Science.gov

Sample records for organic compound contamination

  1. Bibliography on contaminants and solubility of organic compounds in oxygen

    NASA Technical Reports Server (NTRS)

    Ordin, P. M. (Compiler)

    1975-01-01

    A compilation of a number of document citations is presented which contains information on contaminants in oxygen. Topics covered include contaminants and solubility of organic compounds in oxygen, reaction characteristics of organic compounds with oxygen, and sampling and detection limits of impurities. Each citation in the data bank contains many items of information about the document. Some of the items are title, author, abstract, corporate source, description of figures pertinent to hazards or safety, key references, and descriptors (keywords) by which the document can be retrieved. Each citation includes an evaluation of the technical contents as to being good/excellent, acceptable, or poor. The descriptors used to define the contents of the documents and subsequently used in the computerized search operations were developed for the cryogenic fluid safety by experts in the cryogenics field.

  2. ORGANIC CONTAMINANTS

    EPA Science Inventory

    Organic pollutants may constitute the most widespread waste loadings into the waters of Lake Superior. There are essentially three categories of organic contaminants. The first grouping consists of those organic compounds that readily degrade biologically or chemically. The secon...

  3. Organic Compounds in Martian Meteorites May Be Terrestrial Contaminants

    NASA Astrophysics Data System (ADS)

    Jull, A. J. T.

    1998-02-01

    In 1996, David McKay and coworkers reported evidence suggesting the possibility of fossils in the Martian meteorite ALH84001 (see PSRD article "Life on Mars"). This work has stimulated much discussion as to the nature and origin of organic material in ALH84001, another Martian meteorite, EET79001, and other Martian meteorites in general. My colleagues C. Courtney, D. A. Jeffrey, and J. W. Beck and I have been investigating the origin of the organic compounds by measuring the abundances of the isotopes of carbon (C) using accelerator mass spectrometry (AMS). Important clues to the origin of the organic material can be obtained from the amounts of 14C (frequently nicknamed radiocarbon) and the relative amounts of 13C and 12C. Our analyses indicate that at least 80% of the organic material in ALH84001 is from Earth, not Mars, casting doubt on the hypothesis the meteorite contains a record of fossil life on Mars.

  4. Volatile organic silicon compounds: the most undesirable contaminants in biogases.

    PubMed

    Ohannessian, Aurélie; Desjardin, Valérie; Chatain, Vincent; Germain, Patrick

    2008-01-01

    Recently a lot of attention has been focused on volatile organic silicon compounds (VOSiC) present in biogases. They induce costly problems due to silicate formation during biogas combustion in valorisation engine. The cost of converting landfill gas and digester gas into electricity is adversely affected by this undesirable presence. VOSiC in biogases spark off formation of silicate deposits in combustion chambers. They engender abrasion of the inner surfaces leading to serious damage, which causes frequent service interruptions, thus reducing the economic benefit of biogases. It is already known that these VOSiC originate from polydimethylsiloxanes (PDMS) hydrolysis. PDMS (silicones) are used in a wide range of consumer and industrial applications. PDMS are released into the environment through landfills and wastewater treatment plants. There is a lack of knowledge concerning PDMS biodegradation during waste storage. Consequently, understanding PDMS behaviour in landfill cells and in sludge digester is particularly important. In this article, we focused on microbial degradation of PDMS through laboratory experiments. Preliminary test concerning anaerobic biodegradation of various PDMS have been investigated. Results demonstrate that the biotic step has an obvious influence on PDMS biodegradation. PMID:19029718

  5. Partitioning of Organic Contaminants and Tracer Compounds in a CO2-Brine System at High Salinities

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Kharaka, Y. K.; Rosenbauer, R. J.; Janesko, D.; Trutna, J.

    2011-12-01

    Nonionic chemical species including gases and organic compounds partition between the fluid CO2 phase and the aqueous phase in geologic carbon sequestration systems. The injection and migration of CO2 in geologic carbon sequestration systems covers a wide range of pressure and temperature, so it is important to understand the partitioning of these compounds at various P-T conditions and salinities. Geochemical data is particularly lacking for the partitioning of organic contaminant compounds and tracer compounds between highly saline brines and CO2. Most groundwater is relatively low in organic contaminants; however, groundwater associated with hydrocarbon migration pathways, enhanced oil recovery (EOR), and hydrocarbon storage or extraction can contain high concentrations of known organic contaminants. CO2 injection in these systems may therefore be more likely to result in partitioning of contaminants into the CO2 phase that could, upon migration, represent an important risk to groundwater resources. We present the experimental apparatus and determination of partition coefficients between brine and CO2 for a suite of compounds including benzene, toluene, ethylbenzene, xylene (BTEX), and low molecular weight polynuclear aromatic hydrocarbons (PAHs). In addition, partition coefficients are determined for the important gas phase tracer compounds: SF6 and Krypton covering a P-T envelope consistent with CO2 injection and plume migration to the near surface.

  6. Analysis of industrial contaminants in indoor air: part 1. Volatile organic compounds, carbonyl compounds, polycyclic aromatic hydrocarbons and polychlorinated biphenyls.

    PubMed

    Barro, Ruth; Regueiro, Jorge; Llompart, María; Garcia-Jares, Carmen

    2009-01-16

    This article reviews recent literature on the analysis of industrial contaminants in indoor air in the framework of the REACH project, which is mainly intended to improve protection of human health and the environment from the risks of more than 34 millions of chemical substances. Industrial pollutants that can be found in indoor air may be of very different types and origin, belonging to the volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) categories. Several compounds have been classified into the priority organic pollutants (POPs) class such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins and furans (PCDD/PCDFs) and related polychlorinated compounds, and polycyclic aromatic hydrocarbons (PAHs). Many of these compounds are partially associated to the air gas phase, but also to the suspended particulate matter. Furthermore, settled dust can act as a concentrator for the less volatile pollutants and has become a matrix of great concern for indoors contamination. Main literature considered in this review are papers from the last 10 years reporting analytical developments and applications regarding VOCs, aldehydes and other carbonyls, PCBs, PCDDs, PCDFs, and PAHs in the indoor environment. Sample collection and pretreatment, analyte extraction, clean-up procedures, determination techniques, performance results, as well as compound concentrations in indoor samples, are summarized and discussed. Emergent contaminants and pesticides related to the industrial development that can be found in indoor air are reviewed in a second part in this volume. PMID:19019381

  7. Preliminary evaluation of selected in situ remediation technologies for Volatile Organic Compound contamination at Arid sites

    SciTech Connect

    Lenhard, R.J.; Gerber, M.A.; Amonette, J.E.

    1992-10-01

    To support the Volatile Organic Compounds-Arid Site (VOC-Arid) Integrated Demonstration (ID) in its technical, logistical, institutional, and economical testing of emerging environmental management and restoration technologies. Pacific Northwest Laboratory(a) is evaluating several in situ remediation technologies for possible inclusion in the demonstration. The evaluations are made with respect to the initial focus of the VOC-Arid ID: the carbon tetrachloride contamination at the Hanford Site, where it was disposed to the vadose zone along with other volatile and nonvolatile organic wastes. heavy metals, acids. and radionuclides. The purposes of this report are (1) to identify candidate in situ technologies for inclusion in the program, (2) to evaluate the candidate technologies based on their potential applicability to VOC contamination at arid sites and geologic conditions representative of the ID host site (i.e., Hanford Site), and (3) to prioritize those technologies for future US Department of Energy (DOE) support.

  8. Permeable Adsorptive Barrier (PAB) for the remediation of groundwater simultaneously contaminated by some chlorinated organic compounds.

    PubMed

    Erto, A; Bortone, I; Di Nardo, A; Di Natale, M; Musmarra, D

    2014-07-01

    In this paper, a Permeable Reactive Barrier (PRB) made with activated carbon, namely a Permeable Adsorptive Barrier (PAB), is put forward as an effective technique for the remediation of aquifers simultaneously contaminated by some chlorinated organic compounds. A design procedure, based on a computer code and including different routines, is presented as a tool to accurately describe mass transport within the aquifer and adsorption/desorption phenomena occurring inside the barrier. The remediation of a contaminated aquifer near a solid waste landfill in the district of Napoli (Italy), where Tetrachloroethylene (PCE) and Trichloroethylene (TCE) are simultaneously present, is considered as a case study. A complete hydrological and geotechnical site characterization, as well as a number of dedicated adsorption laboratory tests for the determination of activated carbon PCE/TCE adsorption capacity in binary systems, are carried out to support the barrier design. By means of a series of numerical simulations it is possible to determine the optimal barrier location, orientation and dimensions. PABs appear to be an effective remediation tool for the in-situ treatment of an aquifer contaminated by PCE and TCE simultaneously, as the concentration of both compounds flowing out of the barrier is everywhere lower than the regulatory limits on groundwater quality. PMID:24747934

  9. Contamination of estuarine water, biota, and sediment by halogenated organic compounds: A field study

    USGS Publications Warehouse

    Pereira, W.E.; Rostad, C.E.; Chiou, C.T.; Brinton, T.I.; Barber, L.B., II; Demcheck, D.K.; Demas, C.R.

    1988-01-01

    Studies conducted in the vicinity of an industrial outfall in the Calcasieu River estuary, Louisiana, have shown that water, bottom and suspended sediment, and four different species of biota are contaminated with halogenated organic compounds (HOC) including haloarenes. A "salting-out" effect in the estuary moderately enhanced the partitioning tendency of the contaminants into biota and sediments. Contaminant concentrations in water, suspended sediments, and biota were found to be far below the values predicted on the basis of the assumption of phase equilibria with respect to concentrations in bottom sediment. Relative concentration factors of HOC between biota (catfish) and bottom sediment increased with increasing octanol/estuarine water partition coefficients (Kow*), maximizing at log Kow* of about 5, although these ratios were considerably less than equilibrium values. In contrast, contaminant concentrations in water, biota, and suspended sediments were much closer to equilibrium values. Bioconcentration factors of HOC determined on the basis of lipid content for four different biotic species correlated reasonably well with equilibrium triolein/water partition coefficients (Ktw).

  10. Forensic differentiation of biogenic organic compounds from petroleum hydrocarbons in biogenic and petrogenic compounds cross-contaminated soils and sediments.

    PubMed

    Wang, Zhendi; Yang, C; Kelly-Hooper, F; Hollebone, B P; Peng, X; Brown, C E; Landriault, M; Sun, J; Yang, Z

    2009-02-13

    "Total petroleum hydrocarbons" (TPHs) or "petroleum hydrocarbons" (PHCs) are one of the most widespread soil pollutants in Canada, North America, and worldwide. Clean-up of PHC-contaminated soils and sediments costs the Canadian economy hundreds of million of dollars annually. Much of this activity is driven by the need to meet regulated levels of PHC in soil. These PHC values are legally required to be assessed using standard methods. The method most commonly used in Canada, specified by the Canadian Council of Ministers of the Environment (CCME), measures the total hydrocarbon concentrations in a soil by carbon range (Fraction 1: C(6)-C(10); Fraction 2: C(10)-C(16), Fraction 3: C(16)-C(34): and Fraction 4: C(34)+). Using the CCME method, all of the materials extractible by a mixture of 1:1 hexane:acetone are considered to be petroleum hydrocarbon contaminants. Many hydrocarbon compounds and other extractible materials in soil, however, may originate from non-petroleum sources. Biogenic organic compounds (BOCs) is a general term used to describe a mixture of organic compounds, including alkanes, sterols and sterones, fatty acids and fatty alcohols, and waxes and wax esters, biosynthesized by living organisms. BOCs are also produced during the early stages of diagenesis in recent aquatic sediments. BOC sources could include vascular plants, algae, bacteria and animals. Plants and algae produce BOCs as protective wax coating that are released back into the sediment at the end of their life cycle. BOCs are natural components of thriving plant communities. Many solvent-extraction methods for assessing soil hydrocarbons, however, such as the CCME method, do not differentiate PHCs from BOCs. The naturally occurring organics present in soils and wet sediments can be easily misidentified and quantified as regulated PHCs during analysis using such methods. In some cases, biogenic interferences can exceed regulatory levels, resulting in remediation of petroleum impacts that

  11. Soil-gas contamination and entry of volatile organic compounds into a house near a landfill

    SciTech Connect

    Hodgson, A.T.; Garbesi, K.; Sextro, R.G.; Daisey, J.M. )

    1992-03-01

    Toxic volatile organic compounds (VOC) are commonly found in landfills, including those accepting only municipal waste. These VOC can migrate away from the site through the soil and result in contaminated off-site soil gas. This contaminated soil gas can enter houses built near landfills and is a potential source of human exposure to VOC. This study investigated soil-gas contamination and the mechanisms of entry of VOC into a house with a basement sited adjacent to a municipal landfill. The VOC were identified and quantified in the soil gas and in indoor and outdoor air. Pressure coupling between the basement and the surrounding soil was measured. Using soil-gas tracers, the pressure-driven advective entry of soil gas was quantified as a function of basement depressurization. From the measurements, estimates were made for the diffusive and advective entry rates of VOC into the house. A comparison of the chlorinated hydrocarbons found in soil gas at the site and in the landfill suggests that the landfill is the source of the halogenated compounds in the vicinity of the house. At the conditions of the study, the diffusive and advective entry rates of VOC from soil into the basement were estimated to be low and of similar magnitude. Advective entry of soil gas into the house was limited by the low soil air permeability and the low below-grade leakage area of the basement. For this reason, high indoor concentrations due to the intrusion of VOC from soil gas are unlikely at this house, even under conditions that would produce relatively large underpressures in the basement.

  12. Development in Waste Volume Reduction Technologies for Highly Contaminated Organic Radioactive Compounds

    SciTech Connect

    AKAI, Yoshie; OHMURA, Hisao; FUJIE, Makoto; MONIWA, Shinobu; SEKI, Shuji; YOTSUYANAGI, Tadasu; EBATA, Masaaki; TAKAGI, Junichi

    2006-07-01

    In nuclear facilities, there is highly contaminated organic radioactive waste such as ion exchange resins for water purification in nuclear power plants. In the future, it is desired that this waste be decomposed to reduce the volume and to become stable. Toshiba has developed a waste treatment system using supercritical water. Furthermore, the new demineralization system without using ion exchange resin has been examined. By this new system, it is possible to reduce the volume of ion exchange resin waste. First, supercritical water was applied to the decomposition of ion exchange resin. The supercritical water whose temperature and pressure exceed 647 K and 22 MPa is an excellent solvent for organic compound decomposition, since oxygen and organic compounds can exist in a single homogeneous fluid phase. Organic compounds can be rapidly and completely decomposed using supercritical water. Almost all the reactants can be kept in the water during organic compound decomposition. Therefore, applying supercritical water to treat organic radioactive waste is an attractive proposition. Actual plant-size apparatus was constructed with a treatment capacity of 1 kg of ion exchange resin per hour. The test revealed that more than 99.9% of the ion exchange resin was decomposed at 723 K and 30 MPa. By this system, ion exchange resin decomposes rapidly and completely, and the volume of ion exchange resin waste can be largely reduced. Secondly, the new demineralization system without using ion exchange resin is described. The new demineralization system consists of a filter and a demineralization cell. A metal mesh filter is adopted to remove crud, and the demineralization cell removes ionic impurities. In this system, it is important whether demineralization can take place at high temperature. Thus, this report describes the test results of the new demineralization process. This demineralization cell consists of an anode, a cathode, and a membrane made of inorganic material. The

  13. Medical costs and lost productivity from health conditions at volatile organic compound-contaminated Superfund sites

    SciTech Connect

    Lybarger, J.A.; Spengler, R.F.; Brown, D.R.; Lee, R.; Vogt, D.P. |; Perhac, R.M. Jr. |

    1998-10-01

    This paper estimates the health costs at Superfund sites for conditions associated with volatile organic compounds (VOCs) in drinking water. Health conditions were identified from published literature and registry information as occurring at excess rates in VOC-exposed populations. These health conditions were: (1) some categories of birth defects, (2) urinary tract disorders, (3) diabetes, (4) eczema and skin conditions, (5) anemia, (6) speech and hearing impairments in children under 10 years of age, and (7) stroke. Excess rates were used to estimate the excess number of cases occurring among the total population living within one-half mile of 258 Superfund sites. These sites had evidence of completed human exposure pathways for VOCs in drinking water. For each type of medical condition, an individual`s expected medical costs, long-term care costs, and lost work time due to illness or premature mortality were estimated. Costs were calculated to be approximately $330 million per year, in the absence of any remediation or public health intervention programs. The results indicate the general magnitude of the economic burden associated with a limited number of contaminants at a portion of all Superfund sites, thus suggesting that the burden would be greater than that estimated in this study if all contaminants at all Superfund sites could be taken into account.

  14. Factors Affecting Indoor Air Concentrations of Volatile Organic Compounds at a Site of Subsurface Gasoline Contamination

    SciTech Connect

    Fischer, M.L.; Bentley, A.J.; Dunkin, K.A.; Hodgson, A.T.; Nazaroff, W.W.; Sextro, R.G.; Daisey, J.M.

    1995-11-01

    We report a field study of soil gas transport of volatile organic compounds (VOCs) into a slab-on-grade building found at a site contaminated with gasoline. Although the high VOC concentrations (30-60 g m{sup -3}) measured in the soil gas at depths of 0.7 m below the building suggest a potential for high levels of indoor VOC, the measured indoor air concentrations were lower than those in the soil gas by approximately six orders of magnitude ({approx} 0.03 mg m{sup -3}). This large ratio is explained by (1) the expected dilution of soil gas entering the building via ambient building ventilation (a factor of {approx}1000), and (2) an unexpectedly sharp gradient in soil gas VOC concentration between the depths of 0.1 and 0.7 m (a factor of {approx}1000). Measurements of the soil physical and biological characteristics indicate that a partial physical barrier to vertical transport in combination with microbial degradation provides a likely explanation for this gradient. These factors are likely to be important to varying degrees at other sites.

  15. Associations of free-living bacteria and dissolved organic compounds in a plume of contaminated groundwater

    USGS Publications Warehouse

    Harvey, R.W.; Barber, L.B., II

    1992-01-01

    Associations of free-living bacteria (FLB) and dissolved organic contaminants in a 4-km-long plume of sewage-contaminated groundwater were investigated. Abundance of FLB in the core of the plume (as delineated by maximum specific conductance) steadily decreased in the direction of flow from a point 0.25 km downgradient from the source to the toe of the plume. At 0.25 km downgradient, FLB comprised up to 31% of the total bacterial population, but constituted < 7% of the population at 2 km downgradient. Abundance of FLB correlated strongly (r = 0.80 n = 23) with total dissolved organic carbon (DOC) in contaminated groundwater between 0.64 and 2.1 km downgradient, although distributions of individual contaminants such as di-, tri- and tetrachloroethene were highly variable, and their association with FLB less clear. Numbers of FLB in the downgradient portion of the plume which is contaminated with branched-chain alkylbenzenesulfonate (ABS) surfactants were low (< 5??108/L) in spite of relatively high levels of DOC (up to 4 mg/L). However, abundance of FLB correlated strongly with non-surfactant DOC along vertical transects through the plume. The ratio of FLB to DOC and the ratio of FLB to attached bacteria generally decreased in the direction of flow and, consequently, with the age of the organic contaminants.

  16. Utilization of Electrokinetics in Remediation of Low Permeability Sediments Contaminated With Organic Compounds

    NASA Astrophysics Data System (ADS)

    Reynolds, D. A.; Thomas, D. G.; Jones, E. H.; Yusoff, I.

    2006-12-01

    Remediation of contaminated sites is an inherently difficult and time consuming process for a large number of reasons, some of the most significant being the complexity of stratigraphy and local scale geology across a wide range of scales; the heterogeneity of sedimentary deposits even when considering small scales, and the ineffectiveness of existing technologies. The traditional use of in situ chemical/biological treatments, while successful for remediation in their own right at some sites, have limited application at sites with complex geology and where NAPL is present. Electrokinetics, the migration of charged compounds under an electrical gradient, was investigated in the context of a remediation technique for dissolved phase contamination in low permeability environments. The target contaminant for the study was Trichloroethene (TCE), and the remediation compound was Potassium Permanganate. Experiments were performed in column scale and tank scale apparatuses, where a voltage potential was placed across or within a porous media, and the migration rate measured or visually observed. TCE contaminated cores were subjected to potassium permanganate remediation through diffusion transport alone, and various formulations of voltage potentials. Electrokinetics was found to migrate a dilute solution of potassium permanganate through low permeability porous media, several orders of magnitude faster than diffusion transport alone. The migration rate was found to be directly proportional to the applied voltage, with significant migration factors occurring for field-scale achievable voltages of 1-2 V/cm. The electrokinetic migration was found to be a threshold phenomenon, with a minimum applied voltage being required to offset electroosmotic flux and pore pressure factors. The demonstrated technique has significant potential for the remediation of contaminated low permeability media, through the use of potassium permanganate, and other approaches.

  17. A stepwise procedure for assessment of the microbial respiratory activity of soil samples contaminated with organic compounds.

    PubMed

    Eisentraeger, A; Maxam, G; Rila, J P; Dott, W

    2000-09-01

    Soil respiration measurements are used frequently for the characterization of soil samples. Identical methods are used for the ecotoxicological characterization of contaminated soil samples as well as for quantification of the active microbial biomass in agriculturally used soils. In this study four soil samples contaminated with large amounts of volatile organic compounds, polyaromatic hydrocarbons, or nitroaromatic compounds are characterized after stepwise addition of carbon, nitrogen, and phosphorus. The respiration kinetics are assessed over a period of 5 days. By means of qualitative evaluation of the results, it is demonstrated that this stepwise addition allows one to distinguish between growth-promoting effects of biodegradable organic compounds on the one hand and the toxic influence of these compounds on the other hand. Finally it is stated that a comprehensive ecotoxicological characterization cannot be performed routinely using only one or several parameters of respiration curves. There is need for further research and validation if soil respiration measurements are to be performed quantitatively in the future. PMID:10993705

  18. Phytovolatilization of Organic Contaminants.

    PubMed

    Limmer, Matt; Burken, Joel

    2016-07-01

    Plants can interact with a variety of organic compounds, and thereby affect the fate and transport of many environmental contaminants. Volatile organic compounds may be volatilized from stems or leaves (direct phytovolatilization) or from soil due to plant root activities (indirect phytovolatilization). Fluxes of contaminants volatilizing from plants are important across scales ranging from local contaminant spills to global fluxes of methane emanating from ecosystems biochemically reducing organic carbon. In this article past studies are reviewed to clearly differentiate between direct- and indirect-phytovolatilization and we discuss the plant physiology driving phytovolatilization in different ecosystems. Current measurement techniques are also described, including common difficulties in experimental design. We also discuss reports of phytovolatilization in the literature, finding that compounds with low octanol-air partitioning coefficients are more likely to be phytovolatilized (log KOA < 5). Reports of direct phytovolatilization at field sites compare favorably to model predictions. Finally, future research needs are presented that could better quantify phytovolatilization fluxes at field scale. PMID:27249664

  19. Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant

    USGS Publications Warehouse

    Stackelberg, P.E.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Henderson, A.K.; Reissman, D.B.

    2004-01-01

    In a study conducted by the US Geological Survey and the Centers for Disease Control and Prevention, 24 water samples were collected at selected locations within a drinking-water-treatment (DWT) facility and from the two streams that serve the facility to evaluate the potential for wastewater-related organic contaminants to survive a conventional treatment process and persist in potable-water supplies. Stream-water samples as well as samples of raw, settled, filtered, and finished water were collected during low-flow conditions, when the discharge of effluent from upstream municipal sewage-treatment plants accounted for 37-67% of flow in stream 1 and 10-20% of flow in stream 2. Each sample was analyzed for 106 organic wastewater-related contaminants (OWCs) that represent a diverse group of extensively used chemicals. Forty OWCs were detected in one or more samples of stream water or raw-water supplies in the treatment plant; 34 were detected in more than 10% of these samples. Several of these compounds also were frequently detected in samples of finished water; these compounds include selected prescription and non-prescription drugs and their metabolites, fragrance compounds, flame retardants and plasticizers, cosmetic compounds, and a solvent. The detection of these compounds suggests that they resist removal through conventional water-treatment processes. Other compounds that also were frequently detected in samples of stream water and raw-water supplies were not detected in samples of finished water; these include selected prescription and non-prescription drugs and their metabolites, disinfectants, detergent metabolites, and plant and animal steroids. The non-detection of these compounds indicates that their concentrations are reduced to levels less than analytical detection limits or that they are transformed to degradates through conventional DWT processes. Concentrations of OWCs detected in finished water generally were low and did not exceed Federal

  20. Combined (1)H NMR and LSER study for the compound-specific interactions between organic contaminants and organobentonites.

    PubMed

    Ruan, Xiuxiu; Zhu, Lizhong; Chen, Baoliang; Qian, Guangren; Frost, Ray L

    2015-12-15

    The compound-specific mechanisms for the sorption of organic contaminants onto cetyltrimethylammonium-saturated bentonite (i.e., CTMA-Bentonite) in water were evaluated by (1)H NMR study and Linear Solvation Energy Relationship (LSER) approach. In (1)H NMR study, comparing with pure CTMAB, the up-field shifts of hydrogen peaks for CH2N(+) and CH3N(+) of CTMA(+) in CTMAB-aromatics (1-naphtylamine, aniline and phenol) mixtures are much greater than that in CTMAB-aliphatics (cyclohexanone and cyclohexanol) mixtures. Meanwhile, the peak position of hydrogen on amino- and hydroxyl-groups of aromatic compounds also changes greatly. (1)H NMR data demonstrated the strong molecular interaction between the positive ammonium group of CTMA(+) and the delocalized π-systems of aromatic solutes, whereas the interactions of CTMA(+) with aliphatic compounds having electron-donating groups (such as cyclohexanol and cyclohexanone) or aromatic ring substituted by electron-withdrawing groups (i.e., nitrobenzene) or nonpolar aromatic compounds with single phenyl ring (i.e., toluene) are weak. The derived LSER equation was obtained by a multiple regression of the solid-water sorption coefficients (Kd) of 16 probe solutes upon their solvation parameters, and demonstrates aromatics sorption onto CTMA-Bentonite is concurrently governed by the π-/n-electron pair donor-accepter interaction and the cavity/dispersion interaction, while the predominant mechanism for aliphatic compounds is the cavity/dispersion interaction, consisting with the (1)H NMR results. PMID:26319328

  1. Sorption studies of VOCs (volatile organic compounds) related to soil/ground water contamination at LLNL (Lawrence Livermore National Laboratory)

    SciTech Connect

    Bishop, D.J.; Knezovich, J.P.; Rice, D.W. Jr.

    1989-08-01

    In 1980, Lawrence Livermore National Laboratory (LLNL) initiated a preliminary ground water study beneath and in the vicinity of the LLNL site in Livermore, California. Findings from that study indicated that volatile organic compounds (VOCs), primarily tetrachloroethylene (PCE) and trichloroethylene (TCE), were present in local ground water. Subsequent sampling results showed several locations with VOCs in the parts-per-billion range, and three areas where parts-per-million concentrations were detected. Subsequently, more than 200 wells were drilled and tested during investigations to assess the lateral and stratigraphic extent of ground water contamination and to understand the hydrogeologic characteristics under the Laboratory and adjacent affected areas. Although PCE and TCE predominate, dichloroethanes, dichloroethylenes, and carbon tetrachloride have been detected in ground water at concentrations exceeding California Department of Health Services recommended action levels. In order to predict the rate and extent of movement of the VOCs in ground water, it is essential to understand the sorptive properties of these compounds in relation to the subsurface soils that exist in this area. TCE and PCE were selected for study initially because of their predominance in the contaminant plume. Additional tests were performed using 1,2-dichloroethane (DCA), 1,2-dichloroethene (DCE), and chloroform (CF). 28 refs., 4 figs., 7 tabs.

  2. Characterization of a Wide Array of Fluorinated Organic Compounds in Contaminated Soils

    EPA Science Inventory

    Herein we report the results of analyses on the concentrations of perfluorinated compounds (PFCs) and fluorotelomer alcohols (FTOHs) in soils from a site that has been impacted by human activities. Soil samples were collected from several locations that had been impacted and one...

  3. Release of oxide-bound toxic metals by naturally-occurring and contaminant-derived organic compounds: The role of complexant, reductant, and adsorptive characteristics. Final report, July 1, 1994--June 31, 1997

    SciTech Connect

    Stone, A.T.

    1997-12-31

    Natural organic compounds and contaminant-derived organic compounds can substantially alter the speciation and geochemical behavior of contaminant metals in subsurface environments. The goal, as part of the Co-Contaminant Subprogram, was to: (1) develop analytical methods for identifying and quantifying organic compounds affecting toxic metal speciation; (2) evaluate their reductant, complexant, and adsorptive characteristics of organic compounds with regards to important contaminant metals; (3) determine reaction kinetics, mechanisms, and energetics for metal-organic interactions; and (4) provide the basis for predicting toxic metal oxidation state, speciation, and mobility.

  4. Organic contaminant separator

    DOEpatents

    Del Mar, Peter; Hemberger, Barbara J.

    1991-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a polyolefin tube having an internal diameter of from about 0.01 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the tube, (b) passing a solvent through the tube, said solvent capable of separating the adhered organic contaminant from the tube. Further, a chromatographic apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a polyolefin tube having an internal diameter of from about 0.01 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the tube is disclosed.

  5. Design and evaluation of a field study on the contamination of selected volatile organic compounds and wastewater-indicator compounds in blanks and groundwater samples

    USGS Publications Warehouse

    Thiros, Susan A.; Bender, David A.; Mueller, David K.; Rose, Donna L.; Olsen, Lisa D.; Martin, Jeffrey D.; Bernard, Bruce; Zogorski, John S.

    2011-01-01

    The Field Contamination Study (FCS) was designed to determine the field processes that tend to result in clean field blanks and to identify potential sources of contamination to blanks collected in the field from selected volatile organic compounds (VOCs) and wastewater-indicator compounds (WICs). The VOCs and WICs analyzed in the FCS were detected in blanks collected by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program during 1996-2008 and 2002-08, respectively. To minimize the number of variables, the study required ordering of supplies just before sampling, storage of supplies and equipment in clean areas, and use of adequate amounts of purge-and-trap volatile-grade methanol and volatile pesticide-grade blank water (VPBW) to clean sampling equipment and to collect field blanks. Blanks and groundwater samples were collected during 2008-09 at 16 sites, which were a mix of water-supply and monitoring wells, located in 9 States. Five different sample types were collected for the FCS at each site: (1) a source-solution blank collected at the USGS National Water Quality Laboratory (NWQL) using laboratory-purged VPBW, (2) source-solution blanks collected in the field using laboratory-purged VPBW, (3) source-solution blanks collected in the field using field-purged VPBW, (4) a field blank collected using field-purged VPBW, and (5) a groundwater sample collected from a well. The source-solution blank and field-blank analyses were used to identify, quantify, and document extrinsic contamination and to help determine the sources and causes of data-quality problems that can affect groundwater samples. Concentrations of compounds detected in FCS analyses were quantified and results were stored in the USGS National Water Information System database after meeting rigorous identification and quantification criteria. The study also utilized information provided by laboratory analysts about evidence indicating the presence of selected compounds

  6. A Guide for Assessing Biodegradation and Source Identification of Organic Groundwater Contaminants Using Compound Specific Isotope Analysis (CSIA)

    EPA Science Inventory

    When organic contaminants are degraded in the environment, the ratio of stable isotopes will often change, and the extent of degradation can be recognized and predicted from the change in the ratio of stable isotopes. Recent advances in analytical chemistry make it possible to p...

  7. Organic contaminant separator

    DOEpatents

    Del Mar, P.

    1993-12-28

    A process is presented of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube. The solvent is capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus is presented for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium. The apparatus includes a composite tube comprised of a blend of a polyolefin and a polyester. The composite tube has an internal diameter of from about 0.1 to about 2.0 millimeters and has sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube. 2 figures.

  8. Organic contaminant separator

    DOEpatents

    Del Mar, Peter

    1993-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.

  9. Organic contaminant separator

    DOEpatents

    Mar, Peter D.

    1994-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube including a polymeric base material selected from the group of polyolefins and polyfluorocarbons and particles of a carbon allotrope material adfixed to the inner wall of the polymeric base material, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.

  10. Organic contaminant separator

    DOEpatents

    Del Mar, Peter

    1995-01-01

    A process of sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium by (a) passing an initial aqueous medium including a minor amount of the organic contaminant through a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit the organic contaminant to adhere to the composite tube, (b) passing a solvent through the composite tube, said solvent capable of separating the adhered organic contaminant from the composite tube. Further, an extraction apparatus for sample preparation prior to analysis for the concentration of an organic contaminant in an aqueous medium, said apparatus including a composite tube comprised of a blend of a polyolefin and a polyester, the composite tube having an internal diameter of from about 0.1 to about 2.0 millimeters and being of sufficient length to permit an organic contaminant contained within an aqueous medium passed therethrough to adhere to the composite tube is disclosed.

  11. Real-Time and Delayed Analysis of Tree and Shrub Cores as Indicators of Subsurface Volatile Organic Compound Contamination, Durham Meadows Superfund Site, Durham, Connecticut, August 29, 2006

    USGS Publications Warehouse

    Vroblesky, Don A.; Willey, Richard E.; Clifford, Scott; Murphy, James J.

    2008-01-01

    This study examined volatile organic compound concentrations in cores from trees and shrubs for use as indicators of vadose-zone contamination or potential vapor intrusion by volatile organic compounds into buildings at the Durham Meadows Superfund Site, Durham, Connecticut. The study used both (1) real-time tree- and shrub-core analysis, which involved field heating the core samples for 5 to 10 minutes prior to field analysis, and (2) delayed analysis, which involved allowing the gases in the cores to equilibrate with the headspace gas in the sample vials unheated for 1 to 2 days prior to analysis. General correspondence was found between the two approaches, indicating that preheating and field analysis of vegetation cores is a viable approach to real-time monitoring of subsurface volatile organic compounds. In most cases, volatile organic compounds in cores from trees and shrubs at the Merriam Manufacturing Company property showed a general correspondence to the distribution of volatile organic compounds detected in a soil-gas survey, despite the fact that most of the soil-gas survey data in close proximity to the relevant trees were collected about 3 years prior to the tree-core collection. Most of the trees cored at the Durham Meadows Superfund Site, outside of the Merriam Manufacturing Company property, contained no volatile organic compounds and were in areas where indoor air sampling and soil-gas sampling showed little or no volatile organic compound concentrations. An exception was tree DM11, which contained barely detectable concentrations of trichloroethene near a house where previous investigations found low concentrations of trichloroethene (0.13 to 1.2 parts per billion by volume) in indoor air and 7.7 micrograms per liter of trichloroethene in the ground water. The barely detectable concentration of trichloroethene in tree DM11 and the lack of volatile organic compound detection in nearby tree DM10 (adjacent to the well having 7.7 micrograms of

  12. Evaluation of performance reference compounds (PRCs) to monitor emerging polar contaminants by polar organic chemical integrative samplers (POCIS) in rivers.

    PubMed

    Carpinteiro, Inmaculada; Schopfer, Adrien; Estoppey, Nicolas; Fong, Camille; Grandjean, Dominique; de Alencastro, Luiz F

    2016-02-01

    In this work, a method combining polar organic chemical integrative samplers (POCIS) and ultraperformance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) was assessed for the determination of two corrosion inhibitors (benzotriazole and methylbenzotriazole), seven pesticides (atrazine, diuron, isoproturon, linuron, metolachlor, penconazole, terbuthylazine), and four pharmaceuticals (carbamazepine, diclofenac, metformin, sulfamethoxazole) in river water. As a first step, two POCIS sorbents, hydrophilic-lipophilic balance (HLB) and Strata X-CW, were compared. The comparison of the uptake profiles of the studied compounds showed that the HLB sorbent provides better uptake (higher sampled amount and better linearity) than Strata X-CW except for the basic compound metformin. Since the sampling rate (R s) of POCIS depends on environmental factors, seven compounds were evaluated as potential performance reference compounds (PRCs) through kinetic experiments. Deisopropylatrazine-d5 (DIA-d5) and, as far as we know, for the first time 4-methylbenzotriazole-d3 showed suitable desorption. The efficiency of both compounds to correct for the effect of water velocity was shown using a channel system in which POCIS were exposed to 2 and 50 cm s(-1). Finally, POCIS were deployed upstream and downstream of agricultural wine-growing and tree-growing areas in the Lienne River and the Uvrier Canal (Switzerland). The impact of the studied areas on both streams could be demonstrated. PMID:26637214

  13. REMOVAL OF ORGANIC CONTAMINANTS

    EPA Science Inventory

    This research program was performed with the overall objectives of obtaining relevant design parameters and capital and operating costs of both adsorption and various aeration techniques for the removal of specific organic contaminants from the City of Glen Cove's drinking water ...

  14. Ecotoxicology of organic contaminants to amphibians

    USGS Publications Warehouse

    Sparling, D.W.

    2000-01-01

    The effects of organic contaminants on amphibians are poorly known but of considerable interest. These contaminants include the highly toxic dioxins and furans as well as PCBs, PAHs and organochlorine pesticides. Although these compounds may have lower acute toxicity than dioxins and furans, they have been implicated in several problems associated with genotoxicity, endocrine disruption, malformations and reduced growth. There is evidence that amphibian tadpoles bioaccumulate these organic compounds and may have biological concentrating factors ranging in the hundreds. This chapter reviews what is known about the effects and concentrations of organic contaminants in amphibians and provides recommendations for further research

  15. Catalytic Destruction Of Toxic Organic Compounds

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.

    1990-01-01

    Proposed process disposes of toxic organic compounds in contaminated soil or carbon beds safely and efficiently. Oxidizes toxic materials without producing such other contaminants as nitrogen oxides. Using air, fuel, catalysts, and steam, system consumes less fuel and energy than decontamination processes currently in use. Similar process regenerates carbon beds used in water-treatment plants.

  16. Biofiltration of volatile organic compounds.

    PubMed

    Malhautier, Luc; Khammar, Nadia; Bayle, Sandrine; Fanlo, Jean-Louis

    2005-07-01

    The removal of volatile organic compounds (VOCs) from contaminated airstreams has become a major air pollution concern. Improvement of the biofiltration process commonly used for the removal of odorous compounds has led to a better control of key parameters, enabling the application of biofiltration to be extended also to the removal of VOCs. Moreover, biofiltration, which is based on the ability of micro-organisms to degrade a large variety of compounds, proves to be economical and environmentally viable. In a biofilter, the waste gas is forced to rise through a layer of packed porous material. Thus, pollutants contained in the gaseous effluent are oxidised or converted into biomass by the action of microorganisms previously fixed on the packing material. The biofiltration process is then based on two principal phenomena: (1) transfer of contaminants from the air to the water phase or support medium, (2) bioconversion of pollutants to biomass, metabolic end-products, or carbon dioxide and water. The diversity of biofiltration mechanisms and their interaction with the microflora mean that the biofilter is defined as a complex and structured ecosystem. As a result, in addition to operating conditions, research into the microbial ecology of biofilters is required in order better to optimise the management of such biological treatment systems. PMID:15803311

  17. Organic compounds in meteorites

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.

    1980-01-01

    Recent studies of carbonaceous chondrites provide evidence that certain organic compounds are indigenous and the result of an abiotic, chemical synthesis. The results of several investigators have established the presence of amino acids and precursors, mono- and dicarboxylic acids, N-heterocycles, and hydrocarbons as well as other compounds. For example, studies of the Murchison and Murray meteorites have revealed the presence of at least 40 amino acids with nearly equal abundances of D and L isomers. The population consists of both protein and nonprotein amino acids including a wide variety of linear, cyclic, and polyfunctional types. Results show a trend of decreasing concentration with increasing carbon number, with the most abundant being glycine (41 n Moles/g). These and other results to be reviewed provide persuasive support for the theory of chemical evolution and provide the only natural evidence for the protobiological subset of molecules from which life on earth may have arisen.

  18. Comparison of vapor concentrations of volatile organic compounds with ground-water concentrations of selected contaminants in sediments beneath the Sudbury River, Ashland, Massachusetts, 2000

    USGS Publications Warehouse

    Campbell, J.P.; Lyford, F.P.; Willey, Richard E.

    2002-01-01

    A mixed plume of contaminants in ground water, including volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), and metals, near the former Nyanza property in Ashland, Massachusetts, discharges to the Sudbury River upstream and downstream of Mill Pond and a former mill raceway. Polyethylene-membrane vapor-diffusion (PVD) samplers were installed in river-bottom sediments to determine if PVD samplers provide an alternative to ground-water sampling from well points for identifying areas of detectable concentrations of contaminants in sediment pore water near the ground-water and surface-water interface. In August and September 2000, the PVD samplers were installed near well points at depths of 8 to 12 inches in both fine and coarse sediments, whereas the well points were installed at depths of 1 to 5 feet in coarse sediments only. Comparison between vapor and water samples at 29 locations upstream from Mill Pond show that VOC vapor concentrations from PVD samplers in coarse river-bottom sediments are more likely to correspond to ground-water concentrations from well points than PVD samplers installed in fine sediments. Significant correlations based on Kendall's Tau were shown between vapor and ground-water concentrations for trichloroethylene and chlorobenzene for PVD samplers installed in coarse sediments where the fine organic layer that separated the two sampling depths was 1 foot or less in thickness. VOC concentrations from vapor samples also were compared to VOC, SVOC, and metals concentrations from ground-water samples at 10 well points installed upstream and downstream from Mill Pond, and in the former mill raceway. Chlorobenzene vapor concentrations correlated significantly with ground-water concentrations for 5 VOCs, 2 SVOCs, and 10 metals. Trichloroethylene vapor concentrations did not correlate with any of the other ground-water constituents analyzed at the 10 well points. Chlorobenzene detected by use of PVD samplers appears to be a

  19. Six-phase soil heating for enhanced removal of contaminants: Volatile organic compounds in non-arid soils integrated demonstration, Savannah River Site

    SciTech Connect

    Gauglitz, P.A.; Bergsman, T.M.; Caley, S.M.

    1994-10-01

    In November 1993, Pacific Northwest Laboratory (PNL) and Savannah River Site (SRS) personnel conducted a demonstration of six-phase soil heating (SPSH) at the Savannah River Site (SRS) in Aiken, South Carolina. The demonstration was part of the Volatile Organic Compounds in Non-Arid Soils Integrated Demonstration being conducted near the M-Area operations at the SRS, along a corridor that once contained a process sewer leading to the M-Area seepage basin. In the early 1980s, this sewer line was discovered to be leaking process wastes into the subsurface and contributing to groundwater contamination in the vicinity of M-Area seepage basin. Although use of the sewer line has been discontinued, the slow release of chlorinated solvents such as trichloroethylene (TCE) and perchloroethylene (PCE) from the heterogeneous vadose zone soil continues to be a source of potential groundwater contamination. A significant portion of the VOCs at the demonstration site are retained in low-permeability clay zones. Previous studies have shown that the rate of conventional SVE remediation of the SRS clays is quite slow. The permeability of the clay is of order 10{sup {minus}12} cm{sup 2}, which makes this a particularly difficult interval to remediate. Thus, the challenge for SPSH is to effectively remediate this clay zone by accelerating the removal of TCE and PCE.

  20. Method for treatment of soils contaminated with organic pollutants

    DOEpatents

    Wickramanayake, Godage B.

    1993-01-01

    A method for treating soil contaminated by organic compounds wherein an ozone containing gas is treated with acid to increase the stability of the ozone in the soil environment and the treated ozone applied to the contaminated soil to decompose the organic compounds. The soil may be treated in situ or may be removed for treatment and refilled.

  1. Chlorinated organic compounds in urban river sediments

    SciTech Connect

    Soma, Y.; Shiraishi, H.; Inaba, K.

    1995-12-31

    Among anthropogenic chemicals, many chlorinated organic compounds have been used as insecticides and detected frequently as contaminants in urban river sediments so far. However, the number and total amount of chemicals produced commercially and used are increasing year by year, though each amount of chemicals is not so high. New types of contaminants in the environment may be detected by the use of newly developed chemicals. Chlorinated organic compounds in the urban river sediments around Tokyo and Kyoto, large cities in Japan, were surveyed and recent trends of contaminants were studied. Contaminants of the river sediments in industrial areas had a variety, but PCB (polychlorinated biphenyls) was detected in common in industrial areas. Concentration of PCB related well to the number of factories on both sides of rivers, although the use of PCB was stopped 20 years ago. In domestic areas, Triclosan (5-chloro-2-(2,4-dichlorophenoxy)-phenol) and Triclocarban (3,4,4{prime}-trichlorocarbanilide)(both are contained in soap or shampoo for fungicides), p-dichlorobenzene (insecticides for wears) and TCEP(tris-chloroethyl phosphate) were detected. EOX(extracted organic halogen) in the sediments was 5 to 10 times of chlorinated organic compounds detected by GC/MS. Major part of organic halogen was suggested to be included in chlorinated organics formed by bleaching or sterilization.

  2. Simulation of groundwater flow in a volatile organic compound-contaminated area near Bethpage, Nassau County, New York-A discussion of modeling considerations

    USGS Publications Warehouse

    Misut, Paul E.

    2011-01-01

    The 2010 Bethpage groundwater-flow model (ARCADIS, 2010) was based on a steady state assumption. Although it is widely acknowledged that significant water-level changes have occurred in the past, the reviewed model does not represent changing water levels. The steady state approach limits the effectiveness of the following: 1. identification of sources of contamination, 2. analysis of model accuracy, 3. model calibration, and 4. simulations of future scenarios. Future plume movement was simulated in an incomplete manner through an unchanging groundwater-flow field. Available time-series information on temporal variation of factors affecting groundwater-flow dynamics includes: 1. public-supply pumping, 2. groundwater discharges from systems remediating volatile organic compound (VOC) plumes, 3. recharge and precipitation rates, and 4. water levels and streamflows. Transient phenomena that might be useful in future hypothetical simulations include pumping variations, redirection of containment-system waters for industrial use, and climate-change scenarios. Public-domain computer programs, U.S. Geological Survey guidance reports on transient-state calibration and uncertainty methods (Doherty and Hunt, 2010), and additional local and regional datasets are available to provide additional confidence in model evaluations and allow better evaluation of their limitations.

  3. Method for testing earth samples for contamination by organic contaminants

    DOEpatents

    Schabron, J.F.

    1996-10-01

    Provided is a method for testing earth samples for contamination by organic contaminants, and particularly for aromatic compounds such as those found in diesel fuel and other heavy fuel oils, kerosene, creosote, coal oil, tars and asphalts. A drying step is provided in which a drying agent is contacted with either the earth sample or a liquid extract phase to reduce to possibility of false indications of contamination that could occur when humic material is present in the earth sample. This is particularly a problem when using relatively safe, non-toxic and inexpensive polar solvents such as isopropyl alcohol since the humic material tends to be very soluble in those solvents when water is present. Also provided is an ultraviolet spectroscopic measuring technique for obtaining an indication as to whether a liquid extract phase contains aromatic organic contaminants. In one embodiment, the liquid extract phase is subjected to a narrow and discrete band of radiation including a desired wave length and the ability of the liquid extract phase to absorb that wavelength of ultraviolet radiation is measured to provide an indication of the presence of aromatic organic contaminants. 2 figs.

  4. Method for testing earth samples for contamination by organic contaminants

    DOEpatents

    Schabron, John F.

    1996-01-01

    Provided is a method for testing earth samples for contamination by organic contaminants, and particularly for aromatic compounds such as those found in diesel fuel and other heavy fuel oils, kerosene, creosote, coal oil, tars and asphalts. A drying step is provided in which a drying agent is contacted with either the earth sample or a liquid extract phase to reduce to possibility of false indications of contamination that could occur when humic material is present in the earth sample. This is particularly a problem when using relatively safe, non-toxic and inexpensive polar solvents such as isopropyl alcohol since the humic material tends to be very soluble in those solvents when water is present. Also provided is an ultraviolet spectroscopic measuring technique for obtaining an indication as to whether a liquid extract phase contains aromatic organic contaminants. In one embodiment, the liquid extract phase is subjected to a narrow and discrete band of radiation including a desired wave length and the ability of the liquid extract phase to absorb that wavelength of ultraviolet radiation is measured to provide an indication of the presence of aromatic organic contaminants.

  5. Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, Grorge

    2001-01-01

    Carbonaceous meteorites are relatively enriched in soluble organic compounds. To date, these compounds provide the only record available to study a range of organic chemical processes in the early Solar System chemistry. The Murchison meteorite is the best-characterized carbonaceous meteorite with respect to organic chemistry. The study of its organic compounds has related principally to aqueous meteorite parent body chemistry and compounds of potential importance for the origin of life. Among the classes of organic compounds found in Murchison are amino acids, amides, carboxylic acids, hydroxy acids, sulfonic acids, phosphonic acids, purines and pyrimidines (Table 1). Compounds such as these were quite likely delivered to the early Earth in asteroids and comets. Until now, polyhydroxylated compounds (polyols), including sugars (polyhydroxy aldehydes or ketones), sugar alcohols, sugar acids, etc., had not been identified in Murchison. Ribose and deoxyribose, five-carbon sugars, are central to the role of contemporary nucleic acids, DNA and RNA. Glycerol, a three-carbon sugar alcohol, is a constituent of all known biological membranes. Due to the relative lability of sugars, some researchers have questioned the lifetime of sugars under the presumed conditions on the early Earth and postulated other (more stable) compounds as constituents of the first replicating molecules. The identification of potential sources and/or formation mechanisms of pre-biotic polyols would add to the understanding of what organic compounds were available, and for what length of time, on the ancient Earth.

  6. Organic contaminants in onsite wastewater treatment systems

    USGS Publications Warehouse

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

    2007-01-01

    Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

  7. Organic contamination of LDEF

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.

    1992-01-01

    A brown stain of varying thickness was present on most of the exterior surface of the retrieved Long Duration Exposure Facility (LDEF). Tape lifts of Earth-end LDEF surfaces taken in Feb. 1990 showed that the surface particle cleanliness immediately after retrieval was very good, but faint footprints of the tape strips on the tested surfaces indicated a very faint film was removed by the tape. Solvent wipes of these surfaces showed that the stain was not amenable to standard organic solvent removal. Infrared spectra of optical windows from tray E5 and scrapings indicate that the film is primarily of organic composition, but is not similar to the oil that seeped from tray C12. Very dark and heavy deposits of the stain are present at openings and vents to the interior of the LDEF. Heavy brown and blue-green deposits are present in the interior of LDEF where sunlight penetrated through cracks and vent openings. Photographs of the deintegrated LDEF graphically show the stain distribution. The exterior of the LDEF had significant areas painted with a white polyurethane paint for thermal control, and almost all of the interior was painted with a black polyurethane paint for thermal control. The brown staining of the LDEF is consistent with long-term outgassing of hydrocarbons from these paints followed by rapid solar-ultraviolet-induced polymerization of the outgassed hydrocarbons when the outgassed molecules stuck to surfaces exposed to sunlight.

  8. Organic contamination of LDEF

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.

    1991-01-01

    A brown stain of varying thickness was present on most of the exterior surface of the retrieved Long Duration Exposure Facility (LDEF). Tape lifts of Earth-end LDEF surfaces taken showed that the surface particle cleanliness immediately after retrieval was very good, but faint footprints of the tape strips on the tested surfaces indicated a very faint film was removed by the tape. Solvent wipes of these surfaces showed that the stain was not amenable to standard organic solvent removal. Infrared spectra of optical windows from tray E5 show that the organic film is hydrocarbon in composition, but is not similar to the oil that seeped from tray C12. Very dark and heavy deposits of the stain is present at openings and vents to the interior of LDEF. Heavy brown and blue-green deposits are present in the interior of LDEF where sunlight penetrated through cracks and vent openings. The exterior of LDEF had significant areas painted with a white polyurethane paint for thermal control, and almost all of the interior was painted with a black polyurethane paint. Brown staining is consistent with outgassing of hydrocarbons from these paints by rapid solar UV induced polymerization of the outgassed hydrocarbons when they hit sunlight exposed areas.

  9. PERSISTENT PERFLUORINATED ORGANIC COMPOUNDS

    EPA Science Inventory

    Perfluorinated compounds (PFCs) have gained notoriety in the recent past. Global distribution of PFCs in wildlife, environmental samples and humans has sparked a recent increase in new investigations concerning PFCs. Historically PFCs have been used in a wide variety of consume...

  10. Organic Compounds in Stardust

    NASA Technical Reports Server (NTRS)

    McKay, David S.; Clemett. Simon J.; Sandford, Scott A.; Nakamura-Messenger, Keiko; Hoerz, Fredrich

    2011-01-01

    The successful return of the STARDUST spacecraft provides a unique opportunity to investigate the nature and distribution of organic matter in cometary dust particles collected from Comet 81P/Wild-2. Analysis of individual cometary impact tracks in silica aerogel using the technique of two-step laser mass spectrometry (L2MS) demonstrates the presence of complex aromatic organic matter. While concerns remain as to the organic purity of the aerogel collection medium and the thermal effects associated with hypervelocity capture, the majority of the observed organic species appear indigenous to the impacting particles and are hence of cometary origin. While the aromatic fraction of the total organic matter present is believed to be small, it is notable in that it appears to be N-rich. Spectral analysis in combination with instrumental detection sensitivities suggest that N is incorporated predominantly in the form of aromatic nitriles (R-C N). While organic species in the STARDUST samples do share some similarities with those present in the matrices of carbonaceous chondrites, the closest match is found with stratospherically collected interplanetary dust particles. These findings are consistent with the notion that a fraction of interplanetary dust is of cometary origin. The presence of complex organic N-containing species in comets has astrobiological implications since comets are likely to have contributed to the prebiotic chemical inventory of both the Earth and Mars.

