Science.gov

Sample records for organic rankine cycle

  1. Organic rankine cycle fluid

    SciTech Connect

    Brasz, Joost J.; Jonsson, Ulf J.

    2006-09-05

    A method of operating an organic rankine cycle system wherein a liquid refrigerant is circulated to an evaporator where heat is introduced to the refrigerant to convert it to vapor. The vapor is then passed through a turbine, with the resulting cooled vapor then passing through a condenser for condensing the vapor to a liquid. The refrigerant is one of CF.sub.3CF.sub.2C(O)CF(CF.sub.3).sub.2, (CF.sub.3).sub.2 CFC(O)CF(CF.sub.3).sub.2, CF.sub.3(CF.sub.2).sub.2C(O)CF(CF.sub.3).sub.2, CF.sub.3(CF.sub.2).sub.3C(O)CF(CG.sub.3).sub.2, CF.sub.3(CF.sub.2).sub.5C(O)CF.sub.3, CF.sub.3CF.sub.2C(O)CF.sub.2CF.sub.2CF.sub.3, CF.sub.3C(O)CF(CF.sub.3).sub.2.

  2. Cascaded organic rankine cycles for waste heat utilization

    SciTech Connect

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2011-05-17

    A pair of organic Rankine cycle systems (20, 25) are combined and their respective organic working fluids are chosen such that the organic working fluid of the first organic Rankine cycle is condensed at a condensation temperature that is well above the boiling point of the organic working fluid of the second organic Rankine style system, and a single common heat exchanger (23) is used for both the condenser of the first organic Rankine cycle system and the evaporator of the second organic Rankine cycle system. A preferred organic working fluid of the first system is toluene and that of the second organic working fluid is R245fa.

  3. Organic rankine cycle waste heat applications

    DOEpatents

    Brasz, Joost J.; Biederman, Bruce P.

    2007-02-13

    A machine designed as a centrifugal compressor is applied as an organic rankine cycle turbine by operating the machine in reverse. In order to accommodate the higher pressures when operating as a turbine, a suitable refrigerant is chosen such that the pressures and temperatures are maintained within established limits. Such an adaptation of existing, relatively inexpensive equipment to an application that may be otherwise uneconomical, allows for the convenient and economical use of energy that would be otherwise lost by waste heat to the atmosphere.

  4. Parabolic Trough Organic Rankine Cycle Power Plant

    SciTech Connect

    Canada, S.; Cohen, G.; Cable, R.; Brosseau, D.; Price, H.

    2005-01-01

    Arizona Public Service (APS) is required to generate a portion of its electricity from solar resources in order to satisfy its obligation under the Arizona Environmental Portfolio Standard (EPS). In recent years, APS has installed and operates over 4.5 MWe of fixed, tracking, and concentrating photovoltaic systems to help meet the solar portion of this obligation and to develop an understanding of which solar technologies provide the best cost and performance to meet utility needs. During FY04, APS began construction of a 1-MWe parabolic trough concentrating solar power plant. This plant represents the first parabolic trough plant to begin construction since 1991. The plant will also be the first commercial deployment of the Solargenix parabolic trough collector technology developed under contract to the National Renewable Energy Laboratory (NREL). The plant will use an organic Rankine cycle (ORC) power plant, provided by Ormat. The ORC power plant is much simpler than a conventional steam Rankine cycle power plant and allows unattended operation of the facility.

  5. Low-grade heat recuperation by the organic Rankine cycle

    NASA Astrophysics Data System (ADS)

    Verneau, A.

    1980-11-01

    The use of an organic Rankine cycle engine in the conversion of low-grade industrial waste heat into mechanical energy is examined. The principles of a Rankine system using a vapor as the working fluid at operating temperatures from 100 to 500 C are presented, and the advantages of using organic vapors rather than water in the Rankine cycle are pointed out. Attention is then given to the Rankine cycle itself, the organic fluids employed, the multistage low-power turbines and the evaporator, which acts as a countercurrent heat exchanger. Economic aspects of the use of Rankine cycle systems for industrial waste heat recovery are then considered, and examples are presented of the calculation of power recovered and investment costs for the examples of heat recovery from diesel exhaust and from low-pressure steam.

  6. Organic rankine cycle system for use with a reciprocating engine

    DOEpatents

    Radcliff, Thomas D.; McCormick, Duane; Brasz, Joost J.

    2006-01-17

    In a waste heat recovery system wherein an organic rankine cycle system uses waste heat from the fluids of a reciprocating engine, provision is made to continue operation of the engine even during periods when the organic rankine cycle system is inoperative, by providing an auxiliary pump and a bypass for the refrigerant flow around the turbine. Provision is also made to divert the engine exhaust gases from the evaporator during such periods of operation. In one embodiment, the auxiliary pump is made to operate simultaneously with the primary pump during normal operations, thereby allowing the primary pump to operate at lower speeds with less likelihood of cavitation.

  7. Energy recovery system using an organic rankine cycle

    SciTech Connect

    Ernst, Timothy C

    2013-10-01

    A thermodynamic system for waste heat recovery, using an organic rankine cycle is provided which employs a single organic heat transferring fluid to recover heat energy from two waste heat streams having differing waste heat temperatures. Separate high and low temperature boilers provide high and low pressure vapor streams that are routed into an integrated turbine assembly having dual turbines mounted on a common shaft. Each turbine is appropriately sized for the pressure ratio of each stream.

  8. Experience with organic Rankine cycles in heat recovery power plants

    SciTech Connect

    Bronicki, L.Y.; Elovic, A.; Rettger, P.

