Science.gov

Sample records for oregon cascades final

  1. Geothermal research, Oregon Cascades: Final technical report

    SciTech Connect

    Priest, G.R.; Black, G.L.

    1988-10-27

    Previous USDOE-funded geothermal studies have produced an extensive temperature gradient and heat flow data base for the State of Oregon. One of the important features identified as a result of these studies is a rapid transition from heat flow values on the order of 40 mW/m/sup 2/ in the Willamette Valley and Western Cascades to values of greater than or equal to100 mW/m/sup 2/ in the High Cascades and the eastern portion of the Western Cascades. These data indicate that the Cascade Range in Oregon has potential as a major geothermal province and stimulated much of the later work completed by government agencies and private industry. Additional data generated as a result of this grant and published in DOGAMI Open-File Report 0-86-2 further define the location and magnitude of this transition zone. In addition, abundant data collected from the vicinity of Breitenbush and Austin Hot Springs have permitted the formulation of relatively detailed models of these hydrothermal systems. These models are published in DOGAMI Open-File Report 0-88-5. Task 1.2 of the Deliverables section of Amendment M001 is fulfilled by DOGAMI publication GMS-48, Geologic map of the McKenzie Bridge quadrangle, Lane County, Oregon. This map was printed in October, 1988, and is part of the final submission to USDOE. 8 refs.

  2. US geothermal database and Oregon cascade thermal studies: (Final report)

    SciTech Connect

    Blackwell, D.D.; Steele, J.L.; Carter, L.

    1988-05-01

    This report describes two tasks of different nature. The first of these tasks was the preparation of a data base for heat flow and associated ancillary information for the United States. This data base is being used as the basis for preparation of the United States portion of a geothermal map of North America. The ''Geothermal Map of North America'' will be published as part of the Decade of North American Geology (DNAG) series of the Geological Society of America. The second of these tasks was to make a geothermal evaluation of holes drilled in the Cascade Range as part of a Department of Energy (DOE)/Industry co-sponsored deep drilling project. This second task involved field work, making temperature logs in the holes, and laboratory work, measuring thermal conductivity measurements on an extensive set of samples from these holes. The culmination of this task was an interpretation of heat flow values in terms of the regional thermal conditions; implications for geothermal systems in the Cascade Range; evaluation of the effect of groundwater flow on the depths that need to be drilled for successful measurements in the Cascade Range; and investigation of the nature of the surface groundwater effects on the temperature-depth curves. 40 refs., 7 figs., 7 tabs.

  3. Cascade Mtns. Oregon

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The ground near one of the long-dormant Three Sisters volcanoes in the Cascade Mountains of west-central Oregon has risen approximately 10centimeters in a 10-by-20-km parcel since 1996, meaning that magma or underground lava is slowly flowing into the area, according to a research team from the U.S. Geological Survey. The Three Sisters area -- which contains five volcanoes -- is only about 170 miles from Mount St. Helens, which erupted in 1980. Both are part of the Cascades Range, a line of 27volcanoes stretching from British Columbia in Canada to northern California. This perspective view was created by draping a simulated natural color ASTER image over digital topography from the U.S. Geological Survey National Elevation Dataset.

    This image was acquired on May 28, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical

  4. Oregon Cascades Play Fairway Analysis: Raster Datasets and Models

    DOE Data Explorer

    Adam Brandt

    2015-11-15

    This submission includes maps of the spatial distribution of basaltic, and felsic rocks in the Oregon Cascades. It also includes a final Play Fairway Analysis (PFA) model, with the heat and permeability composite risk segments (CRS) supplied separately. Metadata for each raster dataset can be found within the zip files, in the TIF images

  5. Eruptive history of South Sister, Oregon Cascades

    USGS Publications Warehouse

    Fierstein, J.; Hildreth, W.; Calvert, A.T.

    2011-01-01

    South Sister is southernmost and highest of the Three Sisters, three geologically dissimilar stratovolcanoes that together form a spectacular 20km reach along the Cascade crest in Oregon. North Sister is a monotonously mafic edifice as old as middle Pleistocene, Middle Sister a basalt-andesite-dacite cone built between 48 and 14ka, and South Sister is a basalt-free edifice that alternated rhyolitic and intermediate modes from 50ka to 2ka (largely contemporaneous with Middle Sister). Detailed mapping, 330 chemical analyses, and 42 radioisotopic ages show that the oldest exposed South Sister lavas were initially rhyolitic ~50ka. By ~37ka, rhyolitic lava flows and domes (72-74% SiO2) began alternating with radially emplaced dacite (63-68% SiO2) and andesite (59-63% SiO2) lava flows. Construction of a broad cone of silicic andesite-dacite (61-64% SiO2) culminated ~30ka in a dominantly explosive sequence that began with crater-forming andesitic eruptions that left fragmental deposits at least 200m thick. This was followed at ~27ka by growth of a steeply dipping summit cone of agglutinate-dominated andesite (56-60.5% SiO2) and formation of a summit crater ~800m wide. This crater was soon filled and overtopped by a thick dacite lava flow and then by >150m of dacitic pyroclastic ejecta. Small-volume dacite lavas (63-67% SiO2) locally cap the pyroclastic pile. A final sheet of mafic agglutinate (54-56% SiO2) - the most mafic product of South Sister - erupted from and drapes the small (300-m-wide) present-day summit crater, ending a summit-building sequence that lasted until ~22ka. A 20kyr-long-hiatus was broken by rhyolite eruptions that produced (1) the Rock Mesa coulee, tephra, and satellite domelets (73.5% SiO2) and (2) the Devils Chain of ~20 domes and short coulees (72.3-72.8% SiO2) from N-S vent alignments on South Sister's flanks. The compositional reversal from mafic summit agglutinate to recent rhyolites epitomizes the frequently changing compositional modes of the

  6. Geology and geothermal resources of the Santiam Pass area of the Oregon Cascade Range, Deschutes, Jefferson and Linn Counties, Oregon. Final report

    SciTech Connect

    Hill, B.E.

    1992-10-01

    This open-file report presents the results of the Santiam Pass drilling program. The first phase of this program was to compile all available geological, geophysical and geothermal data for the Santiam Pass area and select a drill site on the basis of these data (see Priest and others, 1987a), A summary of the drilling operations and costs associated with the project are presented in chapter 1 by Hill and Benoit. An Overview of the geology of the Santiam Pass area is presented by Hill and Priest in chapter 2. Geologic mapping and isotopic age determinations in the Santiam Pass-Mount Jefferson area completed since 1987 are summarized in chapter 2. One of the more important conclusions reached in chapter 2 is that a minimum of 2 km vertical displacement has occurred in the High Cascade graben in the Santiam Pass area. The petrology of the Santiam Pass drill core is presented by Hill in chapter 3. Most of the major volcanic units in the core have been analyzed for major, minor, and trace element abundances and have been studied petrographically. Three K-Ar ages are interpreted in conjunction with the magnetostratigraphy of the core to show that the oldest rocks in the core are approximately 1.8 Ma. Geothermal and geophysical data collected from the Santiam Pass well are presented by Blackwell in chapter 4. The Santiam Pass well failed to penetrate beneath the zone of lateral groundwater flow associated with highly permeable Quaternary volcanic rocks. Calculated geothermal gradients range from about 50{degree}C/km at depth 700-900 m, to roughly 110{degree}C/km from 900 m to the bottom of the well at 929 m. Heat-flow values for the bottom part of the hole bracket the regional average for the High Cascades. Blackwell concludes that heat flow along the High Cascades axis is equal to or higher than along the western edge of the High Cascades.

  7. Oregon Cascades Play Fairway Analysis: Faults and Heat Flow maps

    SciTech Connect

    Adam Brandt

    2015-11-15

    This submission includes a fault map of the Oregon Cascades and backarc, a probability map of heat flow, and a fault density probability layer. More extensive metadata can be found within each zip file.

  8. CO{sub 2} degassing in the Oregon Cascades

    SciTech Connect

    James, E.R.; Manga, M.; Rose, T.P.

    1999-09-01

    The carbon isotope content of dissolved inorganic carbon was measured for large cold springs in the central Oregon Cascades. Low {sup 14}C activities in some of the springs are interpreted to result from the dissolution of diffuse emissions of magmatic CO{sub 2}, even though volcanic activity has not occurred in this area for more than 1300 yr. On the basis of dissolved magmatic carbon concentrations in the springs, the authors infer a diffuse magmatic CO{sub 2} degassing rate of 3.4 {times} 10{sup 5} kg/yr per kilometer of arc for the central Oregon Cascades. The CO{sub 2} flux calculated from estimates of the mean magmatic intrusion rate and experimentally determined values of CO{sub 2} content in melts is consistent with that determined from their measurements of the dissolved CO{sub 2} flux at springs.

  9. CO[sub 2] degassing in the Oregon Cascades

    SciTech Connect

    James, E.R.; Manga, M. . Dept. of Geological Sciences); Rose, T.P. . Isotope Sciences Div.)

    1999-09-01

    The carbon isotope content of dissolved inorganic carbon was measured for large cold springs in the central Oregon Cascades. Low [sup 14]C activities in some of the springs are interpreted to result from the dissolution of diffuse emissions of magmatic CO[sub 2], even though volcanic activity has not occurred in this area for more than 1300 yr. On the basis of dissolved magmatic carbon concentrations in the springs, the authors infer a diffuse magmatic CO[sub 2] degassing rate of 3.4 [times] 10[sup 5] kg/yr per kilometer of arc for the central Oregon Cascades. The CO[sub 2] flux calculated from estimates of the mean magmatic intrusion rate and experimentally determined values of CO[sub 2] content in melts is consistent with that determined from their measurements of the dissolved CO[sub 2] flux at springs.

  10. Hydrology of Spring-Dominated Streams in the Oregon Cascades

    NASA Astrophysics Data System (ADS)

    Manga, Michael

    1996-08-01

    Spring-dominated streams in the Oregon Cascades are often characterized by nearly constant discharge and by peak flows that occur in late summer or fall, several months after the annual snowmelt. A model is presented that can account for the temporal variations of discharge and the delay between snowmelt and the period of peak streamflow. Springs are assumed to be fed by an unconfined aquifer that is recharged by the annual snowmelt. Model results depend primarily on the effective permeability and the dimensions of the aquifer. Four spring-fed streams in the Deschutes River basin in the Oregon Cascades are studied. The effective permeability of the young (<2 Ma) volcanic rocks that comprise the aquifers is inferred to be O(10-11) m2.

  11. Flow-banded Rhyolite of the Northern Oregon Cascades: Graveyard and Gordon Buttes, Tygh Valley, Oregon

    NASA Astrophysics Data System (ADS)

    Westby, E.; Streck, M. J.

    2013-12-01

    One of the most structurally complex areas along the northeastern margin of the Oregon Cascades is in Tygh Valley. Crustal shortening produced folds and extensional tectonics resulted in rifting during the Miocene/Pliocene. Rhyolite, exposed in channel cuts and river canyon, records this transition, summarized in new, more detailed research. Tygh Valley, Oregon, is a synclinal basin bordered by the Tygh Ridge anticline to the north, Mutton Mountains to the south, and the Cascade Range (with Mt. Hood) to the west. The stratigraphy of the basin consists of epi- and volcaniclastic deposits mostly derived from the Cascades Range, in addition to ash flow tuffs and surficial basalt lava flows. Rhyolite lava flows are found at two dome complexes in the Tygh Valley area, Graveyard Butte and Gordon Butte. At Graveyard Butte, the White River has cut a winding canyon 140 meters deep, exposing at its base, a 40-meter thick outcrop of flow-banded rhyolite (73 wt.% SiO2) that laterally extends along the canyon walls for about 1 km. Stratigraphically above the flow-banded rhyolites are locally-erupted Fe-rich andesites (lava flows, agglutinate and other pyroclastic rocks as well as clastic debris), a rhyolitic ash-flow tuff (74 wt.% SiO2) and the 2.7 My basalt lava flows of Juniper Flat. At Gordon Butte, compositionally similar rhyolite lavas are exposed in channel cuts but flows are less constrained on ridge tops due to heavy vegetation. Ongoing age dating experiments will likely reveal a late Miocene/Pliocene age for these rhyolite lava flows. The rhyolite lavas flows at both buttes are chemically nearly indistinguishable but contrast with the stratigraphically younger rhyolitic ash-flow tuff at Graveyard Butte. Rhyolite lavas are richer in Nb and Zr than the younger rhyolitic tuff (Nb 30-40 versus 13 ppm; Zr 490 versus 240 ppm) and share characteristics with much older (~30 Ma) rhyolites of the Western Cascades and John Day Formation of central and eastern Oregon as well as

  12. Geothermal gradient drilling, north-central Cascades of Oregon, 1979

    SciTech Connect

    Youngquist, W.

    1980-01-01

    A geothermal gradient drilling program was conducted on the western flank of the north-central Cascade Mountains in Oregon. Six wells were drilled during this program, although in effect seven were drilled, as two wells were drilled at site 3, the second well, however, actually going to a lesser depth than the first. Three of the wells (3, 4, and 5) were drilled in areas which topographically are subject to strong throughflows of ground water. None of these wells reached the regional water table, and all showed essentially isothermal geothermal gradients. The single well which was started essentially at the water table (well 6) shows a linear temperature rise with depth essentially from the top of the well bore. Well No. 2 shows an isothermal gradient down to the level of the regional water table and then shows a linear gradient of about 70/sup 0/C/km from the regional water table to total depth.

  13. Northeast Oregon Hatchery Project, Final Siting Report.

    SciTech Connect

    Watson, Montgomery

    1995-03-01

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  14. Clean Energy Works Oregon Final Technical Report

    SciTech Connect

    Jacob, Andria; Cyr, Shirley

    2013-12-31

    In April 2010, the City of Portland received a $20 million award from the U.S. Department of Energy, as part of the Energy Efficiency and Conservation Block Grant program. This award was appropriated under the American Recovery and Reinvestment Act (ARRA), passed by President Obama in 2009. DOE’s program became known as the Better Buildings Neighborhood Program (BBNP). The BBNP grant objectives directed the City of Portland Bureau of Planning and Sustainability (BPS) as the primary grantee to expand the BPS-led pilot program, Clean Energy Works Portland, into Clean Energy Works Oregon (CEWO), with the mission to deliver thousands of home energy retrofits, create jobs, save energy and reduce carbon dioxide emissions.The Final Technical Report explores the successes and lessons learned from the first 3 years of program implementation.

  15. Oregon Low-Temperature-Resource Assessment Program. Final technical report

    SciTech Connect

    Priest, G.R.; Black, G.L.; Woller, N.M.

    1981-01-01

    Numerous low-temperature hydrothermal systems are available for exploitation throughout the Cascades and eastern Oregon. All of these areas have heat flow significantly higher than crustal averages and many thermal aquifers. In northeastern Oregon, low temperature geothermal resources are controlled by regional stratigraphic aquifers of the Columbia River Basalt Group at shallow depths and possibly by faults at greater depths. In southeastern Oregon most hydrothermal systems are of higher temperature than those of northeastern Oregon and are controlled by high-angle fault zones and layered volcanic aquifers. The Cascades have very high heat flow but few large population centers. Direct use potential in the Cascades is therefore limited, except possibly in the cities of Oakridge and Ashland, where load may be great enough to stimulate development. Absence of large population centers also inhibits initial low temperature geothermal development in eastern Oregon. It may be that uses for the abundant low temperature geothermal resources of the state will have to be found which do not require large nearby population centers. One promising use is generation of electricity from freon-based biphase electrical generators. These generators will be installed on wells at Vale and Lakeview in the summer of 1982 to evaluate their potential use on geothermal waters with temperatures as low as 80/sup 0/C (176/sup 0/F).

  16. Geologic map of Three Sisters volcanic cluster, Cascade Range, Oregon

    USGS Publications Warehouse

    Hildreth, Wes; Fierstein, Judy; Calvert, Andrew T.

    2012-01-01

    The cluster of glaciated stratovolcanoes called the Three Sisters—South Sister, Middle Sister, and North Sister—forms a spectacular 20-km-long reach along the crest of the Cascade Range in Oregon. The three eponymous stratocones, though contiguous and conventionally lumped sororally, could hardly display less family resemblance. North Sister (10,085 ft), a monotonously mafic edifice at least as old as 120 ka, is a glacially ravaged stratocone that consists of hundreds of thin rubbly lava flows and intercalated falls that dip radially and steeply; remnants of two thick lava flows cap its summit. Middle Sister (10,047 ft), an andesite-basalt-dacite cone built between 48 and 14 ka, is capped by a thick stack of radially dipping, dark-gray, thin mafic lava flows; asymmetrically glaciated, its nearly intact west flank contrasts sharply with its steep east face. Snow and ice-filled South Sister is a bimodal rhyolitic-intermediate edifice that was constructed between 50 ka and 2 ka; its crater (rim at 10,358 ft) was created between 30 and 22 ka, during the most recent of several explosive summit eruptions; the thin oxidized agglutinate that mantles its current crater rim protects a 150-m-thick pyroclastic sequence that helped fill a much larger crater. For each of the three, the eruptive volume is likely to have been in the range of 15 to 25 km³, but such estimates are fairly uncertain, owing to glacial erosion. The map area consists exclusively of Quaternary volcanic rocks and derivative surficial deposits. Although most of the area has been modified by glaciation, the volcanoes are young enough that the landforms remain largely constructional. Furthermore, twelve of the 145 eruptive units on the map are postglacial, younger than the deglaciation that was underway by about 17 ka. The most recent eruptions were of rhyolite near South Sister, about 2,000 years ago, and of mafic magma near McKenzie Pass, about 1,500 years ago. As observed by trailblazing volcanologist

  17. Testing bedrock incision models: Holocene channel evolution, High Cascades, Oregon

    NASA Astrophysics Data System (ADS)

    Sweeney, K. E.; Roering, J. J.; Fonstad, M. A.

    2013-12-01

    There is abundant field evidence that sediment supply controls the incision of bedrock channels by both protecting the bed from incision and providing tools to incise the bed. Despite several theoretical models for sediment-dependent bedrock abrasion, many investigations of natural channel response to climatic, lithologic, or tectonic forcing rely on the stream power model, which does not consider the role of sediment. Here, we use a well-constrained fluvial channel cut into a Holocene lava flow in the High Cascades, Oregon to compare incision predictions of the stream power model and of the full physics of theoretical models for saltation-abrasion incision by bedload and suspended load. The blocky andesite of Collier lava flow erupted from Collier Cone ~1500 years ago, paving over the existing landscape and erasing fine-scale landscape dissection. Since the eruption, a 6 km stream channel has been incised into the lava flow. The channel is comprised of three alluvial reaches with sediment deposits up to 2 m thick and two bedrock gorges with incision of up to 8 m, with larger magnitude incision in the upstream gorge. Abraded forms such as flutes are present in both gorges. Given the low magnitude and duration of modern snowmelt flow in the channel, it is likely that much of the incision was driven by sediment-laden outburst floods from the terminus of Collier Glacier, which is situated just upstream of the lava flow and has produced two outburst floods in the past 100 years. This site is well suited for comparing incision models because of the relatively uniform lithology of the lava flow and our ability to constrain the timing and depth of incision using the undissected lava surface above the channel as an initial condition. Using a simple finite difference scheme with airborne-Lidar-derived pre-incision topography as an initial condition, we predict incision in the two gorges through time with both stream power and sediment-dependent models. Field observations

  18. SPATIAL FOREST SOIL PROPERTIES FOR ECOLOGICAL MODELING IN THE WESTERN OREGON CASCADES

    EPA Science Inventory

    The ultimate objective of this work is to provide a spatially distributed database of soil properties to serve as inputs to model ecological processes in western forests at the landscape scale. The Central Western Oregon Cascades are rich in biodiversity and they are a fascinati...

  19. CARBON AND NITROGEN POOLS IN OREGON CASCADES FORESTS OVER A SUCCESSIONAL GRADIENT

    EPA Science Inventory

    In a study to examine impacts of successional and disturbance history on N export from 20 headwater stream systems in the west central Cascades of Oregon, a region of low anthropogenic N inputs, watersheds of differing ages showed a number of significant difference in nutrient ...

  20. Implications of volcano-tectonic patterns in the Oregon cascades for geothermal exploration

    SciTech Connect

    Priest, G.R.; Woller, N.M.; Black, G.L.; Evans, S.H.; Ruscetta, C.A.

    1982-07-01

    Basin and Range and subduction-related processes may have combined to produce voluminous mafic volcanism and very high heat flow in the central Oregon High Cascades during the last 9 m.y. This high rate of volcanism and heat flow prevails south of the Clackamas River right lateral wrench fault zone. South of this zone the volume of mafic volcanic rocks less than 9 m.y. old increases abruptly and regional heat flow increases by at least 20 mW/m/sup 2/. A similar, but larger, increase in volcanism and heat flow characterizes the transition from the Blue Mountain block to the Basin and Range Province at the Brothers right lateral wrench fault zone. A significant amount of the 0 to 9 m.y.B.P. mafic volcanic rock in the Cascades is basalt, with one or all of the following attributes of contemporaneous basalts of the Brothers Fault Zone-Basin and Range province: (1) anomalously high alkali and iron content relative to normal calc-alkaline rocks; (2) diktytaxitic texture with titaniferous groundmass clinopyroxene. This suggests a common petrogenesis for these basalts, perhaps from partial melting related to Basin and Range spreading. Potential operation of two partial melting mechanisms in the Oregon High Cascades may cause a high rate of magmatic heat transferral from mantle regions relative to transferral in the Basin and Range. This means that the High Cascades probably has the highest geothermal potential of any province in Oregon, especially where intercepted by youthful faults. North-south faults which bound a large area of Pliocene to Pleistocene subsidence along the High Cascade axis are good exploration targets. Silicic volcanism at the Brothers Fault zone intersection makes this the best exploration target in Oregon.

  1. Magmatic Volatiles and Low Pressure Degassing at a Mafic Shield Volcano (Belknap) in the Oregon Cascades

    NASA Astrophysics Data System (ADS)

    Mordensky, S. P.; Ruscitto, D. M.; Wallace, P. J.; Cashman, K. V.

    2011-12-01

    Cinder cones and shield volcanoes frequently coexist in volcanic fields. Despite their proximity, cinder cones often erupt as monogenetic (single) events, whereas shield volcanoes are polygenetic (multiple eruptive events). Why some vents erupt once for a relatively short period of time (months) but others nearby remain active enough to build up as shields (over hundreds or thousands of years) remains ambiguous. To better understand the magma ascent conditions associated with these disparate eruption styles, we contrast the volatile concentrations within olivine-hosted melt inclusions of tephra deposits from the late-stage eruptions of a mafic shield volcano with those from nearby cinder cones. Belknap Crater is a shield volcano in the Central Oregon High Cascades that grew through repeated eruptions from ~2800 to 1500 years BP (Sherrod et al., 2004). Volatile contents from late-stage ash collected on the flanks of the summit cone range from 0.1 to 2.4 wt% H2O and <50 to 770 ppm CO2. The most volatile-rich inclusions record vapor saturation pressures of ~2 kbar, equivalent to ~7 km depth in the crust, whereas inclusions with the lowest volatile contents indicate very low pressures of formation. Given that the height of the volcano is roughly 540 meters above the surrounding ground level, many of the inclusions with relatively low H2O values and CO2 values, which are often below detection limits, likely reflect olivine crystallization within the volcano itself. In contrast, melt inclusions from nearby short-lived cinder cones (e.g. Collier Cone and 4-in-1 Cone) of similar age, < 2900 years BP, contain 2-4 wt% H2O and 500-1200 ppm CO2. These inclusions lack the low H2O, low CO2 values found at Belknap - even in deposits representing the final stages of explosive activity - and record crystallization at pressures between ~1-2 kbar, equivalent depth of ~4-8 km depth in the crust. H2O-CO2 patterns in inclusions from Belknap are similar to those observed in the late

  2. Modeling Snowcover Sensitivity to Warming Temperature Across a Climatic Gradient in the Oregon Cascades

    NASA Astrophysics Data System (ADS)

    Cooper, M. G.; Sproles, E.; Nolin, A. W.; Rittger, K. E.; Painter, T. H.

    2013-12-01

    Warming winter temperatures will continue to shift precipitation from snow to rain, decreasing mountain snowpacks in temperature-sensitive regions such as the Pacific Northwest. Snow in the Oregon Cascades is particularly at risk because it falls at temperatures close to the melting point. The west side of the Oregon Cascades receives significantly more winter precipitation than the east side (2000 mm vs. 600 mm). While previous studies have focused on the west side of the Oregon Cascades, to date, no study has examined effects of warming temperature on snow over both the east and west sides of this mountain range. This study examines the effect of warming temperatures on present day and future patterns of snowpack accumulation and ablation in the headwater catchments of McKenzie (west side) and Metolius (east side) River Basins of the Oregon Cascades. This study employs a process-based, spatially distributed model, SnowModel, to quantify snow accumulation and ablation. We run the model at 100-m spatial scale on a daily time step, driving the model using spatially distributed meteorological data from stations in and around the sub-basins. The modeling period covers 1989-2009, during which time the region experienced high, low, and average snow water equivalent (SWE). For each basin, we quantify the date and magnitude of peak SWE, the date of snow disappearance, the ratio of SWE to winter precipitation (SWE:P), and the snow-covered area (SCA) at peak SWE for each year. We validate our model results using available SWE measurements and snow extent from Landsat remote sensing imagery. SnowModel is then run using perturbed meteorological input data (+1°C, +2°C, +3°C, +4°C and ×10% precipitation) to evaluate the potential effects of a warmer, wetter/drier winter climate on snowpack accumulation and melt in the watersheds. Simulations of SWE, precipitation, and temperature in the McKenzie Basin for the study period have Nash-Sutcliffe efficiencies of 0.83, 0.97, and

  3. Lead-isotopic data from sulfide minerals from the Cascade Range, Oregon and Washington

    USGS Publications Warehouse

    Church, S.E.; LeHuray, A.P.; Grant, A.R.; Delevaux, M.H.; Gray, J.E.

    1986-01-01

    Lead-isotopic studies of mineral deposits associated with Tertiary plutons found in the Cascade Range of Oregon and Washington demonstrate a rather uniform isotopic composition in various sulfide minerals ( 206Pb 204Pb = 18.84 to 19.05; 207Pb 204Pb = 15.57 to 15.62; 208Pb 204Pb = 38.49 to 38.74), show less variation than data from the volcanic rocks of the Cascade Range and fall within the mixing array defined by the MORB regression line and continental sediments. An evaluation of the role of crustal assimilation by hydrothermal convection during emplacement was made on five sulfide deposits associated with a single composite batholith, the Cloudy Pass pluton. The Pb-isotopic data and mass balance calculations suggest that only minor amounts of the lead were derived from the overlying Precambrian (?) Swakane Biotite Gneiss during emplacement. The bulk of the metal that occurs in sulfide deposits in the Cascade mineral belt appears to have been derived from subducted continental detritus. The variation of the Pb-isotopic signature of Sulfides from specific districts or deposits suggests that there is a correlation with age and structure of the crust. 206Pb 204Pb is greater than 18.92 in northern Washington and southern Oregon where deposits have intruded Mesozoic or older crust. However, the ore deposits between the northern Oregon border and central Oregon, south of Eugene, have intruded younger crust composed largely of mafic and andesitic volcanic rocks and 206Pb 204Pb lies between 18.84 and 18.92. This region, previously called the Columbia embayment, appears to be underlain by Tertiary volcanic rocks. Lead-isotopic data may be used to define the boundaries between discontinuous blocks of Mesozoic crust and Tertiary volcanic cover. ?? 1986.

  4. High-resolution seismic tomography of compressional wave velocity structure at Newberry Volcano, Oregon Cascade Range

    SciTech Connect

    Achauer, U.; Evans, J.R.; Stauber, D.A.

    1988-09-10

    Compressional wave velocity structure is determined for the upper crust beneath Newberry Volcano, central Oregon, using a high-resolution active-source seismic-tomography method. Newberry Volcano is a bimodal shield volcano east of the axis of the Cascade Range. It is associated both with the Cascade Range and with northwest migrating silicic volcanism in southeast Oregon. High-frequency (approx.7 Hz) crustal phases, nominally Pg and a midcrustal reflected phase, travel upward through a target volume beneath Newberry Volcano to a dense array of 120 seismographs. This arrangement is limited by station spacing to 1- to 2-km resolution in the upper 5 to 6 km of the crust beneath the volcano's summit caldera. The experiment tests the hypothesis that Cascade Range volcanoes are underlain only by small magma chambers. A small low-velocity anomaly delineated abosut 3 km below the summit caldera supports this hypothesis for Newberry Volcano and is interpreted as a possible magma chamber of a few to a few tens of km/sup 3/ in volume. A ring-shaped high-velocity anomaly nearer the surface coincides with the inner mapped ring fractures of the caldera. It also coincides with a circular gravity high, and we interpret it as largely subsolidus silicic cone sheets. The presence of this anomaly and of silicic vents along the ring fractures suggests that the fractures are a likely eruption path between the small magma chamber and the surface.

  5. Petrologic, tectonic, and metallogenic evolution of the Ancestral Cascades magmatic arc, Washington, Oregon, and northern California

    USGS Publications Warehouse

    du Bray, Edward A.; John, David A.

    2011-01-01

    Present-day High Cascades arc magmatism was preceded by ~40 m.y. of nearly cospatial magmatism represented by the ancestral Cascades arc in Washington, Oregon, and northernmost California (United States). Time-space-composition relations for the ancestral Cascades arc have been synthesized from a recent compilation of more than 4000 geochemical analyses and associated age data. Neither the composition nor distribution of ancestral Cascades magmatism was uniform along the length of the ancestral arc through time. Initial (>40 to 36 Ma) ancestral Cascades magmatism (mostly basalt and basaltic andesite) was focused at the north end of the arc between the present-day locations of Mount Rainier and the Columbia River. From 35 to 18 Ma, initial basaltic andesite and andesite magmatism evolved to include dacite and rhyolite; magmatic activity became more voluminous and extended along most of the arc. Between 17 and 8 Ma, magmatism was focused along the part of the arc coincident with the northern two-thirds of Oregon and returned to more mafic compositions. Subsequent ancestral Cascades magmatism was dominated by basaltic andesite to basalt prior to the post–4 Ma onset of High Cascades magmatism. Transitional tholeiitic to calc-alkaline compositions dominated early (before 40 to ca. 25 Ma) ancestral Cascades eruptive products, whereas the majority of the younger arc rocks have a calc-alkaline affinity. Tholeiitic compositions characteristic of the oldest ancestral arc magmas suggest development associated with thin, immature crust and slab window processes, whereas the younger, calc-alkaline magmas suggest interaction with thicker, more evolved crust and more conventional subduction-related magmatic processes. Presumed changes in subducted slab dip through time also correlate with fundamental magma composition variation. The predominance of mafic compositions during latest ancestral arc magmatism and throughout the history of modern High Cascades magmatism probably

  6. Mafic magmatism and associated tectonism of the central High Cascade Range, Oregon

    NASA Technical Reports Server (NTRS)

    Hughes, Scott S.

    1990-01-01

    Results are presented on chemical analyses of basaltic core samples obtained from holes drilled at three locations in the mafic platform within the central region of the High Cascade Range (Oregon), as well as of some surface samples to enhance the original data base. Analyses were obtained using a variety of procedures; the most appropriate data commensurate with the technique were selected. The data illustrate the development of the mafic platform in terms of geochemical variations and tectonic configurations required to satisfy petrochemical associations.

  7. Potentiality for obtaining poria disease signatures in the Oregon Cascades from orbital altitudes

    NASA Technical Reports Server (NTRS)

    Wear, J. F.

    1972-01-01

    A prime photographic signature indicator of an important forest disease was identified in valuable Douglas-fir stands of the Pacific Northwest. The disease signature was verified by a multidisciplinary team of scientists to be the direct result of the Poria weirii root-rot syndrome in the Douglas-fir and hemlock stands of the high Cascades in Oregon. It is readily discernible on small-scale suborbital photography and has good potential for detection from earth-orbiting satellites or remote sensing platforms.

  8. Paleofire severity and vegetation change in the Cascade Range, Oregon, USA

    NASA Astrophysics Data System (ADS)

    Minckley, Thomas A.; Long, Colin J.

