Science.gov

Sample records for organic chemistry experiment

  1. Organic Experiments for Introductory Chemistry.

    ERIC Educational Resources Information Center

    Rayner-Canham, Geoff

    1985-01-01

    Describes test-tube organic chemistry procedures (using comparatively safe reagents) for the beginning student. These procedures are used to: examine differences between saturated and unsaturated hydrocarbons; compare structural isomers; and compare organic and inorganic acids and bases. (DH)

  2. Titan's organic chemistry: Results of simulation experiments

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Thompson, W. Reid; Khare, Bishun N.

    1992-01-01

    Recent low pressure continuous low plasma discharge simulations of the auroral electron driven organic chemistry in Titan's mesosphere are reviewed. These simulations yielded results in good accord with Voyager observations of gas phase organic species. Optical constants of the brownish solid tholins produced in similar experiments are in good accord with Voyager observations of the Titan haze. Titan tholins are rich in prebiotic organic constituents; the Huygens entry probe may shed light on some of the processes that led to the origin of life on Earth.

  3. Cocrystal Controlled Solid-State Synthesis: A Green Chemistry Experiment for Undergraduate Organic Chemistry

    ERIC Educational Resources Information Center

    Cheney, Miranda L.; Zaworotko, Michael J.; Beaton, Steve; Singer, Robert D.

    2008-01-01

    Green chemistry has become an important area of concern for all chemists from practitioners in the pharmaceutical industry to professors and the students they teach and is now being incorporated into lectures of general and organic chemistry courses. However, there are relatively few green chemistry experiments that are easily incorporated into…

  4. An Organic Chemistry Experiment for Forensic Science Majors.

    ERIC Educational Resources Information Center

    Rothchild, Robert

    1979-01-01

    The laboratory experiment described here is intended to be of use to the forensic science major enrolled in a course in organic chemistry. The experiment is the use of thin-layer chromotography for qualitative analysis, specifically for the identification of drugs. (Author/SA)

  5. Biodiesel Synthesis and Evaluation: An Organic Chemistry Experiment

    ERIC Educational Resources Information Center

    Bucholtz, Ehren C.

    2007-01-01

    A new lab esterification reaction based on biodiesel preparation and viscosity, which provides a model experience of industrial process to understand oxidation of vicinal alcohols by periodic acid, is presented. This new desertification experiment and periodate analysis of glycerol for the introductory organic chemistry laboratory provides an…

  6. Synthesis of Bisphenol Z: An Organic Chemistry Experiment

    ERIC Educational Resources Information Center

    Gregor, Richard W.

    2012-01-01

    A student achievable synthesis of bisphenol Z, 4,4'-(cyclohexane-1,1-diyl)diphenol, from the acid-catalyzed reaction of phenol with cyclohexanone is presented. The experiment exemplifies all the usual pedagogy for the standard topic of electrophilic aromatic substitution present in the undergraduate organic chemistry curriculum, while providing…

  7. Radical Recombination Kinetics: An Experiment in Physical Organic Chemistry.

    ERIC Educational Resources Information Center

    Pickering, Miles

    1980-01-01

    Describes a student kinetic experiment involving second order kinetics as well as displaying photochromism using a wide variety of techniques from both physical and organic chemistry. Describes measurement of (1) the rate of the recombination reaction; (2) the extinction coefficient; and (3) the ESR spectrometer signal. (Author/JN)

  8. Biodiesel from Seeds: An Experiment for Organic Chemistry

    ERIC Educational Resources Information Center

    Goldstein, Steven W.

    2014-01-01

    Plants can store the chemical energy required by their developing offspring in the form of triglycerides. These lipids can be isolated from seeds and then converted into biodiesel through a transesterification reaction. This second-year undergraduate organic chemistry laboratory experiment exemplifies the conversion of an agricultural energy…

  9. Soap from Nutmeg: An Integrated Introductory Organic Chemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    de Mattos, Marcio C. S.; Nicodem, David E.

    2002-01-01

    The extraction of trimyristin from nutmeg, its purification, and its conversion to a soap (sodium myristate) are described. Concepts such as the isolation of a natural product, recrystallization, identification of a solid, solubility, acidity and basicity, and organic reaction can be presented to students using integrated experiments in an introductory experimental chemistry laboratory. These experiments can easily be done in three class periods of four hours.

    See Letter re: this article.

  10. Creatine Synthesis: An Undergraduate Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Smith, Andri L.; Tan, Paula

    2006-01-01

    Students in introductory chemistry classes typically appreciate seeing the connection between course content and the "real world". For this reason, we have developed a synthesis of creatine monohydrate--a popular supplement used in sports requiring short bursts of energy--for introductory organic chemistry laboratory courses. Creatine monohydrate…

  11. The Photochemical Isomerization of Maleic to Fumaric Acid: An Undergraduate Organic Chemistry Experiment.

    ERIC Educational Resources Information Center

    Castro, Albert J.; And Others

    1983-01-01

    Describes an undergraduate organic chemistry experiment on the photochemical isomerization of maleic to fumaric acid. Background information, chemical reactions involved, and experimental procedures are included. (JN)

  12. On the Successful Use of Inquiry-Driven Experiments in the Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Mohrig, Jerry R.; Hammond, Christina Noring; Colby, David A.

    2007-01-01

    The mix of guided-inquiry and design based experiments is feasible to do in introductory organic chemistry lab courses. It can provide students with experience in two parts of experimental chemistry such as the significance and careful analysis of experimental data and the design of experiments.

  13. An Enzyme Kinetics Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Olsen, Robert J.; Olsen, Julie A.; Giles, Greta A.

    2010-01-01

    An experiment using [superscript 1]H NMR spectroscopy to observe the kinetics of the acylase 1-catalyzed hydrolysis of "N"-acetyl-DL-methionine has been developed for the organic laboratory. The L-enantiomer of the reactant is hydrolyzed completely in less than 2 h, and [superscript 1]H NMR spectroscopic data from a single sample can be worked up…

  14. A Cost-Effective Two-Part Experiment for Teaching Introductory Organic Chemistry Techniques

    ERIC Educational Resources Information Center

    Sadek, Christopher M.; Brown, Brenna A.; Wan, Hayley

    2011-01-01

    This two-part laboratory experiment is designed to be a cost-effective method for teaching basic organic laboratory techniques (recrystallization, thin-layer chromatography, column chromatography, vacuum filtration, and melting point determination) to large classes of introductory organic chemistry students. Students are exposed to different…

  15. Structural Isomer Identification via NMR: A Nuclear Magnetic Resonance Experiment for Organic, Analytical, or Physical Chemistry.

    ERIC Educational Resources Information Center

    Szafran, Zvi

    1985-01-01

    Background information, procedures used, and typical results obtained are provided for an experiment that examines the ability of nuclear magnetic resonance (NMR) to distinguish between structural isomers via resonance multiplicities and chemical shifts. Reasons for incorporating the experiment into organic, analytical, or physical chemistry

  16. Synthesis and Metalation of a Ligand: An Interdisciplinary Laboratory Experiment for Second-Year Organic and Introductory Inorganic Chemistry Students

    ERIC Educational Resources Information Center

    Kasting, Benjamin J.; Bowser, Andrew K.; Anderson-Wile, Amelia M.; Wile, Bradley M.

    2015-01-01

    An interdisciplinary laboratory experiment involving second-year undergraduate organic chemistry and introductory inorganic chemistry undergraduate students is described. Organic chemistry students prepare a series of amine-bis(phenols) via a Mannich reaction, and characterize their products using melting point; FTIR; and [superscript 1]H,…

  17. Reaction Kinetics: An Experiment for Biochemistry and Organic Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Ewing, Sheila

    1982-01-01

    Describes an experiment to examine the kinetics of carbamate decomposition and the effect of buffer catalysis on the reaction. Includes background information, laboratory procedures, evaluation of data, and teaching suggestions. (Author/JN)

  18. The Synthesis of a Cockroach Pheromone: An Experiment for the Second-Year Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Feist, Patty L.

    2008-01-01

    This experiment describes the synthesis of gentisyl quinone isovalerate, or blattellaquinone, a sex pheromone of the German cockroach that was isolated and identified in 2005. The synthesis is appropriate for the second semester of a second-year organic chemistry laboratory course. It can be completed in two, three-hour laboratory periods and uses…

  19. Solvent-Free Wittig Reaction: A Green Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Leung, Sam H.; Angel, Stephen A.

    2004-01-01

    Some Wittig reactions can be carried out by grinding the reactants in a mortar with a pestle for about 20 minutes, as per investigation. A laboratory experiment involving a solvent-free Wittig reaction that can be completed in a three-hour sophomore organic chemistry laboratory class period, are developed.

  20. Solvent-Free Reductive Amination: An Organic Chemistry Experiment

    ERIC Educational Resources Information Center

    Goldstein, Steven W.; Cross, Amely V.

    2015-01-01

    The reductive amination reaction between an amine and an aldehyde or ketone is an important method to add an additional alkyl group to an amine nitrogen. In this experiment, students react a selection of benzylamines with aldehydes to form the corresponding imines. These imines are reduced with a mixture of "p"-toluenesulfonic acid…

  1. Parallel Combinatorial Esterification: A Simple Experiment for Use in the Second-Semester Organic Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Birney, David M.; Starnes, Stephen D.

    1999-11-01

    Combinatorial chemistry has revolutionized the way potential new drugs are discovered. This simple experiment utilizes the Fischer esterification, a common reaction in second-semester organic laboratories, to demonstrate the fundamentals of combinatorial methods. These include simultaneous synthesis of numerous compounds, a selective assay for a desired activity, and an algorithm for identifying the active structure. Using a parallel synthesis combinatorial method, each student in a lab section prepares a different ester. The targeted activity (the characteristic odor of wintergreen) is easily detected by smell. The student's enjoyment of the lab is enhanced by the preparation of several other characteristic odors as well.

  2. Synthesis of 10-Ethyl Flavin: A Multistep Synthesis Organic Chemistry Laboratory Experiment for Upper-Division Undergraduate Students

    ERIC Educational Resources Information Center

    Sichula, Vincent A.

    2015-01-01

    A multistep synthesis of 10-ethyl flavin was developed as an organic chemistry laboratory experiment for upper-division undergraduate students. Students synthesize 10-ethyl flavin as a bright yellow solid via a five-step sequence. The experiment introduces students to various hands-on experimental organic synthetic techniques, such as column…

  3. Insights Into Atmospheric Aqueous Organic Chemistry Through Controlled Experiments with Cloud Water Surrogates

    NASA Astrophysics Data System (ADS)

    Turpin, B. J.; Ramos, A.; Kirkland, J. R.; Lim, Y. B.; Seitzinger, S.

    2011-12-01

    There is considerable laboratory and field-based evidence that chemical processing in clouds and wet aerosols alters organic composition and contributes to the formation of secondary organic aerosol (SOA). Single-compound laboratory experiments have played an important role in developing aqueous-phase chemical mechanisms that aid prediction of SOA formation through multiphase chemistry. In this work we conduct similar experiments with cloud/fog water surrogates, to 1) evaluate to what extent the previously studied chemistry is observed in these more realistic atmospheric waters, and 2) to identify additional atmospherically-relevant precursors and products that require further study. We used filtered Camden and Pinelands, NJ rainwater as a surrogate for cloud water. OH radical (~10-12 M) was formed by photolysis of hydrogen peroxide and samples were analyzed in real-time by electrospray ionization mass spectroscopy (ESI-MS). Discrete samples were also analyzed by ion chromatography (IC) and ESI-MS after IC separation. All experiments were performed in duplicate. Standards of glyoxal, methylglyoxal and glycolaldehyde and their major aqueous oxidation products were also analyzed, and control experiments performed. Decreases in the ion abundance of many positive mode compounds and increases in the ion abundance of many negative mode compounds (e.g., organic acids) suggest that precursors are predominantly aldehydes, organic peroxides and/or alcohols. Real-time ESI mass spectra were consistent with the expected loss of methylglyoxal and subsequent formation of pyruvate, glyoxylate, and oxalate. New insights regarding other potential precursors and products will be provided.

  4. The Discovery-Oriented Approach to Organic Chemistry. 7. Rearrangement of "trans"-Stilbene Oxide with Bismuth Trifluoromethanesulfonate and Other Metal Triflates: A Microscale Green Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Christensen, James E.; Huddle, Matthew G.; Rogers, Jamie L.; Yung, Herbie; Mohan, Ram S.

    2008-01-01

    Although green chemistry principles are increasingly stressed in the undergraduate curriculum, there are only a few lab experiments wherein the toxicity of reagents is taken into consideration in the design of the experiment. We report a microscale green organic chemistry laboratory experiment that illustrates the utility of metal triflates,…

  5. The organic builder: a public experiment in artificial chemistries and self-replication.

    PubMed

    Hutton, Tim J

    2009-01-01

    We describe some results submitted by users of the Organic Builder, a Java applet where the rules of an artificial chemistry can be chosen in order to achieve a desired behavior. Though it was initially intended as a set of challenges to be tackled as a game, the users experimented with the system far beyond this and discovered several novel forms of self-replicators. When searching for a system with certain properties such asself-replication, making the system accessible to the public through a Web site is an unusual but effective way of making scientific discoveries, credit for which must go to the users themselves for their tireless experimentation and innovation. PMID:18855569

  6. SYLLABUS for CHEMISTRY 2310 ORGANIC CHEMISTRY 1

    E-print Network

    Simons, Jack

    SYLLABUS for CHEMISTRY 2310 ORGANIC CHEMISTRY 1 Lectures: Monday, Wednesday and Friday 8:35 AM-9 · Highly Recommended Equipment: Turning Point Clicker · Highly Recommended: (1) "Organic Chemistry I Homework. · Class Objective: To study and begin to understand organic chemistry · Methods: Lectures

  7. Extraction and [superscript 1]H NMR Analysis of Fats from Convenience Foods: A Laboratory Experiment for Organic Chemistry

    ERIC Educational Resources Information Center

    Hartel, Aaron M.; Moore, Amy C.

    2014-01-01

    The extraction and analysis of fats from convenience foods (crackers, cookies, chips, candies) has been developed as an experiment for a second-year undergraduate organic chemistry laboratory course. Students gravimetrically determine the fat content per serving and then perform a [superscript 1]H NMR analysis of the recovered fat to determine the…

  8. Exploring Atmospheric Aqueous Chemistry (and Secondary Organic Aerosol Formation) through OH Radical Oxidation Experiments, Droplet Evaporation and Chemical Modeling

    NASA Astrophysics Data System (ADS)

    Turpin, B. J.; Kirkland, J. R.; Lim, Y. B.; Ortiz-Montalvo, D. L.; Sullivan, A.; Häkkinen, S.; Schwier, A. N.; Tan, Y.; McNeill, V. F.; Collett, J. L.; Skog, K.; Keutsch, F. N.; Sareen, N.; Carlton, A. G.; Decesari, S.; Facchini, C.

    2013-12-01

    Gas phase photochemistry fragments and oxidizes organic emissions, making water-soluble organics ubiquitous in the atmosphere. My group and others have found that several water-soluble compounds react further in the aqueous phase forming low volatility products under atmospherically-relevant conditions (i.e., in clouds, fogs and wet aerosols). Thus, secondary organic aerosol can form as a result of gas followed by aqueous chemistry (aqSOA). We have used aqueous OH radical oxidation experiments coupled with product analysis and chemical modeling to validate and refine the aqueous chemistry of glyoxal, methylglyoxal, glycolaldehyde, and acetic acid. The resulting chemical model has provided insights into the differences between oxidation chemistry in clouds and in wet aerosols. Further, we conducted droplet evaporation experiments to characterize the volatility of the products. Most recently, we have conducted aqueous OH radical oxidation experiments with ambient mixtures of water-soluble gases to identify additional atmospherically-important precursors and products. Specifically, we scrubbed water-soluble gases from the ambient air in the Po Valley, Italy using four mist chambers in parallel, operating at 25-30 L min-1. Aqueous OH radical oxidation experiments and control experiments were conducted with these mixtures (total organic carbon ? 100 ?M-C). OH radicals (3.5E-2 ?M [OH] s-1) were generated by photolyzing H2O2. Precursors and products were characterized using electrospray ionization mass spectrometry (ESI-MS), ion chromatography (IC), IC-ESI-MS, and ultra high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Chemical modeling suggests that organic acids (e.g., oxalate, pyruvate, glycolate) are major products of OH radical oxidation at cloud-relevant concentrations, whereas organic radical - radical reactions result in the formation of oligomers in wet aerosols. Products of cloud chemistry and droplet evaporation have effective vapor pressures that are orders of magnitude lower when ammonium hydroxide is present (pH 7) than without (at lower pH). In Po Valley experiments, nitrogen-containing organics were prominent precursors and intermediates. Pyruvate and oxalate were among the products. Importantly, formation of aqSOA helps to explain the high O/C ratios found in atmospheric aerosols. While uncertainties remain large, global modeling suggests that aqSOA is comparable in magnitude to SOA formed through gas phase chemistry and vapor pressure driven partitioning (gasSOA).

  9. Explanation in organic chemistry.

    PubMed

    Goodwin, William

    2003-05-01

    In this paper, a model of a subclass of the explanations given in organic chemistry is developed. This model is supported by three concrete examples. The model suggests that in this discipline, laws, theories, and causal reasoning are interrelated in interesting and heretofore unexplored ways. The model also reserves a prominent place for idealizations and capacities ascribed on the basis of the structural features of molecules. The author hopes to have established that philosophical reflection on the methodology of organic chemistry can yield interesting and valuable new insights into classical issues in the philosophy of science. PMID:12796097

  10. Organic Chemistry in Space

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2009-01-01

    Astronomical observations, theoretical modeling, laboratory simulation and analysis of extraterrestrial material have enhanced our knowledge of the inventory of organic matter in the interstellar medium (ISM) and on small bodies such as comets and asteroids (Ehrenfreund & Charnley 2000). Comets, asteroids and their fragments, meteorites and interplanetary dust particles (IDPs), contributed significant amounts of extraterrestrial organic matter to the young Earth. This material degraded and reacted in a terrestrial prebiotic chemistry to form organic structures that may have served as building blocks for life on the early Earth. In this talk I will summarize our current understanding of the organic composition and chemistry of interstellar clouds. Molecules of astrobiological relevance include the building blocks of our genetic material: nucleic acids, composed of subunits such as N-heterocycles (purines and pyrimidines), sugars and amino acids. Signatures indicative of inheritance of pristine and modified interstellar material in comets and meteorites will also be discussed.

  11. Peer Mentoring in the General Chemistry and Organic Chemistry Laboratories: The Pinacol Rearrangement--An Exercise in NMR and IR Spectroscopy for General Chemistry and Organic Chemistry Laboratories

    ERIC Educational Resources Information Center

    Arrington, Caleb A.; Hill, Jameica B.; Radfar, Ramin; Whisnant, David M.; Bass, Charles G.

    2008-01-01

    This article describes a discovery experiment for general chemistry and organic chemistry labs. Although the pinacol rearrangement has been employed in undergraduate organic laboratories before, in this application organic chemistry students act as mentors to students of general chemistry. Students work together using distillation--a new technique…

  12. The 1953 Stanley L. Miller Experiment: Fifty Years of Prebiotic Organic Chemistry

    NASA Technical Reports Server (NTRS)

    Lazcano, Antonio; Bada, Jeffrey L.

    2003-01-01

    The field of prebiotic chemistry effectively began with a publication in Science 50 years ago by Stanley L. Miller on the spark discharge synthesis of amino acids and other compounds using a mixture of reduced gases that were thought to represent the components of the atmosphere on the primitive Earth. On the anniversary of this landmark publication, we provide here an accounting of the events leading to the publication of the paper. We also discuss the historical aspects that lead up to the landmark Miller experiment.

  13. Online Organic Chemistry

    ERIC Educational Resources Information Center

    Janowicz, Philip A.

    2010-01-01

    This is a comprehensive study of the many facets of an entirely online organic chemistry course. Online homework with structure-drawing capabilities was found to be more effective than written homework. Online lecture was found to be just as effective as in-person lecture, and students prefer an online lecture format with shorter Webcasts. Online…

  14. The Separation and Identification of Two Unknown Solid Organic Compounds: An Experiment for the Sophomore Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Feist, Patty L.

    2004-01-01

    Segregation and recognition of two unfamiliar concrete organic compounds are achieved through microscale flash chromatography and spectroscopy plus melting point verifications respectively. This inexpensive and harmless microscale experiment for sophomore students ensures exercise in chromatographic and spectroscopic methods.

  15. An NMR Study of Isotope Effect on Keto-Enol Tautomerization: A Physical Organic Chemistry Experiment

    ERIC Educational Resources Information Center

    Atkinson, D.; Chechik, V.

    2004-01-01

    Isotope substitution often affects the rate of an organic reaction and can be used to reveal the underlying mechanism. A series of experiments that use (super 1)H NMR to determine primary and secondary isotope effects, activation parameters, and the regioselectivity of butanone enolization are described.

  16. The Birthday of Organic Chemistry.

    ERIC Educational Resources Information Center

    Benfey, Otto Theodor; Kaufman, George B.

    1979-01-01

    Describes how the synthesis of urea, 150 years ago, was a major factor in breaking the artificial barrier that existed between organic and inorganic chemistry, and this contributed to the rapid growth of organic chemistry. (GA)

  17. Six Pillars of Organic Chemistry

    ERIC Educational Resources Information Center

    Mullins, Joseph J.

    2008-01-01

    This article describes an approach to teaching organic chemistry, which is to have students build their knowledge of organic chemistry upon a strong foundation of the fundamental concepts of the subject. Specifically, the article focuses upon a core set of concepts that I call "the six pillars of organic chemistry": electronegativity, polar…

  18. Synthesis and Small Molecule Exchange Studies of a Magnesium Bisformate Metal-Organic Framework: An Experiment in Host-Guest Chemistry for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Rood, Jeffrey A.; Henderson, Kenneth W.

    2013-01-01

    concepts of host-guest chemistry and size exclusion in porous metal-organic frameworks (MOFs). The experiment has been successfully carried out in both introductory and advanced-level inorganic chemistry laboratories. Students synthesized the porous MOF, alpha-Mg[subscript…

  19. Organic chemistry on Titan

    NASA Technical Reports Server (NTRS)

    Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.

    1979-01-01

    Features taken from various models of Titan's atmosphere are combined in a working composite model that provides environmental constraints within which different pathways for organic chemical synthesis are determined. Experimental results and theoretical modeling suggest that the organic chemistry of the satellite is dominated by two processes: photochemistry and energetic particle bombardment. Photochemical reactions of CH4 in the upper atmosphere can account for the presence of C2 hydrocarbons. Reactions initiated at various levels of the atmosphere by cosmic rays, Saturn 'wind', and solar wind particle bombardment of a CH4-N2 atmospheric mixture can account for the UV-visible absorbing stratospheric haze, the reddish appearance of the satellite, and some of the C2 hydrocarbons. In the lower atmosphere photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. It is concluded that the surface of Titan may contain ancient or recent organic matter (or both) produced in the atmosphere.

  20. A Physical Chemist Looks at Organic Chemistry Lab.

    ERIC Educational Resources Information Center

    Pickering, Miles

    1988-01-01

    Criticizes the way organic chemistry teaching laboratory experiments are approached from the viewpoint of physical chemistry. Compares these experiments to cooking. Stresses that what matters is not the practice of the finger skills of organic chemistry but practice in the style of thinking of organic chemists. (CW)

  1. Enantiomeric Resolution of [Plus or Minus] Mandelic Acid by (1R,2S)-(--)-Ephedrine: An Organic Chemistry Laboratory Experiment Illustrating Stereoisomerism

    ERIC Educational Resources Information Center

    Baar, Marsha R.; Cerrone-Szakal, Andrea L.

    2005-01-01

    The experiment involving enantiomeric resolution, as an illustration of chiral technology, is an excellent early organic chemistry lab experiment. The success of this enantiomeric resolution can be judged by melting point, demonstrated by [plus or minus]-mandelic acid-(1R,2S)-(--)-ephedrine system.

  2. Mars aqueous chemistry experiment

    NASA Technical Reports Server (NTRS)

    Clark, Benton C.; Mason, Larry W.

    1993-01-01

    The Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. Progress for the first year MACE PIDDP is reported in two major areas of effort: (1) fluids handling concepts, definition, and breadboard fabrication and (2) aqueous chemistry ion sensing technology and test facility integration. A fluids handling breadboard was designed, fabricated, and tested at Mars ambient pressure. The breadboard allows fluid manipulation scenarios to be tested under the reduced pressure conditions expected in the Martian atmosphere in order to validate valve operations, orchestrate analysis sequences, investigate sealing integrity, and to demonstrate efficacy of the fluid handling concept. Additional fluid manipulation concepts have also been developed based on updated MESUR spacecraft definition. The Mars Aqueous Chemistry Experiment Ion Selective Electrode (ISE) facility was designed as a test bed to develop a multifunction interface for measurements of chemical ion concentrations in aqueous solution. The interface allows acquisition of real time data concerning the kinetics and heats of salt dissolution, and transient response to calibration and solubility events. An array of ion selective electrodes has been interfaced and preliminary calibration studies performed.

  3. Diastereoselectivity In The Reduction Of Alpha-Hydroxyketones: An Experiment For The Chemistry Major Organic Laboratory

    ERIC Educational Resources Information Center

    Ball, David B.

    2006-01-01

    An experiment is developed that requires the use of the NMR spectrometer via a NOESY1D experiment to determine the diastereoselectivity in the reduction of alpha-methylbenzoin with various reducing agents. Students must synthesize racemic alpha-hydroxyketones, perform reductions under chelating and non-chelating conditions, and quantitatively…

  4. Synthesis of Chemiluminescent Esters: A Combinatorial Synthesis Experiment for Organic Chemistry Students

    ERIC Educational Resources Information Center

    Duarte, Robert; Nielson, Janne T.; Dragojlovic, Veljko

    2004-01-01

    A group of techniques aimed at synthesizing a large number of structurally diverse compounds is called combinatorial synthesis. Synthesis of chemiluminescence esters using parallel combinatorial synthesis and mix-and-split combinatorial synthesis is experimented.

  5. Detection of Salicylic Acid in Willow Bark: An Addition to a Classic Series of Experiments in the Introductory Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Clay, Matthew D.; McLeod, Eric J.

    2012-01-01

    Salicylic acid and its derivative, acetylsalicylic acid, are often encountered in introductory organic chemistry experiments, and mention is often made that salicylic acid was originally isolated from the bark of the willow tree. This biological connection, however, is typically not further pursued, leaving students with an impression that biology…

  6. Determination of the Rotational Barrier for Kinetically Stable Conformational Isomers via NMR and 2D TLC: An Introductory Organic Chemistry Experiment

    ERIC Educational Resources Information Center

    Rushton, Gregory T.; Burns, William G.; Lavin, Judi M.; Chong, Yong S.; Pellechia, Perry; Shimizu, Ken D.

    2007-01-01

    An experiment to determine the rotational barrier about a C[subscript aryl]-N[subscript imide] single bond that is suitable for first-semester organic chemistry students is presented. The investigation begins with the one-step synthesis of a N,N'-diaryl naphthalene diimide, which exists as two room temperature-stable atropisomers (syn and anti).…

  7. Asymmetric Epoxidation: A Twinned Laboratory and Molecular Modeling Experiment for Upper-Level Organic Chemistry Students

    ERIC Educational Resources Information Center

    Hii, King Kuok; Rzepa, Henry S.; Smith, Edward H.

    2015-01-01

    The coupling of a student experiment involving the preparation and use of a catalyst for the asymmetric epoxidation of an alkene with computational simulations of various properties of the resulting epoxide is set out in the form of a software toolbox from which students select appropriate components. At the core of these are the computational…

  8. Evaluating Mechanisms of Dihydroxylation by Thin-Layer Chromatography: A Microscale Experiment for Organic Chemistry

    ERIC Educational Resources Information Center

    Burlingham, Benjamin T.; Rettig, Joseph C.

    2008-01-01

    A microscale experiment is presented in which cyclohexene is dihydroxylated under three sets of conditions: epoxidation-hydrolysis, permanganate oxidation, and the Woodward dihydroxylation. The products of the reactions are determined by the use of thin-layer chromatography. Teams of students are presented with proposed mechanisms for each…

  9. Organic Chemistry for the Gifted.

    ERIC Educational Resources Information Center

    deBeer, W. H. J.

    In response to a serious shortage of chemists in South Africa, gifted secondary school students are enrolled in an enrichment program in organic chemistry and encouraged to consider chemistry or one of its related fields as a career. The introductory portion of the program involves approximately 90 hours over a 3-year period while the advanced…

  10. Mars aqueous chemistry experiment

    NASA Technical Reports Server (NTRS)

    Clark, Benton C.; Mason, Larry W.

    1994-01-01

    Mars Aqueous Chemistry Experiment (MACE) is designed to conduct a variety of measurements on regolith samples, encompassing mineral phase analyses, chemical interactions with H2O, and physical properties determinations. From these data, much can be learned or inferred regarding the past weathering environment, the contemporaneous soil micro-environments, and the general chemical and physical state of the Martian regolith. By analyzing both soil and duricrust samples, the nature of the latter may become more apparent. Sites may be characterized for comparative purposes and criteria could be set for selection of high priority materials on future sample return missions. The second year of the MACE project has shown significant progress in two major areas. MACE Instrument concept definition is a baseline design that has been generated for the complete MACE instrument, including definition of analysis modes, mass estimates and thermal model. The design includes multiple reagent reservoirs, 10 discrete analysis cells, sample manipulation capability, and thermal control. The MACE Measurement subsystems development progress is reported regarding measurement capabilities for aqueous ion sensing, evolved gas sensing, solution conductivity measurement, reagent addition (titration) capabilities, and optical sensing of suspended particles.

  11. Organic chemistry in space

    NASA Technical Reports Server (NTRS)

    Johnson, R. D.

    1977-01-01

    Organic cosmochemistry, organic materials in space exploration, and biochemistry of man in space are briefly surveyed. A model of Jupiter's atmosphere is considered, and the search for organic molecules in the solar system and in interstellar space is discussed. Materials and analytical techniques relevant to space exploration are indicated, and the blood and urine analyses performed on Skylab are described.

  12. Bioactivity in Organic Chemistry Courses.

    ERIC Educational Resources Information Center

    Ferguson, Lloyd N.

    1980-01-01

    Presented are three ways in which bioactivity of organic compounds has been introduced in organic chemistry courses. One is to point out a typical bioactivity of a given functional group. A second is to discuss biorganic mechanisms. A third is to draw structure-activity correlations (SAR). (Author/HM)

  13. Mass spectrometry. [in organic chemistry

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Shackleton, C. H. L.; Howe, I.; Chizhov, O. S.

    1978-01-01

    A review of mass spectrometry in organic chemistry is given, dealing with advances in instrumentation and computer techniques, selected topics in gas-phase ion chemistry, and applications in such fields as biomedicine, natural-product studies, and environmental pollution analysis. Innovative techniques and instrumentation are discussed, along with chromatographic-mass spectrometric on-line computer techniques, mass spectral interpretation and management techniques, and such topics in gas-phase ion chemistry as electron-impact ionization and decomposition, photoionization, field ionization and desorption, high-pressure mass spectrometry, ion cyclotron resonance, and isomerization reactions of organic ions. Applications of mass spectrometry are examined with respect to bio-oligomers and their constituents, biomedically important substances, microbiology, environmental organic analysis, and organic geochemistry.

  14. Titan's organic chemistry

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Thompson, W. R.; Khare, B. N.

    1985-01-01

    Voyager discovered nine simple organic molecules in the atmosphere of Titan. Complex organic solids, called tholins, produced by irradiation of the simulated Titanian atmosphere, are consistent with measured properties of Titan from ultraviolet to microwave frequencies and are the likely main constituents of the observed red aerosols. The tholins contain many of the organic building blocks central to life on earth. At least 100-m, and possibly kms thicknesses of complex organics have been produced on Titan during the age of the solar system, and may exist today as submarine deposits beneath an extensive ocean of simple hydrocarbons.

  15. Soil Organic Chemistry.

    ERIC Educational Resources Information Center

    Anderson, G.

    1979-01-01

    A brief review is presented of some of the organic compounds and reactions that occur in soil. Included are nitrogenous compounds, compounds of phosphorus and sulfur, carbohydrates, phenolic compounds, and aliphatic acids. (BB)

  16. Interstellar organic chemistry.

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1972-01-01

    Most of the interstellar organic molecules have been found in the large radio source Sagittarius B2 toward the galactic center, and in such regions as W51 and the IR source in the Orion nebula. Questions of the reliability of molecular identifications are discussed together with aspects of organic synthesis in condensing clouds, degradational origin, synthesis on grains, UV natural selection, interstellar biology, and contributions to planetary biology.

  17. Organic Chemistry of Meteorites

    NASA Technical Reports Server (NTRS)

    Chang, S.; Morrison, David (Technical Monitor)

    1994-01-01

    Studies of the molecular structures and C,N,H-isotopic compositions of organic matter in meteorites reveal a complex history beginning in the parent interstellar cloud which spawned the solar system. Incorporation of interstellar dust and gas in the protosolar nebula followed by further thermal and aqueous processing on primordial parent bodies of carbonaceous, meteorites have produced an inventory of diverse organic compounds including classes now utilized in biochemistry. This inventory represents one possible set of reactants for chemical models for the origin of living systems on the early Earth. Evidence bearing on the history of meteoritic organic matter from astronomical observations and laboratory investigations will be reviewed and future research directions discussed.

  18. Radiation Chemistry in Organized Assemblies.

    ERIC Educational Resources Information Center

    Thomas, J. K.; Chen, T. S.

    1981-01-01

    Expands the basic concepts regarding the radiation chemistry of simple aqueous systems to more complex, but well defined, organized assemblies. Discusses the differences in behavior in comparison to simple systems. Reviews these techniques: pulse radiolysis, laser flash, photolysis, and steady state irradiation by gamma rays or light. (CS)

  19. Organic chemistry in meteorites

    NASA Astrophysics Data System (ADS)

    Botta, Oliver

    2002-11-01

    Carbonaceous chondrites contain a suite of soluble organic compounds that possess characteristics that help to understand their formation and to trace back the early history of the solar system. Relative amino acid abundances can be used to discriminate between different parent bodies. The Tagish Lake meteorite is a unique sample from a new type of solar system object that will help to further constrain the physical and chemical conditions found on parent bodies. Enantiomeric excesses have been detected in nonbiological amino acids in the Murchison and Murray meteorites that are still difficult to explain in the current scenario for the synthesis of extraterrestrial amino acids. Finally, new classes of compounds, dipeptides and sugar-related molecules, have been detected in CM carbonaceous chondrites.

  20. Titan: a laboratory for prebiological organic chemistry

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Thompson, W. R.; Khare, B. N.

    1992-01-01

    When we examine the atmospheres of the Jovian planets (Jupiter, Saturn, Uranus, and Neptune), the satellites in the outer solar system, comets, and even--through microwave and infrared spectroscopy--the cold dilute gas and grains between the stars, we find a rich organic chemistry, presumably abiological, not only in most of the solar system but throughout the Milky Way galaxy. In part because the composition and surface pressure of the Earth's atmosphere 4 x 10(9) years ago are unknown, laboratory experiments on prebiological organic chemistry are at best suggestive; but we can test our understanding by looking more closely at the observed extraterrestrial organic chemistry. The present Account is restricted to atmospheric organic chemistry, primarily on the large moon of Saturn. Titan is a test of our understanding of the organic chemistry of planetary atmospheres. Its atmospheric bulk composition (N2/CH4) is intermediate between the highly reducing (H2/He/CH4/NH3/H2O) atmospheres of the Jovian planets and the more oxidized (N2/CO2/H2O) atmospheres of the terrestrial planets Mars and Venus. It has long been recognized that Titan's organic chemistry may have some relevance to the events that led to the origin of life on Earth. But with Titan surface temperatures approximately equal to 94 K and pressures approximately equal to 1.6 bar, the oceans of the early Earth have no ready analogue on Titan. Nevertheless, tectonic events in the water ice-rich interior or impact melting and slow re-freezing may lead to an episodic availability of liquid water. Indeed, the latter process is the equivalent of a approximately 10(3)-year-duration shallow aqueous sea over the entire surface of Titan.

  1. Titan: a laboratory for prebiological organic chemistry.

    PubMed

    Sagan, C; Thompson, W R; Khare, B N

    1992-01-01

    When we examine the atmospheres of the Jovian planets (Jupiter, Saturn, Uranus, and Neptune), the satellites in the outer solar system, comets, and even--through microwave and infrared spectroscopy--the cold dilute gas and grains between the stars, we find a rich organic chemistry, presumably abiological, not only in most of the solar system but throughout the Milky Way galaxy. In part because the composition and surface pressure of the Earth's atmosphere 4 x 10(9) years ago are unknown, laboratory experiments on prebiological organic chemistry are at best suggestive; but we can test our understanding by looking more closely at the observed extraterrestrial organic chemistry. The present Account is restricted to atmospheric organic chemistry, primarily on the large moon of Saturn. Titan is a test of our understanding of the organic chemistry of planetary atmospheres. Its atmospheric bulk composition (N2/CH4) is intermediate between the highly reducing (H2/He/CH4/NH3/H2O) atmospheres of the Jovian planets and the more oxidized (N2/CO2/H2O) atmospheres of the terrestrial planets Mars and Venus. It has long been recognized that Titan's organic chemistry may have some relevance to the events that led to the origin of life on Earth. But with Titan surface temperatures approximately equal to 94 K and pressures approximately equal to 1.6 bar, the oceans of the early Earth have no ready analogue on Titan. Nevertheless, tectonic events in the water ice-rich interior or impact melting and slow re-freezing may lead to an episodic availability of liquid water. Indeed, the latter process is the equivalent of a approximately 10(3)-year-duration shallow aqueous sea over the entire surface of Titan. PMID:11537156

  2. Using Artificial Soil and Dry-Column Flash Chromatography to Simulate Organic Substance Leaching Process: A Colorful Environmental Chemistry Experiment

    ERIC Educational Resources Information Center

    de Avellar, Isa G. J.; Cotta, Tais A. P. G.; Neder, Amarilis de V. Finageiv

    2012-01-01

    Soil is an important and complex environmental compartment and soil contamination contributes to the pollution of aquifers and other water basins. A simple and low-cost experiment is described in which the mobility of three organic compounds in an artificial soil is examined using dry-column flash chromatography. The compounds were applied on top…

  3. Headspace GC-MS Analysis of Halogenated Volatile Organic Compounds in Aqueous Samples: An Experiment for General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Keller, John W.; Fabbri, Cindy E.

    2012-01-01

    Analysis of halogenated volatile organic compounds (HVOCs) by GC-MS demonstrates the use of instrumentation in the environmental analysis of pollutant molecules and enhances student understanding of stable isotopes in nature. In this experiment, students separated and identified several HVOCs that have been implicated as industrial groundwater…

  4. Reaction-Map of Organic Chemistry

    ERIC Educational Resources Information Center

    Murov, Steven

    2007-01-01

    The Reaction-Map of Organic Chemistry lists all the most commonly studied reactions in organic chemistry on one page. The discussed Reaction-Map will act as another learning aide for the students, making the study of organic chemistry much easier.

  5. Medicinal Chemistry/Pharmacology in Sophomore Organic Chemistry.

    ERIC Educational Resources Information Center

    Harrison, Aline M.

    1989-01-01

    Discussed is a series of lectures designed to illustrate the use of general organic chemical principles in molecular biology, introduce current research in interdisciplinary areas to the beginner, increase interest in organic chemistry, and bridge the gap between traditional organic chemistry, biology, and the consumer. An outline is presented.…

  6. Hydrothermal organic synthesis experiments

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    The serious scientific debate about spontaneous generation which raged for centuries reached a climax in the nineteenth century with the work of Spallanzani, Schwann, Tyndall, and Pasteur. These investigators demonstrated that spontaneous generation from dead organic matter does not occur. Although no aspects of these experiments addressed the issue of whether organic compounds could be synthesized abiotically, the impact of the experiments was great enough to cause many investigators to assume that life and its organic compounds were somehow fundamentally different than inorganic compounds. Meanwhile, other nineteenth-century investigators were showing that organic compounds could indeed be synthesized from inorganic compounds. In 1828 Friedrich Wohler synthesized urea in an attempt to form ammonium cyanate by heating a solution containing ammonia and cyanic acid. This experiment is generally recognized to be the first to bridge the artificial gap between organic and inorganic chemistry, but it also showed the usefulness of heat in organic synthesis. Not only does an increase in temperature enhance the rate of urea synthesis, but Walker and Hambly showed that equilibrium between urea and ammonium cyanate was attainable and reversible at 100 C. Wohler's synthesis of urea, and subsequent syntheses of organic compounds from inorganic compounds over the next several decades dealt serious blows to the 'vital force' concept which held that: (1) organic compounds owe their formation to the action of a special force in living organisms; and (2) forces which determine the behavior of inorganic compounds play no part in living systems. Nevertheless, such progress was overshadowed by Pasteur's refutation of spontaneous generation which nearly extinguished experimental investigations into the origins of life for several decades. Vitalism was dealt a deadly blow in the 1950's with Miller's famous spark-discharge experiments which were undertaken in the framework of the Oparin and Haldane hypotheses concerning the origin of life. These hypotheses were constructed on some basic assumptions which included a reduced atmosphere, and a low surface temperature for the early Earth. These ideas meshed well with the prevailing hypothesis of the 1940's and 50's that the Earth had formed through heterogeneous accretion of dust from a condensing solar nebula. Miller's experiments were extremely successful, and were followed by numerous other experiments by various investigators who employed a wide variety of energy sources for abiotic synthesis including spark discharges, ultra-violet radiation, heat, shock waves, plasmas, gamma rays, and other forms of energy. The conclusion reached from this body of work is that energy inputs can drive organic synthesis from a variety of inorganic starting materials.

  7. Chemistry: Experiments, Demonstrations and Other Activities Suggested for Chemistry.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    This publication is a handbook used in conjunction with the course of study in chemistry developed through the New York State Education Department and The University of the State of New York. It contains experiments, demonstrations, and other activities for a chemistry course. Areas covered include the science of chemistry, the atomic structure of…

  8. Chemistry of Organic Electronic Materials 6483-Fall

    E-print Network

    Sherrill, David

    Chemistry of Organic Electronic Materials 6483- Fall Tuesdays organic materials. The discussion will include aspects of synthesis. Example of a flexible organic light-emitting diode (OLED) (from the Center

  9. Chemistry of Covalent Organic Frameworks.

    PubMed

    Waller, Peter J; Gándara, Felipe; Yaghi, Omar M

    2015-12-15

    Linking organic molecules by covalent bonds into extended solids typically generates amorphous, disordered materials. The ability to develop strategies for obtaining crystals of such solids is of interest because it opens the way for precise control of the geometry and functionality of the extended structure, and the stereochemical orientation of its constituents. Covalent organic frameworks (COFs) are a new class of porous covalent organic structures whose backbone is composed entirely of light elements (B, C, N, O, Si) that represent a successful demonstration of how crystalline materials of covalent solids can be achieved. COFs are made by combination of organic building units covalently linked into extended structures to make crystalline materials. The attainment of crystals is done by several techniques in which a balance is struck between the thermodynamic reversibility of the linking reactions and their kinetics. This success has led to the expansion of COF materials to include organic units linked by these strong covalent bonds: B-O, C-N, B-N, and B-O-Si. Since the organic constituents of COFs, when linked, do not undergo significant change in their overall geometry, it has been possible to predict the structures of the resulting COFs, and this advantage has facilitated their characterization using powder X-ray diffraction (PXRD) techniques. It has also allowed for the synthesis of COF structures by design and for their formation with the desired composition, pore size, and aperture. In practice, the modeled PXRD pattern for a given expected COF is compared with the experimental one, and depending on the quality of the match, this is used as a starting point for solving and then refining the crystal structure of the target COF. These characteristics make COFs an attractive class of new porous materials. Accordingly, they have been used as gas storage materials for energy applications, solid supports for catalysis, and optoelectronic devices. A large and growing library of linkers amenable to the synthesis of COFs is now available, and new COFs and topologies made by reticular synthesis are being reported. Much research is also directed toward the development of new methods of linking organic building units to generate other crystalline COFs. These efforts promise not only new COF chemistry and materials, but also the chance to extend the precision of molecular covalent chemistry to extended solids. PMID:26580002

  10. Caring for the Environment while Teaching Organic Chemistry

    ERIC Educational Resources Information Center

    Santos, Elvira Santos; Gavilan Garcia, Irma Cruz; Lejarazo Gomez, Eva Florencia

    2004-01-01

    A comprehensive program in the field of green chemistry, which concentrates on processing and managing of wastes produced during laboratory experiments, is presented. The primary aim of the program is to instill a sense of responsibility and a concern for the environment through organic chemistry education.