    1996-11-01

    Over the last 30 years, organic Rankine cycles (ORC) have been increasingly employed to produce power from various heat sources when other alternatives were either technically not feasible or economical. These power plants have logged a total of over 100 million turbine hours of experience demonstrating the maturity and field proven technology of the ORC cycle. The cycle is well adapted to low to moderate temperature heat sources such as waste heat from industrial plants and is widely used to recover energy from geothermal resources. The above cycle technology is well established and applicable to heat recovery of medium size gas turbines and offers significant advantages over conventional steam bottoming cycles.

  9. Predicting toluene degradation in organic Rankine-cycle engines

    SciTech Connect

    Cole, R.L.; Demirgian, J.C.; Allen, J.W.

    1987-01-01

    This paper describes the measurement of toluene degradation in dynamic loop tests that simulate operation of an organic Rankine-cycle engine. Major degradation products and degradation mechanisms are identified, and degradation is quantified. Results indicate that toluene is a stable fluid with benign degradation products, provided that oxygen is excluded from the engine. A means of predicting degradation in the engine is developed. 3 refs., 4 figs., 5 tabs.

  10. Experimental demonstrations of organic Rankine cycle waste heat rejection systems

    NASA Astrophysics Data System (ADS)

    Bland, Timothy J.; Lacey, P. Douglas

    Two phase fluid management is an important factor in the successful design of organic Rankine cycle (ORC) power conversion systems for space applications. The evolution of the heat rejection system approach from a jet condenser, through a rotary jet condenser, to a rotary fluid management device (RFMD) with a surface condenser has been described in a previous paper. Some of the test programs that were used to prove the validity of the selected approach are described.

  11. Solar thermal organic rankine cycle for micro-generation

    NASA Astrophysics Data System (ADS)

    Alkahli, N. A.; Abdullah, H.; Darus, A. N.; Jalaludin, A. F.

    2012-06-01

    The conceptual design of an Organic Rankine Cycle (ORC) driven by solar thermal energy is developed for the decentralized production of electricity of up to 50 kW. Conventional Rankine Cycle uses water as the working fluid whereas ORC uses organic compound as the working fluid and it is particularly suitable for low temperature applications. The ORC and the solar collector will be sized according to the solar flux distribution in the Republic of Yemen for the required power output of 50 kW. This will be a micro power generation system that consists of two cycles, the solar thermal cycle that harness solar energy and the power cycle, which is the ORC that generates electricity. As for the solar thermal cycle, heat transfer fluid (HTF) circulates the cycle while absorbing thermal energy from the sun through a parabolic trough collector and then storing it in a thermal storage to increase system efficiency and maintains system operation during low radiation. The heat is then transferred to the organic fluid in the ORC via a heat exchanger. The organic fluids to be used and analyzed in the ORC are hydrocarbons R600a and R290.

  12. Solar dynamic organic Rankine cycle heat rejection system simulation

    NASA Astrophysics Data System (ADS)

    Havens, V. N.; Ragaller, D. R.; Namkoong, D.

    The use of a rotary fluid management device (RFMD) and shear flow condenser for two-phase fluid management in microgravity organic Rankine cycle (ORC) applications is examined. A prototype of the proposed Space Station ORC heat rejection system was constructed to evaluate the performance of the inventory control method. The design and operation of the RFMD, shear flow condenser, and inventory control fluid accumulator are described. A schematic diagram of the ORC, RFMD, and condenser, and a functional diagram of the heat rejection system for the ORC are presented.

  13. Solar dynamic organic Rankine cycle heat rejection system simulation

    NASA Technical Reports Server (NTRS)

    Havens, V. N.; Ragaller, D. R.; Namkoong, D.

    1987-01-01

    The use of a rotary fluid management device (RFMD) and shear flow condenser for two-phase fluid management in microgravity organic Rankine cycle (ORC) applications is examined. A prototype of the proposed Space Station ORC heat rejection system was constructed to evaluate the performance of the inventory control method. The design and operation of the RFMD, shear flow condenser, and inventory control fluid accumulator are described. A schematic diagram of the ORC, RFMD, and condenser, and a functional diagram of the heat rejection system for the ORC are presented.

  14. Thermal-economic analysis of organic Rankine combined cycle cogeneration

    NASA Astrophysics Data System (ADS)

    Porter, R. W.

    1982-12-01

    An evaluation of organic rankine cycles (ORC) as combined with topping incorporating gas turbines or diesel engines, and with subsequent waste heat utilization is presented. It is found that the potential benefit of the proposed organic Rankine combined cycle cogeneration of useful heat and electricity is more flexible in meeting demands for the two products, by varying the mode of operation of the system. A thermal-economic analysis is developed and illustrated with cost and performance data for commercially available equipment, and with general economic parameters reflecting current regulations and market conditions. The performance of the ORC and of the entire combined cycle is described. Equations to evaluate the various thermodynamic and economic parameter, and the resultant case flows are presented. Criteria are developed to assess the addition of an ORC to a cogeneration system without ORC is viable based on rate of return on incremental investment. It is indicated that the proposed system is potentially viable, however, it is not viable under conditions prevailing in Chicago for the selected case studies.

  15. Development of a Direct Evaporator for the Organic Rankine Cycle

    SciTech Connect

    Donna Post Guillen; Helge Klockow; Matthew Lehar; Sebastian Freund; Jennifer Jackson

    2011-02-01

    This paper describes research and development currently underway to place the evaporator of an Organic Rankine Cycle (ORC) system directly in the path of a hot exhaust stream produced by a gas turbine engine. The main goal of this research effort is to improve cycle efficiency and cost by eliminating the usual secondary heat transfer loop. The project’s technical objective is to eliminate the pumps, heat exchangers and all other added cost and complexity of the secondary loop by developing an evaporator that resides in the waste heat stream, yet virtually eliminates the risk of a working fluid leakage into the gaseous exhaust stream. The research team comprised of Idaho National Laboratory and General Electric Company engineers leverages previous research in advanced ORC technology to develop a new direct evaporator design that will reduce the ORC system cost by up to 15%, enabling the rapid adoption of ORCs for waste heat recovery.

