Jie

    1999-01-01

    The Jiaodingshan Mn-Co and Dawashan Mn deposits are located in the approximately 2-m thick Daduhe unit of the Wufengian strata of Late Ordovician (Ashgill) age. Paleogeographic reconstruction places the deposits at the time of their formation in a gulf between Chengdu submarine rise and the Kangdian continent. The Jiaodingshan and Dawashan deposits occur in algal-reef facies, the former in an atoll-like structure and the latter in a pinnacle reef. Ores are mainly composed of rhodochrosite, kutnahorite, hausmannite, braunite, manganosite, and bementite. Dark red, yellowish-pink, brown, green-gray, and black ores are massive, banded, laminated, spheroidal, and cryptalgal (oncolite, stromatolite, algal filaments) boundstones. Blue, green, and red algal fossils show in situ growth positions. Samples of high-grade Jiaodingshan and Dawashan ores assay as much as 66.7% MnO. Jiaodingshan Mn carbonate ores have mean contents of Ba, Co, and Pb somewhat higher than in Dawashan ores. Cobalt is widely distributed and strongly enriched in all rock types as compared to its crustal mean content. Cobalt is correlated with Cu, Ni, and MgO in both deposits and additionally with Ba and Zn in the Dawashan deposit. The δ13C(PDB) values of Mn carbonate ores (-7.8 to -16.3‰) indicate contributions of carbon from both seawater bicarbonate and the bacterial degradation of organic matter, the latter being 33% to 68%, assuming about -24‰ for the δ13C(PDB) of the organic matter. Host limestones derived carbon predominantly from seawater bicarbonate δ1313C(PDB) of +0.2 to -7‰). NW-trending fault zones controlled development of lithofacies, whereas NE-trending fault zones provided pathways for movement of fluids. The source of Co, Ni, and Cu was mainly from weathering of mafic and ultramafic rocks on the Kangdian continent, whereas contemporaneous volcanic eruptions were of secondary importance. The reefs were likely mineralized during early diagenesis under shallow burial. The reefs

  6. Timing of ore-related magmatism in the western Alaska Range, southwestern Alaska

    USGS Publications Warehouse

    Taylor, Ryan D.; Graham, Garth E.; Anderson, Eric D.; Selby, David

    2014-01-01

    This report presents isotopic age data from mineralized granitic plutons in an area of the Alaska Range located approximately 200 kilometers to the west-northwest of Anchorage in southwestern Alaska. Uranium-lead isotopic data and trace element concentrations of zircons were determined for 12 samples encompassing eight plutonic bodies ranging in age from approximately 76 to 57.4 millions of years ago (Ma). Additionally, a rhenium-osmium age of molybdenite from the Miss Molly molybdenum occurrence is reported (approx. 59 Ma). All of the granitic plutons in this study host gold-, copper-, and (or) molybdenum-rich prospects. These new ages modify previous interpretations regarding the age of magmatic activity and mineralization within the study area. The new ages show that the majority of the gold-quartz vein-hosting plutons examined in this study formed in the Late Cretaceous. Further work is necessary to establish the ages of ore-mineral deposition in these deposits.

  7. Potash ore reserves in the proposed Waste Isolation Pilot Plant area, Eddy County, southeastern New Mexico

    USGS Publications Warehouse

    John, Charles B.; Cheeseman, R.J.; Lorenz, J.C.; Millgate, M.L.

    1978-01-01

    The proposed Waste Isolation Pilot Plant (WIPP) area includes about 18,960 acres in Tps. 22 and 23 S., Rs. 30 and 31 E., New Mexico Principal Meridian, Eddy County, southeastern New Mexico. It is located within the Carlsbad Mining District about 25 miles east of Carlsbad. The WIPP area is immediately south of the Capitan Limestone subcrop, which formed the northern margin of the Delaware basin in Permian time. During Late Permian (Ochoan) time, gypsum, anhydrite, and halite were deposited in the seas of the Delaware basin to form the Castile Formation. These deposits have a maximum thickness of about 2,000 feet and grade upward into the more argillaceous beds of the Salado Formation. The Salado Formation contains abundant sulfate minerals, notably anhydrite and polyhalite. The potash ore minerals, langbeinite and sylvite, occur in the upper part of the Salado Formation in the McNutt potash zone, a local name applied to a potassium-rich zone.

  8. Application of a feedforward neural network in the search for kuroko deposits in the hokuroku district, Japan

    USGS Publications Warehouse

    Singer, D.A.; Kouda, R.

    1996-01-01

    A feedforward neural network with one hidden layer and five neurons was trained to recognize the distance to kuroko mineral deposits. Average amounts per hole of pyrite, sericite, and gypsum plus anhydrite as measured by X-rays in 69 drillholes were used in train the net. Drillholes near and between the Fukazawa, Furutobe, and Shakanai mines were used. The training data were selected carefully to represent well-explored areas where some confidence of the distance to ore was assured. A logarithmic transform was applied to remove the skewness of distance and each variable was scaled and centered by subtracting the median and dividing by the interquartile range. The learning algorithm of annealing plus conjugate gradients was used to minimise the mean squared error of the sealed distance to ore. The trained network then was applied to all of the 152 drillholes that had measured gypsum, sericite, and pyrite. A contour plot of the neural net predicted distance to ore shows fairly wide areas of 1 km or less to ore; each of the known deposit groups is within the 1 km contour. The high and htw distances on the margins of the contoured distance plot are in part the result of boundary effects of the contouring algorithm. For example, the short distances to ore predicted west of the Shakanai (Hanaoka) deposits are in basement. However, the short distances to ore predicted northeast of Furotobe, just off the figure, coincide with the location of the Nurukawa kuroko deposit and the Omaki deposit, south of the Shakanai-Hanaoka deposits, seems to be on an extension of short distance to ore contour, but is beyond the 3 km limit from drillholes. Also of interest are some areas only a few kilometers from the Fukazawa and Shakanai groups of deposits that are estimated to be many kilometers from ore, apparently reflecting the network's recognition of the extreme local variability of the geology near some deposits. 1996 International Association for Mathematical Geology.

  9. 40 CFR 440.60 - Applicability; description of the tungsten ore subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... tungsten ore subcategory. 440.60 Section 440.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Tungsten Ore Subcategory § 440.60 Applicability; description of the tungsten ore subcategory. The provisions of...

  10. 46 CFR 97.12-1 - Bulk ores and similar cargoes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Bulk ores and similar car