  11. Organophosphorus Compounds in Organic Electronics.

    PubMed

    Shameem, Muhammad Anwar; Orthaber, Andreas

    2016-07-25

    This Minireview describes recent advances of organophosphorus compounds as opto-electronic materials in the field of organic electronics. The progress of (hetero-) phospholes, unsaturated phosphanes, and trivalent and pentavalent phosphanes since 2010 is covered. The described applications of organophosphorus materials range from single molecule sensors, field effect transistors, organic light emitting diodes, to polymeric materials for organic photovoltaic applications. PMID:27276233

  12. Impact of Organic Contamination on Some Aquatic Organisms

    PubMed Central

    Yasser, El-Nahhal; Shawkat, El-Najjar; Samir, Afifi

    2015-01-01

    Background: Contamination of water systems with organic compounds of agricultural uses pose threats to aquatic organisms. Carbaryl, chlorpyrifos, and diuron were considered as model aquatic pollutants in this study. The main objective of this study was to characterize the toxicity of organic contamination to two different aquatic organisms. Materials and Methods: Low concentrations (0.0–60 µmol/L) of carbaryl, diuron and very low concentration (0.0–0.14 µmol/L) of chlorpyrifos and their mixtures were tested against fish and Daphnia magna. Percentage of death and immobilization were taken as indicators of toxicity. Results: Toxicity results to fish and D. magna showed that chlorpyrifos was the most toxic compound (LC50 to fish and D. magna are 0.08, and 0.001 µmol/L respectively), followed by carbaryl (LC50 to fish and D. magna are 43.19 and 0.031 µmol/L), while diuron was the least toxic one (LC50 values for fish and D. magna are 43.48 and 32.11 µmol/L respectively). Mixture toxicity (binary and tertiary mixtures) showed antagonistic effects. Statistical analysis showed a significant difference among mixture toxicities to fish and D. magma. Conclusion: Fish and D. magam were sensitive to low concentrations. These data suggest potent threats to aquatic organisms from organic contamination. PMID:26862260

  13. Instruments Sniff Organic Surface Contaminants

    NASA Technical Reports Server (NTRS)

    Adler-Golden, Steven; Matthew, Michael W.

    1995-01-01

    Portable instruments detecting both nonvolatile and volatile organic surface contaminants in real time developed. Instruments easy to use: operate under ordinary ambient atmospheric conditions, without need to use messy liquid solvents or install and remove witness plates, and without need to cut specimens from surfaces to be inspected. Principle of detection involves sweeping pure, activated gas across surface spot inspected, then monitoring light emitted at wavelengths characteristic of excited molecules formed by chemical reactions between activated gas and contaminants. Gas activated by dc discharge, radio-frequency induction, microwave radiation, laser beam, hot filaments, or any other suitable means that excites some of gas molecules.

  14. Solubility Enhanced Oxidation of Hydrophobic Organic Contaminants

    NASA Astrophysics Data System (ADS)

    Boving, T. B.; Eberle, D. E.; Ball, R.

    2012-12-01

    In-situ chemical oxidation (ISCO) is a remediation technique considered to be effective at overcoming some of the limitations of conventional subsurface treatment processes for volatile and semi-volatile organic contaminants (VOC, SVOC). ISCO reactions occur predominately in the aqueous phase and as a result, contaminant availability is a major limiting factor, i.e. contaminants with higher aqueous solubility's are typically more accessible for oxidation than more hydrophobic, sorbed compounds. The purpose of this study was to determine the feasibility of a new integrated desorption-oxidation process for the remediation of contaminated waters and sediments. Specifically, this study examined the potential of using hydroxypropyl-β-cyclodextrin (HPCD), a modified cyclic sugar, and a blend of oxidants commercially known as OxyZone® (U.S. patent No. 7,667,087) for the remediation of polycyclic aromatic hydrocarbons (PAH). Laboratory scale batch experiments confirmed prior studies that HPCD increases the aqueous concentration of these contaminants, making a greater mass of contaminant available for subsequent oxidation. When exposed to the same amount of oxidant, the mass of PAH destroyed increased linearly with increasing HPCD concentration. Relative to PAH saturated solutions without HPCD, 11 times more PAH mass was destroyed when a PAH saturated 15 g/L HPCD solution was treated with the same mass of oxidant. Destruction of the aqueous phase contaminants followed first order exponential decay kinetics in both deionized water and HPCD solutions. However, the destruction of complexed PAH was slower than for uncomplexed PAH. The cause of this is likely due to the preferential destruction of the HPCD molecule by the oxidant, followed by the subsequent oxidation of the PAH. The destruction of the cyclodextrin was minimized by modifying the oxidant formulation. Overall, these findings establish the potential of utilizing HPCD and OxyZone® as an integrated desorption

  15. Extraterrestrial Organic Compounds in Meteorites

    NASA Technical Reports Server (NTRS)

    Botta, Oliver; Bada, Jeffrey L.; Meyer, Michael (Technical Monitor)

    2003-01-01

    Many organic compounds or their precursors found in meteorites originated in the interstellar or circumstellar medium and were later incorporated into planetesimals during the formation of the solar system. There they either survived intact or underwent further processing to synthesize secondary products on the meteorite parent body. The most distinct feature of CI and CM carbonaceous chondrites, two types of stony meteorites, is their high carbon content (up to 3% of weight), either in the form of carbonates or of organic compounds. The bulk of the organic carbon consists of an insoluble macromolecular material with a complex structure. Also present is a soluble organic fraction, which has been analyzed by several separation and analytical procedures. Low detection limits can be achieved by derivatization of the organic molecules with reagents that allow for analysis by gas chromatography/mass spectroscopy and high performance liquid chromatography. The CM meteorite Murchison has been found to contain more than 70 extraterrestrial amino acids and several other classes of compounds including carboxylic acids, hydroxy carboxylic acids, sulphonic and phosphonic acids, aliphatic, aromatic and polar hydrocarbons, fullerenes, heterocycles as well as carbonyl compounds, alcohols, amines and amides. The organic matter was found to be enriched in deuterium, and distinct organic compounds show isotopic enrichments of carbon and nitrogen relative to terrestrial matter.

  16. Biomedical Compounds from Marine organisms

    PubMed Central

    Jha, Rajeev Kumar; Zi-rong, Xu

    2004-01-01

    The Ocean, which is called the ‘mother of origin of life’, is also the source of structurally unique natural products that are mainly accumulated in living organisms. Several of these compounds show pharmacological activities and are helpful for the invention and discovery of bioactive compounds, primarily for deadly diseases like cancer, acquired immuno-deficiency syndrome (AIDS), arthritis, etc., while other compounds have been developed as analgesics or to treat inflammation, etc. The life-saving drugs are mainly found abundantly in microorganisms, algae and invertebrates, while they are scarce in vertebrates. Modern technologies have opened vast areas of research for the extraction of biomedical compounds from oceans and seas.

  17. Organics in water contamination analyzer, phase 1

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The requirements which would result in identifying the components of an automatic analytical system for the analysis of specific organic compounds in the space station potable water supply are defined. The gas chromatographic system for such an analysis is limited to commercially available off-the-shelf hardware and includes the sample inlet, an ionization detector, capillary columns as well as computerized compound identification. The sampling system will be a special variation of the purge and trap Tenax mode using six-port valves and a 500 microliter water sample. Capillary columns used for the separating of contaminants will be bonded phase fused silica with a silicone stationary phase. Two detectors can be used: photoionization and far ultraviolet, since they are sensitive and compatible with capillary columns. A computer system evaluation and program with the principle of compound identification based on the retention index is presented.

  18. Case studies in organic contaminant hydrogeology

    NASA Astrophysics Data System (ADS)

    Baker, John A.

    1989-07-01

    The effective management of domestic solid waste and hazardous, toxic, and radioactive waste is a major problem in the area of environmental geology and water sciences over the world. This series of case studies of organic contaminants from both solid and hazardous waste disposal facilities provides examples of these problems. The facilities were investigated to determine risks and liabilities before acquisition, to determine the site hydrogeologic conditions for design of appropriate groundwater monitoring plans, and/or to determine the potential for groundwater contamination. The results of these studies and investigations by Waste Management Inc. (WMI) and its consultants have shown certain relationships in the distribution of organic pollutants to the different geologic and hydrogeologic charac teristics of each facility. In each of the case studies, all 129 priority pollutants were analyzed in private wells and/or monitoring wells at the request of regulatory agencies. The 31 volatile organic compounds (VOCs) of the priority pollutant list were the majority of the organic compounds detected and these data are evaluated in each case study. The case studies are on disposal facilities located in glacial tills, carbonaceous weathered clay soils, weathered shale, limestone bedrock, dolomite bedrock, and alluvial and sedimentary deposits. A brief discussion of groundwater quality impacts and remedial measures also is included.

  19. Sulfated compounds from marine organisms.

    PubMed

    Kornprobst, J M; Sallenave, C; Barnathan, G

    1998-01-01

    More than 500 sulfated compounds have been isolated from marine organisms so far but most of them originate from two phyla only, Spongia and Echinodermata. The sulfated compounds are presented according to the phyla they have been identified from and to their chemical structures. Biological activities, when available, are also given. Macromolecules have also been included in this review but without structural details. PMID:9530808

  20. Photochemical dimerization of organic compounds

    SciTech Connect

    Crabtree, R.H.; Brown, S.H.; Muedas, C.A.; Ferguson, R.R.

    1992-04-14

    This patent describes improvement in a Group IIb photosensitized vapor phase dimerization of an organic compound in which a gaseous mixture of a Group IIB metal and the organic compound is irradiated in a reaction zone with a photosensitizing amount of radiant energy. The improvement comprises: a continuous stream of the gaseous mixture is passed as a vapor phase in a single pass through the reaction zone at a temperature at which the thus-produced dimer condenses immediately upon the formation thereof; the starting gaseous mixture comprises hydrogen and two ethylenically unsaturated compounds selected from the group consisting of alkenes of at least six carbon atoms, unsaturated nitriles, unsaturated epoxides, unsaturated silanes, unsaturated amines, unsaturated phosphines, and fluorinated alkenes; the gaseous mixture comprises nitrous oxide and the organic compound is a saturated compound with C-H bond strengths greater than 100 kcal/mol or a mixture of the saturated compound and an alkene; or the starting gaseous comprises an activating amount of hydrogen and the dimerization is a dehydrodimerization or cross-dimerization of a saturated hydrocarbon.

  1. Groundwater pollution by organic compounds: a three-dimensional boundary element solution of contaminant transport equations in stratified porous media with multiple non-equilibrium partitioning

    NASA Astrophysics Data System (ADS)

    Elzein, Abbas H.; Booker, John R.

    1999-12-01

    Industrial contaminants and landfill leachates, particularly those with high organic content, may migrate into groundwater streams under conditions of non-equilibrium partitioning. These conditions may either be induced by time-dependent sorption onto the soil skeleton and intra-sorbent diffusion in the soil matrix, or by heterogeneous advective fields within the pore. These processes are known as chemical and physical non-equilibrium processes respectively, and may result in significant deviations from the paths predicted by steady-state partitioning assumptions. In addition, multi-directional soil properties, soil stratification and complex geometries of the pollution source may require a full three-dimensional analysis for accurate contamination prediction.A three-dimensional boundary element solution of the time-dependent diffusive/advective equation in non-homogeneous soils with both physical and chemical non-equilibrium processes is developed. Saturated conditions and rate-limited mass transfer are assumed. The Laplace transform removes the need for time-stepping and the associated numerical complexity, and the use of Green's functions yields accurate solutions of infinite and semi-infinite domains such as soils as well as media with finite dimensions. The solution requires boundary discretization only and can therefore be a valuable tool in bio-remediation and landfill design where different geometries, soil properties and pollutant loads may be analysed at low cost. The proposed technique is validated by comparing its predictions to analytical solutions obtained for different types of soil and contaminant sources. The scope of the method is illustrated by analysing the contamination of multi-layered soils by a neighbouring river and a surface source.

  2. Students' Categorizations of Organic Compounds

    ERIC Educational Resources Information Center

    Domin, Daniel S.; Al-Masum, Mohammad; Mensah, John

    2008-01-01

    Categorization is a fundamental psychological ability necessary for problem solving and many other higher-level cognitive tasks. In organic chemistry, students must establish groupings of different chemical compounds in order not only to solve problems, but also to understand course content. Classic models of categorization emphasize similarity as…

  3. PHOTOTHERMAL DESTRUCTION OF THE VAPOR OF VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    The contamination of subsurface soil and groundwater by volatile organic compounds (VOCS) is a pervasive problem in the United States. n-situ soil vapor extraction (SVE) and ex-situ thermal desorption are the most adapted technologies for the remediation of contaminated soil whil...

  4. Biodegradation of halogenated organic compounds.

    PubMed Central

    Chaudhry, G R; Chapalamadugu, S

    1991-01-01

    In this review we discuss the degradation of chlorinated hydrocarbons by microorganisms, emphasizing the physiological, biochemical, and genetic basis of the biodegradation of aliphatic, aromatic, and polycyclic compounds. Many environmentally important xenobiotics are halogenated, especially chlorinated. These compounds are manufactured and used as pesticides, plasticizers, paint and printing-ink components, adhesives, flame retardants, hydraulic and heat transfer fluids, refrigerants, solvents, additives for cutting oils, and textile auxiliaries. The hazardous chemicals enter the environment through production, commercial application, and waste. As a result of bioaccumulation in the food chain and groundwater contamination, they pose public health problems because many of them are toxic, mutagenic, or carcinogenic. Although synthetic chemicals are usually recalcitrant to biodegradation, microorganisms have evolved an extensive range of enzymes, pathways, and control mechanisms that are responsible for catabolism of a wide variety of such compounds. Thus, such biological degradation can be exploited to alleviate environmental pollution problems. The pathways by which a given compound is degraded are determined by the physical, chemical, and microbiological aspects of a particular environment. By understanding the genetic basis of catabolism of xenobiotics, it is possible to improve the efficacy of naturally occurring microorganisms or construct new microorganisms capable of degrading pollutants in soil and aquatic environments more efficiently. Recently a number of genes whose enzyme products have a broader substrate specificity for the degradation of aromatic compounds have been cloned and attempts have been made to construct gene cassettes or synthetic operons comprising these degradative genes. Such gene cassettes or operons can be transferred into suitable microbial hosts for extending and custom designing the pathways for rapid degradation of recalcitrant

  5. Biodegradation of halogenated organic compounds.

    PubMed

    Chaudhry, G R; Chapalamadugu, S

    1991-03-01

    In this review we discuss the degradation of chlorinated hydrocarbons by microorganisms, emphasizing the physiological, biochemical, and genetic basis of the biodegradation of aliphatic, aromatic, and polycyclic compounds. Many environmentally important xenobiotics are halogenated, especially chlorinated. These compounds are manufactured and used as pesticides, plasticizers, paint and printing-ink components, adhesives, flame retardants, hydraulic and heat transfer fluids, refrigerants, solvents, additives for cutting oils, and textile auxiliaries. The hazardous chemicals enter the environment through production, commercial application, and waste. As a result of bioaccumulation in the food chain and groundwater contamination, they pose public health problems because many of them are toxic, mutagenic, or carcinogenic. Although synthetic chemicals are usually recalcitrant to biodegradation, microorganisms have evolved an extensive range of enzymes, pathways, and control mechanisms that are responsible for catabolism of a wide variety of such compounds. Thus, such biological degradation can be exploited to alleviate environmental pollution problems. The pathways by which a given compound is degraded are determined by the physical, chemical, and microbiological aspects of a particular environment. By understanding the genetic basis of catabolism of xenobiotics, it is possible to improve the efficacy of naturally occurring microorganisms or construct new microorganisms capable of degrading pollutants in soil and aquatic environments more efficiently. Recently a number of genes whose enzyme products have a broader substrate specificity for the degradation of aromatic compounds have been cloned and attempts have been made to construct gene cassettes or synthetic operons comprising these degradative genes. Such gene cassettes or operons can be transferred into suitable microbial hosts for extending and custom designing the pathways for rapid degradation of recalcitrant

  6. Volatile Organic Compounds in Uremia

    PubMed Central

    Seifert, Luzia; Slodzinski, Rafael; Jankowski, Joachim; Zidek, Walter; Westhoff, Timm H.

    2012-01-01

    Background Although “uremic fetor” has long been felt to be diagnostic of renal failure, the compounds exhaled in uremia remain largely unknown so far. The present work investigates whether breath analysis by ion mobility spectrometry can be used for the identification of volatile organic compounds retained in uremia. Methods Breath analysis was performed in 28 adults with an eGFR ≥60 ml/min per 1.73 m2, 26 adults with chronic renal failure corresponding to an eGFR of 10–59 ml/min per 1.73 m2, and 28 adults with end-stage renal disease (ESRD) before and after a hemodialysis session. Breath analysis was performed by ion mobility spectrometryafter gas-chromatographic preseparation. Identification of the compounds of interest was performed by thermal desorption gas chromatography/mass spectrometry. Results Breath analyses revealed significant differences in the spectra of patients with and without renal failure. Thirteen compounds were chosen for further evaluation. Some compounds including hydroxyacetone, 3-hydroxy-2-butanone and ammonia accumulated with decreasing renal function and were eliminated by dialysis. The concentrations of these compounds allowed a significant differentiation between healthy, chronic renal failure with an eGFR of 10–59 ml/min, and ESRD (p<0.05 each). Other compounds including 4-heptanal, 4-heptanone, and 2-heptanone preferentially or exclusively occurred in patients undergoing hemodialysis. Conclusion Impairment of renal function induces a characteristic fingerprint of volatile compounds in the breath. The technique of ion mobility spectrometry can be used for the identification of lipophilic uremic retention molecules. PMID:23049998

  7. Alkaline dechlorination of chlorinated volatile organic compounds

    SciTech Connect

    Gu, B.; Siegrist, R.L.

    1996-06-01

    The vast majority of contaminated sites in the United States and abroad are contaminated with chlorinated volatile organic compounds (VOCs) such as trichloroethylene (TCE), trichloroethane (TCA), and chloroform. These VOCs are mobile and persistent in the subsurface and present serious health risks at trace concentrations. The goal of this project was to develop a new chemical treatment system that can rapidly and effectively degrade chlorinated VOCs. The system is based on our preliminary findings that strong alkalis such as sodium hydroxide (NaOH) can absorb and degrade TCE. The main objectives of this study were to determine the reaction rates between chlorinated VOCs, particularly TCE, and strong alkalis, to elucidate the reaction mechanisms and by-products, to optimize the chemical reactions under various experimental conditions, and to develop a laboratory bench- scale alkaline destruction column that can be used to destroy vapor- phase TCE.

  8. Global climate change and contaminants--an overview of opportunities and priorities for modelling the potential implications for long-term human exposure to organic compounds in the Arctic.

    PubMed

    Armitage, James M; Quinn, Cristina L; Wania, Frank

    2011-06-01

    This overview seeks to provide context and insight into the relative importance of different aspects related to global climate change for the exposure of Northern residents to organic contaminants. A key objective is to identify, from the perspective of researchers engaged in contaminant fate, transport and bioaccumulation modelling, the most useful research questions with respect to projecting the long-term trends in human exposure. Monitoring studies, modelling results, the magnitude of projected changes and simplified quantitative approaches are used to inform the discussion. Besides the influence of temperature on contaminant amplification and distribution, accumulation of organic contaminants in the Arctic is expected to be particularly sensitive to the reduction/elimination of sea-ice cover and also changes to the frequency and intensity of precipitation events (most notably for substances that are highly susceptible to precipitation scavenging). Changes to key food-web interactions, in particular the introduction of additional trophic levels, have the potential to exert a relatively high influence on contaminant exposure but the likelihood of such changes is difficult to assess. Similarly, changes in primary productivity and dynamics of organic matter in aquatic systems could be influential for very hydrophobic contaminants, but the magnitude of change that may occur is uncertain. Shifts in the amount and location of chemical use and emissions are key considerations, in particular if substances with relatively low long range transport potential are used in closer proximity to, or even within, the Arctic in the future. Temperature-dependent increases in emissions via (re)volatilization from primary and secondary sources outside the Arctic are also important in this regard. An increased frequency of boreal forest fires has relevance for compounds emitted via biomass burning and revolatilization from soil during/after burns but compound-specific analyses are

  9. Detection of an organic-non volatile compound in variable-contaminated volcanic soil samples via Time Domain Reflectometry (TDR) technique: Preliminary results

    NASA Astrophysics Data System (ADS)

    comegna, alessandro; coppola, antonio; dragonetti, giovanna; chaali, nesrine; sommella, angelo

    2014-05-01

    Hydrocarbons may be present in soils as non-aqueous phase liquids (NAPLs), which means that these organic compounds, exist as a separate and immiscible phase with respect to water and air commonly present in the soil. NAPLs, which can be accidentally introduced in the environment (for example by waste disposal sites, industrial spills, gasoline stations, etc), constitutes a serious geo-environmental problem, given the toxicity level and the high mobility. Time domain reflectometry (TDR) has became, over several decades, an important technique for water estimation in soils. In order to expand the potentiality of the TDR technique, the main objective of this study is to explore the capacity of dielectric response to detect the presence of NAPLs in volcanic soils. In laboratory, soil samples were oven dried at 105° C and passed through a 2 mm sieve. Known quantities of soil, water and NAPL (corn oil, a non-volatile and non-toxic organic compound) were mixed and repacked into plastic cylinders (16 cm high and 9.5 cm in diameter); in order to obtain forty different volumetric combinations of water and oil (i.e. θfg = θwater + θNAPL), with θNAPL varying from 0.05 to 0.40 by 0.05 cm3/cm3 increments. Data collected were employed to implement a multiphase mixing model which permitted conversion from a dielectric permittivity domain into a θf domain and vice versa. The results of this study show that, the TDR device is NAPL-sensitive, especially for θf values greater than 0.20. Further works will be built on this initial study, concentrating on improving the dielectric response-database, in order to: i) enhancing the model efficiency in terms of NAPL capability detention, and ii) validating the developed TDR interpretation tool with field results.

  10. Organic compounds in concrete from demolition works.

    PubMed

    Van Praagh, M; Modin, H; Trygg, J

    2015-11-01

    This study aims to verify the effect of physically removing the outer surface of contaminated concrete on total contents and on potential mobility of pollutants by means of leaching tests. Reclaimed concrete from 3 industrial sites in Sweden were included: A tar impregnated military storage, a military tar track-depot, as well as concrete constructions used for disposing of pesticide production surplus and residues. Solid materials and leachates from batch and column leaching tests were analysed for metals, Cl, F, SO4, DOC and contents of suspected organic compounds (polycyclic aromatic hydrocarbons, PAH, and pesticides/substances for pesticide production such as phenoxy acids, chlorophenols and chlorocresols, respectively). In case of PAH contaminated concrete, results indicate that removing 1 or 5 mm of the surface lead to total concentrations below the Swedish guidelines for recycling of aggregates and soil in groundwork constructions. 3 out of 4 concrete samples contaminated with pesticides fulfilled Swedish guidelines for contaminated soil. Results from batch and column leaching tests indicated, however, that concentrations above environmental quality standards for certain PAH and phenoxy acids, respectively, might occur at site when the crushed concrete is recycled in groundwork constructions. As leaching tests engaged in the study deviated from leaching test standards with a limited number of samples, the potential impact of the leaching tests' equipment on measured PAH and pesticide leachate concentrations has to be evaluated in future work. PMID:26164853

  11. DEVELOPMENT OF A PASSIVE, IN SITU, INTEGRATIVE SAMPLER FOR HYDROPHILLIC ORGANIC CONTAMINANTS IN AQUATIC ENVIRONMENTS

    EPA Science Inventory

    Until recently, hydrophobic, bioconcentratable compounds have been the primary focus of most environmental organic contaminant investigations, There is an increasing realization that a holistic hazard assessment of complex environmental contaminant mixtures requires data on the c...

  12. Apparatus for treatment of soils contaminated with organic pollutants

    DOEpatents

    Wickramanayake, Godage B.

    1993-01-01

    An apparatus for treating soil contaminated by organic compounds wherein an ozone containing gas is treated with acid to increase the stability of the ozone in the soil environment and the treated ozone applied to the contaminated soil in a manner adapted to decompose the organic compounds; one embodiment of the apparatus comprises a means to supply ozone as a gas-ozone mixture, a stability means to treat ozone obtained from the supply and distribution means to apply the stabilized gas-ozone to soil. The soil may be treated in situ or may be removed for treatment and refilled.

  13. INTERACTIONS BETWEEN ORGANIC COMPOUNDS AND CYCLODEXTRIN-CLAY SYSTEMS

    EPA Science Inventory

    Computational and experimental techniques are combined in order to better understand interactions involving organic compounds and cyclodextrin (CD)-clay systems. CD-clay systems may have great potential in the containment of organic contaminants in the environment. This study w...

  14. Volatile organic compound sensor system

    DOEpatents

    Schabron, John F.; Rovani, Jr., Joseph F.; Bomstad, Theresa M.; Sorini-Wong, Susan S.; Wong, Gregory K.

    2011-03-01

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  15. Volatile organic compound sensor system

    DOEpatents

    Schabron, John F.; Rovani, Jr., Joseph F.; Bomstad, Theresa M.; Sorini-Wong, Susan S.

    2009-02-10

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  16. Photocatalytic destruction of volatile organic compounds in water. Master's thesis

    SciTech Connect

    Oluic, S.

    1991-12-10

    Ground water at the Anniston Army Depot in Anniston, Alabama has been found to be contaminated with volatile organic compounds. Recent research has indicated that advanced oxidation processes, namely hydrogen peroxide catalyzed by ultraviolet light radiation, can be successful in destroying these contaminants. In this process hydrogen peroxide is decomposed by ultraviolet radiation producing hydroxyl free radicals which in turn oxidize the organic compounds present. A series of batch tests and flow through experiments using this oxidation process was performed on a synthetic wastewater that closely duplicated contaminant concentration levels found at Anniston. These contaminants, 1,2 dichloroethene, trichloroethene, dichloromethane and benzene, were found readily destructed by the UV/H2O2 process both individually and in mixtures during batch testing and in flow-through experiments. All experimentation was performed utilizing a thin film reactor.

  17. Volatile organic compound sensing devices

    DOEpatents

    Lancaster, Gregory D.; Moore, Glenn A.; Stone, Mark L.; Reagen, William K.

    1995-01-01

    Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs.

  18. Volatile organic compound sensing devices

    DOEpatents

    Lancaster, G.D.; Moore, G.A.; Stone, M.L.; Reagen, W.K.

    1995-08-29

    Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs. 15 figs.

  19. STABLE CHLORINE ISOTOPE ANALYSIS OF CHLORINATED ORGANIC CONTAMINANTS

    EPA Science Inventory

    The biogeochemical cycling of chlorinated organic contaminants in the environment is often difficult to understand because of the complex distributions of these compounds and variability of sources. To address these issues from an isotopic perspective, we have measured the, 37Cl...

  20. Infrared characterized spacecraft contaminants and related compounds

    NASA Technical Reports Server (NTRS)

    Gross, F. C.

    1977-01-01

    The limits of the infrared region of the electromagnetic spectrum are discussed, together with an explanation of some of the shortcomings of obtaining data in this range. Similarities and differences in the interest taken by the chemist/spectroscopist and the space/spectroscopist in the IR spectrum are discussed. The chemist uses IR spectra to identify materials and contaminants associated with spacecraft fabrication and testing. The space scientist, using IR spectrometry, can determine atmospheric conditions around planets, stars, and galaxies. He could also determine the temperature profile of the Earth's atmosphere at different altitudes, or even the temperature profile of the Sun. The importance of detecting contamination of spacecraft and the possible results of not taking corrective action are explored. All space experiments contain some contaminants, to a lesser or greater degree; the responsible personnel involved must determine the level of toleration. A collection of IR spectra of known spacecraft contaminants is presented as a guide for cognizant scientists and engineers.

  1. Treatment System for Removing Halogenated Compounds from Contaminated Sources

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Yestrebsky, Cherie L. (Inventor)

    2015-01-01

    A treatment system and a method for removal of at least one halogenated compound, such as PCBs, found in contaminated systems are provided. The treatment system includes a polymer blanket for receiving at least one non-polar solvent. The halogenated compound permeates into or through a wall of the polymer blanket where it is solubilized with at least one non-polar solvent received by said polymer blanket forming a halogenated solvent mixture. This treatment system and method provides for the in situ removal of halogenated compounds from the contaminated system. In one embodiment, the halogenated solvent mixture is subjected to subsequent processes which destroy and/or degrade the halogenated compound.

  2. Competitive sorption of organic contaminants in chalk

    NASA Astrophysics Data System (ADS)

    Graber, E. R.; Borisover, M.

    2003-12-01

    In the Negev desert, Israel, a chemical industrial complex is located over fractured Eocene chalk formations where transfer of water and solutes between fracture voids and matrix pores affects migration of contaminants in the fractures due to diffusion into the chalk matrix. This study tests sorption and sorption competition between contaminants in the chalk matrix to make it possible to evaluate the potential for contaminant attenuation during transport in fractures. Single solute sorption isotherms on chalk matrix material for five common contaminants ( m-xylene, ametryn, 1,2-dichloroethane, phenanthrene, and 2,4,6-tribromophenol) were found to be nonlinear, as confirmed in plots of Kd versus initial solution concentration. Over the studied concentration ranges, m-xylene Kd varied by more than a factor of 100, ametryn Kd by a factor of 4, 1,2-dichloroethane Kd by more than a factor of 3, phenanthrene Kd by about a factor of 2, and 2,4,6-tribromophenol Kd by a factor of 10. It was earlier found that sorption is to the organic matter component of the chalk matrix and not to the mineral phases (Chemosphere 44 (2001) 1121). Nonlinear sorption isotherms indicate that there is at least some finite sorption domain. Bi-solute competition experiments with 2,4,6-tribromophenol as the competitor were designed to explore the nature of the finite sorption domain. All of the isotherms in the bi-solute experiments are more linear than in the single solute experiments, as confirmed by smaller variations in Kd as a function of initial solution concentration. For both m-xylene and ametryn, there is a small nonlinear component or domain that was apparently not susceptible to competition by 2,4,6-tribromophenol. The nonlinear sorption domain(s) is best expressed at low solution concentrations. Inert-solvent-normalized single and bi-solute sorption isotherms demonstrate that ametryn undergoes specific force interactions with the chalk sorbent. The volume percent of phenanthrene

  3. EQUILIBRIUM PARTIONING AND BIOACCUMULATION OF SEDIMENT ASSOCIATED CONTAMINANTS BY INFAUNAL ORGANISMS

    EPA Science Inventory

    The utility and limits of applicability of a simple equilibrium partitioning model for predicting the maximum concentration of neutral organic compounds which can be accumulated by infaunal organisms exposed to a contaminated sediment were examined. Accumulation factors (AFs) for...

  4. ORGANIC COMPOUNDS IN ORGANOPHOSPHORUS PESTICIDE MANUFACTURING WASTEWATERS

    EPA Science Inventory

    Preliminary survey information on the organophosphorus pesticide industry wastewater streams and analytical methods to monitor levels of organic compounds present in these streams are presented. The identification and quantification of organophosphorus compounds was emphasized, b...

  5. Remediation of groundwater contaminated with radioactive compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Both naturally radioactive isotopes and isotopes from man-made sources may appear in groundwater. Depending on the physical and chemical characteristics of the contaminant, different types of treatment methods must be applied to reduce the concentration. The following chapter discusses treatment opt...

  6. Photocatalytic Degradation of Organic Contaminants in Water

    EPA Science Inventory

    Photocatalytic treatment of organics, including regulated and contaminants of emerging concern, has been an important area of this field. Details are provided on the mechanism of degradation, reaction intermediates, kinetics, and nanointerfacial adsorption phenomena. The degradat...

  7. Volatile organic compound remedial action project

    SciTech Connect

    1991-12-01

    This Environmental Assessment (EA) reviews a proposed project that is planned to reduce the levels of volatile organic compound (VOC) contaminants present in the Mound domestic water supply. The potable and industrial process water supply for Mound is presently obtained from a shallow aquifer via on-site production wells. The present levels of VOCs in the water supply drawn from the on-site wells are below the maximum contaminant levels (MCLs) permissible for drinking water under Safe Drinking Water Act (SDWA; 40 CFR 141); however, Mound has determined that remedial measures should be taken to further reduce the VOC levels. The proposed project action is the reduction of the VOC levels in the water supply using packed tower aeration (PTA). This document is intended to satisfy the requirements of the National Environmental Policy Act (NEPA) of 1969 and associated Council on Environmental Quality regulations (40 CFR parts 1500 through 1508) as implemented through U.S. Department of Energy (DOE) Order 5440.1D and supporting DOE NEPA Guidelines (52 FR 47662), as amended (54 FR 12474; 55 FR 37174), and as modified by the Secretary of Energy Notice (SEN) 15-90 and associated guidance. As required, this EA provides sufficient information on the probable environmental impacts of the proposed action and alternatives to support a DOE decision either to prepare an Environmental Impact Statement (EIS) or issue a Finding of No Significant Impact (FONSI).

  8. Infrared characterized spacecraft contaminants and related compounds

    NASA Technical Reports Server (NTRS)

    Gross, F. C.

    1976-01-01

    Infrared spectra (% transmittance plotted vs wavelength/wavenumber) of a large number of lubricant and sealant oils and greases, insulating tapes, and solvents likely to contaminate the internal or external environment of spacecraft are reproduced. Accompanying introductory remarks characterize the nomenclature and properties or uses of the materials whose spectra are reproduced, and offer information on the techniques and equipment used in taking the spectra.

  9. Origin and Fate of Organic Compounds in Water: Characterization by Compound-Specific Stable Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Schmidt, Torsten C.; Jochmann, Maik A.

    2012-07-01

    Within the past 15 years, compound-specific stable isotope analysis has continued to increase in popularity in the area of contaminant hydrology of organic molecules. In particular, in cases where concentration data alone are insufficient to elucidate environmental processes unequivocally, the isotope signature can provide additional unique information. Specifically, it can help answer questions about contaminant source apportionment, quantification of biotic and abiotic processes, and identification of transformation reactions on a mechanistic level. We review advances in laboratory and field investigations and exemplary applications in contaminant hydrology via stable isotope analysis. We also highlight future directions in the field.

  10. Probabilistic approach to estimating indoor air concentrations of chlorinated volatile organic compounds from contaminated groundwater: a case study in San Antonio, Texas.

    PubMed

    Johnston, Jill E; Gibson, Jacqueline MacDonald

    2011-02-01

    This paper describes a probabilistic model, based on the Johnson-Ettinger algorithm, developed to characterize the current and historic exposure to tricholorethylene (TCE) and tetrachlorethylene (PCE) in indoor air from plumes of groundwater contamination emanating from the former Kelly Air Force Base in San Antonio, Texas. We estimate indoor air concentration, house by house, in 30 101 homes and compare the estimated concentrations with measured values in a small subset of homes. We also compare two versions of the Johnson-Ettinger model: one used by the Environmental Protection Agency (EPA) and another based on an alternative parametrization. The modeled mean predicted PCE concentration historically exceeded PCE screening levels (0.41 ug/m(3)) in 5.5% of houses, and the 95th percentile of the predicted concentration exceeded screening levels in 85.3% of houses. For TCE, the mean concentration exceeded the screening level (0.25 ug/m(3)) in 49% of homes, and the 95th percentile of the predicted concentration exceeded the screening level in 99% of homes. The EPA model predicts slightly lower indoor concentrations than the alternative parametrization. Comparison with measured samples suggests both models, with the inputs selected, underestimate indoor concentrations and that the 95th percentiles of the predicted concentrations are closer to measured concentrations than predicted mean values. PMID:21162557

  11. Volatile metabolites in occupational exposure to organic sulfur compounds.

    PubMed

    Jäppinen, P; Kangas, J; Silakoski, L; Savolainen, H

    1993-01-01

    Dimethyl sulfide in breath was determined by the gas chromatographic method in 14 persons exposed to organic reduced sulfur compounds in sulfate pulp mills. Dimethyl sulfide concentrations in breath (range 0.04-0.69 cm3/m3 were compared to the combined workplace concentrations of methyl mercaptan, dimethyl sulfide and dimethyl disulfide. This method of analysis proved to be a practical noninvasive way to assess recent exposure, and therefore it should be applicable to workplaces contaminated with organic sulfur compounds in the pulp industry. PMID:8481097

  12. Methods of making organic compounds by metathesis

    DOEpatents

    Abraham, Timothy W.; Kaido, Hiroki; Lee, Choon Woo; Pederson, Richard L.; Schrodi, Yann; Tupy, Michael John

    2015-09-01

    Described are methods of making organic compounds by metathesis chemistry. The methods of the invention are particularly useful for making industrially-important organic compounds beginning with starting compositions derived from renewable feedstocks, such as natural oils. The methods make use of a cross-metathesis step with an olefin compound to produce functionalized alkene intermediates having a pre-determined double bond position. Once isolated, the functionalized alkene intermediate can be self-metathesized or cross-metathesized (e.g., with a second functionalized alkene) to produce the desired organic compound or a precursor thereto. The method may be used to make bifunctional organic compounds, such as diacids, diesters, dicarboxylate salts, acid/esters, acid/amines, acid/alcohols, acid/aldehydes, acid/ketones, acid/halides, acid/nitriles, ester/amines, ester/alcohols, ester/aldehydes, ester/ketones, ester/halides, ester/nitriles, and the like.

  13. Bioconcentration of organic contaminants in Daphnia resting eggs.

    PubMed

    Chiaia-Hernandez, Aurea C; Ashauer, Roman; Moest, Markus; Hollingshaus, Tobias; Jeon, Junho; Spaak, Piet; Hollender, Juliane

    2013-09-17

    Organic contaminants detected in sediments from Lake Greifensee and other compounds falling in the log Dow range from 1 to 7 were selected to study the bioconcentration of organic contaminants in sediments in Daphnia resting eggs (ephippia). Our results show that octocrylene, tonalide, triclocarban, and other personal care products, along with pesticides and biocides can accumulate in ephippia with log BCF values up to 3. Data on the uptake and depuration kinetics show a better fit toward a two compartment organism model over a single compartment model due to the differences in ephippial egg content in the environment. The obtained BCFs correlate with hydrophobicity for neutral compounds. Independence between BCF and hydrophobicity was observed for partially ionized compounds with log Dow values around 1. Internal concentrations in ephippia in the environment were predicted based on sediment concentrations using the equilibrium partitioning model and calculated BCFs. Estimated internal concentration values ranged between 1 and 68,000 μg/kglip with triclocarban having the highest internal concentrations followed by tonalide and triclosan. The outcomes indicate that contaminants can be taken up by ephippia from the water column or the pore water in the sediment and might influence fitness and sexual reproduction in the aquatic key species of the genus Daphnia. PMID:23919732

  14. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-09-07

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 figures.

  15. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1994-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  16. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1994-06-14

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  17. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.

    1989-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  18. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1993-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  19. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.

    1989-07-18

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  20. Characteristics of the volatile organic compounds -- Arid Integrated Demonstration Site

    SciTech Connect

    Last, G.V.; Lenhard, R.J.; Bjornstad, B.N.; Evans, J.C.; Roberson, K.R.; Spane, F.A.; Amonette, J.E.; Rockhold, M.L.

    1991-10-01

    The Volatile Organic Compounds -- Arid Integrated Demonstration Program (VOC-Arid ID) is targeted at demonstration and testing of technologies for the evaluation and cleanup of volatile organic compounds and associated contaminants at arid DOE sites. The initial demonstration site is an area of carbon tetrachloride (CCl{sub 4}) contamination located near the center of the Hanford Site. The movement of CCl{sub 4} and other volatile organic contaminants in the subsurface is very complex. The problem at the Hanford Site is further complicated by the concurrent discharge of other waste constituents including acids, lard oil, organic phosphates, and transuranic radionuclides. In addition, the subsurface environment is very complex, with large spatial variabilities in hydraulic properties. A thorough understanding of the problem is essential to the selection of appropriate containment, retrieval, and/or in situ remedial technologies. The effectiveness of remedial technologies depends on knowing where the contaminants are, how they are held up in a given physical and chemical subsurface environment; and knowing the physical, chemical, and microbiological changes that are induced by the various remedial technologies.

  1. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2013-03-19

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  2. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2010-09-07

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  3. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2012-10-23

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  4. Organic Contamination Standards for Mars Sample Return

    NASA Astrophysics Data System (ADS)

    Pugel, D. E.; Conley, Catharine

    Collecting samples from Mars and bringing them to Earth for study has long been an objective of planetary exploration, among other reasons because this allows for the application of the most sensitive instruments to detect biosignatures and other indications of possible Mars life. Understanding terrestrial contamination that could be introduced into Mars samples and confound life detection measurements is an essential aspect of the investigative process. Defining quantitative limits on terrestrial organic contamination is necessary for planetary protection purposes, to ensure high confidence in a putative detection of `Mars life' or possible biohazards in samples after return to Earth. As reported here, NASA's Office of Planetary Protection is initiating a process to establish appropriate limits and controls on organic contamination introduced into Mars samples that will be collected and cached by the Mars 2020 mission for possible future return to Earth.

  5. Leaching of organic contaminants from storage of reclaimed asphalt pavement.

    PubMed

    Norin, Malin; Strömvall, A M

    2004-03-01

    Recycling of asphalt has been promoted by rapid increases in both the use and price of petroleum-based bitumen. Semi-volatile organic compounds in leachates from reclaimed asphalt pavement, measured in field samples and in laboratory column test, were analysed through a GC/MS screen-test methodology. Sixteen PAH (polyaromatic hydrocarbons) were also analysed in leachates from the column study. The highest concentrations of semi-volatile compounds, approximately 400 microg l(-1), were measured in field samples from the scarified stockpile. Naphthalene, butylated hydroxytoluene (BHT) and dibutyl phthalate (DBP) were the most dominant of the identified semi-volatiles. The occurrence of these compounds in urban groundwater, also indicate high emission rates and persistent structures of the compounds, making them potentially hazardous. Car exhausts, rubber tires and the asphalt material itself are all probable emission sources, determined from the organic contaminants released from the stockpiles. The major leaching mechanism indicated was dissolution of organic contaminants from the surface of the asphalt gravels. In the laboratory column test, the release of high-molecular weight and more toxic PAH was higher in the leachates after two years than at the commencement of storage. The concentrations of semi-volatiles in leachates, were also several times lower than those from the field stockpile. These results demonstrate the need to follow up laboratory column test with real field measurements. PMID:15176747

  6. Testing of in situ vitrification on soils contaminated with explosive compounds

    SciTech Connect

    Campbell, B.E.; Schultz, S.; Cichelli, J.

    1994-12-31

    A treatability test using the In Situ Vitrification (ISV) process was successfully completed on explosives-contaminated soils from the former Nebraska Ordinance Plant (NOP). Contaminated soil from various regions of the plant were gathered, homogenized, and then submitted to Geosafe for testing. ISV is a thermal treatment process in which contaminated soils are heated to melting by the use of electrical current. Upon cooling, the melted soil forms a glass and crystalline (vitrified) product. Organic compounds present in the soil predominantly pyrolyze (thermally decompose into elemental hydrogen and carbon); the pyrolysis products are eventually oxidized when they reach the oxygen-rich hood plenum area at the soil surface. Non-volatile compounds are permanently immobilized within the vitrified product, and volatile heavy metals are removed from the off-gas stream by a gas treatment system. The treatability test had the primary objective of determining the effectiveness and feasibility of treating the explosives-contaminated soil using the ISV technology.

  7. DEMONSTRATION BULLETIN: SOLIDIFICATION/STABILIZATION OF ORGANIC/INORGANIC CONTAMINANTS - SILICATE TECHNOLOGY CORPORATION

    EPA Science Inventory

    Silicate Technology Corporation's (STC's) technology for treating hazardous waste utilizes silicate compounds to stabilize organic and inorganic constituents in contaminated soils and sludges. STC has developed two groups of reagents: SOILSORB HM for treating wastes with inorgan...

  8. Microwave spectra of some volatile organic compounds

    NASA Technical Reports Server (NTRS)

    White, W. F.

    1975-01-01

    A computer-controlled microwave (MRR) spectrometer was used to catalog reference spectra for chemical analysis. Tables of absorption frequency, peak absorption intensity, and integrated intensity are included for 26 volatile organic compounds, all but one of which contain oxygen.

  9. VOLATILE ORGANIC COMPOUNDS AS EXPOSURE BIOMARKERS

    EPA Science Inventory

    Alveolar breath sampling and analysis can be extremely useful in exposure assessment studies involving volatile organic compounds (VOCs). Over recent years scientists from the US Environmental Protection Agency's National Exposure Research Laboratory have developed and refined...

  10. Initial-phase optimization for bioremediation of munition compound-contaminated soils

    SciTech Connect

    Funk, S.B.; Crawford, D.L.; Crawford, R.L.; Roberts, D.J. )

    1993-07-01

    2,4,6-Trinitrotoluene (TNT), RDX, and HMX, munition compounds, persist as soil and ground water contaminants at many USA military sites. Incineration is the only available proven technology for remediation, but this technology is very expensive for small locations. Biodegradation of TNT and other hazardous energetic nitroaromatic compounds is another possibility. This paper reports the application of a procedure previously used for the strict anaerobic microbial bioremediation of nitroaromatic herbicide-contaminated soils to the remediation of munition compound-contaminated soils. Anaerobic metabolism occurs in two stages: reductive stage in which TNT is reduced to its amino derivatives and degradation to nonaromatic products stage. The optimization of the reductive stage of TNT metabolism is also described here. The organism used is the white-rot fungus, Phanerochaete chrysosporium. 24 refs., 5 figs., 2 tabs.

  11. Breath measurements as volatile organic compound biomarkers.

    PubMed Central

    Wallace, L; Buckley, T; Pellizzari, E; Gordon, S

    1996-01-01

    A brief review of the uses of breath analysis in studies of environmental exposure to volatile organic compounds (VOCs) is provided. The U.S. Environmental Protection Agency's large-scale Total Exposure Assessment Methodology Studies have measured concentrations of 32 target VOCs in the exhaled breath of about 800 residents of various U.S. cities. Since the previous 12-hr integrated personal air exposures to the same chemicals were also measured, the relation between exposure and body burden is illuminated. Another major use of the breath measurements has been to detect unmeasured pathways of exposure; the major impact of active smoking on exposure to benzene and styrene was detected in this way. Following the earlier field studies, a series of chamber studies have provided estimates of several important physiological parameters. Among these are the fraction, f, of the inhaled chemical that is exhaled under steady-state conditions and the residence times. tau i in several body compartments, which may be associated with the blood (or liver), organs, muscle, and fat. Most of the targeted VOCs appear to have similar residence times of a few minutes, 30 min, several hours, and several days in the respective tissue groups. Knowledge of these parameters can be helpful in estimating body burden from exposure or vice versa and in planning environmental studies, particularly in setting times to monitor breath in studies of the variation with time of body burden. Improvements in breath methods have made it possible to study short-term peak exposure situations such as filling a gas tank or taking a shower in contaminated water. PMID:8933027

  12. PERFLUORINATED ORGANIC COMPOUND EXPOSURE ASSESSMENT RESEARCH

    EPA Science Inventory

    A wide range of perfluorinated organic compounds (PFCs) has been used in a variety of industrial processes and consumer products. The most commonly studied PFCs include perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), but there are many more compounds in this c...

  13. (CHINA) PERFLUORINATED ORGANIC COMPOUND EXPOSURE ASSESSMENT RESEARCH

    EPA Science Inventory

    A wide range of perfluorinated organic compounds (PFCs) has been used in a variety of industrial processes and consumer products. The most commonly studied PFCs include perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), but there are many more compounds in this c...

  14. Volatile organic compound emissions from silage systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols with other impor...

  15. VOLATILE ORGANIC COMPOUNDS (VOCS) CHAPTER 31.

    EPA Science Inventory

    The term "volatile organic compounds' (VOCs) was originally coined to refer, as a class, to carbon-containing chemicals that participate in photochemical reactions in the ambient (outdoor) are. The regulatory definition of VOCs used by the U.S. EPA is: Any compound of carbon, ex...

  16. Analysis of organic compounds in returned comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.

    1989-01-01

    Techniques for analysis of organic compounds in returned comet nucleus samples are described. Interstellar, chondritic and transitional organic components are discussed. Appropriate sampling procedures will be essential to the success of these analyses. It will be necessary to return samples that represent all the various regimes found in the nucleus, e.g., a complete core, volatile components (deep interior), and crustal components (surface minerals, rocks, processed organics such as macromolecular carbon and polymers). Furthermore, sampling, storage, return, and distribution of samples must be done under conditions that preclude contamination of the samples by terrestrial matter.

  17. Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle.

    PubMed

    Pal, Amrita; He, Yiliang; Jekel, Martin; Reinhard, Martin; Gin, Karina Yew-Hoong

    2014-10-01

    The contamination of the urban water cycle (UWC) with a wide array of emerging organic compounds (EOCs) increases with urbanization and population density. To produce drinking water from the UWC requires close examination of their sources, occurrence, pathways, and health effects and the efficacy of wastewater treatment and natural attenuation processes that may occur in surface water bodies and groundwater. This paper researches in details the structure of the UWC and investigates the routes by which the water cycle is increasingly contaminated with compounds generated from various anthropogenic activities. Along with a thorough survey of chemicals representing compound classes such as hormones, antibiotics, surfactants, endocrine disruptors, human and veterinary pharmaceuticals, X-ray contrast media, pesticides and metabolites, disinfection-by-products, algal toxins and taste-and-odor compounds, this paper provides a comprehensive and holistic review of the occurrence, fate, transport and potential health impact of the emerging organic contaminants of the UWC. This study also illustrates the widespread distribution of the emerging organic contaminants in the different aortas of the ecosystem and focuses on future research needs. PMID:24972248

  18. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-01-05

    Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70 C and 500 C and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

  19. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1993-01-01

    Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70.degree. C. and 500.degree. C. and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

  20. Well-purging criteria for sampling purgeable organic compounds

    USGS Publications Warehouse

    Gibs, J.; Imbrigiotta, T.E.

    1990-01-01

    The results indicate that 1) purgeable organic compound concentrations stabilized when three casing volume were purged in only 55% of the cases evaluated in this study, 2) purgeable organic compounds concentrations did not consistently follow the temporal variation of, nor stabilize at the same time as, the measure field characteristics, and 3) purging to achieve hydraulic equilibrium between casing and aquifer water consistently underestimated the time and casing volumes needed to achieve stable values of water-quality measurements in highly transmissive aquifers. The conclusion from these data is that none of the previously recommended criteria for purging a well can be applied reliably to collecting a "representative' sample of purgeable organic compounds. These results indicate that the criteria for purging a well prior to sampling for purgeable organic compounds must take into account other factors, such as the unique hydrogeologic characteristics of a site, the nature and extent of purgeable organic compounds present, and areal extent of the contamination, the well construction, and the sampling objectives of the investigation. -from Authors

  1. Compound-specific carbon isotope analysis of a contaminant plume in Kingsford, Michigan, USA

    USGS Publications Warehouse

    Michel, R.L.; Silva, S.R.; Bemis, B.; Godsy, E.M.; Warren, E.

    2001-01-01

    Compound-specific isotope analysis was used to study a contaminated site near Kingsford, Michigan, USA. Organic compounds at three of the sites studied had similar ??13C values indicating that the contaminant source is the same for all sites. At a fourth site, chemical and ??13C values had evolved due to microbial degradation of organics, with the ??13C being much heavier than the starting materials. A microcosm experiment was run to observe isotopic changes with time in the methane evolved and in compounds remaining in the water during degradation. The ??13C values of the methane became heavier during the initial period of the run when volatile fatty acids were being consumed. There was an abrupt decrease in the ??13C values when fatty acids had been consumed and phenols began to be utilized. The ??13C value of the propionate remaining in solution also increased, similar to the results found in the field.

  2. Atmospheric Chemistry of Micrometeoritic Organic Compounds

    NASA Technical Reports Server (NTRS)

    Kress, M. E.; Belle, C. L.; Pevyhouse, A. R.; Iraci, L. T.

    2011-01-01

    Micrometeorites approx.100 m in diameter deliver most of the Earth s annual accumulation of extraterrestrial material. These small particles are so strongly heated upon atmospheric entry that most of their volatile content is vaporized. Here we present preliminary results from two sets of experiments to investigate the fate of the organic fraction of micrometeorites. In the first set of experiments, 300 m particles of a CM carbonaceous chondrite were subject to flash pyrolysis, simulating atmospheric entry. In addition to CO and CO2, many organic compounds were released, including functionalized benzenes, hydrocarbons, and small polycyclic aromatic hydrocarbons. In the second set of experiments, we subjected two of these compounds to conditions that simulate the heterogeneous chemistry of Earth s upper atmosphere. We find evidence that meteor-derived compounds can follow reaction pathways leading to the formation of more complex organic compounds.

  3. Plant-Associated Bacterial Degradation of Toxic Organic Compounds in Soil

    PubMed Central

    McGuinness, Martina; Dowling, David

    2009-01-01

    A number of toxic synthetic organic compounds can contaminate environmental soil through either local (e.g., industrial) or diffuse (e.g., agricultural) contamination. Increased levels of these toxic organic compounds in the environment have been associated with human health risks including cancer. Plant-associated bacteria, such as endophytic bacteria (non-pathogenic bacteria that occur naturally in plants) and rhizospheric bacteria (bacteria that live on and near the roots of plants), have been shown to contribute to biodegradation of toxic organic compounds in contaminated soil and could have potential for improving phytoremediation. Endophytic and rhizospheric bacterial degradation of toxic organic compounds (either naturally occurring or genetically enhanced) in contaminated soil in the environment could have positive implications for human health worldwide and is the subject of this review. PMID:19742157

  4. EVALUATION USING AN ORGANOPHILIC CLAY TO CHEMICALLY STABILIZE WASTE CONTAINING ORGANIC COMPOUNDS

    EPA Science Inventory

    A modified clay (organophilic) was utilized to evaluate the potential for chemically stabilizing a waste containing organic compounds. hemical bonding between the binder and the contaminants was indicated. eachate testing also indicated strong binding. Copy available at NTIS as ...

  5. Wipe testing for surface contamination by tritiated compounds.

    PubMed

    Campbell, J L; Santerre, C R; Farina, P C; Muse, L A

    1993-05-01

    This study investigated the performance of the wipe test in determining contamination from tritiated triolein or thymidine on various surfaces. Filter papers were saturated with water, methanol, petroleum ether, ethyl acetate or maintained dry, and wipes were taken from lead, stainless steel, polyurethane, wood, painted lead, treated floor tile, Formica, or bench paper that were spotted with either 3H-thymidine or 3H-triolein. The recovery of contamination using the dry wipe test averaged 3% for all surfaces. Recoveries using wet wipes were directly related to the solubility of the tritiated compounds in the wipe solution and the physical nature of the wipe surface. PMID:8491607

  6. Characterization of Organic Contamination in Semiconductor Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Nutsch, A.; Beckhoff, B.; Bedana, G.; Borionetti, G.; Codegoni, D.; Grasso, S.; Guerinoni, G.; Leibold, A.; Müller, M.; Otto, M.; Pfitzner, L.; Polignano, M.-L.; De Simone, D.; Frey, L.