  16. Thermodynamic analysis of organic Rankine cycle using dry working fluids

    SciTech Connect

    Wang, S.K.; Hung, T.C.

    1998-12-31

    Utilization of waste heat is not economically incentive to the industry once the temperature of the waste heat drops to a certain level. This is primarily due to a low efficiency when converting the energy of the waste heat to some forms of useful power. A Rankine cycle using organic fluids as working fluids, called organic Rankine cycle (ORC), is potentially feasible in recovering low-enthalpy containing heat sources. Nevertheless, an efficient operation of the ORC depends heavily on two factors: working conditions of the cycle and the thermodynamic properties of the working fluids. The main objective of this study is to investigate the effects of these two factors on the performance of the ORC. The working fluids under investigation are: benzene (C{sub 6}H), toluene (C{sub 7}H{sub 8}), p-xylene (C{sub 8}H{sub 10}), R113 and R123. Irreversibility of a system using various working fluids was studied since it represents the energy balance in recovering the waste heat. The study shows that the system efficiency increases as the inlet pressure of the turbine increases regardless of the working fluid used. Among the working fluids under investigation, p-xylene shows the highest efficiency while benzene the lowest. The study also shows that irreversibility depends on the type of heat source. Generally speaking, p-xylene has the lowest irreversibility in recovering a high temperature waste heat while R113 and R123 have a better performance in recovering a low temperature waste heat. In addition, an economic feasibility of ORC using various working fluids is given for ORC`s with commercial capacities.

  17. Emissions-critical charge cooling using an organic rankine cycle

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-07-15

    The disclosure provides a system including a Rankine power cycle cooling subsystem providing emissions-critical charge cooling of an input charge flow. The system includes a boiler fluidly coupled to the input charge flow, an energy conversion device fluidly coupled to the boiler, a condenser fluidly coupled to the energy conversion device, a pump fluidly coupled to the condenser and the boiler, an adjuster that adjusts at least one parameter of the Rankine power cycle subsystem to change a temperature of the input charge exiting the boiler, and a sensor adapted to sense a temperature characteristic of the vaporized input charge. The system includes a controller that can determine a target temperature of the input charge sufficient to meet or exceed predetermined target emissions and cause the adjuster to adjust at least one parameter of the Rankine power cycle to achieve the predetermined target emissions.

  18. Recovered Energy Generation Using an Organic Rankine Cycle System

    SciTech Connect

    Leslie, Neil; Sweetser, Richard; Zimron, Ohad; Stovall, Therese K

    2009-01-01

    This paper describes the results of a project demonstrating the technical and economic feasibility of capturing thermal energy from a 35,000 hp (27 MW) gas turbine driving a natural gas pipeline compressor with a Recovered Energy Generation (REG) system to produce 5.5 MW of electricity with no additional fuel and near-zero emissions. The REG is based on a modified Organic Rankine Cycle (ORC). Other major system elements include a waste-heat-to-oil heat exchanger with bypass, oil-to-pentane heat exchanger with preheater, recuperator, condenser, pentane turbine, generator and synchronizing breaker and all power and control systems required for the automatic operation of the REG. When operating at design heat input available from the gas turbine exhaust, the REG system consistently delivered 5.5 MW or more output to the grid at up to 15 percent heat conversion efficiency. The REG system improved the overall energy efficiency by 28%, from 32% simple cycle efficiency to 41% for the combined system. Significant lessons learned from this project are discussed as well as measured performance and economic considerations.

  19. Analysis of Low Temperature Organic Rankine Cycles for Solar Applications

    NASA Astrophysics Data System (ADS)

    Li, Yunfei

    The present work focuses on Organic Rankine Cycle (ORC) systems and their application to low temperature waste heat recovery, combined heat and power as well as off-grid solar power generation applications. As CO_2 issues come to the fore front and fossil fuels become more expensive, interest in low grade heat recovery has grown dramatically in the past few years. Solar energy, as a clean, renewable, pollution-free and sustainable energy has great potential for the use of ORC systems. Several ORC solutions have been proposed to generate electricity from low temperature sources. The ORC systems discussed here can be applied to fields such as solar thermal, biological waste heat, engine exhaust gases, small-scale cogeneration, domestic boilers, etc. The current work presents a thermodynamic and economic analysis for the use of ORC systems to convert solar energy or low exergy energy to generate electrical power. The organic working fluids investigated here were selected to investigate the effect of the fluid saturation temperature on the performance of ORCs. The working fluids under investigation are R113, R245fa, R123, with boiling points between 40°C and 200°C at pressures from 10 kPa to 10 MPa. Ambient temperature air at 20oC to 30oC is utilized as cooling resource, and allowing for a temperature difference 10°C for effective heat transfer. Consequently, the working fluids are condensed at 40°C. A combined first- and second-law analysis is performed by varying some system independent parameters at various reference temperatures. The present work shows that ORC systems can be viable and economical for the applications such as waste heat use and off-grid power generation even though they are likely to be more expensive than grid power.

  20. Optimization of organic Rankine cycles for space station applications

    NASA Technical Reports Server (NTRS)

    Eubanks, Dana L.; Best, Frederick R.; Faget, Nanette

    1988-01-01

    The purpose of the current program is to investigate the tradeoffs between solar dynamic and nuclear powered systems for the space station. This research is based on a typical Rankine cycle using toluene as the working fluid. The first objective is to produce an adequate thermodynamic cycle model and calculate its efficiency. The next step is to implement a sizing algorithm that calculates the capacity of the various elements of the system, such as the radiator and regenerator, for a given electrical output. Then, the mass of each component must be calculated to give the overall total system mass. Likewise, the space for each component can be determined, giving an estimate of what volume must be available to place the system into orbit.