  11. A Multistep Synthesis for an Advanced Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Chang Ji; Peters, Dennis G.

    2006-01-01

    Multistep syntheses are often important components of the undergraduate organic laboratory experience and a three-step synthesis of 5-(2-sulfhydrylethyl) salicylaldehyde was described. The experiment is useful as a special project for an advanced undergraduate organic chemistry laboratory course and offers opportunities for students to master a…

  12. Incorporation of Medicinal Chemistry into the Organic Chemistry Curriculum

    ERIC Educational Resources Information Center

    Forbes, David C.

    2004-01-01

    Application of concepts presented in organic chemistry lecture using a virtual project involving the sythesis of medicinally important compounds is emphasized. The importance of reinforcing the concepts from lecture in lab, thus providing a powerful instructional means is discussed.

  13. Interdisciplinary Chemistry Experiment: An Environmentally Friendly Extraction of Lycopene

    ERIC Educational Resources Information Center

    Zhu, Jie; Zhang, Mingjie; Liu, Qingwei

    2008-01-01

    A novel experiment for the extraction of lycopene from tomato paste without the use of an organic solvent is described. The experiment employs polymer, green, and analytical chemistry. This environmentally friendly extraction is more efficient and requires less time than the traditional approach using an organic solvent. The extraction is…

  14. 5.13 Organic Chemistry II, Fall 2003

    E-print Network

    Jamison, Timothy F.

    Intermediate organic chemistry. Synthesis, structure determination, mechanism, and the relationships between structure and reactivity emphasized. Special topics in organic chemistry included to illustrate the role of organic ...

  15. 5.13 Organic Chemistry II, Spring 2003

    E-print Network

    Swager, Timothy Manning

    Intermediate organic chemistry. Synthesis, structure determination, mechanism, and the relationships between structure and reactivity emphasized. Special topics in organic chemistry included to illustrate the role of organic ...

  16. Synthesis of Aspirin: A General Chemistry Experiment

    NASA Astrophysics Data System (ADS)

    Olmsted, John A., III

    1998-10-01

    An experiment is described that is suitable for the early portion of the laboratory in a general chemistry course and integrates organic examples. It is the two-step synthesis of aspirin starting from oil of wintergreen. The mechanism for this synthesis provides examples of three major classes of chemical reactions: hydrolysis, condensation, and proton transfer. To understand the chemistry, the student must be able to recognize the common molecular framework shared by oil of wintergreen, salicylic acid, and aspirin and to identify the -OH and -CO2 sites where chemical changes occur. The experiment differs in three ways from traditional aspirin synthesis experiments for general chemistry. It is designed to be performed early rather than late; it starts from a naturally occurring material and requires two steps rather than one; and it utilizes FTIR spectroscopy to distinguish among oil of wintergreen starting material, salicylic acid intermediate, and aspirin product. The use of FTIR spectroscopy introduces students to a modern analytical technique that is currently used in research involving aspirin.

  17. Mechanochemical Synthesis of Two Polymorphs of the Tetrathiafulvalene-Chloranil Charge Transfer Salt: An Experiment for Organic Chemistry

    ERIC Educational Resources Information Center

    Wixtrom, Alex; Buhler, Jessica; Abdel-Fattah, Tarek

    2014-01-01

    Mechanochemical syntheses avoid or considerably reduce the use of reaction solvents, thus providing green chemistry synthetic alternatives that are both environmentally friendly and economically advantageous. The increased solid-state reactivity generated by mechanical energy imparted to the reactants by grinding or milling can offer alternative…

  18. Understanding Academic Performance in Organic Chemistry

    ERIC Educational Resources Information Center

    Szu, Evan; Nandagopal, Kiruthiga; Shavelson, Richard J.; Lopez, Enrique J.; Penn, John H.; Scharberg, Maureen; Hill, Geannine W.

    2011-01-01

    Successful completion of organic chemistry is a prerequisite for many graduate and professional programs in science, technology, engineering, and mathematics, yet the failure rate for this sequence of courses is notoriously high. To date, few studies have examined why some students succeed while others have difficulty in organic chemistry. This…

  19. A Discovery Chemistry Experiment on Buffers

    ERIC Educational Resources Information Center

    Kulevich, Suzanne E.; Herrick, Richard S.; Mills, Kenneth V.

    2014-01-01

    The Holy Cross Chemistry Department has designed and implemented an experiment on buffers as part of our Discovery Chemistry curriculum. The pedagogical philosophy of Discovery Chemistry is to make the laboratory the focal point of learning for students in their first two years of undergraduate instruction. We first pose questions in prelaboratory…

  20. Green chemistry oriented organic synthesis in water.

    PubMed

    Simon, Marc-Olivier; Li, Chao-Jun

    2012-02-21

    The use of water as solvent features many benefits such as improving reactivities and selectivities, simplifying the workup procedures, enabling the recycling of the catalyst and allowing mild reaction conditions and protecting-group free synthesis in addition to being benign itself. In addition, exploring organic chemistry in water can lead to uncommon reactivities and selectivities complementing the organic chemists' synthetic toolbox in organic solvents. Studying chemistry in water also allows insight to be gained into Nature's way of chemical synthesis. However, using water as solvent is not always green. This tutorial review briefly discusses organic synthesis in water with a Green Chemistry perspective. PMID:22048162

  1. Preparation, Characterization, and Postsynthetic Modification of Metal-Organic Frameworks: Synthetic Experiments for an Undergraduate Laboratory Course in Inorganic Chemistry

    ERIC Educational Resources Information Center

    Sumida, Kenji; Arnold, John

    2011-01-01

    Metal-organic frameworks (MOFs) are crystalline materials that are composed of an infinite array of metal nodes (single ions or clusters) linked to one another by polyfunctional organic compounds. Because of their extraordinary surface areas and high degree of control over the physical and chemical properties, these materials have received much…

  2. Acid-Catalyzed Preparation of Biodiesel from Waste Vegetable Oil: An Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bladt, Don; Murray, Steve; Gitch, Brittany; Trout, Haylee; Liberko, Charles

    2011-01-01

    This undergraduate organic laboratory exercise involves the sulfuric acid-catalyzed conversion of waste vegetable oil into biodiesel. The acid-catalyzed method, although inherently slower than the base-catalyzed methods, does not suffer from the loss of product or the creation of emulsion producing soap that plagues the base-catalyzed methods when…

  3. Oxidation of Borneol to Camphor Using Oxone and Catalytic Sodium Chloride: A Green Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Lang, Patrick T.; Harned, Andrew M.; Wissinger, Jane E.

    2011-01-01

    A new green oxidation procedure was developed for the undergraduate organic teaching laboratories using Oxone and a catalytic quantity of sodium chloride for the conversion of borneol to camphor. This simple 1 h, room temperature reaction afforded high quality and yield of product, was environmentally friendly, and produced negligible quantities…

  4. Mars Aqueous Chemistry Experiment (MACE)

    NASA Technical Reports Server (NTRS)

    Benton, Clark C. (Editor)

    1995-01-01

    The concept of an aqueous-based chemical analyzer for Martian surface materials has been demonstrated to be feasible. During the processes of analysis, design, breadboarding, and most importantly, testing, it has become quite apparent that there are many challenges in implementing such a system. Nonetheless, excellent progress has been made and a number of problems which arose have been solved. The ability to conduct this work under a development environment which is separate and which precedes the project-level development has allowed us to find solutions to these implementation realities at low cost. If the instrument had been selected for a mission without this laboratory pre-project work, the costs of implementation would be much higher. In the four areas covered in Sections D, E, F, and G of this Final Report, outstanding progress has been made. There still remains the task of flight-qualifying certain of the components. This is traditionally done under the aegis of a Flight Project, but just as the concept development can be done at much lower cost when kept small and focused, so could the qualification program of critical parts benefit. We recommend, therefore, that NASA consider means of such qualifications and brass-boarding, in advance of final flight development. This is a generic recommendation, but hardware such as the Mars aqueous chemistry experiment (MACE) and other similarly-new concepts are particularly applicable. MACE now has wide versatility, in being able to reliably dispense both liquids and solids as chemical reagents to an entire suite of samples. The hardware and the experiment is much simpler than was developed for the Viking Biology instrument, yet can accomplish all the inorganic chemical measurements that the Viking desing was capable of. In addition, it is much more flexible and versatile to new experiment protocols (and reagents) than the Viking design ever could have been. MACE opens up the opportunity for many different scientific disciplines to design sub- experiments and to benefit from the investigations that can be conducted. In this sense, it will have the value of a facility, although our recommendation would be that it be under the stewardship of a single lead investigator to insure that conflicting requirements not compromise the straight-forward design that have been achieved. MACE is an excellent candidate for upcoming Mars missions, including the Mars Surveyor Program (MSP) lander missions in 2001 and 2003. In addition, it could be used for any mission to the surface of any other planet or planetary body (including small bodies). An important next step is to encourage various investigators to propose specific uses for this experiment that specifically address their major scientific objectives for upcoming missions.

  5. Mars Aqueous Chemistry Experiment (MACE)

    NASA Astrophysics Data System (ADS)

    Benton, Clark C.

    1995-12-01

    The concept of an aqueous-based chemical analyzer for Martian surface materials has been demonstrated to be feasible. During the processes of analysis, design, breadboarding, and most importantly, testing, it has become quite apparent that there are many challenges in implementing such a system. Nonetheless, excellent progress has been made and a number of problems which arose have been solved. The ability to conduct this work under a development environment which is separate and which precedes the project-level development has allowed us to find solutions to these implementation realities at low cost. If the instrument had been selected for a mission without this laboratory pre-project work, the costs of implementation would be much higher. In the four areas covered in Sections D, E, F, and G of this Final Report, outstanding progress has been made. There still remains the task of flight-qualifying certain of the components. This is traditionally done under the aegis of a Flight Project, but just as the concept development can be done at much lower cost when kept small and focused, so could the qualification program of critical parts benefit. We recommend, therefore, that NASA consider means of such qualifications and brass-boarding, in advance of final flight development. This is a generic recommendation, but hardware such as the Mars aqueous chemistry experiment (MACE) and other similarly-new concepts are particularly applicable. MACE now has wide versatility, in being able to reliably dispense both liquids and solids as chemical reagents to an entire suite of samples. The hardware and the experiment is much simpler than was developed for the Viking Biology instrument, yet can accomplish all the inorganic chemical measurements that the Viking design was capable of. In addition, it is much more flexible and versatile to new experiment protocols (and reagents) than the Viking design ever could have been. MACE opens up the opportunity for many different scientific disciplines to design sub- experiments and to benefit from the investigations that can be conducted. In this sense, it will have the value of a facility, although our recommendation would be that it be under the stewardship of a single lead investigator to insure that conflicting requirements not compromise the straight-forward design that have been achieved. MACE is an excellent candidate for upcoming Mars missions, including the Mars Surveyor Program (MSP) lander missions in 2001 and 2003. In addition, it could be used for any mission to the surface of any other planet or planetary body (including small bodies). An important next step is to encourage various investigators to propose specific uses for this experiment that specifically address their major scientific objectives for upcoming missions.

  6. A Colorful Solubility Exercise for Organic Chemistry

    ERIC Educational Resources Information Center

    Shugrue, Christopher R.; Mentzen, Hans H., II; Linton, Brian R.

    2015-01-01

    A discovery chemistry laboratory has been developed for the introductory organic chemistry student to investigate the concepts of polarity, miscibility, solubility, and density. The simple procedure takes advantage of the solubility of two colored dyes in a series of solvents or solvent mixtures, and the diffusion of colors can be easily…

  7. Analysis of Bromination of Ethylbenzene Using a 45 MHz NMR Spectrometer: An Undergraduate Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Isaac-Lam, Meden F.

    2014-01-01

    A 45 MHz benchtop NMR spectrometer is used to identify the structures and determine the amount of 1-bromoethylbenzene and 1,1-dibromoethylbenzene produced from free-radical bromination of ethylbenzene. The experiment is designed for nonchemistry majors, specifically B.S. Biology students, in a predominantly undergraduate institution with…

  8. Chemistry of Optical Organic Materials 6484-Spring

    E-print Network

    Sherrill, David

    Chemistry of Optical Organic Materials 6484- Spring Tuesdays and Thursdays: 9:35-10:55 am Lecture-Property Relationships for NLO SRM 21 Mar. 20 Spring Break - No class 22 Mar. 22 Spring Break - No class 23 Mar. 27

  9. Newer Reagents in Preparative Organic Chemistry.

    ERIC Educational Resources Information Center

    Grundy, J.

    1990-01-01

    Outlined is the development and use of oxidants for use in elementary organic chemistry classes. Discussed is the oxidation of alcohols to carbonyl compounds, and the oxidation of primary alcohols or aldehydes to carboxylic acids. (CW)

  10. Preparation of a N-Heterocyclic Carbene Nickel(II) Complex: Synthetic Experiments in Current Organic and Organometallic Chemistry

    ERIC Educational Resources Information Center

    Ritleng, Vincent; Brenner, Eric; Chetcuti, Michael J.

    2008-01-01

    A four-part experiment that leads to the synthesis of a cyclopentadienyl chloro-nickel(II) complex bearing a N-heterocyclic carbene (NHC) ligand is presented. In the first part, the preparation of 1,3-bis-(2,4,6-trimethylphenyl)imidazolium chloride (IMes[middle dot]HCl) in a one-pot procedure by reaction of 2,4,6-trimethylaniline with…

  11. The Synthesis and Isolation of N-Tert-Butyl-2-Phenylsuccinamic Acid and N-Tert-Butyl-3-Phenylsuccinamic Acid: An Undergraduate Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Cesare, Victor; Sadarangani, Ishwar; Rollins, Janet; Costello, Dennis

    2004-01-01

    The facile, high yielding synthesis of phenylsuccinamic acids is described and one of these syntheses, the reaction of phenylsuccinic anhydride with tert-butylamine, is successfully modified and adapted for use in the second-semester organic chemistry laboratory at St. John's University. Succinamic acids are compounds that contain both the amide…

  12. Plasma chemistry and organic synthesis

    NASA Technical Reports Server (NTRS)

    Tezuka, M.

    1980-01-01

    The characteristic features of chemical reactions using low temperature plasmas are described and differentiated from those seen in other reaction systems. A number of examples of applications of plasma chemistry to synthetic reactions are mentioned. The production of amino acids by discharge reactions in hydrocarbon-ammonia-water systems is discussed, and its implications for the origins of life are mentioned.

  13. Organic chemistry in Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Scattergood, T.

    1982-01-01

    Laboratory photochemical simulations and other types of chemical simulations are discussed. The chemistry of methane, which is the major known constituent of Titan's atmosphere was examined with stress on what can be learned from photochemistry and particle irradiation. The composition of dust that comprises the haze layer was determined. Isotope fractionation in planetary atmospheres is also discussed.

  14. Nobel Chemistry in the Laboratory: Synthesis of a Ruthenium Catalyst for Ring-Closing Olefin Metathesis--An Experiment for the Advanced Inorganic or Organic Laboratory

    ERIC Educational Resources Information Center

    Greco, George E.

    2007-01-01

    An experiment for the upper-level undergraduate laboratory is described in which students synthesize a ruthenium olefin metathesis catalyst, then use the catalyst to carry out the ring-closing metathesis of diethyl diallylmalonate. The olefin metathesis reaction was the subject of the 2005 Nobel Prize in chemistry. The catalyst chosen for this…

  15. Cooperative Chemistry: Concept Mapping in the Organic Chemistry Lab.

    ERIC Educational Resources Information Center

    Gahr, Allan A.

    2003-01-01

    Integrates concept mapping into the chemistry laboratory and requires students to construct a concept map for each experiment. Reports a decrease in student questions concerning set up and procedure. Recommends using computer software such as Chem Sketch 5.0 which is free and available from the Internet. (Contains 15 references.) (YDS)

  16. Hydrothermal organic synthesis experiments

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    Ways in which heat is useful in organic synthesis experiments are described, and experiments on the hydrothermal destruction and synthesis of organic compounds are discussed. It is pointed out that, if heat can overcome kinetic barriers to the formation of metastable states from reduced or oxidized starting materials, abiotic synthesis under hydrothermal conditions is a distinct possibility. However, carefully controlled experiments which replicate the descriptive variables of natural hydrothermal systems have not yet been conducted with the aim of testing the hypothesis of hydrothermal organic systems.

  17. BOMC LabBOMC Lab (Bio(Bio--Organic Materials Chemistry)Organic Materials Chemistry)

    E-print Network

    Jonas, Ulrich - Institute of Electronic Structure and Laser, Foundation for Research and Technology

    BOMC LabBOMC Lab (Bio(Bio--Organic Materials Chemistry)Organic Materials Chemistry) FORTHFORTHSystems BioBio--PolymerPolymer HybridHybrid SystemsSystems PolymericPolymeric Particles &Particles & Thin. Phys. A 2008 #12;BioBio--PolymerPolymer NanoreactorsNanoreactors #12;BioBio--Polymer Hybrid Systems

  18. Using Ozone in Organic Chemistry Lab: The Ozonolysis of Eugenol

    ERIC Educational Resources Information Center

    Branan, Bruce M.; Butcher, Joshua T.; Olsen, Lawrence R.

    2007-01-01

    An ozonolysis experiment, suitable for undergraduate organic chemistry lab, is presented. Ozonolysis of eugenol (clove oil), followed by reductive workup furnishes an aldehyde that is easily identified by its NMR and IR spectra. Ozone (3-5% in oxygen) is produced using an easily built generator. (Contains 2 figures and 1 scheme.)

  19. Medical Mycology and the Chemistry Classroom: Germinating Student Interest in Organic Chemistry

    ERIC Educational Resources Information Center

    Bliss, Joseph M.; Reid, Christopher W.

    2013-01-01

    Efforts to provide active research context to introductory courses in basic sciences are likely to better engage learners and provide a framework for relevant concepts. A simple teaching and learning experiment was conducted to use concepts in organic chemistry to solve problems in the life sciences. Bryant University is a liberal arts university…

  20. An Efficient Statistical Approach for Automatic Organic Chemistry Summarization

    E-print Network

    Avignon et des Pays de Vaucluse, Université de

    An Efficient Statistical Approach for Automatic Organic Chemistry Summarization Florian Boudin1 for summa- rizing scientific documents in Organic Chemistry that concentrates on numerical treatments. We of Organic Chemistry articles. 1 Introduction Over 1.7 million new Chemistry articles were published in 20071

  1. Provocative Opinion. Provocative Replies: Two Organic Chemists Look at Organic Chemistry Lab.

    ERIC Educational Resources Information Center

    Kandel, Marjorie; Ikan, Raphael

    1989-01-01

    Provides a point of view that the organic lab is a good place for the student to use and learn problem solving skills while performing the cookbook experiments. Notes that an equilibrium between the theoretical and practical aspects of organic chemistry should be established. (MVL)

  2. Experiments in the Chemistry of Food.

    ERIC Educational Resources Information Center

    Weaver, Elbert C.

    This booklet presents 18 experiments in the chemistry of food, suitable for elementary and secondary school science classes. Experiments deal with an analysis of milk, determinations of the amounts of sulfur dioxide, iron, and fat in foods, and the concentration of vitamin C in fruit juice and iodine in salt. Tests are provided for fats,…

  3. Experimental interstellar organic chemistry - Preliminary findings

    NASA Technical Reports Server (NTRS)

    Khare, B. N.; Sagan, C.

    1973-01-01

    Review of the results of some explicit experimental simulation of interstellar organic chemistry consisting in low-temperature high-vacuum UV irradiation of condensed simple gases known or suspected to be present in the interstellar medium. The results include the finding that acetonitrile may be present in the interstellar medium. The implication of this and other findings are discussed.

  4. Measuring Student Performance in General Organic Chemistry

    ERIC Educational Resources Information Center

    Austin, Ara C.; Ben-Daat, Hagit; Zhu, Mary; Atkinson, Robert; Barrows, Nathan; Gould, Ian R.

    2015-01-01

    Student performance in general organic chemistry courses is determined by a wide range of factors including cognitive ability, motivation and cultural capital. Previous work on cognitive factors has tended to focus on specific areas rather than exploring performance across all problem types and cognitive skills. In this study, we have categorized…

  5. Organic chemistry in Titan's upper atmosphere and its astrobiological consequences: I. Views towards Cassini plasma spectrometer (CAPS) and ion neutral mass spectrometer (INMS) experiments in space

    NASA Astrophysics Data System (ADS)

    Ali, A.; Sittler, E. C.; Chornay, D.; Rowe, B. R.; Puzzarini, C.

    2015-05-01

    The discovery of carbocations and carbanions by Ion Neutral Mass Spectrometer (INMS) and the Cassini Plasma Spectrometer (CAPS) instruments onboard the Cassini spacecraft in Titan's upper atmosphere is truly amazing for astrochemists and astrobiologists. In this paper we identify the reaction mechanisms for the growth of the complex macromolecules observed by the CAPS Ion Beam Spectrometer (IBS) and Electron Spectrometer (ELS). This identification is based on a recently published paper (Ali et al., 2013. Planet. Space Sci. 87, 96) which emphasizes the role of Olah's nonclassical carbonium ion chemistry in the synthesis of the organic molecules observed in Titan's thermosphere and ionosphere by INMS. The main conclusion of that work was the demonstration of the presence of the cyclopropenyl cation - the simplest Huckel's aromatic molecule - and its cyclic methyl derivatives in Titan's atmosphere at high altitudes. In this study, we present the transition from simple aromatic molecules to the complex ortho-bridged bi- and tri-cyclic hydrocarbons, e.g., CH2+ mono-substituted naphthalene and phenanthrene, as well as the ortho- and peri-bridged tri-cyclic aromatic ring, e.g., perinaphthenyl cation. These rings could further grow into tetra-cyclic and the higher order ring polymers in Titan's upper atmosphere. Contrary to the pre-Cassini observations, the nitrogen chemistry of Titan's upper atmosphere is found to be extremely rich. A variety of N-containing hydrocarbons including the N-heterocycles where a CH group in the polycyclic rings mentioned above is replaced by an N atom, e.g., CH2+ substituted derivative of quinoline (benzopyridine), are found to be dominant in Titan's upper atmosphere. The mechanisms for the formation of complex molecular anions are discussed as well. It is proposed that many closed-shell complex carbocations after their formation first, in Titan's upper atmosphere, undergo the kinetics of electron recombination to form open-shell neutral radicals. These radical species subsequently might form carbanions via radiative electron attachment at low temperatures with thermal electrons. The classic example is the perinaphthenyl anion in Titan's upper atmosphere. Therefore, future astronomical observations of selected carbocations and corresponding carbanions are required to settle the key issue of molecular anion chemistry on Titan. Other than earth, Titan is the only planetary body in our solar system that is known to have reservoirs of permanent liquids on its surface. The synthesis of complex biomolecules either by organic catalysis of precipitated solutes “on hydrocarbon solvent” on Titan or through the solvation process indeed started in its upper atmosphere. The most notable examples in Titan's prebiotic atmospheric chemistry are conjugated and aromatic polycyclic molecules, N-heterocycles including the presence of imino >Cdbnd N-H functional group in the carbonium chemistry. Our major conclusion in this paper is that the synthesis of organic compounds in Titan's upper atmosphere is a direct consequence of the chemistry of carbocations involving the ion-molecule reactions. The observations of complexity in the organic chemistry on Titan from the Cassini-Huygens mission clearly indicate that Titan is so far the only planetary object in our solar system that will most likely provide an answer to the question of the synthesis of complex biomolecules on the primitive earth and the origin of life.

  6. Experiments for Modern Introductory Chemistry.

    ERIC Educational Resources Information Center

    Kildahl, Nicholas; Berka, Ladislav H.

    1995-01-01

    Presents a headspace gas chromatography experiment that enables discovery of the temperature dependence of the vapor pressure of a pure liquid. Illustrates liquid-vapor phase equilibrium of pure liquids. Contains 22 references. (JRH)

  7. School Chemistry vs. Chemistry in Research: An Exploratory Experiment.

    ERIC Educational Resources Information Center

    Habraken, Clarisse L.; Buijs, Wim; Borkent, Hens; Ligeon, Willy; Wender, Harry; Meijer, Marijn

    2001-01-01

    Reports on a study exploring why students are not studying chemistry. Three groups of graduating high school students and their chemistry teachers stayed at a research institute working on molecular modeling and wrote essays on school chemistry versus chemistry in research. Concludes that school chemistry does not convey today's chemistry in…

  8. Organic Chemistry in Action! What Is the Reaction?

    ERIC Educational Resources Information Center

    O'Dwyer, Anne; Childs, Peter

    2015-01-01

    The "Organic Chemistry in Action!" ("OCIA!") program is a set of teaching resources designed to facilitate the teaching and learning of introductory level organic chemistry. The "OCIA!" program was developed in collaboration with practicing and experienced chemistry teachers, using findings from Chemistry Education…

  9. Synthesis of Aspirin: A General Chemistry Experiment.

    ERIC Educational Resources Information Center

    Olmsted, John III

    1998-01-01

    Describes the redesign of the first semester general chemistry laboratory at the college level. An organic component is included in the redesign and it provides students with explicit examples of several types of operations in which chemists engage. Contains 16 references. (DDR)

  10. Approved Module Information for CH3103, 2014/5 Module Title/Name: Organic Chemistry III Module Code: CH3103

    E-print Network

    Neirotti, Juan Pablo

    Approved Module Information for CH3103, 2014/5 Module Title/Name: Organic Chemistry III Module Code Module Aims: Organic Chemistry III Lectures [Part 1] The aim of this series of lectures is to introduce more generally applicable. Organic Chemistry Laboratory [Part 2] To carry out laboratory experiments

  11. A Pre-Vacation Chemistry Experiment

    ERIC Educational Resources Information Center

    Gabel, Dorothy; McSweeny, Jean

    1973-01-01

    Describes a chemistry experiment appropriate for the day before Christmas vacation. Students prepare candy canes by following a recipe written in chemical terms. This illustrates that food is composed of chemicals and that the processes involved in cooking are chemical and physical changes. (JR)

  12. Synthesis-Spectroscopy Roadmap Problems: Discovering Organic Chemistry

    ERIC Educational Resources Information Center

    Kurth, Laurie L.; Kurth, Mark J.

    2014-01-01

    Organic chemistry problems that interrelate and integrate synthesis with spectroscopy are presented. These synthesis-spectroscopy roadmap (SSR) problems uniquely engage second-year undergraduate organic chemistry students in the personal discovery of organic chemistry. SSR problems counter the memorize-or-bust strategy that many students tend to…

  13. Organic Chemistry Self Instructional Package 15: Benzene, Aromaticity.

    ERIC Educational Resources Information Center

    Zdravkovich, V.

    This booklet, one of a series of 17 developed at Prince George's Community College, Largo, Maryland, provides an individualized, self-paced undergraduate organic chemistry instruction module designed to augment any course in organic chemistry but particularly those taught using the text "Organic Chemistry" by Morrison and Boyd. The entire series…

  14. Physical Organic Chemistry of Supramolecular Polymers

    PubMed Central

    Serpe, Michael J.; Craig, Stephen L.

    2008-01-01

    Unlike the case of traditional covalent polymers, the entanglements that determine properties of supramolecular polymers are defined by very specific, intermolecular interactions. Recent work using modular molecular platforms to probe the mechanisms underlying mechanical response of supramolecular polymers is reviewed. The contributions of supramolecular kinetics, thermodynamics, and conformational flexibility to supramolecular polymer properties in solutions of discrete polymers, in networks, and at interfaces, are described. Molecule-to-material relationships are established through methods reminiscent of classic physical organic chemistry. PMID:17279638

  15. Hydrothermal Synthesis and Characterization of a Metal-Organic Framework by Thermogravimetric Analysis, Powder X-Ray Diffraction, and Infrared Spectroscopy: An Integrative Inorganic Chemistry Experiment

    ERIC Educational Resources Information Center

    Crane, Johanna L.; Anderson, Kelly E.; Conway, Samantha G.

    2015-01-01

    This advanced undergraduate laboratory experiment involves the synthesis and characterization of a metal-organic framework with microporous channels that are held intact via hydrogen bonding of the coordinated water molecules. The hydrothermal synthesis of Co[subscript 3](BTC)[subscript 2]·12H[subscript 2]O (BTC = 1,3,5-benzene tricarboxylic acid)…

  16. Saturn's satellites: Potential for organic chemistry

    NASA Astrophysics Data System (ADS)

    Delitsky, M. L.; Lane, A. L.; Henry-Riyad, H.; Tidwell, T. T.

    2003-05-01

    The surfaces of the Saturnian satellites are subjected to irradiation from solar wind ions, photons, and magnetospheric ions and electrons. This bombardment will transform the chemical nature of the surfaces. At present, only water ice has been detected on their surfaces. Further studies by the Cassini spacecraft may reveal other molecules. If CO2 ice is found there, a whole panoply of new species may be detected. As nitrogen ions in the magnetosphere are thought to be an important species bombarding the satellites, Delitsky and Lane (2002) outlined the nitrogen oxides chemistry that may result from implantation of N+ into the water ice surfaces. Sittler et al (2002) showed that N+ ions originating from Titan will be enriched in the magnetospheric ion population as they move inwards towards Saturn, making the nitrogen oxides chemistry more likely. If CO2 is present, a complicated C-H-N-O chemistry may result from deposition of the N+ into a H2O/CO2 mixed ice, including nitriles, isocyanates, polymers, and amino acids. The combination of H2O/CO2 upon irradiation may also yield a complex mixture of hydrocarbons, esters, alcohols, organic acids and ketones. Possible chemical pathways and computations of their energetics will be presented. -Ref:- 1. Delitsky and Lane, Saturn's inner satellites: Ice chemistry and magnetosphere effects, JGR (Planets), Nov 2002, 3-1;; 2. Sittler et al., Energetic nitrogen ions within the inner magnetosphere of Saturn, Fall AGU meeting, Dec 2002, abstracts, pg F858, P21B-0379

  17. Contextualized Chemistry Education: The American experience

    NASA Astrophysics Data System (ADS)

    Schwartz, A. Truman

    2006-07-01

    This paper is a survey of context-based chemistry education in the United States. It begins with a very brief overview of twentieth-century chemistry texts and teaching methods, followed by a short description of a pioneering secondary school text. The major emphasis is on post-secondary instruction and the central case study is provided by Chemistry in Context, a university text intended for students who are not specializing in science. The paper is more concerned with strategies for curriculum reform than with educational research, and the emphasis is more pragmatic than theoretical. A chronological sequence is used to trace the creation of Chemistry in Context. This developmental account is overlaid with the curricular representations of Goodlad and Van den Akker. The Ideal Curriculum was the goal, but the Formal Curriculum was created and revised as a consequence of iteration involving perceptions of the users, the implementation of the curriculum, the experience of students and teachers, and formal and informal assessment of what was attained. The paper also includes descriptions of other, more recent, context-based college chemistry curricula. It concludes with a list of problems and unanswered questions relating to this pedagogical approach.

  18. TOWARDS MORE RELIABLE EXTRAPOLATION ALGORITHMS WITH APPLICATIONS TO ORGANIC CHEMISTRY

    E-print Network

    Kreinovich, Vladik

    TOWARDS MORE RELIABLE EXTRAPOLATION ALGORITHMS WITH APPLICATIONS TO ORGANIC CHEMISTRY JAIME NAVA WITH APPLICATIONS TO ORGANIC CHEMISTRY by JAIME NAVA THESIS Presented to the Faculty of the Graduate School that led to the Chemistry case study presented in this thesis. Special thanks to Dr. Pat Teller, for her

  19. Form and Function: An Organic Chemistry Module. Teacher's Guide.

    ERIC Educational Resources Information Center

    Jarvis, Bruce; Mazzocchi, Paul; Hearle, Robert

    This teacher's guide is designed to provide science teachers with the necessary guidance and suggestions for teaching organic chemistry. In this book, the diverse field of organic chemistry modules is introduced. The material in this book can be integrated with the other modules in a sequence that helps students to see that chemistry is a unified…

  20. Shock-induced chemistry in organic materials

    SciTech Connect

    Dattelbaum, Dana M; Sheffield, Steve; Engelke, Ray; Manner, Virginia; Chellappa, Raja; Yoo, Choong - Shik

    2011-01-20

    The combined 'extreme' environments of high pressure, temperature, and strain rates, encountered under shock loading, offer enormous potential for the discovery of new paradigms in chemical reactivity not possible under more benign conditions. All organic materials are expected to react under these conditions, yet we currently understand very little about the first bond-breaking steps behind the shock front, such as in the shock initiation of explosives, or shock-induced reactivity of other relevant materials. Here, I will present recent experimental results of shock-induced chemistry in a variety of organic materials under sustained shock conditions. A comparison between the reactivity of different structures is given, and a perspective on the kinetics of reaction completion under shock drives.

  1. Novel Aryne Chemistry in Organic Synthesis

    SciTech Connect

    Zhijian Liu

    2006-12-12

    Arynes are among the most intensively studied systems in chemistry. However, many aspects of the chemistry of these reactive intermediates are not well understood yet and their use as reagents in synthetic organic chemistry has been somewhat limited, due to the harsh conditions needed to generate arynes and the often uncontrolled reactivity exhibited by these species. Recently, o-silylaryl triflates, which can generate the corresponding arynes under very mild reaction conditions, have been found very useful in organic synthesis. This thesis describes several novel and useful methodologies by employing arynes, which generate from o-silylaryl triflates, in organic synthesis. An efficient, reliable method for the N-arylation of amines, sulfonamides and carbamates, and the O-arylation of phenols and carboxylic acids is described in Chapter 1. Amines, sulfonamides, phenols, and carboxylic acids are good nucleophiles, which can react with arynes generated from a-silylaryl triflates to afford the corresponding N- and O-arylated products in very high yields. The regioselectivity of unsymmetrical arynes has also been studied. A lot of useful, functional groups can tolerate our reaction conditions. Carbazoles and dibenzofurans are important heteroaromatic compounds, which have a variety of biological activities. A variety of substituted carbazoles and dibenzofwans are readily prepared in good to excellent yields starting with the corresponding o-iodoanilines or o-iodophenols and o-silylaryl triflates by a treatment with CsF, followed by a Pd-catalyzed cyclization, which overall provides a one-pot, two-step process. By using this methodology, the carbazole alkaloid mukonine has been concisely synthesized in a very good yield. Insertion of an aryne into a {sigma}-bond between a nucleophile and an electrophile (Nu-E) should potentially be a very beneficial process from the standpoint of organic synthesis. A variety of substituted ketones and sulfoxides have been synthesized in good yields via the intermolecular C-N {sigma}-bond addition of amides and S-N {sigma}-bond addition of sulfinamides to arynes under mild reaction conditions. The indazole moiety is a frequently found subunit in drug substances with important biological activities. Indazole analogues have been readily synthesized under mild reaction conditions by the [3+2] cycloaddition of a variety of diazo compounds with o-silylaryl triflates in the presence of CsF or TBAF. Polycyclic aromatic and heteroaromatic hydrocarbons have been synthesized in high yields by two different processes involving the Pd-catalyzed annulation of arynes. Both processes appear to involve the catalytic, stepwise coupling of two very reactive substrates, an aryne and an organopalladium species, to generate excellent yields of cross-coupled products.

  2. Problem Types in Synthetic Organic Chemistry Research: Implications for the Development of Curricular Problems for Second-Year Level Organic Chemistry Instruction

    ERIC Educational Resources Information Center

    Raker, Jeffrey R.; Towns, Marcy H.

    2012-01-01

    Understanding of the nature of science is key to the development of new curricular materials that mirror the practice of science. Three problem types (project level, synthetic planning, and day-to-day) in synthetic organic chemistry emerged during a thematic content analysis of the research experiences of eight practising synthetic organic

  3. QM/MM investigations of organic chemistry oriented questions.

    PubMed

    Schmidt, Thomas C; Paasche, Alexander; Grebner, Christoph; Ansorg, Kay; Becker, Johannes; Lee, Wook; Engels, Bernd

    2014-01-01

    About 35 years after its first suggestion, QM/MM became the standard theoretical approach to investigate enzymatic structures and processes. The success is due to the ability of QM/MM to provide an accurate atomistic picture of enzymes and related processes. This picture can even be turned into a movie if nuclei-dynamics is taken into account to describe enzymatic processes. In the field of organic chemistry, QM/MM methods are used to a much lesser extent although almost all relevant processes happen in condensed matter or are influenced by complicated interactions between substrate and catalyst. There is less importance for theoretical organic chemistry since the influence of nonpolar solvents is rather weak and the effect of polar solvents can often be accurately described by continuum approaches. Catalytic processes (homogeneous and heterogeneous) can often be reduced to truncated model systems, which are so small that pure quantum-mechanical approaches can be employed. However, since QM/MM becomes more and more efficient due to the success in software and hardware developments, it is more and more used in theoretical organic chemistry to study effects which result from the molecular nature of the environment. It is shown by many examples discussed in this review that the influence can be tremendous, even for nonpolar reactions. The importance of environmental effects in theoretical spectroscopy was already known. Due to its benefits, QM/MM can be expected to experience ongoing growth for the next decade.In the present chapter we give an overview of QM/MM developments and their importance in theoretical organic chemistry, and review applications which give impressions of the possibilities and the importance of the relevant effects. Since there is already a bunch of excellent reviews dealing with QM/MM, we will discuss fundamental ingredients and developments of QM/MM very briefly with a focus on very recent progress. For the applications we follow a similar strategy. PMID:22392477

  4. Atmospheric Prebiotic Chemistry and Organic Hazes

    NASA Technical Reports Server (NTRS)

    Trainer, Melissa G.

    2012-01-01

    Earth's atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of pre biotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer - if formed - would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere.

  5. Atmospheric Prebiotic Chemistry and Organic Hazes

    PubMed Central

    Trainer, Melissa G.

    2013-01-01

    Earth’s atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of prebiotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer – if formed – would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere. PMID:24143126

  6. Benchmarking Problems Used in Second Year Level Organic Chemistry Instruction

    ERIC Educational Resources Information Center

    Raker, Jeffrey R.; Towns, Marcy H.

    2010-01-01

    Investigations of the problem types used in college-level general chemistry examinations have been reported in this Journal and were first reported in the "Journal of Chemical Education" in 1924. This study extends the findings from general chemistry to the problems of four college-level organic chemistry courses. Three problem typologies were…

  7. Atmospheric Chemistry Experiment (ACE) Measurements of Tropospheric and Stratospheric Chemistry and Long-Term Trends

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Bernath, Peter; Boone, Chris; Nassar, Ray

    2007-01-01

    We highlight chemistry and trend measurement results from the Atmospheric Chemistry Experiment (ACE) which is providing precise middle troposphere to the lower thermosphere measurements with a 0.02/cm resolution Fourier transform spectrometer covering 750-4400/cm

  8. Distributed Pore Chemistry in Porous Organic Polymers

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor)

    1998-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The sub-strate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphorylcholine groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic region, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  9. Organic Chemistry Trivia: A Way to Interest Nonchemistry Majors

    ERIC Educational Resources Information Center

    Farmer, Steven C.

    2011-01-01

    The use of in-class stories is an excellent way to keep a class interested in subject matter. Many organic chemistry classes are populated by nonchemistry majors, such as pre-med, pre-pharm, and biology students. Trivia questions are presented that are designed to show how organic chemistry is an important subject to students regardless of their…

  10. Representational Translation with Concrete Models in Organic Chemistry

    ERIC Educational Resources Information Center

    Stull, Andrew T.; Hegarty, Mary; Dixon, Bonnie; Stieff, Mike

    2012-01-01

    In representation-rich domains such as organic chemistry, students must be facile and accurate when translating between different 2D representations, such as diagrams. We hypothesized that translating between organic chemistry diagrams would be more accurate when concrete models were used because difficult mental processes could be augmented by…

  11. Form and Function: An Organic Chemistry Module.

    ERIC Educational Resources Information Center

    Jarvis, Bruce; Mazzocchi, Paul

    This book is one in the series of Interdisciplinary Approaches to Chemistry (IAC) designed to help students discover that chemistry is a lively science and actively used to pursue solutions to the important problems of today. It is expected for students to see how chemistry takes place continuously all around and to readily understand the daily…

  12. Promoting Chemistry Learning through Undergraduate Work Experience in the Chemistry Lab: A Practical Approach

    ERIC Educational Resources Information Center

    Yu, Hong-Bin

    2015-01-01

    Hiring undergraduate lab assistants in chemistry departments is common in college. However, few studies have focused on promoting undergraduate chemistry learning and thinking skills through this work experience in chemistry teaching laboratories. This article discusses the strategy we implemented in the lab assistant program. The…

  13. Mass spectrometry. [in organic ion and biorganic chemistry and medicine

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.; Cox, R. E.; Derrick, P. J.

    1974-01-01

    Review of the present status of mass spectrometry in the light of pertinent recent publications spanning the period from December 1971 to January 1974. Following an initial survey of techniques, instruments, and computer applications, a sharp distinction is made between the chemistry of organic (radical-)ions and analytical applications in biorganic chemistry and medicine. The emphasis is on the chemistry of organic (radical-)ions at the expense of inorganic, organometallic, and surface ion chemistry. Biochemistry and medicine are chosen because of their contemporary importance and because of the stupendous contributions of mass spectroscopy to these fields in the past two years. In the review of gas-phase organic ion chemistry, special attention is given to studies making significant contributions to the understanding of ion chemistry.

  14. Comparing Carbonyl Chemistry in Comprehensive Introductory Organic Chemistry Textbooks

    ERIC Educational Resources Information Center

    Nelson, Donna J.; Kumar, Ravi; Ramasamy, Saravanan

    2015-01-01

    Learning the chemistry of compounds containing carbonyl groups is difficult for undergraduate students partly because of a convolution of multiple possible reaction sites, competitive reactions taking place at those sites, different criteria needed to discern between the mechanisms of these reactions, and no straightforward selection method…

  15. USC CHEM 322aL Summer 2015 JUNG/MOORE1 CHEMISTRY 322aL ORGANIC CHEMISTRY

    E-print Network

    Rohs, Remo

    USC CHEM 322aL Summer 2015 JUNG/MOORE1 CHEMISTRY 322aL ORGANIC CHEMISTRY COURSE SYLLABUS SUMMER is available at the USC Bookstore or directly from the publisher. LECTURE "Organic Chemistry" M. Loudon, 5th Ed. "Study Guide and Solutions Manual to Accompany Organic Chemistry" Loudon and Stowell, 5th Ed. "Molecular

  16. COMMUNICATION www.rsc.org/obc | Organic & Biomolecular Chemistry Flow chemistry kinetic studies reveal reaction conditions for ready access to

    E-print Network

    Davis, Ben G.