    2009-09-01

    The impact of organic contamination on wafer surfaces on the functionality of nanostructures and advanced microelectronics becomes crucial as the continuously shrinking feature sizes become similar to the dimensions of molecules and clusters of molecules. Especially, manufacturing of highly integrated circuits requires clean surfaces as processes might cause defects involving for example carbon and sulfur. The approach to study organic contamination on wafer samples using different analytical tools enables the detection of the whole range of organic compounds including non-volatile and volatile ones. For the studies the methods used were synchrotron radiation based Near Edge X-ray Absorption Fine Structure (NEXAFS) in the soft X-Ray range at the absorption edges of light elements (e.g. C, N, O, F) combined with reference-free Total-reflection X-Ray Fluorescence (TXRF) analysis, Thermal Desorption Gas Chromatography Mass Spectrometry (TD-GCMS), and Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS). TOF-SIMS analysis of the surfaces of wafers from the lithography process after ashing showed sulfur compounds related to resist residues not identified by TD-GCMS. The source of the sulfur is assumed to be a photo acid generator of the resist. It was proven by TD-GCMS and TXRF-NEXAFS that final clean and packaging were the process steps during which detectable organic contamination was transferred to the wafer surface during wafer manufacturing. Multi-criteria evaluation of the TXRF NEXAFS spectra was used to compare the results with TD-GCMS. The TXRF-NEXAFS results are in good agreement with the TD-GCMS results. The advantage of TXRF-NEXAFS and TOF-SIMS are the sensitivity for organic contaminants that are not detectable by TD-GCMS, due to their high boiling point and low vapor pressures.

  7. Photocatalytic oxidation of organic compounds on Mars

    NASA Technical Reports Server (NTRS)

    Chun, S. F. S.; Pang, K. D.; Cutts, J. A.; Ajello, J. M.

    1978-01-01

    Ultraviolet-stimulated catalytic oxidation is proposed as a mechanism for the destruction of organic compounds on Mars. The process involves the presence of gaseous oxygen, UV radiation, and a catalyst (titanium dioxide), and all three of these have been found to be present in the Martian environment. Therefore it seems plausible that UV-stimulated oxidation of organics is responsible for degrading organic molecules into inorganic end products.

  8. Reflectance spectroscopy of organic compounds: 1. Alkanes

    USGS Publications Warehouse

    Clark, R.N.; Curchin, J.M.; Hoefen, T.M.; Swayze, G.A.

    2009-01-01

    Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 /??m. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the. universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even ' when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.

  9. A review of surface-water sediment fractions and their interactions with persistent manmade organic compounds

    USGS Publications Warehouse

    Witkowski, P.J.; Smith, J.A.; Fusillo, T.V.; Chiou, C.T.

    1987-01-01

    This paper reviews the suspended and surficial sediment fractions and their interactions with manmade organic compounds. The objective of this review is to isolate and describe those contaminant and sediment properties that contribute to the persistence of organic compounds in surface-water systems. Most persistent, nonionic organic contaminants, such as the chlorinated insecticides and polychlorinated biphenyls (PCBs), are characterized by low water solubilities and high octanol-water partition coefficients. Consequently, sorptive interactions are the primary transformation processes that control their environmental behavior. For nonionic organic compounds, sorption is primarily attributed to the partitioning of an organic contaminant between a water phase and an organic phase. Partitioning processes play a central role in the uptake and release of contaminants by sediment organic matter and in the bioconcentration of contaminants by aquatic organisms. Chemically isolated sediment fractions show that organic matter is the primary determinant of the sorptive capacity exhibited by sediment. Humic substances, as dissolved organic matter, contribute a number of functions to the processes cycling organic contaminants. They alter the rate of transformation of contaminants, enhance apparent water solubility, and increase the carrying capacity of the water column beyond the solubility limits of the contaminant. As a component of sediment particles, humic substances, through sorptive interactions, serve as vectors for the hydrodynamic transport of organic contaminants. The capabilities of the humic substances stem in part from their polyfunctional chemical composition and also from their ability to exist in solution as dissolved species, flocculated aggregates, surface coatings, and colloidal organomineral and organometal complexes. The transport properties of manmade organic compounds have been investigated by field studies and laboratory experiments that examine the

  10. Removal of organic contaminants from lithographic materials

    NASA Astrophysics Data System (ADS)

    Lytle, Wayne M.

    One of the critical issues still facing the implementation of extreme ultraviolet lithography (EUVL) into mainstream manufacturing for integrated circuit (IC) production is cleanliness. EUV photons at 13.5 nm are easily absorbed by many species, including dust, thin-film layers, and other debris present in the path of the photons. Carrying out EUVL inside a vacuum helps reduce the amount of photon loss for illumination, however contamination in the sys- tem is unavoidable, especially due to carbon growth on the multilayer mirror collectors and to soft defects in the form of organic contamination on the mask. Traditional cleaning methods employ the use of wet chemicals to etch contamination off of a surface, however this is limited in the sub-micron range of contaminant particles due to lack of transport of sufficient liquid chemical to the surface in order to achieve satisfactory particle removal. According to the International Technology Roadmap for Semiconductors (ITRS), the photomask must be particle free at inspection below 30 nm. However, when analyzing the ability of traditional methods to meet the cleaning needs set forth by the ITRS, these methods fall short and often add more contamination to the surface targeted for cleaning. With that in mind, a new cleaning method is being developed to supplant these traditional methods. Preliminary research into a plasma-based method to clean organic contaminants from lithographic materials constructed an experimental device that demonstrated the removal of both polystyrene latex nanoparticles (representing hydrocarbon contamination) in the range of 30 nm to 500 nm, as well as the removal of 30 nm carbon film layers on silicon wafers. This research, called the Plasma-Assisted Cleaning by Metastable Atomic Neutralization (PACMAN) process is being developed with semiconductor manufacturing cleaning in mind. A model of the helium metastable density within the processing chamber has been developed in addition to

  11. Catalyst for Oxidation of Volatile Organic Compounds

    NASA Technical Reports Server (NTRS)

    Wood, George M. (Inventor); Upchurch, Billy T. (Inventor); Schryer, David R. (Inventor); Davis, Patricia P. (Inventor); Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); Schyryer, Jacqueline L. (Inventor); DAmbrosia, Christine M. (Inventor)

    2000-01-01

    Disclosed is a process for oxidizing volatile organic compounds to carbon dioxide and water with the minimal addition of energy. A mixture of the volatile organic compound and an oxidizing agent (e.g. ambient air containing the volatile organic compound) is exposed to a catalyst which includes a noble metal dispersed on a metal oxide which possesses more than one oxidation state. Especially good results are obtained when the noble metal is platinum, and the metal oxide which possesses more than one oxidation state is tin oxide. A promoter (i.e., a small amount of an oxide of a transition series metal) may be used in association with the tin oxide to provide very beneficial results.

  12. A national survey of trace organic contaminants in Australian rivers.

    PubMed

    Scott, Philip D; Bartkow, Michael; Blockwell, Stephen J; Coleman, Heather M; Khan, Stuart J; Lim, Richard; McDonald, James A; Nice, Helen; Nugegoda, Dayanthi; Pettigrove, Vincent; Tremblay, Louis A; Warne, Michael St J; Leusch, Frederic D L

    2014-09-01

    Trace organic contaminant (TrOC) studies in Australia have, to date, focused on wastewater effluents, leaving a knowledge gap of their occurrence and risk in freshwater environments. This study measured 42 TrOCs including industrial compounds, pesticides, and pharmaceuticals and personal care products by liquid chromatography tandem mass spectrometry at 73 river sites across Australia quarterly for 1 yr. Trace organic contaminants were found in 92% of samples, with a median of three compounds detected per sample (maximum 18). The five most commonly detected TrOCs were the pharmaceuticals salicylic acid (82%, maximum = 1530 ng/L), paracetamol (also known as acetaminophen; 45%, maximum = 7150 ng/L), and carbamazepine (27%, maximum = 682 ng/L), caffeine (65%, maximum = 3770 ng/L), and the flame retardant (2-chloroethyl) phosphate (44%, maximum = 184 ng/L). Pesticides were detected in 28% of the samples. To determine the risk posed by the detected TrOCs to the aquatic environment, hazard quotients were calculated by dividing the maximum concentration detected for each compound by the predicted no-effect concentrations. Three of the 42 compounds monitored (the pharmaceuticals carbamazepine and sulfamethoxazole and the herbicide simazine) had a hazard quotient >1, suggesting that they may be causing adverse effects at the most polluted sites. A further 10 compounds had hazard quotients >0.1, indicating a potential risk; these included four pharmaceuticals, three personal care products, and three pesticides. Most compounds had hazard quotients significantly <0.1. The number of TrOCs measured in this study was limited and further investigations are required to fully assess the risk posed by complex mixtures of TrOCs on exposed biota. PMID:25603256

  13. Nonaqueous battery with organic compound cathode

    SciTech Connect

    Yamaji, A.; Yamaki, J.

    1981-02-17

    A battery embodying this invention comprises: an anode including an anode-active material formed of one metal selected from the Group IA metals or preferably lithium metal; a cathode including a cathode-active material formed of metal or metal-free organic compounds having a phthalocyanine function or organic compounds having a porphin function; and an electrolyte prepared from a material which is chemically stable to the cathode and anode materials and permits the migration of the ion of the anode metal to the cathode for electrochemical reaction with the cathode-active material.

  14. Anaerobic transformations of complex organic compounds in subsurface soils

    SciTech Connect

    Proctor, B.L. )

    1988-09-01

    This study was initiated following increased observations of man-made organic chemicals in groundwater. In the US, over 40% of the population depends on groundwater for drinking purposes. Soil is often the receptacle for organic chemicals, and there is a danger that they may reach the groundwater in a toxic form. Once contamination of the soil and vadose water has occurred, the compound may not be detected and/or degraded for decades. Limited, if any, information is available on the biotic-abiotic transformations of complex organic compounds in subsurface soils. The purpose of this study was to determine for each test compound (phenothiazine, 1-chloronaphthalene, 2-trifluoromethyl phenothiazine, 2-chloro-5 trifluoromethyl benzophenone and 2,2{prime},4,4{prime} tetrachlorobiphenyl) the following: (A) the soil sorption capacity for untreated subsurface soil, acid-treated, base-treated, mercuric chloride-treated, and calcium chloride treated subsurface soil; (B) transformation of the test compound in EPA soft water under anaerobic biotic and abiotic conditions; (C) transformation of the test compound in subsurface soils microcosms under anaerobic biotic and abiotic conditions; and (D) comparison of the results form the soil and water anaerobic biotic and abiotic studies.

  15. BIOASSAY-DIRECTED FRACTIONATION OF ORGANIC CONTAMINANTS IN AN ESTUARINE SEDIMENT USING THE NEW MUTAGENIC BIOASSAY, MUTATOX

    EPA Science Inventory

    Bioassay-directed fractionation of organic compounds was performed on an organic solvent extract of a contaminated estuarine sediment from Black Rock Harbor, Connecticut, using the new mutagenic bioassay, Mutatox-. hemical fractionation methods of the sediment extract included si...

  16. Global Exposure Modelling of Semivolatile Organic Compounds

    NASA Astrophysics Data System (ADS)

    Guglielmo, F.; Lammel, G.; Maier-Reimer, E.

    2008-12-01

    Organic compounds which are persistent and toxic as the agrochemicals γ-hexachlorocyclohexane (γ-HCH, lindane) and dichlorodiphenyltrichloroethane (DDT) pose a hazard for the ecosystems. These compounds are semivolatile, hence multicompartmental substances and subject to long-range transport (LRT) in atmosphere and ocean. Being lipophilic, they accumulate in exposed organism tissues and biomagnify along food chains. The multicompartmental global fate and LRT of DDT and lindane in the atmosphere and ocean have been studied using application data for 1980, on a decadal scale using a model based on the coupling of atmosphere and (for the first time for these compounds) ocean General Circulation Models (ECHAM5 and MPI-OM). The model system encompasses furthermore 2D terrestrial compartments (soil and vegetation) and sea ice, a fully dynamic atmospheric aerosol (HAM) module and an ocean biogeochemistry module (HAMOCC5). Large mass fractions of the compounds are found in soil. Lindane is also found in comparable amount in ocean. DDT has the longest residence time in almost all compartments. The sea ice compartment locally almost inhibits volatilization from the sea. The air/sea exchange is also affected , up to a reduction of 35 % for DDT by partitioning to the organic phases (suspended and dissolved particulate matter) in the global oceans. Partitioning enhances vertical transport in the sea. Ocean dynamics are found to be more significant for vertical transport than sinking associated with particulate matter. LRT in the global environment is determined by the fast atmospheric circulation. Net meridional transport taking place in the ocean is locally effective mostly via western boundary currents, upon applications at mid- latitudes. The pathways of the long-lived semivolatile organic compounds studied include a sequence of several cycles of volatilisation, transport in the atmosphere, deposition and transport in the ocean (multihopping substances). Multihopping is

  17. COMPARISON OF TWO FIELD SAMPLING PROCEDURES (EN CORE AND FIELD METHANOL EXTRACTION) FOR VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    In-situ Lasagna technology was recently evaluated at a contaminated site at Offutt Air Force Base. The site was contaminated with low levels (< 30 mg/kg) of volatile organic compounds (VOCs). Originally, researchers planned to use field methanol extraction for both pre- and pos...

  18. FINAL REPORT: MEMBRANE-MEDIATED EXTRACTION AND BIODEGRADATION OF VOLATILE ORGANIC COMPOUNDS FROM AIR

    EPA Science Inventory

    The report describes feasibility tests of a two-step strategy for air pollution control applicable to exhaust air contaminated with volatile organic compounds (VOCs) from painting aircraft. In the first step, the VOC-contaminated air passes over coated, polypropylene, hollow-fibe...

  19. Detecting and Eliminating Interfering Organic Compounds in Waters Analyzed for Isotopic Composition by Crds

    NASA Astrophysics Data System (ADS)

    Richman, B. A.; Hsiao, G. S.; Rella, C.

    2010-12-01

    Optical spectroscopy based CRDS technology for isotopic analysis of δD and δ18O directly from liquid water has greatly increased the number and type of liquid samples analyzed. This increase has also revealed a previously unrecognized sample contamination problem. Recently West[1] and Brand[2] identified samples containing ethanol, methanol, plant extracts and other organic compounds analyzed by CRDS and other spectroscopy based techniques as yielding erroneous results for δD and δ18O (especially δD) due to spectroscopic interference. Not all organic compounds generate interference. Thus, identifying which samples are contaminated by which organic compounds is of key importance for data credibility and correction. To address this problem a new approach in the form of a software suite, ChemCorrect™, has been developed. A chemometrics component uses a spectral library of water isotopologues and interfering organic compounds to best fit the measured spectra. The best fit values provide a quantitative assay of the actual concentrations of the various species and are then evaluated to generate a visual flag indicating samples affected by organic contamination. Laboratory testing of samples spiked with known quantities of interfering organic compounds such as methanol, ethanol, and terpenes was performed. The software correctly flagged and identified type of contamination for all the spiked samples without any false positives. Furthermore the reported values were a linear function of actual concentration with an R^2>0.99 even for samples which contained multiple organic compounds. Further testing was carried out against a range of industrial chemical compounds which can contaminate ground water as well as a variety of plant derived waters and juices which were also analyzed by IRMS. The excellent results obtained give good insight into which organic compounds cause interference and which classes of plants are likely to contain interfering compounds. Finally

  20. Treating contaminated organics using the DETOX process

    SciTech Connect

    Elsberry, K.D.; Dhooge, P.M.

    1993-05-01

    Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. This paper describes the results of bench-scale studies of DETOX applied to the components of liquid mixed wastes, with the goal of establishing parameters for designing a prototype waste treatment unit. Apparent organic reaction rate orders and the dependence of apparent reaction rate on solution composition and the contact area were measured for vacuum pump oil scintillation fluids, and trichloroethylene. Reaction rate was superior in chloride-based solutions and was proportional to the contact area above about 2% w/w loading of organic. Oxidations in a 4-liter volume, mixed bench-top reactor have given destruction efficiencies of 99.9999 + % for common organics. Reaction rates achieved in the mixed bench-top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10 to 100 + grams of organic per liter-hour. Results are also presented on the solvation efficiency of DETOX for mercury, cerium, and neodymium, and for removal/destruction of organics sorbed on vermiculite. The next stage of development will be converting the bench-top unit to continuous processing.

  1. Organic photosensitive devices using subphthalocyanine compounds

    DOEpatents

    Rand, Barry; Forrest, Stephen R.; Mutolo, Kristin L.; Mayo, Elizabeth; Thompson, Mark E.

    2011-07-05

    An organic photosensitive optoelectronic device, having a donor-acceptor heterojunction of a donor-like material and an acceptor-like material and methods of making such devices is provided. At least one of the donor-like material and the acceptor-like material includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound; and/or the device optionally has at least one of a blocking layer or a charge transport layer, where the blocking layer and/or the charge transport layer includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound.

  2. Climate impacts of biogenic organic compounds

    NASA Astrophysics Data System (ADS)

    Sengupta, Kamalika; Gordon, Hamish; Almeida, Joao; Rap, Alex; Scott, Catherine; Pringle, Kirsty; Carslaw, Ken

    2016-04-01

    Currently the most uncertain driver of climate change, impact of anthropogenic aerosols on earth's radiative balance depends significantly on estimates of cloud condensation nuclei (CCN), representation of the pre-industrial atmosphere among others. Nearly 90% of aerosols in the tropics are organic in nature of which a major part comes from biogenic sources. About 45% of the CCN in the atmosphere are formed in-situ via nucleation. Understanding the role of biogenic organic compounds in particle formation and their subsequent growth is hence imperative in order to quantify the climate impact of aerosols. The CLOUD experiment at CERN, which measures particle formation and growth rates in a uniquely clean chamber under atmospherically relevant conditions, found evidence of a nucleation mechanism involving only biogenic organic compounds. This mechanism significantly changes our pre-industrial estimates. The experimental results have been parameterized and included in a global aerosol microphysics model, GLOMAP, to quantify the impact of pure biogenic nucleation on CCN formation and their climatic impact. Further the treatment of secondary organic compounds in GLOMAP has been improved and the sensitivity of our estimates of radiative forcing to the same has been evaluated.

  3. Occurrence and fate of organic contaminants during onsite wastewater treatment

    USGS Publications Warehouse

    Conn, K.E.; Barber, L.B.; Brown, G.K.; Siegrist, R.L.

    2006-01-01

    Onsite wastewater treatment systems serve approximately 25% of the U.S. population. However, little is known regarding the occurrence and fate of organic wastewater contaminants (OWCs), including endocrine disrupting compounds, during onsite treatment. A range of OWCs including surfactant metabolites, steroids, stimulants, metal-chelating agents, disinfectants, antimicrobial agents, and pharmaceutical compounds was quantified in wastewater from 30 onsite treatment systems in Summit and Jefferson Counties, CO. The onsite systems represent a range of residential and nonresidential sources. Eighty eight percent of the 24 target compounds were detected in one or more samples, and several compounds were detected in every wastewater sampled. The wastewater matrices were complex and showed unique differences between source types due to differences in water and consumer product use. Nonresidential sources generally had more OWCs at higher concentrations than residential sources. Additional aerobic biofilter-based treatment beyond the traditional anaerobic tank-based treatment enhanced removal for many OWCs. Removal mechanisms included volatilization, biotransformation, and sorption with efficiencies from 99% depending on treatment type and physicochemical properties of the compound. Even with high removal rates during confined unit onsite treatment, OWCs are discharged to soil dispersal units at loadings up to 20 mg/m2/d, emphasizing the importance of understanding removal mechanisms and efficiencies in onsite treatment systems that discharge to the soil and water environments. ?? 2006 American Chemical Society.

  4. Process for removing an organic compound from water

    DOEpatents

    Baker, Richard W.; Kaschemekat, Jurgen; Wijmans, Johannes G.; Kamaruddin, Henky D.

    1993-12-28

    A process for removing organic compounds from water is disclosed. The process involves gas stripping followed by membrane separation treatment of the stripping gas. The stripping step can be carried out using one or multiple gas strippers and using air or any other gas as stripping gas. The membrane separation step can be carried out using a single-stage membrane unit or a multistage unit. Apparatus for carrying out the process is also disclosed. The process is particularly suited for treatment of contaminated groundwater or industrial wastewater.

  5. Dynamics of hydrophobic organic contaminants in the Baltic proper pelagial

    SciTech Connect

    Axelman, J.; Broman, D.; Naef, C.; Pettersen, H.

    1995-12-31

    Hydrophobic organic contaminants occur in different forms in natural water. Apart from being truly dissolved in water they partition into dissolved organic carbon (DOC) and particles of different sizes including pelagic bacteria, phytoplankton and zooplankton. The distribution between the different forms is dependent on carbon turnover rates in and transport between the different compartments and on the physical and chemical properties of the compound in focus. The water phase, the DOC-phase and two particle size fractions, 0.2--2pm and 2--20 pm representing the base of the pelagic food web, were analyzed for their content of PCBs and PAHs during summer and winter conditions in the open sea in the Baltic proper. New methods for separating truly dissolved from DOC-bound compounds have been developed using a high capacity perfusion adsorbent and large scale gas sparging. The small particle size fraction was sampled using high volume tangential flow filtration. The possibility to separate between these four different compartments has given a more detailed picture of the short term dynamics of hydrophobic organic compounds in the important base of the pelagial food web.

  6. Characterization of organic contaminants in porous media using nuclear magnetic resonance and spectral induced polarization measurements.

    NASA Astrophysics Data System (ADS)

    Rupert, Y. K.

    2015-12-01

    The remediation and monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts. This laboratory research focuses on combining two innovative geophysical methods: nuclear magnetic resonance (NMR) and spectral induced polarization (SIP) to assess their suitability to characterize and quantify organic contaminants in porous media. Toluene, a light non-aqueous phase liquid (LNAPL), and ethoxy-nonafluorobutane, an engineered dense non-aqueous phase liquid (DNAPL), have been selected as representative organic contaminants. Low-field NMR relaxation time (T2) measurements and diffusion-relaxation (D-T2) correlation measurements, as well as low frequency SIP measurements (<10 kHz) are performed to quantify the amount of these two organic compounds in the presence of water in three types of porous media (sands, clay, and various sand-clay mixtures). The T2, D-T2, and SIP measurements are made on water, toluene, and the synthetic DNAPL in each porous media to understand the effect of different porous media on the NMR and SIP responses in each fluid. We then plan to make measurements on water-organic mixtures with varied concentrations of organic compounds in each porous medium to resolve the NMR and SIP response of the organic contaminants from that of water and to quantify the amount of organic contaminants. Building a relationship between SIP and NMR signatures from organic contaminants not only provides a fundamental yet important petrophysical relationship, but also builds a framework for continued investigation into how these two methods synergize. This will also provide spatially dense information about organic contaminated natural sediments at scales that will improve the quantitative characterization and remediation of contaminated sites.The remediation and monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts

  7. Electrokinetic remediation of six emerging organic contaminants from soil.

    PubMed

    Guedes, Paula; Mateus, Eduardo P; Couto, Nazaré; Rodríguez, Yadira; Ribeiro, Alexandra B

    2014-12-01

    Some organic contaminants can accumulate in organisms and cause irreversible damages in biological systems through direct or indirect toxic effects. In this study the feasibility of the electrokinetic (EK) process for the remediation of 17β-oestradiol (E2), 17α-ethinyloestradiol (EE2), bisphenol A (BPA), nonylphenol (NP), octylphenol (OP) and triclosan (TCS) in soils was studied in a stationary laboratory cell. The experiments were conducted using a silty loam soil (S2) at 0, 10 and 20mA and a sandy soil (S3) at 0 and 10 mA. A pH control in the anolyte reservoir (pH>13) at 10 mA was carried out using S2, too. Photo and electrodegradation experiments were also fulfilled. Results showed that EK is a viable method for the remediation of these contaminants, both through mobilization by electroosmotic flow (EOF) and electrodegradation. As EOF is very sensible to soil pH, the control in the anolyte increased EOF rate, consequently enhancing contaminants mobilization towards the cathode end. The extent of the mobilization towards the electrode end was mainly dependent on compounds solubility and octanol-water partition coefficient. In the last 24h of experiments, BPA presented the highest mobilization rate (ca. 4 μg min(-1)) with NP not being detected in the catholyte. At the end of all experiments the percentage of contaminants that remained in the soil ranged between 17 and 50 for S2, and between 27 and 48 for S3, with no statistical differences between treatments. The mass balance performed showed that the amount of contaminant not detected in the cell is similar to the quantity that potentially may suffer photo and electrodegradation. PMID:24997283

  8. Decontaminating materials used in ground water sampling devices: Organic contaminants

    SciTech Connect

    Parker, L.V.; Ranney, T.A.

    2000-12-31

    In these studies, the efficiency of various decontamination protocols was tested on small pieces of materials commonly used in ground water sampling devices. Three materials, which ranged in ability to sorb organic solutes, were tested: stainless steel (SS), rigid polyvinyl chloride (PVC), and polytetrafluoroethylene (PTFE). The test pieces were exposed to two aqueous test solutions: One contained three volatile organic compounds (VOCs) and one nitroaromatic compound, and the other contained four pesticides. Also, three types of polymetic tubing were exposed to pesticide solutions. Generally, the contact times were 10 minutes and 24 hours for sorption and desorption. The contaminants were removed from the nonpermeable SS and the less-sorptive rigid PVC test pieces simply by washing with a hot detergent solution and rinsing with hot water. Additional treatment was required for the PTFE test pieces exposed to the VOCs and for the low-density polyethylene (LDPE) tubing exposed to the pesticide test solution. Solvent rinsing did not improve removal of the three VOCs form the PTFE and only marginally improved removal of the residual pesticides from the LDPE. However, a hot water and detergent wash and rinse followed by oven drying at approximately 105 C was effective for removing the VOCs from the PTFE and substantially reduced pesticide contamination from the LDPE.

  9. Late stage trifluoromethylthiolation strategies for organic compounds.

    PubMed

    Barata-Vallejo, Sebastian; Bonesi, Sergio; Postigo, Al

    2016-07-26

    Substitution by the CF3S group allows for an increase in lipophilicity and electron-withdrawing properties along with an improvement in the bioavailability of medicinal targets; consequently, the late stage introduction of CF3S moieties into medicinal scaffolds is a sought-after strategy in synthetic organic chemistry. Different newly-developed electrophilic and nucleophilic reagents are used to effect the trifluoromethylthiolation of (hetero)aromatic compounds, aliphatic compounds (alkyl, alkenyl, alkynyl substrates), the trifluoromethylthiolation at the α- and β-carbonyl positions, and heteroatoms (N- and S-). Such reactions can involve homolytic substitutions, or functional-group substitutions (ipso). Addition reactions of electrophilic reagents to double and triple bonds followed by ring-cyclizations will be shown to yield relevant CF3S-substituted heteroaromatic compounds with relevant pharmacological action. PMID:27354317

  10. Toxic organic compounds from energy production

    SciTech Connect

    Hites, R.A.

    1991-09-20

    The US Department of Energy's Office of Health and Environmental Research (OHER) has supported work in our laboratory since 1977. The general theme of this program has been the identification of potentially toxic organic compounds associated with various combustion effluents, following the fates of these compounds in the environment, and improving the analytical methodology for making these measurements. The projects currently investigation include: an improved sampler for semi-volatile compounds in the atmosphere; the wet and dry deposition of dioxins and furans from the atmosphere; the photodegradation and mobile sources of dioxins and furans; and the bioaccumulation of PAH by tree bark. These projects are all responsive to OHER's interest in the pathways and mechanisms by which energy-related agents move through and are modified by the atmosphere''. The projects on gas chromatographic and liquid chromatographic tandem mass spectrometry are both responsive to OHER's interest in new and more sensitive technologies for chemical measurements''. 35 refs., 9 figs.

  11. Volatile Organic Compound Investigation Results, 300 Area, Hanford Site, Washington

    SciTech Connect

    Peterson, Robert E.; Williams, Bruce A.; Smith, Ronald M.

    2008-07-07

    Unexpectedly high concentrations of volatile organic compounds (VOC) were discovered while drilling in the unconfined aquifer beneath the Hanford Site’s 300 Area during 2006. The discovery involved an interval of relatively finer-grained sediment within the unconfined aquifer, an interval that is not sampled by routine groundwater monitoring. Although VOC contamination in the unconfined aquifer has been identified and monitored, the concentrations of newly discovered contamination are much higher than encountered previously, with some new results significantly higher than the drinking water standards. The primary contaminant is trichloroethene, with lesser amounts of tetrachloroethene. Both chemicals were used extensively as degreasing agents during the fuels fabrication process. A biological degradation product of these chemicals, 1,2-dichloroethene, was also detected. To further define the nature and extent of this contamination, additional characterization drilling was undertaken during 2007. Four locations were drilled to supplement the information obtained at four locations drilled during the earlier investigation in 2006. The results of the combined drilling indicate that the newly discovered contamination is limited to a relatively finer-grained interval of Ringold Formation sediment within the unconfined aquifer. The extent of this contamination appears to be the area immediately east and south of the former South Process Pond. Samples collected from the finer-grained sediment at locations along the shoreline confirm the presence of the contamination near the groundwater/river interface. Contamination was not detected in river water that flows over the area where the river channel potentially incises the finer-grained interval of aquifer sediment. The source for this contamination is not readily apparent. A search of historical documents and the Hanford Waste Information Data System did not provide definitive clues as to waste disposal operations and

  12. Organic compounds in star forming regions.

    PubMed

    Kochina, O; Wiebe, D

    2014-09-01

    The influence of complex dust composition on the general chemical evolution of a prestellar core and the content of complex organic compounds is studied. It is shown that various component groups respond differently to the presence of a small dust population. At early stages the difference is determined primarily by changes in the balance of photo processes due to effective absorption of ultraviolet photons by small dust grains of the second population and collisional reactions with dust particles. At later stages differences are also caused by the growing dominance of additional reaction channels related to surface organic synthesis. PMID:25515345

  13. Metabolic Reactions among Organic Sulfur Compounds

    NASA Technical Reports Server (NTRS)

    Schulte, M.; Rogers, K.

    2005-01-01

    Sulfur is central to the metabolisms of many organisms that inhabit extreme environments. Numerous authors have addressed the energy available from a variety of inorganic sulfur redox pairs. Less attention has been paid, however, to the energy required or gained from metabolic reactions among organic sulfur compounds. Work in this area has focused on the oxidation of alkyl sulfide or disulfide to thiol and formaldehyde, e.g. (CH3)2S + H2O yields CH3SH + HCHO + H2, eventually resulting in the formation of CO2 and SO4(-2). It is also found that reactions among thiols and disulfides may help control redox disequilibria between the cytoplasm and the periplasm. Building on our earlier efforts for thiols, we have compiled and estimated thermodynamic properties for alkyl sulfides. We are investigating metabolic reactions among various sulfur compounds in a variety of extreme environments, ranging from sea floor hydrothermal systems to organic-rich sludge. Using thermodynamic data and the revised HKF equation of state, along with constraints imposed by the geochemical environments sulfur-metabolizing organisms inhabit, we are able to calculate the amount of energy available to these organisms.

  14. Compositional space boundaries for organic compounds.

    PubMed

    Lobodin, Vladislav V; Marshall, Alan G; Hsu, Chang Samuel

    2012-04-01

    An upper elemental compositional boundary for fossil hydrocarbons has previously been established as double-bond equivalents (i.e., DBE = rings plus double bonds) not exceeding 90% of the number of carbons. For heteroatom-containing fossil compounds, the 90% rule still applies if each N atom is counted as a C atom. The 90% rule eliminates more than 10% of the possible elemental compositions at a given mass for fossil database molecules. However, some synthetic compounds can fall outside the upper boundary defined for naturally occurring compounds. Their inclusion defines an "absolute" upper boundary as DBE (rings plus double bonds to carbon) equal to carbon number plus one, and applies to all organic compounds including fullerenes and other molecules containing no hydrogen. Finally, the DBE definition can fail for molecules with particular atomic valences. Therefore, we also present a generalized DBE definition that includes atomic valence to enable calculation of the correct total number of rings, double bonds, and triple bonds for heteroatom-containing compounds. PMID:22376063

  15. Potential of zerovalent iron nanoparticles for remediation of environmental organic contaminants in water: a review.

    PubMed

    Raychoudhury, Trishikhi; Scheytt, Traugott

    2013-01-01

    Zerovalent iron (ZVI) has the potential to degrade different organic contaminants. Nanoscale zerovalent iron (NZVI) can reduce the contaminants even more rapidly due to its small size and large specific surface area (SSA), compared to granular ZVI. The main objective of this paper is to assess and compare the potential of NZVI for degradation of different contaminants in water under specific environmental conditions. As a first step, the potential reactive functional groups/bonds associated with different contaminants are identified and possible reaction mechanisms are discussed. Thereafter, the reaction efficiencies of different organic contaminants with NZVI are compared. Mass of ZVI and reaction time required to transform a certain amount of contaminated water are calculated based on literature data. Sources of contaminants in the environment and their environmental occurrences are discussed to understand the potential locations where NZVI could be applied for removal of different contaminants. Overall it is observed that azo-compounds are readily transformed in the presence of NZVI particles. Reaction efficiencies of ZVI for reduction of nitro-organic compounds are also reasonably high. However, halogenated compounds with high molecular weights or complex structures (i.e., iodinated contrast media, DDT, polychlorinated biphenyls, etc.) show lower reaction rates with NZVI compared to the widely studied chlorinated hydrocarbons (i.e., trichloroethylene). PMID:24135090

  16. Organic contamination analysis: High resolution mass spectrometric analysis of surface organics on selected areas of Surveyor 3

    NASA Technical Reports Server (NTRS)

    Simoneit, B. R.; Burlingame, A. L.

    1972-01-01

    The mirror and middle shroud were extracted for organics by washing the surfaces with solvents. The techniques are discussed. Ion microprobe analyses of the primarily atomic species are presented. The sources of the organic contaminants are: (1) hydrocarbons from lubricating oils and general terrestrial contamination, (2) dioctyl phthalate, probably from polyethylene bagging material (the plasticizer), (3) carboxylic acids from decomposition of grease and general terrestrial contamination, (4) silicones from sources such as lubricating oil, (5) outgassing of electronics and plasticizer, (6) vinyl alcohol and styrene copolymer, probably from electronic insulation, and (7) nitrogenous compounds from the lunar module and possibly Surveyor 3 engine exhaust.

  17. Effects of a remedial system and its operation on volatile organic compound-contaminated ground water, Operable Unit 1, Savage Municipal Well Superfund Site, Milford, New Hampshire, 1998-2004

    USGS Publications Warehouse

    Harte, Philip T.

    2006-01-01

    The Savage Municipal Well Superfund site in the Town of Milford, N.H., is underlain by a 0.5-square mile plume of volatile organic compounds (VOCs), mostly tetrachloroethylene (PCE). The plume occurs mostly within a highly transmissive sand and gravel layer, but also extends into underlying till and bedrock. The plume has been divided into two areas called Operable Unit 1 (OU1), which contains the primary source area, and Operable Unit 2 (OU2), which is defined as the extended plume area. PCE concentrations in excess of 100,000 parts per billion (ppb) had been detected in the OU1 area in 1995, indicating a likely Dense Non-Aqueous Phase Liquid (DNAPL) source. In the fall of 1998, the New Hampshire Department of Environmental Services (NHDES) and the U.S. Environmental Protection Agency (USEPA) installed a remedial system in OU1 to contain and capture the dissolved VOC plume. The OU1 remedial system includes a low-permeability barrier wall that encircles the highest detected concentrations of PCE, and a series of injection and extraction wells to contain and remove contaminants. The barrier wall likely penetrates the full thickness of the sand and gravel; in most places, it also penetrates the full thickness of the underlying basal till and sits atop bedrock. Remedial injection and extraction wells have been operating since the spring of 1999 and include a series of interior (inside the barrier wall) injection and extractions wells and exterior (outside the barrier wall) injection and extraction wells. A recharge gallery outside the barrier wall receives the bulk of the treated water and reinjects it into the shallow aquifer. From 1998 to 2004, PCE concentrations decreased by an average of 80 percent at most wells outside the barrier wall. This decrease indicates (1) the barrier wall and interior extraction effectively contained high PCE concentrations inside the wall, (2) other sources of PCE did not appear to be outside of the wall, and (3) ambient ground

  18. Formation of highly oxidized multifunctional organic compounds from anthropogenic volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Molteni, Ugo; Baltensperger, Urs; Bianchi, Federico; Dommen, Josef; El Haddad, Imad; Frege, Carla; Klein, Felix; Rossi, Michel

    2016-04-01

    Recent studies have shown that highly oxidized multifunctional organic compounds (HOMs) from biogenic volatile organic compounds are important for new particle formation and early particle growth (e.g., Ehn et al., 2014). The formation mechanism has extensively been studied for biogenic precursors like alpha-pinene and was shown to proceed through an initial reaction with either OH radicals or ozone followed by radical propagation in a mechanism that involves O2 attack and hydrogen abstraction (Crounse et al., 2013). While the same processes can be expected for anthropogenic volatile organic compounds (AVOC), few studies have investigated these so far. Here we present the formation of HOMs from a variety of aromatic compounds after reaction with OH. All the compounds analyzed show HOM formation. AVOC could therefore play an important role in new particle formation events that have been detected in urban areas. References Crounse, J.D. et al., Autoxidation of organic compounds in the atmosphere. J. Phys.Chem. Lett. 4, 3513-3520 (2013). Ehn, M., et al. A large source of low-volatility secondary organic aerosol, Nature 506, 476-479 (2014).

  19. Organic contamination of ground water at Gas Works Park, Seattle, Washington

    USGS Publications Warehouse

    Turney, G.L.; Goerlitz, D.F.

    1990-01-01

    Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on-site. The park soil is currently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the ground water. Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in ground water samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where ground water was in contact with a non-aqueous phase liquid in the soil. Where no non-aqueous phase liquid was present, concentrations were much smaller, even if the ground water was in contact with contaminated soils. This condition is attributed to weathering processes in which soluble, low-molecular-weight organic compounds are preferentially dissolved from the non-aqueous phase liquid into the ground water. Where no non-aqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain. Concentrations of organic contaminants in the soils may still remain large.

  20. Identifying Bioaccumulative Halogenated Organic Compounds Using a Nontargeted Analytical Approach: Seabirds as Sentinels

    PubMed Central

    Millow, Christopher J.; Mackintosh, Susan A.; Lewison, Rebecca L.; Dodder, Nathan G.; Hoh, Eunha

    2015-01-01

    Persistent organic pollutants (POPs) are typically monitored via targeted mass spectrometry, which potentially identifies only a fraction of the contaminants actually present in environmental samples. With new anthropogenic compounds continuously introduced to the environment, novel and proactive approaches that provide a comprehensive alternative to targeted methods are needed in order to more completely characterize the diversity of known and unknown compounds likely to cause adverse effects. Nontargeted mass spectrometry attempts to extensively screen for compounds, providing a feasible approach for identifying contaminants that warrant future monitoring. We employed a nontargeted analytical method using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOF-MS) to characterize halogenated organic compounds (HOCs) in California Black skimmer (Rynchops niger) eggs. Our study identified 111 HOCs; 84 of these compounds were regularly detected via targeted approaches, while 27 were classified as typically unmonitored or unknown. Typically unmonitored compounds of note in bird eggs included tris(4-chlorophenyl)methane (TCPM), tris(4-chlorophenyl)methanol (TCPMOH), triclosan, permethrin, heptachloro-1'-methyl-1,2'-bipyrrole (MBP), as well as four halogenated unknown compounds that could not be identified through database searching or the literature. The presence of these compounds in Black skimmer eggs suggests they are persistent, bioaccumulative, potentially biomagnifying, and maternally transferring. Our results highlight the utility and importance of employing nontargeted analytical tools to assess true contaminant burdens in organisms, as well as to demonstrate the value in using environmental sentinels to proactively identify novel contaminants. PMID:26020245

  1. Development and testing of biosensors that quantitatively and specifically detect organic contaminants

    SciTech Connect

    Jackson, P.; Keim, P.; Kuske, C.; Willardson, B.

    1996-07-01

    This is the final report of a two-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project sought to develop a more sensitive and less expensive method of detecting organic contaminants. Assaying complex environmental samples for organic contaminant content is costly and labor intensive. This often limits extensive testing. Sensitive microbial biosensors that detect specific organic contaminants in complex waste mixtures without prior separation from other waste components have been developed. Some soil microbes degrade organic compounds that contaminate the environment. These bacteria sense minute quantities of particular organic compounds then respond by activating genes encoding enzymes that degrade these molecules. Genetic manipulation of these gene regulatory processes has been employed to develop unique biosensors that detect specific organic compounds using standard biochemical assays. Such biosensors allow rapid, sensitive testing of environmental samples for selected organic contaminants. The cost of biosensor assays is at least 100-fold less than present methods, allowing more rapid and extensive testing and site characterization.

  2. Self assembly properties of primitive organic compounds

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.

    1991-01-01

    A central event in the origin of life was the self-assembly of amphiphilic, lipid-like compounds into closed microenvironments. If a primitive macromolecular replicating system could be encapsulated within a vesicular membrane, the components of the system would share the same microenvironment, and the result would be a step toward true cellular function. The goal of our research has been to determine what amphiphilic molecules might plausibly have been available on the early Earth to participate in the formation of such boundary structures. To this end, we have investigated primitive organic mixtures present in carbonaceous meteorites such as the Murchison meteorite, which contains 1-2 percent of its mass in the form of organic carbon compounds. It is likely that such compounds contributed to the inventory of organic carbon on the prebiotic earth, and were available to participate in chemical evolution leading to the emergence of the first cellular life forms. We found that Murchison components extracted into non-polar solvent systems are surface active, a clear indication of amphiphilic character. One acidic fraction self-assembles into vesicular membranes that provide permeability barriers to polar solutes. Other evidence indicates that the membranes are bimolecular layers similar to those formed by contemporary membrane lipids. We conclude that bilayer membrane formation by primitive amphiphiles on the early Earth is feasible. However, only a minor fraction of acidic amphiphiles assembles into bilayers, and the resulting membranes require narrowly defined conditions of pH and ionic composition to be stable. It seems unlikely, therefore, that meteoritic infall was a direct source of membrane amphiphiles. Instead, the hydrocarbon components and their derivatives more probably would provide an organic stock available for chemical evolution. Our current research is directed at possible reactions which would generate substantial quantities of membranogenic

  3. The Atmospheric Fate of Organic Nitrogen Compounds

    NASA Astrophysics Data System (ADS)

    Borduas, Nadine

    Organic nitrogen compounds are present in our atmosphere from biogenic and anthropogenic sources and have impacts on air quality and climate. Due to recent advances in instrumentation, these compounds are being detected in the gas and particle phases, raising questions as to their source, processing and sinks in the environment. With their recently identified role as contributors to aerosol formation and growth, their novel large scale use as solvents in carbon capture and storage (CCS) technology and their emissions from cigarette smoke, it is now important to address the gaps in our understanding of the fate of organic nitrogen. Experimentally and theoretically, I studied the chemical atmospheric fate of specific organic nitrogen compounds in the amine, amide and isocyanate families, yielding information that can be used in chemical transport models to assess the fate of this emerging class of atmospheric molecules. I performed kinetic laboratory studies in a smog chamber to measure the room temperature rate coefficient for reaction with the hydroxyl radical of monoethanolamine, nicotine, and five different amides. I employed online-mass spectrometry techniques to quantify the oxidation products. I found that amines react quickly with OH radicals with lifetimes of a few hours under sunlit conditions, producing amides as oxidation products. My studies on amides revealed that they have much longer lifetimes in the atmosphere, ranging from a few hours to a week. Photo-oxidation of amides produces isocyanates and I investigated these mechanisms in detail using ab initio calculations. Furthermore, I experimentally measured isocyanic acid's Henry's Law constant as well as its hydrolysis rate constants to better understand its sinks in the atmosphere. Finally, I re-examined the structure-activity relationship (SAR) of organic nitrogen molecules for improved model parameterizations.

  4. Microbial interactions with organic contaminants in soil: definitions, processes and measurement.

    PubMed

    Semple, Kirk T; Doick, Kieron J; Wick, Lukas Y; Harms, Hauke

    2007-11-01

    There has been and continues to be considerable scientific interest in predicting bioremediation rates and endpoints. This requires the development of chemical techniques capable of reliably predicting the bioavailability of organic compounds to catabolically active soil microbes. A major issue in understanding the link between chemical extraction and bioavailability is the problem of definition; there are numerous definitions, of varying degrees of complexity and relevance, to the interaction between organic contaminants and microorganisms in soil. The aim of this review is to consider the bioavailability as a descriptor for the rate and extent of biodegradation and, in an applied sense, bioremediation of organic contaminants in soil. To address this, the review will (i) consider and clarify the numerous definitions of bioavailability and discuss the usefulness of the term 'bioaccessibility'; (ii) relate definition to the microbiological and chemical measurement of organic contaminants' bioavailability in soil, and (iii) explore the mechanisms employed by soil microorganisms to attack organic contaminants in soil. PMID:17881105

  5. Dehalogenation of chlorinated organic compounds by strong alkalis

    SciTech Connect

    Gu, B.; Siegrist, R.L.

    1997-10-01

    Chlorinated organic compounds such as trichloroethylene (TCE) are the most prevalent contaminants found in soil and ground water, and pose serious health risks even at trace concentrations. This research reports a new chemical treatment technique for rapid degradation of TCE in strong alkaline solutions. Batch kinetic reactions between TCE and NaOH indicate that TCE can be rapidly and completely dechlorinated in NaOH at elevated temperatures. The reaction can be described by a pseudo-first-order rate kinetics with an estimated activation energy of {approximately}85 kJ/mol. The half-lives for TCE degradation in 2M NaOH at 40, 60, 80, and 100 C were approximately 347, 48.8, 4.0, and 2.4 min, respectively. The reaction end-products are primarily Cl{sup {minus}} anions and Na-glycollate, both of which are nonhazardous. This treatment technique is applicable for degrading other halogenated organic compounds wherein a nucleophilic substitution or elimination is the major reaction mechanism or pathway. Potential applications of this technology include the removal and destruction of vapor-phase chlorinated volatile organic compounds (VOCs) in off-gases when soil vapor extraction or air-stripping techniques are used for remediating VOC-contaminated soils and ground water. A bench-scale alkaline destruction module was tested, and results indicated that {approximately}90% of TCE was destroyed when TCE vapor (10 mg/L) was passed through a destruction column with a retention time of {approximately}1 min at 95 C.

  6. Treatment of sites contaminated with perfluorinated compounds using biochar amendment.

    PubMed

    Kupryianchyk, Darya; Hale, Sarah E; Breedveld, Gijs D; Cornelissen, Gerard

    2016-01-01

    Per- and polyfluorinated compounds (PFCs) have been attracting increasing attention due to their considerable persistence, bioaccumulation, and toxicity. Here, we studied the sorption behavior of three PFCs, viz. perfluorooctanesulfonic acid (PFOS), perfluorooctanecarboxylic acid (PFOA), perfluorohexanesulfonic acid (PFHxS), on one activated carbon (AC) and two biochars from different feedstocks, viz. mixed wood (MW) and paper mill waste (PMW). In addition, we explored the potential of remediating three natively PFC contaminated soils by the addition of AC or biochar. The sorption coefficient i.e. Freundlich coefficients LogKF, (μg/kg)/(μg/L)(n), for the two biochars were 4.61±0.11 and 4.41±0.05 for PFOS, 3.02±0.04 and 3.01±0.01 for PFOA, and 3.21±0.07 and 3.18±0.03 for PFHxS, respectively. The AC sorbed the PFCs so strongly that aqueous concentrations were reduced to below detection limits, implying that the LogKF values were above 5.60. Sorption capacities decreased in the order: AC>MW>PMW, which was consistent with the material's surface area and pore size distribution. PFC sorption to MW biochar was near-linear (Freundlich exponent nF of 0.87-0.90), but non-linear for PMW biochar (0.64-0.73). Addition of the AC to contaminated soils resulted in almost complete removal of PFCs from the water phase and a significant (i.e. 1-3 Log unit) increase in soil-water distribution coefficient LogKd. However, small to no reduction in pore water concentration, and no effect on LogKd was found for the biochars. We conclude that amendment with AC but not biochar can be a useful method for in situ remediation of PFC-contaminated soils. PMID:25956025

  7. Pilot-scale UV/H2O2 study for emerging organic contaminants decomposition.

    PubMed

    Chu, Xiaona; Xiao, Yan; Hu, Jiangyong; Quek, Elaine; Xie, Rongjin; Pang, Thomas; Xing, Yongjie

    2016-03-01

    Human behaviors including consumption of drugs and use of personal care products, climate change, increased international travel, and the advent of water reclamation for direct potable use have led to the introduction of significant amounts of emerging organic contaminants into the aqueous environment. In addition, the lower detection limits associated with improved scientific methods of chemical analysis have resulted in a recent increase in documented incidences of these contaminants which previously were not routinely monitored in water. Such contaminants may cause known or suspected adverse ecological and/or human health effects at very low concentrations. Conventional drinking water treatment processes may not effectively remove these organic contaminants. Advanced oxidation process (AOP) is a promising treatment process for the removal of most of these emerging organic contaminants, and has been accepted worldwide as a suitable treatment process. In this study, different groups of emerging contaminants were studied for decomposition efficiency using pilot-scale UV/H2O2 oxidation setup, including EDCs, PPCPs, taste and odor (T&O), and perfluorinated compounds. Results found that MP UV/H2O2 AOP was efficient in removing all the selected contaminants except perfluorinated compounds. Study of the kinetics of the process showed that both light absorption and quantum yield of each compound affected the decomposition performance. Analysis of water quality parameters of the treated water indicated that the outcome of both UV photolysis and UV/H2O2 processes can be affected by changes in the feed water quality. PMID:26943602

  8. Biogenic volatile organic compounds - small is beautiful

    NASA Astrophysics Data System (ADS)

    Owen, S. M.; Asensio, D.; Li, Q.; Penuelas, J.

    2012-12-01

    While canopy and regional scale flux measurements of biogenic volatile organic compounds (bVOCs) are essential to obtain an integrated picture of total compound reaching the atmosphere, many fascinating and important emission details are waiting to be discovered at smaller scales, in different ecological and functional compartments. We concentrate on bVOCs below ground to <2m above ground level. Emissions at leaf scale are well documented and widely presented, and are not discussed here. Instead we describe some details of recent research on rhizosphere bVOCs, and bVOCs associated with pollination of flowers. Although bVOC emissions from soil surfaces are small, bVOCs are exuded by roots of some plant species, and can be extracted from decaying litter. Naturally occurring monoterpenes in the rhizosphere provide a specialised carbon source for micro-organisms, helping to define the micro-organism community structure, and impacting on nutrient cycles which are partly controlled by microorganisms. Naturally occurring monoterpenes in the soil system could also affect the aboveground structure of ecosystems because of their role in plant defence strategies and as mediating chemicals in allelopathy. A gradient of monoterpene concentration was found in soil around Pinus sylvestris and Pinus halepensis, decreasing with distance from the tree. Some compounds (α-pinene, sabinene, humulene and caryophyllene) in mineral soil were linearly correlated with the total amount of each compound in the overlying litter, indicating that litter might be the dominant source of these compounds. However, α-pinene did not fall within the correlation, indicating a source other than litter, probably root exudates. We also show that rhizosphere bVOCs can be a carbon source for soil microbes. In a horizontal gradient from Populus tremula trees, microbes closest to the tree trunk were better enzymatically equipped to metabolise labeled monoterpene substrate. Monoterpenes can also increase the

  9. Laboratory and field screening strategies for measuring volatile organic compounds in landfill gas

    SciTech Connect

    Emerson, C.W.

    1999-11-01

    Distinct patterns often exist in the presence and absence of hazardous contaminants in the environment. These patterns can be used to select efficient screening tools, or groups of compounds that provide the most information on overall occurrences of a larger target group of compounds. By using these screens to indicate whether a sample is contaminated with detectable amounts of the compounds of interest, attention can be focused on those samples considered most likely to contain measurable concentrations of targeted compounds. The cost savings that result from eliminating samples that are most likely uncontaminated can be applied to obtaining additional samples that more accurately characterize the spatial or temporal variability of the environmental problem. In a retrospective application of screening techniques to the State of California's database of volatile organic compounds in landfill gas, two laboratory screening compounds, perchloroethylene and methylene chloride, represent over 95% of the total number of positive detections of a target group of 10 volatile organic compounds. Benzene and vinyl chloride, two field screening compounds that were selected using the characteristics of commercially available colorimetric detector tubes, recorded 74% of the total contaminant detections and a 52% savings in analytical costs as compared to an exhaustive analysis of every sample for all 10 volatile organic compounds. The number of detections recorded could have been improved if more sensitive and less selective field screening devices were available.

  10. A method of isolating organic compounds present in water

    NASA Technical Reports Server (NTRS)

    Calder, G. V.; Fritz, J.; Junk, G. A.

    1972-01-01

    Water sample is passed through a column containing macroreticular resin, which absorbs only nonionic organic compounds. These compounds are selectively separated using aqueous eluents of varying pH, or completely exuded with small amount of an organic eluent.

  11. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOEpatents

    Elliott, Douglas C.; Hu, Jianli; Hart, Todd R.; Neuenschwander, Gary G.

    2008-09-16

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  12. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOEpatents

    Elliott, Douglas C [Kennewick, WA; Hu, Jianli [Richland, WA; Hart,; Todd, R [Kennewick, WA; Neuenschwander, Gary G [Burbank, WA

    2011-06-07

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  13. 40 CFR 141.50 - Maximum contaminant level goals for organic contaminants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Maximum contaminant level goals for organic contaminants. 141.50 Section 141.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant...

  14. Trace organic chemicals contamination in ground water recharge.

    PubMed

    Díaz-Cruz, M Silvia; Barceló, Damià

    2008-06-01

    Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational and drinking purposes. In this context, the usage of ground water has become essential, therefore, their quality and quantity has to be carefully managed. Regarding quantity, artificial recharge can guarantee a sustainable level of ground water, whilst the strict quality control of the waters intended for recharge will minimize contamination of both the ground water and aquifer area. However, all water resources in the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast growing interest. In this paper an overview of the priority and emerging organic micropollutants in the different source waters used for artificial aquifer recharge purposes and in the recovered water is presented. Besides, some considerations regarding fate and removal of such compounds are also addressed. PMID:18378277

  15. Volatile Organic Compound Analysis in Istanbul

    NASA Astrophysics Data System (ADS)

    Ćapraz, Ö.; Deniz, A.; Öztürk, A.; Incecik, S.; Toros, H.; Coşkun, M.

