Sample records for organic carbon sequestration

  1. Impacts of crop rotations on soil organic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Gobin, Anne; Vos, Johan; Joris, Ingeborg; Van De Vreken, Philippe

    2013-04-01

    Agricultural land use and crop rotations can greatly affect the amount of carbon sequestered in the soil. We developed a framework for modelling the impacts of crop rotations on soil carbon sequestration at the field scale with test case Flanders. A crop rotation geo-database was constructed covering 10 years of crop rotation in Flanders using the IACS parcel registration (Integrated Administration and Control System) to elicit the most common crop rotation on major soil types in Flanders. In order to simulate the impact of crop cover on carbon sequestration, the Roth-C model was adapted to Flanders' environment and coupled to common crop rotations extracted from the IACS geodatabases and statistical databases on crop yield. Crop allometric models were used to calculate crop residues from common crops in Flanders and subsequently derive stable organic matter fluxes to the soil (REGSOM). The REGSOM model was coupled to Roth-C model was run for 30 years and for all combinations of seven main arable crops, two common catch crops and two common dosages of organic manure. The common crops are winter wheat, winter barley, sugar beet, potato, grain maize, silage maize and winter rapeseed; the catch crops are yellow mustard and Italian ryegrass; the manure dosages are 35 ton/ha cattle slurry and 22 ton/ha pig slurry. Four common soils were simulated: sand, loam, sandy loam and clay. In total more than 2.4 million simulations were made with monthly output of carbon content for 30 years. Results demonstrate that crop cover dynamics influence carbon sequestration for a very large percentage. For the same rotations carbon sequestration is highest on clay soils and lowest on sandy soils. Crop residues of grain maize and winter wheat followed by catch crops contribute largely to the total carbon sequestered. This implies that agricultural policies that impact on agricultural land management influence soil carbon sequestration for a large percentage. The framework is therefore

  2. Rapid assessment of U.S. forest and soil organic carbon storage and forest biomass carbon-sequestration capacity

    USGS Publications Warehouse

    Sundquist, Eric T.; Ackerman, Katherine V.; Bliss, Norman B.; Kellndorfer, Josef M.; Reeves, Matt C.; Rollins, Matthew G.

    2009-01-01

    This report provides results of a rapid assessment of biological carbon stocks and forest biomass carbon sequestration capacity in the conterminous United States. Maps available from the U.S. Department of Agriculture are used to calculate estimates of current organic carbon storage in soils (73 petagrams of carbon, or PgC) and forest biomass (17 PgC). Of these totals, 3.5 PgC of soil organic carbon and 0.8 PgC of forest biomass carbon occur on lands managed by the U.S. Department of the Interior (DOI). Maps of potential vegetation are used to estimate hypothetical forest biomass carbon sequestration capacities that are 3–7 PgC higher than current forest biomass carbon storage in the conterminous United States. Most of the estimated hypothetical additional forest biomass carbon sequestration capacity is accrued in areas currently occupied by agriculture and development. Hypothetical forest biomass carbon sequestration capacities calculated for existing forests and woodlands are within ±1 PgC of estimated current forest biomass carbon storage. Hypothetical forest biomass sequestration capacities on lands managed by the DOI in the conterminous United States are 0–0.4 PgC higher than existing forest biomass carbon storage. Implications for forest and other land management practices are not considered in this report. Uncertainties in the values reported here are large and difficult to quantify, particularly for hypothetical carbon sequestration capacities. Nevertheless, this rapid assessment helps to frame policy and management discussion by providing estimates that can be compared to amounts necessary to reduce predicted future atmospheric carbon dioxide levels.

  3. [Effects of straw returning combined with medium and microelements application on soil organic carbon sequestration in cropland.

    PubMed

    Jiang, Zhen Hui; Shi, Jiang Lan; Jia, Zhou; Ding, Ting Ting; Tian, Xiao Hong

    2016-04-22

    A 52-day incubation experiment was conducted to investigate the effects of maize straw decomposition with combined medium element (S) and microelements (Fe and Zn) application on arable soil organic carbon sequestration. During the straw decomposition, the soil microbial biomass carbon (MBC) content and CO 2 -C mineralization rate increased with the addition of S, Fe and Zn, respectively. Also, the cumulative CO 2 -C efflux after 52-day laboratory incubation significantly increased in the treatments with S, or Fe, or Zn addition, while there was no significant reduction of soil organic carbon content in the treatments. In addition, Fe or Zn application increased the inert C pools and their proportion, and apparent balance of soil organic carbon, indicating a promoting effect of Fe or Zn addition on soil organic carbon sequestration. In contrast, S addition decreased the proportion of inert C pools and apparent balance of soil organic carbon, indicating an adverse effect of S addition on soil organic carbon sequestration. The results suggested that when nitrogen and phosphorus fertilizers were applied, inclusion of S, or Fe, or Zn in straw incorporation could promote soil organic carbon mineralization process, while organic carbon sequestration was favored by Fe or Zn addition, but not by S addition.

  4. Global Sequestration Potential of Increased Organic Carbon in Cropland Soils.

    PubMed

    Zomer, Robert J; Bossio, Deborah A; Sommer, Rolf; Verchot, Louis V

    2017-11-14

    The role of soil organic carbon in global carbon cycles is receiving increasing attention both as a potentially large and uncertain source of CO 2 emissions in response to predicted global temperature rises, and as a natural sink for carbon able to reduce atmospheric CO 2 . There is general agreement that the technical potential for sequestration of carbon in soil is significant, and some consensus on the magnitude of that potential. Croplands worldwide could sequester between 0.90 and 1.85 Pg C/yr, i.e. 26-53% of the target of the "4p1000 Initiative: Soils for Food Security and Climate". The importance of intensively cultivated regions such as North America, Europe, India and intensively cultivated areas in Africa, such as Ethiopia, is highlighted. Soil carbon sequestration and the conservation of existing soil carbon stocks, given its multiple benefits including improved food production, is an important mitigation pathway to achieve the less than 2 °C global target of the Paris Climate Agreement.

  5. Dynamics and climate change mitigation potential of soil organic carbon sequestration.

    PubMed

    Sommer, Rolf; Bossio, Deborah

    2014-11-01

    When assessing soil organic carbon (SOC) sequestration and its climate change (CC) mitigation potential at global scale, the dynamic nature of soil carbon storage and interventions to foster it should be taken into account. Firstly, adoption of SOC-sequestration measures will take time, and reasonably such schemes could only be implemented gradually at large-scale. Secondly, if soils are managed as carbon sinks, then SOC will increase only over a limited time, up to the point when a new SOC equilibrium is reached. This paper combines these two processes and predicts potential SOC sequestration dynamics in agricultural land at global scale and the corresponding CC mitigation potential. Assuming that global governments would agree on a worldwide effort to gradually change land use practices towards turning agricultural soils into carbon sinks starting 2014, the projected 87-year (2014-2100) global SOC sequestration potential of agricultural land ranged between 31 and 64 Gt. This is equal to 1.9-3.9% of the SRES-A2 projected 87-year anthropogenic emissions. SOC sequestration would peak 2032-33, at that time reaching 4.3-8.9% of the projected annual SRES-A2 emission. About 30 years later the sequestration rate would have reduced by half. Thus, SOC sequestration is not a C wedge that could contribute increasingly to mitigating CC. Rather, the mitigation potential is limited, contributing very little to solving the climate problem of the coming decades. However, we deliberately did not elaborate on the importance of maintaining or increasing SOC for sustaining soil health, agro-ecosystem functioning and productivity; an issue of global significance that deserves proper consideration irrespectively of any potential additional sequestration of SOC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Erosion of soil organic carbon: implications for carbon sequestration

    USGS Publications Warehouse

    Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.; McPherson, B.J.; Sundquist, E.T.

    2009-01-01

    Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.

  7. Algae-Based Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Haoyang, Cai

    2018-03-01

    Our civilization is facing a series of environmental problems, including global warming and climate change, which are caused by the accumulation of green house gases in the atmosphere. This article will briefly analyze the current global warming problem and propose a method that we apply algae cultivation to absorb carbon and use shellfish to sequestrate it. Despite the importance of decreasing CO2 emissions or developing carbon-free energy sources, carbon sequestration should be a key issue, since the amount of carbon dioxide that already exists in the atmosphere is great enough to cause global warming. Algae cultivation would be a good choice because they have high metabolism rates and provides shellfish with abundant food that contains carbon. Shellfish’s shells, which are difficult to be decomposed, are reliable storage of carbon, compared to dead organisms like trees and algae. The amount of carbon that can be sequestrated by shellfish is considerable. However, the sequestrating rate of algae and shellfish is not high enough to affect the global climate. Research on algae and shellfish cultivation, including gene technology that aims to create “super plants” and “super shellfish”, is decisive to the solution. Perhaps the baton of history will shift to gene technology, from nuclear physics that has lost appropriate international environment after the end of the Cold War. Gene technology is vital to human survival.

  8. Soil organic carbon sequestration and tillage systems in Mediterranean environments

    NASA Astrophysics Data System (ADS)

    Francaviglia, Rosa; Di Bene, Claudia; Marchetti, Alessandro; Farina, Roberta

    2016-04-01

    Soil carbon sequestration is of special interest in Mediterranean areas, where rainfed cropping systems are prevalent, inputs of organic matter to soils are low and mostly rely on crop residues, while losses are high due to climatic and anthropic factors such as intensive and non-conservative farming practices. The adoption of reduced or no tillage systems, characterized by a lower soil disturbance in comparison with conventional tillage, has proved to be positively effective on soil organic carbon (SOC) conservation and other physical and chemical processes, parameters or functions, e.g. erosion, compaction, ion retention and exchange, buffering capacity, water retention and aggregate stability. Moreover, soil biological and biochemical processes are usually improved by the reduction of tillage intensity. The work deals with some results available in the scientific literature, and related to field experiment on arable crops performed in Italy, Greece, Morocco and Spain. Data were organized in a dataset containing the main environmental parameters (altitude, temperature, rainfall), soil tillage system information (conventional, minimum and no-tillage), soil parameters (bulk density, pH, particle size distribution and texture), crop type, rotation, management and length of the experiment in years, initial SOCi and final SOCf stocks. Sampling sites are located between 33° 00' and 43° 32' latitude N, 2-860 m a.s.l., with mean annual temperature and rainfall in the range 10.9-19.6° C and 355-900 mm. SOC data, expressed in t C ha-1, have been evaluated both in terms of Carbon Sequestration Rate, given by [(SOCf-SOCi)/length in years], and as percentage change in comparison with the initial value [(SOCf-SOCi)/SOCi*100]. Data variability due to the different environmental, soil and crop management conditions that influence SOC sequestration and losses will be examined.

  9. Soil Organic Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis

    DOE Data Explorer

    West, Tristram O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Post, Wilfred M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2002-01-01

    Changes in agricultural management can potentially increase the accumulation rate of soil organic carbon (SOC), thereby sequestering CO2 from the atmosphere. This study was conducted to quantify potential soil carbon (C) sequestration rates for different crops in response to decreasing tillage intensity or enhancing rotation complexity, and to estimate the duration of time over which sequestration may occur. Analyses of C sequestration rates were completed using a global database of 67 long-term agricultural experiments, consisting of 276 paired treatments. Results indicate, on average, that a change from conventional tillage (CT) to no-till (NT) can sequester 57 ± 14 g C m–2 yr–1, excluding wheat (Triticum aestivum L.)-fallow systems which may not result in SOC accumulation with a change from CT to NT. Enhancing rotation complexity can sequester an average 14 ± 11 g C m–2 yr–1, excluding a change from continuous corn (Zea mays L.) to corn-soybean (Glycine max L.) which may not result in a significant accumulation of SOC. Carbon sequestration rates, with a change from CT to NT, can be expected to peak in 5-10 yr with SOC reaching a new equilibrium in 15-20 yr. Following initiation of an enhancement in rotation complexity, SOC may reach a new equilibrium in approximately 40-60 yr. Carbon sequestration rates, estimated for a number of individual crops and crop rotations in this study, can be used in spatial modeling analyses to more accurately predict regional, national, and global C sequestration potentials.

  10. How organic carbon derived from multiple sources contributes to carbon sequestration processes in a shallow coastal system?

    PubMed Central

    Watanabe, Kenta; Kuwae, Tomohiro

    2015-01-01

    Carbon captured by marine organisms helps sequester atmospheric CO2, especially in shallow coastal ecosystems, where rates of primary production and burial of organic carbon (OC) from multiple sources are high. However, linkages between the dynamics of OC derived from multiple sources and carbon sequestration are poorly understood. We investigated the origin (terrestrial, phytobenthos derived, and phytoplankton derived) of particulate OC (POC) and dissolved OC (DOC) in the water column and sedimentary OC using elemental, isotopic, and optical signatures in Furen Lagoon, Japan. Based on these data analysis, we explored how OC from multiple sources contributes to sequestration via storage in sediments, water column sequestration, and air–sea CO2 exchanges, and analyzed how the contributions vary with salinity in a shallow seagrass meadow as well. The relative contribution of terrestrial POC in the water column decreased with increasing salinity, whereas autochthonous POC increased in the salinity range 10–30. Phytoplankton-derived POC dominated the water column POC (65–95%) within this salinity range; however, it was minor in the sediments (3–29%). In contrast, terrestrial and phytobenthos-derived POC were relatively minor contributors in the water column but were major contributors in the sediments (49–78% and 19–36%, respectively), indicating that terrestrial and phytobenthos-derived POC were selectively stored in the sediments. Autochthonous DOC, part of which can contribute to long-term carbon sequestration in the water column, accounted for >25% of the total water column DOC pool in the salinity range 15–30. Autochthonous OC production decreased the concentration of dissolved inorganic carbon in the water column and thereby contributed to atmospheric CO2 uptake, except in the low-salinity zone. Our results indicate that shallow coastal ecosystems function not only as transition zones between land and ocean but also as carbon sequestration filters

  11. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed.

    PubMed

    Bhattarai, Mukesh Dev; Secchi, Silvia; Schoof, Justin

    2017-01-01

    Land-based carbon sequestration constitutes a major low cost and immediately viable option in climate change mitigation. Using downscaled data from eight atmosphere-ocean general circulation models for a simulation period between 2015 and 2099, we examine the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed and the impact of climate change on crop yields. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 192.1 MtCO 2 eq of soil organic carbon per hectare with a sequestration rate of 2.26 MtCO 2 eq ha -1 yr -1 . Our results also indicate that switchgrass can sequester the equivalent of 310.7 MtCO 2 eq of soil organic carbon per hectare with a sequestration rate of 3.65 MtCO 2 eq ha -1 yr -1 . Our findings suggest that, unlike for corn and soybean yields, climate change does not have a significant effect on switchgrass yields, possibly due to the carbon fertilization effect.

  12. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed

    NASA Astrophysics Data System (ADS)

    Bhattarai, Mukesh Dev; Secchi, Silvia; Schoof, Justin

    2017-01-01

    Land-based carbon sequestration constitutes a major low cost and immediately viable option in climate change mitigation. Using downscaled data from eight atmosphere-ocean general circulation models for a simulation period between 2015 and 2099, we examine the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed and the impact of climate change on crop yields. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 192.1 MtCO2 eq of soil organic carbon per hectare with a sequestration rate of 2.26 MtCO2 eq ha-1 yr-1. Our results also indicate that switchgrass can sequester the equivalent of 310.7 MtCO2 eq of soil organic carbon per hectare with a sequestration rate of 3.65 MtCO2 eq ha-1 yr-1. Our findings suggest that, unlike for corn and soybean yields, climate change does not have a significant effect on switchgrass yields, possibly due to the carbon fertilization effect.

  13. Redox-controlled carbon and phosphorus burial: A mechanism for enhanced organic carbon sequestration during the PETM

    NASA Astrophysics Data System (ADS)

    Komar, Nemanja; Zeebe, Richard E.

    2017-12-01

    Geological records reveal a major perturbation in carbon cycling during the Paleocene-Eocene Thermal Maximum (PETM, ∼56 Ma), marked by global warming of more than 5 °C and a prominent negative carbon isotope excursion of at least 2.5‰ within the marine realm. The entire event lasted about 200,000 yr and was associated with a massive release of light carbon into the ocean-atmosphere system over several thousands of years. Here we focus on the terminal stage of the PETM, during which the ocean-atmosphere system rapidly recovered from the carbon cycle perturbation. We employ a carbon-cycle box model to examine the feedbacks between surface ocean biological production, carbon, oxygen, phosphorus, and carbonate chemistry during massive CO2 release events, such as the PETM. The model results indicate that the redox-controlled carbon-phosphorus feedback is capable of producing enhanced organic carbon sequestration during large carbon emission events. The locale of carbon oxidation (ocean vs. atmosphere) does not affect the amount of carbon sequestered. However, even though the model produces trends consistent with oxygen, excess accumulation rates of organic carbon (∼1700 Pg C during the recovery stage), export production and δ13 C data, it fails to reproduce the magnitude of change of sediment carbonate content and the CCD over-deepening during the recovery stage. The CCD and sediment carbonate content overshoot during the recovery stage is muted by a predicted increase in CaCO3 rain. Nonetheless, there are indications that the CaCO3 export remained relatively constant during the PETM. If this was indeed true, then an initial pulse of 3,000 Pg C followed by an additional, slow leak of 2,500 Pg C could have triggered an accelerated nutrient supply to the surface ocean instigating enhanced organic carbon export, consequently increasing organic carbon sequestration, resulting in an accelerated restoration of ocean-atmosphere biogeochemistry during the termination

  14. Carbon sequestration partnerships

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The U.S. Department of Energy named seven regional partnerships on 16 August to study the best methods for the non-biological sequestration of carbon in different parts of the country.DOE will provide about $11.1 million to these partnerships over the next 2 years, with participating organizations expected to contribute an additional $7 million.

  15. Soil organic carbon sequestration potential and gap of the sub-tropical region

    NASA Astrophysics Data System (ADS)

    Chiti, T.; Santini, M.; Valentini, R.

    2012-04-01

    A database of soil organic carbon (SOC) stocks was created for the sub-tropical belt using existing global SOC databases (WISE3; various SOTER) and new data from an ongoing project (ERC Africa-GHG) specific for the tropical forests of the African continent. The intent of this database is to evaluate the sequestration potential of a critical area of the world where most of the primary rainforests are located, and actually show undoubtedly high SOC losses associated with deforestation. About 4100 profiles, quite well distributed over the entire sub-tropical belt, were used to calculate the actual SOC stock for the 0-30 cm and 30-100 cm depths of mineral soil. First, this actual SOC stock has been related to the current Land Use Systems; successively, it has been interpolated taking into account Homogeneous Land Units (HLUs) in terms of soil type, climate zone and land use. Then, relying on consistent projections, of both climate and land use changes, for the years 2050 and 2100 under extremes IPCC-SRES emission scenarios such as the B1 and the A2, potential SOC stocks for these time frames has been calculated. Soil carbon sequestration gap is calculated by the difference of the actual SOC stock and the future projections. When subtracting potential from the actual SOC stocks, negative values represent a gap in terms of possible SOC losses and so reduced carbon sequestration. The soil carbon gap indicates locations where there will be low soil-carbon levels associated with medium-to-high actual SOC stocks, and medium soil-carbon levels associated with high actual SOC stocks, depending on soil type, climate and land use conditions. On the long term, 2076-2100, a SOC gap is observed under all scenarios in South America, just below the Amazonia basin, where are located open and fragmented forests. However, in the Amazonia basin deforestation decrease since no sensible SOC losses were observed. An important gap is observed also in the Congo basin and West Africa, but the

  16. Accounting for Organic Carbon Change in Deep Soil Altered Carbon Sequestration Efficiency

    NASA Astrophysics Data System (ADS)

    Li, J.; Liang, F.; Xu, M.; Huang, S.

    2017-12-01

    Study on soil organic carbon (SOC) sequestration under fertilization practices in croplands lacks information of soil C change at depth lower than plow layer (i.e. 20 30-cm). By synthesizing long-term datasets of fertilization experiments in four typical Chinese croplands representing black soil at Gongzhuling(GZL), aquatic Chao soil at Zhengzhou(ZZ), red soil at Qiyang(QY) and purple soil at Chongqing(CQ) city, we calculated changes in SOC storage relative to initial condition (ΔSOC) in 0-20cm and 0-60cm, organic C inputs (OC) from the stubble, roots and manure amendment, and C sequestration efficiency (CSE: the ratio of ΔSOC over OC) in 0-20cm and 0-60cm. The fertilization treatments include cropping with no fertilization (CK), chemical nitrogen, phosphorus and potassium fertilizers (NPK) and combined chemical fertilizers and manure (NPKM). Results showed SOC storage generally decreased with soil depth (i.e. 0-20 > 20-40, 40-60 cm) and increased with fertilizations (i.e. initial < CK < NPK < NPKM). The annual OC input to soil remained relatively stable and manure input was the primary source of OC input under NPKM treatment. Assuming all OC input remained at 0-60cm and 50 90% distributed at 0-20cm, our results supported that CSE at 0-60cm was consistently larger than that at 0-20cm under NPK and NPKM at GZL (p-value<0.05), but significantly lower under NPK at ZZ and QY (p-value<0.05). These results demonstrated that under long-term fertilizations, soil at depth (>20cm) can act as important soil carbon sinks in intrinsically high fertility soils (i.e. black soil) but less likely at poor fertility soil (i.e. aquatic Chao soil). It thus informs the need to account for C change in deep soils for estimating soil C sequestration capacity particularly with indigenously fertile cropland soils.

  17. Soil carbon sequestration due to post-Soviet cropland abandonment: estimates from a large-scale soil organic carbon field inventory.

    PubMed

    Wertebach, Tim-Martin; Hölzel, Norbert; Kämpf, Immo; Yurtaev, Andrey; Tupitsin, Sergey; Kiehl, Kathrin; Kamp, Johannes; Kleinebecker, Till

    2017-09-01

    The break-up of the Soviet Union in 1991 triggered cropland abandonment on a continental scale, which in turn led to carbon accumulation on abandoned land across Eurasia. Previous studies have estimated carbon accumulation rates across Russia based on large-scale modelling. Studies that assess carbon sequestration on abandoned land based on robust field sampling are rare. We investigated soil organic carbon (SOC) stocks using a randomized sampling design along a climatic gradient from forest steppe to Sub-Taiga in Western Siberia (Tyumen Province). In total, SOC contents were sampled on 470 plots across different soil and land-use types. The effect of land use on changes in SOC stock was evaluated, and carbon sequestration rates were calculated for different age stages of abandoned cropland. While land-use type had an effect on carbon accumulation in the topsoil (0-5 cm), no independent land-use effects were found for deeper SOC stocks. Topsoil carbon stocks of grasslands and forests were significantly higher than those of soils managed for crops and under abandoned cropland. SOC increased significantly with time since abandonment. The average carbon sequestration rate for soils of abandoned cropland was 0.66 Mg C ha -1  yr -1 (1-20 years old, 0-5 cm soil depth), which is at the lower end of published estimates for Russia and Siberia. There was a tendency towards SOC saturation on abandoned land as sequestration rates were much higher for recently abandoned (1-10 years old, 1.04 Mg C ha -1  yr -1 ) compared to earlier abandoned crop fields (11-20 years old, 0.26 Mg C ha -1  yr -1 ). Our study confirms the global significance of abandoned cropland in Russia for carbon sequestration. Our findings also suggest that robust regional surveys based on a large number of samples advance model-based continent-wide SOC prediction. © 2017 John Wiley & Sons Ltd.

  18. Carbon sequestration potential for forage and pasture systems

    USDA-ARS?s Scientific Manuscript database

    Grassland soils represent a large reservoir of organic and inorganic carbon. Regionally, grasslands are annual CO2 sources or sinks depending on crop and soil management, current soil organic carbon (SOC) concentration and climate. Land management changes (LMC) impact SOC sequestration rate, the du...

  19. Intro to Carbon Sequestration

    ScienceCinema

    None

    2017-12-09

    NETL's Carbon Sequestration Program is helping to develop technologies to capture, purify, and store carbon dioxide (CO2) in order to reduce greenhouse gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO2 that would otherwise reside in the atmosphere for long periods of time.

  20. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation.

    PubMed

    Wiesmeier, Martin; Hübner, Rico; Spörlein, Peter; Geuß, Uwe; Hangen, Edzard; Reischl, Arthur; Schilling, Bernd; von Lützow, Margit; Kögel-Knabner, Ingrid

    2014-02-01

    Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO2 mitigation. However, the potential of soils to sequester soil organic carbon (SOC) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long-term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse-textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO2 -equivalents could theoretically be stored in A horizons of cultivated soils - four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity. © 2013 John Wiley & Sons Ltd.

  1. Organic carbon sequestration under selected land use in Padang city, West Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Yulnafatmawita; Yasin, S.

    2018-03-01

    Organic carbon is a potential element to build biomass as well as emitting CO2 to the atmosphere and promotes global warming. This research was aimed to calculate the sequestered Carbon (C) within a 1-m soil depth under selected land use from 6 different sites in Padang city, Indonesia. Disturbed and undisturbed soil samples were taken from several horizons until 100 cm depth at each location. Soil parameters observed were organic carbon (OC), bulk density (BD), and soil texture. The result showed that soil OC content tended to decrease by the depth at all land use types, except under rice field in Kurao-Nanggalo which extremely increased at >65 cm soil depth with the highest carbon stock. The soil organic carbon sequestration from the highest to the lowest according to land use and the location is in the following order mix garden- Kayu Aro > mix garden- Aie Pacah > Rangeland- Parak Laweh >seasonal farming- Teluk Sirih > rice field- Kampuang Jua.

  2. Big Sky Carbon Sequestration Partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessmentmore » framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation

  3. Trade-based carbon sequestration accounting.

    PubMed

    King, Dennis M

    2004-04-01

    This article describes and illustrates an accounting method to assess and compare "early" carbon sequestration investments and trades on the basis of the number of standardized CO2 emission offset credits they will provide. The "gold standard" for such credits is assumed to be a relatively riskless credit based on a CO2 emission reduction that provides offsets against CO2 emissions on a one-for-one basis. The number of credits associated with carbon sequestration needs to account for time, risk, durability, permanence, additionality, and other factors that future trade regulators will most certainly use to assign "official" credits to sequestration projects. The method that is presented here uses established principles of natural resource accounting and conventional rules of asset valuation to "score" projects. A review of 20 "early" voluntary United States based CO2 offset trades that involve carbon sequestration reveals that the assumptions that buyers, sellers, brokers, and traders are using to characterize the economic potential of their investments and trades vary enormously. The article develops a "universal carbon sequestration credit scoring equation" and uses two of these trades to illustrate the sensitivity of trade outcomes to various assumptions about how future trade auditors are likely to "score" carbon sequestration projects in terms of their "equivalency" with CO2 emission reductions. The article emphasizes the importance of using a standard credit scoring method that accounts for time and risk to assess and compare even unofficial prototype carbon sequestration trades. The scoring method illustrated in this article is a tool that can protect the integrity of carbon sequestration credit trading and can assist buyers and sellers in evaluating the real economic potential of prospective trades.

  4. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed

    NASA Astrophysics Data System (ADS)

    Bhattarai, M. D.; Secchi, S.; Schoof, J. T.

    2015-12-01

    The sequestration of carbon constitutes one of major options in agricultural climate change land-based mitigation. We examined the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed. We Used downscaled data from eight atmosphere-ocean general circulation models (AOGCMs) for a simulation period between 2015 and 2099 with three emission pathways reflecting low, medium and high greenhouse gas scenarios. The use of downscaled data, coupled with high resolution land use and soil data, can help policy makers and land managers better understand spatial and temporal impacts of climate change. We consider traditional practices such as no-till corn-soybean rotations and continuous corn and include also switchgrass, a bioenergy crop. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 156,000 MtCO2 of soil organic carbon with a sequestration rate of 2.38 MtCO2 ha-1 yr-1 for the simulated period. Our results also indicate that switchgrass can sequester the equivalent of 282,000 MtCO2 of soil organic carbon with a sequestration rate of 4.4 MtCO2 ha-1 yr-1 for the period. Our finding also suggests that while climate change impacts corn and soybean yields, it does not have a significant effect on switchgrass yields possibly due to carbon fertilization effect on switchgrass yields.

  5. Carbon sequestration pilot program : estimated land available for carbon sequestration in the national highway system

    DOT National Transportation Integrated Search

    2010-05-01

    The Federal Highway Administration (FHWA) established the Carbon Sequestration Pilot Program (CSPP) in 2008 to assess whether a roadside carbon sequestration effort through modified maintenance and management practices is appropriate and feasible for...

  6. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan M. Capalbo

    2004-10-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources foundmore » in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and

  7. Soil Carbon Sequestration and Land-Use Change: Processes and Potential

    DOE Data Explorer

    Post, W. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kwon, K. C. [Tuskeegee University, Tuskeegee, AL (United States)

    2005-01-01

    When agricultural land is no longer used for cultivation and allowed to revert to natural vegetation or replanted to perennial vegetation, soil organic carbon can accumulate. This accumulation process essentially reverses some of the effects responsible for soil organic carbon losses from when the land was converted from perennial vegetation. We discuss the essential elements of what is known about soil organic matter dynamics that may result in enhanced soil carbon sequestration with changes in land-use and soil management. We review literature that reports changes in soil organic carbon after changes in land-use that favour carbon accumulation. This data summary provides a guide to approximate rates of SOC sequestration that are possible with management, and indicates the relative importance of some factors that influence the rates of organic carbon sequestration in soil. There is a large variation in the length of time for and the rate at which carbon may accumulate in soil, related to the productivity of the recovering vegetation, physical and biological conditions in the soil, and the past history of soil organic carbon inputs and physical disturbance. Maximum rates of C accumulation during the early aggrading stage of perennial vegetation growth, while substantial, are usually much less than 100g C m–2 y–1. Average rates of accumulation are similar for forest or grassland establishment: 33.8 g C m–2 y–1 and 33.2 g C m–2 y–1, respectively. These observed rates of soil organic C accumulation, when combined with the small amount of land area involved, are insufficient to account for a significant fraction of the missing C in the global carbon cycle as accumulating in the soils of formerly agricultural land.

  8. Carbon sequestration and its role in the global carbon cycle

    USGS Publications Warehouse

    McPherson, Brian J.; Sundquist, Eric T.

    2009-01-01

    For carbon sequestration the issues of monitoring, risk assessment, and verification of carbon content and storage efficacy are perhaps the most uncertain. Yet these issues are also the most critical challenges facing the broader context of carbon sequestration as a means for addressing climate change. In response to these challenges, Carbon Sequestration and Its Role in the Global Carbon Cycle presents current perspectives and research that combine five major areas: • The global carbon cycle and verification and assessment of global carbon sources and sinks • Potential capacity and temporal/spatial scales of terrestrial, oceanic, and geologic carbon storage • Assessing risks and benefits associated with terrestrial, oceanic, and geologic carbon storage • Predicting, monitoring, and verifying effectiveness of different forms of carbon storage • Suggested new CO2 sequestration research and management paradigms for the future. The volume is based on a Chapman Conference and will appeal to the rapidly growing group of scientists and engineers examining methods for deliberate carbon sequestration through storage in plants, soils, the oceans, and geological repositories.

  9. Mechanisms of Soil Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Lal, Rattan

    2015-04-01

    Carbon (C) sequestration in soil is one of the several strategies of reducing the net emission of CO2 into the atmosphere. Of the two components, soil organic C (SOC) and soil inorganic C (SIC), SOC is an important control of edaphic properties and processes. In addition to off-setting part of the anthropogenic emissions, enhancing SOC concentration to above the threshold level (~1.5-2.0%) in the root zone has numerous ancillary benefits including food and nutritional security, biodiversity, water quality, among others. Because of its critical importance in human wellbeing and nature conservancy, scientific processes must be sufficiently understood with regards to: i) the potential attainable, and actual sink capacity of SOC and SIC, ii) permanence of the C sequestered its turnover and mean residence time, iii) the amount of biomass C needed (Mg/ha/yr) to maintain and enhance SOC pool, and to create a positive C budget, iv) factors governing the depth distribution of SOC, v) physical, chemical and biological mechanisms affecting the rate of decomposition by biotic and abiotic processes, vi) role of soil aggregation in sequestration and protection of SOC and SIC pool, vii) the importance of root system and its exudates in transfer of biomass-C into the SOC pools, viii) significance of biogenic processes in formation of secondary carbonates, ix) the role of dissolved organic C (DOC) in sequestration of SOC and SIC, and x) importance of weathering of alumino-silicates (e.g., powered olivine) in SIC sequestration. Lack of understanding of these and other basic processes leads to misunderstanding, inconsistencies in interpretation of empirical data, and futile debates. Identification of site-specific management practices is also facilitated by understanding of the basic processes of sequestration of SOC and SIC. Sustainable intensification of agroecosystems -- producing more from less by enhancing the use efficiency and reducing losses of inputs, necessitates thorough

  10. Making carbon sequestration a paying proposition

    NASA Astrophysics Data System (ADS)

    Han, Fengxiang X.; Lindner, Jeff S.; Wang, Chuji

    2007-03-01

    Atmospheric carbon dioxide (CO2) has increased from a preindustrial concentration of about 280 ppm to about 367 ppm at present. The increase has closely followed the increase in CO2 emissions from the use of fossil fuels. Global warming caused by increasing amounts of greenhouse gases in the atmosphere is the major environmental challenge for the 21st century. Reducing worldwide emissions of CO2 requires multiple mitigation pathways, including reductions in energy consumption, more efficient use of available energy, the application of renewable energy sources, and sequestration. Sequestration is a major tool for managing carbon emissions. In a majority of cases CO2 is viewed as waste to be disposed; however, with advanced technology, carbon sequestration can become a value-added proposition. There are a number of potential opportunities that render sequestration economically viable. In this study, we review these most economically promising opportunities and pathways of carbon sequestration, including reforestation, best agricultural production, housing and furniture, enhanced oil recovery, coalbed methane (CBM), and CO2 hydrates. Many of these terrestrial and geological sequestration opportunities are expected to provide a direct economic benefit over that obtained by merely reducing the atmospheric CO2 loading. Sequestration opportunities in 11 states of the Southeast and South Central United States are discussed. Among the most promising methods for the region include reforestation and CBM. The annual forest carbon sink in this region is estimated to be 76 Tg C/year, which would amount to an expenditure of 11.1-13.9 billion/year. Best management practices could enhance carbon sequestration by 53.9 Tg C/year, accounting for 9.3% of current total annual regional greenhouse gas emission in the next 20 years. Annual carbon storage in housing, furniture, and other wood products in 1998 was estimated to be 13.9 Tg C in the region. Other sequestration options

  11. Making carbon sequestration a paying proposition.

    PubMed

    Han, Fengxiang X; Lindner, Jeff S; Wang, Chuji

    2007-03-01

    Atmospheric carbon dioxide (CO(2)) has increased from a preindustrial concentration of about 280 ppm to about 367 ppm at present. The increase has closely followed the increase in CO(2) emissions from the use of fossil fuels. Global warming caused by increasing amounts of greenhouse gases in the atmosphere is the major environmental challenge for the 21st century. Reducing worldwide emissions of CO(2) requires multiple mitigation pathways, including reductions in energy consumption, more efficient use of available energy, the application of renewable energy sources, and sequestration. Sequestration is a major tool for managing carbon emissions. In a majority of cases CO(2) is viewed as waste to be disposed; however, with advanced technology, carbon sequestration can become a value-added proposition. There are a number of potential opportunities that render sequestration economically viable. In this study, we review these most economically promising opportunities and pathways of carbon sequestration, including reforestation, best agricultural production, housing and furniture, enhanced oil recovery, coalbed methane (CBM), and CO(2) hydrates. Many of these terrestrial and geological sequestration opportunities are expected to provide a direct economic benefit over that obtained by merely reducing the atmospheric CO(2) loading. Sequestration opportunities in 11 states of the Southeast and South Central United States are discussed. Among the most promising methods for the region include reforestation and CBM. The annual forest carbon sink in this region is estimated to be 76 Tg C/year, which would amount to an expenditure of $11.1-13.9 billion/year. Best management practices could enhance carbon sequestration by 53.9 Tg C/year, accounting for 9.3% of current total annual regional greenhouse gas emission in the next 20 years. Annual carbon storage in housing, furniture, and other wood products in 1998 was estimated to be 13.9 Tg C in the region. Other sequestration

  12. Big Sky Carbon Sequestration Partnership

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan M. Capalbo

    2005-11-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork ismore » in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in

  13. Carbon sequestration in soil by in situ catalyzed photo-oxidative polymerization of soil organic matter.

    PubMed

    Piccolo, Alessandro; Spaccini, Riccardo; Nebbioso, Antonio; Mazzei, Pierluigi

    2011-08-01

    Here we describe an innovative mechanism for carbon sequestration in soil by in situ photopolymerization of soil organic matter under biomimetic catalysis. Three different Mediterranean soils were added with a synthetic water-soluble iron-porphyrin, irradiated by solar light, and subjected first to 5 days incubation and, then, 15, and 30 wetting and drying (w/d) cycles. The in situ catalyst-assisted photopolymerization of soil organic carbon (SOC) increased water stability of soil aggregates both after 5 days incubation and 15 w/d cycles, but not after 30 w/d cycles. Particle-size distribution of all treated soils confirmed the induced soil physical improvement, by showing a concomitant lower yield of the clay-sized fraction and larger yields of either coarse sand- or fine sand-size fractions, depending on soil texture, though only after 5 days incubation. The gain in soil physical quality was reflected by the shift of OC content from small to large soil aggregates, thereby suggesting that photopolymerization stabilized OC by both chemical and physical processes. A further evidence of the carbon sequestration capacity of the photocatalytic treatment was provided by the significant reduction of CO(2) respired by all soils after both incubation and w/d cycles. Our findings suggest that "green" catalytic technologies may potentially be the bases for future practices to increase soil carbon stabilization and mitigate CO(2) emissions from arable soils.

  14. Simulating carbon sequestration using cellular automata and land use assessment for Karaj, Iran

    NASA Astrophysics Data System (ADS)

    Khatibi, Ali; Pourebrahim, Sharareh; Mokhtar, Mazlin Bin

    2018-06-01

    Carbon sequestration has been proposed as a means of slowing the atmospheric and marine accumulation of greenhouse gases. This study used observed and simulated land use/cover changes to investigate and predict carbon sequestration rates in the city of Karaj. Karaj, a metropolis of Iran, has undergone rapid population expansion and associated changes in recent years, and these changes make it suitable for use as a case study for rapidly expanding urban areas. In particular, high quality agricultural space, green space and gardens have rapidly transformed into industrial, residential and urban service areas. Five classes of land use/cover (residential, agricultural, rangeland, forest and barren areas) were considered in the study; vegetation and soil samples were taken from 20 randomly selected locations. The level of carbon sequestration was determined for the vegetation samples by calculating the amount of organic carbon present using the dry plant weight method, and for soil samples by using the method of Walkley and Black. For each area class, average values of carbon sequestration in vegetation and soil samples were calculated to give a carbon sequestration index. A cellular automata approach was used to simulate changes in the classes. Finally, the carbon sequestration indices were combined with simulation results to calculate changes in carbon sequestration for each class. It is predicted that, in the 15 year period from 2014 to 2029, much agricultural land will be transformed into residential land, resulting in a severe reduction in the level of carbon sequestration. Results from this study indicate that expansion of forest areas in urban counties would be an effective means of increasing the levels of carbon sequestration. Finally, future opportunities to include carbon sequestration into the simulation of land use/cover changes are outlined.

  15. Soil Organic Carbon Loss: An Overlooked Factor in the Carbon Sequestration Potential of Enhanced Mineral Weathering

    NASA Astrophysics Data System (ADS)

    Dietzen, Christiana; Harrison, Robert

    2016-04-01

    Weathering of silicate minerals regulates the global carbon cycle on geologic timescales. Several authors have proposed that applying finely ground silicate minerals to soils, where organic acids would enhance the rate of weathering, could increase carbon uptake and mitigate anthropogenic CO2 emissions. Silicate minerals such as olivine could replace lime, which is commonly used to remediate soil acidification, thereby sequestering CO2 while achieving the same increase in soil pH. However, the effect of adding this material on soil organic matter, the largest terrestrial pool of carbon, has yet to be considered. Microbial biomass and respiration have been observed to increase with decreasing acidity, but it is unclear how long the effect lasts. If the addition of silicate minerals promotes the loss of soil organic carbon through decomposition, it could significantly reduce the efficiency of this process or even create a net carbon source. However, it is possible that this initial flush of microbial activity may be compensated for by additional organic matter inputs to soil pools due to increases in plant productivity under less acidic conditions. This study aimed to examine the effects of olivine amendments on soil CO2 flux. A liming treatment representative of typical agricultural practices was also included for comparison. Samples from two highly acidic soils were split into groups amended with olivine or lime and a control group. These samples were incubated at 22°C and constant soil moisture in jars with airtight septa lids. Gas samples were extracted periodically over the course of 2 months and change in headspace CO2 concentration was determined. The effects of enhanced mineral weathering on soil organic matter have yet to be addressed by those promoting this method of carbon sequestration. This project provides the first data on the potential effects of enhanced mineral weathering in the soil environment on soil organic carbon pools.

  16. Carbon sequestration by Australian tidal marshes

    PubMed Central

    Macreadie, Peter I.; Ollivier, Q. R.; Kelleway, J. J.; Serrano, O.; Carnell, P. E.; Ewers Lewis, C. J.; Atwood, T. B.; Sanderman, J.; Baldock, J.; Connolly, R. M.; Duarte, C. M.; Lavery, P. S.; Steven, A.; Lovelock, C. E.

    2017-01-01

    Australia’s tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia’s tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha−1 (range 14–963 Mg OC ha−1). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha−1 yr−1. Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia’s 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO2-equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr−1, with a CO2-equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes. PMID:28281574

  17. Carbon sequestration by Australian tidal marshes.

    PubMed

    Macreadie, Peter I; Ollivier, Q R; Kelleway, J J; Serrano, O; Carnell, P E; Ewers Lewis, C J; Atwood, T B; Sanderman, J; Baldock, J; Connolly, R M; Duarte, C M; Lavery, P S; Steven, A; Lovelock, C E

    2017-03-10

    Australia's tidal marshes have suffered significant losses but their recently recognised importance in CO 2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia's tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha -1 (range 14-963 Mg OC ha -1 ). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha -1 yr -1 . Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia's 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO 2 -equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr -1 , with a CO 2 -equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO 2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes.

  18. Effects of organic carbon sequestration strategies on soil enzymatic activities

    NASA Astrophysics Data System (ADS)

    Puglisi, E.; Suciu, N.; Botteri, L.; Ferrari, T.; Coppolecchia, D.; Trevisan, M.; Piccolo, A.

    2009-04-01

    Greenhouse gases emissions can be counterbalanced with proper agronomical strategies aimed at sequestering carbon in soils. These strategies must be tested not only for their ability in reducing carbon dioxide emissions, but also for their impact on soil quality: enzymatic activities are related to main soil ecological quality, and can be used as early and sensitive indicators of alteration events. Three different strategies for soil carbon sequestration were studied: minimum tillage, protection of biodegradable organic fraction by compost amendment and oxidative polimerization of soil organic matter catalyzed by biometic porfirins. All strategies were compared with a traditional agricultural management based on tillage and mineral fertilization. Experiments were carried out in three Italian soils from different pedo-climatic regions located respectively in Piacenza, Turin and Naples and cultivated with maize or wheat. Soil samples were taken for three consecutive years after harvest and analyzed for their content in phosphates, ß-glucosidase, urease and invertase. An alteration index based on these enzymatic activities levels was applied as well. The biomimetic porfirin application didn't cause changes in enzymatic activities compared to the control at any treatment or location. Enzymatic activities were generally higher in the minimum tillage and compost treatment, while differences between location and date of samplings were limited. Application of the soil alteration index based on enzymatic activities showed that soils treated with compost or subjected to minimum tillage generally have a higher biological quality. The work confirms the environmental sustainability of the carbon sequestering agronomical practices studied.

  19. Carbon sequestration in two alpine soils on the Tibetan Plateau.

    PubMed

    Tian, Yu-Qiang; Xu, Xing-Liang; Song, Ming-Hua; Zhou, Cai-Ping; Gao, Qiong; Ouyang, Hua

    2009-09-01

    Soil carbon sequestration was estimated in a conifer forest and an alpine meadow on the Tibetan Plateau using a carbon-14 radioactive label provided by thermonuclear weapon tests (known as bomb-(14)C). Soil organic matter was physically separated into light and heavy fractions. The concentration spike of bomb-(14)C occurred at a soil depth of 4 cm in both the forest soil and the alpine meadow soil. Based on the depth of the bomb-(14)C spike, the carbon sequestration rate was determined to be 38.5 g C/m(2) per year for the forest soil and 27.1 g C/m(2) per year for the alpine meadow soil. Considering that more than 60% of soil organic carbon (SOC) is stored in the heavy fraction and the large area of alpine forests and meadows on the Tibetan Plateau, these alpine ecosystems might partially contribute to "the missing carbon sink".

  20. Federal Control of Geological Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reitze, Arnold W.

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-burning electric power plants in deep underground formations. This article explores the technical andmore » legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.« less

  1. Immobilized carbonic anhydrase on mesoporous cruciate flower-like metal organic framework for promoting CO2 sequestration.

    PubMed

    Ren, Sizhu; Feng, Yuxiao; Wen, Huan; Li, Conghai; Sun, Baoting; Cui, Jiandong; Jia, Shiru

    2018-05-25

    CO 2 capture by immobilized carbonic anhydrase (CA) has become an alternative and environmental friendly approach in CO 2 sequestration technology. However, the immobilized CA usually exhibits low CO 2 sequestration efficiency due to no gas adsorption function for the conventional CA supports. Metal organic frameworks (MOFs) are an excellent material for gas adsorption and enzyme immobilization. Herein, a combined immobilization system of CA and ZIF-8 with cruciate flower-like morphology for CO 2 adsorption was prepared for the first time by adsorbing CA onto ZIF-8. The immobilization efficiency was greater than 95%, and the maximum activity recovery reached 75%, indicating the highly efficient immobilization process. The resultant CA@ZIF-8 composites exhibited outstanding thermostability, the tolerance against denaturants, and reusability compared with free CA. Furthermore, we demonstrated for the first time that the shape of ZIF-8 could be controlled by adjusting concentrations of Zn 2+ ions at the high concentration of 2-methylimidazole (1 M). More importantly, we also demonstrated the applicability of the CA@ZIF-8 composites to the sequestration of CO 2 in carbonate minerals. The yields of the CaCO 3 obtained by using CA@ZIF-8 composites were 22-folds compared to free CA. Thus, this CA@ZIF-8 composite can be successfully used as a robust biocatalyst for sequestration of CO 2 . Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Hurricane impacts on US forest carbon sequestration

    Treesearch

    Steven G. McNulty

    2002-01-01

    Recent focus has been given to US forests as a sink for increases in atmospheric carbon dioxide. Current estimates of US Forest carbon sequestration average approximately 20 Tg (i.e. 1012 g) year. However, predictions of forest carbon sequestration often do not include the influence of hurricanes on forest carbon storage. Intense hurricanes...

  3. Terrestrial biological carbon sequestration: science for enhancement and implementation

    Treesearch

    Wilfred M. Post; James E. Amonette; Richard Birdsey; Charles T. Jr. Garten; R. Cesar Izaurralde; Philip Jardine; Julie Jastrow; Rattan Lal; Gregg Marland

    2009-01-01

    The purpose of this chapter is to review terrestrial biological carbon sequestration and evaluate the potential carbon storage capacity if present and new techniques are more aggressively utilized. Photosynthetic CO2 capture from the atmosphere and storage of the C in aboveground and belowground biomass and in soil organic and inorganic forms can...

  4. Anthropogenic Impacts on Biological Carbon Sequestration in the Coastal Waters

    NASA Astrophysics Data System (ADS)

    Jiao, N.

    2016-02-01

    The well-known biological mechanism for carbon sequestration in the ocean is the biological pump (BP) which is driven by primary production initially in the surface water and then dependent on particulate organic carbon sinking process in the water column. In contrast microbial carbon pump (MCP) depends on microbial transformation of dissolved organic carbon (DOC) to refractory DOC (RDOC).Although the BP and the MCP are distinct mechanisms, they are intertwined. Both mechanisms should be considered regarding maximum sequestration of carbon in the ocean. Recent studies have showed that excess nutrients could facilitate the uptake of DOC and enhance both bacterial production and respiration. Bacterial growth efficiency increases with increasing nitrogen concentration to certain levels and then decreases thereafter, while the remaining DOC in the water usually decreases with increasing nitrogen concentration, suggesting that excess nitrogen could simulate uptake of DOC in the environment and thus have negative impacts on the ocean DOC storage.This is somehow against the case of the BP which is known to increase with increasing availability of nutrients. Another responsible factor is the nature of algal products. If it is labile, the organic carbon cannot be preserved in the environment.On top of that, labile organic carbon has priming effects for river discharged semi-labile DOC for bacterial respiration.That is, labile organic matter will become the incubator for bacteria. While bacteria respire DOC into CO2, they consume oxygen, and finally result in hypoxia. Under anoxic condition, anaerobic bacteria successively work on the rest of the organic carbon and produce harmful gasses such as methane and H2S. Such story did have happened during geological events in the history of the earth. The above processes not only result in ecological disasters but also reduce the capacity of carbon sequestration in the ocean. To achieve maximum carbon sinks, both BP and MCP should

  5. Phylogenetic variation of phytolith carbon sequestration in bamboos

    PubMed Central

    Li, Beilei; Song, Zhaoliang; Li, Zimin; Wang, Hailong; Gui, Renyi; Song, Ruisheng

    2014-01-01

    Phytoliths, the amorphous silica deposited in plant tissues, can occlude organic carbon (phytolith-occluded carbon, PhytOC) during their formation and play a significant role in the global carbon balance. This study explored phylogenetic variation of phytolith carbon sequestration in bamboos. The phytolith content in bamboo varied substantially from 4.28% to 16.42%, with the highest content in Sasa and the lowest in Chimonobambusa, Indocalamus and Acidosasa. The mean PhytOC production flux and rate in China's bamboo forests were 62.83 kg CO2 ha−1 y−1 and 4.5 × 108 kg CO2 y−1, respectively. This implies that 1.4 × 109 kg CO2 would be sequestered in world's bamboo phytoliths because the global bamboo distribution area is about three to four times higher than China's bamboo. Therefore, both increasing the bamboo area and selecting high phytolith-content bamboo species would increase the sequestration of atmospheric CO2 within bamboo phytoliths. PMID:24736571

  6. Reduced carbon sequestration potential of biochar in acidic soil.

    PubMed

    Sheng, Yaqi; Zhan, Yu; Zhu, Lizhong

    2016-12-01

    Biochar application in soil has been proposed as a promising method for carbon sequestration. While factors affecting its carbon sequestration potential have been widely investigated, the number of studies on the effect of soil pH is limited. To investigate the carbon sequestration potential of biochar across a series of soil pH levels, the total carbon emission, CO 2 release from inorganic carbon, and phospholipid fatty acids (PLFAs) of six soils with various pH levels were compared after the addition of straw biochar produced at different pyrolysis temperatures. The results show that the acidic soils released more CO 2 (1.5-3.5 times higher than the control) after the application of biochar compared with neutral and alkaline soils. The degradation of both native soil organic carbon (SOC) and biochar were accelerated. More inorganic CO 2 release in acidic soil contributed to the increased degradation of biochar. Higher proportion of gram-positive bacteria in acidic soil (25%-36%) was responsible for the enhanced biochar degradation and simultaneously co-metabolism of SOC. In addition, lower substrate limitation for bacteria, indicated by higher C-O stretching after the biochar application in the acidic soil, also caused more CO 2 release. In addition to the soil pH, other factors such as clay contents and experimental duration also affected the phsico-chemical and biotic processes of SOC dynamics. Gram-negative/gram-positive bacteria ratio was found to be negatively related to priming effects, and suggested to serve as an indicator for priming effect. In general, the carbon sequestration potential of rice-straw biochar in soil reduced along with the decrease of soil pH especially in a short-term. Given wide spread of acidic soils in China, carbon sequestration potential of biochar may be overestimated without taking into account the impact of soil pH. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils

    PubMed Central

    Vogel, Cordula; Mueller, Carsten W.; Höschen, Carmen; Buegger, Franz; Heister, Katja; Schulz, Stefanie; Schloter, Michael; Kögel-Knabner, Ingrid

    2014-01-01

    The sequestration of carbon and nitrogen by clay-sized particles in soils is well established, and clay content or mineral surface area has been used to estimate the sequestration potential of soils. Here, via incubation of a sieved (<2 mm) topsoil with labelled litter, we find that only some of the clay-sized surfaces bind organic matter (OM). Surprisingly, <19% of the visible mineral areas show an OM attachment. OM is preferentially associated with organo-mineral clusters with rough surfaces. By combining nano-scale secondary ion mass spectrometry and isotopic tracing, we distinguish between new labelled and pre-existing OM and show that new OM is preferentially attached to already present organo-mineral clusters. These results, which provide evidence that only a limited proportion of the clay-sized surfaces contribute to OM sequestration, revolutionize our view of carbon sequestration in soils and the widely used carbon saturation estimates. PMID:24399306

  8. Multicomponent self-assembly of a pentanuclear Ir-Zn heterometal-organic polyhedron for carbon dioxide fixation and sulfite sequestration.

    PubMed

    Li, Xuezhao; Wu, Jinguo; He, Cheng; Zhang, Rong; Duan, Chunying

    2016-04-14

    By incorporating a fac-tris(4-(2-pyridinyl)phenylamine)iridium as the backbone of the tripodal ligand to constrain the coordination geometry of Zn(II) ions, a pentanuclear Ir-Zn heterometal-organic luminescent polyhedron was obtained via a subcomponent self-assembly for carbon dioxide fixation and sulfite sequestration.

  9. The United States Department of Energy's Regional Carbon Sequestration Partnerships program: a collaborative approach to carbon management.

    PubMed

    Litynski, John T; Klara, Scott M; McIlvried, Howard G; Srivastava, Rameshwar D

    2006-01-01

    fossil fuel use, the industries present, and potential sequestration sinks across the United States dictate the use of a regional approach to address the sequestration of CO(2). To accommodate these differences, the DOE has created a nationwide network of seven Regional Carbon Sequestration Partnerships (RCSP) to help determine and implement the carbon sequestration technologies, infrastructure, and regulations most appropriate to promote CO(2) sequestration in different regions of the nation. These partnerships currently represent 40 states, three Indian Nations, four Canadian Provinces, and over 200 organizations, including academic institutions, research institutions, coal companies, utilities, equipment manufacturers, forestry and agricultural representatives, state and local governments, non-governmental organizations, and national laboratories. These partnerships are dedicated to developing the necessary infrastructure and validating the carbon sequestration technologies that have emerged from DOE's core R&D and other programs to mitigate emissions of CO(2), a potent greenhouse gas. The partnerships provide a critical link to DOE's plans for FutureGen, a highly efficient and technologically sophisticated coal-fired power plant that will produce both hydrogen and electricity with near-zero emissions. Though limited to the situation in the U.S., the paper describes for the international scientific community the approach being taken by the U.S. to prepare for carbon sequestration, should that become necessary.

  10. State and Regional Control of Geological Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reitze, Arnold; Durrant, Marie

    2011-03-01

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. Carbon capture and geologic sequestration offer one method to reduce carbon emissions from coal and other hydrocarbon energy production. While the federal government is providing increased funding for carbon capture and sequestration, recent congressional legislative efforts to create a framework for regulating carbon emissions have failed. However,more » regional and state bodies have taken significant actions both to regulate carbon and facilitate its capture and sequestration. This article explores how regional bodies and state government are addressing the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. Several regional bodies have formed regulations and model laws that affect carbon capture and storage, and three bodies comprising twenty-three states—the Regional Greenhouse Gas Initiative, the Midwest Regional Greenhouse Gas Reduction Accord, and the Western Climate initiative—have cap-­and-trade programs in various stages of development. State property, land use and environmental laws affect the development and implementation of carbon capture and sequestration projects, and unless federal standards are imposed, state laws on torts and renewable portfolio requirements will directly affect the liability and viability of these projects. This paper examines current state laws and legislative efforts addressing carbon capture and sequestration.« less

  11. Sequestration of carbon in soil organic matter in Senegal: an overview

    USGS Publications Warehouse

    Tieszen, Larry L.; Tappan, G. Gray; Toure, A.

    2004-01-01

    The project focuses on four objectives in specific locations across the agroecological zones of Senegal. These objectives are: use of soil sampling and biogeochemical modeling to quantify the biophysical potential for carbon sequestration and to determine the sensitivity of the carbon stocks to various management and climate scenarios, to evaluate the socio-economic and cultural requirements necessary for successful project implementation directed toward an aggregation of smallholders to sequester around 100,000 t carbon (C), to support capacity building to develop a Carbon Specialist Team, and to initiate extrapolation from site-specific project areas to the Sahel region and the national level.

  12. Sequestration of hydrophobic organic contaminants by geosorbents

    USGS Publications Warehouse

    Luthy, Richard G.; Aiken, George R.; Brusseau, Mark L.; Cunningham, Scott D.; Gschwend, Philip M.; Pignatello, Joseph J.; Reinhard, Martin; Traina, Samuel J.; Weber, Walter J.; Westall, John C.

    1997-01-01

    The chemical interactions of hydrophobic organic contaminants (HOCs) with soils and sediments (geosorbents) may result in strong binding and slow subsequent release rates that significantly affect remediation rates and endpoints. The underlying physical and chemical phenomena potentially responsible for this apparent sequestration of HOCs by geosorbents are not well understood. This challenges our concepts for assessing exposure and toxicity and for setting environmental quality criteria. Currently there are no direct observational data revealing the molecular-scale locations in which nonpolar organic compounds accumulate when associated with natural soils or sediments. Hence macroscopic observations are used to make inferences about sorption mechanisms and the chemical factors affecting the sequestration of HOCs by geosorbents. Recent observations suggest that HOC interactions with geosorbents comprise different inorganic and organic surfaces and matrices, and distinctions may be drawn along these lines, particularly with regard to the roles of inorganic micropores, natural sorbent organic matter components, combustion residue particulate carbon, and spilled organic liquids. Certain manipulations of sorbates or sorbent media may help reveal sorption mechanisms, but mixed sorption phenomena complicate the interpretation of macroscopic data regarding diffusion of HOCs into and out of different matrices and the hysteretic sorption and aging effects commonly observed for geosorbents. Analytical characterizations at the microscale, and mechanistic models derived therefrom, are needed to advance scientific knowledge of HOC sequestration, release, and environmental risk.

  13. An Overview of Geologic Carbon Sequestration Potential in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron Downey; John Clinkenbeard

    2005-10-01

    As part of the West Coast Regional Carbon Sequestration Partnership (WESTCARB), the California Geological Survey (CGS) conducted an assessment of geologic carbon sequestration potential in California. An inventory of sedimentary basins was screened for preliminary suitability for carbon sequestration. Criteria included porous and permeable strata, seals, and depth sufficient for critical state carbon dioxide (CO{sub 2}) injection. Of 104 basins inventoried, 27 met the criteria for further assessment. Petrophysical and fluid data from oil and gas reservoirs was used to characterize both saline aquifers and hydrocarbon reservoirs. Where available, well log or geophysical information was used to prepare basin-wide mapsmore » showing depth-to-basement and gross sand distribution. California's Cenozoic marine basins were determined to possess the most potential for geologic sequestration. These basins contain thick sedimentary sections, multiple saline aquifers and oil and gas reservoirs, widespread shale seals, and significant petrophysical data from oil and gas operations. Potential sequestration areas include the San Joaquin, Sacramento, Ventura, Los Angeles, and Eel River basins, followed by the smaller Salinas, La Honda, Cuyama, Livermore, Orinda, and Sonoma marine basins. California's terrestrial basins are generally too shallow for carbon sequestration. However, the Salton Trough and several smaller basins may offer opportunities for localized carbon sequestration.« less

  14. Long-term effect of a single application of organic refuse on carbon sequestration and soil physical properties.

    PubMed

    Albaladejo, J; Lopez, J; Boix-Fayos, C; Barbera, G G; Martinez-Mena, M

    2008-01-01

    Restoration of degraded lands could be a way to reverse soil degradation and desertification in semiarid areas and mitigate greenhouse gases (GHG). Our objective was to evaluate the long-term effects of a single addition of organic refuse on soil physical properties and measure its carbon sequestration potential. In 1988, a set of five plots (87 m(2) each) was established in an open desert-like scrubland (2-4% cover) in Murcia, Spain, to which urban solid refuse (USR) was added in a single treatment at different rates. Soil properties were monitored over a 5-yr period. Sixteen years after the addition, three of the plots were monitored again (P0: control, P1: 13 kg m(-2), P2: 26 kg m(-2) of USR added) to assess the lasting effect of the organic addition on the soil organic carbon (SOC) pools and on the physical characteristics of the soil. The SOC content was higher in P2 (16.4 g kg(-1)) and in P1 (11.8 g kg(-1)) than in P0 (7.9 g kg(-1)). Likewise, aerial biomass increased from 0.18 kg m(-2) in P0 up to 0.27 kg m(-2) in P1 and 0.46 kg m(-2) in P2. This represents a total C sequestration of 9.5 Mg ha(-1) in P2 and 3.4 Mg ha(-1) in P1, most of the sequestered C remaining in the recalcitrant soil pool. Additionally, higher saturated hydraulic conductivity, aggregate stability, and available water content values and lower bulk density values were measured in the restored plots. Clearly, a single addition of organic refuse to the degraded soils to increase the potential for C sequestration was effective.

  15. Meta-modeling soil organic carbon sequestration potential and its application at regional scale.

    PubMed

    Luo, Zhongkui; Wang, Enli; Bryan, Brett A; King, Darran; Zhao, Gang; Pan, Xubin; Bende-Michl, Ulrike

    2013-03-01

    Upscaling the results from process-based soil-plant models to assess regional soil organic carbon (SOC) change and sequestration potential is a great challenge due to the lack of detailed spatial information, particularly soil properties. Meta-modeling can be used to simplify and summarize process-based models and significantly reduce the demand for input data and thus could be easily applied on regional scales. We used the pre-validated Agricultural Production Systems sIMulator (APSIM) to simulate the impact of climate, soil, and management on SOC at 613 reference sites across Australia's cereal-growing regions under a continuous wheat system. We then developed a simple meta-model to link the APSIM-modeled SOC change to primary drivers, i.e., the amount of recalcitrant SOC, plant available water capacity of soil, soil pH, and solar radiation, temperature, and rainfall in the growing season. Based on high-resolution soil texture data and 8165 climate data points across the study area, we used the meta-model to assess SOC sequestration potential and the uncertainty associated with the variability of soil characteristics. The meta-model explained 74% of the variation of final SOC content as simulated by APSIM. Applying the meta-model to Australia's cereal-growing regions reveals regional patterns in SOC, with higher SOC stock in cool, wet regions. Overall, the potential SOC stock ranged from 21.14 to 152.71 Mg/ha with a mean of 52.18 Mg/ha. Variation of soil properties induced uncertainty ranging from 12% to 117% with higher uncertainty in warm, wet regions. In general, soils in Australia's cereal-growing regions under continuous wheat production were simulated as a sink of atmospheric carbon dioxide with a mean sequestration potential of 8.17 Mg/ha.

  16. NATIVE PLANTS FOR OPTIMIZING CARBON SEQUESTRATION IN RECLAIMED LANDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. UNKEFER; M. EBINGER; ET AL

    Carbon emissions and atmospheric concentrations are expected to continue to increase through the next century unless major changes are made in the way carbon is managed. Managing carbon has emerged as a pressing national energy and environmental need that will drive national policies and treaties through the coming decades. Addressing carbon management is now a major priority for DOE and the nation. One way to manage carbon is to use energy more efficiently to reduce our need for major energy and carbon source-fossil fuel combustion. Another way is to increase our use of low-carbon and carbon free fuels and technologies.more » A third way, and the focus of this proposal, is carbon sequestration, in which carbon is captured and stored thereby mitigating carbon emissions. Sequestration of carbon in the terrestrial biosphere has emerged as the principle means by which the US will meet its near-term international and economic requirements for reducing net carbon emissions (DOE Carbon Sequestration: State of the Science. 1999; IGBP 1998). Terrestrial carbon sequestration provides three major advantages. First, terrestrial carbon pools and fluxes are of sufficient magnitude to effectively mitigate national and even global carbon emissions. The terrestrial biosphere stores {approximately}2060 GigaTons of carbon and transfers approximately 120 GigaTons of carbon per year between the atmosphere and the earth's surface, whereas the current global annual emissions are about 6 GigaTons. Second, we can rapidly and readily modify existing management practices to increase carbon sequestration in our extensive forest, range, and croplands. Third, increasing soil carbon is without negative environment consequences and indeed positively impacts land productivity. The terrestrial carbon cycle is dependent on several interrelationships between plants and soils. Because the soil carbon pool ({approximately}1500 Giga Tons) is approximately three times that in terrestrial vegetation

  17. Toward optimal soil organic carbon sequestration with effects of agricultural management practices and climate change in Tai-Lake paddy soils of China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Liming; Zhuang, Qianlai; He, Yujie

    Understanding the impacts of climate change and agricultural management practices on soil organic carbon (SOC) dynamics is critical for implementing optimal farming practices and maintaining agricultural productivity. This study examines the influence of climate and agricultural management on carbon sequestration potentials in Tai-Lake Paddy soils of China using the DeNitrification-DeComposition (DNDC) model, with a high-resolution soil database (1:50,000). Model simulations considered the effects of no tillage, increasing manure application, increasing/decreasing of N-fertilizer application and crop residues, water management, and climatic shifts in temperature and precipitation. We found that the carbon sequestration potential for the 2.32 Mha paddy soils of themore » Tai-Lake region varied from 4.71 to 44.31 Tg C during the period 2001-2019, with an annual average SOC changes ranged from 107 to 1005 kg C ha -1 yr -1. The sequestration potential significantly increased with increasing application of N-fertilizer, manure, conservation tillage, and crop residues. To increase soil C sequestration in this region, no-tillage and increasing of crop residue return to soils and manure application are recommended. Our analysis of climate impacts on SOC sequestration suggests that the rice paddies in this region will continue to be a carbon sink under future warming conditions. In addition, because the region’s annual precipitation (>1200 mm) is high, we also recommend reducing irrigation water use for these rice paddies to conserve freshwater in the Tai-Lake region.« less

  18. Three-decade long fertilization-induced soil organic carbon sequestration depends on edaphic characteristics in six typical croplands

    PubMed Central

    Liang, Feng; Li, Jianwei; Yang, Xueyun; Huang, Shaomin; Cai, Zejiang; Gao, Hongjun; Ma, Junyong; Cui, Xian; Xu, Minggang

    2016-01-01

    Fertilizations affect soil organic carbon (SOC) content but the relative influences of the edaphic and climate factors on SOC storage are rarely studied across wide spatiotemporal scales. This study synthesized long-term datasets of fertilization experiments in six typical Chinese croplands, and calculated annual C input from crops and manure amendments, changes in SOC storage (ΔSOC) and C sequestration efficiency (i.e. the percentage of soil C change per unit of C input, hereafter referred as CSE) in 0–20 cm soil over three decades. Three fertilization treatments include no fertilization (CK), chemical nitrogen, phosphorus and potassium fertilizers (NPK) and combined chemical fertilizers and manure (NPKM). Results showed significant fertilization effects on C input and ΔSOC (NPKM>NPK>CK), and significantly higher CSE in Qiyang at Hunan than Zhengzhou at Henan and Heihe at Heilongjiang. The variance partitioning analysis (VPA) showed more variance of CSE can be explained by edaphic factors (up to 39.7%) than other factors. Furthermore, soil available N content and pH were identified as the major soil properties explaining CSE variance. This study demonstrated key controls of soil fertility factors on SOC sequestration and informs the need to develop strategic soil management plan to promote soil carbon sequestration under long-term intensive fertilization. PMID:27492771

  19. Three-decade long fertilization-induced soil organic carbon sequestration depends on edaphic characteristics in six typical croplands

    NASA Astrophysics Data System (ADS)

    Liang, Feng; Li, Jianwei; Yang, Xueyun; Huang, Shaomin; Cai, Zejiang; Gao, Hongjun; Ma, Junyong; Cui, Xian; Xu, Minggang

    2016-08-01

    Fertilizations affect soil organic carbon (SOC) content but the relative influences of the edaphic and climate factors on SOC storage are rarely studied across wide spatiotemporal scales. This study synthesized long-term datasets of fertilization experiments in six typical Chinese croplands, and calculated annual C input from crops and manure amendments, changes in SOC storage (ΔSOC) and C sequestration efficiency (i.e. the percentage of soil C change per unit of C input, hereafter referred as CSE) in 0-20 cm soil over three decades. Three fertilization treatments include no fertilization (CK), chemical nitrogen, phosphorus and potassium fertilizers (NPK) and combined chemical fertilizers and manure (NPKM). Results showed significant fertilization effects on C input and ΔSOC (NPKM>NPK>CK), and significantly higher CSE in Qiyang at Hunan than Zhengzhou at Henan and Heihe at Heilongjiang. The variance partitioning analysis (VPA) showed more variance of CSE can be explained by edaphic factors (up to 39.7%) than other factors. Furthermore, soil available N content and pH were identified as the major soil properties explaining CSE variance. This study demonstrated key controls of soil fertility factors on SOC sequestration and informs the need to develop strategic soil management plan to promote soil carbon sequestration under long-term intensive fertilization.

  20. Three-decade long fertilization-induced soil organic carbon sequestration depends on edaphic characteristics in six typical croplands.

    PubMed

    Liang, Feng; Li, Jianwei; Yang, Xueyun; Huang, Shaomin; Cai, Zejiang; Gao, Hongjun; Ma, Junyong; Cui, Xian; Xu, Minggang

    2016-08-05

    Fertilizations affect soil organic carbon (SOC) content but the relative influences of the edaphic and climate factors on SOC storage are rarely studied across wide spatiotemporal scales. This study synthesized long-term datasets of fertilization experiments in six typical Chinese croplands, and calculated annual C input from crops and manure amendments, changes in SOC storage (ΔSOC) and C sequestration efficiency (i.e. the percentage of soil C change per unit of C input, hereafter referred as CSE) in 0-20 cm soil over three decades. Three fertilization treatments include no fertilization (CK), chemical nitrogen, phosphorus and potassium fertilizers (NPK) and combined chemical fertilizers and manure (NPKM). Results showed significant fertilization effects on C input and ΔSOC (NPKM>NPK>CK), and significantly higher CSE in Qiyang at Hunan than Zhengzhou at Henan and Heihe at Heilongjiang. The variance partitioning analysis (VPA) showed more variance of CSE can be explained by edaphic factors (up to 39.7%) than other factors. Furthermore, soil available N content and pH were identified as the major soil properties explaining CSE variance. This study demonstrated key controls of soil fertility factors on SOC sequestration and informs the need to develop strategic soil management plan to promote soil carbon sequestration under long-term intensive fertilization.

  1. Barriers and Prospects of Carbon Sequestration in India.

    PubMed

    Gupta, Anjali; Nema, Arvind K

    2014-04-01

    Carbon sequestration is considered a leading technology for reducing carbon dioxide (CO2) emissions from fossil-fuel based electricity generating power plants and could permit the continued use of coal and gas whilst meeting greenhouse gas targets. India will become the world's third largest emitter of CO2 by 2015. Considering the dependence of health of the Indian global economy, there is an imperative need to develop a global approach which could address the capturing and securely storing carbon dioxide emitted from an array of energy. Therefore technology such as carbon sequestration will deliver significant CO2 reductions in a timely fashion. Considerable energy is required for the capture, compression, transport and storage steps. With the availability of potential technical storage methods for carbon sequestration like forest, mineral and geological storage options with India, it would facilitate achieving stabilization goal in the near future. This paper examines the potential carbon sequestration options available in India and evaluates them with respect to their strengths, weakness, threats and future prospects.

  2. Carbon capture and sequestration (CCS)

    DOT National Transportation Integrated Search

    2009-06-19

    Carbon capture and sequestration (or storage)known as CCShas attracted interest as a : measure for mitigating global climate change because large amounts of carbon dioxide (CO2) : emitted from fossil fuel use in the United States are potentiall...

  3. Soil carbon sequestration is a climate stabilization wedge: comments on Sommer and Bossio (2014).

    PubMed

    Lassaletta, Luis; Aguilera, Eduardo

    2015-04-15

    Sommer and Bossio (2014) model the potential soil organic carbon (SOC) sequestration in agricultural soils (croplands and grasslands) during the next 87 years, concluding that this process cannot be considered as a climate stabilization wedge. We argue, however, that the amounts of SOC potentially sequestered in both scenarios (pessimistic and optimistic) fulfil the requirements for being considered as wedge because in both cases at least 25 GtC would be sequestered during the next 50 years. We consider that it is precisely in the near future, and meanwhile other solutions are developed, when this stabilization effort is most urgent even if after some decades the sequestration rate is significantly reduced. Indirect effects of SOC sequestration on mitigation could reinforce the potential of this solution. We conclude that the sequestration of organic carbon in agricultural soils as a climate change mitigation tool still deserves important attention for scientists, managers and policy makers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Carbon dynamics and sequestration in urban turfgrass ecosystems

    USDA-ARS?s Scientific Manuscript database

    Urbanization is a global trend. Turfgrass covers 1.9% of land in the continental US. Here we review existing literature associated with carbon (C) pools, sequestration, and nitrous oxide emission of urban turfgrass ecosystems. Turfgrasses exhibit significant carbon sequestration (0.34–1.4 Mg ha-1 ye...

  5. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration.

    PubMed

    To, Jennifer Pc; Zhu, Jinming; Benfey, Philip N; Elich, Tedd

    2010-09-08

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration.

  6. Net carbon flux in organic and conventional olive production systems

    NASA Astrophysics Data System (ADS)

    Saeid Mohamad, Ramez; Verrastro, Vincenzo; Bitar, Lina Al; Roma, Rocco; Moretti, Michele; Chami, Ziad Al

    2014-05-01

    Agricultural systems are considered as one of the most relevant sources of atmospheric carbon. However, agriculture has the potentiality to mitigate carbon dioxide mainly through soil carbon sequestration. Some agricultural practices, particularly fertilization and soil management, can play a dual role in the agricultural systems regarding the carbon cycle contributing to the emissions and to the sequestration process in the soil. Good soil and input managements affect positively Soil Organic Carbon (SOC) changes and consequently the carbon cycle. The present study aimed at comparing the carbon footprint of organic and conventional olive systems and to link it to the efficiency of both systems on carbon sequestration by calculating the net carbon flux. Data were collected at farm level through a specific and detailed questionnaire based on one hectare as a functional unit and a system boundary limited to olive production. Using LCA databases particularly ecoinvent one, IPCC GWP 100a impact assessment method was used to calculate carbon emissions from agricultural practices of both systems. Soil organic carbon has been measured, at 0-30 cm depth, based on soil analyses done at the IAMB laboratory and based on reference value of SOC, the annual change of SOC has been calculated. Substracting sequestrated carbon in the soil from the emitted on resulted in net carbon flux calculation. Results showed higher environmental impact of the organic system on Global Warming Potential (1.07 t CO2 eq. yr-1) comparing to 0.76 t CO2 eq. yr-1 in the conventional system due to the higher GHG emissions caused by manure fertilizers compared to the use of synthetic foliar fertilizers in the conventional system. However, manure was the main reason behind the higher SOC content and sequestration in the organic system. As a resultant, the organic system showed higher net carbon flux (-1.7 t C ha-1 yr-1 than -0.52 t C ha-1 yr-1 in the conventional system reflecting higher efficiency as a

  7. Biologically Enhanced Carbon Sequestration: Research Needs and Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldenburg, Curtis; Oldenburg, Curtis M.; Torn, Margaret S.

    2008-03-21

    Fossil fuel combustion, deforestation, and biomass burning are the dominant contributors to increasing atmospheric carbon dioxide (CO{sub 2}) concentrations and global warming. Many approaches to mitigating CO{sub 2} emissions are being pursued, and among the most promising are terrestrial and geologic carbon sequestration. Recent advances in ecology and microbial biology offer promising new possibilities for enhancing terrestrial and geologic carbon sequestration. A workshop was held October 29, 2007, at Lawrence Berkeley National Laboratory (LBNL) on Biologically Enhanced Carbon Sequestration (BECS). The workshop participants (approximately 30 scientists from California, Illinois, Oregon, Montana, and New Mexico) developed a prioritized list of researchmore » needed to make progress in the development of biological enhancements to improve terrestrial and geologic carbon sequestration. The workshop participants also identified a number of areas of supporting science that are critical to making progress in the fundamental research areas. The purpose of this position paper is to summarize and elaborate upon the findings of the workshop. The paper considers terrestrial and geologic carbon sequestration separately. First, we present a summary in outline form of the research roadmaps for terrestrial and geologic BECS. This outline is elaborated upon in the narrative sections that follow. The narrative sections start with the focused research priorities in each area followed by critical supporting science for biological enhancements as prioritized during the workshop. Finally, Table 1 summarizes the potential significance or 'materiality' of advances in these areas for reducing net greenhouse gas emissions.« less

  8. Recent organic carbon sequestration in the shelf sediments of the Bohai Sea and Yellow Sea, China

    NASA Astrophysics Data System (ADS)

    Hu, Limin; Shi, Xuefa; Bai, Yazhi; Qiao, Shuqing; Li, Li; Yu, Yonggui; Yang, Gang; Ma, Deyi; Guo, Zhigang

    2016-03-01

    This study provides an extensive depiction of regional scale sedimentary total organic carbon (TOC) sequestration in the Bohai Sea (BS) and Yellow Sea (YS), marginal system of the western Pacific Ocean. The spatial pattern of the sediment mass accumulation rate (MAR) in the BS and YS was summarized based on a 100-year timescale. The relatively higher MAR (3 - 7 g/cm2/y) in the Yellow River estuary, compared to the adjacent areas, indicate a predominant impact of river discharge on the modern sedimentation process in the BS. Relatively stable sedimentary environment in the offshore mud deposits of the BS and YS was also identified based on the along-core sediment composition and radionuclides profiles. The corresponding spatial pattern of grain size and TOC content suggest a hydrodynamic constraint on the sedimentary TOC accumulation. Moreover, in spite of the various TOC sources revealed by the bulk organic matter (OM) proxies (C/N ratio and δ13C), the restriction of these bulk parameters with potential masking of the signature of terrigenous OM was also identified. The average burial flux of TOC (15.3 g C/m2/y) was finally obtained with a total sequestration of 5.6 × 106 t C/y, suggesting that the BS and YS serve as a significant repository of sedimentary TOC. The overall organic carbon storage capacity of the BS and YS is mainly sustained by the fluvial/land-based OM input, high phytoplankton primary productivity, convergent hydrodynamic and stable depositional settings.

  9. Carbon sequestration efficiency of organic amendments in a long-term experiment on a vertisol in Huang-Huai-Hai Plain, China.

    PubMed

    Hua, Keke; Wang, Daozhong; Guo, Xisheng; Guo, Zibin

    2014-01-01

    Soil organic carbon (SOC) sequestration is important for improving soil fertility of cropland and for the mitigation of greenhouse gas emissions to the atmosphere. The efficiency of SOC sequestration depends on the quantity and quality of the organic matter, soil type, and climate. Little is known about the SOC sequestration efficiency of organic amendments in Vertisols. Thus, we conducted the research based on 29 years (1982-2011) of long-term fertilization experiment with a no fertilizer control and five fertilization regimes: CK (control, no fertilizer), NPK (mineral NPK fertilizers alone), NPK+1/2W (mineral NPK fertilizers combined with half the amount of wheat straw), NPK+W (mineral NPK fertilizers combined with full the amount of wheat straw), NPK+PM (mineral NPK fertilizers combined with pig manure) and NPK+CM (mineral NPK fertilizers combined cattle manure). Total mean annual C inputs were 0.45, 1.55, 2.66, 3.71, 4.68 and 6.56 ton/ha/yr for CK, NPK, NPKW1/2, NPKW, NPKPM and NPKCM, respectively. Mean SOC sequestration rate was 0.20 ton/ha/yr in the NPK treatment, and 0.39, 0.50, 0.51 and 0.97 ton/ha/yr in the NPKW1/2, NPKW, NPKPM, and NPKCM treatments, respectively. A linear relationship was observed between annual C input and SOC sequestration rate (SOCsequestration rate  = 0.16 Cinput -0.10, R = 0.95, P<0.01), suggesting a C sequestration efficiency of 16%. The Vertisol required an annual C input of 0.63 ton/ha/yr to maintain the initial SOC level. Moreover, the C sequestration efficiencies of wheat straw, pig manure and cattle manure were 17%, 11% and 17%, respectively. The results indicate that the Vertisol has a large potential to sequester SOC with a high efficiency, and applying cattle manure or wheat straw is a recommendable SOC sequestration practice in Vertisols.