    2016-03-01

    Paleoecological research has expanded our knowledge of the relationships between climate, fire and vegetation. Fire can be a significant driver of forest composition and structure change, but identifying and quantifying fire regimes has been elusive. Using high-resolution charcoal analysis and pollen analysis we reconstructed a 13,200-year-old fire and vegetation history from Breitenbush Lake, Oregon, located in the central Cascade Range, USA. Our objective was to examine if fire occurrence and severity may have been a driver of Holocene forest-composition change. The data from this study suggests that while fire can create opportunities for successional process to occur, fire events were not significant catalysts for forest change. Instead, most major transitions at Breitenbush Lake occurred during prolonged fire-free intervals. Our results reinforce the view that climate is the major control of vegetation composition change in the Cascade Range.

  9. Slab Contributions to Cascades Magmas: Constraints from Central Oregon and Northern California

    NASA Astrophysics Data System (ADS)

    Ruscitto, D. M.; Wallace, P. J.

    2010-12-01

    The Cascades arc is the global end member, warm-slab subduction zone (slab thermal parameter ~200 km) resulting from the slow subduction of young oceanic crust beneath North America. Significant slab dehydration is predicted to occur beneath the forearc (< 45 km depth) based on geophysical evidence and thermodynamic constraints coupled with geodynamic models. Loss of significant volatiles (i.e., H2O, S, Cl) beneath the forearc should result in reduced slab contributions to the mantle wedge, consistent with muted subduction-related signatures in calc-alkaline magmas and low magmatic volatile flux estimates from Oregon and Washington compared to other arcs (e.g., Marianas, Kamchatka, Central America). Despite reduced slab-derived inputs, olivine-hosted melt inclusions in the Central Oregon Cascades display elevated volatile contents in melts erupted along the volcanic front compared to those erupted towards the back-arc. In contrast to Oregon and Southern Washington, primitive magmas from the southern part of the arc (e.g., Mt. Shasta) contain some of the highest H2O contents reported. We used olivine-hosted melt inclusion data from Central Oregon and Northern California to estimate the input of volatiles and trace elements from the slab to the mantle wedge beneath the Cascades. Inclusions from near Mt. Shasta in Northern California represent two types of hydrous primitive melts that have equilibrated with a refractory mantle: high-Mg andesite (HMA) and primitive basaltic andesite (PBA) with 3.3 and 5.6 wt.% H2Omax, respectively. Three distinct primitive melt compositions were calculated using inclusions from Central Oregon: calc-alkaline basalt, Sr-rich basalt, and depleted basaltic andesite (1.6, 2.3, and 3.0 wt.% H2Omax, respectively). We calculated extents of mantle melting for each primitive magma composition using Ti, Y, Gd, Dy, Er, and Yb contents (i.e., assuming negligible contributions from the slab). Based on these calculations, we infer Central Oregon and

  10. Evolution of silicic volcanism following the transition to the modern High Cascades, Deschutes Formation, central Oregon

    NASA Astrophysics Data System (ADS)

    Eungard, D.; Kent, A. J.; Grunder, A.

    2012-12-01

    An understanding of the controls on silicic volcanism within convergent margin environments has important implications for crustal growth and modification during subduction. In the central Oregon Cascade range silicic volcanism has generally decreased in both size and frequency of eruptions over the last ~40 million years. Despite the general decrease, an increased abundance of silicic volcanism is observed from 5-8 Ma, corresponding to the transition from the Western Cascades to High Cascades volcanic regime. In order to constrain the processes that lead to formation of silicic magmas at this time we have studied the petrogenesis of two extensive and well-preserved ash-flow tuffs from this time period hosted within the Deschutes Formation of central Oregon. The Lower Bridge (LBT) and McKenzie Canyon Tuffs (MCT) produced ~5 km3 each of magma of predominantly rhyolitic and basaltic andesite composition. Both include large volumes of rhyolite, although the MCT also contains a significant mafic component. Both tuffs are normally zoned with mafic ejecta concentrated upsection. Geothermometry also shows that the rhyolitic component in both magmas was relatively hot (~830 degrees C). Distribution, thickness, welding facies, and paleoflow indications from imbricated pumice suggest that both eruptions derive from the same source region, probably near the present day Three Sisters complex, and were likely produced from the same magmatic system. Variations in major and trace element geochemistry also indicate that the magmas involved in both eruptions were produced through fractionation and mixing of mantle melts with a silicic partial melt derived from melting of mafic crust. Production of these voluminous silicic magmas required both crystal fractionation of incoming melts from the mantle, together with mixing with silicic partial melts derived from relatively hot mafic crust. This observation provides a potential explanation for the decrease in silicic melt production

  11. Sediment Dynamics in the Upper McKenzie River Basin, Central Oregon Cascade Range

    NASA Astrophysics Data System (ADS)

    Stallman, J. D.; Bowers, R. J.; Cabrera, N. C.; Real de Asua, R.; Wooster, J. K.

    2005-12-01

    Reference and current sediment budgets were developed to evaluate the extent to which hydroelectric dams alter sediment dynamics in the upper McKenzie River basin of central Oregon. The 647 km2 study area straddles the western boundary of the High Cascades graben separating the High Cascades and Western Cascades geologic terrains. Permeable Quaternary volcanics forming the low-gradient High Cascades plateau promote surface hydrologic disconnection, nearly constant discharge controlled by groundwater emergence, and low sediment yield. In contrast, deeply weathered Tertiary volcanics, rugged topography, and a dense network of steep channels in the Western Cascades terrain promote peaked storm responses and high sediment yield by deep-seated mass movement, debris slides, and debris flows. Three independent estimates of sediment yield (application of published surface process rates, extrapolation of regional suspended load and bedload flux rates, and extrapolation of reservoir sedimentation rates) illustrate the dominant role of geologic terrains in determining the longitudinal pattern of sediment supply to the McKenzie River. Average reference yields from High Cascades and Western Cascades sources were 9 t km-2y-1 and 200 t km-2y-1, respectively. Downstream of Trail Bridge Dam, High Cascades sources (241 km2) account for 12% of the total reference yield, while Western Cascades sources (67 km2) account for 62%. Estimates of current sediment yield illustrate the offsetting effects of reservoir sediment trapping and accelerated yield related to forest management. Average current yields from High Cascades and Western Cascades sources were 17 t km-2y-1 and 300 t km-2y-1, respectively. Current yield to the McKenzie River arm of Trail Bridge Reservoir (42 km2 sourced in High Cascades terrain) was 17 t km-2y-1, while current yield to Smith Reservoir (48 km2 sourced in Western Cascades terrain) was 251 t km-2y-1. The relation between hydroelectric project effects and forest

  12. INTEGRATING DETAILED SOIL SURVEY AND LANDTYPE MAPPING FOR WATERSHED SCALE ASSESSMENTS IN THE WESTERN OREGON CASCADE MOUNTAINS

    EPA Science Inventory

    Although the Western Oregon Cascades is one of the most intensely managed and economically important forest regions in North America, a lack of detailed soil information has hindered watershed-scale assessments of forest productivity, water supply, sensitive wildlife species, and...

  13. Seismic studies at the Mt. Hood Volcano, northern Cascade Range, Oregon

    USGS Publications Warehouse

    Green, Susan Molly; Weaver, Craig S.; Iyer, Hariharaiyer Mahadeva

    1979-01-01

    A sixteen station telemetered seismic network was established in the Mt. Hood, Oregon area to monitor local seismicity and to study crustal and upper mantle structure. The network was in operation 13 months, and recorded 10 local earthquakes, 25 regional events, and 300 teleseisms. A series of construction blasts were recorded and used to define an average upper crustal velocity of 5.4 km/s in the region. All local earthquakes occurred beneath Mt. Hood at shallow depths and roughly define a zone striking north-northwest beneath the mountain. The largest earthquake was a magnitude 3.4 event which had a strike-slip focal mechanism. The other events had magnitudes (ML) less than 2.0. P-wave travel time residuals from teleseismic events show a 0.5 second decrease in travel time from east to west across the Cascade Range. No travel time anomalies are associated directly with Mt. Hood.

  14. Magmatic activity beneath the quiescent Three Sisters volcanic center, central Oregon Cascade Range, USA

    USGS Publications Warehouse

    Wicks, Charles W., Jr.; Dzurisin, Daniel; Ingebritsen, Steven E.; Thatcher, Wayne R.; Lu, Zhong; Iverson, Justin

    2002-01-01

    Images from satellite interferometric synthetic aperture radar (InSAR) reveal uplift of a broad ???10 km by 20 km area in the Three Sisters volcanic center of the central Oregon Cascade Range, ???130 km south of Mt. St. Helens. The last eruption in the volcanic center occurred ???1500 years ago. Multiple satellite images from 1992 through 2000 indicate that most if not all of ???100 mm of observed uplift occurred between September 1998 and October 2000. Geochemical (water chemistry) anomalies, first noted during 1990, coincide with the area of uplift and suggest the existence of a crustal magma reservoir prior to the uplift. We interpret the uplift as inflation caused by an ongoing episode of magma intrusion at a depth of ???6.5 km.

  15. Stratigraphic development and hydrothermal activity in the central western Cascade Range, Oregon

    SciTech Connect

    Cummings, M.L.; Bull, M.K. ); Pollock, J.M. ); Thompson, G.D. )

    1990-11-10

    Two volcanic sequences bounded by erosional unconformities compose the stratigraphy of the North Santiam mining district, Western Cascade Range, Oregon. Diorite, grandodiorite, and leucocratic quartz porphyry dikes, stocks, and sills intrude the breccias, flows, and tuffs of a volcanic center in the older Sardine Formation. Tourmaline-bearing breccia pipes are associated with the porphyritic granodiorite intrusions. An erosional unconformity separates the Sardine Formation from the overlying Elk Lake formation. The alteration patterns in the two formations are consistent with the development of hydrothermal systems during the eruption of each formation. However, the development of the two hydrothermal systems is separated by a period of erosion of the older volcanic pile. Early formation of mineralization that resembles porphyry copper deposits occurred within the Sardine Formation, and later, after eruption of the Elk Lake formation, epithermal veins and alteration developed along faults, fractures, and the margins of dikes in the Sardine Formation.

  16. Discharge rates of fluid and heat by thermal springs of the Cascade Range, Washington, Oregon, and northern California

    SciTech Connect

    Mariner, R.H.; Presser, T.S.; Evans, W.C.; Pringle, M.K.W. )

    1990-11-10

    Fluid and heat discharge rates of thermal springs of the Cascade Range have been determined using the chloride inventory method. Discharge rates of thermal spring groups range from 1 to 120 l/s. Most of the fluid (50%) and heat (61%) are discharged from two hot spring groups in northern Oregon. Total discharge from thermal springs in the Cascade Range of California, Oregon, and Washington is about 340 l/s, which corresponds to about 8.2 {times} 10{sup 4} kJ/s of heat. This does not include hot springs developed on the flanks of Mount St. Helens after the 1980 eruption. The Cascade Range consists of geologically and tectonically distinct segments; rates of convective heat discharge by the thermal springs in these segments correlate with volcanic rock extrusion rates for the last 2 m.y. In Oregon and Washington, many streams without known thermal or mineral springs in their drainage basins also were sampled for chloride and sodium to detect chemical anomalies that might be associated with previously unknown thermal or mineral springs were identified in the streams of the Cascade Range.

  17. Discharge rates of fluid and heat by thermal springs of the Cascade Range, Washington, Oregon, and northern California

    USGS Publications Warehouse

    Mariner, R.H.; Presser, T.S.; Evans, William C.; Pringle, M.K.W.

    1990-01-01

    Fluid and heat discharge rates of thermal springs of the Cascade Range have been determined using the chloride inventory method. Discharge rates of thermal spring groups range from 1 to 120 L s−1. Most of the fluid (50%) and heat (61%) are discharged from two hot spring groups in northern Oregon. Total discharge from thermal springs in the Cascade Range of California, Oregon, and Washington is about 340 Ls−1, which corresponds to about 8.2×104 kJ s−1 of heat. This does not include hot springs developed on the flanks of Mount St. Helens after the 1980 eruption. The Cascade Range consists of geologically and technically distinct segments; rates of convective heat discharge by the thermal springs in these segments correlate with volcanic rock extrusion rates for the last 2 m. y. In Oregon and Washington, many streams without known thermal or mineral springs in their drainage basins also were sampled for chloride and sodium to detect chemical anomalies that might be associated with previously unknown thermal or mineral waters. Only three chloride anomalies not associated with known thermal or mineral springs were identified in the streams of the Cascade Range.

  18. Extension and Explosivity during an Eccentric Era of the Early Oregon High Cascades

    NASA Astrophysics Data System (ADS)

    Pitcher, B. W.; Kent, A. J.; Grunder, A.; Duncan, R. A.; Eungard, D. W.

    2015-12-01

    One of the most profound changes that the Cascade arc experienced since its inception ~40 Ma, was an eastward shift in volcanic activity starting at ~7.5 Ma, which initiated the modern High Cascades. The infant stages of this arc are exceptionally well preserved within the Deschutes Fm. (~7.4 - 4.0 Ma) of Central Oregon. In stark contrast to the effusive andesitic eruptions that dominated ancestral Cascade volcanism for the preceding 10 million years, the Deschutes Fm. contains over 120 (uncorrelated) tephra fall units and 130 ignimbrite units, indicating an unusually explosive period of volcanism. Conservative estimates of the cumulative volume for 14 regionally extensive ignimbrites is greater than 80 km3. Furthermore, 40Ar-39Ar dating of plagioclase from 7 ignimbrites indicate that this large volume was erupted in less than 1 million years (6.24 ±0.07 to 5.44 ±0.04 Ma). Glass compositions of pumice (n=718) range from 54 to 76 wt. % SiO2. Most ignimbrites contain multiple pumice populations, including banded pumice, which can span nearly 20 wt. % SiO2, indicating involvement of multiple magma types. Two ignimbrites have a compositional gap between 62 and 68 wt. % SiO2, possibly suggesting mingling of a mafic magma with a silicic one derived from partial crustal melting. Trace element (e.g. Nb, Ce, Th) compositions of rhyolitic pumice differ between northern- and southern-sourced ignimbrites, which may be indicative of disparate crustal sources of partial melts (i.e. Siletzia in the North). In addition, Deschutes Fm. rocks are enriched in FeO* and Zr/Sr compared to Quaternary Cascades, and are more similar to High Lava Plains. These trends and the absence of amphibole within the formation suggests hotter and drier magmatic conditions. We suggest that regional extension contributed to increased basaltic flux, leading to anatexis of previously un-melted crust beneath the new arc axis, thereby producing large volumes of silicic magma during this short explosive

  19. Subsurface Thermal and Hydrological Changes Between Forest and Clear-cut Sites in the Oregon Cascades

    NASA Astrophysics Data System (ADS)

    Davis, M. G.; Waschmann, R. S.; Harris, R. N.; Chapman, D. S.

    2010-12-01

    The Cascades of the US Pacific Northwest are a climatically sensitive area. Projections of continued winter warming in this area are expected to induce a switch from a snow-dominated to a rain-dominated winter precipitation regime with a likely impact on subsurface thermal and hydrological regimes. Such changes to the ecosystem may also be linked to changes in land cover, resulting in amplified subsurface temperatures and changing the timing and availability of subsurface water. To monitor changing climatic conditions in this region, the Environmental Protection Agency established pairs of meteorological stations over the Santiam Pass, Cascades Mountains, Oregon, USA, at 5 locations spanning elevations between 500 to 1200 m in the late 1990s. Each location comprises two separate meteorological towers; one under the old-growth coniferous forest canopy and the other in a near by opening or clear-cut. One purpose of the paired stations is to understand the influence of the forest canopy and the developing clear-cut vegetation on the seasonal and annual soil moisture and temperature at each station. We report a comparison of observations between paired stations and a comparison between observations and a land surface model. Preliminary results indicate that open areas have higher air and soil temperatures and receive greater amounts of precipitation and incoming radiation. These conditions are contrasted with the muted conditions under the forest canopy. The results have implications for understanding surface energy exchanges, their impact on the subsurface thermal and hydrological regimes, and possible feedbacks to the climate system as a function of time, space and land cover.

  20. Northeast Oregon Hatchery Project, Conceptual Design Report, Final Report.

    SciTech Connect

    Watson, Montgomery

    1995-03-01

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  1. A Rhizocarpon geographicum growth curve for the Cascade Range of Washington and northern Oregon, usa

    NASA Astrophysics Data System (ADS)

    O'Neal, Michael A.; Schoenenberger, Katherine R.

    2003-09-01

    Lichen thallus measurements from 22 surfaces of known age on Mount Baker, Mount Hood, and Mount Rainier are used to construct a regional Rhizocarpon geographicum growth curve for the Cascade Range of Washington and northern Oregon. Growth rates determined by measuring the largest thallus diameters on the same surfaces at Mount Rainier in 1976 and 2002 are used for comparison with lichenometric data from Mount Baker and Mount Hood. Similar lichen thallus diameter vs age relationships identified in the data from the three mountains suggest the presence of uniform growth rates over the 400-km range. A regional growth curve developed during our study shows three growth phases of successively slower growth: a rapid phase from 8 to 20 yr, a linear phase from 20 to 145 yr, and a slow phase of unknown duration beyond ca. 145 yr. Uncertainty in lichen growth rates beyond 145 yr limits projection of the curve beyond that age; however, the age range of the constrained growth curve covers an important period of recent climate variability. When applied in appropriate settings, our growth curve can be used to determine numeric ages to ±10 yr for surfaces between 20 and 145 years old in areas where other techniques are not applicable or do not provide unique or well-constrained ages.

  2. A comparison of hydrology and channel hydraulics in headwater streams of the Central Oregon Cascades

    NASA Astrophysics Data System (ADS)

    Hempel, L. A.; Grant, G.; Lewis, S.

    2013-12-01

    Streams with distinctly different flow regimes can be found within close proximity of each other in the Central Oregon Cascades due to the unique hydrogeology of the region. Spring-fed streams with stable discharge regimes tend to have rectangular cross-sections, uniform grain sizes, and frequent channel-spanning wood. In contrast, flashier surface-runoff channels tend to have more variable cross-sections, a wider grain-size distribution, and woody debris accumulations along channel margins. To examine differences in channel hydraulics, we collected high-resolution 3-D maps of 12 channel reaches from tributaries of the McKenzie and Metolius Rivers, OR. Stream channel maps were then used to run a 2-D channel stability model (MD_SWMS). We also compared stream hydrology using 10+ years of stream gage data. We expect bed particles are mobilized more frequently in spring-fed systems, but the opportunity for channel form development-- which occurs when sediment is mobile and when flow reaches or exceeds the active channel flow--is higher in surface-runoff channels. Therefore, each channel-type is characterized by a unique set of hydraulic processes that lead to observed differences in channel form.

  3. Forest stand age and the occurrence of chanterelle (Cantharellus) species in Oregon's central Cascade Mountains.

    PubMed

    Dunham, Susie M; O'Dell, Thomas E; Molina, Randy

    2006-12-01

    We describe watershed-scale habitat associations of three Cantharellus species with respect to stand age. During the 1998 autumn fruiting season we collected chanterelle sporocarps from 18 forest stands in and adjacent to the H.J. Andrews experimental forest in the central Cascade Mountains of Oregon. Sampled stands represented two age categories: old growth ( approximately 350+ y) and 40-60-y-old second growth naturally regenerated from clear-cut harvest. Old growth and second growth stands were spatially paired to reduce the chance of spurious habitat relationships caused by unmeasured correlated variables. We found stand age to be a good predictor of the distribution of C. subalbidus and C. formosus, but only marginally useful for predicting the occurrence of C. cascadensis. The odds that a randomly located chanterelle sporocarp will be C. subalbidus, compared to other chanterelles, are 3-23.5 times higher in old growth than in second growth. Alternatively, there is only a 4-38% chance that a randomly located sporocarp will be C. formosus in old growth. C. cascadensis was found to be uncommon throughout the study area and showed no significant habitat associations. The abundance of C. cascadensis increased substantially with decreasing elevation indicating that landscape features other than stand age may be more useful in predicting its occurrence. PMID:17123812

  4. Measuring forest landscape patterns in the Cascade Range of Oregon, USA

    NASA Technical Reports Server (NTRS)

    Ripple, William J.; Bradshaw, G. A.; Spies, Thomas A.

    1995-01-01

    This paper describes the use of a set of spatial statistics to quantify the landscape pattern caused by the patchwork of clearcuts made over a 15-year period in the western Cascades of Oregon. Fifteen areas were selected at random to represent a diversity of landscape fragmentation patterns. Managed forest stands (patches) were digitized and analyzed to produce both tabular and mapped information describing patch size, shape, abundance and spacing, and matrix characteristics of a given area. In addition, a GIS fragmentation index was developed which was found to be sensitive to patch abundance and to the spatial distribution of patches. Use of the GIS-derived index provides an automated method of determining the level of forest fragmentation and can be used to facilitate spatial analysis of the landscape for later coordination with field and remotely sensed data. A comparison of the spatial statistics calculated for the two years indicates an increase in forest fragmentation as characterized by an increase in mean patch abundance and a decrease in interpatch distance, amount of interior natural forest habitat, and the GIS fragmentation index. Such statistics capable of quantifying patch shape and spatial distribution may prove important in the evaluation of the changing character of interior and edge habitats for wildlife.

  5. Composition, complexity, and tree mortality in riparian forests in the central Western Cascades of Oregon

    USGS Publications Warehouse

    Acker, Steve A.; Gregory, S.V.; Lienkaemper, G.; McKee, W.A.; Swanson, F.J.; Miller, S.D.

    2003-01-01

    Riparian forests contribute to the diversity and function of both terrestrial and aquatic ecosystems. To assess some of these contributions, we compared tree composition, stand complexity, and temporal patterns of tree mortality on permanent plots in seven mature and old-growth stands representing upland forests and forests along low- and mid-order streams in the Western Cascade Range of Oregon. We also assessed recruitment of large wood into stream channels due to tree mortality, both by direct measurement and by estimation from tree mortality and location data. Stands differed in composition due to both stream order and successional stage. Stands on mid-order streams had high abundance of hardwood trees and/or Thuja plicata. Stand complexity (variability in tree diameters, tree life-form diversity, and tree species diversity), was high in stands on mid-order streams and in the upland, old-growth stand. Tree mortality was exceptionally high in six of the seven stands in 1996, the year in which the largest flood during the study occurred. However, only in the one stand on an unconstrained reach of a mid-order stream was mortality primarily due to flooding. Estimated recruitment of wood was much higher from the stand on the unconstrained reach than from the other stands on mid-order streams, suggesting that unconstrained reaches may be important for efforts to maintain or restore large wood in streams.

  6. Paleomagnetic rotations and the Cenozoic tectonics of the Cascade Arc, Washington, Oregon, and California

    SciTech Connect

    Wells, R.E. )

    1990-11-10

    Paleomagnetic results from Cenozoic (62-12 Ma) volcanic rocks of the Cascade arc and adjacent indicate that moderate to large clockwise rotations are an important component of the tectonic history of the arc. Two mechanisms of rotation are suggested by the regional pattern of paleomagnetic rotations. The progressive increase in rotation toward the coast in arc and forearc rocks results from distributed dextral shear, which is likely driven by oblique subduction of oceanic plates to the west. Simple shear rotation is accommodated in the upper crust by strike-slip faulting. The right-lateral Mount St. Helens seismic zone may be an active manifestation of this process. Dextral shear probably obscures a subequal contribution to arc and forearc rotation that is driven by intraarc or backarc extension. This rotation is suggested by the average southward increase in continental margin rotations into the region outboard of the Basin and Range. The southward increase in rotation parallels a change in the arc tectonic regime from largely compressional in northern Washington to extensional in Oregon. Concomitant with this change is a southward increase in the volume of eruptive rocks and the number of basaltic vents in the arc. A progressive eastward shift of the arc volcanic front with time in the rotated arc terrane is the result of the westward pivoting of the arc block in front of a zone of extension since Eocene time. Westward migration of bimodal Basin and Range volcanism since at least 16 Ma is tracking westward rotation of the frontal arc block and growth of the Basin and Range in its wake.

  7. Climate change impacts on maritime mountain snowpack in the Oregon Cascades

    NASA Astrophysics Data System (ADS)

    Sproles, E. A.; Nolin, A. W.; Rittger, K.; Painter, T. H.

    2013-07-01

    This study investigates the effect of projected temperature increases on maritime mountain snowpack in the McKenzie River Basin (MRB; 3041 km2) in the Cascades Mountains of Oregon, USA. We simulated the spatial distribution of snow water equivalent (SWE) in the MRB for the period of 1989-2009 with SnowModel, a spatially-distributed, process-based model (Liston and Elder, 2006b). Simulations were evaluated using point-based measurements of SWE, precipitation, and temperature that showed Nash-Sutcliffe Efficiency coefficients of 0.83, 0.97, and 0.80, respectively. Spatial accuracy was shown to be 82% using snow cover extent from the Landsat Thematic Mapper. The validated model then evaluated the inter- and intra-year sensitivity of basin wide snowpack to projected temperature increases (2 °C) and variability in precipitation (±10%). Results show that a 2 °C increase in temperature would shift the average date of peak snowpack 12 days earlier and decrease basin-wide volumetric snow water storage by 56%. Snowpack between the elevations of 1000 and 2000 m is the most sensitive to increases in temperature. Upper elevations were also affected, but to a lesser degree. Temperature increases are the primary driver of diminished snowpack accumulation, however variability in precipitation produce discernible changes in the timing and volumetric storage of snowpack. The results of this study are regionally relevant as melt water from the MRB's snowpack provides critical water supply for agriculture, ecosystems, and municipalities throughout the region especially in summer when water demand is high. While this research focused on one watershed, it serves as a case study examining the effects of climate change on maritime snow, which comprises 10% of the Earth's seasonal snow cover.

  8. Differential Effects of Wildfire and Forest Harvest on Snow Hydrology in the Oregon Cascades

    NASA Astrophysics Data System (ADS)

    Nolin, A. W.; Gleason, K. E.; Roth, T.; Cooper, M. G.

    2014-12-01

    Snow hydrology, climate, and forest ecosystems are intricately connected, with snow serving as a key moisture source for forests while forests fundamentally affect snow accumulation and ablation. These connections have important implications for western US water resources and forest management. Forests reduce snow accumulation via canopy interception while ablation is affected via changes in energy balance. We contrast the snow hydrology of undisturbed forests in the Oregon Cascades with those affected by wildfire and forest harvest. When the forest canopy is removed by wildfire or forest harvest it increases total snow accumulation and increases snowmelt rates. After a high-severity wildfire, canopy removal increases light transmission to the snow. The charred standing trees shed burned debris onto the snowpack surface decreasing snow albedo. The net result for the snowpack is much higher absorbed shortwave radiation and earlier/faster melt. Our work shows that the albedo effect can persist for several years after the fire. Forest harvest also reduces the forest canopy but unlike the post-wildfire environment, forest litter decreases. Our measurements and modeling results show that the effects of forest harvest on snow vary with elevation. At our lower-elevation warmer sites, snow persists longer in the open areas than in the forest while at the higher elevation colder sites, snow persists longer in the forest. In addition to our snow hydrology results, we present preliminary hydrologic modeling showing how these differences in snow accumulation and melt rates influence streamflow in watersheds dominated by surface runoff and in those dominated by groundwater flow.

  9. Field and paleomagnetic characterization of lithic and scoriaceous breccias at Pleistocene Broken Top volcano, Oregon Cascades

    NASA Astrophysics Data System (ADS)

    Grubensky, Michael J.; Smith, Gary A.; Geissman, John W.

    1998-07-01

    Cirque-wall exposures of cone-forming deposits of Pleistocene Broken Top volcano, Oregon Cascade Range, reveal that the volcano is composed of unconformity-bounded constructional units of coherent lava (lava-flow cores) and breccia. Coarse-grained autoclastic breccias are found above and below lava-flow cores and may extend downslope from coherent lava outcrops where they may or may not be associated with thin lava stringers. Mantle-bedded scoria-fall breccias are recognized by generally good sorting, mantle bedding, and presence of aerodynamically shaped bombs. These breccias vary considerably in thermal oxidation coloration (black, red, orange, purple). Many breccia layers are unsorted mixtures of scoria and lithic (nonvesicular) fragments that grade laterally to unambiguous autoclastic breccia or lava-flow cores. These layers are interpreted as hybrid pyroclastic-autoclastic deposits produced by incorporation of falling or fallen tephra into advancing lava-flow fronts. This latter breccia type is common at Broken Top and offers particular challenges for clast or deposit classification. Progressive thermal demagnetization results for selected examples of different breccia types show that most scoria-fall and autoclastic breccias are emplaced at elevated temperatures (averaging 100-300°C). Clasts within single deposits record different emplacement temperatures ranging, in some cases, from 100 to over 580°C indicating a lack of thermal equilibration within deposits. Magnetization directions for single breccia deposits are more dispersed than data typically reported for lava flows. Settling and rotation of clasts after cooling or incorporation of colder clasts that are not significantly reheated probably accounts for the relatively high dispersion and suggests that paleomagnetic studies demanding low within-site dispersion (e.g., for determining paleomagnetic poles or evaluating tectonic rotation) should avoid volcanic breccias.

  10. Oregon Pre-Engineering Learning Outcomes Study: Final Report

    ERIC Educational Resources Information Center

    Conley, David T.; Langan, Holly; Veach, Darya; Farkas, Virginia

    2007-01-01

    The Oregon Pre-engineering Learning Outcomes Project was conducted by the Educational Policy Improvement Center (EPIC) with grant funding from the Engineering and Technology Industry Council (ETIC). The study sought to improve student preparation and success in pre-engineering programs through the development of the Oregon Pre-engineering Learning…

  11. Ammonia-Oxidizing Bacteria along Meadow-to-Forest Transects in the Oregon Cascade Mountains†

    PubMed Central

    Mintie, A. T.; Heichen, R. S.; Cromack, Jr., K.; Myrold, D. D.; Bottomley, P. J.

    2003-01-01

    Although nitrification has been well studied in coniferous forests of Western North America, communities of NH3-oxidizing bacteria in these forests have not been characterized. Studies were conducted along meadow-to-forest transects at two sites (Lookout and Carpenter) in the H. J. Andrews Experimental Forest, located in the Cascade Mountains of Oregon. Soil samples taken at 10- or 20-m intervals along the transects showed that several soil properties, including net nitrogen mineralization and nitrification potential rates changed significantly between vegetation zones. Nonetheless, terminal restriction fragment length polymorphism (T-RFLP) analysis of the PCR-amplified NH3 monooxygenase subunit A gene (amoA) showed the same DNA fragments (TaqI [283 bp], CfoI [66 bp], and AluI [392 bp]) to dominate ≥45 of 47 soil samples recovered from both sites. Two fragments (491-bp AluI [AluI491] and CfoI135) were found more frequently in meadow and transition zone soil samples than in forest samples at both sites. At the Lookout site the combination AluI491-CfoI135 was found primarily in meadow samples expressing the highest N mineralization rates. Four unique amoA sequences were identified among 15 isolates recovered into pure culture from various transect locations. Six isolates possessed the most common T-RFLP amoA fingerprint of the soil samples (TaqI283-AluI392-CfoI66), and their amoA sequences shared 99.8% similarity with a cultured species, Nitrosospira sp. strain Ka4 (cluster 4). The other three amoA sequences were most similar to sequences of Nitrosospira sp. strain Nsp1 and Nitrosospira briensis (cluster 3). 16S ribosomal DNA sequence analysis confirmed the affiliation of these isolates with Nitrosospira clusters 3 and 4. Two amoA clone sequences matched T-RFLP fingerprints found in soil, but they were not found among the isolates. PMID:12788707

  12. Geology and geothermal resources of the Santiam Pass area of the Oregon Cascade Range, Deschutes, Jefferson and Linn Counties, Oregon

    SciTech Connect

    Hill, B.E.