    2012-04-01

    Volatile Organic Compound Analysis in Istanbul Ö. Çapraz1, A. Deniz1,3, A. Ozturk2, S. Incecik1, H. Toros1 and, M. Coskun1 (1) Istanbul Technical University, Faculty of Aeronautics and Astronautics, Department of Meteorology, 34469, Maslak, Istanbul, Turkey. (2) Istanbul Technical University, Faculty of Chemical and Metallurgical, Chemical Engineering, 34469, Maslak, Istanbul, Turkey. (3) Marmara Clean Air Center, Ministry of Environment and Urbanization, Nişantaşı, 34365, İstanbul, Turkey. One of the major problems of megacities is air pollution. Therefore, investigations of air quality are increasing and supported by many institutions in recent years. Air pollution in Istanbul contains many components that originate from a wide range of industrial, heating, motor vehicle, and natural emissions sources. VOC, originating mainly from automobile exhaust, secondhand smoke and building materials, are one of these compounds containing some thousands of chemicals. In spite of the risks to human health, relatively little is known about the levels of VOC in Istanbul. In this study, ambient air quality measurements of 32 VOCs including hydrocarbons, halogenated hydrocarbons and carbonyls were conducted in Kağıthane (Golden Horn) region in Istanbul during the winter season of 2011 in order to develop the necessary scientific framework for the subsequent developments. Kağıthane creek valley is the source part of the Golden Horn and one of the most polluted locations in Istanbul due to its topographical form and pollutant sources in the region. In this valley, horizontal and vertical atmospheric motions are very weak. The target compounds most commonly found were benzene, toluene, xylene and ethyl benzene. Concentrations of total hydrocarbons ranged between 1.0 and 10.0 parts per billion, by volume (ppbv). Ambient air levels of halogenated hydrocarbons appeared to exhibit unique spatial variations and no single factor seemed to explain trends for this group of

  16. Biogeochemical processes governing exposure and uptake of organic pollutant compounds in aquatic organisms.

    PubMed Central

    Farrington, J W

    1991-01-01

    This paper reviews current knowledge of biogeochemical cycles of pollutant organic chemicals in aquatic ecosystems with a focus on coastal ecosystems. There is a bias toward discussing chemical and geochemical aspects of biogeochemical cycles and an emphasis on hydrophobic organic compounds such as polynuclear aromatic hydrocarbons, polychlorinated biphenyls, and chlorinated organic compounds used as pesticides. The complexity of mixtures of pollutant organic compounds, their various modes of entering ecosystems, and their physical chemical forms are discussed. Important factors that influence bioavailability and disposition (e.g., organism-water partitioning, uptake via food, food web transfer) are reviewed. These factors include solubilities of chemicals; partitioning of chemicals between solid surfaces, colloids, and soluble phases; variables rates of sorption, desorption; and physiological status of organism. It appears that more emphasis on considering food as a source of uptake and bioaccumulation is important in benthic and epibenthic ecosystems when sediment-associated pollutants are a significant source of input to an aquatic ecosystem. Progress with mathematical models for exposure and uptake of contaminant chemicals is discussed briefly. PMID:1904812

  17. Semivolatile organic compounds in indoor environments

    NASA Astrophysics Data System (ADS)

    Weschler, Charles J.; Nazaroff, William W.

    Semivolatile organic compounds (SVOCs) are ubiquitous in indoor environments, redistributing from their original sources to all indoor surfaces. Exposures resulting from their indoor presence contribute to detectable body burdens of diverse SVOCs, including pesticides, plasticizers, and flame retardants. This paper critically examines equilibrium partitioning of SVOCs among indoor compartments. It proceeds to evaluate kinetic constraints on sorptive partitioning to organic matter on fixed surfaces and airborne particles. Analyses indicate that equilibrium partitioning is achieved faster for particles than for typical indoor surfaces; indeed, for a strongly sorbing SVOC and a thick sorptive reservoir, equilibrium partitioning is never achieved. Mass-balance considerations are used to develop physical-science-based models that connect source- and sink-rates to airborne concentrations for commonly encountered situations, such as the application of a pesticide or the emission of a plasticizer or flame retardant from its host material. Calculations suggest that many SVOCs have long indoor persistence, even after the primary source is removed. If the only removal mechanism is ventilation, moderately sorbing compounds ( Koa > 10 10) may persist indoors for hundreds to thousands of hours, while strongly sorbing compounds ( Koa > 10 12) may persist for years. The paper concludes by applying the newly developed framework to explore exposure pathways of building occupants to indoor SVOCs. Accumulation of SVOCs as a consequence of direct air-to-human transport is shown to be potentially large, with a maximum indoor-air processing rate of 10-20 m 3/h for SVOC uptake by human skin, hair and clothing. Levels on human skin calculated with a simple model of direct air-to-skin transfer agree remarkably well with levels measured in dermal hand wipes for SVOCs possessing a wide range of octanol-air partition coefficients.

  18. Process for the solvent extraction for the radiolysis and dehalogenation of halogenated organic compounds in soils, sludges, sediments and slurries

    DOEpatents

    Mincher, Bruce J.; Curry, Randy Dale; Clevenger, Thomas E.; Golden, Jeffry

    2000-01-01

    A process of extracting halogenated organic compounds, and particularly PCBs, from soil, sediment, slurry, sludge and dehalogenating the compounds contacting a contaminated soil sample with an extraction medium of a mixture of an alkane and a water miscible alcohol. The organic compounds dissolve in the extraction medium which is separated from the soil by passing water upwardly through the soil. The extraction medium floats to the surface of the water and is separated. Thereafter, the extraction medium containing the halogenated organic contaminants is subjected to ionizing radiation to radiolytically dehalogenate the compounds.

  19. Process for the solvent extraction for the radiolysis and dehalogenation of halogenated organic compounds in soils, sludges, sediments and slurries

    DOEpatents

    Mincher, Bruce J.; Curry, Randy Dale; Clevenger, Thomas E.; Golden, Jeffry

    2003-05-27

    A process of extracting halogenated organic compounds, and particularly PCBs, from soil, sediment, slurry, sludge and dehalogenating the compounds contacts a contaminated soil sample with an extraction medium of a mixture of an alkane and a water miscible alcohol. The organic compounds dissolve in the extraction medium which is separated from the soil by passing water upwardly through the soil. The extraction medium floats to the surface of the water and is separated. Thereafter, the extraction medium containing the halogenated organic contaminants is subjected to ionizing radiation to radiolytically dehalogenate the compounds.

  20. Process for the solvent extraction for the radiolysis and dehalogenation of halogenated organic compounds in soils, sludges, sediments and slurries

    DOEpatents

    Golden, Jeffry

    2007-02-13

    A process of extracting halogenated organic compounds, and particularly PCBs, from soil, sediment, slurry, sludge and dehalogenating the compounds contacts a contaminated soil sample with an extraction medium of a mixture of an alkane and a water miscible alcohol. The organic compounds dissolve in the extraction medium which is separated from the soil by passing water upwardly through the soil. The extraction medium floats to the surface of the water and is separated. Thereafter, the extraction medium containing the halogenated organic contaminants is subjected to ionizing radiation to radiolytically dehalogenate the compounds.

  1. Erace--an integrated system for treating organic-contaminated sites

    SciTech Connect

    Caley, S.M.; Heath, W.O.; Bergsman, T.M.; Gauglitz, P.A.; Pillay, C.; Moss, R.W.; Shah, R.R.; Goheen, S.C.; Camiaoni, D.M.

    1994-11-01

    The U.S. Department of Energy`s (DOE) Pacific Northwest Laboratory (PNL) is developing a suite of electrical technologies for treating sites contaminated with hazardous organic compounds. These include: (1) Six-Phase Soil Heating (SPSH) to remove volatile and semi-volatile organic compounds from soils; (2) In Situ Corona (ISC) to decompose nonvolatile and bound organic contaminants in soils; (3) High-Energy Corona (HEC) to treat contaminated off-gases; and (4) Liquid Corona (LC) to treat contaminated liquids. These four technologies comprise ERACE (Electrical Remediation at Contaminated Environments), an integrated system for accomplishing site remediation with little or no secondary wastes produced that would require off-site treatment or disposal. Each ERACE technology can be employed individually as a stand-alone treatment process, or combined as a system for total site remediation. For example, an ERACE system for treating sites contaminated with volatile organics would integrate SPSH to remove the contaminants from the soil, LC to continuously treat an aqueous stream condensed out of the soil off-gas, and HEC to treat non-condensibles remaining in the off-gas, before atmospheric release.

  2. Contamination of anaesthetic machines with pathogenic organisms.

    PubMed

    Baillie, J K; Sultan, P; Graveling, E; Forrest, C; Lafong, C

    2007-12-01

    Hospital-acquired infections are commonly resistant to antibiotics and cause substantial morbidity and mortality in susceptible populations. Although there is no direct contact between the anaesthetic machine's controls and the patient, there is considerable potential for colonising organisms to be carried between the anaesthetic machine and the patient on the anaesthetist's hands. We performed two cross-sectional studies of bacterial contamination on anaesthetic machines before and after a simple intervention. Without warning, during theatre sessions, bacterial cultures were obtained from anaesthetic equipment. A new departmental policy of cleaning anaesthetic equipment with detergent wipes between cases was then introduced. Six weeks later, again without warning, a further set of cultures was taken. There was significant reduction in the proportion of cultures containing pathogenic bacteria (from 14/78 cultures (18%; 95% CI 9.4-26.5%) before the intervention to 5/77 cultures (6%; 95% CI 1.0-12%) after the intervention (p = 0.03)). The intervention was quick, easy and enthusiastically taken up by the majority of staff. We conclude that cleaning of anaesthetic equipment between cases should become routine practice. PMID:17991263

  3. Method and apparatus for destroying organic contaminants in aqueous liquids

    DOEpatents

    Donaldson, T.L.; Wilson, J.H.

    1993-09-21

    A method and apparatus for destroying organic contaminants, such as trichloroethylene, in aqueous liquids, such as groundwater, utilizing steam stripping integrated with biodegradation. The contaminated aqueous liquid is fed into a steam stripper causing the volatilization of essentially all of the organic contaminants and a portion of the aqueous liquid. The majority of the aqueous liquid is discharged from the steam stripper. The volatilized vapors are then condensed to the liquid phase and introduced into a bioreactor. The bioreactor contains methanotrophic microorganisms which convert the organic contaminants into mainly carbon dioxide. The effluent from the bioreactor is then recycled back to the steam stripper for further processing. 2 figures.

  4. Method and apparatus for destroying organic contaminants in aqueous liquids

    DOEpatents

    Donaldson, Terrence L.; Wilson, James H.

    1993-01-01

    A method and apparatus for destroying organic contaminants, such as trichloroethylene, in aqueous liquids, such as groundwater, utilizing steam stripping integrated with biodegradation. The contaminated aqueous liquid is fed into a steam stripper causing the volatilization of essentially all of the organic contaminants and a portion of the aqueous liquid. The majority of the aqueous liquid is discharged from the steam stripper. The volatilized vapors are then condensed to the liquid phase and introduced into a bioreactor. The bioreactor contains methanotrophic microorganisms which convert the organic contaminants into mainly carbon dioxide. The effluent from the bioreactor is then recycled back to the steam stripper for further processing.

  5. Evaluation of parameters for photodegradation of hazardous organic compounds in aqueous solution

    SciTech Connect

    Leung, S.W.; Rashid, M.

    1996-12-31

    As regulators and industries searching for unconventional technologies to treat hazardous wastes, photodegradation of hazardous wastes in aqueous solution is an effective treatment and can be one of such emerging technologies. Many of our drinking water sources are contaminated by synthetic organic compounds. The need to reuse and recycle our water resources become imminent. For southern states with abundant of sunlight, photolysis can be an economical application for water reuse and treatment of contaminated groundwater. A study was conducted to investigate direct photodegradation of organic chlorine compounds in aqueous solution.

  6. Determination of micro-organic contaminants in groundwater (Maribor, Slovenia).

    PubMed

    Koroša, A; Auersperger, P; Mali, N

    2016-11-15

    Micro-organic (MO) contaminants in groundwater can have adverse effects on both the environment and on human health. They enter the natural environment as a result of various processes, their presence in groundwater is the result of current anthropogenic activity and pollution loads from the past. A study on the occurrence and concentrations levels of selected contaminants in water was performed in the city of Maribor, Slovenia. A total of 56 groundwater and 4 surface water samples were collected in together four rounds in different hydrogeological periods (dry and wet seasons), and a total of 13 selected contaminants were analysed in this study. Carbamazepine, propyphenazone, caffeine, 2-methyl-2H-benzotriazole (2-MBT) and 2.4-dimethyl-2H-benzotriazole (2.4-DMBT) were determined as indicators of urban pollution, while pesticides and their metabolites (atrazine, desethylatrazine, deisopropylatrazine, terbuthylazine, desethylterbuthylazine, metolachlor, simazine, propazine) were mainly defined as indicators of crop production. All of the selected MO contaminants were detected both in the aquifer and Drava River. The most frequently detected MO compounds in groundwater were desethylatrazine (frequency of detection 98.2%; max. concentration 103.0ngL(-1)), atrazine (94.6%; 229ngL(-1)), 2.4-DMBT (92.9%; 273ngL(-1)), carbamazepine (80.4%; 88.00ngL(-1)), desethylterbuthylazine (76.8%; 7.0ngL(-1)) and simazine (76.8%; 29.6ngL(-1)), whereas propyphenazone (14.3%; 10.7ngL(-1)) was the least frequently detected. Detected MO concentrations in the study were compared with results published elsewhere around the world. Concentrations in groundwater indicate specific land use in their recharge areas. On the basis of correlations and the spatial distribution of selected MOs, groundwater origin for every sampling point was determined. Sampling sites were divided into three different groups for which indicative groundwater quality properties were defined. PMID:27395079

  7. PRINCIPALS OF ORGANIC CONTAMINANT BEHAVIOR DURING ARTIFICIAL RECHARGE

    EPA Science Inventory

    The behavior of a variety of organic contaminants having low molecular weight has been observed during groundwater recharge with reclaimed water. The evidence is site-specific, but is believed to have broader implications regarding the general behavior of organic contaminants in ...

  8. Transport of organic contaminants in subsoil horizons and effects of dissolved organic matter related to organic waste recycling practices.

    PubMed

    Chabauty, Florian; Pot, Valérie; Bourdat-Deschamps, Marjolaine; Bernet, Nathalie; Labat, Christophe; Benoit, Pierre

    2016-04-01

    Compost amendment on agricultural soil is a current practice to compensate the loss of organic matter. As a consequence, dissolved organic carbon concentration in soil leachates can be increased and potentially modify the transport of other solutes. This study aims to characterize the processes controlling the mobility of dissolved organic matter (DOM) in deep soil layers and their potential impacts on the leaching of organic contaminants (pesticides and pharmaceutical compounds) potentially present in cultivated soils receiving organic waste composts. We sampled undisturbed soil cores in the illuviated horizon (60-90 cm depth) of an Albeluvisol. Percolation experiments were made in presence and absence of DOM with two different pesticides, isoproturon and epoxiconazole, and two pharmaceutical compounds, ibuprofen and sulfamethoxazole. Two types of DOM were extracted from two different soil surface horizons: one sampled in a plot receiving a co-compost of green wastes and sewage sludge applied once every 2 years since 1998 and one sampled in an unamended plot. Results show that DOM behaved as a highly reactive solute, which was continuously generated within the soil columns during flow and increased after flow interruption. DOM significantly increased the mobility of bromide and all pollutants, but the effects differed according the hydrophobic and the ionic character of the molecules. However, no clear effects of the origin of DOM on the mobility of the different contaminants were observed. PMID:26676540

  9. Passive sampling methods for contaminated sediments: State of the science for organic contaminants

    PubMed Central

    Lydy, Michael J; Landrum, Peter F; Oen, Amy MP; Allinson, Mayumi; Smedes, Foppe; Harwood, Amanda D; Li, Huizhen; Maruya, Keith A; Liu, Jingfu

    2014-01-01

    This manuscript surveys the literature on passive sampler methods (PSMs) used in contaminated sediments to assess the chemical activity of organic contaminants. The chemical activity in turn dictates the reactivity and bioavailability of contaminants in sediment. Approaches to measure specific binding of compounds to sediment components, for example, amorphous carbon or specific types of reduced carbon, and the associated partition coefficients are difficult to determine, particularly for native sediment. Thus, the development of PSMs that represent the chemical activity of complex compound–sediment interactions, expressed as the freely dissolved contaminant concentration in porewater (Cfree), offer a better proxy for endpoints of concern, such as reactivity, bioaccumulation, and toxicity. Passive sampling methods have estimated Cfree using both kinetic and equilibrium operating modes and used various polymers as the sorbing phase, for example, polydimethylsiloxane, polyethylene, and polyoxymethylene in various configurations, such as sheets, coated fibers, or vials containing thin films. These PSMs have been applied in laboratory exposures and field deployments covering a variety of spatial and temporal scales. A wide range of calibration conditions exist in the literature to estimate Cfree, but consensus values have not been established. The most critical criteria are the partition coefficient between water and the polymer phase and the equilibrium status of the sampler. In addition, the PSM must not appreciably deplete Cfree in the porewater. Some of the future challenges include establishing a standard approach for PSM measurements, correcting for nonequilibrium conditions, establishing guidance for selection and implementation of PSMs, and translating and applying data collected by PSMs. Integr Environ Assess Manag 2014;10:167–178. © 2014 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of

  10. The anthropogenic contribution to the organic load of the Lippe River (Germany). Part II: Quantification of specific organic contaminants.

    PubMed

    Dsikowitzky, Larissa; Schwarzbauer, Jan; Littke, Ralf

    2004-12-01

    The major goal of this study was to investigate the organic pollution of a river on a quantitative basis. To this end, 14 anthropogenic contaminants which were identified in Lippe River water samples as reported in part I (Dsikowitzky et al., submitted parallel to this manuscript) were surveyed. Dissolved organic loads of the specific compounds were calculated on the basis of their concentrations in water and river runoff on the day of sampling. The organic loads of each compound were compiled along the longitudinal section of the river in order to generate individual spatial pollution profiles. It was observed that distribution of organic loads along the river showed distinctive patterns, depending upon the input situation and physico-chemical properties of the compound. The compounds were classified into three types of which Type 1, due to their stability in the aqueous phase, are of special interest for potential application as anthropogenic markers. PMID:15519373

  11. Multiple microbial activities for volatile organic compounds reduction by biofiltration.

    PubMed

    Civilini, Marcello

    2006-07-01

    In the northeast of Italy, high volatile organic carbon (VOC) emissions originate from small-medium companies producing furniture. In these conditions it is difficult to propose a single, efficient, and economic system to reduce pollution. Among the various choices, the biofiltration method could be a good solution, because microbial populations possess multiple VOC degradation potentials used to oxidize these compounds to CO2. Starting from the air emissions of a typical industrial wood-painting plant, a series of experiments studied in vitro microbial degradation of each individual VOC. Isolated strains were then added to a laboratory-scale biofiltration apparatus filled with an organic matrix, and the different VOC behavior demonstrated the potential of single and/or synergic microbial removal actions. When a single substrate was fed, the removal efficiency of a Pseudomonas aeruginosa inoculated reactor was 1.1, 1.17, and 0.33 g m(-3) hr(-1), respectively, for xylene, toluene, and ethoxy propyl acetate. A VOC mixture composed of butyl acetate, ethyl acetate, diacetin alcohol, ethoxy propanol acetate, methyl ethyl ketone, methyl isobutyl ketone, toluene, and xylene was then fed into a 2-m(3) reactor treating 100 m3 hr(-1) of contaminated air. The reactor was filled with the same mixture of organic matrix, enriched with all of the isolated strains together. During reactor study, different VOC loading rates were used, and the behavior was evaluated continuously. After a short acclimation period, the removal efficiency was > 65% at VOC load of 150-200 g m(-3) hr(-1). Quantification of removal efficiencies and VOC speciation confirmed the relationship among removal efficiencies, compound biodegradability, and the dynamic transport of each mixture component within the organic matrix. Samples of the fixed bed were withdrawn at different intervals and the heterogeneous microbial community evaluated for both total and differential compound counts. PMID:16878585

  12. Organic Contaminants Library for the Sample Analysis at Mars

    NASA Astrophysics Data System (ADS)

    Misra, P.; Garcia-Sanchez, R.; Canham, J.; Mahaffy, P. R.

    2012-12-01

    A library containing mass spectra for Sample Analysis at Mars (SAM) materials has been developed with the purpose of contamination identification and control. Based on analysis of the Gas Chromatography-Mass Spectrometric (GCMS) data through thermal desorption, organic compounds were successfully identified from material samples, such as polymers, paints and adhesives. The library contains the spectra for all the compounds found in each of these analyzed files and is supplemented by a file information spreadsheet, a spreadsheet-formatted library for easy searching, and a Perfluorotributylamine (PFTBA) based normalization protocol to make corrections to SAM data in order to meet the standard set by commercial libraries. An example of the library in use can be seen in Figure 1, where the abundances match closely, the spectral shape is retained, and the library picks up on it with an 88% identification probability. Of course, there are also compounds that have not been identified and are retained as unknowns. The library we have developed, along with its supplemental materials, is useful from both organizational and practical viewpoints. Through them we are able to organize large volumes of GCMS data, while at the same time breaking down the components that each material sample is made of. This approach in turn allows us straightforward and fast access to information that will be critical while performing analysis on the data recorded by the SAM instrumentation. In addition, the normalization protocol dramatically increased the identification probability. In SAM GCMS, PFTBA signals were obfuscated, resulting in library matches far away from PFTBA; by using the normalization protocol we were able to transform it into a 92% probable spectral match for PFTBA. The project has demonstrated conclusively that the library is successful in identifying unknown compounds utilizing both the Automated Mass Spectral Deconvolution & Identification System (AMDIS) and the Ion

  13. Characterization of organic contaminants in environmental samples associated with mount St. Helens 1980 volcanic eruption

    USGS Publications Warehouse

    Pereira, W.E.

    1982-01-01

    Volcanic ash, surface-water, and bottom-material samples obtained in the vicinity of Mount St. Helens after the May 18, 1980, eruption were analyzed for organic contaminants by using capillary gas chromatography-mass spectrometry-computer techniques. Classes of compounds identified include n-alkanes, fatty acids, dicarboxylic acids, aromatic acids and aldehydes, phenols, resin acids, terpenes, and insect juvenile hormones. The most probable source of these compounds is from pyrolysis of plant and soil organic matter during and after the eruption. The toxicity of selected compounds and their environmental significance are discussed.

  14. IRRADIATION METHOD OF CONVERTING ORGANIC COMPOUNDS

    DOEpatents

    Allen, A.O.; Caffrey, J.M. Jr.

    1960-10-11

    A method is given for changing the distribution of organic compounds from that produced by the irradiation of bulk alkane hydrocarbons. This method consists of depositing an alkane hydrocarbon on the surface of a substrate material and irradiating with gamma radiation at a dose rate of more than 100,000 rads. The substrate material may be a metal, metal salts, metal oxides, or carbons having a surface area in excess of 1 m/sup 2//g. The hydrocarbons are deposited in layers of from 0.1 to 10 monolayers on the surfaces of these substrates and irradiated. The product yields are found to vary from those which result from the irradiation of bulk hydrocarbons in that there is an increase in the quantity of branched hydrocarbons.

  15. Computational assessment of organic photovoltaic candidate compounds

    NASA Astrophysics Data System (ADS)

    Borunda, Mario; Dai, Shuo; Olivares-Amaya, Roberto; Amador-Bedolla, Carlos; Aspuru-Guzik, Alan

    2015-03-01

    Organic photovoltaic (OPV) cells are emerging as a possible renewable alternative to petroleum based resources and are needed to meet our growing demand for energy. Although not as efficient as silicon based cells, OPV cells have as an advantage that their manufacturing cost is potentially lower. The Harvard Clean Energy Project, using a cheminformatic approach of pattern recognition and machine learning strategies, has ranked a molecular library of more than 2.6 million candidate compounds based on their performance as possible OPV materials. Here, we present a ranking of the top 1000 molecules for use as photovoltaic materials based on their optical absorption properties obtained via time-dependent density functional theory. This computational search has revealed the molecular motifs shared by the set of most promising molecules.

  16. Extraction of organic compounds from solid samples

    SciTech Connect

    Junk, G.A.; Richard, J.J.

    1986-04-01

    Pyridine, benzene, cyclohexane, methylene chloride, dimethyl sulfoxide, dimethylformamide, and n-methylpyrrolidone have been compared for the extraction of polycyclic organic materials (POMs) from urban air, diesel, and stack particulate samples. Both sonic and Soxhlet techniques have been examined for both natural environmental particulates and particulates spiked with selected POMs. The extraction results vary for different polycyclic compounds adsorbed on different solid matrices, so no single solvent or extraction technique could be unambiguously recommended. However, comparative average results for 14 compounds spiked onto fly ash at 0.1, 0.25, and 1.0 ..mu..g/g showed pyridine to have 1.5 times more extraction efficiency than benzene. These and other reported results suggest that pyridine deserves more attention as an extractant for particulate samples. In separate tests, recoveries of POMs from fly ash were not improved by deactivation with aqueous solutions of ammonium hydroxide, thiocyanate and carbonate, and sodium nitrite prior to the extraction. 39 references, 5 tables.

  17. PROTOCOL FOR THE DETERMINATION OF SELECTED NEUTRAL AND ACIDIC SEMIVOLATILE ORGANIC CONTAMINANTS IN FISH TISSUE.

    EPA Science Inventory

    During a survey of contaminants in over 300 fish tissue samples from the Columbia River Basin which runs through the states of Washington, Idaho, and Oregon, there was interest in widening the normal scope of organic compounds determined. In the analyte category amenable to GC-M...

  18. CONTROL OF VOLATILE ORGANIC CONTAMINANTS IN GROUNDWATER BY IN-WELL AERATION

    EPA Science Inventory

    At a 0.1 mgd well contaminated with several volatile organic compounds (VOCs), principally trichloroethylene (TCE), several in-well aeration schemes were evaluated as control technologies. The well was logged by the USGS to define possible zones of VOC entry. A straddle packer an...

  19. Organic compounds in meteorites and their origins

    NASA Technical Reports Server (NTRS)

    Hayatsu, R.; Anders, E.

    1981-01-01

    The current investigation represents an extensively updated version of a review conducted by Anders et al. (1973). The investigation takes into account the literature through mid-1980. It is pointed out that Type 1 carbonaceous chondrites (C1) contain 6% of their cosmic complement of carbon, mainly in the form of organic matter. Most authors now agree that this material represents primitive prebiotic matter. The principal questions remaining are what abiotic processes formed the organic matter, and to what extent these processes took place in locales other than the solar nebula, such as interstellar clouds or meteorite parent bodes. The problem is approached in three stages. It is attempted to reconstruct the physical conditions during condensation from the clues contained in the inorganic matrix of the meteorite. The condensation behavior of carbon under these conditions is determined on the basis of thermodynamic calculations. Model experiments on the condensation of carbon are performed, and the synthesized compounds are compared with those actually found in meteorites.

  20. PHYTOREMEDIATION OF ORGANIC AND NUTRIENT CONTAMINANTS

    EPA Science Inventory

    Phytoremediation, the use of vegetation for the in situ treatment of contaminated soils and sediments, is an emerging technology that promises effective and inexpensive cleanup of certain hazardous waste sites. otential applications of phytoremediation would be bioremediation of ...

  1. Complexation of trace organic contaminants with fractionated dissolved organic matter: implications for mass spectrometric quantification.

    PubMed

    Ruiz, Selene Hernandez; Wickramasekara, Samanthi; Abrell, Leif; Gao, Xiaodong; Chefetz, Benny; Chorover, Jon

    2013-04-01

    Interaction with aqueous phase dissolved organic matter (DOM) can alter the fate of trace organic contaminants of emerging concern once they enter the water cycle. In order to probe possible DOM binding mechanisms and their consequences for contaminant detection and quantification in natural waters, a set of laboratory experiments was conducted with aqueous solutions containing various operationally-defined "hydrophilic" and "hydrophobic" freshwater DOM fractions isolated by resin adsorption techniques from reference Suwannee River natural organic matter (SROM). Per unit mass of SROM carbon, hydrophobic acids (HoA) comprised the largest C fraction (0.63±0.029), followed by hydrophilic-neutrals (HiN, 0.11±0.01) and acids (HiA, 0.09±0.017). Aqueous solutions comprising 8mgL(-1) DOC of each SROM fraction were spiked with a concentration range (10-1000μgL(-1)) of bisphenol A (BPA), carbamazepine (CBZ), or ibuprofen (IBU) as model target compounds in 24mM NH4HCO3 background electrolyte at pH 7.4. Contaminant interaction with the SROM fractions was probed using fluorescence spectroscopy, and effects on quantitative analysis of the target compounds were measured using direct aqueous-injection liquid chromatography tandem mass spectrometry (LC-MS/MS). Total quenching was greater for the hydrophilic fractions of SROM and associations were principally with protein-like and fulvic acid-like constituents. Whereas LC-MS/MS recoveries indicated relatively weak interactions with most SROM factions, an important exception was the HiA fraction, which diminished recovery of CBZ and IBU by ca. 30% and 70%, respectively, indicating relatively strong molecular interactions. PMID:23276460

  2. Tritium labeling of organic compounds deposited on porous structures

    DOEpatents

    Ehrenkaufer, Richard L. E.; Wolf, Alfred P.; Hembree, Wylie C.

    1979-01-01

    An improved process for labeling organic compounds with tritium is carried out by depositing the selected compound on the extensive surface of a porous structure such as a membrane filter and exposing the membrane containing the compound to tritium gas activated by the microwave discharge technique. The labeled compound is then recovered from the porous structure.

  3. Aqueous adsorption and removal of organic contaminants by carbon nanotubes.

    PubMed

    Yu, Jin-Gang; Zhao, Xiu-Hui; Yang, Hua; Chen, Xiao-Hong; Yang, Qiaoqin; Yu, Lin-Yan; Jiang, Jian-Hui; Chen, Xiao-Qing

    2014-06-01

    Organic contaminants have become one of the most serious environmental problems, and the removal of organic contaminants (e.g., dyes, pesticides, and pharmaceuticals/drugs) and common industrial organic wastes (e.g., phenols and aromatic amines) from aqueous solutions is of special concern because they are recalcitrant and persistent in the environment. In recent years, carbon nanotubes (CNTs) have been gradually applied to the removal of organic contaminants from wastewater through adsorption processes. This paper reviews recent progress (145 studies published from 2010 to 2013) in the application of CNTs and their composites for the removal of toxic organic pollutants from contaminated water. The paper discusses removal efficiencies and adsorption mechanisms as well as thermodynamics and reaction kinetics. CNTs are predicted to have considerable prospects for wider application to wastewater treatment in the future. PMID:24657369

  4. Organic Contamination Baseline Study on NASA JSC Astromaterial Curation Gloveboxes

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Allton, J. H.; Allen, C. C.; Burkett, P. J.

    2013-01-01

    Future planned sample return missions to carbon-rich asteroids and Mars in the next two decades will require strict handling and curation protocols as well as new procedures for reducing organic contamination. After the Apollo program, astromaterial collections have mainly been concerned with inorganic contamination [1-4]. However, future isolation containment systems for astromaterials, possibly nitrogen enriched gloveboxes, must be able to reduce organic and inorganic cross-contamination. In 2012, a baseline study was orchestrated to establish the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs that could be used as a benchmark for future mission designs.

  5. Widespread contamination of coastal sediments in the Transmanche Channel with anti-androgenic compounds.

    PubMed

    Alvarez-Muñoz, Diana; Indiveri, Paolo; Rostkowski, Pawel; Horwood, Julia; Greer, Emily; Minier, Christophe; Pope, Nick; Langston, William J; Hill, Elizabeth M

    2015-06-30

    This study analysed the levels of androgen receptor antagonist activity in extracts of coastal sediments sampled from estuaries in southern UK and northern France. Anti-androgenic (AA) activity varied between <0.2 and 224.3±38.4μg flutamide equivalents/g dry weight of sediment and was significantly correlated with the total organic carbon and silt content of samples. AA activity was detected in tissues extracts of clams, Scrobicularia plana, sampled from a contaminated estuary, some of which was due to uptake of a series of 4 or 5 ring polycyclic aromatic hydrocarbons (PAHs). Initial studies also indicated that fractionated extracts of male, but not female, clams also contained androgen receptor agonist activity due to the presence of dihydrotestosterone in tissues. This study reveals widespread contamination of coastal sediments of the Transmanche region with anti-androgenic compounds and these contaminants should be investigated for their potential to disrupt sexual differentiation in aquatic organisms. PMID:25496695

  6. Trace organic compounds in rain—II. Gas scavenging of neutral organic compounds

    NASA Astrophysics Data System (ADS)

    Ligocki, Mary P.; Leuenberger, Christian; Pankow, James F.

    Concurrent rain and air sampling was conducted for seven rain events in Portland, Oregon during February through to April of 1984. Concentration data are presented for a number of neutral organic compounds for both the rain-dissolved phase and the atmospheric gas phase. The ambient temperature averaged 8°C. Measured gas scavenging ratios ranged from 3 for tetrachloroethene to 10 5 for dibutylphthalate, and were generally 3-6 times higher than those calculated from Henry's Law constant ( H) values at 25°C taken from the literature. This discrepancy was due to the inappropriateness of applying 25°C H data at 5-10°C. Indeed, excellent agreement between the measured and predicted gas scavenging ratios was found for several polycyclic aromatic hydrocarbons for which temperature-dependent H data were available. These results demonstrate that equilibrium between rain and the atmospheric gas phase is attained for non-reactive neutral organic compounds.

  7. A Comparison of volatile organic compound profiles from bacteria on poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years the characterization of volatile organic compounds (VOCs) emitted from food-borne bacteria has prompted studies on the development of approaches to utilize the profile of volatiles emitted as a way of detecting contamination. We have examined VOCs from poultry with this in mind. Patt...

  8. Volatile Organic Compounds Produced by Bacteria from the Poultry Processing Environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years the characterization of volatile organic compounds (VOCs) emitted from food-borne bacteria has prompted studies on the development of approaches to utilize the profile of volatiles emitted as a way of detecting contamination. We have examined VOCs from poultry with this in mind. Patt...

  9. Inorganic and organic contaminants in Alaskan shorebird eggs.

    PubMed

    Saalfeld, David T; Matz, Angela C; McCaffery, Brian J; Johnson, Oscar W; Bruner, Phil; Lanctot, Richard B

    2016-05-01

    Many shorebird populations throughout North America are thought to be declining, with potential causes attributed to habitat loss and fragmentation, reduced prey availability, increased predation, human disturbance, and increased exposure to environmental pollutants. Shorebirds may be particularly vulnerable to contaminant exposure throughout their life cycle, as they forage primarily on invertebrates in wetlands, where many contaminants accumulate disproportionately in the sediments. Therefore, it is important to document and monitor shorebird populations thought to be at risk and assess the role that environmental contaminants may have on population declines. To investigate potential threats and provide baseline data on shorebird contaminant levels in Alaskan shorebirds, contaminant concentrations were evaluated in shorebird eggs from 16 species residing in seven geographic distinct regions of Alaska. Similar to previous studies, low levels of most inorganic and organic contaminants were found, although concentrations of several inorganic and organic contaminants were higher than those of previous studies. For example, elevated strontium levels were observed in several species, especially black oystercatcher (Haematopus bachmani) sampled in Prince William Sound, Alaska. Additionally, contaminant concentrations varied among species, with significantly higher concentrations of inorganic contaminants found in eggs of pectoral sandpiper (Calidris melanotos), semipalmated sandpiper (Calidris pusilla), black oystercatcher, and bar-tailed godwit (Limosa lapponica). Similarly, significantly higher concentrations of some organic contaminants were found in the eggs of American golden plover (Pluvialis dominica), black-bellied plover (Pluvialis squatarola), pacific golden plover (Pluvialis fulva), bar-tailed godwit, and semipalmated sandpiper. Despite these elevated levels, current concentrations of contaminants in shorebird eggs suggest that breeding environments are

  10. Fate of organic contaminants in the redox zones of a landfill leachate pollution plume (Vejen, Denmark)

    NASA Astrophysics Data System (ADS)

    Lyngkilde, John; Christensen, Thomas H.

    1992-09-01

    Samples from 75 sample locations in a landfill leachate pollution plume reveal a significant disappearance of specific organic compounds (SOC's) within the first 100 m of the plume. Only the herbicide Mecoprop® (MCPP) migrates further. Since sorption and dilution cannot account for the decreasing concentrations, degradation is considered to be the governing process. Non-volatile organic carbon shows a corresponding fate probably acting as a substrate for the microbial processes. The first 20 m of the plume are methanogenic/sulfidogenic, judged on the chemistry of the groundwater, followed by a significant ferrogenic zone exhibiting a substantial capacity to degrade the SOC's. The presence of intermediary products (here an oxidized camphor compound) supports the concept of degradation within the ferrogenic zone. This investigation draws the attention to the significant natural attenuation of organic contaminants and to the so far neglected ferrogenic zone in controlling the fate of organic contaminants in leachate plumes.

  11. GLOBAL INVENTORY OF VOLATILE ORGANIC COMPOUND EMISSIONS FORM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The report describes a global inventory anthropogenic volatile organic compound (VOC) emissions that includes a separate inventory for each of seven pollutant groups--paraffins, olefins, aromatics, formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds....

  12. Distribution of volatile organic compounds in a New Jersey coastal plain aquifer system

    USGS Publications Warehouse

    Fusillo, T.V.; Hochreiter, J.J., Jr.; Lord, D.G.

    1985-01-01

    Samples for analysis of volatile organic compounds were collected from 315 wells in the Potomac-Raritan-Magothy aquifer system in southwestern New Jersey and a small adjacent area in Pennsylvania during 1980-82. Volatile organic compounds were detected in all three aquifer units of the Potomac-Raritan-Magoth aquifer system in the study area. Most of the contamination appears to be confined to the outcrop area at present. Low levels of contamination, however, were found downdip of the outcrop area in the upper and middle aquifers. Trichloroethylene, tetrachloroethylene, and benzene were the most frequently detected compounds. Differences in the areal distributions of light chlorinated hydrocarbons, such as trichloroethylene, and aromatic hydrocarbons, such as benzene, were noted and are probably due to differences in the uses of the compounds and the distribution patterns of potential contamination sources. The distribution patterns of volatile organic compounds differed greatly among the three aquifer units. The upper aquifer, which crops out mostly in less-developed areas, had the lowest percentage of wells with volatile organic compounds detected (10 percent of wells sampled). The concentrations in most wells in the upper aquifer which had detectable levels were less than 10 ??g/l. In the middle aquifer, which crops out beneath much of the urban and industrial area adjacent to the Delaware River, detectable levels of volatile organic compounds were found in 22 percent of wells sampled, and several wells contained concentrations above 100 ??g/l. The lower aquifer, which is confined beneath much of the outcrop area of the aquifer system, had the highest percentage of wells (28 percent) with detectable levels. This is probably due to (1) vertical leakage of contamination from the middle aquifer, and (2) the high percentage of wells tapping the lower aquifer in the most heavily developed areas of the outcrop.

  13. Removal of volatile and semivolatile organic contamination from soil by air and steam flushing.

    PubMed

    Sleep, B E; McClure, P D

    2001-07-01

    A soil core, obtained from a contaminated field site, contaminated with a mixture of volatile and semivolatile organic compounds (VOC and SVOC) was subjected to air and steam flushing. Removal rates of volatile and semivolatile organic compounds were monitored during flushing. Air flushing removed a significant portion of the VOC present in the soil, but a significant decline in removal rate occurred due to decreasing VOC concentrations in the soil gas phase. Application of steam flushing after air flushing produced a significant increase in contaminant removal rate for the first 4 to 5 pore volumes of steam condensate. Subsequently, contaminant concentrations decreased slowly with additional pore volumes of steam flushing. The passage of a steam volume corresponding to 11 pore volumes of steam condensate reduced the total VOC concentration in the soil gas (at 20 degrees C) by a factor of 20 to 0.07 mg/l. The corresponding total SVOC concentration in the condensate declined from 11 to 3 mg/l. Declines in contaminant removal rates during both air and steam flushing indicated rate-limited removal consistent with the persistence of a residual organic phase, rate-limited desorption, or channeling. Pressure gradients were much higher for steam flushing than for air flushing. The magnitude of the pressure gradients encountered during steam flushing for this soil indicates that, in addition to rate-limited contaminant removal, the soil permeability (2.1 x 10(-9) cm2) would be a limiting factor in the effectiveness of steam flushing. PMID:11475159

  14. Soil amino compound and carbohydrate contents influenced by organic amendments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amino compounds (i. e. amino acids and sugars), and carbohydrates are labile organic components and contribute to the improvement of soil fertility and quality. Animal manure and other organic soil amendments are rich in both amino compounds and carbohydrates, hence organic soil amendments might af...

  15. REVERSE OSMOSIS TREATMENT TO CONTROL INORGANIC AND VOLATILE ORGANIC CONTAMINATION

    EPA Science Inventory

    Because of the versatility of reverse osmosis for removing a wide range of contaminants, U.S. EPA (Drinking Water Research Division) has been conducting laboratory and field studies to determine its effectiveness on specific inorganic and organic contaminants of concern to the wa...

  16. REDUCTIVE DEHALOGENATION OF ORGANIC CONTAMINANTS IN SOILS AND GROUND WATER

    EPA Science Inventory

    Introduction and large scale production of synthetic halogenated organic chemicals over the last 50 years has resulted in a group of contaminants which tend to persist in the environment and resist both biotic and abiotic degradation. The low solubility of these types of contamin...

  17. Bacterial and spontaneous dehalogenation of organic compounds.

    PubMed Central

    Omori, T; Alexander, M

    1978-01-01

    Only 3 of more than 500 soil enrichments contained organisms able to use 1,9-dichlorononane as a sole carbon source. One isolate, a strain of Pseudomonas, grew on the compound and released much of the halogen as chloride. Resting cells dehalogenated 1,9-dichlorononane aerobically but not anaerobically. Pseudomonas sp. grew on and resting cells dehalogenated 1,6-dichlorohexane, 1,5-dichloroheptane, 2-bromoheptanoate, and 1-chloro-, 1-bromo-, and 1-iodoheptane, but the bacterium cometabolized but did not grow on 3-chloropropionate. p-Methylbenzyl alcohol, chloride, and p-methylbenzoate were formed when resting cells were incubated with alpha-chloro-p-xylene; the first two products were also formed in the absence of the bacteria. Similarly, o- and m-methylbenzyl alcohols were generated from the corresponding chlorinated xylenes in the presence or absence of Pseudomonas sp. The formation of m- and p-chlorobenzoic acid from m- and p-chlorobenzyl chloride proceeded only in the presence of the cells, but p-chlorobenzyl alcohol was generated from p-chlorobenzyl chloride even in the absence of the bacterium. These results are discussed in terms of possible mechanisms of dehalogenation. PMID:637547

  18. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    SciTech Connect

    John F. Schabron; Joseph F. Rovani Jr.; Theresa M. Bomstad

    2002-06-01

    Western Research Institute (WRI) initiated exploratory work towards the development of new field screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of carbon-halogen bonds. Commercially available heated diode and corona discharge leak detectors were procured and evaluated for halogenated VOC response. The units were modified to provide a digital readout of signal related to VOC concentration. Sensor response was evaluated with carbon tetrachloride and tetrachloroethylene (perchloroethylene, PCE), which represent halogenated VOCs with and without double bonds. The response characteristics were determined for the VOCs directly in headspace in Tedlar bag containers. Quantitation limits in air were estimated. Potential interferences from volatile hydrocarbons, such as toluene and heptane, were evaluated. The effect of humidity was studied also. The performance of the new devices was evaluated in the laboratory by spiking soil samples and monitoring headspace for halogenated VOCs. A draft concept of the steps for a new analytical method was outlined. The results of the first year effort show that both devices show potential utility for future analytical method development work towards the goal of developing a portable test kit for screening halogenated VOCs in the field.

  19. Recoverable electroluminescence from a contaminated organic/organic interface in an organic light-emitting diode

    NASA Astrophysics Data System (ADS)

    Liao, L. S.; Klubek, K. P.; Madathil, J. K.; Tang, C. W.; Giesen, D. J.

    2010-01-01

    An organic/organic interface, like an electrode/organic interface in an organic light-emitting diode (OLED), can be severely affected by ambient contamination. However, we surprisingly found that the contaminated surface or interface can be "cured" by depositing a thin interfacial layer containing a strong reducing agent onto the contaminated surface before finishing the fabrication of the device. For example, in comparison with a regular OLED, an OLED having a 5-min ambient exposure to the light-emitting layer/electron-transporting layer interface drops its initial electroluminescence (EL) intensity by 50%. The decreased EL intensity due to the 5-min ambient exposure can be fully recovered and the improved operational stability can be realized after curing the contaminated interface using a thin Li interfacial layer. The experimental results provide a useful method to cope with the interfacial contamination in OLEDs during a manufacturing process. In addition, our results support the failure mechanism of an Alq-based OLED suggested by [Papadimitrakopoulos et al., Chem. Mater. 8, 1363 (1996)].

  20. A Comprehensive Analysis of Organic Contaminant Adsorption by Clays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macroscopic studies of nonionic organic contaminant (NOC) sorption by clays have revealed many important clues regarding factors that influence sorption affinity, and enabled the development of structural hypotheses for operative adsorption mechanisms. Integrating this understanding with knowledge g...

  1. Recent Discoveries and the Ultimate Fate of Organic Contaminants

    EPA Science Inventory

    With very few exceptions, the common organic contaminants in soils, sediments, and ground water can be transformed or entirely degraded by oxidation or reduction reactions that are either carried through direct involvement with microorganisms, or indirectly through abiotic reacti...

  2. SEQUESTRATION OF HYDROPHOBIC ORGANIC CONTAMINANTS BY GEOSORBENTS. (R822626)

    EPA Science Inventory

    The chemical interactions of hydrophobic organic contaminants (HOCs) with soils and sediments (geosorbents) may result in strong binding and slow subsequent release rates that significantly affect remediation rates and endpoints. The underlying physical and chemical phenomena ...

  3. ELECTROCHEMICAL DEGRADATION OF ORGANIC CONTAMINANTS IN WATER AND SEDIMENTS

    EPA Science Inventory

    Electrochemical degradation (ECD) utilizes high redox potential at the anode and low redox potential at the cathode to oxidize and/or reduce organic and inorganic contaminants. EDC of Trichloroethylene (TCE), although theoretically possible, has not been experimentally proven. Th...

  4. USING ZERO-VALENT METAL NANOPARTICLES TO REMEDIATE ORGANIC CONTAMINANTS

    EPA Science Inventory

    The transport of organic contaminants down the soil profile constitutes a serious threat to the quality of ground water. Zero-valent metals are considered innocuous abiotic agents capable of mediating decontamination processes in terrestrial systems. In this investigation, ze...

  5. Method and reaction pathway for selectively oxidizing organic compounds

    DOEpatents

    Camaioni, Donald M.; Lilga, Michael A.

    1998-01-01

    A method of selectively oxidizing an organic compound in a single vessel comprises: a) combining an organic compound, an acid solution in which the organic compound is soluble, a compound containing two oxygen atoms bonded to one another, and a metal ion reducing agent capable of reducing one of such oxygen atoms, and thereby forming a mixture; b) reducing the compound containing the two oxygen atoms by reducing one of such oxygen atoms with the metal ion reducing agent to, 1) oxidize the metal ion reducing agent to a higher valence state, and 2) produce an oxygen containing intermediate capable of oxidizing the organic compound; c) reacting the oxygen containing intermediate with the organic compound to oxidize the organic compound into an oxidized organic intermediate, the oxidized organic intermediate having an oxidized carbon atom; d) reacting the oxidized organic intermediate with the acid counter ion and higher valence state metal ion to bond the acid counter ion to the oxidized carbon atom and thereby produce a quantity of an ester incorporating the organic intermediate and acid counter ion; and e) reacting the oxidized organic intermediate with the higher valence state metal ion and water to produce a quantity of alcohol which is less than the quantity of ester, the acid counter ion incorporated in the ester rendering the carbon atom bonded to the counter ion less reactive with the oxygen containing intermediate in the mixture than is the alcohol with the oxygen containing intermediate.

  6. A review of the tissue residue approach for organic and organometallic compounds in aquatic organisms.

    PubMed

    McElroy, Anne E; Barron, Mace G; Beckvar, Nancy; Driscoll, Susan B Kane; Meador, James P; Parkerton, Tom F; Preuss, Thomas G; Steevens, Jeffery A

    2011-01-01

    This paper reviews the tissue residue approach (TRA) for toxicity assessment as it applies to organic chemicals and some organometallic compounds (Sn, Hg, and Pb) in aquatic organisms. Specific emphasis was placed on evaluating key factors that influence interpretation of critical body residue (CBR) toxicity metrics including data quality issues, lipid dynamics, choice of endpoints, processes that alter toxicokinetics and toxicodynamics, phototoxicity, species- and life stage-specific sensitivities, and biotransformation. The vast majority of data available on TRA is derived from laboratory studies of acute lethal responses to organic toxicants exhibiting baseline toxicity. Application of the TRA to various baseline toxicants as well as substances with specific modes of action via receptor-mediated processes, such as chlorinated aromatic hydrocarbons, pesticides, and organometallics is discussed, as is application of TRA concepts in field assessments of tissue residues. In contrast to media-based toxicity relationships, CBR values tend to be less variable and less influenced by factors that control bioavailability and bioaccumulation, and TRA can be used to infer mechanisms of toxic action, evaluate the toxicity of mixtures, and interpret field data on bioaccumulated toxicants. If residue-effects data are not available, body residues can be estimated, as has been done using the target lipid model for baseline toxicants, to derive critical values for risk assessment. One of the primary unresolved issues complicating TRA for organic chemicals is biotransformation. Further work on the influence of biotransformation, a better understanding of contaminant lipid interactions, and an explicit understanding of the time dependency of CBRs and receptor-mediated toxicity are all required to advance this field. Additional residue-effects data on sublethal endpoints, early life stages, and a wider range of legacy and emergent contaminants will be needed to improve the ability

  7. Oceanic protection of prebiotic organic compounds from UV radiation

    NASA Technical Reports Server (NTRS)

    Cleaves, H. J.; Miller, S. L.; Bada, J. L. (Principal Investigator)

    1998-01-01

    It is frequently stated that UV light would cause massive destruction of prebiotic organic compounds because of the absence of an ozone layer. The elevated UV flux of the early sun compounds this problem. This applies to organic compounds of both terrestrial and extraterrestrial origin. Attempts to deal with this problem generally involve atmospheric absorbers. We show here that prebiotic organic polymers as well as several inorganic compounds are sufficient to protect oceanic organic molecules from UV degradation. This aqueous protection is in addition to any atmospheric UV absorbers and should be a ubiquitous planetary phenomenon serving to increase the size of planetary habitable zones.

  8. Compound-Specific Isotope Analysis of Nitroaromatic Contaminant Transformations by Nitroarene Dioxygenases

    NASA Astrophysics Data System (ADS)

    Pati, Sarah G.; Kohler, Hans-Peter E.; Hofstetter, Thomas B.

    2014-05-01

    Dioxygenation is an important biochemical reaction that often initiates the mineralization of recalcitrant organic contaminants such as nitroaromatic explosives, chlorinated benzenes, and polycyclic aromatic hydrocarbons. However, to assess the extent of dioxygenation in contaminated environments is difficult because of competing transformation processes and further reactions of the dioxygenation products. Compound-specific isotope analysis (CSIA) offers a new approach to reliably quantify biodegradation initiated by dioxygenation based on changes in stable isotope ratios of the pollutant. For CSIA it is essential to know the kinetic isotope effects (KIEs) pertinent to the dioxygenation mechanism of organic contaminants. Unfortunately, the range of KIEs of such reactions is poorly constrained although many dioxygenase enzymes with a broad substrate specificity have been reported. Dioxygenase enzymes usually exhibit complex reaction kinetics involving multiple substrates and substrate-specific binding modes which makes the determination of KIEs challenging. The goal of this study was to explore the magnitude and variability of 13C-, 2H-, and 15N-KIEs for the dioxygenation of one contaminant class, that is nitroaromatic contaminants (NACs). To this end, we investigated the C, H, and N isotope fractionation during the dioxygenation of nitrobenzene (NB), 2-nitrotoluene (2-NT), and 3-nitrotoluene (3-NT) by pure cultures, E. coli clones, cell extracts, and purified enzymes. From isotope fractionations measured in the substrates and reaction products, we determined dioxygenation KIEs for different combinations of the three substrates with nitrobenzene dioxygenase (NBDO) and 2-nitrotoluene dioxygenase (2NTDO). The 13C-, 2H-, and 15N-KIEs for the dioxygenation of NB by NBDO were consistent for all experimental systems considered (i.e., Comamonas sp. Strain JS765, E. coli clones, cell extracts of E. coli clones, and purified NBDO). This observation suggests that the isotope

  9. Passive remediation of chlorinated volatile organic compounds using barometric pumping

    SciTech Connect

    Rossabi, J.; Looney, B.B.; Dilek, C.A.E.; Riha, B.; Rohay, V.J.

    1993-12-31

    The purpose of the Savannah River Integrated Demonstration Program, sponsored by the Department of Energy, is to demonstrate new subsurface characterization, monitoring, and remediation technologies. The interbedded clay and sand layers at the Integrated Demonstration Site (IDS) are contaminated with chlorinated volatile organic compounds (CVOCs). Characterization studies show that the bulk of the contamination is located in the approximately 40 m thick vadose zone. The most successful strategy for removing contaminants of this type from this environment is vapor extraction alone or in combination with other methods such as air sparging or enhanced bioremediation. Preliminary work at the IDS has indicated that natural pressure differences between surface and subsurface air caused by surface barometric fluctuations can produce enough gas flow to make barometric pumping a viable method for subsurface remediation. Air flow and pressure were measured in wells that are across three stratigraphic intervals in the vadose zone` The subsurface pressures were correlated to surface pressure fluctuations but were damped and lagging in phase corresponding to depth and stratum permeability. Piezometer wells screened at lower elevations exhibited a greater phase lag and damping than wells screened at higher elevations where the pressure wave from barometric fluctuations passes through a smaller number of low permeable layers. The phase lag between surface and subsurface pressures results in significant fluxes through these wells. The resultant air flows through the subsurface impacts CVOC fate and transport. With the appropriate controls (e.g. solenoid valves) a naturally driven vapor extraction system can be implemented requiring negligible operating costs yet capable of a large CVOC removal rate (as much as 1--2 kg/day in each well at the IDS).