    COMMUNICATION www.rsc.org/obc | Organic & Biomolecular Chemistry Flow chemistry kinetic studies be partitioned into two strategic levels of selectivity: (a) regioselective modification of (primary) hydroxyls

  17. Greener Approaches to Undergraduate Chemistry Experiments.

    ERIC Educational Resources Information Center

    Kirchhoff, Mary, Ed.; Ryan, Mary Ann, Ed.

    This laboratory manual introduces the idea of Green Chemistry, which is the design of chemical products and processes that reduce or eliminate the use and generation of hazardous substances. Instructional samples are included to help teachers integrate green chemistry into the college chemistry curriculum. Each laboratory includes: (1) a…

  18. Interstellar grain chemistry and organic molecules

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sandford, S. A.

    1990-01-01

    The detection of prominant infrared absorption bands at 3250, 2170, 2138, 1670 and 1470 cm(-1) (3.08, 4.61, 4.677, 5.99 and 6.80 micron m) associated with molecular clouds show that mixed molecular (icy) grain mantles are an important component of the interstellar dust in the dense interstellar medium. These ices, which contain many organic molecules, may also be the production site of the more complex organic grain mantles detected in the diffuse interstellar medium. Theoretical calculations employing gas phase as well as grain surface reactions predict that the ices should be dominated only by the simple molecules H2O, H2CO, N2, CO, O2, NH3, CH4, possibly CH3OH, and their deuterated counterparts. However, spectroscopic observations in the 2500 to 1250 cm(-1)(4 to 8 micron m) range show substantial variation from source reactions alone. By comparing these astronomical spectra with the spectra of laboratory-produced analogs of interstellar ices, one can determine the composition and abundance of the materials frozen on the grains in dense clouds. Experiments are described in which the chemical evolution of an interstellar ice analog is determined during irradiation and subsequent warm-up. Particular attention is paid to the types of moderately complex organic materials produced during these experiments which are likely to be present in interstellar grains and cometary ices.

  19. Photolysis of 4-Phenyl-1,3-dioxolan-2-one: An Undergraduate Experiment in Free Radical Chemistry.

    ERIC Educational Resources Information Center

    White, Rick C.; Ma, Sha

    1988-01-01

    Describes a photochemistry experiment designed to introduce photochemical techniques and experience free radical chemistry. Selects Nuclear Magnetic Resonance spectroscopy for the analysis. This activity is suggested for use in an upper level undergraduate organic course. (MVL)

  20. An Undergraduate Organic Chemistry Laboratory: The Facile Hydrogenation of Methyl Trans-Cinnamate

    ERIC Educational Resources Information Center

    O'Connor, Kenneth J.; Zuspan, Kimberly; Berry, Lonnie

    2011-01-01

    Hydrogenation of alkenes is an important reaction in the synthesis of organic molecules. In this experiment, students conduct a high-yield microscale hydrogenation reaction of methyl "trans"-cinnamate using a readily available, safe, and convenient hydrogen source. The conditions are similar to those seen in an organic chemistry textbook for an…

  1. A One-Pot, Asymmetric Robinson Annulation in the Organic Chemistry Majors Laboratory

    ERIC Educational Resources Information Center

    Lazarski, Kiel E.; Rich, Alan A.; Mascarenhas, Cheryl M.

    2008-01-01

    The Robinson annulation is a topic of importance in the second-year organic curriculum. A one-pot, enantioselective Robinson annulation is described. The experiment is completed in two lab periods and is geared towards the second-year organic chemistry major. To our knowledge, this is the first example of a one-pot enantioselective Robinson…

  2. Teaching Lab Report Writing through Inquiry: A Green Chemistry Stoichiometry Experiment for General Chemistry

    ERIC Educational Resources Information Center

    Cacciatore, Kristen L.; Sevian, Hannah

    2006-01-01

    We present an alternative to a traditional first-year chemistry laboratory experiment. This experiment has four key features: students utilize stoichiometry, learn and apply principles of green chemistry, engage in authentic scientific inquiry, and discover why each part of a scientific lab report is necessary. The importance and essential…

  3. Spicing Things up by Adding Color and Relieving Pain: The Use of "Napoleon's Buttons" in Organic Chemistry

    ERIC Educational Resources Information Center

    Bucholtz, Kevin M.

    2011-01-01

    For some students, organic chemistry can be a distant subject and unrelated to any courses they have seen in their college careers. To develop a more contextual learning experience in organic chemistry, an additional text, "Napoleon's Buttons: 17 Molecules That Changed History," by Penny Le Couteur and Jay Burreson, was incorporated as a…

  4. Quantum Dots: An Experiment for Physical or Materials Chemistry

    ERIC Educational Resources Information Center

    Winkler, L. D.; Arceo, J. F.; Hughes, W. C.; DeGraff, B. A.; Augustine, B. H.

    2005-01-01

    An experiment is conducted for obtaining quantum dots for physical or materials chemistry. This experiment serves to both reinforce the basic concept of quantum confinement and providing a useful bridge between the molecular and solid-state world.

  5. A Template-Controlled Solid-State Reaction for the Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Friscic, Tomislav; Hamilton, Tamara D.; Papaefstathiou, Giannis S.; MacGillivray, Leonard R.

    2005-01-01

    An experiment for the organic chemistry laboratory that involves a template-controlled solid-state reaction is described. The experiment utilizes a template to direct the assembly of an olefin in the solid state that undergoes a [2 + 2] photodimerization.

  6. Synthetic biology: lessons from the history of synthetic organic chemistry

    E-print Network

    Lim, Wendell

    Synthetic biology: lessons from the history of synthetic organic chemistry Brian J Yeh & Wendell Science Foundation Synthetic Biology Engineering Research Center. e-mail: lim@cmp.ucsf.edu J.Iwasa Synthetic approaches may transform biology just as they transformed chemistry. NATURE CHEMICAL BIOLOGY

  7. Tampa Bay Regional Atmospheric Chemistry Experiment: Overview

    NASA Astrophysics Data System (ADS)

    Atkeson, T. D.

    2003-12-01

    The Tampa Bay Estuary Program (TBEP) was formed in 1991 to assist in developing a comprehensive plan to restore and protect Tampa Bay in Florida, USA. An ecological indicator of the health of the Bay is the coverage of seagrasses, historically in decline, which are important to the aquatic habitat and food web of the bay. Seagrass decline is linked to excess of plant-stimulating forms of nitrogen to the bay, promoting algae growth, which shades out light needed to sustain seagrasses. One element of the TBEP is a private-local-state, multi-agency Nitrogen Management Consortium that seeks to limit nitrogen loading to the Bay to the 1992-1994 average. Present estimates suggest atmospheric deposition comprises ~ 30% of the nitrogen budget of the Bay. This estimate was based, however, on limited ambient monitoring data and simple models, typical of such national estuary program efforts nationwide. In the Bay Regional Atmospheric Chemistry Experiment Florida DEP joined with TBEP to increase the intensity, sophistication and spatial scope of monitoring and modeling and provide better information on air quality in the Tampa Bay area. The result will be improved estimates of the effects of local and regional emissions of oxides of nitrogen (NOx) on the Bay and the benefits to be gained from implementation of emissions reduction strategies.

  8. Improving Student Performance in Organic Chemistry: Help Seeking Behaviors and Prior Chemistry Aptitude

    ERIC Educational Resources Information Center

    Horowitz, Gail; Rabin, Laura A.; Brodale, Donald L.

    2013-01-01

    Organic Chemistry is perceived to be one of the most challenging of undergraduate science courses, and attrition from this course may impact decisions about pursuing a professional or academic career in the biomedical and related sciences. Research suggests that chemistry students who are strategic help seekers may outperform those students who…

  9. A Perspective on Physical Organic Chemistry

    PubMed Central

    2015-01-01

    A perspective on the development of mechanistic carbene chemistry is presented. The author will point out questions that have been answered, and a next generation of questions will be proposed. PMID:24571434

  10. Approaches to High Throughput Physical Organic Chemistry 

    E-print Network

    Portal, Christophe

    2008-01-01

    Over the past ten years, the development of High Throughput (HT) synthetic chemistry techniques has allowed the rapid preparation of libraries of hundreds to thousands of compounds. These tools are now extensively used for drug and material...

  11. Automated Combinatorial Chemistry in the Organic Chemistry Majors Laboratory

    ERIC Educational Resources Information Center

    Nichols, Christopher J.; Hanne, Larry F.

    2010-01-01

    A multidisciplinary experiment has been developed in which students each synthesize a combinatorial library of 48 hydrazones with the aid of a liquid-handling robot. Each product is then subjected to a Kirby-Bauer disk diffusion assay to assess its antibacterial activity. Students gain experience working with automation and at the…

  12. Topic Sequence and Emphasis Variability of Selected Organic Chemistry Textbooks

    ERIC Educational Resources Information Center

    Houseknecht, Justin B.

    2010-01-01

    Textbook choice has a significant effect upon course success. Among the factors that influence this decision, two of the most important are material organization and emphasis. This paper examines the sequencing of 19 organic chemistry topics, 21 concepts and skills, and 7 biological topics within nine of the currently available organic textbooks.…

  13. A Novel Philosophy for a First Course in Organic Chemistry.

    ERIC Educational Resources Information Center

    Newman, Melvin S.

    1982-01-01

    Focusing on research is suggested as an approach for teaching organic chemistry for nonmajors. Topics of saturated hydrocarbons and unsaturated hydrocarbons are used as examples to illustrate the approach. (SK)

  14. CARBINOLAMINES AND GEMINAL DIOLS IN AQUEOUS ENVIRONMENTAL ORGANIC CHEMISTRY

    EPA Science Inventory

    Organic chemistry textbooks generally treat geminal diols as curiosities-exceptions to the stability of the C=O double bond. However, most aldehydes of environmental significance, to wit, trichloroethanal (chloral), methanala (formaldehyde), ethanal (acetaldehyde), and propanal ...

  15. Measuring Meaningful Learning in the Undergraduate General Chemistry and Organic Chemistry Laboratories: A Longitudinal Study

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Bretz, Stacey Lowery

    2015-01-01

    Understanding how students learn in the undergraduate chemistry teaching laboratory is an essential component to developing evidence-based laboratory curricula. The Meaningful Learning in the Laboratory Instrument (MLLI) was developed to measure students' cognitive and affective expectations and experiences for learning in the chemistry

  16. Academia–Industry Symbiosis in Organic Chemistry

    PubMed Central

    2015-01-01

    Conspectus Collaboration between academia and industry is a growing phenomenon within the chemistry community. These sectors have long held strong ties since academia traditionally trains the future scientists of the corporate world, but the recent drastic decrease of public funding is motivating the academic world to seek more private grants. This concept of industrial “sponsoring” is not new, and in the past, some companies granted substantial amounts of money per annum to various academic institutions in exchange for prime access to all their scientific discoveries and inventions. However, academic and industrial interests were not always aligned, and therefore the investment has become increasingly difficult to justify from industry’s point of view. With fluctuating macroeconomic factors, this type of unrestricted grant has become more rare and has been largely replaced by smaller and more focused partnerships. In our view, forging a partnership with industry can be a golden opportunity for both parties and can represent a true symbiosis. This type of project-specific collaboration is engendered by industry’s desire to access very specific academic expertise that is required for the development of new technologies at the forefront of science. Since financial pressures do not allow companies to spend the time to acquire this expertise and even less to explore fundamental research, partnering with an academic laboratory whose research is related to the problem gives them a viable alternative. From an academic standpoint, it represents the perfect occasion to apply “pure science” research concepts to solve problems that benefit humanity. Moreover, it offers a unique opportunity for students to face challenges from the “real world” at an early stage of their career. Although not every problem in industry can be solved by research developments in academia, we argue that there is significant scientific overlap between these two seemingly disparate groups, thereby presenting an opportunity for a symbiosis. This type of partnership is challenging but can be a win–win situation if both parties agree on some general guidelines, including clearly defined goals and deliverables, biweekly meetings to track research progress, and quarterly or annual meetings to recognize overarching, common objectives. This Account summarizes our personal experience concerning collaborations with various industrial groups and the way it impacted the research programs for both sides in a symbiotic fashion. PMID:25702529

  17. Academia-industry symbiosis in organic chemistry.

    PubMed

    Michaudel, Quentin; Ishihara, Yoshihiro; Baran, Phil S

    2015-03-17

    Collaboration between academia and industry is a growing phenomenon within the chemistry community. These sectors have long held strong ties since academia traditionally trains the future scientists of the corporate world, but the recent drastic decrease of public funding is motivating the academic world to seek more private grants. This concept of industrial "sponsoring" is not new, and in the past, some companies granted substantial amounts of money per annum to various academic institutions in exchange for prime access to all their scientific discoveries and inventions. However, academic and industrial interests were not always aligned, and therefore the investment has become increasingly difficult to justify from industry's point of view. With fluctuating macroeconomic factors, this type of unrestricted grant has become more rare and has been largely replaced by smaller and more focused partnerships. In our view, forging a partnership with industry can be a golden opportunity for both parties and can represent a true symbiosis. This type of project-specific collaboration is engendered by industry's desire to access very specific academic expertise that is required for the development of new technologies at the forefront of science. Since financial pressures do not allow companies to spend the time to acquire this expertise and even less to explore fundamental research, partnering with an academic laboratory whose research is related to the problem gives them a viable alternative. From an academic standpoint, it represents the perfect occasion to apply "pure science" research concepts to solve problems that benefit humanity. Moreover, it offers a unique opportunity for students to face challenges from the "real world" at an early stage of their career. Although not every problem in industry can be solved by research developments in academia, we argue that there is significant scientific overlap between these two seemingly disparate groups, thereby presenting an opportunity for a symbiosis. This type of partnership is challenging but can be a win-win situation if both parties agree on some general guidelines, including clearly defined goals and deliverables, biweekly meetings to track research progress, and quarterly or annual meetings to recognize overarching, common objectives. This Account summarizes our personal experience concerning collaborations with various industrial groups and the way it impacted the research programs for both sides in a symbiotic fashion. PMID:25702529

  18. Tautomerization of Acetylacetone Enol. A Physical Organic Experiment in Kinetics and Thermodynamics.

    ERIC Educational Resources Information Center

    Spyridis, Greg T.; Meany, J. E.

    1988-01-01

    Describes a physical organic experiment in thermodynamics and kinetics for undergraduate courses in organic chemistry, biochemistry, or physical chemistry. Details background information, solution preparations, equipment and methods, and the suggested experiments such as determination of general-base-catalytic coefficients and the Bronsted…

  19. Positive Impacts Using POGIL in Organic Chemistry

    ERIC Educational Resources Information Center

    Hein, Sara M.

    2012-01-01

    A student-centered learning technique, process-oriented, guided-inquiry learning (POGIL), has been developed as a pedagogical technique that facilitates collaborative and cooperative learning in the chemistry classroom. With the use of this technique, students enhance their higher-order thinking skills and process skills synergistically. In…

  20. Synthesis of Ethyl Nalidixate: A Medicinal Chemistry Experiment

    ERIC Educational Resources Information Center

    Leslie, Ray; Leeb, Elaine; Smith, Robert B.

    2012-01-01

    A series of laboratory experiments that complement a medicinal chemistry lecture course in drug design and development have been developed. The synthesis of ethyl nalidixate covers three separate experimental procedures, all of which can be completed in three, standard three-hour lab classes and incorporate aspects of green chemistry such as…

  1. Infusing the Chemistry Curriculum with Green Chemistry Using Real-World Examples, Web Modules, and Atom Economy in Organic Chemistry Courses

    NASA Astrophysics Data System (ADS)

    Cann, Michael C.; Dickneider, Trudy A.

    2004-07-01

    Green chemistry principles and practices have been infused in the chemistry curriculum at the University of Scranton, including courses in general, organic, and inorganic chemistry, biochemistry, environmental, polymer, industrial, and advanced organic chemistry, and chemical toxicology. Web-based green chemistry teaching modules have been developed for each of these courses. We describe the principles underlying green chemistry and methods of introducing these concepts into the curriculum with an example of incorporating green chemistry into the undergraduate lecture and laboratory organic sequence. See Featured Molecules .

  2. Synthesis Road Map Problems in Organic Chemistry

    ERIC Educational Resources Information Center

    Schaller, Chris P.; Graham, Kate J.; Jones, T. Nicholas

    2014-01-01

    Road map problems ask students to integrate their knowledge of organic reactions with pattern recognition skills to "fill in the blanks" in the synthesis of an organic compound. Students are asked to identify familiar organic reactions in unfamiliar contexts. A practical context, such as a medicinally useful target compound, helps…

  3. A Process Model for the Comprehension of Organic Chemistry Notation

    ERIC Educational Resources Information Center

    Havanki, Katherine L.

    2012-01-01

    This dissertation examines the cognitive processes individuals use when reading organic chemistry equations and factors that affect these processes, namely, visual complexity of chemical equations and participant characteristics (expertise, spatial ability, and working memory capacity). A six stage process model for the comprehension of organic

  4. Saying What You Mean: Teaching Mechanisms in Organic Chemistry

    ERIC Educational Resources Information Center

    Friesen, J. Brent

    2008-01-01

    Organic reactions in introductory organic chemistry courses are most commonly taught with a mechanism-based approach to the understanding of molecular reactivity. However, the effectiveness of the popular curved arrow representation to describe reaction mechanisms is often compromised by the overuse of shortcuts and obscure notation. The…

  5. Undergraduate Oral Examinations in a University Organic Chemistry Curriculum

    ERIC Educational Resources Information Center

    Dicks, Andrew P.; Lautens, Mark; Koroluk, Katherine J.; Skonieczny, Stanislaw

    2012-01-01

    This article describes the successful implementation of an oral examination format in the organic chemistry curriculum at the University of Toronto. Oral examinations are used to replace traditional written midterm examinations in several courses. In an introductory organic class, each student is allotted 15 min to individually discuss one…

  6. Using Popular Nonfiction in Organic Chemistry: Teaching More than Content

    ERIC Educational Resources Information Center

    Amaral, Katie E.; Shibley, Ivan A., Jr.

    2010-01-01

    Assigning a popular nonfiction book as a supplemental text in organic chemistry can help students learn valuable skills. An analysis of student feedback on assignments related to a nonfiction book in two different organic courses revealed that students applied the information from the book, improved their communication skills, and were more…

  7. Organic chemistry and biology of the interstellar medium

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1973-01-01

    Interstellar organic chemistry is discussed as the field of study emerging from the discovery of microwave lines of formaldehyde and of hydrogen cyanide in the interstellar medium. The reliability of molecular identifications and comparisons of interstellar and cometary compounds are considered, along with the degradational origin of simple organics. It is pointed out that the contribution of interstellar organic chemistry to problems in biology is not substantive but analogical. The interstellar medium reveals the operation of chemical processes which, on earth and perhaps on vast numbers of planets throughout the universe, led to the origin of life, but the actual molecules of the interstellar medium are unlikely to play any significant biological role.

  8. Using Microcomputers in the Physical Chemistry Laboratory: Activation Energy Experiment.

    ERIC Educational Resources Information Center

    Touvelle, Michele; Venugopalan, Mundiyath

    1986-01-01

    Describes a computer program, "Activation Energy," which is designed for use in physical chemistry classes and can be modified for kinetic experiments. Provides suggestions for instruction, sample program listings, and information on the availability of the program package. (ML)

  9. Theoretical advances toward understanding recent experiments in biophysical chemistry

    E-print Network

    Zimanyi, Eric Norman

    2012-01-01

    Several theoretical advances are presented, with the common theme of helping better understand and guide recent experiments in biophysical chemistry. In Chapter 2, I consider a recent criticism of the Jarzynski equality, ...

  10. Early Experiences with Computational Quantum Chemistry.

    PubMed

    Pitzer, Russell M

    2011-08-01

    A description is given of the progress in computational quantum chemistry in the early 1960s, the time of the early mainframe computers. In particular, the first calculation of the barrier to internal rotation in ethane and the first molecular application of perturbed self-consistent-field equations are described with the accompanying developments, trials, and tribulations. PMID:26606608

  11. Chemistry under Your Skin? Experiments with Tattoo Inks for Secondary School Chemistry Students

    ERIC Educational Resources Information Center

    Stuckey, Marc; Eilks, Ingo

    2015-01-01

    This paper discusses a set of easy, hands-on experiments that inquire into and differentiate among tattoo inks of varying quality. A classroom scenario is described for integrating these experiments into secondary school chemistry classes. Initial experiences from the classroom are also presented.

  12. Experiments in Chemistry: A Model Science Software Tool.

    ERIC Educational Resources Information Center

    Malone, Diana; Tinker, Robert

    1984-01-01

    Describes "Experiments in Chemistry," in which experiments are performed using software and hardware interfaced to the Apple microcomputer's game paddle port. Experiments include temperature, pH electrode, and EMF (cell potential determinations, oxidation-reduction titrations, and precipitation titrations) investigations. (JN)

  13. Operational Amplifier Experiments for the Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Braun, Robert D.

    1996-01-01

    Provides details of experiments that deal with the use of operational amplifiers and are part of a course in instrumental analysis. These experiments are performed after the completion of a set of electricity and electronics experiments. (DDR)

  14. Interdisciplinary Learning for Chemical Engineering Students from Organic Chemistry Synthesis Lab to Reactor Design to Separation

    ERIC Educational Resources Information Center

    Armstrong, Matt; Comitz, Richard L.; Biaglow, Andrew; Lachance, Russ; Sloop, Joseph

    2008-01-01

    A novel approach to the Chemical Engineering curriculum sequence of courses at West Point enabled our students to experience a much more realistic design process, which more closely replicated a real world scenario. Students conduct the synthesis in the organic chemistry lab, then conduct computer modeling of the reaction with ChemCad and…

  15. A Green, Guided-Inquiry Based Electrophilic Aromatic Substitution for the Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Eby, Eric; Deal, S. Todd

    2008-01-01

    We developed an alternative electrophilic aromatic substitution reaction for the organic chemistry teaching laboratory. The experiment is an electrophilic iodination reaction of salicylamide, a popular analgesic, using environmentally friendly reagents--sodium iodide and household bleach. Further, we designed the lab as a guided-inquiry…

  16. A Practical Introduction to Separation and Purification Techniques for the Beginning Organic Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Leonard, Jack E.

    1981-01-01

    Describes a sequence of experiments developed at Texas A&M University for use in one-semester and two-semester (nonmajors) organic chemistry courses to teach a maximum number of separation and purification techniques such as distillations, recrystallization, liquid-liquid extraction, and chromatography. (SK)

  17. Borohydride Reduction of Estrone: Demonstration of Diastereoselectivity in the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Aditya, Animesh; Nichols, David E.; Loudon, G. Marc

    2008-01-01

    This experiment presents a guided-inquiry approach to the demonstration of diastereoselectivity in an undergraduate organic chemistry laboratory. Chiral hindered ketones such as estrone, undergo facile reduction with sodium borohydride in a highly diastereoselective manner. The diastereomeric estradiols produced in the reaction can be analyzed and…

  18. Structure Determination of Unknown Organic Liquids Using NMR and IR Spectroscopy: A General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Pavel, John T.; Hyde, Erin C.; Bruch, Martha D.

    2012-01-01

    This experiment introduced general chemistry students to the basic concepts of organic structures and to the power of spectroscopic methods for structure determination. Students employed a combination of IR and NMR spectroscopy to perform de novo structure determination of unknown alcohols, without being provided with a list of possible…

  19. Green Oxidation of Menthol Enantiomers and Analysis by Circular Dichroism Spectroscopy: An Advanced Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Geiger, H. Cristina; Donohoe, James S.

    2012-01-01

    Green chemistry addresses environmental concerns associated with chemical processes and increases awareness of possible harmful effects of chemical reagents. Efficient reactions that eliminate or reduce the use of organic solvents or toxic reagents are increasingly available. A two-week experiment is reported that entails the calcium hypochlorite…

  20. A Guided Inquiry Liquid/Liquid Extractions Laboratory for Introductory Organic Chemistry

    ERIC Educational Resources Information Center

    Raydo, Margaret L.; Church, Megan S.; Taylor, Zane W.; Taylor, Christopher E.; Danowitz, Amy M.

    2015-01-01

    A guided inquiry laboratory experiment for teaching liquid/liquid extractions to first semester undergraduate organic chemistry students is described. This laboratory is particularly useful for introductory students as the analytes that are separated are highly colored dye molecules. This allows students to track into which phase each analyte…

  1. Engaging Organic Chemistry Students Using ChemDraw for iPad

    ERIC Educational Resources Information Center

    Morsch, Layne A.; Lewis, Michael

    2015-01-01

    Drawing structures, mechanisms, and syntheses is a vital part of success in organic chemistry courses. ChemDraw for iPad has been used to increase classroom experiences in the preparation of high quality chemical drawings. The embedded Flick-to-Share allows for simple, real-time exchange of ChemDraw documents. ChemDraw for iPad also allows…

  2. Organic chemistry on Titan: Surface interactions

    NASA Technical Reports Server (NTRS)

    Thompson, W. Reid; Sagan, Carl

    1992-01-01

    The interaction of Titan's organic sediments with the surface (solubility in nonpolar fluids) is discussed. How Titan's sediments can be exposed to an aqueous medium for short, but perhaps significant, periods of time is also discussed. Interactions with hydrocarbons and with volcanic magmas are considered. The alteration of Titan's organic sediments over geologic time by the impacts of meteorites and comets is discussed.

  3. Organic chemistry in the ionosphere of the Early Earth

    NASA Astrophysics Data System (ADS)

    Carrasco, N.; Fleury, B.; Vettier, L.

    2015-10-01

    The emergence of life on the Early Earth during the Archean has required a prior complex organic chemistry providing the prerequisite bricks of life. The origin of the organic matter and its evolution on the early Earth is far from being understood. Several hypotheses are investigated, possibly complementary, which can be divided in two main categories: the endogenous and the exogenous sources. In this work we have been interested in the contribution of a specific endogenous source: the organic chemistry occurring in the ionosphere of the early Earth. At these high altitudes, the VUV contribution of the young sun was important, involving an efficient production of reactive species. Here we address the issue whether this chemistry can lead to the production of larger molecules with a prebiotic interest in spite of the competitive lysing effect of the harsh irradiation at these altitudes.

  4. Nickel-Catalyzed Suzuki–Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory

    PubMed Central

    2015-01-01

    A modern undergraduate organic chemistry laboratory experiment involving the Suzuki–Miyaura coupling is reported. Although Suzuki–Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a “green” alcohol solvent. The experiment employs heterocyclic substrates, which are important pharmaceutical building blocks. Thus, this laboratory procedure exposes students to a variety of contemporary topics in organic chemistry, including transition metal-catalyzed cross-couplings, green chemistry, and the importance of heterocycles in drug discovery, none of which are well represented in typical undergraduate organic chemistry curricula. The experimental protocol uses commercially available reagents and is useful in both organic and inorganic instructional laboratories. PMID:25774064

  5. Predicted versus Actual Performance in Undergraduate Organic Chemistry and Implications for Student Advising

    ERIC Educational Resources Information Center

    Pursell, David P.

    2007-01-01

    Performance as measured by grades in the first and second semesters of organic chemistry was predicted using pre-college measures (SAT scores, high school rank, validation exams) and college measures (general chemistry GPA, overall college GPA prior to beginning organic chemistry, first-semester organic chemistry GPA). Data indicate that overall…

  6. Organic Chemistry Educators' Perspectives on Fundamental Concepts and Misconceptions: An Exploratory Study

    ERIC Educational Resources Information Center

    Duis, Jennifer M.

    2011-01-01

    An exploratory study was conducted with 23 organic chemistry educators to discover what general chemistry concepts they typically review, the concepts they believe are fundamental to introductory organic chemistry, the topics students find most difficult in the subject, and the misconceptions they observe in undergraduate organic chemistry

  7. Solventless and One-Pot Synthesis of Cu(II) Phthalocyanine Complex: A Green Chemistry Experiment

    ERIC Educational Resources Information Center

    Sharma, R. K.; Sharma, Chetna; Sidhwani, Indu Tucker

    2011-01-01

    With the growing awareness of green chemistry, it is increasingly important for students to understand this concept in the context of laboratory experiments. Although microwave-assisted organic synthesis has become a common and invaluable technique in recent years, there have been few procedures published for microwave-assisted inorganic synthesis…

  8. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule.

    PubMed

    Slade, Michael C; Raker, Jeffrey R; Kobilka, Brandon; Pohl, Nicola L B

    2014-01-14

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world. PMID:24501431

  9. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule

    PubMed Central

    2014-01-01

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world. PMID:24501431

  10. The Organic Chemistry of Conducting Polymers

    SciTech Connect

    Tolbert, Laren Malcolm

    2014-12-01

    For the last several years, we have examined the fundamental principles of conduction in one-dimensional systems, i.e., molecular “wires”. It is, of course, widely recognized that such systems, as components of electronically conductive materials, function in a two- and three-dimensional milieu. Thus interchain hopping and grain-boundary resistivity are limiting conductivity factors in highly conductive materials, and overall conductivity is a function of through-chain and boundary hopping. We have given considerable attention to the basic principles underlying charge transport (the “rules of the game”) in two-dimensional systems by using model systems which allow direct observation of such processes, including the examination of tunneling and hopping as components of charge transfer. In related work, we have spent considerable effort on the chemistry of conjugated heteropolymers, most especially polythiophens, with the aim of using these most efficient of readily available electroactive polymers in photovoltaic devices.

  11. Advanced Undergraduate Experiments in Thermoanalytical Chemistry.

    ERIC Educational Resources Information Center

    Hill, J. O.; Magee, R. J.

    1988-01-01

    Describes several experiments using the techniques of thermal analysis and thermometric titrimetry. Defines thermal analysis and several recent branches of the technique. Notes most of the experiments use simple equipment and standard laboratory techniques. (MVL)

  12. Two Multipurpose Thermochemical Experiments for General Chemistry.

    ERIC Educational Resources Information Center

    Wentworth, R. A. D.

    1988-01-01

    Describes two experiments designed to provide concepts on the difference between heat and temperature and also bond energy. Investigates both a neutralization experiment and a ligation experiment. Notes inexpensive chemicals are used along with simple equipment. Discusses the sharing of lab results for a single class value. (MVL)

  13. Spectroelectrochemical Sensing of Aqueous Iron: An Experiment for Analytical Chemistry

    ERIC Educational Resources Information Center

    Shtoyko, Tanya; Stuart, Dean; Gray, H. Neil

    2007-01-01

    We have designed a laboratory experiment to illustrate the use of spectroelectrochemical techniques for determination of aqueous iron. The experiment described in this article is applicable to an undergraduate laboratory course in analytical chemistry. Students are asked to fabricate spectroelectrochemical sensors, make electrochemical and optical…

  14. Oxidation and Reduction Reactions in Organic Chemistry

    ERIC Educational Resources Information Center

    Shibley, Ivan A., Jr.; Amaral, Katie E.; Aurentz, David J.; McCaully, Ronald J.

    2010-01-01

    A variety of approaches to the concept of oxidation and reduction appear in organic textbooks. The method proposed here is different than most published approaches. The oxidation state is calculated by totaling the number of heterogeneous atoms, [pi]-bonds, and rings. A comparison of the oxidation states of reactant and product determine what type…

  15. Pre-Service Chemistry Teachers' Expectations and Experiences in the School Experience Course

    ERIC Educational Resources Information Center

    Kirbulut, Zubeyde D.; Boz, Yezdan; S. Kutucu, Elif

    2012-01-01

    The purpose of this study is to investigate prospective chemistry teachers' expectations and experiences of teaching practice. Six (four females and two males) pre-service chemistry teachers taking a School Experience II course participated in the study. A case study design was employed. The data were collected from multiple sources including…

  16. A Statistical Evaluation: Peer-led Team Learning in an Organic Chemistry Course.

    ERIC Educational Resources Information Center

    Lyle, Kenneth S.; Robinson, William R.

    2003-01-01

    Reports the status of peer-led learning, also known as Workshop Chemistry. This National Science Foundation (NSF) systemic-reform initiative focuses on general chemistry, organic chemistry, and biochemistry. (DDR)

  17. Sudoku Puzzles for First-Year Organic Chemistry Students

    ERIC Educational Resources Information Center

    Perez, Alice L.; Lamoureux, G.

    2007-01-01

    Sudoku puzzle was designed to teach about amino acids and functional groups to the students of undergraduate organic chemistry students. The puzzles focus on helping the student learn the name, 3-letter code and 1-letter code of common amino acids and functional groups.

  18. THE JOURNAL OF Organic Chemistry VOLUME49, NUMBER12

    E-print Network

    RajanBabu, T. V. "Babu"

    -326318411949-2083$01.50/0 3N 2N 1N without increasing its basicity. Thus, some of the side reactions encounteredwithTHE JOURNAL OF Organic Chemistry VOLUME49, NUMBER12 0 Copyright 1984 by the American Chemical also add to enones in nitromethane at room temperature even in the absence of fluoride ion

  19. Learning Organic Chemistry through a Study of Semiochemicals

    ERIC Educational Resources Information Center

    Pernaa, Johannes; Aksela, Maija

    2011-01-01

    The topics of nature, for example semiochemicals, are motivating topics, which can be used to teach organic chemistry at high school level. The history, classifications, a few important applications of semiochemicals, and an semiochemical that can be synthesized in the laboratory are presented. The laboratory synthesis is carried out through the…

  20. TECHNETIUM CHEMISTRY IN HLW: ROLE OF ORGANIC COMPLEXANTS

    EPA Science Inventory

    Technetium complexation with organic compounds in tank waste plays a significant role in the redox chemistry of Tc and the partitioning of Tc between the supernatant and sludge components in waste tanks. These processes need to be understood so that strategies to effectively remo...

  1. Omar Yaghi on Chemistry and Metal Organic Frameworks

    ScienceCinema

    Omar Yaghi

    2013-06-24

    In this edited version of the hour long talk, Omar Yaghi, director of the Molecular Foundry, sat down in conversation with Jeff Miller, head of Public Affairs, on July 11th, 2012 to discuss his fascination with the hidden world of chemistry and his work on Metal Organic Frameworks.

  2. Laboratory studies of the cosmic origins of organic chemistry

    NASA Astrophysics Data System (ADS)

    O'Connor, A. P.; Garrido, M.; Miller, K. A.; Urbain, X.; Savin, D. W.

    2012-11-01

    We are constructing a novel merged-beams apparatus to study the cosmic origins of organic chemistry. With this, we plan to measure reaction rate coefficients of atomic C with molecular ions. Such chemical data is important for astrochemical models and observations of cosmic objects.

  3. Does Mechanistic Thinking Improve Student Success in Organic Chemistry?

    ERIC Educational Resources Information Center

    Grove, Nathaniel P.; Cooper, Melanie M.; Cox, Elizabeth L.

    2012-01-01

    The use of the curved-arrow notation to depict electron flow during mechanistic processes is one of the most important representational conventions in the organic chemistry curriculum. Our previous research documented a disturbing trend: when asked to predict the products of a series of reactions, many students do not spontaneously engage in…

  4. Non-Mathematical Problem Solving in Organic Chemistry

    ERIC Educational Resources Information Center

    Cartrette, David P.; Bodner, George M.

    2010-01-01

    Differences in problem-solving ability among organic chemistry graduate students and faculty were studied within the domain of problems that involved the determination of the structure of a molecule from the molecular formula of the compound and a combination of IR and [to the first power]H NMR spectra. The participants' performance on these tasks…

  5. Omar Yaghi on Chemistry and Metal Organic Frameworks

    SciTech Connect

    Omar Yaghi

    2012-07-23

    In this edited version of the hour long talk, Omar Yaghi, director of the Molecular Foundry, sat down in conversation with Jeff Miller, head of Public Affairs, on July 11th, 2012 to discuss his fascination with the hidden world of chemistry and his work on Metal Organic Frameworks.

  6. Integrating Symmetry in Stereochemical Analysis in Introductory Organic Chemistry

    ERIC Educational Resources Information Center

    Taagepera, Mare; Arasasingham, Ramesh D.; King, Susan; Potter, Frank; Martorell, Ingrid; Ford, David; Wu, Jason; Kearney, Aaron M.

    2011-01-01

    We report a comparative study using "knowledge space theory" (KAT) to assess the impact of a hands-on laboratory exercise that used molecular model kits to emphasize the connections between a plane of symmetry, Charity, and isomerism in an introductory organic chemistry course. The experimental design compared three groups of students--two that…

  7. A Simple Mnemonic for Tautomerization Mechanisms in Organic Chemistry

    ERIC Educational Resources Information Center

    Stephens, Chad E.

    2010-01-01

    The familiar word OREO (as in the cookie) is presented as a simple mnemonic for remembering the basic steps of the classical tautomerization mechanisms in organic chemistry. For acid-catalyzed tautomerizations, OREO stands for proton on, resonance, proton off. For base-catalyzed tautomerizations, OREO stands for proton off, resonance, proton on.…

  8. Telling It like It Is: Teaching Mechanisms in Organic Chemistry

    ERIC Educational Resources Information Center

    Ault, Addison

    2010-01-01

    In this article I support and extend the ideas presented by J. Brent Friesen in his article "Saying What You Mean; Teaching Mechanisms in Organic Chemistry" ("JCE" November, 2008). I emphasize "telling the truth" about proton transfers. The truth is that in aqueous acid most reactions are subject to "specific" acid catalysis: the only kinetically…

  9. Toward Consistent Terminology for Cyclohexane Conformers in Introductory Organic Chemistry

    ERIC Educational Resources Information Center

    Nelson, Donna J.; Brammer, Christopher N.

    2011-01-01

    Recommended changes in use of cyclohexane conformers and their nomenclature will remedy inconsistencies in cyclohexane conformers and their nomenclature that exist across currently used organic chemistry textbooks. These inconsistencies prompted this logical analysis and the resulting recommendations. Recommended conformer names are "chair",…

  10. Some Experiments in Sulfur-Nitrogen Chemistry.

    ERIC Educational Resources Information Center

    Banister, Arthur J.; Smith, Nigel R. M.

    1982-01-01

    Briefly surveys the main structural types of sulfur-nitrogen compounds, and describes syntheses, suitable as undergraduate experiments, which illustrate four of the five types of cyclic species. Laboratory procedures, background information, and discussion of results for these experiments are provided. (Author/JN)

  11. Photoelectroconversion by Semiconductors: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Fan, Qinbai; And Others

    1995-01-01

    Presents an experiment designed to give students some experience with photochemistry, electrochemistry, and basic theories about semiconductors. Uses a liquid-junction solar cell and illustrates some fundamental physical and chemical principles related to light and electricity interconversion as well as the properties of semiconductors. (JRH)

  12. Solar Energy Experiment for Beginning Chemistry.

    ERIC Educational Resources Information Center

    Davis, Clyde E.

    1983-01-01

    Describes an experiment illustrating how such chemical concepts as light absorption, thermodynamics, and solid-state photovoltaics can be incorporated into solar energy education. Completed in a three-hour period, the experiment requires about two hours for data collections with the remaining hour devoted to calculations and comparison of results.…

  13. Statistical Analysis Experiment for Freshman Chemistry Lab.

    ERIC Educational Resources Information Center

    Salzsieder, John C.

    1995-01-01

    Describes a laboratory experiment dissolving zinc from galvanized nails in which data can be gathered very quickly for statistical analysis. The data have sufficient significant figures and the experiment yields a nice distribution of random errors. Freshman students can gain an appreciation of the relationships between random error, number of…

  14. Nuclear Experiments in the Chemistry Curriculum

    ERIC Educational Resources Information Center

    Clark, Herbert M.

    1970-01-01

    Describes nuclear teaching experiments and their distribution within the undergraduate curriculum. In addition, sources of information on published nuclear teaching experiments and on the supplier's of nuclear instruments, radiochemical and miscellaneous special materials are identified. Approximate costs for selected nuclear instrument systems…

  15. Piaget and Organic Chemistry: Teaching Introductory Organic Chemistry through Learning Cycles

    NASA Astrophysics Data System (ADS)

    Libby, R. Daniel

    1995-07-01

    This paper describes the first application of the Piaget-based learning cycle technique (Atkin & Karplus, Sci. Teach. 1962, 29, 45-51) to an introductory organic chemistry course. It also presents the step-by-step process used to convert a lecture course into a discussion-based active learning course. The course is taught in a series of learning cycles. A learning cycle is a three phase process that provides opportunities for students to explore new material and work with an instructor to recognize logical patterns in data, and devise and test hypotheses. In this application, the first phase, exploration, involves out-of-class student evaluation of data in attempts to identify significant trends and develop hypotheses that might explain the trends in terms of fundamental scientific principles. In the second phase, concept invention, the students and instructor work together in-class to evaluate student hypotheses and find concepts that work best in explaining the data. The third phase, application, is an out-of-class application of the concept to new situations. The development of learning cycles from lecture notes is presented as an 8 step procedure. The process involves revaluation and restructuring of the course material to maintain a continuity of concept development according to the instructor's logic, dividing topics into individual concepts or techniques, and refocusing the presentation in terms of large numbers of examples that can serve as data for students in their exploration and application activities. A sample learning cycle and suggestions for ways of limited implementation of learning cycles into existing courses are also provided.

  16. Solvated Electrons in Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Ilich, Predrag-Peter; McCormick, Kathleen R.; Atkins, Adam D.; Mell, Geoffrey J.; Flaherty, Timothy J.; Bruck, Martin J.; Goodrich, Heather A.; Hefel, Aaron L.; Juranic, Nenad; Seleem, Suzanne

    2010-01-01

    A novel experiment is described in which solvated electrons in liquid ammonia reduce a benzyl alcohol carbon without affecting the aromatic ring. The reductive activity of solvated electrons can be partially or completely quenched through the addition of electron scavengers to the reaction mixture. The effectiveness of these scavengers was found…

  17. Student Response to a Partial Inversion of an Organic Chemistry Course for Non-Chemistry Majors

    ERIC Educational Resources Information Center

    Rein, Kathleen S.; Brookes, David T.

    2015-01-01

    We report the student response to a two-year transformation of a one-semester organic chemistry course for nonchemistry majors. The transformed course adopted a peer led team learning approach and incorporated case studies. Student attitudes toward the course transformation were assessed throughout the semester, and adjustments to the methods were…

  18. Alternative Conceptions of Organic Chemistry Topics among Fourth Year Chemistry Students

    ERIC Educational Resources Information Center

    Rushton, Gregory T.; Hardy, Rebecca C.; Gwaltney, Kevin P.; Lewis, Scott E.

    2008-01-01

    This study describes the conceptual understanding for a series of fundamental organic concepts by fourth year chemistry students from a midsize, southeastern, state university. Student volunteers (n = 19) participated in semi-structured interviews using a think aloud protocol. The interview questions were eleven multiple choice questions selected…

  19. Implementing a Student-Designed Green Chemistry Laboratory Project in Organic Chemistry

    ERIC Educational Resources Information Center

    Graham, Kate J.; Jones, T. Nicholas; Schaller, Chris P.; McIntee, Edward J.

    2014-01-01

    A multiweek organic chemistry laboratory project is described that emphasizes sustainable practices in experimental design. An emphasis on student-driven development of the project is meant to mirror the independent nature of research. Students propose environmentally friendly modifications of several reactions. With instructor feedback, students…

  20. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Describes 13 activities, experiments and demonstrations, including the preparation of iron (III) chloride, simple alpha-helix model, investigating camping gas, redox reactions of some organic compounds, a liquid crystal thermometer, and the oxidation number concept in organic chemistry. (JN)

  1. Organic Chemistry in Action! Developing an Intervention Program for Introductory Organic Chemistry to Improve Learners' Understanding, Interest, and Attitudes

    ERIC Educational Resources Information Center

    O'Dwyer, Anne; Childs, Peter

    2014-01-01

    The main areas of difficulty experienced by those teaching and learning organic chemistry at high school and introductory university level in Ireland have been identified, and the findings support previous studies in Ireland and globally. Using these findings and insights from chemistry education research (CER), the Organic Chemistry in Action!…

  2. The Atmospheric Chemistry Experiment (ACE): Mission Overview

    NASA Astrophysics Data System (ADS)

    Bernath, P. F.; Boone, C.; Walker, K.; McLeod, S.; Nassar, R.