  10. Carbon Sequestration Efficiency of Organic Amendments in a Long-Term Experiment on a Vertisol in Huang-Huai-Hai Plain, China

    PubMed Central

    Hua, Keke; Wang, Daozhong; Guo, Xisheng; Guo, Zibin

    2014-01-01

    Soil organic carbon (SOC) sequestration is important for improving soil fertility of cropland and for the mitigation of greenhouse gas emissions to the atmosphere. The efficiency of SOC sequestration depends on the quantity and quality of the organic matter, soil type, and climate. Little is known about the SOC sequestration efficiency of organic amendments in Vertisols. Thus, we conducted the research based on 29 years (1982–2011) of long-term fertilization experiment with a no fertilizer control and five fertilization regimes: CK (control, no fertilizer), NPK (mineral NPK fertilizers alone), NPK+1/2W (mineral NPK fertilizers combined with half the amount of wheat straw), NPK+W (mineral NPK fertilizers combined with full the amount of wheat straw), NPK+PM (mineral NPK fertilizers combined with pig manure) and NPK+CM (mineral NPK fertilizers combined cattle manure). Total mean annual C inputs were 0.45, 1.55, 2.66, 3.71, 4.68 and 6.56 ton/ha/yr for CK, NPK, NPKW1/2, NPKW, NPKPM and NPKCM, respectively. Mean SOC sequestration rate was 0.20 ton/ha/yr in the NPK treatment, and 0.39, 0.50, 0.51 and 0.97 ton/ha/yr in the NPKW1/2, NPKW, NPKPM, and NPKCM treatments, respectively. A linear relationship was observed between annual C input and SOC sequestration rate (SOCsequestration rate  = 0.16 Cinput –0.10, R = 0.95, P<0.01), suggesting a C sequestration efficiency of 16%. The Vertisol required an annual C input of 0.63 ton/ha/yr to maintain the initial SOC level. Moreover, the C sequestration efficiencies of wheat straw, pig manure and cattle manure were 17%, 11% and 17%, respectively. The results indicate that the Vertisol has a large potential to sequester SOC with a high efficiency, and applying cattle manure or wheat straw is a recommendable SOC sequestration practice in Vertisols. PMID:25265095

  11. Ocean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep sediments.

    PubMed

    Strand, Stuart E; Benford, Gregory

    2009-02-15

    For significant impact any method to remove CO2 from the atmosphere must process large amounts of carbon efficiently, be repeatable, sequester carbon for thousands of years, be practical, economical and be implemented soon. The only method that meets these criteria is removal of crop residues and burial in the deep ocean. We show here that this method is 92% efficient in sequestration of crop residue carbon while cellulosic ethanol production is only 32% and soil sequestration is about 14% efficient. Deep ocean sequestration can potentially capture 15% of the current global CO2 annual increase, returning that carbon backto deep sediments, confining the carbon for millennia, while using existing capital infrastructure and technology. Because of these clear advantages, we recommend enhanced research into permanent sequestration of crop residues in the deep ocean.

  12. Microbial carbon pump and its significance for carbon sequestration in soils

    NASA Astrophysics Data System (ADS)

    Liang, Chao

    2017-04-01

    Studies of the decomposition, transformation and stabilization of soil organic carbon have dramatically increased in recent years due to growing interest in studying the global carbon cycle as it pertains to climate change. While it is readily accepted that the magnitude of the organic carbon reservoir in soils depends upon microbial involvement because soil carbon dynamics are ultimately the consequence of microbial growth and activity, it remains largely unknown how these microbe-mediated processes lead to soil carbon stabilization. Here, two pathways, ex vivo modification and in vivo turnover, were defined to jointly explain soil carbon dynamics driven by microbial catabolism and/or anabolism. Accordingly, a conceptual framework consisting of the raised concept of the soil "microbial carbon pump" (MCP) was demonstrated to describe how microbes act as an active player in soil carbon storage. The hypothesis is that the long-term microbial assimilation process may facilitate the formation of a set of organic compounds that are stabilized (whether via protection by physical interactions or a reduction in activation energy due to chemical composition), ultimately leading to the sequestration of microbial-derived carbon in soils. The need for increased efforts was proposed to seek to inspire new studies that utilize the soil MCP as a conceptual guideline for improving mechanistic understandings of the contributions of soil carbon dynamics to the responses of the terrestrial carbon cycle under global change.

  13. Soil organic carbon sequestration in cotton production systems of the southeastern United States: a review.

    PubMed

    Causarano, H J; Franzluebbers, A J; Reeves, D W; Shaw, J N

    2006-01-01

    Past agricultural management practices have contributed to the loss of soil organic carbon (SOC) and emission of greenhouse gases (e.g., carbon dioxide and nitrous oxide). Fortunately, however, conservation-oriented agricultural management systems can be, and have been, developed to sequester SOC, improve soil quality, and increase crop productivity. Our objectives were to (i) review literature related to SOC sequestration in cotton (Gossypium hirsutum L.) production systems, (ii) recommend best management practices to sequester SOC, and (iii) outline the current political scenario and future probabilities for cotton producers to benefit from SOC sequestration. From a review of 20 studies in the region, SOC increased with no tillage compared with conventional tillage by 0.48 +/- 0.56 Mg C ha(-1) yr(-1) (H(0): no change, p < 0.001). More diverse rotations of cotton with high-residue-producing crops such as corn (Zea mays L.) and small grains would sequester greater quantities of SOC than continuous cotton. No-tillage cropping with a cover crop sequestered 0.67 +/- 0.63 Mg C ha(-1) yr(-1), while that of no-tillage cropping without a cover crop sequestered 0.34 +/- 47 Mg C ha(-1) yr(-1) (mean comparison, p = 0.04). Current government incentive programs recommend agricultural practices that would contribute to SOC sequestration. Participation in the Conservation Security Program could lead to government payments of up to Dollars 20 ha(-1). Current open-market trading of C credits would appear to yield less than Dollars 3 ha(-1), although prices would greatly increase should a government policy to limit greenhouse gas emissions be mandated.

  14. An Alternative Mechanism for Accelerated Carbon Sequestration in Concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haselbach, Liv M.; Thomle, Jonathan N.

    The increased rate of carbon dioxide sequestration (carbonation) is desired in many primary and secondary life applications of concrete in order to make the life cycle of concrete structures more carbon neutral. Most carbonation rate studies have focused on concrete exposed to air under various conditions. An alternative mechanism for accelerated carbon sequestration in concrete was investigated in this research based on the pH change of waters in contact with pervious concrete which have been submerged in carbonate laden waters. The results indicate that the concrete exposed to high levels of carbonate species in water may carbonate faster than whenmore » exposed to ambient air, and that the rate is higher with higher concentrations. Validation of increased carbon dioxide sequestration was also performed via thermogravimetric analysis (TGA). It is theorized that the proposed alternative mechanism reduces a limiting rate effect of carbon dioxide dissolution in water in the micro pores of the concrete.« less

  15. Brush management effects on soil carbon sequestration in sagebrush-dominated rangelands

    USDA-ARS?s Scientific Manuscript database

    Scientific information regarding soil organic carbon (SOC) sequestration in western rangelands, especially those with a sagebrush (Artemisia spp.) component and in lower rainfall areas (<350 mm), remains a major knowledge gap in understanding the effects of land management. We sampled soils from two...

  16. A Holocene record of climate-driven shifts in coastal carbon sequestration

    USGS Publications Warehouse

    Mitra, Siddhartha; Zimmerman, A.R.; Hunsinger, G.B.; Willard, D.; Dunn, J.C.

    2009-01-01

    A sediment core collected in the mesohaline portion of Chesapeake Bay was found to contain periods of increased delivery of refractory black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs). The BC was most likely produced by biomass combustion during four centennialscale dry periods as indicated by the Palmer Drought Severity Index (PDSI), beginning in the late Medieval Warm Period of 1100 CE. In contrast, wetter periods were associated with increased non-BC organic matter influx into the bay, likely due to greater runoff and associated nutrient delivery. In addition, an overall increase in both BC and non-BC organic matter deposition during the past millennium may reflect a shift in climate regime. The finding that carbon sequestration in the coastal zone responds to climate fluctuations at both centennial and millennial scales through fire occurrence and nutrient delivery has implications for past and future climate predictions. Drought-induced fires may lead, on longer timescales, to greater carbon sequestration and, therefore, represent a negative climate feedback. Copyright 2009 by the American Geophysical Union.

  17. Carbon sequestration and Jerusalem artichoke biomass under nitrogen applications in coastal saline zone in the northern region of Jiangsu, China.

    PubMed

    Niu, Li; Manxia, Chen; Xiumei, Gao; Xiaohua, Long; Hongbo, Shao; Zhaopu, Liu; Zed, Rengel

    2016-10-15

    Agriculture is an important source of greenhouse gases, but can also be a significant sink. Nitrogen fertilization is effective in increasing agricultural production and carbon storage. We explored the effects of different rates of nitrogen fertilization on biomass, carbon density, and carbon sequestration in fields under the cultivation of Jerusalem artichoke as well as in soil in a coastal saline zone for two years. Five nitrogen fertilization rates were tested (in guream(-2)): 4 (N1), 8 (N2), 12 (N3), 16 (N4), and 0 (control, CK). The biomass of different organs of Jerusalem artichoke during the growth cycle was significantly higher in N2 than the other treatments. Under different nitrogen treatments, carbon density in organs of Jerusalem artichoke ranged from 336 to 419gCkg(-1). Carbon sequestration in Jerusalem artichoke was higher in treatments with nitrogen fertilization compared to the CK treatment. The highest carbon sequestration was found in the N2 treatment. Soil carbon content was higher in the 0-10cm than 10-20cm layer, with nitrogen fertilization increasing carbon content in both soil layers. The highest soil carbon sequestration was measured in the N2 treatment. Carbon sequestration in both soil and Jerusalem artichoke residue was increased by nitrogen fertilization depending on the rates in the coastal saline zone studied. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. [Regional and global estimates of carbon stocks and carbon sequestration capacity in forest ecosystems: A review].

    PubMed

    Liu, Wei-wei; Wang, Xiao-ke; Lu, Fei; Ouyang, Zhi-yun

    2015-09-01

    As a dominant part of terrestrial ecosystems, forest ecosystem plays an important role in absorbing atmospheric CO2 and global climate change mitigation. From the aspects of zonal climate and geographical distribution, the present carbon stocks and carbon sequestration capacity of forest ecosystem were comprehensively examined based on the review of the latest literatures. The influences of land use change on forest carbon sequestration were analyzed, and factors that leading to the uncertainty of carbon sequestration assessment in forest ecosystem were also discussed. It was estimated that the current forest carbon stock was in the range of 652 to 927 Pg C and the carbon sequestration capacity was approximately 4.02 Pg C · a(-1). In terms of zonal climate, the carbon stock and carbon sequestration capacity of tropical forest were the maximum, about 471 Pg C and 1.02-1.3 Pg C · a(-1) respectively; then the carbon stock of boreal forest was about 272 Pg C, while its carbon sequestration capacity was the minimum, approximately 0.5 Pg C · a(-1); for temperate forest, the carbon stock was minimal, around 113 to 159 Pg C and its carbon sequestration capacity was 0.8 Pg C · a(-1). From the aspect of geographical distribution, the carbon stock of forest ecosystem in South America was the largest (187.7-290 Pg C), then followed by European (162.6 Pg C), North America (106.7 Pg C), Africa (98.2 Pg C) and Asia (74.5 Pg C), and Oceania (21.7 Pg C). In addition, carbon sequestration capacity of regional forest ecosystem was summed up as listed below: Tropical South America forest was the maximum (1276 Tg C · a(-1)), then were Tropical Africa (753 Tg C · a(-1)), North America (248 Tg C · a(-1)) and European (239 Tg C · a(-1)), and East Asia (98.8-136.5 Tg C · a(-1)) was minimum. To further reduce the uncertainty in the estimations of the carbon stock and carbon sequestration capacity of forest ecosystem, comprehensive application of long-term observation, inventories

  19. Integrated mangrove-shrimp cultivation: Potential for blue carbon sequestration.

    PubMed

    Ahmed, Nesar; Thompson, Shirley; Glaser, Marion

    2018-05-01

    Globally, shrimp farming has had devastating effects on mangrove forests. However, mangroves are the most carbon-rich forests, with blue carbon (i.e., carbon in coastal and marine ecosystems) emissions seriously augmented due to devastating effects on mangrove forests. Nevertheless, integrated mangrove-shrimp cultivation has emerged as a part of the potential solution to blue carbon emissions. Integrated mangrove-shrimp farming is also known as organic aquaculture if deforested mangrove area does not exceed 50% of the total farm area. Mangrove destruction is not permitted in organic aquaculture and the former mangrove area in parts of the shrimp farm shall be reforested to at least 50% during a period of maximum 5 years according to Naturland organic aquaculture standards. This article reviews integrated mangrove-shrimp cultivation that can help to sequester blue carbon through mangrove restoration, which can be an option for climate change mitigation. However, the adoption of integrated mangrove-shrimp cultivation could face several challenges that need to be addressed in order to realize substantial benefits from blue carbon sequestration.

  20. [Greenhouse gas emissions, carbon leakage and net carbon sequestration from afforestation and forest management: A review.

    PubMed

    Liu, Bo Jie; Lu, Fei; Wang, Xiao Ke; Liu, Wei Wei

    2017-02-01

    Forests play an important role in climate change mitigation and concentration of CO 2 reduction in the atmosphere. Forest management, especially afforestation and forest protection, could increase carbon stock of forests significantly. Carbon sequestration rate of afforestation ranges from 0.04 to 7.52 t C·hm -2 ·a -1 , while that of forest protection is 0.33-5.20 t C·hm -2 ·a -1 . At the same time, greenhouse gas (GHG) is generated within management boundary due to the production and transportation of the materials consumed in relevant activities of afforestation and forest management. In addition, carbon leakage is also generated outside boundary from activity shifting, market effects and change of environments induced by forest management. In this review, we summarized the definition of emission sources of GHG, monitoring methods, quantity and rate of greenhouse gas emissions within boundary of afforestation and forest management. In addition, types, monitoring methods and quantity of carbon leakage outside boundary of forest management were also analyzed. Based on the reviewed results of carbon sequestration, we introduced greenhouse gas emissions within boundary and carbon leakage, net carbon sequestration as well as the countervailing effects of greenhouse gas emissions and carbon leakage to carbon sequestration. Greenhouse gas emissions within management boundary counteract 0.01%-19.3% of carbon sequestration, and such counteraction could increase to as high as 95% considering carbon leakage. Afforestation and forest management have substantial net carbon sequestration benefits, when only taking direct greenhouse gas emissions within boundary and measurable carbon leakage from activity shifting into consideration. Compared with soil carbon sequestration measures in croplands, afforestation and forest management is more advantageous in net carbon sequestration and has better prospects for application in terms of net mitigation potential. Along with the

  1. Lake eutrophication and its implications for organic carbon sequestration in Europe.

    PubMed

    Anderson, N J; Bennion, H; Lotter, A F

    2014-09-01

    The eutrophication of lowland lakes in Europe by excess nitrogen (N) and phosphorus (P) is severe because of the long history of land-cover change and agricultural intensification. The ecological and socio-economic effects of eutrophication are well understood but its effect on organic carbon (OC) sequestration by lakes and its change overtime has not been determined. Here, we compile data from ~90 culturally impacted European lakes [~60% are eutrophic, Total P (TP) >30 μg P l(-1) ] and determine the extent to which OC burial rates have increased over the past 100-150 years. The average focussing corrected, OC accumulation rate (C ARFC ) for the period 1950-1990 was ~60 g C m(-2) yr(-1) , and for lakes with >100 μg TP l(-1) the average was ~100 g C m(-2) yr(-1) . The ratio of post-1950 to 1900-1950 C AR is low (~1.5) indicating that C accumulation rates have been high throughout the 20th century. Compared to background estimates of OC burial (~5-10 g C m(-2) yr(-1) ), contemporary rates have increased by at least four to fivefold. The statistical relationship between C ARFC and TP derived from this study (r(2) = 0.5) can be used to estimate OC burial at sites lacking estimates of sediment C-burial. The implications of eutrophication, diagenesis, lake morphometry and sediment focussing as controls of OC burial rates are considered. A conservative interpretation of the results of the this study suggests that lowland European meso- to eutrophic lakes with >30 μg TP l(-1) had OC burial rates in excess of 50 g C m(-2) yr(-1) over the past century, indicating that previous estimates of regional lake OC burial have seriously underestimated their contribution to European carbon sequestration. Enhanced OC burial by lakes is one positive side-effect of the otherwise negative impact of the anthropogenic disruption of nutrient cycles. © 2014 John Wiley & Sons Ltd.

  2. [Deposition and burial of organic carbon in coastal salt marsh: research progress].

    PubMed

    Cao, Lei; Song, Jin-Ming; Li, Xue-Gang; Yuan, Hua-Mao; Li, Ning; Duan, Li-Qin

    2013-07-01

    Coastal salt marsh has higher potential of carbon sequestration, playing an important role in mitigating global warming, while coastal saline soil is the largest organic carbon pool in the coastal salt marsh carbon budget. To study the carbon deposition and burial in this soil is of significance for clearly understanding the carbon budget of coastal salt marsh. This paper summarized the research progress on the deposition and burial of organic carbon in coastal salt marsh from the aspects of the sources of coastal salt marsh soil organic carbon, soil organic carbon storage and deposition rate, burial mechanisms of soil organic carbon, and the relationships between the carbon sequestration in coastal salt marsh and the global climate change. Some suggestions for the future related researches were put forward: 1) to further study the underlying factors that control the variability of carbon storage in coastal salt marsh, 2) to standardize the methods for measuring the carbon storage and the deposition and burial rates of organic carbon in coastal salt marsh, 3) to quantify the lateral exchange of carbon flux between coastal salt marsh and adjacent ecosystems under the effects of tide, and 4) to approach whether the effects of global warming and the increased productivity could compensate for the increase of the organic carbon decomposition rate resulted from sediment respiration. To make clear the driving factors determining the variability of carbon sequestration rate and how the organic carbon storage is affected by climate change and anthropogenic activities would be helpful to improve the carbon sequestration capacity of coastal salt marshes in China.

  3. A disconnect between O horizon and mineral soil carbon - Implications for soil C sequestration

    NASA Astrophysics Data System (ADS)

    Garten, Charles T., Jr.

    2009-03-01

    Changing inputs of carbon to soil is one means of potentially increasing carbon sequestration in soils for the purpose of mitigating projected increases in atmospheric CO 2 concentrations. The effect of manipulations of aboveground carbon input on soil carbon storage was tested in a temperate, deciduous forest in east Tennessee, USA. A 4.5-year experiment included exclusion of aboveground litterfall and supplemental litter additions (three times ambient) in an upland and a valley that differed in soil nitrogen availability. The estimated decomposition rate of the carbon stock in the O horizon was greater in the valley than in the upland due to higher litter quality (i.e., lower C/N ratios). Short-term litter exclusion or addition had no effect on carbon stock in the mineral soil, measured to a depth of 30 cm, or the partitioning of carbon in the mineral soil between particulate- and mineral-associated organic matter. A two-compartment model was used to interpret results from the field experiments. Field data and a sensitivity analysis of the model were consistent with little carbon transfer between the O horizon and the mineral soil. Increasing aboveground carbon input does not appear to be an effective means of promoting carbon sequestration in forest soil at the location of the present study because a disconnect exists in carbon dynamics between O horizon and mineral soil. Factors that directly increase inputs to belowground soil carbon, via roots, or reduce decomposition rates of organic matter are more likely to benefit efforts to increase carbon sequestration in forests where carbon dynamics in the O horizon are uncoupled from the mineral soil.

  4. Dissolved Organic Carbon and Natural Terrestrial Sequestration Potential in Volcanic Terrain, San Juan Mountains, Colorado

    NASA Astrophysics Data System (ADS)

    Yager, D. B.; Burchell, A.; Johnson, R. H.; Kugel, M.; Aiken, G.; Dick, R.

    2009-12-01

    The need to reduce atmospheric CO2 levels has stimulated studies to understand and quantify carbon sinks and sources. Soils represent a potentially significant natural terrestrial carbon sequestration (NTS) reservoir. This project is part of a collaborative effort to characterize carbon (C) stability in temperate soils. To examine the potential for dissolved organic carbon (DOC) values as a qualitative indicator of C-stability, peak-flow (1500 ft3/s) and low-flow (200 ft3/s) samples from surface and ground waters were measured for DOC. DOC concentrations are generally low. Median peak-flow values from all sample sites (mg/L) were: streams (0.9); seeps (1.2); wells (0.45). Median low-flow values were: streams (0.7); seeps (0.75); wells (0.5). Median DOC values decrease between June and September 0.45 mg/L for seeps, and 0.2 mg/L for streams. Elevated DOC in some ground waters as compared to surface waters indicates increased contact time with soil organic matter. Elevated peak-flow DOC in areas with propylitically-altered bedrocks, composed of a secondary acid neutralizing assemblage of calcite-chlorite-epidote, reflects increased microbial and vegetation activity as compared to reduced organic matter accumulation in highly-altered terrain composed of an acid generating assemblage with abundant pyrite. Waters sampled in propylitically-altered bedrock terrain exhibit the lowest values during low-flow and suggest bedrock alteration type may influence DOC. Previous studies revealed undisturbed soils sampled have 2 to 6 times greater total organic soil carbon (TOSC) than global averages. Forest soils underlain by intermediate to mafic volcanic bedrock have the highest C (34.15 wt%), C: N (43) and arylsulfatase enzyme activity (ave. 278, high 461 µg p-nitrophenol/g/h). Unreclaimed mine sites have the lowest C (0 to 0.78 wt%), and arylsulfatase enzyme activity (0 to 41). Radiocarbon dates on charcoal collected from paleo-burn horizons illustrate Rocky Mountain soils may

  5. Integrated Mid-Continent Carbon Capture, Sequestration & Enhanced Oil Recovery Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brian McPherson

    2010-08-31

    A consortium of research partners led by the Southwest Regional Partnership on Carbon Sequestration and industry partners, including CAP CO2 LLC, Blue Source LLC, Coffeyville Resources, Nitrogen Fertilizers LLC, Ash Grove Cement Company, Kansas Ethanol LLC, Headwaters Clean Carbon Services, Black & Veatch, and Schlumberger Carbon Services, conducted a feasibility study of a large-scale CCS commercialization project that included large-scale CO{sub 2} sources. The overall objective of this project, entitled the 'Integrated Mid-Continent Carbon Capture, Sequestration and Enhanced Oil Recovery Project' was to design an integrated system of US mid-continent industrial CO{sub 2} sources with CO{sub 2} capture, and geologicmore » sequestration in deep saline formations and in oil field reservoirs with concomitant EOR. Findings of this project suggest that deep saline sequestration in the mid-continent region is not feasible without major financial incentives, such as tax credits or otherwise, that do not exist at this time. However, results of the analysis suggest that enhanced oil recovery with carbon sequestration is indeed feasible and practical for specific types of geologic settings in the Midwestern U.S.« less

  6. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils.

    PubMed

    Maaroufi, Nadia I; Nordin, Annika; Hasselquist, Niles J; Bach, Lisbet H; Palmqvist, Kristin; Gundale, Michael J

    2015-08-01

    It is proposed that carbon (C) sequestration in response to reactive nitrogen (Nr ) deposition in boreal forests accounts for a large portion of the terrestrial sink for anthropogenic CO2 emissions. While studies have helped clarify the magnitude by which Nr deposition enhances C sequestration by forest vegetation, there remains a paucity of long-term experimental studies evaluating how soil C pools respond. We conducted a long-term experiment, maintained since 1996, consisting of three N addition levels (0, 12.5, and 50 kg N ha(-1) yr(-1) ) in the boreal zone of northern Sweden to understand how atmospheric Nr deposition affects soil C accumulation, soil microbial communities, and soil respiration. We hypothesized that soil C sequestration will increase, and soil microbial biomass and soil respiration will decrease, with disproportionately large changes expected compared to low levels of N addition. Our data showed that the low N addition treatment caused a non-significant increase in the organic horizon C pool of ~15% and a significant increase of ~30% in response to the high N treatment relative to the control. The relationship between C sequestration and N addition in the organic horizon was linear, with a slope of 10 kg C kg(-1) N. We also found a concomitant decrease in total microbial and fungal biomasses and a ~11% reduction in soil respiration in response to the high N treatment. Our data complement previous data from the same study system describing aboveground C sequestration, indicating a total ecosystem sequestration rate of 26 kg C kg(-1) N. These estimates are far lower than suggested by some previous modeling studies, and thus will help improve and validate current modeling efforts aimed at separating the effect of multiple global change factors on the C balance of the boreal region. © 2015 John Wiley & Sons Ltd.

  7. Fertilization increases paddy soil organic carbon density.

    PubMed

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-04-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC.

  8. Fertilization increases paddy soil organic carbon density*

    PubMed Central

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-01-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC. PMID:22467369

  9. Deep horizons: Soil Carbon sequestration and storage potential in grassland soils

    NASA Astrophysics Data System (ADS)

    Torres-Sallan, Gemma; Schulte, Rogier; Lanigan, Gary J.; Byrne, Kenneth A.; Reidy, Brian; Creamer, Rachel

    2016-04-01

    Soil Organic Carbon (SOC) enhances soil fertility, holding nutrients in a plant-available form. It also improves aeration and water infiltration. Soils are considered a vital pool for C (Carbon) sequestration, as they are the largest pool of C after the oceans, and contain 3.5 more C than the atmosphere. SOC models and inventories tend to focus on the top 30 cm of soils, only analysing total SOC values. Association of C with microaggregates (53-250 μm) and silt and clay (<53 μm) is considered C sequestration as these fractions offer the greatest protection against mineralization. This study assessed the role of aggregation in C sequestration throughout the profile, down to 1 m depth, of 30 grassland sites divided in 6 soil types. One kg sample was collected for each horizon, sieved at 8 mm and dried at 40 °C. Through a wet sieving procedure, four aggregate sizes were isolated: large macroaggregates (>2000 μm); macroaggregates (250-2000 μm); microaggregates and silt & clay. Organic C associated to each aggregate fraction was analysed on a LECO combustion analyser. Sand-free C was calculated for each aggregate size. For all soil types, 84% of the SOC located in the first 30 cm was contained inside macroaggregates and large macroaggregates. Given that this fraction has a turnover time of 1 to 10 years, sampling at that depth only provides information on the labile fraction in soil, and does not consider the longer term C sequestration potential. Only when looking at the whole profile, two clear trends could be observed: 1) soils with a clay increase at depth had most of their C located in the silt and clay fractions, which indicate their enhanced C sequestration capacity, 2) free-draining soils had a bigger part of their SOC located in the macroaggregate fractions. These results indicate that current C inventories and models that focus on the top 30 cm, do not accurately measure soil C sequestration potential in soils, but rather the more labile fraction. However

  10. Refractory organic matter in coastal salt marshes-effect on C sequestration calculations.

    PubMed

    Leorri, Eduardo; Zimmerman, Andrew R; Mitra, Siddhartha; Christian, Robert R; Fatela, Francisco; Mallinson, David J

    2018-08-15

    The age and ability of salt marshes to accumulate and sequester carbon is often assessed using the carbon isotopic signatures (Δ 14 C and δ 13 C) of sedimentary organic matter. However, transfers of allochthonous refractory carbon (C RF ) from the watershed to marshes would not represent new C sequestration. To better understand how refractory carbon (C RF ) inputs affect assessments of marsh age and C sequestration, Δ 14 C and δ 13 C of both total organic carbon (TOC), C RF , and non-C RF organic matter fractions were measured in salt marshes from four contrasting systems on the North Atlantic coast. To our knowledge, no salt marsh sediment study has considered refractory or allochthonous carbon in carbon budget calculations or the impact on chronologies. Stable and radiogenic isotope data suggest that while TOC was dominated by autochthonous plant inputs, C RF was dominated by locally recycled or allochthonous C, the delivery of which was controlled by the size and slope of each watershed. Steep-gradient rivers analyzed delivered Δ 14 C-depleted C RF to their estuarine marshes, while the site located in the low-gradient river was associated with larger C RF content. Finally, the marsh isolated from riverine input contained the least fraction of TOC as C RF . Laterally transported C RF caused only a small offset in Δ 14 C in relation to TOC in low-gradient systems (average Δ 14 C offset was -44.4 and -24.2‰ at each location). However, the presence of allochthonous Δ 14 C-depleted C RF in sediments of steep-gradient rivers led to large overestimates of the time of organic matter deposition (i.e. apparent age was older than the 'true' time of deposition) (Δ 14 C offset ranged from -170.6 to -528.9‰). Further, reliance on TOC or loss on ignition analyses to calculate C sequestration by marshes might produce overestimates of at least as much as 10 to 20% since neither account for the lateral transport of allochthonous carbon. Copyright © 2018 Elsevier B

  11. Wind erosion reduces soil organic carbon sequestration falsely indicating ineffective management practices

    NASA Astrophysics Data System (ADS)

    Chappell, Adrian; Baldock, Jeffrey A.

    2016-09-01

    Improved management of agricultural land has the potential to reduce greenhouse gas emissions and to reduce atmospheric CO2 via soil carbon sequestration. However, SOC stocks are reduced by soil erosion which is commonly omitted from calculations of crop production, C cycling, C sequestration and C accounting. We used fields from the wind eroded dryland cropping region of Western Australia to demonstrate the global implications for C sequestration and C accounting of omitting soil erosion. For the fields we previously estimated mean net (1950s-1990) soil erosion of 1.2 ± 1.0 t ha-1 y-1. The mean net (1990-2013) soil erosion increased by nearly four times to 4.4 ± 2.1 t ha-1 y-1. Conservation agriculture has evidently not reduced wind erosion in this region. The mean net (1990-2013) SOC erosion was up to 0.2 t C ha-1 y-1 across all sampled fields and similar to measured sequestration rates in the region (up to 0.5 t C ha-1 y-1; 10 years) for many management practices recommended for building SOC stocks. The minimum detectable change (MDC; 10 years) of SOC without erosion was up to 0.2 t C ha-1 y-1 whilst the MDC of SOC with erosion was up to 0.4 t C ha-1 y-1. These results illustrate the generally applicable outcome: (i) if SOC erosion is equal to (or greater than) the increase in SOC due to management practices, the change will not be detectable (or a loss will be evident); (ii) without including soil erosion in SOC sequestration calculations, the monitoring of SOC stocks will lead to, at best the inability to detect change and, at worst the false impression that management practices have failed to store SOC. Furthermore, continued omission of soil erosion in crop production, C accounting and C sequestration will most likely undermine confidence in policy designed to encourage adoption of C farming and the attendant benefits for soil stewardship and food security.

  12. [Carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand land.

    PubMed

    Ma, Jian Ye; Tong, Xiao Gang; Li, Zhan Bin; Fu, Guang Jun; Li, Jiao; Hasier

    2016-11-18

    The aim of this study was to investigate the effects of carbon sequestration in soil particle-sized fractions during reversion of desertification at Mu Us Sand Land, soil samples were collected from quicksand land, semifixed sand and fixed sand lands that were established by the shrub for 20-55 year-old and the arbor for 20-50 year-old at sand control region of Yulin in Northern Shaanxi Province. The dynamics and sequestration rate of soil organic carbon (SOC) associated with sand, silt and clay were measured by physical fractionation method. The results indicated that, compared with quicksand area, the carbon content in total SOC and all soil particle-sized fractions at bothsand-fixing sand forest lands showed a significant increasing trend, and the maximum carbon content was observed in the top layer of soils. From quicksand to fixed sand land with 55-year-old shrub and 50-year-old arbor, the annual sequestration rate of carbon stock in 0-5 cm soil depth was same in silt by 0.05 Mg·hm -2 ·a -1 . The increase rate of carbon sequestration in sand was 0.05 and 0.08 Mg·hm -2 ·a -1 , and in clay was 0.02 and 0.03 Mg·hm -2 ·a -1 at shrubs and arbors land, respectively. The increase rate of carbon sequestration in 0-20 cm soil layer for all the soil particles was averagely 2.1 times as that of 0-5 cm. At the annual increase rate of carbon, the stock of carbon in sand, silt and clay at the two fixed sand lands were increased by 6.7, 18.1 and 4.4 times after 50-55 year-old reversion of quicksand land to fixed sand. In addition, the average percentages that contributed to accumulation of total SOC by different particles in 0-20 cm soil were in the order of silt carbon (39.7%)≈sand carbon (34.6%) > clay carbon (25.6%). Generally, the soil particle-sized fractions had great carbon sequestration potential during reversion of desertification in Mu Us Sand Land, and the slit and sand were the main fractions for carbon sequestration at both fixed sand lands.

  13. Relative contribution of maize and external manure amendment to soil carbon sequestration in a long-term intensive maize cropping system

    PubMed Central

    Zhang, Wenju; Liu, Kailou; Wang, Jinzhou; Shao, Xingfang; Xu, Minggang; Li, Jianwei; Wang, Xiujun; Murphy, Daniel V.

    2015-01-01

    We aimed to quantify the relative contributions of plant residue and organic manure to soil carbon sequestration. Using a 27-year-long inorganic fertilizer and manure amendment experiment in a maize (Zea mays L.) double-cropping system, we quantified changes in harvestable maize biomass and soil organic carbon stocks (0–20 cm depth) between 1986-2012. By employing natural 13C tracing techniques, we derived the proportional contributions of below-ground crop biomass return (maize-derived carbon) and external manure amendment (manure-derived carbon) to the total soil organic carbon stock. The average retention of maize-derived carbon plus manure-derived carbon during the early period of the trial (up to 11 years) was relatively high (10%) compared to the later period (22 to 27 years, 5.1–6.3%). About 11% of maize-derived carbon was converted to soil organic carbon, which was double the retention of manure-derived carbon (4.4–5.1%). This result emphasized that organic amendments were necessary to a win-win strategy for both SOC sequestration and maize production. PMID:26039186

  14. An Index-Based Approach to Assessing Recalcitrance and Soil Carbon Sequestration Potential of Engineered Black Carbons (Biochars)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, Omar R.; Kuo, Li-Jung; Zimmerman, Andrew R.

    2012-01-10

    The ability of engineered black carbons (or biochars) to resist abiotic and, or biotic degradation (herein referred to as recalcitrance) is crucial to their successful deployment as a soil carbon sequestration strategy. A new recalcitrance index, the R{sub 50}, for assessing biochar quality for carbon sequestration is proposed. The R{sub 50} is based on the relative thermal stability of a given biochar to that of graphite and was developed and evaluated with a variety of biochars (n = 59), and soot-like black carbons. Comparison of R{sub 50}, with biochar physicochemical properties and biochar-C mineralization revealed the existence of a quantifiablemore » relationship between R{sub 50} and biochar recalcitrance. As presented here, the R{sub 50} is immediately applicable to pre-land application screening of biochars into Class A (R{sub 50} {>=} 0.70), Class B (0.50 {<=} R{sub 50} < 0.70) or Class C (R{sub 50} < 0.50) recalcitrance/carbon sequestration classes. Class A and Class C biochars would have carbon sequestration potential comparable to soot/graphite and uncharred plant biomass, respectively, while Class B biochars would have intermediate carbon sequestration potential. We believe that the coupling of the R{sub 50}, to an index-based degradation, and an economic model could provide a suitable framework in which to comprehensively assess soil carbon sequestration in biochars.« less

  15. Peatland geoengineering: an alternative approach to terrestrial carbon sequestration.

    PubMed

    Freeman, Christopher; Fenner, Nathalie; Shirsat, Anil H

    2012-09-13

    Terrestrial and oceanic ecosystems contribute almost equally to the sequestration of ca 50 per cent of anthropogenic CO(2) emissions, and already play a role in minimizing our impact on Earth's climate. On land, the majority of the sequestered carbon enters soil carbon stores. Almost one-third of that soil carbon can be found in peatlands, an area covering just 2-3% of the Earth's landmass. Peatlands are thus well established as powerful agents of carbon capture and storage; the preservation of archaeological artefacts, such as ancient bog bodies, further attest to their exceptional preservative properties. Peatlands have higher carbon storage densities per unit ecosystem area than either the oceans or dry terrestrial systems. However, despite attempts over a number of years at enhancing carbon capture in the oceans or in land-based afforestation schemes, no attempt has yet been made to optimize peatland carbon storage capacity or even to harness peatlands to store externally captured carbon. Recent studies suggest that peatland carbon sequestration is due to the inhibitory effects of phenolic compounds that create an 'enzymic latch' on decomposition. Here, we propose to harness that mechanism in a series of peatland geoengineering strategies whereby molecular, biogeochemical, agronomical and afforestation approaches increase carbon capture and long-term sequestration in peat-forming terrestrial ecosystems.

  16. Physical and Economic Integration of Carbon Capture Methods with Sequestration Sinks

    NASA Astrophysics Data System (ADS)

    Murrell, G. R.; Thyne, G. D.

    2007-12-01

    Currently there are several different carbon capture technologies either available or in active development for coal- fired power plants. Each approach has different advantages, limitations and costs that must be integrated with the method of sequestration and the physiochemical properties of carbon dioxide to evaluate which approach is most cost effective. For large volume point sources such as coal-fired power stations, the only viable sequestration sinks are either oceanic or geological in nature. However, the carbon processes and systems under consideration produce carbon dioxide at a variety of pressure and temperature conditions that must be made compatible with the sinks. Integration of all these factors provides a basis for meaningful economic comparisons between the alternatives. The high degree of compatibility between carbon dioxide produced by integrated gasification combined cycle technology and geological sequestration conditions makes it apparent that this coupling currently holds the advantage. Using a basis that includes complete source-to-sink sequestration costs, the relative cost benefit of pre-combustion IGCC compared to other post-combustion methods is on the order of 30%. Additional economic benefits arising from enhanced oil recovery revenues and potential sequestration credits further improve this coupling.

  17. Quantifying carbon sequestration in forest plantations by modeling the dynamics of above and below ground carbon pools

    Treesearch

    Chris A. Maier; Kurt H. Johnsen

    2010-01-01

    Intensive pine plantation management may provide opportunities to increase carbon sequestration in the Southeastern United States. Developing management options that increase fiber production and soil carbon sequestration require an understanding of the biological and edaphic processes that control soil carbon turnover. Belowground carbon resides primarily in three...

  18. Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean.

    PubMed

    Kennedy, Martin J; Wagner, Thomas

    2011-06-14

    The majority of carbon sequestration at the Earth's surface occurs in marine continental margin settings within fine-grained sediments whose mineral properties are a function of continental climatic conditions. We report very high mineral surface area (MSA) values of 300 and 570 m(2) g in Late Cretaceous black shales from Ocean Drilling Program site 959 of the Deep Ivorian Basin that vary on subcentennial time scales corresponding with abrupt increases from approximately 3 to approximately 18% total organic carbon (TOC). The observed MSA changes with TOC across multiple scales of variability and on a sample-by-sample basis (centimeter scale), provides a rigorous test of a hypothesized influence on organic carbon burial by detrital clay mineral controlled MSA. Changes in TOC also correspond with geochemical and sedimentological evidence for water column anoxia. Bioturbated intervals show a lower organic carbon loading on mineral surface area of 0.1 mg-OC m(-2) when compared to 0.4 mg-OC m(-2) for laminated and sulfidic sediments. Although either anoxia or mineral surface protection may be capable of producing TOC of < 5%, when brought together they produced the very high TOC (10-18%) apparent in these sediments. This nonlinear response in carbon burial resulted from minor precession-driven changes of continental climate influencing clay mineral properties and runoff from the African continent. This study identifies a previously unrecognized land-sea connection among continental weathering, clay mineral production, and anoxia and a nonlinear effect on marine carbon sequestration during the Coniacian-Santonian Oceanic Anoxic Event 3 in the tropical eastern Atlantic.

  19. Carbon Sequestration and Peat Accretion Processes in Peatland Systems: A North-South Comparison

    NASA Astrophysics Data System (ADS)

    Richardson, C. J.; Wang, H.; Bridgham, S. D.

    2012-12-01

    Millions of hectares of peatlands exist in the U.S. and Canada but few comparisons have been made on the process controlling peat accretion, carbon sequestration and GHG losses across latitudinal gradients. Historic threats to carbon sequestration for these areas have been drainage and conversion to agriculture and forestry, which promotes the decomposition of the organic matter in the soil, leading to accelerated soil subsidence, severe carbon losses, and accelerated transport of C and nutrients to adjoining ecosystems. A more recent and insidious threat to the survival of peatlands worldwide is the increased temperature and drought conditions projected for many areas of global peatlands (IPCC 2007). A comparison of carbon sequestration rates and controlling processes for southeastern shrub bogs, the Florida Everglades and selected peatlands of the northern US and Canada under current climatic conditions reveals several major differences in controlling factors and rates of sequestration and carbon flux. Numerous studies have shown that drought or drainage can unlock historically stored carbon, thus releasing more CO2 ¬ and dissolved organic carbon (Blodau et al. 2004; Furukawa et al. 2005; Von Arnold et al. 2005; Hirano et al. 2007), and such effects might last for decades (Fenner & Freeman 2011). The main driver of this process is the O2 introduced by drought or drainage, which will increase the activity of phenol oxidase, then accelerate the decomposition of phenol compounds, which is generally considered the "enzymatic latch" for carbon storage in peatlands (Freeman et al. 2001). However, our recent studies in southeastern peatlands along the coast of North Carolina have found that drought or drainage does not affect CO2 emission in some southern peatlands where the initial water level is below the ground surface (unsaturated peats), as polyphenol increases rather than decreases. Our results suggest that additional controlling factors, rather than anoxia exist

  20. Method for carbon dioxide sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC-CO.sub.2) and water or bine into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation.

  1. Carbon sequestration, optimum forest rotation and their environmental impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kula, Erhun, E-mail: erhun.kula@bahcesehir.edu.tr; Gunalay, Yavuz, E-mail: yavuz.gunalay@bahcesehir.edu.tr

    2012-11-15

    Due to their large biomass forests assume an important role in the global carbon cycle by moderating the greenhouse effect of atmospheric pollution. The Kyoto Protocol recognises this contribution by allocating carbon credits to countries which are able to create new forest areas. Sequestrated carbon provides an environmental benefit thus must be taken into account in cost-benefit analysis of afforestation projects. Furthermore, like timber output carbon credits are now tradable assets in the carbon exchange. By using British data, this paper looks at the issue of identifying optimum felling age by considering carbon sequestration benefits simultaneously with timber yields. Themore » results of this analysis show that the inclusion of carbon benefits prolongs the optimum cutting age by requiring trees to stand longer in order to soak up more CO{sub 2}. Consequently this finding must be considered in any carbon accounting calculations. - Highlights: Black-Right-Pointing-Pointer Carbon sequestration in forestry is an environmental benefit. Black-Right-Pointing-Pointer It moderates the problem of global warming. Black-Right-Pointing-Pointer It prolongs the gestation period in harvesting. Black-Right-Pointing-Pointer This paper uses British data in less favoured districts for growing Sitka spruce species.« less

  2. [Variation of forest vegetation carbon storage and carbon sequestration rate in Liaoning Province, Northeast China].

    PubMed

    Zhen, Wei; Huang, Mei; Zhai, Yin-Li; Chen, Ke; Gong, Ya-Zhen

    2014-05-01

    The forest vegetation carbon stock and carbon sequestration rate in Liaoning Province, Northeast China, were predicted by using Canadian carbon balance model (CBM-CFS3) combining with the forest resource data. The future spatio-temporal distribution and trends of vegetation carbon storage, carbon density and carbon sequestration rate were projected, based on the two scenarios, i. e. with or without afforestation. The result suggested that the total forest vegetation carbon storage and carbon density in Liaoning Province in 2005 were 133.94 Tg and 25.08 t x hm(-2), respectively. The vegetation carbon storage in Quercus was the biggest, while in Robinia pseudoacacia was the least. Both Larix olgensis and broad-leaved forests had higher vegetation carbon densities than others, and the vegetation carbon densities of Pinus tabuliformis, Quercus and Robinia pseudoacacia were close to each other. The spatial distribution of forest vegetation carbon density in Liaoning Province showed a decrease trend from east to west. In the eastern forest area, the future increase of vegetation carbon density would be smaller than those in the northern forest area, because most of the forests in the former part were matured or over matured, while most of the forests in the later part were young. Under the scenario of no afforestation, the future increment of total forest vegetation carbon stock in Liaoning Province would increase gradually, and the total carbon sequestration rate would decrease, while they would both increase significantly under the afforestation scenario. Therefore, afforestation plays an important role in increasing vegetation carbon storage, carbon density and carbon sequestration rate.

  3. How will Shrub Expansion Impact Soil Carbon Sequestration in Arctic Tundra?

    NASA Astrophysics Data System (ADS)

    Czimczik, C. I.; Holden, S. R.; He, Y.; Randerson, J. T.

    2015-12-01

    Multiple lines of evidence suggest that plant productivity, and especially shrub abundance, is increasing in the Arctic in response to climate change. This greening is substantiated by increases in the Normalized Difference Vegetation Index, repeat photography and field observations. The implications of a greener Arctic on carbon sequestration by tundra ecosystems remain poorly understood. Here, we explore existing datasets of plant productivity and soil carbon stocks to quantify how greening, and in particular an expansion of woody shrubs, may translate to the sequestration of carbon in arctic soils. As an estimate of carbon storage in arctic tundra soils, we used the Northern Circumpolar Soil Carbon Database v2. As estimates of tundra type and productivity, we used the Circumpolar Arctic Vegetation map as well as the MODIS and Landsat Vegetation Continuous Fields, and MODIS GPP/NPP (MOD17) products. Preliminary findings suggest that in graminoid tundra and erect-shrub tundra higher shrub abundance is associated with greater soil carbon stocks. However, this relationship between shrub abundance and soil carbon is not apparent in prostrate-shrub tundra, or when comparing across graminoid tundra, erect-shrub tundra and prostrate-shrub tundra. Uncertainties originate from the extreme spatial (vertical and horizontal) heterogeneity of organic matter distribution in cryoturbated soils, the fact that (some) permafrost carbon stocks, e.g. yedoma, reflect previous rather than current vegetative cover, and small sample sizes, esp. in the High Arctic. Using Vegetation Continuous Fields and MODIS GPP/NPP (MOD17), we develop quantitative trajectories of soil carbon storage as a function of shrub cover and plant productivity in the Arctic (>60°N). We then compare our greening-derived carbon sequestration estimates to projected losses of carbon from thawing permafrost. Our findings will reduce uncertainties in the magnitude and timing of the carbon-climate feedback from the

  4. Soil organic matter formation and sequestration across a forested floodplain chronosequence

    Treesearch

    John D. Wigginton; B. Graeme Lockaby; Carl C. Trettin

    2000-01-01

    Successional changes in soil organic matter formation and carbon sequestration across a forested floodplain chronosequence were studied at the Savannah river site, National Environmental Research Park, SC, US. Four floodplain sites were selected for study, three of which are in various stages of recovery from impact due to thermal effluent discharge. The fourth is a...

  5. Analysis and Comparison of Carbon Capture & Sequestration Policies

    NASA Astrophysics Data System (ADS)

    Burton, E.; Ezzedine, S. M.; Reed, J.; Beyer, J. H.; Wagoner, J. L.

    2010-12-01

    Several states and countries have adopted or are in the process of crafting policies to enable geologic carbon sequestration projects. These efforts reflect the recognition that existing statutory and regulatory frameworks leave ambiguities or gaps that elevate project risk for private companies considering carbon sequestration projects, and/or are insufficient to address a government’s mandate to protect the public interest. We have compared the various approaches that United States’ state and federal governments have taken to provide regulatory frameworks to address carbon sequestration. A major purpose of our work is to inform the development of any future legislation in California, should it be deemed necessary to meet the goals of Assembly Bill 1925 (2006) to accelerate the adoption of cost-effective geologic sequestration strategies for the long-term management of industrial carbon dioxide in the state. Our analysis shows a diverse issues are covered by adopted and proposed carbon capture and sequestration (CCS) legislation and that many of the new laws focus on defining regulatory frameworks for underground injection of CO2, ambiguities in property issues, or assigning legal liability. While these approaches may enable the progress of early projects, future legislation requires a longer term and broader view that includes a quantified integration of CCS into a government’s overall climate change mitigation strategy while considering potentially counterproductive impacts on CCS of other climate change mitigation strategies. Furthermore, legislation should be crafted in the context of a vision for CCS as an economically viable and widespread industry. While an important function of new CCS legislation is enabling early projects, it must be kept in mind that applying the same laws or protocols in the future to a widespread CCS industry may result in business disincentives and compromise of the public interest in mitigating GHG emissions. Protection of the

  6. Long-term manure amendments and chemical fertilizers enhanced soil organic carbon sequestration in a wheat (Triticum aestivum L.)-maize (Zea mays L.) rotation system.

    PubMed

    Zhang, Shuiqing; Huang, Shaomin; Li, Jianwei; Guo, Doudou; Lin, Shan; Lu, Guoan

    2017-06-01

    The carbon sequestration potential is affected by cropping system and management practices, but soil organic carbon (SOC) sequestration potential under fertilizations remains unclear in north China. This study examined SOC change, total C input to soil and, via integration of these estimates over years, carbon sequestration efficiency (CSE, the ratio of SOC change over C input) under no fertilization (control), chemical nitrogen fertilizer alone (N) or combined with phosphorus and potassium fertilizers (NP, NK, PK and NPK), or chemical fertilizers combined with low or high (1.5×) manure input (NPKM and 1.5NPKM). Results showed that, as compared with the initial condition, SOC content increased by 0.03, 0.06, 0.05, 0.09, 0.16, 0.26, 0.47 and 0.68 Mg C ha -1 year -1 under control, N, NK, PK, NP, NPK, NPKM and 1.5NPKM treatments respectively. Correspondingly, the C inputs of wheat and maize were 1.24, 1.34, 1.55, 1.33, 2.72, 2.96, 2.97 and 3.15 Mg ha -1 year -1 respectively. The long-term fertilization-induced CSE showed that about 11% of the gross C input was transformed into SOC pool. Overall, this study demonstrated that decade-long manure input combined with chemical fertilizers can maintain high crop yield and lead to SOC sequestration in north China. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Reaction mechanisms for enhancing carbon dioxide mineral sequestration

    NASA Astrophysics Data System (ADS)

    Jarvis, Karalee Ann

    Increasing global temperature resulting from the increased release of carbon dioxide into the atmosphere is one of the greatest problems facing society. Nevertheless, coal plants remain the largest source of electrical energy and carbon dioxide gas. For this reason, researchers are searching for methods to reduce carbon dioxide emissions into the atmosphere from the combustion of coal. Mineral sequestration of carbon dioxide reacted in electrolyte solutions at 185°C and 2200 psi with olivine (magnesium silicate) has been shown to produce environmentally benign carbonates. However, to make this method feasible for industrial applications, the reaction rate needs to be increased. Two methods were employed to increase the rate of mineral sequestration: reactant composition and concentration were altered independently in various runs. The products were analyzed with complete combustion for total carbon content. Crystalline phases in the product were analyzed with Debye-Scherrer X-ray powder diffraction. To understand the reaction mechanism, single crystals of San Carlos Olivine were reacted in two solutions: (0.64 M NaHCO3/1 M NaCl) and (5.5 M KHCO3) and analyzed with scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and fluctuation electron microscopy (FEM) to study the surface morphology, atomic crystalline structure, composition and amorphous structure. From solution chemistry studies, it was found that increasing the activity of the bicarbonate ion increased the conversion rate of carbon dioxide to magnesite. The fastest conversion, 60% conversion in one hour, occurred in a solution of 5.5 M KHCO3. The reaction product particles, magnesium carbonate, significantly increased in both number density and size on the coupon when the bicarbonate ion activity was increased. During some experiments reaction vessel corrosion also altered the mineral sequestration mechanism. Nickel ions from vessel

  8. Status and potential of terrestrial carbon sequestration in West Virginia

    Treesearch

    Benktesh D. Sharma; Jingxin Wang

    2011-01-01

    Terrestrial ecosystem management offers cost-effective ways to enhance carbon (C) sequestration. This study utilized C stock and C sequestration in forest and agricultural lands, abandoned mine lands, and harvested wood products to estimate the net current annual C sequestration in West Virginia. Several management options within these components were simulated using a...

  9. Terrestrial Carbon Sequestration: Analysis of Terrestrial Carbon Sequestration at Three Contaminated Sites Remediated and Revitalized with Soil Amendments

    EPA Pesticide Factsheets

    This paper provides EPA's analysis of the data to determine carbon sequestration rates at three diverse sites that differ in geography/location, weather, soil properties, type of contamination, and age.

  10. Assessing the impact of changes in climate and CO2 on potential carbon sequestration in agricultural soils

    NASA Astrophysics Data System (ADS)

    Jain, Atul K.; West, Tristram O.; Yang, Xiaojuan; Post, Wilfred M.

    2005-10-01

    Changes in soil management can potentially increase the accumulation of soil organic carbon (SOC), thereby sequestering CO2 from the atmosphere. However, the amount of carbon sequestered in soils can be augmented or lessened due to changes in climate and atmospheric CO2 concentration. The purpose of this paper is to study the influence of climate and CO2 feedbacks on soil carbon sequestration using a terrestrial carbon cycle model. Model simulations consist of observed adoption rates of no-tillage practices on croplands in the U.S. and Canada between 1981-2000. Model results indicate potential sequestration rates between 0.4-0.6 MgC/ha/yr in the Midwestern U.S. with decreasing rates towards the western, dryer regions of the U.S. It is estimated here that changes in climate and CO2 between 1981-2000 could be responsible for an additional soil carbon sequestration of 42 Tg. This is 5% of the soil carbon estimated to be potentially sequestered as the result of conversion to no-tillage in the U.S. and Canada.

  11. Carbon sequestration in wood and paper products

    Treesearch

    Kenneth E. Skog; Geraldine A. Nicholson

    2000-01-01

    Recognition that increasing levels of CO2 in the atmosphere will affect the global climate has spurred research into reduction global carbon emissions and increasing carbon sequestration. The main nonhuman sources of atmospheric CO2 are animal respiration and decay of biomass. However, increases in atmospheric levels are...

  12. Sequestration of Martian CO2 by mineral carbonation

    PubMed Central

    Tomkinson, Tim; Lee, Martin R.; Mark, Darren F.; Smith, Caroline L.

    2013-01-01

    Carbonation is the water-mediated replacement of silicate minerals, such as olivine, by carbonate, and is commonplace in the Earth’s crust. This reaction can remove significant quantities of CO2 from the atmosphere and store it over geological timescales. Here we present the first direct evidence for CO2 sequestration and storage on Mars by mineral carbonation. Electron beam imaging and analysis show that olivine and a plagioclase feldspar-rich mesostasis in the Lafayette meteorite have been replaced by carbonate. The susceptibility of olivine to replacement was enhanced by the presence of smectite veins along which CO2-rich fluids gained access to grain interiors. Lafayette was partially carbonated during the Amazonian, when liquid water was available intermittently and atmospheric CO2 concentrations were close to their present-day values. Earlier in Mars’ history, when the planet had a much thicker atmosphere and an active hydrosphere, carbonation is likely to have been an effective mechanism for sequestration of CO2. PMID:24149494

  13. Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean

    PubMed Central

    Kennedy, Martin J.; Wagner, Thomas

    2011-01-01

    The majority of carbon sequestration at the Earth’s surface occurs in marine continental margin settings within fine-grained sediments whose mineral properties are a function of continental climatic conditions. We report very high mineral surface area (MSA) values of 300 and 570 m2 g in Late Cretaceous black shales from Ocean Drilling Program site 959 of the Deep Ivorian Basin that vary on subcentennial time scales corresponding with abrupt increases from approximately 3 to approximately 18% total organic carbon (TOC). The observed MSA changes with TOC across multiple scales of variability and on a sample-by-sample basis (centimeter scale), provides a rigorous test of a hypothesized influence on organic carbon burial by detrital clay mineral controlled MSA. Changes in TOC also correspond with geochemical and sedimentological evidence for water column anoxia. Bioturbated intervals show a lower organic carbon loading on mineral surface area of 0.1 mg-OC m-2 when compared to 0.4 mg-OC m-2 for laminated and sulfidic sediments. Although either anoxia or mineral surface protection may be capable of producing TOC of < 5%, when brought together they produced the very high TOC (10–18%) apparent in these sediments. This nonlinear response in carbon burial resulted from minor precession-driven changes of continental climate influencing clay mineral properties and runoff from the African continent. This study identifies a previously unrecognized land–sea connection among continental weathering, clay mineral production, and anoxia and a nonlinear effect on marine carbon sequestration during the Coniacian-Santonian Oceanic Anoxic Event 3 in the tropical eastern Atlantic. PMID:21576498

  14. The nuts and bolts of carbon sequestration in forests

    EPA Science Inventory

    The nature of carbon in forests is discussed from the perspective of carbon trading as an incentive for conserving private forest lands. The presentation addresses carbon sequestration in forests and its significance for global warming. Carbon inventories, specifically in the are...

  15. Development and validation of a testing protocol for carbon sequestration using a controlled environment.

    DOT National Transportation Integrated Search

    2012-05-01

    Carbon footprints, carbon credits and associated carbon sequestration techniques are rapidly becoming part : of how environmental mitigation business is conducted, not only in Texas but globally. Terrestrial carbon : sequestration is the general term...

  16. The Impact of Afforestation on Soil Organic Carbon Sequestration on the Qinghai Plateau, China

    PubMed Central

    Shi, Sheng-wei; Han, Peng-fei; Zhang, Ping; Ding, Fan; Ma, Cheng-lin

    2015-01-01

    Afforestation, the conversion of non-forested land into forest, is widespread in China. However, the dynamics of soil organic carbon (SOC) after afforestation are not well understood, especially in plateau climate zones. For a total of 48 shrub- and/or tree-dominated afforestation sites on the Qinghai Plateau, Northwestern China, post-afforestation changes in SOC, total nitrogen (TN), the carbon-to-nitrogen ratio (C/N) and soil bulk density (BD) were investigated to a soil depth of 60 cm using the paired-plots method. SOC and TN accumulated at rates of 138.2 g C m-2 yr-1 and 4.6 g N m-2 yr-1, respectively, in shrub-dominated afforestation sites and at rates of 113.3 g C m-2 yr--1 and 6.7 g N m-2yr-1, respectively, in tree-dominated afforestation sites. Soil BD was slightly reduced in all layers in the shrub-dominated afforestation plots, and significantly reduced in soil layers from 0–40cm in the tree-dominated afforestation plots. The C/N ratio was higher in afforested sites relative to the reference sites. SOC accumulation was closely related to TN accumulation following afforestation, and the inclusion of N-fixing species in tree-dominated afforestation sites additionally increased the soil accumulation capacity for SOC (p < 0.05). Multiple regression models including the age of an afforestation plot and total number of plant species explained 75% of the variation in relative SOC content change at depth of 0–20 cm, in tree-dominated afforestation sites. We conclude that afforestation on the Qinghai Plateau is associated with great capability of SOC and TN sequestration. This study improves our understanding of the mechanisms underlying SOC and TN accumulation in a plateau climate, and provides evidence on the C sequestration potentials associated with forestry projects in China. PMID:25706724

  17. The impact of afforestation on soil organic carbon sequestration on the Qinghai Plateau, China.

    PubMed

    Shi, Sheng-wei; Han, Peng-fei; Zhang, Ping; Ding, Fan; Ma, Cheng-lin

    2015-01-01

    Afforestation, the conversion of non-forested land into forest, is widespread in China. However, the dynamics of soil organic carbon (SOC) after afforestation are not well understood, especially in plateau climate zones. For a total of 48 shrub- and/or tree-dominated afforestation sites on the Qinghai Plateau, Northwestern China, post-afforestation changes in SOC, total nitrogen (TN), the carbon-to-nitrogen ratio (C/N) and soil bulk density (BD) were investigated to a soil depth of 60 cm using the paired-plots method. SOC and TN accumulated at rates of 138.2 g C m(-2) yr(-1) and 4.6 g N m(-2) yr(-1), respectively, in shrub-dominated afforestation sites and at rates of 113.3 g C m(-2) yr(-1) and 6.7 g N m(-2) yr(-1), respectively, in tree-dominated afforestation sites. Soil BD was slightly reduced in all layers in the shrub-dominated afforestation plots, and significantly reduced in soil layers from 0-40cm in the tree-dominated afforestation plots. The C/N ratio was higher in afforested sites relative to the reference sites. SOC accumulation was closely related to TN accumulation following afforestation, and the inclusion of N-fixing species in tree-dominated afforestation sites additionally increased the soil accumulation capacity for SOC (p < 0.05). Multiple regression models including the age of an afforestation plot and total number of plant species explained 75% of the variation in relative SOC content change at depth of 0-20 cm, in tree-dominated afforestation sites. We conclude that afforestation on the Qinghai Plateau is associated with great capability of SOC and TN sequestration. This study improves our understanding of the mechanisms underlying SOC and TN accumulation in a plateau climate, and provides evidence on the C sequestration potentials associated with forestry projects in China.

  18. Effects of Added Organic Matter and Water on Soil Carbon Sequestration in an Arid Region

    PubMed Central

    Tian, Yuan; Jiang, Lianhe; Zhao, Xuechun; Zhu, Linhai; Chen, Xi; Gao, Yong; Wang, Shaoming; Zheng, Yuanrun; Rimmington, Glyn M.

    2013-01-01

    It is generally predicted that global warming will stimulate primary production and lead to more carbon (C) inputs to soil. However, many studies have found that soil C does not necessarily increase with increased plant litter input. Precipitation has increased in arid central Asia, and is predicted to increase more, so we tested the effects of adding fresh organic matter (FOM) and water on soil C sequestration in an arid region in northwest China. The results suggested that added FOM quickly decomposed and had minor effects on the soil organic carbon (SOC) pool to a depth of 30 cm. Both FOM and water addition had significant effects on the soil microbial biomass. The soil microbial biomass increased with added FOM, reached a maximum, and then declined as the FOM decomposed. The FOM had a more significant stimulating effect on microbial biomass with water addition. Under the soil moisture ranges used in this experiment (21.0%–29.7%), FOM input was more important than water addition in the soil C mineralization process. We concluded that short-term FOM input into the belowground soil and water addition do not affect the SOC pool in shrubland in an arid region. PMID:23875022

  19. Efficiency of incentives to jointly increase carbon sequestration and species conservation on a landscape

    PubMed Central

    Nelson, Erik; Polasky, Stephen; Lewis, David J.; Plantinga, Andrew J.; Lonsdorf, Eric; White, Denis; Bael, David; Lawler, Joshua J.

    2008-01-01

    We develop an integrated model to predict private land-use decisions in response to policy incentives designed to increase the provision of carbon sequestration and species conservation across heterogeneous landscapes. Using data from the Willamette Basin, Oregon, we compare the provision of carbon sequestration and species conservation under five simple policies that offer payments for conservation. We evaluate policy performance compared with the maximum feasible combinations of carbon sequestration and species conservation on the landscape for various conservation budgets. None of the conservation payment policies produce increases in carbon sequestration and species conservation that approach the maximum potential gains on the landscape. Our results show that policies aimed at increasing the provision of carbon sequestration do not necessarily increase species conservation and that highly targeted policies do not necessarily do as well as more general policies. PMID:18621703

  20. Soil carbon sequestration and biochar as negative emission technologies.

    PubMed

    Smith, Pete

    2016-03-01

    Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to <2 °C relative to the preindustrial era. Most recent scenarios from integrated assessment models require large-scale deployment of negative emissions technologies (NETs) to reach the 2 °C target. A recent analysis of NETs, including direct air capture, enhanced weathering, bioenergy with carbon capture and storage and afforestation/deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr(-1) ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization. © 2016 John Wiley & Sons Ltd.

  1. Simplified method to assess soil organic matter in landscape and carbon sequestration studies

    NASA Astrophysics Data System (ADS)

    Pallasser, Robert; Minasny, Budiman; McBratney, Alex; de Bruyn, Hank

    2010-05-01

    , relative DTGA responses were quantified in a similar way to the approaches discussed by Plante et. al., (2009) and references therein. TGA-MS analyses were conducted using a TA SDT Q 600 - Thermostar quadrupole, so as to provide a distinctive set of major ions or markers for the two organic matter types which can be indicative of the parent material. Furthermore, since a mass change event from an inorganic component (e.g. dehydroxylation) can contribute to an SOM related response, correlation with MS data needed to be carried out. This method of analysis can be used to reliably fingerprint SOM and should be an enormously useful addition when assessing depositional or agricultural soil environments. Quantifying the relative amounts of SOM can be achieved by coupling with elemental analysis with the added scope of being able to separate (Kasozi et. al., 2009) the contribution from inorganic carbon (carbonates), a common soil constituent. Important applications for the DTGA technique include environmental pedological studies such as evaluating SOM after severe bushfire events or agricultural monitoring particularly during carbon sequestration and changed land management practices. References Kasozi G.N., Nkedi-Kizza P., Harris W.G., 2009. Varied carbon content of organic matter in histosols, spodosols and carbonatic soils. Soil Science Society of America Journal 73, 1313-1318. Laird D.A., Chappell M.A., Martens D.A., Wershaw R.L., Thompson M., 2008 Distinguishing black carbon from biogenic humic substances in soil clay fractions. Geoderma 143, 115-122. Lopez-Capel E., Abbott G.D., Thomas K.M., Manning D.A.C., 2006. Coupling of thermal analysis with quadrupole mass spectrometry and isotope ratio mass spectrometry for simultaneous determination of evolved gases and their carbon isotopic composition. Journal of Analytical and Applied Pyrolysis, 75, 82-89. Plante A.F., Fernandez J.M., Leifeld J., 2009. Application of thermal analysis techniques in soil science. Geoderma 153

  2. Community perceptions of carbon sequestration: insights from California

    NASA Astrophysics Data System (ADS)

    Wong-Parodi, Gabrielle; Ray, Isha

    2009-07-01

    Over the last decade, many energy experts have supported carbon sequestration as a viable technological response to climate change. Given the potential importance of sequestration in US energy policy, what might explain the views of communities that may be directly impacted by the siting of this technology? To answer this question, we conducted focus groups in two communities who were potentially pilot project sites for California's DOE-funded West Coast Regional Partnership (WESTCARB). We find that communities want a voice in defining the risks to be mitigated as well as the justice of the procedures by which the technology is implemented. We argue that a community's sense of empowerment is key to understanding its range of carbon sequestration opinions, where 'empowerment' includes the ability to mitigate community-defined risks of the technology. This sense of empowerment protects the community against the downside risk of government or corporate neglect, a risk that is rarely identified in risk assessments but that should be factored into assessment and communication strategies.

  3. Effects of Biochar Amendment on Soil Properties and Soil Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Zhu, S.

    2015-12-01

    Biochar addition to soils potentially affects various soil properties and soil carbon sequestration, and these effects are dependent on biochars derived from different feedstock materials and pyrolysis processes. The objective of this study was to investigate the effects of amendment of different biochars on soil physical and biological properties as well as soil carbon sequestration. Biochars were produced with dairy manure and woodchip at temperatures of 300, 500, and 700°C, respectively. Each biochar was mixed at 5% (w/w) with a forest soil and the mixture was incubated for 180 days, during which soil physical and biological properties, and soil respiration rates were measured. Results showed that the biochar addition significantly enhanced the formation of soil macroaggregates at the early incubation time. The biochar application significantly reduced soil bulk density, increased the amount of soil organic matter, and stimulated microbial activity and soil respiration rates at the early incubation stage. Biochar applications improved water retention capacity, with stronger effects by biochars produced at higher pyrolysis temperatures. At the same suction, the soil with woodchip biochars possessed higher water content than with the dairy manure biochars. Biochar addition significantly affected the soil physical and biological properties, which resulted in different soil carbon mineralization rates and the amount of soil carbon storage.

  4. Soil carbon sequestration potential of permanent pasture and continuous cropping soils in New Zealand.

    PubMed

    McNally, Sam R; Beare, Mike H; Curtin, Denis; Meenken, Esther D; Kelliher, Francis M; Calvelo Pereira, Roberto; Shen, Qinhua; Baldock, Jeff

    2017-11-01

    Understanding soil organic carbon (SOC) sequestration is important to develop strategies to increase the SOC stock and, thereby, offset some of the increases in atmospheric carbon dioxide. Although the capacity of soils to store SOC in a stable form is commonly attributed to the fine (clay + fine silt) fraction, the properties of the fine fraction that determine the SOC stabilization capacity are poorly known. The aim of this study was to develop an improved model to estimate the SOC stabilization capacity of Allophanic (Andisols) and non-Allophanic topsoils (0-15 cm) and, as a case study, to apply the model to predict the sequestration potential of pastoral soils across New Zealand. A quantile (90th) regression model, based on the specific surface area and extractable aluminium (pyrophosphate) content of soils, provided the best prediction of the upper limit of fine fraction carbon (FFC) (i.e. the stabilization capacity), but with different coefficients for Allophanic and non-Allophanic soils. The carbon (C) saturation deficit was estimated as the difference between the stabilization capacity of individual soils and their current C concentration. For long-term pastures, the mean saturation deficit of Allophanic soils (20.3 mg C g -1 ) was greater than that of non-Allophanic soils (16.3 mg C g -1 ). The saturation deficit of cropped soils was 1.14-1.89 times that of pasture soils. The sequestration potential of pasture soils ranged from 10 t C ha -1 (Ultic soils) to 42 t C ha -1 (Melanic soils). Although meeting the estimated national soil C sequestration potential (124 Mt C) is unrealistic, improved management practices targeted to those soils with the greatest sequestration potential could contribute significantly to off-setting New Zealand's greenhouse gas emissions. As the first national-scale estimate of SOC sequestration potential that encompasses both Allophanic and non-Allophanic soils, this serves as an informative case study for the international

  5. The effect of ocean acidification on carbon storage and sequestration in seagrass beds; a global and UK context.

    PubMed

    Garrard, Samantha L; Beaumont, Nicola J

    2014-09-15

    Ocean acidification will have many negative consequences for marine organisms and ecosystems, leading to a decline in many ecosystem services provided by the marine environment. This study reviews the effect of ocean acidification (OA) on seagrasses, assessing how this may affect their capacity to sequester carbon in the future and providing an economic valuation of these changes. If ocean acidification leads to a significant increase in above- and below-ground biomass, the capacity of seagrass to sequester carbon will be significantly increased. The associated value of this increase in sequestration capacity is approximately £500 and 600 billion globally between 2010 and 2100. A proportionally similar increase in carbon sequestration value was found for the UK. This study highlights one of the few positive stories for ocean acidification and underlines that sustainable management of seagrasses is critical to avoid their continued degradation and loss of carbon sequestration capacity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Quantitative assessment of carbon sequestration reduction induced by disturbances in temperate Eurasian steppe

    NASA Astrophysics Data System (ADS)

    Chen, Yizhao; Ju, Weimin; Groisman, Pavel; Li, Jianlong; Propastin, Pavel; Xu, Xia; Zhou, Wei; Ruan, Honghua

    2017-11-01

    The temperate Eurasian steppe (TES) is a region where various environmental, social, and economic stresses converge. Multiple types of disturbance exist widely across the landscape, and heavily influence carbon cycling in this region. However, a current quantitative assessment of the impact of disturbances on carbon sequestration is largely lacking. In this study, we combined the boreal ecosystem productivity simulator (BEPS), the Shiyomi grazing model, and the global fire model (Glob-FIRM) to investigate the impact of the two major types of disturbance in the TES (i.e. domestic grazing and fire) on regional carbon sequestration. Model performance was validated using satellite data and field observations. Model outputs indicate that disturbance has a significant impact on carbon sequestration at a regional scale. The annual total carbon lost due to disturbances was 7.8 TgC yr-1, accounting for 14.2% of the total net ecosystem productivity (NEP). Domestic grazing plays the dominant role in terrestrial carbon consumption, accounting for 95% of the total carbon lost from the two disturbances. Carbon losses from both disturbances significantly increased from 1999 to 2008 (R 2 = 0.82, P < 0.001 for grazing, R 2 = 0.51, P < 0.05 for fire). Heavy domestic grazing in relatively barren grasslands substantially reduced carbon sequestration, particularly in the grasslands of Turkmenistan, Uzbekistan, and the far southwest of Inner Mongolia. This spatially-explicit information has potential implications for sustainable management of carbon sequestration in the vast grassland ecosystems.

  7. Improved grazing management may increase soil carbon sequestration in temperate steppe

    NASA Astrophysics Data System (ADS)

    Chen, Wenqing; Huang, Ding; Liu, Nan; Zhang, Yingjun; Badgery, Warwick B.; Wang, Xiaoya; Shen, Yue

    2015-07-01

    Different grazing strategies impact grassland plant production and may also regulate the soil carbon formation. For a site in semiarid temperate steppe, we studied the effect of combinations of rest, high and moderate grazing pressure over three stages of the growing season, on the process involved in soil carbon sequestration. Results show that constant moderate grazing (MMM) exhibited the highest root production and turnover accumulating the most soil carbon. While deferred grazing (RHM and RMH) sequestered less soil carbon compared to MMM, they showed higher standing root mass, maintained a more desirable pasture composition, and had better ability to retain soil N. Constant high grazing pressure (HHH) caused diminished above- and belowground plant production, more soil N losses and an unfavorable microbial environment and had reduced carbon input. Reducing grazing pressure in the last grazing stage (HHM) still had a negative impact on soil carbon. Regression analyses show that adjusting stocking rate to ~5SE/ha with ~40% vegetation utilization rate can get the most carbon accrual. Overall, the soil carbon sequestration in the temperate grassland is affected by the grazing regime that is applied, and grazing can be altered to improve soil carbon sequestration in the temperate steppe.

  8. Improved grazing management may increase soil carbon sequestration in temperate steppe.

    PubMed

    Chen, Wenqing; Huang, Ding; Liu, Nan; Zhang, Yingjun; Badgery, Warwick B; Wang, Xiaoya; Shen, Yue

    2015-07-03

    Different grazing strategies impact grassland plant production and may also regulate the soil carbon formation. For a site in semiarid temperate steppe, we studied the effect of combinations of rest, high and moderate grazing pressure over three stages of the growing season, on the process involved in soil carbon sequestration. Results show that constant moderate grazing (MMM) exhibited the highest root production and turnover accumulating the most soil carbon. While deferred grazing (RHM and RMH) sequestered less soil carbon compared to MMM, they showed higher standing root mass, maintained a more desirable pasture composition, and had better ability to retain soil N. Constant high grazing pressure (HHH) caused diminished above- and belowground plant production, more soil N losses and an unfavorable microbial environment and had reduced carbon input. Reducing grazing pressure in the last grazing stage (HHM) still had a negative impact on soil carbon. Regression analyses show that adjusting stocking rate to ~5SE/ha with ~40% vegetation utilization rate can get the most carbon accrual. Overall, the soil carbon sequestration in the temperate grassland is affected by the grazing regime that is applied, and grazing can be altered to improve soil carbon sequestration in the temperate steppe.

  9. Sequestration of Soil Carbon as Secondary Carbonates (Invited)

    NASA Astrophysics Data System (ADS)

    Lal, R.

    2013-12-01

    Rattan Lal Carbon Management and Sequestration Center The Ohio State University Columbus, OH 43210 USA Abstract World soils, the major carbon (C) reservoir among the terrestrial pools, contain soil organic C (SOC) and soil inorganic C (SIC). The SIC pool is predominant in soils of arid and semi-arid regions. These regions cover a land area of about 4.9x109 ha. The SIC pool in soils containing calcic and petrocalcic horizons is estimated at about 695-748 Pg (Pg = 1015 g = 1 gigaton) to 1-m depth. There are two types of carbonates. Lithogenic or primary carbonates are formed from weathering of carbonaceous rocks. Pedogenic or secondary carbonates are formed by dissolution of CO2 in the soil air to form carbonic acid and precipitation as carbonates of Ca+2 or Mg+2. It is the availability of Ca+2 or Mg+2 from outside the ecosystem that is essential to sequester atmospheric CO2. Common among outside sources of Ca+2 or Mg+2 are irrigation water, aerial deposition, sea breeze, fertilizers, manure and other amendments. The decomposition of SOC and root respiration may increase the partial pressure of CO2 in the soil air and lead to the formation of HCO_3^- upon dissolution in H20. Precipitation of secondary carbonates may result from decreased partial pressure of CO2 in the sub-soil, increased concentration of Ca+2, Mg+2 and HCO_3^- in soil solution, and decreased soil moisture content by evapotranspiration. Transport of bicarbonates in irrigated soils and subsequent precipitation above the ground water (calcrete), activity of termites and other soil fauna, and management of urban soils lead to formation of secondary carbonates. On a geologic time scale, weathering of silicate minerals and transport of the by-products into the ocean is a geological process of sequestration of atmospheric CO2. Factors affecting formation of secondary carbonates include land use, and soil and crop management including application of biosolids, irrigation and the quality of irrigation water

  10. Near-term deployment of carbon capture and sequestration from biorefineries in the United States

    PubMed Central

    Johnson, Nils; McCoy, Sean T.; Turner, Peter A.; Mach, Katharine J.

    2018-01-01

    Capture and permanent geologic sequestration of biogenic CO2 emissions may provide critical flexibility in ambitious climate change mitigation. However, most bioenergy with carbon capture and sequestration (BECCS) technologies are technically immature or commercially unavailable. Here, we evaluate low-cost, commercially ready CO2 capture opportunities for existing ethanol biorefineries in the United States. The analysis combines process engineering, spatial optimization, and lifecycle assessment to consider the technical, economic, and institutional feasibility of near-term carbon capture and sequestration (CCS). Our modeling framework evaluates least cost source–sink relationships and aggregation opportunities for pipeline transport, which can cost-effectively transport small CO2 volumes to suitable sequestration sites; 216 existing US biorefineries emit 45 Mt CO2 annually from fermentation, of which 60% could be captured and compressed for pipeline transport for under $25/tCO2. A sequestration credit, analogous to existing CCS tax credits, of $60/tCO2 could incent 30 Mt of sequestration and 6,900 km of pipeline infrastructure across the United States. Similarly, a carbon abatement credit, analogous to existing tradeable CO2 credits, of $90/tCO2 can incent 38 Mt of abatement. Aggregation of CO2 sources enables cost-effective long-distance pipeline transport to distant sequestration sites. Financial incentives under the low-carbon fuel standard in California and recent revisions to existing federal tax credits suggest a substantial near-term opportunity to permanently sequester biogenic CO2. This financial opportunity could catalyze the growth of carbon capture, transport, and sequestration; improve the lifecycle impacts of conventional biofuels; support development of carbon-negative fuels; and help fulfill the mandates of low-carbon fuel policies across the United States. PMID:29686063

  11. The interconnectedness between landowner knowledge, value, belief, attitude, and willingness to act: policy implications for carbon sequestration on private rangelands.