    1992-10-01

    This open-file report presents the results of the Santiam Pass drilling program. The first phase of this program was to compile all available geological, geophysical and geothermal data for the Santiam Pass area and select a drill site on the basis of these data (see Priest and others, 1987a), A summary of the drilling operations and costs associated with the project are presented in chapter 1 by Hill and Benoit. An Overview of the geology of the Santiam Pass area is presented by Hill and Priest in chapter 2. Geologic mapping and isotopic age determinations in the Santiam Pass-Mount Jefferson area completed since 1987 are summarized in chapter 2. One of the more important conclusions reached in chapter 2 is that a minimum of 2 km vertical displacement has occurred in the High Cascade graben in the Santiam Pass area. The petrology of the Santiam Pass drill core is presented by Hill in chapter 3. Most of the major volcanic units in the core have been analyzed for major, minor, and trace element abundances and have been studied petrographically. Three K-Ar ages are interpreted in conjunction with the magnetostratigraphy of the core to show that the oldest rocks in the core are approximately 1.8 Ma. Geothermal and geophysical data collected from the Santiam Pass well are presented by Blackwell in chapter 4. The Santiam Pass well failed to penetrate beneath the zone of lateral groundwater flow associated with highly permeable Quaternary volcanic rocks. Calculated geothermal gradients range from about 50[degree]C/km at depth 700-900 m, to roughly 110[degree]C/km from 900 m to the bottom of the well at 929 m. Heat-flow values for the bottom part of the hole bracket the regional average for the High Cascades. Blackwell concludes that heat flow along the High Cascades axis is equal to or higher than along the western edge of the High Cascades.

  13. PERSISTENCE AND FATE OF POLYNUCLEAR AROMATIC HYDROCARBONS DEPOSITED ON SLASH BURN SITES IN THE CASCADE MOUNTAINS AND COAST RANGE OF OREGON

    EPA Science Inventory

    The persistence of polynuclear aromatic hydrocarbons (PNAH) on slash burn sites and movement of these compounds between compartments of the sites has been investigated in the Cascade Mountains and Coast Range of Oregon. Phenanthrene and fluoranthene were gradually lost from the l...

  14. EFFECTS OF FOREST FERTILIZATION WITH UREA ON MAJOR BIOLOGICAL COMPONENTS OF SMALL CASCADE STREAMS, OREGON

    EPA Science Inventory

    During April, 1976, 1.9 x 10 ha of second growth Douglas fir, located in the Willamette National Forest of Oregon, were fertilized with 224 kg urea-N/ha. Unfertilized buffer strips of 60 and 90m were maintained along all second and third order streams, respectively. Sharp increas...

  15. Response of selected cascade glaciers (Washington, Oregon) to climatic change in the late twentieth century (1980-1995)

    SciTech Connect

    Chatelain, E.E.

    1995-07-01

    Alpine glaciers of the Washington and Oregon Cascade Range are particularly sensitive indicators of climatic change. Recent maximum size of these glaciers has coincided with periods of explosive volanism (Krakatoa, 1883; Katmai, 1912). Minimum size has resulted from periods of prolonged regional drought (1933-39). The proximity of elevated temperatures in the 80`s decade and the colossal 1991-92 eruption of Mt. Pinatubo (Phillippines) provides a unique opportunity to document resultant efforts of both events on the size, thickness, and terminus positions of Cascade glaciers. Present aerial extents of 1994 and compared with USGS aerial surveys predating the Pinatubo eruptions. Climatic records are examined to determine the extent of localized warming during the pre-eruption period (1977-1991), eruption effects (1991-1994), and present (recovery?). The effects of these local climatic variations are evaluated in light of documented changing glacial dimensions. Observed size modifications may also represent response to insulating rockslide cover, glacial surging, or independent climatic effects of El Nino.

  16. Potential impact of lava flows on regional water supplies: case study of central Oregon Cascades volcanism and the Willamette Valley, USA

    NASA Astrophysics Data System (ADS)

    Deligne, Natalia; Cashman, Katharine; Grant, Gordon; Jefferson, Anne

    2013-04-01

    Lava flows are often considered to be natural hazards with localized bimodal impact - they completely destroy everything in their path, but apart from the occasional forest fire, cause little or no damage outside their immediate footprint. However, in certain settings, lava flows can have surprising far reaching impacts with the potential to cause serious problems in distant urban areas. Here we present results from a study of the interaction between lava flows and surface water in the central Oregon Cascades, USA, where we find that lava flows in the High Cascades have the potential to cause considerable water shortages in Eugene, Oregon (Oregon's second largest metropolitan area) and the greater Willamette Valley (home to ~70% of Oregon's population). The High Cascades host a groundwater dominated hydrological regime with water residence times on the order of years. Due to the steady output of groundwater, rivers sourced in the High Cascades are a critical water resource for Oregon, particularly in August and September when it has not rained for several months. One such river, the McKenzie River, is the sole source of drinking water for Eugene, Oregon, and prior to the installation of dams in the 1960s accounted for ~40% of late summer river flow in the Willamette River in Portland, 445 river km downstream of the source of the McKenzie River. The McKenzie River has been dammed at least twice by lava flows during the Holocene; depending the time of year that these eruptions occurred, we project that available water would have decreased by 20% in present-day Eugene, Oregon, for days to weeks at a time. Given the importance of the McKenzie River and its location on the margin of an active volcanic area, we expect that future volcanic eruptions could likewise impact water supplies in Eugene and the greater Willamette Valley. As such, the urban center of Eugene, Oregon, and also the greater Willamette Valley, is vulnerable to the most benign of volcanic hazards, lava

  17. Environmental Compliance Assessment System (ECAS) - Oregon supplement. Final report

    SciTech Connect

    O'Rourke, C.; Gifford, L.A.

    1994-04-01

    In response to the growing number of environmental laws and regulations worldwide, the U.S. Army has adopted an environmental compliance program that identifies compliance problems before they are cited as violations by the U.S. Environmental Protection Agency (USEPA). Beginning in 1985, Major Army Commands (MACOMs) were required to conduct comprehensive environmental assessments at all installations on a 4-year cycle. The installations must also conduct a mid-cycle internal assessment. Because each MACOM was developing a separate assessment system, the Army mandated, through Army Regulation 200-1, one unified Army-wide assessment mechanism. The resulting system combines Federal, Department of Defense (DOD), and Army environmental regulations, along with good management practices and risk management information, into a series of checklists that show legal requirements and specific items or operations to review. Each assessment protocol lists a point of contact to help assessors review the checklist items as effectively as possible. The Environmental Compliance Assessment System (ECAS) manual incorporates existing checklists from USEPA and private industry. The Oregon Supplement was developed to be used in conjunction with the U.S. ECAS manual, using existing Oregon state environmental legislation and regulations as well as suggested management practices.

  18. Subsurface thermal and hydrological changes between forest and clear-cut sites in the Oregon Cascades

    EPA Science Inventory

    The Cascades of the US Pacific Northwest are a climatically sensitive area. Projections of continued winter warming in this area are expected to induce a switch from a snow-dominated to a rain-dominated winter precipitation regime with a likely impact on subsurface thermal and h...

  19. Geology Broadly Predicts Summer Streamflow in Volcanic Terrains: Lessons From the Oregon Cascades

    NASA Astrophysics Data System (ADS)

    Jefferson, A.; Grant, G.; Lewis, S.; Tague, C.

    2004-12-01

    The western slope of the Cascade volcanic arc is comprised of two distinct geologic provinces, both with similar climate and vegetation, making it an excellent place for examining geologic controls on hydrologic variability. Analysis of streamflow from USGS gauges has shown that summer streamflow characteristics are related to the percent of basin area underlain by High Cascade (0-7 Ma) basalt flows and related rocks. Watersheds with High Cascade geology exhibit higher unit streamflows and slower summer recessions than those with Western Cascade (7-40 Ma) geology. Since July 2003, gauging of thirteen 1st to 4th order High Cascade streams in the McKenzie River basin has shown that some High Cascade streams are runoff-dominated, like Western Cascade streams, while others are fed by large volume cold springs, with relatively steady flow. During the summer, these spring-fed streams provide over 80% of the flow to the McKenzie River. In winter months, runoff-dominated streams respond rapidly to rain and rain-on-snow events and become the major water source to the McKenzie River. Spring-fed streams also respond to precipitation events, but show muted and delayed hydrograph peaks. Summer flow behavior and response to individual events varies between springs, even between those that are located less than 1 km from each other. Oxygen isotope analysis suggests that closely spaced springs may have recharge areas differing by over 150 m in average altitude. These springs emanate from lava flow toes or contacts; thus, paleotopography, including buried channel networks, and lava flow characteristics, such as primary and secondary porosity, are also likely to be important determinants of event and seasonal streamflow response. Therefore, geologic differences are useful for predicting streamflow in large basins and over seasonal to interannual timescales, but at the headwater catchment spatial scale, or event time scale, groundwater-fed streams exhibit variability that cannot be

  20. Integrated snow and hydrology modeling for climate change impact assessment in Oregon Cascades

    NASA Astrophysics Data System (ADS)

    Safeeq, M.; Grant, G.; Lewis, S.; Nolin, A. W.; Hempel, L. A.; Cooper, M.; Tague, C.

    2014-12-01

    In the Pacific Northwest (PNW), increasing temperatures are expected to alter the hydrologic regimes of streams by shifting precipitation from snow to rain and forcing earlier snowmelt. How are such changes likely to affect peak flows across the region? Shifts in peak flows have obvious implications for changing flood risk, but are also likely to affect channel morphology, sediment transport, aquatic habitat, and water quality, issues with potentially high economic and environmental cost. Our goal, then, is to rigorously evaluate sensitivity to potential peak flow changes across the PNW. We address this by developing a detailed representation of snowpack and streamflow evolution under varying climate scenarios using a cascade-modeling approach. We have identified paired watersheds located on the east (Metolius River) and west (McKenzie River) sides of the Cascades, representing dry and wet climatic regimes, respectively. The tributaries of these two rivers are comprised of contrasting hydrologic regimes: surface-runoff dominated western cascades and deep-groundwater dominated high-cascades systems. We use a detailed hydro-ecological model (RHESSys) in conjunction with a spatially distributed snowpack evolution model (SnowModel) to characterize the peak flow behavior under present and future climate. We first calibrated and validated the SnowModel using observed temperature, precipitation, snow water equivalent, and manual snow survey data sets. We then employed a multi-objective calibration strategy for RHESSys using the simulated snow accumulation and melt from SnowModel and observed streamflow. The Nash-Sutcliffe Efficiency between observed and simulated streamflow varies between 0.5 in groundwater and 0.71 in surface-runoff dominated systems. The initial results indicate enhanced peak flow under future climate across all basins, but the magnitude of increase varies by the level of snowpack and deep-groundwater contribution in the watershed. Our continuing effort

  1. Change in bedload transport frequency with climate warming in gravel-bed streams of the Oregon Cascades

    NASA Astrophysics Data System (ADS)

    Hempel, L. A.; Grant, G.; Lewis, S.; Safeeq, M.

    2014-12-01

    Previous modeling studies have predicted that high flows in the Oregon Cascades will become larger and shift towards earlier in the winter season with climate warming. The impact of those changes on bedload transport frequency and channel morphology remains unknown, however. We examined changes in the timing and magnitude of bedload transport under modeled flow scenarios to identify which rivers draining the Cascades with different hydrologic regimes are most vulnerable to increased frequency of bedload transport. Such increases in the frequency or magnitude of gravel entrainment might lead to disturbance of fragile salmon or bull trout habitat. We calculated bedload transport rates using field measurements of surface sediment size, channel geometry, and channel slope along 14 reaches that included streams with a range of drainage areas and flow regimes (i.e., spring-fed and surface-runoff dominated). Our findings suggest that both spring-fed and surface-runoff streams are vulnerable to predicted changes in the flow regime, but in different ways. Spring-fed streams, characterized by relatively uniform discharge, will likely experience changes in both the timing and magnitude of transport. Spring-fed streams are poised just above the critical transport threshold for a large portion of the year, therefore small changes in the highest flows may lead to marked changes in transport rates. Transport events in surface-runoff streams, which are already characterized by flashy flows, will likely become larger and more frequent. Changes in the frequency and timing of bedload transport in both spring-fed and surface runoff streams will impact bed stability and texture and should be considered for managing these watersheds in the future.

  2. Volcanic signature of Basin and Range extension on the shrinking Cascade arc, Klamath Falls-Keno area, Oregon

    NASA Astrophysics Data System (ADS)

    Priest, George R.; Hladky, Frank R.; Mertzman, Stanley A.; Murray, Robert B.; Wiley, Thomas J.

    2013-08-01

    geologic mapping of the Klamath Falls-Keno area revealed the complex relationship between subduction, crustal extension, and magmatic composition of the southern Oregon Cascade volcanic arc. Volcanism in the study area at ~7-4 Ma consisted of calc-alkaline basaltic andesite and andesite lava flowing over a relatively flat landscape. Local angular unconformities are evidence that Basin and Range extension began at by at least ~4 Ma and continues today with fault blocks tilting at a long-term rate of ~2°/Ma to 3°/Ma. Minimum NW-SE extension is ~1.5 km over ~28 km (~5%). High-alumina olivine tholeiite (HAOT) or low-K, low-Ti transitional high-alumina olivine tholeiite (LKLT) erupted within and adjacent to the back edge of the calc-alkaline arc as the edge receded westward at a rate of ~10 km/Ma at 2.7-0.45 Ma. The volcanic front migrated east much slower than the back arc migrated west: ~0 km/Ma for 6-0.4 Ma calc-alkaline rocks; ~0.7 km/Ma, if ~6 Ma HAOT-LKLT is included; and ~1 km/Ma, if highly differentiated 17-30 Ma volcanic rocks of the early Western Cascades are included. Declining convergence probably decreased asthenospheric corner flow, decreasing width of calc-alkaline and HAOT-LKLT volcanism and the associated heat flow anomaly, the margins of which focused on Basin and Range extension and leakage of HAOT-LKLT magma to the surface. This declining corner flow combined with steepening slab dip shifted the back arc west. Compensation of extension by volcanic intrusion and extrusion allowed growth of imposing range-front fault scarps only behind the trailing edge of the shrinking arc.

  3. Longer-term effects of selective thinning on carabid beetles and spiders in the Cascade Mountains of southern Oregon

    USGS Publications Warehouse

    Peck, R.; Niwa, C.G.

    2005-01-01

    Within late-successional forests of the Cascade Mountains of southern Oregon, abundances of carabid beetles (Carabidae) and spiders (Araneae) from pitfall traps were compared between stands thinned 16-41 years prior and nearby unthinned stands. Species richness of both taxa were moderate for coniferous forests of this region, with 12 carabid beetle species and >120 spider species collected. No differences in total abundance or species richness were found between stand types for carabid beetles, although abundances of four of the six most common species differed significantly. Pterostichus setosus, the most abundant species collected, was significantly more abundant in unthinned stands, while Omus cazieri, P. lama, and Carabus taedatus were more numerous in thinned stands. In contrast, both total spider abundance and species richness were significantly higher in thinned stands. Hunting spiders within the families Lycosidae and Gnaphosidae, and the funnel web-building Dictynidae were captured more often in thinned stands while sheet web spiders within Linyphiidae and Hahniidae were more abundant in unthinned stands. The forest floor within unthinned stands was structurally more diverse than in thinned stands, but this did not lead to greater overall abundance or diversity of either carabid beetles or spiders.

  4. Summer lowflow deficits after two decades of forest regeneration in the western Cascades, Oregon

    NASA Astrophysics Data System (ADS)

    Perry, T.; Jones, J. A.

    2008-12-01

    This study explored the long-term response of summer water yields to past forest management practices, specifically the conversion of mature and old growth conifer forests to young forest plantations, in seasonally drought-stressed conifer forests of western Oregon. Results were based on long-term (40 to 50-year) paired watershed experiments in the HJ Andrews Forest in the Willamette National Forest and Coyote Creek in the South Umpqua National Forest. In the third decade after 100 percent clearcutting, streamflows were 30 to 80 percent lower in the young forest than the reference (mature and old forest) watershed during August to November. In the third decade after patch-clearcutting, summer streamflows were 20 to 40 percent lower in the cut watershed compared to the control. In the third decade after a 50 percent overstory thin, almost all summer low flows were within 25 percent of the flows at the control watershed. A 12 percent understory thin in a clearcut watershed during the third decade led to a temporary, minor abatement in summer low flow declines, but within five years, summer low flows from the thinned watershed were similar to those from an adjacent, unthinned forest plantation of similar age. Streamflow deficits emerged as early as March or April and persisted into October and November in the warmer, drier site in southern Oregon (Coyote Creek), whereas summer streamflow deficits emerged later and persisted for fewer weeks in the cooler, wetter Andrews Forest. These findings are consistent with previous studies demonstrating (1) increases in water use in certain conifer species relative to others (e.g. Douglas-fir versus pine); (2) higher water use in young (i.e., 10 to 50- yr-old) compared to old (100 to 250-yr-old) stands of many tree species; and (3) decreased interception capacity of young relative to old forest stands associated with loss of canopy epiphytes. Results appear to be robust, despite gaps in data availability, uncertainties associated

  5. Paleomagnetism of Cascade Range Pliocene-Pleistocene lava flows near McKenzie Bridge, Oregon

    NASA Astrophysics Data System (ADS)

    Jaeger, C.; Valentine, M. J.

    2013-05-01

    The purpose of this study is to examine geomagnetic field behavior recorded in a series of Pleistocene lava flows located near McKenzie Bridge, Oregon. Twenty-nine sites, each consisting of at least ten samples from an individual lava flow, were collected during July of 2011 and 2012. Alternating field (AF) and thermal demagnetization studies reveal twelve normal, four reversed, and nine possible transitional polarities with paleolatitudes less than 60°. Samples from five sites did provided no reliable mean directions due to significant within-site scatter. Out of the twelve normal polarity sites, ten have virtual geomagnetic poles (VGPs) spread across Russia, and two in the Norwegian Sea. VGPs for three of the transitional samples are located in two of the southern hemisphere patches proposed by Hoffman (1992). Thermal demagnetization studies indicate the bulk of the magnetic signal is held in low titanium magnetite. Polished sections are being prepared for optical examination to confirm the magnetic mineralogy of the samples.

  6. Comment and response document on the final remedial action plan and site design for stabilization of the inactive Uranium Mill Tailings Site at Lakeview, Oregon

    SciTech Connect

    Not Available

    1991-10-01

    This report contains comments provided by the Oregon Department of Energy and responses to these comments on the final remedial action plan for the inactive uranium mill tailings site at Lakeview, Oregon.

  7. Precipitation-snowmelt timing and snowmelt augmentation of large peak flow events, western Cascades, Oregon

    NASA Astrophysics Data System (ADS)

    Jennings, Keith; Jones, Julia A.

    2015-09-01

    This study tested multiple hydrologic mechanisms to explain snowpack dynamics in extreme rain-on-snow floods, which occur widely in the temperate and polar regions. We examined 26, 10 day large storm events over the period 1992-2012 in the H.J. Andrews Experimental Forest in western Oregon, using statistical analyses (regression, ANOVA, and wavelet coherence) of hourly snowmelt lysimeter, air and dewpoint temperature, wind speed, precipitation, and discharge data. All events involved snowpack outflow, but only seven events had continuous net snowpack outflow, including three of the five top-ranked peak discharge events. Peak discharge was not related to precipitation rate, but it was related to the 10 day sum of precipitation and net snowpack outflow, indicating an increased flood response to continuously melting snowpacks. The two largest peak discharge events in the study had significant wavelet coherence at multiple time scales over several days; a distribution of phase differences between precipitation and net snowpack outflow at the 12-32 h time scale with a sharp peak at π/2 radians; and strongly correlated snowpack outflow among lysimeters representing 42% of basin area. The recipe for an extreme rain-on-snow event includes persistent, slow melt within the snowpack, which appears to produce a near-saturated zone within the snowpack throughout the landscape, such that the snowpack may transmit pressure waves of precipitation directly to streams, and this process is synchronized across the landscape. Further work is needed to understand the internal dynamics of a melting snowpack throughout a snow-covered landscape and its contribution to extreme rain-on-snow floods.

  8. Excess nitrogen in selected thermal and mineral springs of the Cascade Range in northern California, Oregon, and Washington: sedimentary or volcanic in origin?

    NASA Astrophysics Data System (ADS)

    Mariner, R. H.; Evans, W. C.; Presser, T. S.; White, L. D.

    2003-02-01

    Anomalous N 2/Ar values occur in many thermal springs and mineral springs, some volcanic fumaroles, and at least one acid-sulfate spring of the Cascade Range. Our data show that N 2/Ar values are as high as 300 in gas from some of the hot springs, as high as 1650 in gas from some of the mineral springs, and as high as 2400 in gas from the acid-sulfate spring on Mt. Shasta. In contrast, gas discharging from hot springs that contain nitrogen and argon solely of atmospheric origin typically exhibits N 2/Ar values of 40-80, depending on the spring temperature. If the excess nitrogen in the thermal and mineral springs is of sedimentary origin then the geothermal potential of the area must be small, but if the nitrogen is of volcanic origin then the geothermal potential must be very large. End-member excess nitrogen (δ 15N) is +5.3‰ for the thermal waters of the Oregon Cascades but is only about +1‰ for fumaroles on Mt. Hood and the acid-sulfate spring on Mt. Shasta. Dissolved nitrogen concentrations are highest for thermal springs associated with aquifers between 120 and 140°C. Chloride is the major anion in most of the nitrogen-rich springs of the Cascade Range, and N 2/Ar values generally increase as chloride concentrations increase. Chloride and excess nitrogen in the thermal waters of the Oregon Cascades probably originate in an early Tertiary marine formation that has been buried by the late Tertiary and Quaternary lava flows of the High Cascades. The widespread distribution of excess nitrogen that has been generated in low to moderate-temperature sedimentary environments is further proof of the restricted geothermal potential of the Cascade Range.

  9. Relationships between clay mineralogy, hydrothermal metamorphism, and topography in a Western Cascades watershed, Oregon, USA

    NASA Astrophysics Data System (ADS)

    Ambers, Rebecca K. R.

    2001-05-01

    This study investigates variation in clay mineralogy and its relation to hydrothermal metamorphism, hillslope processes, and topography in the western Cascade Mountains. The study area is the drainage basin of Dorena Lake, a medium-sized (686 km 2) watershed located near Cottage Grove, OR. The Bohemia Mining District is on the southeastern rim of the watershed in a hydrothermally metamorphosed region associated with a set of granodiorite plutons. To characterize large-scale patterns of clay mineral distribution within the watershed, suspended sediments were collected from 43 stream locations. Samples of several metamorphosed and unaffected volcanic and volcaniclastic rocks were collected to help clarify metamorphic reaction processes. One active earthflow was also sampled. X-ray diffraction methods were used to determine the mineralogy of the clay-sized (<2 μm) fraction of the samples. Clay mineralogy varies systematically across the watershed, and the three major stream tributaries carry sediment with distinct mineralogical signatures. Discrete minerals include kaolinite, smectite, chlorite, and illite. Interstratified kaolinite-smectite and chlorite-vermiculite (CV) are also present. The active earthflow and unmetamorphosed rock samples primarily contain smectite. In contrast, metamorphosed rock samples are composed of some combination of illite, interstratified illite-smectite, CV, and chlorite. Examination of clay mineral distribution reveals the effects of hydrothermal metamorphism in the mining district on clay mineralogy, hillslope processes, and landscape development. Compared with most of the watershed, the mining district has steeper slopes and higher elevations and lacks smectite almost entirely. Analyses of metamorphosed bedrock units indicate that smectite originally present in the rocks was converted to nonexpandable clay minerals during metamorphism. Induration of bedrock and loss of expandable clays resulted in thin soils and steep topography

  10. Landscape-scale Dynamics of Wood in Stream Networks of the Western Cascades, Oregon

    NASA Astrophysics Data System (ADS)

    Czarnomski, N. M.; Dreher, D. M.; Jones, J. A.; Swanson, F. J.

    2006-12-01

    This study develops a network and patchwork dynamics approach to predict wood in a stream network in order to understand wood dynamics in river networks and address riparian reserve design for managed forest landscapes. We examined the effect of four factors on wood sources and transport: (1) forest harvest, removal of wood from streams, and creation of young forest plantations; (2) roads adjacent to or crossing the stream; (3) debris flows in tributary channels; and (4) capacity of the stream to transport wood by fluvial processes (i.e. floods). Wood volumes and numbers of pieces were surveyed along 25 km of 3^{rd}- through 5^{th}-order stream reaches in summer 2002 in a steep forested basin in western Oregon, and related to land use (forest harvest and roads) and fluvial geomorphic processes (debris flows and floods) recorded over the period 1948- 2002. Overall 20,299 pieces of wood with a total volume of 17,688 m3 were measured (averaging 70 m3 per 100m or 80 pieces per 100 m of stream length). Large wood pieces anchored 85% of accumulations, accounting for only 8% of pieces (1468 pieces), but 66% of wood volume (9818 m3). Wood patterns reflect 50-year legacies of land use practices, especially the conversion of old-growth forest to young forest near the stream, and the construction of roads alongside, or crossing, streams. Controlling for stream order, stream segments with adjacent roads had 56%, stream segments with young forest plantations on one side had 34 to 56%, and stream segments with young forest plantations on both sides had 12% of the wood volume found in stream segments adjacent to mature or old-growth forest (150 to 500 yrs). In channels with low fluvial transport wood depletion was localized adjacent to harvest patches, but wood reductions were extensive in channels with high fluvial transport, or where debris flows have entered the mainstem. The configuration of harvest patches, road networks, and stream networks provide a landscape- scale basis

  11. Lava flows vs. surface water: the geologic battle for the upper McKenzie valley, central Oregon Cascades

    NASA Astrophysics Data System (ADS)

    Deligne, N. I.; Conrey, R. M.; Cashman, K. V.; Grant, G. E.; Amidon, W. H.

    2010-12-01

    Over the past several thousand years, a battle for the upper McKenzie valley in the central Oregon Cascades has raged between, on one side, lava flows from the Sand Mountain volcanic chain and Belknap volcano, and on the other side, surface water fed by prolific springs. The north-south oriented upper McKenzie valley marks the boundary between the (old) western Cascades and the (active) high Cascades. The McKenzie valley hosted a glacier in the Pleistocene. In the Holocene, the valley has become a natural destination and conduit for both lava flows and surface water: it is downhill from volcanic vents, and as it follows the boundary between low (west) and high (east) porosity terrains, groundwater sourced from the high Cascades is forced to emerge in the valley. New surface age exposure dates, in conjunction with 14C dating, indicate that about 3000 years ago multiple lava flows from the Sand Mountain volcanic chain entered the valley from the east. The entire eruptive episode lasted several hundred years and caused massive disturbances to the ancestral McKenzie river. In the early stages of the eruptive episode, a lava flow dammed the McKenzie river, forming Clear Lake (modern source of the McKenzie river) and drowning a Douglas Fir forest. Relic drowned trees suggest that Clear Lake formed in two stages, as trees tops in the deepest part of the lake are consistently rotted off at a depth of 20 meters below water level, while trees in the shallower parts of the lake are rotted off at the surface. This suggests a paleo-lake level 20 meters below modern levels; lake levels are suspected to have reached modern levels later in the course of the eruptive episode when subsequent Sand Mountain lava flows entered the lake. In the years since the Sand Mountain eruptive episode, the McKenzie river re-established itself by adopting a lava channel. Considerable water also flows through the lava flows, emerging as springs along the river channel. The river also hosts two

  12. Stratigraphic evolution of the Cascade back arc, northern Klamath County, Oregon

    NASA Astrophysics Data System (ADS)

    Cummings, M. L.

    2012-12-01

    Stratigraphy in the back arc of the Cascade Range between 42° 37' 30" N and 43° 22' 30" N includes volcanic and volcaniclastic sedimentary rocks deposited during the late Miocene to Pleistocene. Five stages of landscape evolution are identified within the 85 km-long study area. During the late Miocene, the first stage of landscape evolution was characterized by widespread eruption of phreatomagmatic basaltic tuff cones, some with late stage lava flows partially filling craters. These basaltic tuff deposits interfinger with lacustrine and sedimentary rocks and olivine basalt (n=1, 49.26 wt % SiO2, 1.460 wt % TiO2, 0.42 wt % K2O, 151 ppm Cr) to basaltic andesite (n=1, 56.13 wt % SiO2, 4.584 wt % TiO2, 0.83 wt % K2O, 25 ppm Cr) lava flows. Dacitic pyroclastic flows are also present. Erosion followed this stage. During the second stage, porphyritic (plagioclase and olivine) olivine basalt flows (n=7, 49.6 wt %, 1.52 wt % TiO2, 0.54 wt % K2O, 183 ppm Cr) partially covered the eroded surface and lap onto remnants of tuff cones that were protected from erosion by lava flow-filled craters. Contemporary eruption of basaltic andesite (n=8, 51.67 wt % SiO2, 1.24 wt % TiO2, 0.63 wt % K2O, 59 ppm Cr) stratovolcanoes produced areas of higher relief in the landscape. Age dates for lava flows of this stage are approximately 5 Ma. Volcaniclastic sedimentation and eruption of a suite of trachytic lava (54.61 to 67.25 wt % SiO2, 1.511 to 0.826 wt % TiO2, 1.12 to 2.48 wt % K2O, 16 to n.d. ppm Cr) flows, domes, and pyroclastic flows characterized stage three in the south. A trachyandesite lava flow was dated at 4.09 Ma. Eruption of andesite, olivine basalt, and basaltic andesite flows from isolated vents and shield volcanoes occurred on an eroding surface throughout the area as stage three progressed. During stage three the paleoslope appears to change from a gently eastward dipping surface (intracanyon flows dated 3.68 Ma) to a gently southward dipping surface (lava flow dated 3

  13. Thinning of young Douglas-fir forests decreases density of northern flying squirrels in the Oregon Cascades

    USGS Publications Warehouse

    Manning, Tom; Hagar, Joan C.; McComb, Brenda C.

    2012-01-01

    Large-scale commercial thinning of young forests in the Pacific Northwest is currently promoted on public lands to accelerate the development of late-seral forest structure for the benefit of wildlife species such as northern spotted owls (Strix occidentalis caurina) and their prey, including the northern flying squirrel (Glaucomys sabrinus). Attempts to measure the impact of commercial thinning on northern flying squirrels have mostly addressed short-term effects (2–5 years post-thinning) and the few published studies of longer-term results have been contradictory. We measured densities of northern flying squirrels 11–13 years after thinning of young (55–65 years) Douglas-fir forest stands in the Cascade Range of Oregon, as part of the Young Stand Thinning & Diversity Study. The study includes four replicate blocks, each consisting of an unthinned control stand and one stand each of the following thinning treatments: Heavy Thin; Light Thin; and Light Thin with Gaps. Thinning decreased density of northern flying squirrels, and squirrel densities were significantly lower in heavily thinned stands than in more lightly thinned stands. Regression analysis revealed a strong positive relationship of flying squirrel density with density of large (>30 cm diameter) standing dead trees and a negative relationship with percent cover of low understory shrubs. Maintaining sufficient area and connectivity of dense, closed canopy forest is recommended as a strategy to assure that long-term goals of promoting late-seral structure do not conflict with short-term habitat requirements of this important species.

  14. Clackamas 4800-foot thermal gradient hole: Cascade geothermal drilling: Final technical report

    SciTech Connect

    Iovenitti, J.L.; D'Olier, W.L.

    1987-09-30

    Thermal Power Company (Thermal) completed a thermal gradient hole to about 5000 feet (1524 m) total depth in Section 28, Township 8 South, Range 8 East, Willamette Meridian, Marion County, Oregon. The objective was to obtain data for the characterization of the deep hydrothermal regime in the Cascades volcanic region in order to better define its geothermal resource potential. The depth and location of the thermal gradient hole were designed by Thermal to test the basis of the Clackamas geothermal system exploration model developed by Chevron Resources Company.

  15. Rapid bedrock channel incision and gorge formation in a Late Holocene lava flow, High Cascade Mountains, Oregon

    NASA Astrophysics Data System (ADS)

    Sweeney, K. E.; Roering, J. J.; Grant, G. E.; Cashman, K. V.; Deligne, N. I.; Deardorff, N.