  10. A partition-limited model for the plant uptake of organic contaminants from soil and water

    USGS Publications Warehouse

    Chiou, C.T.; Sheng, G.; Manes, M.

    2001-01-01

    In dealing with the passive transport of organic contaminants from soils to plants (including crops), a partition-limited model is proposed in which (i) the maximum (equilibrium) concentration of a contaminant in any location in the plant is determined by partition equilibrium with its concentration in the soil interstitial water, which in turn is determined essentially by the concentration in the soil organic matter (SOM) and (ii) the extent of approach to partition equilibrium, as measured by the ratio of the contaminant concentrations in plant water and soil interstitial water, ??pt (??? 1), depends on the transport rate of the contaminant in soil water into the plant and the volume of soil water solution that is required for the plant contaminant level to reach equilibrium with the external soil-water phase. Through reasonable estimates of plant organic-water compositions and of contaminant partition coefficients with various plant components, the model accounts for calculated values of ??pt in several published crop-contamination studies, including near-equilibrium values (i.e., ??pt ??? 1) for relatively water-soluble contaminants and lower values for much less soluble contaminants; the differences are attributed to the much higher partition coefficients of the less soluble compounds between plant lipids and plant water, which necessitates much larger volumes of the plant water transport for achieving the equilibrium capacities. The model analysis indicates that for plants with high water contents the plant-water phase acts as the major reservoir for highly water-soluble contaminants. By contrast, the lipid in a plant, even at small amounts, is usually the major reservoir for highly water-insoluble contaminants.

  11. Synthetic organic compounds and their transformation products in groundwater: occurrence, fate and mitigation.

    PubMed

    Postigo, Cristina; Barceló, Damià

    2015-01-15

    Groundwater constitutes the main source of public drinking water supply in many regions. Thus, the contamination of groundwater resources by organic chemicals is a matter of growing concern because of its potential effects on public health. The present manuscript compiles the most recent works related to the study of synthetic organic compounds (SOCs) in groundwater, with special focus on the occurrence of contaminants not or barely covered by previously published reviews, e.g., pesticide and pharmaceutical transformation products, lifestyle products, and industrial chemicals such as corrosion inhibitors, brominated and organophosphate flame retardants, plasticizers, volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs). Moreover, the main challenges in managed aquifer recharge, i.e., reclaimed water injection and infiltration, and riverbank filtration, regarding natural attenuation of organic micropollutants are discussed, and insights into the future chemical quality of groundwater are provided. PMID:24974362

  12. Laser surface cleaning of organic contaminants

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Liu, Z.; Vilar, R.; Yi, X.-S.

    1999-08-01

    Laser surface cleaning process has been a useful and efficient technique for various industrial applications. The removal of photoresist contaminants on silicon wafers was investigated with a krypton fluoride (KrF) excimer laser, and the irradiated area was characterized using a profilometer, a scanning electronic microscopy (SEM), an Auger electron spectroscopy (AES) and a Fourier transition infrared spectroscopy (FT-IR). It was found that there exist an optimal number of pulses to remove the contaminant from the substrate surface without any laser-induced damage, depending on the laser density on the surface. A model to predict the optimal number of pulses, which agrees well with Beer-Lambert's law, is proposed and proved to be operable.

  13. Detection of organic contamination on surfaces by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Guyt, Jaco M.; Van Eesbeek, Marc; Van Papendrecht, G.

    2002-09-01

    Organic contamination control at ESA is based on the infrared spectroscopy method described in the PSS-01-705. The method is used to verify the organic contamination levels during integration and thermal vacuum tests. The detection limits are in the 10-8 g/cm2 range or below, depending on the equipment and sampling method. Quantification is performed with common space contaminants, with the possibility to include a new calibration standard when a specific contaminant is occurring more often. Sampling is done with witness sensors of 15 cm2 or infrared transparent windows to verify the cleanliness after specific events. When no witness sensor has been used, solvent compatible surfaces can be analyzed by a solvent wash or by wiping the surface using dry or wetted tissues. Calibration curves with detection limits are presented, with an examples of a contamination event found on a retrieved space hardware.

  14. Nitrated Secondary Organic Tracer Compounds in Biomass Burning Smoke

    NASA Astrophysics Data System (ADS)

    Iinuma, Y.; Böge, O.; Gräfe, R.; Herrmann, H.

    2010-12-01

    Natural and human-initiated biomass burning releases large amounts of gases and particles into the atmosphere, impacting climate, environment and affecting public health. Several hundreds of compounds are emitted from biomass burning and these compounds largely originate from the pyrolysis of biopolymers such as lignin, cellulose and hemicellulose. Some of compounds are known to be specific to biomass burning and widely recognized as tracer compounds that can be used to identify the presence of biomass burning PM. Detailed chemical analysis of biomass burning influenced PM samples often reveals the presence compounds that correlated well with levoglucosan, a known biomass burning tracer compound. In particular, nitrated aromatic compounds correlated very well with levoglucosan, indicating that biomass burning as a source for this class of compounds. In the present study, we present evidence for the presence of biomass burning originating secondary organic aerosol (BSOA) compounds in biomass burning influenced ambient PM. These BSOA compounds are typically nitrated aromatic compounds that are produced in the oxidation of precursor compounds in the presence of NOx. The precursor identification was performed from a series of aerosol chamber experiments. m-Cresol, which is emitted from biomass burning at significant levels, is found to be a major precursor compounds for nitrated BSOA compounds found in the ambient PM. We estimate that the total concentrations of these compounds in the ambient PM are comparable to biogenic SOA compounds in winter months, indicating the BSOA contributes important amounts to the regional organic aerosol loading.

  15. Kinetics of desorption of organic compounds from dissolved organic matter.

    PubMed

    Kopinke, Frank-Dieter; Ramus, Ksenia; Poerschmann, Juergen; Georgi, Anett

    2011-12-01

    This study presents a new experimental technique for measuring rates of desorption of organic compounds from dissolved organic matter (DOM) such as humic substances. The method is based on a fast solid-phase extraction of the freely dissolved fraction of a solute when the solution is flushed through a polymer-coated capillary. The extraction interferes with the solute-DOM sorption equilibrium and drives the desorption process. Solutes which remain sorbed to DOM pass through the extraction capillary and can be analyzed afterward. This technique allows a time resolution for the desorption kinetics from subseconds up to minutes. It is applicable to the study of interaction kinetics between a wide variety of hydrophobic solutes and polyelectrolytes. Due to its simplicity it is accessible for many environmental laboratories. The time-resolved in-tube solid-phase microextraction (TR-IT-SPME) was applied to two humic acids and a surfactant as sorbents together with pyrene, phenanthrene and 1,2-dimethylcyclohexane as solutes. The results give evidence for a two-phase desorption kinetics: a fast desorption step with a half-life of less than 1 s and a slow desorption step with a half-life of more than 1 min. For aliphatic solutes, the fast-desorbing fraction largely dominates, whereas for polycyclic aromatic hydrocarbons such as pyrene, the slowly desorbing, stronger-bound fraction is also important. PMID:22035249

  16. Secondary organic aerosol from biogenic volatile organic compound mixtures

    NASA Astrophysics Data System (ADS)

    Hatfield, Meagan L.; Huff Hartz, Kara E.

    2011-04-01

    The secondary organic aerosol (SOA) yields from the ozonolysis of a Siberian fir needle oil (SFNO), a Canadian fir needle oil (CFNO), and several SOA precursor mixtures containing reactive and non-reactive volatile organic compounds (VOCs) were investigated. The use of precursor mixtures more completely describes the atmosphere where many VOCs exist. The addition of non-reactive VOCs such as bornyl acetate, camphene, and borneol had very little to no effect on SOA yields. The oxidation of VOC mixtures with VOC mass percentages similar to the SFNO produced SOA yields that became more similar to the SOA yield from SFNO as the complexity and concentration of VOCs within the mixture became more similar to overall SFNO composition. The SOA yield produced by the oxidation of CFNO was within the error of the SOA yield produced by the oxidation of SFNO at a similar VOC concentration. The SOA yields from SFNO were modeled using the volatility basis set (VBS), which predicts the SOA yields for a given mass concentration of mixtures containing similar VOCs.

  17. High Arctic Biogenic Volatile Organic Compound emissions

    NASA Astrophysics Data System (ADS)

    Schollert, Michelle; Buchard, Sebrina; Faubert, Patrick; Michelsen, Anders; Rinnan, Riikka

    2013-04-01

    Biogenic volatile organic compounds (BVOCs) emitted from terrestrial vegetation participate in oxidative reactions, affecting the tropospheric ozone concentration and the lifetimes of greenhouse gasses such as methane. Also, they affect the formation of secondary organic aerosols. BVOCs thus provide a strong link between the terrestrial biosphere, the atmosphere and the climate. Global models of BVOC emissions have assumed minimal emissions from the high latitudes due to low temperatures, short growing seasons and sparse vegetation cover. However, measurements from this region of the world are lacking and emissions from the High Arctic have not been published yet. The aim of this study was to obtain the first estimates for BVOC emissions from the High Arctic. Hereby, we wish to add new knowledge to the understanding of global BVOC emissions. Measurements were conducted in NE Greenland (74°30' N, 20°30' W) in four vegetation communities in the study area. These four vegetation communities were dominated by Cassiope tetragona, Salix arctica, Vaccinium uliginosum and Kobresia myosuroides/Dryas octopetela/Salix arctica, respectively. Emissions were measured by enclosure technique and collection of volatiles into adsorbent cartridges in August 2009. The volatiles were analyzed by gas chromatography-mass spectrometry following thermal desorption. Isoprene showed highest emissions in S. arctica-dominated heath, where it was the dominant single BVOC. However, isoprene emission decreased below detection limit in the end of August when the temperature was at or below 10°C. According to a principal component analysis, monoterpene and sesquiterpene emissions were especially associated with C. tetragona-dominated heath. Especially S. arctica and C. tetragona dominated heaths showed distinct patterns of emitted BVOCs. Emissions of BVOC from the studied high arctic heaths were clearly lower than the emissions observed previously in subarctic heaths with more dense vegetation

  18. Interactions of organic contaminants with mineral-adsorbed surfactants

    USGS Publications Warehouse

    Zhu, L.; Chen, B.; Tao, S.; Chiou, C.T.

    2003-01-01

    Sorption of organic contaminants (phenol, p-nitrophenol, and naphthalene) to natural solids (soils and bentonite) with and without myristylpyridinium bromide (MPB) cationic surfactant was studied to provide novel insight to interactions of contaminants with the mineral-adsorbed surfactant. Contaminant sorption coefficients with mineral-adsorbed surfactants, Kss, show a strong dependence on surfactant loading in the solid. At low surfactant levels, the Kss values increased with increasing sorbed surfactant mass, reached a maximum, and then decreased with increasing surfactant loading. The Kss values for contaminants were always higher than respective partition coefficients with surfactant micelles (Kmc) and natural organic matter (Koc). At examined MPB concentrations in water the three organic contaminants showed little solubility enhancement by MPB. At low sorbed-surfactant levels, the resulting mineral-adsorbed surfactant via the cation-exchange process appears to form a thin organic film, which effectively "adsorbs" the contaminants, resulting in very high Kss values. At high surfactant levels, the sorbed surfactant on minerals appears to form a bulklike medium that behaves essentially as a partition phase (rather than an adsorptive surface), with the resulting Kss being significantly decreased and less dependent on the MPB loading. The results provide a reference to the use of surfactants for remediation of contaminated soils/sediments or groundwater in engineered surfactant-enhanced washing.

  19. Application of humic compounds for remediation of soils contaminated with heavy metals: the benefits and risks

    NASA Astrophysics Data System (ADS)

    Motuzova, Galina; Barsova, Natalia; Stepanov, Andrey; Kiseleva, Violetta; Kolchanova, Ksenia; Starkova, Irina; Karpukhin, Mikhail

    2015-04-01

    Applicability of humic compound (HC) "Extra" (potassium humate produced from coal) was studied to remediate soils contaminated with copper in model experiments. Field experiments were carried out in 10-litter plastic containers. The upper layer was prepared as a mixture of loam (pH=5.3), sand (pH=7.4) and peat(pH=5.5). It was underlain consequently by loam and gravel. To study water migration we installed lysimeters. The experiment was conducted in 3 variants: 1) control, 2) control+Cu, 3) control+Cu+HC. Copper was applied in the form of dry powder (CuSO4*5H2O) over the upper layer of the soil column in a concentration of copper equaling to 1000 mg/kg. Total concentration of copper was determined by ICP AAS, its free ions was measured with the help of ion-selective electrode. Humic compound was sprayed on the surface in liquid form. The vessels stayed outdoors from July to October 2014 with additional watering in dry periods. Analysis of lysimetric waters obtained from this model field experiment revealed significant impact of pH. Application of the humic compound produces almost 5 times higher content of soluble organic substances than in the variant without it, and in the first portions of lysimetric waters the difference is 20-fold. Generation of extra organic content in soluble form was accompanied by the 2-6 times increase of the water soluble copper yield. However the content of the free copper ions in lysimetric waters in case of addition of the potassium humate was negligible, because almost all copper was bounded with water-soluble organic substances. The copper content in water extract from the top layer of soil in the variant with HC was about 1 mg/l, that was 2 times higher than without HC. The content of water-soluble organic carbon in HC variant was 100 mg/L, and without HC was 10 times lower (10 mg/l). The water extract from soils enriched in HC was passed through a column filled with weakly basic anion exchange resin DEAE (Cl-form), the eluate was

  20. Dissolved Organic Matter and Emerging Contaminants in Urban Stream Ecosystems

    NASA Astrophysics Data System (ADS)

    Kaushal, S. S.; Findlay, S.; Groffman, P.; Belt, K.; Delaney, K.; Sides, A.; Walbridge, M.; Mayer, P.

    2009-05-01

    We investigated the effects of urbanization on the sources, bioavailability and forms of natural and anthropogenic organic matter found in streams located in Maryland, U.S.A. We found that the abundance, biaoavailability, and enzymatic breakdown of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and dissolved organic phosphorus (DOP) increased in streams with increasing watershed urbanization suggesting that organic nutrients may represent a growing form of nutrient loading to coastal waters associated with land use change. Organic carbon, nitrogen, and phosphorus in urban streams were elevated several-fold compared to forest and agricultural streams. Enzymatic activities of stream microbes in organic matter decomposition were also significantly altered across watershed land use. Chemical characterization suggested that organic matter in urban streams originated from a variety of sources including terrestrial, sewage, and in-stream transformation. In addition, a characterization of emerging organic contaminants (polyaromatic cyclic hydrocarbons, organochlorine pesticides, and polybrominated diphenyl ether flame retardents), showed that organic contaminants and dissolved organic matter increase with watershed urbanization and fluctuate substantially with changing climatic conditions. Elucidating the emerging influence of urbanization on sources, transport, and in-stream transformation of organic nutrients and contaminants will be critical in unraveling the changing role of organic matter in urban degraded and restored stream ecosystems.

  1. RT-MATRIX: Measuring Total Organic Carbon by Photocatalytic Oxidation of Volatile Organic Compounds

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Volatile organic compounds (VOCs) inevitably accumulate in enclosed habitats such as the International Space Station and the Crew Exploration Vehicle (CEV) as a result of human metabolism, material off-gassing, and leaking equipment. Some VOCs can negatively affect the quality of the crew's life, health, and performance; and consequently, the success of the mission. Air quality must be closely monitored to ensure a safe living and working environment. Currently, there is no reliable air quality monitoring system that meets NASA's stringent requirements for power, mass, volume, or performance. The ultimate objective of the project -- the development of a Real-Time, Miniaturized, Autonomous Total Risk Indicator System (RT.MATRIX).is to provide a portable, dual-function sensing system that simultaneously determines total organic carbon (TOC) and individual contaminants in air streams.

  2. POTENTIAL EMISSIONS OF HAZARDOUS ORGANIC COMPOUNDS FROM SEWAGE SLUDGE INCINERATION

    EPA Science Inventory

    Laboratory thermal decomposition studies were undertaken to evaluate potential organic emissions from sewage sludge incinerators. Precisely controlled thermal decomposition experiments were conducted on sludge spiked with mixtures of hazardous organic compounds, on the mixtures o...

  3. Relative Stabilities of Organic Compounds Using Benson's Additivity Rules.

    ERIC Educational Resources Information Center

    Vitale, Dale E.

    1986-01-01

    Shows how the structure-energy principle can be presented in organic chemistry (without having to resort to quantum mechanics) by use of Benson's Additive Rules. Examples of the application to several major classes of organic compounds are given.

  4. Mobilization and Transport of Organic Compounds from Reservoir Rock and Caprock in Geological Carbon Sequestration Sites

    SciTech Connect

    Zhong, Lirong; Cantrell, Kirk J.; Mitroshkov, Alexandre V.; Shewell, Jesse L.

    2014-05-06

    Supercritical CO2 (scCO2) is an excellent solvent for organic compounds, including benzene, toluene, ethyl-benzene, and xylene (BTEX), phenols, and polycyclic aromatic hydrocarbons (PAHs). Monitoring results from geological carbon sequestration (GCS) field tests has shown that organic compounds are mobilized following CO2 injection. Such results have raised concerns regarding the potential for groundwater contamination by toxic organic compounds mobilized during GCS. Knowledge of the mobilization mechanism of organic compounds and their transport and fate in the subsurface is essential for assessing risks associated with GCS. Extraction tests using scCO2 and methylene chloride (CH2Cl2) were conducted to study the mobilization of volatile organic compounds (VOCs, including BTEX), the PAH naphthalene, and n-alkanes (n-C20 – n-C30) by scCO2 from representative reservoir rock and caprock obtained from depleted oil reservoirs and coal from an enhanced coal-bed methane recovery site. More VOCs and naphthalene were extractable by scCO2 compared to the CH2Cl2 extractions, while scCO2 extractable alkane concentrations were much lower than concentrations extractable by CH2Cl2. In addition, dry scCO2 was found to extract more VOCs than water saturated scCO2, but water saturated scCO2 mobilized more naphthalene than dry scCO2. In sand column experiments, moisture content was found to have an important influence on the transport of the organic compounds. In dry sand columns the majority of the compounds were retained in the column except benzene and toluene. In wet sand columns the mobility of the BTEX was much higher than that of naphthalene. Based upon results determined for the reservoir rock, caprock, and coal samples studied here, the risk to aquifers from contamination by organic compounds appears to be relatively low; however, further work is necessary to fully evaluate risks from depleted oil reservoirs.

  5. Influence of organic contamination on laser induced damage of multilayer dielectric mirrors by subpicosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Favrat, O.; Sozet, M.; Tovena-Pécault, I.; Lamaignère, L.; Néauport, J.

    2014-10-01

    Laser induced damage of optical components is often a limiting factor for the development of high power lasers. Indeed, for many years, organic contamination is identified as a factor decreasing the laser induced damage threshold of optical surfaces, limiting the use of high fluencies. Also, for the development of its laser facilities, Laser MégaJoule and PETawatt Aquitaine Laser, the Commissariat à l'Energie Atomique et aux Energies Alternatives investigates the influence of organic contamination on the performances of the optical components. Actually, although great care is provided on the cleanliness of the optics, organic volatile compounds outgassed from surrounding materials can be adsorbed by the sensitive surfaces during its timelife. Thus, for this study, performances of clean and contaminated multilayer dielectric mirrors are compared. Contamination is intentionally realized either by controlled protocols or by exposing optics inside the laser facilities. Qualification and quantification of the organic contamination is realized by automated thermal desorption and gas chromatography coupled with mass spectrometry. Laser induced damage threshold of clean and contaminated mirrors are then investigated by 1053 nm laser at 670 fs.

  6. Bonded-phase extraction column isolation of organic compounds in groundwater at a hazardous waste site

    USGS Publications Warehouse

    Rostad, C.E.; Pereira, W.E.; Ratcliff, S.M.

    1984-01-01

    A procedure for isolation of hazardous organic compounds from water for gas chromatography/mass spectrometry analysis Is presented and applied to creosote- and pentachlorophenol-contaminated groundwater resulting from wood-treatment processes. This simple procedure involved passing a 50-100-mL sample through a bonded-phase extraction column, eluting the trapped organic compounds from the column with 2-4 mL of solvent, and evaporating the sample to 100 ??L with a stream of dry nitrogen, after which the sample was ready for gas chromatography/mass spectrometry analysis. Representative compounds indicative of creosote contamination were used for recovery and precision studies from the cyclohexyl-bonded phase. Recovery of these compounds from n-octyl-, n-octadecyl-, cyclohexyl-, and phenyl-bonded phases was compared. The bonded phase that exhibited the best recovery and least bias toward acidic or basic cmpounds was the n-octadecyl phase. Detailed compound Identification Is given for compounds Isolated from creosote- and pentachlorophenol-contaminated groundwater using the cyclohexyl-bonded phase.

  7. Chlorinated organic compounds produced by Fusarium graminearum.

    PubMed

    Ntushelo, Khayalethu

    2016-06-01

    Fusarium graminearum, a pathogen of wheat and maize, not only reduces grain yield and degrades quality but also produces mycotoxins in the infected grain. Focus has been on mycotoxins because of the human and animal health hazards associated with them. In addition to work done on mycotoxins, chemical profiling of F. graminearum to identify other compounds produced by this fungus remains critical. With chemical profiling of F. graminearum the entire chemistry of this fungus can be understood. The focus of this work was to identify chlorinated compounds produced by F. graminearum. Various chlorinated compounds were detected and their role in F. graminearum is yet to be understood. PMID:27165533

  8. Field-usable portable analyzer for chlorinated organic compounds

    SciTech Connect

    Buttner, W.J.; Penrose, W.R.; Stetter, J.R.

    1995-10-01

    Transducer Research, Inc. (TRI) has been working with the DOE Morgantown Energy Technology Center to develop a new chemical monitor based on a unique sensor which responds selectively to vapors of chlorinated solvents. We are also developing field applications for the monitor in actual DOE cleanup operations. During the initial phase, prototype instruments were built and field tested. Because of the high degree of selectivity that is obtained, no response was observed with common hydrocarbon organic compounds such as BTX (benzene, toluene, xylene) or POLs (petroleum, oil, lubricants), and in fact, no non-halogen-containing chemical has been identified which induces a measurable response. By the end of the Phase I effort, a finished instrument system was developed and test marketed. This instrument, called the RCL MONITOR, was designed to analyze individual samples or monitor an area with automated repetitive analyses. Vapor levels between 0 and 500 ppm can be determined in 90 s with a lower detection limit of 0.2 ppm using the handportable instrument. In addition to the development of the RCL MONITOR, advanced sampler systems are being developed to: (1) extend the dynamic range of the instrument through autodilution of the vapor and (2) allow chemical analyses to be performed on aqueous samples. When interfaced to the samplers, the RCL MONITOR is capable of measuring chlorinated solvent contamination in the vapor phase up to 5000 ppm and in water and other condensed media from 10 to over 10,000 ppb(wt)--without hydrocarbon and other organic interferences.

  9. Partitioning of Organic Compounds between Crude Oil and Water under Supercritical CO2 Condition

    NASA Astrophysics Data System (ADS)

    Rod, K. A.; Wang, G.

    2015-12-01

    In recent years depleted oil reservoirs have received special interest as carbon storage reservoirs because of their potential to offset costs through collaboration with enhanced oil recovery projects. Leakage of the injected CO2 may occur either as supercritical CO2 or CO2-saturated (brine) water. The injected supercritical CO2 is a nonpolar solvent that can potentially mobilize the residual oil compounds into supercritical CO2 and brine water through phase partitioning. For detailed risk assessment of CO2 leakage, various models can be used to quantify the mass of organic contaminants transported from carbon storage sites to potential receptors such as potable aquifers, in which the partition coefficients of crude oil hydrocarbons between CO2/crude oil/brines for subsurface CO2 sequestration scenarios are the key parameters controlling the fate and transport of organic contaminants along the CO2 leakage pathways. However, the solubilities of many of the oil organic compounds in brines under supercritical CO2 condition have not been yet fully determined. In this study, we developed a novel method to accurately measure the partitioning of crude oil organic compounds (BTEX, PAHs, etc.) between supercritical CO2 and brines and to study the effects of temperature, pressure, salinity, and compound's cosolvency (solubility enhancement) on the partitioning behavior of oil organic compounds along the various CO2 leakage paths in the subsurface.

  10. A national-scale assessment of micro-organic contaminants in groundwater of England and Wales.

    PubMed

    Manamsa, Katya; Crane, Emily; Stuart, Marianne; Talbot, John; Lapworth, Dan; Hart, Alwyn

    2016-10-15

    A large variety of micro-organic (MO) compounds is used in huge quantities for a range of purposes (e.g. manufacturing, food production, healthcare) and is now being frequently detected in the aquatic environment. Interest in the occurrence of MO contaminants in the terrestrial and aquatic environments continues to grow, as well as in their environmental fate and potential toxicity. However, the contamination of groundwater resources by MOs has a limited evidence base compared to other freshwater resources. Of particular concern are newly 'emerging contaminants' such as pharmaceuticals and lifestyle compounds, particularly those with potential endocrine disrupting properties. While groundwater often has a high degree of protection from pollution due to physical, chemical and biological attenuation processes in the subsurface compared to surface aquatic environments, trace concentrations of a large range of compounds are still detected in groundwater and in some cases may persist for decades due to the long residence times of groundwater systems. This study provides the first national-scale assessment of micro-organic compounds in groundwater in England and Wales. A large set of monitoring data was analysed to determine the relative occurrence and detected concentrations of different groups of compounds and to determine relationships with land-use, aquifer type and groundwater vulnerability. MOs detected including emerging compounds such as caffeine, DEET, bisphenol A, anti-microbial agents and pharmaceuticals as well as a range of legacy contaminants including chlorinated solvents and THMs, petroleum hydrocarbons, pesticides and other industrial compounds. There are clear differences in MOs between land-use types, particularly for urban-industrial and natural land-use. Temporal trends of MO occurrence are assessed but establishing long-term trends is not yet possible. PMID:27073165

  11. METHODS FOR THE DETERMINATION OF ORGANIC COMPOUNDS IN DRINKING WATER

    EPA Science Inventory

    Thirteen analytical methods for the identification and measurement of organic compounds in drinking water are described in detail. ix of the methods are for volatile organic compounds (VOC's) and certain disinfection byproducts and these methods were cited in the Federal Register...

  12. 40 CFR 60.742 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds....

  13. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or...

  14. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected...

  15. 40 CFR 60.452 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  16. 40 CFR 60.602 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  17. 40 CFR 60.462 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date...

  18. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected...

  19. 40 CFR 60.582 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  20. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or...

  1. 40 CFR 60.602 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  2. 40 CFR 60.582 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  3. 40 CFR 60.462 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date...

  4. 40 CFR 60.582 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  5. 40 CFR 60.722 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to...

  6. 40 CFR 60.722 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to...

  7. 40 CFR 60.722 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to...

  8. 40 CFR 60.602 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  9. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or...

  10. 40 CFR 60.742 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds....

  11. 40 CFR 60.492 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after...

  12. 40 CFR 60.452 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  13. 40 CFR 60.492 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after...

  14. 40 CFR 60.462 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date...

  15. 40 CFR 60.462 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date...

  16. 40 CFR 60.722 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to...

  17. 40 CFR 60.492 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after...

  18. 40 CFR 60.742 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds....

  19. 40 CFR 60.582 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  20. 40 CFR 60.602 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  1. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected...

  2. 40 CFR 60.452 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  3. 40 CFR 60.452 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  4. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected...

  5. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or...

  6. 40 CFR 60.492 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after...

  7. 40 CFR 60.462 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date...

  8. 40 CFR 60.742 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds....

  9. 40 CFR 60.602 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  10. 40 CFR 60.742 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds....

  11. 40 CFR 60.452 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  12. 40 CFR 60.582 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  13. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected...

  14. 40 CFR 60.722 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to...

  15. 40 CFR 60.492 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after...

  16. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or...

  17. A Systematic Presentation of Organic Phosphorus and Sulfur Compounds.

    ERIC Educational Resources Information Center

    Hendrickson, James B.

    1985-01-01

    Because the names, interrelations, and oxidation levels of the organic compounds of phosphorus and sulfur tend to confuse students, a simple way to organize these compounds has been developed. The system consists of grouping them by oxidation state and extent of carbon substitution. (JN)

  18. Volatile organic compound sources for Southern Finland

    NASA Astrophysics Data System (ADS)

    Patokoski, Johanna; Ruuskanen, Taina M.; Kajos, Maija K.; Taipale, Risto; Rantala, Pekka; Aalto, Juho; Ryyppö, Timo; Hakola, Hannele; Rinne, Janne

    2014-05-01

    Volatile organic compounds (VOCs) have several sources, both biogenic and anthropogenic. Emissions of biogenic VOCs in a global scale are estimated to be an order of magnitude higher than anthropogenic ones. However, in densely populated areas and during winter time the anthropogenic VOC emissions dominate over the biogenic ones. The aim of this study was to clarify potential local sources and source areas of VOCs in different seasons. Diurnal behaviour in winter and spring were also compared at two different sites in Finland: SMEAR II and III (Station for Measuring Ecosystem - Atmosphere Relations). SMEAR II is a rural site located in Hyytiälä in Southern Finland 220 km North-West from Helsinki whereas SMEAR III is background urban site located 5 km from the downtown of Helsinki. The volume mixing ratios of VOCs were measured with a proton-transfer-reaction mass spectrometer (PTR-MS, Ionicon Analytik GmbH, Austria) during years 2006-2011. Other trace gases such as CO, NOXand SO2 were also measured in both sites and used for source analysis. Source areas for long term VOC measurements were investigated with trajectory analysis and sources for local and regional concentrations were determined by Unmix multivariate receptor model. Forest fires affect air quality and the biggest smoke plumes can be seen in satellite images and even hinder visibility in the plume areas. They provide temporally and spatially well-defined sources that can be used to verify source area estimates. During the measurement periods two different forest fire episodes with several hotspots, happened in Russia. Forest fires which showed up in these measurements were in 2006 near the border of Finland in Vyborg area and 2010 in Moscow area. Forest fire episodes were clearly observed in trajectory analysis for benzene, toluene and methanol and also CO and NOX. In addition to event sources continuous source areas were determined. Anthropogenic local sources seemed to be dominant during winter in

  19. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    SciTech Connect

    John F. Schabron; Joseph F. Rovani, Jr.; Theresa M. Bomstad

    2003-07-01

    Western Research Institute (WRI) is continuing work toward the development of new screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of halogens. In prior work, the devices were tested for response to carbon tetrachloride, heptane, toluene, and water vapors. In the current work, sensor response was evaluated with sixteen halogenated VOCs relative to carbon tetrachloride. The results show that the response of the various chlorinated VOCs is within an order of magnitude of the response to carbon tetrachloride for each of the sensors. Thus, for field screening a single response factor can be used. Both types of leak detectors are being further modified to provide an on-board LCD signal readout, which is related to VOC concentration. The units will be fully portable and will operate with 115-V line or battery power. Signal background, noise level, and response data on the Bacharach heated diode detector and the TIF corona discharge detector show that when the response curves are plotted against the log of concentration, the plot is linear to the upper limit for the particular unit, with some curvature at lower levels. When response is plotted directly against concentration, the response is linear at the low end and is curved at the high end. The dynamic ranges for carbon tetrachloride of the two devices from the lower detection limit (S/N=2) to signal saturation are 4-850 vapor parts per million (vppm) for the corona discharge unit and 0.01-70 vppm for the heated diode unit. Additional circuit modifications are being made to lower the detection limit and increase the dynamic response range of the corona discharge unit. The results indicate that both devices show potential utility for future analytical method development work toward

  20. Semivolatile organic compounds in urban and over-water atmospheres

    NASA Astrophysics Data System (ADS)

    Offenberg, John H., Jr.

    Concentrations of semi-volatile organic contaminants were measured both in air and precipitation in and downwind of Chicago, IL and Baltimore, MD as part of the A_tmospheric E_xchange O_ver L_akes and O_ceans_ (AEOLOS) project. Precipitation events were collected simultaneously in the city and over the water to measure increased wet depositional fluxes of polychlorinated biphenyls to Lake Michigan during May and July 1994 and January 1995. Elevated atmospheric concentrations in Chicago, IL increase atmospheric loadings of PCBs to Lake Michigan by at least a factor of two over regional background levels. Precipitation loadings, bidirectional gas exchange and dry deposition combine to increase measured surface water concentrations of PCBs in Lake Michigan during periods of southwesterly winds which transport the urban air mass across the lake. PCB concentrations in surface waters were higher during winter than in spring or summer, but PAH concentrations did not vary significantly with season. However, when placed in historical context, Lake Michigan PCB concentrations have declined ten fold over fourteen years from 1980 to 1994. Size segregated airborne particulate samples collected around and over southern Lake Michigan show geometric mean diameters of polycyclic aromatic hydrocarbons that are correlated with the compound's sub-cooled liquid vapor pressures. More volatile compounds were found on larger particles. The slope of the relationship between GMD and vapor pressure depends on the transit time from the shoreline, suggesting that higher wind speeds induce faster dry deposition of large particles. Measured gas/particle partitioning of these compounds is modeled according to a three dimensional multiple linear regression that includes the influences of vapor pressure, particle size and measured aerosol fractional organic carbon content. Each of these terms is significant in the full model but, addition of the latter two terms appears to be practically

  1. Multimedia transport of organic contaminants and exposure modeling

    SciTech Connect

    Layton, D.W.; McKone, T.E.

    1988-01-01

    Human exposures to organic contaminants in the environment are a complex function of human factors, physicochemical properties of the contaminants, and characteristics of the environmental media in which the contaminants reside. One subject of interest in the screening of organic chemicals for the purpose of identifying exposure pathways of potential concern is the relationship between exposures and contaminant properties. To study such relationships, a multimedia environmental model termed GEOTOX is used to predict the equilibrium partitioning and transport of ''reference'' organic chemicals between compartments representing different media (i.e., soil layers, ground water, air, biota, etc.) of a contaminated landscape. Reference chemicals, which are added to the surface soil of a landscape, are defined by properties consisting of the Henry's law constant, soil water-soil organic carbon partition coefficient, and bioconcentration factors. The steady-state concentrations of the chemical in the GEOTOX compartments are then used to estimate lifetime exposures (in mg/kg-d) to the compartments for individuals living in the contaminated landscape. Exposure pathways addressed include ingestion, inhalation, and dermal absorption. Local sensitivity analyses are performed to determine which chemical and landscape properties have the greatest effect on the exposure estimates. 9 refs., 4 figs., 3 tabs.

  2. Deposition and accumulation of airborne organic contaminants in Yosemite National Park, Calfornia

    USGS Publications Warehouse

    Mast, Alisa M.; Alvarez, David A.; Zaugg, Steven D.

    2012-01-01

    Deposition and accumulation of airborne organic contaminants in Yosemite National Park were examined by sampling atmospheric deposition, lichen, zooplankton, and lake sediment at different elevations. Passive samplers were deployed in high-elevation lakes to estimate surface-water concentrations. Detected compounds included current-use pesticides chlorpyrifos, dacthal, and endosulfans and legacy compounds chlordane, dichlorodiphenyltrichloroethane-related compounds, dieldrin, hexachlorobenzene, and polychlorinated biphenyls. Concentrations in snow were similar among sites and showed little variation with elevation. Endosulfan concentrations in summer rain appeared to coincide with application rates in the San Joaquin Valley. More than 70% of annual pesticide inputs from atmospheric deposition occurred during the winter, largely because most precipitation falls as snow. Endosulfan and chlordane concentrations in lichen increased with elevation, indicating that mountain cold-trapping might be an important control on accumulation of these compounds. By contrast, chlorpyrifos concentrations were inversely correlated with elevation, indicating that distance from source areas was the dominant control. Sediment concentrations were inversely correlated with elevation, possibly because of the organic carbon content of sediments but also perhaps the greater mobility of organic contaminants at lower elevations. Surface-water concentrations inferred from passive samplers were at sub-parts-per-trillion concentrations, indicating minimal exposure to aquatic organisms from the water column. Concentrations in sediment generally were low, except for dichlorodiphenyldichloroethane in Tenaya Lake, which exceeded sediment guidelines for protection of benthic organisms.

  3. Deposition and accumulation of airborne organic contaminants in Yosemite National Park, California.

    PubMed

    Mast, M Alisa; Alvarez, David A; Zaugg, Steven D

    2012-03-01

    Deposition and accumulation of airborne organic contaminants in Yosemite National Park were examined by sampling atmospheric deposition, lichen, zooplankton, and lake sediment at different elevations. Passive samplers were deployed in high-elevation lakes to estimate surface-water concentrations. Detected compounds included current-use pesticides chlorpyrifos, dacthal, and endosulfans and legacy compounds chlordane, dichlorodiphenyltrichloroethane-related compounds, dieldrin, hexachlorobenzene, and polychlorinated biphenyls. Concentrations in snow were similar among sites and showed little variation with elevation. Endosulfan concentrations in summer rain appeared to coincide with application rates in the San Joaquin Valley. More than 70% of annual pesticide inputs from atmospheric deposition occurred during the winter, largely because most precipitation falls as snow. Endosulfan and chlordane concentrations in lichen increased with elevation, indicating that mountain cold-trapping might be an important control on accumulation of these compounds. By contrast, chlorpyrifos concentrations were inversely correlated with elevation, indicating that distance from source areas was the dominant control. Sediment concentrations were inversely correlated with elevation, possibly because of the organic carbon content of sediments but also perhaps the greater mobility of organic contaminants at lower elevations. Surface-water concentrations inferred from passive samplers were at sub-parts-per-trillion concentrations, indicating minimal exposure to aquatic organisms from the water column. Concentrations in sediment generally were low, except for dichlorodiphenyldichloroethane in Tenaya Lake, which exceeded sediment guidelines for protection of benthic organisms. PMID:22189687

  4. Chemical oxidation of volatile and semi-volatile organic compounds in soil

    SciTech Connect

    Gates, D.D.; Siegrist, R.L.; Cline, S.R.

    1995-06-01

    Subsurface contamination with fuel hydrocarbons or chlorinated hydrocarbons is prevalent throughout the Department of Energy (DOE) complex and in many sites managed by the Environmental Protection Agency (EPA) Superfund program. The most commonly reported chlorinated hydrocarbons (occurring > 50% of DOE contaminated sites) were trichloroethylene (TCE), 1, 1, 1,-trichloroethane (TCA), and tetrachloroethylene (PCE) with concentrations in the range of 0.2 {mu}g/kg to 12,000 mg/kg. The fuel hydrocarbons most frequently reported as being present at DOE sites include aromatic compounds and polyaromatic compounds such as phenanthrene, pyrene, and naphthalene. The primary sources of these semi-volatile organic compounds (SVOCs) are coal waste from coal fired electric power plants used at many of these facilities in the past and gasoline spills and leaks. Dense non-aqueous phase liquids (DNAPLs) can migrate within the subsurface for long periods of time along a variety of pathways including fractures, macropores, and micropores. Diffusion of contaminants in the non-aqueous, aqueous, and vapor phase can occur from the fractures and macropores into the matrix of fine-textured media. As a result of these contamination processes, removal of contaminants from the subsurface and the delivery of treatment agents into and throughout contaminated regions are often hindered, making rapid and extensive remediation difficult.

  5. USE OF QSPRS IN IMPROVING CARBON ADSORPTION MODELING OF EPA CONTAMINANT CANDIDATE COMPOUNDS

    EPA Science Inventory

    Activated carbon adsorption of EPA contaminant candidate list (CCL) compounds is under investigation as a treatment technology for contaminated drinking water. Historically, EPA, in support of drinking water regulations, has used a number of techniques to calculate field-scale c...

  6. Effects of polar and nonpolar groups on the solubility of organic compounds in soil organic matter

    USGS Publications Warehouse

    Chiou, C.T.; Kile, D.E.

    1994-01-01

    Vapor sorption capacities on a high-organic-content peat, a model for soil organic matter (SOM), were determined at room temperature for the following liquids: n-hexane, 1,4-dioxane, nitroethane, acetone, acetonitrile, 1-propanol, ethanol, and methanol. The linear organic vapor sorption is in keeping with the dominance of vapor partition in peat SOM. These data and similar results of carbon tetrachloride (CT), trichloroethylene (TCE), benzene, ethylene glycol monoethyl ether (EGME), and water on the same peat from earlier studies are used to evaluate the effect of polarity on the vapor partition in SOM. The extrapolated liquid solubility from the vapor isotherm increases sharply from 3-6 wt % for low-polarity liquids (hexane, CT, and benzene) to 62 wt % for polar methanol and correlates positively with the liquid's component solubility parameters for polar interaction (??P) and hydrogen bonding (??h). The same polarity effect may be expected to influence the relative solubilities of a variety of contaminants in SOM and, therefore, the relative deviations between the SOM-water partition coefficients (Kom) and corresponding octanol-water partition coefficients (Kow) for different classes of compounds. The large solubility disparity in SOM between polar and nonpolar solutes suggests that the accurate prediction of Kom from Kow or Sw (solute water solubility) would be limited to compounds of similar polarity.

  7. Method for detecting organic contaminants in water supplies

    DOEpatents

    Dooley, Kirk J.; Barrie, Scott L.; Buttner, William J.

    1999-01-01

    A system for detecting organic contaminants in water supplies. A sampling unit is employed which includes a housing having at least one opening therein and a tubular member positioned within the housing having a central passageway surrounded by a side wall. The side wall is made of a composition designed to absorb the contaminants. In use, the sampling unit is immersed in a water supply. The water supply contacts the tubular member through the opening in the housing, with any contaminants being absorbed into the side wall of the tubular member. A carrier gas is then passed through the central passageway of the tubular member. The contaminants will diffuse out of the side wall and into the central passageway where they will subsequently combine with the carrier gas, thereby yielding a gaseous product. The gaseous product is then analyzed to determine the amount and type of contaminants therein.

  8. Method for detecting organic contaminants in water supplies

    DOEpatents

    Dooley, K.J.; Barrie, S.L.; Buttner, W.J.

    1999-08-24

    A system is described for detecting organic contaminants in water supplies. A sampling unit is employed which includes a housing having at least one opening therein and a tubular member positioned within the housing having a central passageway surrounded by a side wall. The side wall is made of a composition designed to absorb the contaminants. In use, the sampling unit is immersed in a water supply. The water supply contacts the tubular member through the opening in the housing, with any contaminants being absorbed into the side wall of the tubular member. A carrier gas is then passed through the central passageway of the tubular member. The contaminants will diffuse out of the side wall and into the central passageway where they will subsequently combine with the carrier gas, thereby yielding a gaseous product. The gaseous product is then analyzed to determine the amount and type of contaminants therein. 5 figs.

  9. Uptake, bioavailability and elimination of hydrophobic compounds in earthworms (Eisenia andrei) in field-contaminated soil

    SciTech Connect

    Belfroid, A.; Berg, M. van den; Seinen, W.; Hermens, J.; Gestel, K. van

    1995-04-01

    Uptake, accumulation, and elimination of hydrophobic organic chemicals in earthworms (Eisenia andrei) exposed to field-contaminated Volgermeerpolder soil was studied. Earthworms were able to take up chlorobenzenes and polychlorobiphenyls (PCBs), but body burdens did not exceed concentrations measured in the soil. For the chlorobenzenes, steady-state concentrations in the worms and biota-to-soil accumulation factor (BSAF) values were much smaller than expected based on earlier experiments, suggesting a decreased bioavailability in the Volgermeerpolder soil. Comparison of the PCB accumulation pattern in worms to the pattern in soil showed that biotransformation of the studied PCBs is of minor importance in this species. Elimination of all chemicals studied was monophasic, with the exception of hexachlorobenzene, which showed a biphasic elimination. The elimination half-life for the initial fast phase of this compound is comparable to the elimination measured in previous studies. Elimination rate constants decreased with increasing log K{sub ow}.

  10. Perfluorinated Compounds, Polychlorinated Biphenyls, and Organochlorine Pesticide Contamination in Composite Food Samples from Dallas, Texas, USA

    PubMed Central

    Schecter, Arnold; Colacino, Justin; Haffner, Darrah; Patel, Keyur; Opel, Matthias; Päpke, Olaf; Birnbaum, Linda

    2010-01-01

    Objectives The objective of this article is to extend our previous studies of persistent organic pollutant (POP) contamination of U.S. food by measuring perfluorinated compounds (PFCs), organochlorine pesticides, and polychlorinated biphenyls (PCBs) in composite food samples. This study is part of a larger study reported in two articles, the other of which reports levels of polybrominated diphenyl ethers and hexabromocyclododecane brominated flame retardants in these composite foods [Schecter et al. 2010. Polybrominated diphenyl ethers (PBDEs) and hexabromocyclodecane (HBCD) in composite U.S. food samples, Environ Health Perspect 118:357–362]. Methods In this study we measured concentrations of 32 organochlorine pesticides, 7 PCBs, and 11 PFCs in composite samples of 31 different types of food (310 individual food samples) purchased from supermarkets in Dallas, Texas (USA), in 2009. Dietary intake of these chemicals was calculated for an average American. Results Contamination varied greatly among chemical and food types. The highest level of pesticide contamination was from the dichlorodiphenyltrichloroethane (DDT) metabolite p,p′- dichlorodiphenyldichloroethylene, which ranged from 0.028 ng/g wet weight (ww) in whole milk yogurt to 2.3 ng/g ww in catfish fillets. We found PCB congeners (28, 52, 101, 118, 138, 153, and 180) primarily in fish, with highest levels in salmon (PCB-153, 1.2 ng/g ww; PCB-138, 0.93 ng/g ww). For PFCs, we detected perfluorooctanoic acid (PFOA) in 17 of 31 samples, ranging from 0.07 ng/g in potatoes to 1.80 ng/g in olive oil. In terms of dietary intake, DDT and DDT metabolites, endosulfans, aldrin, PCBs, and PFOA were consumed at the highest levels. Conclusion Despite product bans, we found POPs in U.S. food, and mixtures of these chemicals are consumed by the American public at varying levels. This suggests the need to expand testing of food for chemical contaminants. PMID:20146964

  11. Bioavailability of sediment-bound contaminants to marine organisms

    SciTech Connect

    Brown, B. |

    1993-09-01

    The bioavailability of sediment-bound contaminants to marine organisms indicates that there exists a potential for transfer of these contaminants through marine food webs to commercial fisheries products consumed by humans. However, there has been relatively little effort to combine and synthesize data on chemical/biological interactions between benthic animals and seagrasses and the sediments in which they reside on the one hand, and on the chemistry of bioaccumulation on the other. This report provides a conceptual basis for an approach to bioavailability and biomagnification of sediment-bound contaminants that reviews biological and chemical approaches.

  12. Quantifying commuter exposures to volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Kayne, Ashleigh

    Motor-vehicles can be a predominant source of air pollution in cities. Traffic-related air pollution is often unavoidable for people who live in populous areas. Commuters may have high exposures to traffic-related air pollution as they are close to vehicle tailpipes. Volatile organic compounds (VOCs) are one class of air pollutants of concern because exposure to VOCs carries risk for adverse health effects. Specific VOCs of interest for this work include benzene, toluene, ethylbenzene, and xylenes (BTEX), which are often found in gasoline and combustion products. Although methods exist to measure time-integrated personal exposures to BTEX, there are few practical methods to measure a commuter's time-resolved BTEX exposure which could identify peak exposures that could be concealed with a time-integrated measurement. This study evaluated the ability of a photoionization detector (PID) to measure commuters' exposure to BTEX using Tenax TA samples as a reference and quantified the difference in BTEX exposure between cyclists and drivers with windows open and closed. To determine the suitability of two measurement methods (PID and Tenax TA) for use in this study, the precision, linearity, and limits of detection (LODs) for both the PID and Tenax TA measurement methods were determined in the laboratory with standard BTEX calibration gases. Volunteers commuted from their homes to their work places by cycling or driving while wearing a personal exposure backpack containing a collocated PID and Tenax TA sampler. Volunteers completed a survey and indicated if the windows in their vehicle were open or closed. Comparing pairs of exposure data from the Tenax TA and PID sampling methods determined the suitability of the PID to measure the BTEX exposures of commuters. The difference between BTEX exposures of cyclists and drivers with windows open and closed in Fort Collins was determined. Both the PID and Tenax TA measurement methods were precise and linear when evaluated in the

  13. Quantifying commuter exposures to volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Kayne, Ashleigh

    Motor-vehicles can be a predominant source of air pollution in cities. Traffic-related air pollution is often unavoidable for people who live in populous areas. Commuters may have high exposures to traffic-related air pollution as they are close to vehicle tailpipes. Volatile organic compounds (VOCs) are one class of air pollutants of concern because exposure to VOCs carries risk for adverse health effects. Specific VOCs of interest for this work include benzene, toluene, ethylbenzene, and xylenes (BTEX), which are often found in gasoline and combustion products. Although methods exist to measure time-integrated personal exposures to BTEX, there are few practical methods to measure a commuter's time-resolved BTEX exposure which could identify peak exposures that could be concealed with a time-integrated measurement. This study evaluated the ability of a photoionization detector (PID) to measure commuters' exposure to BTEX using Tenax TA samples as a reference and quantified the difference in BTEX exposure between cyclists and drivers with windows open and closed. To determine the suitability of two measurement methods (PID and Tenax TA) for use in this study, the precision, linearity, and limits of detection (LODs) for both the PID and Tenax TA measurement methods were determined in the laboratory with standard BTEX calibration gases. Volunteers commuted from their homes to their work places by cycling or driving while wearing a personal exposure backpack containing a collocated PID and Tenax TA sampler. Volunteers completed a survey and indicated if the windows in their vehicle were open or closed. Comparing pairs of exposure data from the Tenax TA and PID sampling methods determined the suitability of the PID to measure the BTEX exposures of commuters. The difference between BTEX exposures of cyclists and drivers with windows open and closed in Fort Collins was determined. Both the PID and Tenax TA measurement methods were precise and linear when evaluated in the

  14. SUPERFUND TREATABILITY CLEARINGHOUSE: COMPOSITING EXPLOSIVES/ORGANICS CONTAMINATED SOILS

    EPA Science Inventory

    Laboratory scale and pilot scale studies were conducted to evaluate composting to treat sediments and soils containing explosive and organic compounds. Sediment and soil from lagoons at Army ammunition plants, located in Louisiana, Wisconsin and Pennsylvania contained high...

  15. REMOVAL OF VOLATILE ORGANIC CONTAMINANTS FROM GROUND WATER BY ADSORPTION

    EPA Science Inventory

    Laboratory and field studies are underway to determine the effectiveness of activated carbon for removing volatile organic compounds from ground water. For fifteen C1 through C6 compounds being considered for possible regulatory action, the adsorption isotherm capacity ranges fro...

  16. BIOGEOCHEMISTRY OF CHLORINATED ORGANIC CONTAMINANTS IN AQUATIC ECOSYSTEMS

    EPA Science Inventory

    Over the last several years we have conducted both laboratory and field studies to develop a better understanding of the movement of chlorinated organic compounds through aquatic ecosystems, with special emphasis on the differential movement of these compounds due to physical/che...

  17. Detecting and Quantifying Organic Contaminants in Sediments with NMR

    NASA Astrophysics Data System (ADS)

    Fay, E. L.; Knight, R. J.

    2015-12-01

    Nuclear magnetic resonance (NMR) methods have the potential to detect and monitor free-phase organic contaminants in sediments, both in the laboratory and in the field. NMR directly detects signal from hydrogen-bearing fluids; the signal amplitude is proportional to the total amount of hydrogen present, while the signal decay rate provides information about fluid properties and interactions with the surrounding sediments. Contrasting relaxation times (T2) or diffusion coefficients (D) allow the separation of water signal from contaminant signal. In this work, we conduct a laboratory study to assess the use of NMR measurements to detect and quantify diesel, gasoline, crude oil, and tri-chloroethylene in sediments. We compare the T2 distributions for sediments containing only water, only contaminant, and both water and contaminant, confirming that the identification and quantification of contaminants using T2 data alone is limited by overlapping water and contaminant T2 distributions in some sediments. We leverage the contrast between the diffusion coefficient of water and that of diesel and crude oil to separate contaminant signal from water signal in D-T2 maps. D-T2 distributions are measured both using a pulsed gradient method and a static gradient method similar to methods used with logging tools, allowing us to compare the ability of each method to quantify diesel and crude oil when water is also present. There is the potential to apply these methods to characterize and monitor contaminated sites using commercially available NMR logging tools.

  18. Organic contaminants in sediments from the Trenton Channel of the Detroit River, Michigan

    SciTech Connect

    Furlong, E.T.; Carter, D.S.; Hites, R.A. )

    1988-01-01

    Anthropogenic organic contaminants in sediments from the Trenton Channel of the Detroit River, a highly industrialized waterway connecting Lake St. Clair with Lake Erie, were identified and quantified. The four major classes of organic contaminants identified were polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), polychlorinated naphthalenes (PCN), and polychlorinated terphenyls (PCT). Distributions of total PAH, the homologues of PCB and PCN, and total PCT were measured in 33 sediment samples. Concentration range maps revealed one region of relatively low contaminant concentration (southwest shore of Grosse Ile) and one area of high contaminant concentration in the vicinity of Monguagon Creek, located on the northwestern side of the Trenton Channel. Closer examination of total compound class and homologue concentration distributions suggests a hierarchical ordering of contaminant distribution similarity. Total PCT and PCN concentration distributions are most similar to one another, suggesting a common source in the vicinity of the Monguagon Creek mouth. PAH and PCB distributions are less similar to each other and to total PCT and PCN distributions, suggesting different sources of these compound classes.

  19. Organic contaminants in sediments from the Trenton channel of the Detroit River, Michigan

    SciTech Connect

    Furlong, E.T.; Carter, D.S.; Hites, R.A.

    1988-01-01

    Anthropogenic organic contaminants in sediments from the Trenton Channel of the Detroit River, a highly industrialized waterway connecting Lake St. Clair with Lake Erie, were identified and quantified. The four major classes of organic contaminants identified were polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), polychlorinated naphthalenes (PCN), and polychlorinated terphenyls (PCT). Distributions of total PAH, the homologues of PCB and PCN, and total PCT were measured in 33 sediment samples. Concentration range maps revealed one region of relatively low contaminant concentration (southwest shore of Grosse Ile) and one area of high contaminant concentration in the vicinity of Monguagon Creek, located on the northwestern side of the Trenton Channel. Closer examination of total compound class and homologue concentration distributions suggests a hierarchical ordering of contaminant distribution similarity. Total PCT and PCN concentration distributions are most similar to one another, suggesting a common source in the vicinity of the Monguagon Creek mouth. PAH and PCB distributions are less similar to each other and to total PCT and PCN distributions, suggesting different sources of these compound classes.