  1. A thermodynamic study of waste heat recovery from GT-MHR using organic Rankine cycles

    NASA Astrophysics Data System (ADS)

    Yari, Mortaza; Mahmoudi, S. M. S.

    2011-02-01

    This paper presents an investigation on the utilization of waste heat from a gas turbine-modular helium reactor (GT-MHR) using different arrangements of organic Rankine cycles (ORCs) for power production. The considered organic Rankine cycles were: simple organic Rankine cycle (SORC), ORC with internal heat exchanger (HORC) and regenerative organic Rankine cycle (RORC). The performances of the combined cycles were studied from the point of view of first and second-laws of thermodynamics. Individual models were developed for each component and the effects of some important parameters such as compressor pressure ratio, turbine inlet temperature, and evaporator and environment temperatures on the efficiencies and on the exergy destruction rate were studied. Finally the combined cycles were optimized thermodynamically using the EES (Engineering Equation Solver) software. Based on the identical operating conditions for the GT-MHR cycle, a comparison between the three combined cycles and a simple GT-MHR cycle is also were made. This comparison was also carried out from the point of view of economics. The GT-MHR/SORC combined cycle proved to be the best among all the cycles from the point of view of both thermodynamics and economics. The efficiency of this cycle was about 10% higher than that of GT-MHR alone.

  2. SCSE organic Rankine engine

    SciTech Connect

    Boda, F.P.

    1981-01-01

    The Organic Rankine Cycle (ORC) engine is described which has been developed by FACC for the Small Community Solar Thermal Power Experiment (SCSE). This engine is part of a Power Conversion Subsystem (PCS) located at the focal plant of a sun-tracking parabolic dish concentrator.

  3. Performance analysis of a solar-powered organic rankine cycle engine.

    PubMed

    Bryszewska-Mazurek, Anna; Swieboda, Tymoteusz; Mazurek, Wojciech

    2011-01-01

    This paper presents the performance analysis of a power plant with the Organic Rankine Cycle (ORC). The power plant is supplied by thermal energy utilized from a solar energy collector. R245fa was the working fluid in the thermodynamic cycle. The organic cycle with heat regeneration was built and tested experimentally. The ORC with a heat regenerator obtained the maximum thermodynamic efficiency of approximately 9%. PMID:21305882

  4. Final Report. Conversion of Low Temperature Waste Heat Utilizing Hermetic Organic Rankine Cycle

    SciTech Connect

    Fuller, Robert L.

    2005-04-20

    The design of waste heat recovery using the organic Rankine cycle (ORC) engine is updated. Advances in power electronics with lower cost enable the use of a single shaft, high-speed generator eliminating wear items and allowing hermetic sealing of the working fluid. This allows maintenance free operation and a compact configuration that lowers cost, enabling new market opportunities.

  5. Analysis and reduction of degradation of working fluid in the Sundstrand Organic Rankine-Cycle System

    SciTech Connect

    Berger, R.

    1983-07-01

    Studies on understanding the location and construction levels of oxygen in the organic Rankine cycle (ORC) unit and establishing a rate of degradation with time for toluene in an operating ORC system are presented. Work on identifying the compounds in degraded toluene and contamination removal is discussed. (MHR)

  6. Analysis of the Properties of Working Substances for the Organic Rankine Cycle based Database "REFPROP"

    NASA Astrophysics Data System (ADS)

    Galashov, Nikolay; Tsibulskiy, Svyatoslav; Serova, Tatiana

    2016-02-01

    The object of the study are substances that are used as a working fluid in systems operating on the basis of an organic Rankine cycle. The purpose of research is to find substances with the best thermodynamic, thermal and environmental properties. Research conducted on the basis of the analysis of thermodynamic and thermal properties of substances from the base "REFPROP" and with the help of numerical simulation of combined-cycle plant utilization triple cycle, where the lower cycle is an organic Rankine cycle. Base "REFPROP" describes and allows to calculate the thermodynamic and thermophysical parameters of most of the main substances used in production processes. On the basis of scientific publications on the use of working fluids in an organic Rankine cycle analysis were selected ozone-friendly low-boiling substances: ammonia, butane, pentane and Freon: R134a, R152a, R236fa and R245fa. For these substances have been identified and tabulated molecular weight, temperature of the triple point, boiling point, at atmospheric pressure, the parameters of the critical point, the value of the derivative of the temperature on the entropy of the saturated vapor line and the potential ozone depletion and global warming. It was also identified and tabulated thermodynamic and thermophysical parameters of the steam and liquid substances in a state of saturation at a temperature of 15 °C. This temperature is adopted as the minimum temperature of heat removal in the Rankine cycle when working on the water. Studies have shown that the best thermodynamic, thermal and environmental properties of the considered substances are pentane, butane and R245fa. For a more thorough analysis based on a gas turbine plant NK-36ST it has developed a mathematical model of combined cycle gas turbine (CCGT) triple cycle, where the lower cycle is an organic Rankine cycle, and is used as the air cooler condenser. Air condenser allows stating material at a temperature below 0 °C. Calculation of the

  7. Study of toluene stability for an Organic Rankine Cycle (ORC) space-based power system

    NASA Technical Reports Server (NTRS)

    Havens, Vance; Ragaller, Dana

    1988-01-01

    The design, fabrication, assembly, and endurance operation of a dynamic test loop, built to evaluate the thermal stability of a proposed Organic Rankine Cycle (ORC) working fluid, is discussed. The test fluid, toluene, was circulated through a heater, simulated turbine, regenerator, condenser and pump to duplicate an actual ORC system. The maximum nominal fluid temperature, 750 F, was at the turbine simulator inlet. Samples of noncondensible gases and liquid toluene were taken periodically during the test. The samples were analyzed to identify the degradation products formed and the quantity of these products. From these data it was possible to determine the degradation rate of the working fluid and the generation rate of noncondensible gases. A further goal of this work was to relate the degradation observed in the dynamic operating loop to degradation obtained in isothermal capsule tests. This relationship was the basis for estimating the power loop degradation in the Space Station Organic Rankine Cycle system.