    2010-12-01

    The incision of bedrock channels generates relief and paces landscape adjustment to tectonic and climatic forcing. Rates and mechanisms of channel incision are difficult to constrain and seldom observed over short timescales such that the relative importance of discharge and sediment supply remain elusive. Here, we present preliminary analyses of the spatial pattern of bedrock channel incision into the 1600-yr old Collier Cone lava flow in the High Cascade Mountains, Oregon. We used airborne lidar data acquired by NCALM in June 2007 to document channel characteristics and guide field investigations. Following emplacement of the east-west trending, 14-km long lava flow, debris flow and fluvial action adjacent to the southern levees of the lava flow transported morainal debris emanating from Collier glacier and formed an aggradational surface that enabled White Branch Creek to traverse the lava flow. Despite the high permeability of the blocky, basaltic andesite flow surface, channelization ensued, forming a 6-km long channel bisecting the lower half of the lava flow. Although the timing of channel formation has yet to be determined, the spatial pattern of incision depth varies systematically. In two steep (5-10 degrees) sections of the lava flow, the channel has incised 5-10 meters and locally formed deep bedrock chutes with abrasion features. In some of the incised reaches, shear fractures associated with lava flow emplacement form local knickpoints that may facilitate local incision. In the gentle reaches of the lava flow, widespread aggradation shields the underlying lava flow from incision and the channel has alluvial characteristics, including a high width:depth ratio. Within the lava flow, local sediment supply is negligible as stream sediments originate from outcrops south and southeast of the lava flow. The hydrologic regime responsible for cutting White Branch Creek atop Collier lava flow is unclear but may include snowmelt events and/or catastrophic

  16. Complex mountain terrain and disturbance history drive variation in forest aboveground live carbon density in the western Oregon Cascades, USA

    PubMed Central

    Zald, Harold S.J.; Spies, Thomas A.; Seidl, Rupert; Pabst, Robert J.; Olsen, Keith A.; Steel, E. Ashley

    2016-01-01

    Forest carbon (C) density varies tremendously across space due to the inherent heterogeneity of forest ecosystems. Variation of forest C density is especially pronounced in mountainous terrain, where environmental gradients are compressed and vary at multiple spatial scales. Additionally, the influence of environmental gradients may vary with forest age and developmental stage, an important consideration as forest landscapes often have a diversity of stand ages from past management and other disturbance agents. Quantifying forest C density and its underlying environmental determinants in mountain terrain has remained challenging because many available data sources lack the spatial grain and ecological resolution needed at both stand and landscape scales. The objective of this study was to determine if environmental factors influencing aboveground live carbon (ALC) density differed between young versus old forests. We integrated aerial light detection and ranging (lidar) data with 702 field plots to map forest ALC density at a grain of 25 m across the H.J. Andrews Experimental Forest, a 6369 ha watershed in the Cascade Mountains of Oregon, USA. We used linear regressions, random forest ensemble learning (RF) and sequential autoregressive modeling (SAR) to reveal how mapped forest ALC density was related to climate, topography, soils, and past disturbance history (timber harvesting and wildfires). ALC increased with stand age in young managed forests, with much greater variation of ALC in relation to years since wildfire in old unmanaged forests. Timber harvesting was the most important driver of ALC across the entire watershed, despite occurring on only 23% of the landscape. More variation in forest ALC density was explained in models of young managed forests than in models of old unmanaged forests. Besides stand age, ALC density in young managed forests was driven by factors influencing site productivity, whereas variation in ALC density in old unmanaged forests

  17. Water limitations on forest carbon cycling and conifer traits along a steep climatic gradient in the Cascade Mountains, Oregon

    NASA Astrophysics Data System (ADS)

    Berner, L. T.; Law, B. E.

    2015-11-01

    Severe droughts occurred in the western United States during recent decades, and continued human greenhouse gas emissions are expected to exacerbate warming and drying in this region. We investigated the role of water availability in shaping forest carbon cycling and morphological traits in the eastern Cascade Mountains, Oregon, focusing on the transition from low-elevation, dry western juniper (Juniperus occidentalis) woodlands to higher-elevation, wetter ponderosa pine (Pinus ponderosa) and grand fir (Abies grandis) forests. We examined 12 sites in mature forests that spanned a 1300 mm yr-1 gradient in mean growing-year climate moisture index (CMIgy ), computed annually (1964 to 2013) as monthly precipitation minus reference evapotranspiration and summed October to September. Maximum leaf area, annual aboveground productivity, and aboveground live tree biomass increased with CMIgy (r2 = 0.67-0.88, P < 0.05), approximately 50-, 30-, and 10-fold along this drier to wetter gradient. Interannual fluctuations in CMI affected the annual radial growth of 91 % of juniper, 51 % of pine, and 12 % of fir individuals from 1964 to 2013. The magnitude of the site-average growth-CMI correlations decreased with increased CMIgy (r2 = 0.53, P < 0.05). All three species, particularly fir, experienced pronounced declines in radial growth from c. 1985 to 1994, coinciding with a period of sustained below-average CMIgy and extensive insect outbreak. Traits of stress-tolerant juniper included short stature, high wood density for cavitation resistance, and high investment in water transport relative to leaf area. Species occupying wetter areas invested more resources in height growth in response to competition for light relative to investment in hydraulic architecture. Consequently, maximum tree height, leaf area : sapwood area

  18. Water limitations on forest carbon cycling and conifer traits along a steep climatic gradient in the Cascade Mountains, Oregon

    NASA Astrophysics Data System (ADS)

    Berner, L. T.; Law, B. E.

    2015-09-01

    Severe droughts occurred in the western United States during recent decades and continued human greenhouse gas emissions are expected to exacerbate warming and drying in this region. We investigated the role of water availability in shaping forest carbon cycling and morphological traits in the eastern Cascade Mountains, Oregon, focusing on the transition from low-elevation, dry western juniper (Juniperus occidentalis) woodlands to higher-elevation, wetter ponderosa pine (Pinus ponderosa) and grand fir (Abies grandis) forests. We examined 12 sites in mature forests that spanned a 1300 mm yr-1 gradient in mean growing-year climate moisture index (CMIgy ), computed annually (1964 to 2013) as monthly precipitation minus reference evapotranspiration and summed October to September. Maximum leaf area, annual aboveground productivity, and aboveground live tree biomass increased with CMIgy (r2 = 0.58-0.85, P < 0.05), approximately 50-, 30-, and 10-fold along this drier to wetter gradient. Interannual fluctuations in CMI affected the annual radial growth of 91 % of juniper, 51 % of pine, and 12 % of fir from 1964 to 2013. The magnitude of the site-average growth-CMI correlations decreased with increased CMIgy (r2 = 0.65, P < 0.05). All three species, particularly fir, experienced pronounced declines in radial growth from ca. 1985 to 1994, coinciding with a period of sustained below-average CMIgy and extensive insect outbreak. Traits of stress-tolerant juniper included short stature, high wood density for cavitation resistance, and high investment in water transport relative to leaf area. Species occupying wetter areas invested more resources in height growth in response to competition for light relative to investment in hydraulic architecture. Correspondingly, maximum tree height, leaf area:sapwood area ratio, and

  19. Interactions between mafic eruptions and glacial ice or snow: implications of the 2010 Eyjafjallajökull, Iceland, eruption for hazard assessments in the central Oregon Cascades

    NASA Astrophysics Data System (ADS)

    McKay, D.; Cashman, K. V.

    2010-12-01

    The 2010 eruption of Eyjafjallajökull, Iceland, demonstrated the importance of addressing hazards specific to mafic eruptions in regions where interactions with glacial ice or snow are likely. One such region is the central Oregon Cascades, where there are hundreds of mafic vents, many of which are Holocene in age. Here we present field observations and quantitative analyses of tephra deposits from recent eruptions at Sand Mountain, Yapoah Cone, and Collier Cone (all <4 ka). These deposits differ from typical Cascade cinder cone deposits in several ways. Most significantly, the Sand Mountain eruption produced a relatively large tephra blanket (~1 km3) that is unusually fine-grained: average clast size is 0.063 - 0.5 mm, in contrast to tephra from typical Cascade cinder cones, which are dominated by small lapilli-sized clasts rather than ash. The eruption of Eyjafjallajökull earlier this year prompted us to investigate the role that ice or snow may have played in the production of unusually fine-grained tephra during the Sand Mountain eruption. The eruption date of Sand Mountain is not well constrained, but it likely occurred during the Neoglacial phase of ice advance, which lasted from ~2 to 8 ka in the central Oregon Cascades (Marcott et al., 2009). During the Neoglacial, winter snowfall was likely ~23% greater and summer temperatures ~1.4°C cooler than present (Marcott, 2009). Although ice did not advance to the elevation of the Sand Mountain vents during this time, the eruption could have occurred through several meters of snow. We have also seen very fine-grained tephra at Yapoah Cone, which is located at a higher elevation and may have interacted with glacial ice. In addition to being characterized by unusually fine grainsize, the Yapoah tephra blanket is deposited directly on top of hyaloclastite in several locations. Tephra from Collier Cone is not characterized by unusually fine grainsize, but several sections of the deposit exhibit features that suggest

  20. Gravity anomalies, Quaternary vents, and Quaternary faults in the southern Cascade Range, Oregon and California: Implications for arc and backarc evolution

    NASA Astrophysics Data System (ADS)

    Blakely, Richard J.; Christiansen, Robert L.; Guffanti, Marianne; Wells, Ray E.; Donnelly-Nolan, Julie M.; Muffler, L. J. Patrick; Clynne, Michael A.; Smith, James G.

    1997-10-01

    Isostatic residual gravity anomalies in the southern Cascade Range of northern California and southern Oregon are spatially correlated with broad zones of Quaternary magmatism as reflected by the total volume of Quaternary volcanic products, the distribution of Quaternary vents, and the anomalously low teleseismic P wave velocities in the upper 30 km of crust. The orientation of Quaternary faults also appears to be related to gravity anomalies and volcanism in this area, trending generally north-south within the magmatic regions and northwest-southeast as they enter the neighboring amagmatic zones to the north and south. The relationship between gravity anomalies, vent density, and fault orientations may indicate in a broad sense the strength of the middle and upper crust. The southern Cascade Range occupies a transition zone where horizontal stress is transferred from the northwest-southeast dextral shear of the Walker Lane belt to the east-west extension characteristic of the Cascade arc in central Oregon. Faulting along north-south strikes in the volcanically active areas indicates the east-west extensional stresses in thermally weakened crust, whereas northwest faulting between the volcanically active areas reflects the northwest trending, right lateral shear strain of the Walker Lane belt. The segmentation of the arc reflected in Quaternary magmatism may be caused by differential extension behind crustal blocks of the forearc rotating clockwise with respect to North America. In this view the volcanic centers at Mount Shasta, Medicine Lake volcano, and Lassen Peak in northern California are situated along the southern parts of the trailing edges of two distinct segments of the forearc where additional extension is implied by their differential clockwise rotation.

  1. FY 2005 Quantum Cascade Laser Alignment System Final Report

    SciTech Connect

    Myers, Tanya L.; Cannon, Bret D.; Wojcik, Michael D.; Broocks, Bryan T.; Stewart, Timothy L.; Hatchell, Brian K.

    2006-01-11

    The Alignment Lasers Task of Pacific Northwest National Laboratory's (PNNL's) Remote Spectroscopy Project (Project PL211I) is a co-funded project between DOE NA-22 and a Classified Client. This project, which began in the second half of FY03, involved building and delivering a Quantum Cascade (QC) Laser Alignment System to be used for testing the pupil alignment of an infrared sensor by measuring the response from four pairs of diametrically opposed QC lasers. PNNL delivered the system in FY04 and provided technical assistance in FY05 culminating into a successful demonstration of the system. This project evolved from the Laser Development Task of PL211I, which is involved in developing novel laser technology to support development of advanced chemical sensors for detecting the proliferation of nuclear weapons. The laser systems are based on quantum cascade (QC) lasers, a new semiconductor source in the infrared. QC lasers can be tailored to emit light throughout the infrared region (3.5 ? 17 ?m) and have high output power and stability. Thus, these lasers provide an infrared source with superb power and spectral stability enabling them to be used for applications such as alignment and calibration in addition to chemical sensing.

  2. Hydrologic Controls on In-Stream Optical Dissolved Organic Matter Characteristics in an Old-Growth Forest of the Oregon Cascades

    NASA Astrophysics Data System (ADS)

    Lajtha, K.; Lee, B. S.

    2015-12-01

    Dissolved organic matter (DOM) is a critical component of the carbon cycle linking terrestrial and aquatic ecosystems, yet DOM composition representative of DOM sources at headwater catchments in the western U.S is poorly understood. This study examined the effect of forest management history and hydrologic patterns on DOM chemistry at nine experimental watersheds located in the H.J. Andrews Long Term Ecological Research Experimental Forest of the Oregon Cascades. Stream water samples representing a three-week composite of each watershed were collected between May 2013 and February 2015 (32 events). DOM chemistry was characterized by examining UV and fluorescent properties of stream samples. Specific UV absorbance at 254 nm (SUVA254; Weishaar et al. 2003), generally indicative of aromaticity, showed the lowest value at the high elevation clear-cut site (watershed 6, 1,030 m) and the highest value at the low elevation clear-cut site (watershed 10, 680 m) throughout the study period. DOM fluorescent components, identified by this study using a multivariate statistical model, Parallel Factor Analysis (PARAFAC), did not differ significantly among experimental watersheds with varying forest management history. However, a protein-like DOM component exhibited temporal variations. Correlation analysis between the protein-like DOM and hydrologic patterns indicate that stream water during dry seasons come from protein-rich groundwater sources. This study shows UV and fluorescent spectroscopy DOM characterization is a viable finger printing method to detect DOM sources in pristine headwater streams at the western Cascades of Oregon where characterization of the stream water source with low DOC and DON concentrations is difficult.

  3. Database for the Geologic Map of Upper Eocene to Holocene Volcanic and Related Rocks of the Cascade Range, Oregon

    USGS Publications Warehouse

    Nimz, Kathryn; Ramsey, David W.; Sherrod, David R.; Smith, James G.

    2008-01-01

    Since 1979, Earth scientists of the Geothermal Research Program of the U.S. Geological Survey have carried out multidisciplinary research in the Cascade Range. The goal of this research is to understand the geology, tectonics, and hydrology of the Cascades in order to characterize and quantify geothermal resource potential. A major goal of the program is compilation of a comprehensive geologic map of the entire Cascade Range that incorporates modern field studies and that has a unified and internally consistent explanation. This map is one of three in a series that shows Cascade Range geology by fitting published and unpublished mapping into a province-wide scheme of rock units distinguished by composition and age; map sheets of the Cascade Range in Washington (Smith, 1993) and California will complete the series. The complete series forms a guide to exploration and evaluation of the geothermal resources of the Cascade Range and will be useful for studies of volcano hazards, volcanology, and tectonics. This digital release contains all the information used to produce the geologic map published as U.S. Geological Survey Geologic Investigations Series I-2569 (Sherrod and Smith, 2000). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains files to view or print the geologic map and accompanying descriptive pamphlet from I-2569.

  4. Apparent predation by Gray Jays, Perisoreus canadensis, on Long-toed Salamanders, Ambystoma macrodactylum, in the Oregon Cascade Range

    USGS Publications Warehouse

    Murray, M.P.; Pearl, C.A.; Bury, R.B.

    2005-01-01

    We report observations of Gray Jays (Perisoreus canadensis) appearing to consume larval Long-toed Salamanders (Ambystoma macrodactylum) in a drying subalpine pond in Oregon, USA. Corvids are known to prey upon a variety of anuran amphibians, but to our knowledge, this is the first report of predation by any corvid on aquatic salamanders. Long-toed Salamanders appear palatable to Gray Jays, and may provide a food resource to Gray Jays when salamander larvae are concentrated in drying temporary ponds.

  5. Heat flow in the Oregon Cascade Range and its correlation with regional gravity, Curie point depths, and geology

    SciTech Connect

    Blackwell, D.D.; Steele, J.L. ); Frohme, M.K. ); Murphey, C.F. ); Priest, G.R.; Black, G.L. )

    1990-11-10

    Heat flow measurements from several deep wells (up to 2,500 m deep), as well as extensive new data from industry exploration efforts in the Breitenbush and the Santiam Pass-Belknap/Foley areas are described. The heat flow is about 100 mW m{sup {minus}2} in the High Cascade Range and at the eastern edge of the Western Cascade Range, and about 40-50 mW m{sup {minus}2} to the west in the outer arc block of the subduction zone. The gravity field in the Cascade Range has characteristics that can be closely related to the heat flow pattern. The relationship may be causal, and to examine the relationship in more detail, earlier two-dimensional modeling is extended to three dimensions. Consideration of the effects of a midcrustal density anomaly, such as might be associated with a region with at least areas of partial melt, as two major consequences. The first of these is that a high-frequency gravity gradient near the Western Cascade Range/High Cascade Range boundary is explained. Second, the negative gravity anomaly associated with the northeast/southwest striking regional Bouguer gravity anomaly associated with the north edge of the Blue Mountains becomes continuous across the Cascade Range with a similar feature along the north side of the Klamath Mountains. The correlation, or lack thereof, of the heat flow, depth to Curie point, gravity field, crustal electrical resistivity, crustal seismic velocity, and geology in the High/Western Cascade Ranges is summarized.

  6. Volatile Contents of Mafic Magmas From Cinder Cones in the Central Oregon High Cascades: Implications for Magma Formation and Mantle Conditions in a Hot Arc

    NASA Astrophysics Data System (ADS)

    Ruscitto, D. M.; Wallace, P. J.; Johnson, E. R.; Kent, A.

    2009-12-01

    Naturally quenched basalt and basaltic andesite melt inclusions from tephra erupted from monogenetic vents in the Central Oregon High Cascades record pre-eruptive magmatic volatile contents. The Cascades arc is an unusually hot setting characterized by slow (< 5 cm/a) subduction of young (< 16 Ma) oceanic crust. The Central Oregon segment of the arc has experienced the highest mafic output rate over the past 2 Ma and exhibits a wide range of primitive compositions reflecting a heterogeneous mantle source. Maximum volatile contents from six calc-alkaline cinder cones range from ~1.7-4.0 wt% H2O, 1200-2200 ppm S and 300-1300 ppm Cl. Volatile/HFSE ratios (100-520, 7-22, and 3-11 for H2O/Zr, S/Zr, and Cl/Zr, respectively), which should reflect the extent of volatile recycling from the subducted slab, are low compared to those from the southern Cascades (Shasta) and other arcs (Mexico, Central America, Kamchatka). A weak positive correlation is observed between (H2O, S, and Cl)/Zr and Ba/Nb ratios suggesting that small extents of slab-derived fluid added to the mantle wedge are responsible for observed volatile contents. Melt inclusion compositions are evolved (Fo77-84 host olivines, 4.3-6.6 wt% MgO), and modeling indicates that the trapped melts fractionated from primitive parental magmas by 28-55% crystallization (ol +cpx +spl ±plag) before being trapped as inclusions. Primary calc-alkaline basaltic (CAB) melts can be generated by 5-23% partial melting of a variably depleted mantle (≤ 5% previous melt extraction). Implied mantle temperatures are 25-50 C above the dry peridotite solidus (1300-1380 C at 1.5-2.0 GPa), considerably hotter than those calculated for other arcs and similar to back-arc basin mantle conditions. Additionally, a subset of H2O-rich basaltic andesite melt inclusions are highly depleted in HFSE. These melts (North-Sister-type) cannot be generated from the CAB mantle source. High SiO2 (53-54 wt%) and low trace element abundances suggest that

  7. Resource Contingency Program - Oregon : Final Environmental Impact Statement, Hermiston Power Project.

    SciTech Connect

    United States. Bonneville Power Administration.

    1995-09-01

    The Bonneville Power Administration (BPA) has statutory responsibilities to supply electrical power to its utility, industrial, and other customers in the Pacific Northwest. In 1990, to cover the outer range of potential load growth with new resources, BPA embarked upon the Resource Contingency Program (RCP). Instead of buying or building generating plants now, BPA has purchased options to acquire power later, if and when it is needed. The decision to acquire any of these option energy projects to fulfill statutory supply obligations will be influenced by Federal system load growth, the outcome of BPA`s Business Plan, required operational changes in Columbia-Snake River Hydroelectric facilities, and the loss of major generating resources. In September 1993, three option development agreements were signed with three proposed natural gas-fired, combined cycle combustion turbine CT projects near Chehalis and Satsop, Washington, and near Hermiston, Oregon. Together these three projects could supply BPA with 1,090 average megawatts (aMW) of power. Under these agreements, sponsors are obtaining permits and conducting project design work, and BPA is completing this EIS process. In September 1993, BPA published a Notice of Intent to prepare an environmental impact statement (EIS) on these three proposed gas-fired combustion turbine projects and held public scoping meetings in October 1993 at each site. In February 1994, BPA released an Implementation Plan on the proposed scope of the EIS. A draft EIS on the three proposed projects was published in February 1995. The impacts of the Chehalis and Satsop projects located in Washington State will be covered in one EIS document, while the impacts of the Hermiston project located in Oregon are covered in this final EIS document. It is BPA`s intent to continue to base the analysis of impacts on the assumption that all three projects may be constructed at some point in the future.

  8. Final environmental impact statement, Coyote Springs Cogeneration Project, Morrow County, Oregon - appendices

    SciTech Connect

    Not Available

    1994-07-01

    Portland General Electric Company (PGE) has submitted an Application for Site Certification (ASC) to the Oregon Department of Energy for development of the Coyote Springs cogeneration power plant in the Port of Morrow, Oregon. This document includes the appendixes for the Environmental Impact Statement. Appendix topics include the following: A-Wildlife and vegetation surveys; B-EMF Supplement; C-Biological Assessment; D-Oregon DOE proposed order, in the matter of the Application for Site Certificate of Portland General Electric Company; E-Ecological Monitoring Program; F-Air contaminant Discharge permit; G-National Pollution Discharge Elimination System Storm Water Discharge Permit; H-Erosion and Sedimentation Control Plan.

  9. After the lava flow: The importance of external soil sources for plant colonization of recent lava flows in the central Oregon Cascades, USA

    NASA Astrophysics Data System (ADS)

    Deligne, Natalia I.; Cashman, Katharine V.; Roering, Joshua J.

    2013-11-01

    Effusive volcanic eruptions repave landscapes rapidly with lava flows, resetting broad areas of the underlying landscape and ecosystem. The unique physical properties of lava pose interesting challenges for ecologic recovery, as lava is dense, sterile, and generally inhospitable towards life. In this study we examine two sites of recent volcanism in the central Oregon Cascades, notable for the juxtaposition of barren exposed lava and mature forests on lava flows of the same or roughly the same age. We use a combination of LiDAR analyses, field observations, and soil characterization to examine soil and vegetation at these two sites, and find that the presence of an external sediment or soil source, particularly flood-borne deposits or syn- or post-eruptive tephra, greatly facilitates plant establishment, growth, and survival. The nature of the external sources of sediment or soil dictates the geographic extent of forests on these young lava flows: flood-borne deposits cover localized regions near river channels, while tephra can cover large regions. In general, our results suggest that external sources of soil provide a substrate for plants to grow in along with key nutrients and sufficient moisture retention. We conclude that external sources of soil source are key for the initial recovery following an effusive volcanic disturbance, in particular in temperate climates. Thus, unrelated geomorphic processes, such as past glaciations that provide local sources of mobile sediments, or concurrent volcanic processes, such as tephra production, dictate the presence or absence of forests on young lava flows.

  10. Four centuries of soil carbon and nitrogen change after stand-replacing fire in a forest landscape in the western Cascade Range of Oregon

    USGS Publications Warehouse

    Giesen, T.W.; Perakis, S.S.; Cromack, K., Jr.

    2008-01-01

    Episodic stand-replacing wildfire is a significant disturbance in mesic and moist Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests of the Pacific Northwest. We studied 24 forest stands with known fire histories in the western Cascade Range in Oregon to evaluate long-term impacts of stand-replacing wildfire on carbon (C) and nitrogen (N) pools and dynamics within the forest floor (FF, Oe and Oa horizons) and the mineral soil (0-10 cm). Twelve of our stands burned approximately 150 years ago ('young'), and the other 12 burned approximately 550 years ago ('old'). Forest floor mean C and N pools were significantly greater in old stands than young stands (N pools: 1823 ?? 132 kg??ha-1 vs. 1450 ?? 98 kg??ha -1; C pools: 62 980 ?? 5403 kg??ha-1 vs. 49 032 ?? 2965 kg??ha-1, mean ?? SE) as a result of significant differences in FF mass. Forest floor C and N concentrations and C/N ratios did not differ by time since fire, yet potential N mineralization rates were significantly higher in FF of old sites. Old and young mineral soils did not differ significantly in pools, concentrations, C/N ratios, or cycling rates. Our results suggest that C and N are sequestered in FF of Pacific Northwest Douglas-fir forests over long (???400 year) intervals, but that shorter fire return intervals may prevent that accumulation. ?? 2008 NRC.

  11. “Our vanishing glaciers”: One hundred years of glacier retreat in Three Sisters Area, Oregon Cascade Range

    USGS Publications Warehouse

    O'Connor, James E.

    2014-01-01

    In August 1910, thirty-nine members of the Mazamas Mountaineering Club ascended the peaks of the Three Sisters in central Oregon. While climbing, geologist Ira A. Williams photographed the surrounding scenery, including images of Collier Glacier. One hundred years later, U.S. Geological Survey research hydrologist Jim E. O’Connor matched those documented photographs with present day images — the result of which is a stunning lapse of glacial change in the Three Sister region. O’Connor asserts that “glaciers exist by the grace of climate,” and through a close examination of the history of the region’s glaciers, he provides an intriguing glimpse into the history of geological surveys and glacial studies in the Pacific Northwest, including their connection to significant scientific advances of the nineteenth century. The work of scientists and mountaineers who have monitored and recorded glacier changes for over a century allows us to see dramatic changes in a landscape that is especially sensitive to ongoing climate change.

  12. Late Quaternary slip rate and seismic hazards of the West Klamath Lake fault zone near Crater Lake, Oregon Cascades

    USGS Publications Warehouse

    Bacon, C.R.; Lanphere, M.A.; Champion, D.E.

    1999-01-01

    Crater Lake caldera is at the north end of the Klamath graben, where this N10??W-trending major Basin and Range structure impinges upon the north-south-trending High Cascades volcanic arc. East-facing normal faults, typically 10-15 km long, form the West Klamath Lake fault zone, which bounds the graben on its west side. The fault zone terminates on the south near the epicentral area of the September 1993 Klamath Falls earthquakes. It continues north past Crater Lake as the Annie Spring fault, which is within ~1 km of the west caldera rim, and Red Cone Spring fault. We have determined a long-term vertical slip rate of 0.3 mm/yr for these two faults using high-precision K-Ar and 40Ar/39Ar age measurements on offset lava flows ranging in age from ca. 35 to 300 ka. Holocene offset reported by Hawkins et al. and epicenters of eight MW 2 earthquakes in 1994 and 1995 indicate that the West Klamath Lake fautl zone is active. Empirical relations between earthquake magnitudes and scarp heights or fault lengths suggest that the fault zone is capable of producing earthquakes as large as MW 7 1/4 . Earthquakes on these or other faults of the zone could trigger landslides and rockfalls from the walls of the caldera, possibly resulting in large waves on Crater Lake.

  13. Quaternary volcanics from the Broken Top volcano area, Oregon High Cascades: Varied low pressure processes in calc-alkaline magma chambers

    SciTech Connect

    Webster, J.R. . Div. of Science and Math)

    1992-01-01

    Broken Top (BT) is a Quaternary composite volcano in the central Oregon High Cascades. Volcanics in the vicinity of BT range from basalt to rhyodacite with a paucity of andesite. Most pre- and syn-BT lavas were generated through low pressure crystal fractionation (CF) in small, short-lived chambers. Mixing superimposed on CF generally involved magmas with minimal compositional differences. Lavas erupted from BT are dominantly phenocryst-rich bas. andesite which exhibits evidence for a mixing origin. Whole-rock and phenocryst compositions suggest mixing between basalt and andesite. The andesite can be explained by low pressure CF of the basalt. Latest BT activity consisted of bas. andesite, dacite, and rhyodacite lavas which were generated through CF. During BT activity, andesite was produced by CF during rapid sidewall crystallization and ponded at the top of the chamber. Mixing most likely took place during eruptive events, but evidence for a persistent presence of mixed (hybrid) magma in the chamber suggests incomplete evacuation of mixed magma. With time, the andesite layer became less significant due to decreasing rates of sidewall crystallization and/or frequent eruption/replenishment, more widespread crystal settling resulted in eruption of CF-generated bas. andesite and low-Si dacite. Rapid crystallization of dacitic magma followed by buoyant segregation yielded rhyodacite. These processes operating during the latest stages of the BT activity were likely similar to those operating in the short-lived chambers. Paucity of CF-generated andesite is explained by: (1) low density crust which retards andesite ascent, and (2) rapid crystallization over the dacite range. While significant amounts of andesite were produced in the longer-lived BT system, it rarely erupted unmixed.

  14. Fens, seasonal wetlands, and the unconfined pumice aquifer east of the Cascade Range, south-central Oregon

    NASA Astrophysics Data System (ADS)

    Cummings, M. L.; Large, A.; Mowbray, A.; Weatherford, J.; Webb, B.

    2013-12-01

    Fens and seasonal wetlands in the headwaters of the Klamath and Deschutes river basins in south-central Oregon are present in an area blanketed by 2 to 3 m of pumice during the Holocene eruption of Mount Mazama. The lower pumice unit, moderately sorted coarse pumice lapilli to blocks (0.3 to 0.7 cm), phenocrysts, and lithics is 1.5 to 2 m thick; the upper pumice unit, poorly sorted lapilli to blocks (0.2 to 6 cm), minor phenocrysts, and lithics is 1 m thick. Pumice is a perched, unconfined aquifer over low permeability bedrock or pre-eruption fine-grained sediment. Early landscape response included partial erosion of pumice from pre-eruption valleys followed by partial filling by alluvium: phenocryst- and lithic-rich sand grading upward to glassy silt with rounded pumice pebbles. Groundwater-fed wetlands, fens, associated with the unconfined pumice aquifer occur as areas of diffuse groundwater discharge through gently sloping, convex surfaces underlain by up to 1.4 m of peat. Locally, focused discharge through the confining peat layer feeds low discharge streams. Carnivorous plants (sundews and pitcher plants) may be present. The sharp contact between peat and underlying pumice is an erosion surface that cuts progressively deeper into the upper and lower pumice units downslope. At the base of the slope peat with fen discharge feeding surface flow, alluvium with no surface flow, or a subtle berm separating the slope underlain by peat from the valley bottom underlain by alluvium may be present. Distinct vegetation changes take place at this transition. The erosion surface that underlies the peat layer in the fen is at the surface on the opposing valley wall and progressively rises up through the lower and upper pumice units: iron staining and cementation of pumice is locally prominent. Up to 1.5 m difference in water table occurs between the fen and opposing valley wall. Water table in piezometers screened in peat is at the surface. Locally, water table screened in

  15. 75 FR 51099 - Final Supplementary Rules for Public Land in Oregon and Washington

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ..., 2009 (74 FR 48096). These Supplementary Rules revise existing Supplementary Rules. These revisions are... Supplementary Rules (70 FR 48584) for Oregon and Washington public lands were published on August 18, 2005... Resources. The BLM received one substantive comment regarding the Juniper Dunes Off-Highway Vehicle...

  16. Coordination of Organic Curriculum Development in the Public Schools of Portland, Oregon. Final Report.

    ERIC Educational Resources Information Center

    Ayers, Lawrence W., Jr.

    This document describes the efforts of program administrators to implement an organic curriculum in the John Adams High School in Portland, Oregon. The chief program administrator coordinated efforts to develop individualized instructional materials, to revamp school organization, and to create a fully differentiated staff. Organic curriculum is a…

  17. Status Review of Wildlife Mitigation at Columbia Basin Hydroelectric Projects, Oregon Facilities, Final Report.

    SciTech Connect

    Bedrossian, Karen L.

    1984-08-01

    The report presents a review and documentation of existing information on wildlife resources at Columbia River Basin hydroelectric facilities within Oregon. Effects of hydroelectric development and operation; existing agreements; and past, current and proposed wildlife mitigation, enhancement, and protection activities were considered. (ACR)

  18. DIAMOND PEAK WILDERNESS, OREGON.

    USGS Publications Warehouse

    Sherrod, David R.; Moyle, Phillip R.

    1984-01-01

    No metallic mineral resources were identified during a mineral survey of the Diamond Peak Wilderness in Oregon. Cinder cones within the wilderness contain substantial cinder resources, but similar deposits that are more accessible occur outside the wilderness. The area could have geothermal resources, but available data are insufficient to evaluate their potential. Several deep holes could be drilled in areas of the High Cascades outside the wilderness, from which extrapolations of the geothermal potential of the several Cascade wilderness could be made.

  19. Geodetic observations and modeling of magmatic inflation at the Three Sisters volcanic center, central Oregon Cascade Range, USA

    USGS Publications Warehouse

    Dzurisin, Daniel; Lisowski, Michael; Wicks, Charles W., Jr.; Poland, Michael P.; Endo, Elliot T.