    PubMed

    Cook, Seth L; Ma, Zhao

    2014-02-15

    Rangelands can be managed to increase soil carbon and help mitigate emissions of carbon dioxide. This study assessed Utah rangeland owner's environmental values, beliefs about climate change, and awareness of and attitudes towards carbon sequestration, as well as their perceptions of potential policy strategies for promoting carbon sequestration on private rangelands. Data were collected from semi-structured interviews and a statewide survey of Utah rangeland owners, and were analyzed using descriptive and bivariate statistics. Over two-thirds of respondents reported some level of awareness of carbon sequestration and a generally positive attitude towards it, contrasting to their lack of interest in participating in a relevant program in the future. Having a positive attitude was statistically significantly associated with having more "biocentric" environmental values, believing the climate had been changing over the past 30 years, and having a stronger belief of human activities influencing the climate. Respondents valued the potential ecological benefits of carbon sequestration more than the potential financial or climate change benefits. Additionally, respondents indicated a preference for educational approaches over financial incentives. They also preferred to work with a private agricultural entity over a non-profit or government entity on improving land management practices to sequester carbon. These results suggest potential challenges for developing technically sound and socially acceptable policies and programs for promoting carbon sequestration on private rangelands. Potential strategies for overcoming these challenges include emphasizing the ecological benefits associated with sequestering carbon to appeal to landowners with ecologically oriented management objectives, enhancing the cooperation between private agricultural organizations and government agencies, and funneling resources for promoting carbon sequestration into existing land management and

  12. Payments for carbon sequestration to alleviate development pressure in a rapidly urbanizing region

    USGS Publications Warehouse

    Smith, Jordan W.; Dorning, Monica; Shoemaker, Douglas A.; Méley, Andréanne; Dupey, Lauren; Meentemeyer, Ross K.

    2017-01-01

    The purpose of this study was to determine individuals' willingness to enroll in voluntary payments for carbon sequestration programs through the use of a discrete choice experiment delivered to forest owners living in the rapidly urbanizing region surrounding Charlotte, North Carolina. We examined forest owners' willingness to enroll in payments for carbon sequestration policies under different levels of financial incentives (annual revenue), different contract lengths, and different program administrators (e.g., private companies versus a state or federal agency). We also examined the influence forest owners' sense of place had on their willingness to enroll in hypothetical programs. Our results showed a high level of ambivalence toward participating in payments for carbon sequestration programs. However, both financial incentives and contract lengths significantly influenced forest owners' intent to enroll. Neither program administration nor forest owners' sense of place influenced intent to enroll. Although our analyses indicated that payments from carbon sequestration programs are not currently competitive with the monetary returns expected from timber harvest or property sales, certain forest owners might see payments for carbon sequestration programs as a viable option for offsetting increasing tax costs as development encroaches and property values rise.

  13. Terrestrial C sequestration at elevated CO2 and temperature: the role of dissolved organic N loss

    USGS Publications Warehouse

    Rastetter, Edward B.; Perakis, Steven S.; Shaver, Gaius R.; Agren, Goran I.

    2005-01-01

    We used a simple model of carbon–nitrogen (C–N) interactions in terrestrial ecosystems to examine the responses to elevated CO2 and to elevated CO2 plus warming in ecosystems that had the same total nitrogen loss but that differed in the ratio of dissolved organic nitrogen (DON) to dissolved inorganic nitrogen (DIN) loss. We postulate that DIN losses can be curtailed by higher N demand in response to elevated CO2, but that DON losses cannot. We also examined simulations in which DON losses were held constant, were proportional to the amount of soil organic matter, were proportional to the soil C:N ratio, or were proportional to the rate of decomposition. We found that the mode of N loss made little difference to the short‐term (<60 years) rate of carbon sequestration by the ecosystem, but high DON losses resulted in much lower carbon sequestration in the long term than did low DON losses. In the short term, C sequestration was fueled by an internal redistribution of N from soils to vegetation and by increases in the C:N ratio of soils and vegetation. This sequestration was about three times larger with elevated CO2 and warming than with elevated CO2 alone. After year 60, C sequestration was fueled by a net accumulation of N in the ecosystem, and the rate of sequestration was about the same with elevated CO2 and warming as with elevated CO2alone. With high DON losses, the ecosystem either sequestered C slowly after year 60 (when DON losses were constant or proportional to soil organic matter) or lost C (when DON losses were proportional to the soil C:N ratio or to decomposition). We conclude that changes in long‐term C sequestration depend not only on the magnitude of N losses, but also on the form of those losses.

  14. 75 FR 33613 - Notice of the Carbon Sequestration-Geothermal Energy-Science Joint Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-14

    ... Sequestration--Geothermal Energy--Science Joint Workshop AGENCY: Office of Energy Efficiency and Renewable Energy, DOE. ACTION: Notice of the Carbon Sequestration--Geothermal Energy--Science Joint Workshop... Carbon Storage and Geothermal Energy, June 15-16, 2010. Experts from industry, academia, national labs...

  15. Near-term deployment of carbon capture and sequestration from biorefineries in the United States.

    PubMed

    Sanchez, Daniel L; Johnson, Nils; McCoy, Sean T; Turner, Peter A; Mach, Katharine J

    2018-05-08

    Capture and permanent geologic sequestration of biogenic CO 2 emissions may provide critical flexibility in ambitious climate change mitigation. However, most bioenergy with carbon capture and sequestration (BECCS) technologies are technically immature or commercially unavailable. Here, we evaluate low-cost, commercially ready CO 2 capture opportunities for existing ethanol biorefineries in the United States. The analysis combines process engineering, spatial optimization, and lifecycle assessment to consider the technical, economic, and institutional feasibility of near-term carbon capture and sequestration (CCS). Our modeling framework evaluates least cost source-sink relationships and aggregation opportunities for pipeline transport, which can cost-effectively transport small CO 2 volumes to suitable sequestration sites; 216 existing US biorefineries emit 45 Mt CO 2 annually from fermentation, of which 60% could be captured and compressed for pipeline transport for under $25/tCO 2 A sequestration credit, analogous to existing CCS tax credits, of $60/tCO 2 could incent 30 Mt of sequestration and 6,900 km of pipeline infrastructure across the United States. Similarly, a carbon abatement credit, analogous to existing tradeable CO 2 credits, of $90/tCO 2 can incent 38 Mt of abatement. Aggregation of CO 2 sources enables cost-effective long-distance pipeline transport to distant sequestration sites. Financial incentives under the low-carbon fuel standard in California and recent revisions to existing federal tax credits suggest a substantial near-term opportunity to permanently sequester biogenic CO 2 This financial opportunity could catalyze the growth of carbon capture, transport, and sequestration; improve the lifecycle impacts of conventional biofuels; support development of carbon-negative fuels; and help fulfill the mandates of low-carbon fuel policies across the United States. Copyright © 2018 the Author(s). Published by PNAS.

  16. Enhanced top soil carbon stocks under organic farming.

    PubMed

    Gattinger, Andreas; Muller, Adrian; Haeni, Matthias; Skinner, Colin; Fliessbach, Andreas; Buchmann, Nina; Mäder, Paul; Stolze, Matthias; Smith, Pete; Scialabba, Nadia El-Hage; Niggli, Urs

    2012-10-30

    It has been suggested that conversion to organic farming contributes to soil carbon sequestration, but until now a comprehensive quantitative assessment has been lacking. Therefore, datasets from 74 studies from pairwise comparisons of organic vs. nonorganic farming systems were subjected to metaanalysis to identify differences in soil organic carbon (SOC). We found significant differences and higher values for organically farmed soils of 0.18 ± 0.06% points (mean ± 95% confidence interval) for SOC concentrations, 3.50 ± 1.08 Mg C ha(-1) for stocks, and 0.45 ± 0.21 Mg C ha(-1) y(-1) for sequestration rates compared with nonorganic management. Metaregression did not deliver clear results on drivers, but differences in external C inputs and crop rotations seemed important. Restricting the analysis to zero net input organic systems and retaining only the datasets with highest data quality (measured soil bulk densities and external C and N inputs), the mean difference in SOC stocks between the farming systems was still significant (1.98 ± 1.50 Mg C ha(-1)), whereas the difference in sequestration rates became insignificant (0.07 ± 0.08 Mg C ha(-1) y(-1)). Analyzing zero net input systems for all data without this quality requirement revealed significant, positive differences in SOC concentrations and stocks (0.13 ± 0.09% points and 2.16 ± 1.65 Mg C ha(-1), respectively) and insignificant differences for sequestration rates (0.27 ± 0.37 Mg C ha(-1) y(-1)). The data mainly cover top soil and temperate zones, whereas only few data from tropical regions and subsoil horizons exist. Summarizing, this study shows that organic farming has the potential to accumulate soil carbon.

  17. Enhanced top soil carbon stocks under organic farming

    PubMed Central

    Gattinger, Andreas; Muller, Adrian; Haeni, Matthias; Skinner, Colin; Fliessbach, Andreas; Buchmann, Nina; Mäder, Paul; Stolze, Matthias; Smith, Pete; Scialabba, Nadia El-Hage; Niggli, Urs

    2012-01-01

    It has been suggested that conversion to organic farming contributes to soil carbon sequestration, but until now a comprehensive quantitative assessment has been lacking. Therefore, datasets from 74 studies from pairwise comparisons of organic vs. nonorganic farming systems were subjected to metaanalysis to identify differences in soil organic carbon (SOC). We found significant differences and higher values for organically farmed soils of 0.18 ± 0.06% points (mean ± 95% confidence interval) for SOC concentrations, 3.50 ± 1.08 Mg C ha−1 for stocks, and 0.45 ± 0.21 Mg C ha−1 y−1 for sequestration rates compared with nonorganic management. Metaregression did not deliver clear results on drivers, but differences in external C inputs and crop rotations seemed important. Restricting the analysis to zero net input organic systems and retaining only the datasets with highest data quality (measured soil bulk densities and external C and N inputs), the mean difference in SOC stocks between the farming systems was still significant (1.98 ± 1.50 Mg C ha−1), whereas the difference in sequestration rates became insignificant (0.07 ± 0.08 Mg C ha−1 y−1). Analyzing zero net input systems for all data without this quality requirement revealed significant, positive differences in SOC concentrations and stocks (0.13 ± 0.09% points and 2.16 ± 1.65 Mg C ha−1, respectively) and insignificant differences for sequestration rates (0.27 ± 0.37 Mg C ha−1 y−1). The data mainly cover top soil and temperate zones, whereas only few data from tropical regions and subsoil horizons exist. Summarizing, this study shows that organic farming has the potential to accumulate soil carbon. PMID:23071312

  18. Soil carbon sequestration and forest management: challenges and opportunities

    Treesearch

    Coeli M. Hoover

    2003-01-01

    The subject of the effects of forest management activities on soil carbon is a difficult one to address, but ongoing discussions of carbon sequestration as an emissions offset and the emergence of carbon-credit-trading systems necessitate that we broaden and deepen our understanding of the response of forest-soil carbon pools to forest management. There have been...

  19. Development of a Carbon Sequestration Visualization Tool using Google Earth Pro

    NASA Astrophysics Data System (ADS)

    Keating, G. N.; Greene, M. K.

    2008-12-01

    The Big Sky Carbon Sequestration Partnership seeks to prepare organizations throughout the western United States for a possible carbon-constrained economy. Through the development of CO2 capture and subsurface sequestration technology, the Partnership is working to enable the region to cleanly utilize its abundant fossil energy resources. The intent of the Los Alamos National Laboratory Big Sky Visualization tool is to allow geochemists, geologists, geophysicists, project managers, and other project members to view, identify, and query the data collected from CO2 injection tests using a single data source platform, a mission to which Google Earth Pro is uniquely and ideally suited . The visualization framework enables fusion of data from disparate sources and allows investigators to fully explore spatial and temporal trends in CO2 fate and transport within a reservoir. 3-D subsurface wells are projected above ground in Google Earth as the KML anchor points for the presentation of various surface subsurface data. This solution is the most integrative and cost-effective possible for the variety of users in the Big Sky community.

  20. Measurement guidelines for the sequestration of forest carbon

    Treesearch

    Timothy R.H. Pearson; Sandra L. Brown; Richard A. Birdsey

    2007-01-01

    Measurement guidelines for forest carbon sequestration were developed to support reporting by public and private entities to greenhouse gas registries. These guidelines are intended to be a reference for designing a forest carbon inventory and monitoring system by professionals with a knowledge of sampling, statistical estimation, and forest measurements. This report...

  1. The NatCarb geoportal: Linking distributed data from the Carbon Sequestration Regional Partnerships

    USGS Publications Warehouse

    Carr, T.R.; Rich, P.M.; Bartley, J.D.

    2007-01-01

    The Department of Energy (DOE) Carbon Sequestration Regional Partnerships are generating the data for a "carbon atlas" of key geospatial data (carbon sources, potential sinks, etc.) required for rapid implementation of carbon sequestration on a broad scale. The NATional CARBon Sequestration Database and Geographic Information System (NatCarb) provides Web-based, nation-wide data access. Distributed computing solutions link partnerships and other publicly accessible repositories of geological, geophysical, natural resource, infrastructure, and environmental data. Data are maintained and enhanced locally, but assembled and accessed through a single geoportal. NatCarb, as a first attempt at a national carbon cyberinfrastructure (NCCI), assembles the data required to address technical and policy challenges of carbon capture and storage. We present a path forward to design and implement a comprehensive and successful NCCI. ?? 2007 The Haworth Press, Inc. All rights reserved.

  2. [Assessment on the availability of nitrogen fertilization in improving carbon sequestration potential of China's cropland soil].

    PubMed

    Lu, Fei; Wang, Xiao-Ke; Han, Bing; Ouyang, Zhi-Yun; Duan, Xiao-Nan; Zheng, Hua

    2008-10-01

    With reference to the situation of nitrogen fertilization in 2003 and the recommendations from agricultural experts on fertilization to different crops, two scenarios, namely, 'current situation' and 'fertilization as recommended', were set for estimating the current and potential carbon sequestration of China's cropland soil under nitrogen fertilization. After collecting and analyzing the typical data from the long-term agricultural experiment stations all over China, and based on the recent studies of soil organic matter and nutrient dynamics, we plotted China into four agricultural regions, and estimated the carbon sequestration rate and potential of cropland soil under the two scenarios in each province of China. Meanwhile, with the data concerning fossil fuel consumption for fertilizer production and nitrogen fertilization, the greenhouse gas leakage caused by nitrogen fertilizer production and application was estimated with the help of the parameters given by domestic studies and IPCC. We further proposed that the available carbon sequestration potential of cropland soil could be taken as the criterion of the validity and availability of carbon sequestration measures. The results showed that the application of synthetic nitrogen fertilizer could bring about a carbon sequestration potential of 21.9 Tg C x a(-1) in current situation, and 30.2 Tg C x a(-1) with fertilization as recommended. However, under the two scenarios, the greenhouse gas leakage caused by fertilizer production and application would reach 72.9 Tg C x a(-1) and 91.4 Tg C x a(-1), and thus, the actual available carbon sequestration potential would be -51.0 Tg C x a(-1) and -61.1 Tg C x a(-1), respectively. The situation was even worse under the 'fertilization as recommended' scenario, because the increase in the amount of nitrogen fertilization would lead to 10. 1 Tg C x a(-1) or more net greenhouse gas emission. All these results indicated that the application of synthetic nitrogen fertilizer

  3. New cost estimates for carbon sequestration through afforestation in the United States

    Treesearch

    Anne Sofie Elburg Nielsen; Andrew J. Plantinga; Ralph J. Alig

    2014-01-01

    This report provides new cost estimates for carbon sequestration through afforestation in the United States. We extend existing studies of carbon sequestration costs in several important ways, while ensuring the transparency of our approach. We clearly identify all components of our cost estimates so that other researchers can reconstruct our results as well as use our...

  4. Carbon sequestration in the U.S. forest sector from 1990 to 2010

    Treesearch

    Peter B. Woodbury; James E. Smith; Linda S. Heath

    2007-01-01

    Forest inventory data supplemented with data from intensive research sites and models were used to estimate carbon stocks and sequestration rates in U.S. forests, including effects of land use change. Data on the production of wood products and emission from decomposition were used to estimate carbon stocks and sequestration rates in wood products and landfills. From...

  5. Assessing ocean alkalinity for carbon sequestration

    NASA Astrophysics Data System (ADS)

    Renforth, Phil; Henderson, Gideon

    2017-09-01

    Over the coming century humanity may need to find reservoirs to store several trillions of tons of carbon dioxide (CO2) emitted from fossil fuel combustion, which would otherwise cause dangerous climate change if it were left in the atmosphere. Carbon storage in the ocean as bicarbonate ions (by increasing ocean alkalinity) has received very little attention. Yet recent work suggests sufficient capacity to sequester copious quantities of CO2. It may be possible to sequester hundreds of billions to trillions of tons of C without surpassing postindustrial average carbonate saturation states in the surface ocean. When globally distributed, the impact of elevated alkalinity is potentially small and may help ameliorate the effects of ocean acidification. However, the local impact around addition sites may be more acute but is specific to the mineral and technology. The alkalinity of the ocean increases naturally because of rock weathering in which >1.5 mol of carbon are removed from the atmosphere for every mole of magnesium or calcium dissolved from silicate minerals (e.g., wollastonite, olivine, and anorthite) and 0.5 mol for carbonate minerals (e.g., calcite and dolomite). These processes are responsible for naturally sequestering 0.5 billion tons of CO2 per year. Alkalinity is reduced in the ocean through carbonate mineral precipitation, which is almost exclusively formed from biological activity. Most of the previous work on the biological response to changes in carbonate chemistry have focused on acidifying conditions. More research is required to understand carbonate precipitation at elevated alkalinity to constrain the longevity of carbon storage. A range of technologies have been proposed to increase ocean alkalinity (accelerated weathering of limestone, enhanced weathering, electrochemical promoted weathering, and ocean liming), the cost of which may be comparable to alternative carbon sequestration proposals (e.g., $20-100 tCO2-1). There are still many

  6. Biogeologic Carbon Sequestration - a Cost-Effective Proposal

    NASA Astrophysics Data System (ADS)

    Shaw, G. H.; Kuhns, R.

    2009-05-01

    Carbon sequestration has been proposed as a strategy for reducing the impact of carbon dioxide emissions from burning of fossil fuels. There are two main routes: 1) capture CO2 emissions from power plants or other large point sources followed by some form of "burial/sequestration", and 2) extraction of CO2 from the ambient atmosphere (involving substantial concentration relative to atmospheric levels) also followed by burial/sequestration. In either case the goal is to achieve significant long-term isolation of CO2 at an economically sustainable price, perhaps measured by some "market price" for CO2, such as the European carbon futures market, where the price is now (2/3/09) about 14-15/tonne of CO2. The second approach, removal of CO2 from the atmosphere, has the potential benefit of reversing the previous buildup of atmospheric CO2, and perhaps even providing a means to "adjust" terrestrial climate by regulating atmospheric CO2 concentrations. For the present, ideas of planetary "geo-engineering" are not as popular as reducing the impact of continued CO2 emissions. In fact, the energy and capital costs of extraction from a dilute atmosphere appear to make this approach uneconomical. Proposals to fertilize the open ocean suffer from concerns about long term ecosystem effects, to say nothing of a lack of verifiability. There is, however, an approach using biological systems that can not only extract significant amounts of CO2, but can do so cost-effectively. Lakes are known in which primary productivity approaches or exceeds 1gm C/cm2-yr. This equates to removal of 35,000 tonnes of CO2 per km2 per year, with a "market value" of about 500,000/yr. Such productivity only occurs under highly eutrophic conditions, and presumably requires significant nutrient additions. As such it would be unthinkable to pursue this technique on a large scale in extant lakes. If, however, it is possible to produce one or more large artificial lakes under acceptable conditions it is

  7. Physical and Biological Regulation of Carbon Sequestration in Tidal Marshes

    NASA Astrophysics Data System (ADS)

    Morris, J. T.; Callaway, J.

    2017-12-01

    The rate of carbon sequestration in tidal marshes is regulated by complex feedbacks among biological and physical factors including the rate of sea-level rise (SLR), biomass production, tidal amplitude, and the concentration of suspended sediment. We used the Marsh Equilibrium Model (MEM) to explore the effects on C-sequestration across a wide range of permutations of these variables. C-sequestration increased with the rate of SLR to a maximum, then down to a vanishing point at higher SLR when marshes convert to mudflats. An acceleration in SLR will increase C-sequestration in marshes that can keep pace, but at high rates of SLR this is only possible with high biomass and suspended sediment concentrations. We found that there were no feasible solutions at SLR >13 mm/yr for permutations of variables that characterize the great majority of tidal marshes, i.e., the equilibrium elevation exists below the lower vertical limit for survival of marsh vegetation. The rate of SLR resulting in maximum C-sequestration varies with biomass production. C-sequestration rates at SLR=1 mm/yr averaged only 36 g C m-2 yr-1, but at the highest maximum biomass tested (5000 g/m2) the mean C-sequestration reached 399 g C m-2 yr-1 at SLR = 14 mm/yr. The empirical estimate of C-sequestration in a core dated 50-years overestimates the theoretical long-term rate by 34% for realistic values of decomposition rate and belowground production. The overestimate of the empirical method arises from the live and decaying biomass contained within the carbon inventory above the marker horizon, and overestimates were even greater for shorter surface cores.

  8. U.S. Department of Energy's Regional Carbon Sequestration Partnership Program: Overview

    USGS Publications Warehouse

    Litynski, J.; Plasynski, S.; Spangler, L.; Finley, R.; Steadman, E.; Ball, D.; Nemeth, K.J.; McPherson, B.; Myer, L.

    2009-01-01

    The U.S. Department of Energy (DOE) has formed a nationwide network of seven regional partnerships to help determine the best approaches for capturing and permanently storing gases that can contribute to global climate change. The Regional Carbon Sequestration Partnerships (RCSPs) are tasked with determining the most suitable technologies, regulations, and infrastructure for carbon capture, transport, and storage in their areas of the country and parts of Canada. The seven partnerships include more than 350 state agencies, universities, national laboratories, private companies, and environmental organizations, spanning 42 states, two Indian nations, and four Canadian provinces. The Regional Partnerships initiative is being implemented in three phases: ???Characterization Phase (2003-2005): The objective was to collect data on CO2 sources and sinks and develop the human capital to support and enable future carbon sequestration field tests and deployments. The completion of this Phase was marked by release of the Carbon Sequestration Atlas of the United States and Canada-Version 1 which included a common methodology for capacity assessment and reported over 3,000GT of storage capacity in saline formations, depleted oil and gas fields, and coal seams.???Validation Phase (2005-2009): The objective is to plan and implement small-scale (<1??million tons CO2) field testing of storage technologies in areas determined to be favorable for carbon storage. The partnerships are currently conducting over 20 small-scale geologic field tests and 11 terrestrial field tests.???Development Phase (2008-2018): The primary objective is the development of large-scale (>1??million tons of CO2) Carbon Capture and Storage (CCS) projects, which will demonstrate that large volumes of CO2 can be injected safely, permanently, and economically into geologic formations representative of large storage capacity. Even though the RCSP Program is being implemented in three phases, it should be viewed

  9. Carbon Sequestration: is Science Leading Policy or Will Policy Direct Science?

    NASA Astrophysics Data System (ADS)

    Anderson, A. K.

    2007-12-01

    Climate-related policy is in its infancy on capital hill, as policy makers only recently started to converge on the acceptance that climate change is a credible, scientific reality. Until recently much of the debate and policy decisions have been related to whether or not climate change, or more specifically global warming, is occurring. The climate debate has shifted from discussing the science behind climate change to addressing how we can reduce carbon dioxide emissions. In the 110th Congress, policy makers have come to realize and accept that we, as a nation, are one of the largest global emitters of carbon dioxide to the atmosphere. Geologic carbon sequestration has gained significant congressional attention and is considered to be one of the most promising carbon mitigation tools. In the present Congress, scientific experts have testified before numerous committees about the various caveats of geologic carbon sequestration. As a result, policy has been and is currently being drafted to address the challenges facing large-scale commercial demonstration of geologic sequestration facilities. Policy has been passed through both the House and Senate that is aimed at increasing funding for basic and advanced research, development, and demonstration of small- to large-scale carbon dioxide injection projects. This legislation is only the beginning of a series of legislation that is under development. In the next year, policy will be introduced that will likely address issues related to pore space and mineral rights ownership, regulatory framework for carbon dioxide transport and injection, long-term injection site monitoring protocol, personal and environmental safety, and liability issues, to name a few. Policy is not limited to the technical aspects of carbon capture, transport, and storage, but is also being developed to help stimulate a market that will be operating under climate constraints. Financial incentives have been proposed that will assist industrial

  10. Towards Providing Solutions to the Air Quality Crisis in the Mexico City Metropolitan Area: Carbon Sequestration by Succulent Species in Green Roofs.

    PubMed

    Collazo-Ortega, Margarita; Rosas, Ulises; Reyes-Santiago, Jerónimo

    2017-03-31

    In the first months of 2016, the Mexico City Metropolitan Area experienced the worst air pollution crisis in the last decade, prompting drastic short-term solutions by the Mexico City Government and neighboring States. In order to help further the search for long-term sustainable solutions, we felt obliged to immediately release the results of our research regarding the monitoring of carbon sequestration by green roofs. Large-scale naturation, such as the implementation of green roofs, provides a way to partially mitigate the increased carbon dioxide output in urban areas. Here, we quantified the carbon sequestration capabilities of two ornamental succulent plant species, Sedum dendroideum and Sedum rubrotinctum, which require low maintenance, and little or no irrigation. To obtain a detailed picture of these plants' carbon sequestration capabilities, we measured carbon uptake on the Sedum plants by quantifying carbon dioxide exchange and fixation as organic acids, during the day and across the year, on a green roof located in Southern Mexico City. The species displayed their typical CAM photosynthetic metabolism. Moreover, our quantification allowed us to conservatively estimate that a newly planted green roof of Sedum sequesters approximately 180,000,000 ppm of carbon dioxide per year in a green roof of 100 square meters in the short term. The patterns of CAM and carbon dioxide sequestration were highly robust to the fluctuations of temperature and precipitation between seasons, and therefore we speculate that carbon sequestration would be comparable in any given year of a newly planted green roof. Older green roof would require regular trimming to mantain their carbon sink properties, but their carbon sequestration capabilities remain to be quantified. Nevertheless, we propose that Sedum green roofs can be part of the long-term solutions to mitigate the air pollution crisis in the Mexico City Metropolitan area, and other "megacities" with marked seasonal drought.

  11. Carbon sequestration index as a determinant for climate change mitigation: Case study of Bintan Island

    NASA Astrophysics Data System (ADS)

    Wahyudi, A.'an J.; Afdal; Prayudha, Bayu; Dharmawan, I. W. E.; Irawan, Andri; Abimanyu, Haznan; Meirinawati, Hanny; Surinati, Dewi; Syukri, Agus F.; Yuliana, Chitra I.; Yuniati, Putri I.

    2018-02-01

    The increase of the anthropogenic carbon dioxide (CO2) affects the global carbon cycle altering the atmospheric system and initiates the climate changes. There are two ways to mitigate these changes, by maintaining the greenhouse gasses below the carbon budget and by conserving the marine and terrestrial vegetation for carbon sequestration. These two strategies become variable to the carbon sequestration index (CSI) that represents the potential of a region in carbon sequestration, according to its natural capacity. As a study case, we conducted carbon sequestration research in Bintan region (Bintan Island and its surrounding), Riau Archipelago province. This research was aimed to assess the CSI and its possibility for climate change mitigation. We observed carbon sequestration of seagrass meadows and mangrove, greenhouse gas (CO2) emission (correlated to population growth, the increase of vehicles), and CSI. Bintan region has 125,849.9 ha of vegetation area and 14,879.6 ha of terrestrial and marine vegetation area, respectively. Both vegetation areas are able to sequester 0.262 Tg C yr-1 in total and marine vegetation contributes about 77.1%. Total CO2 emission in Bintan region is up to 0.273 Tg C yr-1, produced by transportation, industry and land use sectors. Therefore, CSI of the Bintan region is 0.98, which is above the global average (i.e. 0.58). This value demonstrates that the degree of sequestration is comparable to the total carbon emission. This result suggests that Bintan’s vegetation has high potential for reducing greenhouse gas effects.

  12. Assessing net carbon sequestration on urban and community forests of northern New England, USA

    Treesearch

    Daolan Zheng; Mark J. Ducey; Linda S. Heath

    2013-01-01

    Urban and community forests play an important role in the overall carbon budget of the USA. Accurately quantifying carbon sequestration by these forests can provide insight for strategic planning to mitigate greenhouse gas effects on climate change. This study provides a new methodology to estimate net forest carbon sequestration (FCS) in urban and community lands of...

  13. The Economics of Forest Carbon Sequestration: The Challenge for Emissions Offset Trading

    NASA Astrophysics Data System (ADS)

    van Kooten, G. C.

    2016-12-01

    This paper provides an overview of the role that forestry activities can play in mitigating climate change. The price of carbon offset credits is used for incentivizing a reduction in the release of CO2 emissions and an increase in sequestration of atmospheric CO2 through forestry activities. Forestland owners essentially have two options for creating carbon offset credits: (1) avoid or delay harvest of mature timber; or (2) harvest timber and allow natural regeneration or regeneration with `regular' or genetically-enhanced growing stock, storing carbon in post-harvest products, using sawmill and potentially logging residues to generate electricity. In this study, a model representative of the Quesnel Timber Supply Area (TSA) in the BC interior is developed. The objective is to maximize net discounted returns to commercial timber operations (and sale of downstream products) plus the benefits of managing carbon fluxes. The model tracks carbon in living trees, organic matter, and, importantly, post-harvest carbon pools and avoided emissions from substituting wood for non-wood in construction or wood bioenergy for fossil fuels. Model constraints ensure that commercial forest management is sustainable, while carbon prices incentivize sequestration to ensure efficient mitigation of climate change. The results are confirmed more generally by comparing the carbon fluxes derived from the integrated forest management model with those from a Faustmann-Hartman rotation age model that explicitly includes benefits of storing carbon. One other question is addressed: If carbon offsets are created when wood biomass substitutes for fossil fuels in power generation, can one count the saved emissions from steel/cement production when wood substitutes for non-wood materials in construction?

  14. Integrating science, economics and law into policy: The case of carbon sequestration in climate change policy

    NASA Astrophysics Data System (ADS)

    Richards, Kenneth

    Carbon sequestration, the extraction and storage of carbon from the atmosphere by biomass, could potentially provide a cost-effective means to reduce net greenhouse gas emissions. The claims on behalf of carbon sequestration may be inadvertently overstated, however. Several key observations emerge from this study. First, although carbon sequestration studies all report results in terms of dollars per ton, the definition of that term varies significantly, meaning that the results of various analyses can not be meaningfully compared. Second, when carbon sequestration is included in an energy-economy model of climate change policy, it appears that carbon sequestration could play a major, if not dominant role in a national carbon emission abatement program, reducing costs of emissions stabilization by as much as 80 percent, saving tens of billions of dollars per year. However, the results are very dependant upon landowners' perceived risk. Studies may also have overstated the potential for carbon sequestration because they have not considered the implementation process. This study demonstrates that three factors will reduce the cost-effectiveness of carbon sequestration. First, the implementation costs associated with measurement and governance of the government-private sector relation are higher than in the case of carbon source control. Second, legal constraints limit the range of instruments that the government can use to induce private landowners to expand their carbon sinks. The government will likely have to pay private parties to expand their sinks, or undertake direct government production. In either case, additional revenues will be required, introducing social costs associated with excess burden. Third, because of the very long time involved in developing carbon sinks (up to several decades) the government may not be able to make credible commitments against exactions of one type or another that would effectively reduce the value of private sector investments

  15. A national look at carbon capture and storage-National carbon sequestration database and geographical information system (NatCarb)

    USGS Publications Warehouse

    Carr, T.R.; Iqbal, A.; Callaghan, N.; ,; Look, K.; Saving, S.; Nelson, K.

    2009-01-01

    The US Department of Energy's Regional Carbon Sequestration Partnerships (RCSPs) are responsible for generating geospatial data for the maps displayed in the Carbon Sequestration Atlas of the United States and Canada. Key geospatial data (carbon sources, potential storage sites, transportation, land use, etc.) are required for the Atlas, and for efficient implementation of carbon sequestration on a national and regional scale. The National Carbon Sequestration Database and Geographical Information System (NatCarb) is a relational database and geographic information system (GIS) that integrates carbon storage data generated and maintained by the RCSPs and various other sources. The purpose of NatCarb is to provide a national view of the carbon capture and storage potential in the U.S. and Canada. The digital spatial database allows users to estimate the amount of CO2 emitted by sources (such as power plants, refineries and other fossil-fuel-consuming industries) in relation to geologic formations that can provide safe, secure storage sites over long periods of time. The NatCarb project is working to provide all stakeholders with improved online tools for the display and analysis of CO2 carbon capture and storage data. NatCarb is organizing and enhancing the critical information about CO2 sources and developing the technology needed to access, query, model, analyze, display, and distribute natural resource data related to carbon management. Data are generated, maintained and enhanced locally at the RCSP level, or at specialized data warehouses, and assembled, accessed, and analyzed in real-time through a single geoportal. NatCarb is a functional demonstration of distributed data-management systems that cross the boundaries between institutions and geographic areas. It forms the first step toward a functioning National Carbon Cyberinfrastructure (NCCI). NatCarb provides access to first-order information to evaluate the costs, economic potential and societal issues of

  16. Effect of nutrient management on soil organic carbon sequestration, fertility, and productivity under rice-wheat cropping system in semi-reclaimed sodic soils of North India.

    PubMed

    Gupta Choudhury, Shreyasi; Yaduvanshi, N P S; Chaudhari, S K; Sharma, D R; Sharma, D K; Nayak, D C; Singh, S K

    2018-02-05

    The ever shrinking agricultural land availability and the swelling demand of food for the growing population fetch our attention towards utilizing partially reclaimed sodic soils for cultivation. In the present investigation, we compared six treatments, like control (T1), existing farmers' practice (T2), balanced inorganic fertilization (T3) and combined application of green gram (Vigna radiate) with inorganic NPK (T4), green manure (Sesbania aculeate) with inorganic NPK (T5), and farmyard manure with inorganic NPK (T6), to study the influence of nutrient management on soil organic carbon sequestration and soil fertility under long-term rice-wheat cropping system along with its productivity in gypsum-amended partially reclaimed sodic soils of semi-arid sub-tropical Indian climate. On an average, combined application of organics along with fertilizer NPK (T4, T5, and T6) decreased soil pH, ESP, and BD by 3.5, 13.0, and 6.7% than FP (T2) and 3.7, 12.5, and 6.7%, than balanced inorganic fertilizer application (T3), respectively, in surface (0-20 cm). These treatments (T4, T5, and T6) also increased 14.1% N and 19.5% P availability in soil over the usual farmers' practice (FP) with an additional saving of 44.4 and 27.3% fertilizer N and P, respectively. Long-term (6 years) incorporation of organics (T4, T5, and T6) sequestered 1.5 and 2.0 times higher soil organic carbon as compared to the balanced inorganic (T3) and FP (T2) treatments, respectively. The allocation of soil organic carbon into active and passive pools determines its relative susceptibility towards oxidation. The lower active to passive ratio (1.63) in FYM-treated plots along with its potentiality of higher soil organic carbon (SOC) sequestration compared to the initial stock proved its acceptability for long-term sustenance under intensive cropping even in partially reclaimed sodic soils. Among all the treatments, T4 yielded the maximum from second year onwards. Moreover, after 6 years of continuous

  17. Sequestration of flue gas CO₂ by direct gas-solid carbonation of air pollution control system residues.

    PubMed

    Tian, Sicong; Jiang, Jianguo

    2012-12-18

    Direct gas-solid carbonation reactions of residues from an air pollution control system (APCr) were conducted using different combinations of simulated flue gas to study the impact on CO₂ sequestration. X-ray diffraction analysis of APCr determined the existence of CaClOH, whose maximum theoretical CO₂ sequestration potential of 58.13 g CO₂/kg APCr was calculated by the reference intensity ratio method. The reaction mechanism obeyed a model of a fast kinetics-controlled process followed by a slow product layer diffusion-controlled process. Temperature is the key factor in direct gas-solid carbonation and had a notable influence on both the carbonation conversion and the CO₂ sequestration rate. The optimal CO₂ sequestrating temperature of 395 °C was easily obtained for APCr using a continuous heating experiment. CO₂ content in the flue gas had a definite influence on the CO₂ sequestration rate of the kinetics-controlled process, but almost no influence on the final carbonation conversion. Typical concentrations of SO₂ in the flue gas could not only accelerate the carbonation reaction rate of the product layer diffusion-controlled process, but also could improve the final carbonation conversion. Maximum carbonation conversions of between 68.6% and 77.1% were achieved in a typical flue gas. Features of rapid CO₂ sequestration rate, strong impurities resistance, and high capture conversion for direct gas-solid carbonation were proved in this study, which presents a theoretical foundation for the applied use of this encouraging technology on carbon capture and storage.

  18. Geochemical Impacts to Groundwater from Geologic Carbon Sequestration: Controls on pH and Inorganic Carbon Concentrations from Reaction Path and Kinetic Modeling

    EPA Science Inventory

    Geologic carbon sequestration has the potential to cause long-term reductions in global emissions of carbon dioxide to the atmosphere. Safe and effective application of carbon sequestration technology requires an understanding of the potential risks to the quality of underground...

  19. Nitrogen deposition and soil carbon sequestration: enzymes, experiments, and model estimates (Invited)

    NASA Astrophysics Data System (ADS)

    Goodale, C. L.; Weiss, M.; Tonitto, C.; Stone, M.

    2010-12-01

    Atmospheric nitrogen has long been expected to increase forest carbon sequestration, by means of enhanced productivity and litter production. More recently, N deposition has received attention for its potential for inducing soil C sequestration by suppressing microbial decomposition. Here, we present a range of measurements and model projections of the effects of N additions on soil C dynamics in forest soils of the northeastern U.S. A review of field-scale measurements of soil C stocks suggests modest enhancements of soil C storage in long-term N addition studies. Measurements of forest floor material from six long-term N addition studies showed that N additions suppressed microbial biomass and oxidative enzyme activity across sites. Additional analyses on soils from two of these sites are exploring the interactive effects of temperature and N addition on the activity of a range of extracellular enzymes used for decomposition of a range of organic matter. Incubations of forest floor material from four of these sites showed inhibition of heterotrophic respiration by an average of 28% during the first week of incubation, although this inhibition disappeared after 2 to 11 months. Nitrogen additions had no significant effect on DOC loss or on the partitioning of soil C into light or heavy (mineral-associated) organic matter. Last, we have adapted a new model of soil organic matter decomposition for the PnET-CN model to assess the long-term impact of suppressed decomposition on C sequestration in various soil C pools.

  20. Interactions between carbon sequestration and shade tree diversity in a smallholder coffee cooperative in El Salvador.

    PubMed

    Richards, Meryl Breton; Méndez, V Ernesto

    2014-04-01

    Agroforestry systems have substantial potential to conserve native biodiversity and provide ecosystem services. In particular, agroforestry systems have the potential to conserve native tree diversity and sequester carbon for climate change mitigation. However, little research has been conducted on the temporal stability of species diversity and aboveground carbon stocks in these systems or the relation between species diversity and aboveground carbon sequestration. We measured changes in shade-tree diversity and shade-tree carbon stocks in 14 plots of a 35-ha coffee cooperative over 9 years and analyzed relations between species diversity and carbon sequestration. Carbon sequestration was positively correlated with initial species richness of shade trees. Species diversity of shade trees did not change significantly over the study period, but carbon stocks increased due to tree growth. Our results show a potential for carbon sequestration and long-term biodiversity conservation in smallholder coffee agroforestry systems and illustrate the opportunity for synergies between biodiversity conservation and climate change mitigation. © 2013 Society for Conservation Biology.

  1. The value of carbon sequestration and storage in coastal habitats

    NASA Astrophysics Data System (ADS)

    Beaumont, N. J.; Jones, L.; Garbutt, A.; Hansom, J. D.; Toberman, M.

    2014-01-01

    Coastal margin habitats are globally significant in terms of their capacity to sequester and store carbon, but their continuing decline, due to environmental change and human land use decisions, is reducing their capacity to provide this ecosystem service. In this paper the UK is used as a case study area to develop methodologies to quantify and value the ecosystem service of blue carbon sequestration and storage in coastal margin habitats. Changes in UK coastal habitat area between 1900 and 2060 are documented, the long term stocks of carbon stored by these habitats are calculated, and the capacity of these habitats to sequester CO2 is detailed. Changes in value of the carbon sequestration service of coastal habitats are then projected for 2000-2060 under two scenarios, the maintenance of the current state of the habitat and the continuation of current trends of habitat loss. If coastal habitats are maintained at their current extent, their sequestration capacity over the period 2000-2060 is valued to be in the region of £1 billion UK sterling (3.5% discount rate). However, if current trends of habitat loss continue, the capacity of the coastal habitats both to sequester and store CO2 will be significantly reduced, with a reduction in value of around £0.25 billion UK sterling (2000-2060; 3.5% discount rate). If loss-trends due to sea level rise or land reclamation worsen, this loss in value will be greater. This case study provides valuable site specific information, but also highlights global issues regarding the quantification and valuation of carbon sequestration and storage. Whilst our ability to value ecosystem services is improving, considerable uncertainty remains. If such ecosystem valuations are to be incorporated with confidence into national and global policy and legislative frameworks, it is necessary to address this uncertainty. Recommendations to achieve this are outlined.

  2. Biophysical risks to carbon sequestration and storage in Australian drylands.

    PubMed

    Nolan, Rachael H; Sinclair, Jennifer; Eldridge, David J; Ramp, Daniel

    2018-02-15

    Carbon abatement schemes that reduce land clearing and promote revegetation are now an important component of climate change policy globally. There is considerable potential for these schemes to operate in drylands which are spatially extensive. However, projects in these environments risk failure through unplanned release of stored carbon to the atmosphere. In this review, we identify factors that may adversely affect the success of vegetation-based carbon abatement projects in dryland ecosystems, evaluate their likelihood of occurrence, and estimate the potential consequences for carbon storage and sequestration. We also evaluate management strategies to reduce risks posed to these carbon abatement projects. Identified risks were primarily disturbances, including unplanned fire, drought, and grazing. Revegetation projects also risk recruitment failure, thereby failing to reach projected rates of sequestration. Many of these risks are dependent on rainfall, which is highly variable in drylands and susceptible to further variation under climate change. Resprouting vegetation is likely to be less vulnerable to disturbance and have faster recovery rates upon release from disturbance. We conclude that there is a strong impetus for identifying management strategies and risk reduction mechanisms for carbon abatement projects. Risk mitigation would be enhanced by effective co-ordination of mitigation strategies at scales larger than individual abatement project boundaries, and by implementing risk assessment throughout project planning and implementation stages. Reduction of risk is vital for maximising carbon sequestration of individual projects and for reducing barriers to the establishment of new projects entering the market. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Biochar: A synthesis of its agronomic impact beyond carbon sequestration

    USDA-ARS?s Scientific Manuscript database

    Biochar has been recently heralded as an amendment to revitalize degraded soils, improve soil carbon sequestration, increase agronomic productivity and enter into future carbon trading markets. However, scientific and economic technicalities may limit the ability of biochar to consistently deliver o...

  4. The Deep Carbon Cycle and CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Filipovitch, N. B.; Mao, W. L.; Chou, I.; Mu, K.

    2009-12-01

    Increased understanding of the Earth’s carbon cycle may provide insight for future carbon storage. Long term geologic sequestration of CO2 occurs in the earth via exothermic reactions between CO2 and silicate minerals to form carbonate minerals. It has been shown that while there is a large enough supply of ultra mafic igneous rock to sequester the CO2 [1], the kinetics of this natural process are too slow to effectively manage our CO2 output. Most studies have focused on studying reaction kinetics at relatively low temperatures and pressures [2,3], and have found that the reaction kinetics are either too slow or (in the case of serpentine) necessitate an uneconomical heat pretreatment [3,4]. Our experiments expand the pressures and temperatures (up to 500 bars and exceeding 200 °C) at which the CO2 + silicate reaction is studied using fused silica capillary cells and Raman and XRD analysis. By increasing our understanding of the kinetics of this process and providing a valuable input for reactive flow and transport models, these results may guide approaches for practical CO2 sequestration in carbonate minerals as a way to manage atmospheric CO2 levels. High pressure and temperature results on carbonates have implications for understanding the deep carbon cycle. Most of the previous high pressure studies on carbonates have concentrated on magnesite (MgCO3), calcite (CaCO3), or dolomite ((Ca,Mg)CO3) [5,6]. While the Mg and Ca carbonates are the most abundant, iron-rich siderite (FeCO3) may be a significant player at greater depths within the earth. We performed XRD and Raman spectroscopy experiments on siderite to lower mantle pressures (up to 40 GPa) and observed a possible phase change around 13 GPa. References 1. Lackner, Klaus S., Wendt, Christopher H., Butt, Darryl P., Joyce, Edward L., Sharp, David H., 1995, Carbon dioxide disposal in carbonate minerals, Energy, Vol.20, No. 11, pp. 1153-1170 2. Bearat, Hamdallah, McKelvy, Michael J., Chizmeshya, Andrew V

  5. Carbon storage capacity of semi-arid grassland soils and sequestration potentials in northern China.

    PubMed

    Wiesmeier, Martin; Munro, Sam; Barthold, Frauke; Steffens, Markus; Schad, Peter; Kögel-Knabner, Ingrid

    2015-10-01

    Organic carbon (OC) sequestration in degraded semi-arid environments by improved soil management is assumed to contribute substantially to climate change mitigation. However, information about the soil organic carbon (SOC) sequestration potential in steppe soils and their current saturation status remains unknown. In this study, we estimated the OC storage capacity of semi-arid grassland soils on the basis of remote, natural steppe fragments in northern China. Based on the maximum OC saturation of silt and clay particles <20 μm, OC sequestration potentials of degraded steppe soils (grazing land, arable land, eroded areas) were estimated. The analysis of natural grassland soils revealed a strong linear regression between the proportion of the fine fraction and its OC content, confirming the importance of silt and clay particles for OC stabilization in steppe soils. This relationship was similar to derived regressions in temperate and tropical soils but on a lower level, probably due to a lower C input and different clay mineralogy. In relation to the estimated OC storage capacity, degraded steppe soils showed a high OC saturation of 78-85% despite massive SOC losses due to unsustainable land use. As a result, the potential of degraded grassland soils to sequester additional OC was generally low. This can be related to a relatively high contribution of labile SOC, which is preferentially lost in the course of soil degradation. Moreover, wind erosion leads to substantial loss of silt and clay particles and consequently results in a direct loss of the ability to stabilize additional OC. Our findings indicate that the SOC loss in semi-arid environments induced by intensive land use is largely irreversible. Observed SOC increases after improved land management mainly result in an accumulation of labile SOC prone to land use/climate changes and therefore cannot be regarded as contribution to long-term OC sequestration. © 2015 John Wiley & Sons Ltd.

  6. Carbon Sequestration in Colorado's Lands: A Spatial and Policy Analysis

    NASA Astrophysics Data System (ADS)

    Brandt, N.; Brazeau, A.; Browning, K.; Meier, R.

    2017-12-01

    Managing landscapes to enhance terrestrial carbon sequestration has significant potential to mitigate climate change. While a previous carbon baseline assessment in Colorado has been published (Conant et al, 2007), our study pulls from the existing literature to conduct an updated baseline assessment of carbon stocks and a unique review of carbon policies in Colorado. Through a multi-level spatial analysis based in GIS and informed by a literature review, we established a carbon stock baseline and ran four land use and carbon stock projection scenarios using Monte Carlo simulations. We identified 11 key policy recommendations for improving Colorado's carbon stocks, and evaluated each using Bardach's policy matrix approach (Bardach, 2012). We utilized a series of case studies to support our policy recommendations. We found that Colorado's lands have a carbon stock of 3,334 MMT CO2eq, with Forests and Woodlands holding the largest stocks, at 1,490 and 774 MMT CO2eq respectively. Avoided conversion of all Grasslands, Forests, and Wetlands in Colorado projected over 40 years would increase carbon stocks by 32 MMT CO2eq, 1,053 MMT CO2eq, and 36 MMT CO2eq, respectively. Over the 40-year study period, Forests and Woodlands areas are projected to shrink while Shrublands and Developed areas are projected to grow. Those projections suggest sizable increases in area of future wildfires and development in Colorado. We found that numerous policy opportunities to sequester carbon exist at different jurisdictional levels and across land cover types. The largest opportunities were found in state-level policies and policies impacting Forests, Grasslands, and Wetlands. The passage of statewide emission reduction legislation has the highest potential to impact carbon sequestration, although political and administrative feasibility of this option are relatively low. This study contributes to the broader field of carbon sequestration literature by examining the nexus of carbon stocks

  7. Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how.

    PubMed

    Kell, Douglas B

    2012-06-05

    The soil holds twice as much carbon as does the atmosphere, and most soil carbon is derived from recent photosynthesis that takes carbon into root structures and further into below-ground storage via exudates therefrom. Nonetheless, many natural and most agricultural crops have roots that extend only to about 1 m below ground. What determines the lifetime of below-ground C in various forms is not well understood, and understanding these processes is therefore key to optimising them for enhanced C sequestration. Most soils (and especially subsoils) are very far from being saturated with organic carbon, and calculations show that the amounts of C that might further be sequestered (http://dbkgroup.org/carbonsequestration/rootsystem.html) are actually very great. Breeding crops with desirable below-ground C sequestration traits, and exploiting attendant agronomic practices optimised for individual species in their relevant environments, are therefore important goals. These bring additional benefits related to improvements in soil structure and in the usage of other nutrients and water.

  8. Carbon storage and sequestration by trees in VIT University campus

    NASA Astrophysics Data System (ADS)

    Saral, A. Mary; SteffySelcia, S.; Devi, Keerthana

    2017-11-01

    The present study addresses carbon storage and sequestration by trees grown in VIT University campus, Vellore. Approximately twenty trees were selected from Woodstockarea. The above ground biomass and below ground biomass were calculated. The above ground biomass includes non-destructive anddestructive sampling. The Non-destructive method includes the measurement of height of thetree and diameter of the tree. The height of the tree is calculated using Total Station instrument and diameter is calculated using measuring tape. In the destructive method the weight of samples (leaves) and sub-samples (fruits, flowers) of the tree were considered. To calculate the belowground biomass soil samples are taken and analyzed. The results obtained were used to predict the carbon storage. It was found that out of twenty tree samples Millingtonia hortensis which is commonly known as Cork tree possess maximum carbon storage (14.342kg/tree) and carbon sequestration (52.583kg/tree) respectively.

  9. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan M. Capalbo

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the second performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources foundmore » in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management

  10. Assessing Carbon Storage and Sequestration of Seagrass Meadows on the Pacific Coast of Canada

    NASA Astrophysics Data System (ADS)

    Postlethwaite, V. R.; McGowan, A. E.; Robinson, C.; Kohfeld, K. E.; Pellatt, M. G.; Yakimishyn, J.; Chastain, S. G.

    2016-12-01

    Recent estimates suggest that seagrasses are highly efficient carbon sinks, storing a disproportionate amount of carbon for their relatively small area (only approximately 0.2% of the global ocean), and that they may bury carbon up to 12 times faster than terrestrial forests. Unfortunately, seagrass meadows are being lost at a rate of 0.4-2.6% yr-1, potentially releasing 0.15-1.02 Pg (billion tonnes) carbon dioxide into the atmosphere annually. Research on seagrass carbon stocks has been mainly limited to areas in the Mediterranean, Southeast Asia, and Western Australia, and specifically has been very limited in the Northeast Pacific. We aim to characterize the carbon storage and sequestration occurring in the Pacific Rim National Park Reserve and the Clayoquot Sound area, off the western coast of Vancouver Island, British Columbia (BC). Each of our sites varied in environmental characteristics representative of BC's seagrass meadows, including freshwater influence. Six cores, plus one from a "reference" site were taken from each meadow. Loss on ignition (LOI) and elemental analysis will be used to determine organic C and carbonate content. Additionally, we will use dry bulk density, 210Pb dating and seagrass density data to determine carbon accumulation rates and total meadow carbon stocks to provide a comprehensive picture of carbon storage and sequestration in BC's seagrass meadows. Carbon storage results will contribute to global estimates of seagrass carbon stocks via the Commission for Environmental Cooperation, as well as assist in marine ecosystem conservation planning and help in understanding the value of these ecosystems, especially as a means of climate change mitigation.

  11. The biodiversity cost of carbon sequestration in tropical savanna.

    PubMed

    Abreu, Rodolfo C R; Hoffmann, William A; Vasconcelos, Heraldo L; Pilon, Natashi A; Rossatto, Davi R; Durigan, Giselda

    2017-08-01

    Tropical savannas have been increasingly viewed as an opportunity for carbon sequestration through fire suppression and afforestation, but insufficient attention has been given to the consequences for biodiversity. To evaluate the biodiversity costs of increasing carbon sequestration, we quantified changes in ecosystem carbon stocks and the associated changes in communities of plants and ants resulting from fire suppression in savannas of the Brazilian Cerrado, a global biodiversity hotspot. Fire suppression resulted in increased carbon stocks of 1.2 Mg ha -1 year -1 since 1986 but was associated with acute species loss. In sites fully encroached by forest, plant species richness declined by 27%, and ant richness declined by 35%. Richness of savanna specialists, the species most at risk of local extinction due to forest encroachment, declined by 67% for plants and 86% for ants. This loss highlights the important role of fire in maintaining biodiversity in tropical savannas, a role that is not reflected in current policies of fire suppression throughout the Brazilian Cerrado. In tropical grasslands and savannas throughout the tropics, carbon mitigation programs that promote forest cover cannot be assumed to provide net benefits for conservation.

  12. The biodiversity cost of carbon sequestration in tropical savanna

    PubMed Central

    Abreu, Rodolfo C. R.; Hoffmann, William A.; Vasconcelos, Heraldo L.; Pilon, Natashi A.; Rossatto, Davi R.; Durigan, Giselda

    2017-01-01

    Tropical savannas have been increasingly viewed as an opportunity for carbon sequestration through fire suppression and afforestation, but insufficient attention has been given to the consequences for biodiversity. To evaluate the biodiversity costs of increasing carbon sequestration, we quantified changes in ecosystem carbon stocks and the associated changes in communities of plants and ants resulting from fire suppression in savannas of the Brazilian Cerrado, a global biodiversity hotspot. Fire suppression resulted in increased carbon stocks of 1.2 Mg ha−1 year−1 since 1986 but was associated with acute species loss. In sites fully encroached by forest, plant species richness declined by 27%, and ant richness declined by 35%. Richness of savanna specialists, the species most at risk of local extinction due to forest encroachment, declined by 67% for plants and 86% for ants. This loss highlights the important role of fire in maintaining biodiversity in tropical savannas, a role that is not reflected in current policies of fire suppression throughout the Brazilian Cerrado. In tropical grasslands and savannas throughout the tropics, carbon mitigation programs that promote forest cover cannot be assumed to provide net benefits for conservation. PMID:28875172

  13. Efficiency of incentives to jointly increase carbon sequestration and species conservation on a landscape

    Treesearch

    Erik Nelson; Stephen Polasky; David J. Lewis; Andrew J. Plantinga; Eric Lonsdorf; Denis White; David Bael; Joshua Lawler

    2008-01-01

    We develop an integrated model to predict private land-use decisions in response to policy incentives designed to increase the provision of carbon sequestration and species conservation across heterogeneous landscapes. Using data from the Willamette Basin, Oregon, we compare the provision of carbon sequestration and species conservation under five simple policies that...

  14. Rise of Earth's atmospheric oxygen controlled by efficient subduction of organic carbon

    NASA Astrophysics Data System (ADS)

    Duncan, Megan S.; Dasgupta, Rajdeep

    2017-04-01

    The net flux of carbon between the Earth's interior and exterior, which is critical for redox evolution and planetary habitability, relies heavily on the extent of carbon subduction. While the fate of carbonates during subduction has been studied, little is known about how organic carbon is transferred from the Earth's surface to the interior, although organic carbon sequestration is related to sources of oxygen in the surface environment. Here we use high pressure-temperature experiments to determine the capacity of rhyolitic melts to carry carbon under graphite-saturated conditions in a subducting slab, and thus to constrain the subduction efficiency of organic carbon, the remnants of life, through time. We use our experimental data and a thermodynamic model of CO2 dissolution in slab melts to quantify organic carbon mobility as a function of slab parameters. We show that the subduction of graphitized organic carbon, and the graphite and diamond formed by reduction of carbonates with depth, remained efficient even in ancient, hotter subduction zones where oxidized carbon subduction probably remained limited. We suggest that immobilization of organic carbon in subduction zones and deep sequestration in the mantle facilitated the rise (~103-5 fold) and maintenance of atmospheric oxygen since the Palaeoproterozoic and is causally linked to the Great Oxidation Event. Our modelling shows that episodic recycling of organic carbon before the Great Oxidation Event may also explain occasional whiffs of atmospheric oxygen observed in the Archaean.

  15. Mesoscale carbon sequestration site screening and CCS infrastructure analysis.

    PubMed

    Keating, Gordon N; Middleton, Richard S; Stauffer, Philip H; Viswanathan, Hari S; Letellier, Bruce C; Pasqualini, Donatella; Pawar, Rajesh J; Wolfsberg, Andrew V

    2011-01-01

    We explore carbon capture and sequestration (CCS) at the meso-scale, a level of study between regional carbon accounting and highly detailed reservoir models for individual sites. We develop an approach to CO(2) sequestration site screening for industries or energy development policies that involves identification of appropriate sequestration basin, analysis of geologic formations, definition of surface sites, design of infrastructure, and analysis of CO(2) transport and storage costs. Our case study involves carbon management for potential oil shale development in the Piceance-Uinta Basin, CO and UT. This study uses new capabilities of the CO(2)-PENS model for site screening, including reservoir capacity, injectivity, and cost calculations for simple reservoirs at multiple sites. We couple this with a model of optimized source-sink-network infrastructure (SimCCS) to design pipeline networks and minimize CCS cost for a given industry or region. The CLEAR(uff) dynamical assessment model calculates the CO(2) source term for various oil production levels. Nine sites in a 13,300 km(2) area have the capacity to store 6.5 GtCO(2), corresponding to shale-oil production of 1.3 Mbbl/day for 50 years (about 1/4 of U.S. crude oil production). Our results highlight the complex, nonlinear relationship between the spatial deployment of CCS infrastructure and the oil-shale production rate.

  16. Towards Providing Solutions to the Air Quality Crisis in the Mexico City Metropolitan Area: Carbon Sequestration by Succulent Species in Green Roofs

    PubMed Central

    Collazo-Ortega, Margarita; Rosas, Ulises; Reyes-Santiago, Jerónimo

    2017-01-01

    INTRODUCTION: In the first months of 2016, the Mexico City Metropolitan Area experienced the worst air pollution crisis in the last decade, prompting drastic short-term solutions by the Mexico City Government and neighboring States. In order to help further the search for long-term sustainable solutions, we felt obliged to immediately release the results of our research regarding the monitoring of carbon sequestration by green roofs. Large-scale naturation, such as the implementation of green roofs, provides a way to partially mitigate the increased carbon dioxide output in urban areas. METHODS: Here, we quantified the carbon sequestration capabilities of two ornamental succulent plant species, Sedum dendroideum and Sedum rubrotinctum, which require low maintenance, and little or no irrigation. To obtain a detailed picture of these plants’ carbon sequestration capabilities, we measured carbon uptake on the Sedum plants by quantifying carbon dioxide exchange and fixation as organic acids, during the day and across the year, on a green roof located in Southern Mexico City. RESULTS: The species displayed their typical CAM photosynthetic metabolism. Moreover, our quantification allowed us to conservatively estimate that a newly planted green roof of Sedum sequesters approximately 180,000,000 ppm of carbon dioxide per year in a green roof of 100 square meters in the short term. DISCUSSION: The patterns of CAM and carbon dioxide sequestration were highly robust to the fluctuations of temperature and precipitation between seasons, and therefore we speculate that carbon sequestration would be comparable in any given year of a newly planted green roof. Older green roof would require regular trimming to mantain their carbon sink properties, but their carbon sequestration capabilities remain to be quantified. Nevertheless, we propose that Sedum green roofs can be part of the long-term solutions to mitigate the air pollution crisis in the Mexico City Metropolitan area, and

  17. Global carbon sequestration in tidal, saline wetland soils

    USGS Publications Warehouse

    Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C.

    2003-01-01

    Wetlands represent the largest component of the terrestrial biological carbon pool and thus play an important role in global carbon cycles. Most global carbon budgets, however, have focused on dry land ecosystems that extend over large areas and have not accounted for the many small, scattered carbon-storing ecosystems such as tidal saline wetlands. We compiled data for 154 sites in mangroves and salt marshes from the western and eastern Atlantic and Pacific coasts, as well as the Indian Ocean, Mediterranean Ocean, and Gulf of Mexico. The set of sites spans a latitudinal range from 22.4??S in the Indian Ocean to 55.5??N in the northeastern Atlantic. The average soil carbon density of mangrove swamps (0.055 ?? 0.004 g cm-3) is significantly higher than the salt marsh average (0.039 ?? 0.003 g cm-3). Soil carbon density in mangrove swamps and Spartina patens marshes declines with increasing average annual temperature, probably due to increased decay rates at higher temperatures. In contrast, carbon sequestration rates were not significantly different between mangrove swamps and salt marshes. Variability in sediment accumulation rates within marshes is a major control of carbon sequestration rates masking any relationship with climatic parameters. Globally, these combined wetlands store at least 44.6 Tg C yr-1 and probably more, as detailed areal inventories are not available for salt marshes in China and South America. Much attention has been given to the role of freshwater wetlands, particularly northern peatlands, as carbon sinks. In contrast to peatlands, salt marshes and mangroves release negligible amounts of greenhouse gases and store more carbon per unit area. Copyright 2003 by the American Geophysical Union.

  18. Micromotor-Based Biomimetic Carbon Dioxide Sequestration: Towards Mobile Microscrubbers.

    PubMed

    Uygun, Murat; Singh, Virendra V; Kaufmann, Kevin; Uygun, Deniz A; de Oliveira, Severina D S; Wang, Joseph

    2015-10-26

    We describe a mobile CO2 scrubbing platform that offers a greatly accelerated biomimetic sequestration based on a self-propelled carbonic anhydrase (CA) functionalized micromotor. The CO2 hydration capability of CA is coupled with the rapid movement of catalytic micromotors, and along with the corresponding fluid dynamics, results in a highly efficient mobile CO2 scrubbing microsystem. The continuous movement of CA and enhanced mass transport of the CO2 substrate lead to significant improvements in the sequestration efficiency and speed over stationary immobilized or free CA platforms. This system is a promising approach to rapid and enhanced CO2 sequestration platforms for addressing growing concerns over the buildup of greenhouse gas. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A Survey of Measurement, Mitigation, and Verification Field Technologies for Carbon Sequestration Geologic Storage

    NASA Astrophysics Data System (ADS)

    Cohen, K. K.; Klara, S. M.; Srivastava, R. D.

    2004-12-01

    The U.S. Department of Energy's (U.S. DOE's) Carbon Sequestration Program is developing state-of-the-science technologies for measurement, mitigation, and verification (MM&V) in field operations of geologic sequestration. MM&V of geologic carbon sequestration operations will play an integral role in the pre-injection, injection, and post-injection phases of carbon capture and storage projects to reduce anthropogenic greenhouse gas emissions. Effective MM&V is critical to the success of CO2 storage projects and will be used by operators, regulators, and stakeholders to ensure safe and permanent storage of CO2. In the U.S. DOE's Program, Carbon sequestration MM&V has numerous instrumental roles: Measurement of a site's characteristics and capability for sequestration; Monitoring of the site to ensure the storage integrity; Verification that the CO2 is safely stored; and Protection of ecosystems. Other drivers for MM&V technology development include cost-effectiveness, measurement precision, and frequency of measurements required. As sequestration operations are implemented in the future, it is anticipated that measurements over long time periods and at different scales will be required; this will present a significant challenge. MM&V sequestration technologies generally utilize one of the following approaches: below ground measurements; surface/near-surface measurements; aerial and satellite imagery; and modeling/simulations. Advanced subsurface geophysical technologies will play a primary role for MM&V. It is likely that successful MM&V programs will incorporate multiple technologies including but not limited to: reservoir modeling and simulations; geophysical techniques (a wide variety of seismic methods, microgravity, electrical, and electromagnetic techniques); subsurface fluid movement monitoring methods such as injection of tracers, borehole and wellhead pressure sensors, and tiltmeters; surface/near surface methods such as soil gas monitoring and infrared

  20. Carbon sequestration and natural longleaf pine ecosystems

    Treesearch

    Ralph S. Meldahl; John S. Kush

    2006-01-01

    A fire-maintained longleaf pine (Pinus palustris Mill.) ecosystem may offer the best option for carbon (C) sequestration among the southern pines. Longleaf is the longest living of the southern pines, and products from longleaf pine will sequester C longer than most since they are likely to be solid wood products such as structural lumber and poles....

  1. Temporal Considerations of Carbon Sequestration in LCA

    Treesearch

    James Salazar; Richard Bergman

    2013-01-01

    Accounting for carbon sequestration in LCA illustrates the limitations of a single global warming characterization factor. Typical cradle-to-grave LCA models all emissions from end-of-life processes and then characterizes these flows by IPCC GWP (100-yr) factors. A novel method estimates climate change impact by characterizing annual emissions with the IPCC GHG forcing...

  2. Carbon Sequestration in Unconventional Reservoirs: Geophysical, Geochemical and Geomechanical Considerations

    NASA Astrophysics Data System (ADS)

    Zakharova, Natalia V.

    In the face of the environmental challenges presented by the acceleration of global warming, carbon capture and storage, also called carbon sequestration, may provide a vital option to reduce anthropogenic carbon dioxide emissions, while meeting the world's energy demands. To operate on a global scale, carbon sequestration would require thousands of geologic repositories that could accommodate billions of tons of carbon dioxide per year. In order to reach such capacity, various types of geologic reservoirs should be considered, including unconventional reservoirs such as volcanic rocks, fractured formations, and moderate-permeability aquifers. Unconventional reservoirs, however, are characterized by complex pore structure, high heterogeneity, and intricate feedbacks between physical, chemical and mechanical processes, and their capacity to securely store carbon emissions needs to be confirmed. In this dissertation, I present my contribution toward the understanding of geophysical, geochemical, hydraulic, and geomechanical properties of continental basalts and fractured sedimentary formations in the context of their carbon storage capacity. The data come from two characterization projects, in the Columbia River Flood Basalt in Washington and the Newark Rift Basin in New York, funded by the U.S. Department of Energy through Big Sky Carbon Sequestration Partnerships and TriCarb Consortium for Carbon Sequestration. My work focuses on in situ analysis using borehole geophysical measurements that allow for detailed characterization of formation properties on the reservoir scale and under nearly unaltered subsurface conditions. The immobilization of injected CO2 by mineralization in basaltic rocks offers a critical advantage over sedimentary reservoirs for long-term CO2 storage. Continental flood basalts, such as the Columbia River Basalt Group, possess a suitable structure for CO2 storage, with extensive reservoirs in the interflow zones separated by massive impermeable

  3. Carbon sequestration by fruit trees--Chinese apple orchards as an example.

    PubMed

    Wu, Ting; Wang, Yi; Yu, Changjiang; Chiarawipa, Rawee; Zhang, Xinzhong; Han, Zhenhai; Wu, Lianhai

    2012-01-01

    Apple production systems are an important component in the Chinese agricultural sector with 1.99 million ha plantation. The orchards in China could play an important role in the carbon (C) cycle of terrestrial ecosystems and contribute to C sequestration. The carbon sequestration capability in apple orchards was analyzed through identifying a set of potential assessment factors and their weighting factors determined by a field model study and literature. The dynamics of the net C sink in apple orchards in China was estimated based on the apple orchard inventory data from 1990s and the capability analysis. The field study showed that the trees reached the peak of C sequestration capability when they were 18 years old, and then the capability began to decline with age. Carbon emission derived from management practices would not be compensated through C storage in apple trees before reaching the mature stage. The net C sink in apple orchards in China ranged from 14 to 32 Tg C, and C storage in biomass from 230 to 475 Tg C between 1990 and 2010. The estimated net C sequestration in Chinese apple orchards from 1990 to 2010 was equal to 4.5% of the total net C sink in the terrestrial ecosystems in China. Therefore, apple production systems can be potentially considered as C sinks excluding the energy associated with fruit production in addition to provide fruits.

  4. Structure-dependent interactions between alkali feldspars and organic compounds: implications for reactions in geologic carbon sequestration.

    PubMed

    Yang, Yi; Min, Yujia; Jun, Young-Shin

    2013-01-02

    Organic compounds in deep saline aquifers may change supercritical CO(2) (scCO(2))-induced geochemical processes by attacking specific components in a mineral's crystal structure. Here we investigate effects of acetate and oxalate on alkali feldspar-brine interactions in a simulated geologic carbon sequestration (GCS) environment at 100 atm of CO(2) and 90 °C. We show that both organics enhance the net extent of feldspar's dissolution, with oxalate showing a more prominent effect than acetate. Further, we demonstrate that the increased reactivity of Al-O-Si linkages due to the presence of oxalate results in the promotion of both Al and Si release from feldspars. As a consequence, the degree of Al-Si order may affect the effect of oxalate on feldspar dissolution: a promotion of ~500% in terms of cumulative Si concentration was observed after 75 h of dissolution for sanidine (a highly disordered feldspar) owing to oxalate, while the corresponding increase for albite (a highly ordered feldspar) was ~90%. These results provide new insights into the dependence of feldspar dissolution kinetics on the crystallographic properties of the mineral under GCS conditions.

  5. Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash.

    PubMed

    Rendek, Eva; Ducom, Gaëlle; Germain, Patrick

    2006-01-16

    During bottom ash weathering, carbonation under atmospheric conditions induces physico-chemical evolutions leading to the pacification of the material. Fresh bottom ash samples were subjected to an accelerated carbonation using pure CO2. The aim of this work was to quantify the volume of CO2 that could be sequestrated with a view to reduce greenhouse gas emissions and investigate the possibility of upgrading some specific properties of the material with accelerated carbonation. Carbonation was performed by putting 4mm-sieved samples in a CO2 chamber. The CO2 pressure and the humidity of the samples were varied to optimize the reaction parameters. Unsieved material was also tested. Calcite formation resulting from accelerated carbonation was investigated by thermogravimetry and differential scanning calorimetry (TG/DSC) and metal leaching tests were performed. The volume of sequestrated CO2 was on average 12.5L/kg dry matter (DM) for unsieved material and 24 L/kg DM for 4mm-sieved samples. An ash humidity of 15% appeared to give the best results. The reaction was drastically accelerated at high pressure but it did not increase the volume of sequestrated CO2. Accelerated carbonation, like the natural phenomenon, reduces the dangerous nature of the material. It decreases the pH from 11.8 to 8.2 and causes Pb, Cr and Cd leaching to decrease. This process could reduce incinerator CO2 emissions by 0.5-1%.

  6. CARBON SEQUESTRATION AND PLANT COMMUNITY DYNAMICS FOLLOWING REFORESTATION OF TROPICAL PASTURE.

    Treesearch

    WHENDEE L. SILVER; LARA M. KUEPPERS; ARIEL E. LUGO; REBECCA OSTERTAG; VIRGINIA MATZEK

    2004-01-01

    Conversion of abandoned cattle pastures to secondary forests and plantations in the tropics has been proposed as a means to increase rates of carbon (C) sequestration from the atmosphere and enhance local biodiversity. We used a long-term tropical reforestation project (55–61 yr) to estimate rates of above- and belowground C sequestration and to investigate the impact...

  7. Carbon Sequestration Estimation of Street Trees Based on Point Cloud from Vehicle-Borne Laser Scanning System

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Hu, Q.

    2017-09-01

    Continuous development of urban road traffic system requests higher standards of road ecological environment. Ecological benefits of street trees are getting more attention. Carbon sequestration of street trees refers to the carbon stocks of street trees, which can be a measurement for ecological benefits of street trees. Estimating carbon sequestration in a traditional way is costly and inefficient. In order to solve above problems, a carbon sequestration estimation approach for street trees based on 3D point cloud from vehicle-borne laser scanning system is proposed in this paper. The method can measure the geometric parameters of a street tree, including tree height, crown width, diameter at breast height (DBH), by processing and analyzing point cloud data of an individual tree. Four Chinese scholartree trees and four camphor trees are selected for experiment. The root mean square error (RMSE) of tree height is 0.11m for Chinese scholartree and 0.02m for camphor. Crown widths in X direction and Y direction, as well as the average crown width are calculated. And the RMSE of average crown width is 0.22m for Chinese scholartree and 0.10m for camphor. The last calculated parameter is DBH, the RMSE of DBH is 0.5cm for both Chinese scholartree and camphor. Combining the measured geometric parameters and an appropriate carbon sequestration calculation model, the individual tree's carbon sequestration will be estimated. The proposed method can help enlarge application range of vehicle-borne laser point cloud data, improve the efficiency of estimating carbon sequestration, construct urban ecological environment and manage landscape.

  8. Soil Carbon Storage in Christmas Tree Farms: Maximizing Ecosystem Management and Sustainability for Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Chapman, S. K.; Shaw, R.; Langley, A.

    2008-12-01

    Management of agroecosystems for the purpose of manipulating soil carbon stocks could be a viable approach for countering rising atmospheric carbon dioxide concentrations, while maximizing sustainability of the agroforestry industry. We investigated the carbon storage potential of Christmas tree farms in the southern Appalachian mountains as a potential model for the impacts of land management on soil carbon. We quantified soil carbon stocks across a gradient of cultivation duration and herbicide management. We compared soil carbon in farms to that in adjacent pastures and native forests that represent a control group to account for variability in other soil-forming factors. We partitioned tree farm soil carbon into fractions delineated by stability, an important determinant of long-term sequestration potential. Soil carbon stocks in the intermediate pool are significantly greater in the tree farms under cultivation for longer periods of time than in the younger tree farms. This pool can be quite large, yet has the ability to repond to biological environmental changes on the centennial time scale. Pasture soil carbon was significantly greater than both forest and tree farm soil carbon, which were not different from each other. These data can help inform land management and soil carbon sequestration strategies.

  9. Comparing carbon to carbon: Organic and inorganic carbon balances across nitrogen fertilization gradients in rainfed vs. irrigated Midwest US cropland

    NASA Astrophysics Data System (ADS)

    Hamilton, S. K.; McGill, B.

    2017-12-01

    The top meter of the earth's soil contains about twice the amount of carbon than the atmosphere. Agricultural management practices influence whether a cropland soil is a net carbon source or sink. These practices affect both organic and inorganic carbon cycling although the vast majority of studies examine the former. We will present results from several rarely-compared carbon fluxes: carbon dioxide emissions and sequestration from lime (calcium carbonate) weathering, dissolved gases emitted from groundwater-fed irrigation, dissolved organic carbon (DOC) leaching to groundwater, and soil organic matter storage. These were compared in a corn-soybean-wheat rotation under no-till management across a nitrogen fertilizer gradient where half of the replicated blocks are irrigated with groundwater. DOC and liming fluxes are also estimated from a complementary study in neighboring plots comparing a gradient of management practices from conventional to biologically-based annuals and perennials. These studies were conducted at the Kellogg Biological Station Long Term Ecological Research site in Michigan where previous work estimated that carbon dioxide emissions from liming accounted for about one quarter of the total global warming impact (GWI) from no-till systems—our work refines that figure. We will present a first time look at the GWI of gases dissolved in groundwater that are emitted when the water equilibrates with the atmosphere. We will explore whether nitrogen fertilizer and irrigation increase soil organic carbon sequestration by producing greater crop biomass and residues or if they enhance microbial activity, increasing decomposition of organic matter. These results are critical for more accurately estimating how intensive agricultural practices affect the carbon balance of cropping systems.

  10. Understanding Geochemical Impacts of Carbon Dioxide Leakage from Carbon Capture and Sequestration

    EPA Science Inventory

    US EPA held a technical Geochemical Impact Workshop in Washington, DC on July 10 and 11, 2007 to discuss geological considerations and Area of Review (AoR) issues related to geologic sequestration (GS) of Carbon Dioxide (CO2). Seventy=one (71) representatives of the electric uti...

  11. Statistical Assessment of a Paired-site Approach for Verification of Carbon and Nitrogen Sequestration on CRP Land

    NASA Astrophysics Data System (ADS)

    Kucharik, C.; Roth, J.

    2002-12-01

    The threat of global climate change has provoked policy-makers to consider plausible strategies to slow the accumulation of greenhouse gases, especially carbon dioxide, in the atmosphere. One such idea involves the sequestration of atmospheric carbon (C) in degraded agricultural soils as part of the Conservation Reserve Program (CRP). While the potential for significant C sequestration in CRP grassland ecosystems has been demonstrated, the paired-site sampling approach traditionally used to quantify soil C changes has not been evaluated with robust statistical analysis. In this study, 14 paired CRP (> 8 years old) and cropland sites in Dane County, Wisconsin (WI) were used to assess whether a paired-site sampling design could detect statistically significant differences (ANOVA) in mean soil organic C and total nitrogen (N) storage. We compared surface (0 to 10 cm) bulk density, and sampled soils (0 to 5, 5 to 10, and 10 to 25 cm) for textural differences and chemical analysis of organic matter (OM), soil organic C (SOC), total N, and pH. The CRP contributed to lowering soil bulk density by 13% (p < 0.0001) and increased SOC and OM storage (kg m-2) by 13 to 17% in the 0 to 5 cm layer (p = 0.1). We tested the statistical power associated with ANOVA for measured soil properties, and calculated minimum detectable differences (MDD). We concluded that 40 to 65 paired sites and soil sampling in 5 cm increments near the surface were needed to achieve an 80% confidence level (α = 0.05; β = 0.20) in soil C and N sequestration rates. Because soil C and total N storage was highly variable among these sites (CVs > 20%), only a 23 to 29% change in existing total organic C and N pools could be reliably detected. While C and N sequestration (247 kg C ha{-1 } yr-1 and 17 kg N ha-1 yr-1) may be occurring and confined to the surface 5 cm as part of the WI CRP, our sampling design did not statistically support the desired 80% confidence level. We conclude that usage of statistical

  12. Soil Organic Carbon assessment on two different forest management

    NASA Astrophysics Data System (ADS)

    Fernández Minguillón, Alex; Sauras Yera, Teresa; Vallejo Calzada, Ramón

    2017-04-01

    Soil Organic Carbon assessment on two different forest management. A.F. Minguillón1, T. Sauras1, V.R: Vallejo1. 1 Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Universidad de Barcelona, Avenida Diagonal 643, 03080 Barcelona, Spain. Soils from arid and semiarid zones are characterized by a low organic matter content from scarce plant biomass and it has been proposed that these soils have a big capacity to carbon sequestration. According to IPCC ARS WG2 (2014) report and WG3 draft, increase carbon storage in terrestrial ecosystems has been identified such a potential tool for mitigation and adaptation to climate change. In ecological restoration context improve carbon sequestration is considered a management option with multiple benefits (win-win-win). Our work aims to analyze how the recently developed restoration techniques contributed to increases in terrestial ecosystem carbon storage. Two restoration techniques carried out in the last years have been evaluated. The study was carried out in 6 localities in Valencian Community (E Spain) and organic horizons of two different restoration techniques were evaluated; slash brush and thinning Aleppo pine stands. For each technique, carbon stock and its physical and chemical stability has been analysed. Preliminary results point out restoration zones acts as carbon sink due to (1) the relevant necromass input produced by slash brush increases C stock on the topsoil ;(2) Thinning increase carbon accumulation in vegetation.

  13. Carbon Sequestration by Fruit Trees - Chinese Apple Orchards as an Example

    PubMed Central

    Wu, Ting; Wang, Yi; Yu, Changjiang; Chiarawipa, Rawee; Zhang, Xinzhong; Han, Zhenhai; Wu, Lianhai

    2012-01-01

    Apple production systems are an important component in the Chinese agricultural sector with 1.99 million ha plantation. The orchards in China could play an important role in the carbon (C) cycle of terrestrial ecosystems and contribute to C sequestration. The carbon sequestration capability in apple orchards was analyzed through identifying a set of potential assessment factors and their weighting factors determined by a field model study and literature. The dynamics of the net C sink in apple orchards in China was estimated based on the apple orchard inventory data from 1990s and the capability analysis. The field study showed that the trees reached the peak of C sequestration capability when they were 18 years old, and then the capability began to decline with age. Carbon emission derived from management practices would not be compensated through C storage in apple trees before reaching the mature stage. The net C sink in apple orchards in China ranged from 14 to 32 Tg C, and C storage in biomass from 230 to 475 Tg C between 1990 and 2010. The estimated net C sequestration in Chinese apple orchards from 1990 to 2010 was equal to 4.5% of the total net C sink in the terrestrial ecosystems in China. Therefore, apple production systems can be potentially considered as C sinks excluding the energy associated with fruit production in addition to provide fruits. PMID:22719974

  14. Method for carbon dioxide sequestration

    DOEpatents

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas; Heath, Jason E.