  8. Development of a solar receiver for an organic rankine cycle engine

    SciTech Connect

    Haskins, H.J.; Taylor, R.M.; Osborn, D.B.

    1981-01-01

    A solar receiver is described for use with an organic Rankine cycle (ORC) engine as part of the Small Community Solar Thermal Power Experiment (SCSE). The selected receiver concept is a direct-heated, once-through, monotube boiler normally operating at supercritical pressure. Fabrication methods for the receiver core have been developed and validated with flat braze samples, cylindrical segment samples, and a complete full-scale core assembly.

  9. Low level waste heat conversion by Organic Rankine Cycle. Task 2B report

    SciTech Connect

    Brandt, D.L.

    1981-01-01

    A Refinery Energy Profile Study identified the waste heat being rejected from process streams in air and water cooled heat exchangers as a potential area for the application of energy conservation technology. One technology for recovering energy in this area, when process stream temperatures are in the 200 to 400/sup 0/F range, is the Organic Rankine Cycle (ORC) System. The Rankine cycle is a thermodynamic process for converting heat energy into mechanical and/or electrical energy. The objective of Task 2B in this followup contract to the Profile Study is to evaluate ORC systems for recovering energy from air and water cooled process streams by analyzing specific applications within a refinery crude unit. The basis for this study is the data from the Refinery Energy Profile Study.

  10. An RC-1 organic Rankine bottoming cycle for an adiabatic diesel engine

    NASA Technical Reports Server (NTRS)

    Dinanno, L. R.; Dibella, F. A.; Koplow, M. D.

    1983-01-01

    A system analysis and preliminary design were conducted for an organic Rankine-cycle system to bottom the high-temperature waste heat of an adiabatic diesel engine. The bottoming cycle is a compact package that includes a cylindrical air cooled condenser regenerator module and other unique features. The bottoming cycle output is 56 horsepower at design point conditions when compounding the reference 317 horsepower turbocharged diesel engine with a resulting brake specific fuel consumption of 0.268 lb/hp-hr for the compound engine. The bottoming cycle when applied to a turbocompound diesel delivers a compound engine brake specific fuel consumption of 0.258 lb/hp-hr. This system for heavy duty transport applications uses the organic working fluid RC-1, which is a mixture of 60 mole percent pentafluorobenzene and 40 mole percent hexafluorobenzene. The thermal stability of the RC-1 organic fluid was tested in a dynamic fluid test loop that simulates the operation of Rankine-cycle. More than 1600 hours of operation were completed with results showing that the RC-1 is thermally stable up to 900 F.

  11. Combined rankine and vapor compression cycles

    DOEpatents

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  12. 600 KWe Organic Rankine Cycle Waste Heat Power Conversion System. Final report

    SciTech Connect

    Not Available

    1983-11-01

    The events and accomplishments of the Sundstrand 600 KWe Organic Rankine Cycle Systems are described. The ORC systems are compatible with diesel engine power plants and the Crane Co. glazing furnaces as waste heat sources. Field site personnel continue to demonstrate their ability to maintain and operate ORC system hardware. The ORC programmable sequencers can be programmed via phone lines from Rockford. This was successfully demonstrated using the Crane system. The hours of operation continued to increase. Separate abstracts were prepared for individual reports.

  13. Thermal energy storage for organic Rankine cycle solar dynamic space power systems

    NASA Astrophysics Data System (ADS)

    Heidenreich, G. R.; Parekh, M. B.

    An organic Rankine cycle-solar dynamic power system (ORC-SDPS) comprises a concentrator, a radiator, a power conversion unit, and a receiver with a thermal energy storage (TES) subsystem which charges and discharges energy to meet power demands during orbital insolation and eclipse periods. Attention is presently given to the criteria used in designing and evaluating an ORC-SDPS TES, as well as the automated test facility employed. It is found that a substantial data base exists for the design of an ORC-SDPS TES subsystem.

  14. On the efficient use of a lowtemperature heat source by the organic Rankine cycle

    NASA Astrophysics Data System (ADS)

    Mikielewicz, Dariusz; Mikielewicz, Jarosław

    2013-09-01

    The evaporation temperature is regarded as one of the major parameters influencing the organic Rankine cycle (ORC) efficiency. Majority of contributions in literature for ORC cycle analyses treat the heat source as if it had an infinite heat capacity. Such analyses are not valuable as the resulting temperature drops of the heat source needs to be small. That leads to the fact that the heat source is not well explored and in the case of waste heat utilization it can prove the poor economics of the ORC. In the present study cooperation of the ORC cycle with the heat source available as a single phase or phase changing fluids is considered. The analytical heat balance models have been developed, which enable in a simple way calculation of heating fluid temperature variation as well as the ratio of flow rates of heating and working fluids in ORC cycle. The developed analytical expressions enable also calculation of the outlet temperature of the heating fluid.

  15. The SCSTPE organic Rankine engine

    NASA Technical Reports Server (NTRS)

    Boda, F. P.

    1980-01-01

    The organic Rankine cycle engine under consideration for a solar thermal system being developed is described. Design parameters, method of control, performance and cost data are provided for engine power levels up to 80 kWe; efficiency is shown as a function of turbine inlet temperature in the range of 149 C to 427 C.

  16. Application guide for waste heat recovery with organic Rankine cycle equipment. Final report May-Dec 82

    SciTech Connect

    Moynihan, P.I.