  20. Extended structures and physicochemical properties of uranyl-organic compounds.

    PubMed

    Wang, Kai-Xue; Chen, Jie-Sheng

    2011-07-19

    The ability of uranium to undergo nuclear fission has been exploited primarily to manufacture nuclear weapons and to generate nuclear power. Outside of its nuclear physics, uranium also exhibits rich chemistry, and it forms various compounds with other elements. Among the uranium-bearing compounds, those with a uranium oxidation state of +6 are most common and a particular structural unit, uranyl UO(2)(2+) is usually involved in these hexavalent uranium compounds. Apart from forming solids with inorganic ions, the uranyl unit also bonds to organic molecules to generate uranyl-organic coordination materials. If appropriate reaction conditions are employed, uranyl-organic extended structures (1-D chains, 2-D layers, and 3-D frameworks) can be obtained. Research on uranyl-organic compounds with extended structures allows for the exploration of their rich structural chemistry, and such studies also point to potential applications such as in materials that could facilitate nuclear waste disposal. In this Account, we describe the structural features of uranyl-organic compounds and efforts to synthesize uranyl-organic compounds with desired structures. We address strategies to construct 3-D uranyl-organic frameworks through rational selection of organic ligands and the incorporation of heteroatoms. The UO(2)(2+) species with inactive U═O double bonds usually form bipyramidal polyhedral structures with ligands coordinated at the equatorial positions, and these polyhedra act as primary building units (PBUs) for the construction of uranyl-organic compounds. The geometry of the uranyl ions and the steric arrangements and functionalities of organic ligands can be exploited in the the design of uranyl--organic extended structures, We also focus on the investigation of the promising physicochemical properties of uranyl-organic compounds. Uranyl-organic materials with an extended structure may exhibit attractive properties, such as photoluminescence, photocatalysis

  1. Organic Compounds in Circumstellar and Interstellar Environments

    NASA Astrophysics Data System (ADS)

    Kwok, Sun

    2015-06-01

    Recent research has discovered that complex organic matter is prevalent throughout the Universe. In the Solar System, it is found in meteorites, comets, interplanetary dust particles, and planetary satellites. Spectroscopic signatures of organics with aromatic/aliphatic structures are also found in stellar ejecta, diffuse interstellar medium, and external galaxies. From space infrared spectroscopic observations, we have found that complex organics can be synthesized in the late stages of stellar evolution. Shortly after the nuclear synthesis of the element carbon, organic gas-phase molecules are formed in the stellar winds, which later condense into solid organic particles. This organic synthesis occurs over very short time scales of about a thousand years. In order to determine the chemical structures of these stellar organics, comparisons are made with particles produced in the laboratory. Using the technique of chemical vapor deposition, artificial organic particles have been created by injecting energy into gas-phase hydrocarbon molecules. These comparisons led us to believe that the stellar organics are best described as amorphous carbonaceous nanoparticles with mixed aromatic and aliphatic components. The chemical structures of the stellar organics show strong similarity to the insoluble organic matter found in meteorites. Isotopic analysis of meteorites and interplanetary dust collected in the upper atmospheres have revealed the presence of pre-solar grains similar to those formed in old stars. This provides a direct link between star dust and the Solar System and raises the possibility that the early Solar System was chemically enriched by stellar ejecta with the potential of influencing the origin of life on Earth.

  2. Organic compounds in circumstellar and interstellar environments.

    PubMed

    Kwok, Sun

    2015-06-01

    Recent research has discovered that complex organic matter is prevalent throughout the Universe. In the Solar System, it is found in meteorites, comets, interplanetary dust particles, and planetary satellites. Spectroscopic signatures of organics with aromatic/aliphatic structures are also found in stellar ejecta, diffuse interstellar medium, and external galaxies. From space infrared spectroscopic observations, we have found that complex organics can be synthesized in the late stages of stellar evolution. Shortly after the nuclear synthesis of the element carbon, organic gas-phase molecules are formed in the stellar winds, which later condense into solid organic particles. This organic synthesis occurs over very short time scales of about a thousand years. In order to determine the chemical structures of these stellar organics, comparisons are made with particles produced in the laboratory. Using the technique of chemical vapor deposition, artificial organic particles have been created by injecting energy into gas-phase hydrocarbon molecules. These comparisons led us to believe that the stellar organics are best described as amorphous carbonaceous nanoparticles with mixed aromatic and aliphatic components. The chemical structures of the stellar organics show strong similarity to the insoluble organic matter found in meteorites. Isotopic analysis of meteorites and interplanetary dust collected in the upper atmospheres have revealed the presence of pre-solar grains similar to those formed in old stars. This provides a direct link between star dust and the Solar System and raises the possibility that the early Solar System was chemically enriched by stellar ejecta with the potential of influencing the origin of life on Earth. PMID:25720971

  3. Role of benthic communities in organic contaminant transport and fate. 2: Bioaccumulation and biotransformation

    SciTech Connect

    Dickhut, R.M.; Schaffner, L.C.; Lay, P.W.; Mitra, S. |

    1994-12-31

    Numerous macrobenthic organisms from lower Chesapeake Bay have been observed to rapidly accumulate and transform a series of organic contaminants (OCs). Bioaccumulation and biotransformation vary both within and among major taxa, and with the OC physical-chemical properties. Bioaccumulation of OCs is rapid for various organisms regardless of feeding behavior indicating that uptake of contaminants from the dissolved phase may be important. Comparison of OC and metabolite body burdens to those in the corresponding sediment indicate three types of behavior for OC fluxes through the organisms over 56 days of exposure to contaminated sediments: steady state between contaminant uptake and elimination, faster uptake than elimination corresponding to bioaccumulation, and rapid loss relative to uptake, with decreasing bioaccumulation factors with time. OC loss mechanisms from operationally defined detectable pools in benthic biota may include: elimination of parent compound or metabolites, and binding of reactive metabolites to cellular structures. OC metabolite production and loss rates in benthic macrofauna from Chesapeake Bay are currently under investigation. Bioaccumulation and transformation of OCs by benthic organisms are of importance in determining their effects, including trophic transfer of organic pollutants, on aquatic ecosystems.

  4. Remediation of Groundwater Contaminated with Organics and Radionuclides - An Innovative Approach Eases Traditional Hurdles

    SciTech Connect

    Scott, J.; Case, N.; Coltman, K.

    2003-02-25

    Traditional approaches to the remediation of contaminated groundwater, such as pump-and-treat, have been used for many years for the treatment of groundwater contaminated with various organics. However the treatment of groundwater contaminated with organics and radionuclides has been considerably more challenging. Safety and Ecology Corporation (SEC) was recently faced with these challenges while designing a remediation system for the remediation of TCE-contaminated groundwater and soil at the RMI Extrusion Plant in Ashtabula, OH. Under contract with RMI Environmental Services (RMIES), SEC teamed with Regenesis, Inc. to design, implement, and execute a bioremediation system to remove TCE and associated organics from groundwater and soil that was also contaminated with uranium and technetium. The SEC-Regenesis system involved the injection of Hydrogen Release Compound (HRC), a natural attenuation accelerant that has been patented, designed, and produced by Regenesis, to stimulate the reductive dechlorination and remediation of chlorinated organics in subsurface environments. The compound was injected using direct-push Geoprobe rods over a specially designed grid system through the zone of contaminated groundwater. The innovative approach eliminated the need to extract contaminated groundwater and bypassed the restrictive limitations listed above. The system has been in operation for roughly six months and has begun to show considerable success at dechlorinating and remediating the TCE plume and in reducing the radionuclides into insoluble precipitants. The paper will provide an overview of the design, installation, and initial operation phase of the project, focusing on how traditional design challenges of remediating radiologically contaminated groundwater were overcome. The following topics will be specifically covered: a description of the mechanics of the HRC technology; an assessment of the applicability of the HRC technology to contaminated groundwater plumes

  5. Determination of biological removal of recalcitrant organic contaminants in coal gasification waste water.

    PubMed

    Ji, Qinhong; Tabassum, Salma; Yu, Guangxin; Chu, Chunfeng; Zhang, Zhenjia

    2015-01-01

    Coal gasification waste water treatment needed a sustainable and affordable plan to eliminate the organic contaminants in order to lower the potential environmental and human health risk. In this paper, a laboratory-scale anaerobic-aerobic intermittent system carried out 66 operational cycles together for the treatment of coal gasification waste water and the removal capacity of each organic pollutant. Contaminants included phenols, carboxylic acids, long-chain hydrocarbons, and heterocyclic compounds, wherein the relative content of phenol is up to 57.86%. The long-term removal of 77 organic contaminants was evaluated at different hydraulic retention time (anaerobic24 h + aerobic48 h and anaerobic48 h +aerobic48 h). Contaminant removal ranged from no measurable removal to near-complete removal with effluent concentrations below the detection limit. Contaminant removals followed one of four trends: steady-state removal throughout, increasing removal to steady state (acclimation), decreasing removal, and no removal. Organic degradation and transformation in the reaction were analysed by gas chromatography/mass spectrometry technology. PMID:25951900

  6. Removal of organic contaminants by RO and NF membranes

    NASA Technical Reports Server (NTRS)

    Yoon, Yeomin; Lueptow, Richard M.

    2005-01-01

    Rejection characteristics of organic and inorganic compounds were examined for six reverse osmosis (RO) membranes and two nanofiltration (NF) membranes that are commercially available. A batch stirred-cell was employed to determine the membrane flux and the solute rejection for solutions at various concentrations and different pH conditions. The results show that for ionic solutes the degree of separation is influenced mainly by electrostatic exclusion, while for organic solutes the removal depends mainly upon the solute radius and molecular structure. In order to provide a better understanding of rejection mechanisms for the RO and NF membranes, the ratio of solute radius (r(i,s)) to effective membrane pore radius (r(p)) was employed to compare rejections. An empirical relation for the dependence of the rejection of organic compounds on the ratio r(i,s)/r(p) is presented. The rejection for organic compounds is over 75% when r(i,s)/r(p) is greater than 0.8. In addition, the rejection of organic compounds is examined using the extended Nernst-Planck equation coupled with a steric hindrance model. The transport of organic solutes is controlled mainly by diffusion for the compounds that have a high r(i,s)/r(p) ratio, while convection is dominant for compounds that have a small r(i,s)/r(p) ratio. c2005 Elsevier B.V. All rights reserved.

  7. Phosphatase hydrolysis of organic phosphorus compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphatases are diverse groups of enzymes that deserve special attention because of the significant roles they play in mineralizing organic phosphorus (P) into inorganic available form. For getting more insight on the enzymatically hydrolysis of organic P, in this work, we compared the catalytic pa...

  8. Oxygen Ion Cleaning Of Organic Contaminants

    NASA Astrophysics Data System (ADS)

    Deguchi, T. J.; Sasaki, G. R.; Champetier, R. J.

    1987-06-01

    An experiment using low energy oxygen ions to clean organic films from bare aluminum mirrors was performed. Film removal was determined by measuring the reflectance of the mirrors in the ultraviolet region of the spectrum. The results of this study show that complete removal of hydrocarbon films is obtainable. This method may not be fully effective in removing silicon-based polymers. The removal rate for a hydrocarbon oil contami nant was determined to be 2.1 X 10-14 Å/ion.

  9. The Use of Modified Bentonite for Removal of Aromatic Organics from Contaminated Soil.

    PubMed

    Gitipour; Bowers; Bodocsi

    1997-12-15

    This study investigates the clay-aromatic interactions with a view to the use of bentonite clay for binding benzene, toluene, ethylbenzene, and o-xylene (BTEX compounds) in contaminated soils. BTEX compounds are the most toxic aromatic constituents of gasoline present in many underground storage tanks. Modified (organophilic) and ordinary bentonites are used to remove these organics. The organophilic bentonites are prepared by replacing the exchangeable inorganic cations present in bentonite particles with a quaternary ammonium salt. Various clay-to-soil ratios were applied to determine the efficiency of the modified bentonite in enhancing the cement-based solidification/stabilization (S/S) of BTEX contaminated soils. Toxicity characteristics leaching procedure (TCLP) tests were performed on soil samples to evaluate the leaching of the organics. In addition, X-ray diffraction analyses were conducted to assess the changes in the basal spacing of the clays as a result of their interaction with BTEX compounds. The findings of this study reveal that organophilic bentonite can act as a successful adsorbent for removing the aromatic organics from contaminated soil. Thus, this material is viable for enhancing the performance of cement-based S/S processes, as an adsorbent for petroleum spills, and for landfill liners and slurry walls. Copyright 1997 Academic Press. PMID:9792744

  10. EMERGING TECHNOLOGY BULLETIN: VOLATILE ORGANIC COMPOUND REMOVAL FROM AIR STREAMS BY MEMBRANES SEPARATION MEMBRANE TECHNOLOGY AND RESEARCH, INC.

    EPA Science Inventory

    This membrane separation technology developed by Membrane Technology and Research (MTR), Incorporated, is designed to remove volatile organic compounds (VOCs) from contaminated air streams. In the process, organic vapor-laden air contacts one side of a membrane that is permeable ...

  11. BIODEGRADABILITY STUDIES WITH ORGANIC PRIORITY POLLUTANT COMPOUNDS

    EPA Science Inventory

    Ninty-six organic priority pollutants (from EPA Effluent Guidelines Consent Decree) were studied to determine the extent and rate of microbial degradation and the acclimation periods needed for substrate biooxidation. The pollutants have been classified into groups with character...

  12. Source apportionment modeling of volatile organic compounds in streams

    USGS Publications Warehouse

    Pankow, J.F.; Asher, W.E.; Zogorski, J.S.

    2006-01-01

    It often is of interest to understand the relative importance of the different sources contributing to the concentration cw of a contaminant in a stream; the portions related to sources 1, 2, 3, etc. are denoted cw,1, cw,2, cw,3, etc. Like c w, 'he fractions ??1, = cw,1/c w, ??2 = cw,2/cw, ??3 = cw,3/cw, etc. depend on location and time. Volatile organic compounds (VOCs) can undergo absorption from the atmosphere into stream water or loss from stream water to the atmosphere, causing complexities affecting the source apportionment (SA) of VOCs in streams. Two SA rules are elaborated. Rule 1: VOC entering a stream across the air/water interface exclusively is assigned to the atmospheric portion of cw. Rule 2: VOC loss by volatilization, flow loss to groundwater, in-stream degradation, etc. is distributed over cw,1 cw,2, c w,3, etc. in proportion to their corresponding ?? values. How the two SA rules are applied, as well as the nature of the SA output for a given case, will depend on whether transport across the air/water interface is handled using the net flux F convention or using the individual fluxes J convention. Four hypothetical stream cases involving acetone, methyl-tert-butyl ether (MTBE), benzene, chloroform, and perchloroethylene (PCE) are considered. Acetone and MTBE are sufficiently water soluble from air for a domestic atmospheric source to be capable of yielding cw values approaching the common water quality guideline range of 1 to 10 ??g/L. For most other VOCs, such levels cause net outgassing (F > 0). When F > 0 in a given section of stream, in the net flux convention, all of the ??j, for the compound remain unchanged over that section while cw decreases. A characteristic time ??d can be calculated to predict when there will be differences between SA results obtained by the net flux convention versus the individual fluxes convention. Source apportionment modeling provides the framework necessary for comparing different strategies for mitigating

  13. Microbial transformations of natural organic compounds and radionuclides in subsurface environments

    SciTech Connect

    Francis, A.J.

    1985-10-01

    A major national concern in the subsurface disposal of energy wastes is the contamination of ground and surface waters by waste leachates containing radionuclides, toxic metals, and organic compounds. Microorganisms play an important role in the transformation of organic compounds, radionuclides, and toxic metals present in the waste and affect their mobility in subsurface environments. Microbial processes involved in dissolution, mobilization, and immobilization of toxic metals under aerobic and anaerobic conditions are briefly reviewed. Metal complexing agents and several organic acids produced by microbial action affect mobilization of radionuclides and toxic metals in subsurface environments. Information on the persistence of and biodegradation rates of synthetic as well as microbiologically produced complexing agents is scarce but important in determining the mobility of metal organic complexes in subsoils. Several gaps in knowledge in the area of microbial transformation of naturally occurring organics, radionuclides, and toxic metals have been identified, and further basic research has been suggested. 31 refs., 1 fig., 3 tabs.

  14. Enantiomeric and Isotopic Analysis of Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, George

    2004-01-01

    Carbonaceous meteorites are relatively enriched in soluble organic compounds. The Murchison and Murray meteorites contain numerous compounds of interest in the study of early solar system organic chemistry and organic compounds of potential importance for the origin of life. These include: amino acids, amides, carboxylic acids, and polyols. This talk will focus on the enantiomeric and isotopic analysis of individual meteoritic compounds - primarily polyol acids. The analyses will determine if, in addition to certain amino acids from Murchison, another potentially important class of prebiotic compounds also contains enantiomeric excesses, i.e., excesses that could have contributed to the current homochirality of life. Preliminary enantiomeric and isotopic (C- 13) measurements of Murchison glyceric acid show that it is indeed extraterrestrial. C-13 and D isotope analysis of meteoritic sugar alcohols (glycerol, threitol, ribitol, etc.) has shown that they are also indigenous to the meteorite.

  15. Assessing the fate of biodegradable volatile organic contaminants in unsaturated soil filter systems

    NASA Astrophysics Data System (ADS)

    Thullner, Martin; de Biase, Cecilia; Hanzel, Joanna; Reger, Daniel; Wick, Lukas; Oswald, Sascha; van Afferden, Manfred; Schmidt, Axel; Reiche, Nils; Jechalke, Sven

    2010-05-01

    The assessment of contaminant biodegradation in the subsurface is challenged by various abiotic processes leading to a reduction of contaminant concentration without a destructive mass removal of the contaminant. In unsaturated porous media, this interplay of processes is further complicated by volatilization. Many organic contaminants are sufficiently volatile to allow for significant fluxes from the water phase into the soil air, which can eventually lead to an emission of contaminants into the atmosphere. Knowledge of the magnitude of these emissions is thus required to evaluate the efficiency of bioremediation in such porous media and to estimate potential risks due to these emissions. In the present study, vertical flow constructed wetlands were investigated at the pilot scale as part of the SAFIRA II project. The investigated wetland system is intermittently irrigated by contaminated groundwater containing the volatile compounds benzene and MTBE. Measured concentration at the in- and outflow of the system demonstrate a high mass removal rate, but the highly transient flow and transport processes in the system challenge the quantification of biodegradation and volatilization and their contribution to the observed mass removal. By a combination of conservative solute tracer tests, stable isotope fractionation and measurements of natural radon concentration is the treated groundwater is was possible to determine the contribution of biodegradation and volatilization to total mass removal. The results suggest that for the investigated volatile compounds biodegradation is the dominating mass removal process with volatilization contributing only to minor or negligible amounts. These results can be confirmed by reactive transport simulations and were further supported by laboratory studies showing that also gas phase gradients of volatile compounds can be affected by biodegradation suggesting the unsaturated zone to act as a biofilter for contaminants in the soil air.

  16. Synthesis of fluorinated organic compounds using oxygen difluoride

    NASA Technical Reports Server (NTRS)

    Toy, M. S.

    1971-01-01

    Oxygen difluoride synthesis is a much simpler, higher-yield procedure than reactions originally followed to synthesize various fluorinated organic compounds. Extreme care is taken in working with oxygen difluoride as its reactions present severe explosion hazard.

  17. GLOBAL INVENTORY OF VOLATILE ORGANIC COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The paper discusses the development of a global inventory of anthropogenic volatile organic compound (VOC) emissions. t includes VOC estimates for seven classes of VOCs: paraffins, olefins, aromatics (benzene, toluene, xylene), formaldehyde, other aldehydes, other aromatics, and ...

  18. COMPACT, CONTINUOUS MONITORING FOR VOLATILE ORGANIC COMPOUNDS - PHASE I

    EPA Science Inventory

    Improved methods for onsite measurement of multiple volatile organic compounds are needed for process control, monitoring, and remediation. This Phase I SBIR project sets forth an optical measurement method that meets these needs. The proposed approach provides an instantaneous m...

  19. ODOR AND IRRITATION EFFECTS OF A VOLATILE ORGANIC COMPOUND MIXTURE

    EPA Science Inventory

    Human exposure to volatile organic compounds elicits a variety ofsymptoms, many of which are thought to be mediated by the olfactoryand trigeminal systems. his report describes evidence indicatingthat perceived odor intensity diminishes during prolonged exposure,whearas irritatin...

  20. MEASUREMENT OF VAPOR PHASE ORGANIC COMPOUNDS AT HIGH CONCENTRATIONS

    EPA Science Inventory

    Laboratory, industrial, chemical, or other waste products may have constituents that evolve volatile organic compounds (VOCS) at very high concentrations. hese could pose human health risks during handling, storage, and disposal of the waste through inhalation, dermal exposure, o...

  1. IMPROVEMENT IN AIR TOXICS METHODS FOR VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    Innovative and customized monitoring methods for air toxic volatile organic compounds (VOCs) are being developed for applications in exposure and trends monitoring. This task addresses the following applications of specific interest:

    o Contributions to EPA Regional Monit...

  2. SYNTHESIZING ORGANIC COMPOUNDS USING LIGHT-ACTIVATED TIO2

    EPA Science Inventory

    High-value organic compounds have been synthesized successfully from linear and cyclic hydrocarbons, by photocatalytic oxidation using a semiconductor material, titanium dioxide (TiO2). Various hydrocarbons were partially oxgenated in both liquid and gaseous phase reactors usi...

  3. ESTIMATION OF PHYSIOCHEMICAL PROPERTIES OF ORGANIC COMPOUNDS BY SPARC

    EPA Science Inventory

    The computer program SPARC (SPARC Performs Automated Reasoning in Chemistry) has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC uses computational algorithms...

  4. 40 CFR 60.442 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds. 60.442 Section 60.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... compounds. (a) On and after the date on which the performance test required by § 60.8 has been...

  5. 40 CFR 60.442 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds. 60.442 Section 60.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... compounds. (a) On and after the date on which the performance test required by § 60.8 has been...

  6. 40 CFR 60.442 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.442 Section 60.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... compounds. (a) On and after the date on which the performance test required by § 60.8 has been...

  7. 40 CFR 60.442 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds. 60.442 Section 60.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... compounds. (a) On and after the date on which the performance test required by § 60.8 has been...

  8. 40 CFR 60.442 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds. 60.442 Section 60.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... compounds. (a) On and after the date on which the performance test required by § 60.8 has been...

  9. INDOOR AIR QUALITY DATA BASE FOR ORGANIC COMPOUNDS

    EPA Science Inventory

    The report gives results of the compilation of a data base for concentrations of organic compounds measured indoors. ased on a review of the literature from 1979 through 1990, the data base contains information on over 220 compounds ranging in molecular weight from 30 to 446. he ...

  10. VOLATILE ORGANIC COMPOUNDS MEASURED IN DEARS PASSIVE SAMPLERS

    EPA Science Inventory

    A suite of 27 volatile organic compounds (VOCs) were monitored in personal exposures, indoors and outdoors of participant's residences, and at a central community site during the DEARS summer 2004 monitoring season. The list of VOCs focused on compounds typically associated with ...

  11. Speciation of volatile organic compounds from poultry production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The air consent agreement between EPA and large animal feeding operations (AFO) is designed to determine at what level compounds are being emitted from these facilities. However, the methodology used for quantifying total non-methane hydrocarbons and speciation of volatile organic compounds (VOC) n...

  12. Predicting the emission of volatile organic compounds from silage systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major VOC emission source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols wit...

  13. DESTRUCTION OF VOLATILE ORGANIC COMPOUNDS VIA CATALYTIC INCINERATION

    EPA Science Inventory

    The paper gives results of an investigation of the effect of catalytic incinerator design and operation the destruction of specific volatile organic compounds (VOCs), both singly and in mixtures. A range of operating and design parameters were tested on a wide variety of compound...

  14. Microbial treatment of contaminant mixture of chlorinated solvent, aromatic compounds and chromate under anaerobic environments

    SciTech Connect

    Shen, H.; Sewell, G.W.; Pritchard, P.H.

    1996-12-31

    Chlorinated ethylenes and chromium contamination of the subsurface is a common environmental problem due to their wide spread use in industry, and improper disposal practices or accidental releases. Aromatic compounds, among the most industrial contaminants of ground water, are often mixed together with chlorinated solvents and metals including chromate in polluted sites. A cost-effective method is needed for remediation of soil and ground water contaminated with these toxicants. One promising approach may use native bacteria to reductively transform chromate and chlorinated ethylenes. This process reduces the toxic chromate to the less soluble and less toxic trivalent chromium. Although this process leaves the metal in the subsurface, it decreases both the hazard and exposure, and thus the risk to human health associated with chromium. The microorganisms are capable of removing one or more chlorines from the chlorinated compounds under anaerobic environments, and eventually transforming them to ethylene, an environmentally accepted compounds. The use of microorganisms for degradation of aromatic contaminants is also an extensively used method to remediate the contamination. Therefore, one possible approach may link the bacteria catalyzed oxidation of aromatic compounds to the microbial chromate reduction or solvent dechlorination. Microcosm tests will be presented in this study to show the feasibility of the microbial approach for the concurrent detoxification of multiple contaminants.

  15. A simplified approach for monitoring hydrophobic organic contaminants associated with suspended sediment: methodology and applications.

    PubMed

    Mahler, B J; Van Metre, P C

    2003-04-01

    Hydrophobic organic contaminants, although frequently detected in bed sediment and in aquatic biota, are rarely detected in whole-water samples, complicating determination of their occurrence, load, and source. A better approach for the investigation of hydrophobic organic contaminants is the direct analysis of sediment in suspension, but procedures for doing so are expensive and cumbersome. We describe a simple, inexpensive methodology for the dewatering of sediment and present the results of two case studies. Isolation of a sufficient mass of sediment for analyses of organochlorine compounds and PAHs is obtained by in-line filtration of large volumes of water. The sediment is removed from the filters and analyzed directly by standard laboratory methods. In the first case study, suspended-sediment sampling was used to determine occurrence, loads, and yields of contaminants in urban runoff affecting biota in Town Lake, Austin, TX. The second case study used suspended-sediment sampling to locate a point source of PCBs in the Donna Canal in south Texas, where fish are contaminated with PCBs. The case studies demonstrate that suspended-sediment sampling can be an effective tool for determining the occurrence, load, and source of hydrophobic organic contaminants in transport. PMID:12712287

  16. A simplified approach for monitoring hydrophobic organic contaminants associated with suspended sediment: Methodology and applications

    USGS Publications Warehouse

    Mahler, B.J.; Van Metre, P.C.

    2003-01-01

    Hydrophobic organic contaminants, although frequently detected in bed sediment and in aquatic biota, are rarely detected in whole-water samples, complicating determination of their occurrence, load, and source. A better approach for the investigation of hydrophobic organic contaminants is the direct analysis of sediment in suspension, but procedures for doing so are expensive and cumbersome. We describe a simple, inexpensive methodology for the dewatering of sediment and present the results of two case studies. Isolation of a sufficient mass of sediment for analyses of organochlorine compounds and PAHs is obtained by in-line filtration of large volumes of water. The sediment is removed from the filters and analyzed directly by standard laboratory methods. In the first case study, suspended-sediment sampling was used to determine occurrence, loads, and yields of contaminants in urban runoff affecting biota in Town Lake, Austin, TX. The second case study used suspended-sediment sampling to locate a point source of PCBs in the Donna Canal in south Texas, where fish are contaminated with PCBs. The case studies demonstrate that suspended-sediment sampling can be an effective tool for determining the occurrence, load, and source of hydrophobic organic contaminants in transport.

  17. Leaching of chloride, sulphate, heavy metals, dissolved organic carbon and phenolic organic pesticides from contaminated concrete.

    PubMed

    Van Praagh, M; Modin, H

    2016-10-01

    Concrete samples from demolition waste of a former pesticide plant in Sweden were analysed for total contents and leachate concentrations of potentially hazardous inorganic substances, TOC, phenols, as well as for pesticide compounds such as phenoxy acids, chlorophenols and chlorocresols. Leachates were produced by means of modified standard column leaching tests and pH-stat batch tests. Due to elevated contents of chromium and lead, as well as due to high chloride concentrations in the first leachate from column tests at L/S 0.1, recycling of the concrete as a construction material in groundworks is likely to be restricted according to Swedish guidelines. The studied pesticide compounds appear to be relatively mobile at the materials own pH>12, 12, 9 and 7. Potential leaching of pesticide residues from recycled concrete to ground water and surface water might exceed water quality guidelines for the remediation site and the EU Water Framework Directive. Results of this study stress the necessity to systematically study the mechanism behind mobility of organic contaminants from alkaline construction and demolition wastes rather than rely on total content limit values. PMID:27449537

  18. Shock Modifications of Organic Compounds in Carbonaceous Chondrite Parent Bodies

    NASA Technical Reports Server (NTRS)

    Cooper, George W.

    1998-01-01

    Impacts among asteroidal objects would have altered or destroyed pre-existing organic matter in both targets and projectiles to a greater or lesser degree depending upon impact velocities. To begin filling a knowledge gap on the shock metamorphism of organic compounds, we are studying the effects of shock impacts on selected classes of organic compounds utilizing laboratory shock facilities. Our approach is to subject mixtures of organic compounds, embedded in the matrix of the Murchison meteorite, to simulated hypervelocity impacts by firing them into targets at various pressures. The mixtures are then analyzed to determine the amount of each compound that survives as well as to determine if new compounds are being synthesized. The initial compounds added to the matrix (with the exception of thiosulfate). The sulfonic acids were chosen in part because they are relatively abundant in Murchison, relatively stable, and because they and the phosphonic acids are the first well-characterized homologous series of organic sulfur and phosphorus compounds identified in an extraterrestrial material. Experimental procedures were more fully described in the original proposal. A 20 mm gun, with its barrel extending into a vacuum chamber (10(exp -2) torr), was used to launch the projectile containing the sample at approx. 1.6 km/sec (3,600 mi/hr) into the target material. Maximum pressure of impact depend on target/projectile materials. The target was sufficiently thin to assure minimum pressure decay over the total sample thickness.

  19. Molecular and Enantiomeric Analysis of Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, George

    2003-01-01

    Carbonaceous meteorites are relatively enriched in carbon. Much of this carbon is in the form of soluble organic compounds. The Murchison and Murray meteorites are the best-characterized carbonaceous meteorites with respect to organic chemistry. Their content of organic compounds has led to an initial understanding of early solar system organic chemistry as well as what compounds may have played a role in the origin of life (Cronin and Chang, 1993). Reported compounds include: amino acids, amides, carboxylic acids, sulfonic acids, and polyols. This talk will focus on the molecular and enantiomeric analysis of individual meteoritic compounds: polyol acids; and a newly identified class of meteorite compounds, keto acids, i.e., acetoacetic acid, levulinic acid, etc. Keto acids (including pyruvic) are critically important in all contemporary organisms. They are key intermediates in metabolism and processes such as the citric acid cycle. Using gas chromatography-mass spectrometry we identified individual meteoritic keto acids after derivatization to one or more of the following forms: isopropyl ester (ISP), trimethyIsiIy1 (TMS), tert-butyldimethylsilyl (BDMS). Ongoing analyses will determine if, in addition to certain amino acids from Murchison (Cronin and Pizzarello, 1997), other potentially important prebiotic compounds also contain enantiomeric excesses, i.e., excesses that could have contributed to the current homochirality of life.

  20. Process for reducing organic compounds with calcium, amine, and alcohol

    DOEpatents

    Benkeser, R.A.; Laugal, J.A.; Rappa, A.

    1985-08-06

    Olefins are produced by contacting an organic compound having at least one benzene ring with calcium metal, ethylenediamine, a low molecular weight aliphatic alcohol, and optionally a low molecular weight aliphatic primary amine, and/or an inert, abrasive particulate substance. The reduction is conducted at temperatures ranging from about [minus]10 C to about 30 C or somewhat higher. Substantially all of the organic compounds are converted to corresponding cyclic olefins, primarily diolefins.

  1. Process for reducing organic compounds with calcium, amine, and alcohol

    DOEpatents

    Benkeser, Robert A.; Laugal, James A.; Rappa, Angela

    1985-01-01

    Olefins are produced by contacting an organic compound having at least one benzene ring with calcium metal, ethylenediamine, a low molecular weight aliphatic alcohol, and optionally a low molecular weight aliphatic primary amine, and/or an inert, abrasive particulate substance. The reduction is conducted at temperatures ranging from about -10.degree. C. to about 30.degree. C. or somewhat higher. Substantially all of the organic compounds are converted to corresponding cyclic olefins, primarily diolefins.

  2. REMOVAL OF VOLATILE ORGANIC CONTAMINANTS FROM GROUND WATER

    EPA Science Inventory

    Because ground water is a source of potable water for millions of people, an economical means of removing volatile organic contaminants is essential. Laboratory, pilot-scale and full-scale studies are being carried out in the United States of America to determine the effect of va...

  3. Biodegradation of phenolic compounds and their metabolites in contaminated groundwater using microbial fuel cells.

    PubMed

    Hedbavna, Petra; Rolfe, Stephen A; Huang, Wei E; Thornton, Steven F

    2016-01-01

    This is the first study demonstrating the biodegradation of phenolic compounds and their organic metabolites in contaminated groundwater using bioelectrochemical systems (BESs). The phenols were biodegraded anaerobically via 4-hydroxybenzoic acid and 4-hydroxy-3-methylbenzoic acid, which were retained by electromigration in the anode chamber. Oxygen, nitrate, iron(III), sulfate and the electrode were electron acceptors for biodegradation. Electro-active bacteria attached to the anode, producing electricity (~1.8mW/m(2)), while utilizing acetate as an electron donor. Electricity generation started concurrently with iron reduction; the anode was an electron acceptor as thermodynamically favorable as iron(III). Acetate removal was enhanced by 40% in the presence of the anode. However, enhanced removal of phenols occurred only for a short time. Field-scale application of BESs for in situ bioremediation requires an understanding of the regulation and kinetics of biodegradation pathways of the parent compounds to relevant metabolites, and the syntrophic interactions and carbon flow in the microbial community. PMID:26512868

  4. Molecular Isotopic Characterization of the ALH 85013.50 Meteorite: Defining the Extraterrestrial Organic Compounds

    NASA Technical Reports Server (NTRS)

    Fuller, M.; Huang, Y.

    2003-01-01

    The Antarctic Meteorite Program has returned over 16,000 meteorites from the ice sheets of the Antarctic. This more than doubles the number of preexisting meteorite collection and adds important and rare specimens to the assemblage. The CM carbonaceous chondrites are of particular interest because of their high organic component. The Antarctic carbonaceous chondrites provide a large, previously uninvestigated suite of meteorites. Of the 161 CM chondrites listed in the Catalogue of Meteorites 138 of them have been recovered from the Antarctic ice sheets,. However, these meteorites have typically been exposed to Earth s conditions for long periods of time. The extent of terrestrial organic contamination and weathering that has taken place on these carbonaceous chondrites is unknown. In the past, stable isotope analysis was used to identify bulk organics that were extraterrestrial in origin. Although useful, this method could not exclude the possibility of terrestrial contamination contributing to the isotopic measurement. Compound specific isotope analysis of organic meteorite material has provided the opportunity to discern the terrestrial contamination from extraterrestrial organic compounds on the molecular level.

  5. Indoor air condensate as a novel matrix for monitoring inhalable organic contaminants.

    PubMed

    Roll, Isaac B; Halden, Rolf U; Pycke, Benny F G

    2015-05-15

    With the population of developed nations spending nearly 90% of their time indoors, indoor air quality (IAQ) is a critical indicator of human health risks from inhalation of airborne contaminants. We present a novel approach for qualitative monitoring of IAQ through the collection and analysis of indoor air condensate discharged from heat exchangers of heating, ventilation, and air conditioning (HVAC) systems. Condensate samples were collected from six suburban homes and one business in Maricopa County, Arizona, concentrated via solid-phase extraction, analyzed for 10 endocrine disrupting chemicals (EDCs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and screened for additional organic compounds by gas chromatography-mass spectrometry (GC-MS). All 10 EDCs were detected in at least one of the sampled buildings. More than 100 additional compounds were detected by GC-MS, of which 40 were tentatively identified using spectral database searches. Twelve compounds listed as designated chemicals for biomonitoring by the California Environmental Contaminant Biomonitoring Program were detected. Microfiltration of condensate samples prior to extraction had no discernable effect on contaminant concentration, suggesting that contaminants were freely dissolved or associated with inhalable, submicron particles. This study is the first to document the utility of HVAC condensate for the qualitative assessment of indoor air for pollutants. PMID:25706557

  6. A synthesis of parameters related to the binding of neutral organic compounds to charcoal.

    PubMed

    Hale, Sarah E; Arp, Hans Peter H; Kupryianchyk, Darya; Cornelissen, Gerard

    2016-02-01

    The sorption strength of neutral organic compounds to charcoal, also called biochar was reviewed and related to charcoal and compound properties. From 29 studies, 507 individual Freundlich sorption coefficients were compiled that covered the sorption strength of 107 organic contaminants. These sorption coefficients were converted into charcoal-water distribution coefficients (K(D)) at aqueous concentrations of 1 ng/L, 1 µg/L and 1 mg/L. Reported log K(D) values at 1 µg/L varied from 0.38 to 8.25 across all data. Variation was also observed within the compound classes; pesticides, herbicides and insecticides, PAHs, phthalates, halogenated organics, small organics, alcohols and PCBs. Five commonly reported variables; charcoal production temperature T, surface area SA, H/C and O/C ratios and organic compound octanol-water partitioning coefficient, were correlated with KD values using single and multiple-parameter linear regressions. The sorption strength of organic compounds to charcoals increased with increasing charcoal production temperature T, charcoal SA and organic pollutant octanol-water partitioning coefficient and decreased with increasing charcoal O/C ratio and charcoal H/C ratio. T was found to be correlated with SA (r(2) = 0.66) and O/C (r(2) = 0.50), particularly for charcoals produced from wood feedstocks (r(2) = 0.73 and 0.80, respectively). The resulting regression: log K(D)=(0.18 ± 0.06) log K(ow) + (5.74 ± 1.40) log T + (0.85 ± 0.15) log SA + (1.60 ± 0.29) log OC + (-0.89 ± 0.20) log HC + (-13.20 ± 3.69), r(2) = 0.60, root mean squared error = 0.95, n = 151 was obtained for all variables. This information can be used as an initial screening to identify charcoals for contaminated soil and sediment remediation. PMID:26347927

  7. Annual loads of organic contaminants in Chesapeake Bay contributed through fluvial transport

    SciTech Connect

    Foster, G.D.; Lippa, K.A.

    1994-12-31

    Organic contaminants in fluvial transport, atmospheric deposition, urban runoff, and shoreline erosion are being quantified and compared in an effort to understand contaminant inputs and mass balances in Chesapeake Bay. Concentrations of nine organonitrogen and organophosphorus (organo-N/P) pesticides, eight organochlorine (OC) pesticides, polychlorinated biphenyls (PCBs), and four polynuclear aromatic hydrocarbons in fluvial transport were determined at the Susquehanna, Potomac, and James River fall lines for the period of March 1992 through February 1993. Together these rivers account for ca. 75% of the freshwater inflow to the bay from fluvial sources. Sampling was conducted monthly during base flow conditions and during all major storm events. Analysis of nanogram and picogram per liter concentrations of the organic contaminants was performed for both the dissolved and particulate phases of the surface water samples. Daily fluvial loads were calculated using an iterative-increment method from concentration and discharge data, and the resulting daily load estimates were summed to provide annual loads. Loads contributed by the three tributaries from March 1992 through February 1993 were 6.9 metric tons for the organo-N/P pesticides, 0.73 metric tons for the OC compounds and PCBs, and 1.2 metric tons for the PAH. Preliminary comparisons show that loads from fluvial transport are generally greater than other sources for most contaminants except PAH, where atmospheric deposition and urban runoff contribute greater loads of some compounds.

  8. Transport, behavior, and fate of volatile organic compounds in streams

    USGS Publications Warehouse

    Rathbun, R.E.

    1998-01-01

    Volatile organic compounds (VOCs) are compounds with chemical and physical properties that allow the compounds to move freely between the water and air phases of the environment. VOCs are widespread in the environment because of this mobility. Many VOCs have properties making them suspected or known hazards to the health of humans and aquatic organisms. Consequently, understanding the processes affecting the concentration and distribution VOCs in the environment is necessary. The U.S. Geological Survey selected 55 VOCs for study. This report reviews the characteristics of the various process that could affect the transport, behavior, and fate of these VOCs in streams.

  9. Temporal trends in organic contaminant bioaccumulation in Boston Harbor

    SciTech Connect

    Hall, M.P.; Connor, M.S.; Downey, P.C.

    1995-12-31

    Since 1987 the MWRA has used in situ caged mussels (Mytilus edulis) to assess organic contaminant (PAHs, PCBs, organochlorine pesticides) bioaccumulation resulting from the primary treatment discharge of its Deer Island POTW. Results indicate a substantial reduction in many contaminants, most notably the Low Molecular Weight (petrogenic) PAHs which are clearly associated with the Deer Island discharge. NOAA `Mussel Watch` and other fish tissue contaminant data are used to support the observation of these decreases. Effluent water quality data and concurrent mussel body burden data from dirty and clean control sites are used to interpret the trends and elucidate the contamination sources. During the same time frame histopathological analyses of winter flounder collected in proximity to the Deer Island discharge have shown a marked reduction in liver lesions and other contaminant related diseases. More recently (since 1992) slight elevations in chlordane, dieldrin, and total DDTs have been noted in mussel, flounder, and lobster tissue collected from Boston Harbor and Massachusetts Bay. The authors discuss the possibility that remobilization of contaminants from the sediments may be a source of this apparent increase.

  10. Analysis of volatile organic compounds from illicit cocaine samples

    SciTech Connect

    Robins, W.H.; Wright, B.W.

    1994-07-01

    Detection of illicit cocaine hydrochloride shipments can be improved if there is a greater understanding of the identity and quantity of volatile compounds present. This study provides preliminary data concerning the volatile organic compounds detected in a limited Set of cocaine hydrochloride samples. In all cases, cocaine was one of the major volatile compounds detected. Other tropeines were detected in almost all samples. Low concentrations of compounds that may be residues of processing solvents were observed in some samples. The equilibrium emissivity of. cocaine from cocaine hydrochloride was investigated and a value of 83 parts-per-trillion was determined.

  11. Biochar: a green sorbent to sequester acidic organic contaminants

    NASA Astrophysics Data System (ADS)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2015-04-01

    Biochar is a carbon rich product of biomass pyrolysis that exhibits a high sorption potential towards a wide variety of inorganic and organic contaminants. Because it is a valuable soil additive and a potential carbon sink that can be produced from renewable resources, biochar has gained growing attention for the development of more sustainable remediation strategies. A lot of research efforts have been dedicated to the sorption of hydrophobic contaminants and metals to biochar. Conversely, the understanding of the sorption of acidic organic contaminants remains limited, and questions remain on the influence of biochar characteristics (e.g. ash content) on the sorption behaviour of acidic organic contaminants. To address this knowledge gap, sorption batch experiments were conducted with a series of structurally similar acidic organic contaminants covering a range of dissociation constant (2,4-D, MCPA, 2,4-DB and triclosan). The sorbents selected for experimentation included a series of 10 biochars covering a range of characteristics, multiwalled carbon nanotubes as model for pure carbonaceous phases, and an activated carbon as benchmark. Overall, sorption coefficient [L/kg] covered six orders of magnitude and generally followed the order 2,4-D < MCPA < 2,4-DB < triclosan. Combining comprehensive characterization of the sorbents with the sorption dataset allowed the discussion of sorption mechanisms and driving factors of sorption. Statistical analysis suggests that (i) partitioning was the main driver for sorption to sorbents with small specific surface area (< 25 m²/g), whereas (ii) specific mechanisms dominated sorption to sorbents with larger specific surface area. Results showed that factors usually not considered for the sorption of neutral contaminants play an important role for the sorption of organic acids. The pH dependent lipophilicity ratio (i.e. D instead of Kow), ash content and ionic strength are key factors influencing the sorption of acidic organic

  12. Prevention of marine biofouling using natural compounds from marine organisms.

    PubMed

    Armstrong, E; Boyd, K G; Burgess, J G

    2000-01-01

    All surfaces that are submerged in the sea rapidly become covered by a biofilm. This process, called biofouling, has substantial economic consequences. Paints containing tri-butyl-tin (TBT) and copper compounds are used to protect marine structures by reducing biofouling. However, these compounds have damaging effects on the marine environment, as they are not biodegradable. It has been noted that many seaweeds and invertebrates found in the sea are not covered by a mature biofilm. This is due to the release of compounds into the surrounding seawater that deter the settlement of fouling organisms. In addition, seaweeds and invertebrates have bacteria on their surfaces that produce compounds to deter settling organisms. The production of compounds by bacteria and their living hosts work in concert to protect the hosts' surfaces. All of these compounds can be collected so they may be natural alternatives to TBT and copper compounds. However, the benefits associated with the use of bacteria as sources of these compounds means that bacteria are the organisms of choice for obtaining natural products for antifouling coatings. PMID:11193296

  13. Photoemission properties of organic chain compounds

    NASA Astrophysics Data System (ADS)

    Bonačić Lošić, Ž.; Bjeliš, A.; Županović, P.

    2009-03-01

    In this work we extend our previous considerations of the spectral properties of quasi-one-dimensional bands using the G0W0 approximation with the three-dimensional long-range Coulomb electron-electron interaction for the calculation of the one-particle spectral function to TTF-TCNQ. Represented in the model with two one-dimensional electron bands per donor and acceptor chains this compound has a dispersive low-energy collective mode due to the strong coupling between the plasmon and the dipolar mode, together with the mode at energies order of magnitude higher. Since the dispersion of the first mode spreads through the whole low-energy range from zero up to its longitudinal value, it is responsible for the absence of the low-energy quasi-particle and the appearance of broad dispersion at these energies, while the wide structure at higher energies is due to the dispersion of the second mode. Obtained spectral properties are in qualitative agreement with the ARPES data for TTF-TCNQ.

  14. Solvent extraction of polychlorinated organic compounds from porous materials

    SciTech Connect

    Knowles, V.M.

    1988-07-19

    A method of reducing the level of hexachlorinated organic compounds selected from hexachloroethane, hexachlorobutadiene, hexachlorobenzene, or mixtures thereof to a non-hazardous level in a solid, porous DERAKANE vinyl ester resin, which has been previously used as the material of construction of a cell to produce chlorine, which vinyl ester resin was in contact with chlorine during chlorine manufacture is descried which comprises: (a) contacting the hexachlorinated compound-containing porous vinyl ester resin with an extraction solvent wherein the extraction solvent is selected from chloroform, carbon tetrachloride, trichlorethane, methyl chloroform, tetrachloroethane, perchloroethylene, benzene, toluene, xylene, acetone, methyl ethyl ketone, or mixtures thereof, at a temperature and for a time sufficient to remove the absorbed hexachlorinated organic compound; and (b) separating the hexachlorianated organic compound-containing extraction solvent and vinyl ester resin.

  15. Temporal stability of polar organic compounds in stainless steel canisters

    SciTech Connect

    Pate, B.; Jayanty, R.K.M.; Peterson, M.R. ); Evans, G.F. )

    1992-04-01

    Because of considerable interest at US EPA for the collection of polar organic compounds in stainless steel canisters, particularly for the Toxic Air Monitoring Site (TAMS) study, the stability of 10 selected polar organics in canisters was investigated and the results are described in this paper. The polar organic compounds selected for this stability study were: methanol, acetone, isoprene, acrylonitrile, vinyl acetate, methyl ethyl ketone, t-butyl methyl ether, ethyl acetate, n-butanol, and ethyl acrylate. Two nonpolar compounds, methyl chloroform and toluene, shown to be stable in previous work were included in the stability study as controls. The compounds were loaded in unpolished and Summa-polished canisters at parts-per-billion (ppb) levels under dry and humid conditions. The canister samples were analyzed on Days 0, 1, 3, 4, 14, and 31 after loading. The experimental procedures and stability results are summarized briefly.

  16. Characterizations of organic compounds in diesel exhaust particulates.

    PubMed

    Lim, Jaehyun; Lim, Cheolsoo; Kim, Sangkyun; Hong, Jihyung

    2015-08-01

    To characterize how the speed and load of a medium-duty diesel engine affected the organic compounds in diesel particle matter (PM) below 1 μm, four driving conditions were examined. At all four driving conditions, concentration of identifiable organic compounds in PM ultrafine (34-94 nm) and accumulation (94-1000 nm) modes ranged from 2.9 to 5.7 μg/m(3) and 9.5 to 16.4 μg/m(3), respectively. As a function of driving conditions, the non-oxygen-containing organics exhibited a reversed concentration trend to the oxygen-containing organics. The identified organic compounds were classified into eleven classes: alkanes, alkenes, alkynes, aromatic hydrocarbons, carboxylic acids, esters, ketones, alcohols, ethers, nitrogen-containing compounds, and sulfur-containing compounds. At all driving conditions, alkane class consistently showed the highest concentration (8.3 to 18.0 μg/m(3)) followed by carboxylic acid, esters, ketones and alcohols. Twelve polycyclic aromatic hydrocarbons (PAHs) were identified with a total concentration ranging from 37.9 to 174.8 ng/m(3). In addition, nine nitrogen-containing polycyclic aromatic compounds (NPACs) were identified with a total concentration ranging from 7.0 to 10.3 ng/m(3). The most abundant PAH (phenanthrene) and NPACs (7,8-benzoquinoline and 3-nitrophenanthrene) comprise a similar molecular (3 aromatic-ring) structure under the highest engine speed and engine load. PMID:26257360

  17. The impact of wafering on organic and inorganic surface contaminations

    NASA Astrophysics Data System (ADS)

    Meyer, S.; Wahl, S.; Timmel, S.; Köpge, R.; Jang, B.-Y.

    2016-08-01

    Beside the silicon feedstock material, the crystallization process and the cell processing itself, the wafer sawing process can strongly determine the final solar cell quality. Especially surface contamination is introduced in this process step because impurities from sawing meet with a virgin silicon surface which is highly reactive until the oxide layer is formed. In this paper we quantitatively analysed both, the organic and inorganic contamination on wafer surfaces and show that changes of process parameters during wafering may cause dramatic changes in surface purity. We present powerful techniques for the monitoring of wafer surface quality which is essential for the production of high efficiency and high quality solar cells.

  18. Ultrasonic process for remediation of organics-contaminated groundwater/wastewater

    SciTech Connect

    Wu, J.M.; Peters, R.W.

    1995-07-01

    A technology is being developed that employs ultrasonic-wave energy for remediation of groundwater/wastewater contaminated with volatile organic compounds such as carbon tetrachloride (CCl{sub 4}) and trichloroethylene (TCE). This paper presents the updated results of a laboratory investigation of ultrasonic groundwater remediation using synthetic groundwaters prepared with laboratory deionized water. Key process parameters investigated included steady-state temperature, contaminant concentration, solution pH, sonication time, and intensity of the applied ultrasonics-wave energy. High destruction efficiencies of the target contaminants were achieved, and the sonication time required for a given degree of destruction decreased with increasing intensity of the applied ultrasonic energy. The sonication time can be further reduced by adding a chemical oxidant such as hydrogen peroxide.

  19. Long-term effects of dredging operations program. Effects of sediment organic-matter composition on bioaccumulation of sediment organic contaminants: Interim results. Final report

    SciTech Connect

    Brannon, J.M.; Price, C.B.; Reilly, F.J.; Pennington, J.C.; McFarland, V.A.

    1991-06-01

    The relationship of sediment-bound polychlorinated biphenyl (PCB) 153 and fluoranthene to bioaccumulation by worms and clams and the relationship of sediment-bound PCB 153 and fluoranthene to concentrations in the interstitial water were examined. Bioaccumulation by both worms and clams was observed in all sediments. Apparent preference factor (APF) values showed that steady state was reached between sediment-bound contaminants and organism lipid pools. The APF values of organisms were close to the theoretical value for both contaminants in all sediments. These results showed that sediment total organic carbon (TOC) in conjunction with octanol water partition coefficients of nonpolar organic contaminants is a viable approach for predicting bioaccumulation of such compounds by infaunal organisms. Actual concentrations of contaminants in interstitial water were either overestimated or underestimated by the relationship between TOC and humic + fulvic acid organic matter fractions and sediment contaminant concentrations. Prediction of interstitial water concentrations was not as successful as use of APFs. The lack of agreement between predicted and actual interstitial water results was due to factors such as the presence of interstitial water contaminants bounds to microparticulates and dissolved organic material and the kind of organic material in the sediment.

  20. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  1. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  2. 40 CFR 60.392 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic...

  3. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  4. 40 CFR 60.392 - Standards for volatile organic compounds

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic...

  5. 40 CFR 60.392 - Standards for volatile organic compounds

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic...

  6. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  7. 40 CFR 60.392 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic...

  8. 40 CFR 60.392 - Standards for volatile organic compounds

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic...

  9. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  10. Leveraging the beneficial compounds of organic and pasture milk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Much discussion has arisen over the possible benefits of organic food, including milk. Organic milk comes from cows that are on pasture during the growing season, and would be expected to contain some compounds that are not found in animals receiving conventional feed, or at higher concentrations. ...

  11. IDENTIFICATION OF ORGANIC COMPOUNDS IN INDUSTRIAL EFFLUENT DISCHARGES

    EPA Science Inventory

    Samples of 63 effluent and 22 intake waters were collected from a wide range of chemical manufacturers in areas across the United States. The samples were analyzed for organic compounds in an effort to identify previously unknown and potentially hazardous organic pollutants. Each...