    2015-09-22

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC--CO.sub.2) into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation. This process allows for the immobilization of the injected SC--CO.sub.2 for very long times. The dispersal of scCO2 into small ganglia is accomplished by alternating injection of SC--CO.sub.2 and water. The injection rate is required to be high enough to ensure the SC--CO.sub.2 at the advancing front to be broken into pieces and small enough for immobilization through viscous instability.

  15. Using silviculture to influence carbon sequestration in southern Appalachian spruce-fir forests

    Treesearch

    Patrick T. Moore; R. Justin DeRose; James N. Long; Helga van Miegroet

    2012-01-01

    Enhancement of forest growth through silvicultural modification of stand density is one strategy for increasing carbon (C) sequestration. Using the Fire and Fuels Extension of the Forest Vegetation Simulator, the effects of even-aged, uneven-aged and no-action management scenarios on C sequestration in a southern Appalachian red spruce-Fraser fir forest were modeled....

  16. The role of reforestation in carbon sequestration

    NASA Astrophysics Data System (ADS)

    Nave, L. E.; Walters, B. F.; Hofmeister, K.; Perry, C. H.; Mishra, U.; Domke, G. M.; Swanston, C.

    2017-12-01

    In the United States (U.S.), the maintenance of forest cover is a legal mandate for federally managed forest lands. Reforestation is one option for maintaining forest cover on managed or disturbed lands, and as a land use change can increase forest cover on previously non-forested lands, enhancing carbon (C)-based ecosystem services and functions such as the production of woody biomass for forest products and the mitigation of atmospheric CO2 pollution and climate change. Nonetheless, multiple assessments indicate that reforestation in the U.S. lags behind its potential, with continued ecosystem services and functions at risk if reforestation is not increased. In this context, there is need for multiple independent analyses that quantify the role of reforestation in C sequestration. Here, we report the findings of a large-scale data synthesis aimed at four objectives: 1) estimate C storage in major pools in forest and other land cover types; 2) quantify sources of variation in C pools; 3) compare the impacts of reforestation and afforestation on C pools; 4) assess whether results hold or diverge across ecoregions. Our data-driven analysis provides four key inferences regarding reforestation and other land use impacts on C sequestration. First, soils are the dominant C pool under all land cover types in the U.S., and spatial variation in soil C pool sizes has less to do with land cover than with other factors. Second, where historically cultivated lands are being reforested, topsoils are sequestering significant amounts of C, with the majority of reforested lands yet to reach sequestration capacity (relative to forested baseline). Third, the establishment of woody vegetation delivers immediate to multi-decadal C sequestration benefits in biomass and coarse woody debris pools, with two- to three-fold C sequestration benefits during the first several decades following planting. Fourth, opportunities to enhance C sequestration through reforestation vary among

  17. Prolonged Curvularia endophthalmitis due to organism sequestration.

    PubMed

    Rachitskaya, Aleksandra V; Reddy, Ashvini K; Miller, Darlene; Davis, Janet; Flynn, Harry W; Smiddy, William; Lara, Wilfredo; Lin, Selina; Dubovy, Sander; Albini, Thomas A

    2014-09-01

    Endophthalmitis caused by Curvularia is a rare condition seen after cataract surgery and trauma. The clinical course has not been described previously. To examine the clinical course of 6 postoperative and trauma-related cases of Curvularia endophthalmitis. Retrospective case series. We reviewed the archives of the microbiology laboratory of Bascom Palmer Eye Institute, a tertiary referral hospital, from January 1, 1980, through September 30, 2013, to identify cases of Curvularia endophthalmitis. Data collected included demographic information, the cause of endophthalmitis, presenting features, treatment course, the number of recurrences, the area of organism sequestration, and final visual outcome. Trauma and cataract surgery. Times from the inciting event to presentation of symptoms, diagnosis, and eradication; visual acuity; and identification of the area of sequestration. We identified 6 patients with Curvularia endophthalmitis, including 5 who underwent cataract surgery and 1 after trauma. The diagnosis was established rapidly in the trauma case. In the postoperative cases, the time from the surgery to first symptoms ranged from 2 to 5 months; from the surgery to correct diagnosis, 7 to 24 months; and from the surgery to eradication, 8 to 27 months. Despite aggressive antifungal therapy, eradication of the infection could be achieved only by identification and removal of the nidus of sequestration. The median follow-up was 29.5 months. In cases of endophthalmitis caused by Curvularia, the diagnosis and treatment are often delayed, especially in postoperative cases. The eradication of the organism requires identification and removal of the nidi of sequestration.

  18. Translating National Level Forest Service Goals to Local Level Land Management: Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    McNulty, S.; Treasure, E.

    2017-12-01

    The USDA Forest Service has many national level policies related to multiple use management. However, translating national policy to stand level forest management can be difficult. As an example of how a national policy can be put into action, we examined three case studies in which a desired future condition is evaluated at the national, region and local scale. We chose to use carbon sequestration as the desired future condition because climate change has become a major area of concern during the last decade. Several studies have determined that the 193 million acres of US national forest land currently sequester 11% to 15% of the total carbon emitted as a nation. This paper provides a framework by which national scale strategies for maintaining or enhancing forest carbon sequestration is translated through regional considerations and local constraints in adaptive management practices. Although this framework used the carbon sequestration as a case study, this framework could be used with other national level priorities such as the National Environmental Protection Act (NEPA) or the Endangered Species Act (ESA).

  19. Drivers for spatial variability in agricultural soil organic carbon stocks in Germany

    NASA Astrophysics Data System (ADS)

    Vos, Cora; Don, Axel; Hobley, Eleanor; Prietz, Roland; Heidkamp, Arne; Freibauer, Annette

    2017-04-01

    Soil organic carbon is one of the largest components of the global carbon cycle. It has recently gained importance in global efforts to mitigate climate change through carbon sequestration. In order to find locations suitable for carbon sequestration, and estimate the sequestration potential, however, it is necessary to understand the factors influencing the high spatial variability of soil organic carbon stocks. Due to numerous interacting factors that influence its dynamics, soil organic carbon stocks are difficult to predict. In the course of the German Agricultural Soil Inventory over 2500 agricultural sites were sampled and their soil organic carbon stocks determined. Data relating to more than 200 potential drivers of SOC stocks were compiled from laboratory measurements, farmer questionnaires and climate stations. The aims of this study were to 1) give an overview of soil organic carbon stocks in Germany's agricultural soils, 2) to quantify and explain the influence of explanatory variables on soil organic carbon stocks. Two different machine learning algorithms were used to identify the most important variables and multiple regression models were used to explore the influence of those variables. Models for predicting carbon stocks in different depth increments between 0-100 cm were developed, explaining up to 62% (validation, 98% calibration) of total variance. Land-use, land-use history, clay content and electrical conductivity were main predictors in the topsoil, while bedrock material, relief and electrical conductivity governed the variability of subsoil carbon stocks. We found 32% of all soils to be deeply anthropogenically transformed. The influence of climate related variables was surprisingly small (≤5% of explained variance), while site variables explained a large share of soil carbon variability (46-100% of explained variance), in particular in the subsoil. Thus, the understanding of SOC dynamics at regional scale requires a thorough description

  20. Water Challenges for Geologic Carbon Capture and Sequestration

    PubMed Central

    Friedmann, Samuel J.; Carroll, Susan A.

    2010-01-01

    Carbon capture and sequestration (CCS) has been proposed as a means to dramatically reduce greenhouse gas emissions with the continued use of fossil fuels. For geologic sequestration, the carbon dioxide is captured from large point sources (e.g., power plants or other industrial sources), transported to the injection site and injected into deep geological formations for storage. This will produce new water challenges, such as the amount of water used in energy resource development and utilization and the “capture penalty” for water use. At depth, brine displacement within formations, storage reservoir pressure increases resulting from injection, and leakage are potential concerns. Potential impacts range from increasing water demand for capture to contamination of groundwater through leakage or brine displacement. Understanding these potential impacts and the conditions under which they arise informs the design and implementation of appropriate monitoring and controls, important both for assurance of environmental safety and for accounting purposes. Potential benefits also exist, such as co-production and treatment of water to both offset reservoir pressure increase and to provide local water for beneficial use. PMID:20127328

  1. Quantifying and Mapping the Supply of and Demand for Carbon Storage and Sequestration Service from Urban Trees.

    PubMed

    Zhao, Chang; Sander, Heather A

    2015-01-01

    Studies that assess the distribution of benefits provided by ecosystem services across urban areas are increasingly common. Nevertheless, current knowledge of both the supply and demand sides of ecosystem services remains limited, leaving a gap in our understanding of balance between ecosystem service supply and demand that restricts our ability to assess and manage these services. The present study seeks to fill this gap by developing and applying an integrated approach to quantifying the supply and demand of a key ecosystem service, carbon storage and sequestration, at the local level. This approach follows three basic steps: (1) quantifying and mapping service supply based upon Light Detection and Ranging (LiDAR) processing and allometric models, (2) quantifying and mapping demand for carbon sequestration using an indicator based on local anthropogenic CO2 emissions, and (3) mapping a supply-to-demand ratio. We illustrate this approach using a portion of the Twin Cities Metropolitan Area of Minnesota, USA. Our results indicate that 1735.69 million kg carbon are stored by urban trees in our study area. Annually, 33.43 million kg carbon are sequestered by trees, whereas 3087.60 million kg carbon are emitted by human sources. Thus, carbon sequestration service provided by urban trees in the study location play a minor role in combating climate change, offsetting approximately 1% of local anthropogenic carbon emissions per year, although avoided emissions via storage in trees are substantial. Our supply-to-demand ratio map provides insight into the balance between carbon sequestration supply in urban trees and demand for such sequestration at the local level, pinpointing critical locations where higher levels of supply and demand exist. Such a ratio map could help planners and policy makers to assess and manage the supply of and demand for carbon sequestration.

  2. Quantifying and Mapping the Supply of and Demand for Carbon Storage and Sequestration Service from Urban Trees

    PubMed Central

    Zhao, Chang; Sander, Heather A.

    2015-01-01

    Studies that assess the distribution of benefits provided by ecosystem services across urban areas are increasingly common. Nevertheless, current knowledge of both the supply and demand sides of ecosystem services remains limited, leaving a gap in our understanding of balance between ecosystem service supply and demand that restricts our ability to assess and manage these services. The present study seeks to fill this gap by developing and applying an integrated approach to quantifying the supply and demand of a key ecosystem service, carbon storage and sequestration, at the local level. This approach follows three basic steps: (1) quantifying and mapping service supply based upon Light Detection and Ranging (LiDAR) processing and allometric models, (2) quantifying and mapping demand for carbon sequestration using an indicator based on local anthropogenic CO2 emissions, and (3) mapping a supply-to-demand ratio. We illustrate this approach using a portion of the Twin Cities Metropolitan Area of Minnesota, USA. Our results indicate that 1735.69 million kg carbon are stored by urban trees in our study area. Annually, 33.43 million kg carbon are sequestered by trees, whereas 3087.60 million kg carbon are emitted by human sources. Thus, carbon sequestration service provided by urban trees in the study location play a minor role in combating climate change, offsetting approximately 1% of local anthropogenic carbon emissions per year, although avoided emissions via storage in trees are substantial. Our supply-to-demand ratio map provides insight into the balance between carbon sequestration supply in urban trees and demand for such sequestration at the local level, pinpointing critical locations where higher levels of supply and demand exist. Such a ratio map could help planners and policy makers to assess and manage the supply of and demand for carbon sequestration. PMID:26317530

  3. Carbon storage and sequestration by urban trees in the USA

    Treesearch

    David J. Nowak; Daniel E. Crane

    2002-01-01

    Based on field data from 10 USA cities and national urban tree cover data, it is estimated that urban trees in the coterminous USA currently store 700 million tonnes of carbon ($14,300 million value) with a gross carbon sequestration rate of 22.8 million tC/yr ($460 rnillion/year). Carbon storage within cities ranges From 1.2 million tC in New York, NY, to 19,300 tC in...

  4. [Roles of soil dissolved organic carbon in carbon cycling of terrestrial ecosystems: a review].

    PubMed

    Li, Ling; Qiu, Shao-Jun; Liu, Jing-Tao; Liu, Qing; Lu, Zhao-Hua

    2012-05-01

    Soil dissolved organic carbon (DOC) is an active fraction of soil organic carbon pool, playing an important role in the carbon cycling of terrestrial ecosystems. In view of the importance of the carbon cycling, this paper summarized the roles of soil DOC in the soil carbon sequestration and greenhouse gases emission, and in considering of our present ecological and environmental problems such as soil acidification and climate warming, discussed the effects of soil properties, environmental factors, and human activities on the soil DOC as well as the response mechanisms of the DOC. This review could be helpful to the further understanding of the importance of soil DOC in the carbon cycling of terrestrial ecosystems and the reduction of greenhouse gases emission.

  5. Geological Carbon Sequestration in the Ohio River Valley: An Evaluation of Possible Target Formations

    NASA Astrophysics Data System (ADS)

    Dalton, T. A.; Daniels, J. J.

    2009-12-01

    The development of geological carbon sequestration within the Ohio River Valley is of major interest to the national electricity and coal industries because the Valley is home to a heavy concentration of coal-burning electricity generation plants and the infrastructure is impossible to eliminate in the short-term. It has been determined by Ohio's politicians and citizenry that the continued use of coal in this region until alternative energy supplies are available will be necessary over the next few years. Geologic sequestration is the only possible means of keeping the CO2 out of the atmosphere in the region. The cost of the sequestration effort greatly decreases CO2 emissions by sequestering CO2 directly on site of these plants, or by minimizing the distance between fossil-fueled generation and sequestration (i.e., by eliminating the cost of transportation of supercritical CO2 from plant to sequestration site). Thus, the practicality of CO2 geologic sequestration within the Ohio River Valley is central to the development of such a commercial effort. Though extensive work has been done by the Regional Partnerships of the DOE/NETL in the characterization of general areas for carbon sequestration throughout the nation, few projects have narrowed their focus into a single geologic region in order to evaluate the sites of greatest commercial potential. As an undergraduate of the Earth Sciences at Ohio State, I have engaged in thorough research to obtain a detailed understanding of the geology of the Ohio River Valley and its potential for commercial-scale carbon sequestration. Through this research, I have been able to offer an estimate of the areas of greatest interest for CO2 geologic sequestration. This research has involved petrological, mineralogical, geochemical, and geophysical analyses of four major reservoir formations within Ohio—the Rose Run, the Copper Ridge, the Clinton, and the Oriskany—along with an evaluation of the possible effects of injection

  6. Dynamics of biomass and carbon sequestration across a chronosequence of masson pine plantations

    NASA Astrophysics Data System (ADS)

    Justine, Meta Francis; Yang, Wanqin; Wu, Fuzhong; Khan, Muhammad Naeem

    2017-03-01

    The changes of forest biomass stock and carbon (C) sequestration with stand ages at fixed intervals in the different vegetation components remain unknown. Using the masson pine (Pinus massoniana) relative growth equation, biomass carbon stocks were obtained in four masson pine plantations at 12 year intervals (3 years, 15 years, 27 years, and 39 years). Meanwhile, the changes in soil organic C (SOC) stock with stand ages were also estimated. The biomass stock varied from 1.41 to 265.33 Mg ha-1, 6.87 to 7.49 Mg ha-1, and 2.66 to 4.86 Mg ha-1 in the tree, shrub, and herb layers. Carbon concentrations in plant tissues were 51.6%, 39.0%, and 42.2% in the tree, shrub, and herb layers. The aboveground biomass C contributed 81.7% and 60.5% in the tree and shrub layers, and the root to shoot (R/S) ratio of the tree and shrub layer biomass averaged 0.23 and 0.69. Biomass C stock increased significantly (p < 0.05) with forest age, whereas the changes in biomass accumulation rate decreased significantly (p < 0.05). The annual net C sequestration increased with age from 0.47 to 9.83 Mg ha-1 yr-1 in the tree layer but decreased in the shrub and herb layers. The SOC content decreased with soil depth but increased with age, whereas the SOC stock increased with depth and age. However, the total ecosystem C stock increased significantly (p < 0.05) with stand age suggesting that age is the controlling factor of photosynthetic and biological processes and thus changes in biomass accumulation and C sequestration in masson pine plantations. Therefore, in-depth studies are needed for continuous monitoring of the changes in nutrients and elements cycling with stand ages in this forest ecosystem.

  7. Assessing carbon stocks, carbon sequestration, and greenhouse-gas fluxes in ecosystems of the United States under present conditions and future scenarios

    USGS Publications Warehouse

    Zhu, Zhi-Liang; Stackpoole, Sarah

    2011-01-01

    The Energy Independence and Security Act of 2007 (EISA) requires the U.S. Department of the Interior (DOI) to develop a methodology and conduct an assessment of carbon storage, carbon sequestration, and greenhouse-gas (GHG) fluxes in the Nation's ecosystems. The U.S. Geological Survey (USGS) has developed and published the methodology (U.S. Geological Survey Scientific Investigations Report 2010-5233) and has assembled an interdisciplinary team of scientists to conduct the assessment over the next three to four years, commencing in October 2010. The assessment will fulfill specific requirements of the EISA by (1) quantifying, measuring, and monitoring carbon sequestration and GHG fluxes using national datasets and science tools such as remote sensing, and biogeochemical and hydrological models, (2) evaluating a range of management and restoration activities for their effects on carbon-sequestration capacity and the reduction of GHG fluxes, and (3) assessing effects of climate change and other controlling processes (including wildland fires) on carbon uptake and GHG emissions from ecosystems.

  8. Soil carbon sequestration potential in semi-arid grasslands in the conservation reserve program

    USDA-ARS?s Scientific Manuscript database

    The Conservation Reserve Program (CRP) in the USA plays a major role in carbon (C) sequestration to help mitigate rising CO2 levels and climate change. The Southern High Plains (SHP) region contains N900.000 ha enrolled in CRP, but a regionally specific C sequestration rate has not been studied, and...

  9. Potential soil carbon sequestration in overgrazed grassland ecosystems

    NASA Astrophysics Data System (ADS)

    Conant, Richard T.; Paustian, Keith

    2002-12-01

    Excessive grazing pressure is detrimental to plant productivity and may lead to declines in soil organic matter. Soil organic matter is an important source of plant nutrients and can enhance soil aggregation, limit soil erosion, and can also increase cation exchange and water holding capacities, and is, therefore, a key regulator of grassland ecosystem processes. Changes in grassland management which reverse the process of declining productivity can potentially lead to increased soil C. Thus, rehabilitation of areas degraded by overgrazing can potentially sequester atmospheric C. We compiled data from the literature to evaluate the influence of grazing intensity on soil C. Based on data contained within these studies, we ascertained a positive linear relationship between potential C sequestration and mean annual precipitation which we extrapolated to estimate global C sequestration potential with rehabilitation of overgrazed grassland. The GLASOD and IGBP DISCover data sets were integrated to generate a map of overgrazed grassland area for each of four severity classes on each continent. Our regression model predicted losses of soil C with decreased grazing intensity in drier areas (precipitation less than 333 mm yr-1), but substantial sequestration in wetter areas. Most (93%) C sequestration potential occurred in areas with MAP less than 1800 mm. Universal rehabilitation of overgrazed grasslands can sequester approximately 45 Tg C yr-1, most of which can be achieved simply by cessation of overgrazing and implementation of moderate grazing intensity. Institutional level investments by governments may be required to sequester additional C.

  10. Carbon dioxide (CO2) sequestration in deep saline aquifers and formations: Chapter 3

    USGS Publications Warehouse

    Rosenbauer, Robert J.; Thomas, Burt

    2010-01-01

    Carbon dioxide (CO2) capture and sequestration in geologic media is one among many emerging strategies to reduce atmospheric emissions of anthropogenic CO2. This chapter looks at the potential of deep saline aquifers – based on their capacity and close proximity to large point sources of CO2 – as repositories for the geologic sequestration of CO2. The petrochemical characteristics which impact on the suitability of saline aquifers for CO2 sequestration and the role of coupled geochemical transport models and numerical tools in evaluating site feasibility are also examined. The full-scale commercial CO2 sequestration project at Sleipner is described together with ongoing pilot and demonstration projects.

  11. Carbon Sequestration in Wetland Soils of the Northern Gulf of Mexico Coastal Region

    EPA Science Inventory

    Coastal wetlands play an important but complex role in the global carbon cycle, contributing to the ecosystem service of greenhouse gas regulation through carbon sequestration. Although coastal wetlands occupy a small percent of the total US land area, their potential for carbon...

  12. Assessment on the rates and potentials of soil organic carbon sequestration in agricultural lands in Japan using a process-based model and spatially explicit land-use change inventories - Part 2: Future potentials

    NASA Astrophysics Data System (ADS)

    Yagasaki, Y.; Shirato, Y.

    2014-08-01

    Future potentials of the sequestration of soil organic carbon (SOC) in agricultural lands in Japan were estimated using a simulation system we recently developed to simulate SOC stock change at country-scale under varying land-use change, climate, soil, and agricultural practices, in a spatially explicit manner. Simulation was run from 1970 to 2006 with historical inventories, and subsequently to 2020 with future scenarios of agricultural activity comprised of various agricultural policy targets advocated by the Japanese government. Furthermore, the simulation was run subsequently until 2100 while forcing no temporal changes in land-use and agricultural activity to investigate duration and course of SOC stock change at country scale. A scenario with an increased rate of organic carbon input to agricultural fields by intensified crop rotation in combination with the suppression of conversion of agricultural lands to other land-use types was found to have a greater reduction of CO2 emission by enhanced soil carbon sequestration, but only under a circumstance in which the converted agricultural lands will become settlements that were considered to have a relatively lower rate of organic carbon input. The size of relative reduction of CO2 emission in this scenario was comparable to that in another contrasting scenario (business-as-usual scenario of agricultural activity) in which a relatively lower rate of organic matter input to agricultural fields was assumed in combination with an increased rate of conversion of the agricultural fields to unmanaged grasslands through abandonment. Our simulation experiment clearly demonstrated that net-net-based accounting on SOC stock change, defined as the differences between the emissions and removals during the commitment period and the emissions and removals during a previous period (base year or base period of Kyoto Protocol), can be largely influenced by variations in future climate. Whereas baseline-based accounting, defined

  13. Development of an assessment methodology for hydrocarbon recovery potential using carbon dioxide and associated carbon sequestration-Workshop findings

    USGS Publications Warehouse

    Verma, Mahendra K.; Warwick, Peter D.

    2011-01-01

    The Energy Independence and Security Act of 2007 (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2) and requested that the USGS estimate the "potential volumes of oil and gas recoverable by injection and sequestration of industrial carbon dioxide in potential sequestration formations" (121 Stat. 1711). The USGS developed a noneconomic, probability-based methodology to assess the Nation's technically assessable geologic storage resources available for sequestration of CO2 (Brennan and others, 2010) and is currently using the methodology to assess the Nation's CO2 geologic storage resources. Because the USGS has not developed a methodology to assess the potential volumes of technically recoverable hydrocarbons that could be produced by injection and sequestration of CO2, the Geologic Carbon Sequestration project initiated an effort in 2010 to develop a methodology for the assessment of the technically recoverable hydrocarbon potential in the sedimentary basins of the United States using enhanced oil recovery (EOR) techniques with CO2 (CO2-EOR). In collaboration with Stanford University, the USGS hosted a 2-day CO2-EOR workshop in May 2011, attended by 28 experts from academia, natural resource agencies and laboratories of the Federal Government, State and international geologic surveys, and representatives from the oil and gas industry. The geologic and the reservoir engineering and operations working groups formed during the workshop discussed various aspects of geology, reservoir engineering, and operations to make recommendations for the methodology.

  14. Where is the carbon? Carbon sequestration potential from private forestland in the Southern United States

    Treesearch

    Christopher S. Galik; Brian C. Murray; D. Evan Mercer

    2013-01-01

    Uncertainty surrounding the future supply of timber in the southern United States prompted the question, “Where is all the wood?” (Cubbage et al. 1995). We ask a similar question about the potential of southern forests to mitigate greenhouse gas (GHG) emissions by sequestering carbon. Because significant carbon sequestration potential occurs on individual nonindustrial...

  15. Stabilization by hydrophobic protection as a molecular mechanism for organic carbon sequestration in maize-amended rice paddy soils.

    PubMed

    Song, X Y; Spaccini, R; Pan, G; Piccolo, A

    2013-08-01

    The hydrophobic components of soil organic matter (SOM) are reckoned to play an important role in the stabilization of soil organic carbon (SOC). The contribution of hydrophobic substances to SOC sequestration was evaluated in four different paddy soils in the South of China, following a 6-month incubation experiment with maize straw amendments. Soil samples included: a well developed paddy soil (TP) derived from clayey lacustrine deposits in the Tai Lake plain of Jiangsu; an acid clayey paddy soil (RP) derived from red earth in the rolling red soil area of Jiangxi; a weakly developed neutral paddy soil (PP) formed on Jurassic purple shale from Chongq; and a calcic Fluvisol (MS) derived from riverine sediments from a wetland along the Yangtze valley of Anhui, China. The SOC molecular composition after 30 and 180 days of incubation, was determined by off-line thermochemolysis followed by gas chromatography-mass spectrometry analysis. Lignin, lipids and carbohydrates were the predominant thermochemolysis products released from the treated soils. A selective preservation of hydrophobic OM, including lignin and lipids, was shown in maize amended soils with prolonged incubation. The decomposition of lignin and lipids was significantly slower in the TP and RP soils characterized by a larger content of extractable iron oxyhydrates (Fed) and lower pH. The overall increase in hydrophobic substances in maize incubated samples was correlated, positively, with total content of clay and Fed, and, negatively, with soil pH. Moreover, yields of both lignin and lipid components showed a significant relationship with SOC increase after incubation. These findings showed that the larger the lipid and lignin content of SOM, the greater was the stability of SOC, thereby suggesting that OM hydrophobic components may have an essential role in controlling the processes of OC sequestration in paddy soils of South China. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Probabilistic evaluation of shallow groundwater resources at a hypothetical carbon sequestration site

    DOE PAGES

    Dai, Zhenxue; Keating, Elizabeth; Bacon, Diana H.; ...

    2014-03-07

    Carbon sequestration in geologic reservoirs is an important approach for mitigating greenhouse gases emissions to the atmosphere. This study first develops an integrated Monte Carlo method for simulating CO 2 and brine leakage from carbon sequestration and subsequent geochemical interactions in shallow aquifers. Then, we estimate probability distributions of five risk proxies related to the likelihood and volume of changes in pH, total dissolved solids, and trace concentrations of lead, arsenic, and cadmium for two possible consequence thresholds. The results indicate that shallow groundwater resources may degrade locally around leakage points by reduced pH and increased total dissolved solids (TDS).more » The volumes of pH and TDS plumes are most sensitive to aquifer porosity, permeability, and CO 2 and brine leakage rates. The estimated plume size of pH change is the largest, while that of cadmium is the smallest among the risk proxies. Plume volume distributions of arsenic and lead are similar to those of TDS. The scientific results from this study provide substantial insight for understanding risks of deep fluids leaking into shallow aquifers, determining the area of review, and designing monitoring networks at carbon sequestration sites.« less

  17. Vegetation carbon sequestration in Chinese forests from 2010 to 2050.

    PubMed

    He, Nianpeng; Wen, Ding; Zhu, Jianxing; Tang, Xuli; Xu, Li; Zhang, Li; Hu, Huifeng; Huang, Mei; Yu, Guirui

    2017-04-01

    Forests store a large part of the terrestrial vegetation carbon (C) and have high C sequestration potential. Here, we developed a new forest C sequestration (FCS) model based on the secondary succession theory, to estimate vegetation C sequestration capacity in China's forest vegetation. The model used the field measurement data of 3161 forest plots and three future climate scenarios. The results showed that logistic equations provided a good fit for vegetation biomass with forest age in natural and planted forests. The FCS model has been verified with forest biomass data, and model uncertainty is discussed. The increment of vegetation C storage in China's forest vegetation from 2010 to 2050 was estimated as 13.92 Pg C, while the average vegetation C sequestration rate was 0.34 Pg C yr -1 with a 95% confidence interval of 0.28-0.42 Pg C yr -1 , which differed significantly between forest types. The largest contributor to the increment was deciduous broadleaf forest (37.8%), while the smallest was deciduous needleleaf forest (2.7%). The vegetation C sequestration rate might reach its maximum around 2020, although vegetation C storage increases continually. It is estimated that vegetation C sequestration might offset 6-8% of China's future emissions. Furthermore, there was a significant negative relationship between vegetation C sequestration rate and C emission rate in different provinces of China, suggesting that developed provinces might need to compensate for undeveloped provinces through C trade. Our findings will provide valuable guidelines to policymakers for designing afforestation strategies and forest C trade in China. © 2016 John Wiley & Sons Ltd.

  18. Reactive transport modeling of stable carbon isotope fractionation in a multi-phase multi-component system during carbon sequestration

    DOE PAGES

    Zhang, Shuo; DePaolo, Donald J.; Zheng, Liange; ...

    2014-12-31

    Carbon stable isotopes can be used in characterization and monitoring of CO 2 sequestration sites to track the migration of the CO 2 plume and identify leakage sources, and to evaluate the chemical reactions that take place in the CO 2-water-rock system. However, there are few tools available to incorporate stable isotope information into flow and transport codes used for CO 2 sequestration problems. We present a numerical tool for modeling the transport of stable carbon isotopes in multiphase reactive systems relevant to geologic carbon sequestration. The code is an extension of the reactive transport code TOUGHREACT. The transport modulemore » of TOUGHREACT was modified to include separate isotopic species of CO 2 gas and dissolved inorganic carbon (CO 2, CO 3 2-, HCO 3 -,…). Any process of transport or reaction influencing a given carbon species also influences its isotopic ratio. Isotopic fractionation is thus fully integrated within the dynamic system. The chemical module and database have been expanded to include isotopic exchange and fractionation between the carbon species in both gas and aqueous phases. The performance of the code is verified by modeling ideal systems and comparing with theoretical results. Efforts are also made to fit field data from the Pembina CO 2 injection project in Canada. We show that the exchange of carbon isotopes between dissolved and gaseous carbon species combined with fluid flow and transport, produce isotopic effects that are significantly different from simple two-component mixing. These effects are important for understanding the isotopic variations observed in field demonstrations.« less

  19. Mapping the Mineral Resource Base for Mineral Carbon-Dioxide Sequestration in the Conterminous United States

    USGS Publications Warehouse

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    This database provides information on the occurrence of ultramafic rocks in the conterminous United States that are suitable for sequestering captured carbon dioxide in mineral form, also known as mineral carbon-dioxide sequestration. Mineral carbon-dioxide sequestration is a proposed greenhouse gas mitigation technology whereby carbon dioxide (CO2) is disposed of by reacting it with calcium or magnesium silicate minerals to form a solid magnesium or calcium carbonate product. The technology offers a large capacity to permanently store CO2 in an environmentally benign form via a process that takes little effort to verify or monitor after disposal. These characteristics are unique among its peers in greenhouse gas disposal technologies. The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral CO2 sequestration is locating the magnesium-silicate bedrock available to sequester the carbon dioxide. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made in the United States that details their geographical distribution and extent, nor has anyone evaluated their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the conterminous United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. The focus of our national-scale map is entirely on ultramafic rock types, which typically consist primarily of olivine- and serpentine-rich rocks. These rock types are potentially suitable as source material for mineral CO2 sequestration.

  20. Microbial community changes as a possible factor controlling carbon sequestration in subsoil

    NASA Astrophysics Data System (ADS)

    Strücker, Juliane; Jörgensen, Rainer Georg

    2015-04-01

    In order to gain more knowledge regarding the microbial community and their influence on carbon sequestration in subsoil two depth profiles with different soil organic carbon (SOC) concentrations were sampled. The SOC concentrations developed naturally due to deposition and erosion. This experiment offers the opportunity to investigate to which extend natural SOC availability or other subsoil specific conditions influence the composition and the functional diversity of the microbial community and in return if there is any evidence how the microbial community composition affects carbon sequestration under these conditions. Soil samples were taken at four different depths on two neighbouring arable sites; one Kolluvisol with high SOC concentrations (8-12 g/kg) throughout the profile and one Luvisol with low SOC concentrations (3-4 g/kg) below 30 cm depth. The multi substrate induced respiration (MSIR) method was used to identify shifts in the functional diversity of the microbial community along the depth profiles. Amino sugars Muramic Acid and Glucosamine were measured as indicators for bacterial and fungal residues and ergosterol was determined as marker for saprotrophic fungi. The results of the discriminant analysis of the respiration values obtained from the 17 substrates used in the MSIR show that the substrate use in subsoil is different from the substrate use in topsoil. The amino sugar analysis and the ratio of ergosterol to microbial biomass C indicate that the fungal dominance of the microbial community decreases with depth. The results from this study support previous findings, which also observed decreasing fungal dominance with depth. Furthermore the MSIR approach shows clearly that not only the composition of the microbial community but also their substrate use changes with depth. Thus, a different microbial community with altered substrate requirements could be an important reason for enhanced carbon sequestration in subsoil. The fact that the MSIR

  1. Organic carbon storage change in China's urban landfills from 1978-2014

    NASA Astrophysics Data System (ADS)

    Ge, Shidong; Zhao, Shuqing

    2017-10-01

    China has produced increasingly large quantities of waste associated with its accelerated urbanization and economic development and deposited these wastes into landfills, potentially sequestering carbon. However, the magnitude of the carbon storage in China’s urban landfills and its spatial and temporal change remain unclear. Here, we estimate the total amount of organic carbon (OC) stored in China's urban landfills between 1978 and 2014 using a first order organic matter decomposition model and data compiled from literature review and statistical yearbooks. Our results show that total OC stored in China’s urban landfills increased nearly 68-fold from the 1970s to the 2010s, and reached 225.2-264.5 Tg C (95% confidence interval, hereafter) in 2014. Construction waste was the largest OC pool (128.4-157.5 Tg C) in 2014, followed by household waste (67.7-83.8 Tg C), and sewage sludge was the least (19.7-34.1 Tg C). Carbon stored in urban landfills accounts for more than 10% of the country’s carbon stocks in urban ecosystems. The annual increase (i.e. sequestration rate) of OC in urban landfills in the 2010s (25.1 ± 4.3 Tg C yr-1, mean ± 2SD, hereafter) is equivalent to 1% of China's carbon emissions from fossil fuel combustion and cement production during the same period, but represents about 9% of the total terrestrial carbon sequestration in the country. Our study clearly indicates that OC dynamics in landfills should not be neglected in regional to national carbon cycle studies as landfills not only account for a substantial part of the carbon stored in urban ecosystems but also have a respectable contribution to national carbon sequestration.

  2. Soil carbon sequestration potential for "grain for green" project in Loess Plateau, China

    USGS Publications Warehouse

    Chang, R.; Fu, B.; Liu, Gaisheng; Liu, S.

    2011-01-01

    Conversion of cropland into perennial vegetation land can increase soil organic carbon (SOC) accumulation, which might be an important mitigation measure to sequester carbon dioxide from the atmosphere. The “Grain for Green” project, one of the most ambitious ecological programmes launched in modern China, aims at transforming the low-yield slope cropland into grassland and woodland. The Loess Plateau in China is the most important target of this project due to its serious soil erosion. The objectives of this study are to answer three questions: (1) what is the rate of the SOC accumulation for this “Grain for Green” project in Loess Plateau? (2) Is there a difference in SOC sequestration among different restoration types, including grassland, shrub and forest? (3) Is the effect of restoration types on SOC accumulation different among northern, middle and southern regions of the Loess Plateau? Based on analysis of the data collected from the literature conducted in the Loess Plateau, we found that SOC increased at a rate of 0.712 TgC/year in the top 20 cm soil layer for 60 years under this project across the entire Loess Plateau. This was a relatively reliable estimation based on current data, although there were some uncertainties. Compared to grassland, forest had a significantly greater effect on SOC accumulation in middle and southern Loess Plateau but had a weaker effect in the northern Loess Plateau. There were no differences found in SOC sequestration between shrub and grassland across the entire Loess Plateau. Grassland had a stronger effect on SOC sequestration in the northern Loess Plateau than in the middle and southern regions. In contrast, forest could increase more SOC in the middle and southern Loess Plateau than in the northern Loess Plateau, whereas shrub had a similar effect on SOC sequestration across the Loess Plateau. Our results suggest that the “Grain for Green” project can significantly increase the SOC storage in Loess Plateau

  3. Organic carbon storage change in China's urban landfills from 1978 to 2014

    NASA Astrophysics Data System (ADS)

    Ge, S.; Zhao, S.

    2017-12-01

    China has produced increasingly large quantities of waste associated with her accelerated urbanization and economic development and deposited these wastes into landfills potentially sequestering carbon. However, the magnitude of the carbon storage in China's urban landfills and its spatial and temporal change remain unclear. Here, we estimate the total amount of organic carbon (OC) stored in China's urban landfills between 1978 and 2014 using a first order organic matter decomposition model and data compiled from literature review and statistical yearbooks. Our results show that total OC stored in China's urban landfills increased nearly 68 folds from the 1970s to the 2010s, and reached 225.2 - 264.5 Tg C (95% confidence interval, hereafter) in 2014. Construction waste was the largest OC pool (128.4 - 157.5 Tg C) in 2014, followed by household waste (67.7 - 83.8 Tg C), and sewage sludge was the least (19.7 - 34.1 Tg C). Carbon stored in urban landfills accounts for more than 10% of the country's carbon stocks in urban ecosystems. The annual increase (i.e., sequestration rate) of OC in urban landfills in the 2010s (25.1 ± 4.3 Tg C yr-1, mean±2SD, hereafter) is equivalent to 1% of China's carbon emissions from fossil fuel combustion and cement production during the same period, but represents about 9% of the total terrestrial carbon sequestration in the country. Our study clearly indicates that OC dynamics in landfills should not be neglected in regional to national carbon cycle studies as landfills not only account for a substantial part of the carbon stored in urban ecosystems but also contribute respectably to national carbon sequestration.

  4. Carbon Sequestration and Nitrogen Mineralization in Soil Cooperated with Organic Composts and Bio-char During Corn (Zea mays) Cultivation

    NASA Astrophysics Data System (ADS)

    Shin, Joung-Du; Lee, Sun-Ill; Park, Wu-Gyun; Choi, Yong-Su; Hong, Seong-Gil; Park, Sang-Won

    2014-05-01

    Objectives of this study were to estimate the carbon sequestration and to evaluate nitrogen mineralization and nitrification in soils cooperated with organic composts and bio-char during corn cultivation. For the experiment, the soil used in this study was clay loam types, and application rates of chemical fertilizer and bio-char were recommended amount after soil test and 2 % to soil weight, respectively. The soil samples were periodically taken at every 15 day intervals during the experimental periods. The treatments were consisted of non-application, cow manure compost, pig manure compost, swine digestate from aerobic digestion system, their bio-char cooperation. For the experimental results, residual amount of inorganic carbon was ranged from 51 to 208kg 10a-1 in soil only cooperated with different organic composts. However it was estimated to be highest at 208kg 10a-1 in the application plot of pig manure compost. In addition to bio-char application, it was ranged from 187.8 to 286kg 10a-1, but was greatest accumulated at 160.3kg 10a-1 in the application plot of cow manure compost. For nitrogen mineralization and nitrification rates, it was shown that there were generally low in the soil cooperated with bio-char compared to the only application plots of different organic composts except for 71 days after sowing. Also, they were observed to be highest in the application plot of swine digestate from aerobic digestion system. For the loss of total inorganic carbon (TIC) by run-off water, it was ranged from 0.18 to 0.36 kg 10a-1 in the different treatment plots. Also, with application of bio-char, total nitrogen was estimated to be reduced at 0.42(15.1%) and 0.38(11.8%) kg 10a-1 in application plots of the pig manure compost and aerobic digestate, respectively.

  5. Terrestrial Carbon Sequestration in National Parks: Values for the Conterminous United States

    USGS Publications Warehouse

    Richardson, Leslie A.; Huber, Christopher; Zhu, Zhi-Liang; Koontz, Lynne

    2015-01-01

    Lands managed by the National Park Service (NPS) provide a wide range of beneficial services to the American public. This study quantifies the ecosystem service value of carbon sequestration in terrestrial ecosystems within NPS units in the conterminous United States for which data were available. Combining annual net carbon balance data with spatially explicit NPS land unit boundaries and social cost of carbon estimates, this study calculates the net metric tons of carbon dioxide sequestered annually by park unit under baseline conditions, as well as the associated economic value to society. Results show that, in aggregate, NPS lands in the conterminous United States are a net carbon sink, sequestering more than 14.8 million metric tons of carbon dioxide annually. The associated societal value of this service is estimated at approximately $582.5 million per year. While this analysis provides a broad overview of the annual value of carbon sequestration on NPS lands averaged over a five year baseline period, it should be noted that carbon fluxes fluctuate from year to year, and there can be considerable variation in net carbon balance and its associated value within a given park unit. Future research could look in-depth at the spatial heterogeneity of carbon flux within specific NPS land units.

  6. Technical Report on Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bill Stanley; Sandra Brown; Zoe Kant

    2009-01-07

    The Nature Conservancy participated in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project was 'Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration'. The objectives of the project were to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providingmore » new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Final Technical Report discusses the results of the six tasks that The Nature Conservancy undertook to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between July 1st 2001 and July 10th 2008. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool. The project occurred in two phases. The first was a focused exploration of specific carbon measurement and monitoring methodologies and pre-selected carbon sequestration opportunities. The second was a more systematic and comprehensive approach to compare various competing measurement and monitoring methodologies, and assessment of a variety of carbon sequestration opportunities in order to find those that are the lowest cost with the greatest combined carbon and other

  7. Climate Controls on Carbon Sequestration in Eastern North America

    NASA Technical Reports Server (NTRS)

    Peteet, D. M.; Renik, B.; Maenza-Gmeich, T.; Kurdyla, D.; Guilderson, T.

    2002-01-01

    Mid-latitude forest ecosystems have been proposed as a "missing sink" today. The role of soils (including wetlands) in this proposed sink is a very important unknown. In order to make estimates of future climate change effects on carbon storage, we can examine past wetland carbon sequestration. How did past climate change affect net wetland carbon storage? We present long-term data from existing wetland sites used for paleoclimate reconstruction to assess the net carbon storage in wetland over the last 15000 years. During times of colder and wetter climate, many mid-latitude sites show increases in carbon storage, while past warmer, drier climates produced decreases in storage. Comparison among bog, fen, swamp, and tidal marsh are demonstrated for the Hudson Valley region.

  8. Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility.

    PubMed

    Bolan, N S; Kunhikrishnan, A; Choppala, G K; Thangarajan, R; Chung, J W

    2012-05-01

    There have been increasing interests in the conversion of organic residues into biochars in order to reduce the rate of decomposition, thereby enhancing carbon (C) sequestration in soils. However energy is required to initiate the pyrolysis process during biochar production which can also lead to the release of greenhouse gasses. Alternative methods can be used to stabilize C in composts and other organic residues without impacting their quality. The objectives of this study include: (i) to compare the rate of decomposition among various organic amendments and (ii) to examine the effect of clay materials on the stabilization of C in organic amendments. The decomposition of a number of organic amendments (composts and biochars) was examined by monitoring the release of carbon-dioxide using respiration experiments. The results indicated that the rate of decomposition as measured by half life (t(1/2)) varied between the organic amendments and was higher in sandy soil than in clay soil. The half life value ranged from 139 days in the sandy soil and 187 days in the clay soil for poultry manure compost to 9989 days for green waste biochar. Addition of clay materials to compost decreased the rate of decomposition, thereby increasing the stabilization of C. The half life value for poultry manure compost increased from 139 days to 620, 806 and 474 days with the addition of goethite, gibbsite and allophane, respectively. The increase in the stabilization of C with the addition of clay materials may be attributed to the immobilization of C, thereby preventing it from microbial decomposition. Stabilization of C in compost using clay materials did not impact negatively the value of composts in improving soil quality as measured by potentially mineralizable nitrogen and microbial biomass carbon in soil. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Biotic and abiotic effects on CO2 sequestration during microbially-induced calcium carbonate precipitation.

    PubMed

    Okyay, Tugba Onal; Rodrigues, Debora F

    2015-03-01

    In this study, CO2 sequestration was investigated through the microbially-induced calcium carbonate precipitation (MICP) process with isolates obtained from a cave called 'Cave Without A Name' (Boerne, TX, USA) and the Pamukkale travertines (Denizli, Turkey). The majority of the bacterial isolates obtained from these habitats belonged to the genera Sporosarcina, Brevundimonas, Sphingobacterium and Acinetobacter. The isolates were investigated for their capability to precipitate calcium carbonate and sequester CO2. Biotic and abiotic effects of CO2 sequestration during MICP were also investigated. In the biotic effect, we observed that the rate and concentration of CO2 sequestered was dependent on the species or strains. The main abiotic factors affecting CO2 sequestration during MICP were the pH and medium components. The increase in pH led to enhanced CO2 sequestration by the growth medium. The growth medium components, on the other hand, were shown to affect both the urease activity and CO2 sequestration. Through the Plackett-Burman experimental design, the most important growth medium component involved in CO2 sequestration was determined to be urea. The optimized medium composition by the Plackett-Burman design for each isolate led to a statistically significant increase, of up to 148.9%, in CO2 uptake through calcification mechanisms. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Eelgrass Blue Carbon-Quantification of Carbon Stocks and Sequestration Rates in Zostera Marina Beds in the Salish Sea

    NASA Astrophysics Data System (ADS)

    Lutz, M. D.; Rybczyk, J.; Poppe, K.; Johnson, C.; Kaminsky, M.; Lanphear, M.

    2017-12-01

    Seagrass meadows provide more than habitat, biodiversity support, wave abatement, and water quality improvement; they help mitigate climate change by taking up and storing (sequestering) carbon (C), reportedly at rates only surpassed worldwide by salt marsh and mangrove ecosystems. Now that their climate mitigation capacity has earned seagrass ecosystems a place in the Verified Carbon Standard voluntary greenhouse gas program, accurate ecosystem carbon accounting is essential. Though seagrasses vary in carbon storage and accumulation greatly across species and geography, the bulk of data included in calculating global averages involves tropical and subtropical seagrasses. We know little regarding carbon stocks nor sequestration rates for eelgrass (Zostera marina) meadows in the Pacific Northwest. The intent of our study was to quantify carbon stocks and sequestration rates in the central Salish Sea of Washington State. We gathered sediment cores over three bays, as close to 1 m in depth as possible, both on foot and while scuba diving. We measured bulk density, carbon concentration, carbon stock, grain size, and carbon accumulation rate with depth. Results from our study show lower estimated Corg concentration (mean = 0.39% C, SE=0.01, range=0.11-1.75, SE=0.01), Corg stock (mean=24.46 Mg ha-1, SE=0.00, range=16.31-49.99.70), and C sequestration rates (mean=33.96 g m-2yr-1, range=11.4-49.5) than those reported in published studies from most other locations. Zostera marina is highly productive, yet does not seem to have the capacity to store C in its sediments like seagrasses in warmer climes. These data have implications in carbon market trading, when determining appropriate seagrass restoration site dimensions to offset emissions from transportation, industry, and seagrass habitat disturbance. Awareness of lower rates could prevent underestimating the area appropriate for mitigation or restoration.

  11. Soil quality and carbon sequestration in a reclaimed coal mine spoil of Jharia coalfield, India

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sangeeta; Masto, Reginald; Ram, Lal

    2016-04-01

    Revegetation of coal mine spoil helps in carbon storage and the success of remediation depend on the selection of appropriate tree species. A study was conducted at the coalmine overburden dumps of Jharia Coalfield, Dhanbad, India to evaluate the impact of revegetation on the overall soil quality and carbon sequestration. Morphological parameters (tree height, diameter at breast height, tree biomass, wood specific gravity) of the dominant tree species (Acacia auriculiformis, Cassia siamea, Dalbergia sissoo and Leucaena leucocephala) growing on the mine spoil was recorded. Mine spoil samples were collected under the canopy cover of different tree species and analyzed for soil physical, chemical, and biological parameters. In general reclaimed sites had better soil quality than the reference site. For instance, D. sissoo and C. siamea improved soil pH (+28.5%, +27.9%), EC (+15.65%, +19%), cation exchange capacity (+58.7%, +52.3%), organic carbon (+67.5%, +79.5%), N (+97.2%, +75.7%), P (+98.2%, +76.9%), K (+31.8%, +37.4%), microbial biomass carbon (+143%, +164%) and dehydrogenase activity (+228%, +262%) as compared to the unreclaimed reference coal mine site. The concentration of polycyclic aromatic hydrocarbons (PAHs) decreased significantly in the reclaimed site than the reference spoil, C. siamea was found to be more promising for PAH degradation. The overall impact of tree species on the quality of reclaimed mine spoil cannot be assessed by individual soil parameters, as most of the parameters are interlinked and difficult to interpret. However, combination of soil properties into an integrated soil quality index provides a more meaningful assessment of reclamation potential of tree species. Principal component analysis (PCA) was used to identify key mine soil quality indicators to develop a soil quality index (SQI). Coarse fraction, pH, EC, soil organic carbon, P, Ca, S, and dehydrogenase activity were the most critical properties controlling growth of tree

  12. Estimates of Carbon Sequestration in Tidal Coastal Wetlands Along the US east Coast

    EPA Science Inventory

    Globally, salt marshes are reported to sequester carbon (210 g C m-2 y -1), and along with mangroves in the US, they are reported to account for 1–2 % of the carbon sink for the conterminous US. Using the published salt marsh carbon sequestration rate and National Wetland Invent...

  13. Assessing the Impact of Afforestation on Soil Organic C Sequestration by Means of Sequential Density Fractionation

    PubMed Central

    Cong, Weiwei; Ren, Tusheng; Li, Baoguo

    2015-01-01

    Afforestation is a prevalent practice carried out for soil recovery and carbon sequestration. Improved understanding of the effects of afforestation on soil organic carbon (SOC) content and dynamics is necessary to identify the particular processes of soil organic matter (SOM) formation and/or decomposition that result from afforestation. To elucidate these mechanisms, we have used a sequential density fractionation technique to identify the transfer mechanisms of forest derived C to soil fractions and investigate the impact of afforestation on SOC sequestration. Surface soil samples from continuous maize crop land (C4) and forest land (C3), which had been established 5, 12 and 25 yr, respectively, on the Northeast China Plain were separated into five density fractions. SOC, nitrogen (N) concentration and δ13C data from the three forests and adjacent cropland were compared. Afforestation decreased SOC concentration in the < 2.5 g cm-3 fractions from 5 yr forest sites, but increased SOC content in the < 2.0 g cm-3 fractions from 25 yr forest sites. Afforestation did not affect soil mass distribution, SOC and N proportional weight distributions across the density fractions. The < 1.8 g cm-3 fractions from 12 and 25 yr forests showed higher C/N and lower δ13C as compared to other fractions. Incorporation of forest litter-derived C occurred from low density (< 1.8 g cm-3) fractions to aggregates of higher density (1.8-2.5 g cm-3) through aggregate recombination and C transport in the pore system of the aggregates. Some forest litter-derived C could transfer from the light fractions or directly diffuse and adsorb onto mineral particles. Results from this study indicate that microaggregate protection and association between organic material and minerals provide major contribution to the SOC sequestration in the afforested soil system. PMID:25705896

  14. Spatial Associations and Chemical Composition of Organic Carbon Sequestered in Fe, Ca, and Organic Carbon Ternary Systems.

    PubMed

    Sowers, Tyler D; Adhikari, Dinesh; Wang, Jian; Yang, Yu; Sparks, Donald L

    2018-05-25

    Organo-mineral associations of organic carbon (OC) with iron (Fe) oxides play a major role in environmental OC sequestration, a process crucial to mitigating climate change. Calcium has been found to have high coassociation with OC in soils containing high Fe content, increase OC sorption extent to poorly crystalline Fe oxides, and has long been suspected to form bridging complexes with Fe and OC. Due to the growing realization that Ca may be an important component of C cycling, we launched a scanning transmission X-ray microscopy (STXM) investigation, paired with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, in order to spatially resolve Fe, Ca, and OC relationships and probe the effect of Ca on sorbed OC speciation. We performed STXM-NEXAFS analysis on 2-line ferrihydrite reacted with leaf litter-extractable dissolved OC and citric acid in the absence and presence of Ca. Organic carbon was found to highly associate with Ca ( R 2 = 0.91). Carboxylic acid moieties were dominantly sequestered; however, Ca facilitated the additional sequestration of aromatic and phenolic moieties. Also, C NEXAFS revealed polyvalent metal ion complexation. Our results provide evidence for the presence of Fe-Ca-OC ternary complexation, which has the potential to significantly impact how organo-mineral associations are modeled.

  15. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands.

    PubMed

    Zhao, Yongcun; Wang, Meiyan; Hu, Shuijin; Zhang, Xudong; Ouyang, Zhu; Zhang, Ganlin; Huang, Biao; Zhao, Shiwei; Wu, Jinshui; Xie, Deti; Zhu, Bo; Yu, Dongsheng; Pan, Xianzhang; Xu, Shengxiang; Shi, Xuezheng

    2018-04-17

    China's croplands have experienced drastic changes in management practices, such as fertilization, tillage, and residue treatments, since the 1980s. There is an ongoing debate about the impact of these changes on soil organic carbon (SOC) and its implications. Here we report results from an extensive study that provided direct evidence of cropland SOC sequestration in China. Based on the soil sampling locations recorded by the Second National Soil Survey of China in 1980, we collected 4,060 soil samples in 2011 from 58 counties that represent the typical cropping systems across China. Our results showed that across the country, the average SOC stock in the topsoil (0-20 cm) increased from 28.6 Mg C ha -1 in 1980 to 32.9 Mg C ha -1 in 2011, representing a net increase of 140 kg C ha -1 year -1 However, the SOC change differed among the major agricultural regions: SOC increased in all major agronomic regions except in Northeast China. The SOC sequestration was largely attributed to increased organic inputs driven by economics and policy: while higher root biomass resulting from enhanced crop productivity by chemical fertilizers predominated before 2000, higher residue inputs following the large-scale implementation of crop straw/stover return policy took over thereafter. The SOC change was negatively related to N inputs in East China, suggesting that the excessive N inputs, plus the shallowness of plow layers, may constrain the future C sequestration in Chinese croplands. Our results indicate that cropland SOC sequestration can be achieved through effectively manipulating economic and policy incentives to farmers.

  16. Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars.

    PubMed

    Santín, Cristina; Doerr, Stefan H; Merino, Agustin; Bucheli, Thomas D; Bryant, Rob; Ascough, Philippa; Gao, Xiaodong; Masiello, Caroline A

    2017-09-11

    Pyrogenic carbon (PyC), produced naturally (wildfire charcoal) and anthropogenically (biochar), is extensively studied due to its importance in several disciplines, including global climate dynamics, agronomy and paleosciences. Charcoal and biochar are commonly used as analogues for each other to infer respective carbon sequestration potentials, production conditions, and environmental roles and fates. The direct comparability of corresponding natural and anthropogenic PyC, however, has never been tested. Here we compared key physicochemical properties (elemental composition, δ 13 C and PAHs signatures, chemical recalcitrance, density and porosity) and carbon sequestration potentials of PyC materials formed from two identical feedstocks (pine forest floor and wood) under wildfire charring- and slow-pyrolysis conditions. Wildfire charcoals were formed under higher maximum temperatures and oxygen availabilities, but much shorter heating durations than slow-pyrolysis biochars, resulting in differing physicochemical properties. These differences are particularly relevant regarding their respective roles as carbon sinks, as even the wildfire charcoals formed at the highest temperatures had lower carbon sequestration potentials than most slow-pyrolysis biochars. Our results challenge the common notion that natural charcoal and biochar are well suited as proxies for each other, and suggest that biochar's environmental residence time may be underestimated when based on natural charcoal as a proxy, and vice versa.

  17. Is a Clean Development Mechanism project economically justified? Case study of an International Carbon Sequestration Project in Iran.

    PubMed

    Katircioglu, Salih; Dalir, Sara; Olya, Hossein G

    2016-01-01

    The present study evaluates a carbon sequestration project for the three plant species in arid and semiarid regions of Iran. Results show that Haloxylon performed appropriately in the carbon sequestration process during the 6 years of the International Carbon Sequestration Project (ICSP). In addition to a high degree of carbon dioxide sequestration, Haloxylon shows high compatibility with severe environmental conditions and low maintenance costs. Financial and economic analysis demonstrated that the ICSP was justified from an economic perspective. The financial assessment showed that net present value (NPV) (US$1,098,022.70), internal rate of return (IRR) (21.53%), and payback period (6 years) were in an acceptable range. The results of the economic analysis suggested an NPV of US$4,407,805.15 and an IRR of 50.63%. Therefore, results of this study suggest that there are sufficient incentives for investors to participate in such kind of Clean Development Mechanism (CDM) projects.

  18. Soil Carbon Cycling - More than Changes in Soil Organic Carbon Stocks

    NASA Astrophysics Data System (ADS)

    Lorenz, K.

    2015-12-01

    Discussions about soil carbon (C) sequestration generally focus on changes in soil organic carbon (SOC) stocks. Global SOC mass in the top 1 m was estimated at about 1325 Pg C, and at about 3000 Pg C when deeper soil layers were included. However, both inorganically and organically bound carbon forms are found in soil but estimates on global soil inorganic carbon (SIC) mass are even more uncertain than those for SOC. Globally, about 947 Pg SIC may be stored in the top 1 m, and especially in arid and semi-arid regions SIC stocks can be many times great than SOC stocks. Both SIC and SOC stocks are vulnerable to management practices, and stocks may be enhanced, for example, by optimizing net primary production (NPP) by fertilization and irrigation (especially optimizing belowground NPP for enhancing SOC stocks), adding organic matter (including black C for enhancing SOC stocks), and reducing soil disturbance. Thus, studies on soil C stocks, fluxes, and vulnerability must look at both SIC and SOC stocks in soil profiles to address large scale soil C cycling.

  19. Effects of enhancing soil organic carbon sequestration in the topsoil by fertilization on crop productivity and stability: Evidence from long-term experiments with wheat-maize cropping systems in China.

    PubMed

    Zhang, Xubo; Sun, Nan; Wu, Lianhai; Xu, Minggang; Bingham, Ian J; Li, Zhongfang

    2016-08-15

    Although organic carbon sequestration in agricultural soils has been recommended as a 'win-win strategy' for mitigating climate change and ensuring food security, great uncertainty still remains in identifying the relationships between soil organic carbon (SOC) sequestration and crop productivity. Using data from 17 long-term experiments in China we determined the effects of fertilization strategies on SOC stocks at 0-20cm depth in the North, North East, North West and South. The impacts of changes in topsoil SOC stocks on the yield and yield stability of winter wheat (Triticum aestivum L.) and maize (Zea mays L.) were determined. Results showed that application of inorganic fertilizers (NPK) plus animal manure over 20-30years significantly increased SOC stocks to 20-cm depth by 32-87% whilst NPK plus wheat/maize straw application increased it by 26-38% compared to controls. The efficiency of SOC sequestration differed between regions with 7.4-13.1% of annual C input into the topsoil being retained as SOC over the study periods. In the northern regions, application of manure had little additional effect on yield compared to NPK over a wide range of topsoil SOC stocks (18->50MgCha(-1)). In the South, average yield from manure applied treatments was 2.5 times greater than that from NPK treatments. Moreover, the yield with NPK plus manure increased until SOC stocks (20-cm depth) increased to ~35MgCha(-1). In the northern regions, yield stability was not increased by application of NPK plus manure compared to NPK, whereas in the South there was a significant improvement. We conclude that manure application and straw incorporation could potentially lead to SOC sequestration in topsoil in China, but beneficial effects of this increase in SOC stocks to 20-cm depth on crop yield and yield stability may only be achieved in the South. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Ecological carbon sequestration via wood harvest and storage (WHS): Can it be a viable climate and energy strategy?

    NASA Astrophysics Data System (ADS)

    Zeng, N.; Zaitchik, B. F.; King, A. W.; Wullschleger, S. D.

    2016-12-01

    A carbon sequestration strategy is proposed in which forests are sustainably managed to optimal carbon productivity, and a fraction of the wood is selectively harvested and stored to prevent decomposition under anaerobic, dry or cold conditions. Because a large flux of CO2 is constantly assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. The live trees serve as a `carbon scrubber' or `carbon remover' that provides continuous sequestration (negative emissions). The stored wood is a semi-permanent carbon sink, but also serves as a `biomass/bioenergy reserve' that could be utilized in the future.Based on forest coarse wood production rate, land availability, bioconservation and other practical constraints, we estimate a carbon sequestration potential for wood harvest and storage (WHS) 1-3 GtC y-1. The implementation of such a scheme at our estimated lower value of 1 GtC y-1 would imply a doubling of the current world wood harvest rate. This can be achieved by harvesting wood at a modest harvesting intensity of 1.2 tC ha-1 y-1, over a forest area of 8 Mkm2 (800 Mha). To achieve the higher value of 3 GtC y-1, forests need to be managed this way on half of the world's forested land, or on a smaller area but with higher harvest intensity. However, the actual implementation may face challenges that vary regionally. We propose `carbon sequestration and biomass farms' in the tropical deforestation frontiers with mixed land use for carbon, energy, agriculture, as well as conservation. In another example, the forests damaged by insect infestation could be thinned to reduce fire and harvested for carbon sequestration.We estimate a cost of $10-50/tCO2 for harvest and storage around the landing site. The technique is low tech, distributed and reversible. We compare the potential of WHS with a number of other carbon sequestration methods. We will also show its impact on future land carbon sink

  1. Biochar for soil fertility and natural carbon sequestration

    USGS Publications Warehouse

    Rostad, C.E.; Rutherford, D.W.

    2011-01-01

    Biochar is charcoal (similar to chars generated by forest fires) that is made for incorporation into soils to increase soil fertility while providing natural carbon sequestration. The incorporation of biochar into soils can preserve and enrich soils and also slow the rate at which climate change is affecting our planet. Studies on biochar, such as those cited by this report, are applicable to both fire science and soil science.

  2. Fire management and carbon sequestration in Pine Barren Forests

    Treesearch

    Kenneth L. Clark; Nicholas Skowronski; Michael Gallagher

    2015-01-01

    Prescribed burning is the major viable option that land managers have for reducing hazardous fuels and ensuring the regeneration of fire-dependent species in a cost-effective manner in Pine Barren ecosystems. Fuels management activities are directly linked to carbon (C) storage and rates of C sequestration by forests. To evaluate the effects of prescribed burning on...

  3. Climate change and carbon sequestration opportunities on national forests

    Treesearch

    R.L. Deal

    2010-01-01

    Deforestation globally accounts for about 20 percent of total greenhouse gas emissions. One of the major forestry challenges in the United States is reducing the loss of forest land from development. Foresters have a critical role to play in forest management and carbon sequestration to reduce greenhouse gas emissions, and forestry can be part of the solution. A recent...

  4. Using Biomass to Improve Site Quality and Carbon Sequestration

    Treesearch

    Bryce J. Stokes; Felipe G. Sanchez; Emily A. Carter

    1998-01-01

    The future demands on forest lands are a concern because of reduced productivity, especially on inherently poor sites, sites with long-depleted soils, or those soils that bear repeated, intensive short rotations. Forests are also an important carbon sink and, when well managed, can make even more significant contributions to sequestration and to reduction of greenhouse...

  5. In Brief: Carbon Sequestration Partnerships; Review of Peer Reviews

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    The U.S. Department of Energy named seven regional partnerships on 16 August to study the best methods for the non-biological sequestration of carbon in different parts of the country.Peer review guidelines for science issued by the federal government which is related to regulatory topics could be tightened up under a 29 August White House proposal.

  6. Assessing Impacts of 20 yr Old Miscanthus on Soil Organic Carbon Quality

    NASA Astrophysics Data System (ADS)

    Hu, Yaxian; Schäfer, Gerhard; Kuhn, Nikolaus

    2015-04-01

    The use of biomass as a renewable energy source has become increasingly popular in Upper Rhine Region to meet the demand for renewable energy. Miscanthus is one of the most favorite biofuel crops, due to its long life and large yields, as well as low energy and fertilizer inputs. However, current research on Miscanthus is mostly focused on the techniques and economics to produce biofuel or the impacts of side products such as ash and sulfur emissions to human health. Research on the potential impacts of Miscanthus onto soil quality, especially carbon quality after long-term adoption, is very limited. Some positive benefits, such as sequestrating organic carbon, have been repeatedly reported in previous research. Yet the quality of newly sequestrated organic carbon and its potential impacts onto global carbon cycling remain unclear. To fully account for the risks and benefits of Miscanthus, it is required to investigate the quality as well as the potential CO2 emissions of soil organic carbon on Miscanthus fields. As a part of the Interreg Project to assess the environmental impacts of biomass production in the Upper Rhine Region, this study aims to evaluate the carbon quality and the potential CO2 emissions after long-term Miscanthus adoption. Soils were sampled at 0-10, 10-40, 40-70, and 70-100 cm depths on three Miscanthus fields with up to 20 years of cultivation in Ammerzwiller France, Münchenstein Switzerland, and Farnsburg Switzerland. Soil texture, pH, organic carbon and nitrogen content were measured for each sampled layer. Topsoils of 0-10 cm and subsoils of 10-40 cm were also incubated for 40 days to determine the mineralization potential of the soil organic matter. Our results show that: 1) only in top soils of 0-10 cm, the 20 year old Miscanthus field has significantly higher soil organic carbon concentrations, than the control site. No significant differences were observed in deeper soil layers. Similar tendencies were also observed for organic

  7. U.S. Department of Energy's regional carbon sequestration partnership initiative: Update on validation and development phases

    USGS Publications Warehouse

    Rodosta, T.; Litynski, J.; Plasynski, S.; Spangler, L.; Finley, R.; Steadman, E.; Ball, D.; Gerald, H.; McPherson, B.; Burton, E.; Vikara, D.

    2011-01-01

    The U.S. Department of Energy (DOE) is the lead federal agency for the development and deployment of carbon sequestration technologies. The Regional Carbon Sequestration Partnerships (RCSPs) are the mechanism DOE utilizes to prove the technology and to develop human capital, stakeholder networks, information for regulatory policy, best practices documents and training to work toward the commercialization of carbon capture and storage (CCS). The RCSPs are tasked with determining the most suitable technologies, regulations, and infrastructure for carbon capture, transport, and storage in their respective geographic areas of responsibility. The seven partnerships include more than 400 state agencies, universities, national laboratories, private companies, and environmental organizations, spanning 43 states and four Canadian provinces. The Regional Partnerships Initiative is being implemented in three phases: Characterization, Validation, and Development. The initial Characterization Phase began in 2003 and was completed in 2005 and focused on characterization of CO2 storage potential within each region. It was followed by the Validation Phase, which began in 2005 and is nearing completion in 2011. The focus of the Validation Phase has been on small-scale field tests throughout the seven partnerships in various formation types such as saline, oil-bearing, and coal seams. The Validation Phase has characterized suitable CO2 storage reservoirs and identified the need for comprehensive legal and regulatory frameworks to enable commercial-scale CCS deployment. Finally, the Development Phase will consist of a series of large-scale, one-million-ton, injection tests throughout the United States and Canada. The objective of these large-scale tests is to identify the regulatory path or challenges in permitting CCS projects, to demonstrate the technology can inject CO2 safely, and to verify its permanence in geologic formations in preparation for the commercialization of geologic

  8. Training Graduate and Undergraduate Students in Simulation and Risk Assessment for Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCray, John

    Capturing carbon dioxide (CO2) and injecting it into deep underground formations for storage (carbon capture and underground storage, or CCUS) is one way of reducing anthropogenic CO2 emissions. Gas or aqueous-phase leakage may occur due to transport via faults and fractures, through faulty well bores, or through leaky confining materials. Contaminants of concern include aqueous salts and dissolved solids, gaseous or aqueous-phase organic contaminants, and acidic gas or aqueous-phase fluids that can liberate metals from aquifer minerals. Understanding the mechanisms and parameters that can contribute to leakage of the CO2 and the ultimate impact on shallow water aquifers that overliemore » injection formations is an important step in evaluating the efficacy and risks associated with long-term CO2 storage. Three students were supported on the grant Training Graduate and Undergraduate Students in Simulation and Risk Assessment for Carbon Sequestration. These three students each examined a different aspect of simulation and risk assessment related to carbon dioxide sequestration and the potential impacts of CO2 leakage. Two performed numerical simulation studies, one to assess leakage rates as a function of fault and deep reservoir parameters and one to develop a method for quantitative risk assessment in the event of a CO2 leak and subsequent changes in groundwater chemistry. A third student performed an experimental evaluation of the potential for metal release from sandstone aquifers under simulated leakage conditions. This study has resulted in two student first-authored published papers {Siirila, 2012 #560}{Kirsch, 2014 #770} and one currently in preparation {Menke, In prep. #809}.« less

  9. The Effect of Emissions Trading And Carbon Sequestration on The Cost Of CO2 Emissions Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahasenan, Natesan; Scott, Michael J.; Smith, Steven J.

    2002-08-05

    The deployment of carbon capture and sequestration (CC&S) technologies is greatly affected by the marginal cost of controlling carbon emissions (also the value of carbon, when emissions permits are traded). Emissions limits that are more stringent in the near term imply higher near-term carbon values and therefore encourage the local development and deployment of CC&S technologies. In addition, trade in emissions obligations lowers the cost of meeting any regional or global emissions limit and so affects the rate of penetration of CC&S technologies. We examine the effects of the availability of sequestration opportunities and emissions trading (either within select regionsmore » or globally) on the cost of emissions mitigation and compliance with different emissions reduction targets for the IPCC SRES scenarios. For each base scenario and emissions target, we examine the issues outlined above and present quantitative estimates for the impacts of trade and the availability of sequestration opportunities in meeting emissions limitation obligations.« less

  10. Post-glacial climate forcing of surface processes in the Ganges-Brahmaputra river basin and implications for carbon sequestration

    NASA Astrophysics Data System (ADS)

    Hein, Christopher J.; Galy, Valier; Galy, Albert; France-Lanord, Christian; Kudrass, Hermann; Schwenk, Tilmann

    2017-11-01

    Climate has been proposed to control both the rate of terrestrial silicate weathering and the export rate of associated sediments and terrestrial organic carbon to river-dominated margins - and thus the rate of sequestration of atmospheric CO2 in the coastal ocean - over glacial-interglacial timescales. Focused on the Ganges-Brahmaputra rivers, this study presents records of post-glacial changes in basin-scale Indian summer monsoon intensity and vegetation composition based on stable hydrogen (δD) and carbon (δ13C) isotopic compositions of terrestrial plant wax compounds preserved in the channel-levee system of the Bengal Fan. It then explores the role of these changes in controlling the provenance and degree of chemical weathering of sediments exported by these rivers, and the potential climate feedbacks through organic-carbon burial in the Bengal Fan. An observed 40‰ shift in δD and a 3-4‰ shift in both bulk organic-carbon and plant-wax δ13C values between the late glacial and mid-Holocene, followed by a return to more intermediate values during the late Holocene, correlates well with regional post-glacial paleoclimate records. Sediment provenance proxies (Sr, Nd isotopic compositions) reveal that these changes likely coincided with a subtle focusing of erosion on the southern flank of the Himalayan range during periods of greater monsoon strength and enhanced sediment discharge. However, grain-size-normalized organic-carbon concentrations in the Bengal Fan remained constant through time, despite order-of-magnitude level changes in catchment-scale monsoon precipitation and enhanced chemical weathering (recorded as a gradual increase in K/Si* and detrital carbonate content, and decrease in H2O+/Si*, proxies) throughout the study period. These findings demonstrate a partial decoupling of climate change and silicate weathering during the Holocene and that marine organic-carbon sequestration rates primary reflect rates of physical erosion and sediment export

  11. Organic carbon stocks and sequestration rates of forest soils in Germany

    PubMed Central

    Grüneberg, Erik; Ziche, Daniel; Wellbrock, Nicole

    2014-01-01

    The National Forest Soil Inventory (NFSI) provides the Greenhouse Gas Reporting in Germany with a quantitative assessment of organic carbon (C) stocks and changes in forest soils. Carbon stocks of the organic layer and the mineral topsoil (30 cm) were estimated on the basis of ca. 1.800 plots sampled from 1987 to 1992 and resampled from 2006 to 2008 on a nationwide grid of 8 × 8 km. Organic layer C stock estimates were attributed to surveyed forest stands and CORINE land cover data. Mineral soil C stock estimates were linked with the distribution of dominant soil types according to the Soil Map of Germany (1 : 1 000 000) and subsequently related to the forest area. It appears that the C pool of the organic layer was largely depending on tree species and parent material, whereas the C pool of the mineral soil varied among soil groups. We identified the organic layer C pool as stable although C was significantly sequestered under coniferous forest at lowland sites. The mineral soils, however, sequestered 0.41 Mg C ha−1 yr−1. Carbon pool changes were supposed to depend on stand age and forest transformation as well as an enhanced biomass input. Carbon stock changes were clearly attributed to parent material and soil groups as sandy soils sequestered higher amounts of C, whereas clayey and calcareous soils showed small gains and in some cases even losses of soil C. We further showed that the largest part of the overall sample variance was not explained by fine-earth stock variances, rather by the C concentrations variance. The applied uncertainty analyses in this study link the variability of strata with measurement errors. In accordance to other studies for Central Europe, the results showed that the applied method enabled a reliable nationwide quantification of the soil C pool development for a certain period. PMID:24616061

  12. Long-term nitrogen regulation of forest carbon sequestration

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Luo, Y.

    2009-12-01

    It is well established that nitrogen (N) limits plant production but unclear how N regulates long-term terrestrial carbon (C) sequestration in response to rising atmospheric C dioxide (CO2)(Luo et al., 2004). Most experimental evidence on C-N interactions is primarily derived from short-term CO2 manipulative studies (e.g. Oren et al., 2001; Reich et al., 2006a), which abruptly increase C inputs into ecosystems and N demand from soil while atmospheric CO2 concentration in the real world is gradually increasing over time (Luo & Reynolds, 1999). It is essential to examine long-term N regulations of C sequestration in natural ecosystems. Here we present results of a synthesis of more than 100 studies on long-term C-N interactions during secondary succession. C significantly accumulates in plant, litter and forest floor in most studies, and in mineral soil in one-third studies during stand development. Substantial increases in C stock are tightly coupled with N accretion. The C: N ratio in plant increases with stand age in most cases, but remains relatively constant in litter, forest floor and mineral soil. Our results suggest that natural ecosystems could have the intrinsic capacity to maintain long-term C sequestration through external N accrual, high N use efficiency, and efficient internal N cycling.

  13. Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, David; Golomb, Dan; Shi, Guang

    2011-09-30

    This project involves the use of an innovative new invention Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequentlymore » changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude

  14. Carbon Sequestration in Reforested Areas in China Since 1970

    NASA Astrophysics Data System (ADS)

    Chen, J.; Liu, J.; Wang, S.; Sun, R.; Shi, X.; Tian, Q.; Xue, J.; Pan, J.; Kang, E.; Zhu, Q.; Zhou, Y.; Yang, L.; Liu, G.; Chen, M.; Thomas, S.; Bryan, R.; Yin, Y.; MacLaren, V.; Zhou, S.; Feng, X.; Wang, C.; Pan, J.

    2004-05-01

    Since July 2002, a 3-year Canada-China joint project was funded by the Canadian International Development Agency and the Chinese Academy of Sciences to assess the current status of China's forests and the impacts of forestry activities on carbon sequestration. From 1973 to 2001, China's total forested area increased from 122 Mha to 159 Mha, owing to large-scale reforestations for the main purpose of soil erosion control. In this project, four local forest sites in Changbaishan, Heihe, Liping and Xingguo in various regions are chosen for intensive assessments of forest and soil stocks. Ground-based measurements of leaf area index (LAI), net primary productivity (NPP), soil texture, vegetation and soil carbon stocks are used to calibrate models. High-resolution remote sensing images from ASTER and ETM are used to map LAI and NPP of these sites and for upscaling to the whole China based on MODIS and VEGETATION images. Remote sensing techniques and carbon cycle models (BEPS, InTEC) developed in Canada are being adapted to China's ecosystems. Preliminary results suggest that new reforested areas since 1970 are now actively sequester carbon, making the overall forested area as a carbon sink in the last few decades. Efforts are being made to reduce uncertainties in the estimation through incorporating new nation-wide datasets of forest age, soil texture and organic matter, nitrogen deposition, etc. At Changbaishan, Liping and Heihe, integrated assessments are being conducted to investigate the impacts of reforestation (Grain-to-Green) programs on the social and economic status of farmers as well as the ecological environment and land use options to maximize carbon sequestraton.

  15. Terrestrial sequestration

    ScienceCinema

    Charlie Byrer

    2017-12-09

    Terrestrial sequestration is the enhancement of CO2 uptake by plants that grow on land and in freshwater and, importantly, the enhancement of carbon storage in soils where it may remain more permanently stored. Terrestrial sequestration provides an opportunity for low-cost CO2 emissions offsets.

  16. Arbuscular mycorrhizal fungi enhance soil carbon sequestration in the coalfields, northwest China

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Gang; Bi, Yin-Li; Jiang, Bin; Zhakypbek, Yryszhan; Peng, Su-Ping; Liu, Wen-Wen; Liu, Hao

    2016-10-01

    Carbon storage is affected by photosynthesis (Pn) and soil respiration (Rs), which have been studied extensively in natural and agricultural systems. However, the effects of Pn and Rs on carbon storages in the presence of arbuscular mycorrhizal fungi (AMF) in coalfields remain unclear. A field experiment was established in 2014 in Shendong coal mining subsidence area. The treatments comprised two inoculation levels (inoculated with or without 100 g AMF inoculums per seedlings) and four plant species [wild cherry (Prunus discadenia Koebne L.), cerasus humilis (Prunus dictyneura Diels L.), shiny leaf Yellow horn (Xanthoceras sorbifolium Bunge L.) and apricot (Armeniaca sibirica L.)]. AMF increased Pn of four species ranging from 15.3% to 33.1% and carbon storage, averaged by 17.2% compared to controls. Soil organic carbon (OC), easily extractable glomalin-relation soil protein (EE-GRSP), and total glomalin-relation soil protein (T-GRSP) were significantly increased by AMF treatment. The effect of AMF on the sensitivity of Rs depended on soil temperature. The results highlighted the exponential models to explain the responses of Rs to soil temperature, and for the first time quantified AMF caused carbon sequestration and Rs. Thus, to our knowledge, AMF is beneficial to ecosystems through facilitating carbon conservation in coalfield soils.

  17. Microbial Carbonic Anhydrases in Biomimetic Carbon Sequestration for Mitigating Global Warming: Prospects and Perspectives

    PubMed Central

    Bose, Himadri; Satyanarayana, Tulasi

    2017-01-01

    All the leading cities in the world are slowly becoming inhospitable for human life with global warming playing havoc with the living conditions. Biomineralization of carbon dioxide using carbonic anhydrase (CA) is one of the most economical methods for mitigating global warming. The burning of fossil fuels results in the emission of large quantities of flue gas. The temperature of flue gas is quite high. Alkaline conditions are necessary for CaCO3 precipitation in the mineralization process. In order to use CAs for biomimetic carbon sequestration, thermo-alkali-stable CAs are, therefore, essential. CAs must be stable in the presence of various flue gas contaminants too. The extreme environments on earth harbor a variety of polyextremophilic microbes that are rich sources of thermo-alkali-stable CAs. CAs are the fastest among the known enzymes, which are of six basic types with no apparent sequence homology, thus represent an elegant example of convergent evolution. The current review focuses on the utility of thermo-alkali-stable CAs in biomineralization based strategies. A variety of roles that CAs play in various living organisms, the use of CA inhibitors as drug targets and strategies for overproduction of CAs to meet the demand are also briefly discussed. PMID:28890712

  18. Microbial Carbonic Anhydrases in Biomimetic Carbon Sequestration for Mitigating Global Warming: Prospects and Perspectives.