    1983-01-15

    This report assesses the state-of-the-art of commercially available organic Rankine cycle (ORC) hardware from a literature search and industry survey. Engineering criteria for applying ORC technology are established, and a set of nomograms to enable the rapid sizing of the equipment is presented. A comparison of an ORC system with conventional heat recovery techniques can be made with a nomogram developed for a recuperative heat exchanger. A graphical technique for evaluating the economic aspects of an ORC system and conventional heat recovery method is discussed; also included is a description of anticipated future trends in organic Rankine cycle RandD.

  17. Organic-Rankine-cycle systems for waste-heat recovery in refineries and chemical process plants

    SciTech Connect

    Meacher, J.S.

    1981-09-01

    The use of organic Rankine cycles (ORC) for the recovery and conversion of low-temperature waste heat has received considerable attention during recent years. The number of demonstration systems developed and put into service is small, and only a fraction of the possible energy-conserving benefits of the concept have been realized to date. This situation is due partly to the fact that energy costs have only recently risen to the point where such units provide acceptable return on investment. A second contributing factor may be that the design of ORC equipment has not yet responded to the special needs of the dominant market for ORC systems. 2 references, 12 figures, 5 tables.

  18. Efficiency analysis of organic Rankine cycle with internal heat exchanger using neural network

    NASA Astrophysics Data System (ADS)

    Yılmaz, Fatih; Selbaş, Reşat; Şahin, Arzu Şencan

    2016-02-01

    In this study, artificial neural network (ANN) has been used for efficiency analysis of the organic Rankine cycle with internal heat exchanger (IHEORC) using refrigerants R410a, R407c which do not damage to ozone layer. It is well known that the evaporator temperature, condenser temperature, subcooling temperature and superheating temperature affect the thermal efficiency of IHEORC. In this study, thermal efficiency is estimated depending on the above temperatures. The results of ANN are compared with actual results. The coefficient of determination values obtained when the test set were used to the networks were 0.99946 and 0.999943 for the R410a and R407c respectively which is very satisfactory.

  19. The simulation of organic rankine cycle power plant with n-pentane working fluid

    NASA Astrophysics Data System (ADS)

    Nurhilal, Otong; Mulyana, Cukup; Suhendi, Nendi; Sapdiana, Didi

    2016-02-01

    In the steam power plant in Indonesia the dry steam from separator directly used to drive the turbin. Meanwhile, brine from the separator with low grade temperature reinjected to the earth. The brine with low grade temperature can be converted indirectly to electrical power by organic Rankine cycle (ORC) methods. In ORC power plant the steam are released from vaporization of organic working fluid by brine. The steam released are used to drive an turbine which in connected to generator to convert the mechanical energy into electric energy. The objective of this research is the simulation ORC power plant with n-pentane as organic working fluid. The result of the simulation for brine temperature around 165°C and the pressure 8.001 bar optained the net electric power around 1173 kW with the cycle thermal efficiency 14.61% and the flow rate of n-pentane around 15.51 kg/s. This result enable to applied in any geothermal source in Indonesia.

  20. Organic Rankine-cycle power systems working fluids study: Topical report No. 2, Toluene

    SciTech Connect

    Cole, R.L.; Demirgian, J.C.; Allen, J.W.

    1987-02-01

    The US Department of Energy initiated an investigation at Argonne National Laboratory in 1982 to experimentally determine the thermal stability limits and degradation rates of toluene as a function of maximum cycle temperature. Following the design and construction of a dynamic test loop capable of closely simulating the thermodynamic conditions of typical organic Rankine-cycle (ORC) power systems, four test runs, totaling about 3900 h of test time and covering a temperature range of 600-677(degree)F, were completed. Both liquid and noncondensable-vapor (gaseous) samples were drawn periodically and analyzed using capillary-column gas chromatography, gas chromatography/mass spectrometry, and mass spectrometry. A computer program that can predict degradation in an ORC engine was developed. Experimental results indicate that, if oxygen can be excluded from the system, toluene is a stable fluid up to the maximum test temperature; the charge of toluene could be used for several years before replacement became necessary. (Additional data provided by Sundstrand Corp. from tests sponsored by the National Aeronautics and Space Administration indicate that toluene may be used at temperatures up to 750(degree)F.) Degradation products are benign; the main liquid degradation products are bibenzyls, and the main gaseous degradation products are hydrogen and methane. A cold trap to remove gaseous degradation products from the condenser is necessary for extended operation. 21 figs., 22 tabs.

  1. Modeling Energy Recovery Using Thermoelectric Conversion Integrated with an Organic Rankine Bottoming Cycle

    SciTech Connect

    Miller, Erik W.; Hendricks, Terry J.; Peterson, Richard B.

    2009-07-01

    Hot engine exhaust represents a resource that is often rejected to the environment without further utilization. This resource is most prevalent in the transportation sector, but stationary engine-generator systems also typically do not utilize this resource. Engine exhaust is a source of high grade thermal energy that can potentially be utilized by various approaches to produce electricity or to drive heating and cooling systems. This paper describes a model system that employs thermoelectric conversion as a topping cycle integrated with an organic Rankine bottoming cycle for waste heat utilization. This approach is being developed to fully utilize the thermal energy contained in hot exhaust streams. The model is composed of a high temperature heat exchanger which extracts thermal energy for driving the thermoelectric conversion elements. However, substantial sensible heat remains in the exhaust stream after emerging from the heat exchanger. The model incorporates a closely integrated bottoming cycle to utilize this remaining thermal energy in the exhaust stream. The model has many interacting parameters that define combined system quantities such as overall output power, efficiency, and total energy utilization factors. In addition, the model identifies a maximum power operating point for the system. That is, the model can identify the optimal amount of heat to remove from the exhaust flow to run through the thermoelectric elements. Removing too much or too little heat from the exhaust stream in this stage will reduce overall cycle performance. The model has been developed such that heat exchanger UAh values, thermal resistances, ZT values, and multiple thermoelectric elements can be investigated in the context of system operation. The model also has the ability to simultaneously determine the effect of each cycle design parameter on the performance of the overall system, thus giving the ability to utilize as much waste heat as possible. Key analysis results are