    2003-12-01

    The ACE mission goals are: (1) to measure and to understand the chemical and dynamical processes that control the distribution of ozone in the upper troposphere and stratosphere, with a particular emphasis on the Arctic region; (2) to explore the relationship between atmospheric chemistry and climate change; (3) to study the effects of biomass burning in the free troposphere; (4) to measure aerosol number density, size distribution and composition in order to reduce the uncertainties in their effects on the global energy balance. ACE will make a comprehensive set of simultaneous measurements of trace gases, thin clouds, aerosols, and temperature by solar occultation from a satellite in low earth orbit. A high inclination (74 degrees) low earth orbit (650 km) gives ACE coverage of tropical, mid-latitudes and polar regions. The solar occultation advantages are high sensitivity and self-calibration. A high-resolution (0.02 cm-1) infrared Fourier Transform Spectrometer (FTS) operating from 2 to 13 microns (750-4100 cm-1) will measure the vertical distribution of trace gases, and the meteorological variables of temperature and pressure. The ACE concept is derived from the now-retired ATMOS FTS instrument, which flew on the Space Shuttle in 1985, 1992, 1993, 1994. Climate-chemistry coupling may lead to the formation of an Arctic ozone hole. ACE will provide high quality data to confront these model predictions and will monitor polar chemistry as chlorine levels decline. The ACE-FTS can measure water vapor and HDO in the tropical tropopause region to study dehydration and strat-trop exchange. The molecular signatures of massive forest fires will evident in the ACE infrared spectra. The CO2 in our spectra can be used to either retrieve atmospheric pressure or (if the instrument pointing knowledge proves to be satisfactory) for an independent retrieval of a CO2 profile for carbon cycle science. Aerosols and clouds will be monitored using the extinction of solar radiation at 0.525 and 1.02 microns as measured by two filtered imagers as well as by their infrared spectra. A dual spectrograph called MAESTRO has been added to the mission to extend the wavelength coverage to the 280-1000 nm spectral region. The broad-band atmospheric extinction measured with high signal-to-noise ratio by MAESTRO is particularly useful for the derivation of aerosol and cloud physical properties. The PI for the MAESTRO instrument is T. McElroy from the Meteorological Service of Canada (MSC). ACE is unique in that MAESTRO, the ACE-FTS and the imagers all share the same suntracker and make simultaneous measurements of the same scene. The FTS and imagers have been built by ABB-Bomem in Quebec City, while the satellite bus has been made by Bristol Aerospace in Winnipeg. ACE was selected in the Canadian Space Agency's SCISAT-1 program, and was successfully launched by NASA on August 12, 2003 for a 2 year mission. The main international partners for ACE are NASA, for the launch and algorithm work at NASA-Langley, and Belgium/ESA, for the CMOS imaging arrays and scientific support.

  3. The Atmospheric Chemistry Experiment (ACE): Mission Overview

    NASA Astrophysics Data System (ADS)

    Bernath, P.

    2003-04-01

    The ACE mission goals are: (1) to measure and to understand the chemical and dynamical processes that control the distribution of ozone in the upper troposphere and stratosphere, with a particular emphasis on the Arctic region; (2) to explore the relationship between atmospheric chemistry and climate change; (3) to study the effects of biomass burning in the free troposphere; (4) to measure aerosol number density, size distribution and composition in order to reduce the uncertainties in their effects on the global energy balance. ACE will make a comprehensive set of simultaneous measurements of trace gases, thin clouds, aerosols, and temperature by solar occultation from a satellite in low earth orbit. A high inclination (74 degrees) low earth orbit (650 km) will give ACE coverage of tropical, mid-latitudes and polar regions. The solar occultation advantages are high sensitivity and self-calibration. A high-resolution (0.02 cm-1) infrared Fourier Transform Spectrometer (FTS) operating from 2 to 13 microns (750-4100 cm-1) will measure the vertical distribution of trace gases, and the meteorological variables of temperature and pressure. The ACE concept is derived from the now-retired ATMOS FTS instrument, which flew on the Space Shuttle in 1985, 1992, 1993, 1994. Climate-chemistry coupling may lead to the formation of an Arctic ozone hole. ACE will provide high quality data to confront these model predictions and will monitor polar chemistry as chlorine levels decline. The ACE-FTS can measure water vapor and HDO in the tropical tropopause region to study dehydration and strat-trop exchange. The molecular signatures of massive forest fires will evident in the ACE infrared spectra. The CO_2 in our spectra can be used to either retrieve atmospheric pressure or (if the instrument pointing knowledge proves to be satisfactory) for an independent retrieval of a CO_2 profile for carbon cycle science. Aerosols and clouds will be monitored using the extinction of solar radiation at 0.525 and 1.02 microns as measured by two filtered imagers as well as by their infrared spectra. A dual spectrograph called MAESTRO has been added to the mission to extend the wavelength coverage to the 280-1000 nm spectral region. The broad-band atmospheric extinction measured with high signal-to-noise ratio by MAESTRO is particularly useful for the derivation of aerosol and cloud physical properties. The PI for the MAESTRO instrument is T. McElroy from the Meteorological Service of Canada. ACE is unique in that MAESTRO, the ACE-FTS and the imagers all share the same suntracker and make simultaneous measurements of the same scene. The FTS and imagers have been built by ABB-Bomem in Quebec City, while the satellite bus has been made by Bristol Aerospace in Winnipeg. ACE has been selected in the Canadian Space Agency's SCISAT-1 program for a planned launch by NASA in May 2003 for a 2 year mission. The main international partners for ACE are NASA, for the launch and algorithm work at NASA-Langley, and Belgium/ESA, for the CMOS imaging arrays and scientific support.

  4. Detection of Organics at Mars: How Wet Chemistry Onboard SAM Helps

    NASA Technical Reports Server (NTRS)

    Buch, A.; Freissinet, Caroline; Szopa, C.; Glavin, D.; Coll, P.; Cabane, M.; Eigenbrode, J.; Navarro-Gonzalez, R.; Coscia, D.; Teinturier, S.; Mahaffy, P.

    2013-01-01

    For the first time in the history of space exploration, a mission of interest to astrobiology could be able to analyze refractory organic compounds in the soil of Mars. Wet chemistry experiment allow organic components to be altered in such a way that improves there detection either by releasing the compounds from sample matricies or by changing the chemical structure to be amenable to analytical conditions. The latter is particular important when polar compounds are present. Sample Analysis at Mars (SAM), on the Curiosity rover of the Mars Science Laboratory mission, has onboard two wet chemistry experiments: derivatization and thermochemolysis. Here we report on the nature of the MTBSTFA derivatization experiment on SAM, the detection of MTBSTFA in initial SAM results, and the implications of this detection.

  5. Planetary Organic Chemistry and the Origins of Biomolecules

    PubMed Central

    Benner, Steven A.; Kim, Hyo-Joong; Kim, Myung-Jung; Ricardo, Alonso

    2010-01-01

    Organic chemistry on a planetary scale is likely to have transformed carbon dioxide and reduced carbon species delivered to an accreting Earth. According to various models for the origin of life on Earth, biological molecules that jump-started Darwinian evolution arose via this planetary chemistry. The grandest of these models assumes that ribonucleic acid (RNA) arose prebiotically, together with components for compartments that held it and a primitive metabolism that nourished it. Unfortunately, it has been challenging to identify possible prebiotic chemistry that might have created RNA. Organic molecules, given energy, have a well-known propensity to form multiple products, sometimes referred to collectively as “tar” or “tholin.” These mixtures appear to be unsuited to support Darwinian processes, and certainly have never been observed to spontaneously yield a homochiral genetic polymer. To date, proposed solutions to this challenge either involve too much direct human intervention to satisfy many in the community, or generate molecules that are unreactive “dead ends” under standard conditions of temperature and pressure. Carbohydrates, organic species having carbon, hydrogen, and oxygen atoms in a ratio of 1:2:1 and an aldehyde or ketone group, conspicuously embody this challenge. They are components of RNA and their reactivity can support both interesting spontaneous chemistry as part of a “carbohydrate world,” but they also easily form mixtures, polymers and tars. We describe here the latest thoughts on how on this challenge, focusing on how it might be resolved using minerals containing borate, silicate, and molybdate, inter alia. PMID:20504964

  6. The Importance of Undergraduate General and Organic Chemistry to the Study of Biochemistry in Medical School.

    ERIC Educational Resources Information Center

    Scimone, Anthony; Scimone, Angelina A.

    1996-01-01

    Investigates chemistry topics necessary to facilitate the study of biochemistry in U.S. medical schools. Lists topics considered especially important and topics considered especially unimportant in general chemistry and organic chemistry. Suggests that in teaching undergraduate general or organic chemistry, the topics categorized as exceptionally…

  7. Solution Calorimetry Experiments for Physical Chemistry.

    ERIC Educational Resources Information Center

    Raizen, Deborah A.; And Others

    1988-01-01

    Presents two experiments: the first one measures the heat of an exothermic reaction by the reduction of permanganate by the ferris ion; the second one measures the heat of an endothermic process, the mixing of ethanol and cyclohexane. Lists tables to aid in the use of the solution calorimeter. (MVL)

  8. UNESCO Chemistry Teaching Project in Asia: Experiments on Nuclear Science.

    ERIC Educational Resources Information Center

    Dhabanandana, Salag

    This teacher's guide on nuclear science is divided into two parts. The first part is a discussion of some of the concepts in nuclear chemistry including radioactivity, types of disintegration, radioactive decay and growth, and tracer techniques. The relevant experiments involving the use of radioisotopes are presented in the second part. The…

  9. A Physical Chemistry Experiment in Polymer Crystallization Kinetics

    ERIC Educational Resources Information Center

    Singfield, Kathy L.; Chisholm, Roderick A.; King, Thomas L.

    2012-01-01

    A laboratory experiment currently used in an undergraduate physical chemistry lab to investigate the rates of crystallization of a polymer is described. Specifically, the radial growth rates of typical disc-shaped crystals, called spherulites, growing between microscope glass slides are measured and the data are treated according to polymer…

  10. Ionic Liquids and Green Chemistry: A Lab Experiment

    ERIC Educational Resources Information Center

    Stark, Annegret; Ott, Denise; Kralisch, Dana; Kreisel, Guenter; Ondruschka, Bernd

    2010-01-01

    Although ionic liquids have been investigated as solvents for many applications and are starting to be used in industrial processes, only a few lab experiments are available to introduce students to these materials. Ionic liquids have been discussed in the context of green chemistry, but few investigations have actually assessed the degree of…

  11. Infusing the Chemistry Curriculum with Green Chemistry Using Real-World Examples, Web Modules, and Atom Economy in Organic Chemistry Courses

    ERIC Educational Resources Information Center

    Cann, Michael C.; Dickneider, Trudy A.

    2004-01-01

    Green chemistry is the awareness of the damaging environmental effects due to chemical research and inventions. There is emphasis on a need to include green chemistry in synthesis with atom economy in organic chemistry curriculum to ensure an environmentally conscious future generation of chemists, policy makers, health professionals and business…

  12. Mixed-Methods Study of Online and Written Organic Chemistry Homework

    ERIC Educational Resources Information Center

    Malik, Kinza; Martinez, Nylvia; Romero, Juan; Schubel, Skyler; Janowicz, Philip A.

    2014-01-01

    Connect for organic chemistry is an online learning tool that gives students the opportunity to learn about all aspects of organic chemistry through the ease of the digital world. This research project consisted of two fundamental questions. The first was to discover whether there was a difference in undergraduate organic chemistry content…

  13. NASA physics and chemistry experiments in-space program

    NASA Technical Reports Server (NTRS)

    Gabris, E. A.

    1981-01-01

    The Physics and Chemistry Experiments Program (PACE) is part of the Office of Aeronautics and Space Technology (OAST) research and technology effort in understanding the fundamental characteristics of physics and chemical phenomena. This program seeks to increase the basic knowledge in these areas by well-planned research efforts which include in-space experiments when the limitations of ground-based activities precludes or restricts the achievement of research goals. Overview study areas are concerned with molecular beam experiments for Space Shuttle, experiments on drops and bubbles in a manned earth-orbiting laboratory, the study of combustion experiments in space, combustion experiments in orbiting spacecraft, gravitation experiments in space, and fluid physics, thermodynamics, and heat-transfer experiments. Procedures for the study program have four phases. An overview study was conducted in the area of materials science.

  14. Tropospheric Chemistry of Internally Mixed Sea Salt and Organic Particles: Surprising Reactivity of NaCl with Weak Organic Acids

    SciTech Connect

    Laskin, Alexander; Moffet, Ryan C.; Gilles, Marry K.; Fast, Jerome D.; Zaveri, Rahul A.; Wang, Bingbing; Nigge, P.; Shutthanandan, Janani I.

    2012-08-03

    Chemical imaging analysis of internally mixed sea salt/organic particles collected on board the Department of Energy (DOE) G-1 aircraft during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) was performed using electron microscopy and X-ray spectro-microscopy techniques. Substantial chloride depletion in aged sea salt particles was observed, which could not be explained by the known atmospheric reactivity of sea salt with inorganic nitric and sulfuric acids. We present field evidence that chloride components in sea salt particles may effectively react with organic acids releasing HCl gas to the atmosphere, leaving behind particles depleted in chloride and enriched in the corresponding organic salts. While formation of the organic salts products is not thermodynamically favored for bulk aqueous chemistry, these reactions in aerosol are driven by high volatility and irreversible evaporation of the HCl product from drying particles. These field observations were corroborated in a set of laboratory experiments where NaCl particles mixed with organic acids were found to be depleted in chloride. Combined together, the results indicate substantial chemical reactivity of sea salt particles with secondary organics that has been largely overlooked in the atmospheric aerosol chemistry. Atmospheric aging, and especially hydration-dehydration cycles of mixed sea salt/organic particles may result in formation of organic salts that will modify acidity, hygroscopic and optical properties of aged particles.

  15. Integration of Video-Based Demonstrations to Prepare Students for the Organic Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Nadelson, Louis S.; Scaggs, Jonathan; Sheffield, Colin; McDougal, Owen M.

    2015-08-01

    Consistent, high-quality introductions to organic chemistry laboratory techniques effectively and efficiently support student learning in the organic chemistry laboratory. In this work, we developed and deployed a series of instructional videos to communicate core laboratory techniques and concepts. Using a quasi-experimental design, we tested the videos in five traditional laboratory experiments by integrating them with the standard pre-laboratory student preparation presentations and instructor demonstrations. We assessed the influence of the videos on student laboratory knowledge and performance, using sections of students who did not view the videos as the control. Our analysis of pre-quizzes revealed the control group had equivalent scores to the treatment group, while the post-quiz results show consistently greater learning gains for the treatment group. Additionally, the students who watched the videos as part of their pre-laboratory instruction completed their experiments in less time.

  16. Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hie, Liana; Chang, Jonah J.; Garg, Neil K.

    2015-01-01

    A modern undergraduate organic chemistry laboratory experiment involving the Suzuki-Miyaura coupling is reported. Although Suzuki-Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a "green" alcohol solvent. The…

  17. Spectroscopic diagnostics of organic chemistry in the protostellar environment

    NASA Technical Reports Server (NTRS)

    Charnley, S. B.; Ehrenfreund, P.; Kuan, Y. J.

    2001-01-01

    A combination of astronomical observations, laboratory studies, and theoretical modelling is necessary to determine the organic chemistry of dense molecular clouds. We present spectroscopic evidence for the composition and evolution of organic molecules in protostellar environments. The principal reaction pathways to complex molecule formation by catalysis on dust grains and by reactions in the interstellar gas are described. Protostellar cores, where warming of dust has induced evaporation of icy grain mantles, are excellent sites in which to study the interaction between gas phase and grain-surface chemistries. We investigate the link between organics that are observed as direct products of grain surface reactions and those which are formed by secondary gas phase reactions of evaporated surface products. Theory predicts observable correlations between specific interstellar molecules, and also which new organics are viable for detection. We discuss recent infrared observations obtained with the Infrared Space Observatory, laboratory studies of organic molecules, theories of molecule formation, and summarise recent radioastronomical searches for various complex molecules such as ethers, azaheterocyclic compounds, and amino acids.

  18. Spanish-Speaking English Language Learners' Experiences in High School Chemistry Education

    ERIC Educational Resources Information Center

    Flores, Annette; Smith, K. Christopher

    2013-01-01

    This article reports on the experiences of Spanish-speaking English language learners in high school chemistry courses, focusing largely on experiences in learning the English language, experiences learning chemistry, and experiences learning chemistry in the English language. The findings illustrate the cognitive processes the students undertake…

  19. The chemistry of cyborgs--interfacing technical devices with organisms.

    PubMed

    Giselbrecht, Stefan; Rapp, Bastian E; Niemeyer, Christof M

    2013-12-23

    The term "cyborg" refers to a cybernetic organism, which characterizes the chimera of a living organism and a machine. Owing to the widespread application of intracorporeal medical devices, cyborgs are no longer exclusively a subject of science fiction novels, but technically they already exist in our society. In this review, we briefly summarize the development of modern prosthetics and the evolution of brain-machine interfaces, and discuss the latest technical developments of implantable devices, in particular, biocompatible integrated electronics and microfluidics used for communication and control of living organisms. Recent examples of animal cyborgs and their relevance to fundamental and applied biomedical research and bioethics in this novel and exciting field at the crossroads of chemistry, biomedicine, and the engineering sciences are presented. PMID:24288270

  20. Molecular Images in Organic Chemistry: Assessment of Understanding in Aromaticity, Symmetry, Spectroscopy, and Shielding

    ERIC Educational Resources Information Center

    Ealy, Julie B.; Hermanson, Jim

    2006-01-01

    When students take General Chemistry there are substantially fewer molecular images than they will encounter in Organic Chemistry. The molecular images Organic Chemistry students see in their textbooks are ones that use dashes and wedges to represent 2D and semi 3D views, ball and spoke, ball and wire, and structural formulas, to name just a few.…

  1. Modules for Introducing Organometallic Reactions: A Bridge between Organic and Inorganic Chemistry

    ERIC Educational Resources Information Center

    Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.

    2015-01-01

    Transition metal organometallic reactions have become increasingly important in the synthesis of organic molecules. A new approach has been developed to introduce organometallic chemistry, along with organic and inorganic chemistry, at the foundational level. This change highlights applications of organometallic chemistry that have dramatically…

  2. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation

    PubMed Central

    Shiraiwa, Manabu; Yee, Lindsay D.; Schilling, Katherine A.; Loza, Christine L.; Craven, Jill S.; Zuend, Andreas; Ziemann, Paul J.; Seinfeld, John H.

    2013-01-01

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality, and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosols (SOAs). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multigeneration gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface, and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a midexperiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. Although experiments need to be conducted with other SOA precursor hydrocarbons, current results demonstrate coupling between particle-phase chemistry and size distribution dynamics in the formation of SOAs, thereby opening up an avenue for analysis of the SOA formation process. PMID:23818634

  3. The Book History I began writing this organic chemistry text in 1992 while I was a chemistry faculty member at

    E-print Network

    Reed, Christopher A.

    The Book History I began writing this organic chemistry text in 1992 while I was a chemistry the complete book and then see if there was a publisher interested in it. Along the way things happened. A good progressed, I settled on a book with 23 chapters. Of those 23 chapters, I have "finished" all except Chapter

  4. Advanced Experiments in Nuclear Science, Volume I: Advanced Nuclear Physics and Chemistry Experiments.

    ERIC Educational Resources Information Center

    Duggan, Jerome L.; And Others

    The experiments in this manual represent state-of-the-art techniques which should be within the budgetary constraints of a college physics or chemistry department. There are fourteen experiments divided into five modules. The modules are on X-ray fluorescence, charged particle detection, neutron activation analysis, X-ray attenuation, and…

  5. Analysis of the Effect of Sequencing Lecture and Laboratory Instruction on Student Learning and Motivation Towards Learning Chemistry in an Organic Chemistry Lecture Course

    ERIC Educational Resources Information Center

    Pakhira, Deblina

    2012-01-01

    Exposure to organic chemistry concepts in the laboratory can positively affect student performance, learning new chemistry concepts and building motivation towards learning chemistry in the lecture. In this study, quantitative methods were employed to assess differences in student performance, learning, and motivation in an organic chemistry

  6. Gender Differences in Cognitive and Noncognitive Factors Related to Achievement in Organic Chemistry

    NASA Astrophysics Data System (ADS)

    Turner, Ronna C.; Lindsay, Harriet A.

    2003-05-01

    For many college students in the sciences, organic chemistry poses a difficult challenge. Indeed, success in organic chemistry has proven pivotal in the careers of a vast number of students in a variety of science disciplines. A better understanding of the factors that contribute to achievement in this course should contribute to efforts to increase the number of students in the science disciplines. Further, an awareness of gender differences in factors associated with achievement should aid efforts to bolster the participation of women in chemistry and related disciplines. Using a correlation research design, the individual relationships between organic chemistry achievement and each of several cognitive variables and noncognitive variables were assessed. In addition, the relationships between organic chemistry achievement and combinations of these independent variables were explored. Finally, gender- and instructor-related differences in the relationships between organic chemistry achievement and the independent variables were investigated. Cognitive variables included the second-semester general chemistry grade, the ACT English, math, reading, and science-reasoning scores, and scores from a spatial visualization test. Noncognitive variables included anxiety, confidence, effectance motivation, and usefulness. The second-semester general chemistry grade was found to be the best indicator of performance in organic chemistry, while the effectiveness of other predictors varied between instructors. In addition, gender differences were found in the explanations of organic chemistry achievement variance provided by this study. In general, males exhibited stronger correlations between predictor variables and organic chemistry achievement than females.

  7. CHEMISTRY OF DISSOLVED ORGANIC CARBON AND ORGANIC ACIDS IN TWO STREAMS DRAINING FORESTED WATERSHEDS

    EPA Science Inventory

    The concentration, major fractions, and contribution of dissolved organic carbon (DOG) to stream chemistry were examined in two paired streams draining upland catchments in eastern Maine. oncentrations of DOC in East and West Bear Brooks were 183 +/- 73 and 169 +/- 70 umol CL-1 (...

  8. Two Methods of Determining Total Phenolic Content of Foods and Juices in a General, Organic, and Biological (GOB) Chemistry Lab

    ERIC Educational Resources Information Center

    Shaver, Lee Alan; Leung, Sam H.; Puderbaugh, Amy; Angel, Stephen A.

    2011-01-01

    The determination of total phenolics in foods and fruit juices was used successfully as a laboratory experiment in our undergraduate general, organic, and biological (GOB) chemistry course. Two different colorimetric methods were used over three years and comparative student results indicate that a ferrous ammonium sulfate (FAS) indicator…

  9. Wet Chemistry experiments on the 2007 Phoenix Mars Scout Lander mission: Data analysis and results

    E-print Network

    Kounaves, Samuel P.

    Wet Chemistry experiments on the 2007 Phoenix Mars Scout Lander mission: Data analysis and results performed using the Wet Chemistry Laboratories on the 2007 Phoenix Mars Scout Lander. One soil sample: Kounaves, S. P., et al. (2010), Wet Chemistry experiments on the 2007 Phoenix Mars Scout Lander mission

  10. Experimental simulation of Titan's organic chemistry at low temperature.

    PubMed

    de Vanssay, E; Gazeau, M C; Guillemin, J C; Raulin, F

    1995-01-01

    A wide range of experiments has already been carried out to simulate the chemical evolution of Titan. Such experiments can provide useful information on the possible nature of minor constituents, mostly organic, likely to be present in Titan's atmosphere. Indeed, all but one of the organic compounds already detected in Titan's atmosphere have been identified in simulation experiments. The exception, C4N2, as well as other compounds expected in Titan from theoretical modeling, such as other N-organics, mainly CH2N2, and polyynes, namely C6H2, have never been detected in experimental simulation. It turned out that these compounds were thermally unstable, and the temperature conditions used during the simulation experiments (including conditions used for chemical analysis) were not appropriate. We have recently started a new program of simulation experiments using temperature conditions close to those of Titan's environment, more compatible with the build-up and detection of organics only stable at low temperature. Spark discharge of N2-CH4 gas mixtures was carried out at low temperature in the range of 100-150 K. The analysis of the obtained products was performed through FTIR, GC and GC-MS techniques. GC-peak identification was done owing to its mass spectrum and, in most cases, by comparison of the retention time and of the mass spectrum with standards. We report here the first detection in Titan's simulation experiments of C6H2. Its abundance is a few 10(-2) relative to C4H2. We also report a tentative identification of HC5N (to be confirmed by use of standard) with an abundance of a few 10(-2) relative to HC3N. The possible presence of HC5N suggested by our work provides the occurrence of very novel pathways in the formation of Titan's organic aerosols, involving not only C and H but also N atoms. PMID:11538434

  11. Development and Implementation of a Two-Semester Introductory Organic-Bioorganic Chemistry Sequence: Conclusions from the First Six Years

    ERIC Educational Resources Information Center

    Goess, Brian C.

    2014-01-01

    A two-semester second-year introductory organic chemistry sequence featuring one semester of accelerated organic chemistry followed by one semester of bioorganic chemistry is described. Assessment data collected over a six-year period reveal that such a course sequence can facilitate student mastery of fundamental organic chemistry in the first…

  12. What Does the Acid Ionization Constant Tell You? An Organic Chemistry Student Guide

    ERIC Educational Resources Information Center

    Rossi, Robert D.

    2013-01-01

    Many students find the transition from first-year general chemistry to second-year organic chemistry a daunting task. There are many reasons for this, not the least of which is their lack of a solid understanding and appreciation of the importance of some basic concepts and principles from general chemistry that play an extremely critical role in…

  13. Irradiated Benzene Ice Provides Clues to Meteoritic Organic Chemistry

    NASA Technical Reports Server (NTRS)

    Callahan, Michael Patrick; Gerakines, Perry Alexander; Martin, Mildred G.; Hudson, Reggie L.; Peeters, Zan

    2013-01-01

    Aromatic hydrocarbons account for a significant portion of the organic matter in carbonaceous chondrite meteorites, as a component of both the low molecular weight, solvent-extractable compounds and the insoluble organic macromolecular material. Previous work has suggested that the aromatic compounds in carbonaceous chondrites may have originated in the radiation-processed icy mantles of interstellar dust grains. Here we report new studies of the organic residue made from benzene irradiated at 19 K by 0.8 MeV protons. Polyphenyls with up to four rings were unambiguously identified in the residue by gas chromatography-mass spectrometry. Atmospheric pressure photoionization Fourier transform mass spectrometry was used to determine molecular composition, and accurate mass measurements suggested the presence of polyphenyls, partially hydrogenated polyphenyls, and other complex aromatic compounds. The profile of low molecular weight compounds in the residue compared well with extracts from the Murchison and Orgueil meteorites. These results are consistent with the possibility that solid phase radiation chemistry of benzene produced some of the complex aromatics found in meteorites.

  14. Lesson Planner for Demonstrations in Organic Chemistry Videodisc

    NASA Astrophysics Data System (ADS)

    Surovell, Todd A.

    1995-09-01

    Lesson Planner is a Microsoft Excel (1) macro that generates barcodes for video included on the Demonstrations in Organic Chemistry videodisc (2). It allows instructors who do not have computer control capability for their videodisc player, but do have a barcode reader, to prepare customized lessons for use in the classroom or laboratory. There is no need to flip through pages in the documentation manual or photocopy pages of barcodes and physically cut and paste them to follow your lecture notes. Lesson Planner includes a complete list of the demonstrations and all sections and subsections included on the videodisc. You simply select the entire demos, sections, or subsections of demos you want to include in your presentation and add them to a lesson list with a mouse click. Lesson Planner generates a list of your selections with barcodes to access the correct video frames. Simply print a copy of the lesson on a laser printer and you are ready to go.

  15. Spatial ability and its role in organic chemistry: A study of four organic courses

    NASA Astrophysics Data System (ADS)

    Pribyl, Jeffrey R.; Bodner, George M.

    The relationship between spatial ability and performance in organic chemistry was studied in four organic chemistry courses designed for students with a variety of majors including agriculture, biology, health sciences, pre-med, pre-vet, pharmacy, medicinal chemistry, chemistry, and chemical engineering.Students with high spatial scores did significantly better on questions which required problem solving skills, such as completing a reaction or outlining a multi-step synthesis, and questions which required students to mentally manipulate two-dimensional representations of a molecule. Spatial ability was not significant, however, for questions which could be answered by rote memory or by the application of simple algorithms.Students who drew preliminary figures or extra figures when answering questions were more likely to get the correct answer. High spatial ability students were more likely to draw preliminary figures, even for questions that did not explicitly require these drawings. When questions required preliminary or extra figures, low spatial ability students were more likely to draw figures that were incorrect. Low spatial ability students were also more likely to draw structures that were lopsided, ill-proportioned, and nonsymmetric.The results of this study are interpreted in terms of a model which argues that high spatial ability students are better at the early stages of problem solving described as understanding the problem. A model is also discussed which explains why students who draw preliminary or extra figures for questions are more likely to get correct answers.

  16. Organs for transplantation. The Singapore experience.

    PubMed

    Teo, B

    1991-01-01

    Singapore's Human Organ Transplant Act presumes that competent adults consent to donate their kidneys in the event of a fatal accident, unless they have refused in writing. No family consent is required. What can other countries wishing to implement a presumed-consent model of organ donation learn from Singapore's experience? PMID:1765457

  17. The Deep Convective Clouds and Chemistry (DC3) Field Experiment

    NASA Astrophysics Data System (ADS)

    Barth, M. C.; Brune, W. H.; Cantrell, C. A.; Rutledge, S. A.; Crawford, J. H.; Huntrieser, H.; Homeyer, C. R.; Nault, B.; Cohen, R. C.; Pan, L.; Ziemba, L. D.

    2014-12-01

    The Deep Convective Clouds and Chemistry (DC3) field experiment took place in the central U.S. in May and June 2012 and had the objectives of characterizing the effect of thunderstorms on the chemical composition of the lower atmosphere and determining the chemical aging of upper troposphere (UT) convective outflow plumes. DC3 employed ground-based radars, lightning mapping arrays, and weather balloon soundings in conjunction with aircraft measurements sampling the composition of the inflow and outflow of a variety of thunderstorms in northeast Colorado, West Texas to central Oklahoma, and northern Alabama. A unique aspect of the DC3 strategy was to locate and sample the convective outflow a day after active convection in order to measure the chemical transformations within the UT convective plume. The DC3 data are being analyzed to investigate transport and dynamics of the storms, scavenging of soluble trace gases and aerosols, production of nitrogen oxides by lightning, relationships between lightning flash rates and storm parameters, and chemistry in the UT that is affected by the convection. In this presentation, we give an overview of the DC3 field campaign and highlight results from the campaign that are relevant to the upper troposphere and lower stratosphere region. These highlights include stratosphere-troposphere exchange in connection with thunderstorms, the 0-12 hour chemical aging and new particle formation in the UT outflow of a dissipating mesoscale convective system observed on June 21, 2012, and UT chemical aging in convective outflow as sampled the day after convection occurred and modeled in the Weather Research and Forecasting coupled with Chemistry model.

  18. The physics and (radio)chemistry of solar neutrino experiments.

    NASA Astrophysics Data System (ADS)

    Hahn, R. L.

    The situation in solar neutrino science has changed drastically in the past several years, with results now available from four neutrino experiments that use different methods to look at different regions of the solar-neutrino energy-spectrum. While the goal of all of these experiments is physics, they all rely heavily on chemistry and radiochemistry. Three of these experiments are radiochemical; the 37Cl detector and the two different forms of 71Ga detectors used in GALLEX and SAGE are based on the chemical isolation and counting of the radioactive products of neutrino interactions. The fourth, Kamiokande, detects neutrinos in real time; however, it also depends on radiochemistry in that radioactive contaminants must be controlled at very low levels. It is noteworthy that all of these experiments report a deficit of observed neutrinos relative to the predictions of standard solar models, the so-called "solar neutrino problem". This paper reviews the basic principles of operation of these neutrino detectors (as well as some new detectors currently under construction), reports their recent results, and discusses some of the theoretical interpretations that are now in vogue.

  19. Introducing Undergraduates to Research Using a Suzuki-Miyaura Cross-Coupling Organic Chemistry Miniproject

    ERIC Educational Resources Information Center

    Oliveira, Deyvid G. M.; Rosa, Clarissa H.; Vargas, Bruna P.; Rosa, Diego S.; Silveira, Ma´rcia V.; de Moura, Neusa F.; Rosa, Gilber R.

    2015-01-01

    A five-week miniproject is described for an upper-division experimental organic chemistry course. The activities include synthesis of a phenylboronic acid via a Grignard reaction and its use in a Suzuki-Miyaura cross-coupling reaction. Technical skills and concepts normally presented in practical organic chemistry courses are covered, including…

  20. Organic Chemistry and the Native Plants of the Sonoran Desert: Conversion of Jojoba Oil to Biodiesel

    ERIC Educational Resources Information Center

    Daconta, Lisa V.; Minger, Timothy; Nedelkova, Valentina; Zikopoulos, John N.

    2015-01-01

    A new, general approach to the organic chemistry laboratory is introduced that is based on learning about organic chemistry techniques and research methods by exploring the natural products found in local native plants. As an example of this approach for the Sonoran desert region, the extraction of jojoba oil and its transesterification to…

  1. Using Structure-Based Organic Chemistry Online Tutorials with Automated Correction for Student Practice and Review

    ERIC Educational Resources Information Center

    O'Sullivan, Timothy P.; Hargaden, Gra´inne C.

    2014-01-01

    This article describes the development and implementation of an open-access organic chemistry question bank for online tutorials and assessments at University College Cork and Dublin Institute of Technology. SOCOT (structure-based organic chemistry online tutorials) may be used to supplement traditional small-group tutorials, thereby allowing…

  2. Integration of Video-Based Demonstrations to Prepare Students for the Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Nadelson, Louis S.; Scaggs, Jonathan; Sheffield, Colin; McDougal, Owen M.

    2015-01-01

    Consistent, high-quality introductions to organic chemistry laboratory techniques effectively and efficiently support student learning in the organic chemistry laboratory. In this work, we developed and deployed a series of instructional videos to communicate core laboratory techniques and concepts. Using a quasi-experimental design, we tested the…

  3. The Use of Computer-Based Instruction in Undergraduate Organic Chemistry.

    ERIC Educational Resources Information Center

    Culp, George H.

    Thirty-two computer-based lesson modules in organic chemistry were developed at the University of Texas (Austin) over an 18-month period and evaluated in varying classroom situations for three semesters starting in the Fall of 1972. The modules were designed as supplements to the traditional organic chemistry course of the University. As such,…

  4. Student Perceptions of Online Homework Use for Formative Assessment of Learning in Organic Chemistry

    ERIC Educational Resources Information Center

    Richards-Babb, Michelle; Curtis, Reagan; Georgieva, Zornitsa; Penn, John H.

    2015-01-01

    Use of online homework as a formative assessment tool for organic chemistry coursework was examined. Student perceptions of online homework in terms of (i) its ranking relative to other course aspects, (ii) their learning of organic chemistry, and (iii) whether it improved their study habits and how students used it as a learning tool were…

  5. Atmospheric chemistry experiment (ACE): mission overview and early results

    NASA Astrophysics Data System (ADS)

    Boone, Christopher D.; Walker, Kaley A.; McLeod, Sean D.; Nassar, Ray; Bernath, Peter F.

    2004-12-01

    SciSat-1, otherwise known as the Atmospheric Chemistry Experiment (ACE), is a Canadian satellite mission for remote sensing of the Earth's atmosphere. It was launched into low Earth orbit (altitude 650 km, inclination 74 degrees) in August 2003. The primary instrument onboard ACE is a high resolution (maximum path difference +/- 25 cm) Fourier Transform Spectrometer (FTS) operating from 2.4 to 13.3 microns (750-4100 cm-1). The satellite also features a dual spectrograph known as MAESTRO with wavelength coverage 280-1000 nm and resolution 1-2 nm. A pair of filtered CMOS detector arrays takes images of the sun at 0.525 and 1.02 nm. Working primarily in solar occultation, the satellite provides altitude profile information for temperature, pressure, and the volume mixing ratios for several dozen molecules of atmospheric interest. Scientific goals for ACE include: (1) understanding the chemical and dynamical processes that control the distribution of ozone in the stratosphere and upper troposphere; (2) exploring the relationship between atmospheric chemistry and climate change; (3) studying the effects of biomass burning in the free troposphere; and (4) measuring aerosols to reduce the uncertainties in their effects on the global energy balance.

  6. Comparing Recent Organizing Templates for Test Content between ACS Exams in General Chemistry and AP Chemistry

    ERIC Educational Resources Information Center

    Holme, Thomas

    2014-01-01

    Two different versions of "big ideas" rooted content maps have recently been published for general chemistry. As embodied in the content outline from the College Board, one of these maps is designed to guide curriculum development and testing for advanced placement (AP) chemistry. The Anchoring Concepts Content Map for general chemistry

  7. The Influence of First-Year Chemistry Students' Learning Experiences on Their Educational Choices

    ERIC Educational Resources Information Center

    Dalgety, Jacinta; Coll, Richard K.

    2006-01-01

    The research reported here examined factors that influence student tertiary level chemistry enrolment choices. Students enrolled in a first-year chemistry class were surveyed, using the Chemistry Attitudes and Experiences Questionnaire (CAEQ), three times throughout their academic year: at the start of the year (n=126), the end of the first…

  8. The Determination of the Stereochemistry of Erythro-1,2-Diphenyl-1,2-Ethanediol: An Undergraduate Organic Experiment.

    ERIC Educational Resources Information Center

    Rowland, Alex T.

    1983-01-01

    Describes an undergraduate organic chemistry experiment designed to illustrate the power of nuclear magnetic reasonance spectroscopy in a determination of the configurations at centers of chirality of various isomers of acyclic systems. Provides a background discussion and experimental procedure. (JM)

  9. Factors related to achievement in sophomore organic chemistry at the University of Arkansas

    NASA Astrophysics Data System (ADS)

    Lindsay, Harriet Arlene

    The purpose of this study was to identify the significant cognitive and non-cognitive variables that related to achievement in the first semester of organic chemistry at the University of Arkansas. Cognitive variables included second semester general chemistry grade, ACT composite score, ACT English, mathematics, reading, and science reasoning subscores, and spatial ability. Non-cognitive variables included anxiety, confidence, effectance motivation, and usefulness. Using a correlation research design, the individual relationships between organic chemistry achievement and each of the cognitive variables and non-cognitive variables were assessed. In addition, the relationships between organic chemistry achievement and combinations of these independent variables were explored. Finally, gender- and instructor-related differences in the relationships between organic chemistry achievement and the independent variables were investigated. The samples consisted of volunteers from the Fall 1999 and Fall 2000 sections of Organic Chemistry I at the University of Arkansas. All students in each section were asked to participate. Data for spatial ability and non-cognitive independent variables were collected using the Purdue Visualization of Rotations test and the modified Fennema-Sherman Attitude Scales. Data for other independent variables, including ACT scores and second semester general chemistry grades, were obtained from the Office of Institutional Research. The dependent variable, organic chemistry achievement, was measured by each student's accumulated points in the course and consisted of scores on quizzes and exams in the lecture section only. These totals were obtained from the lecture instructor at the end of each semester. Pearson correlation and stepwise multiple regression analyses were used to measure the relationships between organic chemistry achievement and the independent variables. Prior performance in chemistry as measured by second semester general chemistry grade was the best indicator of performance in organic chemistry. The importance of other independent variables in explaining organic chemistry achievement varied between instructors. In addition, gender differences were found in the explanations of organic chemistry achievement variance provided by this study. In general, males exhibited stronger correlations between independent variables and organic chemistry achievement than females. The report contains 19 tables detailing the statistical analyses. Suggestions for improved practice and further research are also included

  10. Striking a Balance: Experiment and Concept in Undergraduate Inorganic Chemistry.

    ERIC Educational Resources Information Center

    Frey, John E.

    1990-01-01

    Described is an inorganic chemistry course based on the premise that a balanced understanding of inorganic chemistry requires knowledge of the experimental, theoretical, and technological aspects of the subject. A detailed description of lectures and laboratories is included. (KR)

  11. Organic chemistry in Titan's atmosphere: new data from laboratory simulations at low temperature.

    PubMed

    Coll, P; Coscia, D; Gazeau, M C; de Vanssay, E; Guillemin, J C; Raulin, F

    1995-01-01

    Many experiments have already been carried out to simulate organic chemistry on Titan, the largest satellite of Saturn. They can provide fruitful information on the nature of minor organic constituents likely to be present in Titan's atmosphere, both in gas and aerosol phases. Indeed, all the organic compounds but one already detected in Titan's atmosphere have been identified in simulation experiments. The exception, C4N2, as well as other compounds expected in Titan from theoretical modeling, such as other N-organics, and polyynes, first of all C6H2, have never been detected in experimental simulation thus far. All these compounds are thermally unstable, and the temperature conditions used during the simulation experiments were not appropriate. We have recently started a new program of simulation experiments with temperature conditions close to that of Titan's environment. It also uses dedicated analytical techniques and procedures compatible with the analysis of organics only stable at low temperatures, as well solid products of low stability in the presence of O2 and H2O. Spark discharge of N2-CH4 gas mixtures was carried out at low temperature in the range 100-150 K. Products were analysed by FTIR, GC and GC-MS techniques. GC-peaks were identified by their mass spectrum, and, in most cases, by comparison of the retention time and mass spectrum with standard ones. We report here the first detection in Titan simulation experiments of C6H2 and HC5N. Their abundance is a few percent relative to C4H2 and HC3N, respectively. Preliminary data on the solid products indicate an elemental composition corresponding to (H11C11N)n. These results open new prospects in the modeling of Titan's haze making. PMID:11543541

  12. The Integration of Green Chemistry Experiments with Sustainable Development Concepts in Pre-Service Teachers' Curriculum: Experiences from Malaysia

    ERIC Educational Resources Information Center

    Karpudewan, Mageswary; Ismail, Zurida Hg; Mohamed, Norita

    2009-01-01

    Purpose: The purpose of this paper is to introduce green chemistry experiments as laboratory-based pedagogy and to evaluate effectiveness of green chemistry experiments in delivering sustainable development concepts (SDCs) and traditional environmental concepts (TECs). Design/methodology/approach: Repeated measure design was employed to evaluate…

  13. A context based approach using Green Chemistry/Bio-remediation principles to enhance interest and learning of organic chemistry in a high school AP chemistry classroom

    NASA Astrophysics Data System (ADS)

    Miller, Tricia

    The ability of our planet to sustain life and heal itself is not as predictable as it used to be. Our need for educated future scientists who know what our planet needs, and can passionately apply that knowledge to find solutions should be at the heart of science education today. This study of learning organic chemistry through the lens of the environmental problem "What should be done with our food scraps?" explores student interest, and mastery of certain concepts in organic chemistry. This Green Chemistry/ Bio-remediation context-based teaching approach utilizes the Nature MillRTM, which is an indoor food waste composting machine, to learn about organic chemistry, and how this relates to landfill reduction possibilities, and resource production. During this unit students collected food waste from their cafeteria, and used the Nature MillRTM to convert food waste into compost. The use of these hands on activities, and group discussions in a context-based environment enhanced their interest in organic chemistry, and paper chromatography. According to a one-tailed paired T-test, the result show that this context-based approach is a significant way to increase both student interest and mastery of the content.