    PubMed

    Bose, Himadri; Satyanarayana, Tulasi

    2017-01-01

    All the leading cities in the world are slowly becoming inhospitable for human life with global warming playing havoc with the living conditions. Biomineralization of carbon dioxide using carbonic anhydrase (CA) is one of the most economical methods for mitigating global warming. The burning of fossil fuels results in the emission of large quantities of flue gas. The temperature of flue gas is quite high. Alkaline conditions are necessary for CaCO 3 precipitation in the mineralization process. In order to use CAs for biomimetic carbon sequestration, thermo-alkali-stable CAs are, therefore, essential. CAs must be stable in the presence of various flue gas contaminants too. The extreme environments on earth harbor a variety of polyextremophilic microbes that are rich sources of thermo-alkali-stable CAs. CAs are the fastest among the known enzymes, which are of six basic types with no apparent sequence homology, thus represent an elegant example of convergent evolution. The current review focuses on the utility of thermo-alkali-stable CAs in biomineralization based strategies. A variety of roles that CAs play in various living organisms, the use of CA inhibitors as drug targets and strategies for overproduction of CAs to meet the demand are also briefly discussed.

  19. Mobilization and Transport of Organic Compounds from Reservoir Rock and Caprock in Geological Carbon Sequestration Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Lirong; Cantrell, Kirk J.; Mitroshkov, Alexandre V.

    2014-05-06

    Supercritical CO2 (scCO2) is an excellent solvent for organic compounds, including benzene, toluene, ethyl-benzene, and xylene (BTEX), phenols, and polycyclic aromatic hydrocarbons (PAHs). Monitoring results from geological carbon sequestration (GCS) field tests has shown that organic compounds are mobilized following CO2 injection. Such results have raised concerns regarding the potential for groundwater contamination by toxic organic compounds mobilized during GCS. Knowledge of the mobilization mechanism of organic compounds and their transport and fate in the subsurface is essential for assessing risks associated with GCS. Extraction tests using scCO2 and methylene chloride (CH2Cl2) were conducted to study the mobilization of volatilemore » organic compounds (VOCs, including BTEX), the PAH naphthalene, and n-alkanes (n-C20 – n-C30) by scCO2 from representative reservoir rock and caprock obtained from depleted oil reservoirs and coal from an enhanced coal-bed methane recovery site. More VOCs and naphthalene were extractable by scCO2 compared to the CH2Cl2 extractions, while scCO2 extractable alkane concentrations were much lower than concentrations extractable by CH2Cl2. In addition, dry scCO2 was found to extract more VOCs than water saturated scCO2, but water saturated scCO2 mobilized more naphthalene than dry scCO2. In sand column experiments, moisture content was found to have an important influence on the transport of the organic compounds. In dry sand columns the majority of the compounds were retained in the column except benzene and toluene. In wet sand columns the mobility of the BTEX was much higher than that of naphthalene. Based upon results determined for the reservoir rock, caprock, and coal samples studied here, the risk to aquifers from contamination by organic compounds appears to be relatively low; however, further work is necessary to fully evaluate risks from depleted oil reservoirs.« less

  20. Soil Carbon Sequestration and the Greenhouse Effect (2nd Edition)

    USDA-ARS?s Scientific Manuscript database

    This volume is a second edition of the book “Soil Carbon Sequestration and The Greenhouse Effect”. The first edition was published in 2001 as SSSA Special Publ. #57. The present edition is an update of the concepts, processes, properties, practices and the supporting data. All chapters are new co...

  1. Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation

    PubMed Central

    Karl, David M.; Church, Matthew J.; Dore, John E.; Letelier, Ricardo M.; Mahaffey, Claire

    2012-01-01

    The atmospheric and deep sea reservoirs of carbon dioxide are linked via physical, chemical, and biological processes. The last of these include photosynthesis, particle settling, and organic matter remineralization, and are collectively termed the “biological carbon pump.” Herein, we present results from a 13-y (1992–2004) sediment trap experiment conducted in the permanently oligotrophic North Pacific Subtropical Gyre that document a large, rapid, and predictable summertime (July 15–August 15) pulse in particulate matter export to the deep sea (4,000 m). Peak daily fluxes of particulate matter during the summer export pulse (SEP) average 408, 283, 24.1, 1.1, and 67.5 μmol·m−2·d−1 for total carbon, organic carbon, nitrogen, phosphorus (PP), and biogenic silica, respectively. The SEP is approximately threefold greater than mean wintertime particle fluxes and fuels more efficient carbon sequestration because of low remineralization during downward transit that leads to elevated total carbon/PP and organic carbon/PP particle stoichiometry (371:1 and 250:1, respectively). Our long-term observations suggest that seasonal changes in the microbial assemblage, namely, summertime increases in the biomass and productivity of symbiotic nitrogen-fixing cyanobacteria in association with diatoms, are the main cause of the prominent SEP. The recurrent SEP is enigmatic because it is focused in time despite the absence of any obvious predictable stimulus or habitat condition. We hypothesize that changes in day length (photoperiodism) may be an important environmental cue to initiate aggregation and subsequent export of organic matter to the deep sea. PMID:22308450

  2. Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation.

    PubMed

    Karl, David M; Church, Matthew J; Dore, John E; Letelier, Ricardo M; Mahaffey, Claire

    2012-02-07

    The atmospheric and deep sea reservoirs of carbon dioxide are linked via physical, chemical, and biological processes. The last of these include photosynthesis, particle settling, and organic matter remineralization, and are collectively termed the "biological carbon pump." Herein, we present results from a 13-y (1992-2004) sediment trap experiment conducted in the permanently oligotrophic North Pacific Subtropical Gyre that document a large, rapid, and predictable summertime (July 15-August 15) pulse in particulate matter export to the deep sea (4,000 m). Peak daily fluxes of particulate matter during the summer export pulse (SEP) average 408, 283, 24.1, 1.1, and 67.5 μmol·m(-2)·d(-1) for total carbon, organic carbon, nitrogen, phosphorus (PP), and biogenic silica, respectively. The SEP is approximately threefold greater than mean wintertime particle fluxes and fuels more efficient carbon sequestration because of low remineralization during downward transit that leads to elevated total carbon/PP and organic carbon/PP particle stoichiometry (371:1 and 250:1, respectively). Our long-term observations suggest that seasonal changes in the microbial assemblage, namely, summertime increases in the biomass and productivity of symbiotic nitrogen-fixing cyanobacteria in association with diatoms, are the main cause of the prominent SEP. The recurrent SEP is enigmatic because it is focused in time despite the absence of any obvious predictable stimulus or habitat condition. We hypothesize that changes in day length (photoperiodism) may be an important environmental cue to initiate aggregation and subsequent export of organic matter to the deep sea.

  3. Engineered Escherichia coli with Periplasmic Carbonic Anhydrase as a Biocatalyst for CO2 Sequestration

    PubMed Central

    Jo, Byung Hoon; Kim, Im Gyu; Seo, Jeong Hyun; Kang, Dong Gyun

    2013-01-01

    Carbonic anhydrase is an enzyme that reversibly catalyzes the hydration of carbon dioxide (CO2). It has been suggested recently that this remarkably fast enzyme can be used for sequestration of CO2, a major greenhouse gas, making this a promising alternative for chemical CO2 mitigation. To promote the economical use of enzymes, we engineered the carbonic anhydrase from Neisseria gonorrhoeae (ngCA) in the periplasm of Escherichia coli, thereby creating a bacterial whole-cell catalyst. We then investigated the application of this system to CO2 sequestration by mineral carbonation, a process with the potential to store large quantities of CO2. ngCA was highly expressed in the periplasm of E. coli in a soluble form, and the recombinant bacterial cell displayed the distinct ability to hydrate CO2 compared with its cytoplasmic ngCA counterpart and previously reported whole-cell CA systems. The expression of ngCA in the periplasm of E. coli greatly accelerated the rate of calcium carbonate (CaCO3) formation and exerted a striking impact on the maximal amount of CaCO3 produced under conditions of relatively low pH. It was also shown that the thermal stability of the periplasmic enzyme was significantly improved. These results demonstrate that the engineered bacterial cell with periplasmic ngCA can successfully serve as an efficient biocatalyst for CO2 sequestration. PMID:23974145

  4. Nitrogen as a factor for enhanced carbon sequestration: Results from four NitroEurope-IP forest supersites

    NASA Astrophysics Data System (ADS)

    Ibrom, A.

    2012-04-01

    Nitrogen (N) fertilization, both intended and unintended, interacts with carbon cycling in terrestrial ecosystems, because the major processes of carbon (C) turnover depend on enzymes and thus on N availability. Comparisons between annual carbon dioxide flux (CO2) budgets and wet N deposition in forests showed a very strong linear increase of CO2 sequestration with increased N deposition. After considering total rather than only wet N deposition the ratios between increased carbon uptake and atmospheric N input were closer to C/N that can be found in wood. This suggested that the observed ecosystems responses to enhanced N inputs were mainly driven by plant responses. Finally, looking at changes in soil organic matter changes indicated even lower sensitivities of carbon sequestration to N addition. The objective of this study is to describe the mechanisms of the responses and the fate of the N in the ecosystem based on results from intensively investigated forest sites. Within the European NitroEuope-IP project the annual fluxes and pool sizes of C and N were estimated in four so-called forest supersites, including temperate coniferous forests in Southern Germany (Höglwald) and in the Netherlands (Speulderbos), one temperate beech forest close to Sorø on Zealand in Denmark and a boreal pine forest (Hyytiälä, Southern Finland). Due to differences in vegetation, bedrock and climate history, soils differed in acidity, organic matter content and biological activity; the levels of atmospheric N deposition varied from very low (Hyytiälä) to high (the other sites). Comparisons of N and C budgets of plants and soils confirmed a simple and stoichiometric effect dCuptake/dNdep = constant and in the order of magnitude of (C/N)wood for plants but not for soils and thus not for the forest ecosystems as a whole. Differences in soil processes as indicated by the differing C/N of SOM, differing amounts of N stored in the soil and considerable differences in N leaching rates

  5. Vadose Zone Flow and Transport of Dissolved Organic Carbon at Multiple Scales in Humid Regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, Philip M; Mayes, Melanie; Mulholland, Patrick J

    2006-06-01

    Scientists must embrace the necessity to offset global CO{sub 2} emissions regardless of politics. Efforts to enhance terrestrial organic carbon sequestration have traditionally focused on aboveground biomass and surface soils. An unexplored potential exists in thick lower horizons of widespread, mature soils such as Alfisols, Ultisols, and Oxisols. We present a case study of fate and transport of dissolved organic carbon (DOC) in a highly weathered Ultisol, involving spatial scales from the laboratory to the landscape. Our objectives were to interpret processes observed at various scales and provide an improved understanding of coupled hydrogeochemical mechanisms that control DOC mobility andmore » sequestration in deep subsoils within humid climatic regimes. Our approach is multiscale, using laboratory-scale batch and soil columns (0.2 by 1.0 m), an in situ pedon (2 by 2 by 3 m), a well-instrumented subsurface facility on a subwatershed (0.47 ha), and ephemeral and perennial stream discharge at the landscape scale (38.4 ha). Laboratory-scale experiments confirmed that lower horizons have the propensity to accumulate DOC, but that preferential fracture flow tends to limit sequestration. Intermediate-scale experiments demonstrated the beneficial effects of C diffusion into soil micropores. Field- and landscape-scale studies demonstrated coupled hydrological, geochemical, and microbiological mechanisms that limit DOC sequestration, and their sensitivity to local environmental conditions. Our results suggest a multi-scale approach is necessary to assess the propensity of deep subsoils to sequester organic C in situ. By unraveling fundamental organic C sequestration mechanisms, we improve the conceptual and quantitative understanding needed to predict and alter organic C budgets in soil systems.« less

  6. Co-benefits of sustainable forest management in biodiversity conservation and carbon sequestration.

    PubMed

    Imai, Nobuo; Samejima, Hiromitsu; Langner, Andreas; Ong, Robert C; Kita, Satoshi; Titin, Jupiri; Chung, Arthur Y C; Lagan, Peter; Lee, Ying Fah; Kitayama, Kanehiro

    2009-12-11

    Sustainable forest management (SFM), which has been recently introduced to tropical natural production forests, is beneficial in maintaining timber resources, but information about the co-benefits for biodiversity conservation and carbon sequestration is currently lacking. We estimated the diversity of medium to large-bodied forest-dwelling vertebrates using a heat-sensor camera trapping system and the amount of above-ground, fine-roots, and soil organic carbon by a combination of ground surveys and aerial-imagery interpretations. This research was undertaken both in SFM applied as well as conventionally logged production forests in Sabah, Malaysian Borneo. Our carbon estimation revealed that the application of SFM resulted in a net gain of 54 Mg C ha(-1) on a landscape scale. Overall vertebrate diversity was greater in the SFM applied forest than in the conventionally logged forest. Specifically, several vertebrate species (6 out of recorded 36 species) showed higher frequency in the SFM applied forest than in the conventionally logged forest. The application of SFM to degraded natural production forests could result in greater diversity and abundance of vertebrate species as well as increasing carbon storage in the tropical rain forest ecosystems.

  7. Co-Benefits of Sustainable Forest Management in Biodiversity Conservation and Carbon Sequestration

    PubMed Central

    Imai, Nobuo; Samejima, Hiromitsu; Langner, Andreas; Ong, Robert C.; Kita, Satoshi; Titin, Jupiri; Chung, Arthur Y. C.; Lagan, Peter; Lee, Ying Fah; Kitayama, Kanehiro

    2009-01-01

    Background Sustainable forest management (SFM), which has been recently introduced to tropical natural production forests, is beneficial in maintaining timber resources, but information about the co-benefits for biodiversity conservation and carbon sequestration is currently lacking. Methodology/Principal Findings We estimated the diversity of medium to large-bodied forest-dwelling vertebrates using a heat-sensor camera trapping system and the amount of above-ground, fine-roots, and soil organic carbon by a combination of ground surveys and aerial-imagery interpretations. This research was undertaken both in SFM applied as well as conventionally logged production forests in Sabah, Malaysian Borneo. Our carbon estimation revealed that the application of SFM resulted in a net gain of 54 Mg C ha-1 on a landscape scale. Overall vertebrate diversity was greater in the SFM applied forest than in the conventionally logged forest. Specifically, several vertebrate species (6 out of recorded 36 species) showed higher frequency in the SFM applied forest than in the conventionally logged forest. Conclusions/Significance The application of SFM to degraded natural production forests could result in greater diversity and abundance of vertebrate species as well as increasing carbon storage in the tropical rain forest ecosystems. PMID:20011516

  8. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere

    Treesearch

    Ram Oren; David S. Ellsworth; Kurt H. Johnsen; Nathan Phillips; Brent E. Ewers; Chris Maier; Karina V.R. Schafer; Heather McCarthy; George Hendrey; Steven G. McNulty; Gabriel G. Katul

    2001-01-01

    Northern mid-latitude forests are a large terrestrial carbon sink. Ignoring nutrient limitations, large increases in carbon sequestration from carbon dioxide (CO2) fertilization are expected in these forests. Yet, forests are usually relegated to sites of moderate to poor fertility, where tree growth is often limited by nutrient supply, in...

  9. A Sustainability Initiative to Quantify Carbon Sequestration by Campus Trees

    ERIC Educational Resources Information Center

    Cox, Helen M.

    2012-01-01

    Over 3,900 trees on a university campus were inventoried by an instructor-led team of geography undergraduates in order to quantify the carbon sequestration associated with biomass growth. The setting of the project is described, together with its logistics, methodology, outcomes, and benefits. This hands-on project provided a team of students…

  10. Delineation of Magnesium-rich Ultramafic Rocks Available for Mineral Carbon Sequestration in the United States

    USGS Publications Warehouse

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral carbon sequestration is locating the magnesium-silicate bedrock available to sequester CO2. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made covering the entire United States detailing their geographical distribution and extent, or evaluating their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the continental United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. These rock types are potentially suitable as source material for mineral carbon-dioxide sequestration. The focus of the national-scale map is entirely on suitable ultramafic rock types, which typically consist primarily of olivine and serpentine minerals. By combining the map with digital datasets that show non-mineable lands (such as urban areas and National Parks), estimates on potential depth of a surface mine, and the predicted reactivities of the mineral deposits, one can begin to estimate the capacity for CO2 mineral sequestration within the United States. ?? 2009 Elsevier Ltd. All rights reserved.

  11. Land-use changes and carbon sequestration through the twentieth century in a Mediterranean mountain ecosystem: implications for land management.

    PubMed

    Padilla, Francisco M; Vidal, Beatriz; Sánchez, Joaquín; Pugnaire, Francisco I

    2010-12-01

    Ecosystems in the western Mediterranean basin have undergone intense changes in land use throughout the centuries, resulting in areas with severe alterations. Today, most these areas have become sensitive to human activity, prone to profound changes in land-use configuration and ecosystem services. A consensus exists amongst stakeholders that ecosystem services must be preserved but managerial strategies that help to preserve them while ensuring sustainability are often inadequate. To provide a basis for measuring implications of land-use change on carbon sequestration services, changes in land use and associated carbon sequestration potential throughout the 20th century in a rural area at the foothills of the Sierra Nevada range (SE Spain) were explored. We found that forest systems replaced dryland farming and pastures from the middle of the century onwards as a result of agricultural abandonment and afforestation programs. The area has always acted as a carbon sink with sequestration rates ranging from 28,961 t CO(2) year(-1) in 1921 to 60,635 t CO(2) year(-1) in 1995, mirroring changes in land use. Conversion from pastures to woodland, for example, accounted for an increase in carbon sequestration above 30,000 t CO(2) year(-1) by the end of the century. However, intensive deforestation would imply a decrease of approximately 66% of the bulk CO(2) fixed. In our study area, woodland conservation is essential to maintain the ecosystem services that underlie carbon sequestration. Our essay could inspire policymakers to better achieve goals of increasing carbon sequestration rates and sustainability within protected areas. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Soil carbon sequestration by three perennial legume pastures is greater in deeper soil layers than in the surface soil

    NASA Astrophysics Data System (ADS)

    Guan, X.-K.; Turner, N. C.; Song, L.; Gu, Y.-J.; Wang, T.-C.; Li, F.-M.

    2015-07-01

    Soil organic carbon (SOC) plays a vital role as both a sink for and source of atmospheric carbon. Revegetation of degraded arable land in China is expected to increase soil carbon sequestration, but the role of perennial legumes on soil carbon stocks in semiarid areas has not been quantified. In this study, we assessed the effect of alfalfa (Medicago sativa L.) and two locally adapted forage legumes, bush clover (Lespedeza davurica S.) and milk vetch (Astragalus adsurgens Pall.) on the SOC concentration and SOC stock accumulated annually over a 2 m soil profile, and to estimate the long-term potential for SOC sequestration in the soil under the three forage legumes. The results showed that the concentration of SOC of the bare soil decreased slightly over the 7 years, while 7 years of legume growth substantially increased the concentration of SOC over the 0-2.0 m soil depth measured. Over the 7 year growth period the SOC stocks increased by 24.1, 19.9 and 14.6 Mg C ha-1 under the alfalfa, bush clover and milk vetch stands, respectively, and decreased by 4.2 Mg C ha-1 under bare soil. The sequestration of SOC in the 1-2 m depth of soil accounted for 79, 68 and 74 % of SOC sequestered through the upper 2 m of soil under alfalfa, bush clover and milk vetch, respectively. Conversion of arable land to perennial legume pasture resulted in a significant increase in SOC, particularly at soil depths below 1 m.

  13. Options for accounting carbon sequestration in German forests.

    PubMed

    Krug, Joachim; Koehl, Michael; Riedel, Thomas; Bormann, Kristin; Rueter, Sebastian; Elsasser, Peter

    2009-08-03

    The Accra climate change talks held from 21-27 August 2008 in Accra, Ghana, were part of an ongoing series of meetings leading up to the Copenhagen meeting in December 2009. During the meeting a set of options for accounting carbon sequestration in forestry on a post-2012 framework was presented. The options include gross-net and net-net accounting and approaches for establishing baselines. This article demonstrates the embedded consequences of Accra Accounting Options for the case study of German national GHG accounting. It presents the most current assessment of sequestration rates by forest management for the period 1990 - 2007, provides an outlook of future emissions and removals (up to the year 2042) as related to three different management scenarios, and shows that implementation of some Accra options may reverse sources to sinks, or sinks to sources. The results of the study highlight the importance of elaborating an accounting system that would prioritize the climate convention goals, not national preferences.

  14. Organic carbon stocks and sequestration rates of forest soils in Germany.

    PubMed

    Grüneberg, Erik; Ziche, Daniel; Wellbrock, Nicole

    2014-08-01

    The National Forest Soil Inventory (NFSI) provides the Greenhouse Gas Reporting in Germany with a quantitative assessment of organic carbon (C) stocks and changes in forest soils. Carbon stocks of the organic layer and the mineral topsoil (30 cm) were estimated on the basis of ca. 1.800 plots sampled from 1987 to 1992 and resampled from 2006 to 2008 on a nationwide grid of 8 × 8 km. Organic layer C stock estimates were attributed to surveyed forest stands and CORINE land cover data. Mineral soil C stock estimates were linked with the distribution of dominant soil types according to the Soil Map of Germany (1 : 1 000 000) and subsequently related to the forest area. It appears that the C pool of the organic layer was largely depending on tree species and parent material, whereas the C pool of the mineral soil varied among soil groups. We identified the organic layer C pool as stable although C was significantly sequestered under coniferous forest at lowland sites. The mineral soils, however, sequestered 0.41 Mg C ha(-1) yr(-1) . Carbon pool changes were supposed to depend on stand age and forest transformation as well as an enhanced biomass input. Carbon stock changes were clearly attributed to parent material and soil groups as sandy soils sequestered higher amounts of C, whereas clayey and calcareous soils showed small gains and in some cases even losses of soil C. We further showed that the largest part of the overall sample variance was not explained by fine-earth stock variances, rather by the C concentrations variance. The applied uncertainty analyses in this study link the variability of strata with measurement errors. In accordance to other studies for Central Europe, the results showed that the applied method enabled a reliable nationwide quantification of the soil C pool development for a certain period. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  15. CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor.

    PubMed

    Chang, E-E; Pan, Shu-Yuan; Chen, Yi-Hung; Chu, Hsiao-Wen; Wang, Chu-Fang; Chiang, Pen-Chi

    2011-11-15

    Carbon dioxide (CO(2)) sequestration experiments using the accelerated carbonation of three types of steelmaking slags, i.e., ultra-fine (UF) slag, fly-ash (FA) slag, and blended hydraulic slag cement (BHC), were performed in an autoclave reactor. The effects of reaction time, liquid-to-solid ratio (L/S), temperature, CO(2) pressure, and initial pH on CO(2) sequestration were evaluated. Two different CO(2) pressures were chosen: the normal condition (700 psig) and the supercritical condition (1300 psig). The carbonation conversion was determined quantitatively by using thermo-gravimetric analysis (TGA). The major factors that affected the conversion were reaction time (5 min to 12h) and temperature (40-160°C). The BHC was found to have the highest carbonation conversion of approximately 68%, corresponding to a capacity of 0.283 kg CO(2)/kg BHC, in 12h at 700 psig and 160°C. In addition, the carbonation products were confirmed to be mainly in CaCO(3), which was determined by using scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) to analyze samples before and after carbonation. Furthermore, reaction kinetics were expressed with a surface coverage model, and the carbon footprint of the developed technology in this investigation was calculated by a life cycle assessment (LCA). Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Soil carbon sequestration and land use change associated with biofuel production: Empirical evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Zhangcai; Dunn, Jennifer B.; Kwon, Hoyoung

    Soil organic carbon (SOC) change can be a major impact of land use change (LUC) associated with biofuel feedstock production. By collecting and analyzing data from worldwide field observations with major LUCs from cropland, grassland and forest to lands producing biofuel crops (i.e., corn, switchgrass, Miscanthus, poplar and willow), we were able to estimate SOC response ratios and sequestration rates and evaluate the effects of soil depth and time scale on SOC change. Both the amount and rate of SOC change were highly dependent on the specific land transition. Irrespective of soil depth or time horizon, cropland conversions resulted inmore » an overall SOC gain of 6-14% relative to initial SOC level, while conversion from grassland or forest to corn (without residue removal) or poplar caused significant carbon loss (9-35%). No significant SOC changes were observed in land converted from grasslands or forests to switchgrass, Miscanthus or willow. The SOC response ratios were similar in both 0-30 and 0-100 cm soil depths in most cases, suggesting SOC changes in deep soil and that use of top soil only for SOC accounting in biofuel life cycle analysis (LCA) might underestimate total SOC changes. Soil carbon sequestration rates varied greatly among studies and land transition types. Generally, the rates of SOC change tended to be the greatest during the 10 years following land conversion, and had declined to approach 0 within about 20 years for most LUCs. Observed trends in SOC change were generally consistent with previous reports. Soil depth and duration of study significantly influence SOC change rates and so should be considered in carbon emission accounting in biofuel LCA. High uncertainty remains for many perennial systems, field trials and modeling efforts are needed to determine the site- and system-specific rates and direction of change associated with their production.« less

  17. Potential contribution of the forestry sector in Bangladesh to carbon sequestration.

    PubMed

    Yong Shin, Man; Miah, Danesh M; Lee, Kyeong Hak

    2007-01-01

    The Kyoto Protocol provides for the involvement of developing countries in an atmospheric greenhouse gas reduction regime under its Clean Development Mechanism (CDM). Carbon credits are gained from reforestation and afforestation activities in developing countries. Bangladesh, a densely populated tropical country in South Asia, has a huge degraded forestland which can be reforested by CDM projects. To realize the potential of the forestry sector in developing countries for full-scale emission mitigation, the carbon sequestration potential of different species in different types of plantations should be integrated with the carbon trading system under the CDM of the Kyoto Protocol. This paper discusses the prospects and problems of carbon trading in Bangladesh, in relation to the CDM, in the context of global warming and the potential associated consequences. The paper analyzes the effects of reforestation projects on carbon sequestration in Bangladesh, in general, and in the hilly Chittagong region, in particular, and concludes by demonstrating the carbon trading opportunities. Results showed that tree tissue in the forests of Bangladesh stored 92tons of carbon per hectare (tC/ha), on average. The results also revealed a gross stock of 190tC/ha in the plantations of 13 tree species, ranging in age from 6 to 23 years. The paper confirms the huge atmospheric CO(2) offset by the forests if the degraded forestlands are reforested by CDM projects, indicating the potential of Bangladesh to participate in carbon trading for both its economic and environmental benefit. Within the forestry sector itself, some constraints are identified; nevertheless, the results of the study can expedite policy decisions regarding Bangladesh's participation in carbon trading through the CDM.

  18. Development of a Rapid Assessment Method for Quantifying Carbon Sequestration on Reclaimed Coal Mine Sites

    NASA Astrophysics Data System (ADS)

    Maharaj, S.; Barton, C. D.; Karathanasis, A. D.

    2005-12-01

    Projected climate change resulting from elevated atmospheric carbon dioxide has given rise to various strategies designed to sequester carbon in various terrestrial ecosystems. Reclaimed coal mine soils present one such potential carbon sink where traditional reclamation objectives can complement carbon sequestration. However, quantifying new carbon (carbon that has been added to soil through recent biological processes) on reclaimed mine soils have proven to be difficult due to carbonates and coal particles present in the reclaimed coal mine spoils. Visible coal particles can be removed, but the microscopic coal dust particles remain. Additionally, with the advent of carbon trading on the stock market, rapid quantification of newly sequestered carbon has proven to be elusive. The focus of this project is to assess the potential of thermogravimetric analysis as a rapid, simple and direct method for differentiating and quantifying new carbon from old carbon (carbon of geologic origin) on reclaimed coal mine sites and provide a standard procedure for determining carbon sequestered in soil sinks. Thermogravimetry is a physico-chemical technique where the weight change is measured and recorded during the incremental heating of the soil sample over a temperature range of 25 to 1000 ° C. Grass litter and limestone were used as representative organic and inorganic carbon fractions, while coal was used to differentiate the old and new carbon within the organic fraction. Recoveries of mixtures at the 95 % confidence interval were found to be 94.49 ± 4.23 % (coal) , 93.67 ± 2.11 % (litter) , and 108.88 ± 2.88 % (limestone) respectively. Each of the above components appeared as distinct separate peaks on the thermograph, with litter appearing between 260 to 390 ° C, coal 425 to 480 ° C, and limestone 640 to 740 ° C. Overlapping peaks for the organic carbon represented by the grass litter may be indicative of cellulose and lignin fractions. Ongoing work in this area is

  19. Estimating the potential of carbon sequestration by Korean forestry sector under climate change and management scenarios

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, M.; Son, Y.; Lee, W. K.

    2017-12-01

    Korean forests have recovered by the national-scale reforestation program and can contribute to the national greenhouse gas (GHG) mitigation goal. The forest carbon (C) sequestration is expected to change by climate change and forest management regime. In this context, estimating the changes in GHG mitigation potential of Korean forestry sector by climate and management is a timely issue. Thus, we estimated the forest C sequestration of Korea under four scenarios (2010­-2050): constant temperature with no management (CT_No), representative concentration pathway (RCP) 8.5 with no management (RCP_No), constant temperature with thinning management (CT_Man), and RCP 8.5 with thinning management (RCP_Man). Dynamic stand growth model (KO-G-Dynamic; for biomass) and forest C model (FBDC model; for non-biomass) were used at approximately 64,000 simulation units (1km2). As model input data, the forest data (e.g., forest type and stand age) and climate data were spatially prepared from the national forest inventories and the RCP 8.5 climate data. The model simulation results showed that the mean annual C sequestrations during the period (Tg C yr-1) were 11.0, 9.9, 11.5, and 10.5, respectively, under the CT_No, RCP_No, CT_Man, and RCP_Man, respectively, at the national scale. The C sequestration decreased with the time passage due to the maturity of the forests. The climate change seemed disadvantageous to the C sequestration by the forest ecosystems (≒ -1.0 Tg C yr-1) due to the increase in organic matter decomposition. In particular, the decrease in C sequestration by the climate change was greater for the needle-leaved species, compared to the broad-leaved species. Meanwhile, the forest management enhanced forest C sequestration (≒ 0.5 Tg C yr-1). Accordingly, implementing appropriate forest management strategies for adaptation would contribute to maintaining the C sequestration by Korean forestry sector under climate change. Acknowledgement: This study was supported

  20. Fertilization Increases Below-Ground Carbon Sequestration of Loblolly Pine Plantations

    Treesearch

    K.H. Johnsen; J.R. Butnor; C. Maier; R. Oren; R. Pangle; L. Samuelson; J. Seiler; S.E. McKeand; H.L. Allen

    2001-01-01

    The extent of fertilization of southern pine forests is increasing rapidly; industrial fertilization increased from 16,200 ha per year in 1988, to 344,250 ha in 1998. Fertilization increases stand productivity and can increase carbon (C) sequestration by: 1) increasing above-ground standing C; 2) increasing C stored in forest products; and 3) increasing below-ground...

  1. Carbon sequestration resulting from bottomland hardwood afforestation in the Lower Mississippi Alluvial Valley

    Treesearch

    Bertrand F. Nero; Richard P. Maiers; Janet C. Dewey; Andrew J. Londo

    2010-01-01

    Increasing abandonment of marginal agricultural lands in the Lower Mississippi Alluvial Valley (LMAV) and rising global atmospheric carbon dioxide (CO2) levels create a need for better options of achieving rapid afforestation and enhancing both below and aboveground carbon sequestration. This study examines the responses of six mixtures of bottomland hardwood species...

  2. Research and Development of a DNDC Online Model for Farmland Carbon Sequestration and GHG Emissions Mitigation in China.

    PubMed

    Jiang, Zaidi; Yin, Shan; Zhang, Xianxian; Li, Changsheng; Shen, Guangrong; Zhou, Pei; Liu, Chunjiang

    2017-12-01

    Appropriate agricultural practices for carbon sequestration and emission mitigation have a significant influence on global climate change. However, various agricultural practices on farmland carbon sequestration usually have a major impact on greenhouse gas (GHG) emissions. It is very important to accurately quantify the effect of agricultural practices. This study developed a platform-the Denitrification Decomposition (DNDC) online model-for simulating and evaluating the agricultural carbon sequestration and emission mitigation based on the scientific process of the DNDC model, which is widely used in the simulation of soil carbon and nitrogen dynamics. After testing the adaptability of the platform on two sampling fields, it turned out that the simulated values matched the measured values well for crop yields and GHG emissions. We used the platform to estimate the effect of three carbon sequestration practices in a sampling field: nitrogen fertilization reduction, straw residue and midseason drainage. The results indicated the following: (1) moderate decrement of the nitrogen fertilization in the sampling field was able to decrease the N₂O emission while maintaining the paddy rice yield; (2) ground straw residue had almost no influence on paddy rice yield, but the CH₄ emission and the surface SOC concentration increased along with the quantity of the straw residue; (3) compared to continuous flooding, midseason drainage would not decrease the paddy rice yield and could lead to a drop in CH₄ emission. Thus, this study established the DNDC online model, which is able to serve as a reference and support for the study and evaluation of the effects of agricultural practices on agricultural carbon sequestration and GHG emissions mitigation in China.

  3. Soil profile organic carbon as affected by tillage and cropping systems

    USDA-ARS?s Scientific Manuscript database

    Reports on the long-term effects of tillage and cropping systems on soil organic carbon (SOC) sequestration in the entire rooting profile are limited. A long-term experiment with three cropping systems [continuous corn (CC), continuous soybean (CSB), and soybean-corn (SB-C)] in six primary tillage s...

  4. Tidal dynamics and mangrove carbon sequestration during the Oligo–Miocene in the South China Sea

    PubMed Central

    Collins, Daniel S.; Avdis, Alexandros; Allison, Peter A.; Johnson, Howard D.; Hill, Jon; Piggott, Matthew D.; Hassan, Meor H. Amir; Damit, Abdul Razak

    2017-01-01

    Modern mangroves are among the most carbon-rich biomes on Earth, but their long-term (≥106 years) impact on the global carbon cycle is unknown. The extent, productivity and preservation of mangroves are controlled by the interplay of tectonics, global sea level and sedimentation, including tide, wave and fluvial processes. The impact of these processes on mangrove-bearing successions in the Oligo–Miocene of the South China Sea (SCS) is evaluated herein. Palaeogeographic reconstructions, palaeotidal modelling and facies analysis suggest that elevated tidal range and bed shear stress optimized mangrove development along tide-influenced tropical coastlines. Preservation of mangrove organic carbon (OC) was promoted by high tectonic subsidence and fluvial sediment supply. Lithospheric storage of OC in peripheral SCS basins potentially exceeded 4,000 Gt (equivalent to 2,000 p.p.m. of atmospheric CO2). These results highlight the crucial impact of tectonic and oceanographic processes on mangrove OC sequestration within the global carbon cycle on geological timescales. PMID:28643789

  5. The Lifestyle Carbon Dividend: Assessment of the Carbon Sequestration Potential of Grasslands and Pasturelands Reverted to Native Forests

    NASA Astrophysics Data System (ADS)

    Rao, S.; Jain, A. K.; Shu, S.

    2015-12-01

    What is the potential of a global transition to a vegan lifestyle to sequester carbon and mitigate climate change? To answer this question, we use an Earth System Model (ESM), the Integrated Science Assessment Model (ISAM). ISAM is a fully coupled biogeochemistry (carbon and nitrogen cycles) and biogeophysics (hydrology and thermal energy) ESM, which calculates carbon sources and sinks due to land cover and land use change activities, such as reforestation and afforestation. We calculate the carbon sequestration potential of grasslands and pasturelands that can be reverted to native forests as 265 GtC on 1.96E+7 km2 of land area, just 41% of the total area of such lands on Earth. The grasslands and pasturelands are assumed to revert back to native forests which existed prior to any human intervention and these include tropical, temperate and boreal forests. The results are validated with above ground regrowth measurements. Since this carbon sequestration potential is greater than the 240 GtC of that has been added to the atmosphere since the industrial era began, it shows that such global lifestyle transitions have tremendous potential to mitigate and even reverse climate change.

  6. [Carbon sequestration status of forest ecosystems in Ningxia Hui Autonomous Region].

    PubMed

    Gao, Yang; Jin, Jing-Wei; Cheng, Ji-Min; Su, Ji-Shuai; Zhu, Ren-Bin; Ma, Zheng-Rui; Liu, Wei

    2014-03-01

    Based on the data of Ningxia Hui Autonomous Region forest resources inventory, field investigation and laboratory analysis, this paper studied the carbon sequestration status of forest ecosystems in Ningxia region, estimated the carbon density and storage of forest ecosystems, and analyzed their spatial distribution characteristics. The results showed that the biomass of each forest vegetation component was in the order of arbor layer (46.64 Mg x hm(-2)) > litterfall layer (7.34 Mg x hm(-2)) > fine root layer (6.67 Mg x hm(-2)) > shrub-grass layer (0.73 Mg x hm(-2)). Spruce (115.43 Mg x hm(-2)) and Pinus tabuliformis (94.55 Mg x hm(-2)) had higher vegetation biomasses per unit area than other tree species. Over-mature forest had the highest arbor carbon density among the forests with different ages. However, the young forest had the highest arbor carbon storage (1.90 Tg C) due to its widest planted area. Overall, the average carbon density of forest ecosystems in Ningxia region was 265.74 Mg C x hm(-2), and the carbon storage was 43.54 Tg C. Carbon density and storage of vegetation were 27.24 Mg C x hm(-2) and 4.46 Tg C, respectively. Carbon storage in the soil was 8.76 times of that in the vegetation. In the southern part of Ningxia region, the forest carbon storage was higher than in the northern part, where the low C storage was mainly related to the small forest area and young forest age structure. With the improvement of forest age structure and the further implementation of forestry ecoengineering, the forest ecosystems in Ningxia region would achieve a huge carbon sequestration potential.

  7. Carbon sequestration and fertility after centennial time scale incorporation of charcoal into soil

    NASA Astrophysics Data System (ADS)

    Criscuoli, Irene; Alberti, Giorgio; Baronti, Silvia; Favilli, Filippo; Martinez, Cristina; Calzolari, Costanza; Pusceddu, Emanuela; Rumpel, Cornelia; Viola, Roberto; Miglietta, Franco

    2014-05-01

    The addition of pyrogenic carbon (C) in the soil is considered a sustainable strategy to achieve direct C sequestration and potential reduction of non-CO2 greenhouse gas emissions. In this paper, we investigated the long term effects of charcoal addition on C sequestration and soil chemico-physical properties by studying a series of abandoned charcoal hearths in the Eastern Alps established in the XIX century. This natural setting can be seen as an analogue of a deliberate experiment with replications. Carbon sequestration was assessed indirectly by comparing the amount of C present in the hearths with the estimated amount of charcoal that was left on the soil after the carbonization. Approximately 80% of the C originally added to the soil via charcoal can still be found today, thus supporting the view that charcoal incorporation is an effective way to sequester atmospheric CO2. We also observed an improvement in the physical properties (hydrophobicity and bulk density) of charcoal hearth soils and an accumulation of nutrients compared to the adjacent soil without charcoal. Then, we focused on the morphological and physical characterization of several fragments, using scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF). Such study enabled the identification of peculiar morphological features of tracheids, which were tentatively associated to a differential oxidation of the structures that were created during carbonization from lignine and cellulose. In order to assess the effect of soil-aging we compared the old-biochar with a modern one obtained from the same feedstock and with similar carbonization process. XRD and XRF analysis were performed on both old and modern biochar, in order to study the multiphase crystalline structure and chemical elements found. We observed mineralization and a fossilization of old biochar samples respect to the modern ones, with accumulation of several mineral oxides and a substantial presence of

  8. Carbon Storage and Sequestration in Ecosystems of the Western United States: Finings of a Recent Resource Assessment

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Bergamaschi, B. A.; Hawbaker, T. J.; Liu, S.; Sleeter, B. M.; Sohl, T. L.; Stackpoole, S. M.

    2012-12-01

    A new assessment was conducted covering 2.66 million km2 in the Western United States extending from the Rockies to the Pacific coastal waters, in two time periods: baseline (the first half of the 2000s) and future (projections from baseline to 2050), using in-situ and remotely sensed data together with statistical methods and simulation models. The total carbon storage in the ecosystems of the Western United States in 2005 was approximately 13,920 TgC; distributed in live biomass (38%), soil organic carbon (39%), and woody debris and other surface carbon pools (23%). Estimated mean values of major flux terms included net ecosystem production (-127.2 TgC/yr), inland lateral flux (7.2 TgC/yr) from rivers/streams to coastal areas, emissions from inland water surfaces to the atmosphere (28.2 TgC/yr), and emissions form the wildland fires (10.0 TgC/yr). Average C sequestration rates for the region were estimated: -86.6 TgC/yr in net flux for all terrestrial ecosystems, -2.4 and -2.0 TgC/yr in net burial rates in lakes and reservoirs and in the Pacific coastal waters respectively, for a total sequestration rate of -90.9 TgC/yr across all of the major ecosystems. A negative sign denotes uptake, sequestration, or a carbon sink. Most of the net carbon flux is in forests (62.2%, -72.1 gC/m2/yr), followed by grasslands/shrublands (29.6%, -16.4 gC/m2/yr), agricultural lands (7.1%, -38.3 gC/m2/yr), and wetlands (0.96%, -82.1 gC/m2/yr). Projected on the basis of future land-use and land-cover scenarios and climate projections, the total amount of carbon that potentially could be stored in the ecosystems of the Western United States in 2050 was estimated to range from 13,743 to 19,407 TgC, an increase of 1,325-3,947 TgC (or 10.7 to 25.5 %) from baseline conditions of 2005. The potential mean (averaged between 2006 and 2050) annual net carbon flux in terrestrial ecosystems was projected to range from -113.9 TgC/yr to 2.9 TgC/yr. When compared to the baseline net carbon flux

  9. Pollution mitigation and carbon sequestration by an urban forest.

    PubMed

    Brack, C L

    2002-01-01

    At the beginning of the 1900s, the Canberra plain was largely treeless. Graziers had carried out extensive clearing of the original trees since the 1820s leaving only scattered remnants and some plantings near homesteads. With the selection of Canberra as the site for the new capital of Australia, extensive tree plantings began in 1911. These trees have delivered a number of benefits, including aesthetic values and the amelioration of climatic extremes. Recently, however, it was considered that the benefits might extend to pollution mitigation and the sequestration of carbon. This paper outlines a case study of the value of the Canberra urban forest with particular reference to pollution mitigation. This study uses a tree inventory, modelling and decision support system developed to collect and use data about trees for tree asset management. The decision support system (DISMUT) was developed to assist in the management of about 400,000 trees planted in Canberra. The size of trees during the 5-year Kyoto Commitment Period was estimated using DISMUT and multiplied by estimates of value per square meter of canopy derived from available literature. The planted trees are estimated to have a combined energy reduction, pollution mitigation and carbon sequestration value of US$20-67 million during the period 2008-2012.

  10. Limits on carbon sequestration in arid blue carbon ecosystems.

    PubMed

    Schile, Lisa M; Kauffman, J Boone; Crooks, Stephen; Fourqurean, James W; Glavan, Jane; Megonigal, J Patrick

    2017-04-01

    Environmental Data Initiative. These carbon stock data supported two objectives: to quantify carbon stocks and infer sequestration capacity in arid blue carbon ecosystems, and to explore the potential to incorporate blue carbon science into national reporting and planning documents. © 2016 by the Ecological Society of America.

  11. A guide to potential soil carbon sequestration; land-use management for mitigation of greenhouse gas emissions

    USGS Publications Warehouse

    Markewich, H.W.; Buell, G.R.

    2001-01-01

    Terrestrial carbon sequestration has a potential role in reducing the recent increase in atmospheric carbon dioxide (CO2) that is, in part, contributing to global warming. Because the most stable long-term surface reservoir for carbon is the soil, changes in agriculture and forestry can potentially reduce atmospheric CO2 through increased soil-carbon storage. If local governments and regional planning agencies are to effect changes in land-use management that could mitigate the impacts of increased greenhouse gas (GHG) emissions, it is essential to know how carbon is cycled and distributed on the landscape. Only then can a cost/benefit analysis be applied to carbon sequestration as a potential land-use management tool for mitigation of GHG emissions. For the past several years, the U.S. Geological Survey (USGS) has been researching the role of terrestrial carbon in the global carbon cycle. Data from these investigations now allow the USGS to begin to (1) 'map' carbon at national, regional, and local scales; (2) calculate present carbon storage at land surface; and (3) identify those areas having the greatest potential to sequester carbon.

  12. Estimation of carbon sequestration in China's forests induced by atmospheric nitrogen deposition: Principles of ecological stoichiometry

    NASA Astrophysics Data System (ADS)

    Zhu, J.; He, N.; Zhang, J.; Wang, Q.; Zhao, N.; Jia, Y.; Ge, J.; Yu, G.

    2017-12-01

    The worldwide development of industry and agriculture has generated noticeable increases in atmospheric nitrogen (N) deposition, significantly altering the global N cycle. These changes might affect the global carbon (C) cycle by enhancing forest C sequestration. Here, we measured a series of datasets from eight typical forests along the north-south transect of eastern China (NSTEC). These datasets contained information on community structure, C and N concentrations in the soil and different organs of 877 plant species (leaf, branch, stem, and fine-root), and atmospheric N deposition. Using the biomass weighting method, we scaled up the C:N ratios from the organ level to the ecosystem level, and evaluated the C sequestration rate (CSRN) in response to N deposition and N use efficiency (NUE) in China's forests on the principles of ecological stoichiometry. Our results showed that atmospheric N deposition had a modest impact on forest C storage. Specifically, CSRN was estimated as 231 kg C ha-1 yr-1 (range: 32.7-507.1 kg C ha-1 yr-1), accounting for 2.1% of NPP and 4.6% of NEP at the ecosystem level. The NUE (NUEeco) of atmospheric N deposition ranged from 9.6 to 27.7 kg C kg-1 N, and increased with increasing latitude from subtropical to cold-temperate forests in China (P < 0.05). This study provides a new approach for estimating the effect of atmospheric deposition on forest C sequestration based on the principle of ecological stoichiometry.

  13. Agricultural land abandonment in Mediterranean environment provides ecosystem services via soil carbon sequestration.

    PubMed

    Novara, Agata; Gristina, Luciano; Sala, Giovanna; Galati, Antonino; Crescimanno, Maria; Cerdà, Artemi; Badalamenti, Emilio; La Mantia, Tommaso

    2017-01-15

    Abandonment of agricultural land leads to several consequences for ecosystem functions. Agricultural abandonment may be a significant and low cost strategy for carbon sequestration and mitigation of anthropogenic CO 2 emissions due to the vegetation recovery and increase in soil organic matter. The aim of this study was to: (i) estimate the influence of different Soil Regions (areas characterized by a typical climate and parent material association) and Bioclimates (zones with homogeneous climatic regions and thermotype indices) on soil organic carbon (SOC) dynamics after agricultural land abandonment; and (ii) to analyse the efficiency of the agri-environment policy (agri-environment measures) suggested by the European Commission in relation to potential SOC stock ability in the Sicilian Region (Italy). In order to quantify the effects of agricultural abandonment on SOC, a dataset with original data that was sampled in Sicily and existing data from the literature were analysed according to the IPCC (Intergovernmental Panel on Climate Change) methodology. Results showed that abandonment of cropland soils increased SOC stock by 9.03MgCha -1 on average, ranging from 5.4MgCha -1 to 26.7MgCha -1 in relation to the Soil Region and Bioclimate. The estimation of SOC change after agricultural use permitted calculation of the payments for ecosystem service (PES) of C sequestration after agricultural land abandonment in relation to environmental benefits, increasing in this way the efficiency of PES. Considering the 14,337ha of abandoned lands in Sicily, the CO 2 emission as a whole was reduced by 887,745Mg CO 2 . Therefore, it could be concluded that abandoned agricultural fields represents a valid opportunity to mitigate agriculture sector emissions in Sicily. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. An Integrated Functional Genomics Consortium to Increase Carbon Sequestration in Poplars: Optimizing Aboveground Carbon Gain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karnosky, David F; Podila, G Krishna; Burton, Andrew J

    2009-02-17

    This project used gene expression patterns from two forest Free-Air CO2 Enrichment (FACE) experiments (Aspen FACE in northern Wisconsin and POPFACE in Italy) to examine ways to increase the aboveground carbon sequestration potential of poplars (Populus). The aim was to use patterns of global gene expression to identify candidate genes for increased carbon sequestration. Gene expression studies were linked to physiological measurements in order to elucidate bottlenecks in carbon acquisition in trees grown in elevated CO2 conditions. Delayed senescence allowing additional carbon uptake late in the growing season, was also examined, and expression of target genes was tested in elitemore » P. deltoides x P. trichocarpa hybrids. In Populus euramericana, gene expression was sensitive to elevated CO2, but the response depended on the developmental age of the leaves. Most differentially expressed genes were upregulated in elevated CO2 in young leaves, while most were downregulated in elevated CO2 in semi-mature leaves. In P. deltoides x P. trichocarpa hybrids, leaf development and leaf quality traits, including leaf area, leaf shape, epidermal cell area, stomatal number, specific leaf area, and canopy senescence were sensitive to elevated CO2. Significant increases under elevated CO2 occurred for both above- and belowground growth in the F-2 generation. Three areas of the genome played a role in determining aboveground growth response to elevated CO2, with three additional areas of the genome important in determining belowground growth responses to elevated CO2. In Populus tremuloides, CO2-responsive genes in leaves were found to differ between two aspen clones that showed different growth responses, despite similarity in many physiological parameters (photosynthesis, stomatal conductance, and leaf area index). The CO2-responsive clone shunted C into pathways associated with active defense/response to stress, carbohydrate/starch biosynthesis and subsequent growth. The CO

  15. Estimates of Carbon Sequestration and Storage in Tidal Coastal Wetlands Along the US East Coast

    EPA Science Inventory

    Globally, salt marshes are reported to sequester carbon (210 g C m-2 y -1), and along with mangroves in the US, they are reported to account for 1–2 % of the carbon sink for the conterminous US. Using the published salt marsh carbon sequestration rate and National Wetland Invent...

  16. Carbon Capture and Sequestration- A Review

    NASA Astrophysics Data System (ADS)

    Sood, Akash; Vyas, Savita

    2017-08-01

    The Drastic increase of CO2 emission in the last 30 years is due to the combustion of fossil fuels and it causes a major change in the environment such as global warming. In India, the emission of fossil fuels is developed in the recent years. The alternate energy sources are not sufficient to meet the values of this emission reduction and the framework of climate change demands the emission reduction, the CCS technology can be used as a mitigation tool which evaluates the feasibility for implementation of this technology in India. CCS is a process to capture the carbon dioxide from large sources like fossil fuel station to avoid the entrance of CO2 in the atmosphere. IPCC accredited this technology and its path for mitigation for the developing countries. In this paper, we present the technologies of CCS with its development and external factors. The main goal of this process is to avoid the release the CO2 into the atmosphere and also investigates the sequestration and mitigation technologies of carbon.

  17. Current knowledge on effects of forest silvicultural operations on carbon sequestration in southern forests

    Treesearch

    John D. Cason; Donald L. Grebner; Andrew J. Londo; Stephen C. Grado

    2006-01-01

    Incentive programs to reduce carbon dioxide (CO2) emissions are increasing in number with the growing threat of global warming. Terrestrial sequestration of CO2 through forestry practices on newly established forests is a potential mitigation tool for developing carbon markets in the United States. The extent of industrial...

  18. Enhancing forest carbon sequestration in China: toward an integration of scientific and socio-economic perspectives.

    PubMed

    Chen, J M; Thomas, S C; Yin, Y; Maclaren, V; Liu, J; Pan, J; Liu, G; Tian, Q; Zhu, Q; Pan, J-J; Shi, X; Xue, J; Kang, E

    2007-11-01

    This article serves as an introduction to this special issue, "China's Forest Carbon Sequestration", representing major results of a project sponsored by the Canadian International Development Agency and the Chinese Academy of Sciences. China occupies a pivotal position globally as a principle emitter of carbon dioxide, as host to some of the world's largest reforestation efforts, and as a key player in international negotiations aimed at reducing global greenhouse gas emission. The goals of this project are to develop remote sensing approaches for quantifying forest carbon balance in China in a transparent manner, and information and tools to support land-use decisions for enhanced carbon sequestration (CS) that are science based and economically and socially viable. The project consists of three components: (i) remote sensing and carbon modeling, (ii) forest and soil assessment, and (iii) integrated assessment of the socio-economic implications of CS via forest management. Articles included in this special issue are highlights of the results of each of these components.

  19. Study on the methodology of road carbon sink forest

    NASA Astrophysics Data System (ADS)

    Wan, Lijuan; Zhang, Yi; Cheng, Dongxiang; Huang, Yanan

    2017-01-01

    Advanced concepts of forest carbon sink and forestry carbon sequestration are introduced in road carbon sink forest project and the measurement and carbon monitoring of road carbon sink forest are explored. Experience and technology are accumulated and a set of the carbon sequestration forestation and carbon measurement and monitoring technology systems on both sides of road are formed. To update the green concept, improve the forestation quality along road and to enhanced sequestration and ecological efficiency, it is important to realize the traffic low carbon and energy saving and emission reduction. To use scientific planting and monitoring methods, soil properties, carbon sequestration of soil organic carbon pool, and carbon sequestration capacity of different species of trees were studied and monitored. High carbon sequestration species selection, silvicultural management, measurement of carbon sink and carbon monitoring are explored.

  20. Electricity without carbon dioxide: Assessing the role of carbon capture and sequestration in United States electric markets

    NASA Astrophysics Data System (ADS)

    Johnson, Timothy Lawrence

    2002-09-01

    Stabilization of atmospheric greenhouse gas concentrations will likely require significant cuts in electric sector carbon dioxide (CO2) emissions. The ability to capture and sequester CO2 in a manner compatible with today's fossil-fuel based power generating infrastructure offers a potentially low-cost contribution to a larger climate change mitigation strategy. This thesis fills a niche between economy-wide studies of CO 2 abatement and plant-level control technology assessments by examining the contribution that carbon capture and sequestration (CCS) might make toward reducing US electric sector CO2 emissions. The assessment's thirty year perspective ensures that costs sunk in current infrastructure remain relevant and allows time for technological diffusion, but remains free of assumptions about the emergence of unidentified radical innovations. The extent to which CCS might lower CO2 mitigation costs will vary directly with the dispatch of carbon capture plants in actual power-generating systems, and will depend on both the retirement of vintage capacity and competition from abatement alternatives such as coal-to-gas fuel switching and renewable energy sources. This thesis therefore adopts a capacity planning and dispatch model to examine how the current distribution of generating units, natural gas prices, and other industry trends affect the cost of CO2 control via CCS in an actual US electric market. The analysis finds that plants with CO2 capture consistently provide significant reductions in base-load emissions at carbon prices near 100 $/tC, but do not offer an economical means of meeting peak demand unless CO2 reductions in excess of 80 percent are required. Various scenarios estimate the amount by which turn-over of the existing generating infrastructure and the severity of criteria pollutant constraints reduce mitigation costs. A look at CO2 sequestration in the seabed beneath the US Outer Continental Shelf (OCS) complements this model

  1. A National Disturbance Modeling System to Support Ecological Carbon Sequestration Assessments

    NASA Astrophysics Data System (ADS)

    Hawbaker, T. J.; Rollins, M. G.; Volegmann, J. E.; Shi, H.; Sohl, T. L.

    2009-12-01

    The U.S. Geological Survey (USGS) is prototyping a methodology to fulfill requirements of Section 712 of the Energy Independence and Security Act (EISA) of 2007. At the core of the EISA requirements is the development of a methodology to complete a two-year assessment of current carbon stocks and other greenhouse gas (GHG) fluxes, and potential increases for ecological carbon sequestration under a range of future climate changes, land-use / land-cover configurations, and policy, economic and management scenarios. Disturbances, especially fire, affect vegetation dynamics and ecosystem processes, and can also introduce substantial uncertainty and risk to the efficacy of long-term carbon sequestration strategies. Thus, the potential impacts of disturbances need to be considered under different scenarios. As part of USGS efforts to meet EISA requirements, we developed the National Disturbance Modeling System (NDMS) using a series of statistical and process-based simulation models. NDMS produces spatially-explicit forecasts of future disturbance locations and severity, and the resulting effects on vegetation dynamics. NDMS is embedded within the Forecasting Scenarios of Future Land Cover (FORE-SCE) model and informs the General Ensemble Biogeochemical Modeling System (GEMS) for quantifying carbon stocks and GHG fluxes. For fires, NDMS relies on existing disturbance histories, such as the Landsat derived Monitoring Trends in Burn Severity (MTBS) and Vegetation Change Tracker (VCT) data being used to update LANDFIRE fuels data. The MTBS and VCT data are used to parameterize models predicting the number and size of fires in relation to climate, land-use/land-cover change, and socioeconomic variables. The locations of individual fire ignitions are determined by an ignition probability surface and then FARSITE is used to simulate fire spread in response to weather, fuels, and topography. Following the fire spread simulations, a burn severity model is used to determine annual

  2. Options for accounting carbon sequestration in German forests

    PubMed Central

    Krug, Joachim; Koehl, Michael; Riedel, Thomas; Bormann, Kristin; Rueter, Sebastian; Elsasser, Peter

    2009-01-01

    Background The Accra climate change talks held from 21–27 August 2008 in Accra, Ghana, were part of an ongoing series of meetings leading up to the Copenhagen meeting in December 2009. During the meeting a set of options for accounting carbon sequestration in forestry on a post-2012 framework was presented. The options include gross-net and net-net accounting and approaches for establishing baselines. Results This article demonstrates the embedded consequences of Accra Accounting Options for the case study of German national GHG accounting. It presents the most current assessment of sequestration rates by forest management for the period 1990 – 2007, provides an outlook of future emissions and removals (up to the year 2042) as related to three different management scenarios, and shows that implementation of some Accra options may reverse sources to sinks, or sinks to sources. Conclusion The results of the study highlight the importance of elaborating an accounting system that would prioritize the climate convention goals, not national preferences. PMID:19650896

  3. Addition of organic amendments contributes to C sequestration in trace element contaminated soils.

    NASA Astrophysics Data System (ADS)

    del Mar Montiel Rozas, María; Panettier, Marco; Madejón Rodríguez, Paula; Madejón Rodríguez, Engracia

    2015-04-01

    Nowadays, the study of global C cycle and the different natural sinks of C have become especially important in a climate change context. Fluxes of C have been modified by anthropogenic activities and, presently, the global objective is the decrease of net CO2 emission. For this purpose, many studies are being conducted at local level for evaluate different C sequestration strategies. These techniques must be, in addition to safe in the long term, environmentally friendly. Restoration of contaminated and degraded areas is considered as a strategy for SOC sequestration. Our study has been carried out in the Guadiamar Green Corridor (Seville, Spain) affected by the Aznalcóllar mining accident. This accident occurred 16 years ago, due to the failure of the tailing dam which contained 4-5 million m3 of toxic tailings (slurry and acid water).The affected soils had a layer of toxic sludge containing heavy metals as As, Cd, Cu, Pb and Zn. Restoration techniques began to be applied just after the accident, including the removal of the toxic sludge and a variable layer of topsoil (10-30 cm) from the surface. In a second phase, in a specific area (experimental area) of the Green Corridor the addition of organic amendments (Biosolid compost (BC) and Leonardite (LE), a low grade coal rich in humic acids) was carried out to increase pH, organic matter and fertility in a soil which lost its richest layer during the clean-up operation. In our experimental area, half of the plots (A) received amendments for four years (2002, 2003, 2006 and 2007) whereas the other half (B) received amendments only for two years (2002-2003). To compare, plots without amendments were also established. Net balance of C was carried out using values of Water Soluble Carbon (WSC) and Total Organic Carbon (TOC) for three years (2012, 2013 and 2015). To eliminate artificial changes carried out in the plots, amendment addition and withdrawal of biomass were taken into account to calculate balance of kg TOC

  4. Simulating soil organic carbon in a wheat–fallow system using the Daycent model

    USDA-ARS?s Scientific Manuscript database

    Crop management practices that contribute to soil organic carbon (SOC) sequestration can improve productivity and long-term sustainability. We present a modeling study on influence of (>80 years) various long-term crop residue and nutrient management practices on SOC dynamics under conventional and ...

  5. Sequestration of carbon dioxide and production of biomolecules using cyanobacteria.

    PubMed

    Upendar, Ganta; Singh, Sunita; Chakrabarty, Jitamanyu; Chandra Ghanta, Kartik; Dutta, Susmita; Dutta, Abhishek

    2018-07-15

    A cyanobacterial strain, Synechococcus sp. NIT18, has been applied to sequester CO 2 using sodium carbonate as inorganic carbon source due to its efficiency of CO 2 bioconversion and high biomass production. The biomass obtained is used for the extraction of biomolecules - protein, carbohydrate and lipid. The main objective of the study is to maximize the biomass and biomolecules production with CO 2 sequestration using cyanobacterial strain cultivated under different concentrations of CO 2 (5-20%), pH (7-11) and inoculum size (5-12.5%) within a statistical framework. Maximum sequestration of CO 2 and maximum productivities of protein, carbohydrate and lipid are 71.02%, 4.9 mg/L/day, 6.7 mg/L/day and 1.6 mg/L/day respectively, at initial CO 2 concentration: 10%, pH: 9 and inoculum size: 12.5%. Since flue gas contains 10-15% CO 2 and the present strain is able to sequester CO 2 in this range, the strain could be considered as a useful tool for CO 2 mitigation for greener world. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Serpentinite Carbonation in the Pollino Massif (southern Italy) for CO2 Sequestration

    NASA Astrophysics Data System (ADS)

    Carmela Dichicco, Maria; Mongelli, Giovanni; Paternoster, Michele; Rizzo, Giovanna

    2015-04-01

    Anthropogenic gas emissions are projected to change future climates with potentially nontrivial impacts (Keller et al., 2008 and references therein) and the impacts of the increased CO2 concentration are, among others, the greenhouse effect, the acidification of the surface of the ocean and the fertilization of ecosystems (e.g. Huijgen and Comans, 2003). Geologic Sequestration into subsurface rock formations for long-term storage is part of a process frequently referred to as "carbon capture and storage" or CCS. A major strategy for the in situ geological sequestration of CO2 involves the reaction of CO2 with Mg-silicates, especially in the form of serpentinites, which are rocks: i) relatively abundant and widely distributed in the Earth's crust, and ii) thermodynamically convenient for the formation of Mg-carbonates (e.g., Brown et al., 2011). In nature, carbonate minerals can form during serpentinization or during hydrothermal carbonation and weathering of serpentinites whereas industrial mineral carbonation processes are commonly represented by the reaction of olivine or serpentine with CO2 to form magnesite + quartz ± H2O (Power et al., 2013). Mineral carbonation occurs naturally in the subsurface as a result of fluid-rock interactions within serpentinite, which occur during serpentinization and carbonate alteration. In situ carbonation aims to promote these reactions by injecting CO2 into porous, subsurface geological formations, such as serpentinite-hosted aquifers. In the northern sector of the Pollino Massif (southern Italy) extensively occur serpentinites (Sansone et. al., 2012) and serpentinite-hosted aquifers (Margiotta et al., 2012); both serpentinites and serpentinite-hosted aquifers are the subject of a comprehensive project devoted to their possible use for in situ geological sequestration of CO2. The serpentinites derived from a lherzolitic and subordinately harzburgitic mantle, and are within tectonic slices in association with metadolerite dykes

  7. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bill Stanley; Patrick Gonzalez; Sandra Brown

    2005-10-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects,more » providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st , 2005 and June 30th, 2005. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.« less

  8. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bill Stanley; Patrick Gonzalez; Sandra Brown

    2006-01-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects,more » providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st , 2005 and June 30th, 2005. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.« less

  9. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bill Stanley; Sandra Brown; Patrick Gonzalez

    2004-07-10

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects,more » providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas impacts. The research described in this report occurred between July 1, 2002 and June 30, 2003. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: remote sensing for carbon analysis; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.« less

  10. Ocean Fertilization for Sequestration of Carbon Dioxide from the Atmosphere

    NASA Astrophysics Data System (ADS)

    Boyd, Philip W.

    The ocean is a major sink for both preindustrial and anthropogenic carbon dioxide. Both physically and biogeochemically driven pumps, termed the solubility and biological pump, respectively Fig.5.1) are responsible for the majority of carbon sequestration in the ocean's interior [1]. The solubility pump relies on ocean circulation - specifically the impact of cooling of the upper ocean at high latitudes both enhances the solubility of carbon dioxide and the density of the waters which sink to great depth (the so-called deepwater formation) and thereby sequester carbon in the form of dissolved inorganic carbon (Fig.5.1). The biological pump is driven by the availability of preformed plant macronutrients such as nitrate or phosphate which are taken up by phytoplankton during photosynthetic carbon fixation. A small but significant proportion of this fixed carbon sinks into the ocean's interior in the form of settling particles, and in order to maintain equilibrium carbon dioxide from the atmosphere is transferred across the air-sea interface into the ocean (the so-called carbon drawdown) thereby decreasing atmospheric carbon dioxide (Fig.5.1).Fig.5.1

  11. Soil Organic Carbon and Nutrient Dynamics in Reclaimed Appalachian Mine Soil

    NASA Astrophysics Data System (ADS)

    Acton, P.; Fox, J.; Campbell, J. E.; Rowe, H. D.; Jones, A.

    2011-12-01

    Past research has shown that drastically disturbed and degraded soils can offer a high potential for soil organic carbon and aboveground carbon sequestration. Little work has been done on both the functioning of soil carbon accumulation and turnover in reclaimed surface mining soils. Reclamation practices of surface coal mine soils in the Southern Appalachian forest region of the United States emphasizes heavy compaction of surface material to provide slope stability and reduce surface erosion, and topsoil is not typically added. An analysis of the previously collected data has provided a 14 year chronosequence of SOC uptake and development in the soil column and revealed that these soils are sequestering carbon at a rate of 1.3 MgC ha-1 yr-1, which is 1.6 to 3 times less than mining soils reported for other regions. Results of bulk density analysis indicate a contrast between 0 - 10 cm (1.51 g cm-3) and 10 - 50 cm (2.04 g cm-3) depth intervals. Aggregate stability was also quantified as well as dynamic soil texture measurements. With this analysis, it has been established that these soils are well below their potential in terms of the ability to store and cycle carbon and other nutrients as well their ability to sustain a fully-functioning forested ecosystem typical for the region. We are taking an integrated approach that relies on ecological observations for present conditions combined with computational modeling to understand long-term soil organic carbon (SOC) accumulation and turnover in regards to SOC sequestration potential and quantification of specific processes by which these soils develop. A dual-isotope end-member model, utilizing the carbon 13 and nitrogen 15 stable isotopes, is being developed to provide greater input into the mathematical separation of organic carbon derived from new soil inputs and existing coal carbon. Soils from the study sites have been isolated into three distinct size pools, and elemental and isotopic analysis of these samples

  12. Significant Role for Microbial Autotrophy in the Sequestration of Soil Carbon

    PubMed Central

    Yuan, Hongzhao; Ge, Tida; Chen, Caiyan; O'Donnell, Anthony G.

    2012-01-01

    Soils were incubated for 80 days in a continuously labeled 14CO2 atmosphere to measure the amount of labeled C incorporated into the microbial biomass. Microbial assimilation of 14C differed between soils and accounted for 0.12% to 0.59% of soil organic carbon (SOC). Assuming a terrestrial area of 1.4 × 108 km2, this represents a potential global sequestration of 0.6 to 4.9 Pg C year−1. Estimated global C sequestration rates suggest a “missing sink” for carbon of between 2 and 3 Pg C year−1. To determine whether 14CO2 incorporation was mediated by autotrophic microorganisms, the diversity and abundance of CO2-fixing bacteria and algae were investigated using clone library sequencing, terminal restriction fragment length polymorphism (T-RFLP), and quantitative PCR (qPCR) of the ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) gene (cbbL). Phylogenetic analysis showed that the dominant cbbL-containing bacteria were Azospirillum lipoferum, Rhodopseudomonas palustris, Bradyrhizobium japonicum, Ralstonia eutropha, and cbbL-containing chromophytic algae of the genera Xanthophyta and Bacillariophyta. Multivariate analyses of T-RFLP profiles revealed significant differences in cbbL-containing microbial communities between soils. Differences in cbbL gene diversity were shown to be correlated with differences in SOC content. Bacterial and algal cbbL gene abundances were between 106 and 108 and 103 to 105 copies g−1 soil, respectively. Bacterial cbbL abundance was shown to be positively correlated with RubisCO activity (r = 0.853; P < 0.05), and both cbbL abundance and RubisCO activity were significantly related to the synthesis rates of [14C]SOC (r = 0.967 and 0.946, respectively; P < 0.01). These data offer new insights into the importance of microbial autotrophy in terrestrial C cycling. PMID:22286999

  13. Regional carbon sequestration and climate change: It’s all about water

    Treesearch

    Ge Sun; Peter Caldwell; Steve McNulty; Eric Ward; Jean-Christophe Domec; Asko Noormets

    2013-01-01

    Forests need a lot of water to produce the goods (e.g., timber) and services (e.g., carbon sequestration and climate moderation) that benefit humans. Forests grow naturally in water-rich regions where precipitation is abundant or where groundwater is available, such as riparian areas in arid regions. For example, loblolly pine (Pinus taeda L.)...

  14. Proposed roadmap for overcoming legal and financial obstacles to carbon capture and sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Wendy; Chohen, Leah; Kostakidis-Lianos, Leah

    Many existing proposals either lack sufficient concreteness to make carbon capture and geological sequestration (CCGS) operational or fail to focus on a comprehensive, long term framework for its regulation, thus failing to account adequately for the urgency of the issue, the need to develop immediate experience with large scale demonstration projects, or the financial and other incentives required to launch early demonstration projects. We aim to help fill this void by proposing a roadmap to commercial deployment of CCGS in the United States.This roadmap focuses on the legal and financial incentives necessary for rapid demonstration of geological sequestration in themore » absence of national restrictions on CO2 emissions. It weaves together existing federal programs and financing opportunities into a set of recommendations for achieving commercial viability of geological sequestration.« less

  15. Space-Time Controls on Carbon Sequestration Over Large-Scale Amazon Basin

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Cooper, Harry J.; Gu, Jiujing; Grose, Andrew; Norman, John; daRocha, Humberto R.; Starr, David O. (Technical Monitor)

    2002-01-01

    A major research focus of the LBA Ecology Program is an assessment of the carbon budget and the carbon sequestering capacity of the large scale forest-pasture system that dominates the Amazonia landscape, and its time-space heterogeneity manifest in carbon fluxes across the large scale Amazon basin ecosystem. Quantification of these processes requires a combination of in situ measurements, remotely sensed measurements from space, and a realistically forced hydrometeorological model coupled to a carbon assimilation model, capable of simulating details within the surface energy and water budgets along with the principle modes of photosynthesis and respiration. Here we describe the results of an investigation concerning the space-time controls of carbon sources and sinks distributed over the large scale Amazon basin. The results are derived from a carbon-water-energy budget retrieval system for the large scale Amazon basin, which uses a coupled carbon assimilation-hydrometeorological model as an integrating system, forced by both in situ meteorological measurements and remotely sensed radiation fluxes and precipitation retrieval retrieved from a combination of GOES, SSM/I, TOMS, and TRMM satellite measurements. Brief discussion concerning validation of (a) retrieved surface radiation fluxes and precipitation based on 30-min averaged surface measurements taken at Ji-Parana in Rondonia and Manaus in Amazonas, and (b) modeled carbon fluxes based on tower CO2 flux measurements taken at Reserva Jaru, Manaus and Fazenda Nossa Senhora. The space-time controls on carbon sequestration are partitioned into sets of factors classified by: (1) above canopy meteorology, (2) incoming surface radiation, (3) precipitation interception, and (4) indigenous stomatal processes varied over the different land covers of pristine rainforest, partially, and fully logged rainforests, and pasture lands. These are the principle meteorological, thermodynamical, hydrological, and biophysical

  16. Coastal landforms and accumulation of mangrove peat increase carbon sequestration and storage

    PubMed Central

    Garcillán, Pedro P.

    2016-01-01

    Given their relatively small area, mangroves and their organic sediments are of disproportionate importance to global carbon sequestration and carbon storage. Peat deposition and preservation allows some mangroves to accrete vertically and keep pace with sea-level rise by growing on their own root remains. In this study we show that mangroves in desert inlets in the coasts of the Baja California have been accumulating root peat for nearly 2,000 y and harbor a belowground carbon content of 900–34,00 Mg C/ha, with an average value of 1,130 (± 128) Mg C/ha, and a belowground carbon accumulation similar to that found under some of the tallest tropical mangroves in the Mexican Pacific coast. The depth–age curve for the mangrove sediments of Baja California indicates that sea level in the peninsula has been rising at a mean rate of 0.70 mm/y (± 0.07) during the last 17 centuries, a value similar to the rates of sea-level rise estimated for the Caribbean during a comparable period. By accreting on their own accumulated peat, these desert mangroves store large amounts of carbon in their sediments. We estimate that mangroves and halophyte scrubs in Mexico’s arid northwest, with less than 1% of the terrestrial area, store in their belowground sediments around 28% of the total belowground carbon pool of the whole region. PMID:27035950

  17. Carbon Sequestration and Fertility after Centennial Time Scale Incorporation of Charcoal into Soil

    PubMed Central

    Criscuoli, Irene; Alberti, Giorgio; Baronti, Silvia; Favilli, Filippo; Martinez, Cristina; Calzolari, Costanza; Pusceddu, Emanuela; Rumpel, Cornelia; Viola, Roberto; Miglietta, Franco

    2014-01-01

    The addition of pyrogenic carbon (C) in the soil is considered a potential strategy to achieve direct C sequestration and potential reduction of non-CO2 greenhouse gas emissions. In this paper, we investigated the long term effects of charcoal addition on C sequestration and soil physico-chemical properties by studying a series of abandoned charcoal hearths in the Eastern Alps of Italy established in the XIX century. This natural setting can be seen as an analogue of a deliberate experiment with replications. Carbon sequestration was assessed indirectly by comparing the amount of pyrogenic C present in the hearths (23.3±4.7 kg C m−2) with the estimated amount of charcoal that was left on the soil after the carbonization (29.3±5.1 kg C m−2). After taking into account uncertainty associated with parameters’ estimation, we were able to conclude that 80±21% of the C originally added to the soil via charcoal can still be found there and that charcoal has an overall Mean Residence Time of 650±139 years, thus supporting the view that charcoal incorporation is an effective way to sequester atmospheric CO2. We also observed an overall change in the physical properties (hydrophobicity and bulk density) of charcoal hearth soils and an accumulation of nutrients compared to the adjacent soil without charcoal. We caution, however, that our site-specific results should not be generalized without further study. PMID:24614647

  18. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James A. Burger; J. Galbraith; T. Fox

    2005-12-01

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in Virginia, West Virginia, Kentucky, Ohio, and Pennsylvania mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3more » factorial in a random complete block design with three replications at each of three locations, one each in Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. Regression models of chemical and physical soil properties were created in order to estimate the SOC content down the soil profile. Soil organic carbon concentration and volumetric percent of the fines decreased exponentially down the soil profile. The results indicated that one-third of the total SOC content on mined lands was found in the surface 0-13 cm soil layer, and more than two-thirds of it was located in the 0-53 cm soil profile. A relative estimate of soil density may be best in broad-scale mine soil mapping since actual D{sub b} values are often inaccurate and difficult to obtain in rocky mine soils. Carbon sequestration potential is also a function of silvicultural practices used for reforestation success. Weed control plus tillage may be the optimum treatment for hardwoods

  19. Association of Soil Aggregation with the Distribution and Quality of Organic Carbon in Soil along an Elevation Gradient on Wuyi Mountain in China.

    PubMed

    Li, Liguang; Vogel, Jason; He, Zhenli; Zou, Xiaoming; Ruan, Honghua; Huang, Wei; Wang, Jiashe; Bianchi, Thomas S

    2016-01-01

    Forest soils play a critical role in the sequestration of atmospheric CO2 and subsequent attenuation of global warming. The nature and properties of organic matter in soils have an influence on the sequestration of carbon. In this study, soils were collected from representative forestlands, including a subtropical evergreen broad-leaved forest (EBF), a coniferous forest (CF), a subalpine dwarf forest (DF), and alpine meadow (AM) along an elevation gradient on Wuyi Mountain, which is located in a subtropical area of southeastern China. These soil samples were analyzed in the laboratory to examine the distribution and speciation of organic carbon (OC) within different size fractions of water-stable soil aggregates, and subsequently to determine effects on carbon sequestration. Soil aggregation rate increased with increasing elevation. Soil aggregation rate, rather than soil temperature, moisture or clay content, showed the strongest correlation with OC in bulk soil, indicating soil structure was the critical factor in carbon sequestration of Wuyi Mountain. The content of coarse particulate organic matter fraction, rather than the silt and clay particles, represented OC stock in bulk soil and different soil aggregate fractions. With increasing soil aggregation rate, more carbon was accumulated within the macroaggregates, particularly within the coarse particulate organic matter fraction (250-2000 μm), rather than within the microaggregates (53-250μm) or silt and clay particles (< 53μm). In consideration of the high instability of macroaggregates and the liability of SOC within them, further research is needed to verify whether highly-aggregated soils at higher altitudes are more likely to lose SOC under warmer conditions.

  20. Sequestration Options for the West Coast States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myer, Larry

    The West Coast Regional Carbon Sequestration Partnership (WESTCARB) is one of seven partnerships that have been established by the U.S. Department of Energy (DOE) to evaluate carbon capture and sequestration (CCS) technologies best suited for different regions of the country. The West Coast Region comprises Arizona, California, Nevada, Oregon, Washington, Alaska, and British Columbia. Led by the California Energy Commission, WESTCARB is a consortium of about 70 organizations, including state natural resource and environmental protection agencies; national laboratories and universities; private companies working on carbon dioxide (CO{sub 2}) capture, transportation, and storage technologies; utilities; oil and gas companies; nonprofit organizations; and policy/governance coordinating organizations. Both terrestrial and geologic sequestration options were evaluated in the Region during the 18-month Phase I project. A centralized Geographic Information System (GIS) database of stationary source, geologic and terrestrial sink data was developed. The GIS layer of source locations was attributed with CO{sub 2} emissions and other data and a spreadsheet was developed to estimate capture costs for the sources in the region. Phase I characterization of regional geological sinks shows that geologic storage opportunities exist in the WESTCARB region in each of the major technology areas: saline formations, oil and gas reservoirs, and coal beds. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery. The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, the potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, and the cumulative production from gas reservoirs suggests a CO{sub 2} storage capacity of 1.7 Gt. A GIS-based method for source

  1. Using experimental and geospatial data to estimate regional carbon sequestration potential under no-till management

    USGS Publications Warehouse

    Tan, Z.; Lal, R.; Liu, S.

    2006-01-01

    Conservation management of croplands at the plot scale has demonstrated a great potential to mitigate the greenhouse effect through sequestration of atmospheric carbon (C) into soil. This study estimated the potential of soil to sequester C through the conversion of croplands from conventional tillage (CT) to no-till (NT) in the East Central United States between 1992 and 2012. This study used the baseline soil organic C (SOC) pool (SOCP) inventory and the empirical models that describe the relationships of the SOCP under CT and NT, respectively, to their baseline SOCP in the upper 30-cm depth of soil. The baseline SOCP were obtained from the State Soil Geographic database, and the cropland distribution map was generated from the 1992 National Land Cover Database. The results indicate that if all the croplands under CT in 1992 were converted to NT, the SOCP would increase by 16.8% by 2012, which results in a total C sink of 136 Tg after 20 years. A greater sequestration rate would occur in soils with lower baseline SOCP, but the sink strength would be weaker with increasing SOCP levels. The CT-induced C sources tend to become larger in soils with higher baseline levels, which can be significantly reduced by adopting NT. We conclude that baseline SOC contents are an indicator of C sequestration potential with NT practices. ?? 2006 Lippincott Williams & Wilkins, Inc.