  2. Analysis of a rotating spool expander for Organic Rankine Cycle applications

    NASA Astrophysics Data System (ADS)

    Krishna, Abhinav

    Increasing interest in recovering or utilizing low-grade heat for power generation has prompted a search for ways in which the power conversion process may be enhanced. Amongst the conversion systems, the Organic Rankine Cycle (ORC) has generated an enormous amount of interest amongst researchers and system designers. Nevertheless, component level technologies need to be developed and match the range of potential applications. In particular, technical challenges associated with scaling expansion machines (turbines) from utility scale to commercial scale have prevented widespread adoption of the technology. In this regard, this work focuses on a novel rotating spool expansion machine at the heart of an Organic Rankine Cycle. A comprehensive, deterministic simulation model of the rotating spool expander is developed. The comprehensive model includes a detailed geometry model of the spool expander and the suction valve mechanism. Sub-models for mass flow, leakage, heat transfer and friction within the expander are also developed. Apart from providing the ability to characterize the expander in a particular system, the model provides a valuable tool to study the impact of various design variables on the performance of the machine. The investigative approach also involved an experimental program to assess the performance of a working prototype. In general, the experimental data showed that the expander performance was sub-par, largely due to the mismatch of prevailing operating conditions and the expander design criteria. Operating challenges during the shakedown tests and subsequent sub-optimal design changes also detracted from performance. Nevertheless, the results of the experimental program were sufficient for a proof-of-concept assessment of the expander and for model validation over a wide range of operating conditions. The results of the validated model reveal several interesting details concerning the expander design and performance. For example, the match

  3. Thermodynamic and heat transfer analysis of heat recovery from engine test cell by Organic Rankine Cycle

    NASA Astrophysics Data System (ADS)

    Shokati, Naser; Mohammadkhani, Farzad; Farrokhi, Navid; Ranjbar, Faramarz

    2014-12-01

    During manufacture of engines, evaluation of engine performance is essential. This is accomplished in test cells. During the test, a significant portion of heat energy released by the fuel is wasted. In this study, in order to recover these heat losses, Organic Rankine Cycle (ORC) is recommended. The study has been conducted assuming the diesel oil to be composed of a single hydrocarbon such as C12H26. The composition of exhaust gases (products of combustion) have been computed (and not determined experimentally) from the stoichiometric equation representing the combustion reaction. The test cell heat losses are recovered in three separate heat exchangers (preheater, evaporator and superheater). These heat exchangers are separately designed, and the whole system is analyzed from energy and exergy viewpoints. Finally, a parametric study is performed to investigate the effect of different variables on the system performance characteristics such as the ORC net power, heat exchangers effectiveness, the first law efficiency, exergy destruction and heat transfer surfaces. The results of the study show that by utilizing ORC, heat recovery equivalent to 8.85 % of the engine power is possible. The evaporator has the highest exergy destruction rate, while the pump has the lowest among the system components. Heat transfer surfaces are calculated to be 173.6, 58.7, and 11.87 m2 for the preheater, evaporator and superheater, respectively.

  4. Molecular Entropy, Thermal Efficiency, and Designing of Working Fluids for Organic Rankine Cycles

    NASA Astrophysics Data System (ADS)

    Wang, Jingtao; Zhang, Jin; Chen, Zhiyou

    2012-06-01

    A shortage of fossil energy sources boosts the utilization of renewable energy. Among numerous novel techniques, recovering energy from low-grade heat sources through power generation via organic Rankine cycles (ORCs) is one of the focuses. Properties of working fluids are crucial for the ORC's performance. Many studies have been done to select proper working fluids or to design new working fluids. However, no researcher has systematically investigated the relationship between molecular structures and thermal efficiencies of various working fluids for an ideal ORC. This paper has investigated the interrelations of molecular structures, molecular entropies, and thermal efficiencies of various working fluids for an ideal ORC. By calculating thermal efficiencies and molecular entropies, we find that the molecular entropy is the most appropriate thermophysical property of a working fluid to determine how much energy can be converted into work and how much cannot in a system. Generally speaking, working fluids with low entropies will generally have high thermal efficiency for an ideal ORC. Based on this understanding, the direct interrelations of molecular structures and entropies provide an explicit interrelation between molecular structures and thermal efficiencies, and thus provide an insightful direction for molecular design of novel working fluids for ORCs.

  5. Low-order models of a single-screw expander for organic Rankine cycle applications

    NASA Astrophysics Data System (ADS)

    Ziviani, D.; Desideri, A.; Lemort, V.; De Paepe, M.; van den Broek, M.

    2015-08-01

    Screw-type volumetric expanders have been demonstrated to be a suitable technology for organic Rankine cycle (ORC) systems because of higher overall effectiveness and good part-load behaviour over other positive displacement machines. An 11 kWe single-screw expander (SSE) adapted from an air compressor has been tested in an ORC test-rig operating with R245fa as working fluid. A total of 60 steady-steady points have been obtained at four different rotational speeds of the expander in the range between 2000 rpm and 3300 rpm. The maximum electrical power output and overall isentropic effectiveness measured were 7.3 kW and 51.9%, respectively. In this paper, a comparison between two low-order models is proposed in terms of accuracy of the predictions, the robustness of the model and the computational time. The first model is the Pacejka equation-based model and the second is a semi-empirical model derived from a well-known scroll expander model and modified to include the geometric aspects of a single screw expander. The models have been calibrated with the available steady-state measurement points by identifying the proper parameters.