    2006-01-01

    basaltic magma intruding the upper crust along the brittle–ductile interface — a process that must occur episodically beneath the Cascade Range but in the past would have escaped detection in the absence of unusual seismicity. We speculate that such intrusive episodes last from days to years and are separated by quiescent periods of decades to centuries. The likelihood that the current episode at Three Sisters will culminate in an eruption is judged to be low, but the impact of an eruption could be great. The USGS has updated its volcano hazards assessment for the Three Sisters region, notified appropriate agencies and the public, and is helping to prepare an emergency coordination and communication plan.

  20. Union County - La Grande, Oregon geothermal district heating: feasibility assessment. Final report

    SciTech Connect

    Jenkins, H. II; Giddings, M.; Hanson, P.

    1982-09-01

    This report presents an assessment of geothermal district heating in the City of La Grande, Oregon. Eight study area districts were analyzed to determine their economic feasibility. Results from the analyses conclude that certain districts within the City of La Grande are economically feasible if certain assumptions are correct. Development of geothermal district heating for these areas would provide direct energy and dollar savings to the building owners and would also provide direct and indirect benefits to low and moderate income households within the City.

  1. Airborne gamma-ray spectrometer and magnetometer survey, Medford Quadrangle Oregon. Final report

    SciTech Connect

    Not Available

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Medford, Oregon, map area. Traverse lines were flown in an east-west direction at a line spacing of three miles. Tie lines were flown north-south approximately twelve miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 2925 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  2. Airborne gamma-ray spectrometer and magnetometer survey, Roseburg Quadrangle, Oregon. Final report

    SciTech Connect

    Not Available

    1981-03-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Roseburg, Oregon, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1596 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  3. Airborne gamma-ray spectrometer and magnetometer survey Coos Bay, Oregon. Final report

    SciTech Connect

    Not Available

    1981-05-01

    During the months of August, September, and October of 1980, Aero Service Division Western Geophysical Company of America conducted an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Coos Bay, Oregon, map area. Line spacing was generally six miles for east/west traverses and eighteen miles for north/south tie lines over the northern one-half of the area. Traverses and tie lines were flown at three miles and twelve miles respectively over the southern one-half of the area. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 863.8 line miles are in this quadrangle.

  4. Microbial transformations in Alkali Lake, Oregon. Final report, 1 Aug 88-31 Jul 91

    SciTech Connect

    Boone, D.R.

    1991-01-01

    An examination was made of the terminal metabolic processes in subsurface sediments near West Alkali Lake, Oregon, by performing microbial counts of methanogenic bacteria and isolating the predominant methanogenic culture. This methanogen was characterized and found to be physiologically and phylogenetically different from other described strains, so it represents a previously undescribed species of bacterium, which was named 'Methanohalophilus oregonensis'. In contrast to published descriptions of many other methanogens which have been isolated from hypersaline environments, this one is halotolerant rather than halophilic. Another important characteristic of this organism is that it is capable of catabolizing dimethylsulfide or methanethiol. This ability is important because these methylated sulfur compounds are major conduits by which sulfur moves between the atmosphere and terrestrial and aquatic ecosystems. Phylogenetic comparisons to known methanogens showed that this strain is closely related to another methanogen, 'Methanolobus siciliae' T4/M which was named but not described.

  5. Record of middle Pleistocene climate change from Buck Lake, Cascade Range, southern Oregon - Evidence from sediment magnetism, trace-element geochemistry, and pollen

    USGS Publications Warehouse

    Rosenbaum, J.G.; Reynolds, R.L.; Adam, D.P.; Drexler, J.; Sarna-Wojcicki, A. M.; Whitney, G.C.

    1996-01-01

    Comparison of systematic variations in sediment magnetic properties to changes in pollen assemblages in middle Pleistocene lake sediments from Buck Lake indicates that the magnetic properties are sensitive to changes in climate. Buck Lake is located in southern Oregon just east of the crest of the Cascade Range. Lacustrine sediments, from 5.2 to 19.4 m in depth in core, contain tephra layers with ages of ???300-400 ka at 9.5 m and ???400-470 ka at 19.9 m. In these sediments magnetic properties reflect the absolute amount and relative abundances of detrital Fe-oxide minerals, titanomagnetite and hematite. The lacustrine section is divided into four zones on the basis of magnetic properties. Two zones (19.4-17.4 m and 14.5-10.3 m) of high magnetic susceptibility contain abundant Fe oxides and correspond closely to pollen zones that are indicative of cold, dry environments. Two low-susceptibility zones (17.4-14.5 m and 10.3-5.3 m) contain lesser amounts of Fe oxides and largely coincide with zones of warm-climate pollen. Transitions from cold to warm climate based on pollen are preceded by sharp changes in magnetic properties. This relation suggests that land-surface processes responded to these climate changes more rapidly than did changes in vegetation as indicated by pollen frequencies. Magnetic properties have been affected by three factors: (1) dissolution of Fe oxides, (2) variation in heavy-mineral content, and (3) variation in abundance of fresh volcanic rock fragments. Trace-element geochemistry, employing Fe and the immobile elements Ti and Zr, is utilized to detect postdepositional dissolution of magnetic minerals that has affected the magnitude of magnetic properties with little effect on the pattern of magnetic-property variation. Comparison of Ti and Zr values, proxies for heavy-mineral content, to magnetic properties demonstrates that part of the variation in the amount of magnetite and nearly all of the variation in the amount of hematite are due to

  6. Field study of moisture damage in walls insulated without a vapor barrier. Final report for the Oregon Department of Energy

    SciTech Connect

    Tsongas, G.A.

    1980-05-01

    Considerable uncertainty has existed over whether or not wall insulation installed without a vapor barrier causes an increased risk of moisture damage (wood decay) within walls. This report describes the results of one of the first major studies in the country aimed at finding out if such a moisture problem really exists. The exterior walls of a total of 96 homes in Portland, Oregon were opened, of which 70 had retrofitted insulation and 26 were uninsulated and were a control group. The types of insulation included urea-formaldehyde foam (44), mineral wool (16), and cellulose (10). In each opened wall cavity the moisture content of wood was measured and insulation and wood samples were taken for laboratory analysis of moisture content and for the determination of the presence of absence of decay fungi. Foam shrinkage was also measured. To evaluate the possible influence of the relative air tightness of the homes, fan depressurization tests were run using a door blower unit. The field and laboratory test results indicating the lack of a moisture damage problem in existing homes with wood siding in climates similar to that of western Oregon are described along with results of a statistical analysis of the data. Related problems of interest to homeowners and insulation installers are noted. The standard operating procedures used throughout the study are discussed, including the home selection process, quantitative and qualitative techniques used to identify wall locations with the highest moisture content, wall opening and data/sample collection methodology, laboratory analysis of samples, data processing and analysis, and applicability of the results. Recommendations for furutre tests are made. Finally, the potential and desirability for future retrofitting of wall insulation is explored.

  7. The Utilization of the Oregon Department of Education Materials by Vocational Teachers in Linn, Benton and Lincoln Counties. Final Report.

    ERIC Educational Resources Information Center

    Lofts, Ada

    Secondary vocational instructors, community college instructors, and career directors in three Oregon counties were interviewed to assess usage of occupational cluster guides, individualized instruction packages, and other curriculum materials developed by the Oregon Department of Education (ODE). Focus was on level and depth of usage, deterrents…

  8. 'Cascade Gold' raspberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cascade Gold’ is a new gold fruited, floricane fruiting raspberry cultivar (Rubus idaeus L.) jointly released by Washington State University (WSU), Oregon State University (OSU) and the U.S. Department of Agriculture (USDA). It has been evaluated at Puyallup, Wash. in plantings from 1988 to 2008. ...

  9. Fish Passage Improvements at Three Mile Falls Diversion Dam, Umatilla River, Oregon, Final Completion Report.

    SciTech Connect

    Unknown Author

    1985-05-01

    This report contains the results and conclusions from the biological assessment and outlines several alternative plans for solving fish passage problems at the dam. A recommended plan, based on consensus of the fisheries agencies and the tribes, is described, and the rationale for that decision is discussed. Data needs for final designs, a tentative construction schedule, and a discussion of operation and maintenance needs are presented.

  10. Columbia Plateau Basin and Fifteenmile Subbasin Water Rights Acquisitons; Oregon Water Trust Combined Work Plan, 2002-2003 Final Report.

    SciTech Connect

    Paulus, Fritz

    2003-12-01

    This is the Final Report submitted regarding Oregon Water Trust's Combined Work Plan for fiscal year 2003, with the contract period April 2002 to May 2003. Of this 12 month period, six month were spent concluding our work for the 2002 irrigation season and six months were spent preparing for the 2003 irrigation season. After this grant was completed, projects were finished with funding from the Columbia Basin Water Transactions Program. Many of the 2003 irrigation season successes began in the fall of 2002, when projects were researched and partnerships were developed. Trout Creek Ranch was one of the large successes. During the 2003 irrigation season, 2.6 cfs was leased which led to a permanent instream transfer, protecting critical spawning habitat for summer steelhead in the Deschutes basin. Another success was the Walla Walla Lease Bank project. This project is an agreement between the OWT, the Walla Walla Irrigation District and 11 individual landowners. Through this single year lease, 7.9 cfs of water was legally protected in the Walla Walla River. The Vidando lease on Middle Fork John Day River was renewed for 2 more years, protecting 11.29 cfs. An innovative single year split-season lease was conducted with Voight on Standard Creek in the John Day basin to protect 4.93 cfs. Many other deals were conducted and the total was an impressive 50.43 cfs instream during 2003 and 9.39 cfs pending approval for the 2004 season. Included is a summary of the activities within the Fifteenmile subbasin and the Columbia Plateau basin by quarter and two tables. The summary of activities is broken down by objectives and quarters. The first summarizes the total cfs by type of lease or transfer. The second table lists all the projects by subbasin and provides project type, lease number, cfs, cost of acquisition, partners in the project and funding source.

  11. Disposal of chemical agents and munitions stored at Umatilla Depot Activity, Hermiston, Oregon. Final Phase 1 environmental report

    SciTech Connect

    Zimmerman, G.P.; Hillsman, E.L.; Johnson, R.O.; Miller, R.L.; Patton, T.G.; Schoepfle, G.M.; Tolbert, V.R.; Feldman, D.L.; Hunsaker, D.B. Jr.; Kroodsma, R.L.; Morrissey, J.; Rickert, L.W.; Staub, W.P.; West, D.C.

    1993-02-01

    The Umatilla Depot Activity (UMDA) near Hermiston, Oregon, is one of eight US Army installations in the continental United States where lethal unitary chemical agents and munitions are stored, and where destruction of agents and munitions is proposed under the Chemical Stockpile Disposal Program (CSDP). The chemical agent inventory at UMDA consists of 11.6%, by weight, of the total US stockpile. The destruction of the stockpile is necessary to eliminate the risk to the public from continued storage and to dispose of obsolete and leaking munitions. In 1988 the US Army issued a Final Programmatic Environmental Impact Statement (FPEIS) for the CSDP that identified on-site disposal of agents and munitions as the environmentally preferred alternative (i.e., the alternative with the least potential to cause significant adverse impacts), using a method based on five measures of risk for potential human health and ecosystem/environmental effects; the effectiveness and adequacy of emergency preparedness capabilities also played a key role in the FPEIS selection methodology. In some instances, the FPEIS included generic data and assumptions that were developed to allow a consistent comparison of potential impacts among programmatic alternatives and did not include detailed conditions at each of the eight installations. The purpose of this Phase 1 report is to examine the proposed implementation of on-site disposal at UMDA in light of more recent and more detailed data than those included in the FPEIS. Specifically, this Phase 1 report is intended to either confirm or reject the validity of on-site disposal for the UMDA stockpile. Using the same computation methods as in the FPEIS, new population data were used to compute potential fatalities from hypothetical disposal accidents. Results indicate that onsite disposal is clearly preferable to either continued storage at UMDA or transportation of the UMDA stockpile to another depot for disposal.

  12. An investigation into the utilization of HCMM thermal data for the descrimination of volcanic and Eolian geological units. [Craters of the Moon volcanic field, Idaho; San Francisco volcanic field, Arizona; High Desert, California; and the Cascade Range, California and Oregon

    NASA Technical Reports Server (NTRS)

    Head, J. W., III (Principal Investigator)

    1982-01-01

    Analysis of HCMM data shows that the resolution provided by the thermal data is inadequate to permit the identification of individual lava flows within the volcanic test sites. Thermal data of southern California reveals that dune complexes at Kelso and Algodomes are found to be too small to permit adequate investigation of their structure. As part of the study of the San Francisco volcanic field, marked variations in the thermal properties of the region between Flagstaff and the Utah State border were observed. Several well-defined units within the Grand Canyon and the Colorado Plateau were recognized and appear to be very suitable for analysis with HCMM, SEASAT and LANDSAT images. Although individual volcanic constructs within the Cascade Range are too small to permit detailed characterization with the thermal data, the regional volcano/tectonic setting offers a good opportunity for comparing the possible thermal distinction between this area and sedimentary fold belts such as those found in the eastern United States. Strong intra-regional variations in vegetation cover were also tentatively identified for the Oregon test site.

  13. Oregon trails revisted

    NASA Technical Reports Server (NTRS)

    Lewis, A. J.; Alexander, C. J.; Hall, M. J.; Isaacson, D. L.; Murray, R. J.; Schrumpf, B. J.

    1981-01-01

    Oregon State University's Environmental Remote Sensing Applications Laboratory (ERSAL) has six full-time researchers with expertise in a variety of biological, Earth, atmospheric and computer sciences as well as image interpretation and statistical techniques. The primary emphasis of the ERSAL research and demonstration program is the development and application of remote sensing technology in operational resource management programs. LANDSAT multi-spectral, multi-date digital data and imagery are utilized in concert with high altitude NASA-acquired photography, low altitude ERSAL-acquired photography, and field observations and data to provide customized, inexpensive and useful final products. Synopses are given of 9 applications projects conducted in Oregon.

  14. Preparing Oregon State University to Meet the Research Challenges of the Global Nuclear Energy Partnership Final Scientific/Technical Report

    SciTech Connect

    Steven R. Reese

    2008-10-08

    The OSU Radiation Center requested $100,000 under the Global Nuclear Energy Partnership University Readiness program to provide for graduate student support, reactor equipment upgrades, and irradiation support. A portion of the funds requested were used to support the graduate education of a graduate student for a period of one year. The remaining funds were utilized to enhance the irradiation facilities of the Oregon State TRIGA® Reactor as well as to offset the costs of irradiations for initial investigations where grant funding is not available. The focus of this effort was to create an environment that would enhance facilities and equipment at Oregon State University which emphasize GNEP related themes, specifically material science analytical capabilities for the next generation of nuclear reactors. These enhancements included development of a prompt gamma neutron activation analysis analytical capability, digital reactor data logging, electronic dosimetry for researchers, replacement of sample grapples, and irradiation/analytical services.

  15. Predicting height increment of young-growth red fir in California and southern Oregon. Forest Service research paper (Final)

    SciTech Connect

    Dolph, K.L.

    1992-11-01

    An equation is given to estimate 10-year height increment for young-growth red fir trees in California and Southern Oregon. The independent variables are the individual tree, stand, and site characteristics significantly related to a tree's height growth. Data used to develop the equation came from stem analysis of 492 trees sampled from 56 stands in the study area. Parameter estimates for the predictive equation were obtained using least-squares linear regression.

  16. Quantum Cascade Lasers (QCLs) for standoff explosives detection : LDRD 138733 final report.

    SciTech Connect

    Theisen, Lisa Anne; Linker, Kevin Lane

    2009-09-01

    Continued acts of terrorism using explosive materials throughout the world have led to great interest in explosives detection technology, especially technologies that have a potential for remote or standoff detection. This LDRD was undertaken to investigate the benefit of the possible use of quantum cascade lasers (QCLs) in standoff explosives detection equipment. Standoff detection of explosives is currently one of the most difficult problems facing the explosives detection community. Increased domestic and troop security could be achieved through the remote detection of explosives. An effective remote or standoff explosives detection capability would save lives and prevent losses of mission-critical resources by increasing the distance between the explosives and the intended targets and/or security forces. Many sectors of the US government are urgently attempting to obtain useful equipment to deploy to our troops currently serving in hostile environments. This LDRD was undertaken to investigate the potential benefits of utilizing quantum cascade lasers (QCLs) in standoff detection systems. This report documents the potential opportunities that Sandia National Laboratories can contribute to the field of QCL development. The following is a list of areas where SNL can contribute: (1) Determine optimal wavelengths for standoff explosives detection utilizing QCLs; (2) Optimize the photon collection and detection efficiency of a detection system for optical spectroscopy; (3) Develop QCLs with broader wavelength tunability (current technology is a 10% change in wavelength) while maintaining high efficiency; (4) Perform system engineering in the design of a complete detection system and not just the laser head; and (5) Perform real-world testing with explosive materials with commercial prototype detection systems.

  17. MOUNT JEFFERSON PRIMITIVE AREA, OREGON.

    USGS Publications Warehouse

    Walker, George W.; Pattee, Eldon C.

    1984-01-01

    Mineral and reconnaissance geothermal surveys of the Mount Jefferson Primitive Area in the Cascade Range of Oregon indicate little likelihood that metallic or nonmetallic mineral or energy resources exist in the area. Several mining claims, presumably located for gold, are present, but analyses of samples from the claims failed to detect the presence of gold or other valuable metals. Rock for construction purposes is abundantly present, but better and more accessible deposits are available in adjacent areas.

  18. Cascade Harvest’ red raspberry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cascade Harvest’ is a new floricane fruiting raspberry cultivar (Rubus idaeus L.) jointly released by Washington State University (WSU), Oregon State University (OSU) and the U.S. Department of Agriculture (USDA). ‘Cascade Harvest’ produces a high yield of large, firm fruit suited to machine harves...

  19. Simulation of water available for runoff in clearcut forest openings during rain-on-snow events in the western Cascade Range of Oregon and Washington

    USGS Publications Warehouse

    van Heeswijk, Marijke; Kimball, J.S.; Marks, Danny

    1996-01-01

    Rain-on-snow events are common on mountain slopes within the transient-snow zone of the Pacific Northwest. These events make more water available for runoff than does precipitation alone by melting the snowpack and by adding a small amount of condensate to the snowpack. In forest openings (such as those resulting from clearcut logging), the amount of snow that accumulates and the turbulent- energy input to the snowpack are greater than below forest stands. Both factors are believed to contribute to a greater amount of water available for runoff during rain-on-snow events in forest openings than forest stands. Because increased water available for runoff may lead to increased downstream flooding and erosion, knowledge of the amount of snowmelt that can occur during rain on snow and the processes that control snowmelt in forest openings is useful when making land-use decisions. Snow accumulation and melt were simulated for clearcut conditions only, using an enery- balance approach that accounts for the most important energy and mass exchanges between a snowpack and its environment. Meteorological measurements provided the input for the simulations. Snow accumulation and melt were not simulated in forest stands because interception of precipitation processes are too complex to simulate with a numerical model without making simplifying assumptions. Such a model, however, would need to be extensively tested against representative observations, which were not available for this study. Snowmelt simulated during three rain-on-snow events (measured in a previous study in a clearcut in the transient-snow zone of the H.J. Andrews Experimental Forest in Oregon) demonstrated that melt generation is most sensitive to turbulent- energy exchanges between the air and the snowpack surface. As a result, the most important climate variable that controls snowmelt is wind speed. Air temperature, however, is a significant variable also. The wind speeds were light, with a maximum of 3

  20. Public health assessment for McCormick and Baxter Creosoting Company (Portland), Portland, Multnomah County, Oregon, Region 10. Cerclis No. ORD009020603. Final report

    SciTech Connect

    1995-06-13

    The McCormick and Baxter Creosoting site is located on the Willamette River in Portland, Oregon. ATSDR considers the site to have been a public health hazard for former plant workers because of past ingestion exposure to arsenic, creosote, pentachlorophenol, polychlorinated dibenzodioxins, and dibenzofurans at levels of public health concern. The site also poses an ongoing and future public health hazard because people might encounter hazardous chemicals along the shoreline on or near the site at levels that can damage the skin, as was reported to have happened to two boys. Finally, dioxin levels would pose a public health hazard if people subsist on crayfish and suckers contaminated with polychlorinated dibenzodioxins and dibenzofurans.

  1. Public health assessment for Reynolds Metals Company, Troutdale, Multnomah County, Oregon, Region 10. Cerclis No. ORD009412677. Final report

    SciTech Connect

    1997-01-14

    The Reynolds Metals Company in Troutdale, Oregon, is a primary aluminum plant. When operating, the plant produced wastes that were contaminated with aluminum, mercury, fluoride, polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and cyanide. Studies are currently underway to determine the extent of environmental contamination and subsequent clean-up efforts which will be required. People may be exposed to contaminated soils and sediments in the area bordering the Columbia and Sandy rivers. Contamination at the site may have contributed to contamination of fish in the Columbia River, although it is difficult to determine what effect the site may have. Workers at the Reynolds site may also be exposed to contaminated soils and sediments, particularly those workers who are involved in outdoor activities.

  2. Oregon Fires

    Atmospheric Science Data Center

    2014-05-15

    article title:  Smoke Plumes from the B&B Complex Fires, Oregon     ... The results indicate that the tops of the two main plumes originating from the B&B complex differ in altitude by about 1-2 ... The  animation  depicts a "multi-angle fly-over" of the plumes, and was generated using red-band data from MISR's vertical and ...

  3. Workforce: Oregon

    ERIC Educational Resources Information Center

    Western Interstate Commission for Higher Education, 2006

    2006-01-01

    This fact sheet states that in 2006, a good education is no longer just a way for an individual to get ahead. It is also the best way a state can get ahead -- and therefore a real economic priority. A state must ensure that all of its citizens have access to a college education. In Oregon, a state recovering from the 2000-03 recession, the demand…

  4. Wildlife and Wildlife Habitat Loss Assessment at Green Peter-Foster Project; Middle Fork Santiam River, Oregon, 1985 Final Report.

    SciTech Connect

    Noyes, J.H.

    1986-02-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Green Peter-Foster Dam and Reservoir Project on the Middle Fork Santiam River, Oregon, to determine losses or gains resulting from the development and operation of the hydroelectric related components of the project. Preconstruction, postconstruction, and recent vegetation cover types at the project site were mapped based on aerial photographs from 1955, 1972, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Eleven wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Green Peter-Foster Project extensively altered or affected 7873 acres of land and river in the Santiam River drainage. Impacts to wildlife centered around the loss of 1429 acres of grass-forb vegetation, 768 acres of shrubland, and 717 acres of open conifer forest cover types. Impacts resulting from the Green Peter-Foster Project included the loss of critical winter range for black-tailed deer and Roosevelt elk, and the loss of year-round habitat for deer, upland game birds, river otter, beaver, pileated woodpecker, and many other wildlife species. Bald eagle and osprey were benefited by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Green Peter-Foster Project. Losses or gains in the potential of the habitat to support wildlife will exist over the life of the project.

  5. Wildlife and Wildlife Habitat Loss Assessment at Dexter Dam and Reservoir Project, Middle Fork Willamette River, Oregon, 1985 Final Report.

    SciTech Connect

    Noyes, J.H.

    1985-09-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Dexter Dam and Reservoir Project on the Middle Fork Willamette River, Oregon, to determine losses or gains resulting from the development and operation of the project. Preconstruction, post-construction, and recent vegetation cover types of the project site were mapped based on aerial photographs from 1944, 1956, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Fifteen wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Dexter Project extensively altered or affected 4662 acres of land and river in the Middle Fork Willamette River drainage. Impacts to wildlife centered around the loss of 445 acres of riparian habitat. Impacts resulting from the Dexter Project included the loss of year-round habitat for black-tailed deer, red fox, mink, beaver, western gray squirrel, ruffed grouse, ring-necked pheasant, California quail, wood duck and nongame species. Bald eagle, osprey, and greater scaup were benefitted by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Dexter Project. Losses or gains in the potential of the habitat to support wildlife will exist over the life of the project.

  6. LDRD final report on high power broadly tunable Mid-IR quantum cascade lasers for improved chemical species detection.

    SciTech Connect

    Wanke, Michael Clement; Hudgens, James J.; Fuller, Charles T.; Samora, Sally; Klem, John Frederick; Young, Erik W.

    2006-01-01

    The goal of our project was to examine a novel quantum cascade laser design that should inherently increase the output power of the laser while simultaneously providing a broad tuning range. Such a laser source enables multiple chemical species identification with a single laser and/or very broad frequency coverage with a small number of different lasers, thus reducing the size and cost of laser based chemical detection systems. In our design concept, the discrete states in quantum cascade lasers are replaced by minibands made of multiple closely spaced electron levels. To facilitate the arduous task of designing miniband-to-miniband quantum cascade lasers, we developed a program that works in conjunction with our existing modeling software to completely automate the design process. Laser designs were grown, characterized, and iterated. The details of the automated design program and the measurement results are summarized in this report.

  7. Computer-Assisted Instruction Adult Literacy Workshop. A 310/Special Demonstration Project, 1986-87 (Corvallis, Oregon, August 25-27, 1986). Final Report.

    ERIC Educational Resources Information Center

    Vanis, Mary I.; Gesin, Janet

    In order to provide the personnel of Rio Salado Community College's Adult Basic Education Program (RSCC/ABE) with the most up-to-date experience in software selection and usage, a proposal was written for two persons to attend the Computer-Assisted Instruction Adult Literacy Workshop at Oregon State University, which afforded participants an…

  8. 4-wave mixing for phase-matching free nonlinear optics in quantum cascade structures : LDRD 08-0346 final report.

    SciTech Connect

    Chow, Weng Wah; Wanke, Michael Clement; Allen, Dan G.; Yang, Zhenshan; Waldmueller, Ines

    2010-10-01

    Optical nonlinearities and quantum coherences have the potential to enable efficient, high-temperature generation of coherent THz radiation. This LDRD proposal involves the exploration of the underlying physics using intersubband transitions in a quantum cascade structure. Success in the device physics aspect will give Sandia the state-of-the-art technology for high-temperature THz quantum cascade lasers. These lasers are useful for imaging and spectroscopy in medicine and national defense. Success may have other far-reaching consequences. Results from the in-depth study of coherences, dephasing and dynamics will eventually impact the fields of quantum computing, optical communication and cryptology, especially if we are successful in demonstrating entangled photons or slow light. An even farther reaching development is if we can show that the QC nanostructure, with its discrete atom-like intersubband resonances, can replace the atom in quantum optics experiments. Having such an 'artificial atom' will greatly improve flexibility and preciseness in experiments, thereby enhancing the discovery of new physics. This is because we will no longer be constrained by what natural can provide. Rather, one will be able to tailor transition energies and optical matrix elements to enhance the physics of interest. This report summarizes a 3-year LDRD program at Sandia National Laboratories exploring optical nonlinearities in intersubband devices. Experimental and theoretical investigations were made to develop a fundamental understanding of light-matter interaction in a semiconductor system and to explore how this understanding can be used to develop mid-IR to THz emitters and nonclassical light sources.

  9. Research/Evaluate Restoration of NE Oregon Streams: Effects of Livestock Exclosures (Corridor Fencing) on Riparian Vegetation, Stream Geomorphic Features and Fish Populations; Final Report 2002.

    SciTech Connect

    Kauffman, J. Boone

    2002-09-17

    associated riparian functions; (2) a means of determining rates of aquatic habitat improvement; and (3) a basis for projecting future trends of habitat recovery. The proposed research is intended to provide an improved understanding of both the effects and effectiveness of a commonly used habitat enhancement approach in the upper Columbia River Basin. This is the exclusion of domestic livestock from streamside communities and streams via corridor fencing (exclosures). This final report is broken into three separate chapters. The first chapter covers the vegetation change associated with livestock exclusion. The second chapter focuses on the physical geomorphic changes to the streambank and channel. The final chapter covers the response of salmonids and warmwater fishes to livestock exclusion at the spatial scales of exclosures as is commonly constructed today. It is expected that this study will provide an important scientific basis, currently lacking, for understanding the ecological principles of restoration/enhancement of sustainable aquatic habitats for salmonids. Thus, the results of this work are likely to have important ramifications for habitat improvement projects within and beyond the general geographic region of northeastern Oregon.

  10. A new species of Fragaria (Roseaceae) from Oregon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new species Fragaria cascadensis Hummer endemic to the western high Cascade Mountains in Oregon, United States, is described. Fragaria cascadensis, a decaploid, is similar to F. virginiana subsp. platypetala (Rydbert) Staudt (octoploid) but with some characters like those of F. vesca subsp. vesca ...

  11. Geothermal segmentation of the Cascade Range in the USA

    USGS Publications Warehouse

    Guffanti, Marianne; Muffler, L.J.; Mariner, R.H.; Sherrod, D.R.; Smith, James G.; Blackwell, D.D.; Weaver, C.S.

    1990-01-01

    Characteristics of the crustal thermal regime of the Quaternary Cascades vary systematically along the range. Spatially congruent changes in volcanic vent distribution, volcanic extrusion rate, hydrothermal discharge rate, and regional conductive heat flow define 5 geothermal segments. These segments are, from north to south: (1) the Washington Cascades north of Mount Rainier, (2) the Cascades from Mount Rainier to Mount Hood, (3) the Oregon Cascades from south of Mount Hood to the California border, (4) northernmost California, including Mount Shasta and Medicine Lake volcano, and (5) the Lassen region of northern California. This segmentation indicates that geothermal resource potential is not uniform in the Cascade Range. Potential varies from high in parts of Oregon to low in Washington north of Mount Rainier.

  12. Oregon Trail Teacher's Guide.

    ERIC Educational Resources Information Center

    National Park Service (Dept. of Interior), Washington, DC.

    The road to the U.S. West, known as the Oregon Trail, had its first real traffic in 1843 when a group of about 1000 people left Independence, Missouri and traveled west. This teacher's guide contains short descriptions of the main landmarks and stopping points that were significant along the northwest portion of the Oregon Trail. The guide is…

  13. Biological science in Oregon

    USGS Publications Warehouse

    Thorsteinson, Lyman

    2005-01-01

    Fishing is an important part of Oregon's culture. The Western Fisheries Research Center (WFRC) has been conducting research in Oregon for many years to provide information that can be used by managers to help keep fish and other parts of the ecosystem healthy. Below are examples of some of WFRC's studies.

  14. Newberry Volcano (Oregon, USA) Revised

    NASA Astrophysics Data System (ADS)

    Donnelly-Nolan, J. M.; Grove, T. L.

    2015-12-01

    Newberry Volcano (NV) located E. of the Cascades arc axis is often interpreted as (1) a High Lava Plains (NW Basin & Range -- B&R) volcano hosting rhyolites generated by a traveling plume, (2) a shield volcano built of basalt, or (3) an enigma unrelated to the adjacent High Cascades. Recent work shows that these interpretations are incorrect. Petrologic, geochemical, isotopic, drill hole, & seismic data indicate that the NV magma system results from arc-related processes at the NW corner of the B&R, where this major extensional province impinges on the Cascades arc. NV rhyolites are geochemically distinct and lower in SiO2 than those to the east where a general NW-younging trend of rhyolite ages has suggested a traveling hotspot -- a consequence instead of propagation of B&R extension. NV lies ~90 km above the downgoing slab based on seismic evidence (McCrory et al. 2012), ~15 km deeper than under the Three Sisters (TS) volcanic complex 60 km to the NW on the arc axis. NV & TS exhibit a range of compositions and both have generated rhyodacite with unusually high Na2O contents (~7 wt. %; Mandler et al. 2014), exhibiting similar petrogenetic processes. Silicic lavas and tuffs of the caldera-centric NV make up a significant component (~20% of drill core) of its 600 km3, although basaltic andesite is the dominant composition. Basalts of calcalkaline affinity erupted on the edifice as recently as early Holocene time. These basalts contain petrologic evidence for high pre-eruptive H2O contents, have strong arc-like trace element signatures, and are isotopically Cascadian and distinct from basalts to the east in the B&R that have much higher 3/4He (Graham et al. 2009). NV is one variety of Cascades arc volcano among which are a range of stratovolcanoes including Mt. Baker (15 km3) and Mt. Shasta (500 km3), a Holocene caldera (Crater Lake), and the many basaltic andesite shield volcanoes that make up most of the Oregon High Cascades.