  14. Lunar carbon chemistry - Relations to and implications for terrestrial organic geochemistry.

    NASA Technical Reports Server (NTRS)

    Eglinton, G.; Maxwell, J. R.; Pillinger, C. T.

    1972-01-01

    Survey of the various ways in which studies of lunar carbon chemistry have beneficially affected terrestrial organic geochemistry. A lunar organic gas-analysis operating system is cited as the most important instrumental development in relation to terrestrial organic geochemistry. Improved methods of analysis and handling of organic samples are cited as another benefit derived from studies of lunar carbon chemistry. The problem of controlling contamination and minimizing organic vapors is considered, as well as the possibility of analyzing terrestrial samples by the techniques developed for lunar samples. A need for new methods of analyzing carbonaceous material which is insoluble in organic solvents is indicated.

  15. Students' Understanding of Acids/Bases in Organic Chemistry Contexts

    ERIC Educational Resources Information Center

    Cartrette, David P.; Mayo, Provi M.

    2011-01-01

    Understanding key foundational principles is vital to learning chemistry across different contexts. One such foundational principle is the acid/base behavior of molecules. In the general chemistry sequence, the Bronsted-Lowry theory is stressed, because it lends itself well to studying equilibrium and kinetics. However, the Lewis theory of…

  16. Approved Module Information for CH1102, 2014/5 Module Title/Name: Organic Chemistry I Module Code: CH1102

    E-print Network

    Neirotti, Juan Pablo

    Approved Module Information for CH1102, 2014/5 Module Title/Name: Organic Chemistry I Module Code are emphasised. Module Learning Outcomes: * Application of basic ideas in Organic Chemistry * The ability to interpret experimental data * A good working knowledge of the vocabulary of organic chemistry. * A good

  17. Simple Epoxide Formation for the Organic Laboratory Using Oxone

    ERIC Educational Resources Information Center

    Broshears, Williams C.; Esteb, John J.; Richter, Jeremy; Wilson, Anne M.

    2004-01-01

    Epoxide chemistry is widely used in organic synthesis and regularly discussed in organic chemistry textbooks. An experiment to generate dimethyldioxirane in situ from acetone using Oxone is explained.

  18. Guided-Inquiry Experiments for Physical Chemistry: The POGIL-PCL Model

    ERIC Educational Resources Information Center

    Hunnicutt, Sally S.; Grushow, Alexander; Whitnell, Robert

    2015-01-01

    The POGIL-PCL project implements the principles of process-oriented, guided-inquiry learning (POGIL) in order to improve student learning in the physical chemistry laboratory (PCL) course. The inquiry-based physical chemistry experiments being developed emphasize modeling of chemical phenomena. In each experiment, students work through at least…

  19. An Undergraduate Laboratory Experiment in Bioinorganic Chemistry: Ligation States of Myoglobin

    ERIC Educational Resources Information Center

    Bailey, James A.

    2011-01-01

    Although there are numerous inorganic model systems that are readily presented as undergraduate laboratory experiments in bioinorganic chemistry, there are few examples that explore the inorganic chemistry of actual biological molecules. We present a laboratory experiment using the oxygen-binding protein myoglobin that can be easily incorporated…

  20. Making Sense of Olive Oil: Simple Experiments to Connect Sensory Observations with the Underlying Chemistry

    ERIC Educational Resources Information Center

    Blatchly, Richard A.; Delen, Zeynep; O'Hara, Patricia B.

    2014-01-01

    In the last decade, our understanding of the chemistry of olive oil has dramatically improved. Here, the essential chemistry of olive oil and its important minor constituents is described and related to the typical sensory categories used to rate and experience oils: color, aroma, bitterness, and pungency. We also describe experiments to explore…

  1. Chemical Remediation of Nickel(II) Waste: A Laboratory Experiment for General Chemistry Students

    ERIC Educational Resources Information Center

    Corcoran, K. Blake; Rood, Brian E.; Trogden, Bridget G.

    2011-01-01

    This project involved developing a method to remediate large quantities of aqueous waste from a general chemistry laboratory experiment. Aqueous Ni(II) waste from a general chemistry laboratory experiment was converted into solid nickel hydroxide hydrate with a substantial decrease in waste volume. The remediation method was developed for a…

  2. A Collaborative, Wiki-Based Organic Chemistry Project Incorporating Free Chemistry Software on the Web

    ERIC Educational Resources Information Center

    Evans, Michael J.; Moore, Jeffrey S.

    2011-01-01

    In recent years, postsecondary instructors have recognized the potential of wikis to transform the way students learn in a collaborative environment. However, few instructors have embraced in-depth student use of chemistry software for the creation of interactive chemistry content on the Web. Using currently available software, students are able…

  3. The ACS Exams Institute Undergraduate Chemistry Anchoring Concepts Content Map II: Organic Chemistry

    ERIC Educational Resources Information Center

    Raker, Jeffrey; Holme, Thomas; Murphy, Kristen

    2013-01-01

    As a way to assist chemistry departments with programmatic assessment of undergraduate chemistry curricula, the ACS Examinations Institute is devising a map of the content taught throughout the undergraduate curriculum. The structure of the map is hierarchal, with large grain size at the top and more content detail as one moves "down"…

  4. Special Topics in Organic Chemistry 8833A Pulping and Bleaching Chemistry

    E-print Network

    Sherrill, David

    . The focus is on alkaline/NaSH pulping and ClO2, H2O2, O2/NaOH, O3 bleaching chemistry of chemicalOH, activated peroxide and O3) Student Seminars describing the fundamental chemistry, conformation, synthesis

  5. An Experiment to Quantitate Organically Bound Phosphate.

    ERIC Educational Resources Information Center

    Palmer, Richard E.

    1985-01-01

    Describes quick and easy experiments that yield quantitative information on a variety of levels, emphasize the concept of experimental controls, and integrate the experimental with the theoretical using the organic phosphates as the experimental system. Background information, list of materials needed, and procedures used are included. (JN)

  6. ATR-FTIR Spectroscopy in the Undergraduate Chemistry Laboratory: Part II--A Physical Chemistry Laboratory Experiment on Surface Adsorption

    ERIC Educational Resources Information Center

    Schuttlefield, Jennifer D.; Larsen, Sarah C.; Grassian, Vicki H.

    2008-01-01

    Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is a useful technique for measuring the infrared spectra of solids and liquids as well as probing adsorption on particle surfaces. The use of FTIR-ATR spectroscopy in organic and inorganic chemistry laboratory courses as well as in undergraduate research was presented…

  7. Organ donation experiences of family members.

    PubMed

    Manuel, April; Solberg, Shirley; MacDonald, Sandra

    2010-01-01

    The objective of this qualitative research study was to describe and interpret what life is like for individuals who have consented to donate the organs of a deceased relative for transplantation. This study captures the meaning of this phenomenon in a way to help nurses develop new insights into the lives of these individuals, enable them to implement strategies to better assist and support the family, and perhaps decrease barriers to organ donation. Thematic analysis of the participants' narrative descriptions identified five essential themes: the struggle to acknowledge the death, the need for a positive outcome of the death, creating a living memory, buying time, and the significance of support networks in the organ donation decision. The integration of these themes revealed the essence of the experience as creating of a sense of peace. These five themes and the essence of the experience are discussed in relation to the literature, followed by recommendations for future nursing practice, education, and research. PMID:20629462

  8. Geothermal injection treatment: process chemistry, field experiences, and design options

    SciTech Connect

    Kindle, C.H.; Mercer, B.W.; Elmore, R.P.; Blair, S.C.; Myers, D.A.

    1984-09-01

    The successful development of geothermal reservoirs to generate electric power will require the injection disposal of approximately 700,000 gal/h (2.6 x 10/sup 6/ 1/h) of heat-depleted brine for every 50,000 kW of generating capacity. To maintain injectability, the spent brine must be compatible with the receiving formation. The factors that influence this brine/formation compatibility and tests to quantify them are discussed in this report. Some form of treatment will be necessary prior to injection for most situations; the process chemistry involved to avoid and/or accelerate the formation of precipitate particles is also discussed. The treatment processes, either avoidance or controlled precipitation approaches, are described in terms of their principles and demonstrated applications in the geothermal field and, when such experience is limited, in other industrial use. Monitoring techniques for tracking particulate growth, the effect of process parameters on corrosion and well injectability are presented. Examples of brine injection, preinjection treatment, and recovery from injectivity loss are examined and related to the aspects listed above.

  9. Development and Application of a Scoring Rubric for Evaluating Students' Experimental Skills in Organic Chemistry: An Instructional Guide for Teaching Assistants

    ERIC Educational Resources Information Center

    Chen, Hui-Jung; She, Jui-Lin; Chou, Chin-Cheng; Tsai, Yeun-Min; Chiu, Mei-Hung

    2013-01-01

    The purpose of this study was to develop a scoring rubric to assess students' manipulation skills and identify students' learning difficulties in conducting organic chemistry experiments. In constructing the scoring rubric, we first analyzed the skills needed in the experiment, then divided the skills into subskills, and finally…

  10. The Tip of the Iceberg in Organic Chemistry Classes: How Do Students Deal with the Invisible?

    ERIC Educational Resources Information Center

    Graulich, Nicole

    2015-01-01

    Organic chemistry education is one of the youngest research areas among all chemistry related research efforts, and its published scholarly work has become vibrant and diverse over the last 15 years. Research on problem-solving behavior, students' use of the arrow-pushing formalism, the investigation of students' conceptual knowledge and…

  11. Intuitive Judgments Govern Students' Answering Patterns in Multiple-Choice Exercises in Organic Chemistry

    ERIC Educational Resources Information Center

    Graulich, Nicole

    2015-01-01

    Research in chemistry education has revealed that students going through their undergraduate and graduate studies in organic chemistry have a fragmented conceptual knowledge of the subject. Rote memorization, rule-based reasoning, and heuristic strategies seem to strongly influence students' performances. There appears to be a gap between what we…

  12. Ethnically Diverse Students' Knowledge Structures in First-Semester Organic Chemistry

    ERIC Educational Resources Information Center

    Lopez, Enrique J.; Shavelson, Richard J.; Nandagopal, Kiruthiga; Szu, Evan; Penn, John

    2014-01-01

    Chemistry courses remain a challenge for many undergraduate students. In particular, first-semester organic chemistry has been labeled as a gatekeeper with high attrition rates, especially among students of color. Our study examines a key factor related to conceptual understanding in science and predictive of course outcomes-knowledge structures.…

  13. A Simple Assignment that Enhances Students' Ability to Solve Organic Chemistry Synthesis Problems and Understand Mechanisms

    ERIC Educational Resources Information Center

    Teixeira, Jennifer; Holman, R. W.

    2008-01-01

    Organic chemistry students typically struggle with the retrosynthetic approach to solving synthesis problems because most textbooks present the chemistry grouped by "reactions of the functional group". In contrast, the retrosynthetic approach requires the student to envision "reactions that yield the functional group". A second challenge is the…

  14. An Asymptotic Approach to the Development of a Green Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Goodwin, Thomas E.

    2004-01-01

    Green chemistry is the utilization of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Some of the philosophical questions and practical decisions that have guided the greening of the organic chemistry laboratory at Hendrix College in…

  15. Geometric and Topological Thinking in Organic Chemistry By Nicholas J. Turro*

    E-print Network

    Turro, Nicholas J.

    and the associated evolution of an appropriate genetic composition and con- stitution of the human brain.[31TheGeometric and Topological Thinking in Organic Chemistry By Nicholas J. Turro* The beginning student of learning organic chem- istry is the mastering of "organic thinking," an approach to intellectual processing

  16. Beilstein Without Tears: Education in the Use of the Literature of Organic Chemistry.

    ERIC Educational Resources Information Center

    Callaghan, Patricia M.; And Others

    1986-01-01

    The use of Beilstein ("Handbuch der Organischen Chemie") in the early stages of a second-year, one semester course in organic chemistry is described. Student literature projects, evaluation, use of ancillary literature, and a sample search are included. (JN)

  17. Microwave-Assisted Chemistry: A Rapid and Sustainable Route to Synthesis of Organics and Nanomaterials

    EPA Science Inventory

    The use of emerging MW-assisted chemistry techniques in conjunction with benign reaction media is dramatically reducing chemical waste and reaction times in several organic syntheses and chemical transformations. This review summarizes recent developments in MW-assisted synthesis...

  18. Organism support for life sciences spacelab experiments

    NASA Technical Reports Server (NTRS)

    Drake, G. L.; Heppner, D. B.

    1976-01-01

    This paper presents an overview of the U.S. life sciences laboratory concepts envisioned for the Shuttle/Spacelab era. The basic development approach is to provide a general laboratory facility supplemented by specific experiment hardware as required. The laboratory concepts range from small carry-on laboratories to fully dedicated laboratories in the Spacelab pressurized module. The laboratories will encompass a broad spectrum of research in biology and biomedicine requiring a variety of research organisms. The environmental control and life support of these organisms is a very important aspect of the success of the space research missions. Engineering prototype organism habitats have been designed and fabricated to be compatible with the Spacelab environment and the experiment requirements. These first-generation habitat designs and their subsystems have supported plants, cells/tissues, invertebrates, and small vertebrates in limited evaluation tests. Special handling and transport equipment required for the ground movement of the experiment organisms at the launch/landing site have been built and tested using these initial habitat prototypes.

  19. Laboratory Experiment Investigating the Impact of Ocean Acidification on Calcareous Organisms

    ERIC Educational Resources Information Center

    Perera, Alokya P.; Bopegedera, A. M. R. P.

    2014-01-01

    The increase in ocean acidity since preindustrial times may have deleterious consequences for marine organisms, particularly those with calcareous structures. We present a laboratory experiment to investigate this impact with general, introductory, environmental, and nonmajors chemistry students. For simplicity and homogeneity, calcite was…

  20. Usnic Acid and the Intramolecular Hydrogen Bond: A Computational Experiment for the Organic Laboratory

    ERIC Educational Resources Information Center

    Green, Thomas K.; Lane, Charles A.

    2006-01-01

    A computational experiment is described for the organic chemistry laboratory that allows students to estimate the relative strengths of the intramolecular hydrogen bonds of usnic and isousnic acids, two related lichen secondary metabolites. Students first extract and purify usnic acid from common lichens and obtain [superscript 1]H NMR and IR…

  1. JOURNAL OF RESEARCH IN SCIENCE TEACHING VOL. 24, NO. 3, PP. 229-240 (1987) SPATIAL ABILITY AND ITS ROLE IN ORGANIC CHEMISTRY

    E-print Network

    Bodner, George M.

    1987-01-01

    ROLE IN ORGANIC CHEMISTRY: A STUDY OF FOUR ORGANIC COURSES JEFFREY R. PRIBYL and GEORGE M. BODNER spatial ability and performance in organic chemistry was studied in four organic chemistry courses correct answers. Introduction Organic chemistry texts are filled with drawings of stick structures, space

  2. Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Shiraiwa, M.; Yee, L. D.; Schilling, K.; Loza, C. L.; Craven, J. S.; Zuend, A.; Ziemann, P. J.; Seinfeld, J.

    2013-12-01

    Organic aerosols are ubiquitous in the atmosphere and play a central role in climate, air quality and public health. The aerosol size distribution is key in determining its optical properties and cloud condensation nucleus activity. The dominant portion of organic aerosol is formed through gas-phase oxidation of volatile organic compounds, so-called secondary organic aerosol (SOA). Typical experimental measurements of SOA formation include total SOA mass and atomic oxygen-to-carbon ratio. These measurements, alone, are generally insufficient to reveal the extent to which condensed-phase reactions occur in conjunction with the multi-generation gas-phase photooxidation. Combining laboratory chamber experiments and kinetic gas-particle modeling for the dodecane SOA system, here we show that the presence of particle-phase chemistry is reflected in the evolution of the SOA size distribution as well as its mass concentration. Particle-phase reactions are predicted to occur mainly at the particle surface and the reaction products contribute more than half of the SOA mass. Chamber photooxidation with a mid-experiment aldehyde injection confirms that heterogeneous reaction of aldehydes with organic hydroperoxides forming peroxyhemiacetals can lead to a large increase in SOA mass. The results of the current work have a number of implications for SOA models. While the dynamics of an aerosol size distribution reflects the mechanism of growth, we demonstrate here that it provides a key constraint in interpreting laboratory and ambient SOA formation. This work, although carried out specifically for the long chain alkane, dodecane, is expected to be widely applicable to other major classes of SOA precursors. SOA consists of a myriad of organic compounds containing various functional groups, which can generally undergo heterogeneous/multiphase reactions forming low-volatility products such as oligomers and other high molecular mass compounds. If particle-phase chemistry is indeed central to SOA growth in general, the size-resolved SOA formation is better described in terms of kinetically limited condensational growth, rather than solely by thermodynamic equilibrium partitioning.

  3. Aqueous chemistry and yields of secondary organic aerosol formed from glyoxal and methylglyoxal in atmospheric waters

    NASA Astrophysics Data System (ADS)

    Lim, Y. B.; Tan, Y.; Ortiz-Montalvo, D. L.; Turpin, B. J.

    2012-12-01

    Atmospherically abundant, volatile, water soluble organic compounds formed through gas-phase oxidation (e.g., glyoxal, methylglyoxal, and acetic acid) have great potential to form secondary organic aerosol via aqueous chemistry (SOAaq) in clouds, fogs and wet aerosols. In this work, detailed reaction mechanisms and a full kinetic model were developed for aqueous OH radical oxidation of methylglyoxal and acetic acid; they were validated, in part, with laboratory experiments (Tan et al., 2012). This new model was combined with the previous glyoxal model (Lim et al., 2010), and used to simulate atmospheric concentration dynamics and estimate SOAaq yields. At cloud relevant concentrations, the major photooxidation products are oxalic and pyruvic acids, and simulated molar SOA yields are ~76-77% for glyoxal and ~64-65% for methylglyoxal, regardless of our assumptions regarding the continued production of precursor (i.e., for both batch and continuously stirred tank reactor assumptions). In the presence of ammonium ion, organic acid salt formation is expected to decrease product vapor pressures and increase SOA yields. In the concentrated solutions encountered in wet aerosols, oligomers form via organic radical-radical reactions; simulated molar SOA yields are ~40% for both glyoxal and methylglyoxal.

  4. An expert performance approach to examining factors contributing to academic success in organic chemistry

    NASA Astrophysics Data System (ADS)

    Nandagopal, Kiruthiga

    Successful completion of the introductory course in organic chemistry is a prerequisite for many graduate and professional science programs, yet the failure rate for this course is notoriously high. To date, there have been few studies examining factors contributing to academic success in organic chemistry. This study demonstrates that the online, longitudinal methods used by investigations of expert performance can examine and successfully identify factors contributing to academic success at the college level. Sixty-four students enrolled in introductory organic chemistry during the Fall 2007 and Spring 2008 semesters completed motivation questionnaires, interviews, diaries, and think-aloud reading and problem-solving tasks at three different points across a semester. Measures of spatial ability, general ability, and background preparation were also collected. Each measure was analyzed to determine significant differences between groups differing in grade-point average (GPA) prior to the start of the course and to identify predictors of organic chemistry grade. Variables measuring background preparation, problem-solving strategies and studying strategies were found to be the best predictors of academic success in organic chemistry. Implications for instruction in organic chemistry and effective studying behaviors are discussed.

  5. The interfacial chemistry of organic materials on commercial glass surfaces

    NASA Astrophysics Data System (ADS)

    Banerjee, Joy

    The hydrolytic stability of glass is dependent on its composition. Glasses are exposed to water during their processing and in many applications; therefore, their surface or interface with other materials must withstand hydrolytic attack. Multi-component silicate glasses are widely used but have been the least studied. In coatings-based applications, these glasses come in contact with organosilanes and organic molecules where the adsorption may be affected by surface water. For example, the influence of glass composition on the wet strength of a glass/polymer composite material is unclear, but it is presumed to be driven by the hydrolytic stability of the interfacial chemistry. Organosilanes are critical for increasing the performance of composite materials in humid environments but the precise manner by which the improvement occurs has not been verified. The current school of thought is that the application of silane coatings on a multi-component glass surface transforms the chemically heterogeneous surface into a homogenous and hydrolytically stable surface. In this study, multi-component silicate glass surfaces were silanized by both aqueous and non-aqueous methods. The effect of glass composition and surface hydration on silane coverage was quantified by X-ray Photoelectron Spectroscopy (XPS) analysis. The monolayer-level adsorption results showed that the low-sodium content glasses had greater coverage than a high-sodium content glass in dry conditions in contrast to an equivalent coverage in wet conditions. The hydrolytically-stable coverage on multi-component silicate glass surfaces by both silanization methods was found to be sub-monolayer. A thin film model in conjunction with XPS and Infrared Spectroscopy was used to probe the interfacial region of a fiberglass insulation material containing a sodium-rich multi-component silicate glass and an acrylate resin binder. Upon the application of the aqueous binder, the leaching of sodium from the glass promoted the formation of sodium carboxylate salts that were found to be detrimental to the hydrolytic stability of the interfacial region. The silanization of the glass improved the hydrolytic stability of the interfacial region by the mitigation of sodium carboxylate salt formation. The lack of interfacial failure indicated that the adsorption of the silane molecules and their interactions with the resin binder were hydrolytically stable.

  6. The Titan Haze Simulation experiment: laboratory simulation of Titan's atmospheric chemistry at low temperature

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, E.; Contreras, C. S.; Ricketts, C. L.; Salama, F.

    2012-04-01

    In Titan’s atmosphere, a complex organic chemistry between its two main constituents, N2 and CH4, leads to the production of heavy molecules and subsequently to solid organic aerosols. Several instruments onboard Cassini have detected neutral, positively and negatively charged particles and heavy molecules in the ionosphere of Titan[1,2]. In particular, the presence of benzene (C6H6) and toluene (C6H5CH3)[3], which are critical precursors of polycyclic aromatic hydrocarbon (PAH) compounds, suggests that PAHs might play a role in the production of Titan’s aerosols. The Titan Haze Simulation (THS) experiment has been developed at NASA Ames’ Cosmic Simulation facility (COSmIC) to study the chemical pathways that link the simple precursor molecules resulting from the first steps of the N2-CH4 chemistry (C2H2, C2H4, HCN…) to benzene, and to PAHs and nitrogen-containing PAHs (or PANHs) as precursors to the production of solid aerosols. In the THS experiment, Titan’s atmospheric chemistry is simulated by plasma in the stream of a supersonic jet expansion. With this unique design, the gas mixture is cooled to Titan-like temperature (~150K) before inducing the chemistry by plasma discharge. Different gas mixtures containing the first products of Titan’s N2-CH4 chemistry but also much heavier molecules like PAHs or PANHs can be injected to study specific chemical reactions. The products of the chemistry are detected and studied using two complementary techniques: Cavity Ring Down Spectroscopy[4] and Time-Of-Flight Mass Spectrometry[5]. Thin tholin deposits are also produced in the THS experiment and can be analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) and Scanning Electron Microscopy (SEM). We will present the results of ongoing mass spectrometry studies on the THS experiment using different gas mixtures: N2-CH4, N2-C2H2, N2-C2H4, N2-C2H6, N2-C6H6, and similar mixtures with an N2-CH4 (90:10) mixture instead of pure N2, to study specific pathways associated with the presence of these trace elements in Titan’s atmosphere. We will also present preliminary results of the tholin ex situ analysis and discuss the implications of these results in our understanding of Titan’s haze formation. References: [1]Coates, A.J., Crary, F.J., Lewis, G.R., Young, D.T., Waite Jr., J.H., Sittler Jr., E.C., Geophys. Res. Letters, 34, LL22103, 2007. [2]Waite Jr., J.H., Young, D.T., Cravens, T.E., Coates, A.J., Crary, F.J., Magee, B., Westlake, J., Science, 316, 870-875, 2007. [3]Vuitton, V., Yelle, R.V., Cui, J., J. Geophys. Res., 113, E05007, 2008. [4]Biennier L., Salama F., Allamandola L.J., Scherer J.J., J. Chem. Phys. 118, 7863-7872, 2003. [5]Ricketts, C.L., Contreras, C.S., Walker, R.L., Salama, F., Int. J. Mass Spectrom., 300, 26-30, 2011.

  7. Laboratory experiments in the study of the chemistry of the outer planets

    NASA Technical Reports Server (NTRS)

    Scattergood, Thomas W.

    1987-01-01

    It is shown that much information about planetary chemistry and physics can be gained through laboratory work. The types of experiments relevant to planetary research concern fundamental properties, spectral/optical properties, 'Miller-Urey' syntheses, and detailed syntheses. Specific examples of studies of the chemistry in the atmosphere of Titan are described with attention given to gas phase chemistry in the troposphere and the composition of model Titan aerosols. A list of work that still needs to be done is provided.

  8. Assessment of SAPRC07 with updated isoprene chemistry against outdoor chamber experiments

    NASA Astrophysics Data System (ADS)

    Chen, Yuzhi; Sexton, Kenneth G.; Jerry, Roger E.; Surratt, Jason D.; Vizuete, William

    2015-03-01

    Isoprene, the most emitted non-methane hydrocarbon, is known to influence ozone (O3) formation in urban areas rich with biogenic emissions. To keep up with the recent advance on isoprene oxidation chemistry including the identification of isoprene epoxydiols (IEPOX) as a precursor to secondary organic aerosol (SOA), Xie et al. (2013) updated the SAPRC (Statewide Air Pollution Research Center)-07 chemical mechanism. It is currently unknown how the Xie modification of SAPRC07 impacts the ability of the model to predict O3. In this study we will evaluate the Xie mechanism with simulations of 24 isoprene experiments from the UNC Dual Gas-phase Chamber. Our results suggest that the new mechanism increases NOx (nitrogen oxides) inter-conversion and produces more O3 than SAPRC07 for all experiments. In lower-NOx experiments, the new mechanism worsens O3 performance in the wrong direction, increasing bias from 4.92% to 9.44%. We found increased NOx recycling from PANs accounts for that. This could be explained by more PANs made due to increased first generation volatile organic compound (VOC) products and hydroxyl radical (OH) production.

  9. "Molecules-in-Medicine": Peer-Evaluated Presentations in a Fast-Paced Organic Chemistry Course for Medical Students

    ERIC Educational Resources Information Center

    Kadnikova, Ekaterina N.

    2013-01-01

    To accentuate the importance of organic chemistry in development of contemporary pharmaceuticals, a three-week unit entitled "Molecules-in-Medicine" was included in the curriculum of a comprehensive one-semester four-credit organic chemistry course. After a lecture on medicinal chemistry concepts and pharmaceutical practices, students…

  10. Using the QCPE Holdings in Chemical Education: Molecular Models in the Organic Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Lipkowitz, Kenny

    1984-01-01

    Discusses a successfully implemented laboratory experiment that compares the strengths and weaknesses of mechanical and computer models. The computer models used are available from the Quantum Chemistry Program Exchange (QCPE) at a modest price. (JN)

  11. Japanese Language Education for Science Students : Introductory Training through Chemistry Experiments

    NASA Astrophysics Data System (ADS)

    Takai, Kazuhiko

    This paper describes a course in Japanese language instruction for first year students in the Department of Applied Chemistry, Okayama University. The course is part of a guidance program and consists of (1) technical writing in Japanese for science students, (2) experimental report writing, and (3) project-based learning through chemistry experiments.

  12. Students Doing Chemistry: A Hand-On Experience for K-12

    ERIC Educational Resources Information Center

    Selco, Jodye I.; Bruno, Mary; Chan, Sue

    2012-01-01

    A hands-on, minds-on inquiry chemistry experiment was developed for use in K-12 schools that enables students to combine the chemicals of their choice and observe the results. The chemistry involved is water based and builds upon acid-base, double displacement, and iodometric detection of starch reactions. Chemicals readily available in the…

  13. His majesty's subjects: from laboratory to human experiment in pneumatic chemistry.

    PubMed

    Stewart, Larry

    2009-09-20

    Experiments in pneumatic chemistry paved the way for medical innovation in the last quarter of the eighteenth century. Thomas Beddoes and James Watt were instrumental in the spread of the use of new gas chemistry in pneumatic therapy, but they were far from alone. There was no shortage of experimental subjects, as the practice was quickly taken up by medics throughout Britain. PMID:20027745

  14. Filtrates & Residues: Hemoglobinometry--A Biochemistry Experiment that Utilizes the Principles of Transition Metal Chemistry.

    ERIC Educational Resources Information Center

    Giuliano, Vincenzo; Rieck, John Paul

    1987-01-01

    Describes a chemistry experiment dealing with hemoglobinometry that can apply to transition metal chemistry, colorimetry, and biochemistry. Provides a detailed description of the experimental procedure, including discussions of the preparation of the cyanide reagent, colorimetric measurements, and waste disposal and treatment. (TW)

  15. Incorporating Guided-Inquiry Learning into the Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Gaddis, Barbara A.; Schoffstall, Allen M.

    2007-01-01

    Guided-inquiry experiments also known as discovery-based experiments, which combine the pedagogical advantages of open-inquiry methods with the practical advantages of expository experiments, are described. Unlike open-inquiry or problem-based experiments, guided-inquiry experiments could be readily adapted to large laboratory sections and induces…

  16. Global Distribution and Surface Activity of Macromolecules in Offline Simulations of Marine Organic Chemistry

    SciTech Connect

    Ogunro, O.; Burrows, Susannah M.; Elliott, Scott; Frossard, Amanda; Hoffman, F. M.; Letscher, Robert; Moore, J. K.; Russell, Lynn M.; Wang, Shanlin; Wingenter, O.

    2015-10-13

    Organic macromolecules constitute high percentage components of remote sea spray. They enter the atmosphere through adsorption onto bubbles followed by bursting at the ocean surface, and go on to influence the chemistry of the fine mode aerosol. We present a global estimate of mixed-layer organic macromolecular distributions, driven by offline marine systems model output. The approach permits estimation of oceanic concentrations and bubble film surface coverages for several classes of organic compound. Mixed layer levels are computed from the output of a global ocean biogeochemistry model by relating the macromolecules to standard biogeochemical tracers. Steady state is assumed for labile forms, and for longer-lived components we rely on ratios to existing transported variables. Adsorption is then represented through conventional Langmuir isotherms, with equilibria deduced from laboratory analogs. Open water concentrations locally exceed one micromolar carbon for the total of protein, polysaccharide and refractory heteropolycondensate. The shorter-lived lipids remain confined to regions of strong biological activity. Results are evaluated against available measurements for all compound types, and agreement is generally quite reasonable. Global distributions are further estimated for both fractional coverage of bubble films at the air-water interface and the two-dimensional concentration excess. Overall, we show that macromolecular mapping provides a novel tool for the comprehension of oceanic surfactant distributions. Results may prove useful in planning field experiments and assessing the potential response of surface chemical behaviors to global change.

  17. Bromine Chemistry in the Tropical UTLS during the 2011, 2013 and 2014 ATTREX Experiments

    NASA Astrophysics Data System (ADS)

    Stutz, J.; Spolaor, M.; Festa, J.; Tsai, J. Y.; Colosimo, S. F.; Cheung, R.; Werner, B.; Deutschmann, T.; Scalone, L.; Raecke, R.; Tricoli, U.; Pfeilsticker, K.; Navarro, M. A.; Atlas, E. L.

    2014-12-01

    Bromine chemistry impacts the levels of ozone in the upper troposphere and the stratosphere. An accurate quantitative understanding of the sources, sinks, and chemical transformation of bromine species is thus important to understand the bromine budget in the upper troposphere and lower stratosphere (UTLS), which also serves as a gate to the stratosphere. Vertical transport of very short-lived organic bromine precursors, such as CHBr3, CH2Br2 and inorganic product gases has been identified as the main source of bromine in the UTLS. However, the contribution of inorganic vs. organic compounds is not well quantified, particularly in the tropical UTLS. A number of chemical processes, including the role of ice particles for the transformation and cycling of inorganic bromine species are also poorly understood. A limb scanning Differential Optical Absorption Spectroscopy Instrument was deployed on-board NASA's unmanned high-altitude Global Hawk aircraft during the 2011, 2013, and 2014 NASA Airborne Tropical TRopopause EXperiment (ATTREX). Flights in the eastern and western Pacific were performed to study, among other topics, the chemistry of bromine and ozone in the subtropical and tropical UTLS. Here we will present observations of BrO, NO2 and other trace species made by this instrument at altitudes between 15 - 20 km. The measurement methodology as well as the procedure to retrieve vertical trace gas concentration profiles will be briefly presented. The combination of those observations with the measurements of organic bromine species from the University of Miami's Whole Air Sampler (GWAS) will be used to determine and interpret the bromine budget in the UTLS.

  18. Climate, Litter Chemistry, and Nitrogen Controls on Litter Decomposition and Organic Matter Stabilization

    NASA Astrophysics Data System (ADS)

    DelGrosso, S.; Parton, W. J.; Adair, C.

    2012-12-01

    Climate interacts with N availability and other factors to control organic matter decomposition rates and carbon cycling. We analyzed data from the LIDET (Long-Term Inter-site Decomposition Experiment Team) experiment to investigate the controls on litter decomposition rates and organic matter stabilization. Bags containing vegetative litter from different woody and herbaceous species were placed in 28 sites representing a wide array of biomes. Samples were collected approximately ten times, once per year for all sites except tropical sites, which were sampled every 3-6 months. Each sample was analyzed for total N, ash, lignin, and cellulose using near infrared reflectance spectroscopy. To account for water and temperature impacts on decomposition, we calculated a Climate Decomposition Index (CDI) for each site based on long term weather data. We then performed step-wise regression analyses to test how well CDI and litter chemistry were correlated with the amount of biomass remaining in litter bags after 1, 5, and 10 years. CDI was the primary control, accounting for 74, 48, and 58% of variability in biomass remaining at 1, 5, and 10 years, respectively. In addition to CDI, The C/N ratio of labile organic matter and lignin content significantly impacted biomass remaining at 1 and 5 years, while lignin and cellulose content were significant for biomass remaining at 10 years. Increased C/N ratio was associated with slower initial decomposition rate. Lignin content was positively, and cellulose negatively, correlated with long term organic matter stabilization. If CDI and lignin content were similar, then C/N did not influence long term stabilization. If N was not limiting, cellulose decomposed quickly.

  19. Synthesis of Organic Matter of Prebiotic Chemistry at the Protoplanetary Disc

    NASA Astrophysics Data System (ADS)

    Snytnikov, Valeriy; Stoynovskaya, Olga; Rudina, Nina

    We have carried out scanning electron microscopic examination of CM carbonaceous chondrites meteorites Migey, Murchison, Staroe Boriskino aged more than 4.56 billion years (about 50 million years from the beginning of the formation of the Solar system). Our study confirmed the conclusion of Rozanov, Hoover and other researchers about the presence of microfossils of bacterial origin in the matrix of all these meteorites. Since the time of the Solar system formation is 60 - 100 million years, the primary biocenosis emerged in the protoplanetary disc of the Solar system before meteorites or simultaneously with them. It means that prebiological processes and RNA world appeared even earlier in the circumsolar protoplanetary disc. Most likely, this appearance of prebiotic chemistry takes place nowday in massive and medium-massive discs of the observed young stellar objects (YSO) class 0 and I. The timescale of the transition from chemical to biological evolution took less than 50 million years for the Solar system. Further evolution of individual biocenosis in a protoplanetary disc associated with varying physico-chemical conditions during the formation of the Solar system bodies. Biocenosis on these bodies could remove or develop under the influence of many cosmic factors and geological processes in the case of Earth. To complete the primary biosphere formation in short evolution time - millions of years - requires highly efficient chemical syntheses. In industrial chemistry for the efficient synthesis of ammonia, hydrogen cyanide, methanol and other organic species, that are the precursors to obtain prebiotic compounds, catalytic reactors of high pressure are used. Thus (1) necessary amount of the proper catalyst in (2) high pressure areas of the disc can trigger these intense syntheses. The disc contains the solids with the size from nanoparticle to pebble. Iron and magnesium is catalytically active ingredient for such solids. The puzzle is a way to provide hydrogen pressure inside the disc from tens to hundred atmospheres. We simulated unsteady processes in massive circumstellar discs around YSO class O and I. In the computational experiments, we have shown that at a certain stage of its evolution the circumstellar discs of gas and solids produces local areas of high pressure. According to the classical heterogeneous catalysis, a wide range of organic and prebiotic compounds could have been synthesized in these areas. Can we capture these areas of high pressure synthesis in observation of circumstellar discs? Due to the small sizes of such areas they can be hardly ever resolved even with the modern telescopes such as ALMA. However, we can try to detect their signatures in the disc, since the gas of the disc keep the set of organic synthesis products. The idea is to define the signature of the process using laboratory experiments. Varying gas temperature and pressure in laboratory setup we can carry out the catalytic high pressure syntheses and specify the set of gaseous products. These sets of organic compounds observed in the discs may serve as indicators of the emergence of high-pressure areas of prebiotic chemistry. Thus, there is a special interest to the study of YSO class 0 and I by means of observational astronomy. For these objects, first data on the presence of individual organic compounds in massive hydrogen-helium component of the discs appear. The origin of the organic compounds that are associated with chemical reactions in the discs should be separated from the set of organic compounds of the initial molecular cloud.

  20. Modeling SOAaq Formation: Explicit Organic Chemistry in Cloud Droplets with CMAQ

    NASA Astrophysics Data System (ADS)

    Carlton, A. G.; Sareen, N.; Fahey, K.; Hutzell, W. T.

    2013-12-01

    Aqueous multiphase chemistry in the atmosphere has a substantial impact on climate and can lead to air quality changes that adversely impact human health and the environment. The chemistry is complex because of the variety of compounds present in the atmosphere and the phase transitions associated with multiphase reactions. These reactions can lead to the formation of secondary organic aerosols (SOAAQ) in the atmosphere. When included, current photochemical models typically use a simple parameterization to describe SOAAQ formation. Here, we discuss the implementation of explicit aqueous SOA chemistry in a box model of the CMAQ 5.0.1 aqueous phase chemistry mechanism using the Kinetic PreProcessor (KPP). The expanded chemistry model includes reactions of glyoxal, methylglyoxal, and glycolaldehyde as precursors to form SOAAQ and is based on the mechanism from Lim et. al. 2010. The current aqueous phase chemistry module in CMAQ uses a forward Euler method to solve the system of oxidation equations, estimating the pH with a bisection method assuming electroneutrality, and multiphase processes are solved sequentially. This is not robust for systems with large dynamic range (e.g., multiphase systems), and inhibits expansion of the aqueous phase chemical mechanism to adequately incorporate the growing body of literature that describes multiphase organic chemistry. The KPP solver allows for all processes to be solved simultaneously and facilitates expansion of the current mechanism. Addition of explicit organic reactions and H2O2 photolysis in the KPP box model results in increased mass of organic aerosol and more realistic predictions. For particulate matter focused air quality management strategies to be effective, it is important that models move away from the yield-based approach currently used and expand to include more explicit organic chemistry.

  1. Determination of Rate Constants for Ouabain Inhibition of Adenosine Triphosphatase: An Undergraduate Biological Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Sall, Eri; And Others

    1978-01-01

    Describes an undergraduate biological chemistry laboratory experiment which provides students with an example of pseudo-first-order kinetics with the cardiac glycoside inhibition of mammalism sodium and potassium transport. (SL)

  2. A Solid State Chemistry Experiment: Dislocations in Etched Calcite by Polaroid Photomicrography

    ERIC Educational Resources Information Center

    Agnew, N. H.

    1972-01-01

    Suggests that adequate attention should be given to lattice imperfections in teaching solid state chemistry. Some concepts to be included in such a program are explained. An experiment to be performed by undergraduates on photomicrography is described in detail. (PS)

  3. Photochemical Reactions of Tris (Oxalato) Iron (III): A First-Year Chemistry Experiment.

    ERIC Educational Resources Information Center

    Baker, A. D.; And Others

    1980-01-01

    Describes a first-year chemistry experiment that illustrates the fundamental concepts of a photoinduced reaction. Qualitative and quantitative parts of the photoreduction of potassium ferrioxalate are detailed. (CS)

  4. The Heat of Protonation of Pyridine and Chloro Substituted Pyridines: A Physical Chemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Smith, Robert L.; Pinnick, H. R., Jr.

    1980-01-01

    Describes a physical chemistry laboratory experiment that illustrates the concepts of inductive and resonance effects by the calorimetric determination of the heats of protonation of pyridine, 2-chloropyridine, and 3-chloropyridine. (CS)

  5. Imidazole as a pH Probe: An NMR Experiment for the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hagan, William J., Jr.; Edie, Dennis L.; Cooley, Linda B.

    2007-01-01

    The analysis describes an NMR experiment for the general chemistry laboratory, which employs an unknown imidazole solution to measure the pH values. The described mechanism can also be used for measuring the acidity within the isolated cells.

  6. The Impact of Nursing Students' Prior Chemistry Experience on Academic Performance and Perception of Relevance in a Health Science Course

    ERIC Educational Resources Information Center

    Boddey, Kerrie; de Berg, Kevin

    2015-01-01

    Nursing students have typically found the study of chemistry to be one of their major challenges in a nursing course. This mixed method study was designed to explore how prior experiences in chemistry might impact chemistry achievement during a health science unit. Nursing students (N = 101) studying chemistry as part of a health science unit were…

  7. Selective Bifunctional Modification of a Non-catenated Metal-Organic Framework Material via 'Click' Chemistry

    SciTech Connect

    Gadzikwa, Tendai; Farha, Omar K.; Malliakas, Christos D.; Kanatzidis, Mercouri G.; Hupp, Joseph T.; Nguyen, SonBinh T.; NWU

    2009-12-01

    A noncatenated, Zn-based metal-organic framework (MOF) material bearing silyl-protected acetylenes was constructed and postsynthetically modified using 'click' chemistry. Using a solvent-based, selective deprotection strategy, two different organic azides were 'clicked' onto the MOF crystals, resulting in a porous material whose internal and external surfaces are differently functionalized.

  8. Nomenclature101.com: A Free, Student-Driven Organic Chemistry Nomenclature Learning Tool

    ERIC Educational Resources Information Center

    Flynn, Alison B.; Caron, Jeanette; Laroche, Jamey; Daviau-Duguay, Melissa; Marcoux, Caroline; Richard, Gise`le

    2014-01-01

    Fundamental to a student's understanding of organic chemistry is the ability to interpret and use its language, including molecules' names and other key terms. A learning gap exists in that students often struggle with organic nomenclature. Although many resources describe the rules for naming molecules, there is a paucity of resources…

  9. Acid-Base Learning Outcomes for Students in an Introductory Organic Chemistry Course

    ERIC Educational Resources Information Center

    Stoyanovich, Carlee; Gandhi, Aneri; Flynn, Alison B.

    2015-01-01

    An outcome-based approach to teaching and learning focuses on what the student demonstrably knows and can do after instruction, rather than on what the instructor teaches. This outcome-focused approach can then guide the alignment of teaching strategies, learning activities, and assessment. In organic chemistry, mastery of organic acid-base…

  10. The Role of Spatial Ability and Strategy Preference for Spatial Problem Solving in Organic Chemistry

    ERIC Educational Resources Information Center

    Stieff, Mike; Ryu, Minjung; Dixon, Bonnie; Hegarty, Mary

    2012-01-01

    In organic chemistry, spatial reasoning is critical for reasoning about spatial relationships in three dimensions and representing spatial information in diagrams. Despite its importance, little is known about the underlying cognitive components of spatial reasoning and the strategies that students employ to solve spatial problems in organic

  11. A Mass Spectral Chlorine Rule for Use in Structure Determinations in Sophomore Organic Chemistry

    ERIC Educational Resources Information Center

    Gross, Ray A., Jr.