  2. Development and Implementation of the Midwest Geological Sequestration Consortium CO 2-Technology Transfer Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, Sallie E.

    2015-06-30

    In 2009, the Illinois State Geological Survey (ISGS), in collaboration with the Midwest Geological Sequestration Consortium (MGSC), created a regional technology training center to disseminate carbon capture and sequestration (CCS) technology gained through leadership and participation in regional carbon sequestration projects. This technology training center was titled and branded as the Sequestration Training and Education Program (STEP). Over the last six years STEP has provided local, regional, national, and international education and training opportunities for engineers, geologists, service providers, regulators, executives, K-12 students, K-12 educators, undergraduate students, graduate students, university and community college faculty members, and participants of community programsmore » and functions, community organizations, and others. The goal for STEP educational programs has been on knowledge sharing and capacity building to stimulate economic recovery and development by training personnel for commercial CCS projects. STEP has worked with local, national and international professional organizations and regional experts to leverage existing training opportunities and provide stand-alone training. This report gives detailed information on STEP activities during the grant period (2009-2015).« less

  3. The impact of biosolids application on organic carbon and carbon dioxide fluxes in soil.

    PubMed

    Wijesekara, Hasintha; Bolan, Nanthi S; Thangavel, Ramesh; Seshadri, Balaji; Surapaneni, Aravind; Saint, Christopher; Hetherington, Chris; Matthews, Peter; Vithanage, Meththika

    2017-12-01

    A field study was conducted on two texturally different soils to determine the influences of biosolids application on selected soil chemical properties and carbon dioxide fluxes. Two sites, located in Manildra (clay loam) and Grenfell (sandy loam), in Australia, were treated at a single level of 70 Mg ha -1 biosolids. Soil samples were analyzed for SOC fractions, including total organic carbon (TOC), labile, and non-labile carbon contents. The natural abundances of soil δ 13 C and δ 15 N were measured as isotopic tracers to fingerprint carbon derived from biosolids. An automated soil respirometer was used to measure in-situ diurnal CO 2 fluxes, soil moisture, and temperature. Application of biosolids increased the surface (0-15 cm) soil TOC by > 45% at both sites, which was attributed to the direct contribution from residual carbon in the biosolids and also from the increased biomass production. At both sites application of biosolids increased the non-labile carbon fraction that is stable against microbial decomposition, which indicated the soil carbon sequestration potential of biosolids. Soils amended with biosolids showed depleted δ 13 C, and enriched δ 15 N indicating the accumulation of biosolids residual carbon in soils. The in-situ respirometer data demonstrated enhanced CO 2 fluxes at the sites treated with biosolids, indicating limited carbon sequestration potential. However, addition of biosolids on both the clay loam and sandy loam soils found to be effective in building SOC than reducing it. Soil temperature and CO 2 fluxes, indicating that temperature was more important for microbial degradation of carbon in biosolids than soil moisture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Towards a default soil carbon sequestration rate after cropland to Miscanthus conversion in Europe

    NASA Astrophysics Data System (ADS)

    Poeplau, Christopher; Don, Axel

    2013-04-01

    In Europe, an estimated 17-21 million hectares (Mha) of land will need to be converted to bioenergy crop production to meet the EU bioenergy targets for 2020. Conventional bioenergy crops, such as maize and oilseed rape, are known for high greenhouse gas emissions. Perennial grases, such as Miscanthus, are seen as sustainable alternative, due to low fertilizer demand, relatively high yields and the potential to sequester soil organic carbon (SOC). However, the variability of currently published SOC stock changes is huge, ranging from -6.8 to +7.7 Mg ha-1 yr-1, which we attribute to different organic manure applications and differences in the baseline SOC stocks between the sampled plots in the paired plot approach. The conversion from cropland to Miscanthus involves a C3-C4 vegetation change, which allows following the incorporation of C4 Miscanthus-derived carbon into the soil by measuring the abundance of the stable isotope 13C. This was done for six different Miscanthus plantations across Europe, which were older than ten years. C3 carbon decomposition was estimated using the carbon turnover model RothC. Both, C4 and C3 carbon dynamics were summed to obtain the vegetation change-induced SOC stock change. We subsequently applied this approach to all European sites, where C4 carbon dynamic after cropland to Miscanthus conversion has been investigated (n=14) and derived a temperature dependant SOC sequestration rate. We found a mean annual accumulation of 0.40±0.20 Mg C ha-1. Furthermore, we conducted a SOC fractionation to assess the incorporation of C4 carbon into different SOC fractions. After a mean time of 16 years, the particulate organic matter (POM) fraction consisted of 68% Miscanthus-derived carbon in 0-10 cm soil depth. The NaOCl resistant fraction, which is considered "inert", consisted of 12% Miscanthus-derived carbon in 0-10 cm soil depth.

  5. Carbon sequestration in croplands is mainly driven by management leading to increased net primary production - evidence from long-term field experiments in Northern Europe

    NASA Astrophysics Data System (ADS)

    Kätterer, Thomas; Bolinder, Martin Anders; Börjesson, Gunnar; Kirchmann, Holger; Poeplau, Christopher

    2014-05-01

    Sustainable intensification of agriculture in regions with high production potential is a prerequisite for providing services for an increasing human population, not only food, animal feed, fiber and biofuel but also to promote biodiversity and the beauty of landscapes. We investigated the effect of different management practices on soil fertility and carbon sequestration in long-term experiments, mainly from Northern Europe. In addition, a meta-analysis on the effect of catch crops was conducted. Improved management of croplands was found to be a win-win strategy resulting in both increased soil fertility and carbon sequestration. We quantified the effect of different management practices such as N fertilization, organic amendments, catch crops and ley-arable rotations versus continuous annual cropping systems on soil carbon stocks. Increasing net primary productivity (NPP) was found to be the main driver for higher soil carbon storage. Mineral N fertilization increased soil carbon stocks by 1-2 kg C ha-1 for each kg of N applied to cropland. Ley-arable rotations, being a combination of annual and perennial crops, are expected to have C stocks intermediate between those of continuous grass- and croplands. A summary of data from 15 long-term sites showed that on average 0.5 Mg ha-1 yr-1 (range 0.3 to 1.1; median 0.4 Mg ha-1 yr-1) more carbon was retained in soils in ley-arable compared to exclusively annual systems, depending on species composition, management, soil depth and the duration of the studies. The annual C accumulation rate for catch crops determined in the meta-analysis was well within that range (0.32±0.08 Mg C ha-1 yr-1). Retention factors calculated for straw, manure, sawdust, peat, sewage sludge and composted household waste varied widely in a decadal time scale. Retention of root and rhizodeposit carbon was higher than for above-ground crop residues. We conclude that NPP is the major driver for C sequestration and emphasize that increased soil

  6. Tracing the source of soil organic matter eroded from temperate forest catchments using carbon and nitrogen isotopes

    Treesearch

    Emma P. McCorkle; Asmeret Asefaw Berhe; Carolyn T. Hunsaker; Dale W. Johnson; Karis J. McFarlane; Marilyn L. Fogel; Stephen C. Hart

    2016-01-01

    Soil erosion continuously redistributes soil and associated soil organic matter (SOM) on the Earth's surface, with important implications for biogeochemical cycling of essential elements and terrestrial carbon sequestration. Despite the importance of soil erosion, surprisingly few studies have evaluated the sources of eroded carbon (C). We used natural abundance...

  7. THE APPLICATION AND DEVELOPMENT OF APPROPRIATE TOOLS AND TECHNOLOGIES FOR COST-EFFECTIVE CARBON SEQUESTRATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bill Stanley; Sandra Brown; Ellen Hawes

    2002-09-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research projects is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects,more » providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas impacts. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: advanced videography testing; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.« less

  8. Impacts of Human Induced Nitrogen Deposition on Ecosystem Carbon Sequestration and Water Balance in China

    NASA Astrophysics Data System (ADS)

    Sheng, M.; Yang, D.; Tang, J.; Lei, H.

    2017-12-01

    Enhanced plant biomass accumulation in response to elevated atmospheric CO2 concentration could dampen the future rate of increase in CO2 levels and associated climate warming. However, many experiments around the world reported that nitrogen availability could limit the sustainability of the ecosystems' response to elevated CO2. In the recent 20 years, atmospheric nitrogen deposition, primarily from fossil fuel combustion, has increased sharply about 25% in China and meanwhile, China has the highest carbon emission in the world, implying a large opportunity to increase vegetation greenness and ecosystem carbon sequestration. Moreover, the water balance of the ecosystem will also change. However, in the future, the trajectory of increasing nitrogen deposition from fossil fuel use is to be controlled by the government policy that shapes the energy and industrial structure. Therefore, the historical and future trajectories of nitrogen deposition are likely very different, and it is imperative to understand how changes in nitrogen deposition will impact the ecosystem carbon sequestration and water balance in China. We here use the Community Land Model (CLM 4.5) to analyze how the change of nitrogen deposition has influenced and will influence the ecosystem carbon and water cycle in China at a high spatial resolution (0.1 degree). We address the following questions: 1) what is the contribution of the nitrogen deposition on historical vegetation greenness? 2) How does the change of nitrogen deposition affect the carbon sequestration? 3) What is its influence to water balance? And 4) how different will be the influence of the nitrogen deposition on ecosystem carbon and water cycling in the future?

  9. Pilot Studies of Geologic and Terrestrial Carbon Sequestration in the Big Sky Region, USA, and Opportunities for Commercial Scale Deployment of New Technologies

    NASA Astrophysics Data System (ADS)

    Waggoner, L. A.; Capalbo, S. M.; Talbott, J.

    2007-05-01

    Within the Big Sky region, including Montana, Idaho, South Dakota, Wyoming and the Pacific Northwest, industry is developing new coal-fired power plants using the abundant coal and other fossil-based resources. Of crucial importance to future development programs are robust carbon mitigation plans that include a technical and economic assessment of regional carbon sequestration opportunities. The objective of the Big Sky Carbon Sequestration Partnership (BSCSP) is to promote the development of a regional framework and infrastructure required to validate and deploy carbon sequestration technologies. Initial work compiled sources and potential sinks for carbon dioxide (CO2) in the Big Sky Region and developed the online Carbon Atlas. Current efforts couple geologic and terrestrial field validation tests with market assessments, economic analysis and regulatory and public outreach. The primary geological efforts are in the demonstration of carbon storage in mafic/basalt formations, a geology not yet well characterized but with significant long-term storage potential in the region and other parts of the world; and in the Madison Formation, a large carbonate aquifer in Wyoming and Montana. Terrestrial sequestration relies on management practices and technologies to remove atmospheric CO2 to storage in trees, plants, and soil. This indirect sequestration method can be implemented today and is on the front-line of voluntary, market-based approaches to reduce CO2 emissions. Details of pilot projects are presented including: new technologies, challenges and successes of projects and potential for commercial-scale deployment.

  10. Carbon sequestration in macroalgal mats of brackish-water habitats in Indian Sunderbans: Potential as renewable organic resource.

    PubMed

    Gorain, Prakash Chandra; Sengupta, Sarban; Satpati, Gour Gopal; Paul, Ishita; Tripathi, Sudipta; Pal, Ruma

    2018-06-01

    Large influx of excess nutrients into sub-tropical brackish-water habitats is expected to radically affect the algal populations in the heavily populated Sunderbans brackish-water ecozone. Twelve selected brackish-water sites in the Indian Sunderbans were surveyed to investigate the growth performance of mat-forming dominant algal/cyanobacterial macrophytes and their potential for carbon (C) sequestration into hydrologic and pedologic pools. The mats were dominated by particular taxa at different seasons related to physico-chemical properties of the wetland habitats. Different environmental variables and biomass productivity parameters were measured on fortnightly basis to assess the carbon cycle related to dominant algal blooms of the study area. The dominating species at the twelve sites included seven genera (Spirogyra, Rhizoclonium, Ulva, Cladophora, Pithophora, Chaetomorpha) belonging to Chlorophyta, three genera (Polysiphonia, Gracilaria, Catenella) belonging to Rhodophyta and Lyngbya majuscula from cyanobacteria. Multivariate statistical methods indicated that nutrient availability, particularly dissolved P concentration and N:P ratio in the water column, along with salinity in the water column mainly affected biomass yield and C sequestration of mat-forming macrophytes and OC input into water column. However, OC contents of underlying muck proved to be very stable, though small influxes of OC occurred at each bloom. High biomass yields (34-3107 g/m 2 ) of the dominant mat components accumulated enormous stocks of OC, very little of which reaches the pedologic pool. This transient biomass might be utilized as dietary supplements or biofuel feedstocks. Availability of important dietary fatty acids in Spirogyra punctulata, Gracilaria sp., Polysiphonia mollis, Rhizoclonium riparium, R. tortuosum, Pithophora oedogonia and Ulva lactuca was considered as suitability of these species as nutraceuticals. Fatty acid compositions of L. majuscula, Catenella repens, R

  11. Land use effects on soil organic carbon sequestration in calcareous Leptosols in former pastureland - a case study from the Tatra Mountains (Poland)

    NASA Astrophysics Data System (ADS)

    Wasak, K.; Drewnik, M.

    2015-10-01

    The purpose of the paper is to describe soil organic carbon (SOC) sequestration rates in calcareous shallow soils in reforested areas in the Tatra Mountains with a particular focus on different forms of organic matter (OM) storage. Three plant communities creating a mosaic on the slopes of the studied valley were taken into account. Fifty years since the conversion of pastureland to unused grassland, dwarf pine shrub and larch forest have emerged in the study area, along with the development of genetic soil horizons as well as SOC sequestration in the soil despite the steepness of slopes. SOC stock was measured to be the highest in soils under larch forest (63.5 Mg ha-1), while in soil under grassland and under dwarf pine shrub, this value was found to be smaller (47.5 and 42.9 Mg ha-1, respectively). The highest amount of mineral-associated OM inside stable microaggregates (MOM FF3) was found in grassland soil (21.9-27.1 % of SOC) and less under dwarf pine shrub (16.3-19.3 % of SOC) and larch forest (15.3-17.7 % of SOC). A pool of mineral-associated OM inside transitional macroaggregates (MOM FF2) was found in soil under dwarf pine shrub (39.2-59.2 % of SOC), with less under larch forest (43.8-44.7 % of SOC) and the least in grassland soil (37.9-41.6 % of SOC). The highest amount of the free light particulate fraction (POM LF1) was found in soil under dwarf pine shrub (6.6-10.3 % of SOC), with less under larch forest (2.6-6.2 % of SOC) and the least in grassland soil (1.7-4.8 % of SOC).

  12. Lithological control on phytolith carbon sequestration in moso bamboo forests

    PubMed Central

    Li, Beilei; Song, Zhaoliang; Wang, Hailong; Li, Zimin; Jiang, Peikun; Zhou, Guomo

    2014-01-01

    Phytolith-occluded carbon (PhytOC) is a stable carbon (C) fraction that has effects on long-term global C balance. Here, we report the phytolith and PhytOC accumulation in moso bamboo leaves developed on four types of parent materials. The results show that PhytOC content of moso bamboo varies with parent material in the order of granodiorite (2.0 g kg−1) > granite (1.6 g kg−1) > basalt (1.3 g kg−1) > shale (0.7 g kg−1). PhytOC production flux of moso bamboo on four types of parent materials varies significantly from 1.0 to 64.8 kg CO2 ha−1 yr−1, thus a net 4.7 × 106 –310.8 × 106 kg CO2 yr−1 would be sequestered by moso bamboo phytoliths in China. The phytolith C sequestration rate in moso bamboo of China will continue to increase in the following decades due to nationwide bamboo afforestation/reforestation, demonstrating the potential of bamboo in regulating terrestrial C balance. Management practices such as afforestation of bamboo in granodiorite area and granodiorite powder amendment may further enhance phytolith C sequestration through bamboo plants. PMID:24918576

  13. Initial characterization of mudstone nanoporosity with small angle neutron scattering using caprocks from carbon sequestration sites.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCray, John; Navarre-Sitchler, Alexis; Mouzakis, Katherine

    Geological carbon sequestration relies on the principle that CO{sub 2} injected deep into the subsurface is unable to leak to the atmosphere. Structural trapping by a relatively impermeable caprock (often mudstone such as a shale) is the main trapping mechanism that is currently relied on for the first hundreds of years. Many of the pores of the caprock are of micrometer to nanometer scale. However, the distribution, geometry and volume of porosity at these scales are poorly characterized. Differences in pore shape and size can cause variation in capillary properties and fluid transport resulting in fluid pathways with different capillarymore » entry pressures in the same sample. Prediction of pore network properties for distinct geologic environments would result in significant advancement in our ability to model subsurface fluid flow. Specifically, prediction of fluid flow through caprocks of geologic CO{sub 2} sequestration reservoirs is a critical step in evaluating the risk of leakage to overlying aquifers. The micro- and nanoporosity was analyzed in four mudstones using small angle neutron scattering (SANS). These mudstones are caprocks of formations that are currently under study or being used for carbon sequestration projects and include the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Total organic carbon varies from <0.3% to 4% by weight. Expandable clay contents range from 10% to {approx}40% in the Gothic shale and Kirtland Formation, respectively. Neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e. minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume of pores and their arrangement in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or

  14. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics

    PubMed Central

    Chazdon, Robin L.; Broadbent, Eben N.; Rozendaal, Danaë M. A.; Bongers, Frans; Zambrano, Angélica María Almeyda; Aide, T. Mitchell; Balvanera, Patricia; Becknell, Justin M.; Boukili, Vanessa; Brancalion, Pedro H. S.; Craven, Dylan; Almeida-Cortez, Jarcilene S.; Cabral, George A. L.; de Jong, Ben; Denslow, Julie S.; Dent, Daisy H.; DeWalt, Saara J.; Dupuy, Juan M.; Durán, Sandra M.; Espírito-Santo, Mario M.; Fandino, María C.; César, Ricardo G.; Hall, Jefferson S.; Hernández-Stefanoni, José Luis; Jakovac, Catarina C.; Junqueira, André B.; Kennard, Deborah; Letcher, Susan G.; Lohbeck, Madelon; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A.; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R. F.; Ochoa-Gaona, Susana; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A.; Piotto, Daniel; Powers, Jennifer S.; Rodríguez-Velazquez, Jorge; Romero-Pérez, Isabel Eunice; Ruíz, Jorge; Saldarriaga, Juan G.; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B.; Steininger, Marc K.; Swenson, Nathan G.; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D. M.; Vester, Hans; Vieira, Ima Celia G.; Bentos, Tony Vizcarra; Williamson, G. Bruce; Poorter, Lourens

    2016-01-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km2 of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services. PMID:27386528

  15. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics.

    PubMed

    Chazdon, Robin L; Broadbent, Eben N; Rozendaal, Danaë M A; Bongers, Frans; Zambrano, Angélica María Almeyda; Aide, T Mitchell; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Craven, Dylan; Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernández-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Lohbeck, Madelon; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velazquez, Jorge; Romero-Pérez, Isabel Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans; Vieira, Ima Celia G; Bentos, Tony Vizcarra; Williamson, G Bruce; Poorter, Lourens

    2016-05-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km(2) of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services.

  16. Carbon accumulation and sequestration of lakes in China during the Holocene.

    PubMed

    Wang, Mei; Chen, Huai; Yu, Zicheng; Wu, Jianghua; Zhu, Qiu'an; Peng, Changhui; Wang, Yanfen; Qin, Boqiang

    2015-12-01

    Understanding the responses of lake systems to past climate change and human activity is critical for assessing and predicting the fate of lake carbon (C) in the future. In this study, we synthesized records of the sediment accumulation from 82 lakes and of C sequestration from 58 lakes with direct organic C measurements throughout China. We also identified the controlling factors of the long-term sediment and C accumulation dynamics in these lakes during the past 12 ka (1 ka = 1000 cal yr BP). Our results indicated an overall increasing trend of sediment and C accumulation since 12 ka, with an accumulation peak in the last couple of millennia for lakes in China, corresponding to terrestrial organic matter input due to land-use change. The Holocene lake sediment accumulation rate (SAR) and C accumulation rate (CAR) averaged (mean ± SE) 0.47 ± 0.05 mm yr(-1) and 7.7 ± 1.4 g C m(-2)  yr(-1) in China, respectively, comparable to the previous estimates for boreal and temperate regions. The SAR for lakes in the East Plain of subtropical China (1.05 ± 0.28 mm yr(-1) ) was higher than those in other regions (P < 0.05). However, CAR did not vary significantly among regions. Overall, the variability and history of climate and anthropogenic interference regulated the temporal and spatial dynamics of sediment and C sequestration for lakes in China. We estimated the total amount of C burial in lakes of China as 8.0 ± 1.0 Pg C. This first estimation of total C storage and dynamics in lakes of China confirms the importance of lakes in land C budget in monsoon-influenced regions. © 2015 John Wiley & Sons Ltd.

  17. Direct gas-solid carbonation kinetics of steel slag and the contribution to in situ sequestration of flue gas CO(2) in steel-making plants.

    PubMed

    Tian, Sicong; Jiang, Jianguo; Chen, Xuejing; Yan, Feng; Li, Kaimin

    2013-12-01

    Direct gas-solid carbonation of steel slag under various operational conditions was investigated to determine the sequestration of the flue gas CO2 . X-ray diffraction analysis of steel slag revealed the existence of portlandite, which provided a maximum theoretical CO2 sequestration potential of 159.4 kg CO 2 tslag (-1) as calculated by the reference intensity ratio method. The carbonation reaction occurred through a fast kinetically controlled stage with an activation energy of 21.29 kJ mol(-1) , followed by 10(3) orders of magnitude slower diffusion-controlled stage with an activation energy of 49.54 kJ mol(-1) , which could be represented by a first-order reaction kinetic equation and the Ginstling equation, respectively. Temperature, CO2 concentration, and the presence of SO2 impacted on the carbonation conversion of steel slag through their direct and definite influence on the rate constants. Temperature was the most important factor influencing the direct gas-solid carbonation of steel slag in terms of both the carbonation conversion and reaction rate. CO2 concentration had a definite influence on the carbonation rate during the kinetically controlled stage, and the presence of SO2 at typical flue gas concentrations enhanced the direct gas-solid carbonation of steel slag. Carbonation conversions between 49.5 % and 55.5 % were achieved in a typical flue gas at 600 °C, with the maximum CO2 sequestration amount generating 88.5 kg CO 2 tslag (-1) . Direct gas-solid carbonation of steel slag showed a rapid CO2 sequestration rate, high CO2 sequestration amounts, low raw-material costs, and a large potential for waste heat utilization, which is promising for in situ carbon capture and sequestration in the steel industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Ecosystem carbon stocks and sequestration potential of federal lands across the conterminous United States

    USGS Publications Warehouse

    Tan, Zhengxi; Liu, Shuguang; Sohl, Terry L.; Wu, Yiping; Young, Claudia J.

    2015-01-01

    Federal lands across the conterminous United States (CONUS) account for 23.5% of the CONUS terrestrial area but have received no systematic studies on their ecosystem carbon (C) dynamics and contribution to the national C budgets. The methodology for US Congress-mandated national biological C sequestration potential assessment was used to evaluate ecosystem C dynamics in CONUS federal lands at present and in the future under three Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (IPCC SRES) A1B, A2, and B1. The total ecosystem C stock was estimated as 11,613 Tg C in 2005 and projected to be 13,965 Tg C in 2050, an average increase of 19.4% from the baseline. The projected annual C sequestration rate (in kilograms of carbon per hectare per year) from 2006 to 2050 would be sinks of 620 and 228 for forests and grasslands, respectively, and C sources of 13 for shrublands. The federal lands’ contribution to the national ecosystem C budget could decrease from 23.3% in 2005 to 20.8% in 2050. The C sequestration potential in the future depends not only on the footprint of individual ecosystems but also on each federal agency’s land use and management. The results presented here update our current knowledge about the baseline ecosystem C stock and sequestration potential of federal lands, which would be useful for federal agencies to decide management practices to achieve the national greenhouse gas (GHG) mitigation goal.

  19. Photobiological hydrogen production and carbon dioxide sequestration

    NASA Astrophysics Data System (ADS)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  20. Comparison of alkaline industrial wastes for aqueous mineral carbon sequestration through a parallel reactivity study.

    PubMed

    Noack, Clinton W; Dzombak, David A; Nakles, David V; Hawthorne, Steven B; Heebink, Loreal V; Dando, Neal; Gershenzon, Michael; Ghosh, Rajat S

    2014-10-01

    Thirty-one alkaline industrial wastes from a wide range of industrial processes were acquired and screened for application in an aqueous carbon sequestration process. The wastes were evaluated for their potential to leach polyvalent cations and base species. Following mixing with a simple sodium bicarbonate solution, chemistries of the aqueous and solid phases were analyzed. Experimental results indicated that the most reactive materials were capable of sequestering between 77% and 93% of the available carbon under experimental conditions in four hours. These materials - cement kiln dust, spray dryer absorber ash, and circulating dry scrubber ash - are thus good candidates for detailed, process-oriented studies. Chemical equilibrium modeling indicated that amorphous calcium carbonate is likely responsible for the observed sequestration. High variability and low reactive fractions render many other materials less attractive for further pursuit without considering preprocessing or activation techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Association of Soil Aggregation with the Distribution and Quality of Organic Carbon in Soil along an Elevation Gradient on Wuyi Mountain in China

    PubMed Central

    Li, Liguang; Vogel, Jason; He, Zhenli; Zou, Xiaoming; Ruan, Honghua; Huang, Wei; Wang, Jiashe; Bianchi, Thomas S.

    2016-01-01

    Forest soils play a critical role in the sequestration of atmospheric CO2 and subsequent attenuation of global warming. The nature and properties of organic matter in soils have an influence on the sequestration of carbon. In this study, soils were collected from representative forestlands, including a subtropical evergreen broad-leaved forest (EBF), a coniferous forest (CF), a subalpine dwarf forest (DF), and alpine meadow (AM) along an elevation gradient on Wuyi Mountain, which is located in a subtropical area of southeastern China. These soil samples were analyzed in the laboratory to examine the distribution and speciation of organic carbon (OC) within different size fractions of water-stable soil aggregates, and subsequently to determine effects on carbon sequestration. Soil aggregation rate increased with increasing elevation. Soil aggregation rate, rather than soil temperature, moisture or clay content, showed the strongest correlation with OC in bulk soil, indicating soil structure was the critical factor in carbon sequestration of Wuyi Mountain. The content of coarse particulate organic matter fraction, rather than the silt and clay particles, represented OC stock in bulk soil and different soil aggregate fractions. With increasing soil aggregation rate, more carbon was accumulated within the macroaggregates, particularly within the coarse particulate organic matter fraction (250–2000 μm), rather than within the microaggregates (53–250μm) or silt and clay particles (< 53μm). In consideration of the high instability of macroaggregates and the liability of SOC within them, further research is needed to verify whether highly-aggregated soils at higher altitudes are more likely to lose SOC under warmer conditions. PMID:26964101

  2. Development Of An Agroforestry Sequestration Project In KhammamDistrict Of India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sudha, P.; Ramprasad, V.; Nagendra, M.D.V.

    2007-06-01

    Large potential for agroforestry as a mitigation option hasgiven rise to scientific and policy questions. This paper addressesmethodological issues in estimating carbon sequestration potential,baseline determination, additionality and leakage in Khammam district,Andhra Pradesh, southern part of India. Technical potential forafforestation was determined considering the various landuse options. Forestimating the technical potential, culturable wastelands, fallow andmarginal croplands were considered for Eucalyptus clonal plantations.Field studies for aboveground and below ground biomass, woody litter andsoil organic carbon for baseline and project scenario were conducted toestimate the carbon sequestration potential. The baseline carbon stockwas estimated to be 45.33 tC/ha. The additional carbon sequestrationpotential under themore » project scenario for 30 years is estimated to be12.82 tC/ha/year inclusive of harvest regimes and carbon emissions due tobiomass burning and fertilizer application. The project scenario thoughhas a higher benefit cost ratio compared to baseline scenario, initialinvestment cost is high. Investment barrier exists for adoptingagroforestry in thedistrict.« less

  3. Soil organic carbon sequestration as affected by afforestation: the Darab Kola forest (north of Iran) case study.

    PubMed

    Kooch, Yahya; Hosseini, Seyed Mohsen; Zaccone, Claudio; Jalilvand, Hamid; Hojjati, Seyed Mohammad

    2012-09-01

    Following the ratification of the Kyoto Protocol, afforestation of formerly arable lands and/or degraded areas has been acknowledged as a land-use change contributing to the mitigation of increasing atmospheric CO(2) concentration in the atmosphere. In the present work, we study the soil organic carbon sequestration (SOCS) in 21 year old stands of maple (Acer velutinum Bioss.), oak (Quercus castaneifolia C.A. Mey.), and red pine (Pinus brutia Ten.) in the Darab Kola region, north of Iran. Soil samples were collected at four different depths (0-10, 10-20, 20-30, and 30-40 cm), and characterized with respect to bulk density, water content, electrical conductivity, pH, texture, lime content, total organic C, total N, and earthworm density and biomass. Data showed that afforested stands significantly affected soil characteristics, also raising SOCS phenomena, with values of 163.3, 120.6, and 102.1 Mg C ha(-1) for red pine, oak and maple stands, respectively, vs. 83.0 Mg C ha(-1) for the control region. Even if the dynamics of organic matter (OM) in soil is very complex and affected by several pedo-climatic factors, a stepwise regression method indicates that SOCS values in the studied area could be predicted using the following parameters, i.e., sand, clay, lime, and total N contents, and C/N ratio. In particular, although the chemical and physical stabilization capacity of organic C by soil is believed to be mainly governed by clay content, regression analysis showed a positive correlation between SOCS and sand (R = 0.86(**)), whereas a negative correlation with clay (R = -0.77(**)) was observed, thus suggesting that most of this organic C occurs as particulate OM instead of mineral-associated OM. Although the proposed models do not take into account possible changes due to natural and anthropogenic processes, they represent a simple way that could be used to evaluate and/or monitor the potential of each forest plantation in immobilizing organic C in soil (thus

  4. The Influence of Seal Properties on Pressure Buildup and Leakage of Carbon Dioxide from Sequestration Reservoirs (Invited)

    NASA Astrophysics Data System (ADS)

    Benson, S. M.; Chabora, E.

    2009-12-01

    The transport properties of seals, namely permeability, relative permeability, and capillary pressure control both migration of carbon dioxide and brine through the seal. Only recently has the the importance of brine migration emerged as key issue in the environmental performance of carbon dioxide sequestration projects. In this study we use numerical simulation to show that brine migration through the seal can be either advantageous or deleterious to the environmental performance of a carbon dioxide sequestration project. Brine migration through the seal can lower the pressure buildup in the storage reservoir, thereby reducing the risk of leakage or geomechanical stresses on the seal. On the other hand, if the seal is penetrated by a permeable fault it can lead to focused flow up a fault, which could lead to brine migration into drinking water aquifers. We also show that as the carbon dioxide plume grows, brine flow undergoes a complex evolution from upward flow to downward flows driven by countercurrent migration of carbon dioxide and brine in the seal and capillary pressure gradients at the base of the seal. Finally, we discuss desirable attributes seals, taking into account both carbon dioxide and brine migration through the seal. In particular, identifying seals that provide an effective capillary barrier to block the flow of carbon dioxide while allowing some brine migration through the seal can help to control pressure buildup and allow more efficient utilization of a sequestration reservoir. This could be particularly important in those settings that may be limited by the maximum allowable pressure buildup.

  5. Atmospheric Mg2+ wet deposition within the continental United States and implications for soil inorganic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Goddard, Megan A.; Mikhailova, Elena A.; Post, Christopher J.; Schlautman, Mark A.

    2007-02-01

    Little is known about atmospheric magnesium ion (Mg2+) wet deposition in relation to soil inorganic carbon sequestration. Understanding the conversion of carbon dioxide (CO2) or organic carbon to a form having a long residence time within the soil (e.g., dolomite, magnesian calcite) will greatly benefit agriculture, industry, and society on a global scale. This preliminary study was conducted to analyze atmospheric Mg2+ wet deposition within the continental United States (U.S.) and to rank the twelve major soil orders in terms of average annual atmospheric Mg2+ wet deposition. The total average annual Mg2+ wet deposition for each soil order was estimated with geographic information systems (GIS) using the following data layers: (1) atmospheric Mg2+ wet deposition data layers covering the continental U.S. for a 10-yr period (1994-2003) and (2) a soil order data layer derived from a national soils database. A map of average annual Mg2+ wet deposition for 1994-2003 reveals that the highest deposition (0.75-1.41 kg ha-1) occurred in Oregon, Washington, parts of California, and the coastal areas of East Coast states due to magnesium enrichment of atmospheric deposition from sea salt. The Midwestern region of the U.S. received about 0.25-0.75 kg ha-1 Mg2+ wet deposition annually, which was associated with loess derived soils, occurrence of dust storms and possibly fertilization. The soil orders receiving the highest average annual atmospheric Mg2+ wet deposition from 1994 to 2003 were: (1) Mollisols (3.7 × 107 kg), (2) Alfisols (3.6 × 107 kg) and (3) Ultisols (2.8 × 107 kg). In terms of potential soil carbon sequestration, the average annual atmospheric Mg2+ wet deposition was equivalent to formation of the following theoretical amounts of dolomite: (1) Mollisols (2.8 × 108 kg of CaMg(CO3)2), (2) Alfisols (2.7 × 108 kg of CaMg(CO3)2) and (3) Ultisols (2.1 × 108 kg of CaMg(CO3)2). The soil orders receiving the lowest average annual atmospheric Mg2+ wet deposition

  6. A novel dendrochronological approach reveals drivers of carbon sequestration in tree species of riparian forests across spatiotemporal scales.

    PubMed

    Rieger, Isaak; Kowarik, Ingo; Cherubini, Paolo; Cierjacks, Arne

    2017-01-01

    Aboveground carbon (C) sequestration in trees is important in global C dynamics, but reliable techniques for its modeling in highly productive and heterogeneous ecosystems are limited. We applied an extended dendrochronological approach to disentangle the functioning of drivers from the atmosphere (temperature, precipitation), the lithosphere (sedimentation rate), the hydrosphere (groundwater table, river water level fluctuation), the biosphere (tree characteristics), and the anthroposphere (dike construction). Carbon sequestration in aboveground biomass of riparian Quercus robur L. and Fraxinus excelsior L. was modeled (1) over time using boosted regression tree analysis (BRT) on cross-datable trees characterized by equal annual growth ring patterns and (2) across space using a subsequent classification and regression tree analysis (CART) on cross-datable and not cross-datable trees. While C sequestration of cross-datable Q. robur responded to precipitation and temperature, cross-datable F. excelsior also responded to a low Danube river water level. However, CART revealed that C sequestration over time is governed by tree height and parameters that vary over space (magnitude of fluctuation in the groundwater table, vertical distance to mean river water level, and longitudinal distance to upstream end of the study area). Thus, a uniform response to climatic drivers of aboveground C sequestration in Q. robur was only detectable in trees of an intermediate height class and in taller trees (>21.8m) on sites where the groundwater table fluctuated little (≤0.9m). The detection of climatic drivers and the river water level in F. excelsior depended on sites at lower altitudes above the mean river water level (≤2.7m) and along a less dynamic downstream section of the study area. Our approach indicates unexploited opportunities of understanding the interplay of different environmental drivers in aboveground C sequestration. Results may support species-specific and

  7. Soil carbon sequestration by three perennial legume pastures is greater in deeper soil layers than in the surface soil

    NASA Astrophysics Data System (ADS)

    Guan, X.-K.; Turner, N. C.; Song, L.; Gu, Y.-J.; Wang, T.-C.; Li, F.-M.

    2016-01-01

    Soil organic carbon (SOC) plays a vital role as both a sink for and source of atmospheric carbon. Revegetation of degraded arable land in China is expected to increase soil carbon sequestration, but the role of perennial legumes on soil carbon stocks in semiarid areas has not been quantified. In this study, we assessed the effect of alfalfa (Medicago sativa L.) and two locally adapted forage legumes, bush clover (Lespedeza davurica S.) and milk vetch (Astragalus adsurgens Pall.) on the SOC concentration and SOC stock accumulated annually over a 2 m soil profile. The results showed that the concentration of SOC in the bare soil decreased slightly over the 7 years, while 7 years of legume growth substantially increased the concentration of SOC over the 0-2.0 m soil depth. Over the 7-year growth period the SOC stocks increased by 24.1, 19.9 and 14.6 Mg C ha-1 under the alfalfa, bush clover and milk vetch stands, respectively, and decreased by 4.2 Mg C ha-1 in the bare soil. The sequestration of SOC in the 1-2 m depth of the soil accounted for 79, 68 and 74 % of the SOC sequestered in the 2 m deep soil profile under alfalfa, bush clover and milk vetch, respectively. Conversion of arable land to perennial legume pasture resulted in a significant increase in SOC, particularly at soil depths below 1 m.

  8. Developing ground penetrating radar (GPR) for enhanced root and soil organic carbon imaging: Optimizing bioenergy crop adaptation and agro-ecosystem services

    NASA Astrophysics Data System (ADS)

    Hays, D. B.; Delgado, A.; Bruton, R.; Dobreva, I. D.; Teare, B.; Jessup, R.; Rajan, N.; Bishop, M. P.; Lacey, R.; Neely, H.; Hons, F.; Novo, A.

    2016-12-01

    Selection of the ideal high biomass energy feedstock and crop cultivars for our national energy and production needs should consider not only the value of the harvested above ground feedstock, but also the local and global environmental services it provides in terms of terrestrial carbon (C) phyto-sequestration and improved soil organic matter enrichment. Selection of ideal crops cultivars is mature, while biofuel feedstock is well under way. What is lacking, however, is high throughput phenotyping (HTP) and integrated real-time data analysis technologies for selecting ideal genotypes within these crops that also confer recalcitrant high biomass or perennial root systems not only for C phyto-sequestration, but also for adaptation to conservation agro-ecosystems, increasing soil organic matter and soil water holding capacity. In no-till systems, significant studies have shown that increasing soil organic carbon is derived primarily from root and not above ground biomass. As such, efforts to increase plant soil phyto-sequestration will require a focus on developing optimal root systems within cultivated crops. We propose to achieve a significant advancement in the use of ground penetrating radar (GPR) as one approach to phenotype root biomass and 3D architecture, and to quantify soil carbon sequestration. In this context, GPR can be used for genotypic selection in breeding nurseries and unadapted germplasm with favorable root architectures, and for assessing management and nutrient practices that promote root growth. GPR has been used for over a decade to successfully map coarse woody roots. Only few have evaluated its efficacy for imaging finer fibrous roots found in grasses, or tap root species. The objectives of this project is to: i) Empirically define the optimal ground penetrating radar (GPR)-antenna array for 3D root and soil organic carbon imaging and quantification in high biomass grass systems; and ii) Develop novel 3- and 4-dimensional data analysis

  9. Ecosystem carbon stocks and sequestration potential of federal lands across the conterminous United States

    PubMed Central

    Tan, Zhengxi; Liu, Shuguang; Sohl, Terry L.; Wu, Yiping; Young, Claudia J.

    2015-01-01

    Federal lands across the conterminous United States (CONUS) account for 23.5% of the CONUS terrestrial area but have received no systematic studies on their ecosystem carbon (C) dynamics and contribution to the national C budgets. The methodology for US Congress-mandated national biological C sequestration potential assessment was used to evaluate ecosystem C dynamics in CONUS federal lands at present and in the future under three Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (IPCC SRES) A1B, A2, and B1. The total ecosystem C stock was estimated as 11,613 Tg C in 2005 and projected to be 13,965 Tg C in 2050, an average increase of 19.4% from the baseline. The projected annual C sequestration rate (in kilograms of carbon per hectare per year) from 2006 to 2050 would be sinks of 620 and 228 for forests and grasslands, respectively, and C sources of 13 for shrublands. The federal lands’ contribution to the national ecosystem C budget could decrease from 23.3% in 2005 to 20.8% in 2050. The C sequestration potential in the future depends not only on the footprint of individual ecosystems but also on each federal agency’s land use and management. The results presented here update our current knowledge about the baseline ecosystem C stock and sequestration potential of federal lands, which would be useful for federal agencies to decide management practices to achieve the national greenhouse gas (GHG) mitigation goal. PMID:26417074

  10. Grassland to shrubland state transitions enhance carbon sequestration in the northern Chihuahuan Desert.

    PubMed

    Petrie, M D; Collins, S L; Swann, A M; Ford, P L; Litvak, M E

    2015-03-01

    The replacement of native C4 -dominated grassland by C3 -dominated shrubland is considered an ecological state transition where different ecological communities can exist under similar environmental conditions. These state transitions are occurring globally, and may be exacerbated by climate change. One consequence of the global increase in woody vegetation may be enhanced ecosystem carbon sequestration, although the responses of arid and semiarid ecosystems may be highly variable. During a drier than average period from 2007 to 2011 in the northern Chihuahuan Desert, we found established shrubland to sequester 49 g C m(-2) yr(-1) on average, while nearby native C4 grassland was a net source of 31 g C m(-2) yr(-1) over this same period. Differences in C exchange between these ecosystems were pronounced--grassland had similar productivity compared to shrubland but experienced higher C efflux via ecosystem respiration, while shrubland was a consistent C sink because of a longer growing season and lower ecosystem respiration. At daily timescales, rates of carbon exchange were more sensitive to soil moisture variation in grassland than shrubland, such that grassland had a net uptake of C when wet but lost C when dry. Thus, even under unfavorable, drier than average climate conditions, the state transition from grassland to shrubland resulted in a substantial increase in terrestrial C sequestration. These results illustrate the inherent tradeoffs in quantifying ecosystem services that result from ecological state transitions, such as shrub encroachment. In this case, the deleterious changes to ecosystem services often linked to grassland to shrubland state transitions may at least be partially offset by increased ecosystem carbon sequestration. © 2014 John Wiley & Sons Ltd.

  11. [Priming effect of biochar on the minerialization of native soil organic carbon and the mechanisms: A review.

    PubMed

    Chen, Ying; Liu, Yu Xue; Chen, Chong Jun; Lyu, Hao Hao; Wa, Yu Ying; He, Li Li; Yang, Sheng Mao

    2018-01-01

    In recent years, studies on carbon sequestration of biochar in soil has been in spotlight owing to the specific characteristics of biochar such as strong carbon stability and well developed pore structure. However, whether biochar will ultimately increase soil carbon storage or promote soil carbon emissions when applied into the soil? This question remains controversial in current academic circles. Further research is required on priming effect of biochar on mineralization of native soil organic carbon and its mechanisms. Based on the analysis of biochar characteristics, such as its carbon composition and stability, pore structure and surface morphology, research progress on the priming effect of biochar on the decomposition of native soil organic carbon was reviewed in this paper. Furthermore, possible mechanisms of both positive and negative priming effect, that is promoting and suppressing the mineralization, were put forward. Positive priming effect is mainly due to the promotion of soil microbial activity caused by biochar, the preferential mineralization of easily decomposed components in biochar, and the co-metabolism of soil microbes. While negative priming effect is mainly based on the encapsulation and adsorption protection of soil organic matter due to the internal pore structure and the external surface of biochar. Other potential reasons for negative priming effect can be the stabilization resulted from the formation of organic-inorganic complex promoted by biochar in the soil, and the inhibition of activity of soil microbes and its enzymes by biochar. Finally, future research directions were proposed in order to provide theoretical basis for the application of biochar in soil carbon sequestration.

  12. Molecular and Metabolic Mechanisms of Carbon Sequestration in Marine Thrombolites

    NASA Technical Reports Server (NTRS)

    Mobberley, Jennifer

    2013-01-01

    The overall goal of my dissertation project has been to examine the molecular processes underlying carbon sequestration in lithifying microbial ecosystems, known as thrombolitic mats, and assess their feasibility for use in bioregenerative life support systems. The results of my research and education efforts funded by the Graduate Student Researchers Program can be summarized in four peer-reviewed research publication, one educational publication, two papers in preparation, and six research presentations at local and national science meetings (see below for specific details).

  13. A method for assessing carbon stocks, carbon sequestration, and greenhouse-gas fluxes in ecosystems of the United States under present conditions and future scenarios

    USGS Publications Warehouse

    Bergamaschi, Brian A.; Bernknopf, Richard; Clow, David; Dye, Dennis; Faulkner, Stephen; Forney, William; Gleason, Robert; Hawbaker, Todd; Liu, Jinxun; Liu, Shu-Guang; Prisley, Stephen; Reed, Bradley; Reeves, Matthew; Rollins, Matthew; Sleeter, Benjamin; Sohl, Terry; Stackpoole, Sarah; Stehman, Stephen; Striegl, Robert G.; Wein, Anne; Zhu, Zhi-Liang; Zhu, Zhi-Liang

    2010-01-01

    , nongovernmental organizations, and the science community. Using the method described in this document, the assessment can be completed in approximately 3 to 4 years. The primary deliverables will be assessment reports containing tables, charts, and maps that will present the estimated GHG parameters annually for 2001 through 2050 by ecosystem, pool, and scenario. The results will permit the evaluation of a range of policies, mitigation options, and research topics, such as the demographic, LULC-change, or climate-change effects on carbon stocks, carbon sequestration, and GHG fluxes in ecosystems.

  14. Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic

    PubMed Central

    Jónasdóttir, Sigrún Huld; Visser, André W.; Richardson, Katherine; Heath, Michael R.

    2015-01-01

    Estimates of carbon flux to the deep oceans are essential for our understanding of global carbon budgets. Sinking of detrital material (“biological pump”) is usually thought to be the main biological component of this flux. Here, we identify an additional biological mechanism, the seasonal “lipid pump,” which is highly efficient at sequestering carbon into the deep ocean. It involves the vertical transport and metabolism of carbon rich lipids by overwintering zooplankton. We show that one species, the copepod Calanus finmarchicus overwintering in the North Atlantic, sequesters an amount of carbon equivalent to the sinking flux of detrital material. The efficiency of the lipid pump derives from a near-complete decoupling between nutrient and carbon cycling—a “lipid shunt,” and its direct transport of carbon through the mesopelagic zone to below the permanent thermocline with very little attenuation. Inclusion of the lipid pump almost doubles the previous estimates of deep-ocean carbon sequestration by biological processes in the North Atlantic. PMID:26338976

  15. Experimental study of potential wellbore cement carbonation by various phases of carbon dioxide during geologic carbon sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Hun Bok; Um, Wooyong

    2013-08-16

    Hydrated Portland cement was reacted with carbon dioxide (CO2) in supercritical, gaseous, and aqueous phases to understand the potential cement alteration processes along the length of a wellbore, extending from deep CO2 storage reservoir to the shallow subsurface during geologic carbon sequestration. The 3-D X-ray microtomography (XMT) images displayed that the cement alteration was significantly more extensive by CO2-saturated synthetic groundwater than dry or wet supercritical CO2 at high P (10 MPa)-T (50°C) conditions. Scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS) analysis also exhibited a systematic Ca depletion and C enrichment in cement matrix exposed to CO2-saturated groundwater. Integratedmore » XMT, XRD, and SEM-EDS analyses identified the formation of extensive carbonated zone filled with CaCO3(s), as well as the porous degradation front and the outermost silica-rich zone in cement after exposure to CO2-saturated groundwater. The cement alteration by CO2-saturated groundwater for 2-8 months overall decreased the porosity from 31% to 22% and the permeability by an order of magnitude. Cement alteration by dry or wet supercritical CO2 was slow and minor compared to CO2-saturated groundwater. A thin single carbonation zone was formed in cement after exposure to wet supercritical CO2 for 8 months or dry supercritical CO2 for 15 months. Extensive calcite coating was formed on the outside surface of a cement sample after exposure to wet gaseous CO2 for 1-3 months. The chemical-physical characterization of hydrated Portland cement after exposure to various phases of carbon dioxide indicates that the extent of cement carbonation can be significantly heterogeneous depending on CO2 phase present in the wellbore environment. Both experimental and geochemical modeling results suggest that wellbore cement exposure to supercritical, gaseous, and aqueous phases of CO2 during geologic carbon sequestration is unlikely to damage the wellbore

  16. [Effects of different cultivation patterns on soil aggregates and organic carbon fractions].

    PubMed

    Qiu, Xiao-Lei; Zong, Liang-Gang; Liu, Yi-Fan; Du, Xia-Fei; Luo, Min; Wang, Run-Chi

    2015-03-01

    Combined with the research in an organic farm in the past 10 years, differences of soil aggregates composition, distribution and organic carbon fractions between organic and conventional cultivation were studied by simultaneous sampling analysis. The results showed that the percentages of aggregates (> 1 mm, 1-0.5 mm, 0.5-0.25 mm and < 0.25 mm) in the conventional cultivation were 23.75%, 15.15%, 19.98% and 38.09%, while those in organic cultivation were 9.73%, 18.41%, 24.46% and 43.90%, respectively. The percentage of < 0.25 mm micro-aggregates was significantly higher in organic cultivation than that in conventional cultivation. Organic cultivation increased soil organic carbon (average of 17.95 g x kg(-1)) and total nitrogen contents (average of 1.51 g x kg(-1)). Among the same aggregates in organic cultivation, the average content of heavy organic carbon fraction was significantly higher than that in conventional cultivation. This fraction accumulated in < 0. 25 mm micro-aggregates, which were main storage sites of stable organic carbon. In organic cultivation, the content of labile organic carbon in > 1 mm macro-aggregates was significantly higher than that in conventional cultivation, while no significant difference was found among the other aggregates, indicating that the labile organic carbon was enriched in > 1 mm macro-aggregates. Organic cultivation increased the amounts of organic carbon and its fractions, reduced tillage damage to aggregates, and enhanced the stability of organic carbon. Organic cultivation was therefore beneficial for soil carbon sequestration. The findings of this research may provide theoretical basis for further acceleration of the organic agriculture development.

  17. Carbon storage and sequestration by trees in urban and community areas of the United States

    Treesearch

    David J. Nowak; Eric J. Greenfield; Robert E. Hoehn; Elizabeth Lapoint

    2013-01-01

    Carbon storage and sequestration by urban trees in the United States was quantified to assess the magnitude and role of urban forests in relation to climate change. Urban tree field data from 28 cities and 6 states were used to determine the average carbon density per unit of tree cover. These data were applied to statewide urban tree cover measurements to determine...

  18. Organic carbon sequestration in coastal sediments across the Baltic Sea over the last 150 years

    NASA Astrophysics Data System (ADS)

    Ryves, David; Lewis, Jonathan; Rasmussen, Peter; Weckström, Kaarina; Andrén, Elinor; Clarke, Annemarie; Andersen, Thorbjørn; Yang, Handong; Hietanen, Susanah; Jilbert, Tom; Aigars, Juris; Anderson, N. John

    2017-04-01

    Coastal areas are extremely vulnerable to impacts from changing marine conditions, which are increasingly being driven by human activity (e.g. nutrient cycling, salinity, hydrography, sea level, climate change). Recent research into the complex and dynamic cycling of carbon in many increasingly nutrient-enriched coastal systems has suggested that they have switched from being net C sources to net C sinks over the last 150 years. This study seeks to explore carbon sequestration rates over the last 150 years from several key regions across the coastal Baltic Sea by synthesising organic carbon (OC) inventories from multiple well-dated sedimentary records from Baltic coasts. Such data will provide insight into long-term coastal change and how terrestrial human impact is influencing the ecology and biogeochemistry of the Baltic Sea. To examine past and present rates of carbon burial in key coastal areas of the Baltic Sea, a synthesis of 30-40 sediment cores from across the Baltic Sea is presented here from Baltic Denmark, Germany, Latvia, western Sweden and southern Finland, and are primarily from near-shore and shallow fjord/estuarine sites. The majority of sites span the last 100-150 years and the majority (>75%) are independently dated using 210Pb. Unsupported 210Pb inventories also allow raw sedimentation rates to be corrected for sediment focussing, permitting regionally reliable estimates of OC accumulation rates to be calculated and provide a plausible basis for upscaling OC accumulation rates within these key regions of the Baltic. Preliminary data analyses suggest a major step-change in system behaviour during the 20th century following low, stable ( 10 g OC m-2 yr-1 focussing corrected, OCFC) rates pre-1900. The initial rise in burial rates occurs early in the 1900s though is punctuated by a slight fall during the 1930s/1940s. After 1950, burial rates dramatically rise (consistently up to 45 g OCFC m-2 yr-1; 4 x pre-1900 rates), a pattern which is repeated

  19. Public land, timber harvests, and climate mitigation: quantifying carbon sequestration potential on U.S. public timberlands

    Treesearch

    Brooks M. Depro; Brian C. Murray; Ralph J. Alig; Alyssa Shanks

    2008-01-01

    Scientists and policymakers have long recognized the role that forests can play in countering the atmospheric buildup of carbon dioxide (C02), a greenhouse gas (GHG). In the United States, terrestrial carbon sequestration in private and public forests offsets approximately 11 percent of all GHG emissions from all sectors of the economy annually....

  20. Integrated management of carbon sequestration and biomass utilization opportunities in a changing climate: Proceedings of the 2009 National Silviculture Workshop; 2009 June 15-18; Boise, ID.

    Treesearch

    Theresa B. Jain; Russell T. Graham; Jonathan Sandquist

    2010-01-01

    Forests are important for carbon sequestration and how they are manipulated either through natural or human induced disturbances can have an effect on CO2 emissions and carbon sequestration. The 2009 National Silviculture Workshop presented scientific information and management strategies to meet a variety of objectives while simultaneously addressing carbon...

  1. Reimagining Carbon Sequestration in Fluviodeltaic Systems: Contributions from Clastic Overbank Deposits versus Peat

    NASA Astrophysics Data System (ADS)

    Jankowski, K. L.; Shen, Z.; Tornqvist, T. E.; Steponaitis, E.; Rosenheim, B. E.

    2017-12-01

    Understanding how natural systems sequester carbon, and at what rates, is critical for planning future climate change mitigation strategies. For the decade from 2006-2015, average annual CO2 emissions to the atmosphere ( 11 Pg C) are not completely offset by atmospheric retention and oceanic uptake ( 5 Pg C and 2.5 Pg C, respectively) (LeQuéré et al., 2016) implying residual terrestrial C sinks that are not fully understood. Rivers are increasingly recognized as playing a complex role in the global C cycle which, beyond acting as a source of CO2to the atmosphere, may act as a C sink. Here, we find that the mechanisms of C transfer through fluviodeltaic systems include various means of C storage and contribute significantly to the global unidentified terrestrial C sink. C sequestration by coastal wetlands - at a globally averaged rate of 200 g C/m2/yr - has been widely recognized as an important mechanism for terrestrial C sequestration, with less attention paid to the role of inland fluvial to deltaic deposition. We sampled three cores in the central Mississippi Delta for C content (using elemental analysis) and bulk density in fluviodeltaic overbank deposits as well as intercalated peat. We also established a flexible, Bayesian age-depth model using Bacon (Blaauw and Christen 2011) in order to calculate sediment accumulation rates from 14C and OSL ages. Peat deposits sequester C at an average rate of 40 g C/m2/yr. The relatively organic-poor overbank sediments sequester C at an average rate of 200 g C/m2/yr including what are likely punctuated periods of very fast deposition. While the episodic nature of overbank deposits make quantifying an annual impact difficult, it is clear that overbank deposition is an important and efficient mechanism for C sequestration in fluviodeltaic systems that deserves continued investigation.

  2. Project CLIMPEAT - Influence of global warming and drought on the carbon sequestration and biodiversity of Sphagnum peatlands

    NASA Astrophysics Data System (ADS)

    Lamentowicz, M.; Buttler, A.; Mitchell, E. A. D.; Chojnicki, B.; Słowińska, S.; Słowiński, M.

    2012-04-01

    Northern peatlands represent a globally significant pool of carbon and are subject to the highest rates of climate warming, and most of these peatlands are in continental settings. However, it is unclear if how fast peatlands respond to past and present changes in temperature and surface moisture in continental vs. oceanic climate settings. The CLIMPEAT project brings together scientists from Poland and Switzerland. Our goal is to assess the past and present vulnerability to climate change of Sphagnum peatland plant and microbial communities, peat organic matter transformations and carbon sequestration using a combination of field and mesocosm experiments simulating warming and water table changes and palaeoecological studies. Warming will be achieved using ITEX-type "Open-Top Chambers". The field studies are conducted in Poland, at the limit between oceanic and continental climates, and are part of a network of projects also including field experiments in the French Jura (sub-oceanic) and in Siberia (continental). We will calibrate the response of key biological (plants, testate amoebae) and geochemical (isotopic composition of organic compounds, organic matter changes) proxies to warming and water table changes and use these proxies to reconstruct climate changes during the last 1000 years.

  3. Calculation of hydrocarbon-in-place in gas and gas-condensate reservoirs - Carbon dioxide sequestration

    USGS Publications Warehouse

    Verma, Mahendra K.

    2012-01-01

    The Energy Independence and Security Act of 2007 (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2), requiring estimation of hydrocarbon-in-place volumes and formation volume factors for all the oil, gas, and gas-condensate reservoirs within the U.S. sedimentary basins. The procedures to calculate in-place volumes for oil and gas reservoirs have already been presented by Verma and Bird (2005) to help with the USGS assessment of the undiscovered resources in the National Petroleum Reserve, Alaska, but there is no straightforward procedure available for calculating in-place volumes for gas-condensate reservoirs for the carbon sequestration project. The objective of the present study is to propose a simple procedure for calculating the hydrocarbon-in-place volume of a condensate reservoir to help estimate the hydrocarbon pore volume for potential CO2 sequestration.

  4. Feasibility Study of Carbon Sequestration Through Reforestation in the Chesapeake Bay Watershed of Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andy Lacatell; David Shoch; Bill Stanley

    The Chesapeake Rivers conservation area encompasses approximately 2,000 square miles of agricultural and forest lands in four Virginia watersheds that drain to the Chesapeake Bay. Consulting a time series of classified Landsat imagery for the Chesapeake Rivers conservation area, the project team developed a GIS-based protocol for identifying agricultural lands that could be reforested, specifically agricultural lands that had been without forest since 1990. Subsequent filters were applied to the initial candidate reforestation sites, including individual sites > 100 acres and sites falling within TNC priority conservation areas. The same data were also used to produce an analysis of baselinemore » changes in forest cover within the study period. The Nature Conservancy and the Virginia Department of Forestry identified three reforestation/management models: (1) hardwood planting to establish old-growth forest, (2) loblolly pine planting to establish working forest buffer with hardwood planting to establish an old-growth core, and (3) loblolly pine planting to establish a working forest. To assess the relative carbon sequestration potential of these different strategies, an accounting of carbon and total project costs was completed for each model. Reforestation/management models produced from 151 to 171 tons carbon dioxide equivalent per acre over 100 years, with present value costs of from $2.61 to $13.28 per ton carbon dioxide equivalent. The outcome of the financial analysis was especially sensitive to the land acquisition/conservation easement cost, which represented the most significant, and also most highly variable, single cost involved. The reforestation/management models explored all require a substantial upfront investment prior to the generation of carbon benefits. Specifically, high land values represent a significant barrier to reforestation projects in the study area, and it is precisely these economic constraints that demonstrate the economic

  5. Inorganic carbon and fossil organic carbon are source of bias for quantification of sequestered carbon in mine spoil

    NASA Astrophysics Data System (ADS)

    Vindušková, Olga; Frouz, Jan

    2016-04-01

    Carbon sequestration in mine soils has been studied as a possibility to mitigate the rising atmospheric CO2 levels and to improve mine soil quality (Vindu\\vsková and Frouz, 2013). Moreover, these soils offer an unique opportunity to study soil carbon dynamics using the chronosequence approach (using a set of sites of different age on similar parent material). However, quantification of sequestered carbon in mine soils is often complicated by fossil organic carbon (e.g., from coal or kerogen) or inorganic carbon present in the spoil. We present a methodology for quantification of both of these common constituents of mine soils. Our recommendations are based on experiments done on post-mining soils in Sokolov basin, Czech Republic. Here, fossil organic carbon is present mainly as kerogen Type I and II and represents 2-6 wt.% C in these soils. Inorganic carbon in these soils is present mainly as siderite (FeCO3), calcite (CaCO3), and dolomite (CaMg(CO3)2). All of these carbonates are often found in the overburden of coal seams thus being a common constituent of post-mining soils in the world. Vindu\\vsková O, Frouz J, 2013. Soil carbon accumulation after open-cast coal and oil shale mining in Northern Hemisphere: a quantitative review. ENVIRONMENTAL EARTH SCIENCES, 69: 1685-1698. Vindu\\vsková O, Dvořáček V, Prohasková A, Frouz J. 2014. Distinguishing recent and fossil organic matter - A critical step in evaluation of post-mining soil development - using near infrared spectroscopy. ECOLOGICAL ENGINEERING. 73: 643-648. Vindu\\vsková O, Sebag D, Cailleau G, Brus J, Frouz J. 2015. Methodological comparison for quantitative analysis of fossil and recently derived carbon in mine soils with high content of aliphatic kerogen. ORGANIC GEOCHEMISTRY, 89-90:14-22.

  6. Partitioning CO 2 fluxes with isotopologue measurements and modeling to understand mechanisms of forest carbon sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleska, Scott; Davidson, Eric; Finzi, Adrien

    This project combines automated in situ observations of the isotopologues of CO 2 with root observations, novel experimental manipulations of below ground processes, and isotope-enabled ecosystem modeling to investigate mechanisms of below- vs. above ground carbon sequestration at the Harvard Forest Environmental Measurements Site (EMS). The proposed objectives, which have now been largely accomplished, include: (A) Partitioning of net ecosystem CO2 exchange (NEE) into photosynthesis and respiration using long-term continuous observations of the isotopic composition of NEE, and analysis of their dynamics; (B) Investigation of the influence of vegetation phenology on the timing and magnitude of carbon allocated below groundmore » using measurements of root growth and indices of below ground autotrophic vs. heterotrophic respiration (via trenched plots andisotope measurements); (C) Testing whether plant allocation of carbon below ground stimulates the microbial decomposition of soil organic matter, using in situ rhizosphere simulation experiments wherein realistic quantities of artificial isotopically-labeled exudates are released into the soil; and (D) Synthesis and interpretation of the above data using the Ecosystem Demography Model 2 (ED2).« less

  7. Partitioning CO 2 fluxes with isotopologue measurements and modeling to understand mechanisms of forest carbon sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Eric A.; Saleska, Scott; Savage, Kathleen

    1. Project Summary and Objectives This project combines automated in situ observations of the isotopologues of CO 2 with root observations, novel experimental manipulations of belowground processes, and isotope-enabled ecosystem modeling to investigate mechanisms of below- vs. aboveground carbon sequestration at the Harvard Forest Environmental Measurements Site (EMS). The proposed objectives, which have now been largely accomplished, include: A. Partitioning of net ecosystem CO 2 exchange (NEE) into photosynthesis and respiration using long-term continuous observations of the isotopic composition of NEE, and analysis of their dynamics ; B. Investigation of the influence of vegetation phenology on the timing and magnitudemore » of carbon allocated belowground using measurements of root growth and indices of belowground autotrophic vs. heterotrophic respiration (via trenched plots and isotope measurements); C. Testing whether plant allocation of carbon belowground stimulates the microbial decomposition of soil organic matter, using in situ rhizosphere simulation experiments wherein realistic quantities of artificial isotopically-labeled exudates are released into the soil; and D. Synthesis and interpretation of the above data using the Ecosystem Demography Model 2 (ED2).« less

  8. Comparing pasture c sequestration estimates from eddy covariance and soil cores

    USDA-ARS?s Scientific Manuscript database

    Temperate pastures in the northeast USA are highly productive and could act as significant sinks for soil organic carbon (SOC). However, soils under mature pastures are often considered to have reached equilibrium such that no further sequestration of SOC is expected. This study quantified changes i...

  9. Proteomic analysis of carbon concentrating chemolithotrophic bacteria Serratia sp. for sequestration of carbon dioxide.

    PubMed

    Bharti, Randhir K; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-01-01

    A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials.

  10. Proteomic Analysis of Carbon Concentrating Chemolithotrophic Bacteria Serratia sp. for Sequestration of Carbon Dioxide

    PubMed Central

    Bharti, Randhir K.; Srivastava, Shaili; Thakur, Indu Shekhar

    2014-01-01

    A chemolithotrophic bacterium enriched in the chemostat in presence of sodium bicarbonate as sole carbon source was identified as Serratia sp. by 16S rRNA sequencing. Carbon dioxide sequestering capacity of bacterium was detected by carbonic anhydrase enzyme and ribulose-1, 5- bisphosphate carboxylase/oxygenase (RuBisCO). The purified carbonic anhydrase showed molecular weight of 29 kDa. Molecular weight of RuBisCO was 550 kDa as determined by fast protein liquid chromatography (FPLC), however, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed presence of two subunits whose molecular weights were 56 and 14 kDa. The Western blot analysis of the crude protein and purified sample cross reacted with RuBisCO large-subunit polypeptides antibodies showed strong band pattern at molecular weight around 56 kDa regions. Whole cell soluble proteins of Serratia sp. grown under autotrophic and heterotrophic conditions were resolved by two-dimensional gel electrophoresis and MALDI-TOF/MS for differential expression of proteins. In proteomic analysis of 63 protein spots, 48 spots were significantly up-regulated in the autotrophically grown cells; seven enzymes showed its utilization in autotrophic carbon fixation pathways and other metabolic activities of bacterium including lipid metabolisms indicated sequestration potency of carbon dioxide and production of biomaterials. PMID:24619032

  11. Evaluation of forest structure, biomass and carbon sequestration in subtropical pristine forests of SW China.

    PubMed

    Nizami, Syed Moazzam; Yiping, Zhang; Zheng, Zheng; Zhiyun, Lu; Guoping, Yang; Liqing, Sha

    2017-03-01

    Very old natural forests comprising the species of Fagaceae (Lithocarpus xylocarpus, Castanopsis wattii, Lithocarpus hancei) have been prevailing since years in the Ailaoshan Mountain Nature Reserve (AMNR) SW China. Within these forest trees, density is quite variable. We studied the forest structure, stand dynamics and carbon density at two different sites to know the main factors which drives carbon sequestration process in old forests by considering the following questions: How much is the carbon density in these forest trees of different DBH (diameter at breast height)? How much carbon potential possessed by dominant species of these forests? How vegetation carbon is distributed in these forests? Which species shows high carbon sequestration? What are the physiochemical properties of soil in these forests? Five-year (2005-2010) tree growth data from permanently established plots in the AMNR was analysed for species composition, density, stem diameter (DBH), height and carbon (C) density both in aboveground and belowground vegetation biomass. Our study indicated that among two comparative sites, overall 54 species of 16 different families were present. The stem density, height, C density and soil properties varied significantly with time among the sites showing uneven distribution across the forests. Among the dominant species, L. xylocarpus represents 30% of the total carbon on site 1 while C. wattii represents 50% of the total carbon on site 2. The average C density ranged from 176.35 to 243.97 t C ha -1 . The study emphasized that there is generous degree to expand the carbon stocking in this AMNR through scientific management gearing towards conservation of old trees and planting of potentially high carbon sequestering species on good site quality areas.

  12. Geophysical delineation of Mg-rich ultramafic rocks for mineral carbon sequestration

    USGS Publications Warehouse

    McCafferty, Anne E.; Van Gosen, Bradley S.; Krevor, Sam C.; Graves, Chris R.

    2009-01-01

    This presentation covers three general topics: (1) description of a new geologic compilation of the United States that shows the location of magnesium-rich ultramafic rocks in the conterminous United States; (2) conceptual illustration of the potential ways that ultramafic rocks could be used to sequester carbon dioxide; and (3) description of ways to use geophysical data to refine and extend the geologic mapping of ultramafic rocks and to better characterize their mineralogy.The geophysical focus of this research is twofold. First, we illustrate how airborne magnetic data can be used to map the shallow subsurface geometry of ultramafic rocks for the purpose of estimating the volume of rock material available for mineral CO2 sequestration. Secondly, we explore, on a regional to outcrop scale, how magnetic mineralogy, as expressed in magnetic anomalies, may vary with magnesium minerals, which are the primary minerals of interest for CO2 sequestration

  13. The Rise of Oxygen in the Earth's Atmosphere Controlled by the Efficient Subduction of Organic Carbon

    NASA Astrophysics Data System (ADS)

    Duncan, M. S.; Dasgupta, R.

    2017-12-01

    Carbon cycling between the Earth's surface environment, i.e., the ocean-atmosphere system, and the Earth's interior is critical for differentiation, redox evolution, and long-term habitability of the planet. This carbon cycle is influenced heavily by the extent of carbon subduction. While the fate of carbonates during subduction has been discussed in numerous studies [e.g., 1], little is known how organic carbon is quantitatively transferred from the Earth's surface to the interior. Efficient subduction of organic carbon would remove reduced carbon from the surface environment over the long-term (≥100s Myrs) while release at subduction zone arc volcanoes would result in degassing of CO2. Here we conducted high pressure-temperature experiments to determine the carbon carrying capacity of slab derived, rhyolitic melts under graphite-saturated conditions over a range of P (1.5-3.0 GPa) and T (1100-1400 °C) at a fixed melt H2O content (2 wt.%) [2]. Based on our experimental data, we developed a thermodynamic model of CO2 dissolution in C-saturated slab melts, that allows us to quantify the extent of organic carbon mobility as a function of slab P, T, and fO2 during subduction through time. Our experimental data and thermodynamic model suggest that the subduction of graphitized organic C, and graphite/diamond formed by reduction of carbonates with depth [e.g., 3], remained efficient even in ancient, hotter subduction zones - conditions at which subduction of carbonates likely remained limited [1]. Considering the efficiency the subduction of organic C and potential conditions for ancient subduction, we suggest that the lack of remobilization in subduction zones and deep sequestration of organic C in the mantle facilitated the rise and maintenance atmospheric oxygen in the Paleoproterozoic and is causally linked to the Great Oxidation Event (GOE). Our modeling shows that episodic subduction and organic C sequestration pre-GOE may also explain occasional whiffs of

  14. Carbon Capture and Sequestration: A Regulatory Gap Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln Davies; Kirsten Uchitel; John Ruple

    2012-04-30

    Though a potentially significant climate change mitigation strategy, carbon capture and sequestration (CCS) remains mired in demonstration and development rather than proceeding to full-scale commercialization. Prior studies have suggested numerous reasons for this stagnation. This Report seeks to empirically assess those claims. Using an anonymous opinion survey completed by over 200 individuals involved in CCS, it concludes that there are four primary barriers to CCS commercialization: (1) cost, (2) lack of a carbon price, (3) liability risks, and (4) lack of a comprehensive regulatory regime. These results largely confirm previous work. They also, however, expose a key barrier that priormore » studies have overlooked: the need for comprehensive, rather than piecemeal, CCS regulation. The survey data clearly show that the CCS community sees this as one of the most needed incentives for CCS deployment. The community also has a relatively clear idea of what that regulation should entail: a cooperative federalism approach that directly addresses liability concerns and that generally does not upset traditional lines of federal-state authority.« less

  15. Characteristics of organic carbon accumulation in subtropical seagrass meadows

    NASA Astrophysics Data System (ADS)

    Tanaya, T.; Watanabe, K.; Yamamoto, S.; Hongo, C.; Kayanne, H.; Kuwae, T.

    2016-02-01

    The carbon sequestrated in marine ecosystems has been termed "blue carbon", and seagrass meadows are one of the most dominant blue carbon stocks. Globally, the major distribution sites of seagrass meadows are coral reef flats, where it is technically difficult to quantify organic carbon in carbonate sediments. Since blue carbon stocks have been estimated to date based on seagrass biomass and fine sediments (<1 mm), no studies have measured total carbon stocks, including coarse sediments (1> mm) in seagrass meadows. To solve this problem, we developed a new box corer which can facilitate to obtain the intact cores structured by both sediments and seagrass bodies. Using the core samples taken in subtropical seagrass meadows, located off Ishigaki Island, Japan, we measured total organic carbon mass (TOCmass) and stable isotope ratios (δ13C) of total sedimentary organic matter (SOM) and estimated their sources and controlling factors. The averaged TOCmass of top 15 cm SOM including living seagrasses was 940±480 gC/m2. The live seagrass biomass accounted for only 14±14wt%, whereas the dead biomass (>2 mm), coarse sediments (>1 mm except for dead plant structures >2 mm) and fine sediments (<1 mm) accounted for 3±4wt%, 19±13wt%, and 63±14wt%, respectively. The dead biomass and coarse sediments, which have not yet been included in the past estimations, accounted for about 22wt% of the averaged TOCmass. Total organic carbon content (TOC%) of mixture of the dead biomass, coarse sediments and fine sediments increased with increasing the live seagrass biomass (R = 0.66, n = 13, p = 0.014). The live seagrass biomass was one of the controlling factors of blue carbon stocks at the sites. Using a Bayesian isotopic mixing model, we estimated that the contribution of seagrass-derived carbon to total sedimentary organic carbon was about 70%. The enrichment of sediment organic carbon with increasing the live seagrass biomass was mainly due to the increase of seagrass

  16. [Effects of residue management and fertilizer application mode on soil organic carbon pools in an oasis cotton region.

    PubMed

    Zhang, Peng Peng; Liu, Yan Jie; Pu, Xiao Zhen; Zhang, Guo Juan; Wang, Jin; Zhang, Wang Feng

    2016-11-18

    To reveal the regulation mechanisms of agricultural management practices on soil organic carbon (SOC) pools and provide scientific basis for improving soil productivity and formulating agricultural fixed carbon and reducing discharge measures, we monitored the changes of SOC pools and organic carbon fractions in an oasis cotton field under different residue management and fertilizer application modes. A split-plot experimental design was used with differing residue management including residue incorporation (S) and residue removing (NS) in the main plots and differing fertilizer application modes including no fertilizer (CK), NPK fertilizer (NPK), organic manure (OM) and NPK fertilizer plus organic manure (NPK+OM) in the subplot. The results showed that fertilization and residue incorporation significantly increased SOC pool, soil organic carbon (C T ), labile carbon (C L ), microbial biomass carbon (C MB ), water-soluble organic carbon (C WS ), hot-water-soluble organic carbon (C HWS ), accumulative amount of soil organic carbon mineralization (C TM ) and carbon management index (CMI). The SOC pool was increased by 20.6% by residue incorporation compared to residue removing. SOC pools were increased by 7.8%, 29.5% and 37.7% in NPK, OM and NPK+OM treatments compared to CK, respectively. The contents of C T , C L , C MB , C WS and C HWS under different fertilization treatments were shown as NPK+OM>OM>NPK>CK. C TM was increased by 5.9% by residue incorporation compared to residue removing and C TM was increased by 32.7%, 59.5% and 97.3% in NPK, OM and NPK+OM treatments compared to CK, respectively. There was a significant correlation between CMI and C T , C MB , C L , C WS , C HWS , C TM , C pool and C sequestration. Therefore, we concluded that CMI is an important index for evaluating the effect of agricultural management practices on soil quality. In order to construct high-standard oasis farmland in arid region and develop cotton production, we should consider

  17. Estimating long-term carbon sequestration patterns in even- and uneven-aged southern pine stands

    Treesearch

    Don C. Bragg; James M. Guldin

    2010-01-01

    Carbon (C) sequestration has become an increasingly important consideration for forest management in North America, and has particular potential in pine-dominated forests of the southern United States. Using existing literature on plantations and long-term studies of naturally regenerated loblolly (Pinus taeda) and shortleaf (Pinus echinata) pine-dominated stands on...

  18. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-08-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes ofmore » air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell is nearly complete with only the biofilter remaining and is scheduled to be complete by the end of August 2003. The current project status and preliminary monitoring results are summarized in this report.« less

  19. FULL SCALE BIOREACTOR LANDFILL FOR CARBON SEQUESTRATION AND GREENHOUSE EMISSION CONTROL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramin Yazdani; Jeff Kieffer; Heather Akau

    2003-12-01

    The Yolo County Department of Planning and Public Works is constructing a full-scale bioreactor landfill as a part of the Environmental Protection Agency's (EPA) Project XL program to develop innovative approaches for carbon sequestration and greenhouse emission control. The overall objective is to manage landfill solid waste for rapid waste decomposition and maximum landfill gas generation and capture for carbon sequestration and greenhouse emission control. Waste decomposition is accelerated by improving conditions for either the aerobic or anaerobic biological processes and involves circulating controlled quantities of liquid (leachate, groundwater, gray water, etc.), and, in the aerobic process, large volumes ofmore » air. The first phase of the project entails the construction of a 12-acre module that contains a 6-acre anaerobic cell, a 3.5-acre anaerobic cell, and a 2.5-acre aerobic cell at the Yolo County Central Landfill near Davis, California. The cells are highly instrumented to monitor bioreactor performance. Liquid addition has commenced in the 3.5-acre anaerobic cell and the 6-acre anaerobic cell. Construction of the 2.5-acre aerobic cell and biofilter has been completed. The remaining task to be completed is to test the biofilter prior to operation, which is currently anticipated to begin in January 2004. The current project status and preliminary monitoring results are summarized in this report.« less

  20. U.S. Geological Survey Geologic Carbon Sequestration Assessment

    NASA Astrophysics Data System (ADS)

    Warwick, P. D.; Blondes, M. S.; Brennan, S.; Corum, M.; Merrill, M. D.

    2012-12-01

    The Energy Independence and Security Act of 2007 authorized the U.S. Geological Survey (USGS) to conduct a national assessment of potential geological storage resources for carbon dioxide (CO2) in consultation with the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA) and State geological surveys. To conduct the assessment, the USGS developed a probability-based assessment methodology that was extensively reviewed by experts from industry, government and university organizations (Brennan et al., 2010, http://pubs.usgs.gov/of/2010/1127). The methodology is intended to be used at regional to sub-basinal scales and it identifies storage assessment units (SAUs) that are based on two depth categories below the surface (1) 3,000 to 13,000 ft (914 to 3,962 m), and (2) 13,000 ft (3,962 m) and greater. In the first category, the 3,000 ft (914 m) minimum depth of the storage reservoir ensures that CO2 is in a supercritical state to minimize the storage volume. The depth of 13,000 ft (3,962 m) represents maximum depths that are accessible with average injection pressures. The second category represents areas where a reservoir formation has potential storage at depths below 13,000 ft (3,962 m), although they are not accessible with average injection pressures; these are assessed as a separate SAU. SAUs are restricted to formation intervals that contain saline waters (total dissolved solids greater than 10,000 parts per million) to prevent contamination of protected ground water. Carbon dioxide sequestration capacity is estimated for buoyant and residual storage traps within the basins. For buoyant traps, CO2 is held in place in porous formations by top and lateral seals. For residual traps, CO2 is contained in porous formations as individual droplets held within pores by capillary forces. Preliminary geologic models have been developed to estimate CO2 storage capacity in approximately 40 major sedimentary basins within the United States. More than

  1. Southwestern Regional Partnership For Carbon Sequestration (Phase 2) Pump Canyon CO2- ECBM/Sequestration Demonstration, San Juan Basin, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Advanced Resources International

    2010-01-31

    Within the Southwest Regional Partnership on Carbon Sequestration (SWP), three demonstrations of geologic CO{sub 2} sequestration are being performed -- one in an oilfield (the SACROC Unit in the Permian basin of west Texas), one in a deep, unmineable coalbed (the Pump Canyon site in the San Juan basin of northern New Mexico), and one in a deep, saline reservoir (underlying the Aneth oilfield in the Paradox basin of southeast Utah). The Pump Canyon CO{sub 2}-enhanced coalbed methane (CO{sub 2}/ECBM) sequestration demonstration project plans to demonstrate the effectiveness of CO{sub 2} sequestration in deep, unmineable coal seams via a small-scalemore » geologic sequestration project. The site is located in San Juan County, northern New Mexico, just within the limits of the high-permeability fairway of prolific coalbed methane production. The study area for the SWP project consists of 31 coalbed methane production wells located in a nine section area. CO{sub 2} was injected continuously for a year and different monitoring, verification and accounting (MVA) techniques were implemented to track the CO{sub 2} movement inside and outside the reservoir. Some of the MVA methods include continuous measurement of injection volumes, pressures and temperatures within the injection well, coalbed methane production rates, pressures and gas compositions collected at the offset production wells, and tracers in the injected CO{sub 2}. In addition, time-lapse vertical seismic profiling (VSP), surface tiltmeter arrays, a series of shallow monitoring wells with a regular fluid sampling program, surface measurements of soil composition, CO{sub 2} fluxes, and tracers were used to help in tracking the injected CO{sub 2}. Finally, a detailed reservoir model was constructed to help reproduce and understand the behavior of the reservoir under production and injection operation. This report summarizes the different phases of the project, from permitting through site closure, and gives

  2. A Global Assessment of the Chemical Recalcitrance of Seagrass Tissues: Implications for Long-Term Carbon Sequestration

    PubMed Central

    Trevathan-Tackett, Stacey M.; Macreadie, Peter I.; Sanderman, Jonathan; Baldock, Jeff; Howes, Johanna M.; Ralph, Peter J.