  15. Assessment of Present Anadromous Fish Production Facilities in the Columbia River Basin, Oregon Department of Fish and Wildlife Hatcheries, Final Report.

    SciTech Connect

    Delarm, Michael R.; Smith, Robert Z.

    1990-07-01

    The goal of this report is to document current production practices for hatcheries which rear anadromous fish in the Columbia River Basin and to identify those facilities where production can be increased. A total of 85 hatchery and satellite facilities operated by the Idaho Department of Fish and Game, Oregon Department of Fish and Game, US Fish and Wildlife Service, Washington Department of Wildlife, and Washington Department of Fisheries were evaluated. The years 1985 to 1987 were used in this evaluation. During those years, releases averaged 143,306,596 smolts weighing 7,693,589 pounds. A total of 48 hatchery or satellite facilities were identified as having expansion capability. They were estimated to have the potential for increasing production by an 84,448,000 smolts weighing 4,853,306 pounds. 2 refs, 25 figs.

  16. Installation-restoration program. Phase 2. Confirmation/quantification. Stage 1 for Kingsley Field, Oregon. Final technical report, September 1983-June619 85

    SciTech Connect

    Greiling, R.W.; Peshkin, R.L.

    1985-06-15

    A field investigation was performed at Kingsley Field, Oregon to determine if environmental contamination has resulted from past waste disposal practices in a closed landfill. Site specific activities included an electrical resistivity study to determine the presence and directional flow of groundwater, installation of monitoring wells adjacent to the landfill, and seasonal sampling of groundwater from the two landfill monitoring wells and two domestic water supply wells on nearby off-base properties. Study findings suggest that landfill leachate may be mobilizing and migrating away from the landfill through groundwater transport. However, groundwater quality remains very good in both domestic wells tested and, except for total iron, good in on-base monitoring wells. There are no contaminants yet detected in the groundwater which would threaten public or environmental health. A long-term monitoring program is recommended so as to detect changes in groundwater flow or quality.

  17. Evaluation of 1991-1992 Brood Overwinter-Reared Coho Released from Net Pens in Youngs Bay, Oregon : Final Completion Report Youngs Bay Terminal Fishery Project.

    SciTech Connect

    Hirose, Paul S.

    1997-01-01

    Funding from Bonneville Power Administration was provided to the Oregon Department of Fish and Wildlife and the Clatsop County Economic Development Council`s Fisheries Project to identify and develop terminal fishing opportunities. The 1991 and 1992 brood fingerling coho from Oregon Department of Fish and Wildlife hatcheries were successfully reared during the winter period to smolt stage in Youngs Bay utilizing floating net pens. Based on coded-wire-tag recoveries during 1991--93 from 2-week net-pen acclimation releases, total accountability of coho adults averaged 40,540 fish, with the Youngs Bay commercial harvest accounting for 39%. With reduced ocean harvest impacts during 1994 and 1995, 92% of 51,640 coho in 1994 and 68% of 23,599 coho in 1995 (based on coded-wire-tag recoveries) were accounted for in the Youngs Bay commercial fishery for combined 2-week and overwinter acclimation net-pen releases. Overwinter net-pen acclimation coho accounted for 35,063 and 15,775 coho adults in 1994 and 1995 with 93% and 68% accountable in the Youngs Bay commercial harvest. Based on coded-wire-tag recoveries, less than 1% of the adults resulting from releases at Youngs Bay net pens strayed to hatcheries, while none were recovered on spawning ground surveys during 1991--95. The highest survival rates were observed for 1991 and 1992 brood overwinter coho released in early May. Time of release, not rearing strategy, appears to be the determining factor affecting survival in Youngs Bay.

  18. Volatile emissions from Cascade cinder cone eruptions: Implications for future hazard assessments in the Central and Southern Cascades

    NASA Astrophysics Data System (ADS)

    Walsh, L. K.; Wallace, P. J.; Cashman, K. V.

    2012-12-01

    An abundance of hazardous effects including ash fall out, basaltic lava flows and poisonous volcanic gas have been documented at active volcanic centers (e.g. Auckland Volcanic Field, New Zealand; Bebbington and Cronin 2011) and have been inferred using tools such as geologic mapping and geochemical analyses for prehistoric eruptions (e.g. Cerro Negro, Nicaragua; Hill et al. 1995; McKnight and Williams 1997). The Cascades volcanic history is also dominated by prehistoric eruptions; however the associated hazards have yet to be studied in-depth. Short recurrence rates of cinder cone volcanism (1x10-5 to 5x10-4 events/yr; Smid et al. 2009) likely intensify the probability of human experience with cinder cone hazards. Hence, it is important to understand the effects that cinder cone volcanism can have on communities near the Cascades. In this study, we estimate volatile fluxes of prehistoric Cascade cinder cone eruptions by analyzing olivine-hosted melt inclusions and rapidly quenched tephra matrix glass. The melt inclusions provide pre-eruptive volatile concentrations whereas tephra groundmass glass provides post-eruptive volatile concentrations. By comparing initial and final concentrations we can determine the amounts of sulfur, chlorine and fluorine released into the atmosphere. We have analyzed S, Cl and F concentrations in melt inclusions from cinder cones in the Central Oregon Cascades (Collier Cone, Yapoah Crater, Four-in-One Fissure, Garrison Butte) and in Northern California near Mt. Lassen (Cinder Cone, Basalt of Old Railroad Grade, Basalt of Highway 44). Analyses of volatiles in melt inclusions and matrix glasses were done using the Cameca SX100 electron microprobe at the University of Oregon. Melt inclusions and matrix glass were run under 15kV, 50nA, and 10μm-beam conditions. For F analyses, a use of an LTAP crystal and relatively long counting times (160 sec. on peak) resulted in good analytical precision. Preliminary results for melt inclusions from

  19. Newberry Volcano—Central Oregon's Sleeping Giant

    USGS Publications Warehouse

    Donnelly-Nolan, Julie M.; Stovall, Wendy K.; Ramsey, David W.; Ewert, John W.; Jensen, Robert A.

    2011-01-01

    Hidden in plain sight, Oregon's massive Newberry Volcano is the largest volcano in the Cascades volcanic arc and covers an area the size of Rhode Island. Unlike familiar cone-shaped Cascades volcanoes, Newberry was built into the shape of a broad shield by repeated eruptions over 400,000 years. About 75,000 years ago a major explosion and collapse event created a large volcanic depression (caldera) at its summit. Newberry last erupted about 1,300 years ago, and present-day hot springs and geologically young lava flows indicate that it could reawaken at any time. Because of its proximity to nearby communities, frequency and size of past eruptions, and geologic youthfulness, U.S. Geological Survey scientists are working to better understand volcanic activity at Newberry and closely monitor the volcano for signs of unrest.

  20. Fires Scorch Oregon

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On Wednesday, August 7, 2002, two large Oregon fires merged into a single massive fire of more than 333,000 acres. In southwest Oregon, the Sour Biscuit fire on the Oregon-California state line, and the larger Florence Fire to its north closed the gap between them and created an enormous blaze that retained the name Biscuit Fire. The fire has burned over the Oregon state line into California. This image of the fires and thick smoke was captured by the landsat 7 Enhanced Thematic Mapper Plus on August 14, 2002. In this false-color iamge, vegetation is green, burned areas are deep magenta, actively burning fire is bright pink, and smoke is blue. Credit:Image provided by the USGS EROS Data Center Satellite Systems Branch.

  1. Decline and present status of breeding peregrine falcons in Oregon

    USGS Publications Warehouse

    Henny, C.J.; Nelson, M.W.

    1981-01-01

    In 1979, only one Peregrine Falcon pair (they fledged two young) and a single adult male were located. A population decline east of the Cascades began in rhe 1930's, probably resulting from a climatic change (drought); however, a statewide decline began in the late 1940's, accelerated in the 1950's, and by the 1960's few pairs remained. The statewide decline closely paralleled the pattern of DDT use. Furthermore, DDE was found in membranes of peregrine eggs from nearby California as early as 1948. Moreover, an unhatched Peregrine Falcon egg found at the Oregon eyrie in 1979 contained 19 ppm DDE and lesser amounts of other contaminants. The eggshell was 19% thinner than normaL The future of the nearly extirpated Peregrine Falcon in Oregon remains uncertain in spite of improved water and habitat conditions in eastern Oregon. Reintroduction of captive-bred birds seems to be the last hope.

  2. Cascading Effects Following Intervention

    PubMed Central

    Patterson, Gerald R.; Forgatch, Marion S.; DeGarmo, David S.

    2010-01-01

    Four different sources for cascade effects were examined using 9-year process and outcome data from a randomized controlled trial (RCT) of a preventive intervention using Parent Management Training – Oregon Model (PMTO™). The social interaction learning (SIL) model of child antisocial behavior serves as one basis for predicting change. A second source addresses the issue of comorbid relationships among clinical diagnoses. The third source, collateral changes, describes events in which changes in one family member correlate with changes in another. The fourth component is based on the long-term effects of reducing coercion and increasing positive interpersonal processes within the family. New findings from the 9-year follow-up show that mothers experienced benefits as measured by standard of living (i.e., income, occupation, education, and financial stress) and frequency of police arrests. It is assumed that PMTO reduces the level of coercion, which sets the stage for a massive increase in positive social interaction. In effect, PMTO alters the family environment and thereby opens doors to healthy new social environments. PMID:20883592

  3. Wildlife and Wildlife Habitat Loss Assessment at Cougar Dam and Reservoir Project, South Fork McKenzie River, Oregon; 1985 Final Report.

    SciTech Connect

    Noyes, J.H.

    1985-09-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Cougar Dam and Reservoir Project on the South Fork McKenzie River, Oregon, to determine losses or gains resulting from the development and operation of the hydroelectric related components of the project. Preconstruction, postconstruction, and recent vegetation cover types of the project site were mapped based on aerial photographs from 1953, 1965, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Fifteen wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Cougar Project extensively altered or affected 3096 acres of land and river in the McKenzie River drainage. Impacts to wildlife centered around the loss of 1587 acres of old-growth conifer forest and 195 acres of riparian hardwoods. Impacts resulting from the Cougar Project included the loss of winter range for Roosevelt elk, and the loss of year-round habitat for black-tailed deer, black bear, cougar, river otter, beaver, spotted owl, and other nongame species. Bald eagle and osprey were benefited by an increase in foraging habitat. The potential of the effected area to support wildlife was greatly altered as a result of the Cougar Project. Loses or grains in the potential of the habitat to support wildlife will exist over the life of the project.

  4. Wildlife and Wildlife Habitat Loss Assessment at Hills Creek Dam and Reservoir Project, Middle Fork Willamette River, Oregon, 1985 Final Report.

    SciTech Connect

    Noyes, J.H.

    1985-09-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Hills Creek Dam and Reservoir Project on the Middle Fork Willamette River, Oregon, to determine losses or gains resulting from the development and operation of the hydroelectric related components of the project. Preconstruction, postconstruction, and recent vegetation cover types of the project site were mapped based on aerial photographs from 1944, 1964, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Fifteen wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Hills Creek Project extensively altered or affected 4662 acres of land and river in the Middle Fork Willamette River drainage. Impacts to wildlife centered around the loss of 2694 acres of old-growth forest and 207 acres of riparian habitat. Impacts resulting from the Hills Creek Project included the loss of winter range for Roosevelt elk, and the loss of year-round habitat for black-tailed deer, black bear, cougar, river otter, beaver, ruffed grouse, spotted owl, and other nongame species. Bald eagle and osprey were benefited by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Hills Creek Project, losses or gains in the potential of the habitat to support wildlife will exist over the life of the project.

  5. Wildlife and Wildlife Habitat Loss Assessment at Detroit Big Cliff Dam and Reservoir Project, North Santiam River, Oregon, 1985 Final Report.

    SciTech Connect

    Noyes, J.H.

    1985-02-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Detroit/Big Cliff Dam and Reservoir Project (Detroit Project) on the North Santiam River, Oregon, to determine losses or gains resulting from the development and operation of the hydroelectric-related components of the project. Preconstruction, postconstruction, and recent vegetation cover types at the project site were mapped based on aerial photographs from 1939, 1956, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each time period were determined. Ten wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Detroit Project extensively altered or affected 6324 acres of land and river in the North Santiam River drainage. Impacts to wildlife centered around the loss of 1,608 acres of conifer forest and 620 acres of riparian habitat. Impacts resulting from the Detroit Project included the loss of winter range for black-tailed deer and Roosevelt elk, and the loss of year-round habitat for deer, river otter, beaver, ruffed grouse, pileated woodpecker, spotted owl, and many other wildlife species. Bald eagle and osprey were benefited by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Detroit Project. Losses or gains in the potential of the habitat to support wildlife will exist over the life of the project.

  6. Wildlife and Wildlife Habitat Loss Assessment Summary at Lookout Point Dam and Reservoir Project, Middle Fork Willamette River, Oregon; 1985 Final Report.

    SciTech Connect

    Bedrossian, K.L.; Noyes, J.H.

    1985-09-01

    A habitat based assessment was conducted of the US Army Corps of Engineers' Lookout Point Dam and Reservoir Project on the Middle Fork Willamette River, Oregon, to determine losses or gains resulting from development and operation of the hydroelectric related components of the project. Preconstruction, postconstruction, and recent vegetation cover types of the project site were mapped based on aerial photographs from 1944, 1956, and 1979, respectively. Vegetation cover types were identified within the affected area and acreages of each type at each period were determined. Seventeen wildlife target species were selected to represent a cross-section of species groups affected by the project. An interagency team evaluated the suitability of the habitat to support the target species at each time period. An evaluation procedure which accounted for both the quantity and quality of habitat was used to aid in assessing impacts resulting from the project. The Lookout Point Project extensively altered or affected 6790 acres of land and river in the Middle Fork Willamette River drainage. Impacts to wildlife centered around the loss of 724 acres of old-growth conifer forest and 118 acres of riparian habitat. Impacts resulting from the Lookout Point Project included the loss of winter range for Roosevelt elk, and the loss of year-round habitat for black-tailed deer, western gray squirrel, red fox, mink, beaver, ruffed grouse, ring-necked pheasant, California quail, spotted owl, and other nongame species. Bald eagle and osprey were benefitted by an increase in foraging habitat. The potential of the affected area to support wildlife was greatly altered as a result of the Lookout Point Project. Loses or gains in the potential of the habitat to support wildlife will exist over the life of the project.

  7. Changes in Habitat and Populations of Steelhead Trout, Coho Salmon, and Chinook Salmon in Fish Creek, Oregon; Habitat Improvement, 1983-1987 Final Report.

    SciTech Connect

    Everest, Fred H.; Hohler, David B.; Cain, Thomas C.

    1988-03-01

    Construction and evaluation of salmonid habitat improvements on Fish Creek, a tributary of the upper Clackamas River, began in 1982 as a cooperative venture between the Estacada Ranger District, Mt. Hood National Forest, and the Anadromous Fish Habitat Research Unit of the Pacific Northwest Research Station (PNW), USDA Forest Service. The project was initially conceived as a 5-year effort (1982-1987) to be financed with Forest Service funds. The habitat improvement program and the evaluation of improvements were both expanded in mid-1983 when the Bonneville Power Administration (BPA) entered into an agreement with the Mt. Hood National Forest to cooperatively fund work on Fish Creek. Habitat improvement work in the basin is guided by the Fish Creek Habitat Rehabilitation-Enhancement Framework developed cooperatively by the Estacada Ranger District, the Oregon Department of Fish and Wildlife, and the Pacific Northwest Research Station. The framework examines potential factors limiting production of salmonids in the basin, and the appropriate habitat improvement measures needed to address the limiting factors. Habitat improvement work in the basin has been designed to: (1) improve quantity, quality, and distribution of spawning habitat for coho and spring chinook salmon and steelhead trout, (2) increase low flow rearing habitat for steelhead trout and coho salmon, (3) improve overwintering habitat for coho salmon and steelhead trout, (4) rehabilitate riparian vegetation to improve stream shading to benefit all species, and (5) evaluate improvement projects from a drainage wide perspective. The objectives of the evaluation include: (1) Drainage-wide evaluation and quantification of changes in salmonid spawning and rearing habitat resulting from a variety of habitat improvements. (2) Evaluation and quantification of changes in fish populations and biomass resulting from habitat improvements. (3) Benefit-cost analysis of habitat improvements.

  8. Chemical and isotopic data for water from thermal springs and wells of Oregon

    SciTech Connect

    Mariner, R.H.; Swanson, J.R.; Orris, G.J.; Presser, T.S.; Evans, W.C.

    1981-01-01

    The thermal springs of Oregon range in composition from dilute NaHCO/sub 3/ waters to moderately saline CO/sub 2/-charged NaCl-NaHCO/sub 3/ waters. Most of the thermal springs are located in southeastern or southcentral Oregon, with a few in northeastern Oregon and near the contact of the Western Cascades with the High Cascades. Thermal springs in the central and northern parts of the Cascades generally issue moderately saline NaCl waters. Farther south in the Cascades, the thermal waters are high in CO/sub 2/ as well as chloride. Most thermal springs in northeastern Oregon issue dilute NaHCO/sub 3/ waters of high pH (>8.5). These waters are similar to the thermal waters which issue from the Idaho batholith, farther east. Most of the remaining thermal waters are Na mixed-anion waters. Based on the chemical geothermometers, Mickey Srpings, Hot Borax Lake, Alvord Hot Springs, Neal Hot Springs, Vale Hot Springs, Crump Well, Hunters (Lakeview) Hot Springs, and perhaps some of the springs in the Cascades are associated with the highest temperature systems (>150/sup 0/C).

  9. Seasonal Agricultural Labor in Oregon.

    ERIC Educational Resources Information Center

    Oregon State Univ., Corvallis.

    Requested by the governor of Oregon, this 1968 report focuses on seasonal agricultural labor in Oregon. The task force, appointed by the president of Oregon State University, reported on the following areas: (1) the problem in terms of potential unionization, population trends, existing state programs and agencies for the migrants; (2) regulations…

  10. VNI version 4.1. Simulation of high-energy particle collisions in QCD: Space-time evolution of e{sup +}e{sup {minus}}...A + B collisions with parton-cascades, cluster-hadronization, final-state hadron cascades

    SciTech Connect

    Geiger, K.; Longacre, R.; Srivastava, D.K.

    1999-02-01

    VNI is a general-purpose Monte-Carlo event-generator, which includes the simulation of lepton-lepton, lepton-hadron, lepton-nucleus, hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions. It uses the real-time evolution of parton cascades in conjunction with a self-consistent hadronization scheme, as well as the development of hadron cascades after hadronization. The causal evolution from a specific initial state (determined by the colliding beam particles) is followed by the time-development of the phase-space densities of partons, pre-hadronic parton clusters, and final-state hadrons, in position-space, momentum-space and color-space. The parton-evolution is described in terms of a space-time generalization of the familiar momentum-space description of multiple (semi)hard interactions in QCD, involving 2 {r_arrow} 2 parton collisions, 2 {r_arrow} 1 parton fusion processes, and 1 {r_arrow} 2 radiation processes. The formation of color-singlet pre-hadronic clusters and their decays into hadrons, on the other hand, is treated by using a spatial criterion motivated by confinement and a non-perturbative model for hadronization. Finally, the cascading of produced prehadronic clusters and of hadrons includes a multitude of 2 {r_arrow} n processes, and is modeled in parallel to the parton cascade description. This paper gives a brief review of the physics underlying VNI, as well as a detailed description of the program itself. The latter program description emphasizes easy-to-use pragmatism and explains how to use the program (including simple examples), annotates input and control parameters, and discusses output data provided by it.

  11. The Impact of Geologic Heterogeneity on Stream Temperatures in the McKenzie River, Oregon: Implications for Climate Change and Land Use

    NASA Astrophysics Data System (ADS)

    Farrell, M. J.; Tague, C.; Grant, G. E.; Jefferson, A.; Lewis, S. L.

    2004-05-01

    Stream temperature is recognized as an important component of water quality for aquatic life; less well understood is how the regional geologic setting controls stream temperature regimes. The McKenzie River watershed in western Oregon exhibits significant differences in geology and rock age between two contiguous volcanic provinces: the Plio-Pleistocene High Cascades and the Tertiary Western Cascades. Streamflow regimes from spring-fed streams originating in basins underlain by fractured and permeable High Cascade rocks have more gradual recession curves and higher baseflow unit discharges than surface-flow dominated Western Cascade streams. We examined corresponding differences in temperature between these two regions. Using spatial regime regressions, we analyzed stream temperature data from 56 sites within the McKenzie watershed. Streams with a majority contributing area composed of High Cascade rocks are colder and are less sensitive to air temperature fluctuations than Western Cascade streams during the July-September baseflow period. Based on site-specific air-stream temperature regressions, High Cascade spring-fed streams are less likely, given future air temperature increases, to exceed EPA stream temperature recommendations for chinook salmon and bull trout habitat. Finally, stream temperature for four surface-dominated and four spring-fed streams was modeled using a predictive heat budget model \\(SSTemp\\) to examine potential effects of a clearcut on stream temperatures. Model results show that spring-fed streams were less affected by this land use simulation than surface-dominated streams. However, slight perturbations to spring-fed streams may have cumulative effects on downstream reaches.

  12. Turbine vane external heat transfer. Volume 2. Numerical solutions of the Navier-Stokes equations for two- and three-dimensional turbine cascades with heat transfer. Final report

    SciTech Connect

    Yang, R.J.; Weinberg, B.C.; Shamroth, S.J.; Mcdonald, H.

    1985-07-01

    The application of the time-dependent ensemble-averaged Navier-Stokes equations to transonic turbine cascade flow fields was examined. In particular, efforts focused on an assessment of the procedure in conjunction with a suitable turbulence model to calculate steady turbine flow fields using an O-type coordinate system. Three cascade configurations were considered. Comparisons were made between the predicted and measured surface pressures and heat transfer distributions wherever available. In general, the pressure predictions were in good agreement with the data. Heat transfer calculations also showed good agreement when an empirical transition model was used. However, further work in the development of laminar-turbulent transitional models is indicated. The calculations showed most of the known features associated with turbine cascade flow fields. These results indicate the ability of the Navier-Stokes analysis to predict, in reasonable amounts of computation time, the surface pressure distribution, heat transfer rates, and viscous flow development for turbine cascades operating at realistic conditions.

  13. Oregon: Biscuit Wildfire

    Atmospheric Science Data Center

    2014-05-15

    ... Fire was the most expensive fire fighting effort in Oregon's history, with more than 6,000 personnel assisting the battle to suppress the ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  14. Oregon hydrologic landscape regions

    EPA Science Inventory

    Individuals who spend time working with streams intuitively come to understand that stream hydrologic and ecological characteristics are related to the attributes of the watersheds in which they occur. This is easy to see in Oregon with its large climatic and geologic variations ...

  15. Oregon State University

    ERIC Educational Resources Information Center

    Sanderson, Rebecca A.; Ketcham, Patricia L.

    2009-01-01

    Oregon State University (OSU) is located in Corvallis, a community of 53,000 people situated in the heart of the Willamette Valley between Portland and Eugene. Approximately 15,700 undergraduate and 3,400 graduate students, including 2,600 U.S. students of color and 950 international students, are currently enrolled at OSU across 11 academic…

  16. Oregon Social Sciences Standards.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    The study of the social sciences includes: history, civics, geography, and economics to prepare students for responsible citizenship. The Oregon state standards for social sciences sets out common curriculum goals, content standards, information for Benchmark 1 (grade three), Benchmark 2 (grade five), Benchmark 3 (grade eight), and Certificate of…

  17. The Oregon Walkabout

    ERIC Educational Resources Information Center

    Parnell, Dale

    1974-01-01

    Too often American schools aim to satisfy the self-actualizing and higher-level needs in Maslow's hierarchy, while ignoring survival and security needs. The new State curriculum seeks to correct that deficit. To graduate, an Oregon student in the Class of 1978 will be expected to demonstrate the competencies to function effectively on the job, as…

  18. Oregon's first wind park

    SciTech Connect

    Not Available

    1984-01-01

    The bringing on-line of the 1.25 MW wind park at Whiskey Run, Oregon, is reported. The park features twenty-five 50 KW wind turbine generators and is expected to produce about three million kilowatt-hours per year for the Pacific Power and Light system.

  19. OREGON ENVIRONMENTAL HEALTH PROFILE

    EPA Science Inventory

    In response to Executive Order 12898: Federal Actions to Address Environmental Justice in Minority and Low Income Populations, and in accordance with Title VI of the Civil Rights Act of 1964, this project will profile the state of Oregon to identify environmental justice communi...

  20. Arsenic Removal from Drinking Water by Point of Entry/Point of Use Adsorptive Media U.S. EPA Demonstration Project at Oregon Institute of Technology at Klamath Falls, OR - Final Performance Evaluation Report

    EPA Science Inventory

    This report documents the activities performed during and the results obtained from the arsenic removal treatment technology demonstration project at Oregon Institute of Technology (OIT) at Klamath Falls, OR. The objectives of the project were to evaluate: (1) the effectiveness...

  1. 76 FR 67205 - Notice of Intent To Prepare an Amendment to the Cascade-Siskiyou National Monument Resource...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... Bureau of Land Management Notice of Intent To Prepare an Amendment to the Cascade-Siskiyou National..., Oregon, intends to prepare an Environmental Assessment (EA) which will amend the 2008 Cascade-Siskiyou...-Siskiyou National Monument, announces the beginning of the scoping process, and seeks public input...

  2. An inverted AlGaAs/GaAs patterned-Ge tunnel junction cascade concentrator solar cell. Final subcontract report, 1 January 1991--31 August 1992

    SciTech Connect

    Venkatasubramanian, R.

    1993-01-01

    This report describes work to develop inverted-grown Al{sub 0.34}Ga{sub 0.66}As/GaAs cascades. Several significant developments are reported on as follows: (1) The AM1.5 1-sun total-area efficiency of the top Al{sub 0.34}Ga{sub 0.66}As cell for the cascade was improved from 11.3% to 13.2% (NREL measurement [total-area]). (2) The ``cycled`` organometallic vapor phase epitaxy growth (OMVPE) was studied in detail utilizing a combination of characterization techniques including Hall-data, photoluminescence, and secondary ion mass spectroscopy. (3) A technique called eutectic-metal-bonding (EMB) was developed by strain-free mounting of thin GaAs-AlGaAs films (based on lattice-matched growth on Ge substrates and selective plasma etching of Ge substrates) onto Si carrier substrates. Minority-carrier lifetime in an EMB GaAs double-heterostructure was measured as high as 103 nsec, the highest lifetime report for a freestanding GaAs thin film. (4) A thin-film, inverted-grown GaAs cell with a 1-sun AM1.5 active-area efficiency of 20.3% was obtained. This cell was eutectic-metal-bonded onto Si. (5) A thin-film inverted-grown, Al{sub 0.34}Ga{sub 0.66}As/GaAs cascade with AM1.5 efficiency of 19.9% and 21% at 1-sun and 7-suns, respectively, was obtained. This represents an important milestone in the development of an AlGaAs/GaAs cascade by OMVPE utilizing a tunnel interconnect and demonstrates a proof-of-concept for the inverted-growth approach.

  3. A field guide to Newberry Volcano, Oregon

    USGS Publications Warehouse

    Jenson, Robert A.; Donnelly-Nolan, Julie M.; McKay, Daniele

    2009-01-01

    Newberry Volcano is located in central Oregon at the intersection of the Cascade Range and the High Lava Plains. Its lavas range in age from ca. 0.5 Ma to late Holocene. Erupted products range in composition from basalt through rhyolite and cover ~3000 km2. The most recent caldera-forming eruption occurred ~80,000 years ago. This trip will highlight a revised understanding of the volcano's history based on new detailed geologic work. Stops will also focus on evidence for ice and flooding on the volcano, as well as new studies of Holocene mafic eruptions. Newberry is one of the most accessible U.S. volcanoes, and this trip will visit a range of lava types and compositions including tholeiitic and calc-alkaline basalt flows, cinder cones, and rhyolitic domes and tuffs. Stops will include early distal basalts as well as the youngest intracaldera obsidian flow.

  4. Fires Scorch Oregon

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In southwestern Oregon, the Florence Fire (north) and the Sour Biscuit Fire (south) continued to burn virtually out of control on July 21, 2002. Numerous evacuation notices have been issued for residents in the area as the fires remain difficult to control due to the steep, rugged terrain of the Klamath Mountains. This image is from the Landsat 5 Thematic Mapper. Credit:Image provided by the USGS EROS Data Center Satellite Systems Branch.

  5. Indians In Oregon Today. Oregon Middle School - High School Curriculum

    ERIC Educational Resources Information Center

    Pepper, Floy

    2004-01-01

    The main purpose of this publication is to provide current, accurate information to teachers and students about the Indian tribes living in the state of Oregon. Too often information about Indian tribes is stereotypic, inaccurate, and outdated. A number of Indian tribes have worked on the development of this document, using the "Oregon Indians:…

  6. Lyme Disease in Oregon

    PubMed Central

    Doggett, J. Stone; Kohlhepp, Sue; Gresbrink, Robert; Metz, Paul; Gleaves, Curt; Gilbert, David

    2008-01-01

    The incidence of Lyme disease in Oregon is calculated from cases reported to the Oregon State Health Division. We reviewed the exposure history of reported cases of Lyme disease and performed field surveys for infected Ixodes pacificus ticks. The incidence of Lyme disease correlated with the distribution of infected I. pacificus ticks. PMID:18448697

  7. Hispanics in Oregon's Workforce, 1998.

    ERIC Educational Resources Information Center

    Turner, Brenda; Wood, Mary

    This report describes the Latino workforce in Oregon, outlining employment, income, education, and unemployment data. A brief history of Hispanics in the state notes that most of Oregon's Hispanics are of Mexican origin and that the state's Hispanic population grew 66 percent between 1990 and 1997. The history of migrant agricultural labor in…

  8. STRAWBERRY MOUNTAIN WILDERNESS, OREGON.

    USGS Publications Warehouse

    Thayer, T.P.; Stotelmeyer, Ronald B.

    1984-01-01

    The Strawberry Mountain Wilderness extends 18 mi along the crest of the Strawberry Range and comprises about 53 sq mi in the Malheur National Forest, Grant County, Oregon. Systematic geologic mapping, geochemical sampling and detailed sampling of prospect workings was done. A demonstrated copper resource in small quartz veins averaging at most 0. 33 percent copper with traces of silver occurs in shear zones in gabbro. Two small areas with substantiated potential for chrome occur near the northern edge of the wilderness. There is little promise for the occurrence of additional mineral or energy resources in the Strawberry Mountain Wilderness.

  9. Fires Scorch Oregon

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In southwestern Oregon, the Florence Fire (north) and the Sour Biscuit Fire (south) continue to burn virtually out of control. Numerous evacuation notices have been issued for residents in the area as the fires remain difficult to control due to the steep, rugged terrain of the Klamath Mountains. This false-color image from the Landsat 5 Thematic Mapper was acquired on July 21, 2002. In the image, vegetation is green, burned areas are deep magenta, active fire is bright pink, and smoke is light blue. Credit:Image provided by the USGS EROS Data Center Satellite Systems Branch.

  10. Fires Scorch Oregon

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In southwestern Oregon, the Florence Fire (north) and the Sour Biscuit Fire (south) continue to grow explosively. This image from the Landsat 7 Enhanced Thematic Mapper Plus was captured on July 29, 2002. The Florence Fire had grown to 50,000 acres and the Sour Biscuit Fire had grown to 16,000 acres. Numerous evacuation notices remain in effect. Thick smoke from the actively burning eastern perimeter of the Florence Fire is billowing southward and mingling with the Biscuit Fire smoke. Credit:Image provided by the USGS EROS Data Center Satellite Systems Branch.

  11. Fires Scorch Oregon

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In southwestern Oregon, the Florence Fire (north) and the Sour Biscuit Fire (south) continue to grow explosively. This image from the Landsat 7 Enhanced Thematic Mapper Plus was captured on July 29, 2002. The Florence Fire had grown to 50,000 acres and the Sour Biscuit Fire had grown to 16,000 acres. Numerous evacuation notices remain in effect. In this false-color image, vegetation is green, burned areas are deep magenta, actively burning fronts are bright pink, and smoke is blue. Credit:Image provided by the USGS EROS Data Center Satellite Systems Branch.