  12. Students' Understanding of Molecular Structure and Properties of Organic Compounds.

    ERIC Educational Resources Information Center

    Schmidt, Hans-Jurgen

    The purpose of this study was to investigate senior high school students' difficulties predicting the existence of hydrogen bridge bonds between organic molecules, investigate students' difficulties predicting the relative boiling points of simple organic compounds, and develop test questions that enable teachers to quickly get information about…

  13. LOSS OF ORGANIC CHEMICALS IN SOIL: PURE COMPOUND TREATABILITY STUDIES

    EPA Science Inventory

    Comprehensive screening data on the treatability of 32 organic chemicals in soil were developed. Of the evaluated chemicals, 22 were phenolic compounds. Aerobic batch laboratory microcosm experiments were conducted using two soils: an acidic clay soil with <1% organic matter and ...

  14. Effect of reactive core mat application on bioavailability of hydrophobic organic compounds

    PubMed Central

    Meric, Dogus; Barbuto, Sara M.; Alshawabkeh, Akram N.; Shine, James P.; Sheahan, Thomas C.

    2014-01-01

    Sediment remediation techniques to limit the bioavailability of contaminants are of special interest due to related acute or chronic toxicities associated with sediment contaminants. Bioavailability in aquatic sediments can be particularly problematic due to their accessibility to food chain biota, and interactions with surface and ground water. The effect of a reactive core mat (RCM) containing organoclay on the bioavailability of hydrophobic organic compounds (HOCs) (i.e., PCBs and naphthalene) was studied using oligochaete worms (Lumbriculus variegatus). Sediment sampled from the Neponset River (Milton, MA) with 10 ppm background PCB contamination was used in the experimental study. The objective of this study is to investigate the difference in HOC concentration of worms exposed to: a) a grab sample of contaminated sediment (10.4% total organic carbon); and b) an initially clean mixture of sand and organic matter (the so-called biouptake layer), placed on top of the RCM-capped sediment during consolidation coupled solute transport experiments. In addition to the experimental data, the U.S. Army Corps of Engineers (USACE) biota-sediment accumulation factor (BSAF) database was validated and used to model biouptake of contaminants for certain cases. Results indicate that RCM capping reduced the average bioavailability of both PCBs and naphthalene by a factor of about 50. In fact, worms exposed to the RCM-protected biouptake layer show virtually the same HOC concentrations as those measured in the control worm samples. PMID:22386995

  15. Fingerprinting groundwater pollution in catchments with contrasting contaminant sources using microorganic compounds.

    PubMed

    Stuart, Marianne E; Lapworth, Dan J; Thomas, Jenny; Edwards, Laura

    2014-01-15

    Evaluating the occurrence of microorganics helps to understand sources and processes which may be controlling the transport and fate of emerging contaminants (ECs). A study was carried out at the contrasting instrumented environmental observatory sites at Oxford, on the peri-urban floodplain gravel aquifer of the River Thames and Boxford, in the rural valley of the River Lambourn on the chalk aquifer, in Southern England to explore the use of ECs to fingerprint contaminant sources and flow pathways in groundwater. At Oxford compounds were typical of a local waste tip plume (not only plasticisers and solvents but also barbiturates and N,N-diethyl-m-toluamide (DEET)) and of the urban area (plasticisers and mood-enhancing drugs such as carbamazepine). At Boxford the results were different with widespread occurrence of agricultural pesticides, their metabolites and the solvent trichloroethene, as well as plasticisers, caffeine, butylated food additives, DEET, parabens and trace polyaromatic hydrocarbons (PAHs). Groups of compounds used in pharmaceuticals and personal care products of different provenance in the environment could be distinguished, i) historical household and medical waste, ii) long-term household usage persistent in groundwater and iii) current usage and contamination from surface water. Co-contaminant and degradation products can also indicate the likely source of contaminants. A cocktail of contaminants can be used as tracers to provide information on catchment pathways and groundwater/surface water interactions. A prominent feature in this study is the attenuation of many EC compounds in the hyporheic zone. PMID:24055671

  16. Scaffold of Asymmetric Organic Compounds - Magnetite Plaquettes

    NASA Technical Reports Server (NTRS)

    Chan, Q. H. S.; Zolensky, M. E.; Martinez, J.

    2015-01-01

    Life on Earth shows preference towards the set of organics with particular spatial configurations, this 'selectivity' is a crucial criterion for life. With only rare exceptions, life prefers the left- (L-) form over the right- (D-) form of amino acids, resulting in an L-enantiomeric excess (L-ee). Recent studies have shown Lee for alpha-methyl amino acids in some chondrites. Since these amino acids have limited terrestrial occurrence, the origin of their stereoselectivity is nonbiological, and it seems appropriate to conclude that chiral asymmetry, the molecular characteristic that is common to all terrestrial life form, has an abiotic origin. A possible abiotic mechanism that can produce chiral asymmetry in meteoritic amino acids is their formation with the presence of asymmetric catalysts, as mineral crystallization can produce spatially asymmetric structures. Magnetite is shown to be an effective catalyst for the formation of amino acids that are commonly found in chondrites. Magnetite 'plaquettes' (or 'platelets'), first described by Jedwab, show an interesting morphology of barrel-shaped stacks of magnetite disks with an apparent dislocation-induced spiral growth that seem to be connected at the center. A recent study by Singh et al. has shown that magnetites can self-assemble into helical superstructures. Such molecular asymmetry could be inherited by adsorbed organic molecules. In order to understand the distribution of 'spiral' magnetites in different meteorite classes, as well as to investigate their apparent spiral configurations and possible correlation to molecular asymmetry, we observed polished sections of carbonaceous chondrites (CC) using scanning electron microscope (SEM) imaging. The sections were also studied by electron backscattered diffraction (EBSD) in order to reconstruct the crystal orientation along the stack of magnetite disks.

  17. Study of organic contamination induced by outgassing materials. Application to the Laser MégaJoule optics

    NASA Astrophysics Data System (ADS)

    Favrat, O.; Mangote, B.; Tovena-Pécault, I.; Néauport, J.

    2014-02-01

    Organic contamination may decrease the targeted performances of coated surfaces. To study the contamination induced by surrounding materials, a method using a thermal extractor is presented in the first part of this work. Besides its normal operation (analyses of outgassing compounds from a material), this device is used in an original way to contaminate and decontaminate samples. Efficiency of contamination and decontamination protocols are assessed by automated thermal desorption and gas chromatography coupled with mass spectrometry and by secondary ion mass spectrometry coupled with a time of flight mass analyzer. This enables to study the contamination induced by a bulk material outgassing and to take in consideration the possible competition between outgassed species. This method is then applied to investigate contamination of Laser MégaJoule sol-gel coated optics by a retractable sheath. The impact of the temperature on the outgassing of the sheath has been highlighted. Increasing temperature from 30 to 50 °C enables the outgassing of organophosphorous compounds and increases the outgassing of oxygenated compounds and phthalates. Chemical analyses of contaminated optics have highlighted affinities between the sol-gel coating and phthalates and organophosphorous, and low affinities with aromatics and terpens. Finally, samples with increasing levels of contamination have been realized. However a saturation phenomenon is observed at 90 ng cm-2.

  18. Long-Term Fate of Organic Micropollutants in Sewage-Contaminated Groundwater

    USGS Publications Warehouse

    Barber, L.B., II; Schroeder, M.P.; LeBlanc, D.R.

    1988-01-01

    Disposal of secondary sewage effluent by rapid infiltration has produced a plume of contaminated groundwater over 3500 m long near Falmouth, MA. Approximately 50 volatile organic compounds were detected and identified in the plume, at concentrations ranging from 10 ng/L to 500 ??g/L, by closed-loop stripping and purge- and-trap in conjuction with gas chromatography-mass spectrometry. The dominant contaminants were di-, tri- and tetrachloroethene, o- and p-dichlorobenzene, C1 to C6 alkylbenzenes, 2,6-di-tert-butylbenzoquinone, and several isomers of p-nonylphenol. The chloroethenes and chlorobenzenes had the same general distribution as chloride and boron and appear to be transported with little retardation. Less soluble compounds, such as nonylphenol and di-tert-butylbenzoquinone, appear to be retarded during subsurface transport by sorption processes. Although biodegradation of labile organic compounds occurs near the infiltration beds, many trace compounds, including chlorinated benzenes, alkylbenzenes, and aliphatic hydrocarbons, have persisted for more than 30 years in the aquifer.

  19. Reducing Organic Contamination in NASA JSC Astromaterial Curation Facility

    NASA Technical Reports Server (NTRS)

    Calaway, M. J.; Allen, C. C.; Allton, J. H.

    2013-01-01

    Future robotic and human spaceflight missions to the Moon, Mars, asteroids and comets will require handling and storing astromaterial samples with minimal inorganic and organic contamination to preserve the scientific integrity of each sample. Much was learned from the rigorous attempts to minimize and monitor organic contamination during Apollo, but it was not adequate for current analytical requirements; thus [1]. OSIRIS-REx, Hayabusa-2, and future Mars sample return will require better protocols for reducing organic contamination. Future isolation con-tainment systems for astromaterials, possibly nitrogen enriched gloveboxes, must be able to reduce organic and inorganic cross-contamination. In 2012, a baseline study established the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs that could be used as a benchmark for future mission designs [2, 3]. After standard ultra-pure water (UPW) cleaning, the majority of organic contaminates found were hydrocarbons, plasticizers, silicones, and solvents. Hydro-carbons loads (> C7) ranged from 1.9 to 11.8 ng/cm2 for TD-GC-MS wafer exposure analyses and 5.0 to 19.5 ng/L for TD-GC-MS adsorbent tube exposure. Plasticizers included < 0.6 ng/cm2 of DBP, DEP, TXIB, and DIBP. Silicones included < 0.5 ng/cm2 of cyclo(Me2SiO)x (x = 6, 8, 9, 10) and siloxane. Solvents included < 1.0 ng/cm2 of 2-cyclohexen-1-one, 3,5,5-trimethyl- (Isopho-rone), N-formylpiperidine, and 2-(2-butoxyethoxy) ethanol. In addition, DBF, rubber/polymer additive was found at < 0.2 ng/cm2 and caprolactam, nylon-6 at < 0.6 ng/cm2. Reducing Organics: The Apollo program was the last sam-ple return mission to place high-level organic requirements and biological containment protocols on a curation facility. The high vacuum complex F-201 glovebox in the Lunar Receiving Labora-tory used ethyl alcohol (190 proof), 3:1 benzene/methanol (nano grade solution), and heat sterilization at 130degC for 48 hours to reduce organic

  20. Thermal decomposition studies of halogenated organic compounds

    SciTech Connect

    Michael, J.V.; Kumaran, S.S.

    1997-06-01

    Thermal decomposition results for CCl{sub 4}, CHCl{sub 3}, CH{sub 2}Cl{sub 2}, CH{sub 3}Cl, C{sub 3}H{sub 3}Cl, CFCl{sub 3}, CF{sub 2}Cl{sub 2}, CF{sub 3}Cl, CF{sub 2}HCl, CF{sub 3}I, CH{sub 3}I, C{sub 2}H{sub 5}I, C{sub 6}H{sub 5}I, and CCl{sub 2}O are presented. The results were obtained by shock tube techniques coupled with optical spectroscopic detection of transient species formed from dissociation. The method is illustrated with the CH{sub 3}I (+ Kr) {yields} CH{sub 3} + I (+ Kr) reaction where decomposition was monitored using I-atomic resonance absorption spectrometry (ARAS). Modern unimolecular rate theoretical analysis has been carried out on the present cases, and the conclusions from these calculations are discussed. Lastly, the possible destruction of halo-organics by incineration is considered and some implications are discussed.

  1. ENZYMATIC PROCESSES USED BY PLANTS TO DEGRADE ORGANIC COMPOUNDS

    EPA Science Inventory

    This is a review of recent plant enzyme systems that have been studied in uptake and transformation of organic contaminants. General procedures of plant preparation and enzyme isolation are covered. Six plant enzyme systems have been investigated for activity with selected pollut...

  2. Use of Bromine and Bromo-Organic Compounds in Organic Synthesis.

    PubMed

    Saikia, Indranirekha; Borah, Arun Jyoti; Phukan, Prodeep

    2016-06-22

    Bromination is one of the most important transformations in organic synthesis and can be carried out using bromine and many other bromo compounds. Use of molecular bromine in organic synthesis is well-known. However, due to the hazardous nature of bromine, enormous growth has been witnessed in the past several decades for the development of solid bromine carriers. This review outlines the use of bromine and different bromo-organic compounds in organic synthesis. The applications of bromine, a total of 107 bromo-organic compounds, 11 other brominating agents, and a few natural bromine sources were incorporated. The scope of these reagents for various organic transformations such as bromination, cohalogenation, oxidation, cyclization, ring-opening reactions, substitution, rearrangement, hydrolysis, catalysis, etc. has been described briefly to highlight important aspects of the bromo-organic compounds in organic synthesis. PMID:27199233

  3. Mechanical alloying of a hydrogenation catalyst used for the remediation of contaminated compounds

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Aitken, Brian S. (Inventor)

    2010-01-01

    A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. Preferably, the hydrogenation catalyst is a bimetallic particle including zero-valent metal particles coated with a catalytic material. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts.

  4. Mechanical alloying of a hydrogenation catalyst used for the remediation of contaminated compounds

    NASA Technical Reports Server (NTRS)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Aitken, Brian S. (Inventor)

    2012-01-01

    A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. Preferably, the hydrogenation catalyst is a bimetallic particle including zero-valent metal particles coated with a catalytic material. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts.

  5. Inclusion of emerging organic contaminants in groundwater monitoring plans.

    PubMed

    Lamastra, Lucrezia; Balderacchi, Matteo; Trevisan, Marco

    2016-01-01

    Groundwater is essential for human life and its protection is a goal for the European policies. All the anthropogenic activities could impact on water quality. •Conventional pollutants and more than 700 emerging pollutants, resulting from point and diffuse source contamination, threat the aquatic ecosystem.•Policy-makers and scientists will have to cooperate to create an initial groundwater emerging pollutant priority list, to answer at consumer demands for safety and to the lack of conceptual models for emerging pollutants in groundwater.•Among the emerging contaminants and pollutants this paper focuses on organic wastewater contaminants (OWCs) mainly released into the environment by domestic households, industry, hospitals and agriculture. This paper starts from the current regulatory framework and from the literature overview to explain how the missing conceptual model for OWCs could be developed.•A full understanding of the mechanisms leading to the contamination and the evidence of the contamination must be the foundation of the conceptual model. In this paper carbamazepine, galaxolide and sulfamethozale, between the OWCs, are proposed as "environmental tracers" to identify sources and pathways ofcontamination/pollution. PMID:27366676

  6. Removal of organic wastewater contaminants in septic systems using advanced treatment technologies

    USGS Publications Warehouse

    Wilcox, J.D.; Bahr, J.M.; Hedman, C.J.; Hemming, J.D.C.; Barman, M.A.E.; Bradbury, K.R.

    2009-01-01

    The detection of pharmaceuticals and other organic wastewater contaminants (OWCs) in ground water and surface-water bodies has raised concerns about the possible ecological impacts of these compounds on nontarget organisms. On-site wastewater treatment systems represent a potentially significant route of entry for organic contaminants to the environment. In this study, effluent samples were collected and analyzed from conventional septic systems and from systems using advanced treatment technologies. Six of 13 target compounds were detected in effluent from at least one septic system. Caffeine, paraxanthine, and acetaminophen were the most frequently detected compounds, and estrogenic activity was detected in 14 of 15 systems. The OWC concentrations were significantly lower in effluent after sand filtration (p < 0.01) or aerobic treatment (p < 0.05) as compared with effluent that had not undergone advanced treatment. In general, concentrations in conventional systems were comparable to those measured in previous studies of municipal wastewater treatment plant (WWTP) influent, and concentrations in systems after advanced treatment were comparable to previously measured concentrations in WWTP effluent. These data indicate that septic systems using advanced treatment can reduce OWCs in treated effluent to similar concentrations as municipal WWTPs. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  7. The Effect of Golden Pothos in Reducing the Level of Volatile Organic Compounds in a Simulated Spacecraft Cabin

    NASA Technical Reports Server (NTRS)

    Ursprung, Matthew; Amiri, Azita; Kayatin, Matthew; Perry, Jay

    2016-01-01

    The impact of Golden Pothos on indoor air quality was studied against a simulated spacecraft trace contaminant load model, consistent with the International Space Station (ISS), containing volatile organic compounds (VOCs) and formaldehyde. Previous research provides inconclusive results on the efficacy of plant VOC removal which this projects seeks to rectify through a better experimental design. This work develops a passive system for removing common VOC's from spacecraft and household indoor air and decreasing the necessity for active cabin trace contaminant removal systems.

  8. Report of the Organic Contamination Science Steering Group

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Beaty, D. W.; Anderson, M. S.; Aveni, G.; Bada, J. L.; Clemett, S. J.; DesMaris, D. J.; Douglas, S.; Dworkin, J. P.; Kern, R. G.

    2004-01-01

    The exploration of the possible emergence and duration of life on Mars from landed platforms requires attention to the quality of measurements that address these objectives. In particular, the potential impact of terrestrial contamination on the measurement of reduced carbon with sensitive in situ instruments must be addressed in order to reach definitive conclusions regarding the source of organic molecules. Following the recommendation of the Mars Exploration Program Analysis Group (MEPAG) at its September 2003 meeting [MEPAG, 2003], the Mars Program Office at NASA Headquarters chartered the Organic Contamination Science Steering Group (OCSSG) to address this issue. The full report of the six week study of the OCSSG can be found on the MEPAG web site [1]. The study was intended to define the contamination problem and to begin to suggest solutions that could provide direction to the engineering teams that design and produce the Mars landed systems. Requirements set by the Planetary Protection Policy in effect for any specific mission do not directly address this question of the potential interference from terrestrial contaminants during in situ measurements.

  9. Improving rubber concrete by waste organic sulfur compounds.

    PubMed

    Chou, Liang-Hisng; Lin, Chun-Nan; Lu, Chun-Ku; Lee, Cheng-Haw; Lee, Maw-Tien

    2010-01-01

    In this study, the use of crumb tyres as additives to concrete was investigated. For some time, researchers have been studying the physical properties of concrete to determine why the inclusion of rubber particles causes the concrete to degrade. Several methods have been developed to improve the bonding between rubber particles and cement hydration products (C-S-H) with the hope of creating a product with an improvement in mechanical strength. In this study, the crumb tyres were treated with waste organic sulfur compounds from a petroleum refining factory in order to modify their surface properties. Organic sulfur compounds with amphiphilic properties can enhance the hydrophilic properties of the rubber and increase the intermolecular interaction forces between rubber and C-S-H. In the present study, a colloid probe of C-S-H was prepared to measure these intermolecular interaction forces by utilizing an atomic force microscope. Experimental results showed that rubber particles treated with waste organic sulfur compounds became more hydrophilic. In addition, the intermolecular interaction forces increased with the adsorption of waste organic sulfur compounds on the surface of the rubber particles. The compressive, tensile and flexural strengths of concrete samples that included rubber particles treated with organic sulfur compound also increased significantly. PMID:19710121

  10. Exposure to Volatile Organic Compounds and Possibility of Exposure to By-product Volatile Organic Compounds in Photolithography Processes in Semiconductor Manufacturing Factories

    PubMed Central

    Shin, Jung-Ah; Park, Hyun-Hee; Yi, Gwang Yong; Chung, Kwang-Jae; Park, Hae-Dong; Kim, Kab-Bae; Lee, In-Seop

    2011-01-01

    Objectives The purpose of this study was to measure the concentration of volatile organic compound (VOC)s originated from the chemicals used and/or derived from the original parental chemicals in the photolithography processes of semiconductor manufacturing factories. Methods A total of four photolithography processes in 4 Fabs at three different semiconductor manufacturing factories in Korea were selected for this study. This study investigated the types of chemicals used and generated during the photolithography process of each Fab, and the concentration levels of VOCs for each Fab. Results A variety of organic compounds such as ketone, alcohol, and acetate compounds as well as aromatic compounds were used as solvents and developing agents in the processes. Also, the generation of by-products, such as toluene and phenol, was identified through a thermal decomposition experiment performed on a photoresist. The VOC concentration levels in the processes were lower than 5% of the threshold limit value (TLV)s. However, the air contaminated with chemical substances generated during the processes was re-circulated through the ventilation system, thereby affecting the airborne VOC concentrations in the photolithography processes. Conclusion Tens of organic compounds were being used in the photolithography processes, though the types of chemical used varied with the factory. Also, by-products, such as aromatic compounds, could be generated during photoresist patterning by exposure to light. Although the airborne VOC concentrations resulting from the processes were lower than 5% of the TLVs, employees still could be exposed directly or indirectly to various types of VOCs. PMID:22953204

  11. Development of urine standard reference materials for metabolites of organic chemicals including polycyclic aromatic hydrocarbons, phthalates, phenols, parabens, and volatile organic compounds.

    PubMed

    Schantz, Michele M; Benner, Bruce A; Heckert, N Alan; Sander, Lane C; Sharpless, Katherine E; Vander Pol, Stacy S; Vasquez, Y; Villegas, M; Wise, Stephen A; Alwis, K Udeni; Blount, Benjamin C; Calafat, Antonia M; Li, Zheng; Silva, Manori J; Ye, Xiaoyun; Gaudreau, Éric; Patterson, Donald G; Sjödin, Andreas

    2015-04-01

    Two new Standard Reference Materials (SRMs), SRM 3672 Organic Contaminants in Smokers' Urine (Frozen) and SRM 3673 Organic Contaminants in Non-Smokers' Urine (Frozen), have been developed in support of studies for assessment of human exposure to select organic environmental contaminants. Collaborations among three organizations resulted in certified values for 11 hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and reference values for 11 phthalate metabolites, 8 environmental phenols and parabens, and 24 volatile organic compound (VOC) metabolites. Reference values are also available for creatinine and the free forms of caffeine, theobromine, ibuprofen, nicotine, cotinine, and 3-hydroxycotinine. These are the first urine Certified Reference Materials characterized for metabolites of organic environmental contaminants. Noteworthy, the mass fractions of the environmental organic contaminants in the two SRMs are within the ranges reported in population survey studies such as the National Health and Nutrition Examination Survey (NHANES) and the Canadian Health Measures Survey (CHMS). These SRMs will be useful as quality control samples for ensuring compatibility of results among population survey studies and will fill a void to assess the accuracy of analytical methods used in studies monitoring human exposure to these organic environmental contaminants. PMID:25651899

  12. Quaternary ammonium compounds in urban estuarine sediment environments--a class of contaminants in need of increased attention?

    PubMed

    Li, Xiaolin; Brownawell, Bruce J

    2010-10-01

    The distributions of wastewater-derived quaternary ammonium compounds (QACs) were determined in surficial sediments (n = 47) collected from the urbanized lower Hudson River basin. The most abundant class of QACs were dialkyldimethylammonium compounds (DADMACs, with C8 to C18 carbon chain lengths; median ΣDADMAC = 26 μg/g), followed by benzylalkyldimethylammonium compounds (BAC, C12-C18; 1.5 μg/g), and alkyltrimethylammonium compounds (ATMAC, primarily C16 and C18; 0.52 μg/g). The concentrations of total QACs are higher than those of other conventional organic contaminants determined on the same samples (e.g., median ΣPAH level of 2.1 μg/g). Comparatively high concentrations, correlations with sewage derived contaminants, and the relatively constant compositions of QACs observed over large areas suggest that many sediment-sorbed QACs can be relatively persistent in receiving waters. Unusually large concentration-dependent sorption is considered as a mechanism that likely affects persistence of these intrinsically biodegradable chemicals under field conditions. There has been comparatively little field-based research on these classes of cationic surfactants; given the levels of QACs observed here, it is suggested that further investigation is warranted. PMID:20804121

  13. Organic mercury exposure from fungicide-contaminated eggs

    SciTech Connect

    Englender, S.J.; Landrigan, P.J.; Greenwood, M.R.; Atwood, R.G.; Clarkson, T.W.; Smith, J.C.

    1980-07-01

    During a period of 50 to 55 days from early January to March 2, 1979, 14 members of an extended family in Yakima, Washington, ate eggs contaminated with organic mercury. Seed grain which had been treated with a mercurial fungicide and fed to chickens in a home flock was the source of exposure. Blood mercury levels in family members ranged from 0.9 to 20.2 ppB and correlated positively with average daily egg consumption (r = 0.92). There were no symptoms or physical signs of organic mercury intoxication. Prompt confiscation of the contaminated grain, eggs, and chicken flock terminated the exposure and may have prevented the development of serious illness.

  14. Volatile organic compounds in Gulf of Mexico sediments

    SciTech Connect

    McDonald, T.J.

    1988-01-01

    Volatile organic compounds (VOC), concentrations and compositions were documented for estuarine, coastal, shelf, slope, and deep water sediments from the Gulf of Mexico. VOC were measured (detection limit >0.01 ppb) using a closed-loop stripping apparatus with gas chromatography (GC) and flame ionization, flame photometric, and mass spectrometric detectors. The five primary sources of Gulf of Mexico sediment VOC are: (1) planktonic and benthic fauna and flora; (2) terrestrial material from riverine and atmospheric deposition; (3) anthropogenic inputs: (4) upward migration of hydrocarbons; and (5) transport by bottom currents or slumping. Detected organo-sulfur compounds include alkylated sulfides, thiophene, alkylated thiophenes, and benzothiophenes. Benzothiophenes are petroleum related. Low molecular weight organo-sulfur compounds result from the biological oxidation of organic matter. A lack of organosulfur compounds in the reducing environment of the Orca Basin may result from a lack of free sulfides which are necessary for their production.

  15. Filtration of water-sediment samples for the determination of organic compounds

    USGS Publications Warehouse

    Sandstrom, Mark W.

    1995-01-01

    This report describes the equipment and procedures used for on-site filtration of surface-water and ground-water samples for determination of organic compounds. Glass-fiber filters and a positive displacement pumping system are suitable for processing most samples for organic analyses. An optional system that uses disposable in-line membrane filters is suitable for a specific gas chromatography/mass spectrometry, selected-ion monitoring analytical method for determination of organonitrogen herbicides. General procedures to minimize contamination of the samples include preparing a clean workspace at the site, selecting appropriate sample-collection materials, and cleaning of the equipment with detergent, tap water, and methanol.

  16. Multi-element compound specific stable isotope analysis of volatile organic compounds at trace levels in groundwater samples

    NASA Astrophysics Data System (ADS)

    Herrero-Martín, Sara; Nijenhuis, Ivonne; Schmidt, Marie; Wolfram, Diana; Richnow, Hans. H.; Gehre, Matthias

    2013-04-01

    Groundwater pollution remains one of the major environmental and health concerns. A thorough understanding of sources, sinks and transformation processes of groundwater contaminants is needed to improve risk management evaluation, and to design efficient remediation and water treatment strategies. Isotopic tools provide unique information for an in-depth understanding of the fate of organic chemicals in the environment. During the last decades compound specific isotope analysis (CSIA) of complex mixtures, using gas chromatography-isotope ratio mass spectrometry (GC-IRMS), has gained popularity for the characterization and risk assessment of hazardous waste sites and for isotope forensics of organic contaminants. Multi-element isotope fingerprinting of organic substances provides a more robust framework for interpretation than the isotope analysis of only one element. One major challenge for application of CSIA is the analysis of trace levels of organic compounds in environmental matrices. It is necessary to inject 1 nmol carbon or 8 nmol hydrogen on column, to obtain an accurate and precise measurement of the isotope ratios, which is between two and three orders of magnitude larger than the amount of compound needed for conventional analysis of compound concentrations. Therefore, efficient extraction and pre-concentration techniques have to be integrated with GC-IRMS. Further research is urgently needed in this field, to evaluate the potential of novel and environmental-friendly sample pre-treatment techniques for CSIA to lower the detection limits and extending environmental applications. In this study, the novel coupling of a headspace autosampler (HS) with a programmed temperature vaporizer (PTV), allowing large volume injection of headspace samples, is proposed to improve the sensitivity of CSIA. This automatic, fast and solvent free strategy provides a significant increase on the sensitivity of GC-based methods maintaining the simple headspace instrumentation

  17. TREATMENT ALTERNATIVES FOR CONTROLLING CHLORINATED ORGANIC CONTAMINANTS IN DRINKING WATER

    EPA Science Inventory

    A pilot plant study was conducted by the City of Thornton, Colorado, to evaluate techniques for controlling chlorinated organic compounds formed in drinking water as a result of breakpoint, or free, chlorination. The pilot plant was operated for 46 months using the raw water sour...

  18. Emerging Contaminant Issues, Including Management Of Emerging Contaminants In Wastewater

    EPA Science Inventory

    Emerging contaminants are receiving increasing media and scientific attention. These chemicals are sometimes referred to as compounds of emerging concern or trace organic compounds, and include several groups of chemicals including endocrine disrupting compounds (EDCs), and pha...

  19. Transport of Organic Contaminants Mobilized from Coal through Sandstone Overlying a Geological Carbon Sequestration Reservoir

    SciTech Connect

    Zhong, Lirong; Cantrell, Kirk J.; Bacon, Diana H.; Shewell, Jesse L.

    2014-02-01

    Column experiments were conducted using a wetted sandstone rock installed in a tri-axial core holder to study the flow and transport of organic compounds mobilized by scCO2 under simulated geologic carbon storage (GCS) conditions. The sandstone rock was collected from a formation overlying a deep saline reservoir at a GCS demonstration site. Rock core effluent pressures were set at 0, 500, or 1000 psig and the core temperature was set at 20 or 50°C to simulate the transport to different subsurface depths. The concentrations of the organic compounds in the column effluent and their distribution within the sandstone core were monitored. Results indicate that the mobility though the core sample was much higher for BTEX compounds than for naphthalene. Retention of organic compounds from the vapor phase to the core appeared to be primarily controlled by partitioning from the vapor phase to the aqueous phase. Adsorption to the surfaces of the wetted sandstone was also significant for naphthalene. Reduced temperature and elevated pressure resulted in greater partitioning of the mobilized organic contaminants into the water phase.

  20. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    NASA Astrophysics Data System (ADS)

    George, Ingrid J.; Black, Robert R.; Geron, Chris D.; Aurell, Johanna; Hays, Michael D.; Preston, William T.; Gullett, Brian K.

    2016-05-01

    In this study, volatile and semi-volatile organic compound (VOCs and SVOCs) mass emission factors were determined from laboratory peat fire experiments. The peat samples originated from two National Wildlife Refuges on the coastal plain of North Carolina, U.S.A. Gas- and particle-phase organic compounds were quantified by gas chromatography-mass spectrometry and by high pressure liquid chromatography. Hazardous air pollutants (HAPs) accounted for a large fraction (∼60%) of the speciated VOC emissions from peat burning, including large contributions of acetaldehyde, formaldehyde, benzene, toluene, and chloromethane. In the fine particle mass (PM2.5), the following organic compound classes were dominant: organic acids, levoglucosan, n-alkanes, and n-alkenes. Emission factors for the organic acids in PM2.5 including n-alkanoic acids, n-alkenoic acids, n-alkanedioic acids, and aromatic acids were reported for the first time for peat burning, representing the largest fraction of organic carbon (OC) mass (11-12%) of all speciated compound classes measured in this work. Levoglucosan contributed to 2-3% of the OC mass, while methoxyphenols represented 0.2-0.3% of the OC mass on a carbon mass basis. Retene was the most abundant particulate phase polycyclic aromatic hydrocarbon (PAH). Total HAP VOC and particulate PAH emissions from a 2008 peat wildfire in North Carolina were estimated, suggesting that peat fires can contribute a large fraction of state-wide HAP emissions.

  1. GROUNDWATER TRANSPORT OF HYDROPHOBIC ORGANIC COMPOUNDS IN THE PRESENCE OF DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    The effects of dissolved organic matter (DOM) on the transport of hydrophobic organic compounds in soil columns were investigated. Three compounds (naphthalene, phenanthrene and DDT) that spanned three orders of magnitude in water solubility were used. Instead of humic matter, mo...

  2. Controlled field evaluation of water flow rate effects on sampling polar organic compounds using polar organic chemical integrative samplers.

    PubMed

    Li, Hongxia; Vermeirssen, Etiënne L M; Helm, Paul A; Metcalfe, Chris D

    2010-11-01

    The uptake of polar organic contaminants into polar organic chemical integrative samplers (POCIS) varies with environmental factors, such as water flow rate. To evaluate the influence of water flow rate on the uptake of contaminants into POCIS, flow-controlled field experiments were conducted with POCIS deployed in channel systems through which treated sewage effluent flowed at rates between 2.6 and 37 cm/s. Both pharmaceutical POCIS and pesticide POCIS were exposed to effluent for 21 d and evaluated for uptake of pharmaceuticals and personal care products (PPCPs) and endocrine disrupting substances (EDS). The pesticide POCIS had higher uptake rates for PPCPs and EDS than the pharmaceutical POCIS, but there are some practical advantages to using pharmaceutical POCIS. The uptake of contaminants into POCIS increased with flow rate, but these effects were relatively small (i.e., less than twofold) for most of the test compounds. There was no relationship observed between the hydrophobicity (log octanol/water partition coefficient, log K(OW)) of model compounds and the effects of flow rate on the uptake kinetics by POCIS. These data indicate that water flow rate has a relatively minor influence on the accumulation of PPCPs and EDS into POCIS. PMID:20865700

  3. Advances in Dynamic Transport of Organic Contaminants in Karst Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Padilla, I. Y.; Vesper, D.; Alshawabkeh, A.; Hellweger, F.

    2011-12-01

    Karst groundwater systems develop in soluble rocks such as limestone, and are characterized by high permeability and well-developed conduit porosity. These systems provide important freshwater resources for human consumption and ecological integrity of streams, wetlands, and coastal zones. The same characteristics that make karst aquifers highly productive make them highly vulnerable to contamination. As a result, karst aquifers serve as an important route for contaminants exposure to humans and wildlife. Transport of organic contaminants in karst ground-water occurs in complex pathways influenced by the flow mechanism predominating in the aquifer: conduit-flow dominated systems tend to convey solutes rapidly through the system to a discharge point without much attenuation; diffuse-flow systems, on the other hand, can cause significant solute retardation and slow movement. These two mechanisms represent end members of a wide spectrum of conditions found in karst areas, and often a combination of conduit- and diffuse-flow mechanisms is encountered, where both flow mechanisms can control the fate and transport of contaminants. This is the case in the carbonate aquifers of northern Puerto Rico. This work addresses advances made on the characterization of fate and transport processes in karst ground-water systems characterized by variable conduit and/or diffusion dominated flow under high- and low-flow conditions. It involves laboratory-scale physical modeling and field-scale sampling and historical analysis of contaminant distribution. Statistical analysis of solute transport in Geo-Hydrobed physical models shows the heterogeneous character of transport dynamics in karstic units, and its variability under different flow regimes. Field-work analysis of chlorinated volatile organic compounds and phthalates indicates a large capacity of the karst systems to store and transmit contaminants. This work is part of the program "Puerto Rico Testsite for Exploring Contamination

  4. INITIAL PHASE OPTIMIZATION FOR BIOREMEDIATION OF MUNITION COMPOUND-CONTAMINATED SOILS

    EPA Science Inventory

    We examined the bioremediation of soils contaminated with the munition compounds 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1, 3,5,7-tetranitro-1,3,5,7-tetraacocine by a procedure that produced anaerobic conditions in the soils and promote...

  5. Effects of diverse organic contaminants on trichloroethylene degradation by methanotrophic bacteria and methane-utilizing consortia

    SciTech Connect

    Palumbo, A.V.; Boerman, P.A.; Herbes, S.E. . Environmental Sciences Div.); Eng, W. . Center for Health Sciences); Strandberg, G.W.; Donaldson, T.L. . Chemical Technology Div.)

    1991-01-01

    Groundwater contaminated with organic compounds, especially solvents such as benzene, trichloroethylene (TCE), perchloroethene (PCE), carbon tetrachloride, and chlorinated ethanes, is a problem at many US Department of Energy facilities including the Oak Ridge National Laboratory (ORNL). Regulations require consideration of alternatives for remediation of these sites. A demonstration project was initiated in the spring of 1990 that will permit evaluation of two cometabolic approaches to remediation of groundwater and may lead to remediation alternatives that prove both more effective and less costly than traditional methods. More generally, the demonstration will provide valuable information on the applicability of bioremediation to a groundwater contamination problem at numerous DOE sites. The purpose of this research is to examine the effects of contaminants commonly found in association with TCE at DOE sites and to determine the conditions required for maximizing TCE degradation rates. This study focuses on compounds found in a seep at the ORNL K-25 site. The research presented here details initial experiments on TCE degradation by methanotrophs conducted in the presence of a synthetic medium, TCE, and one or more contaminants found at the K-25 site. Formate has been reported to increase the rate of TCE degradation by pure cultures but had not been tested with mixed cultures. As part of the effort to maximize TCE degradation rates, we examined the effect of formate on degradation by a mixed culture. 5 figs., 1 tab.

  6. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOEpatents

    Vo-Dinh, Tuan

    1987-01-01

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique.

  7. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOEpatents

    Vo-Dinh, T.

    1987-07-14

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique. 7 figs.

  8. Occurrence of pharmaceuticals, hormones, and organic wastewater compounds in Pennsylvania waters, 2006-09

    USGS Publications Warehouse

    Reif, Andrew G.; Crawford, J. Kent; Loper, Connie A.; Proctor, Arianne; Manning, Rhonda; Titler, Robert

    2012-01-01

    Concern over the presence of contaminants of emerging concern, such as pharmaceutical compounds, hormones, and organic wastewater compounds (OWCs), in waters of the United States and elsewhere is growing. Laboratory techniques developed within the last decade or new techniques currently under development within the U.S. Geological Survey now allow these compounds to be measured at concentrations in nanograms per liter. These new laboratory techniques were used in a reconnaissance study conducted by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Protection, to determine the occurrence of contaminants of emerging concern in streams, streambed sediment, and groundwater of Pennsylvania. Compounds analyzed for in the study are pharmaceuticals (human and veterinary drugs), hormones (natural and synthetic), and OWCs (detergents, fragrances, pesticides, industrial compounds, disinfectants, polycyclic aromatic hydrocarbons, fire retardants and plasticizers). Reconnaissance sampling was conducted from 2006 to 2009 to identify contaminants of emerging concern in (1) groundwater from wells used to supply livestock, (2) streamwater upstream and downstream from animal feeding operations, (3) streamwater upstream from and streamwater and streambed sediment downstream from municipal wastewater effluent discharges, (4) streamwater from sites within 5 miles of drinking-water intakes, and (5) streamwater and streambed sediment where fish health assessments were conducted. Of the 44 pharmaceutical compounds analyzed in groundwater samples collected in 2006 from six wells used to supply livestock, only cotinine (a nicotine metabolite) and the antibiotics tylosin and sulfamethoxazole were detected. The maximum concentration of any contaminant of emerging concern was 24 nanograms per liter (ng/L) for cotinine, and was detected in a groundwater sample from a Lebanon County, Pa., well. Seven pharmaceutical compounds including acetaminophen

  9. Precipitation of organic arsenic compounds and their degradation products during struvite formation.

    PubMed

    Lin, Jin-Biao; Yuan, Shoujun; Wang, Wei; Hu, Zhen-Hu; Yu, Han-Qing

    2016-11-01

    Roxarsone (ROX) and arsanilic acid (ASA) have been extensively used as organoarsenic animal feed additives. Organic arsenic compounds and their degradation products, arsenate (As(V)) and arsenite (As(III)), exist in the effluent from anaerobic reactors treating animal manure contaminated by ROX or ASA with ammonium (NH4(+)-N) and phosphate (PO4(3-)-P) together. Therefore, arsenic species in the effluent might be involved in the struvite formation process. In this study, the involvement of organic arsenic compounds and their degradation products As(V) and As(III) in the struvite crystallization was investigated. The results demonstrated that arsenic compounds did not substantially affect the PO4(3-)-P recovery, but confirmed the precipitation of arsenic during struvite formation. The precipitation of arsenic compounds in struvite was considerably affected by a solution pH from 9.0 to 11.0. With an increase in pH, the content of ASA and ROX in the precipitation decreased, but the contents of As(III) and As(V) increased. In addition, the arsenic content of As(V) in the struvite was higher than that of As(III), ASA and ROX. The results indicated that the struvite could be contaminated when the solution contains arsenic species, but that could be minimized by controlling the solution pH and maintaining anaerobic conditions during struvite formation. PMID:27262276

  10. Simplified Production of Organic Compounds Containing High Enantiomer Excesses

    NASA Technical Reports Server (NTRS)

    Cooper, George W. (Inventor)

    2015-01-01

    The present invention is directed to a method for making an enantiomeric organic compound having a high amount of enantiomer excesses including the steps of a) providing an aqueous solution including an initial reactant and a catalyst; and b) subjecting said aqueous solution simultaneously to a magnetic field and photolysis radiation such that said photolysis radiation produces light rays that run substantially parallel or anti-parallel to the magnetic field passing through said aqueous solution, wherein said catalyst reacts with said initial reactant to form the enantiomeric organic compound having a high amount of enantiomer excesses.

  11. ORGANIC CONTAMINANTS IN SEDIMENTS FROM THE TRENTON CHANNEL OF THE DETROIT RIVER, MI

    EPA Science Inventory

    Anthropogenic organic contaminants in sediments from the Trenton Channel of the Detroit River, a highly industrialized waterway connecting Lake St. Clair with Lake Erie, were identified and quantified. he four major classes of organic contaminants identified were polycyclic aroma...

  12. Determining Passive Sampler Partition Coefficients for Dissolved-phase Organic Contaminants

    EPA Science Inventory

    Passive samplers are used for environmental and analytical purposes to measure dissolved nonionic organic contaminants (NOCs) by absorption from a contaminated medium into a clean phase, usually in the form of a synthetic organic film. Recently developed passive sampler techniqu...

  13. Detection of Organic Compounds with Whole-Cell Bioluminescent Bioassays

    PubMed Central

    Xu, Tingting; Close, Dan; Smartt, Abby; Ripp, Steven

    2015-01-01

    Natural and manmade organic chemicals are widely deposited across a diverse range of ecosystems including air, surface water, groundwater, wastewater, soil, sediment, and marine environments. Some organic compounds, despite their industrial values, are toxic to living organisms and pose significant health risks to humans and wildlife. Detection and monitoring of these organic pollutants in environmental matrices therefore is of great interest and need for remediation and health risk assessment. Although these detections have traditionally been performed using analytical chemical approaches that offer highly sensitive and specific identification of target compounds, these methods require specialized equipment and trained operators, and fail to describe potential bioavailable effects on living organisms. Alternatively, the integration of bioluminescent systems into whole-cell bioreporters presents a new capacity for organic compound detection. These bioreporters are constructed by incorporating reporter genes into catabolic or signaling pathways that are present within living cells and emit a bioluminescent signal that can be detected upon exposure to target chemicals. Although relatively less specific compared to analytical methods, bioluminescent bioassays are more cost-effective, more rapid, can be scaled to higher throughput, and can be designed to report not only the presence but also the bioavailability of target substances. This chapter reviews available bacterial and eukaryotic whole-cell bioreporters for sensing organic pollutants and their applications in a variety of sample matrices. PMID:25084996

  14. Volatile organic compounds (VOCs): Remediation for groundwater. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-11-01

    The bibliography contains citations concerning groundwater contamination by volatile organic compounds (VOCs) and treatment technology for reclamation. Citations discuss treatments such as activated carbon, biological degradation, stripping, aeration, and catalytic oxidation. Articles discuss applications of these techniques to landfills, hazardous waste sites, and Superfund sites. (Contains a minimum of 201 citations and includes a subject term index and title list.)

  15. Effects Of Evaporation Rate of Some Common Organic Contaminants on Hydraulic Conductivity of Aquifer Sand

    NASA Astrophysics Data System (ADS)

    Saud, Q. J.; Hasan, S. E.

    2014-12-01

    As part of a larger study to investigate potential effects of hydrocarbons on the geotechnical properties of aquifer solids, a series of laboratory experiments were carried out to ascertain the influence of evaporation rate of some common and widespread organic contaminants on the hydraulic conductivity of aquifer sand. Gasoline and its constituent chemicals-benzene, toluene, ethylbenzene, xylene (BTEX), isooctane- and trichloroethylene (TCE) were used to contaminate sand samples collected from the aquifer and vadose zone, at varying concentrations for extended periods of time. The goal was to study any change in the chemical makeup of the contaminants and its control on hydraulic conductivity of the sand. It was found that: (a) gasoline breaks down into constituent compounds when subjected to evaporation, e.g. during oil spills and leaks; and (b) lighter compounds volatilize faster and in the following order: TCE> benzene > isooctane > toluene > gasoline> ethylbenzene > xylene. In addition, these contaminants also caused a decrease in hydraulic conductivity of sand by up to 60% as compared to the uncontaminated sand. The inherent differences in the chemical structure of contaminating chemicals influenced hydraulic conductivity such that the observed decrease was greater for aliphatic than aromatic and chlorinated hydrocarbons. The presentation includes details of the experimental set up; evaporation rate, and geotechnical tests; X-ray diffraction and scanning electron microscope studies; and data analyses and interpretation. Rate of evaporation test indicates that residual LNAPLs will occupy a certain portion of the pores in the soil either as liquid or vapor phase in the vadose zone, and will create a coating on the adjacent solid mineral grains in the aquifer. Replacement of air by the LNAPLs along with grain coatings and the intramolecular forces would impede groundwater movement, thus affecting overall permeability of contaminated aquifers. Keywords: aquifer

  16. Contribution of microorganisms to non-extractable residue formation from biodegradable organic contaminants in soil

    NASA Astrophysics Data System (ADS)

    Nowak, K. M.; Girardi, C.; Miltner, A.; Schäffer, A.; Kästner, M.

    2012-04-01

    Biodegradation of organic contaminants in soil is actually understood as their transformation into various primary metabolites, microbial biomass, mineralisation products and non-extractable residues (NER). NER are generally considered to be composed of parent compounds or primary metabolites with hazardous potential. Up to date, however, their chemical composition remains still unclear. Studies on NER formation are limited to quantitative analyses in soils or to simple humic acids-contaminant systems. However, in the case of biodegradable organic compounds, NER may also contain microbial biomass components, e.g. fatty acids (FA) and amino acids (AA). After cell death, these biomolecules are incorporated into soil organic matter (SOM) and stabilised, ultimately forming biogenic residues which are not any more extractable. We investigated the incorporation of the 13C-label into FA and AA and their fate during biodegradation experiments in soil with isotope-labelled 2,4-dichlorophenoxyacetic acid (13C6-2,4-D) and ibuprofen (13C6-ibu) as model organic contaminants. Our study proved for the first time that nearly all NER formed from 13C6-2,4-D and 13C6-ibu in soil derived from harmless microbial biomass components stabilised in SOM. 13C-FA and 13C-AA contents in the living microbial biomass fraction decreased over time and these components were continuously incorporated into the non-living SOM pool in biotic experiments with 13C6-2,4-D and 13C6-ibu. The 13C-AA in the non-living SOM were surprisingly stable from day 32 (13C6-2,4-D) and 58 (13C6-ibu) until the end of incubation. We also studied the transformation of 13C6-2,4-D and 13C6-ibu into NER in the abiotic soil experiments. In these experiments, the total NER contents were much lower than in the corresponding biotic experiments. The absence of labelled biomolecules in the NER fraction in abiotic soils demonstrated that they consist of the potentially hazardous parent compounds and / or their metabolites. Biogenic

  17. Biodegradation of organic contaminants in subsurface systems: Kinetic and metabolic considerations

    SciTech Connect

    Morris, M.S.

    1988-01-01

    Groundwater contaminated by organic chemicals from industrial spills, leaking underground gasoline storage tanks and landfills has caused concern about the future of a major source of drinking water. A potential alternative to expensive groundwater reclamation projects is the use of natural soil bacteria to degrade organic contaminants. This study was designed to measure the kinetic response of tertiary butyl alcohol (TBA), determine the biological degradation rates of methanol, ethanol, propanol, l-butanol, TBA, pentanol, phenol and 2,4-dichlorophenol; describe site specific conditions which enhance or inhibit degradation and compare biodegradation rates with thermodynamic predictions. Each of the test compounds except TBA was readily degraded in the Blacksburg soil. Inhibition of sulfate reduction by the addition of molybdate stimulated degradation of all compounds including TBA, whereas, inhibition of methanogenesis with BESA slowed the degradation rates. The addition of nitrate did not affect the biodegradation in Blacksburg soil. In the Newport News soil, all of the test compounds were biodegraded at substantially higher rates than was observed in the Blacksburg soil. The presence of the metabolic inhibitors did not affect degradation, however, the addition of nitrate increased the degradation rates of the alcohols but not the phenols. The degradation rates in each of the soils did not correlate with the bacterial population size or free energies of the reactions.

  18. Development of HUMASORB{trademark}, a lignite derived humic acid for removal of metals and organic contaminants from groundwater

    SciTech Connect

    Sanjay, H.G.; Srivastave, K.C.; Walia, D.S.

    1995-10-01

    Heavy metal and organic contamination of surface and groundwater systems is a major environmental concern. The contamination is primarily due to improperly disposed industrial wastes. The presence of toxic heavy metal ions, volatile organic compounds (VOCs) and pesticides in water is of great concern and could affect the safety of drinking water. Decontamination of surface and groundwater can be achieved using a broad spectrum of treatment options such as precipitation, ion-exchange, microbial digestion, membrane separation, activated carbon adsorption, etc. The state of the art technologies for treatment of contaminated water however, can in one pass remediate only one class of contaminants, i.e., either VOCs (activated carbon) or heavy metals (ion exchange). This would require the use of at a minimum, two different stepwise processes to remediate a site. The groundwater contamination at different Department of Energy (DOE) sites (e.g., Hanford) is due to the presence of both VOCs and heavy metals. The two-step approach increases the cost of remediation. To overcome the sequential treatment of contaminated streams to remove both organics and metals, a novel material having properties to remove both classes of contaminants in one step is being developed as part of this project.The objective of this project is to develop a lignite-derived adsorbent, Humasorb{sup TM} to remove heavy metals and organics from ground water and surface water streams.

  19. Chemical reactions of organic compounds on clay surfaces.

    PubMed Central

    Soma, Y; Soma, M

    1989-01-01

    Chemical reactions of organic compounds including pesticides at the interlayer and exterior surfaces of clay minerals and with soil organic matter are reviewed. Representative reactions under moderate conditions possibly occurring in natural soils are described. Attempts have been made to clarify the importance of the chemical nature of molecules, their structures and their functional groups, and the Brönsted or Lewis acidity of clay minerals. PMID:2533556

  20. The photostabililty of prebiotic organic compounds on cometary dusts.

    NASA Astrophysics Data System (ADS)

    Saiagh, K.; Aleian, A.; Fray, N.; Cloix, M.; Cottin, H.

    2013-09-01

    A new methodology for measuring the photostability of organic compounds in extraterrestrial environments will be presented. It is based on Low Earth Orbit (LEO) and "classical" laboratory photolysis experiments, as well as on quantitative measurements of the VUV/UV ( < 300 nm) absorption cross section spectra. We will discuss the complementarily and limits of each approach, and discuss the astrobiological relevance of such studies in the frame of the importation of organic matter to Earth via micrometeorites.

  1. Effect of Particles on Fenton Oxidation of Organic Contaminated Groundwater

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, Y.; Gwak, J.; Lee, C.; Ha, J.

    2009-12-01

    Fenton oxidation has been widely applied for a variety of water treatment due to non-selectively oxidative capability at a high reaction rate and cost effectiveness. Even though wide and deep range of studies were conducted for understanding the Fenton reaction with various contaminants, effect of particles on Fenton reaction has been little studied. This study explored the performance of Fenton oxidation for organic contaminated groundwater treatment in the presence of particles. The contaminated groundwater was a free oil separated groundwater obtained from a pilot scale bioslurping process for LNAPL treatment. The groundwater was characterized by a high suspended solid (SS) concentration relative to total organic carbon (TOC) concentration varying from 4 to 7.3. It was found that the optimum ratio of Fenton’s reagent (Fe2+:H2O2) was 1:10 in terms of TOC removal efficiency. Presence of solid particles significantly affected the TOC removal efficiency by Fenton’s reaction accounting for 37% for raw groundwater and 61% for soluble groundwater. Particles larger than 5 µm could be effectively settled out by a quiescent settling for 3 hr based on particle size distribution analysis. The TOC removal efficiency for the supernatant after settling was a similar to that of soluble sample. Total petroleum hydrocarbon (TPH) was mostly present in the adsorbed form to the particles in the groundwater and was potentially persistent to Fenton oxidation. TPH removal efficiency by Fenton oxidation was 24% which was less than that of the total groundwater indicating that hydroxyl radicals generated from Fenton oxidation did not directly attack the adsorbed organic carbon and removal of the adsorbed organic carbon was dependent on its mass transfer to bulk region. The concept for particle effect on Fenton oxidation was confirmed in another experiment spiking washed soil to the soluble groundwater. TOC removal efficiency was lowered by addition of the soil probably because the

  2. Persistence and potential effects of complex organic contaminant mixtures in wastewater-impacted streams.

    PubMed

    Barber, Larry B; Keefe, Steffanie H; Brown, Greg K; Furlong, Edward T; Gray, James L; Kolpin, Dana W; Meyer, Michael T; Sandstrom, Mark W; Zaugg, Steven D

    2013-03-01

    Natural and synthetic organic contaminants in municipal wastewater treatment plant (WWTP) effluents can cause ecosystem impacts, raising concerns about their persistence in receiving streams. In this study, Lagrangian sampling, in which the same approximate parcel of water is tracked as it moves downstream, was conducted at Boulder Creek, Colorado and Fourmile Creek, Iowa to determine in-stream transport and attenuation of organic contaminants discharged from two secondary WWTPs. Similar stream reaches were evaluated, and samples were collected at multiple sites during summer and spring hydrologic conditions. Travel times to the most downstream (7.4 km) site in Boulder Creek were 6.2 h during the summer and 9.3 h during the spring, and to the Fourmile Creek 8.4 km downstream site times were 18 and 8.8 h, respectively. Discharge was measured at each site, and integrated composite samples were collected and analyzed for >200 organic contaminants including metal complexing agents, nonionic surfactant degradates, personal care products, pharmaceuticals, steroidal hormones, and pesticides. The highest concentration (>100 μg L(-1)) compounds detected in both WWTP effluents were ethylenediaminetetraacetic acid and 4-nonylphenolethoxycarboxylate oligomers, both of which persisted for at least 7 km downstream from the WWTPs. Concentrations of pharmaceuticals were lower (<1 μg L(-1)), and several compounds, including carbamazepine and sulfamethoxazole, were detected throughout the study reaches. After accounting for in-stream dilution, a complex mixture of contaminants showed little attenuation and was persistent in the receiving streams at concentrations with potential ecosystem implications. PMID:23398602

  3. Volatile organic compounds in polyethylene bags-A forensic perspective.

    PubMed

    Borusiewicz, Rafał; Kowalski, Rafał

    2016-09-01

    Polyethylene bags, though not recommended, are sometimes used in some countries as improvised packaging for items sent to be analysed for the presence of volatile organic compounds, namely ignitable liquids residues. Sometimes items made of polyethylene constitute the samples themselves. It is well known what kind of volatile organic compounds are produced as a result of polyethylene thermal decomposition, but there is a lack of information relating to if some volatile compounds are present in unheated/unburned items made of polyethylene in detectable amounts and, if so, what those compounds are. The aim of this presented research was to answer these questions. 28 different bags made of polyethylene, representing 9 brands, were purchased in local shops and analysed according to the procedure routinely used for fire debris. The results proved that in almost all bags a distinctive mixture of compounds is present, comprising of n-alkanes and n-alkenes with an even number of carbon atoms in their molecules. Some other compounds (e.g., limonene, 2,2,4,6,6-pentamethylheptane) are also often present, but the presence of even n-alkanes and n-alkenes constitutes the most characteristic feature. PMID:27458996

  4. Key volatile organic compounds emitted from swine nursery house

    NASA Astrophysics Data System (ADS)

    Yao, H. Q.; Choi, H. L.; Zhu, K.; Lee, J. H.