    2017-01-01

    Seagrass ecosystems have recently been identified for their role in climate change mitigation due to their globally-significant carbon sinks; yet, the capacity of seagrasses to sequester carbon has been shown to vary greatly among seagrass ecosystems. The recalcitrant nature of seagrass tissues, or the resistance to degradation back into carbon dioxide, is one aspect thought to influence sediment carbon stocks. In this study, a global survey investigated how the macromolecular chemistry of seagrass leaves, sheaths/stems, rhizomes and roots varied across 23 species from 16 countries. The goal was to understand how this seagrass chemistry might influence the capacity of seagrasses to contribute to sediment carbon stocks. Three non-destructive analytical chemical analyses were used to investigate seagrass chemistry: thermogravimetric analysis (TGA) and solid state 13C-NMR and infrared spectroscopy. A strong latitudinal influence on carbon quality was found, whereby temperate seagrasses contained 5% relatively more labile carbon, and tropical seagrasses contained 3% relatively more refractory carbon. Sheath/stem tissues significantly varied across taxa, with larger morphologies typically containing more refractory carbon than smaller morphologies. Rhizomes were characterized by a higher proportion of labile carbon (16% of total organic matter compared to 8–10% in other tissues); however, high rhizome biomass production and slower remineralization in anoxic sediments will likely enhance these below-ground tissues' contributions to long-term carbon stocks. Our study provides a standardized and global dataset on seagrass carbon quality across tissue types, taxa and geography that can be incorporated in carbon sequestration and storage models as well as ecosystem valuation and management strategies. PMID:28659936

  3. Lead sequestration and species redistribution during soil organic matter decomposition

    USGS Publications Warehouse

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases (???20-35%) and SOM (???65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility. ?? 2008 American Chemical Society.

  4. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James A. Burger; J. Galbraith; T. Fox

    2005-06-08

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in VA, WV, KY, OH, and PA mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorialmore » in a random complete block design with three replications at each of three locations, Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. During the reporting period we compiled and evaluated all soil properties measured on the study sites. Statistical analysis of the properties was conducted, and first year survival and growth of white pine, hybrid poplars, and native hardwoods was assessed. Hardwood species survived better at all sites than white pine or hybrid poplar. Hardwood survival across treatments was 80%, 85%, and 50% for sites in Virginia, West Virginia, and Ohio, respectively, while white pine survival was 27%, 41%, and 58%, and hybrid poplar survival was 37%, 41%, and 72% for the same sites, respectively. Hybrid poplar height and diameter growth were superior to those of the other species tested, with the height growth of this species reaching 126.6cm after one year in the most intensive treatment at the site in Virginia. To determine carbon in soils on

  5. Agroforestry: a sustainable environmental practice for carbon sequestration under the climate change scenarios-a review.

    PubMed

    Abbas, Farhat; Hammad, Hafiz Mohkum; Fahad, Shah; Cerdà, Artemi; Rizwan, Muhammad; Farhad, Wajid; Ehsan, Sana; Bakhat, Hafiz Faiq

    2017-04-01

    Agroforestry is a sustainable land use system with a promising potential to sequester atmospheric carbon into soil. This system of land use distinguishes itself from the other systems, such as sole crop cultivation and afforestation on croplands only through its potential to sequester higher amounts of carbon (in the above- and belowground tree biomass) than the aforementioned two systems. According to Kyoto protocol, agroforestry is recognized as an afforestation activity that, in addition to sequestering carbon dioxide (CO 2 ) to soil, conserves biodiversity, protects cropland, works as a windbreak, and provides food and feed to human and livestock, pollen for honey bees, wood for fuel, and timber for shelters construction. Agroforestry is more attractive as a land use practice for the farming community worldwide instead of cropland and forestland management systems. This practice is a win-win situation for the farming community and for the environmental sustainability. This review presents agroforestry potential to counter the increasing concentration of atmospheric CO 2 by sequestering it in above- and belowground biomass. The role of agroforestry in climate change mitigation worldwide might be recognized to its full potential by overcoming various financial, technical, and institutional barriers. Carbon sequestration in soil by various agricultural systems can be simulated by various models but literature lacks reports on validated models to quantify the agroforestry potential for carbon sequestration.

  6. Soil carbon stocks and carbon sequestration rates in seminatural grassland in Aso region, Kumamoto, Southern Japan.

    PubMed

    Toma, Yo; Clifton-Brown, John; Sugiyama, Shinji; Nakaboh, Makoto; Hatano, Ryusuke; Fernández, Fabián G; Ryan Stewart, J; Nishiwaki, Aya; Yamada, Toshihiko

    2013-06-01

    Global soil carbon (C) stocks account for approximately three times that found in the atmosphere. In the Aso mountain region of Southern Japan, seminatural grasslands have been maintained by annual harvests and/or burning for more than 1000 years. Quantification of soil C stocks and C sequestration rates in Aso mountain ecosystem is needed to make well-informed, land-use decisions to maximize C sinks while minimizing C emissions. Soil cores were collected from six sites within 200 km(2) (767-937 m asl.) from the surface down to the k-Ah layer established 7300 years ago by a volcanic eruption. The biological sources of the C stored in the Aso mountain ecosystem were investigated by combining C content at a number of sampling depths with age (using (14) C dating) and δ(13) C isotopic fractionation. Quantification of plant phytoliths at several depths was used to make basic reconstructions of past vegetation and was linked with C-sequestration rates. The mean total C stock of all six sites was 232 Mg C ha(-1) (28-417 Mg C ha(-1) ), which equates to a soil C sequestration rate of 32 kg C ha(-1)  yr(-1) over 7300 years. Mean soil C sequestration rates over 34, 50 and 100 years were estimated by an equation regressing soil C sequestration rate against soil C accumulation interval, which was modeled to be 618, 483 and 332 kg C ha(-1)  yr(-1) , respectively. Such data allows for a deeper understanding in how much C could be sequestered in Miscanthus grasslands at different time scales. In Aso, tribe Andropogoneae (especially Miscanthus and Schizoachyrium genera) and tribe Paniceae contributed between 64% and 100% of soil C based on δ(13) C abundance. We conclude that the seminatural, C4 -dominated grassland system serves as an important C sink, and worthy of future conservation. © 2013 Blackwell Publishing Ltd.

  7. Enhanced Sulfate Reduction and Carbon Sequestration in Sediments Underlying the Core of the Arabian Sea Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Fernandes, S. Q.; Mazumdar, A.; Peketi, A.; Bhattacharya, S.; Carvalho, M.; Da Silva, R.; Roy, R.; Mapder, T.; Roy, C.; Banik, S. K.; Ghosh, W.

    2017-12-01

    The oxygen minimum zone (OMZ) of the Arabian Sea in the northern Indian Ocean is one of the three major global sites of open ocean denitrification. The functionally anoxic water column between 150 to 1200 mbsl plays host to unique biogeochemical processes and organism interactions. Little is known, however, about the consequence of the low dissolved oxygen on the underlying sedimentary biogeochemical processes. Here we present, for the first time, a comprehensive investigation of sediment biogeochemistry of the Arabian Sea OMZ by coupling pore fluid analyses with microbial diversity data in eight sediment cores collected across a transect off the west coast of India in the Eastern Arabian Sea. We observed that in sediments underlying the core of the OMZ, high organic carbon sequestration coincides with a high diversity of all bacteria (the majority of which are complex organic matter hydrolyzers) and sulfate reducing bacteria (simple organic compound utilizers). Depth-integrated sulfate reduction rate also intensifies in this territory. These biogeochemical features, together with the detected shallowing of the sulfate-methane interface and buildup of pore-water sulfide, are all reflective of heightened carbon-sulfur cycling in the sediments underlying the OMZ core. Our data suggests that the sediment biogeochemistry of the OMZ is sensitive to minute changes in bottom water dissolved oxygen, and is dictated by the potential abundance and bioavailability of complex to simple carbon compounds which can stimulate a cascade of geomicrobial activities pertaining to the carbon-sulfur cycle. Our findings hold implications in benthic ecology and sediment diagenesis.

  8. An improved method for quantitatively measuring the sequences of total organic carbon and black carbon in marine sediment cores

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoming; Zhu, Qing; Zhou, Qianzhi; Liu, Jinzhong; Yuan, Jianping; Wang, Jianghai

    2018-01-01

    Understanding global carbon cycle is critical to uncover the mechanisms of global warming and remediate its adverse effects on human activities. Organic carbon in marine sediments is an indispensable part of the global carbon reservoir in global carbon cycling. Evaluating such a reservoir calls for quantitative studies of marine carbon burial, which closely depend on quantifying total organic carbon and black carbon in marine sediment cores and subsequently on obtaining their high-resolution temporal sequences. However, the conventional methods for detecting the contents of total organic carbon or black carbon cannot resolve the following specific difficulties, i.e., (1) a very limited amount of each subsample versus the diverse analytical items, (2) a low and fluctuating recovery rate of total organic carbon or black carbon versus the reproducibility of carbon data, and (3) a large number of subsamples versus the rapid batch measurements. In this work, (i) adopting the customized disposable ceramic crucibles with the microporecontrolled ability, (ii) developing self-made or customized facilities for the procedures of acidification and chemothermal oxidization, and (iii) optimizing procedures and carbon-sulfur analyzer, we have built a novel Wang-Xu-Yuan method (the WXY method) for measuring the contents of total organic carbon or black carbon in marine sediment cores, which includes the procedures of pretreatment, weighing, acidification, chemothermal oxidation and quantification; and can fully meet the requirements of establishing their highresolution temporal sequences, whatever in the recovery, experimental efficiency, accuracy and reliability of the measurements, and homogeneity of samples. In particular, the usage of disposable ceramic crucibles leads to evidently simplify the experimental scenario, which further results in the very high recovery rates for total organic carbon and black carbon. This new technique may provide a significant support for

  9. Estimating urban forest carbon sequestration potential in the southern United States using current remote sensing imagery sources

    Treesearch

    Krista Merry; Pete Bettinger; Jacek Siry; J. Michael Bowker

    2015-01-01

    With an increased interest in reducing carbon dioxide in the atmosphere, tree planting and maintenance in urban areas has become a viable option for increasing carbon sequestration. Methods for assessing the potential for planting trees within an urban area should allow for quick, inexpensive, and accurate estimations of available land using current remote sensing...

  10. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    ScienceCinema

    Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2018-05-07

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  11. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence

    PubMed Central

    Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing

    2015-01-01

    Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist. PMID:26503629

  12. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing

    2015-10-01

    Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist.

  13. Long-term rice cultivation stabilizes soil organic carbon and promotes soil microbial activity in a salt marsh derived soil chronosequence.

    PubMed

    Wang, Ping; Liu, Yalong; Li, Lianqing; Cheng, Kun; Zheng, Jufeng; Zhang, Xuhui; Zheng, Jinwei; Joseph, Stephen; Pan, Genxing

    2015-10-27

    Soil organic carbon (SOC) sequestration with enhanced stable carbon storage has been widely accepted as a very important ecosystem property. Yet, the link between carbon stability and bio-activity for ecosystem functioning with OC accumulation in field soils has not been characterized. We assessed the changes in microbial activity versus carbon stability along a paddy soil chronosequence shifting from salt marsh in East China. We used mean weight diameter, normalized enzyme activity (NEA) and carbon gain from straw amendment for addressing soil aggregation, microbial biochemical activity and potential C sequestration, respectively. In addition, a response ratio was employed to infer the changes in all analyzed parameters with prolonged rice cultivation. While stable carbon pools varied with total SOC accumulation, soil respiration and both bacterial and fungal diversity were relatively constant in the rice soils. Bacterial abundance and NEA were positively but highly correlated to total SOC accumulation, indicating an enhanced bio-activity with carbon stabilization. This could be linked to an enhancement of particulate organic carbon pool due to physical protection with enhanced soil aggregation in the rice soils under long-term rice cultivation. However, the mechanism underpinning these changes should be explored in future studies in rice soils where dynamic redox conditions exist.

  14. Greenhouse gas balance of mountain dairy farms as affected by grassland carbon sequestration.

    PubMed

    Salvador, Sara; Corazzin, Mirco; Romanzin, Alberto; Bovolenta, Stefano

    2017-07-01

    Recent studies on milk production have often focused on environmental impacts analysed using the Life Cycle Assessment (LCA) approach. In grassland-based livestock systems, soil carbon sequestration might be a potential sink to mitigate greenhouse gas (GHG) balance. Nevertheless, there is no commonly shared methodology. In this work, the GHG emissions of small-scale mountain dairy farms were assessed using the LCA approach. Two functional units, kg of Fat and Protein Corrected Milk (FPCM) and Utilizable Agricultural Land (UAL), and two different emissions allocations methods, no allocation and physical allocation, which accounts for the co-product beef, were considered. Two groups of small-scale dairy farms were identified based on the Livestock Units (LU) reared: <30 LU (LLU) and >30 LU (HLU). Before considering soil carbon sequestration in LCA, performing no allocation methods, LLU farms tended to have higher GHG emission than HLU farms per kg of FPCM (1.94 vs. 1.59 kg CO 2 -eq/kg FPCM, P ≤ 0.10), whereas the situation was reversed upon considering the m 2 of UAL as a functional unit (0.29 vs. 0.89 kg CO 2 -eq/m 2 , P ≤ 0.05). Conversely, considering physical allocation, the difference between the two groups became less noticeable. When the contribution from soil carbon sequestration was included in the LCA and no allocation method was performed, LLU farms registered higher values of GHG emission per kg of FPCM than HLU farms (1.38 vs. 1.10 kg CO 2 -eq/kg FPCM, P ≤ 0.05), and the situation was likewise reversed in this case upon considering the m 2 of UAL as a functional unit (0.22 vs. 0.73 kg CO 2 -eq/m 2 , P ≤ 0.05). To highlight how the presence of grasslands is crucial for the carbon footprint of small-scale farms, this study also applied a simulation for increasing the forage self-sufficiency of farms to 100%. In this case, an average reduction of GHG emission per kg of FPCM of farms was estimated both with no allocation and with physical

  15. Soil Carbon 4 per mille

    NASA Astrophysics Data System (ADS)

    Minasny, Budiman; van Wesemael, Bas

    2017-04-01

    The '4 per mille Soils for Food Security and Climate' was launched at the COP21 aiming to increase global soil organic matter stocks by 4 per mille (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil organic carbon (SOC) stock estimates and sequestration potentials from 20 regions in the world (New Zealand, Chile, South Africa, Australia, Tanzania, Indonesia, Kenya, Nigeria, India, China Taiwan, South Korea, China Mainland, United States of America, France, Canada, Belgium, England & Wales, Ireland, Scotland, and Russia) and asked whether the 4 per mille initiative is feasible. This study highlights region specific efforts and scopes for soil carbon sequestration. Reported soil C sequestration rates generally show that under best management practices, 4 per mille or even higher sequestration rates can be accomplished. High C sequestration rates (up to 10 per mille) can be achieved for soils with low initial SOC stock (topsoil less than 30 t C ha-1), and at the first twenty years after implementation of best management practices. In addition, areas that have reached equilibrium but not at their saturation level will not be able to further increase their sequestration. We found that most studies on SOC sequestration globally only consider topsoil (up to 0.3 m depth), as it is considered to be most affected by management techniques. The 4 per mille initiative was based on a blanket calculation of the whole global soil profile C stock, however the potential to increase SOC is mostly on managed agricultural lands. If we consider 4 per mille on global topsoil of agricultural land, SOC sequestration is about 3.6 Gt C per year, which effectively offset 40% of global anthropogenic greenhouse gas emissions. As a strategy for climate change mitigation, soil carbon sequestration buys time over the next ten to twenty years while other effective sequestration and low carbon technologies become

  16. Combined Power Generation and Carbon Sequestration Using Direct FuelCell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossein Ghezel-Ayagh

    2006-03-01

    The unique chemistry of carbonate fuel cell offers an innovative approach for separation of carbon dioxide from greenhouse gases (GHG). The carbonate fuel cell system also produces electric power at high efficiency. The simultaneous generation of power and sequestration of greenhouse gases offer an attractive scenario for re-powering the existing coal-fueled power plants, in which the carbonate fuel cell would separate the carbon dioxide from the flue gas and would generate additional pollutant-free electric power. Development of this system is concurrent with emergence of Direct FuelCell{reg_sign} (DFC{reg_sign}) technology for generation of electric power from fossil fuels. DFC is based onmore » carbonate fuel cell featuring internal reforming. This technology has been deployed in MW-scale power plants and is readily available as a manufactured product. This final report describes the results of the conceptualization study conducted to assess the DFC-based system concept for separation of CO2 from GHG. Design and development studies were focused on integration of the DFC systems with coal-based power plants, which emit large amounts of GHG. In parallel to the system design and simulation activities, operation of laboratory scale DFC verified the technical concept and provided input to the design activity. The system was studied to determine its effectiveness in capturing more than ninety percent of CO2 from the flue gases. Cost analysis was performed to estimate the change in cost of electricity for a 200 MW pulverized coal boiler steam cycle plant retrofitted with the DFC-based CO2 separation system producing an additional 127 MW of electric power. The cost increments as percentage of levelized cost of electricity were estimated for a range of separation plant installations per year and a range of natural gas cost. The parametric envelope meeting the goal (<20% increase in COE) was identified. Results of this feasibility study indicated that DFC

  17. Shallow Carbon Sequestration Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pendergrass, Gary; Fraley, David; Alter, William

    The potential for carbon sequestration at relatively shallow depths was investigated at four power plant sites in Missouri. Exploratory boreholes were cored through the Davis Shale confining layer into the St. Francois aquifer (Lamotte Sandstone and Bonneterre Formation). Precambrian basement contact ranged from 654.4 meters at the John Twitty Energy Center in Southwest Missouri to over 1100 meters near the Sioux Power Plant in St. Charles County. Investigations at the John Twitty Energy Center included 3D seismic reflection surveys, downhole geophysical logging and pressure testing, and laboratory analysis of rock core and water samples. Plans to perform injectivity tests atmore » the John Twitty Energy Center, using food grade CO{sub 2}, had to be abandoned when the isolated aquifer was found to have very low dissolved solids content. Investigations at the Sioux Plant and Thomas Hill Energy Center in Randolph County found suitably saline conditions in the St. Francois. A fourth borehole in Platte County was discontinued before reaching the aquifer. Laboratory analyses of rock core and water samples indicate that the St. Charles and Randolph County sites could have storage potentials worthy of further study. The report suggests additional Missouri areas for further investigation as well.« less

  18. An Evaluation of Subsurface Microbial Activity Conditional to Subsurface Temperature, Porosity, and Permeability at North American Carbon Sequestration Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, B.; Mordensky, S.; Verba, Circe

    Several nations, including the United States, recognize global climate change as a force transforming the global ecosphere. Carbon dioxide (CO 2) is a greenhouse gas that contributes to the evolving climate. Reduction of atmospheric CO 2 levels is a goal for many nations and carbon sequestration which traps CO 2 in the Earth’s subsurface is one method to reduce atmospheric CO 2 levels. Among the variables that must be considered in developing this technology to a national scale is microbial activity. Microbial activity or biomass can change rock permeability, alter artificial seals around boreholes, and play a key role inmore » biogeochemistry and accordingly may determine how CO 2 is sequestered underground. Certain physical parameters of a reservoir found in literature (e.g., temperature, porosity, and permeability) may indicate whether a reservoir can host microbial communities. In order to estimate which subsurface formations may host microbes, this report examines the subsurface temperature, porosity, and permeability of underground rock formations that have high potential to be targeted for CO 2 sequestration. Of the 268 North American wellbore locations from the National Carbon Sequestration Database (NATCARB; National Energy and Technology Laboratory, 2015) and 35 sites from Nelson and Kibler (2003), 96 sequestration sites contain temperature data. Of these 96 sites, 36 sites have temperatures that would be favorable for microbial survival, 48 sites have mixed conditions for supporting microbial populations, and 11 sites would appear to be unfavorable to support microbial populations. Future studies of microbe viability would benefit from a larger database with more formation parameters (e.g. mineralogy, structure, and groundwater chemistry), which would help to increase understanding of where CO 2 sequestration could be most efficiently implemented.« less

  19. Models of reforestation productivity and carbon sequestration for land use and climate change adaptation planning in South Australia.

    PubMed

    Hobbs, Trevor J; Neumann, Craig R; Meyer, Wayne S; Moon, Travis; Bryan, Brett A

    2016-10-01

    Environmental management and regional land use planning has become more complex in recent years as growing world population, climate change, carbon markets and government policies for sustainability have emerged. Reforestation and agroforestry options for environmental benefits, carbon sequestration, economic development and biodiversity conservation are now important considerations of land use planners. New information has been collected and regionally-calibrated models have been developed to facilitate better regional land use planning decisions and counter the limitations of currently available models of reforestation productivity and carbon sequestration. Surveys of above-ground biomass of 264 reforestation sites (132 woodlots, 132 environmental plantings) within the agricultural regions of South Australia were conducted, and combined with spatial information on climate and soils, to develop new spatial and temporal models of plant density and above-ground biomass productivity from reforestation. The models can be used to estimate productivity and total carbon sequestration (i.e. above-ground + below-ground biomass) under a continuous range of planting designs (e.g. variable proportions of trees and shrubs or plant densities), timeframes and future climate scenarios. Representative spatial models (1 ha resolution) for 3 reforestation designs (i.e. woodlots, typical environmental planting, biodiverse environmental plantings) × 3 timeframes (i.e. 25, 45, 65 years) × 4 possible climates (i.e. no change, mild, moderate, severe warming and drying) were generated (i.e. 36 scenarios) for use within land use planning tools. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A method for assessing carbon stocks, carbon sequestration, and greenhouse-gas fluxes in ecosystems of the United States under present conditions and future scenarios

    Treesearch

    Zhiliang Zhu; Brian Bergamaschi; Richard Bernknopf; David Clow; Dennis Dye; Stephen Faulkner; William Forney; Robert Gleason; Todd Hawbaker; Jinxun Liu; Shuguang Liu; Stephen Prisley; Bradley Reed; Matthew Reeves; Matthew Rollins; Benjamin Sleeter; Terry Sohl; Sarah Stackpoole; Stephen Stehman; Robert Striegl; Anne Wein

    2010-01-01

    This methodology was developed to fulfill a requirement by the Energy Independence and Security Act of 2007 (EISA). The EISA legislation mandates the U.S. Department of the Interior (DOI) to develop a methodology and conduct an assessment of carbon storage, carbon sequestration, and fluxes of three principal greenhouse gases (GHG) for the Nation's ecosystems. The...

  1. National Scale Prediction of Soil Carbon Sequestration under Scenarios of Climate Change

    NASA Astrophysics Data System (ADS)

    Izaurralde, R. C.; Thomson, A. M.; Potter, S. R.; Atwood, J. D.; Williams, J. R.

    2006-12-01

    Carbon sequestration in agricultural soils is gaining momentum as a tool to mitigate the rate of increase of atmospheric CO2. Researchers from the Pacific Northwest National Laboratory, Texas A&M University, and USDA-NRCS used the EPIC model to develop national-scale predictions of soil carbon sequestration with adoption of no till (NT) under scenarios of climate change. In its current form, the EPIC model simulates soil C changes resulting from heterotrophic respiration and wind / water erosion. Representative modeling units were created to capture the climate, soil, and management variability at the 8-digit hydrologic unit (USGS classification) watershed scale. The soils selected represented at least 70% of the variability within each watershed. This resulted in 7,540 representative modeling units for 1,412 watersheds. Each watershed was assigned a major crop system: corn, soybean, spring wheat, winter wheat, cotton, hay, alfalfa, corn-soybean rotation or wheat-fallow rotation based on information from the National Resource Inventory. Each representative farm was simulated with conventional tillage and no tillage, and with and without irrigation. Climate change scenarios for two future periods (2015-2045 and 2045-2075) were selected from GCM model runs using the IPCC SRES scenarios of A2 and B2 from the UK Hadley Center (HadCM3) and US DOE PCM (PCM) models. Changes in mean and standard deviation of monthly temperature and precipitation were extracted from gridded files and applied to baseline climate (1960-1990) for each of the 1,412 modeled watersheds. Modeled crop yields were validated against historical USDA NASS county yields (1960-1990). The HadCM3 model predicted the most severe changes in climate parameters. Overall, there would be little difference between the A2 and B2 scenarios. Carbon offsets were calculated as the difference in soil C change between conventional and no till. Overall, C offsets during the first 30-y period (513 Tg C) are predicted to

  2. Estimation of carbon sequestration in China’s forests induced by atmospheric wet nitrogen deposition using the principles of ecological stoichiometry

    NASA Astrophysics Data System (ADS)

    Zhu, Jianxing; He, Nianpeng; Zhang, Jiahui; Wang, Qiufeng; Zhao, Ning; Jia, Yanlong; Ge, Jianping; Yu, Guirui

    2017-11-01

    The worldwide development of industry and agriculture has generated noticeable increases in atmospheric nitrogen (N) deposition, significantly altering the global N cycle. These changes might affect the global carbon (C) cycle by enhancing forest C sequestration. Here, we used a series of datasets from eight typical forests along the north-south transect of eastern China (NSTEC). These datasets contained information on community structure, C and N concentrations in the soil and the organs (leaf, branch, stem, and fine-root) of 877 plant species, and atmospheric wet N deposition. Using the biomass weighting method, we scaled up the C:N ratios from the organ level to the ecosystem level, and evaluated the C sequestration rate (CSRN) in response to wet N deposition and N use efficiency (NUE) in China’s forests based on the principles of ecological stoichiometry. Our results showed that atmospheric wet N deposition had a modest impact on forest C storage. Specifically, mean CSRN was estimated as 231 kg C ha-1 yr-1 (range: 32.7-507.1 kg C ha-1 yr-1), accounting for 2.1% of NPP and 4.6% of NEP at the ecosystem level. The NUEeco of atmospheric N deposition ranged from 9.6-27.7 kg C kg-1 N, and increased with increasing latitude from subtropical to cold-temperate forests in China (P < 0.05). This study provides a new approach for estimating the effect of atmospheric deposition on forest C sequestration based on the principles of ecological stoichiometry.

  3. Carbon Sequestration by Perennial Energy Crops: Is the Jury Still Out?

    PubMed

    Agostini, Francesco; Gregory, Andrew S; Richter, Goetz M

    Soil organic carbon (SOC) changes associated with land conversion to energy crops are central to the debate on bioenergy and their potential carbon neutrality. Here, the experimental evidence on SOC under perennial energy crops (PECs) is synthesised to parameterise a whole systems model and to identify uncertainties and knowledge gaps determining PECs being a sink or source of greenhouse gas (GHG). For Miscanthus and willow ( Salix spp.) and their analogues (switchgrass, poplar), we examine carbon (C) allocation to above- and belowground residue inputs, turnover rates and retention in the soil. A meta-analysis showed that studies on dry matter partitioning and C inputs to soils are plentiful, whilst data on turnover are rare and rely on few isotopic C tracer studies. Comprehensive studies on SOC dynamics and GHG emissions under PECs are limited and subsoil processes and C losses through leaching remain unknown. Data showed dynamic changes of gross C inputs and SOC stocks depending on stand age. C inputs and turnover can now be specifically parameterised in whole PEC system models, whilst dependencies on soil texture, moisture and temperature remain empirical. In conclusion, the annual net SOC storage change exceeds the minimum mitigation requirement (0.25 Mg C ha -1 year -1 ) under herbaceous and woody perennials by far (1.14 to 1.88 and 0.63 to 0.72 Mg C ha -1 year -1 , respectively). However, long-term time series of field data are needed to verify sustainable SOC enrichment, as the physical and chemical stabilities of SOC pools remain uncertain, although they are essential in defining the sustainability of C sequestration (half-life >25 years).

  4. Carbon sequestration and water flow regulation services in mature Mediterranean Forest

    NASA Astrophysics Data System (ADS)

    Beguería, S.; Ovando, P.

    2015-12-01

    We develop a forestland use and management model that integrates spatially-explicit biophysical and economic data, to estimate the expected pattern of climate regulation services through carbon dioxide (CO2) sequestration in tree and shrubs biomass, and water flow regulation. We apply this model to examine the potential trade-offs and synergies in the supply of CO2 sequestration and water flow services in mature Mediterranean forest, considering two alternative forest management settings. A forest restoration scenario through investments in facilitating forest regeneration, and a forestry activity abandonment scenario as result of unprofitable forest regeneration investment. The analysis is performed for different discount rates and price settings for carbon and water. The model is applied at the farm level in a group of 567 private silvopastoral farms across Andalusia (Spain), considering the main forest species in this region: Quercus ilex, Q. suber, Pinus pinea, P. halepensis, P. pinaster and Eucalyptus sp., as well as for tree-less shrubland and pastures. The results of this research are provided by forest land unit, vegetation, farm and for the group of municipalities where the farms are located. Our results draw attention to the spatial variability of CO2 and water flow regulation services, and point towards a trade-off between those services. The pattern of economic benefits associated to water and carbon services fluctuates according to the assumptions regarding price levels and discounting rates, as well as in connection to the expected forest management and tree growth models, and to spatially-explicit forest attributes such as existing tree and shrubs inventories, the quality of the sites for growing different tree species, soil structure or the climatic characteristics. The assumptions made regarding the inter-temporal preferences and relative prices have a large effect on the estimated economic value of carbon and water services. These results

  5. Geologic Carbon Sequestration in a Lightly Explored Basin: the Puget-Willamette Lowland

    NASA Astrophysics Data System (ADS)

    Jackson, J. S.

    2007-12-01

    persists, then sequestration efforts will compete directly with the hydrocarbon industry for these services, leading to higher service company prices as well as delayed schedules. Carbon sequestration policy thus entails financial incentives that allow geologic sequestration projects to compete for exploration services.

  6. Modeling impacts of management on carbon sequestration and trace gas emissions in forested wetland ecosystems

    Treesearch

    Changsheng Li; Jianbo Cui

    2004-01-01

    A process- based model, Wetland-DNDC, was modified to enhance its capacity to predict the impacts of management practices on carbon sequestration in and trace gas emissions from forested wetland ecosystems. The modifications included parameterization of management practices fe.g., forest harvest, chopping, burning, water management, fertilization, and tree planting),...

  7. Comparison of Carbon Sequestration Rates and Energy Balance of Turf in the Denver Urban Ecosystem and an Adjacent Native Grassland

    NASA Astrophysics Data System (ADS)

    Thienelt, T. S.; Anderson, D. E.; Powell, K. M.

    2011-12-01

    Urban ecosystems are currently characterized by rapid growth, are expected to continually expand and, thus, represent an important driver of land use change. A significant component of urban ecosystems is lawns, potentially the single largest irrigated "crop" in the U.S. Beginning in March of 2011 (ahead of the growing season), eddy covariance measurements of net carbon exchange and evapotranspiration along with energy balance fluxes were conducted for a well-watered, fertilized lawn (rye-bluegrass-mix) in metropolitan Denver and for a nearby tallgrass prairie (big bluestem, switchgrass, cheatgrass, blue grama). Due to the semi-arid climate conditions of the Denver region, differences in management (i.e., irrigation and fertilization) are expected to have a discernible impact on ecosystem productivity and thus on carbon sequestration rates, evapotranspiration, and the sensible and latent heat partitioning of the energy balance. By mid-July, preliminary data indicated that cumulative evapotranspiration was approximately 270 mm and 170 mm for urban and native grasslands, respectively, although cumulative carbon sequestration at that time was similar for both (approximately 40 mg/m2). However, the pattern of carbon exchange differed between the grasslands. Both sites showed daily net uptake of carbon starting in late May, but the urban lawn displayed greater diurnal variability as well as greater uptake rates in general, especially following fertilization in mid-June. In contrast, the trend of carbon uptake at the prairie site was occasionally reversed following strong convective precipitation events, resulting in a temporary net release of carbon. The continuing acquisition of data and investigation of these relations will help us assess the potential impact of urban growth on regional carbon sequestration.

  8. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, James A

    2005-07-20

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in Virginia, West Virginia, Kentucky, Ohio, and Pennsylvania mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, one each in Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. During the reporting period we determined that by grinding the soil samples to a finer particle size of less than 250 μm (sieve No. 60), the effect of mine soil coal particle size on the extent to which these particles will be oxidized during the thermal treatment of the carbon partitioning procedure will be eliminated, thus making the procedure more accurate and precise. In the second phase of the carbon sequestration project, we focused our attention on determining the sample size required for carbon accounting on grassland mined fields in order to achieve a desired accuracy and precision of the final soil organic carbon (SOC) estimate. A mine land site quality classification scheme was developed and some field-testing of the methods of implementation was completed. The classification model

  9. Community-based carbon sequestration in East Africa: Linking science and sustainability

    NASA Astrophysics Data System (ADS)

    Hultman, N. E.

    2004-12-01

    International agreements on climate change have set the stage for an expanding market for greenhouse gas emissions reduction credits. Projects that can generate credits for trading are diverse, but one of the more controversial types involve biological carbon sequestration. For several reasons, most of the activity on these "sinks" projects has been in Latin America and Southeast Asia. Yet people in sub-saharan Africa could benefit from properly implemented projects. This poster will discuss estimates of the potential and risks of such projects in East Africa, and will describe in detail a case study located in central Tanzania and now part of the World Bank's BioCarbon Fund portfolio. Understanding climate variability and risk can effectively link international agreements on climate change, local realities of individual projects, and the characteristics of targeted ecosystems.

  10. Measuring the decomposition of organic carbon sequestered by salt marsh sediment

    NASA Astrophysics Data System (ADS)

    Light, T.; Mctigue, N.; Currin, C.

    2016-12-01

    As atmospheric carbon dioxide concentrations continue to rise, salt marshes are increasingly being recognized as a natural carbon sink, for large amounts of organic carbon are sequestered by salt marsh sediments. However, little is known regarding the fate of this "blue carbon" after salt marsh sediment is disturbed via erosion or lost due to sea level rise. This investigation explored novel methodologies for determining the lability of carbon sequestered by salt marsh sediment. Sediment cores were collected from a Spartina alterniflora-dominated marsh in Camp Lejeune, NC, and elemental analysis revealed that the upper 76 cm of sediment at the site contains a total carbon stock of 28.4 kg /m2. Sediment ranging from 251-545 years old, as determined through radiocarbon dating, was incubated under sub-aerial and aqueous conditions for 18 days and 25 days respectively. Carbon dioxide flux measurements revealed that shallower sediment organic matter decomposed more rapidly than deeper sediment in sub-aerial incubations, but decomposition was fairly slow in both treatments. No significant organic matter decomposition was observed in the aqueous incubations, as revealed by analyses of organic carbon remaining after the incubation period. The aqueous incubation included a treatment that had been "primed" with highly labile yeast extract, but no significant priming effect was observed over 25 days. While further investigation on the fate of this sediment carbon is needed, these preliminary findings indicate that salt marshes facilitate long-term carbon sequestration even after disturbances. This in turn supports the argument for mitigating anthropogenic carbon dioxide emissions through salt marsh restoration, and supports a policy of preserving and conserving coastal wetlands for this valuable ecosystem service.

  11. Reduced tillage and cover crops as a strategy for mitigating atmospheric CO2 increase through soil organic carbon sequestration in dry Mediterranean agroecosystems.

    NASA Astrophysics Data System (ADS)

    Almagro, María; Garcia-Franco, Noelia; de Vente, Joris; Boix-Fayos, Carolina; Díaz-Pereira, Elvira; Martínez-Mena, María

    2016-04-01

    , respectively) than under CT treatment (399 g C-CO2 m-2 yr-1) in site 2. Tillage operations had a rapid but short-lived effect on soil CO2 efflux rates, with no significant influence on the annual soil CO2 emissions. The larger amounts of plant biomass incorporated into soil annually in the reduced tillage treatments compared to the conventional tillage treatment promoted soil aggregation and the physico-chemical soil organic carbon stabilization while soil CO2 emissions did not significantly increase. According to our results, reduced-tillage is strongly recommended as a beneficial SLM strategy for mitigating atmospheric CO2 increase through soil carbon sequestration and stabilization in semiarid Mediterranean agroecosystems.

  12. [Profile distribution of soil aggregates organic carbon in primary forests in Karst cluster-peak depression region].

    PubMed

    Lu, Ling-Xiao; Song, Tong-Qing; Peng, Wan-Xia; Zeng, Fu-Ping; Wang, Ke-Lin; Xu, Yun-Lei; Yu, Zi; Liu, Yan

    2012-05-01

    Soil profiles were collected from three primary forests (Itoa orientalis, Platycladus orientalis, and Radermachera sinica) in Karst cluster-peak depression region to study the composition of soil aggregates, their organic carbon contents, and the profile distribution of the organic carbon. In the three forests, >2 mm soil aggregates were dominant, occupying about 76% of the total. The content of soil total organic carbon ranged from 12.73 to 68.66 g x kg(-1), with a significant difference among the forests. The organic carbon content in <1 mm soil aggregates was slightly higher than that in >2 mm soil aggregates, but most of soil organic carbon was stored in the soil aggregates with greater particle sizes. About 70% of soil organic carbon came from >2 mm soil aggregates. There was a significant positive relationship between the contents of 2-5 and 5-8 mm soil aggregates and the content of soil organic carbon. To increase the contents of 2-8 mm soil aggregates could effectively improve the soil carbon sequestration in Karst region. In Itoa orientalis forest, 2-8 mm soil aggregates accounted for 46% of the total, and the content of soil total organic carbon reached to 37.62 g x kg(-1), which implied that Itoa orientalis could be the suitable tree species for the ecological restoration in Karst region.

  13. Sequestration of Single-Walled Carbon Nanotubes in a Polymer

    NASA Technical Reports Server (NTRS)

    Bley, Richard A.

    2007-01-01

    Sequestration of single-walled carbon nanotubes (SWCNs) in a suitably chosen polymer is under investigation as a means of promoting the dissolution of the nanotubes into epoxies. The purpose of this investigation is to make it possible to utilize SWCNs as the reinforcing fibers in strong, lightweight epoxy-matrix/carbon-fiber composite materials. SWCNs are especially attractive for use as reinforcing fibers because of their stiffness and strength-to-weight ratio: Their Young s modulus has been calculated to be 1.2 TPa, their strength has been calculated to be as much as 100 times that of steel, and their mass density is only one-sixth that of steel. Bare SWCNs cannot be incorporated directly into composite materials of the types envisioned because they are not soluble in epoxies. Heretofore, SWCNS have been rendered soluble by chemically attaching various molecular chains to them, but such chemical attachments compromise their structural integrity. In the method now under investigation, carbon nanotubes are sequestered in molecules of poly(m-phenylenevinylene-co-2,5-dioctyloxy-p-phenylenevinylene) [PmPV]. The strength of the carbon nanotubes is preserved because they are not chemically bonded to the PmPV. This method exploits the tendency of PmPV molecules to wrap themselves around carbon nanotubes: the wrapping occurs partly because there exists a favorable interface between the conjugated face of a nanotube and the conjugated backbone of the polymer and partly because of the helical molecular structure of PmPV. The constituents attached to the polymer backbones (the side chains) render the PmPV-wrapped carbon nanotubes PmPV soluble in organic materials that, in turn, could be used to suspend the carbon nanotubes in epoxy precursors. At present, this method is being optimized: The side chains on the currently available form of PmPV are very nonpolar and unable to react with the epoxy resins and/or hardeners; as a consequence, SWCN/PmPV composites have been

  14. Changes in soil organic carbon in croplands subjected to fertilizer management: a global meta-analysis

    PubMed Central

    Han, Pengfei; Zhang, Wen; Wang, Guocheng; Sun, Wenjuan; Huang, Yao

    2016-01-01

    Cropland soil organic carbon (SOC) is undergoing substantial alterations due to both environmental and anthropogenic changes. Although numerous case studies have been conducted, there remains a lack of quantification of the consequences of such environmental and anthropogenic changes on the SOC sequestration across global agricultural systems. Here, we conducted a global meta-analysis of SOC changes under different fertilizer managements, namely unbalanced application of chemical fertilizers (UCF), balanced application of chemical fertilizers (CF), chemical fertilizers with straw application (CFS), and chemical fertilizers with manure application (CFM). We show that topsoil organic carbon (C) increased by 0.9 (0.7–1.0, 95% confidence interval (CI)) g kg−1 (10.0%, relative change, hereafter the same), 1.7 (1.2–2.3) g kg−1 (15.4%), 2.0 (1.9–2.2) g kg−1 (19.5%) and 3.5 (3.2–3.8) g kg−1 (36.2%) under UCF, CF, CFS and CFM, respectively. The C sequestration durations were estimated as 28–73 years under CFS and 26–117 years under CFM but with high variability across climatic regions. At least 2.0 Mg ha−1 yr−1 C input is needed to maintain the SOC in ~85% cases. We highlight a great C sequestration potential of applying CF, and adopting CFS and CFM is highly important for either improving or maintaining current SOC stocks across all agro–ecosystems. PMID:27251021

  15. The Effect of the Agricultural Carbon Sequestration and Agrochemical Reduction on the Regional Water Environment Quality

    NASA Astrophysics Data System (ADS)

    Leyi, Wang; Baoli, Zhang; Xin, Li; Juan, Du

    2018-05-01

    This paper analysed the impact of the agricultural carbon reduction and emission reduction measures implementation on the environmental quality of surface water and groundwater in winter and summer in Henan and Anhui Province project areas by using entropy weight fuzzy matter element analysis method. The result showed that the reduction in the application of chemical fertilizers and pesticides had a certain impact on the improvement of the water environment by using agricultural carbon sequestration technologies.

  16. Development of a 1 x N Fiber Optic Sensor Array for Carbon Sequestration Site Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Repasky, Kevin

    2014-02-01

    A fiber sensor array for sub-surface CO 2 concentrations measurements was developed for monitoring geologic carbon sequestration sites. The fiber sensor array uses a single temperature tunable distributed feedback (DFB) laser operating with a nominal wavelength of 2.004 μm. Light from this DFB laser is direct to one of the 4 probes via an in-line 1 x 4 fiber optic switch. Each of the 4 probes are buried and allow the sub-surface CO 2 to enter the probe through Millipore filters that allow the soil gas to enter the probe but keeps out the soil and water. Light from themore » DFB laser interacts with the CO 2 before it is directed back through the in-line fiber optic switch. The DFB laser is tuned across two CO 2 absorption features where a transmission measurement is made allowing the CO 2 concentration to be retrieved. The fiber optic switch then directs the light to the next probe where this process is repeated allowing sub-surface CO 2 concentration measurements at each of the probes to be made as a function of time. The fiber sensor array was deployed for fifty-eight days beginning June 19, 2012 at the Zero Emission Research Technology (ZERT) field site where sub-surface CO 2 concentrations were monitored. Background measurements indicate the fiber sensor array can monitor background levels as low as 1,000 parts per million (ppm). A thirty four day sub-surface release of 0.15 tones CO 2/day began on July 10, 2012. The elevated subsurface CO 2 concentration was easily detected by each of the four probes with values ranging to over 60,000 ppm, a factor of greater than 6 higher than background measurements. The fiber sensor array was also deploy at the Big Sky Carbon Sequestration Partnership (BSCSP) site in north-central Montana between July 9th and August 7th, 2013 where background measurements were made in a remote sequestration site with minimal infrastructure. The project provided opportunities for two graduate students to participate in research directly

  17. Release of Black Carbon From Thawing Permafrost Estimated by Sequestration Fluxes in the East Siberian Arctic Shelf Recipient

    NASA Astrophysics Data System (ADS)

    Salvadó, Joan A.; Bröder, Lisa; Andersson, August; Semiletov, Igor P.; Gustafsson, Örjan

    2017-10-01

    Black carbon (BC) plays an important role in carbon burial in marine sediments globally. Yet the sequestration of BC in the Arctic Ocean is poorly understood. Here we assess the concentrations, fluxes, and sources of soot BC (SBC)—the most refractory component of BC—in sediments from the East Siberian Arctic Shelf (ESAS), the World's largest shelf sea system. SBC concentrations in the contemporary shelf sediments range from 0.1 to 2.1 mg g-1 dw, corresponding to 2-12% of total organic carbon. The 210Pb-derived fluxes of SBC (0.42-11 g m-2 yr-1) are higher or in the same range as fluxes reported for marine surface sediments closer to anthropogenic emissions. The total burial flux of SBC in the ESAS ( 4,000 Gg yr-1) illustrates the great importance of this Arctic shelf in marine sequestration of SBC. The radiocarbon signal of the SBC shows more depleted yet also more uniform signatures (-721 to -896‰; average of -774 ± 62‰) than of the non-SBC pool (-304 to -728‰; average of -491 ± 163‰), suggesting that SBC is coming from an, on average, 5,900 ± 300 years older and more specific source than the non-SBC pool. We estimate that the atmospheric BC input to the ESAS is negligible ( 0.6% of the SBC burial flux). Statistical source apportionment modeling suggests that the ESAS sedimentary SBC is remobilized by thawing of two permafrost carbon (PF/C) systems: surface soil permafrost (topsoil/PF; 25 ± 8%) and Pleistocene ice complex deposits (ICD/PF; 75 ± 8%). The SBC contribution to the total mobilized permafrost carbon (PF/C) increases with increasing distance from the coast (from 5 to 14%), indicating that the SBC is more recalcitrant than other forms of translocated PF/C. These results elucidate for the first time the key role of permafrost thaw in the transport of SBC to the Arctic Ocean. With ongoing global warming, these findings have implications for the biogeochemical carbon cycle, increasing the size of this refractory carbon pool in the Arctic

  18. Sympodial bamboo species differ in carbon bio-sequestration and stocks within phytoliths of leaf litters and living leaves.

    PubMed

    Xiang, Tingting; Ying, Yuqi; Teng, Jiangnan; Huang, Zhangting; Wu, Jiasen; Meng, Cifu; Jiang, Peikun; Tang, Caixian; Li, Jianmin; Zheng, Rong

    2016-10-01

    Phytolith-occluded carbon (PhytOC) with high resistance against decomposition is an important carbon (C) sink in many ecosystems. This study compared concentrations of phytolith in plants and the PhytOC production of seven sympodial bamboo species in southern China, aiming to provide the information for the managed bamboo plantation and selection of bamboo species to maximize phytolith C sequestration. Leaf litters and living leaves of seven sympodial bamboo species were collected from the field sites. Concentrations of phytoliths, silicon (Si), and PhytOC in leaf litters and living leaves were measured. Carbon sequestration as PhytOC was estimated. There was a considerable variation in the PhytOC concentrations in the leaf litters and living leaves among the seven bamboo species. The mean concentrations of PhytOC ranged from 3.4 to 6.9 g kg(-1) in leaf litters and from 1.6 to 5.9 g kg(-1) in living leaves, with the PhytOC production rates ranging from 5.7 to 52.3 kg e-CO2 ha(-1) year(-1) as leaf litters. Dendrocalamopsis oldhami (Munro) Keng f. had the highest PhytOC production rate. Based on a bio-sequestration rate of 52.3 kg e-CO2 ha(-1) year(-1), we estimated that the current 8 × 10(5) ha of sympodial bamboo stands in China could potentially acquire 4.2 × 10(4) t e-CO2 yearly via phytolith carbon. Furthermore, the seven sympodial bamboo species stored 5.38 × 10(5) t e-CO2 as PhytOC in living leaves and leaf litters in China. It is concluded that sympodial bamboos make a significant contribution to C sequestration and that to maximize the PhytOC accumulation, the bamboo species with the highest PhytOC production rate should be selected for plantation.

  19. Living Shorelines: Coastal Resilience with a Blue Carbon Benefit

    PubMed Central

    Davis, Jenny L.; Currin, Carolyn A.; O’Brien, Colleen; Raffenburg, Craig; Davis, Amanda

    2015-01-01

    Living shorelines are a type of estuarine shoreline erosion control that incorporates native vegetation and preserves native habitats. Because they provide the ecosystem services associated with natural coastal wetlands while also increasing shoreline resilience, living shorelines are part of the natural and hybrid infrastructure approach to coastal resiliency. Marshes created as living shorelines are typically narrow (< 30 m) fringing marshes with sandy substrates that are well flushed by tides. These characteristics distinguish living shorelines from the larger meadow marshes in which most of the current knowledge about created marshes was developed. The value of living shorelines for providing both erosion control and habitat for estuarine organisms has been documented but their capacity for carbon sequestration has not. We measured carbon sequestration rates in living shorelines and sandy transplanted Spartina alterniflora marshes in the Newport River Estuary, North Carolina. The marshes sampled here range in age from 12 to 38 years and represent a continuum of soil development. Carbon sequestration rates ranged from 58 to 283 g C m-2 yr-1 and decreased with marsh age. The pattern of lower sequestration rates in older marshes is hypothesized to be the result of a relative enrichment of labile organic matter in younger sites and illustrates the importance of choosing mature marshes for determination of long-term carbon sequestration potential. The data presented here are within the range of published carbon sequestration rates for S. alterniflora marshes and suggest that wide-scale use of the living shoreline approach to shoreline management may come with a substantial carbon benefit. PMID:26569503

  20. Living Shorelines: Coastal Resilience with a Blue Carbon Benefit.

    PubMed

    Davis, Jenny L; Currin, Carolyn A; O'Brien, Colleen; Raffenburg, Craig; Davis, Amanda

    2015-01-01

    Living shorelines are a type of estuarine shoreline erosion control that incorporates native vegetation and preserves native habitats. Because they provide the ecosystem services associated with natural coastal wetlands while also increasing shoreline resilience, living shorelines are part of the natural and hybrid infrastructure approach to coastal resiliency. Marshes created as living shorelines are typically narrow (< 30 m) fringing marshes with sandy substrates that are well flushed by tides. These characteristics distinguish living shorelines from the larger meadow marshes in which most of the current knowledge about created marshes was developed. The value of living shorelines for providing both erosion control and habitat for estuarine organisms has been documented but their capacity for carbon sequestration has not. We measured carbon sequestration rates in living shorelines and sandy transplanted Spartina alterniflora marshes in the Newport River Estuary, North Carolina. The marshes sampled here range in age from 12 to 38 years and represent a continuum of soil development. Carbon sequestration rates ranged from 58 to 283 g C m-2 yr-1 and decreased with marsh age. The pattern of lower sequestration rates in older marshes is hypothesized to be the result of a relative enrichment of labile organic matter in younger sites and illustrates the importance of choosing mature marshes for determination of long-term carbon sequestration potential. The data presented here are within the range of published carbon sequestration rates for S. alterniflora marshes and suggest that wide-scale use of the living shoreline approach to shoreline management may come with a substantial carbon benefit.

  1. CO2-rich geothermal areas in Iceland as natural analogues for geologic carbon sequestration

    NASA Astrophysics Data System (ADS)

    Thomas, D.; Maher, K.; Bird, D. K.; Brown, G. E.; Arnorsson, S.

    2013-12-01

    Geologic CO2 sequestration into mafic rocks via silicate mineral dissolution and carbonate precipitation has been suggested as a way to mitigate industrial CO2 emissions by storing CO2 in a stable form. Experimental observations of irreversible reaction of basalt with supercritical or gaseous and aqueous CO2 have resulted in carbonate precipitation, but there are no universal trends linking the extent of mineralization and type of reaction products to the bulk rock composition, glass percentage or mineralogy of the starting material. Additionally, concern exists that CO2 leakage from injection sites and migration through the subsurface may induce mineral dissolution and desorption of trace elements, potentially contaminating groundwater. This study investigates low-temperature (≤180°C) basaltic geothermal areas in Iceland with an anomalously high input of magmatic CO2 as natural analogues of the geochemical processes associated with the injection of CO2 into mafic rocks and possible leakage. Fluids that contain >4 mmol/kg total CO2 are common along the divergent Snæfellsnes Volcanic Zone in western Iceland and within the South Iceland Seismic Zone in southwest Iceland. The meteorically derived waters contain up to 80 mmol/kg dissolved inorganic carbonate (DIC). The aqueous concentration of major cations and trace elements is greater than that in Icelandic surface and groundwater and increases with DIC and decreasing pH. Concentrations of As and Ni in some samples are several times the World Health Organization (WHO) guidelines for safe drinking water. Thermodynamic modeling indicates that waters approach saturation with respect to calcite and/or aragonite, kaolinite and amorphous silica, and are undersaturated with respect to plagioclase feldspar, clinozoisite and Ca-zeolites. Petrographic study of drill cuttings from wells that intersect the CO2-rich areas indicates that the sites have undergone at least two stages of hydrothermal alteration: initial high

  2. Technical Progress Report on Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bill Stanley; Patrick Gonzalez; Sandra Brown

    2006-06-30

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects,more » providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st and July 30th 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool. Work is being carried out in Brazil, Belize, Chile, Peru and the USA.« less

  3. Straw incorporation increases crop yield and soil organic carbon sequestration but varies under different natural conditions and farming practices in China: a system analysis

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Xu, Cong; Dungait, Jennifer A. J.; Bol, Roland; Wang, Xiaojie; Wu, Wenliang; Meng, Fanqiao

    2018-04-01

    Loss of soil organic carbon (SOC) from agricultural soils is a key indicator of soil degradation associated with reductions in net primary productivity in crop production systems worldwide. Technically simple and locally appropriate solutions are required for farmers to increase SOC and to improve cropland management. In the last 30 years, straw incorporation (SI) has gradually been implemented across China in the context of agricultural intensification and rural livelihood improvement. A meta-analysis of data published before the end of 2016 was undertaken to investigate the effects of SI on crop production and SOC sequestration. The results of 68 experimental studies throughout China in different edaphic conditions, climate regions and farming regimes were analyzed. Compared with straw removal (SR), SI significantly sequestered SOC (0-20 cm depth) at the rate of 0.35 (95 % CI, 0.31-0.40) Mg C ha-1 yr-1, increased crop grain yield by 13.4 % (9.3-18.4 %) and had a conversion efficiency of the incorporated straw C of 16 % ± 2 % across China. The combined SI at the rate of 3 Mg C ha-1 yr-1 with mineral fertilizer of 200-400 kg N ha-1 yr-1 was demonstrated to be the best farming practice, where crop yield increased by 32.7 % (17.9-56.4 %) and SOC sequestrated by the rate of 0.85 (0.54-1.15) Mg C ha-1 yr-1. SI achieved a higher SOC sequestration rate and crop yield increment when applied to clay soils under high cropping intensities, and in areas such as northeast China where the soil is being degraded. The SOC responses were highest in the initial starting phase of SI, then subsequently declined and finally became negligible after 28-62 years. However, crop yield responses were initially low and then increased, reaching their highest level at 11-15 years after SI. Overall, our study confirmed that SI created a positive feedback loop of SOC enhancement together with increased crop production, and this is of great practical importance to straw management as agriculture

  4. Native plant restoration combats environmental change: development of carbon and nitrogen sequestration capacity using small cordgrass in European salt marshes

    USDA-ARS?s Scientific Manuscript database

    Restoration of salt marshes is critical in the context of climate change and eutrophication of coastal waters, because their vegetation and sediments may act as carbon and nitrogen sinks. Our primary objectives were to quantify carbon (C) and nitrogen (N) stocks and sequestration rates in restored m...

  5. Different effects of plant-derived dissolved organic matter (DOM) and urea on the priming of soil organic carbon.

    PubMed

    Qiu, Qingyan; Wu, Lanfang; Ouyang, Zhu; Li, Binbin; Xu, Yanyan

    2016-03-01

    Soil organic carbon (SOC) mineralization is important for the regulation of the global climate and soil fertility. Decomposition of SOC may be significantly affected by the supply of plant-derived labile carbon (C). To investigate the impact of plant-derived dissolved organic matter (DOM) and urea (N) additions on the decomposition of native SOC as well as to elucidate the underlying mechanisms of priming effects (PEs), a batch of incubation experiments was conducted for 250 days by application of (13)C-labeled plant-derived DOM and urea to soils. The direction of PE induced by the addition of DOM was different from the addition of N, i.e. it switched from negative to positive in DOM-amended soils, whereas in the N-treated soil it switched from positive to negative. Adding DOM alone was favorable for soil C sequestration (59 ± 5 mg C per kg soil), whereas adding N alone or together with DOM accelerated the decomposition of native SOC, causing net C losses (-62 ± 4 and -34 ± 31 mg C per kg soil, respectively). These findings indicate that N addition and its interaction with DOM are not favorable for soil C sequestration. Adding DOM alone increased the level of dissolved organic carbon (DOC), but it did not increase the level of soil mineral N. Changes in the ratio of microbial biomass carbon (MBC) to microbial biomass nitrogen (MBN) and microbial metabolic quotient (qCO2) after the addition of DOM and N suggest that a possible shift in the microbial community composition may occur in the present study. Adding DOM with or without N increased the activities of β-glucosidase and urease. Changes in the direction and magnitude of PE were closely related to changes in soil C and N availability. Soil C and N availability might influence the PE through affecting the microbial biomass and extracellular enzyme activity as well as causing a possible shift in the microbial community composition.

  6. The LandCarbon Web Application: Advanced Geospatial Data Delivery and Visualization Tools for Communication about Ecosystem Carbon Sequestration and Greenhouse Gas Fluxes

    NASA Astrophysics Data System (ADS)

    Thomas, N.; Galey, B.; Zhu, Z.; Sleeter, B. M.; Lehmer, E.

    2015-12-01

    The LandCarbon web application (http://landcarbon.org) is a collaboration between the U.S. Geological Survey and U.C. Berkeley's Geospatial Innovation Facility (GIF). The LandCarbon project is a national assessment focused on improved understanding of carbon sequestration and greenhouse gas fluxes in and out of ecosystems related to land use, using scientific capabilities from USGS and other organizations. The national assessment is conducted at a regional scale, covers all 50 states, and incorporates data from remote sensing, land change studies, aquatic and wetland data, hydrological and biogeochemical modeling, and wildfire mapping to estimate baseline and future potential carbon storage and greenhouse gas fluxes. The LandCarbon web application is a geospatial portal that allows for a sophisticated data delivery system as well as a suite of engaging tools that showcase the LandCarbon data using interactive web based maps and charts. The web application was designed to be flexible and accessible to meet the needs of a variety of users. Casual users can explore the input data and results of the assessment for a particular area of interest in an intuitive and interactive map, without the need for specialized software. Users can view and interact with maps, charts, and statistics that summarize the baseline and future potential carbon storage and fluxes for U.S. Level 2 Ecoregions for 3 IPCC emissions scenarios. The application allows users to access the primary data sources and assessment results for viewing and download, and also to learn more about the assessment's objectives, methods, and uncertainties through published reports and documentation. The LandCarbon web application is built on free and open source libraries including Django and D3. The GIF has developed the Django-Spillway package, which facilitates interactive visualization and serialization of complex geospatial raster data. The underlying LandCarbon data is available through an open application

  7. Assessing the potential to sequester carbon within state highway rights-of-way in New Mexico phase 2: development of a right-of-way carbon sequestration program.

    DOT National Transportation Integrated Search

    2016-06-13

    The New Mexico Department of Transportation (NMDOT) was selected by the Federal Highway : Administration (FHWA) to determine the feasibility of maximizing carbon sequestration within state : highway rightsofway (ROW). Golder Associates Inc. was...

  8. Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration.

    PubMed

    Woolf, Dominic; Lehmann, Johannes; Lee, David R

    2016-10-21

    Restricting global warming below 2 °C to avoid catastrophic climate change will require atmospheric carbon dioxide removal (CDR). Current integrated assessment models (IAMs) and Intergovernmental Panel on Climate Change scenarios assume that CDR within the energy sector would be delivered using bioenergy with carbon capture and storage (BECCS). Although bioenergy-biochar systems (BEBCS) can also deliver CDR, they are not included in any IPCC scenario. Here we show that despite BECCS offering twice the carbon sequestration and bioenergy per unit biomass, BEBCS may allow earlier deployment of CDR at lower carbon prices when long-term improvements in soil fertility offset biochar production costs. At carbon prices above $1,000 Mg -1 C, BECCS is most frequently (P>0.45, calculated as the fraction of Monte Carlo simulations in which BECCS is the most cost effective) the most economic biomass technology for climate-change mitigation. At carbon prices below $1,000 Mg -1 C, BEBCS is the most cost-effective technology only where biochar significantly improves agricultural yields, with pure bioenergy systems being otherwise preferred.

  9. Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration

    PubMed Central

    Woolf, Dominic; Lehmann, Johannes; Lee, David R.

    2016-01-01

    Restricting global warming below 2 °C to avoid catastrophic climate change will require atmospheric carbon dioxide removal (CDR). Current integrated assessment models (IAMs) and Intergovernmental Panel on Climate Change scenarios assume that CDR within the energy sector would be delivered using bioenergy with carbon capture and storage (BECCS). Although bioenergy-biochar systems (BEBCS) can also deliver CDR, they are not included in any IPCC scenario. Here we show that despite BECCS offering twice the carbon sequestration and bioenergy per unit biomass, BEBCS may allow earlier deployment of CDR at lower carbon prices when long-term improvements in soil fertility offset biochar production costs. At carbon prices above $1,000 Mg−1 C, BECCS is most frequently (P>0.45, calculated as the fraction of Monte Carlo simulations in which BECCS is the most cost effective) the most economic biomass technology for climate-change mitigation. At carbon prices below $1,000 Mg−1 C, BEBCS is the most cost-effective technology only where biochar significantly improves agricultural yields, with pure bioenergy systems being otherwise preferred. PMID:27767177

  10. Atmospheric CO2 sequestration in iron and steel slag: Consett, Co. Durham, UK.

    PubMed

    Mayes, William Matthew; Riley, Alex L; Gomes, Helena I; Brabham, Peter; Hamlyn, Joanna; Pullin, Huw; Renforth, Phil

    2018-06-12

    Carbonate formation in waste from the steel industry could constitute a non-trivial proportion of global requirements to remove carbon dioxide from the atmosphere at potentially low cost. To constrain this potential, we examined atmospheric carbon dioxide sequestration in a >20 million tonne legacy slag deposit in northern England, UK. Carbonates formed from the drainage water of the heap had stable carbon and oxygen isotopes between -12 and -25 ‰ and -5 and -18 ‰ for δ13C and δ18O respectively, suggesting atmospheric carbon dioxide sequestration in high pH solutions. From analysis of solution saturation state, we estimate that between 280 and 2,900 tCO2 have precipitated from the drainage waters. However, by combining a thirty-seven-year dataset of the drainage water chemistry with geospatial analysis, we estimate that <1 % of the maximum carbon capture potential of the deposit may have been realised. This implies that uncontrolled deposition of slag is insufficient to maximise carbon sequestration, and there may be considerable quantities of unreacted legacy deposits available for atmospheric carbon sequestration.

  11. Interannual Variation in Carbon Sequestration Depends Mainly on the Carbon Uptake Period in Two Croplands on the North China Plain

    PubMed Central

    Bao, Xueyan; Wen, Xuefa; Sun, Xiaomin; Zhao, Fenghua; Wang, Yuying

    2014-01-01

    Interannual variation in plant phenology can lead to major modifications in the interannual variation of net ecosystem production (NEP) and net biome production (NBP) as a result of recent climate change in croplands. Continuous measurements of carbon flux using the eddy covariance technique were conducted in two winter wheat and summer maize double-cropped croplands during 2003–2012 in Yucheng and during 2007–2012 in Luancheng on the North China Plain. Our results showed that the difference between the NEP and the NBP, i.e., the crop economic yield, was conservative even though the NEP and the NBP for both sites exhibited marked fluctuations during the years of observation. A significant and positive relationship was found between the annual carbon uptake period (CUP) and the NEP as well as the NBP. The NEP and the NBP would increase by 14.8±5.2 and 14.7±6.6 g C m−2 yr−1, respectively, if one CUP-day was extended. A positive relationship also existed between the CUP and the NEP as well as the NBP for winter wheat and summer maize, respectively. The annual air temperature, through its negative effect on the start date of the CUP, determined the length of the CUP. The spring temperature was the main indirect factor controlling the annual carbon sequestration when a one-season crop (winter wheat) was considered. Thus, global warming can be expected to extend the length of the CUP and thus increase carbon sequestration in croplands. PMID:25313713

  12. The influence of saltmarsh restoration on sediment dynamics and the potential impact on carbon sequestration

    NASA Astrophysics Data System (ADS)

    Taylor, Benjamin; Paterson, David

    2017-04-01

    material is significantly lower in mudflat and young areas (3.78 ± 0.59% and 3.66 ± 0.79% respectively) versus those of natural and old areas (12.08 ± 2.27% and 6.70 ± 1.30% respectively). This relationship suggests that older restored areas are potentially offering the most potential benefit in terms of carbon sequestration, due to higher rates of deposition from the potential load and higher percentage organic content of those deposits. Furthermore, measurements of sediment accretion rates over the same period show natural and old areas to be the most effective at retaining sediment, with average elevation changes of 6.99 ± 1.64mm and 6.56 ± 0.94mm respectively, in comparison to young areas, 4.44 ± 1.58mm, and mudflats, 1.51 ± 1.23mm. Factors influencing these differences could be attributed to type and density of vegetation present and elevation of each area (or immersion period). However, the data suggests restoration could play an important role, which once established, appears to facilitate efficient sediment deposition from potential sediment load and crucially the effective accumulation of organic rich material through sediment accretion, possibly leading to increased carbon sequestration and climate change mitigation services.

  13. Low historical nitrogen deposition effect on carbon sequestration in the boreal zone

    NASA Astrophysics Data System (ADS)

    Fleischer, K.; Wârlind, D.; van der Molen, M. K.; Rebel, K. T.; Arneth, A.; Erisman, J. W.; Wassen, M. J.; Smith, B.; Gough, C. M.; Margolis, H. A.; Cescatti, A.; Montagnani, L.; Arain, A.; Dolman, A. J.

    2015-12-01

    Nitrogen (N) cycle dynamics and N deposition play an important role in determining the terrestrial biosphere's carbon (C) balance. We assess global and biome-specific N deposition effects on C sequestration rates with the dynamic global vegetation model LPJ-GUESS. Modeled CN interactions are evaluated by comparing predictions of the C and CN version of the model with direct observations of C fluxes from 68 forest FLUXNET sites. N limitation on C uptake reduced overestimation of gross primary productivity for boreal evergreen needleleaf forests from 56% to 18%, presenting the greatest improvement among forest types. Relative N deposition effects on C sequestration (dC/dN) in boreal, temperate, and tropical sites ranged from 17 to 26 kg C kg N-1 when modeled at site scale and were reduced to 12-22 kg C kg N-1 at global scale. We find that 19% of the recent (1990-2007) and 24% of the historical global C sink (1900-2006) was driven by N deposition effects. While boreal forests exhibit highest dC/dN, their N deposition-induced C sink was relatively low and is suspected to stay low in the future as no major changes in N deposition rates are expected in the boreal zone. N deposition induced a greater C sink in temperate and tropical forests, while predicted C fluxes and N-induced C sink response in tropical forests were associated with greatest uncertainties. Future work should be directed at improving the ability of LPJ-GUESS and other process-based ecosystem models to reproduce C cycle dynamics in the tropics, facilitated by more benchmarking data sets. Furthermore, efforts should aim to improve understanding and model representations of N availability (e.g., N fixation and organic N uptake), N limitation, P cycle dynamics, and effects of anthropogenic land use and land cover changes.

  14. CONSIDERATIONS FOR A REGULATORY FRAMEWORK FOR LARGE-SCALE GEOLOGIC SEQUESTRATION OF CARBON DIOXIDE: A NORTH AMERICAN PERSPECTIVE

    EPA Science Inventory

    Large scale geologic sequestration (GS) of carbon dioxide poses a novel set of challenges for regulators. This paper focuses on the unique needs of large scale GS projects in light of the existing regulatory regimes in the United States and Canada and identifies several differen...

  15. Wellbore cement fracture evolution at the cement–basalt caprock interface during geologic carbon sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Hun Bok; Kabilan, Senthil; Carson, James P.

    2014-08-07

    Composite Portland cement-basalt caprock cores with fractures, as well as neat Portland cement columns, were prepared to understand the geochemical and geomechanical effects on the integrity of wellbores with defects during geologic carbon sequestration. The samples were reacted with CO2-saturated groundwater at 50 ºC and 10 MPa for 3 months under static conditions, while one cement-basalt core was subjected to mechanical stress at 2.7 MPa before the CO2 reaction. Micro-XRD and SEM-EDS data collected along the cement-basalt interface after 3-month reaction with CO2-saturated groundwater indicate that carbonation of cement matrix was extensive with the precipitation of calcite, aragonite, and vaterite,more » whereas the alteration of basalt caprock was minor. X-ray microtomography (XMT) provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. Computational fluid dynamics (CFD) modeling further revealed that this stress led to the increase in fluid flow and hence permeability. After the CO2-reaction, XMT images displayed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along the fracture located at the cement-basalt interface. The 3-D visualization and CFD modeling also showed that the precipitation of calcium carbonate within the cement fractures after the CO2-reaction resulted in the disconnection of cement fractures and permeability decrease. The permeability calculated based on CFD modeling was in agreement with the experimentally determined permeability. This study demonstrates that XMT imaging coupled with CFD modeling represent a powerful tool to visualize and quantify fracture evolution and permeability change in geologic materials and to predict their behavior during geologic carbon sequestration or hydraulic fracturing for shale gas production and enhanced geothermal systems.« less

  16. Analyzing the impact of climate and management factors on the productivity and soil carbon sequestration of poplar plantations.

    PubMed

    Wang, Dan; Fan, Jiazhi; Jing, Panpan; Cheng, Yong; Ruan, Honghua

    2016-01-01

    It is crucial to investigate how climate and management factors impact poplar plantation production and soil carbon sequestration interactively. We extracted above-ground net primary production (ANPP), climate and management factors from peer-reviewed journal articles and analyzed impact of management factor and climate on the mean annual increment (MAI) of poplar ANPP statistically. Previously validated mechanistic model (ED) is used to perform case simulations for managed poplar plantations under different harvesting rotations. The meta-analysis indicate that the dry matter MAI was 6.3 Mg ha(-1) yr(-1) (n=641, sd=4.9) globally, and 5.1 (n=292, sd=4.0), 8.1 (n=224, sd=4.7) and 4.4 Mg ha(-1) yr(-1) (n=125, sd=3.2) in Europe, the US and China, respectively. Poplar MAI showed a significant response to GDD, precipitation and planting density and formed a quadratic relationship with stand age. The low annual production for poplar globally was probably caused by suboptimal water availability, rotation length and planting density. SEM attributes the variance of poplar growth rate more to climate than to management effects. Case simulations indicated that longer rotation cycle significantly increased soil carbon storage. Findings of this work suggests that management factor of rotation cycle alone could have dramatic impact on the above ground growth, as well as on the soil carbon sequestration of poplar plantations and will be helpful to quantify the long-term carbon sequestration through short rotation plantation. The findings of this study are useful in guiding further research, policy and management decisions towards sustainable poplar plantations. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Effects of thinning on aboveground carbon sequestration by a 45-year-old eastern white pine plantation: A case study

    Treesearch

    W. Henry McNab

    2012-01-01

    Aboveground carbon sequestration by a 45-year-old plantation of eastern white pines was determined in response to thinning to three levels of residual basal area: (1) Control (no thinning), (2) light thinning to 120 feet2/acre and (3) heavy thinning to 80 feet2/acre. After 11 years carbon stocks were lowest on the heavily...

  18. Coastal Landforms and Accumulation of Mangrove Peat Increase Carbon Sequestration and Storage

    NASA Astrophysics Data System (ADS)

    Costa, M. T.; Excurra, P.; Ezcurra, E.; Garcillan, P. P.; Aburto-Oropeza, O.

    2016-02-01

    Many studies have highlighted the considerable belowground carbon storage of mangroves and other coastal ecosystems (as much 30% of total ocean carbon storage). Mangroves are among the most carbon-rich forests in the tropics, containing on average more than 1,000 Mg C/ha. We sampled mangrove sediments in four locations along the Pacific Coast of Mexico, from the Baja California Sur in the north to Chiapas near the Guatemalan boarder. These sites varied in their coastal geomorphology and rainfall regimes. The mangroves of rainy Chiapas possessed the deepest and most carbon-rich Rhizophora peat deposits of any of the sites (in places more than 2,000 Mg/ha). More surprisingly, in Balandra, one of the desert mangrove lagoons of Baja California Sur, the Avicennia-dominated mudflat zone of the forest possessed deep and rich peat deposits, ranging from 400-1,300 Mg/ha. This forest, hemmed in by relatively steep hillsides demonstrates the potential for mangroves to accrete carbon-rich peat vertically when local topography precludes their landwards expansion with sea-level rise. Our microscopic examination of root fibers from these peat deposits revealed the importance of Avicennia to the formation of buried organic matter deposits. We used 14C dating to track the age of the Baja California deposits, whose ages ranged between 1193 and 1636 BP. Plotting the calibrated 14C age of each peat sample from Balandra against the depth of the sample below the mean sea-level, we found a very significant linear trend (r2 = 0.87, P < 0.0001) with a slope of 0.070 ±0.007 mm/yr. Belowground carbon sequestration rates during recent decades varied from very low (ca. 0.1 Mg.ha-1.yr-1) in a receding fringe in Bahía Magdalena or a halophilic hinterland in Balandra, to 9-20 Mg.ha-1.yr-1 in a Rhizophora mudflat in La Encrucijada. With only 0.49% of the total area, the mangroves around the Gulf of California store 18% of the total belowground carbon pool of the whole region, 76 Tg in total.

  19. Contribution of Doñana Wetlands to Carbon Sequestration

    PubMed Central

    Morris, Edward P.; Flecha, Susana; Figuerola, Jordi; Costas, Eduardo; Navarro, Gabriel; Ruiz, Javier; Rodriguez, Pablo; Huertas, Emma

    2013-01-01

    Inland and transitional aquatic systems play an important role in global carbon (C) cycling. Yet, the C dynamics of wetlands and floodplains are poorly defined and field data is scarce. Air-water fluxes in the wetlands of Doñana Natural Area (SW Spain) were examined by measuring alkalinity, pH and other physiochemical parameters in a range of water bodies during 2010–2011. Areal fluxes were calculated and, using remote sensing, an estimate of the contribution of aquatic habitats to gaseous transport was derived. Semi-permanent ponds adjacent to the large Guadalquivir estuary acted as mild sinks, whilst temporal wetlands were strong sources of (−0.8 and 36.3 ). Fluxes in semi-permanent streams and ponds changed seasonally; acting as sources in spring-winter and mild sinks in autumn (16.7 and −1.2 ). Overall, Doñana's water bodies were a net annual source of (5.2 ). Up–scaling clarified the overwhelming contribution of seasonal flooding and allochthonous organic matter inputs in determining regional air-water gaseous transport (13.1 ). Nevertheless, this estimate is about 6 times < local marsh net primary production, suggesting the system acts as an annual net sink. Initial indications suggest longer hydroperiods may favour autochthonous C capture by phytoplankton. Direct anthropogenic impacts have reduced the hydroperiod in Doñana and this maybe exacerbated by climate change (less rainfall and more evaporation), suggesting potential for the modification of C sequestration. PMID:23977044

  20. Invasion chronosequence of Spartina alterniflora on methane emission and organic carbon sequestration in a coastal salt marsh

    NASA Astrophysics Data System (ADS)

    Xiang, Jian; Liu, Deyan; Ding, Weixin; Yuan, Junji; Lin, Yongxin

    2015-07-01

    Spartina alterniflora was intentionally introduced to China in 1979 for the purpose of sediment stabilization and dike protection, and has continuously replaced native plants or invaded bare mudflats in the coastal marsh. To evaluate the spatial variation of CH4 emission and soil organic carbon (SOC) storage along the invasion chronosequence, we selected four sites including bare mudflat (Control, as first year invasion), and marshes invaded by S. alterniflora in 2002 (SA-1), 1999 (SA-2) and 1995 (SA-3), respectively, in Sheyang county, Jiangsu, China and set up the marsh mesocosm system for flux measurement. The mean accumulation rate of SOC in the 0-30 cm layer exponentially increased with the invasion time, ranging from 1.08 (over the first 9 years) to 2.35 Mg C ha-1 yr-1 (over the period of 12-16 years). The cumulative CH4 emission during the growth season was 20.5, 75.4, 81.0 and 92.2 kg CH4 ha-1 in Control, SA-1, SA-2 and SA-3, respectively, and there was a binomial relationship between CH4 emission and invasion time. Cumulative CH4 emission was logarithmically increased with SOC concentration; however the ratio of CH4 emission to SOC concentration was inversely correlated with the invasion time in the S. alterniflora marsh, suggesting that the less increased SOC in the S. alterniflora marsh was converted into CH4. The net global warming potential (GWP) was estimated at 733 kg CO2-eq ha-1 yr-1 in the tidal mudflat and reduced to -1273 (SA-1) to -2233 kg CO2-eq ha-1 yr-1 (SA-3) in the S. alterniflora marsh. Our results indicated that S. alterniflora invasion effectively sequestrated atmospheric CO2 and mitigated GWP in the coastal marsh of China.

  1. Dissolved Organic Carbon in the North Atlantic Meridional Overturning Circulation.

    PubMed

    Fontela, Marcos; García-Ibáñez, Maribel I; Hansell, Dennis A; Mercier, Herlé; Pérez, Fiz F

    2016-05-31

    The quantitative role of the Atlantic Meridional Overturning Circulation (AMOC) in dissolved organic carbon (DOC) export is evaluated by combining DOC measurements with observed water mass transports. In the eastern subpolar North Atlantic, both upper and lower limbs of the AMOC transport high-DOC waters. Deep water formation that connects the two limbs of the AMOC results in a high downward export of non-refractory DOC (197 Tg-C·yr(-1)). Subsequent remineralization in the lower limb of the AMOC, between subpolar and subtropical latitudes, consumes 72% of the DOC exported by the whole Atlantic Ocean. The contribution of DOC to the carbon sequestration in the North Atlantic Ocean (62 Tg-C·yr(-1)) is considerable and represents almost a third of the atmospheric CO2 uptake in the region.

  2. Dissolved Organic Carbon in the North Atlantic Meridional Overturning Circulation

    PubMed Central

    Fontela, Marcos; García-Ibáñez, Maribel I.; Hansell, Dennis A.; Mercier, Herlé; Pérez, Fiz F.