  12. On the Oregon trail.

    PubMed

    Kitzhaber, J; Kemmy, A M

    1995-10-01

    On the eve of the 21st century, governments around the world are struggling to resolve the dual problems of health care cost and access. My own experience in addressing these issues as they manifest themselves in the US, and particularly in the state of Oregon, convinces me that successful health care reform, anywhere in the world, must sooner or later grapple with two questions: what are we buying with our health care dollars, and how do these expenditures relate to health? PMID:8556290

  13. Evaluating microbial indicators of environmental condition in Oregon rivers.

    PubMed

    Pennington, A T; Harding, A K; Hendricks, C W; Campbell, H M

    2001-12-01

    Traditional bacterial indicators used in public health to assess water quality and the Biolog system were evaluated to compare their response to biological, chemical, and physical habitat indicators of stream condition both within the state of Oregon and among ecoregion aggregates (Coast Range, Willamette Valley, Cascades, and eastern Oregon). Forty-three randomly selected Oregon river sites were sampled during the summer in 1997 and 1998. The public health indicators included heterotrophic plate counts (HPC), total coliforms (TC), fecal coliforms (FC) and Escherichia coli (EC). Statewide, HPC correlated strongly with physical habitat (elevation, riparian complexity, % canopy presence, and indices of agriculture, pavement, road, pasture, and total disturbance) and chemistry (pH, dissolved O2, specific conductance, acid-neutralizing capacity, dissolved organic carbon, total N, total P, SiO2, and SO4). FC and EC were significantly correlated generally with the river chemistry indicators. TC bacteria significantly correlated with riparian complexity, road disturbance, dissolved O2, and SiO2 and FC. Analyzing the sites by ecoregion, eastern Oregon was characterized by high HPC, FC, EC, nutrient loads, and indices of human disturbance, whereas the Cascades ecoregion had correspondingly low counts of these indicators. The Coast Range and Willamette Valley presented inconsistent indicator patterns that are more difficult to characterize. Attempts to distinguish between ecoregions with the Biolog system were not successful, nor did a statistical pattern emerge between the first five principle components and the other environmental indicators. Our research suggests that some traditional public health microbial indicators may be useful in measuring the environmental condition of lotic systems. PMID:11915970

  14. Evaluating Microbial Indicators of Environmental Condition in Oregon Rivers

    NASA Astrophysics Data System (ADS)

    Pennington, Alan T.; Harding, Anna K.; Hendricks, Charles W.; Campbell, Heidi M. K.

    2001-12-01

    Traditional bacterial indicators used in public health to assess water quality and the Biolog® system were evaluated to compare their response to biological, chemical, and physical habitat indicators of stream condition both within the state of Oregon and among ecoregion aggregates (Coast Range, Willamette Valley, Cascades, and eastern Oregon). Forty-three randomly selected Oregon river sites were sampled during the summer in 1997 and 1998. The public health indicators included heterotrophic plate counts (HPC), total coliforms (TC), fecal coliforms (FC) and Escherichia coli (EC). Statewide, HPC correlated strongly with physical habitat (elevation, riparian complexity, % canopy presence, and indices of agriculture, pavement, road, pasture, and total disturbance) and chemistry (pH, dissolved O2, specific conductance, acid-neutralizing capacity, dissolved organic carbon, total N, total P, SiO2, and SO4). FC and EC were significantly correlated generally with the river chemistry indicators. TC bacteria significantly correlated with riparian complexity, road disturbance, dissolved O2, and SiO2 and FC. Analyzing the sites by ecoregion, eastern Oregon was characterized by high HPC, FC, EC, nutrient loads, and indices of human disturbance, whereas the Cascades ecoregion had correspondingly low counts of these indicators. The Coast Range and Willamette Valley presented inconsistent indicator patterns that are more difficult to characterize. Attempts to distinguish between ecoregions with the Biolog system were not successful, nor did a statistical pattern emerge between the first five principle components and the other environmental indicators. Our research suggests that some traditional public health microbial indicators may be useful in measuring the environmental condition of lotic systems.

  15. Final Technical Report on DOE Awards DE-FG03 94ER61918, DE-FG06 94ER61918 to Oregon Health Sciences University, September 15, 1994 - September 29, 1999

    SciTech Connect

    Krages, Kathryn Pyle

    1999-11-23

    This report describes the activities conducted with DOE funds at Oregon Health Sciences University between 9/15/94 and 9/29/99. The activities fall into four major categories: Information Technology, Information Services and Support, Medical Informatics and Outcomes Research, and collaboration with other institutions. The focus of these activities was to implement and maintain a regional healthcare information network.

  16. Seaside, Oregon, Tsunami Vulnerability Assessment Pilot Study

    NASA Astrophysics Data System (ADS)

    Dunbar, P. K.; Dominey-Howes, D.; Varner, J.

    2006-12-01

    The results of a pilot study to assess the risk from tsunamis for the Seaside-Gearhart, Oregon region will be presented. To determine the risk from tsunamis, it is first necessary to establish the hazard or probability that a tsunami of a particular magnitude will occur within a certain period of time. Tsunami inundation maps that provide 100-year and 500-year probabilistic tsunami wave height contours for the Seaside-Gearhart, Oregon, region were developed as part of an interagency Tsunami Pilot Study(1). These maps provided the probability of the tsunami hazard. The next step in determining risk is to determine the vulnerability or degree of loss resulting from the occurrence of tsunamis due to exposure and fragility. The tsunami vulnerability assessment methodology used in this study was developed by M. Papathoma and others(2). This model incorporates multiple factors (e.g. parameters related to the natural and built environments and socio-demographics) that contribute to tsunami vulnerability. Data provided with FEMA's HAZUS loss estimation software and Clatsop County, Oregon, tax assessment data were used as input to the model. The results, presented within a geographic information system, reveal the percentage of buildings in need of reinforcement and the population density in different inundation depth zones. These results can be used for tsunami mitigation, local planning, and for determining post-tsunami disaster response by emergency services. (1)Tsunami Pilot Study Working Group, Seaside, Oregon Tsunami Pilot Study--Modernization of FEMA Flood Hazard Maps, Joint NOAA/USGS/FEMA Special Report, U.S. National Oceanic and Atmospheric Administration, U.S. Geological Survey, U.S. Federal Emergency Management Agency, 2006, Final Draft. (2)Papathoma, M., D. Dominey-Howes, D.,Y. Zong, D. Smith, Assessing Tsunami Vulnerability, an example from Herakleio, Crete, Natural Hazards and Earth System Sciences, Vol. 3, 2003, p. 377-389.

  17. Oregon Coastal Observing System

    NASA Astrophysics Data System (ADS)

    Kosro, M.; Allen, J. S.; Barth, J. A.; Egbert, G. D.; Huyer, A.; Smith, R. L.; Grantham, B. A.; Lubchenco, J.; Menge, B. A.

    2002-12-01

    Since 1997, a growing system of sustained coastal measurements, together with a high-resolution, data-assimilating coastal modeling program, have been used off Oregon to study the response of the coastal ocean to forcing at a range of space and time scales. The measurements include a large array of HF radars, which permit time-series mapping of the surface circulation over most of the Oregon coast; both long-term and short-term moored components, which provide time-series sampling through the water column; and repeat hydrographic, ADCP and surface drifter sampling, including the Newport Hydrographic Line (which has been sampled since the 1960s). At interannual frequencies, these measurements show changes in the alongshore circulation over the continental slope accompanying ENSO. At seasonal and storm frequencies, the strength and persistence of spatial patterns in wind-driven currents and the importance of bathymetry in steering the circulation are seen. Discovery of episodic phenomena, such as the recent finding of a hypoxic pool and associated die-off of fish and crabs on the continental shelf off Heceta Head, are made possible by repeated sampling.

  18. Analysis of deep seismic reflection and other data from the southern Washington Cascades. Final report, September 15, 1992--December 31, 1993

    SciTech Connect

    Stanley, W.D.; Johnson, S.Y.; Nuccio, V.F.

    1993-12-01

    This report describes results of a synthesis of geological, geological, geophysical and geochemical data from a largely volcanic rock covered region in southwestern Washington that has been identified as a underlain by thick marine sedimentary rocks. The work was funded by the Deep Source Gas projects at the Morgantown Energy Technology Center (METC). The subproject which resulted in this report is centered in the Branch of Geophysics, US Geological Survey (USGS) has involved one task focused on the application of geophysical methods to the study of phenomena associated with fossil and active subduction zones and non-subduction suture zones that may have deeply emplaced sedimentary rocks. This report represents a summary synthesis of several geophysical and geological data sets. The Southern Washington Cascades Conductor (SWCC) has been examined using several types of data in addition to MT, seismic, magnetic, and gravity Specific geological mapping tasks have been completed trough funding by the Department of Energy and the USGS in the western part of the proposed basin near Morton, WA. Other regional geological studies using wells and outcrops done as part of the USGS Evolution of Sedimentary Basins programs have added information that constraint the possible nature of the SWCC rocks and their tectonic setting. Recently, evaluation of patterns of seismicity in the SWCC region has demonstrated the likelihood of several parallel and step-over strike-slip faults that may have produced the proposed basin or altered its geometry. In addition, the seismicity patterns trace the axis of key anticlinal structures and thrusts.

  19. OLALLIE ROADLESS AREA, OREGON.

    USGS Publications Warehouse

    Walker, George W.; Neumann, Terry R.

    1984-01-01

    The Olallie Roadless Area, Oregon, is devoid of mines and mineral prospects, and a mineral-resource evaluation of the area did not identify any mineral-resource potential. There is no evidence that fossil fuels are present in the roadless area. Nearby areas in Clackamas, Marion, Jefferson, and Wasco Counties are characterized by higher-than-normal heat flow and by numerous thermal springs, some of which have been partly developed. this may indicate that the region has some, as yet undefined, potential for the development of geothermal energy. Lack of thermal springs or other evidence of localized geothermal anomalies within the roadless area may be the result of masking by young, nonconductive rock units and by the flooding out and dilution of rising thermal waters by cool meteoric water.

  20. Status of Oregon's Bull Trout.

    SciTech Connect

    Buchanan, David V.; Hanson, Mary L.; Hooton, Robert M.

    1997-10-01

    Limited historical references indicate that bull trout Salvelinus confluentus in Oregon were once widely spread throughout at least 12 basins in the Klamath River and Columbia River systems. No bull trout have been observed in Oregon's coastal systems. A total of 69 bull trout populations in 12 basins are currently identified in Oregon. A comparison of the 1991 bull trout status (Ratliff and Howell 1992) to the revised 1996 status found that 7 populations were newly discovered and 1 population showed a positive or upgraded status while 22 populations showed a negative or downgraded status. The general downgrading of 32% of Oregon's bull trout populations appears largely due to increased survey efforts and increased survey accuracy rather than reduced numbers or distribution. However, three populations in the upper Klamath Basin, two in the Walla Walla Basin, and one in the Willamette Basin showed decreases in estimated population abundance or distribution.

  1. Mount Rainier active cascade volcano

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Mount Rainier is one of about two dozen active or recently active volcanoes in the Cascade Range, an arc of volcanoes in the northwestern United States and Canada. The volcano is located about 35 kilometers southeast of the Seattle-Tacoma metropolitan area, which has a population of more than 2.5 million. This metropolitan area is the high technology industrial center of the Pacific Northwest and one of the commercial aircraft manufacturing centers of the United States. The rivers draining the volcano empty into Puget Sound, which has two major shipping ports, and into the Columbia River, a major shipping lane and home to approximately a million people in southwestern Washington and northwestern Oregon. Mount Rainier is an active volcano. It last erupted approximately 150 years ago, and numerous large floods and debris flows have been generated on its slopes during this century. More than 100,000 people live on the extensive mudflow deposits that have filled the rivers and valleys draining the volcano during the past 10,000 years. A major volcanic eruption or debris flow could kill thousands of residents and cripple the economy of the Pacific Northwest. Despite the potential for such danger, Mount Rainier has received little study. Most of the geologic work on Mount Rainier was done more than two decades ago. Fundamental topics such as the development, history, and stability of the volcano are poorly understood.

  2. An update of Quaternary faults of central and eastern Oregon

    USGS Publications Warehouse

    Weldon, Ray J., II; Fletcher, D.K.; Weldon, E.M.; Scharer, K.M.; McCrory, P.A.

    2002-01-01

    This is the online version of a CD-ROM publication. We have updated the eastern portion of our previous active fault map of Oregon (Pezzopane, Nakata, and Weldon, 1992) as a contribution to the larger USGS effort to produce digital maps of active faults in the Pacific Northwest region. The 1992 fault map has seen wide distribution and has been reproduced in essentially all subsequent compilations of active faults of Oregon. The new map provides a substantial update of known active or suspected active faults east of the Cascades. Improvements in the new map include (1) many newly recognized active faults, (2) a linked ArcInfo map and reference database, (3) more precise locations for previously recognized faults on shaded relief quadrangles generated from USGS 30-m digital elevations models (DEM), (4) more uniform coverage resulting in more consistent grouping of the ages of active faults, and (5) a new category of 'possibly' active faults that share characteristics with known active faults, but have not been studied adequately to assess their activity. The distribution of active faults has not changed substantially from the original Pezzopane, Nakata and Weldon map. Most faults occur in the south-central Basin and Range tectonic province that is located in the backarc portion of the Cascadia subduction margin. These faults occur in zones consisting of numerous short faults with similar rates, ages, and styles of movement. Many active faults strongly correlate with the most active volcanic centers of Oregon, including Newberry Craters and Crater Lake.

  3. A description of aquifer units in eastern Oregon

    USGS Publications Warehouse

    Gonthier, J.B.

    1985-01-01

    Geologic formations in Oregon, east of the crest of the Cascade Range, have been grouped according to similarities in their hydrogeologic and geologic properties into six major aquifer units. Two of the units, the Mesozoic-Paleozoic and the John Day-Clarno aquifers, are low-permeability aquifers, have hydraulic conductivities generally less than 1 ft/d (feet per day), and are generally capable of yielding only a few gallons per minute to wells. These are important aquifer units, nevertheless, because they are the only economical source of domestic water present in east-central Oregon where they outcrop. Four of the aquifer units contain beds or zones of high permeability materials with hydraulic conductivities that commonly range between 5 and 50 ft/d. In many localities where these units are present, they are capable of yielding 200 gallons/min or more to wells. These productive aquifer units are the Columbia River Basalt, the Cenozoic volcanic and sedimentary , Cenozoic sedimentary, and the Quaternary sediment aquifers, respectively. North of the Blue Mountains, the Columbia River Basalt aquifer is a major aquifer of regional extent and, in that area, heavy withdrawals, chiefly for irrigation, have resulted in regional groundwater level declines. South of the Blue Mountains, the basalt underlies rugged terrane, is not developed, and little is known about its hydraulic properties. Other major aquifer units are heavily developed in localized areas or in basins throughout eastern Oregon. (USGS)

  4. South Cascade Glacier bibliography

    SciTech Connect

    Fountain, A.G.; Fulk, M.A.

    1984-01-01

    South Cascade Glacier, in Washington State, resides in a well-defined basin with mainly unglacierized divides making it ideal for most glaciological and hydrological studies. This bibliography is divided into three cateogories: (1) studies done about South Cascade Glacier specifically; (2) studies that use data from South Cascade Glacier but do not focus on or give insight to the glacier itself; and (3) instrumentation studies and non-glacier projects including snow studies done in the basin. (ACR)

  5. Distribution of hypertension and renal disease in Oregon.

    PubMed Central

    Morton, W E; Knudsen, J C; Porter, G A

    1975-01-01

    Expecting to find agreement between the geographic distribution of hypertension and renal disease, we developed regional mortality rates for 1950-72 and prevalence rates for a Selective Service cohort born in 1939-41 and examined during 1957-69. For this purpose the State's counties were grouped into eight geographically homogeneous regions. The general decline in hypertension mortality was most pronounced in Portland, Oregon's major urban center. However, the decline halted during 1968-72 in the southern Cascade region which has become an area of relatively higher risk within the State. During these 23 years nephritis mortality fell, kidney infection mortality was stable, and both syndromes showed peak mortality in other, different regions of the State. The geographic pattern of hypertension prevalence among the draftee cohort resembled the 1963-67 hypertension mortality pattern, but more recent morbidity data are needed to confirm the southern Cascade region's recent change to a high-risk area. Of 529 draftees with diagnosed hypertension, only 35 percent of the cases were previously known, only 7 percent has had any previous treatment, and only 7 percent were associated with known renal conditions. Among 521 registrants with a history of renal disorders, the prevalence of hypertension was increased for all categories of renal disease but was significantly high only for those with a history of glomerulonephritis. To date in Oregon we have found no evidence that renal disorders are major determinants of hypertension morbidity or mortality. PMID:803695

  6. Thermally cascaded thermoelectric generator

    NASA Technical Reports Server (NTRS)

    Flaherty, R.

    1970-01-01

    High efficiency thermoelectric generator utilizes a high-temperature thermoelectric material in thermal series with a low-temperature material. A thermally cascaded generator increases system efficiency.

  7. Genetic variation and seed transfer guidelines for lodgepole pine in Central Oregon. Forest Service research paper

    SciTech Connect

    Sorensen, F.C.

    1992-09-01

    Pine cones were collected from 272 trees at 189 locations uniformly distributed over the east slopes of the Oregon Cascade Range and Warner Mountains. Variation in seed and seedling traits was related to (1) seed source latitude, distance from the Cascade crest, elevation, slope, and aspect in multiple regression analyses; and (2) seed zone and elevation band in classification analyses. Provisional seed transfer guidelines are presented. These include a regression equation for guiding seed transfer and estimating transfer risk, and a new outline of fixed seed zones.

  8. Genetic variation and seed transfer guidelines for ponderosa pine in central Oregon. Forest Service research paper

    SciTech Connect

    Sorensen, F.C.

    1994-07-01

    The report includes an adaptive genetic variation in seed and seedling traits for ponderosa pine from the east slopes of the Cascade Range in Oregon which was analyzed by using 307 families from 227 locations. Factor scores from three principal components based on seed and seedling traits were related by multiple regression to latitude, distance from the Cascade crest, elevation, slope, and aspect of the seed sources and by classification analysis to seed zone and 300-meter elevation band within zone. A provisional transfer risk equation and tentative new seed zones were delineated to guide seed transfer in artificial regeneration.

  9. Fires Scorch Oregon

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In southwest Oregon, the Biscuit Fire continues to grow. This Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image from August 14, 2002, shows the burn scar associated with the enormous blaze. The visualization uses ASTER's 30-meter-resolution, short-wave infrared bands to minimize smoke contamination and enhance the burn scar, which appears purple amid green vegetation. Actively burning areas of the fire appear very light purple. More than 6,000 fire personnel are assigned to the Biscuit Fire, which was 390, 276 acres as of Friday morning, August 15, and only 26 percent contained. Among the resources threatened are thousands of homes, three nationally designated wild and scenic rivers, and habitat for several categories of plants and animals at risk of extinction. Firefighters currently have no estimate as to when the fire might be contained. Credit: This image was acquired on an expedited basis as part of NASA Wildfire Response Team activities. Image courtesy Mike Abrams, Simon Hook, and the ASTER team at EROS Data Center DAAC.

  10. Cascaded automatic target recognition (Cascaded ATR)

    NASA Astrophysics Data System (ADS)

    Walls, Bradley

    2010-04-01

    The global war on terror has plunged US and coalition forces into a battle space requiring the continuous adaptation of tactics and technologies to cope with an elusive enemy. As a result, technologies that enhance the intelligence, surveillance, and reconnaissance (ISR) mission making the warfighter more effective are experiencing increased interest. In this paper we show how a new generation of smart cameras built around foveated sensing makes possible a powerful ISR technique termed Cascaded ATR. Foveated sensing is an innovative optical concept in which a single aperture captures two distinct fields of view. In Cascaded ATR, foveated sensing is used to provide a coarse resolution, persistent surveillance, wide field of view (WFOV) detector to accomplish detection level perception. At the same time, within the foveated sensor, these detection locations are passed as a cue to a steerable, high fidelity, narrow field of view (NFOV) detector to perform recognition level perception. Two new ISR mission scenarios, utilizing Cascaded ATR, are proposed.

  11. Theory of cascade refrigeration

    NASA Astrophysics Data System (ADS)

    Quack, Hans H.

    2012-06-01

    The maximum difference between the warm and cold temperature of a refrigeration cycle is limited by properties of the refrigerant and/or losses associated with the transport of the refrigerant. For larger temperature differences, one has to arrange several refrigeration cycles "above" each other, each cycle spanning a certain temperature difference. This approach is called cascade refrigeration and has played an important role in the history of cryogenics. For a theory of cascade refrigeration it is helpful to define a general one-stage non-reversible refrigeration step and to visualize it within the temperature-entropy diagram. Then one can combine several one-stage cycles to a cascade. There exist two types of cascades: "Full" cascades, where all entropy gains of a lower stage are transferred to the next higher temperature stage, and "partial" cascades, where each single cycle goes up to ambient temperature, where a part of the entropy gain is removed, and only the rest of the entropy gain is transferred to the next higher temperature stage. In cryogenic refrigeration "partial" cascades are generally more efficient than "full" cascades.

  12. Electrical structure of Newberry Volcano, Oregon

    USGS Publications Warehouse

    Fitterman, D.V.; Stanley, W.D.; Bisdorf, R.J.

    1988-01-01

    From the interpretation of magnetotelluric, transient electromagnetic, and Schlumberger resistivity soundings, the electrical structure of Newberry Volcano in central Oregon is found to consist of four units. From the surface downward, the geoelectrical units are 1) very resistive, young, unaltered volcanic rock, (2) a conductive layer of older volcanic material composed of altered tuffs, 3) a thick resistive layer thought to be in part intrusive rocks, and 4) a lower-crustal conductor. This model is similar to the regional geoelectrical structure found throughout the Cascade Range. Inside the caldera, the conductive second layer corresponds to the steep temperature gradient and alteration minerals observed in the USGS Newberry 2 test-hole. Drill hole information on the south and north flanks of the volcano (test holes GEO N-1 and GEO N-3, respectively) indicates that outside the caldera the conductor is due to alteration minerals (primarily smectite) and not high-temperature pore fluids. On the flanks of Newberry the conductor is generally deeper than inside the caldera, and it deepens with distance from the summit. A notable exception to this pattern is seen just west of the caldera rim, where the conductive zone is shallower than at other flank locations. The volcano sits atop a rise in the resistive layer, interpreted to be due to intrusive rocks. -from Authors

  13. Gravity model studies of Newberry Volcano, Oregon

    SciTech Connect

    Gettings, M.E.; Griscom, A.

    1988-09-10

    Newberry, Volcano, a large Quaternary volcano located about 60 km east of the axis of the High Cascades volcanoes in central Oregon, has a coincident positive residual gravity anomaly of about 12 mGals. Model calculations of the gravity anomaly field suggest that the volcano is underlain by an intrusive complex of mafic composition of about 20-km diameter and 2-km thickness, at depths above 4 km below sea level. However, uplifted basement in a northwest trending ridge may form part of the underlying excess mass, thus reducing the volume of the subvolcanic intrusive. A ring dike of mafic composition is inferred to intrude to near-surface levels along the caldera ring fractures, and low-density fill of the caldera floor probably has a thickness of 0.7--0.9 km. The gravity anomaly attributable to the volcano is reduced to the east across a north-northwest trending gravity anomaly gradient through Newberry caldera and suggests that normal, perhaps extensional, faulting has occurred subsequent to caldera formation and may have controlled the location of some late-stage basaltic and rhyolitic eruptions. Significant amounts of felsic intrusive material may exist above the mafic intrusive zone but cannot be resolved by the gravity data.

  14. Direct utilization of geothermal heat in cascade application to aquaculture and greenhouse systems at Navarro College. Final report, March 1, 1979-September 30, 1984

    SciTech Connect

    Smith, K.

    1984-09-01

    This final report documents the Navarro College geothermal use project, which is one of nineteen direct-use geothermal projects funded principally by DOE. The six-year project encompassed a broad range of technical, institutional, and economic activities including: resource and environmental assessment; well drilling and completion; system design, construction, and monitoring; economic analysis; and public awareness programs. Some of the project conclusions are that: (1) the 130/sup 0/F Central Texas geothermal resource can support additional geothermal development; (2) private sector economic incentives currently exist which encourage commercial development of this geothermal resource; (3) potential uses for this geothermal resource include water and space heating, aquacultural and agricultural heating uses, and fruit and vegetable dehydration; (4) high maintenance costs arising from the geofluids' scaling and corrosion characteristics can be avoided through proper analysis and design.

  15. Teenage Suicide in Oregon 1983-1985.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Human Resources, Portland.

    During the 3-year period from 1983 through 1985, 80 Oregon teenagers intentionally took their own lives, making suicide second only to accidents as the leading cause of death among Oregon teenagers. Data on suicides committed by individuals between the ages of 10 and 19 were retrieved from death certificates on file with the Oregon Health Division…

  16. Population Structure of Phytophthora ramorum in Oregon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora ramorum is infecting plants in Oregon forests and nurseries. In this study, we analyzed the population structure of P. ramorum in Oregon from 2001 to 2004, using microsatellites. The P. ramorum population in Oregon is characterized by low genetic diversity, significant genetic differenc...

  17. The Oregon Geothermal Planning Conference

    SciTech Connect

    1980-10-02

    Oregon's geothermal resources represent a large portion of the nation's total geothermal potential. The State's resources are substantial in size, widespread in location, and presently in various stages of discovery and utilization. The exploration for, and development of, geothermal is presently dependent upon a mixture of engineering, economic, environmental, and legal factors. In response to the State's significant geothermal energy potential, and the emerging impediments and incentives for its development, the State of Oregon has begun a planning program intended to accelerate the environmentally prudent utilization of geothermal, while conserving the resource's long-term productivity. The program, which is based upon preliminary work performed by the Oregon Institute of Technology's Geo-Heat Center, will be managed by the Oregon Department of Energy, with the assistance of the Departments of Economic Development, Geology and Mineral Industries, and Water Resources. Funding support for the program is being provided by the US Department of Energy. The first six-month phase of the program, beginning in July 1980, will include the following five primary tasks: (1) coordination of state and local agency projects and information, in order to keep geothermal personnel abreast of the rapidly expanding resource literature, resource discoveries, technological advances, and each agency's projects. (2) Analysis of resource commercialization impediments and recommendations of incentives for accelerating resource utilization. (3) Compilation and dissemination of Oregon geothermal information, in order to create public and potential user awareness, and to publicize technical assistance programs and financial incentives. (4) Resource planning assistance for local governments in order to create local expertise and action; including a statewide workshop for local officials, and the formulation of two specific community resource development plans. (5) Formulation and

  18. Lee v. State of Oregon.

    PubMed

    1995-08-01

    The U.S. District Court for the District of Oregon found unconstitutional the Oregon Death with Dignity Act, which allows a terminally ill patient to obtain a doctor's prescription for a fatal drug dosage in order to commit suicide. The court held that the state law, which classified competent terminally ill patients as a group and established procedures for them to opt for assisted suicide, was not rationally related to any legitimate state interest for purposes of the equal protection clause of the Fourteenth Ammendment. The law did not ensure rational and voluntary decision making by the terminally ill. PMID:11648436

  19. Is Oregon's Future at Risk? A Profile of Oregon's Youth...

    ERIC Educational Resources Information Center

    Oregon State Dept. of Human Resources, Salem.

    This publication focuses on the youth-at-risk problems of young people who are not successfully making the transition to adulthood in Oregon. It provides information needed by the state's educational, government, and religious leaders, as well as parents, employers, and youth. In 26 tables and graphs, the report provides information on population,…

  20. Potential hydrologic effects of developing coal and other geoenergy resources in Oregon: a review

    SciTech Connect

    Sidle, W.C.

    1981-01-01

    Geoenergy resources in Oregon, in addition to coal, include noncommercial deposits of oil shale, natural gas, and geothermal heat. Commercial quantities of natural gas were discovered at Mist in northwestern Oregon in 1979. Gas presently is being produced from five wells and additional exploratory drilling is underway. More than 2 million acres of Oregon land is under lease for petroleum and natural gas exploration, mostly in the Astoria embayment-Willamette syncline, central (Oregon) Paleozoic-Mesozoic basin, and eastern Tertiary nonmarine basin. The Cascade Range and eastern Oregon contain sizable resources of geothermal heat, of which a small part has been developed for space heating at Klamath Falls and Lakeview. Thirteen Known Geothermal Resource Areas (KGRA's) comprising 432,000 acres have been identified, 422,000 acres are currently leased for geothermal development. KGRA's judged to have potential for generation of electrical power are Newberry Crater, Crump Geyser, and Alvord Desert. No adverse hydrologic effects have been noted to date from coal or other geoenergy exploration or development in Oregon, and no effects are expected if federal and state regulations are adhered to. The southwestern Oregon coals would have to be mined by underground methods. Potential hydrologic impacts would be local increases in sedimentation, turbidity, and mineralization of surface and ground water. Water-quality degradation, including both thermal pollution and increased concentrations of dissolved minerals, could result from geothermal development. Other potential problems include land subsidence and consumptive use of water associated with both coal and geothermal development. 53 refs., 3 figs., 1 tab.

  1. Applications of TIERRAS for underground particle cascade simulations

    SciTech Connect

    Tueros, M. J.

    2010-11-24

    In this communication we present some example applications of TIERRAS, a software package for the simulation of High Energy particle cascades underground and underwater. The examples illustrate how this package can be used to study the phenomenology of particle cascades from Extended Air Showers propagated several meters underground, including the effect of the surface ''albedo'' particles that are generated when a cascade reaches ground level. These up-going particles can have a measurable effect on surface or shallow underground detectors. Finally, to show the package ability ro perform simulations of particle cascades in ice, an application for neutrino radio detection is briefly introduced.

  2. 5. VIEW OF UPPER AND LOWER CASCADE BRIDGES AND CASCADE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF UPPER AND LOWER CASCADE BRIDGES AND CASCADE CREEK FROM 100 YARDS WEST OF THE ROSTRUM (ROCK FORMATION ON SOUTH SIDE OF MERCED RIVER). HIGHWAY 140 IS AT BOTTOM OF FRAME. HIGHWAY 120, THE BIG OAK FLAT ROAD CROSSES FRAME JUST ABOVE CENTER. - Cascade Creek Bridge, Spanning Cascade Creek on New Big Oak Flat Road, Yosemite Village, Mariposa County, CA

  3. Oregon Agriculture I Curriculum Guide.

    ERIC Educational Resources Information Center

    Oregon State Univ., Corvallis. Dept. of Agricultural Education.

    This curriculum package was developed to be used as a guide for high school vocational agriculture teachers in Oregon preparing a curriculum to meet local community/regional needs. A second goal of this curriculum is to eliminate sex-bias or sex-role stereotyping in vocational agriculture classes. The curriculum contains 20 units. Topics covered…

  4. Record Conversion at Oregon State.

    ERIC Educational Resources Information Center

    Watkins, Deane

    1985-01-01

    Describes the conversion of card catalog records at William Jasper Kerr Library, Oregon State University, to an online system. Discussion covers the use of OCLC and student assistants, procedures and specifications, and problems associated with massive retrospective conversion needs and uncertain budget allocations. Eight sources are recommended.…

  5. Life on the Oregon Trail.

    ERIC Educational Resources Information Center

    Middle Level Learning: Teaching and Learning Social Studies in the Middle Grades, 1998

    1998-01-01

    This supplement to "Social Education" and "Social Studies & the Young Learner" seeks to support creative and rigorous social studies teaching in middle schools. The articles show how students can revisit the Oregon Trail through the diaries of children, learn about the five themes of geography (location, place, human/environment interaction,…

  6. MAP OF ECOREGIONS OF OREGON

    EPA Science Inventory

    The ecoregions of Oregon have been identified, mapped, and described and provide a geographic structure for environmental resources research, assessment, monitoring, and management. This project is part of a larger effort by the U.S. EPA to create a national, hierarchical ecoregi...

  7. Oregon Schools Begin Inspection, Cleanup.

    ERIC Educational Resources Information Center

    Buckley, James F.

    1987-01-01

    Discusses the need for environmental health inspections in schools. Reports on the results of a survey of Clackamas County (Oregon) school kitchens, in relation to a high incidence of hepatitis A. Describes the variety of violations found and urges that schools no longer be exempt from state health division regulations. (TW)

  8. Westward Expansion: The Oregon Trail.

    ERIC Educational Resources Information Center

    Salisbury, James F.