    2004-01-01

    The low-resolution mass spectrum of integral masses is used to determine the number of bromine and chlorine atoms in an organic compound. The chlorine rule is a tool suitable for use in structural determinations in first year organic chemistry and it is supported by the ability of sophomore-level students to successfully determine n and m from the…

  12. Student Perceptions of the Benefits of a Learner-Based Writing Assignment in Organic Chemistry

    ERIC Educational Resources Information Center

    Ablin, Lois

    2008-01-01

    A writing assignment to increase student understanding of and interest in practical applications of organic chemistry is described. Students were required to study a pharmaceutical or other organic compound and perform a qualitative risk assessment on the chemical. Student perceptions of the benefits of the paper were generally positive. (Contains…

  13. Chemkarta: A Card Game for Teaching Functional Groups in Undergraduate Organic Chemistry

    ERIC Educational Resources Information Center

    Knudtson, Christopher A.

    2015-01-01

    Students in undergraduate organic chemistry courses are frequently overwhelmed by the volume and complexity of information they are expected to learn. To aid in students' learning of organic functional groups, a novel card game "ChemKarta" is reported that can serve as a useful alternative to flashcards. This pedagogy is a simple…

  14. Organic peroxide and OH formation in aerosol and cloud water: laboratory evidence for this aqueous chemistry

    NASA Astrophysics Data System (ADS)

    Lim, Y. B.; Turpin, B. J.

    2015-06-01

    Aqueous chemistry in atmospheric waters (e.g., cloud droplets or wet aerosols) is well accepted as an atmospheric pathway to produce secondary organic aerosol (SOAaq). Water-soluble organic compounds with small carbon numbers (C2-C3) are precursors for SOAaq and products include organic acids, organic sulfates, and high molecular weight compounds/oligomers. Fenton reactions and the uptake of gas-phase OH radicals are considered to be the major oxidant sources for aqueous organic chemistry. However, the sources and availability of oxidants in atmospheric waters are not well understood. The degree to which OH is produced in the aqueous phase affects the balance of radical and non-radical aqueous chemistry, the properties of the resulting aerosol, and likely its atmospheric behavior. This paper demonstrates organic peroxide formation during aqueous photooxidation of methylglyoxal using ultra high resolution Fourier Transform Ion Cyclotron Resonance electrospray ionization mass spectrometry (FTICR-MS). Organic peroxides are known to form through gas-phase oxidation of volatile organic compounds. They contribute secondary organic aerosol (SOA) formation directly by forming peroxyhemiacetals, and epoxides, and indirectly by enhancing gas-phase oxidation through OH recycling. We provide simulation results of organic peroxide/peroxyhemiacetal formation in clouds and wet aerosols and discuss organic peroxides as a source of condensed-phase OH radicals and as a contributor to aqueous SOA.

  15. Preparation of Gold Nanoparticles Using Tea: A Green Chemistry Experiment

    ERIC Educational Resources Information Center

    Sharma, R. K.; Gulati, Shikha; Mehta, Shilpa

    2012-01-01

    Assimilating green chemistry principles in nanotechnology is a developing area of nanoscience research nowadays. Thus, there is a growing demand to develop environmentally friendly and sustainable methods for the synthesis of nanoparticles that utilize nontoxic chemicals, environmentally benign solvents, and renewable materials to avoid their…

  16. Stereoisomerism in Coordination Chemistry: A Laboratory Experiment for Undergraduate Students.

    ERIC Educational Resources Information Center

    Gargallo, Maria Fe; And Others

    1988-01-01

    Describes an experimental procedure to acquaint inorganic chemistry students with stereochemical concepts using tris-(2,3-butanediamine)cobalt(III). Notes two isomeric forms exist and both form metal chelates. Separation is accomplished by chromatography and analysis is by NMR and infrared spectroscopy. Provides spectra of isomers. (MVL)

  17. Education & Experience B.S. Chemistry, University of California

    E-print Network

    Patrick, David L.

    ) Henry Dreyfus Teacher-Scholar Award (2001) U.S. Presidential Early Career Award for Scientists Award (1993) David L. Patrick Professor of Chemistry Tel 360-650-3128 Western Washington University Fax 360-650-2826 516 High St., Bellingham, WA 98225 david.patrick@wwu.edu http://atom.chem.wwu.edu/dept/facstaff/dpatrick/patrick

  18. The Oil Drop Experiment: Do Physical Chemistry Textbooks Refer to Its Controversial Nature?

    ERIC Educational Resources Information Center

    Niaz, Mansoor; Rodriguez, Maria A.

    2005-01-01

    Most general chemistry textbooks consider the oil drop experiment as a classic experiment, characterized by its simplicity and precise results. A review of the history and philosophy of science literature shows that the experiment is difficult to perform (even today!) and generated a considerable amount of controversy. Acceptance of the…

  19. Looking beyond Lewis Structures: A General Chemistry Molecular Modeling Experiment Focusing on Physical Properties and Geometry

    ERIC Educational Resources Information Center

    Linenberger, Kimberly J.; Cole, Renee S.; Sarkar, Somnath

    2011-01-01

    We present a guided-inquiry experiment using Spartan Student Version, ready to be adapted and implemented into a general chemistry laboratory course. The experiment provides students an experience with Spartan Molecular Modeling software while discovering the relationships between the structure and properties of molecules. Topics discussed within…

  20. Minimal Impact of Organic Chemistry Prerequisite on Student Performance in Introductory Biochemistry

    PubMed Central

    Cotner, Sehoya; Winkel, Amy

    2009-01-01

    Curriculum design assumes that successful completion of prerequisite courses will have a positive impact on student performance in courses that require the prerequisite. We recently had the opportunity to test this assumption concerning the relationship between completion of the organic chemistry prerequisite and performance in introductory biochemistry. We found no statistically significant differences between average biochemistry grades or grade distribution among students with or without the organic chemistry prerequisite. However, students who had not completed the organic chemistry prerequisite before biochemistry were more likely to withdraw from the course than those who had completed the prerequisite. In contrast to the lack of correlation between performance in biochemistry and completion of organic chemistry, we observed a strong, highly significant positive relationship between cumulative GPA and the biochemistry grade. Our data suggest that excluding students without organic chemistry would have less positive impact on student success in biochemistry than would providing additional support for all students who enroll in biochemistry with a cumulative GPA below 2.5. PMID:19255135

  1. Extraterrestrial organic chemistry: from the interstellar medium to the origins of life. Part 2: complex organic chemistry in the environment of planets and satellites.

    PubMed

    Raulin, F; Kobayashi, K

    2001-01-01

    During COSPAR'00 in Warsaw, Poland, in the frame of Sub-Commission F.3 events (Planetary Biology and Origins of Life), part of COSPAR Commission F (Life Sciences as Related to Space), and Commission B events (Space Studies of the Earth-Moon System, Planets, and Small Bodies of the Solar System) a large joint symposium (F.3.4/B0.8) was held on extraterrestrial organic chemistry. Part 2 of this symposium was devoted to complex organic chemistry in the environment of planets and satellites. The aim of this event was to cover and review new data which have been recently obtained and to give new insights on data which are expected in the near future to increase our knowledge of the complex organic chemistry occurring in several planets and satellites of the Solar System, outside the earth, and their implications for exobiology and life in the universe. The event was composed of two main parts. The first part was mainly devoted to the inner planets and Europa and the search for signatures of life or organics in those environments. The second part was related to the study of the outer solar system. PMID:11603399

  2. A teaching intervention for reading laboratory experiments in college-level introductory chemistry

    NASA Astrophysics Data System (ADS)

    Kirk, Maria Kristine

    The purpose of this study was to determine the effects that a pre-laboratory guide, conceptualized as a "scientific story grammar," has on college chemistry students' learning when they read an introductory chemistry laboratory manual and perform the experiments in the chemistry laboratory. The participants (N = 56) were students enrolled in four existing general chemistry laboratory sections taught by two instructors at a women's liberal arts college. The pre-laboratory guide consisted of eight questions about the experiment, including the purpose, chemical species, variables, chemical method, procedure, and hypothesis. The effects of the intervention were compared with those of the traditional pre-laboratory assignment for the eight chemistry experiments. Measures included quizzes, tests, chemistry achievement test, science process skills test, laboratory reports, laboratory average, and semester grade. The covariates were mathematical aptitude and prior knowledge of chemistry and science processes, on which the groups differed significantly. The study captured students' perceptions of their experience in general chemistry through a survey and interviews with eight students. The only significant differences in the treatment group's performance were in some subscores on lecture items and laboratory items on the quizzes. An apparent induction period was noted, in that significant measures occurred in mid-semester. Voluntary study with the pre-laboratory guide by control students precluded significant differences on measures given later in the semester. The groups' responses to the survey were similar. Significant instructor effects on three survey items were corroborated by the interviews. The researcher's students were more positive about their pre-laboratory tasks, enjoyed the laboratory sessions more, and were more confident about doing chemistry experiments than the laboratory instructor's groups due to differences in scaffolding by the instructors.

  3. Art, Meet Chemistry; Chemistry, Meet Art: Case Studies, Current Literature, and Instrumental Methods Combined to Create a Hands-On Experience for Nonmajors and Instrumental Analysis Students

    ERIC Educational Resources Information Center

    Nivens, Delana A.; Padgett, Clifford W.; Chase, Jeffery M.; Verges, Katie J.; Jamieson, Deborah S.

    2010-01-01

    Case studies and current literature are combined with spectroscopic analysis to provide a unique chemistry experience for art history students and to provide a unique inquiry-based laboratory experiment for analytical chemistry students. The XRF analysis method was used to demonstrate to nonscience majors (art history students) a powerful…

  4. NMR Kinetics of the S[subscript N]2 Reaction between BuBr and I[superscript -]: An Introductory Organic Chemistry Laboratory Exercise

    ERIC Educational Resources Information Center

    Mobley, T. Andrew

    2015-01-01

    A simple organic chemistry experiment is described that investigates the kinetics of the reaction between 1-bromobutane (BuBr) and iodide (I[superscript -]) as followed by observing the disappearance of BuBr and the appearance of 1-iodobutane (BuI) using [superscript 1]H NMR spectroscopy. In small groups of three to four, students acquire data to…

  5. Introducing Organic Chemistry Students to Natural Product Isolation Using Steam Distillation and Liquid Phase Extraction of Thymol, Camphor, and Citral, Monoterpenes Sharing a Unified Biosynthetic Precursor

    ERIC Educational Resources Information Center

    McLain, Katherine A.; Miller, Kenneth A.; Collins, William R.

    2015-01-01

    Plants have provided and continue to provide the inspiration and foundation for modern medicines. Natural product isolation is a key component of the process of drug discovery from plants. The purpose of this experiment is to introduce first semester undergraduate organic chemistry students, who have relatively few lab techniques at their…

  6. Developments in Analytical Chemistry: Acoustically Levitated Drop Reactors for Enzyme Reaction Kinetics and Single-Walled Carbon Nanotube-Based Sensors for Detection of Toxic Organic Phosphonates

    ERIC Educational Resources Information Center

    Field, Christopher Ryan

    2009-01-01

    Developments in analytical chemistry were made using acoustically levitated small volumes of liquid to study enzyme reaction kinetics and by detecting volatile organic compounds in the gas phase using single-walled carbon nanotubes. Experience gained in engineering, electronics, automation, and software development from the design and…

  7. Analytical Chemistry Laboratory (ACL) procedure compendium. Volume 4, Organic methods

    SciTech Connect

    Not Available

    1993-08-01

    This interim notice covers the following: extractable organic halides in solids, total organic halides, analysis by gas chromatography/Fourier transform-infrared spectroscopy, hexadecane extracts for volatile organic compounds, GC/MS analysis of VOCs, GC/MS analysis of methanol extracts of cryogenic vapor samples, screening of semivolatile organic extracts, GPC cleanup for semivolatiles, sample preparation for GC/MS for semi-VOCs, analysis for pesticides/PCBs by GC with electron capture detection, sample preparation for pesticides/PCBs in water and soil sediment, report preparation, Florisil column cleanup for pesticide/PCBs, silica gel and acid-base partition cleanup of samples for semi-VOCs, concentrate acid wash cleanup, carbon determination in solids using Coulometrics` CO{sub 2} coulometer, determination of total carbon/total organic carbon/total inorganic carbon in radioactive liquids/soils/sludges by hot persulfate method, analysis of solids for carbonates using Coulometrics` Model 5011 coulometer, and soxhlet extraction.

  8. Schedule for Completion of NUS B.Sc. (Hons.) in Chemistry KCL M.Sc. in Analytical Toxicology

    E-print Network

    Yao, Shao Q

    MSc Modules {ECTS}Chemistry Major Other graduation requirements YEAR1 Semesters1&2 CM1111 Inorganic Semesters1&2 CM2101 Physical Chemistry 2[4] CM2111 Inorganic Chemistry 2 [4] CM2121 Organic Chemistry 2 [4 in Chemistry 3 [4] YEAR3 Semesters1&2 CM3291 Advanced Experiments in Inorganic and Organic Chemistry CM3292

  9. Filtrates and Residues: Saturated and Unsaturated Fats: An Organic Chemistry Demonstration.

    ERIC Educational Resources Information Center

    Broniec, Rick

    1985-01-01

    Background information and procedures are provided for an experiment in which an oxidation reaction is used to distinguish saturated from unsaturated fats. Results of the experiment lead to discussions and investigations of such areas as digestion chemistry, enzymes, hydrogenation, and the relationship between heart disease and fat consumption.…

  10. 4,5,9/99 Neuman Chapter 21 Organic Chemistry

    E-print Network

    Reed, Christopher A.

    ************************************************************************************** I. Foundations 1. Organic Molecules and Chemical Bonding 2. Alkanes and Cycloalkanes 3. Haloalkanes. A Comparison of Fats and Oils Hydrogenation of Fats and Oils Soaps Detergents Waxes Glycerophospholipids

  11. First name Surname Programme Group Personal Tutor Inorganic Tutor Organic Tutor Physical Tutor PAL Mentors Katie Casson Medicinal Chemistry 1

    E-print Network

    Rzepa, Henry S.

    First name Surname Programme Group Personal Tutor Inorganic Tutor Organic Tutor Physical Tutor PAL Mentors Katie Casson Medicinal Chemistry 1 Emma Dunkerton Medicinal Chemistry 1 Abigail (Abi) Frith Medicinal Chemistry 1 Dr Patrick McGowan Dr Patrick McGowan Dr Bao Nguyen Dr Paul Beales Erwin Maters

  12. Institute of Chemistry Seminar Lectures June 14-27, 2015 Date Organized By / Event Time & Place Lecturer / Event Title

    E-print Network

    Einat, Aharonov

    Institute of Chemistry Seminar Lectures ­ June 14-27, 2015 Date Organized By / Event Time & Place of Chemistry, HUJI Extraction and Solubilization of Astaxanthin within Dilutable Microemlsions Tuesday 16.6.15 M.Sc. Seminar 10:00 Casali Lecture Hall Ms. Alexander Dymshits Institute of Chemistry, HUJI ZnO NWs

  13. A Research-Based Laboratory Course in Organic Chemistry

    ERIC Educational Resources Information Center

    Newton, Thomas A.; Tracy, Henry J.; Prudente, Caryn

    2006-01-01

    The development, implementation, evolution, and evaluation of a research-based laboratory course which was created as an alternative to more traditional laboratory instruction is described. The course was able to engage the students in devising and executing their own experiments, the satisfaction of determining the outcomes of those experiments,…

  14. General and Organic chemistry Lab Table of Contents

    E-print Network

    the experiment and will have to make up the lab on a later date with a late penalty of 50 points deducted of class. Make-up Labs If you miss an experiment for a valid reason, e.g., death in the family or medical

  15. Molecular Mechanism of Acrylamide Neurotoxicity: Lessons Learned from Organic Chemistry

    PubMed Central

    Gavin, Terrence

    2012-01-01

    Background: Acrylamide (ACR) produces cumulative neurotoxicity in exposed humans and laboratory animals through a direct inhibitory effect on presynaptic function. Objectives: In this review, we delineate how knowledge of chemistry provided an unprecedented understanding of the ACR neurotoxic mechanism. We also show how application of the hard and soft, acids and bases (HSAB) theory led to the recognition that the ?,?-unsaturated carbonyl structure of ACR is a soft electrophile that preferentially forms covalent bonds with soft nucleophiles. Methods: In vivo proteomic and in chemico studies demonstrated that ACR formed covalent adducts with highly nucleophilic cysteine thiolate groups located within active sites of presynaptic proteins. Additional research showed that resulting protein inactivation disrupted nerve terminal processes and impaired neurotransmission. Discussion: ACR is a type-2 alkene, a chemical class that includes structurally related electrophilic environmental pollutants (e.g., acrolein) and endogenous mediators of cellular oxidative stress (e.g., 4-hydroxy-2-nonenal). Members of this chemical family produce toxicity via a common molecular mechanism. Although individual environmental concentrations might not be toxicologically relevant, exposure to an ambient mixture of type-2 alkene pollutants could pose a significant risk to human health. Furthermore, environmentally derived type-2 alkenes might act synergistically with endogenously generated unsaturated aldehydes to amplify cellular damage and thereby accelerate human disease/injury processes that involve oxidative stress. Conclusions: These possibilities have substantial implications for environmental risk assessment and were realized through an understanding of ACR adduct chemistry. The approach delineated here can be broadly applied because many toxicants of different chemical classes are electrophiles that produce toxicity by interacting with cellular proteins. PMID:23060388

  16. Bromine Chemistry in the Tropical UTLS during the 2011, 2013 and 2014 ATTREX Experiments

    NASA Astrophysics Data System (ADS)

    Werner, Bodo; Stutz, Jochen; Spolaor, Max; Festa, James; Tsai, Catalina; Colosimo, Fedele; Cheung, Ross; Deutschmann, Tim; Raecke, Rasmus; Scalone, Lisa; Tricoli, Ugo; Pfeilsticker, Klaus; Navarro, Maria; Atlas, Elliot; Chipperfield, Martyn; Hossaini, Ryan

    2015-04-01

    Bromine plays an important role for the chemistry of ozone in the stratosphere and upper troposphere. An accurate quantitative understanding of the sources, sinks, and chemical transformation of bromine species is thus important to understand the bromine budget in the upper troposphere and lower stratosphere (UTLS), which also serves as a gate to the stratosphere. Vertical transport of very short-lived organic bromine precursors and inorganic product gases has been identified as the main source of bromine in the UTLS. However, the contribution of inorganic vs. organic compounds is not well quantified, particularly in the tropical UTLS. A limb scanning Differential Optical Absorption Spectroscopy instrument was deployed onboard NASA's UAV Global Hawk during the NASA Airborne Tropical TRopopause EXperiment (ATTREX) during a series of flights into the eastern and western Pacific tropopause layer (flight altitudes up to 18 km), which is a gateway to the stratosphere. The measurement methodology to retrieve vertical trace gas concentration profiles will be briefly presented. Observations of BrO, NO2 and O3 and of other trace species, in particular of brominated hydrocarbons are compared with simulations of the SLIMCAT CTM and interpreted with respect to photochemistry and the budget of bromine within the tropical tropopause layer (TTL).

  17. GC-MS Analysis of [gamma]-Hydroxybutyric Acid Analogs: A Forensic Chemistry Experiment

    ERIC Educational Resources Information Center

    Henck, Colin; Nally, Luke

    2007-01-01

    An upper-division forensic chemistry experiment is described. It involves using glycolic acid and sodium glycolate as analogs of [gamma]-hydroxybutyric acid and its sodium salt. The experiment shows the use of silylation in GC-MS analysis and gives students the opportunity to work with a commonly used silylating reagent,…

  18. Enquiry-Based Learning: Experiences of First Year Chemistry Students Learning Spectroscopy

    ERIC Educational Resources Information Center

    Lucas, Timothy; Rowley, Natalie M.

    2011-01-01

    We explored the experiences of first year chemistry students of an Enquiry-Based Learning (EBL) approach to learning spectroscopy. An investigation of how students' perceived confidences changed as a result of their experience of using EBL in the spectroscopy course was carried out. Changes in the students' perceived confidence, both in their…

  19. Connecting Solubility, Equilibrium, and Periodicity in a Green, Inquiry Experiment for the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Cacciatore, Kristen L.; Amado, Jose; Evans, Jason J.; Sevian, Hannah

    2008-01-01

    We present a novel first-year chemistry laboratory experiment that connects solubility, equilibrium, and chemical periodicity concepts. It employs a unique format that asks students to replicate experiments described in different sample lab reports, each lacking some essential information, rather than follow a scripted procedure. This structure is…

  20. Linear Dichroism of Cyanine Dyes in Stretched Polyvinyl Alcohol Films: A Physical Chemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Natarajan, L. V.; And Others

    1983-01-01

    Provides background information, procedures, and results of an undergraduate physical chemistry experiment on the polarization of absorption spectra of cyanine dyes in stretched polyvinyl alcohol films. The experiment gives a simple demonstration of the concept of linear dichromism and the validity of the TEM method used in the analyses. (JN)

  1. Thermodynamic Exploration of Eosin-Lysozyme Binding: A Physical Chemistry and Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Huisman, Andrew J.; Hartsell, Lydia R.; Krueger, Brent P.; Pikaart, Michael J.

    2010-01-01

    We developed a modular pair of experiments for use in the undergraduate physical chemistry and biochemistry laboratories. Both experiments examine the thermodynamics of the binding of a small molecule, eosin Y, to the protein lysozyme. The assay for binding is the quenching of lysozyme fluorescence by eosin through resonant energy transfer. In…

  2. Size Exclusion Chromatography: An Experiment for High School and Community College Chemistry and Biotechnology Laboratory Programs

    ERIC Educational Resources Information Center

    Brunauer, Linda S.; Davis, Kathryn K.

    2008-01-01

    A simple multiday laboratory exercise suitable for use in a high school or community college chemistry course or a biotechnology advanced placement biology course is described. In this experiment students gain experience in the use of column chromatography as a tool for the separation and characterization of biomolecules, thus expanding their…

  3. An Enzymatic Clinical Chemistry Laboratory Experiment Incorporating an Introduction to Mathematical Method Comparison Techniques

    ERIC Educational Resources Information Center

    Duxbury, Mark

    2004-01-01

    An enzymatic laboratory experiment based on the analysis of serum is described that is suitable for students of clinical chemistry. The experiment incorporates an introduction to mathematical method-comparison techniques in which three different clinical glucose analysis methods are compared using linear regression and Bland-Altman difference…

  4. Lysozyme Thermal Denaturation and Self-Interaction: Four Integrated Thermodynamic Experiments for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Schwinefus, Jeffrey J.; Schaefle, Nathaniel J.; Muth, Gregory W.; Miessler, Gary L.; Clark, Christopher A.

    2008-01-01

    As part of an effort to infuse our physical chemistry laboratory with biologically relevant, investigative experiments, we detail four integrated thermodynamic experiments that characterize the denaturation (or unfolding) and self-interaction of hen egg white lysozyme as a function of pH and ionic strength. Students first use Protein Explorer to…

  5. Topics in Chemical Instrumentation: XCVIII. Experiments Involving Thermal Methods of Analysis for Undergraduate Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Ewing, Galen W., Ed.

    1978-01-01

    Explains some experiments involving thermal methods of analysis for undergraduate chemistry laboratories. Some experiments are: (1) the determination of the density and degree of crystallinity of a polymer; and (2) the determination of the specific heat of a nonvolatile compound. (HM)

  6. Organic nitrogen chemistry during low-grade metamorphism

    NASA Astrophysics Data System (ADS)

    Boudou, Jean-Paul; Schimmelmann, Arndt; Ader, Magali; Mastalerz, Maria; Sebilo, Mathieu; Gengembre, Léon

    2008-02-01

    Most of the organic nitrogen (N org) on Earth is disseminated in crustal sediments and rocks in the form of fossil nitrogen-containing organic matter. The chemical speciation of fossil N org within the overall molecular structure of organic matter changes with time and heating during burial. Progressive thermal evolution of organic matter involves phases of enhanced elimination of N org and ultimately produces graphite containing only traces of nitrogen. Long-term chemical and thermal instability makes the chemical speciation of N org a valuable tracer to constrain the history of sub-surface metamorphism and to shed light on the subsurface biogeochemical nitrogen cycle and its participating organic and inorganic nitrogen pools. This study documents the evolutionary path of N org speciation, transformation and elimination before and during metamorphism and advocates the use of X-ray photoelectron spectroscopy (XPS) to monitor changes in N org speciation as a diagnostic tool for organic metamorphism. Our multidisciplinary evidence from XPS, stable isotopes, traditional quantitative coal analyses, and other analytical approaches shows that at the metamorphic onset N org is dominantly present as pyrrolic and pyridinic nitrogen. The relative abundance of nitrogen substituting for carbon in condensed, partially aromatic systems (where N is covalently bonded to three C atoms) increases exponentially with increasing metamorphic grade, at the expense of pyridinic and pyrrolic nitrogen. At the same time, much N org is eliminated without significant nitrogen isotope fractionation. The apparent absence of Rayleigh-type nitrogen isotopic fractionation suggests that direct thermal loss of nitrogen from an organic matrix does not serve as a major pathway for N org elimination. Instead, we propose that hot H, O-containing fluids or some of their components gradually penetrate into the carbonaceous matrix and eliminate N org along a progressing reaction front, without causing nitrogen isotope fractionation in the residual N org in the unreacted core of the carbonaceous matrix. Before the reaction front can reach the core, an increasing part of core N org chemically stabilizes in the form of nitrogen atoms substituting for carbon in condensed, partially aromatic systems forming graphite-like structural domains with delocalized ?-electron systems (nitrogen atoms substituting for "graphitic" carbon in natural metamorphic organic matter). Thus, this nitrogen species with a conservative isotopic composition is the dominant form of residual nitrogen at higher metamorphic grade.

  7. Organic nitrogen chemistry during low-grade metamorphism

    USGS Publications Warehouse

    Boudou, J.-P.; Schimmelmann, A.; Ader, M.; Mastalerz, Maria; Sebilo, M.; Gengembre, L.

    2008-01-01

    Most of the organic nitrogen (Norg) on Earth is disseminated in crustal sediments and rocks in the form of fossil nitrogen-containing organic matter. The chemical speciation of fossil Norg within the overall molecular structure of organic matter changes with time and heating during burial. Progressive thermal evolution of organic matter involves phases of enhanced elimination of Norg and ultimately produces graphite containing only traces of nitrogen. Long-term chemical and thermal instability makes the chemical speciation of Norg a valuable tracer to constrain the history of sub-surface metamorphism and to shed light on the subsurface biogeochemical nitrogen cycle and its participating organic and inorganic nitrogen pools. This study documents the evolutionary path of Norg speciation, transformation and elimination before and during metamorphism and advocates the use of X-ray photoelectron spectroscopy (XPS) to monitor changes in Norg speciation as a diagnostic tool for organic metamorphism. Our multidisciplinary evidence from XPS, stable isotopes, traditional quantitative coal analyses, and other analytical approaches shows that at the metamorphic onset Norg is dominantly present as pyrrolic and pyridinic nitrogen. The relative abundance of nitrogen substituting for carbon in condensed, partially aromatic systems (where N is covalently bonded to three C atoms) increases exponentially with increasing metamorphic grade, at the expense of pyridinic and pyrrolic nitrogen. At the same time, much Norg is eliminated without significant nitrogen isotope fractionation. The apparent absence of Rayleigh-type nitrogen isotopic fractionation suggests that direct thermal loss of nitrogen from an organic matrix does not serve as a major pathway for Norg elimination. Instead, we propose that hot H, O-containing fluids or some of their components gradually penetrate into the carbonaceous matrix and eliminate Norg along a progressing reaction front, without causing nitrogen isotope fractionation in the residual Norg in the unreacted core of the carbonaceous matrix. Before the reaction front can reach the core, an increasing part of core Norg chemically stabilizes in the form of nitrogen atoms substituting for carbon in condensed, partially aromatic systems forming graphite-like structural domains with delocalized ??-electron systems (nitrogen atoms substituting for "graphitic" carbon in natural metamorphic organic matter). Thus, this nitrogen species with a conservative isotopic composition is the dominant form of residual nitrogen at higher metamorphic grade. ?? 2007 Elsevier Ltd. All rights reserved.

  8. Substantial secondary organic aerosol formation in a coniferous forest: observations of both day and night time chemistry

    NASA Astrophysics Data System (ADS)

    Lee, A. K. Y.; Abbatt, J. P. D.; Leaitch, W. R.; Li, S.-M.; Sjostedt, S. J.; Wentzell, J. J. B.; Liggio, J.; Macdonald, A. M.

    2015-10-01

    Substantial biogenic secondary organic aerosol (BSOA) formation was investigated in a coniferous forest mountain region at Whistler, British Columbia. A largely biogenic aerosol growth episode was observed, providing a unique opportunity to investigate BSOA formation chemistry in a forested environment with limited influence from anthropogenic emissions. Positive matrix factorization of aerosol mass spectrometry (AMS) measurement identified two types of BSOA (BSOA-1 and BSOA-2), which were primarily generated by gas-phase oxidation of monoterpenes and perhaps sesquiterpenes. The temporal variations of BSOA-1 and BSOA-2 can be explained by gas-particle partitioning in response to ambient temperature and the relative importance of different oxidation mechanisms between day and night. While BSOA-1 will arise from gas-phase ozonolysis and nitrate radical chemistry at night, BSOA-2 is less volatile than BSOA-1 and consists of products formed via gas-phase oxidation by the OH radical and ozone during the day. Organic nitrates produced through nitrate radical chemistry can account for 22-33 % of BSOA-1 mass at night. The mass spectra of BSOA-1 and BSOA-2 have higher values of the mass fraction of m/z 91 (f91) compared to the background organic aerosol, and so f91 is used as an indicator of BSOA formation pathways. A comparison between laboratory studies in the literature and our field observations highlights the potential importance of gas-phase formation chemistry of BSOA-2 type materials that may not be captured in smog chamber experiments, perhaps due to the wall loss of gas-phase intermediate products.

  9. Culturing Reality: How Organic Chemistry Graduate Students Develop into Practitioners

    ERIC Educational Resources Information Center

    Bhattacharyya, Gautam; Bodner, George M.

    2014-01-01

    Although one of the presumed aims of graduate training programs is to help students develop into practitioners of their chosen fields, very little is known about how this transition occurs. In the course of studying how graduate students learn to solve organic synthesis problems, we were able to identify some of the key factors in the epistemic…

  10. Real World of Industrial Chemistry: Organic Chemicals from Carbon Monoxide.

    ERIC Educational Resources Information Center

    Kolb, Kenneth E.; Kolb, Doris

    1983-01-01

    Carbon Monoxide obtained from coal may serve as the source for a wide variety of organic compounds. Several of these compounds are discussed, including phosgene, benzaldehyde, methanol, formic acid and its derivatives, oxo aldehydes, acrylic acids, and others. Commercial reactions of carbon monoxide are highlighted in a table. (JN)

  11. Geochemistry and Organic Chemistry on the Surface of Titan

    NASA Technical Reports Server (NTRS)

    Lunine, J. I.; Beauchamp, P.; Beauchamp, J.; Dougherty, D.; Welch, C.; Raulin, F.; Shapiro, R.; Smith, M.

    2001-01-01

    Titan's atmosphere produces a wealth of organic products from methane and nitrogen. These products, deposited on the surface in liquid and solid form, may interact with surface ices and energy sources to produce compounds of exobiological interest. Additional information is contained in the original extended abstract.

  12. Computer Programs for Chemistry Experiments I and II.

    ERIC Educational Resources Information Center

    Reynard, Dale C.

    This unit of instruction includes nine laboratory experiments. All of the experiments are from the D.C. Health Revision of the Chemical Education Materials Study (CHEMS) with one exception. Program six is the lab from the original version of the CHEMS program. Each program consists of three parts (1) the lab and computer hints, (2) the description…

  13. Variability of the carbonate chemistry in a shallow, seagrass-dominated ecosystem: implications for ocean acidification experiments

    USGS Publications Warehouse

    Challener, Roberta; Robbins, Lisa L.; Mcclintock, James B.

    2015-01-01

    Open ocean observations have shown that increasing levels of anthropogenically derived atmospheric CO2 are causing acidification of the world's oceans. Yet little is known about coastal acidification and studies are just beginning to characterise the carbonate chemistry of shallow, nearshore zones where many ecologically and economically important organisms occur. We characterised the carbonate chemistry of seawater within an area dominated by seagrass beds (Saint Joseph Bay, Florida) to determine the extent of variation in pH and pCO2 over monthly and daily timescales. Distinct diel and seasonal fluctuations were observed at daily and monthly timescales respectively, indicating the influence of photosynthetic and respiratory processes on the local carbonate chemistry. Over the course of a year, the range in monthly values of pH (7.36-8.28), aragonite saturation state (0.65-5.63), and calculated pCO2 (195-2537 ?atm) were significant. When sampled on a daily basis the range in pH (7.70-8.06), aragonite saturation state (1.86-3.85), and calculated pCO2 (379-1019 ?atm) also exhibited significant range and indicated variation between timescales. The results of this study have significant implications for the design of ocean acidification experiments where nearshore species are utilised and indicate that coastal species are experiencing far greater fluctuations in carbonate chemistry than previously thought.

  14. Primordial organic chemistry and the origin of life.

    NASA Technical Reports Server (NTRS)

    Ponnamperuma, C.

    1971-01-01

    Aspects of Darwinian revolution are discussed together with spontaneous generation, the inorganic chemical evolution, the primitive atmosphere, and interstellar matter. The significance of the change of the earth's reducing atmosphere to an atmosphere with oxidizing characteristics is considered. Experiments regarding the abiogenic synthesis of nucleic acids and proteins are reported. It was found that micromolecules can be formed in simulation experiments. The condensation reaction taking place in the presence of water was studied together with the condensation reaction taking place in the relative absence of water or under hypohydrous conditions. Jupiter simulation studies were conducted, and lunar and meteorite material was analyzed.

  15. Stereoscopic Projection in Organic Chemistry: Bridging the Gap between Two and Three Dimensions.

    ERIC Educational Resources Information Center

    Rozzelle, Arlene A.; Rosenfeld, Stuart M.

    1985-01-01

    Shows how to make stereo slides of three-dimensional molecular models. The slides have been used to teach chirality, conformational isomerism, how models and two-dimensional representations embody selected aspects of structure, and fundamentals of using the specific model set required in a particular organic chemistry course. (JN)

  16. Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics

    EPA Science Inventory

    The magic of microwave (MW) heating technique, termed as the Bunsen burner of the 21th Century, has emerged as valuable alternative in synthesis of organics, polymers, inorganics, and nanomaterials. Important innovations in MW-assisted chemistry now enable chemists to prepare cat...

  17. An Introductory Organic Chemistry Review Homework Exercise: Deriving Potential Mechanisms for Glucose Ring Opening in Mutarotation

    ERIC Educational Resources Information Center

    Murdock, Margaret; Holman, R. W.; Slade, Tyler; Clark, Shelley L. D.; Rodnick, Kenneth J.

    2014-01-01

    A unique homework assignment has been designed as a review exercise to be implemented near the end of the one-year undergraduate organic chemistry sequence. Within the framework of the exercise, students derive potential mechanisms for glucose ring opening in the aqueous mutarotation process. In this endeavor, 21 general review principles are…

  18. Decorating with Arrows: Toward the Development of Representational Competence in Organic Chemistry

    ERIC Educational Resources Information Center

    Grove, Nathaniel P.; Cooper, Melanie M.; Rush, Kelli M.

    2012-01-01

    Much effort has been expended in developing improved methods for presenting mechanistic thinking and the curved-arrow notation to organic chemistry students; however, most of these techniques are not research-based. The little research that has been conducted has mainly focused on understanding the meaning that students associate with the…

  19. Adapting to Student Learning Styles: Engaging Students with Cell Phone Technology in Organic Chemistry Instruction

    ERIC Educational Resources Information Center

    Pursell, David P.

    2009-01-01

    Students of organic chemistry traditionally make 3 x 5 in. flash cards to assist learning nomenclature, structures, and reactions. Advances in educational technology have enabled flash cards to be viewed on computers, offering an endless array of drilling and feedback for students. The current generation of students is less inclined to use…

  20. Using the Cambridge Structural Database to Teach Molecular Geometry Concepts in Organic Chemistry

    ERIC Educational Resources Information Center

    Wackerly, Jay Wm.; Janowicz, Philip A.; Ritchey, Joshua A.; Caruso, Mary M.; Elliott, Erin L.; Moore, Jeffrey S.

    2009-01-01

    This article reports a set of two homework assignments that can be used in a second-year undergraduate organic chemistry class. These assignments were designed to help reinforce concepts of molecular geometry and to give students the opportunity to use a technological database and data mining to analyze experimentally determined chemical…

  1. What Lies at the Heart of Good Undergraduate Teaching? A Case Study in Organic Chemistry

    ERIC Educational Resources Information Center

    Davidowitz, Bette; Rollnick, Marissa

    2011-01-01

    Teaching organic chemistry at the undergraduate level has long been regarded as challenging and students are often alienated by the mass of detail which seems to characterise the subject. In this paper we investigate the practice of an accomplished lecturer by trying to capture and portray his pedagogical content knowledge, PCK, in order to reveal…

  2. Results Sections in Sociology and Organic Chemistry Articles: A Genre Analysis

    ERIC Educational Resources Information Center

    Bruce, Ian

    2009-01-01

    This paper reports a genre study of the Results sections of two samples of 20 research-reporting articles from two disciplines: sociology and organic chemistry. Following the proposal of Bhatia (2004) that genre knowledge needs to be investigated from two perspectives, an "ethnographic perspective" and a "textual perspective," the Results sections…

  3. Case Study Using Online Homework in Undergraduate Organic Chemistry: Results and Student Attitudes

    ERIC Educational Resources Information Center

    Parker, Laurie L.; Loudon, G. Marc

    2013-01-01

    Managing student needs for effective learning in a large-enrollment, introductory organic chemistry course can be a challenging task. Because instructor time is at a premium, it is imperative to find resources that engage the students in active learning and provide them with feedback about their understanding of course content. Appropriately…

  4. Formalizing the First Day in an Organic Chemistry Laboratory Using a Studio-Based Approach

    ERIC Educational Resources Information Center

    Collison, Christina G.; Cody, Jeremy; Smith, Darren; Swartzenberg, Jennifer

    2015-01-01

    A novel studio-based lab module that incorporates student-centered activities was designed and implemented to introduce second-year undergraduate students to the first-semester organic chemistry laboratory. The "First Day" studio module incorporates learning objectives for the course, lab safety, and keeping a professional lab notebook.

  5. A Survey of the Practices, Procedures, and Techniques in Undergraduate Organic Chemistry Teaching Laboratories

    ERIC Educational Resources Information Center

    Martin, Christopher B.; Schmidt, Monica; Soniat, Michael

    2011-01-01

    A survey was conducted of four-year institutions that teach undergraduate organic chemistry laboratories in the United States. The data include results from over 130 schools, describes the current practices at these institutions, and discusses the statistical results such as the scale of the laboratories performed, the chemical techniques applied,…

  6. Accidental Drowning or Foul Play?: A Case Study in Organic Chemistry

    ERIC Educational Resources Information Center

    Konaklieva, Monika

    2004-01-01

    This case was developed for a sophomore organic chemistry lab to illustrate how a combination of techniques is usually required in the identification of chemical compounds. It involves a murder mystery with a forensic twist: Two bodies have been recovered from two different lakes, but because of a mix-up at the morgue, the coroner is unable to…

  7. Content-Related Interactions and Methods of Reasoning within Self-Initiated Organic Chemistry Study Groups

    ERIC Educational Resources Information Center

    Christian, Karen Jeanne

    2011-01-01

    Students often use study groups to prepare for class or exams; yet to date, we know very little about how these groups actually function. This study looked at the ways in which undergraduate organic chemistry students prepared for exams through self-initiated study groups. We sought to characterize the methods of social regulation, levels of…

  8. 2005 Nobel Prize in Chemistry: Development of the Olefin Metathesis Method in Organic Synthesis

    ERIC Educational Resources Information Center

    Casey, Charles P.

    2006-01-01

    The 2005 Nobel Prize in Chemistry was awarded "for the development of the metathesis method in organic synthesis". The discoveries of the laureates provided a chemical reaction used daily in the chemical industry for the efficient and more environmentally friendly production of important pharmaceuticals, fuels, synthetic fibers, and many other…

  9. A Performance Enhanced Interactive Learning Workshop Model as a Supplement for Organic Chemistry Instruction

    ERIC Educational Resources Information Center

    Phillips, Karen E. S.; Grose-Fifer, Jilliam

    2011-01-01

    In this study, the authors describe a Performance Enhanced Interactive Learning (PEIL) workshop model as a supplement for organic chemistry instruction. This workshop model differs from many others in that it includes public presentations by students and other whole-class-discussion components that have not been thoroughly investigated in the…

  10. The Flipped Classroom for Teaching Organic Chemistry in Small Classes: Is It Effective?

    ERIC Educational Resources Information Center

    Fautch, Jessica M.

    2015-01-01

    The flipped classroom is a pedagogical approach that moves course content from the classroom to homework, and uses class time for engaging activities and instructor-guided problem solving. The course content in a sophomore level Organic Chemistry I course was assigned as homework using video lectures, followed by a short online quiz. In class,…

  11. Incorporating Chemical Information Instruction and Environmental Science into the First-Year Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Landolt, R. G.

    2006-01-01

    The chemical information instruction and environmental science which is incorporated into a first-year organic chemistry laboratory is presented. The students are charged with devised search strategies, conducting online searches and limiting the project scope to ocean systems. The laboratory serves to provide for search strategy development…

  12. A Historical Analysis of the Curriculum of Organic Chemistry Using ACS Exams as Artifacts

    ERIC Educational Resources Information Center

    Raker, Jeffrey R.; Holme, Thomas A.

    2013-01-01

    Standardized examinations, such as those developed and disseminated by the ACS Examinations Institute, are artifacts of the teaching of a course and over time may provide a historical perspective on how curricula have changed and evolved. This study investigated changes in organic chemistry curricula across a 60-year period by evaluating 18 ACS…

  13. Using Biocatalysis to Integrate Organic Chemistry into a Molecular Biology Laboratory Course

    ERIC Educational Resources Information Center

    Beers, Mande; Archer, Crystal; Feske, Brent D.; Mateer, Scott C.

    2012-01-01

    Current cutting-edge biomedical investigation requires that the researcher have an operational understanding of several diverse disciplines. Biocatalysis is a field of science that operates at the crossroads of organic chemistry, biochemistry, microbiology, and molecular biology, and provides an excellent model for interdisciplinary research. We…

  14. Minimal Impact of Organic Chemistry Prerequisite on Student Performance in Introductory Biochemistry

    ERIC Educational Resources Information Center

    Wright, Robin; Cotner, Sehoya; Winkel, Amy

    2009-01-01

    Curriculum design assumes that successful completion of prerequisite courses will have a positive impact on student performance in courses that require the prerequisite. We recently had the opportunity to test this assumption concerning the relationship between completion of the organic chemistry prerequisite and performance in introductory…

  15. Using Web-Based Video as an Assessment Tool for Student Performance in Organic Chemistry

    ERIC Educational Resources Information Center

    Tierney, John; Bodek, Matthew; Fredricks, Susan; Dudkin, Elizabeth; Kistler, Kurt

    2014-01-01

    This article shows the potential for using video responses to specific questions as part of the assessment process in an organic chemistry class. These exercises have been used with a postbaccalaureate cohort of 40 students, learning in an online environment, over a period of four years. A second cohort of 25 second-year students taking the…

  16. A New Higher Education Curriculum in Organic Chemistry: What Questions Should Be Asked?

    ERIC Educational Resources Information Center

    Lafarge, David L.; Morge, Ludovic M.; Méheut, Martine M.