    2016-01-01

    The quantitative role of the Atlantic Meridional Overturning Circulation (AMOC) in dissolved organic carbon (DOC) export is evaluated by combining DOC measurements with observed water mass transports. In the eastern subpolar North Atlantic, both upper and lower limbs of the AMOC transport high-DOC waters. Deep water formation that connects the two limbs of the AMOC results in a high downward export of non-refractory DOC (197 Tg-C·yr−1). Subsequent remineralization in the lower limb of the AMOC, between subpolar and subtropical latitudes, consumes 72% of the DOC exported by the whole Atlantic Ocean. The contribution of DOC to the carbon sequestration in the North Atlantic Ocean (62 Tg-C·yr−1) is considerable and represents almost a third of the atmospheric CO2 uptake in the region. PMID:27240625

  3. Diffusivity of Carbon Dioxide in Aqueous Solutions under Geologic Carbon Sequestration Conditions.

    PubMed

    Perera, Pradeep N; Deng, Hang; Schuck, P James; Gilbert, Benjamin

    2018-04-26

    Accurate assessment of the long-term security of geologic carbon sequestration requires knowledge of the mobility of carbon dioxide in brines under pressure and temperature conditions that prevail in subsurface aquifers. Here, we report Raman spectroscopic measurements of the rate of CO 2 diffusion in water and brines as a function of pressure, salinity, and concentration of CO 2 . In pure water at 50 ± 2 °C and 90 ± 2 bar, we find the diffusion coefficient, D, to be (3.08 ± 0.03) × 10 -9 m 2 /s, a value that is consistent with a recent microfluidic study but lower than earlier PVT measurements. Under reservoir conditions, salinity affects the mobility of CO 2 significantly and D decreased by 45% for a 4 M solution of NaCl. We find significant differences of diffusivity of CO 2 in brines (0-4 M NaCl), in both the absolute values and the trend compared to the Stokes-Einstein prediction under our experimental conditions. We observe that D decreases significantly at the high CO 2 concentrations expected in subsurface aquifers (∼15% reduction at 0.55 mol/kg of CO 2 ) and provides an empirical correction to the commonly reported D values that assume a tracer concentration dependence on diffusivity.

  4. Carbon Dioxide Sequestration in Depleted Oil/Gas Fields: Evaluation of Gas Microseepage and Carbon Dioxide Fate at Rangely, Colorado USA

    NASA Astrophysics Data System (ADS)

    Klusman, R. W.

    2002-12-01

    Large-scale CO2 dioxide injection for purposes of enhanced oil recovery (EOR) has been operational at Rangely, Colorado since 1986. The Rangely field serves as an onshore prototype for CO2 sequestration in depleted fields by production of a valuable commodity which partially offsets infrastructure costs. The injection is at pressures considerably above hydrostatic pressure, enhancing the possibility for migration of buoyant gases toward the surface. Methane and CO2 were measured in shallow soil gas, deep soil gas, and as fluxes into the atmosphere in both winter and summer seasons. There were large seasonal variations in surface biological noise. The direct measurement of CH4 flux to the atmosphere gave an estimate of 400 metric tonnes per year over the 78 km2 area, and carbon dioxide flux was between 170 and 3800 metric tonnes per year. Both stable carbon isotopes and carbon-14 were used in constructing these estimates. Computer modeling of the unsaturated zone migration, and of methanotrophic oxidation rates suggests a large portion of the CH4 is oxidized in the summer, and at a much lower rate in the winter. However, deep-sourced CH4 makes a larger contribution to the atmosphere than CO2, in terms of GWP. The 23+ million tonnes of carbon dioxide that have been injected at Rangely are largely stored as dissolved CO2 and a lesser amount as bicarbonate. Scaling problems, as a result of acid gas dissolution of carbonate cement, and subsequent precipitation of CaSO4 will be an increasing problem as the system matures. Evidence for mineral sequestration was not found in the scales. Ultimate injector and field capacities will be determined by mineral precipitation in the formation as it affects porosity and permeability.

  5. Understanding the Impacts of Soil, Climate, and Farming Practices on Soil Organic Carbon Sequestration: A Simulation Study in Australia.

    PubMed

    Godde, Cécile M; Thorburn, Peter J; Biggs, Jody S; Meier, Elizabeth A

    2016-01-01

    Carbon sequestration in agricultural soils has the capacity to mitigate greenhouse gas emissions, as well as to improve soil biological, physical, and chemical properties. The review of literature pertaining to soil organic carbon (SOC) dynamics within Australian grain farming systems does not enable us to conclude on the best farming practices to increase or maintain SOC for a specific combination of soil and climate. This study aimed to further explore the complex interactions of soil, climate, and farming practices on SOC. We undertook a modeling study with the Agricultural Production Systems sIMulator modeling framework, by combining contrasting Australian soils, climates, and farming practices (crop rotations, and management within rotations, such as fertilization, tillage, and residue management) in a factorial design. This design resulted in the transposition of contrasting soils and climates in our simulations, giving soil-climate combinations that do not occur in the study area to help provide insights into the importance of the climate constraints on SOC. We statistically analyzed the model's outputs to determinate the relative contributions of soil parameters, climate, and farming practices on SOC. The initial SOC content had the largest impact on the value of SOC, followed by the climate and the fertilization practices. These factors explained 66, 18, and 15% of SOC variations, respectively, after 80 years of constant farming practices in the simulation. Tillage and stubble management had the lowest impacts on SOC. This study highlighted the possible negative impact on SOC of a chickpea phase in a wheat-chickpea rotation and the potential positive impact of a cover crop in a sub-tropical climate (QLD, Australia) on SOC. It also showed the complexities in managing to achieve increased SOC, while simultaneously aiming to minimize nitrous oxide (N2O) emissions and nitrate leaching in farming systems. The transposition of contrasting soils and climates in

  6. Understanding the Impacts of Soil, Climate, and Farming Practices on Soil Organic Carbon Sequestration: A Simulation Study in Australia

    PubMed Central

    Godde, Cécile M.; Thorburn, Peter J.; Biggs, Jody S.; Meier, Elizabeth A.

    2016-01-01

    Carbon sequestration in agricultural soils has the capacity to mitigate greenhouse gas emissions, as well as to improve soil biological, physical, and chemical properties. The review of literature pertaining to soil organic carbon (SOC) dynamics within Australian grain farming systems does not enable us to conclude on the best farming practices to increase or maintain SOC for a specific combination of soil and climate. This study aimed to further explore the complex interactions of soil, climate, and farming practices on SOC. We undertook a modeling study with the Agricultural Production Systems sIMulator modeling framework, by combining contrasting Australian soils, climates, and farming practices (crop rotations, and management within rotations, such as fertilization, tillage, and residue management) in a factorial design. This design resulted in the transposition of contrasting soils and climates in our simulations, giving soil–climate combinations that do not occur in the study area to help provide insights into the importance of the climate constraints on SOC. We statistically analyzed the model’s outputs to determinate the relative contributions of soil parameters, climate, and farming practices on SOC. The initial SOC content had the largest impact on the value of SOC, followed by the climate and the fertilization practices. These factors explained 66, 18, and 15% of SOC variations, respectively, after 80 years of constant farming practices in the simulation. Tillage and stubble management had the lowest impacts on SOC. This study highlighted the possible negative impact on SOC of a chickpea phase in a wheat–chickpea rotation and the potential positive impact of a cover crop in a sub-tropical climate (QLD, Australia) on SOC. It also showed the complexities in managing to achieve increased SOC, while simultaneously aiming to minimize nitrous oxide (N2O) emissions and nitrate leaching in farming systems. The transposition of contrasting soils and

  7. Assessment of Brine Management for Geologic Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breunig, Hanna M.; Birkholzer, Jens T.; Borgia, Andrea

    2013-06-13

    Geologic carbon sequestration (GCS) is the injection of carbon dioxide (CO 2), typically captured from stationary emission sources, into deep geologic formations to prevent its entry into the atmosphere. Active pilot facilities run by regional United States (US) carbon sequestration partnerships inject on the order of one million metric tonnes (mt) CO 2 annually while the US electric power sector emits over 2000 million mt-CO 2 annually. GCS is likely to play an increasing role in US carbon mitigation initiatives, but scaling up GCS poses several challenges. Injecting CO 2 into sedimentary basins raises fluid pressure in the pore space,more » which is typically already occupied by naturally occurring, or native, brine. The resulting elevated pore pressures increase the likelihood of induced seismicity, of brine or CO 2 escaping into potable groundwater resources, and of CO 2 escaping into the atmosphere. Brine extraction is one method for pressure management, in which brine in the injection formation is brought to the surface through extraction wells. Removal of the brine makes room for the CO 2 and decreases pressurization. Although the technology required for brine extraction is mature, this form of pressure management will only be applicable if there are cost-­effective and sustainable methods of disposing of the extracted brine. Brine extraction, treatment, and disposal may increase the already substantial capital, energy, and water demands of Carbon dioxide Capture and Sequestration (CCS). But, regionally specific brine management strategies may be able to treat the extracted water as a source of revenue, energy, and water to subsidize CCS costs, while minimizing environmental impacts. By this approach, value from the extracted water would be recovered before disposing of any resulting byproducts. Until a price is placed on carbon, we expect that utilities and other CO 2 sources will be reluctant to invest in capital intensive, high risk GCS projects; early

  8. Reservoir uncertainty, Precambrian topography, and carbon sequestration in the Mt. Simon Sandstone, Illinois Basin

    USGS Publications Warehouse

    Leetaru, H.E.; McBride, J.H.

    2009-01-01

    Sequestration sites are evaluated by studying the local geological structure and confirming the presence of both a reservoir facies and an impermeable seal not breached by significant faulting. The Cambrian Mt. Simon Sandstone is a blanket sandstone that underlies large parts of Midwest United States and is this region's most significant carbon sequestration reservoir. An assessment of the geological structure of any Mt. Simon sequestration site must also include knowledge of the paleotopography prior to deposition. Understanding Precambrian paleotopography is critical in estimating reservoir thickness and quality. Regional outcrop and borehole mapping of the Mt. Simon in conjunction with mapping seismic reflection data can facilitate the prediction of basement highs. Any potential site must, at the minimum, have seismic reflection data, calibrated with drill-hole information, to evaluate the presence of Precambrian topography and alleviate some of the uncertainty surrounding the thickness or possible absence of the Mt. Simon at a particular sequestration site. The Mt. Simon is thought to commonly overlie Precambrian basement granitic or rhyolitic rocks. In places, at least about 549 m (1800 ft) of topographic relief on the top of the basement surface prior to Mt. Simon deposition was observed. The Mt. Simon reservoir sandstone is thin or not present where basement is topographically high, whereas the low areas can have thick Mt. Simon. The paleotopography on the basement and its correlation to Mt. Simon thickness have been observed at both outcrops and in the subsurface from the states of Illinois, Ohio, Wisconsin, and Missouri. ?? 2009. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  9. Spatially simulating changes of soil water content and their effects on carbon sequestration in Canada's forests and wetlands

    NASA Astrophysics Data System (ADS)

    Ju, Weimin; Chen, Jing M.; Black, T. Andrew; Barr, Alan G.; McCaughey, Harry

    2010-07-01

    The variations of soil water content (SWC) and its influences on the carbon (C) cycle in Canada's forests and wetlands were studied through model simulations using the Integrated Terrestrial Ecosystem Carbon (InTEC) model. It shows that Canada's forests and wetlands experienced spatially and temporally heterogeneous changes in SWC from 1901 to 2000. SWC changes caused average NPP to decrease 40.8 Tg C yr-1 from 1901 to 2000, whereas the integrated effect of non-disturbance factors (climate change, CO2 fertilization and N deposition) enhanced NPP by 9.9%. During 1981-2000, the reduction of NPP caused by changes in SWC was 58.1 Tg C yr-1 whereas non-disturbance factors together caused NPP to increase by 16.6%. SWC changes resulted in an average increase of 4.1 Tg C yr-1 in the net C uptake during 1901-2000, relatively small compared with the enhancement in C uptake of 50.2 Tg C yr-1 by the integrated effect of non-disturbance factors. During 1981-2000, changes in SWC caused a reduction of 3.8 Tg C yr-1 in net C sequestration whereas the integrated factors increased net C sequestration by 54.1 Tg C yr-1. Increase in SWC enhanced C sequestration in all ecozones.

  10. Renewal of Collaborative Research: Economically Viable Forest Harvesting Practices That Increase Carbon Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, E.A.; Dail, D.B., Hollinger, D.; Scott, N.

    Forests provide wildlife habitat, water and air purification, climate moderation, and timber and nontimber products. Concern about climate change has put forests in the limelight as sinks of atmospheric carbon. The C stored in the global vegetation, mostly in forests, is nearly equivalent to the amount present in atmospheric CO{sub 2}. Both voluntary and government-mandated carbon trading markets are being developed and debated, some of which include C sequestration resulting from forest management as a possible tradeable commodity. However, uncertainties regarding sources of variation in sequestration rates, validation, and leakage remain significant challenges for devising strategies to include forest managementmore » in C markets. Hence, the need for scientifically-based information on C sequestration by forest management has never been greater. The consequences of forest management on the US carbon budget are large, because about two-thirds of the {approx}300 million hectare US forest resource is classified as 'commercial forest.' In most C accounting budgets, forest harvesting is usually considered to cause a net release of C from the terrestrial biosphere to the atmosphere. However, forest management practices could be designed to meet the multiple goals of providing wood and paper products, creating economic returns from natural resources, while sequestering C from the atmosphere. The shelterwood harvest strategy, which removes about 30% of the basal area of the overstory trees in each of three successive harvests spread out over thirty years as part of a stand rotation of 60-100 years, may improve net C sequestration compared to clear-cutting because: (1) the average C stored on the land surface over a rotation increases, (2) harvesting only overstory trees means that a larger fraction of the harvested logs can be used for long-lived sawtimber products, compared to more pulp resulting from clearcutting, (3) the shelterwood cut encourages growth of

  11. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion

    NASA Astrophysics Data System (ADS)

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming

    2017-05-01

    Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha-1, were higher than 45.90 Mg C ha-1 in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.

  12. Soil Organic Carbon Fractions and Stocks Respond to Restoration Measures in Degraded Lands by Water Erosion.

    PubMed

    Nie, Xiaodong; Li, Zhongwu; Huang, Jinquan; Huang, Bin; Xiao, Haibing; Zeng, Guangming

    2017-05-01

    Assessing the degree to which degraded soils can be recovered is essential for evaluating the effects of adopted restoration measures. The objective of this study was to determine the restoration of soil organic carbon under the impact of terracing and reforestation. A small watershed with four typical restored plots (terracing and reforestation (four different local plants)) and two reference plots (slope land with natural forest (carbon-depleted) and abandoned depositional land (carbon-enriched)) in subtropical China was studied. The results showed that soil organic carbon, dissolved organic carbon and microbial biomass carbon concentrations in the surface soil (10 cm) of restored lands were close to that in abandoned depositional land and higher than that in natural forest land. There was no significant difference in soil organic carbon content among different topographic positions of the restored lands. Furthermore, the soil organic carbon stocks in the upper 60 cm soils of restored lands, which were varied between 50.08 and 62.21 Mg C ha -1 , were higher than 45.90 Mg C ha -1 in natural forest land. Our results indicated that the terracing and reforestation could greatly increase carbon sequestration and accumulation and decrease carbon loss induced by water erosion. And the combination measures can accelerate the restoration of degraded soils when compared to natural forest only. Forest species almost have no impact on the total amount of soil organic carbon during restoration processes, but can significantly influence the activity and stability of soil organic carbon. Combination measures which can provide suitable topography and continuous soil organic carbon supply could be considered in treating degraded soils caused by water erosion.

  13. Supercritical carbon dioxide and sulfur in the Madison Limestone: A natural analog in southwest Wyoming for geologic carbon-sulfur co-sequestration

    NASA Astrophysics Data System (ADS)

    Kaszuba, John P.; Navarre-Sitchler, Alexis; Thyne, Geoffrey; Chopping, Curtis; Meuzelaar, Tom

    2011-09-01

    The Madison Limestone on the Moxa Arch, southwest Wyoming, USA contains large volumes (65-95%) of supercritical CO 2 that it has stored naturally for 50 million years. This reservoir also contains supercritical H 2S, aqueous sulfur complexes (SO 42- and HS -), and sulfur-bearing minerals (anhydrite and pyrite). Although SO 2 is not present, these sulfur-bearing phases are known products of SO 2 disproportionation in other water-rock systems. The natural co-occurrence of SO 42-, S 2-, supercritical CO 2 and brine affords the opportunity to evaluate the fate of a carbon-sulfur co-sequestration scenario. Mineralogic data was obtained from drill core and aqueous geochemical data from wells outside and within the current supercritical CO 2-sulfur-brine-rock system. In addition to dolomite, calcite, and accessory sulfur-bearing minerals, the Madison Limestone contains accessory quartz and the aluminum-bearing minerals feldspar, illite, and analcime. Dawsonite (NaAlCO 3(OH) 2), predicted as an important carbon sink in sequestration modeling studies, is not present. After confirming equilibrium conditions for the Madison Limestone system, reaction path models were constructed with initial conditions based on data from outside the reservoir. Addition of supercritical CO 2 to the Madison Limestone was simulated and the results compared to data from inside the reservoir. The model accurately predicts the observed mineralogy and captures the fundamental changes expected in a Madison Limestone-brine system into which CO 2 is added. pH decreases from 5.7 to 4.5 at 90 °C and to 4.0 at 110 °C, as expected from dissolution of supercritical CO 2, creation of carbonic acid, and buffering by the carbonate rock. The calculated redox potential increases by 0.1 V at 90 °C and 0.15 V at 110 °C due to equilibrium among CO 2, anhydrite, and pyrite. Final calculated Eh and pH match conditions for the co-existing sulfur phases present in produced waters and core from within the reservoir

  14. The impact of cultivar diversity in bioenergy feedstock production systems on soil carbon sequestration rates

    NASA Astrophysics Data System (ADS)

    De Graaff, M.; Morris, G.; Jastrow, J. D.; SIX, J. W.

    2013-12-01

    Land-use change for bioenergy production can create greenhouse gas (GHG) emissions through disturbance of soil carbon (C) pools, but native species with extensive root systems may rapidly repay the GHG debt, particularly when grown in diverse mixtures, by enhancing soil C sequestration upon land-use change. Native bioenergy candidate species, switchgrass (Panicum virgatum L.) and big bluestem (Andropogon gerardii) show extensive within-species variation, and our preliminary data show that increased cultivar diversity can enhance yield. We aim to assess how shifting C3-dominated nonnative perennial grasslands to C4-dominated native perennial grasslands for use as bioenergy feedstock affects soil C stocks, and how within-species diversity in switchgrass and big bluestem affects soil C sequestration rates. Our experiment is conducted at the Fermilab National Environmental Research Park, and compares different approaches for perennial feedstock production ranging across a biodiversity gradient, where diversity is manipulated at both the species- and cultivar level, and nitrogen (N) is applied at two levels (0 and 67 kg/ha). Preliminary results indicate that switchgrass and big bluestem differentially affect soil C sequstration, and that increasing diversity may enhance soil C sequestration rates.

  15. Global patterns of organic carbon export and sequestration in the ocean (Arne Richter Award for Outstanding Young Scientists)

    NASA Astrophysics Data System (ADS)

    Henson, S.; Sanders, R.; Madsen, E.; Le Moigne, F.; Quartly, G.

    2012-04-01

    A major term in the global carbon cycle is the ocean's biological carbon pump which is dominated by sinking of small organic particles from the surface ocean to its interior. Here we examine global patterns in particle export efficiency (PEeff), the proportion of primary production that is exported from the surface ocean, and transfer efficiency (Teff), the fraction of exported organic matter that reaches the deep ocean. This is achieved through extrapolating from in situ estimates of particulate organic carbon export to the global scale using satellite-derived data. Global scale estimates derived from satellite data show, in keeping with earlier studies, that PEeff is high at high latitudes and low at low latitudes, but that Teff is low at high latitudes and high at low latitudes. However, in contrast to the relationship observed for deep biomineral fluxes in previous studies, we find that Teff is strongly negatively correlated with opal export flux from the upper ocean, but uncorrelated with calcium carbonate export flux. We hypothesise that the underlying factor governing the spatial patterns observed in Teff is ecosystem function, specifically the degree of recycling occurring in the upper ocean, rather than the availability of calcium carbonate for ballasting. Finally, our estimate of global integrated carbon export is only 50% of previous estimates. The lack of consensus amongst different methodologies on the strength of the biological carbon pump emphasises that our knowledge of a major planetary carbon flux remains incomplete.

  16. The role of old forests and big trees in forest carbon sequestration in the Pacific Northwest

    Treesearch

    Andrew N. Gray

    2015-01-01

    Forest ecosystems are an important component of the global carbon (C) cycle. Recent research has indicated that large trees in general, and old-growth forests in particular, sequester substantial amounts of C annually. C sequestration rates are thought to peak and decline with stand age but the timing and controls are not well-understood. The objectives of this study...

  17. Wind Erosion Caused by Land Use Changes Significantly Reduces Ecosystem Carbon Storage and Carbon Sequestration Potentials in Grassland

    NASA Astrophysics Data System (ADS)

    Li, P.; Chi, Y. G.; Wang, J.; Liu, L.

    2017-12-01

    Wind erosion exerts a fundamental influence on the biotic and abiotic processes associated with ecosystem carbon (C) cycle. However, how wind erosion under different land use scenarios will affect ecosystem C balance and its capacity for future C sequestration are poorly quantified. Here, we established an experiment in a temperate steppe in Inner Mongolia, and simulated different intensity of land uses: control, 50% of aboveground vegetation removal (50R), 100% vegetation removal (100R) and tillage (TI). We monitored lateral and vertical carbon flux components and soil characteristics from 2013 to 2016. Our study reveals three key findings relating to the driving factors, the magnitude and consequence of wind erosion on ecosystem C balance: (1) Frequency of heavy wind exerts a fundamental control over the severity of soil erosion, and its interaction with precipitation and vegetation characteristics explained 69% variation in erosion intensity. (2) With increases in land use intensity, the lateral C flux induced by wind erosion increased rapidly, equivalent to 33%, 86%, 111% and 183% of the net ecosystem exchange of the control site under control, 50R, 100R and TI sites, respectively. (3) After three years' treatment, erosion induced decrease in fine fractions led to 31%, 43%, 85% of permanent loss of C sequestration potential in the surface 5cm soil for 50R, 100R and TI sites. Overall, our study demonstrates that lateral C flux associated with wind erosion is too large to be ignored. The loss of C-enriched fine particles not only reduces current ecosystem C content, but also results in irreversible loss of future soil C sequestration potential. The dynamic soil characteristics need be considered when projecting future ecosystem C balance in aeolian landscape. We also propose that to maintain the sustainability of grassland ecosystems, land managers should focus on implementing appropriate land use rather than rely on subsequent managements on degraded soils.

  18. Evaluating Soil Carbon Sequestration in Central Iowa

    NASA Astrophysics Data System (ADS)

    Doraiswamy, P. C.; Hunt, E. R.; McCarty, G. W.; Daughtry, C. S.; Izaurralde, C.

    2005-12-01

    The potential for reducing atmospheric carbon dioxide (CO2) concentration through landuse and management of agricultural systems is of great interest worldwide. Agricultural soils can be a source of CO2 when not properly managed but can also be a sink for sequestering CO2 through proper soil and crop management. The EPIC-CENTURY biogeochemical model was used to simulate the baseline level of soil carbon from soil survey data and project changes in soil organic carbon (SOC) under different tillage and crop management practices for corn and soybean crops. The study was conducted in central Iowa (50 km x 100 km) to simulate changes in soil carbon over the next 50 years. The simulations were conducted in two phases; initially a 25-year period (1971-1995) was simulated using conventional tillage practices since there was a transition in new management after 1995. In the second 25-year period (1996-2020), four different modeling scenarios were applied namely; conventional tillage, mulch tillage, no-tillage and no-tillage with a rye cover crop over the winter. The model simulation results showed potential gains in soil carbon in the top layers of the soil for conservation tillage. The simulations were made at a spatial resolution of 1.6 km x 1.6 km and mapped for the study area. There was a mean reduction in soil organic carbon of 0.095 T/ha per year over the 25-year period starting with 1996 for the conventional tillage practice. However, for management practices of mulch tillage, no tillage and no tillage with cover crop there was an increase in soil organic carbon of 0.12, 0.202 and 0.263 T/ha respectively over the same 25-year period. These results are in general similar to studies conducted in this region.

  19. Carbon Sequestration Potential in Stands under the Grain for Green Program in Southwest China.

    PubMed

    Chen, Xiangang; Luo, Yunjian; Zhou, Yongfeng; Lu, Mei

    2016-01-01

    The Grain for Green Program (GGP) is the largest afforestation and reforestation project in China in the early part of this century. To assess carbon sequestration in stands under the GGP in Southwest China, the carbon stocks and their annual changes in the GGP stands in the region were estimated based on the following information: (1) collected data on the annually planted area of each tree species under the GGP in Southwest China from 1999 to 2010; (2) development of empirical growth curves and corresponding carbon estimation models for each species growing in the GPP stands; and (3) parameters associated with the stands such as wood density, biomass expansion factor, carbon fraction and the change rate of soil organic carbon content. Two forest management scenarios were examined: scenario A, with no harvesting, and scenario B, with logging at the customary rotation followed by replanting. The results showed that by the years 2020, 2030, 2040, 2050 and 2060, the expected carbon storage of the GGP stands in Southwest China is 139.58 TgC, 177.50-207.55 TgC, 196.86-259.65 TgC, 240.45-290.62 TgC and 203.22-310.03 TgC (T = 1012), respectively. For the same years, the expected annual change in carbon stocks is 7.96 TgCyr-1, -7.95-5.95 TgCyr-1, -0.10-4.67 TgCyr-1, 4.31-2.24 TgCyr-1 and -0.02-1.75 TgCyr-1, respectively. This indicates that the stands significantly contribute to forest carbon sinks in this region. In 2060, the estimated carbon stocks in the seven major species of GGP stands in Southwest China are 4.16-13.01 TgC for Pinus armandii, 6.30-15.01 TgC for Pinus massoniana, 11.51-13.44 TgC for Cryptomeria fortunei, 15.94-24.13 TgC for Cunninghamia lanceolata, 28.05 TgC for Cupressus spp., 5.32-15.63 TgC for Populus deltoides and 5.87-14.09 TgC for Eucalyptus spp. The carbon stocks in these seven species account for 36.8%-41.4% of the total carbon stocks in all GGP stands over the next 50 years.

  20. Geophysical monitoring technology for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Ma, Jin-Feng; Li, Lin; Wang, Hao-Fan; Tan, Ming-You; Cui, Shi-Ling; Zhang, Yun-Yin; Qu, Zhi-Peng; Jia, Ling-Yun; Zhang, Shu-Hai

    2016-06-01

    Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniques for CO2 sequestration have grown out of conventional oil and gas geophysical exploration techniques, it takes a long time to conduct geophysical monitoring, and there are many barriers and challenges. In this paper, with the initial objective of performing CO2 sequestration, we studied the geophysical tasks associated with evaluating geological storage sites and monitoring CO2 sequestration. Based on our review of the scope of geophysical monitoring techniques and our experience in domestic and international carbon capture and sequestration projects, we analyzed the inherent difficulties and our experiences in geophysical monitoring techniques, especially, with respect to 4D seismic acquisition, processing, and interpretation.

  1. Briefing on geological sequestration

    EPA Science Inventory

    Geological sequestration (GS) is generally recognized as the injection and long-term (e.g., hundreds to thousands of years) trapping of gaseous, liquid or supercritical carbon dioxide (CO2) in subsurface media – primarily saline formations, depleted or nearly depleted oil and gas...

  2. ORCHIDEE-SOM: modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe

    NASA Astrophysics Data System (ADS)

    Camino-Serrano, Marta; Guenet, Bertrand; Luyssaert, Sebastiaan; Ciais, Philippe; Bastrikov, Vladislav; De Vos, Bruno; Gielen, Bert; Gleixner, Gerd; Jornet-Puig, Albert; Kaiser, Klaus; Kothawala, Dolly; Lauerwald, Ronny; Peñuelas, Josep; Schrumpf, Marion; Vicca, Sara; Vuichard, Nicolas; Walmsley, David; Janssens, Ivan A.

    2018-03-01

    Current land surface models (LSMs) typically represent soils in a very simplistic way, assuming soil organic carbon (SOC) as a bulk, and thus impeding a correct representation of deep soil carbon dynamics. Moreover, LSMs generally neglect the production and export of dissolved organic carbon (DOC) from soils to rivers, leading to overestimations of the potential carbon sequestration on land. This common oversimplified processing of SOC in LSMs is partly responsible for the large uncertainty in the predictions of the soil carbon response to climate change. In this study, we present a new soil carbon module called ORCHIDEE-SOM, embedded within the land surface model ORCHIDEE, which is able to reproduce the DOC and SOC dynamics in a vertically discretized soil to 2 m. The model includes processes of biological production and consumption of SOC and DOC, DOC adsorption on and desorption from soil minerals, diffusion of SOC and DOC, and DOC transport with water through and out of the soils to rivers. We evaluated ORCHIDEE-SOM against observations of DOC concentrations and SOC stocks from four European sites with different vegetation covers: a coniferous forest, a deciduous forest, a grassland, and a cropland. The model was able to reproduce the SOC stocks along their vertical profiles at the four sites and the DOC concentrations within the range of measurements, with the exception of the DOC concentrations in the upper soil horizon at the coniferous forest. However, the model was not able to fully capture the temporal dynamics of DOC concentrations. Further model improvements should focus on a plant- and depth-dependent parameterization of the new input model parameters, such as the turnover times of DOC and the microbial carbon use efficiency. We suggest that this new soil module, when parameterized for global simulations, will improve the representation of the global carbon cycle in LSMs, thus helping to constrain the predictions of the future SOC response to global

  3. Determining the spatial variability of wetland soil bulk density, organic matter, and the conversion factor between organic matter and organic carbon across coastal Louisiana, U.S.A.

    USGS Publications Warehouse

    Wang, Hongqing; Piazza, Sarai C.; Sharp, Leigh A.; Stagg, Camille L.; Couvillion, Brady R.; Steyer, Gregory D.; McGinnis, Thomas E.

    2016-01-01

    Soil bulk density (BD), soil organic matter (SOM) content, and a conversion factor between SOM and soil organic carbon (SOC) are often used in estimating SOC sequestration and storage. Spatial variability in BD, SOM, and the SOM–SOC conversion factor affects the ability to accurately estimate SOC sequestration, storage, and the benefits (e.g., land building area and vertical accretion) associated with wetland restoration efforts, such as marsh creation and sediment diversions. There are, however, only a few studies that have examined large-scale spatial variability in BD, SOM, and SOM–SOC conversion factors in coastal wetlands. In this study, soil cores, distributed across the entire coastal Louisiana (approximately 14,667 km2) were used to examine the regional-scale spatial variability in BD, SOM, and the SOM–SOC conversion factor. Soil cores for BD and SOM analyses were collected during 2006–09 from 331 spatially well-distributed sites in the Coastwide Reference Monitoring System network. Soil cores for the SOM–SOC conversion factor analysis were collected from 15 sites across coastal Louisiana during 2006–07. Results of a split-plot analysis of variance with incomplete block design indicated that BD and SOM varied significantly at a landscape level, defined by both hydrologic basins and vegetation types. Vertically, BD and SOM varied significantly among different vegetation types. The SOM–SOC conversion factor also varied significantly at the landscape level. This study provides critical information for the assessment of the role of coastal wetlands in large regional carbon budgets and the estimation of carbon credits from coastal restoration.

  4. Geochemical Modeling of Carbon Sequestration, MMV, and EOR in the Illinois Basin

    USGS Publications Warehouse

    Berger, P.M.; Roy, W.R.; Mehnert, E.

    2009-01-01

    The Illinois State Geologic Survey is conducting several ongoing CO2 sequestration projects that require geochemical models to gain an understanding of the processes occurring in the subsurface. The ISGS has collected brine and freshwater samples associated with an enhanced oil recovery project in the Loudon oil field. Geochemical modeling allows us to understand reactions with carbonate and silicate minerals in the reservoir, and the effects they have had on brine composition. For the Illinois Basin Decatur project, geochemical models should allow predictions of the reactions that will take place before CO2 injection begins. ?? 2009 Elsevier Ltd. All rights reserved.

  5. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget

    NASA Astrophysics Data System (ADS)

    Duarte, Carlos M.

    2017-01-01

    Vegetated coastal habitats, including seagrass and macroalgal beds, mangrove forests and salt marshes, form highly productive ecosystems, but their contribution to the global carbon budget remains overlooked, and these forests remain hidden in representations of the global carbon budget. Despite being confined to a narrow belt around the shoreline of the world's oceans, where they cover less than 7 million km2, vegetated coastal habitats support about 1 to 10 % of the global marine net primary production and generate a large organic carbon surplus of about 40 % of their net primary production (NPP), which is either buried in sediments within these habitats or exported away. Large, 10-fold uncertainties in the area covered by vegetated coastal habitats, along with variability about carbon flux estimates, result in a 10-fold bracket around the estimates of their contribution to organic carbon sequestration in sediments and the deep sea from 73 to 866 Tg C yr-1, representing between 3 % and 1/3 of oceanic CO2 uptake. Up to 1/2 of this carbon sequestration occurs in sink reservoirs (sediments or the deep sea) beyond these habitats. The organic carbon exported that does not reach depositional sites subsidizes the metabolism of heterotrophic organisms. In addition to a significant contribution to organic carbon production and sequestration, vegetated coastal habitats contribute as much to carbonate accumulation as coral reefs do. While globally relevant, the magnitude of global carbon fluxes supported by salt-marsh, mangrove, seagrass and macroalgal habitats is declining due to rapid habitat loss, contributing to loss of CO2 sequestration, storage capacity and carbon subsidies. Incorporating the carbon fluxes' vegetated coastal habitats' support into depictions of the carbon budget of the global ocean and its perturbations will improve current representations of the carbon budget of the global ocean.

  6. [Characteristics of carbon storage of Inner Mongolia forests: a review].

    PubMed

    Yang, Hao; Hu, Zhong-Min; Zhang, Lei-Ming; Li, Sheng-Gong

    2014-11-01

    Forests in Inner Mongolia account for an important part of the forests in China in terms of their large area and high living standing volume. This study reported carbon storage, carbon density, carbon sequestration rate and carbon sequestration potential of forest ecosystems in Inner Mongolia using the biomass carbon data from the related literature. Through analyzing the data of forest inventory and the generalized allometric equations between volume and biomass, previous studies had reported that biomass carbon storage of the forests in Inner Mongolia was about 920 Tg C, which was 12 percent of the national forest carbon storage, the annual average growth rate was about 1.4%, and the average of carbon density was about 43 t · hm(-2). Carbon storage and carbon density showed an increasing trend over time. Coniferous and broad-leaved mixed forest, Pinus sylvestris var. mongolica forest and Betula platyphylla forest had higher carbon sequestration capacities. Carbon storage was reduced due to human activities such as thinning and clear cutting. There were few studies on carbon storage of the forests in Inner Mongolia with focus on the soil, showing that the soil car- bon density increased with the stand age. Study on the carbon sequestration potential of forest ecosystems was still less. Further study was required to examine dynamics of carbon storage in forest ecosystems in Inner Mongolia, i. e., to assess carbon storage in the forest soils together with biomass carbon storage, to compute biomass carbon content of species organs as 45% in the allometric equations, to build more species-specific and site-specific allometric equations including root biomass for different dominant species, and to take into account the effects of climate change on carbon sequestration rate and carbon sequestration potential.

  7. Geological Carbon Sequestration: A New Approach for Near-Surface Assurance Monitoring

    PubMed Central

    Wielopolski, Lucian

    2011-01-01

    There are two distinct objectives in monitoring geological carbon sequestration (GCS): Deep monitoring of the reservoir’s integrity and plume movement and near-surface monitoring (NSM) to ensure public health and the safety of the environment. However, the minimum detection limits of the current instrumentation for NSM is too high for detecting weak signals that are embedded in the background levels of the natural variations, and the data obtained represents point measurements in space and time. A new approach for NSM, based on gamma-ray spectroscopy induced by inelastic neutron scatterings (INS), offers novel and unique characteristics providing the following: (1) High sensitivity with a reducible error of measurement and detection limits, and, (2) temporal- and spatial-integration of carbon in soil that results from underground CO2 seepage. Preliminary field results validated this approach showing carbon suppression of 14% in the first year and 7% in the second year. In addition the temporal behavior of the error propagation is presented and it is shown that for a signal at the level of the minimum detection level the error asymptotically approaches 47%. PMID:21556180

  8. Greenhouse gas emissions and carbon sequestration by agroforestry systems in southeastern Brazil.

    PubMed

    Torres, Carlos Moreira Miquelino Eleto; Jacovine, Laércio Antônio Gonçalves; Nolasco de Olivera Neto, Sílvio; Fraisse, Clyde William; Soares, Carlos Pedro Boechat; de Castro Neto, Fernando; Ferreira, Lino Roberto; Zanuncio, José Cola; Lemes, Pedro Guilherme

    2017-12-01

    Agrosilvopastoral and silvopastoral systems can increase carbon sequestration, offset greenhouse gas (GHG) emissions and reduce the carbon footprint generated by animal production. The objective of this study was to estimate GHG emissions, the tree and grass aboveground biomass production and carbon storage in different agrosilvopastoral and silvopastoral systems in southeastern Brazil. The number of trees required to offset these emissions were also estimated. The GHG emissions were calculated based on pre-farm (e.g. agrochemical production, storage, and transportation), and on-farm activities (e.g. fertilization and machinery operation). Aboveground tree grass biomass and carbon storage in all systems was estimated with allometric equations. GHG emissions from the agroforestry systems ranged from 2.81 to 7.98 t CO 2 e ha -1 . Carbon storage in the aboveground trees and grass biomass were 54.6, 11.4, 25.7 and 5.9 t C ha -1 , and 3.3, 3.6, 3.8 and 3.3 t C ha -1 for systems 1, 2, 3 and 4, respectively. The number of trees necessary to offset the emissions ranged from 17 to 44 trees ha -1 , which was lower than the total planted in the systems. Agroforestry systems sequester CO 2 from the atmosphere and can help the GHG emission-reduction policy of the Brazilian government.

  9. Response comment: Carbon sequestration on Mars

    USGS Publications Warehouse

    Edwards, Christopher; Ehlmann, Bethany L.

    2016-01-01

    Martian atmospheric pressure has important implications for the past and present habitability of the planet, including the timing and causes of environmental change. The ancient Martian surface is strewn with evidence for early water bound in minerals (e.g., Ehlmann and Edwards, 2014) and recorded in surface features such as large catastrophically created outflow channels (e.g., Carr, 1979), valley networks (Hynek et al., 2010; Irwin et al., 2005), and crater lakes (e.g., Fassett and Head, 2008). Using orbital spectral data sets coupled with geologic maps and a set of numerical spectral analysis models, Edwards and Ehlmann (2015) constrained the amount of atmospheric sequestration in early Martian rocks and found that the majority of this sequestration occurred prior to the formation of the early Hesperian/late Noachian valley networks (Fassett and Head, 2011; Hynek et al., 2010), thus implying the atmosphere was already thin by the time these surface-water-related features were formed.

  10. Financial return from traditional wood products, feedstock, and carbon sequestration in loblolly pine plantations in the Southern U.S

    Treesearch

    Umesh K. Chaudhan; Michael B. Kane

    2015-01-01

    We know that planting trees is a key approach for mitigating climate change; however, we are uncertain of what planting density per unit of land and what cultural regimes are needed to optimize traditional timber products, feedstock, and carbon sequestration.

  11. Upscaling Our Approach to Peatland Carbon Sequestration: Remote Sensing as a Tool for Carbon Flux Estimation.

    NASA Astrophysics Data System (ADS)

    Lees, K.; Khomik, M.; Clark, J. M.; Quaife, T. L.; Artz, R.

    2017-12-01

    Peatlands are an important part of the Earth's carbon cycle, comprising approximately a third of the global terrestrial carbon store. However, peatlands are sensitive to climatic change and human mismanagement, and many are now degraded and acting as carbon sources. Restoration work is being undertaken at many sites around the world, but monitoring the success of these schemes can be difficult and costly using traditional methods. A landscape-scale alternative is to use satellite data in order to assess the condition of peatlands and estimate carbon fluxes. This work focuses on study sites in Northern Scotland, where parts of the largest blanket bog in Europe are being restored from forest plantations. A combination of laboratory and fieldwork has been used to assess the Net Ecosystem Exchange (NEE), Gross Primary Productivity (GPP) and respiration of peatland sites in different conditions, and the climatic vulnerability of key peat-forming Sphagnum species. The results from these studies have been compared with spectral data in order to evaluate the extent to which remote sensing can function as a source of information for peatland health and carbon flux models. This work considers particularly the effects of scale in calculating peatland carbon flux. Flux data includes chamber and eddy covariance measurements of carbon dioxide, and radiometric observations include both handheld spectroradiometer results and satellite images. Results suggest that despite the small-scale heterogeneity and unique ecosystem factors in blanket bogs, remote sensing can be a useful tool in monitoring peatland health and carbon sequestration. In particular, this study gives unique insights into the relationships between peatland vegetation, carbon flux and spectral reflectance.

  12. Rates and potentials of soil organic carbon sequestration in agricultural lands in Japan: an assessment using a process-based model and spatially-explicit land-use change inventories

    NASA Astrophysics Data System (ADS)

    Yagasaki, Y.; Shirato, Y.

    2013-11-01

    to other land-use types by abandoning or urbanization accompanied by substantial changes in the rate of organic carbon input to soils, could cause a greater or comparable influence on country-scale SCSC compared with changes in management of agricultural lands. A net-net based accounting on SCSC showed potential influence of variations in future climate on SCSC, that highlighted importance of application of process-based model for estimation of this quantity. Whereas a baseline-based accounting on SCSC was shown to have robustness over variations in future climate and effectiveness to factor out direct human-induced influence on SCSC. Validation of the system's function to estimate SCSC in agricultural lands, by comparing simulation output with data from nation-wide stationary monitoring conducted during year 1979-1998, suggested that the system has an acceptable levels of validity, though only for limited range of conditions at current stage. In addition to uncertainties in estimation of the rate of organic carbon input to soils in different land-use types at large-scale, time course of SOC sequestration, supposition on land-use change pattern in future, as well as feasibility of agricultural policy planning are considered as important factors that need to be taken account in estimation on a potential of country-scale SCSC.

  13. Microbial Fuel Cell-driven caustic potash production from wastewater for carbon sequestration.

    PubMed

    Gajda, Iwona; Greenman, John; Melhuish, Chris; Santoro, Carlo; Ieropoulos, Ioannis

    2016-09-01

    This work reports on the novel formation of caustic potash (KOH) directly on the MFC cathode locking carbon dioxide into potassium bicarbonate salt (kalicinite) while producing, instead of consuming electrical power. Using potassium-rich wastewater as a fuel for microorganisms to generate electricity in the anode chamber, has resulted in the formation of caustic catholyte directly on the surface of the cathode electrode. Analysis of this liquid has shown to be highly alkaline (pH>13) and act as a CO2 sorbent. It has been later mineralised to kalicinite thus locking carbon dioxide into potassium bicarbonate salt. This work demonstrates an electricity generation method as a simple, cost-effective and environmentally friendly route towards CO2 sequestration that perhaps leads to a carbon negative economy. Moreover, it shows a potential application for both electricity production and nutrient recovery in the form of minerals from nutrient-rich wastewater streams such as urine for use as fertiliser in the future. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Optimization of a Time-Lapse Gravity Network for Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Appriou, D.; Strickland, C. E.; Ruprecht Yonkofski, C. M.

    2017-12-01

    The objective of this study is to evaluate what could be a comprehensive and optimal state of the art gravity monitoring network that would meet the UIC class VI regulation and insure that 90% of the CO2 injected remain underground. Time-lapse gravity surveys have a long history of effective applications of monitoring temporal density changes in the subsurface. For decades, gravity measurements have been used for a wide range of applications. The interest of time-lapse gravity surveys for monitoring carbon sequestration sites started recently. The success of their deployment in such sites depends upon a combination of favorable conditions, such as the reservoir geometry, depth, thickness, density change over time induced by the CO2 injection and the location of the instrument. In most cases, the density changes induced by the CO2 plume in the subsurface are not detectable from the surface but the use of borehole gravimeters can provide excellent results. In the framework of the National Assessment and Risk Partnership (NRAP) funded by the Department of Energy, the evaluation of the effectiveness of the gravity monitoring of a CO2 storage site has been assessed using multiple synthetic scenarios implemented on a community model developed for the Kimberlina site (e.g., fault leakage scenarios, borehole leakage). The Kimberlina carbon sequestration project was a pilot project located in southern San Joaquin Valley, California, aimed to safely inject 250,000 t CO2/yr for four years. Although the project was cancelled in 2012, the site characterization efforts resulted in the development of a geologic model. In this study, we present the results of the time-lapse gravity monitoring applied on different multiphase flow and reactive transport models developed by Lawrence Berkeley National Laboratory (i.e., no leakage, permeable fault zone, wellbore leakage). Our monitoring approach considers an ideal network, consisting of multiple vertical and horizontal instrumented

  15. Potential for Carbon Sequestration in European Soils: Preliminary Estimates for Five Scenarios Using Results from Long-Term Experiments

    DOE Data Explorer

    Smith, P. [University of Aberdeen, Aberdeen, UK; Powlson, D. [University of Aberdeen, Aberdeen, UK; Glendining, M. [University of Aberdeen, Aberdeen, UK; Smith, J. [University of Aberdeen, Aberdeen, UK

    2003-01-01

    One of the main options for carbon mitigation identified by the IPCC is the sequestration of carbon in soils. In this paper we use statistical relationships derived from European long-term experiments to explore the potential for carbon sequestration in soils in the European Union. We examine five scenarios, namely (a) the amendment of arable soils with animal manure, (b) the amendment of arable soils with sewage sludge, (c) the incorporation of cereal straw into the soils in which it was grown, (d) the afforestation of surplus arable land through natural woodland regeneration, and (e) extensification of agriculture through ley-arable farming. Our calculations suggest only limited potential to increase soil carbon stocks over the next century by addition of animal manure, sewage sludge or straw (<15 Tg C y–1), but greater potential through extensification of agriculture (~40 Tg C y–1) or through the afforestation of surplus arable land (~50 Tg C y–1). We estimate that extensification could increase the total soil carbon stock of the European Union by 17%. Afforestation of 30% of present arable land would increase soil carbon stocks by about 8% over a century and would substitute up to 30 Tg C y–1 of fossil fuel carbon if the wood were used as biofuel. However, even the afforestation scenario, with the greatest potential for carbon mitigation, can sequester only 0.8% of annual global anthropogenic CO2-carbon. Our figures suggest that, although efforts in temperate agriculture can contribute to global carbon mitigation, the potential is small compared to that available through reducing anthropogenic CO2 emissions by halting tropical and sub-tropical deforestation or by reducing fossil fuel burning.

  16. Emission of Carbon Dioxide Influenced by Different Water Levels from Soil Incubated Organic Residues

    PubMed Central

    Hossain, M. B.; Puteh, A. B.

    2013-01-01

    We studied the influence of different organic residues and water levels on decomposition rate and carbon sequestration in soil. Organic residues (rice straw, rice root, cow dung, and poultry litter) including control were tested under moistened and flooding systems. An experiment was laid out as a complete randomized design at 25°C for 120 days. Higher CO2-C (265.45 mg) emission was observed in moistened condition than in flooding condition from 7 to 120 days. Among the organic residues, poultry litter produced the highest CO2-C emission. Poultry litter with soil mixture increased 121% cumulative CO2-C compared to control. On average, about 38% of added poultry litter C was mineralized to CO2-C. Maximum CO2-C was found in 7 days after incubation and thereafter CO2-C emission was decreased with the increase of time. Control produced the lowest CO2-C (158.23 mg). Poultry litter produced maximum cumulative CO2-C (349.91 mg). Maximum organic carbon was obtained in cow dung which followed by other organic residues. Organic residues along with flooding condition decreased cumulative CO2-C, k value and increased organic C in soil. Maximum k value was found in poultry litter and control. Incorpored rice straw increased organic carbon and decreased k value (0.003 g d−1) in soil. In conclusion, rice straw and poultry litter were suitable for improving soil carbon. PMID:24163626

  17. Assessing the effect of climate change on carbon sequestration in a Mexican dry forest in the Yucatan Peninsula

    Treesearch

    Z. Dai; K.D. Johnson; R.A. Birdsey; J.L. Hernandez-Stefanoni; J.M. Dupuy

    2015-01-01

    Assessing the effect of climate change on carbon sequestration in tropical forest ecosystems is important to inform monitoring, reporting, and verification (MRV) for reducing deforestation and forest degradation (REDD), and to effectively assess forest management options under climate change. Two process-based models, Forest-DNDC and Biome-BGC, with different spatial...

  18. Fine resolution map of top- and subsoil carbon sequestration potential in France.

    PubMed

    Chen, Songchao; Martin, Manuel P; Saby, Nicolas P A; Walter, Christian; Angers, Denis A; Arrouays, Dominique

    2018-07-15

    Although soils have a high potential to offset CO 2 emissions through its conversion into soil organic carbon (SOC) with long turnover time, it is widely accepted that there is an upper limit of soil stable C storage, which is referred to SOC saturation. In this study we estimate SOC saturation in French topsoil (0-30cm) and subsoil (30-50cm), using the Hassink equation and calculate the additional SOC sequestration potential (SOC sp ) by the difference between SOC saturation and fine fraction C on an unbiased sampling set of sites covering whole mainland France. We then map with fine resolution the geographical distribution of SOC sp over the French territory using a regression Kriging approach with environmental covariates. Results show that the controlling factors of SOC sp differ from topsoil and subsoil. The main controlling factor of SOCsp in topsoils is land use. Nearly half of forest topsoils are over-saturated with a SOC sp close to 0 (mean and standard error at 0.19±0.12) whereas cropland, vineyard and orchard soils are largely unsaturated with degrees of C saturation deficit at 36.45±0.68% and 57.10±1.64%, respectively. The determinant of C sequestration potential in subsoils is related to parent material. There is a large additional SOC sp in subsoil for all land uses with degrees of C saturation deficit between 48.52±4.83% and 68.68±0.42%. Overall the SOCsp for French soils appears to be very large (1008Mt C for topsoil and 1360Mt C for subsoil) when compared to previous total SOC stocks estimates of about 3.5Gt in French topsoil. Our results also show that overall, 176Mt C exceed C saturation in French topsoil and might thus be very sensitive to land use change. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  19. Assessing the Feasibility and Risks of Using Wave-Driven Upwelling Pumps to Enhance the Biological Sequestration of Carbon in Open Oceans

    NASA Astrophysics Data System (ADS)

    White, A.; Bjorkman, K.; Grabowski, E.; Letelier, R. M.; Poulos, S.; Watkins, B.; Karl, D. M.

    2008-12-01

    In 1976, John D. Isaacs proposed to use wave energy to pump cold and nutrient-rich deep water into the sunlit surface layers. The motivation for this endeavor has taken many forms over the years, from energy production to fueling aquaculture to the more recent suggestion that artificial upwelling could be used to stimulate primary productivity and anthropogenic carbon sequestration in oligotrophic regions of the ocean. However, the potential for biological carbon sequestration in response to upwelling will depend on the concentration of nutrients relative to that of dissolved inorganic carbon in the water being upwelled and on the response of the marine microbial assemblage to this nutrient enrichment. In June 2008, we tested a commercially available wave pump in the vicinity of Station ALOHA, north of Oahu, Hawaii in order to assess the logistics of at-sea deployment and the survivability of the equipment in the open ocean. Our engineering test was also designed to evaluate a recently published hypothesis (Karl and Letelier, 2008, Marine Ecology Progress Series) that upwelling of water containing excess phosphate relative to nitrogen compared to the canonical "Redfield" molar ratio of 16N:1P, would generate a two-phased phytoplankton bloom and enhance carbon sequestration. In this presentation, we analyze the results of this field test within the context of pelagic biogeochemical cycles. Furthermore, we discuss the deployment of a 300m wave pump, efforts to sample a biochemical response, the engineering challenges faced and the practical and ethical implications of these results for future experiments aimed at stimulating the growth of phytoplankton in oligotrophic regions.

  20. Coal bed sequestration of carbon dioxide

    USGS Publications Warehouse

    Stanton, Robert; Flores, Romeo M.; Warwick, Peter D.; Gluskoter, Harold J.; Stricker, Gary D.

    2001-01-01

    Geologic sequestration of CO2 generated from fossil fuel combustion may be an environmentally attractive method to reduce the amount of greenhouse gas emissions. Of the geologic options, sequestering CO2 in coal beds has several advantages. For example, CO2 injection can enhance methane production from coal beds; coal can trap CO2 for long periods of time; and potential major coal basins that contain ideal beds for sequestration are near many emitting sources of CO2.One mission of the Energy Resources Program of the U.S. Geological Survey is to maintain assessment information of the Nation’s resources of coal, oil, and gas. The National Coal Resources Assessment Project is currently completing a periodic assessment of 5 major coal-producing regions of the US. These regions include the Powder River and Williston and other Northern Rocky Mountain basins (Fort Union Coal Assessment Team, 1999), Colorado Plateau area (Kirschbaum and others, 2000), Gulf Coast Region, Appalachian Basin, and Illinois Basin. The major objective of this assessment is to estimate available coal resources and quality for the major producing coal beds of the next 25 years and produce digital databases and maps. Although the focus of this work has been on coal beds with the greatest potential for mining, it serves as a basis for future assessments of the coal beds for other uses such as coal bed methane resources, in situ gasification, and sites for sequestration of CO2. Coal bed methane production combined with CO2 injection and storage expands the use of a coal resource and can provide multiple benefits including increased methane recovery, methane drainage of a resource area, and the long-term storage of CO2.

  1. Abiotic CO2 reduction during geologic carbon sequestration facilitated by Fe(II)-bearing minerals

    NASA Astrophysics Data System (ADS)

    Nielsen, L. C.; Maher, K.; Bird, D. K.; Brown, G. E.; Thomas, B.; Johnson, N. C.; Rosenbauer, R. J.

    2012-12-01

    Redox reactions involving subsurface minerals and fluids and can lead to the abiotic generation of hydrocarbons from CO2 under certain conditions. Depleted oil reservoirs and saline aquifers targeted for geologic carbon sequestration (GCS) can contain significant quantities of minerals such as ferrous chlorite, which could facilitate the abiotic reduction of carbon dioxide to n-carboxylic acids, hydrocarbons, and amorphous carbon (C0). If such reactions occur, the injection of supercritical CO2 (scCO2) could significantly alter the oxidation state of the reservoir and cause extensive reorganization of the stable mineral assemblage via dissolution and reprecipitation reactions. Naturally occurring iron oxide minerals such as magnetite are known to catalyze CO2 reduction, resulting in the synthesis of organic compounds. Magnetite is thermodynamically stable in Fe(II) chlorite-bearing mineral assemblages typical of some reservoir formations. Thermodynamic calculations demonstrate that GCS reservoirs buffered by the chlorite-kaolinite-carbonate(siderite/magnesite)-quartz assemblage favor the reduction of CO2 to n-carboxylic acids, hydrocarbons, and C0, although the extent of abiotic CO2 reduction may be kinetically limited. To investigate the rates of abiotic CO2 reduction in the presence of magnetite, we performed batch abiotic CO2 reduction experiments using a Dickson-type rocking hydrothermal apparatus at temperatures (373 K) and pressures (100 bar) within the range of conditions relevant to GCS. Blank experiments containing CO2 and H2 were used to rule out the possibility of catalytic activity of the experimental apparatus. Reaction of brine-suspended magnetite nanoparticles with scCO2 at H2 partial pressures typical of reservoir rocks - up to 100 and 0.1 bars respectively - was used to investigate the kinetics of magnetite-catalyzed abiotic CO2 reduction. Later experiments introducing ferrous chlorite (ripidolite) were carried out to determine the potential for

  2. Feasibility Assessment of CO2 Sequestration and Enhanced Recovery in Gas Shale Reservoirs

    NASA Astrophysics Data System (ADS)

    Vermylen, J. P.; Hagin, P. N.; Zoback, M. D.

    2008-12-01

    CO2 sequestration and enhanced methane recovery may be feasible in unconventional, organic-rich, gas shale reservoirs in which the methane is stored as an adsorbed phase. Previous studies have shown that organic-rich, Appalachian Devonian shales adsorb approximately five times more carbon dioxide than methane at reservoir conditions. However, the enhanced recovery and sequestration concept has not yet been tested for gas shale reservoirs under realistic flow and production conditions. Using the lessons learned from previous studies on enhanced coalbed methane (ECBM) as a starting point, we are conducting laboratory experiments, reservoir modeling, and fluid flow simulations to test the feasibility of sequestration and enhanced recovery in gas shales. Our laboratory work investigates both adsorption and mechanical properties of shale samples to use as inputs for fluid flow simulation. Static and dynamic mechanical properties of shale samples are measured using a triaxial press under realistic reservoir conditions with varying gas saturations and compositions. Adsorption is simultaneously measured using standard, static, volumetric techniques. Permeability is measured using pulse decay methods calibrated to standard Darcy flow measurements. Fluid flow simulations are conducted using the reservoir simulator GEM that has successfully modeled enhanced recovery in coal. The results of the flow simulation are combined with the laboratory results to determine if enhanced recovery and CO2 sequestration is feasible in gas shale reservoirs.

  3. 40 CFR 98.448 - Geologic sequestration monitoring, reporting, and verification (MRV) plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Sequestration of Carbon Dioxide § 98.448 Geologic sequestration monitoring, reporting, and verification (MRV... use to calculate site-specific variables for the mass balance equation. This includes, but is not...

  4. 40 CFR 98.448 - Geologic sequestration monitoring, reporting, and verification (MRV) plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Sequestration of Carbon Dioxide § 98.448 Geologic sequestration monitoring, reporting, and verification (MRV... use to calculate site-specific variables for the mass balance equation. This includes, but is not...

  5. Carbon dioxide sequestration monitoring and verification via laser based detection system in the 2 mum band

    NASA Astrophysics Data System (ADS)

    Humphries, Seth David

    Carbon Dioxide (CO2) is a known contributor to the green house gas effect. Emissions of CO2 are rising as the global demand for inexpensive energy is placated through the consumption and combustion of fossil fuels. Carbon capture and sequestration (CCS) may provide a method to prevent CO2 from being exhausted to the atmosphere. The carbon may be captured after fossil fuel combustion in a power plant and then stored in a long term facility such as a deep geologic feature. The ability to verify the integrity of carbon storage at a location is key to the success of all CCS projects. A laser-based instrument has been built and tested at Montana State University (MSU) to measure CO2 concentrations above a carbon storage location. The CO2 Detection by Differential Absorption (CODDA) Instrument uses a temperature-tunable distributed feedback (DFB) laser diode that is capable of accessing a spectral region, 2.0027 to 2.0042 mum, that contains three CO2 absorption lines and a water vapor absorption line. This instrument laser is aimed over an open-air, two-way path of about 100 m, allowing measurements of CO2 concentrations to be made directly above a carbon dioxide release test site. The performance of the instrument for carbon sequestration site monitoring is studied using a newly developed CO2 controlled release facility. The field and CO2 releases are managed by the Zero Emissions Research Technology (ZERT) group at MSU. Two test injections were carried out through vertical wells simulating seepage up well paths. Three test injections were done as CO2 escaped up through a slotted horizontal pipe simulating seepage up through geologic fault zones. The results from these 5 separate controlled release experiments over the course of three summers show that the CODDA Instrument is clearly capable of verifying the integrity of full-scale CO2 storage operations.

  6. Mobilization of Trace Metals in an Experimental Carbon Sequestration Scenario

    NASA Astrophysics Data System (ADS)

    Marcon, V.; Kaszuba, J. P.

    2012-12-01

    Mobilizing trace metals with injection of supercritical CO2 into deep saline aquifers is a concern for geologic carbon sequestration. The potential for leakage from these systems requires an understanding of how injection reservoirs interact with the overlying potable aquifers. Hydrothermal experiments were performed to evaluate metal mobilization and mechanisms of release in a carbonate storage reservoir and at the caprock-reservoir boundary. Experiments react synthetic Desert Creek limestone and/or Gothic Shale, formations in the Paradox Basin, Utah, with brine that is close to equilibrium with these rocks. A reaction temperature of 1600C accelerates the reaction kinetics without changing in-situ water-rock reactions. The experiments were allowed to reach steady state before injecting CO2. Changes in major and trace element water chemistry, dissolved carbon and sulfide, and pH were tracked throughout the experiments. CO2 injection decreases the pH by 1 to 2 units; concomitant mineral dissolution produces elevated Ba, Cu, Fe, Pb, and Zn concentrations in the brine. Concentrations subsequently decrease to approximately steady state values after 120-330 hours, likely due to mineral precipitation as seen in SEM images and predicted by geochemical modeling. In experiments that emulate the caprock-reservoir boundary, final Fe (0.7ppb), an element of secondary concern for the EPA, and Pb (0.05ppb) concentrations exceed EPA limits, whereas Ba (0.140ppb), Cu (48ppb), and Zn (433ppb) values remain below EPA limits. In experiments that simulate deeper reservoir conditions, away from the caprock boundary, final Fe (3.5ppb) and Pb (0.017ppb) values indicate less mobilization than seen at the caprock-reservoir boundary, but values still exceed EPA limits. Barium concentrations always remain below the EPA limit of 2ppb, but are more readily mobilized in experiments replicating deeper reservoir conditions. In both systems, transition elements Cd, Cr, Cu, Pb and Zn behave in a

  7. Carbon carry capacity and carbon sequestration potential in China based on an integrated analysis of mature forest biomass.

    PubMed

    Liu, YingChun; Yu, GuiRui; Wang, QiuFeng; Zhang, YangJian; Xu, ZeHong

    2014-12-01

    Forests play an important role in acting as a carbon sink of terrestrial ecosystem. Although global forests have huge carbon carrying capacity (CCC) and carbon sequestration potential (CSP), there were few quantification reports on Chinese forests. We collected and compiled a forest biomass dataset of China, a total of 5841 sites, based on forest inventory and literature search results. From the dataset we extracted 338 sites with forests aged over 80 years, a threshold for defining mature forest, to establish the mature forest biomass dataset. After analyzing the spatial pattern of the carbon density of Chinese mature forests and its controlling factors, we used carbon density of mature forests as the reference level, and conservatively estimated the CCC of the forests in China by interpolation methods of Regression Kriging, Inverse Distance Weighted and Partial Thin Plate Smoothing Spline. Combining with the sixth National Forest Resources Inventory, we also estimated the forest CSP. The results revealed positive relationships between carbon density of mature forests and temperature, precipitation and stand age, and the horizontal and elevational patterns of carbon density of mature forests can be well predicted by temperature and precipitation. The total CCC and CSP of the existing forests are 19.87 and 13.86 Pg C, respectively. Subtropical forests would have more CCC and CSP than other biomes. Consequently, relying on forests to uptake carbon by decreasing disturbance on forests would be an alternative approach for mitigating greenhouse gas concentration effects besides afforestation and reforestation.

  8. Ground penetrating radar survey and lineament analysis of the West Pearl Queen carbon sequestration pilot site, New Mexico

    NASA Astrophysics Data System (ADS)

    Wilson, T. H.; Wells, A. W.; Diehl, R. R.; Bromhal, G. S.; Carpenter, W.; Smith, D. H.

    2004-05-01

    The potential for leakage of injected CO2 at carbon sequestration sites is a significant concern in the design and deployment of long term carbon sequestration efforts. Effective and reliable monitoring of near-surface environments in the vicinity of these sites is essential to ensure the viability of sequestration activities as well as long term public and environmental safety. This study reports on near-surface geological and geophysical characterization efforts conducted at the NETL West Pearl Queen carbon sequestration pilot site in southeastern New Mexico and their use in uncovering possible mechanisms facilitating escape of small amounts (10e-13 liters) of tracer injected with the CO2. In this pilot test, a small amount of CO2 (2100 tonnes) was injected into the Shattuck sandstone member of the Permian Queen Formation early in 2003. Tracers injected with the CO2 were detected within a few days of injection and continued to escape for several months following injection. Geological and geophysical characterization of the near-surface environment in the vicinity of the injection well incorporated lineament interpretations and a detailed ground penetrating radar survey conducted over a circular area extending out 300 meters from the injection well. The near-surface geology consists of a few-feet thick veneer of late Pleistocene and Holocene sand dunes covering the middle Pleistocene Mescalero caliche. The lineament study incorporated interpretation of black and white aerial photos from 1949, digital orthophotos, and Landsat TM imagery. Analysis reveals distinct northeast and northwest trending lineament sets. The GPR survey defines the presence of a nearly continuous blanket of caliche beneath the area. However, the thickness of the caliche zone varies significantly, and it is disrupted by numerous fault-like features, amplitude anomalies, and reflection gaps. Some of these disruptions are traceable over distances of 25 to 200 meters and their aerial distribution

  9. Animals as an indicator of carbon sequestration and valuable landscapes

    PubMed Central

    Szyszko, Jan; Schwerk, Axel; Malczyk, Jarosław

    2011-01-01

    Abstract Possibilities of the assessment of a landscape with the use of succession development stages, monitored with the value of the Mean Individual Biomass (MIB) of carabid beetles and the occurrence of bird species are discussed on the basis of an example from Poland. Higher variability of the MIB value in space signifies a greater biodiversity. Apart from the variability of MIB, it is suggested to adopt the occurrence of the following animals as indicators, (in the order of importance), representing underlying valuable landscapes: black stork, lesser spotted eagle, white-tailed eagle, wolf, crane and white stork. The higher number of these species and their greater density indicate a higher value of the landscape for biodiversity and ecosystem services, especially carbon sequestration. All these indicators may be useful to assess measures for sustainable land use. PMID:21738434

  10. Assessment of carbon sequestration potential of revegetated coal mine overburden dumps: A chronosequence study from dry tropical climate.

    PubMed

    Ahirwal, Jitendra; Maiti, Subodh Kumar

    2017-10-01

    Development of secondary forest as post-mining land use in the surface coal mining degraded sites is of high research interest due to its potential to sequester atmospheric carbon (C). The objectives of this study were to assess the improvement in mine soil quality and C sequestration potential of the post-mining reclaimed land with time. Hence, this study was conducted in reclaimed chronosequence sites (young, intermediate and old) of a large open cast coal project (Central Coal Fields Limited, Jharkhand, India) and results were compared to a reference forest site (Sal forest, Shorea robusta). Mine soil quality was assessed in terms of accretion of soil organic carbon (SOC), available nitrogen (N) and soil CO 2 flux along with the age of revegetation. After 14 years of revegetation, SOC and N concentrations increased three and five-fold, respectively and found equivalent to the reference site. Accretion of SOC stock was estimated to be 1.9 Mg C ha -1 year -1 . Total ecosystem C sequestered after 2-14 years of revegetation increased from 8 Mg C ha -1 to 90 Mg C ha -1 (30-333 Mg CO 2 ha -1 ) with an average rate of 6.4 Mg C ha -1 year -1 . Above ground biomass contributes maximum C sequestrate (50%) in revegetated site. CO 2 flux increased with age of revegetation and found 11, 33 and 42 Mg CO 2 ha -1 year -1 in younger, intermediate and older dumps, respectively. Soil respiration in revegetated site is more influenced by the temperature than soil moisture. Results of the study also showed that trees like, Dalbergia sissoo and Heterophragma adenophyllum should be preferred for revegetation of mine degraded sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Carbon Sequestration in Unconventional Reservoirs: Advantages and Limitations

    NASA Astrophysics Data System (ADS)

    Zakharova, N. V.; Slagle, A. L.; Goldberg, D.

    2014-12-01

    To make a significant impact on anthropogenic CO2 emissions, geologic carbon sequestration would require thousands of CO2 repositories around the world. Unconventional reservoirs, such as igneous rocks and fractured formations, may add substantial storage capacity and diversify CO2 storage options. In particular, basaltic rocks represent a promising target due to their widespread occurrence, potentially suitable reservoir structure and high reactivity with CO2, but a comprehensive evaluation of worldwide CO2 sequestration capacity in unconventional reservoirs is lacking. In this presentation we summarize available data on storage potential of basaltic rocks and fractured formations illustrated by field examples from the Columbia River Basalt, the Newark Rift Basin and IODP Site 1256, and discuss potential limiting factors, such as effective porosity and the risk of inducing earthquakes by CO2 injections. Large Igneous Provinces (LIPs), low-volume flows and intrusions, and ocean floor basalt represent three general classes of basaltic reservoirs, each characterized by different structure and storage capacity. Oceanic plateaus and LIPs are projected to have the highest CO2 storage capacity, on the order of thousands gigatons (Gt) per site, followed by continental LIPs and ocean floor basalts (hundreds to thousands Gt per site). Isolated basalt flows and intrusions are likely to offer only low- to moderate-capacity options. An important limiting factor on CO2 injection volumes and rates is the risk of inducing earthquakes by increasing pore pressure in the subsurface. On continents, available in situ stress analysis suggests that local stress perturbations at depth may create relaxed stress conditions, allowing for pore pressure increase without reactivating fractures and faults. Remote storage sites on oceanic plateaus and below the seafloor are advantageous due to low impact of potential seismic and/or leakage events. Other effects, such as thermal stresses created

  12. Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region (RMCCS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McPherson, Brian; Matthews, Vince

    2013-09-30

    The primary objective of the “Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region” project, or RMCCS project, is to characterize the storage potential of the most promising geologic sequestration formations within the southwestern U.S. and the Central Rocky Mountain region in particular. The approach included an analysis of geologic sequestration formations under the Craig Power Station in northwestern Colorado, and application or extrapolation of those local-scale results to the broader region. A ten-step protocol for geologic carbon storage site characterization was a primary outcome of this project.

  13. Briefing on geological sequestration (Tulsa)

    EPA Science Inventory

    Geological sequestration (GS) is generally recognized as the injection and long-term (e.g., hundreds to thousands of years) trapping of gaseous, liquid or supercritical carbon dioxide (CO2) in subsurface media – primarily saline formations, depleted or nearly depleted oil and gas...

  14. Modeling soil organic carbon dynamics and their driving factors in the main global cereal cropping systems

    NASA Astrophysics Data System (ADS)

    Wang, Guocheng; Zhang, Wen; Sun, Wenjuan; Li, Tingting; Han, Pengfei

    2017-10-01

    Changes in the soil organic carbon (SOC) stock are determined by the balance between the carbon input from organic materials and the output from the decomposition of soil C. The fate of SOC in cropland soils plays a significant role in both sustainable agricultural production and climate change mitigation. The spatiotemporal changes of soil organic carbon in croplands in response to different carbon (C) input management and environmental conditions across the main global cereal systems were studied using a modeling approach. We also identified the key variables that drive SOC changes at a high spatial resolution (0.1° × 0.1°) and over a long timescale (54 years from 1961 to 2014). A widely used soil C turnover model (RothC) and state-of-the-art databases of soil and climate variables were used in the present study. The model simulations suggested that, on a global average, the cropland SOC density increased at annual rates of 0.22, 0.45 and 0.69 Mg C ha-1 yr-1 under crop residue retention rates of 30, 60 and 90 %, respectively. Increasing the quantity of C input could enhance soil C sequestration or reduce the rate of soil C loss, depending largely on the local soil and climate conditions. Spatially, under a specific crop residue retention rate, relatively higher soil C sinks were found across the central parts of the USA, western Europe, and the northern regions of China. Relatively smaller soil C sinks occurred in the high-latitude regions of both the Northern and Southern hemispheres, and SOC decreased across the equatorial zones of Asia, Africa and America. We found that SOC change was significantly influenced by the crop residue retention rate (linearly positive) and the edaphic variable of initial SOC content (linearly negative). Temperature had weak negative effects, and precipitation had significantly negative impacts on SOC changes. The results can help guide carbon input management practices to effectively mitigate climate change through soil C

  15. Implications of Ozone on Carbon Sequestration and Climate Policy in the U.S. Using the MIT Integrated Global Systems Model

    NASA Astrophysics Data System (ADS)

    Felzer, B. S.; Reilly, J. M.; Melillo, J. M.; Kicklighter, D. W.; Wang, C.; Prinn, R.; Sarofim, M. C.; Zhuang, Q.

    2003-12-01

    Exposure of plants to ozone inhibits photosynthesis and therefore reduces vegetation production and carbon sequestration. The damaging effects of tropospheric ozone vary spatially because human activities responsible for the emissions of ozone precursors are highly concentrated in urban and industrial centers. We developed scenarios of ozone-precursor emissions and the resultant ozone concentrations using the MIT Integrated Global Systems Model (IGSM) through the year 2100 and explored the consequent effects on terrestrial ecosystems using the Terrestrial Ecosystem Model (TEM). We then used the Emissions Prediction and Policy Analysis (EPPA) model, a component of the IGSM, to evaluate the cost of increased mitigation efforts required to offset lost carbon sequestration. We considered both a global climate policy that limits future greenhouse gas (GHG) emissions and an air quality policy that limits pollutant emissions to their 1995 levels in the developed countries. We also considered agricultural management that includes optimal irrigation and fertilization and no irrigation and fertilization for croplands. We found that the loss of carbon sequestration in the U.S. at the end of the 21st century due to ozone pollution ranged from negligible to as much as 0.3 PgC yr-1 depending upon the policy options pursued. We valued these reductions in terms of the change in the net present value of the cost to the U.S. through 2100 of a global carbon policy designed to approximately stabilize atmospheric CO2 levels at 550 ppm. For the U.S., failure to consider ozone damages to vegetation would by itself raise the costs over the next century of stabilizing atmospheric concentrations of CO2 by 11 to 19% (\\0.3 to \\0.6 trillion) because emissions from fossil fuels will need to be reduced more to compensate for the reduced carbon sequestration by terrestrial ecosystems. With a pollution cap, damages are reduced to 6 to 12% (\\0.2 to \\0.3 trillion) of the total cost. However

  16. Potential and cost of carbon sequestration in the Tanzanian forest sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makundi, Willy R.

    2001-01-01

    The forest sector in Tanzania offers ample opportunities to reduce greenhouse gas emissions (GHG) and sequestered carbon (C) in terrestrial ecosystems. More than 90% of the country's demand for primary energy is obtained from biomass mostly procured unsustainably from natural forests. This study examines the potential to sequester C through expansion of forest plantations aimed at reducing the dependence on natural forest for wood fuel production, as well as increase the country's output of industrial wood from plantations. These were compared ton conservation options in the tropical and miombo ecosystems. Three sequestration options were analyzed, involving the establishment of shortmore » rotation and long rotation plantations on about 1.7 x 106 hectares. The short rotation community forest option has a potential to sequester an equilibrium amount of 197.4 x 106 Mg C by 2024 at a net benefit of $79.5 x 106, while yielding a NPV of $0.46 Mg-1 C. The long rotation options for softwood and hardwood plantations will reach an equilibrium sequestration of 5.6 and 11.8 x 106 Mg C at a negative NPV of $0.60 Mg-1 C and $0.32 Mg-1 C. The three options provide cost competitive opportunities for sequestering about 7.5 x 106 Mg C yr -1 while providing desired forest products and easing the pressure on the natural forests in Tanzania. The endowment costs of the sequestration options were all found to be cheaper than the emission avoidance cost for conservation options which had an average cost of $1.27 Mg-1 C, rising to $ 7.5 Mg-1 C under some assumptions on vulnerability to encroachment. The estimates shown here may represent the upper bound, because the actual potential will be influenced by market prices for inputs and forest products, land use policy constraints and the structure of global C transactions.« less

  17. Assessing the quality of soil carbon using mid-infrared spectroscopy

    EPA Science Inventory

    With an increasing focus on carbon sequestration in soils to help offset anthropogenic greenhouse gas emissions, there is a growing need for standardized methods of assessing the quality (i.e., residence time) of soil organic carbon. Information on soil carbon quality is critica...

  18. Sequestration of organic nitrogen in a paddy soil chronosequence as assessed by amino sugars molecular markers

    NASA Astrophysics Data System (ADS)

    Roth, Philipp; Lehndorff, E.; Cao, Z.; Amelung, W.

    2010-05-01

    Available nitrogen is a limiting factor in paddy rice systems due to ammonia volatilization, denitrification and stabilization in organic complexes. Soil organic nitrogen (SON) might therefore constitute a critical component of the nitrogen cycle in rice systems. The objective of this study was to elucidate the role of microorganisms for the sequestration of paddy N in organic forms. For this purpose we analyzed amino sugars as markers for the residues of bacteria and fungi in a chronosequence of soils that were used for paddy rice production for a period of 0 to 2000 years in the Hangzhou bay area in Southeast China. Within the soil profile, amino sugar concentrations were generally highest in the puddled Ap horizon and decreased with increasing depth along with organic carbon concentrations regardless of the time of rice cultivation. Nevertheless, a sharp increase of total amino sugar concentration from 0.1 g kg-1 to 0.3 g kg-1 was observed in the Ah horizon when comparing tidal wetland to salt marsh that had been impoldered 30 years ago, indicating an increasing importance of microbial residues in SON stabilization following the conversion of the semiaquatic marsh to a terrestrial system. With increased time of paddy rice cropping, amino sugar concentrations continued to increase up to a maximum of 2.1 g kg-1 after 300 years of paddy cultivation but declined again to 1 g kg-1 in soils with 700-2000 years history of cultivation despite increasing organic matter accumulation. Changes in the composition of the amino sugars were also most pronounced at initial stages of paddy rice management. The proportions of glucosamine (abundant in fungal chitin) decreased during the first 50 years of cultivation relative to mainly galactosamine (abundant in bacterial gums) and muramic acid (abundant in bacterial peptidoglycan), that remained at constantly low levels. At later stages of paddy rice cultivation, the ratios of glucosamine to galactosamine and to muramic acid re

  19. The role of iron-sulfides on cycling of organic carbon in the St Lawrence River system: Evidence of sulfur-promoted carbon sequestration?

    NASA Astrophysics Data System (ADS)

    Balind, K.; Barber, A.; Gélinas, Y.

    2017-12-01

    The biogeochemical cycle of sulfur is intimately linked with that of carbon, as well as with that of iron through the formation of iron-sulfur complexes. Iron-sulfide minerals such as mackinawite (FeS) and greigite (Fe3S4) form below the oxic/anoxic redox boundary in marine and lacustrine sediments and soils. Reactive iron species, abundant in surface sediments, can undergo reductive dissolution leading to the formation of soluble Fe(II) which can then precipitate in the form of iron sulfur species. While sedimentary iron-oxides have been thoroughly explored in terms of their ability to sorb and sequester organic carbon (OC) (Lalonde et al.; 2012), the role of FeS in the long-term preservation of OC remains undefined. In this study, we present depth profiles for carbon, iron, and sulfur in the aqueous-phase, along with data from sequential extractions of sulfur speciation in the solid-phase collected from sediment cores from the St Lawrence River and estuarine system, demonstrating the transition from fresh to saltwater sediments. Additionally, we present synthetic iron sulfur sorption experiments using both model and natural organic molecules in order to assess the importance of FeS in sedimentary carbon storage.

  20. Restoration and Carbon Sequestration Potential of Sub-Humid Shrublands in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Adhikari, A.; White, J. D.

    2014-12-01

    Over the past century, various anthropogenic activities have resulted into loss of more than 95% shrub cover from the Lower Rio Grande Valley (LRGV), TX, USA. Restoration of these shrublands has been a priority for two endangered felids, ocelots and jaguarondis, that require contiguous shrub cover. While woody shrub restoration may be considered the antithesis of shrub encroachment, this type of habitat restoration also provides a substantial opportunity of increasing carbon sequestration. Restoration of these shrublands by U.S. federal refuge managers during the past three decades have resulted some successful reestablishment of native shrub communities. We assessed restoration efficacy, carbon storage capacity, and future climate change impacts using combined remote sensing and modeling techniques. We first developed a canopy identification algorithm using a spectral vegetation index from the Digital Ortho Quarter Quadrangle data to estimate individual shrub canopy area. The area was used as input into allometric equations to estimate aboveground biomass for dominant shrub species across this region. The accuracy of the automated canopy identification by the algorithm was 79% when compared to the number of visually-determined, hand-digitized shrub canopies. From this analysis, we found that naturally regenerated sites had higher average shrub densities of 174/ha when compared with 156 individuals/ha for replanted sites. However, average biomass for naturally regenerated sites (3.28 Mg C/ha) stored less biomass compared to that of replanted sites (3.71 Mg C/ha). We found that average biomass per shrub in naturally regenerated sites was lower compared to that of replanted sites (p < 0.05). Shrub density and biomass estimated from the remote sensing data was used as input for the Physiological Principles in Predicting Growth model to predict future shrub biomass for three GCM scenarios projected by IPCC (2007). Modeling showed that the LRGV may produce lower biomass