    2011-05-01

    This study was carried out to quantify the concentration and emission levels of key volatile organic compounds (VOCs) - sulfides, indolics, phenolics and volatile fatty acids (VFA) - emitted from swine nursery house, and assess the effect of microclimate (including temperature, relative humidity and air speed) on the key odorous compounds. Samples were collected from the Experimental Farm of Seoul National University in Suwon, South Korea. And the collection took place for four seasons and the sampling time was fixed at 10:30 in the morning. The application of one-way ANOVA and Bonferroni t analyses revealed that, most of the odorous compound concentrations, such as dimethyl sulfide (DMS), dimethyl disulfide (DMDS), indole, p-cresol and all the volatile fatty acids were lowest during the summer ( P < 0.01). Meanwhile, negative correlations were observed between temperature and odorants, as well as air speed and odorants. A possible reason was that high ventilation transferred most of the odors out of the house during the summer. From the whole year data, non-linear multiple regressions were conducted and the equations were proposed depending upon the relationships between microclimate parameters and odorous compounds. The equations were applied in hope of easily calculating the concentrations of the odorous compounds in the commercial farms. The results obtained in this study should be used for reducing the volatile organic compounds by controlling microclimate parameters and also could be helpful in setting a guideline for good management practices in nursery house.

  5. Non-targeted analyses of organic compounds in urban wastewater.

    PubMed

    Alves Filho, Elenilson G; Sartori, Luci; Silva, Lorena M A; Silva, Bianca F; Fadini, Pedro S; Soong, Ronald; Simpson, Andre; Ferreira, Antonio G

    2015-09-01

    A large number of organic pollutants that cause damage to the ecosystem and threaten human health are transported to wastewater treatment plants (WWTPs). The problems regarding water pollution in Latin America have been well documented, and there is no evidence of substantive efforts to change the situation. In the present work, two methods to study wastewater samples are employed: non-targeted 1D ((13)C and (1)H) and 2D NMR spectroscopic analysis to characterize the largest possible number of compounds from urban wastewater and analysis by HPLC-(UV/MS)-SPE-ASS-NMR to detect non-specific recalcitrant organic compounds in treated wastewater without the use of common standards. The set of data is composed of several compounds with the concentration ranging considerably with treatment and seasonality. An anomalous discharge, the influence of stormwater on the wastewater composition and the presence of recalcitrant compounds (linear alkylbenzene sulfonate surfactant homologs) in the effluent were further identified. The seasonal variations and abnormality in the composition of organic compounds in sewage indicated that the procedure that was employed can be useful in the identification of the pollution source and to enhance the effectiveness of WWTPs in designing preventive action to protect the equipment and preserve the environment. PMID:25354334

  6. Prevalence of organic and inorganic contaminants within a rapidly developing catchment

    NASA Astrophysics Data System (ADS)

    Njumbe, E. S.; Curtis, C. D.; Cooke, D. A.; Polya, D. A.; Wogelius, R. A.; Hughes, C.

    2003-04-01

    Industrialization rates in many developing countries typically outpace investment in water supply, sewage treatment and other waste water facilities. This is futher compounded by the absence of stringent land-use and waste disposal policies. The consequence of this has been contamination of land, surface water, and groundwater in such areas. Efforts to control and remediate these types of systems will rely on a thorough understanding of contaminant levels and mobility. Reliable data, however, is usually not available. Therefore this study was designed to acquire baseline data from a representative developing urban area in tropical west Africa. 43 water and 20 sediment/soil samples from streams, hand-dug wells, springs and deep boreholes within the city and surrounding areas of Douala in Cameroon were characterised. Analyses were aimed at obtaining information on the type and quantity of organic and inorganic contaminants present, and linking them to specific point and non-point sources. Results from gas chromatography (GC/FID) and gas chromatography/mass spectrometry analyses of total organic extracts (TOE) of water samples have revealed the presence of a wide range of organic compounds including phenols, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), phthalates, acids and aliphatic derivatives. Concentrations as high as 500 ng ml-1 were detected. These high levels of non-polar compounds measured in drinking water represent a clear health problem. Heavy metal concentrations in bulk alluvial sands and loamy soil have been determined by microwave assisted nitric acid digestion. Concentration ranges (in ppm of dry weight) for the important metals were: Cr, 3.2-84.2 ; Ni, 0.2-57.4 ; Zn, 2.1-92 ; Pb, 0.3-33 ; As, 0.081-9.4 ; Cu, 0.61-17.4 ; and Cd, 0-3.1. Point sources have been identified for several of the organic and inorganic compounds and this spatial information will be integrated with the chemical data to present an overview of

  7. Analysis of Organic Compounds in Mars Analog Samples

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Brinckerhoff, W. B.; Buch, A.; Cabane, M.; Coll, P.; Demick, J.; Glavin, D. P.

    2004-01-01

    The detailed characterization of organic compounds that might be preserved in rocks, ices, or sedimentary layers on Mars would be a significant step toward resolving the question of the habitability and potential for life on that planet. The fact that the Viking gas chromatograph mass spectrometer (GCMS) did not detect organic compounds should not discourage further investigations since (a) an oxidizing environment in the near surface fines analyzed by Viking is likely to have destroyed many reduced carbon species; (b) there are classes of refractory or partially oxidized species such as carboxylic acids that would not have been detected by the Viking GCMS; and (c) the Viking landing sites are not representative of Mars overall. These factors motivate the development of advanced in situ analytical protocols to carry out a comprehensive survey of organic compounds in martian regolith, ices, and rocks. We combine pyrolysis GCMS for analysis of volatile species, chemical derivatization for transformation of less volatile organics, and laser desorption mass spectrometry (LDMS) for analysis of elements and more refractory, higher-mass organics. To evaluate this approach and enable a comparison with other measurement techniques we analyze organics in Mars simulant samples.

  8. Method for predicting photocatalytic oxidation rates of organic compounds.

    PubMed

    Sattler, Melanie L; Liljestrand, Howard M

    2003-01-01

    In designing a photocatalytic oxidation (PCO) system for a given air pollution source, destruction rates for volatile organic compounds (VOCs) are required. The objective of this research was to develop a systematic method of predicting PCO rate constants by correlating rate constants with physical-chemical characteristics of compounds. Accordingly, reaction rate constants were determined for destruction of volatile organics over a titanium dioxide (TiO2) catalyst in a continuous mixed-batch reactor. It was found that PCO rate constants for alkanes and alkenes vary linearly with gas-phase ionization potential (IP) and with gas-phase hydroxyl radical reaction rate constant. The correlations allow rates of destruction of compounds not tested in this research to be predicted based on physical-chemical characteristics. PMID:12568248

  9. Global inventory of volatile organic compound emissions from anthropogenic sources

    SciTech Connect

    Piccot, S.D.; Watson, J.J.; Jones, J.W.

    1992-01-01

    The paper discusses the development of a global inventory of anthropogenic volatile organic compound (VOC) emissions. It includes VOC estimates for seven classes of VOCs: paraffins, olefins, aromatics (benzene, toluene, xylene), formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds. These classes represent general classes of VOC compounds that possess different chemical reactivities in the atmosphere. The inventory shows total global anthropogenic VOC emissions of about 110,000 Gg/yr, about 10% lower than global VOC inventories developed by other researchers. The study identifies the U.S. as the largest emitter (21% of the total global VOC), followed by the USSR, China, India, and Japan. Globally, fuel wood combustion and savanna burning were among the largest VOC emission sources, accounting for over 35% of the total global VOC emissions. The production and use of gasoline, refuse disposal activities, and organic chemical and rubber manufacturing were also found to be significant sources of global VOC emissions.

  10. Biotransformations of organic compounds mediated by cultures of Aspergillus niger.

    PubMed

    Parshikov, Igor A; Woodling, Kellie A; Sutherland, John B

    2015-09-01

    Many different organic compounds may be converted by microbial biotransformation to high-value products for the chemical and pharmaceutical industries. This review summarizes the use of strains of Aspergillus niger, a well-known filamentous fungus used in numerous biotechnological processes, for biochemical transformations of organic compounds. The substrates transformed include monocyclic, bicyclic, and polycyclic aromatic hydrocarbons; azaarenes, epoxides, chlorinated hydrocarbons, and other aliphatic and aromatic compounds. The types of reactions performed by A. niger, although not unique to this species, are extremely diverse. They include hydroxylation, oxidation of various functional groups, reduction of double bonds, demethylation, sulfation, epoxide hydrolysis, dechlorination, ring cleavage, and conjugation. Some of the products may be useful as new investigational drugs or chemical intermediates. PMID:26162670

  11. Organic compounds in lunar samples: pyrolysis products, hydrocarbons, amino acids.

    PubMed

    Nagy, B; Drew, D M; Hamilton, P B; Modzeleski, V E; Murphy, M E; Scott, W M; Urey, H C; Young, M

    1970-01-30

    Lunar fines and a chip from inside a rock pyrolyzed in helium at 700 degrees C gave methane, other gases, and aromatic hydrocarbons. Benzene/methanol extracts of fines yielded traces of high molecular weight alkanes and sulfur. Traces of glycine, alanine, ethanolamine, and urea were found in aqueous extracts. Biological controls and a terrestrial rock, dunite, subjected to exhaust from the lunar module descent engine showed a different amino acid distribution. Interpretation of the origin of the carbon compounds requires extreme care, because of possible contamination acquired during initial sample processing. PMID:5410553

  12. Modeling emissions of volatile organic compounds from silage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile organic compounds (VOCs), necessary reactants for photochemical smog formation, are emitted from numerous sources. Limited available data suggest that dairy farms emit VOCs with cattle feed, primarily silage, being the primary source. Process-based models of VOC transfer within and from si...

  13. Measuring Emissions of Volatile Organic Compounds from Silage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile organic compound (VOC) emissions are considered to be important precursors to smog and ozone production. An experimental protocol was developed to obtain undisturbed silage samples from silage storages. Samples were placed in a wind tunnel where temperature, humidity, and air flow were cont...

  14. LEAVES AS INDICATORS OF EXPOSURE TO AIRBORNE VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    The concentration of volatile organic compounds (VOCs) in leaves is primarily a product of airborne exposures and dependent upon bioconcentration factors and release rates. The bioconcentration factors for VOCs in grass are found to be related to their partitioning between octan...

  15. AERATION TO REMOVE VOLATILE ORGANIC COMPOUNDS FROM GROUND WATER

    EPA Science Inventory

    The interim report presents general information on the use of aeration to remove volatile organic compounds from drinking water for public health reasons. The report illustrates the types of aerators, shows where they are being used, presents a means of estimating aeration perfor...

  16. VOLATILE ORGANIC COMPOUND MODEL (VERSION 1.8) (FOR MICROCOMPUTERS)

    EPA Science Inventory

    Future emissions of volatile organic compounds (VOCs) and costs of their control can be estimated by applying growth factors, emission constraints, control cost functions, and capacity retirement rates to the base line estimates of VOC emissions and industrial VOC source capacity...

  17. Modeling emissions of volatile organic compounds from silage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Photochemical smog is a major air pollution problem and a significant cause of premature death in the U.S. Smog forms in the presence of volatile organic compounds (VOCs), which are emitted primarily from industry and motor vehicles in the U.S. However, dairy farms may be an important source in so...

  18. The Survival of Meteorite Organic Compounds with Increasing Impact Pressure

    NASA Technical Reports Server (NTRS)

    Cooper, George; Horz, Friedrich; Oleary, Alanna; Chang, Sherwood; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The majority of carbonaceous meteorites studied today are thought to originate in the asteroid belt. Impacts among asteroidal objects generate heat and pressure that may have altered or destroyed pre-existing organic matter in both targets and projectiles to a greater or lesser degree depending upon impact velocities. Very little is known about the shock related chemical evolution of organic matter relevant to this stage of the cosmic history of biogenic elements and compounds. The present work continues our study of the effects of shock impacts on selected classes of organic compounds utilizing laboratory shock facilities. Our approach was to subject mixtures of organic compounds, embedded in a matrix of the Murchison meteorite, to a simulated hypervelocity impact. The molecular compositions of products were then analyzed to determine the degree of survival of the original compounds. Insofar as results associated with velocities < 8 km/sec may be relevant to impacts on planetary surfaces (e.g., oblique impacts, impacts on small outer planet satellites) or grain-grain collisions in the interstellar medium, then our experiments will be applicable to these environments as well.

  19. Instrument for Analysis of Organic Compounds on Other Planets

    NASA Technical Reports Server (NTRS)

    Daulton, Riley M.; Hintze, Paul E.

    2016-01-01

    The goal of this project is to develop the Instrument for Solvent Extraction and Analysis of Extraterrestrial Bodies using In Situ Resources (ISEE). Specifically, ISEE will extract and characterize organic compounds from regolith which is found on the surface of other planets or asteroids. The techniques this instrument will use are supercritical fluid extraction (SFE) and supercritical fluid chromatography (SFC). ISEE aligns with NASA's goal to expand the frontiers of knowledge, capability, and opportunities in space in addition to supporting NASA's aim to search for life elsewhere by characterizing organic compounds. The outcome of this project will be conceptual designs of 2 components of the ISEE instrument as well as the completion of proof-of-concept extraction experiments to demonstrate the capabilities of SFE. The first conceptual design is a pressure vessel to be used for the extraction of the organic compounds from the regolith. This includes a comparison of different materials, geometry's, and a proposition of how to insert the regolith into the vessel. The second conceptual design identifies commercially available fluid pumps based on the requirements needed to generate supercritical CO2. The proof-of-concept extraction results show the percent mass lost during standard solvent extractions of regolith with organic compounds. This data will be compared to SFE results to demonstrate the capabilities of ISEE's approach.

  20. PHOTOTHERMAL DESTRUCTION OF THE VAPOR OF ORGANIC COMPOUNDS

    EPA Science Inventory

    The results of thermal and photothermal destruction of the vapors of organic compounds were compared by conducting tests in a photothermal detoxification unit. enon are lamp was used as the irradiation source. he tests were conducted on trichlorethylene (TCE), 1,2-dichlorobenzene...

  1. VOC (VOLATILE ORGANIC COMPOUND) FUGITIVE EMISSION PREDICTIVE MODEL - USER'S GUIDE

    EPA Science Inventory

    The report discusses a mathematical model that can be used to evaluate the effectiveness of various leak detection and repair (LDAR) programs on controlling volatile organic compound (VOC) fugitive emissions from chemical, petroleum, and other process units. The report also descr...

  2. MEASUREMENT OF ORGANIC COMPOUND EMISSIONS USING SMALL TEST CHAMBERS

    EPA Science Inventory

    Organic compounds emitted from a variety of indoor materials have been measured using small (166 L) environmental test chambers. The paper discusses: a) factors to be considered in small chamber testing; b) parameters to be controlled; c) the types of results obtained. The follow...

  3. FIELD-DEPLOYABLE MONITORS FOR VOLATILE ORGANIC COMPOUNDS IN AIR

    EPA Science Inventory

    Volatile organic compounds in ambient air are usually estimated by trapping them from air or collecting whole air samples and returning them to a laboratory for analysis by gas chromatography using selective detection. ata do not appear for several days, during which sample integ...

  4. OXYGENATED ORGANIC COMPOUND CONCENTRATIONS NEAR A ROADWAY IN LITHUANIA, SSR

    EPA Science Inventory

    During the period June 1 to June 9, 1989, aldehyde and other oxygenated organic compound concentrations were examined at sites 3, 10, and 80 meters northeast of the Vilnius-Kaunas highway in Lithuania, SSR by collecting 120 liter (1 L/min for 120 min) samples on 2,4-dinitrophenyl...

  5. MICROBIAL VOLATILE ORGANIC COMPOUND EMISSION RATES AND EXPOSURE MODEL

    EPA Science Inventory

    This paper presents the results from a study that examined microbial volatile organic compound (MVOC) emissions from six fungi and one bacterial species (Streptomyces spp.) commonly found in indoor environments. Data are presented on peak emission rates from inoculated agar plate...

  6. Volatile organic compound emissions from dairy facilities in central California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emissions of volatile organic compounds (VOCs) from dairy facilities are thought to be an important contributor to high ozone levels in central California, but emissions inventories from these sources contain significant uncertainties. In this work, VOC emissions were measured at two central Califor...

  7. Qualitative analysis of volatile organic compounds on biochar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Qualitative identification of sorbed volatile organic compounds (VOCs) on biochar was conducted by headspace thermal desorption coupled to capillary gas chromatographic-mass spectrometry. VOCs may have a mechanistic role influencing plant and microbial responses to biochar amendments, since VOCs ca...

  8. Influence of volatile organic compounds on Fusarium graminearum mycotoxin production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile organic compounds (VOCs) are involved in a diverse range of ecological interactions. Due to their low molecular weight, lipophilic nature, and high vapor pressure at ambient temperatures, they can serve as airborne signaling molecules that are capable of mediating inter and intraspecies com...

  9. DESTRUCTION OF VOLATILE ORGANIC COMPOUNDS VIA CATALYTIC INCINERATION (JOURNAL VERSION)

    EPA Science Inventory

    The paper gives results of an investigation of the effect of catalytic incinerator design and operation on the destruction of specific volatile organic compounds (VOCs), both singly and in mixtures. A range of operating and design parameters were tested on a wide variety of compo...

  10. Residential exposure to volatile organic compounds and asthma.

    PubMed

    Dales, Robert; Raizenne, Mark

    2004-01-01

    We critically analysed the literature concerning exposure to volatile organic compounds and asthma. Observational studies have consistently found a relation between volatile organic compounds and indicators of asthma, such as symptoms, peak flows, and objectively measured bronchial reactivity. In contrast, interventional studies have generally failed to find a relation between exposure to residential levels of formaldehyde and other volatile organic compounds and asthma. One hypothesis to explain the discrepancy in findings between interventional and observational studies is that the effect size is small requiring relatively large numbers of study subjects, common in observational studies but often not feasible in interventional studies. Another hypothesis is that longer duration of exposure is important, a common circumstance in observational studies where the home environment is the exposure setting. In contrast, duration of exposure in interventional studies is usually of minutes-to-hours in a chamber. Finally, the observed association in observational studies could be confounded by a factor which is a determinant of asthma and is also associated with exposure to volatile organic compounds. PMID:15260458

  11. [Binding of Volatile Organic Compounds to Edible Biopolymers].

    PubMed

    Misharina, T A; Terenina, M B; Krikunova, N I; Medvedeva, I B

    2016-01-01

    Capillary gas chromatography was used to study the influence of the composition and structure of different edible polymers (polysaccharides, vegetable fibers, and animal protein gelatin) on the binding of essential oil components. The retention of volatile organic compounds on biopolymers was shown to depend on their molecule structure and the presence, type, and position of a functional group. The maximum extent of the binding was observed for nonpolar terpene and sesquiterpene hydrocarbons, and the minimum extent was observed for alcohols. The components of essential oils were adsorbed due mostly to hydrophobic interactions. It was shown that the composition and structure of a compound, its physico-chemical state, and the presence of functional groups influence the binding. Gum arabic and guar gum were found to bind nonpolar compounds to a maximum and minimum extent, respectively. It was demonstrated the minimum adsorption ability of locust bean gum with respect to all studied compounds. PMID:27266255

  12. Volatile tritiated organic acids in stack effluents and in air surrounding contaminated materials

    SciTech Connect

    Belot, Y.; Camus, H.; Marini, T.; Raviart, S. )

    1993-06-01

    A small fraction of the tritium released into the atmosphere from tritium-handling or solid waste storage facilities was shown to be in the form of volatile organic acids. The same compounds were also found, but at a much higher proportion, in the tritium evolved at room temperature from highly contaminated materials placed under air atmospheres. This might be due to the oxidation and labeling of hydrocarbon(s) by mechanisms that are presumably of a radiolytic nature. The new forms could have an impact on operational requirements and waste management strategies within a tritium facility and a fusion reactor hall. Further data are needed to assess the related doses.

  13. Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies

    PubMed Central

    Olaniran, Ademola O.; Balgobind, Adhika; Pillay, Balakrishna

    2013-01-01

    Co-contamination of the environment with toxic chlorinated organic and heavy metal pollutants is one of the major problems facing industrialized nations today. Heavy metals may inhibit biodegradation of chlorinated organics by interacting with enzymes directly involved in biodegradation or those involved in general metabolism. Predictions of metal toxicity effects on organic pollutant biodegradation in co-contaminated soil and water environments is difficult since heavy metals may be present in a variety of chemical and physical forms. Recent advances in bioremediation of co-contaminated environments have focussed on the use of metal-resistant bacteria (cell and gene bioaugmentation), treatment amendments, clay minerals and chelating agents to reduce bioavailable heavy metal concentrations. Phytoremediation has also shown promise as an emerging alternative clean-up technology for co-contaminated environments. However, despite various investigations, in both aerobic and anaerobic systems, demonstrating that metal toxicity hampers the biodegradation of the organic component, a paucity of information exists in this area of research. Therefore, in this review, we discuss the problems associated with the degradation of chlorinated organics in co-contaminated environments, owing to metal toxicity and shed light on possible improvement strategies for effective bioremediation of sites co-contaminated with chlorinated organic compounds and heavy metals. PMID:23676353

  14. Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications.

    PubMed

    Gill, R T; Harbottle, M J; Smith, J W N; Thornton, S F

    2014-07-01

    There is current interest in finding sustainable remediation technologies for the removal of contaminants from soil and groundwater. This review focuses on the combination of electrokinetics, the use of an electric potential to move organic and inorganic compounds, or charged particles/organisms in the subsurface independent of hydraulic conductivity; and bioremediation, the destruction of organic contaminants or attenuation of inorganic compounds by the activity of microorganisms in situ or ex situ. The objective of the review is to examine the state of knowledge on electrokinetic bioremediation and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. It discusses the mechanisms of electrokinetic bioremediation in the subsurface environment at different micro and macroscales, the influence of environmental processes on electrokinetic phenomena and the design options available for application to the field scale. The review also presents results from a modelling exercise to illustrate the effectiveness of electrokinetics on the supply electron acceptors to a plume scale scenario where these are limiting. Current research needs include analysis of electrokinetic bioremediation in more representative environmental settings, such as those in physically heterogeneous systems in order to gain a greater understanding of the controlling mechanisms on both electrokinetics and bioremediation in those scenarios. PMID:24875868

  15. Emission of volatile organic compounds from silage: compounds, sources, and implications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Silage, fermented cattle feed, has recently been identified as a significant source of volatile organic compounds (VOCs) emitted to the atmosphere. A small number of studies have measured VOC emission from silage, but not enough is known about the processes involved to accurately quantify emission r...

  16. Nontargeted biomonitoring of halogenated organic compounds in two ecotypes of bottlenose dolphins (Tursiops truncatus) from the Southern California Bight.

    PubMed

    Shaul, Nellie J; Dodder, Nathan G; Aluwihare, Lihini I; Mackintosh, Susan A; Maruya, Keith A; Chivers, Susan J; Danil, Kerri; Weller, David W; Hoh, Eunha

    2015-02-01

    Targeted environmental monitoring reveals contamination by known chemicals, but may exclude potentially pervasive but unknown compounds. Marine mammals are sentinels of persistent and bioaccumulative contaminants due to their longevity and high trophic position. Using nontargeted analysis, we constructed a mass spectral library of 327 persistent and bioaccumulative compounds identified in blubber from two ecotypes of common bottlenose dolphins (Tursiops truncatus) sampled in the Southern California Bight. This library of halogenated organic compounds (HOCs) consisted of 180 anthropogenic contaminants, 41 natural products, 4 with mixed sources, 8 with unknown sources, and 94 with partial structural characterization and unknown sources. The abundance of compounds whose structures could not be fully elucidated highlights the prevalence of undiscovered HOCs accumulating in marine food webs. Eighty-six percent of the identified compounds are not currently monitored, including 133 known anthropogenic chemicals. Compounds related to dichlorodiphenyltrichloroethane (DDT) were the most abundant. Natural products were, in some cases, detected at abundances similar to anthropogenic compounds. The profile of naturally occurring HOCs differed between ecotypes, suggesting more abundant offshore sources of these compounds. This nontargeted analytical framework provided a comprehensive list of HOCs that may be characteristic of the region, and its application within monitoring surveys may suggest new chemicals for evaluation. PMID:25526519

  17. Nontargeted Biomonitoring of Halogenated Organic Compounds in Two Ecotypes of Bottlenose Dolphins (Tursiops truncatus) from the Southern California Bight

    PubMed Central

    2015-01-01

    Targeted environmental monitoring reveals contamination by known chemicals, but may exclude potentially pervasive but unknown compounds. Marine mammals are sentinels of persistent and bioaccumulative contaminants due to their longevity and high trophic position. Using nontargeted analysis, we constructed a mass spectral library of 327 persistent and bioaccumulative compounds identified in blubber from two ecotypes of common bottlenose dolphins (Tursiops truncatus) sampled in the Southern California Bight. This library of halogenated organic compounds (HOCs) consisted of 180 anthropogenic contaminants, 41 natural products, 4 with mixed sources, 8 with unknown sources, and 94 with partial structural characterization and unknown sources. The abundance of compounds whose structures could not be fully elucidated highlights the prevalence of undiscovered HOCs accumulating in marine food webs. Eighty-six percent of the identified compounds are not currently monitored, including 133 known anthropogenic chemicals. Compounds related to dichlorodiphenyltrichloroethane (DDT) were the most abundant. Natural products were, in some cases, detected at abundances similar to anthropogenic compounds. The profile of naturally occurring HOCs differed between ecotypes, suggesting more abundant offshore sources of these compounds. This nontargeted analytical framework provided a comprehensive list of HOCs that may be characteristic of the region, and its application within monitoring surveys may suggest new chemicals for evaluation. PMID:25526519

  18. Determination of fluorine in organic compounds: Microcombustion method

    USGS Publications Warehouse

    Clark, H.S.

    1951-01-01

    A reliable and widely applicable means of determining fluorine in organic compounds has long been needed. Increased interest in this field of research in recent years has intensified the need. Fluorine in organic combinations may be determined by combustion at 900?? C. in a quartz tube with a platinum catalyst, followed by an acid-base titration of the combustion products. Certain necessary precautions and known limitations are discussed in some detail. Milligram samples suffice, and the accuracy of the method is about that usually associated with the other halogen determinations. Use of this method has facilitated the work upon organic fluorine compounds in this laboratory and it should prove to be equally valuable to others.

  19. Multilayer adsorption of slightly soluble organic compounds from aqueous solutions

    SciTech Connect

    Aranovich, G.L.; Donohue, M.D.

    1996-03-25

    Adsorption isotherms are analyzed for slightly soluble organic components from water for a wide range of reduced concentrations. It is shown that the behavior of these systems can be modeled by an equation of the form a = Ac/[(1 + Bc)(1 {minus} c/c{sub 0}){sup d}] over the range of c/c{sub 0} from about 0.05 to 0.9. Here a is the adsorption amount, c is the concentration of organic compound in the water, c{sub 0} is a solubility limit for the organic compound, and A, B, and d are adjustable parameters. Comparison is made with experimental data for the adsorption of n-caproic acid, n-valeric acid, n-amyl alcohol, n-butyl alcohol, aniline, cyclohexanol, and phenol from aqueous solutions on carbon adsorbents.

  20. Measurements of halogenated organic compounds near the tropical tropopause

    NASA Technical Reports Server (NTRS)

    Schauffler, S. M.; Heidt, L. E.; Pollock, W. H.; Gilpin, T. M.; Vedder, J. F.; Solomon, S.; Lueb, R. A.; Atlas, E. L.

    1993-01-01

    The amount of organic chlorine and bromine entering the stratosphere have a direct influence on the magnitude of chlorine and bromine catalyzed ozone losses. Twelve organic chlorine species and five organic bromine species were measured from 12 samples collected near the tropopause between 23.8 deg N and 25.3 deg N during AASE 2. The average mixing ratios of total organic chlorine and total organic bromine were 3.50 +/- 0.06 ppbv and 21.1 +/- 0.8 pptv, respectively. CH3Cl represented 15.1% of the total organic chlorine, with CFC 11 (CCl3F) and CFC 12 (CCl2F2) accounting for 22.6% and 28.2%, respectively, with the remaining 34.1% primarily from CCl4, CH3CCl3, and CFC 113 (CCl2FCClF2). CH3Br represented 54% of the total organic bromine. The 95% confidence intervals of the mixing ratios of all but four of the individual compounds were within the range observed in low and mid-latitude mid-troposphere samples. The four compounds with significantly lower mixing ratios at the tropopause were CHCl3, CH2Cl2, CH2Br2, and CH3CCl3. The lower mixing ratios may be due to entrainment of southern hemisphere air during vertical transport in the tropical region and/or to exchange of air across the tropopause between the lower stratosphere and upper troposphere.

  1. Measurements of Halogenated Organic Compounds near the Tropical Tropopause

    NASA Technical Reports Server (NTRS)

    Schauffler, S. M.; Heidt, L. E.; Pollock, W. H.; Gilpin, T. M.; Vedder, J. F.; Solomon, S.; Leub, R. A.; Atlas, E. L.

    1993-01-01

    The amount of organic chlorine and bromine entering the stratosphere have a direct influence on the magnitude of chlorine and bromine catalyzed ozone losses. Twelve organic chlorine species and five organic bromine species were measured from 12 samples collected near the tropopause between 23.8 deg N and 25.3 deg N during AASE 2. The average mixing ratios of total organic chlorine and total organic bromine were 3.50 +/- 0.06 ppbv and 21.1 +/- 0.8 pptv, respectively. CH3Cl represented 15.1% of the total organic chlorine, with CFC 11 (CCl3F) and CFC 12 (CCl2F2) accounting for 22.6% and 28.2%, respectively, with the remaining 34.1% primarily from CCl4, CH3CCl3, and CFC 113 (CCl2FCClF2). CH3Br represented 54% of the total organic bromine. The 95% confidence intervals of the mixing ratios of all but four of the individual compounds were within the range observed in low and mid-latitude midtroposphere samples. The four compounds with significantly lower mixing ratios at the tropopause were CHCl3, CH2Cl2, CH2Br2, and CH3CCl3. The lower mixing ratios may be due to entrainment of southern hemisphere air during vertical transport in the tropical region and/or to exchange of air across the tropopause between the lower stratosphere and upper troposphere.

  2. Biodiversity of volatile organic compounds from five French ferns.

    PubMed

    Fons, Françoise; Froissard, Didier; Bessière, Jean-Marie; Buatois, Bruno; Rapior, Sylvie

    2010-10-01

    Five French ferns belonging to different families were investigated for volatile organic compounds (VOC) by GC-MS using organic solvent extraction. Fifty-five VOC biosynthesized from the shikimic, lipidic and terpenic pathways including monoterpenes, sesquiterpenes and carotenoid-type compounds were identified. The main volatile compound of Adiantum capillus-veneris L. (Pteridaceae) was (E)-2-decenal with a plastic or "stink bug" odor. The volatile profiles of Athyrium filix-femina (L.) Roth (Woodsiaceae) and Blechnum spicant (L.) Roth (Blechnaceae) showed similarities, with small amounts of isoprenoids and the same main volatile compounds, i.e., 2-phenylethanal (odor of lilac and hyacinth) and 1-octen-3-ol (mushroom-like odor). The main volatile compound of Dryopteris filix-mas (L.) Schott (Dryopteridaceae) was (E)-nerolidol with a woody or fresh bark note. Polyketides, as acylfilicinic acids, were mainly identified in this fern. Oreopteris limbosperma (Bellardi ex. All.) J. Holub (Thelypteridaceae), well-known for its lemon smell, contained the highest biodiversity of VOC. Eighty percent of the volatiles was issued from the terpenic pathway. The main volatiles were (E)-nerolidol, alpha-terpineol, beta-caryophyllene and other minor monoterpenes (for example, linalool, pinenes, limonene, and gamma-terpinen-7-al). It was also the fern with the highest number of carotenoid-type derivatives, which were identified in large amounts. Our results were of great interest underlying new industrial valorisation for ferns based on their broad spectrum of volatiles. PMID:21121267

  3. An overview of time trends in organic contaminant concentrations in marine mammals: going up or down?

    PubMed

    Law, Robin J

    2014-05-15

    In this article I review recent trends reported in the literature from 2008 to date for organic contaminant concentrations in marine mammal tissues worldwide, in order to get an idea of where we stand currently in relation to the control of hazardous substances. For many contaminants which have been subject to regulation regarding their production and use (e.g. organochlorine pesticides, PBDE and HBCD flame retardants, butyltins) trends are downwards. For perfluorinated compounds, trends are more mixed. For dioxins, furans and dioxin-like CBs, there are no recent data, for either concentrations or trends. For CBs overall, earlier downward trends in concentration in UK harbour porpoises following regulation beginning in the 1980s have stalled, and remain at toxicologically significant levels. This raises concerns for killer whales and bottlenose dolphins who, because of their larger size and greater bioaccumulation potential, have higher levels still, often far above accepted toxicological threshold values. PMID:24703807

  4. Organization versus activation: the role of endocrine-disrupting contaminants (EDCs) during embryonic development in wildlife.

    PubMed Central

    Guillette, L J; Crain, D A; Rooney, A A; Pickford, D B

    1995-01-01

    Many environmental contaminants disrupt the vertebrate endocrine system. Although they may be no more sensitive to endocrine-disrupting contaminants (EDCs) than other vertebrates, reptiles are good sentinels of exposure to EDCs due to the lability in their sex determination. This is exemplified by a study of alligators at Lake Apopka, Florida, showing that EDCs have altered the balance of reproductive hormones resulting in reproductive dysfunction. Such alterations may be activationally or organizationally induced. Much research emphasizes the former, but a complete understanding of the influence of EDCs in nature can be generated only after consideration of both activational and organizational alterations. The organizational model suggests that a small quantity of an EDC, administered during a specific period of embryonic development, can permanently modify the organization of the reproductive, immune, and nervous systems. Additionally, this model helps explain evolutionary adaptations to naturally occurring estrogenic compounds, such as phytoestrogens. PMID:8593864

  5. Leachability of volatile fuel compounds from contaminated soils and the effect of plant exudates: A comparison of column and batch leaching tests.

    PubMed

    Balseiro-Romero, María; Kidd, Petra S; Monterroso, Carmen

    2016-03-01

    Volatile fuel compounds such as fuel oxygenates (FO) (MTBE and ETBE) and BTEX (benzene, toluene, ethylbenzene and xylene) are some of the most soluble components of fuel. Characterizing the leaching potential of these compounds is essential for predicting their mobility through the soil profile and assessing the risk of groundwater contamination. Plant root exudates can play an important role in the modification of contaminant mobility in soil-plant systems, and such effects should also be considered in leaching studies. Artificially spiked samples of A and B horizons from an alumi-umbric Cambisol were leached in packed-columns and batch experiments using Milli-Q water and plant root exudates as leaching agents. The leaching potential and rate were strongly influenced by soil-contaminant interactions and by the presence of root exudates. Organic matter in A horizon preferably sorbed the most non-polar contaminants, lowering their leaching potential, and this effect was enhanced by the presence of root exudates. On the other hand, the inorganic components of the B horizon, showed a greater affinity for polar molecules, and the presence of root exudates enhanced the desorption of the contaminants. Column experiments resulted in a more realistic protocol than batch tests for predicting the leaching potential of volatile organic compounds in dissimilar soils. PMID:26619047

  6. New graphene fiber coating for volatile organic compounds analysis.

    PubMed

    Zhang, GuoJuan; Guo, XiaoXi; Wang, ShuLing; Wang, XueLan; Zhou, YanPing; Xu, Hui

    2014-10-15

    In the work, a novel graphene-based solid phase microextraction-gas chromatography/mass spectrometry method was developed for the analysis of trace amount of volatile organic compounds in human exhaled breath vapor. The graphene fiber coating was prepared by a one-step hydrothermal reduction reaction. The fiber with porous and wrinkled structure exhibited excellent extraction efficiency toward eight studied volatile organic compounds (two n-alkanes, five n-aldehydes and one aromatic compound). Meanwhile, remarkable thermal and mechanical stability, long lifespan and low cost were also obtained for the fiber. Under the optimal conditions, the developed method provided low limits of detection (1.0-4.5ngL(-1)), satisfactory reproducibility (3.8-13.8%) and acceptable recoveries (93-122%). The method was applied successfully to the analysis of breath samples of lung cancer patients and healthy individuals. The unique advantage of this approach includes simple setup, non-invasive analysis, cost-efficient and sufficient sensitivity. The proposed method supply us a new possibility to monitor volatile organic compounds in human exhaled breath samples. PMID:25171504

  7. Detection of volatile organic compounds using porphyrin derivatives.

    PubMed

    Dunbar, A D F; Brittle, S; Richardson, T H; Hutchinson, J; Hunter, C A

    2010-09-16

    Seven different porphyrin compounds have been investigated as colorimetric gas sensors for a wide range of volatile organic compounds. The porphyrins examined were the free base and Mg, Sn, Zn, Au, Co, and Mn derivatives of 5,10,15,20-tetrakis[3,4-bis(2-ethylhexyloxy)phenyl]-21H,23H-porphine. Chloroform solutions of these materials were prepared and changes in their absorption spectra induced by exposure to various organic compounds measured. The porphyrins that showed strong responses in solution were selected, and Langmuir-Blodgett films were prepared and exposed to the corresponding analytes. This was done to determine whether they are useful materials for solid state thin film colorimetric vapor sensors. Porphyrins that readily coordinate extra ligands are shown to be suitable materials for colorimetric volatile organic compound detectors. However, porphyrins that already have bound axial ligands when synthesized only show a sensor response to those analytes that can substitute these axial ligands. The Co porphyrin displays a considerably larger response than the other porphyrins investigated which is attributed to a switch between Co(II) and Co(III) resulting in a large spectral change. PMID:20735119

  8. Biodegradation of a mixture of chlorinated volatile organic compounds

    SciTech Connect

    Barnes, L.J.W.; Daniel, S.R.; Warner, J.B.

    1997-12-31

    A mixture of vinyl chloride, cis- and trans-1,2-dichloroethene (DCE), and 1,1-dichloroethane (DCA) was biodegraded at 20 C in static microcosms by a consortium of indigenous microorganisms from a Superfund site contaminated with a variety of halogenated compounds. Microcosms were set up with sand and groundwater from the site to model biodegradation under aquifer conditions and biodegradation with various amendments in batch cultures. Under aerobic conditions, vinyl chloride and cis- and trans-1,2-DCE biodegraded slowly, although there was no change in the concentration of 1,1-DCA. The biodegradation rates for all three chlorinated ethenes were greatly increased by enriching for methanotrophs in an aerobic environment, but this had little effect on the concentration of 1,1-DCA. DCA and the dichloroethene isomers decreased. The rate at which 1,1-DCA decreased from the VOC mixture correlated directly to the concentration of the chlorinated ethenes in that mixture. This relationship may be new in the literature and has important implications for the potential success for intrinsic bioremediation of sites contaminated with mixtures of chlorinated compounds.

  9. Development of HUMASORB{trademark}, a lignite derived humic acid for removal of metals and organic contaminants from groundwater

    SciTech Connect

    Sanjay, H.G.; Srivastava, K.C.; Walia, D.S.

    1995-12-31

    Heavy metal and organic contamination of surface and groundwater systems is a major environmental concern. The contamination is primarily due to improperly disposed industrial wastes. The presence of toxic heavy metal ions, volatile organic compounds (VOCs) and pesticides in water is of great concern and could affect the safety of drinking water. Decontamination of surface and groundwater can be achieved using a broad spectrum of treatment options such as precipitation, ion-exchange, microbial digestion, membrane separation, activated carbon adsorption, etc. The state of the art technologies for treatment of contaminated water however, can in one pass remediate only one class of contaminants, i.e., either VOCs (activated carbon) or heavy metals (ion exchange). This would require the use of at a minimum, two different stepwise processes to remediate a site. The groundwater contamination at different Department of Energy (DOE) sites (e.g., Hanford) is due to the presence of both VOCs and heavy metals. The two-step approach increases the cost of remediation. To overcome the sequential treatment of contaminated streams to remove both organics and metals, a novel material having properties to remove both classes of contaminants in one step is being developed as part of this project.

  10. Identification of specific organic contaminants in different units of a chemical production site.

    PubMed

    Dsikowitzky, L; Botalova, O; al Sandouk-Lincke, N A; Schwarzbauer, J

    2014-07-01

    Due to the very limited number of studies dealing with the chemical composition of industrial wastewaters, many industrial organic contaminants still escape our view and consequently also our control. We present here the chemical characterization of wastewaters from different units of a chemical complex, thereby contributing to the characterization of industrial pollution sources. The chemicals produced in the investigated complex are widely and intensively used and the synthesis processes are common and applied worldwide. The chemical composition of untreated and treated wastewaters from the chemical complex was investigated by applying a non-target screening which allowed for the identification of 39 organic contaminants. According to their application most of them belonged to four groups: (i) unspecific educts or intermediates of industrial syntheses, (ii) chemicals for the manufacturing of pharmaceuticals, (iii) educts for the synthesis of polymers and resins, and (iv) compounds known as typical constituents of municipal sewage. A number of halogenated compounds with unknown toxicity and with very high molecular diversity belonged to the second group. Although these compounds were completely removed or degraded during wastewater treatment, they could be useful as "alarm indicators" for industrial accidents in pharmaceutical manufacturing units or for malfunctions of wastewater treatment plants. Three potential branch-specific indicators for polymer manufacturing were found in the outflow of the complex. Among all compounds, bisphenol A, which was present in the leachate water of the on-site waste deposit, occurred in the highest concentrations of up to 20 000 μg L(-1). The comparison of contaminant loads in the inflow and outflow of the on-site wastewater treatment facility showed that most contaminants were completely or at least significantly removed or degraded during the treatment, except two alkylthiols, which were enriched during the treatment process

  11. Natural attenuation of chlorinated volatile organic compounds in a freshwater tidal wetland, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Lorah, Michelle M.; Olsen, Lisa D.; Smith, Barrett L.; Johnson, Mark A.; Fleck, William B.

    1997-01-01

    Ground-water contaminant plumes that are flowing toward or currently discharging to wetland areas present unique remediation problems because of the hydrologic connections between ground water and surface water and the sensitive habitats in wetlands. Because wetlands typically have a large diversity of microorganisms and redox conditions that could enhance biodegradation, they are ideal environments for natural attenuation of organic contaminants, which is a treatment method that would leave the ecosystem largely undisturbed and be cost effective. During 1992-97, the U.S. Geological Survey investigated the natural attenuation of chlorinated volatile organic compounds (VOC's) in a contaminant plume that discharges from a sand aquifer to a freshwater tidal wetland along the West Branch Canal Creek at Aberdeen Proving Ground, Maryland. Characterization of the hydrogeology and geochemistry along flowpaths in the wetland area and determination of the occurrence and rates of biodegradation and sorption show that natural attenuation could be a feasible remediation method for the contaminant plume that extends along the West Branch Canal Creek.

  12. Volatile organic compound (VOC) emissions during malting and beer manufacture

    NASA Astrophysics Data System (ADS)

    Gibson, Nigel B.; Costigan, Gavin T.; Swannell, Richard P. J.; Woodfield, Michael J.

    Estimates have been made of the amounts of volatile organic compounds (VOCs) released during different stages of beer manufacture. The estimates are based on recent measurements and plant specification data supplied by manufacturers. Data were obtained for three main manufacturing processes (malting, wort processing and fermentation) for three commercial beer types. Some data on the speciation of emitted compounds have been obtained. Based on these measurements, an estimate of the total unabated VOC emission. from the U.K. brewing industry was calculated as 3.5 kta -1, over 95% of which was generated during barley malting. This value does not include any correction for air pollution control.

  13. Group extraction of organic compounds present in liquid samples

    NASA Technical Reports Server (NTRS)

    Jahnsen, Vilhelm J. (Inventor)

    1976-01-01

    An extraction device is disclosed comprising a tube containing a substantially inert, chemically non-reactive packing material with a large surface area to volume ratio. A sample which consists of organic compounds dissolved in a liquid, is introduced into the tube. As the sample passes through the packing material it spreads over the material's large surface area to form a thin liquid film which is held on the packing material in a stationary state. A particular group or family of compounds is extractable from the sample by passing a particular solvent system consisting of a solvent and selected reagents through the packing material. The reagents cause optimum conditions to exist for the compounds of the particular family to pass through the phase boundary between the sample liquid and the solvent of the solvent system. Thus, the compounds of the particular family are separated from the sample liquid and become dissolved in the solvent of the solvent system. The particular family of compounds dissolved in the solvent, representing an extract, exits the tube together with the solvent through the tube's nozzle, while the rest of the sample remains on the packing material in a stationary state. Subsequently, a different solvent system may be passed through the packing material to extract another family of compounds from the remaining sample on the packing material.

  14. Studies examine contaminants: Pharmaceuticals, hormones and other organic wastewater contaminants in ground water resources

    USGS Publications Warehouse

    Barnes, Kymm K.; Kolpin, Dana W.; Furlong, Edward T.; Zaugg, Steven D.; Meyer, Michael T.; Barber, Larry B.; Focazio, Michael J.

    2005-01-01

    Ground water provides approximately 40 percent of the nation’s public water supply, and the total percentage of withdrawals for irrigation has increased from 23 percent in 1950 to 42 percent in 2000. Ground water also is a major contributor to flow in many streams and rivers in the United States and has a substantial influence on river and wetland habitats for plants and animals. Organic wastewater contaminants (OWCs) in the environment recently have been documented to be of global concern with a variety of sources and source pathways.

  15. Modeling the enhanced removal of emerging organic contaminants during MAR through a reactive barrier.

    NASA Astrophysics Data System (ADS)

    Valhondo, Cristina; Carrera, Jesús; Ayora, Carlos; Martinez-Landa, Lurdes; Nödler, Karsten; Licha, Tobias

    2014-05-01

    Artificial recharge of reclaimed water is often proposed as a way of increasing water resources while improving quality. However, it is also feared that recalcitrant organic contaminants (i.e., those that are not completely removed during wastewater treatment) may reach the aquifer. Specifically, emerging organic contaminants (EOCs) have been increasingly detected in surface and ground waters and are becoming a worldwide problem. Most EOCs exhibit higher concentrations in reclaimed water used for artificial recharge than in produced groundwater, indicating that these compounds are retained and/or degraded during infiltration. Removal may be the result of sorption, which depends on organic matter and inorganic surfaces contained in the sediments, and degradation, which depends on redox conditions (some EOCs are preferentially removed under specific redox conditions). To enhance removal and retention processes, we designed a reactive barrier, which consists of compost, sand, clay and is covered by iron oxide. The role of compost is to favor sorption of neutral compounds and to release easily degradable organic carbon, so as to generate diverse redox condition, thus increasing the range of degraded EOCs. The role of iron oxides and clay is to favor sorption of anionic and cationic compounds, respectively. The barrier has been tested in the field proving its ability in promoting diverse redox conditions and indeed improving EOCs removal. However, experimental data do not allow separating sorption from degradation. To do so, we have built a flow and transport model representing the infiltration system and the aquifer beneath. The model has been calibrated against head data, collected during three years that include recharge and natural flow periods, and concentration, collected during a conservative tracer test. The calibrated model was then used to predict the fate of EOCs using sorption and half-lives from the literature. Results confirm that retention and degradation

  16. On the reversibility of environmental contamination with persistent organic pollutants.

    PubMed

    Choi, Sung-Deuk; Wania, Frank

    2011-10-15

    An understanding of the factors that control the time trends of persistent organic pollutants (POPs) in the environment is required to evaluate the effectiveness of emission reductions and to predict future exposure. Using a regional contaminant fate model, CoZMo-POP 2, and a generic bell-shaped emission profile, we simulated time trends of hypothetical chemicals with a range of POP-like partitioning and degradation properties in different compartments of a generic warm temperate environment, with the objective of identifying the processes that may prevent the reversibility of environmental contamination with POPs after the end of primary emissions. Evaporation from soil and water can prevent complete reversibility of POP contamination of the atmosphere after the end of emissions. However, under the selected conditions, only for organic chemicals within a narrow range of volatility, that is, a logarithm of the octanol air equilibrium partition coefficient between 7 and 8, and with atmospheric degradation half-lives in excess of a few month can evaporation from environmental reservoirs sustain atmospheric levels that are within an order of magnitude of those resulting from primary emissions. HCB and α-HCH fulfill these criteria, which may explain, why their atmospheric concentrations have remained relatively high decades after their main primary emissions have been largely eliminated. Soil-to-water transfer is found responsible for the lack of reversibility of POP contamination of the aqueous environment after the end of emissions, whereas reversal of water-sediment exchange, although possible, is unlikely to contribute significantly. Differences in the reversibility of contamination in air and water suggests the possibility of changes in the relative importance of various exposure pathways after the end of primary emissions, namely an increase in the importance of the aquatic food chain relative to the agricultural one, especially if the former has a benthic

  17. A Review of the Tissue Residue Approach for Organic and Organometallic Compounds in Aquatic Organisms

    EPA Science Inventory

    This paper reviews the tissue residue approach (TRA) for toxicity assessment as it applies to organic chemicals and some organometallic compounds (tin, mercury, and lead). Specific emphasis was placed on evaluating key factors that influence interpretation of critical body resid...

  18. Mapping organic contaminant plumes in groundwater using spontaneous potentials

    NASA Astrophysics Data System (ADS)

    Forte, Sarah

    Increased water demands have raised awareness of its importance. One of the challenges facing water resource management is dealing with contaminated groundwater; delineating, characterizing and remediating it. In the last decade, spontaneous potentials have been proposed as a method for delineating degrading organic contaminant plumes in groundwater. A hypothesis proposed that the redox potential gradient due to degradation of contaminants generated an electrical potential gradient that could be measured at the ground surface. This research was undertaken to better understand this phenomenon and find under what conditions it occurs. Spontaneous potentials are electrical potentials generated by three sources that act simultaneously: electrokinetic, thermoelectric and electrochemical sources. Over contaminant plumes electrochemical sources are those of interest. Thermoelectric sources are negligible unless in geothermal areas, but we hypothesized that electrokinetic potentials could be impacted by contaminants altering sediment surface properties. We built and calibrated a laboratory apparatus to make measurements that allowed us to calculate streaming current coupling coefficients. We tested sediment from hydrocarbon impacted sites with clean and hydrocarbon polluted groundwater and found a measurable though inconsistent effect. Moreover, numerical modelling was used to demonstrate that the impact of these changes on field measurements was negligible. Spontaneous potential surveys were conducted on two field sites with well characterized degrading hydrocarbon plumes in groundwater. We did not find a correlation between redox conditions and spontaneous potential, even after the electrical measurements were corrected for anthropogenic noise. In order to determine why the expected signal was not seen, we undertook numerical modelling based on coupled fluxes using two hypothesized types of current: redox and diffusion currents. The only scenarios that produced

  19. Evolution of dissolved organic matter during abiotic oxidation of coal tar--comparison with contaminated soils under natural attenuation.

    PubMed

    Hanser, Ogier; Biache, Coralie; Boulangé, Marine; Parant, Stéphane; Lorgeoux, Catherine; Billet, David; Michels, Raymond; Faure, Pierre

    2015-01-01

    In former coal transformation plants (coking and gas ones), the major organic contamination of soils is coal tar, mainly composed of polycyclic aromatic compounds (PACs). Air oxidation of a fresh coal tar was chosen to simulate the abiotic natural attenuation impact on PAC-contaminated soils. Water-leaching experiments were subsequently performed on fresh and oxidized coal tars to study the influence of oxidation on dissolved organic matter (DOM) quality and quantity. The characterization of the DOM was performed using a combination of molecular and spectroscopic techniques (high-performance liquid chromatography-size-exclusion chromatography (HPLC-SEC), 3D fluorescence, and gas chromatography coupled with mass spectrometry (GC-MS)) and compared with the DOM from contaminated soils sampled on the field exposed to natural attenuation for several decades. An increase in the oxygenated polycyclic aromatic compound concentrations was observed with abiotic oxidation both in the coal tar and the associated DOM. Polycyclic aromatic hydrocarbon concentrations in the leachates exceeded pure water solubility limits, suggesting that co-solvation with other soluble organic compounds occurred. Furthermore, emission excitation matrix analysis combined with synchronous fluorescence spectra interpretation and size-exclusion chromatography suggests that oxidation induced condensation reactions which were responsible for the formation of higher-molecular weight compounds and potentially mobilized by water. Thus, the current composition of the DOM in aged soils may at least partly result from (1) a depletion in lower-molecular weight compounds of the initial contamination stock and (2) an oxidative condensation leading to the formation of a higher-molecular weight fraction. Abiotic oxidation and water leaching may therefore be a significant combination contributing to the evolution of coal tar-contaminated soils under natural attenuation. PMID:25146121

  20. DISTRIBUTION OF HYDROPHOBIC IONOGENIC ORGANIC COMPOUNDS BETWEEN OCTANOL AND WATER: ORGANIC ACIDS

    EPA Science Inventory

    The octanol-water distributions of 10 environmentally significant organic acid compounds were determined as a function of aqueous-phase salt concentration (0.05-0.2 M LiCl, NaCl, KCl, CaCl2, or MgCl2) and pH. he compounds were pentachlorophenol 2,3,4,5-tetrachlorophenol, (2,4,5-t...