    This 8-week interdisciplinary unit for fourth- and fifth-grade students helps children address the U.S. westward expansion in the 1840's using the interactive software program, The Oregon Trail. The unit provides connections to literature, geography, computer/mathematics skills, language arts, and research skills. The work is done in cooperative…

  9. Unsteady Euler cascade analysis

    NASA Technical Reports Server (NTRS)

    Liu, Jong-Shang; Sockol, Peter M.

    1989-01-01

    The results of an investigation of the rotor-stator interaction phenomena in turbomachines are presented. Numerical study was carried out by solving the unsteady Euler equations in the blade-to-blade direction for a variety of cascade geometries. The problem of uneven rotor and stator blades is addressed by adopting the tilted time domain technique. Computed solutions are presented and discussed for a NACA 0012 type cascade and the first stage fuel turbopump of the Space Shuttle Main Engine (SSME).

  10. The nitrogen cascade

    SciTech Connect

    Galloway J.N.; Aber J.D.; Erisman J.W.; Seitzinger S.P.; Howarth R.W.; Cowling E.B.; Cosby B.J.

    2003-04-01

    Human production of food and energy is the dominant continental process that breaks the triple bond in molecular nitrogen (N{sub 2}) and creates reactive nitrogen (Nr) species. Circulation of anthropogenic Nr in Earth's atmosphere, hydrosphere, and biosphere has a wide variety of consequences, which are magnified with time as Nr moves along its biogeochemical pathway. The same atom of Nr can cause multiple effects in the atmosphere, in terrestrial ecosystems, in freshwater and marine systems, and on human health. We call this sequence of effects the nitrogen cascade. As the cascade progresses, the origin of Nr becomes unimportant. Reactive nitrogen does not cascade at the same rate through all environmental systems; some systems have the ability to accumulate Nr, which leads to lag times in the continuation of the cascade. These lags slow the cascade and result in Nr accumulation in certain reservoirs, which in turn can enhance the effects of Nr on that environment. The only way to eliminate Nr accumulation and stop the cascade is to convert Nr back to nonreactive N{sub 2}.

  11. Habitat cascades: the conceptual context and global relevance of facilitation cascades via habitat formation and modification.

    PubMed

    Thomsen, Mads S; Wernberg, Thomas; Altieri, Andrew; Tuya, Fernando; Gulbransen, Dana; McGlathery, Karen J; Holmer, Marianne; Silliman, Brian R

    2010-08-01

    The importance of positive interactions is increasingly acknowledged in contemporary ecology. Most research has focused on direct positive effects of one species on another. However, there is recent evidence that indirect positive effects in the form of facilitation cascades can also structure species abundances and biodiversity. Here we conceptualize a specific type of facilitation cascade-the habitat cascade. The habitat cascade is defined as indirect positive effects on focal organisms mediated by successive facilitation in the form of biogenic formation or modification of habitat. Based on a literature review, we demonstrate that habitat cascades are a general phenomenon that enhances species abundance and diversity in forests, salt marshes, seagrass meadows, and seaweed beds. Habitat cascades are characterized by a hierarchy of facilitative interactions in which a basal habitat former (typically a large primary producer, e.g., a tree) creates living space for an intermediate habitat former (e.g., an epiphyte) that in turn creates living space for the focal organisms (e.g., spiders, beetles, and mites). We then present new data on a habitat cascade common to soft-bottom estuaries in which a relatively small invertebrate provides basal habitat for larger intermediate seaweeds that, in turn, generate habitat for focal invertebrates and epiphytes. We propose that indirect positive effects on focal organisms will be strongest when the intermediate habitat former is larger and different in form and function from the basal habitat former. We also discuss how humans create, modify, and destroy habitat cascades via global habitat destruction, climatic change, over-harvesting, pollution, or transfer of invasive species. Finally, we outline future directions for research that will lead to a better understanding of habitat cascades. PMID:21558196

  12. A Neogene structural dome in the Klamath Mountains, California and Oregon

    NASA Astrophysics Data System (ADS)

    Mortimer, N.; Coleman, R. G.

    1985-04-01

    Regional structural doming of Neogene age has affected rocks of the Klamath and Cascade mountains near the California-Oregon border. Evidence for this is seen in (1) subannular outcrop patterns of pre-Cretaceous lithotectonic units, (2) a crude pattern of radially oriented high-angle faults, (3) tilted Jurassic plutons, (4) tilted Cretaceous to Miocene strata, and (5) various geomorphological features. The age of doming is constrained by a major middle Miocene to earliest Pliocene angular unconformity within the Cascade Mountains and uplifted upper Miocene marine beds on the western edge of the Klamath Mountains. Uplift and doming may be the result of shortening in the Cascade fore-arc region or, more speculatively, the recent accretion of subducted material to the North American plate beneath the Klamath Mountains. *Present addresses: Mortimer, Department of Geological Sciences, University of British Columbia, Vancouver, British Columbia V6T 2B4, Canada; Coleman, U.S. Geological Survey, Menlo Park, California 94025

  13. GEOLOGIC FRAMEWORK FOR GEOTHERMAL ENERGY IN THE CASCADE RANGE.

    USGS Publications Warehouse

    Duffield, W.A.

    1983-01-01

    Quaternary volcanoes of the Cascade Range form a 1200-km-long belt from northern California to southwest British Columbia and lie above the subduction zone formed as the Juan de Fuca plate is consumed beneath North America. Volcanoes throughout this belt may have been active during Quaternary time, and many have erupted within Holocene time. Thermal springs are few and inconspicuous. Surface expression of hydrothermal systems possibly is masked by infiltration of abundant rainwater and snowmelt. Several geologic and geophysical features suggest that the Oregon and California parts of the Cascades are characterized by moderate east-west crustal extension, tectonic regime conducive to relatively widespread volcanism and to the formation of normal fault zones of potentially high permeability. Refs.

  14. Cascaded Microinverter PV System for Reduced Cost

    SciTech Connect

    Bellus, Daniel R.; Ely, Jeffrey A.

    2013-04-29

    In this project, a team led by Delphi will develop and demonstrate a novel cascaded photovoltaic (PV) inverter architecture using advanced components. This approach will reduce the cost and improve the performance of medium and large-sized PV systems. The overall project objective is to develop, build, and test a modular 11-level cascaded three-phase inverter building block for photovoltaic applications and to develop and analyze the associated commercialization plan. The system will be designed to utilize photovoltaic panels and will supply power to the electric grid at 208 VAC, 60 Hz 3-phase. With the proposed topology, three inverters, each with an embedded controller, will monitor and control each of the cascade sections, reducing costs associated with extra control boards. This report details the final disposition on this project.

  15. National Uranium Resource Evaluation: Baker Quadrangle, Oregon and Idaho

    SciTech Connect

    Bernardi, M L; Robins, J W

    1982-05-01

    The Baker Quadrangle, Oregon, and Idaho, was evaluated to identify areas containing geologic environments favorable for uranium deposits. The criteria used was developed for the National Uranium Resource Evaluation program. Stream-sediment reconnaissance and detailed surface studies were augmented by subsurface-data interpretion and an aerial radiometric survey. Results indicate that lower Pliocene sedimentary rocks in the Lower Powder River Valley-Virtue Flat basin are favorable characteristics, they remain unevaluated because of lack of subsurface data. Tertiary sandstones, possibly present at depth in the Long and Cascade Valleys, also remain unevaluated due to lack of subsurface data. All remaining environments in the Baker Quadrangle are unfavorable for all classes of uranium deposits.

  16. SCHLUMBERGER SOUNDING RESULTS OVER THE NEWBERRY VOLCANO AREA, OREGON.

    USGS Publications Warehouse

    Bisdorf, Robert J.

    1985-01-01

    Schlumberger soundings were made in the Newberry volcano area of Oregon to categorize the electrical properties of possible Cascade geothermal systems. An east-west geoelectric cross section constructed from the interpreted soundings shows a low-resistivity zone in the caldera, that corresponds to the increase in thermal gradient observed in a U. S. Geological Survey test well. Another low resistivity zone about 600 m deep is present just to the west of the caldera boundary. A north-south geoelectric cross section shows the configuration of the western low-resistivity zone. Maps of interpreted resistivity at depths of 750 and 1000 m show that the main low resistivity area west of the caldera has two tongues, one oriented easterly and the other oriented southerly.

  17. Tracking Earthquake Cascades

    NASA Astrophysics Data System (ADS)

    Jordan, T. H.

    2011-12-01

    In assessing their risk to society, earthquakes are best characterized as cascades that can propagate from the natural environment into the socio-economic (built) environment. Strong earthquakes rarely occur as isolated events; they usually cluster in foreshock-mainshock-aftershock sequences, seismic swarms, and extended sequences of large earthquakes that propagate along major fault systems. These cascades are regulated by stress-mediated interactions among faults driven by tectonic loading. Within these cascades, each large event can itself cause a chain reaction in which the primary effects of faulting and ground shaking induce secondary effects, including tsunami, landslides, liquefaction, and set off destructive processes within the built environment, such as fires and radiation leakage from nuclear plants. Recent earthquakes have demonstrated how the socio-economic effects of large earthquakes can reverberate for many years. To reduce earthquake risk and improve the resiliency of communities to earthquake damage, society depends on five geotechnologies for tracking earthquake cascades: long-term probabilistic seismic hazard analysis (PSHA), short-term (operational) earthquake forecasting, earthquake early warning, tsunami warning, and the rapid production of post-event information for response and recovery (see figure). In this presentation, I describe how recent advances in earthquake system science are leading to improvements in this geotechnology pipeline. In particular, I will highlight the role of earthquake simulations in predicting strong ground motions and their secondary effects before and during earthquake cascades

  18. Tsunami Preparedness in Oregon (video)

    USGS Publications Warehouse

    Filmed and edited by: Loeffler, Kurt; Gesell, Justine

    2010-01-01

    Tsunamis are a constant threat to the coasts of our world. Although tsunamis are infrequent along the West coast of the United States, it is possible and necessary to prepare for potential tsunami hazards to minimize loss of life and property. Community awareness programs are important, as they strive to create an informed society by providing education and training. This video about tsunami preparedness in Oregon distinguishes between a local tsunami and a distant event and focus on the specific needs of this region. It offers guidelines for correct tsunami response and community preparedness from local emergency managers, first-responders, and leading experts on tsunami hazards and warnings, who have been working on ways of making the tsunami affected regions safer for the people and communities on a long-term basis. This video was produced by the US Geological Survey (USGS) in cooperation with Oregon Department of Geology and Mineral Industries (DOGAMI).

  19. Early chiropractic education in Oregon

    PubMed Central

    Keating, Joseph C

    2002-01-01

    Chiropractic education in the northwestern United States has its origins in the Marsh School & Cure in 1904. Most of the early schools were located in Portland, Oregon, including the D.D. Palmer College of Chiropractic (1908-1910), and several of these had merged by 1912 or 1913 to form the Pacific Chiropractic College, forerunner of today's Western States College. The latter was organized as a non-profit institution during the Great Depression, and struggled not only to survive but to create a higher standard. The early broad-scope of chiropractic training in the state probably encouraged the liberal scope of practice enjoyed in Oregon to this day. ImagesFigure 2Figure 3Figure 4Figure 6Figure 7Figure 8Figure 9Figure 11Figure 12Figure 13Figure 14Figure 15Figure 16Figure 18Figure 19Figure 20Figure 21Figure 22Figure 24

  20. Harmonic cascade FEL designs for LUX

    SciTech Connect

    Penn, G.; Reinsch, M.; Wurtele, J.; Corlett, J.N.; Fawley, W.M.; Zholents, A.; Wan, W.

    2004-07-16

    LUX is a design concept for an ultrafast X-ray science facility, based on an electron beam accelerated to GeV energies in are circulating linac. Included in the design are short duration (200 fs or shorter FWHM) light sources using multiple stages of higher harmonic generation, seeded by a 200-250 nm laser of similar duration. This laser modulates the energy of a group of electrons within the electron bunch; this section of the electron bunch then produces radiation at a higher harmonic after entering a second, differently tuned undulator. Repeated stages in a cascade yield increasing photon energies up to 1 keV. Most of the undulators in the cascade operate in the low-gain FEL regime. Harmonic cascades have been designed for each pass of the recirculating linac up to a final electron beam energy of 3.1 GeV. For a given cascade, the photon energy can be selected over a wide range by varying the seed laser frequency and the field strength in the undulators. We present simulation results using the codes GENESIS and GINGER, as well as the results of analytical models which predict FEL performance. We discuss lattice considerations pertinent for harmonic cascade FELs, as well as sensitivity studies and requirements on the electron beam.

  1. Deep long-period earthquakes beneath Washington and Oregon volcanoes

    USGS Publications Warehouse

    Nichols, M.L.; Malone, S.D.; Moran, S.C.; Thelen, W.A.; Vidale, J.E.

    2011-01-01

    Deep long-period (DLP) earthquakes are an enigmatic type of seismicity occurring near or beneath volcanoes. They are commonly associated with the presence of magma, and found in some cases to correlate with eruptive activity. To more thoroughly understand and characterize DLP occurrence near volcanoes in Washington and Oregon, we systematically searched the Pacific Northwest Seismic Network (PNSN) triggered earthquake catalog for DLPs occurring between 1980 (when PNSN began collecting digital data) and October 2009. Through our analysis we identified 60 DLPs beneath six Cascade volcanic centers. No DLPs were associated with volcanic activity, including the 1980-1986 and 2004-2008 eruptions at Mount St. Helens. More than half of the events occurred near Mount Baker, where the background flux of magmatic gases is greatest among Washington and Oregon volcanoes. The six volcanoes with DLPs (counts in parentheses) are Mount Baker (31), Glacier Peak (9), Mount Rainier (9), Mount St. Helens (9), Three Sisters (1), and Crater Lake (1). No DLPs were identified beneath Mount Adams, Mount Hood, Mount Jefferson, or Newberry Volcano, although (except at Hood) that may be due in part to poorer network coverage. In cases where the DLPs do not occur directly beneath the volcanic edifice, the locations coincide with large structural faults that extend into the deep crust. Our observations suggest the occurrence of DLPs in these areas could represent fluid and/or magma transport along pre-existing tectonic structures in the middle crust. ?? 2010 Elsevier B.V.

  2. Detecting long-term hydrological patterns at Crater Lake, Oregon

    USGS Publications Warehouse

    Peterson, D.L.; Silsbee, D.G.; Redmond, Kelly T.

    1999-01-01

    Tree-ring chronologies for mountain hemlock (Tsuga mertensiana) were used to reconstruct the water level of Crater Lake, a high-elevation lake in the southern Cascade Range of Oregon. Reconstructions indicate that lake level since the late 1980s has been lower than at any point in the last 300 years except the early 1930s to mid 1940s. Lake level was consistently higher during the Little Ice Age than during the late 20th century; during the late 17th century, lake level was up to 9 m higher than recent (1980s and 1990s) low levels, which is consistent with paleoclimalic reconstructions of regional precipitation and atmospheric pressure. Furthermore, instrumental data available for the 20th century suggest that there are strong teleconnections among atmospheric circulation (e.g., Pacific Decadal Oscillation), tree growth, and hydrology in southern Oregon. Crater Lake is sensitive to interannual, interdecadal and intercentenary variation in precipitation and atmospheric circulation, and can be expected to track both short-term and longterm variation in regional climatic patterns that may occur in the future.

  3. PINE CREEK ROADLESS AREA, OREGON.

    USGS Publications Warehouse

    Walker, George W.; Denton, David K., Jr.

    1984-01-01

    Examination of the Pine Creek Roadless Area, Oregon indicates that there is little likelihood for the occurrence of energy or metallic mineral resources in the area. No mines or mineral prospects were identified during the investigation. Although nearby parts of Harney Basin are characterized by higher than normal heat flow, indicating that the region as a whole may have some as yet undefined potential for the occurrence of the geothermal energy resources, no potential for this resource was identified in the roadless area.

  4. Lee v. State of Oregon.

    PubMed

    Devlin, M M

    1996-01-01

    HELD: Oregon's Death with Dignity Act, Measure 16, which legalizes physician-assisted suicide for certain terminally ill persons, violates the equal protection clause of the fourteenth amendment to the United States Constitution. Measure 16 fails to withstand even the lowest level of judicial scrutiny because the disparate treatment afforded the class of terminally ill persons does not further any legitimate state interest. PMID:8934861

  5. Arsenic levels in Oregon waters.

    PubMed Central

    Stoner, J C; Whanger, P D; Weswig, P H

    1977-01-01

    The arsenic content of well water in certain areas of Oregon can range up to 30 to 40 times the U.S.P.H.S. Drinking Water Standard of 1962, where concentrations in excess of 50 ppb are grounds for rejection. The elevated arsenic levels in water are postulated to be due to volcanic deposits. Wells in central Lane County, Oregon, that are known to contain arsenic rich water are in an area underlain by a particular group of sedimentary and volcanic rocks, which geologists have named the Fischer formation. The arsenic levels in water from wells ranged from no detectable amounts to 2,000 ppb. In general the deeper wells contained higher arsenic water. The high arsenic waters are characterized by the small amounts of calcium and magnesium in relation to that of sodium, a high content of boron, and a high pH. Water from some hot springs in other areas of Oregon was found to range as high as 900 ppb arsenic. Arsenic blood levels ranged from 32 ppb for people living in areas where water is low in arsenic to 250 ppb for those living in areas where water is known to contain high levels of arsenic. Some health problems associated with consumption of arsenic-rich water are discussed. PMID:908291

  6. Resonant Cascaded Downconversion

    SciTech Connect

    Weedbrook, Christian; Parrett, Ben; Kheruntsyan, Karen; Drummond, Peter; Pooser, Raphael C; Pfister, Olivier

    2012-01-01

    We analyze an optical parametric oscillator (OPO) in which cascaded down-conversion occurs inside a cavity resonant for all modes but the initial pump. Due to the resonant cascade design, the OPO presents two {chi}{sup (2)}-level oscillation thresholds that are therefore much lower than for a {chi}{sup (3)} OPO. This is promising for reaching the regime of an effective third-order nonlinearity well above both thresholds. Such a {chi}{sup (2)} cascaded device also has potential applications in frequency conversion to far-infrared regimes. But, most importantly, it can generate novel multipartite quantum correlations in the output radiation, which represent a step beyond squeezed or entangled light. The output can be highly non-Gaussian and therefore not describable by any semiclassical model. In this paper, we derive quantum stochastic equations in the positive-P representation and undertake an analysis of steady-state and dynamical properties of this system.

  7. Hadron cascades produced by electromagnetic cascades

    SciTech Connect

    Nelson, W.R.; Jenkins, T.M.; Ranft, J.

    1986-12-01

    A method for calculating high energy hadron cascades induced by multi-GeV electron and photon beams is described. Using the EGS4 computer program, high energy photons in the EM shower are allowed to interact hadronically according to the vector meson dominance (VMD) model, facilitated by a Monte Carlo version of the dual multistring fragmentation model which is used in the hadron cascade code FLUKA. The results of this calculation compare very favorably with experimental data on hadron production in photon-proton collisions and on the hadron production by electron beams on targets (i.e., yields in secondary particle beam lines). Electron beam induced hadron star density contours are also presented and are compared with those produced by proton beams. This FLUKA-EGS4 coupling technique could find use in the design of secondary beams, in the determination high energy hadron source terms for shielding purposes, and in the estimation of induced radioactivity in targets, collimators and beam dumps.

  8. Collisional Cascades Revisited

    NASA Astrophysics Data System (ADS)

    Schlichting, Hilke; Pan, M.

    2013-01-01

    Collisional cascades are believed to be the primary mechanism operating in circumstellar dusty debris disks, and are thought to be important in the Kuiper and Asteroid belt. Collisional cascades transfer mass via destructive collisions from larger bodies to smaller ones. Their widespread occurrence and potential importance in understanding planet formation and planet-disk interactions have motivated detailed studies of collisional cascades. The standard theoretical treatment of collisional cascades derives a steady-state size distribution assuming a single constant velocity dispersion for all bodies regardless of size. We relax this assumption and solve self-consistently for the bodies' steady-state size and size-dependent velocity distributions. Specifically, we account for viscous stirring, dynamical friction, and collisional damping of the bodies' random velocities in addition to the mass conservation requirement typically applied to find the size distribution in a steady-state cascade. The resulting size distributions are significantly steeper than those derived without velocity evolution. For example, accounting self-consistently for the velocities can change the standard q = 3.5 power-law index of the Dohnanyi differential size spectrum to an index as large as q = 4. Similarly, for bodies held together by their own gravity, the corresponding power-law index range 2.88 < q < 3.14 of Pan & Sari (2005) can steepen to values as large as q = 3.26. These differences in the size distribution power law index are very important when estimating the total disk mass, including larger bodies, by extrapolating from the observed dust masses. Our velocity results allow quantitative predictions of the bodies' scale heights as a function of size. Together with our predictions, observations of the scale heights for different-sized bodies in, for example, extrasolar debris disks may constrain the total mass in large bodies stirring the cascade as well as the colliding bodies

  9. Intra Nucleon Cascade Program

    Energy Science and Technology Software Center (ESTSC)

    1998-08-18

    The package consists of three programs ISABEL, EVA, and PACE-2. ISABEL and PACE-2 are part of the LAHET code. ISABEL is an intra-nucleon cascade program. The output cascades are used as directly as input files to the two evaporation programs EVA and PACE-2. EVA ignores the effect of the angular momentum of the excited nuclei on the deexcitation and also ignores the possibility of gamma emission as long as particle emission is energetically allowed. PACE-2more » takes full account of angular momentum effects including irast levels and gamma emission at all stages of the evaporation chain.« less

  10. Cascade decays of hollow ions

    SciTech Connect

    Omar, G. ); Hahn, Y. )

    1991-05-01

    A multiple-electron-emission process for atoms with one or more inner-shell vacancies is treated using the radiative- and Auger-electron-emission cascade model, in which inner-shell holes are assumed to decay by sequentially emitting radiations and/or Auger electrons. Such hollow ions are produced by synchrotron irradiation of atomic targets and in ion-surface interactions with multiple-electron transfers. The final charge-state distribution is determined by the Auger and radiative branching ratios at each stage of the decay sequence. At intermediate stages of cascade, hollow ions with more than one hole in different ionization stages are created. The Ne, Mg, and Fe{sup 14+} ions with the initial 1{ital s}, 2{ital s}, and 2{ital p} vacancies are considered in detail, and the core charge dependence of the maximum charge state is studied. The hollow Mg ion with double initial 1{ital s} holes is analyzed, and the result compared with that for the case of one 1{ital s} hole. The peak is shifted more than two units to a higher degree of ionization. The correlated shake-off and shake-up multiple-electron processes are not considered, but they are expected to cause further shifts.

  11. FINAL REPORT WIND POWER WARM SPRINGS RESERVATION TRIBAL LANDS DOE GRANT NUMBER DE-FG36-07GO17077 SUBMITTED BY WARM SPRINGS POWER & WATER ENTERPRISES A CORPORATE ENTITY OF THE CONFEDERATED TRIBES OF WARM SPRINGS WARM SPRINGS, OREGON

    SciTech Connect

    Jim Manion; Michael Lofting; Wil Sando; Emily Leslie; Randy Goff

    2009-03-30

    Wind Generation Feasibility Warm Springs Power and Water Enterprises (WSPWE) is a corporate entity owned by the Confederated Tribes of the Warm Springs Reservation, located in central Oregon. The organization is responsible for managing electrical power generation facilities on tribal lands and, as part of its charter, has the responsibility to evaluate and develop renewable energy resources for the Confederated Tribes of Warm Springs. WSPWE recently completed a multi-year-year wind resource assessment of tribal lands, beginning with the installation of wind monitoring towers on the Mutton Mountains site in 2003, and collection of on-site wind data is ongoing. The study identified the Mutton Mountain site on the northeastern edge of the reservation as a site with sufficient wind resources to support a commercial power project estimated to generate over 226,000 MWh per year. Initial estimates indicate that the first phase of the project would be approximately 79.5 MW of installed capacity. This Phase 2 study expands and builds on the previously conducted Phase 1 Wind Resource Assessment, dated June 30, 2007. In order to fully assess the economic benefits that may accrue to the Tribes through wind energy development at Mutton Mountain, a planning-level opinion of probable cost was performed to define the costs associated with key design and construction aspects of the proposed project. This report defines the Mutton Mountain project costs and economics in sufficient detail to allow the Tribes to either build the project themselves or contract with a developer under the most favorable terms possible for the Tribes.

  12. Debris flow from 2012 failure of moraine-dammed lake, Three Fingered Jack volcano, Mount Jefferson Wilderness, Oregon

    USGS Publications Warehouse

    Sherrod, David R.; Wills, Barton B.

    2014-01-01

    The Three Fingered Jack debris flow is one of several that have issued from moraine-dammed lakes in the Oregon Cascade Range. A thorough summary of those lakes and the hazards associated with them was published in 2001, based largely on fieldwork by Jim O’Connor and Jasper Hardison in the early 1990s. Described here are details of the 2012 event, an update to the O’Connor story begun earlier.

  13. Howling about Trophic Cascades

    ERIC Educational Resources Information Center

    Kowalewski, David

    2012-01-01

    Following evolutionary theory and an agriculture model, ecosystem research has stressed bottom-up dynamics, implying that top wild predators are epiphenomenal effects of more basic causes. As such, they are assumed expendable. A more modern co-evolutionary and wilderness approach--trophic cascades--instead suggests that top predators, whose…

  14. Cascaded thermoacoustic devices

    DOEpatents

    Swift, Gregory W.; Backhaus, Scott N.; Gardner, David L.

    2003-12-09

    A thermoacoustic device is formed with a resonator system defining at least one region of high specific acoustic impedance in an acoustic wave within the resonator system. A plurality of thermoacoustic units are cascaded together within the region of high specific acoustic impedance, where at least one of the thermoacoustic units is a regenerator unit.

  15. Integrated Broadband Quantum Cascade Laser

    NASA Technical Reports Server (NTRS)

    Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)

    2016-01-01

    A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.

  16. Fundamental Investigation of Circumferentially Varying Stator Cascades

    NASA Astrophysics Data System (ADS)

    Farnsworth, John A. N.

    2011-12-01

    The fundamentals of circumferentially varying stator cascades and their interactions with a downstream fixed pitch propeller were investigated experimentally utilizing multiple measurement techniques. The flow physics associated with the isolated circumferentially varying, or cyclic, stator cascade was studied in a wind tunnel environment through string tuft flow visualization, 2-D PIV, Stereoscopic PIV, and static surface pressure measurements. The coupled wake physics of the cyclic stator cascade with propeller were then investigated in a water tunnel using Stereo PIV. Finally, the global performance of components and the coupled system were quantified through force and moment measurements on the model in the water tunnel. A cyclic distribution of the stators' deflections resulted in non-axisymmetric distributions of the surface pressure and the flow field downstream of the stator array. In the model near wake the flow field is associated with secondary flow patterns in the form of coherent streamwise vortical structures that can be described by potential flow mechanisms. The collective pitch distribution of the stators produces a flow field that resembles a potential Rankine vortex, whereas the cyclic pitch distribution generates a flow pattern that can be described by a potential vortex pair in a cross flow. The stator distribution alone produces a significant side force that increases linearly with stator pitch amplitude. When a propeller is incorporated downstream from the cyclic cascade the side force from the stator cascade is reduced, but a small vertical force and pitching moment are created. The generation of these secondary forces and moments can be related to the redistribution of the tangential flow from the cyclic cascade into the axial direction by the retreating and advancing blade states of the fixed pitch propeller.

  17. Endangered Plants in Oregon and Washington.

    ERIC Educational Resources Information Center

    Love, Rhoda M.

    1985-01-01

    Presents a partial list of the 132 Oregon and Washington plants which have been proposed for federal protection under the Endangered Species Act. Suggestions for student/citizen involvement in preserving these species and a description of a videotape about rare/endangered species of the Willamette Valley (Oregon) are included. (DH)

  18. Oregon University System Fact Book 2013

    ERIC Educational Resources Information Center

    Oregon University System, 2014

    2014-01-01

    This compendium of narrative and statistical information is an overview of the Oregon University System (OUS) and is the last Fact Book published under the auspices of the Oregon University System. The introduction includes a mission statement, a listing of OUS campuses and centers, a roster of the members of the State Board of Higher Education,…

  19. Steller Cove. Oregon Zoo Teacher Resource Guide.

    ERIC Educational Resources Information Center

    Ward, Kristin

    The goal of this teacher guide is to promote education by providing resources and information to aid classroom teachers in using the Oregon Zoo as an educational setting. The unit also emphasizes the integration of science, mathematics, reading, writing, speaking, and problem solving. It is designed for grades 3-5 and is based on the Oregon State…

  20. Oregon School Bond Manual. Sixth Edition.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem. Office of School District Services.

    Given that purchasers of Oregon school bonds rely on recommendations of accredited bond attorneys, this document is designed to assist school districts in complying with state statutes regulating the issuance of school bond issues in order that attorney opinions may be favorable. Six initial steps toward a bond sale and Oregon laws regarding bonds…

  1. The Oregon Career and Technical Education Study

    ERIC Educational Resources Information Center

    Klein, Steven; Richards, Amanda

    2008-01-01

    Oregon educators, policymakers, and business people are working together to increase the number and quality of Career and Technical Education (CTE) programs in secondary and postsecondary institutions. CTE is an integral component of Oregon's education and workforce development system and prepares students for careers in areas ranging from the…

  2. 21 CFR 808.87 - Oregon.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oregon. 808.87 Section 808.87 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EXEMPTIONS FROM FEDERAL PREEMPTION OF STATE AND LOCAL MEDICAL DEVICE REQUIREMENTS Listing of Specific State and Local Exemptions § 808.87 Oregon. (a)...

  3. On the Oregon Trail. [Lesson Plan].

    ERIC Educational Resources Information Center

    2000

    In this lesson, students work with primary documents and latter-day photographs to recapture the experience of traveling on the Oregon Trail. The learning objectives of the lesson are: (1) to learn about the pioneer experience on the Oregon Trail; (2) to evaluate a historical re-enactment in light of documentary evidence; and (3) to synthesize…

  4. 50 CFR 32.56 - Oregon.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Oregon. 32.56 Section 32.56 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM HUNTING AND FISHING Refuge-Specific Regulations for Hunting and Fishing § 32.56 Oregon. The following refuge units have...

  5. 50 CFR 32.56 - Oregon.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Oregon. 32.56 Section 32.56 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM HUNTING AND FISHING Refuge-Specific Regulations for Hunting and Fishing § 32.56 Oregon. The following refuge units have...

  6. Oregon Migrant Health Project, 1971 Annual Report.

    ERIC Educational Resources Information Center

    Oregon State Board of Health, Portland.

    In its 9th year of providing migrant health services through a U.S. Public Health Service Continuing Migrant Health Act grant, this Oregon Migrant Health Project annual report is concerned with (1) the health services provided during the 1970-71 harvest season through a contractual arrangement between the Oregon State Health Division and 10 county…

  7. Oregon Community College 2001-2002 Profile.

    ERIC Educational Resources Information Center

    Oregon Dept. of Community Colleges and Workforce Development, Salem.

    This document provides numerous tables and graphs illustrating information regarding Oregon community colleges. The four sections of this 2001/2002 Oregon Community College Profile provide information on: (1) students; (2) faculty and staff; (3) finances; and (4) programs and services. The information regarding the student section summarizes…

  8. Oregon Migrant Health Project, 1970 Annual Report.

    ERIC Educational Resources Information Center

    Oregon State Board of Health, Portland.

    The 1970 annual report on the Oregon Migrant Health Project discusses health services for migrant agricultural workers and their families (approximately 30,000 individuals) who worked and lived temporarily in various Oregon counties. As noted, some 9,000 of the 30,000 migrants were estimated to be in need of some type of medical service. Thus, the…

  9. Directory and Statistics of Oregon Libraries 1991.

    ERIC Educational Resources Information Center

    Scheppke, Jim, Comp.; And Others.

    This directory and statistical information report provides data on 217 public libraries in Oregon, 64 academic libraries, and 172 special libraries within the state, as well as information on the Oregon State Library profiling each library within its appropriate type. Each of the four sections provides directory information (e..g, the library's…

  10. Dissolved Oxygen Data for Coos Estuary (Oregon)

    EPA Science Inventory

    The purpose of this product is the transmittal of dissolved oxygen data collected in the Coos Estuary, Oregon to Ms. Molly O'Neill (University of Oregon), for use in her studies on the factors influencing spatial and temporal patterns in dissolved oxygen in this estuary. These d...