    2014-01-01

    Organic chemistry is often considered to be a difficult subject to teach and to learn, particularly as students prefer to resort to memorization alone rather than reasoning using models from chemical reactivity. Existing studies have led us to suggest principles for redefining the curriculum, ranging from its overall structure to the tasks given…

  17. Using Green Chemistry Principles as a Framework to Incorporate Research into the Organic Laboratory Curriculum

    ERIC Educational Resources Information Center

    Lee, Nancy E.; Gurney, Rich; Soltzberg, Leonard

    2014-01-01

    Despite the accepted pedagogical value of integrating research into the laboratory curriculum, this approach has not been widely adopted. The activation barrier to this change is high, especially in organic chemistry, where a large number of students are required to take this course, special glassware or setups may be needed, and dangerous…

  18. The Impacts of Marine Organic Emissions on Atmospheric Chemistry and Climate (Invited)

    NASA Astrophysics Data System (ADS)

    Meskhidze, N.; Gantt, B.

    2013-12-01

    Using laboratory studies and global/regional climate model results, this talk will contribute to two main research questions: 1) what can be learned about the carbon emission inducing stress factors for marine algae, and 2) what is a potential impact of marine biogenic volatile organic compound (VOC) emissions on global atmospheric chemistry and climate. Marine photosynthetic organisms emit VOCs which can form secondary organic aerosols (SOA). Currently large uncertainty exists in the magnitude of the marine biogenic sources, their spatiotemporal distribution, controlling factors, and contributions to natural background of organic aerosols. Here laboratory results for the production of isoprene and four monoterpene (?-pinene, ?-pinene, camphene and d-limonene) compounds as a function of variable light and temperature regimes for 6 different phytoplankton species will be discussed. The experiment was designed to simulate the regions where phytoplankton is subjected to changeable light/temperature conditions. The samples were grown and maintained at a climate controlled room. VOCs accumulated in the water and headspace above the water were measured by passing the sample through a gas chromatography/mass system equipped with a sample pre-concentrator allowing detection of low ppt levels of hydrocarbons. The VOC production rates were distinctly different for light/temperature stressed (the first 12 hour cycle at light/temperature levels higher than what the cultures were acclimated to in a climate controlled room) and photo/temperature-acclimated (the second 12 hour light/temperature cycle) states. In general, all phytoplankton species showed a rapid increase in isoprene and monoterpene production at higher light levels (between 150 to 420 ?E m-2 s-1) until a constant production rate was reached. Isoprene and ?-pinene, production rates also increased with temperature until a certain level, after which the rates declined as temperature increased further. Two modeling studies with the online emissions of marine isoprene/monoterpene and size-resolved marine primary organic aerosol have been carried out. The US EPA regional-scale Community Multiscale Air Quality modeling system was used to determine the impact of marine emissions on air quality, while the global-through-urban WRF/Chem model was applied to examine effect of ocean-derived trace gases and aerosols on chemistry-aerosol-cloud-climate interactions. With the isoprene reactions included in this study, the average contribution of marine isoprene to SOA and ozone (O3) concentrations is predicted to be small, up to 0.004 ?g m-3 for SOA and 0.2 ppb for O3 in coastal urban areas. When marine primary organic emissions are included, PM2.5 levels can be increased by 0.1-0.3 ?g m-3 (up to 5%) in some coastal cities such as San Francisco, CA. Regionally, marine organics (primary and secondary) can cause up to 20% increase in surface cloud condensation nuclei concentration. Global effects on cloud droplet number and indirect forcing are predicted to be small, less than 1 cm-3 and -0.1 W m-2, respectively.

  19. Organic Chemistry: From the Interstellar Medium to the Solar System

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    This talk will review the various types of organic materials observed in different environments in the interstellar medium, discuss the processes by which these materials may have formed and been modified, and present the evidence supporting the contention that at least a fraction of this material survived incorporation, substantially unaltered, into our Solar System during its formation. The nature of this organic material is of direct interest to issues associated with the origin of life, both because this material represents a large fraction of the Solar System inventory of the biogenically-important elements, and because many of the compounds in this inventory have biogenic implications. Several specific examples of such molecules will be briefly discussed.

  20. The Determination of Ergosterol in Environmental Samples. An Interdisciplinary Project Involving Techniques of Analytical and Organic Chemistry

    NASA Astrophysics Data System (ADS)

    Volker, Eugene J.; Dilella, Dan; Terneus, Kim; Baldwin, Carson; Volker, Ilona

    2000-12-01

    In this undergraduate laboratory experiment, a naturally formed steroid that is an important environmental indicator of biological activity is extracted and quantified. The target compound is ergosterol, a steroid found only in fungi and an accepted measure of fungal biomass. Maple leaves were used as a representative sample, but the procedure can be extended to soils, fruits, and grains. The environmental sample is first saponified with methanolic KOH to release ergosterol from any bound forms. Next, the steroid is transferred into pentane to separate it from the polar components of the initial extract. After evaporation of the pentane, the residue containing the steroid is dissolved in methanol and filtered. This solution is analyzed on an HPLC instrument equipped with a reversed-phase column. Typical values for ergosterol in the maple leaf samples analyzed ranged from 22 to 240 mg/g of dry leaf. Leaves collected shortly after falling have low values, and those collected later have progressively higher values. The experiment has been tested in Analytical Chemistry, Environmental Chemistry, and Organic Chemistry classes and can be performed in two 3-hour laboratory periods.

  1. Creative Report Writing in Undergraduate Organic Chemistry Laboratory Inspires Nonmajors

    ERIC Educational Resources Information Center

    Henary, Maged; Owens, Eric A.; Tawney, Joseph G.

    2015-01-01

    Laboratory-based courses require students to compose reports based on the performed experiments to assess their overall understanding of the presented material; unfortunately, the sterile and formulated nature of the laboratory report disinterests most students. As a result, the outcome is a lower-quality product that does not reveal full…

  2. Using Tactile Learning Aids for Students with Visual Impairments in a First-Semester Organic Chemistry Course

    ERIC Educational Resources Information Center

    Poon, Thomas; Ovadia, Ronit

    2008-01-01

    This paper describes two techniques for rendering visual concepts encountered in an organic chemistry course into tactile representations for students who have low vision. The techniques--which utilize commercially available products--facilitate communication of organic chemistry between student and instructor. (Contains 1 figure, 2 tables and 1…

  3. Structure and Evaluation of Flipped Chemistry Courses: Organic & Spectroscopy, Large and Small, First to Third Year, English and French

    ERIC Educational Resources Information Center

    Flynn, Alison B.

    2015-01-01

    Organic chemistry is a traditionally difficult subject with high failure & withdrawal rates and many areas of conceptual difficulty for students. To promote student learning and success, four undergraduate organic chemistry and spectroscopy courses at the first to third year level (17-420 students) were "flipped" in 2013-2014. In the…

  4. Perry's Scheme of Intellectual and Epistemological Development as a Framework for Describing Student Difficulties in Learning Organic Chemistry

    ERIC Educational Resources Information Center

    Grove, Nathaniel P.; Bretz, Stacey Lowery

    2010-01-01

    We have investigated student difficulties with the learning of organic chemistry. Using Perry's Model of Intellectual Development as a framework revealed that organic chemistry students who function as dualistic thinkers struggle with the complexity of the subject matter. Understanding substitution/elimination reactions and multi-step syntheses is…

  5. Using Commercially Available Techniques to Make Organic Chemistry Representations Tactile and More Accessible to Students with Blindness or Low Vision

    ERIC Educational Resources Information Center

    Supalo, Cary A.; Kennedy, Sean H.

    2014-01-01

    Organic chemistry courses can present major obstacles to access for students with blindness or low vision (BLV). In recent years, efforts have been made to represent organic chemistry concepts in tactile forms for blind students. These methodologies are described in this manuscript. Further work being done at Illinois State University is also…

  6. The Kinetics of Photographic Development: A General Chemistry Experiment.

    ERIC Educational Resources Information Center

    Byrd, J. E.; Perona, M. J.

    1982-01-01

    Student activities and experimental procedures are described for an experiment using black and white photographic development to illustrate the determination of reaction rate, kinetic order of a reactant, and activation energy. (Author/SK)

  7. The surface chemistry of metal-organic frameworks.

    PubMed

    McGuire, Christina V; Forgan, Ross S

    2015-03-28

    Metal-organic frameworks (MOFs) have received particular attention over the last 20 years as a result of their attractive properties offering potential applications in a number of areas. Typically, these characteristics are tuned by functionalisation of the bulk of the MOF material itself. This Feature Article focuses instead on modification of MOF particles at their surfaces only, which can also offer control over the bulk properties of the material. The differing surface modification techniques available to the synthetic chemist will be discussed, with a focus on the effect of surface modification of MOFs on their fundamental properties and application in adsorption, catalysis, drug delivery and other areas. PMID:25116412

  8. Fluorescent labels for in situ wet chemistry experiments

    NASA Technical Reports Server (NTRS)

    Kloepfer, J. A.; Nadeau, J. L.

    2003-01-01

    We evaluate a wide selection of dyes and suggest a panel that would be the most likely to succeed in a simple flight instrument with a single excitation laser. We also investigate fluorescent semiconductor quantum dots as additions to or replacements for these organic dyes.

  9. Demystifying the Chemistry Literature: Building Information Literacy in First-Year Chemistry Students through Student-Centered Learning and Experiment Design

    ERIC Educational Resources Information Center

    Bruehl, Margaret; Pan, Denise; Ferrer-Vinent, Ignacio J.

    2015-01-01

    This paper describes curriculum modules developed for first-year general chemistry laboratory courses that use scientific literature and creative experiment design to build information literacy in a student-centered learning environment. Two curriculum units are discussed: Exploring Scientific Literature and Design Your Own General Chemistry

  10. Diels-Alder Cycloadditions: A MORE Experiment in the Organic Laboratory Including a Diene Identification Exercise Involving NMR Spectroscopy and Molecular Modeling

    ERIC Educational Resources Information Center

    Shaw, Roosevelt; Severin, Ashika; Balfour, Miguel; Nettles, Columbus

    2005-01-01

    Two Diels-Alder reactions are described that are suitable for a MORE (microwave-induced organic reaction enhanced) experiment in the organic chemistry laboratory course. A second experiment in which the splitting patterns of the vinyl protons in the nuclear magnetic resonance (NMR) spectra of two MORE adducts are used in conjunction with molecular…

  11. Probing - and - Molecular Interactions via Irmpd Experiments and Computational Chemistry

    NASA Astrophysics Data System (ADS)

    Hopkins, Scott; McMahon, Terry

    2015-06-01

    Experiments carried out at the CLIO Free Electron Facility have been used to probe a range of novel bonding motifs and dissociation dynamics in a variety of chemical systems. Among these are species which exhibit anion-pi interactions in complexes of halide ions with aromatic ring systems with electron withdrawing substituents; charge solvated and zwitterionic clusters of protonated methylamines with phenylalanines; hydrogen bonded dimers of nucleic acid analogues and Pd complexes potentially involving agnostic hydrogen bond interactions. Accompanying DFT computational work is used to assist in identifying the most probable structure(s) present in the IRMPD experiments.

  12. Tholins - Organic chemistry of interstellar grains and gas

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Khare, B. N.

    1979-01-01

    The paper discusses tholins, defined as complex organic solids formed by the interaction of energy - for example, UV light or spark discharge - with various mixtures of cosmically abundant gases - CH4, C2H6, NH3, H2O, HCHO, and H2S. It is suggested that tholins occur in the interstellar medium and are responsible for some of the properties of the interstellar grains and gas. Additional occurrences of tholins are considered. Tholins have been produced experimentally; 50 or so pyrolytic fragments of the brown, sometimes sticky substances have been identified by gas chromatography-mass spectrometry, and the incidence of these fragments in tholins produced by different procedures is reported.

  13. Organic chemistry of Murchison meteorite: Carbon isotopic fractionation

    NASA Technical Reports Server (NTRS)

    Yuen, G. U.; Blair, N. E.; Desmarais, D. J.; Cronin, J. R.; Chang, S.

    1986-01-01

    The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.

  14. Nobel Prize in Chemistry. Development of the Olefin Metathesis Method in Organic Synthesis

    NASA Astrophysics Data System (ADS)

    Casey, Charles P.

    2006-02-01

    The 2005 Nobel Prize in Chemistry was awarded to Yves Chauvin of the Institut Français du Pétrole, Robert H. Grubbs of CalTech, and Richard R. Schrock of MIT "for development of the metathesis method in organic synthesis". The discoveries of the laureates provided a chemical reaction now used daily in the chemical industry for the efficient and more environmentally friendly production of important pharmaceuticals, fuels, synthetic fibers, and many other products. This article tells the story of how olefin metathesis became a truly useful synthetic transformation and a triumph for mechanistic chemistry, and illustrates the importance of fundamental research. See JCE Featured Molecules .

  15. 25th anniversary article: progress in chemistry and applications of functional indigos for organic electronics.

    PubMed

    G?owacki, Eric Daniel; Voss, Gundula; Sariciftci, Niyazi Serdar

    2013-12-17

    Indigo and its derivatives are dyes and pigments with a long and distinguished history in organic chemistry. Recently, applications of this 'old' structure as a functional organic building block for organic electronics applications have renewed interest in these molecules and their remarkable chemical and physical properties. Natural-origin indigos have been processed in fully bio-compatible field effect transistors, operating with ambipolar mobilities up to 0.5 cm(2) /Vs and air-stability. The synthetic derivative isoindigo has emerged as one of the most successful building-blocks for semiconducting polymers for plastic solar cells with efficiencies > 5%. Another isomer of indigo, epindolidione, has also been shown to be one of the best reported organic transistor materials in terms of mobility (?2 cm(2) /Vs) and stability. This progress report aims to review very recent applications of indigoids in organic electronics, but especially to logically bridge together the hereto independent research directions on indigo, isoindigo, and other materials inspired by historical dye chemistry: a field which was the root of the development of modern chemistry in the first place. PMID:24151199

  16. Eliciting Metacognitive Experiences and Reflection in a Year 11 Chemistry Classroom: An Activity Theory Perspective

    NASA Astrophysics Data System (ADS)

    Thomas, Gregory P.; McRobbie, Campbell J.

    2013-06-01

    Concerns regarding students' learning and reasoning in chemistry classrooms are well documented. Students' reasoning in chemistry should be characterized by conscious consideration of chemical phenomenon from laboratory work at macroscopic, molecular/sub-micro and symbolic levels. Further, students should develop metacognition in relation to such ways of reasoning about chemistry phenomena. Classroom change eliciting metacognitive experiences and metacognitive reflection is necessary to shift entrenched views of teaching and learning in students. In this study, Activity Theory is used as the framework for interpreting changes to the rules/customs and tools of the activity systems of two different classes of students taught by the same teacher, Frances, who was teaching chemical equilibrium to those classes in consecutive years. An interpretive methodology involving multiple data sources was employed. Frances explicitly changed her pedagogy in the second year to direct students attention to increasingly consider chemical phenomena at the molecular/sub-micro level. Additionally, she asked students not to use the textbook until toward the end of the equilibrium unit and sought to engage them in using their prior knowledge of chemistry to understand their observations from experiments. Frances' changed pedagogy elicited metacognitive experiences and reflection in students and challenged them to reconsider their metacognitive beliefs about learning chemistry and how it might be achieved. While teacher change is essential for science education reform, students are not passive players in change efforts and they need to be convinced of the viability of teacher pedagogical change in the context of their goals, intentions, and beliefs.

  17. Laser-Induced Molecular Fluorescence: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Tellinghuisen, Joel

    1981-01-01

    Describes a companion experiment to the experimental study of the di-iodide visible absorption spectrum. Experimental details, interpretation, and data analysis are provided for an analysis of the di-iodide fluorescence excited by a visible laser, using a Raman instrument. (CS)

  18. Enthalpy of Vaporization by Gas Chromatography: A Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Ellison, Herbert R.

    2005-01-01

    An experiment is conducted to measure the enthalpy of vaporization of volatile compounds like methylene chloride, carbon tetrachloride, and others by using gas chromatography. This physical property was measured using a very tiny quantity of sample revealing that it is possible to measure the enthalpies of two or more compounds at the same time.

  19. Sampling Error in a Particulate Mixture: An Analytical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Kratochvil, Byron

    1980-01-01

    Presents an undergraduate experiment demonstrating sampling error. Selected as the sampling system is a mixture of potassium hydrogen phthalate and sucrose; using a self-zeroing, automatically refillable buret to minimize titration time of multiple samples and employing a dilute back-titrant to obtain high end-point precision. (CS)

  20. Cation Hydration Constants by Proton NMR: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Smith, Robert L.; And Others

    1988-01-01

    Studies the polarization effect on water by cations and anions. Describes an experiment to illustrate the polarization effect of sodium, lithium, calcium, and strontium ions on the water molecule in the hydration spheres of the ions. Analysis is performed by proton NMR. (MVL)

  1. Coulometric Analysis Experiment for the Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Dabke, Rajeev B.; Gebeyehu, Zewdu; Thor, Ryan

    2011-01-01

    An undergraduate experiment on coulometric analysis of four commercial household products is presented. A special type of coulometry cell made of polydimethylsiloxane (PDMS) polymer is utilized. The PDMS cell consists of multiple analyte compartments and an internal network of salt bridges. Experimental procedure for the analysis of the acid in a…

  2. Foam Fractionation of Lycopene: An Undergraduate Chemistry Experiment

    ERIC Educational Resources Information Center

    Wang, Yan; Zhang, Mingjie; Hu, Yongliang

    2010-01-01

    A novel experiment for the extraction of lycopene from tomato paste by foam fractionation is described. Foam fractionation is a process for separating and concentrating chemicals by utilizing differences in their surface activities. Extraction of lycopene by foam fractionation is a new method that has not been previously reported in the…

  3. Green, Enzymatic Syntheses of Divanillin and Diapocynin for the Organic, Biochemistry, or Advanced General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Nishimura, Rachel T.; Giammanco, Chiara H.; Vosburg, David A.

    2010-01-01

    Environmentally benign chemistry is an increasingly important topic both in the classroom and the laboratory. In this experiment, students synthesize divanillin from vanillin or diapocynin from apocynin, using horseradish peroxidase and hydrogen peroxide in water. The dimerized products form rapidly at ambient temperature and are isolated by…

  4. Water and Organics: A Lens to View the Coupled Physics and Chemistry of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bergin, Edwin

    We propose to study the formation and survival of water and organics in the terrestrial planet-forming zone of protoplanetary disks. The recent detections of these molecules in the warm, inner regions of classical T Tauri systems suggests that they can not only survive in a hostile radiation-dominated environment, but do so in great quantities. These observations have direct implications for the origins of terrestrial prebiotic material. Despite this apparent ubiquity, they appear absent in disks with inner gaps - the transitional disks - hypothesized to be systems containing young planetary systems. Thus, the abundance of gas phase water and organics possibly represents an important tracer of incipient planet-formation. The surprisingly large quantities of water observed can be explained by a previously unrecognised self-shielding mechanism in which water protects itself from the harmful effects of stellar radiation. At the same time the emergent water is theorized to provide a sanctuary for organic chemistry, thus explaining the correlation between the detections of water and organics. Furthermore, the absorption of starlight by water instead of dust also has profound - and as yet, unexplored - thermodynamic implications for the inner disk. Combining our observational and modeling strengths we shall perform a comprehensive study of the physical conditions that allow these molecules to exist. The proposed study emphasizes the inclusion of new physics, and as such is unique amongst theoretical models of disk physics and chemistry. This three stage program will first develop a thermodynamic model of gas in the inner disk that includes the thermodynamic implications of high concentrations of water. Second, organic chemistry networks will be developed that include high-temperature reactions and grain processes appropriate for the warm terrestrial zone. Finally, the water and organic chemistry will be solved in a suite of 2D disk models that include self- consistent treatments of thermodynamics, radiative transfer and chemistry. The models will be used to explore a large space of physical parameters that includes the development of transition systems. Our goals are to understand the conditions required for water and organic formation, the mechanisms by which they may form, and their relationship to one another. The ultimate product of the models will be observable predictions that can not only be compared to current data from NASA's Spitzer space mission, but also Herschel observations and future missions such as NASA's James Webb Space Telescope. These results will broaden our understanding of the chemistry in the natal habitable zone, and have direct relevance to NASA and the Origins of Solar Systems program, specifically Strategic Goal 3: Sub-goal 3C Advance scientic knowledge of the origin and history of the solar system and the potential for life elsewhere.

  5. Laboratory Investigations Into The Origins Of Organic Chemistry

    NASA Astrophysics Data System (ADS)

    de Ruette, Nathalie; Miller, K. A.; O'Connor, A.; Stuetzel, J.; Urbain, X.; Savin, D. W.

    2013-06-01

    The chain of chemical reactions leading towards life is thought to begin in molecular clouds when atomic carbon is fixed into molecules, initiating the synthesis of complex organic species. Spectroscopic observations, combined with sophisticated astrochemical models to interpret the collected spectra, provide much of our knowledge of this process. However, uncertainties in the underlying chemical data in these models limit our understanding of the molecular universe. Theory provides little insight as fully quantum mechanical calculations for reactions with four or more atoms are too complex for current capabilities. Measurements of rate coefficients for reactions of C with molecular ions are extremely challenging. This is due to the difficulty in producing a sufficiently intense and well characterized beam of neutral carbon atoms. We have developed a novel merged beam apparatus to study reactions of neutral atomic C with molecular ions. A C- beam is created in a cesium ion sputter source and accelerated to 28 keV. A series of apertures and electrostatic optics create a collimated beam. Using an 808 nm (1.53 eV) laser beam, ~4% of the C- beam is neutralized via photodetachment. We produce a pure ground term neutral C beam by electrostatically removing the remaining C-. A velocity matched, co-propagating H3+ beam at 7.05 keV, created with a duoplasmatron source, is then merged with the C beam. The merged beams method allows us to use fast beams, which are easy to handle and monitor, while being able to achieve relative collision energies down to some tens of meV. An electrostatic energy analyzer separates and detects the charged end products of the different reaction channels. The reactions rate coefficients are determined by measuring all the relevant currents, beam shapes, energies, signal counts and background rates. We have measured the absolute rate coefficients for C + H3+ ? CH+ + H2 and C + H3+ ? CH2+ + H. Since H3+ is ubiquitous in molecular clouds, these reactions are some of the first steps leading to the formation of complex organic molecules within such clouds. Our reaction studies will help to provide a better basis for astrochemical models and benchmarks for future theoretical development.

  6. Flow through reactors for organic chemistry: directly electrically heated tubular mini reactors as an enabling technology for organic synthesis

    PubMed Central

    Turek, Thomas

    2009-01-01

    Summary Until recently traditional heating in organic chemistry has been done with oil heating baths or using electric heat exchangers. With the advent of microwave equipment, heating by microwaves was rapidly introduced as standard method in organic chemistry laboratories, mainly because of the convenient possibility to operate at high temperature accompanied by accelerated reaction rates. In the present contribution we discuss the method of heating small, continuously operated reactors by passing electric current directly through the reactor wall as an enabling technology in organic chemistry. The benefit of this method is that the heat is generated directly inside the reactor wall. By this means high heating rates comparable to microwave ovens can be reached but at much lower cost for the equipment. A tool for the comparison of microwave heating and traditional heating is provided. As an example kinetic data for the acid catalyzed hydrolysis of methyl formate were measured using this heating concept. The reaction is not only a suitable model but also one of industrial importance since this is the main production process for formic acid. PMID:20300506

  7. Chemical insights, explicit chemistry and yields of secondary organic aerosol from methylglyoxal and glyoxal

    NASA Astrophysics Data System (ADS)

    Lim, Y. B.; Tan, Y.; Turpin, B. J.

    2013-02-01

    Atmospherically abundant, volatile water soluble organic compounds formed through gas phase chemistry (e.g., glyoxal (C2), methylglyoxal (C3) and acetic acid) have great potential to form secondary organic aerosol (SOA) via aqueous chemistry in clouds, fogs and wet aerosols. This paper (1) provides chemical insights into aqueous-phase OH radical-initiated reactions leading to SOA formation from methylglyoxal and (2) uses this and a previously published glyoxal mechanism (Lim et al., 2010) to provide SOA yields for use in chemical transport models. Detailed reaction mechanisms including peroxy radical chemistry and a full kinetic model for aqueous photochemistry of acetic acid and methylglyoxal are developed and validated by comparing simulations with the experimental results from previous studies (Tan et al., 2010, 2012). This new methylglyoxal model is then combined with the previous glyoxal model (Lim et al., 2010), and is used to simulate the profiles of products and to estimate SOA yields. At cloud relevant concentrations (∼ 10-6-∼ 10-3 M; Munger et al., 1995) of glyoxal and methylglyoxal, the major photooxidation products are oxalic acid and pyruvic acid, and simulated SOA yields (by mass) are ∼ 120% for glyoxal and ∼ 80% for methylglyoxal. Oligomerization of unreacted aldehydes during droplet evaporation could enhance yields. In wet aerosols, where total dissolved organics are present at much higher concentrations (∼ 10 M), the major products are oligomers formed via organic radical-radical reactions, and simulated SOA yields (by mass) are ∼ 90% for both glyoxal and methylglyoxal.

  8. Nitration of Phenols Using Cu(NO[subscript 3])[subscript 2]: Green Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Yadav, Urvashi; Mande, Hemant; Ghalsasi, Prasanna

    2012-01-01

    An easy-to-complete, microwave-assisted, green chemistry, electrophilic nitration method for phenol using Cu(NO[subscript 3])[subscript 2] in acetic acid is discussed. With this experiment, students clearly understand the mechanism underlying the nitration reaction in one laboratory session. (Contains 4 schemes.)

  9. Computational Modeling of the Optical Rotation of Amino Acids: An "in Silico" Experiment for Physical Chemistry

    ERIC Educational Resources Information Center

    Simpson, Scott; Autschbach, Jochen; Zurek, Eva

    2013-01-01

    A computational experiment that investigates the optical activity of the amino acid valine has been developed for an upper-level undergraduate physical chemistry laboratory course. Hybrid density functional theory calculations were carried out for valine to confirm the rule that adding a strong acid to a solution of an amino acid in the l…

  10. An Attenuated Total Reflectance Sensor for Copper: An Experiment for Analytical or Physical Chemistry

    ERIC Educational Resources Information Center

    Shtoyko, Tanya; Zudans, Imants; Seliskar, Carl J.; Heineman, William R.; Richardson, John N.

    2004-01-01

    A sensor experiment which can be applied to advanced undergraduate laboratory course in physical or analytical chemistry is described along with certain concepts like the demonstration of chemical sensing, preparation of thin films on a substrate, microtitration, optical determination of complex ion stoichiometry and isosbestic point. It is seen…

  11. A Stopped-Flow Kinetics Experiment for the Physical Chemistry Laboratory Using Noncorrosive Reagents

    ERIC Educational Resources Information Center

    Prigodich, Richard V.

    2014-01-01

    Stopped-flow kinetics techniques are important to the study of rapid chemical and biochemical reactions. Incorporation of a stopped-flow kinetics experiment into the physical chemistry laboratory curriculum would therefore be an instructive addition. However, the usual reactions studied in such exercises employ a corrosive reagent that can over…

  12. Students' Understanding of Analogy after a Core (Chemical Observations, Representations, Experimentation) Learning Cycle, General Chemistry Experiment

    ERIC Educational Resources Information Center

    Avargil, Shirly; Bruce, Mitchell R. M.; Amar, Franc¸ois G.; Bruce, Alice E.

    2015-01-01

    Students' understanding about analogy was investigated after a CORE learning cycle general chemistry experiment. CORE (Chemical Observations, Representations, Experimentation) is a new three-phase learning cycle that involves (phase 1) guiding students through chemical observations while they consider a series of open-ended questions, (phase 2)…

  13. Absorption and Scattering Coefficients: A Biophysical-Chemistry Experiment Using Reflectance Spectroscopy

    ERIC Educational Resources Information Center

    Cordon, Gabriela B.; Lagorio, M. Gabriela

    2007-01-01

    A biophysical-chemistry experiment, based on the reflectance spectroscopy for calculating the absorption and scattering coefficients of leaves is described. The results show that different plants species exhibit different values for both the coefficients because of their different pigment composition.

  14. An Advanced Undergraduate Chemistry Laboratory Experiment Exploring NIR Spectroscopy and Chemometrics

    ERIC Educational Resources Information Center

    Wanke, Randall; Stauffer, Jennifer

    2007-01-01

    An advanced undergraduate chemistry laboratory experiment to study the advantages and hazards of the coupling of NIR spectroscopy and chemometrics is described. The combination is commonly used for analysis and process control of various ingredients used in agriculture, petroleum and food products.

  15. A Multi-Technique Forensic Experiment for a Nonscience-Major Chemistry Course

    ERIC Educational Resources Information Center

    Szalay, Paul S.; Zook-Gerdau, Lois Anne; Schurter, Eric J.

    2011-01-01

    This multi-technique experiment with a forensic theme was developed for a nonscience-major chemistry course. The students are provided with solid samples and informed that the samples are either cocaine or a combination of drugs designed to mimic the stimulant and anesthetic qualities of cocaine such as caffeine and lidocaine. The students carry…

  16. Molecular Orbitals of NO, NO[superscript+], and NO[superscript-]: A Computational Quantum Chemistry Experiment

    ERIC Educational Resources Information Center

    Orenha, Renato P.; Galembeck, Sérgio E.

    2014-01-01

    This computational experiment presents qualitative molecular orbital (QMO) and computational quantum chemistry exercises of NO, NO[superscript+], and NO[superscript-]. Initially students explore several properties of the target molecules by Lewis diagrams and the QMO theory. Then, they compare qualitative conclusions with EHT and DFT calculations…

  17. Assessment of Antioxidant Capacities in Foods: A Research Experience for General Chemistry Students

    ERIC Educational Resources Information Center

    Hoch, Matthew A.; Russell, Cianan B.; Steffen, Debora M.; Weaver, Gabriela C.; Burgess, John R.

    2009-01-01

    With the booming interest in health food and nutrition, investigations of the antioxidant capacities of various foods have come to the forefront of food science. This general chemistry laboratory curriculum provides students with an opportunity to design and implement their own experiments relating to antioxidants in food. The curriculum is six…

  18. A Practical and Convenient Diffusion Apparatus: An Undergraduate Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Clifford, Ben; Ochiai, E. I.

    1980-01-01

    Described is a diffusion apparatus to be used in an undergraduate physical chemistry laboratory experiment to determine the diffusion coefficients of aqueous solutions of sucrose and potassium dichromate. Included is the principle of the method, apparatus design and description, and experimental procedure. (Author/DS)

  19. EPR Studies of Spin-Spin Exchange Processes: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Eastman, Michael P.

    1982-01-01

    Theoretical background, experimental procedures, and analysis of experimental results are provided for an undergraduate physical chemistry experiment on electron paramagnetic resonance (EPR) linewidths. Source of line broadening observed in a spin-spin exchange process between radicals formed in aqueous solutions of potassium peroxylamine…

  20. A global inventory of stratospheric fluorine in 2004 based on Atmospheric Chemistry Experiment Fourier transform spectrometer

    E-print Network

    Nassar, Ray

    A global inventory of stratospheric fluorine in 2004 based on Atmospheric Chemistry Experiment 29 June 2006; accepted 7 August 2006; published 30 November 2006. [1] Total fluorine (FTOT by estimates of 15 minor fluorine species. Using these data, separate fluorine budgets were determined in five

  1. An Environmental Chemistry Experiment: The Determination of Radon Levels in Water.

    ERIC Educational Resources Information Center

    Welch, Lawrence E.; Mossman, Daniel M.

    1994-01-01

    Describes a radiation experiment developed to complement a new environmental chemistry laboratory curriculum. A scintillation counter is used to measure radon in water. The procedure relies on the fact that toluene will preferentially extract radon from water. Sample preparation is complete in less than 90 minutes. Because the level of…

  2. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Armenta, Sergio; de la Guardia, Miguel

    2011-01-01

    Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…

  3. Application of Calibrated Peer Review (CPR) Writing Assignments to Enhance Experiments with an Environmental Chemistry Focus

    ERIC Educational Resources Information Center

    Margerum, Lawrence D.; Gulsrud, Maren; Manlapez, Ronald; Rebong, Rachelle; Love, Austin

    2007-01-01

    The browser-based software program, Calibrated Peer Review (CPR) developed by the Molecular Science Project enables instructors to create structured writing assignments in which students learn by writing and reading for content. Though the CPR project covers only one experiment in general chemistry, it might provide lab instructors with a method…

  4. Liquid-Liquid Extraction of Insecticides from Juice: An Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Radford, Samantha A.; Hunter, Ronald E., Jr.; Barr, Dana Boyd; Ryan, P. Barry

    2013-01-01

    A laboratory experiment was developed to target analytical chemistry students and to teach them about insecticides in food, sample extraction, and cleanup. Micro concentrations (sub-microgram/mL levels) of 12 insecticides spiked into apple juice samples are extracted using liquid-liquid extraction and cleaned up using either a primary-secondary…

  5. Measurement of the Compressibility Factor of Gases: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Varberg, Thomas D.; Bendelsmith, Andrew J.; Kuwata, Keith T.

    2011-01-01

    In this article, we describe an experiment for the undergraduate physical chemistry laboratory in which students measure the compressibility factor of two gases, helium and carbon dioxide, as a function of pressure at constant temperature. The experimental apparatus is relatively inexpensive to construct and is described and diagrammed in detail.…

  6. Introducing Ethics to Chemistry Students in a "Research Experiences for Undergraduates" (REU) Program

    ERIC Educational Resources Information Center

    Hanson, Mark J.

    2015-01-01

    A three-day ethics seminar introduced ethics to undergraduate environmental chemistry students in the Research Experiences for Undergraduates (REU) program. The seminar helped students become sensitive to and understand the ethical and values dimensions of their work as researchers. It utilized a variety of resources to supplement lectures and…

  7. Suitable Class Experiments in Biochemistry for High-school Chemistry and Biology Courses.

    ERIC Educational Resources Information Center

    Myers, A.

    1987-01-01

    Illustrates the scope of experimental investigations for biochemistry education in high school biology and chemistry courses. Gives a brief overview of biochemistry experiments with proteins, enzymes, carbohydrates, lipids, nucleic acids, vitamins, metabolism, electron transport, and photosynthesis including materials, procedures, and outcomes.…

  8. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  9. Coloring a Superabsorbent Polymer with Metal Ions: An Undergraduate Chemistry Experiment

    ERIC Educational Resources Information Center

    Yaung, Jing-Fun; Chen, Yueh-Huey

    2009-01-01

    A novel undergraduate chemistry experiment involving superabsorbent polymers commonly used in diapers and other personal care products is described. Students observe the removal of divalent transition-metal ions from aqueous solutions by the polymers. With the procedures provided, students are able to color the superabsorbent polymers with metal…

  10. Planetary and Space Science 55 (2007) 383400 The ORGANICS experiment on BIOPAN V: UV and space exposure

    E-print Network

    2007-01-01

    ) on the EXPOSE facility on the International Space Station (ISS). For the small fluence that was collected during; International Space Station; Photo-stability 1. Introduction Carbon chemistry in space occurs most efficientlyPlanetary and Space Science 55 (2007) 383­400 The ORGANICS experiment on BIOPAN V: UV and space

  11. Redox chemistry and natural organic matter (NOM): Geochemists' dream, analytical chemists' nightmare

    USGS Publications Warehouse

    MacAlady, Donald L.; Walton-Day, Katherine

    2011-01-01

    Natural organic matter (NOM) is an inherently complex mixture of polyfunctional organic molecules. Because of their universality and chemical reversibility, oxidation/reductions (redox) reactions of NOM have an especially interesting and important role in geochemistry. Variabilities in NOM composition and chemistry make studies of its redox chemistry particularly challenging, and details of NOM-mediated redox reactions are only partially understood. This is in large part due to the analytical difficulties associated with NOM characterization and the wide range of reagents and experimental systems used to study NOM redox reactions. This chapter provides a summary of the ongoing efforts to provide a coherent comprehension of aqueous redox chemistry involving NOM and of techniques for chemical characterization of NOM. It also describes some attempts to confirm the roles of different structural moieties in redox reactions. In addition, we discuss some of the operational parameters used to describe NOM redox capacities and redox states, and describe nomenclature of NOM redox chemistry. Several relatively facile experimental methods applicable to predictions of the NOM redox activity and redox states of NOM samples are discussed, with special attention to the proposed use of fluorescence spectroscopy to predict relevant redox characteristics of NOM samples.

  12. Approved Module Information for CE1102, 2014/5 Module Title/Name: Organic Chemistry for Engineers Module Code: CE1102

    E-print Network

    Neirotti, Juan Pablo

    Approved Module Information for CE1102, 2014/5 Module Title/Name: Organic Chemistry for Engineers are emphasised. Module Learning Outcomes: * Application of basic ideas in organic chemistry * The ability to interpret experimental data * A good working knowledge of the vocabulary of organic chemistry. * A good

  13. 1 ROD RICKARDS PhD SCHOLARSHIP IN ORGANIC OR BIOLOGICAL CHEMISTRY (1365/2011) ANU CRICOS PROVIDER NUMBER: 00120C

    E-print Network

    Botea, Adi

    1 ­ ROD RICKARDS PhD SCHOLARSHIP IN ORGANIC OR BIOLOGICAL CHEMISTRY (1365/2011) ANU CRICOS PROVIDER RICKARDS PhD SCHOLARSHIP IN ORGANIC OR BIOLOGICAL CHEMISTRY CONDITIONS OF AWARD This scholarship providesD SCHOLARSHIP IN ORGANIC OR BIOLOGICAL CHEMISTRY (1365/2011) ANU CRICOS PROVIDER NUMBER: 00120C 4. Termination

  14. Fitting It All In: Adapting a Green Chemistry Extraction Experiment for Inclusion in an Undergraduate Analytical Laboratory

    ERIC Educational Resources Information Center

    Buckley, Heather L.; Beck, Annelise R.; Mulvihill, Martin J.; Douskey, Michelle C.

    2013-01-01

    Several principles of green chemistry are introduced through this experiment designed for use in the undergraduate analytical chemistry laboratory. An established experiment of liquid CO2 extraction of D-limonene has been adapted to include a quantitative analysis by gas chromatography. This facilitates drop-in incorporation of an exciting…

  15. A Statistical Evaluation: Peer-led Team Learning in an Organic Chemistry Course

    NASA Astrophysics Data System (ADS)

    Lyle, Kenneth S.; Robinson, William R.

    2003-02-01

    The research described by Lydia Tien, Vicki Roth, and Jack Kampmeier (J. Res. Sci. Teach. 2002, 39, 606-632) clearly suggests that peer-led team learning workshops in the organic chemistry course studied both increased the level of student achievement and increased the retention of students in the course. The benefit appears to apply to all groups, regardless of gender or ethnicity.

  16. Laboratory Studies of the Reactive Chemistry and Changing CCN Properties of Secondary Organic Aerosol, Including Model Development

    SciTech Connect

    Scot Martin

    2013-01-31

    The chemical evolution of secondary-organic-aerosol (SOA) particles and how this evolution alters their cloud-nucleating properties were studied. Simplified forms of full Koehler theory were targeted, specifically forms that contain only those aspects essential to describing the laboratory observations, because of the requirement to minimize computational burden for use in integrated climate and chemistry models. The associated data analysis and interpretation have therefore focused on model development in the framework of modified kappa-Koehler theory. Kappa is a single parameter describing effective hygroscopicity, grouping together several separate physicochemical parameters (e.g., molar volume, surface tension, and van't Hoff factor) that otherwise must be tracked and evaluated in an iterative full-Koehler equation in a large-scale model. A major finding of the project was that secondary organic materials produced by the oxidation of a range of biogenic volatile organic compounds for diverse conditions have kappa values bracketed in the range of 0.10 +/- 0.05. In these same experiments, somewhat incongruently there was significant chemical variation in the secondary organic material, especially oxidation state, as was indicated by changes in the particle mass spectra. Taken together, these findings then support the use of kappa as a simplified yet accurate general parameter to represent the CCN activation of secondary organic material in large-scale atmospheric and climate models, thereby greatly reducing the computational burden while simultaneously including the most recent mechanistic findings of laboratory studies.

  17. Organic Laboratory Experiments: Micro vs. Conventional.

    ERIC Educational Resources Information Center

    Chloupek-McGough, Marge

    1989-01-01

    Presents relevant statistics accumulated in a fall organic laboratory course. Discusses laboratory equipment setup to lower the amount of waste. Notes decreased solid wastes were produced compared to the previous semester. (MVL)

  18. The impact of recirculation, ventilation and filters on secondary organic aerosols generated by indoor chemistry

    NASA Astrophysics Data System (ADS)

    Fadeyi, M. O.; Weschler, C. J.; Tham, K. W.

    This study examined the impact of recirculation rates (7 and 14 h -1), ventilation rates (1 and 2 h -1), and filtration on secondary organic aerosols (SOAs) generated by ozone of outdoor origin reacting with limonene of indoor origin. Experiments were conducted within a recirculating air handling system that serviced an unoccupied, 236 m 3 environmental chamber configured to simulate an office; either no filter, a new filter or a used filter was located downstream of where outdoor air mixed with return air. For otherwise comparable conditions, the SOA number and mass concentrations at a recirculation rate of 14 h -1 were significantly smaller than at a recirculation rate of 7 h -1. This was due primarily to lower ozone concentrations, resulting from increased surface removal, at the higher recirculation rate. Increased ventilation increased outdoor-to-indoor transport of ozone, but this was more than offset by the increased dilution of SOA derived from ozone-initiated chemistry. The presence of a particle filter (new or used) strikingly lowered SOA number and mass concentrations compared with conditions when no filter was present. Even though the particle filter in this study had only 35% single-pass removal efficiency for 100 nm particles, filtration efficiency was greatly amplified by recirculation. SOA particle levels were reduced to an even greater extent when an activated carbon filter was in the system, due to ozone removal by the carbon filter. These findings improve our understanding of the influence of commonly employed energy saving procedures on occupant exposures to ozone and ozone-derived SOA.

  19. Organic Aerosol Formation in the Humid, Photochemically-Active Southeastern US: SOAS Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Sareen, N.; Lim, Y. B.; Carlton, A. G.; Turpin, B. J.

    2013-12-01

    Aqueous multiphase chemistry in the atmosphere can lead to rapid transformation of organic compounds, forming highly oxidized low volatility organic aerosol and, in some cases, light absorbing (brown) carbon. Because liquid water is globally abundant, this chemistry could substantially impact climate, air quality, health, and the environment. Gas-phase precursors released from biogenic and anthropogenic sources are oxidized and fragmented forming water-soluble gases that can undergo reactions in the aqueous phase (in clouds, fogs, and wet aerosols) leading to the formation of secondary organic aerosol (SOAAQ). Recent studies have highlighted the role of certain precursors like glyoxal, methylglyoxal, glycolaldehyde, acetic acid, acetone, and epoxides in the formation of SOAAQ. The goal of this work is to identify other precursors that are atmospherically important. In this study, ambient mixtures of water-soluble gases were scrubbed from the atmosphere at Brent, Alabama during the Southern Oxidant and Aerosol Study (SOAS). Four mist chambers in parallel collected ambient gases in a DI water medium at 20-25 LPM with a 4 hr collection time. Total organic carbon (TOC) values in daily composited samples were 64-180 ?M. Aqueous OH radical oxidation experiments were conducted with these mixtures in a newly designed cuvette chamber to understand the formation of SOA through gas followed by aqueous chemistry. OH radicals (3.5E-2 ?M [OH] s-1) were formed in-situ in the chamber, continuously by H2O2 photolysis. Precursors and products of these aqueous OH experiments were characterized using ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS), and IC-ESI-MS. ESI-MS results from a June 12th, 2013 sample showed precursors to be primarily odd, positive mode ions, indicative of the presence of non-nitrogen containing alcohols, aldehydes, organic peroxides, or epoxides. Products were seen in the negative mode and included organic acid ions like pyruvate and oxalate. The results from this study will be used to better understand aqueous chemistry in clouds/fogs and to identify precursors for laboratory study of wet aerosol, fog, and cloud chemistry.

  20. Seasonal Carbonate Chemistry Covariation with Temperature, Oxygen, and Salinity in a Fjord Estuary: Implications for the Design of Ocean Acidification Experiments

    PubMed Central

    Reum, Jonathan C. P.; Alin, Simone R.; Feely, Richard A.; Newton, Jan; Warner, Mark; McElhany, Paul

    2014-01-01

    Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall). pCO2 exceeded the 2008–2011 mean atmospheric level (392 µatm) at all depths and seasons sampled except for the near-surface waters (< 10 m) in the summer. Further, undersaturated conditions with respect to the biogenic carbonate mineral aragonite were widespread (?ar<1). We show that pCO2 values were relatively uniform throughout the water column and across regions in winter, enriched in subsurface waters in summer, and in the fall some values exceeded 2500 µatm in near-surface waters. Carbonate chemistry covaried to differing levels with temperature and oxygen depending primarily on season and secondarily on region. Salinity, which varied little (27 to 31), was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and ?ar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight the wide range of carbonate chemistry conditions organisms may currently experience in this and similar coastal ecosystems. PMID:24586915

  1. Applying Statistics in the Undergraduate Chemistry Laboratory: Experiments with Food Dyes

    NASA Astrophysics Data System (ADS)

    Thomasson, Kathryn A.; Lofthus-Herschman, Sheila; Humbert, Michelle; Kulevsky, Norman

    1998-02-01

    Simple experiments have been developed using visible spectroscopy to introduce students to statistical analysis of data. Students in chemistry often gain their first substantial experience with statistics in undergraduate chemistry laboratories (Quantitative Analysis and Physical Chemistry). Simple experiments using Beer's Law of absorption spectroscopy help introduce students to applying statistics. We have chosen two food coloring dyes found in many household items: FD and C Red #40 and FD and C Blue #1. To learn to evaluate their data, the students determine the concentration of a solution at a variety of confidence limits, and treat their data for suspicious values using the Q-test. Other experiments can be done to learn the concept of pooled variance. For example, students compare solutions they make themselves to determine if they are the same to what confidence level. Furthermore, Beer's Law can be used to teach linear least squares fitting by using a serial dilution of a colored compound and measuring absorbance for each concentration. Finally, by using common household substances and a simple analysis technique, students find that statistics can be considerably less threatening, and in some cases even fun.

  2. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1978

    1978-01-01

    Describes experiments, demonstrations, activities and ideas relating to various fields of chemistry to be used in chemistry courses of secondary schools. Three experiments concerning differential thermal analysis are among these notes presented. (HM)

  3. Marine Natural Product Chemistry and the Interim: A Novel Approach

    ERIC Educational Resources Information Center

    Bland, Jeffrey S.; Medcalf, Darrell G.

    1974-01-01

    Describes a course designed to strengthen a student's background in organic chemistry, demonstrate the interfacing of chemistry and biology, expose undergraduates to graduate research, provide familiarity with instrumentation, and provide a novel field experience. (Author/GS)

  4. Formation of Complex Organic molecules from Formaldehyde Chemistry in Cometary Ice Analogues

    NASA Astrophysics Data System (ADS)

    Duvernay, fabrice; Vinogradoff, Vassilissa; Danger, Grégoire; Theulé, Patrice; Chiavassa, Thierry

    2015-04-01

    There is convincing evidence that the formation of complex organic molecules occurred in a variety of astrophysical environments. Among them, precursors of biomolecules are of particular significance due to their exobiological implications. Hexamethylenetetramine (HMT, C6H12N4) and the polyoxymethylene (POM, -(CH2-O)n-) are of prime interest since they are supposed to be present in cometary environments. They are also ones of the main components of the organic residue formed from the warming of photolysed interstellar/cometary ice analogs. In this work, we study the warming of water-dominated cometary ice analogs containing formaldehyde (H2CO). Based on infrared and mass spectrometry measurements, and complemented by quantum chemical calculations, we report that NH2CH2OH, HOCH2OH, and POM are the only reaction products when the ice also contains NH3. The branching ratio between the three products strongly depends on the initial H2CO/NH3 concentration ratio. Moreover, the influence of the initial ice composition on the formation of POM oligomers (HO-(CH2O)n-H, n<5) as well as their thermal instability between 200 and 320 K are investigated. Finally, the implications of these results with respect to cometary nucleus chemistry and their impact on POM detection by the Rosetta mission are discussed. In addition, the mechanism for HMT formation in interstellar or cometary ice analogs containing H2CO, NH3, and HCOOH has been determined by combining laboratory experiments and DFT calculations. We show that HMT is thermally formed from H2CO and NH3 activated by HCOOH. Two intermediates has been unambiguously detected: NH2CH2OH and the trimer of CH2NH (1,3,5-triazinane, TMT). Unlike to what it was previously thought, HMT is not an indicator of ice photochemistry, but an indicator of thermal processing of ice. These results strengthen the hypothesis that HMT and its intermediates should be present in comets, where they may be detected with the COSAC or COSIMA instrument of the Rosetta mission.

  5. Fostering Pre-service Teachers' Self-Determined Environmental Motivation Through Green Chemistry Experiments

    NASA Astrophysics Data System (ADS)

    Karpudewan, Mageswary; Ismail, Zurida; Roth, Wolff-Michael

    2012-10-01

    The global environmental crisis intensifies particularly in developing nations. Environmental educators have begun to understand that changing the environmental impact requires not only changes in pro-environmental knowledge and attitudes but also in associated, self-determined motivation. This study was designed to test the hypothesis that a green chemistry curriculum changes Malaysian pre-service teachers' environmental motivation. Two comparable groups of pre-service teachers participated in this study. The students in the experimental group ( N = 140) did green chemistry experiments whereas the control group ( N = 123) did equivalent experiments in a traditional manner. Posttest results indicate that there is significant difference between both the groups for intrinsic motivation, integration, identification, and introjections scales and no differences for external regulation and amotivation scales. The qualitative analysis of interview data suggests that the changes are predominantly due to the personal satisfaction that participants derived from engaging in pro-environmental behavior.

  6. The Organization of Reports of Scientific Experiments.

    ERIC Educational Resources Information Center

    Sawyer, Thomas M.

    Beginning teachers of scientific technical writing often have little background knowledge in the sciences; thus, they may encounter difficulty in dealing with technical reports. To achieve clear explanations of the effects of scientific experiments, scientific writers need to know the following general principles: (1) the function of all the…

  7. State-of-the-Art-Symposium: Self-Organization in Chemistry.

    ERIC Educational Resources Information Center

    Soltzberg, Leonard J.; And Others

    1989-01-01

    Presents four articles dealing with chaotic systems. Lists sources for nine demonstrations or experiments dealing with self-organization. Provides a vocabulary review of self-organization. Describes three chemical oscillator models. Discusses the role of chaos in flow systems. (MVL)

  8. The PROCESS experiment: an astrochemistry laboratory for solid and gaseous organic samples in low-earth orbit.

    PubMed

    Cottin, Hervé; Guan, Yuan Yong; Noblet, Audrey; Poch, Olivier; Saiagh, Kafila; Cloix, Mégane; Macari, Frédérique; Jérome, Murielle; Coll, Patrice; Raulin, François; Stalport, Fabien; Szopa, Cyril; Bertrand, Marylène; Chabin, Annie; Westall, Frances; Chaput, Didier; Demets, René; Brack, André

    2012-05-01

    The PROCESS (PRebiotic Organic ChEmistry on the Space Station) experiment was part of the EXPOSE-E payload outside the European Columbus module of the International Space Station from February 2008 to August 2009. During this interval, organic samples were exposed to space conditions to simulate their evolution in various astrophysical environments. The samples used represent organic species related to the evolution of organic matter on the small bodies of the Solar System (carbonaceous asteroids and comets), the photolysis of methane in the atmosphere of Titan, and the search for organic matter at the surface of Mars. This paper describes the hardware developed for this experiment as well as the results for the glycine solid-phase samples and the gas-phase samples that were used with regard to the atmosphere of Titan. Lessons learned from this experiment are also presented for future low-Earth orbit astrochemistry investigations. PMID:22680688

  9. Explicit modeling of organic chemistry and secondary organic aerosol partitioning for Mexico City and its outflow plume

    SciTech Connect

    Lee-Taylor, J.; Madronich, Sasha; Aumont, B.; Baker, A.; Camredon, M.; Hodzic, Alma; Tyndall, G. S.; Apel, Eric; Zaveri, Rahul A.

    2011-12-21

    The evolution of organic aerosols (OA) in Mexico City and its outflow is investigated with the nearly explicit gas phase photochemistry model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere), wherein precursor hydrocarbons are oxidized to numerous intermediate species for which vapor pressures are computed and used to determine gas/particle partitioning in a chemical box model. Precursor emissions included observed C3-10 alkanes, alkenes, and light aromatics, as well as larger n-alkanes (up to C25) not directly observed but estimated by scaling to particulate emissions according to their volatility. Conditions were selected for comparison with observations made in March 2006 (MILAGRO). The model successfully reproduces the magnitude and diurnal shape for both primary (POA) and secondary (SOA) organic aerosols, with POA peaking in the early morning at 15-20 ug m-3, and SOA peaking at 10-15 ?g m-3 during mid-day. The majority (> 75%) of the model SOA stems from the large n-alkanes, with the remainder mostly from the light aromatics. Simulated OA elemental composition reproduces observed H/C and O/C ratios reasonably well, although modeled ratios develop more slowly than observations suggest. SOA chemical composition is initially dominated by *- hydroxy ketones and nitrates from the large alkanes, with contributions from peroxy acyl nitrates and, at later times when NOx is lower, organic hydroperoxides. The simulated plume-integrated OA mass continues to increase for several days downwind despite dilution-induced particle evaporation, since oxidation chemistry leading to SOA formation remains strong. In this model, the plume SOA burden several days downwind exceeds that leaving the city by a factor of >3. These results suggest significant regional radiative impacts of SOA.

  10. Explicit modeling of organic chemistry and secondary organic aerosol partitioning for Mexico City and its outflow plume

    NASA Astrophysics Data System (ADS)

    Lee-Taylor, J.; Madronich, S.; Aumont, B.; Baker, A.; Camredon, M.; Hodzic, A.; Tyndall, G. S.; Apel, E.; Zaveri, R. A.

    2011-12-01

    The evolution of organic aerosols (OA) in Mexico City and its outflow is investigated with the nearly explicit gas phase photochemistry model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere), wherein precursor hydrocarbons are oxidized to numerous intermediate species for which vapor pressures are computed and used to determine gas/particle partitioning in a chemical box model. Precursor emissions included observed C3-10 alkanes, alkenes, and light aromatics, as well as larger n-alkanes (up to C25) not directly observed but estimated by scaling to particulate emissions according to their volatility. Conditions were selected for comparison with observations made in March 2006 (MILAGRO). The model successfully reproduces the magnitude and diurnal shape for both primary (POA) and secondary (SOA) organic aerosols, with POA peaking in the early morning at 15-20 ?g m-3, and SOA peaking at 10-15 ?g m-3 during mid-day. The majority (?75%) of the model SOA stems from reaction products of the large n-alkanes, used here as surrogates for all emitted hydrocarbons of similar volatility, with the remaining SOA originating mostly from the light aromatics. Simulated OA elemental composition reproduces observed H/C and O/C ratios reasonably well, although modeled ratios develop more slowly than observations suggest. SOA chemical composition is initially dominated by ?-hydroxy ketones and nitrates from the large alkanes, with contributions from peroxy acyl nitrates and, at later times when NOx is lower, organic hydroperoxides. The simulated plume-integrated OA mass continues to increase for several days downwind despite dilution-induced particle evaporation, since oxidation chemistry leading to SOA formation remains strong. In this model, the plume SOA burden several days downwind exceeds that leaving the city by a factor of >3. These results suggest significant regional radiative impacts of SOA.

  11. Explicit modeling of organic chemistry and secondary organic aerosol partitioning for Mexico City and its outflow plume

    NASA Astrophysics Data System (ADS)

    Lee-Taylor, J.; Madronich, S.; Aumont, B.; Camredon, M.; Hodzic, A.; Tyndall, G. S.; Apel, E.; Zaveri, R. A.

    2011-06-01

    The evolution of organic aerosols (OA) in Mexico City and its outflow is investigated with the nearly explicit gas phase photochemistry model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere), wherein precursor hydrocarbons are oxidized to numerous intermediate species for which vapor pressures are computed and used to determine gas/particle partitioning in a chemical box model. Precursor emissions included observed C3-10 alkanes, alkenes, and light aromatics, as well as larger n-alkanes (up to C25) not directly observed but estimated by scaling to particulate emissions according to their volatility. Conditions were selected for comparison with observations made in March 2006 (MILAGRO). The model successfully reproduces the magnitude and diurnal shape for both primary (POA) and secondary (SOA) organic aerosols, with POA peaking in the early morning at 15-20 ?g m-3, and SOA peaking at 10-15 ?g m-3 during mid-day. The majority (?75 %) of the model SOA stems from the large n-alkanes, with the remainder mostly from the light aromatics. Simulated OA elemental composition reproduces observed H/C and O/C ratios reasonably well, although modeled ratios develop more slowly than observations suggest. SOA chemical composition is initially dominated by ?-hydroxy ketones and nitrates from the large alkanes, with contributions from peroxy acyl nitrates and, at later times when NOx is lower, organic hydroperoxides. The simulated plume-integrated OA mass continues to increase for several days downwind despite dilution-induced particle evaporation, since oxidation chemistry leading to SOA formation remains strong. In this model, the plume SOA burden several days downwind exceeds that leaving the city by a factor of >3. These results suggest significant regional radiative impacts of SOA.

  12. JOURNAL OF RESEARCH IN SCIENCE TEACHING VOL. 47, NO. 6, PP. 643660 (2010) Non-Mathematical Problem Solving in Organic Chemistry

    E-print Network

    Bodner, George M.

    2010-01-01

    Solving in Organic Chemistry David P. Cartrette, George M. Bodner Department of Chemistry, Purdue: Differences in problem-solving ability among organic chemistry graduate students and faculty were studied within the domain of problems that involved the determination of the structure of a molecule from

  13. Organic Chemists . . . Help to improve the standard of life

    E-print Network

    Reich, Norbert O.

    Organic Chemists . . . Help to improve the standard of life Organic chemistry is that branch of chemistry that deals with the structure, properties, and reactions of com- pounds that contain carbon for the betterment of the human experience. Organic chemistry is the largest chemistry discipline in both total

  14. Introduction to Homogenous Catalysis with Ruthenium-Catalyzed Oxidation of Alcohols: An Experiment for Undergraduate Advanced Inorganic Chemistry Students

    ERIC Educational Resources Information Center

    Miecznikowski, John R.; Caradonna, John P.; Foley, Kathleen M.; Kwiecien, Daniel J.; Lisi, George P.; Martinez, Anthony M.

    2011-01-01

    A three-week laboratory experiment, which introduces students in an advanced inorganic chemistry course to air-sensitive chemistry and catalysis, is described. During the first week, the students synthesize RuCl[subscript 2](PPh[subscript 3])[subscript 3]. During the second and third weeks, the students characterize the formed coordination…

  15. S.E.A. Lab. Science Experiments and Activities. Marine Science for High School Students in Chemistry, Biology and Physics.

    ERIC Educational Resources Information Center

    Hart, Kathy, Ed.

    A series of science experiments and activities designed for secondary school students taking biology, chemistry, physics, physical science or marine science courses are outlined. Each of the three major sections--chemistry, biology, and physics--addresses concepts that are generally covered in those courses but incorporates aspects of marine…

  16. Bench Remarks: A Burner and a Beaker: Experiments for a First Day in a First Course in Chemistry.

    ERIC Educational Resources Information Center

    Bent, Henry A.

    1986-01-01

    Provides a running commentary on a chemistry instructor's first day in a first course in chemistry. Focuses on the use of fire and chemists' attempts to explain this phenomenon. Provides the ongoing descriptions of the experiments, a summary of the observations, and the key comments made by the instructor. (TW)

  17. Explicit Modeling of Organic Chemistry and SOA Partitioning in Mexico City

    NASA Astrophysics Data System (ADS)

    Lee-Taylor, J.; Madronich, S.; Aumont, B.; Camredon, M.; Apel, E. C.; Hodzic, A.; Tyndall, G. S.; Valorso, R.

    2010-12-01

    We use the GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere) model to simulate the composition of organic aerosol in Mexico City's urban atmosphere and outflow plume during the MILAGRO campaign. The mechanism is extremely detailed, treating 5.9 million gas phase reactions among > 1 million species. Gas/aerosol partitioning is treated by Raoult's law-type condensation for > 275 000 non-radical species. We are able to speciate the simulated primary and secondary organic aerosol (POA and SOA) and find that it is distributed somewhat equally between species of different carbon number (with C>5), despite large disparities in emissions and gas-phase abundance. Over 90% of the total burden of C23+ carbon is present as POA. Close to the source region, the simulated SOA is composed predominantly of delta-hydroxy-ketones and hydroxy-nitrates. SOA functionality becomes more diverse with age downwind, reflecting a shift from high-NOx to low-NOx chemistry within the plume. In addition, the degree of substitution increases as SOA ages, resulting in greater relative contributions from lower carbon-number species. Compared to observations, the modeled O/C ratio of the aerosol is lower and the N/C ratio is higher, suggesting that additional important reaction pathways either in the gas or the particle phase remain to be elucidated.

  18. Data Pooling in a Chemical Kinetics Experiment: The Aquation of a Series of Cobalt(III) Complexes--A Discovery Chemistry Experiment

    ERIC Educational Resources Information Center

    Herrick, Richard S.; Mills, Kenneth V.; Nestor, Lisa P.

    2008-01-01

    An experiment in chemical kinetics as part of our Discovery Chemistry curriculum is described. Discovery Chemistry is a pedagogical philosophy that makes the laboratory the key center of learning for students in their first two years of undergraduate instruction. Questions are posed in the pre-laboratory discussion and assessed using pooled…

  19. Ordination of the estuarine environment: What the organism experiences

    EPA Science Inventory

    Investigators customarily schedule estuary sampling trips with regard to a variety of criteria, especially tide stage and the day-night cycle. However, estuarine organisms experience a wide suite of continuously changing tide and light conditions. Such organisms may undertake i...

  20. A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models

    NASA Astrophysics Data System (ADS)

    Tilmes, S.; Mills, M. J.; Niemeier, U.; Schmidt, H.; Robock, A.; Kravitz, B.; Lamarque, J.-F.; Pitari, G.; English, J. M.

    2015-01-01

    A new Geoengineering Model Intercomparison Project (GeoMIP) experiment "G4 specified stratospheric aerosols" (short name: G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmosphere, chemistry, dynamics, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulfur dioxide (SO2) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments between 2020 and 2100. This stratospheric aerosol distribution, with a total burden of about 2 Tg S has been derived using the ECHAM5-HAM microphysical model, based on a continuous annual tropical emission of 8 Tg SO2 yr-1. A ramp-up of geoengineering in 2020 and a ramp-down in 2070 over a period of 2 years are included in the distribution, while a background aerosol burden should be used for the last 3 decades of the experiment. The performance of this experiment using climate and chemistry models in a multi-model comparison framework will allow us to better understand the impact of geoengineering and its abrupt termination after 50 years in a changing environment. The zonal and monthly mean stratospheric aerosol input data set is available at https://www2.acd.ucar.edu/gcm/geomip-g4-specified-stratospheric-aerosol-data-set.

  1. A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models

    SciTech Connect

    Tilmes, S.; Mills, Mike; Niemeier, Ulrike; Schmidt, Hauke; Robock, Alan; Kravitz, Benjamin S.; Lamarque, J. F.; Pitari, G.; English, J. M.

    2015-01-15

    A new Geoengineering Model Intercomparison Project (GeoMIP) experiment "G4 specified stratospheric aerosols" (short name: G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmosphere, chemistry, dynamics, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulfur dioxide (SO?) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments between 2020 and 2100. This stratospheric aerosol distribution, with a total burden of about 2 Tg S has been derived using the ECHAM5-HAM microphysical model, based on a continuous annual tropical emission of 8 Tg SO? yr?¹. A ramp-up of geoengineering in 2020 and a ramp-down in 2070 over a period of 2 years are included in the distribution, while a background aerosol burden should be used for the last 3 decades of the experiment. The performance of this experiment using climate and chemistry models in a multi-model comparison framework will allow us to better understand the impact of geoengineering and its abrupt termination after 50 years in a changing environment. The zonal and monthly mean stratospheric aerosol input data set is available at https://www2.acd.ucar.edu/gcm/geomip-g4-specified-stratospheric-aerosol-data-set.

  2. A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models

    DOE PAGESBeta

    Tilmes, S.; Mills, Mike; Niemeier, Ulrike; Schmidt, Hauke; Robock, Alan; Kravitz, Benjamin S.; Lamarque, J. F.; Pitari, G.; English, J. M.

    2015-01-15

    A new Geoengineering Model Intercomparison Project (GeoMIP) experiment "G4 specified stratospheric aerosols" (short name: G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmosphere, chemistry, dynamics, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulfur dioxide (SO?) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments between 2020 and 2100. This stratospheric aerosol distribution, with a total burden of about 2 Tg S has been derived using the ECHAM5-HAM microphysical model, based on a continuous annualmore »tropical emission of 8 Tg SO? yr?¹. A ramp-up of geoengineering in 2020 and a ramp-down in 2070 over a period of 2 years are included in the distribution, while a background aerosol burden should be used for the last 3 decades of the experiment. The performance of this experiment using climate and chemistry models in a multi-model comparison framework will allow us to better understand the impact of geoengineering and its abrupt termination after 50 years in a changing environment. The zonal and monthly mean stratospheric aerosol input data set is available at https://www2.acd.ucar.edu/gcm/geomip-g4-specified-stratospheric-aerosol-data-set.« less

  3. The Isolation of Rubber from Milkweed Leaves. An Introductory Organic Chemistry Lab

    NASA Astrophysics Data System (ADS)

    Volaric, Lisa; Hagen, John P.

    2002-01-01

    We present an introductory organic chemistry lab in which students isolate rubber from the leaves of milkweed plants (Asclepias syriaca). Students isolated rubber with a recovery of 2.4 ± 1.8% and 1.8 ± 0.7% for the microscale and macroscale procedures, respectively. Infrared spectra of their products were compared with the spectrum of synthetic rubber, cis-polyisoprene. Students tested for elasticity of their product by twisting it on a spatula and pulling; all students found some degree of elasticity.

  4. A Fifty-Year Love Affair with Organic Chemistry (by William S. Johnson)

    NASA Astrophysics Data System (ADS)

    Kauffman, Reviewed By George B.; Kauffman, Laurie M.

    1999-12-01

    This latest volume is the 20th in Jeff Seeman's projected 22-volume series of autobiographies of 20th-century organic chemists that began publication in 1990 (Kauffman, G. B. J. Chem. Educ. 1991, 68, A21). Unfortunately, Johnson did not live to see this volume in print. Ted Bartlett and Ray Conrow reviewed the final manuscript, galleys, and page proofs; and Ted Bartlett, Paul Bartlett, John D. Roberts, and Gilbert Stork contributed an epilogue that complements Johnson's own words, adds a warm, personal final touch that he was unable to provide, and incorporates his final research into the volume. Born in New Rochelle, New York, on February 24, 1913, William Summer Johnson attended Amherst College with the aid of a scholarship and various odd jobs such as tending furnace, washing dishes, and playing saxophone in dance bands (he seriously considered becoming a professional musician). Here he became enamored with organic chemistry, which he taught as an instructor for a year after his graduation magna cum laude in 1936. He then worked with a fellowship under Louis Fieser, who sparked his interest in steroids, at Harvard University, from which he received his M.A. (1938) and Ph.D. (1940) degrees. In 1940 Johnson joined the faculty at the University of Wisconsin, where he rose through the ranks, eventually becoming Homer Adkins Professor of Chemistry (1954-60). He began the total synthesis of steroids, the main subject of his life's work, "which soon proved to be the hottest synthetic target of the time". In 1960 he accepted an invitation to become head of and to upgrade the Stanford University Chemistry Department. With faculty recruiting as his primary concern, he was able to add Carl Djerassi, Paul J. Flory, Harden M. McConnell, Henry Taube, and Eugene E. van Tamelen to the department, resulting in its spectacular rise from 15th to 5th place in the nation. He remained at Stanford for the rest of his career, serving as department head for nine years. He died at the age of 82 on August 19, 1995. Johnson's book reads like a Who's Who of Organic Chemistry, with descriptions, impressions, and thumbnail sketches of such luminaries as Sir Robert Robinson, Robert B. Woodward, Gilbert Stork, Carl Djerassi, Derek Barton, John D. ("Jack") Roberts, and authors of other Profiles volumes. During his long and productive career, Johnson made many contributions to contemporary organic chemistry, the genesis and course of which he describes lucidly with extensive use of 110 structural formulas, 75 reaction schemes, and occasional laboratory notebook pages. Three hundred fifty-six graduate and undergraduate students, postdocs, and visiting professors (many of whom are shown in the 63 formal and informal photographs in the book) have worked with him through five and a half decades. In "Some Concluding Remarks about Our Research", Johnson states, "The reviewed research did not evolve from a master plan; indeed it was largely a matter of following one's nose and trying to look at things that related to areas that were regarded as important issues of the time." Johnson's intimate and revealing autobiography will not only appeal to synthetic organic chemists but will be of interest to both present and future generations of students and instructors of chemistry courses and the history of science as well as to all persons concerned with the human aspects of science.

  5. Stereochemical Control in Carbohydrate Chemistry

    ERIC Educational Resources Information Center

    Batchelor, Rhys; Northcote, Peter T.; Harvey, Joanne E.; Dangerfield, Emma M.; Stocker, Bridget L.

    2008-01-01

    Carbohydrates, in the form of glycoconjugates, have recently been shown to control a wide range of cellular processes. Accordingly, students interested in the study of organic chemistry and biomedical sciences should be exposed to carbohydrate chemistry. To this end, we have developed a sequence of experiments that leads the student from the…

  6. Determining the EDTA Content in a Consumer Shower Cleaner. An Introductory Chemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Weigand, Willis A.

    2000-10-01

    At Altoona College, Chemistry 11 is offered to students as a preparatory course for the University's Chemical Principles course, Chem 12. A relevant laboratory is a source of motivation for the students to learn the chemistry. One way of making the laboratory relevant is to analyze the chemical components of consumer products. Several new shower-cleaning products have been introduced, which advertise that cleaning the shower is no longer necessary. The cleaners work using a combination of surfactants, alcohols, and a chelating agent. The Web site of a popular shower cleaner lists EDTA (ethylenediamine tetraacetate ion) as the chelating agent. The classic EDTA/calcium complexometric titration can be used to determine the EDTA content of the cleaner. This article describes the experiment to determine the EDTA content in a shower-cleaning product.

  7. Mechanisms before Reactions: A Mechanistic Approach to the Organic Chemistry Curriculum Based on Patterns of Electron Flow

    ERIC Educational Resources Information Center

    Flynn, Alison B.; Ogilvie, William W.

    2015-01-01

    A significant redesign of the introductory organic chemistry curriculum at the authors' institution is described. There are two aspects that differ greatly from a typical functional group approach. First, organic reaction mechanisms and the electron-pushing formalism are taught before students have learned a single reaction. The conservation of…

  8. Organic Photovoltaics: An Early Innovator Michael McGehee and the Chemistry of Materials' 1k Club

    E-print Network

    McGehee, Michael

    Organic Photovoltaics: An Early Innovator Michael McGehee and the Chemistry of Materials' 1k Club "Conjugated Polymer Photovoltaic Cells", with graduate student Kevin M. Coakley.1 It was still very early for organic photovoltaics (OPV), and this review became the "go-to" article that drew together what was known

  9. Designing Undergraduate-Level Organic Chemistry Instructional Problems: Seven Ideas from a Problem-Solving Study of Practicing Synthetic Organic Chemists

    ERIC Educational Resources Information Center

    Raker, Jeffrey R.; Towns, Marcy H.

    2012-01-01

    The development of curricular problems based on the practice of synthetic organic chemistry has not been explored in the literature. Such problems have broadly been hypothesized to promote student persistence and interest in STEM fields. This study reports seven ideas about how practice-based problems can be developed for sophomore-level organic

  10. Aligning the Undergraduate Organic Laboratory Experience with Professional Work: The Centrality of Reliable and Meaningful Data

    ERIC Educational Resources Information Center

    Alaimo, Peter J.; Langenhan, Joseph M.; Suydam, Ian T.

    2014-01-01

    Many traditional organic chemistry lab courses do not adequately help students to develop the professional skills required for creative, independent work. The overarching goal of the new organic chemistry lab series at Seattle University is to teach undergraduates to think, perform, and behave more like professional scientists. The conversion of…

  11. Pollution Prevention Plan for the Y-12 Analytical Chemistry Organization Off-Site Union Valley Facility

    SciTech Connect

    Jackson, J. G.

    2010-03-01

    The Y-12 Analytical Chemistry Organization (ACO) Off-Site Union Valley Facility (Union Valley Facility) is managed by Babcock and Wilcox Technical Services Y-12, L.L.C. (B and W Y-12) through the Y-12 National Security Complex organization. Accordingly, the Y-12 Pollution Prevention Program encompasses the operations conducted at the Union Valley Facility. The Y-12 Program is designed to fully comply with state, federal and U.S. Department of Energy (DOE) requirements concerning waste minimization/pollution prevention as documented in the Y-12 Pollution Prevention Program Plan. The Program is formulated to reduce the generation and toxicity of all Y-12 wastes in all media, including those wastes generated by the Union Valley Facility operations. All regulatory and DOE requirements are met by the Y-12 Program Plan.

  12. Organic chemistry on planetary satellites around the gas giants and implications for habitability

    NASA Astrophysics Data System (ADS)

    Coustenis, Athena

    2015-08-01

    The icy satellites of the outer solar system present a variety of chemical compositions where initial complements of ices, minerals, and elements provided during formation have been subjected to various internal and external processes. Additional material has been gained via cometary and meteoritic infall, transfer of material between satellites and magnetospheric interactions. Exchanges also occur between the surface and the interior.Organic compounds have been detected on several of our Solar System’s satellites around the gas giant planets, each with unique characteristics as to organic chemistry. Jupiter’s Europa, Ganymede and Callisto show evidence of undersurface layers of liquid water that offer potentially interesting environments for organic synthesis. Spectra obtained by Galileo’s NIMS show absorption bands indicative of C-H and C?N organic compounds. Potential organics on the large Galilean moons include CO2, carbonic acid and different kinds of carbonates, hydrocarbons and nitriles.Saturn’s Titan is a chemical factory, where the mother molecules N2 (at about 95%), CH4 (at 1.5-5%) and H2 (at 0.1%) produce a host of hydrocarbons and nitriles. The Cassini-Huygens mission has shown Titan to be indeed very rich in organic molecules, which are formed in the upper atmosphere and then deposited on the surface. Some of these species are of prebiotic importance, such as C6H6, HC3N and HCN. Titan's surface displays unique geomorphological features while it probably overlies an internal liquid water ocean. The organic deposits, if in contact with the underground liquid water could undergo an aqueous chemistry that could replicate aspects of life’s origins. Enceladus, a smaller moon of Saturn, ejects large amounts of water and organics in the space from plumes located in its southern pole. The implied requirement for liquid water reservoirs under its surface, significantly broadens the diversity of solar system environments which could be habitable worlds.References: [1] Coustenis, A., Tokano, T., Burger, M. H., et al., 2010. Space Sci. Rev. 153, 155-184. [2] Coustenis and Encrenaz, 2013, CUP, ISBN: 9781107026179.

  13. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and experiments for chemistry. Topics include superheavy elements, polarizing power and chemistry of alkali metals, particulate carbon from combustion, tips for the chemistry laboratory, interesting/colorful experiments, behavior of bismuth (III) iodine, and…

  14. Do Long-Term Changes in Organic Matter Inputs to Forest Soils Affect Dissolved Organic Matter Chemistry and Export?

    NASA Astrophysics Data System (ADS)

    Lajtha, K.; Strid, A.; Lee, B. S.

    2014-12-01

    Dissolved organic matter (DOM) production and transport play an important role in regulating organic matter (OM) distribution through a soil profile and ultimately, OM stabilization or export to aquatic systems. The contributions of varying OM inputs to the quality and amount of DOM as it passes through a soil profile remain relatively unknown. The Detrital Input and Removal Treatment (DIRT) site at the H. J. Andrews Experimental Forest in Oregon has undergone 17 years of litter, wood and root input manipulations and allows us to guage shifts in DOM chemistry induced by long-term changes to aboveground and belowground OM additions and exclusions. Using fluorescence and UV spectroscopy to characterize fluorescent properties, extent of decomposition, and sources of DOM in streams and soil solutions collected with lysimeters and soil extractions, we have assessed the importance of fresh OM inputs to DOM chemistry. Soil extracts from DIRT plots had a higher fluorescence index (FI) than lysimeter solutions or stream water. A high FI in surface water is generally interpreted as indicative of a high proportion of microbially-derived DOM. However, we suspect that the high FI in soil extracts is due to a higher proportion of non-aromatic DOM from fresh soil that microorganisms consume in transit through the soil profile to lysimeters or to streams. High redox index (RI) values were observed in lysimeters from the April 2014 sampling compared with the November 2013 sampling. These RI values show evidence of more reducing conditions at the end of the rainy season in the spring compared to the onset of the rainy season in the fall. Lysimeter water collected in No Input, No Litter, and No Root treatments contained high proportions of protein, suggesting the absence of carbon inputs changes activities of the microbial community. Observed variations reflect the viability of using fluorescent properties to explore the terrestrial-aquatic interface.

  15. The fate or organic matter during planetary accretion - Preliminary studies of the organic chemistry of experimentally shocked Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Tingle, Tracy N.; Tyburczy, James A.; Ahrens, Thomas J.; Becker, Christopher H.

    1992-01-01

    The fate of organic matter in carbonaceous meteorites during hypervelocity (1-2 km/sec) impacts is investigated using results of experiments in which three samples of the Murchison (CM2) carbonaceous chondrite were shocked to 19, 20, and 36 GPa and analyzed by highly sensitive thermal-desorption photoionization mass spectrometry (SALI). The thermal-desorptive SALI mass spectra of unshocked CM2 material revealed presence of indigenous aliphatic, aromatic, sulfur, and organosulfur compounds, and samples shocked to about 20 GPa showed little or no loss of organic matter. On the other hand, samples shocked to 36 GPa exhibited about 70 percent loss of organic material and a lower alkene/alkane ratio than did the starting material. The results suggest that it is unlikely that the indigenous organic matter in carbonaceous chondritelike planetesimals could have survived the impact on the earth in the later stages of earth's accretion.

  16. Ten years of measurements from the Atmospheric Chemistry Experiment Satellite Mission

    NASA Astrophysics Data System (ADS)

    Walker, Kaley; McElroy, C. Thomas; Bernath, Peter F.; Boone, Chris

    Recently, the Canadian-led Atmospheric Chemistry Experiment (ACE) satellite mission has completed a decade of measurements from orbit. This Canadian-led scientific satellite uses infrared and UV-visible spectroscopy to investigate the chemistry and dynamics of the Earth's atmosphere. The primary instrument on-board, the ACE Fourier Transform Spectrometer (ACE-FTS) is a high-resolution (0.02 cm (-1) ) FTS operating between 750 and 4400 cm (-1) . It also contains two filtered imagers (0.525 and 1.02 microns) to measure atmospheric extinction due to clouds and aerosols. The second instrument is a dual UV-visible-NIR spectrophotometer called ACE-MAESTRO (Measurements of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) which extends the ACE wavelength coverage to the 280-1030 nm spectral region. The ACE instruments make solar occultation measurements from which altitude profiles of atmospheric trace gas species, temperature and pressure are retrieved. The 650 km altitude, 74 degree circular orbit provides global measurement coverage with a focus on the Arctic and Antarctic regions. These results are being used for studies relating to ozone depletion, climate-chemistry coupling and air pollution. As well, the decade long time series has been used to investigate trends in atmospheric constituents. This presentation will give an overview of the mission status and will provide a survey of the scientific results obtained from ACE.

  17. Chemistry of decomposition of freshwater wetland sedimentary organic material during ramped pyrolysis

    NASA Astrophysics Data System (ADS)

    Williams, E. K.; Rosenheim, B. E.

    2011-12-01

    Ramped pyrolysis methodology, such as that used in the programmed-temperature pyrolysis/combustion system (PTP/CS), improves radiocarbon analysis of geologic materials devoid of authigenic carbonate compounds and with low concentrations of extractable authochthonous organic molecules. The approach has improved sediment chronology in organic-rich sediments proximal to Antarctic ice shelves (Rosenheim et al., 2008) and constrained the carbon sequestration potential of suspended sediments in the lower Mississippi River (Roe et al., in review). Although ramped pyrolysis allows for separation of sedimentary organic material based upon relative reactivity, chemical information (i.e. chemical composition of pyrolysis products) is lost during the in-line combustion of pyrolysis products. A first order approximation of ramped pyrolysis/combustion system CO2 evolution, employing a simple Gaussian decomposition routine, has been useful (Rosenheim et al., 2008), but improvements may be possible. First, without prior compound-specific extractions, the molecular composition of sedimentary organic matter is unknown and/or unidentifiable. Second, even if determined as constituents of sedimentary organic material, many organic compounds have unknown or variable decomposition temperatures. Third, mixtures of organic compounds may result in significant chemistry within the pyrolysis reactor, prior to introduction of oxygen along the flow path. Gaussian decomposition of the reaction rate may be too simple to fully explain the combination of these factors. To relate both the radiocarbon age over different temperature intervals and the pyrolysis reaction thermograph (temperature (°C) vs. CO2 evolved (?mol)) obtained from PTP/CS to chemical composition of sedimentary organic material, we present a modeling framework developed based upon the ramped pyrolysis decomposition of simple mixtures of organic compounds (i.e. cellulose, lignin, plant fatty acids, etc.) often found in sedimentary organic material to account for changes in thermograph shape. The decompositions will be compositionally verified by 13C NMR analysis of pyrolysis residues from interrupted reactions. This will allow for constraint of decomposition temperatures of individual compounds as well as chemical reactions between volatilized moieties in mixtures of these compounds. We will apply this framework with 13C NMR analysis of interrupted pyrolysis residues and radiocarbon data from PTP/CS analysis of sedimentary organic material from a freshwater marsh wetland in Barataria Bay, Louisiana. We expect to characterize the bulk chemical composition during pyrolysis and as well as diagenetic changes with depth. Most importantly, we expect to constrain the potential and the limitations of this modeling framework for application to other depositional environments.

  18. Adsorption of amino acids and nucleic acid bases onto minerals: a few suggestions for prebiotic chemistry experiments

    NASA Astrophysics Data System (ADS)

    Zaia, Dimas A. M.

    2012-10-01

    Amino acids and nucleic acid bases are very important for the living organisms. Thus, their protection from decomposition, selection, pre-concentration and formation of biopolymers are important issues for understanding the origin of life on the Earth. Minerals could have played all of these roles. This paper discusses several aspects involving the adsorption of amino acids and nucleic acid bases onto minerals under conditions that could have been found on the prebiotic Earth; in particular, we recommend the use of minerals, amino acids, nucleic acid bases and seawater ions in prebiotic chemistry experiments. Several experiments involving amino acids, nucleic acid bases, minerals and seawater ions are also suggested, including: (a) using well-characterized minerals and the standardization of the mineral synthesis methods; (b) using primary chondrite minerals (olivine, pyroxene, etc.) and clays modified with metals (Cu, Fe, Ni, Mo, Zn, etc.); (c) determination of the possible products of decomposition due to interactions of amino acids and nucleic acid bases with minerals; (d) using minerals with more organophilic characteristics; (e) using seawaters with different concentrations of ions (i.e. Na+, Ca2+, Mg2+, SO4 2- and Cl-) (f) using non-protein amino acids (AIB, ?-ABA, ?-ABA, ?-ABA and ?-Ala and g) using nucleic acid bases other than adenine, thymine, uracil and cytosine. These experiments could be useful to clarify the role played by minerals in the origin of life on the Earth.

  19. Water and complex organic chemistry in the cold dark cloud Barnard 5: Observations and Models

    NASA Astrophysics Data System (ADS)

    Wirström, Eva; Charnley, Steven B.; Taquet, Vianney; Persson, Carina M.

    2015-08-01

    Studies of complex organic molecule (COM) formation have traditionally been focused on hot cores in regions of massive star formation, where chemistry is driven by the elevated temperatures - evaporating ices and allowing for endothermic reactions in the gas-phase. As more sensitive instruments have become available, the types of objects known to harbour COMs like acetaldehyde (CH3CHO), dimethyl ether (CH3OCH3), methyl formate (CH3OCHO), and ketene (CH2CO) have expanded to include low mass protostars and, recently, even pre-stellar cores. We here report on the first in a new category of objects harbouring COMs: the cold dark cloud Barnard 5 where non-thermal ice desorption induce complex organic chemistry entirely unrelated to local star-formation.Methanol, which only forms efficiently on the surfaces of dust grains, provide evidence of efficient non-thermal desorption of ices in the form of prominent emission peaks offset from protostellar activity and high density tracers in cold molecular clouds. A study with Herschel targeting such methanol emission peaks resulted in the first ever detection of gas-phase water offset from protostellar activity in a dark cloud, at the so called methanol hotspot in Barnard 5.To model the effect a transient injection of ices into the gas-phase has on the chemistry of a cold, dark cloud we have included gas-grain interactions in an existing gas-phase chemical model and connected it to a chemical reaction network updated and expanded to include the formation and destruction paths of the most common COMs. Results from this model will be presented.Ground-based follow-up studies toward the methanol hotspot in B5 have resulted in the detection of a number of COMs, including CH2CO, CH3CHO, CH3OCH3, and CH3OCHO, as well as deuterated methanol (CH2DOH). Observations have also confirmed that COM emission is extended and not localised to a core structure. The implications of these observational and theoretical studies of B5 will be discussed in the context of the gas-grain interaction in dark clouds and its relation to the chemistry of the earliest phases of low-mass star formation.

  20. Global tropospheric experiment at the Hong Kong Atmosphere Chemistry Measurement Station

    NASA Technical Reports Server (NTRS)

    Carroll, Mary Ann; Wang, Tao

    1995-01-01

    The major activities of the Global Tropospheric Experiment at the Hong Kong Atmospheric Chemistry Measurement Station are presented for the period 1 January - 31 December 1995. Activities included data analysis, reduction, and archiving of atmospheric measurements and sampling. Sampling included O3, CO, SO2, NO, TSP, RSP, and ozone column density. A data archive was created for the surface meteorological data. Exploratory data analysis was performed, including examination of time series, frequency distributions, diurnal variations and correlation. The major results have been or will be published in scientific journals as well as presented at conferences/workshops. Abstracts are attached.