  6. Leak detectors for organic Rankine cycle power plants: on-line and manual methods

    SciTech Connect

    Robertus, R.J.; Pool, K.H.; Kindle, C.H.; Sullivan, R.G.; Shannon, D.W.; Pierce, D.D.

    1984-10-01

    Two leak detector systems have been designed, built, and tested at a binary-cycle (organic Rankine cycle) geothermal plant. One system is capable of detecting water in hydrocarbon streams down to 100 ppM liquid water in liquid isobutane. The unit first cools and/or condenses the hydrocarbon sample stream in a small heat exchanger. The cooled liquid stream flows to a large settling chamber where the water and isobutane separate because of density differences. Any water present is collected in a pipe and automatically dumped using a solenoid operated valve when the level reaches a certain point. The magnitude of the leak is estimated from the frequency at which the solenoid operated valve opens and closes, i.e. the amount of water collected in a known period of time is directly related to the number of dump cycles. The second system can detect the presence of isobutane in water or brine streams down to 2 ppM liquid isobutane in liquid water or brine. The unit first cools the liquid stream if necessary then reduces the pressure in an expansion chamber so the hydrocarbon will vaporize. In brine streams flashed CO/sub 2/ carries the hydrocarbon to a non-dispersive infrared analyzer (NDIR). (In cooling water streams a nitrogen carrier gas is used to transport the hydrocarbon to the analyzer). The NDIR has been modified to be highly selective for isobutane. One can estimate the size of a leak knowing the total gas-to-liquid ratio entering the leak detection system and the concentration of hydrocarbon in the gas phase. Four of the leak detector systems will be installed in the Heber Geothermal Demonstration Plant at Heber, California. Two will be on the hydrocarbon system, one on the brine system, and one on the cooling water system.

  7. Test results of an organic Rankine-cycle power module for a small community solar thermal power experiment

    NASA Technical Reports Server (NTRS)

    Clark, T. B.

    1985-01-01

    The organic Rankine-cycle (ORC) power conversion assembly was tested. Qualification testing of the electrical transport subsystem was also completed. Test objectives were to verify compatibility of all system elements with emphasis on control of the power conversion assembly, to evaluate the performance and efficiency of the components, and to validate operating procedures. After 34 hours of power generation under a wide range of conditions, the net module efficiency exceeded 18% after accounting for all parasitic losses.

  8. Thermal energy storage for low grade heat in the organic Rankine cycle

    NASA Astrophysics Data System (ADS)

    Soda, Michael John

    Limits of efficiencies cause immense amounts of thermal energy in the form of waste heat to be vented to the atmosphere. Up to 60% of unrecovered waste heat is classified as low or ultra-low quality, making recovery difficult or inefficient. The organic Rankine cycle can be used to generate mechanical power and electricity from these low temperatures where other thermal cycles are impractical. A variety of organic working fluids are available to optimize the ORC for any target temperature range. San Diego State University has one such experimental ORC using R245fa, and has been experimenting with multiple expanders. One limitation of recovering waste heat is the sporadic or cyclical nature common to its production. This inconsistency makes sizing heat recovery ORC systems difficult for a variety of reasons including off-design-point efficiency loss, increased attrition from varying loads, unreliable outputs, and overall system costs. Thermal energy storage systems can address all of these issues by smoothing the thermal input to a constant and reliable level and providing back-up capacity for times when the thermal input is deactivated. Multiple types of thermal energy storage have been explored including sensible, latent, and thermochemical. Latent heat storage involves storing thermal energy in the reversible phase change of a phase change material, or PCM, and can have several advantages over other modalities including energy storage density, cost, simplicity, reliability, relatively constant temperature output, and temperature customizability. The largest obstacles to using latent heat storage include heat transfer rates, thermal cycling stability, and potentially corrosive PCMs. Targeting 86°C, the operating temperature of SDSU's experimental ORC, multiple potential materials were explored and tested as potential PCMs including Magnesium Chloride Hexahydrate (MgCl2˙6H2O), Magnesium Nitrate Hexahydrate (Mg(NO3)2˙6H 2O), montan wax, and carnauba wax. The

  9. Design and optimization of organic rankine cycle for low temperature geothermal power plant

    NASA Astrophysics Data System (ADS)

    Barse, Kirtipal A.

    Rising oil prices and environmental concerns have increased attention to renewable energy. Geothermal energy is a very attractive source of renewable energy. Although low temperature resources (90°C to 150°C) are the most common and most abundant source of geothermal energy, they were not considered economical and technologically feasible for commercial power generation. Organic Rankine Cycle (ORC) technology makes it feasible to use low temperature resources to generate power by using low boiling temperature organic liquids. The first hypothesis for this research is that using ORC is technologically and economically feasible to generate electricity from low temperature geothermal resources. The second hypothesis for this research is redesigning the ORC system for the given resource condition will improve efficiency along with improving economics. ORC model was developed using process simulator and validated with the data obtained from Chena Hot Springs, Alaska. A correlation was observed between the critical temperature of the working fluid and the efficiency for the cycle. Exergy analysis of the cycle revealed that the highest exergy destruction occurs in evaporator followed by condenser, turbine and working fluid pump for the base case scenarios. Performance of ORC was studied using twelve working fluids in base, Internal Heat Exchanger and turbine bleeding constrained and non-constrained configurations. R601a, R245ca, R600 showed highest first and second law efficiency in the non-constrained IHX configuration. The highest net power was observed for R245ca, R601a and R601 working fluids in the non-constrained base configuration. Combined heat exchanger area and size parameter of the turbine showed an increasing trend as the critical temperature of the working fluid decreased. The lowest levelized cost of electricity was observed for R245ca followed by R601a, R236ea in non-constrained base configuration. The next best candidates in terms of LCOE were R601a, R

  10. Technology for industrial waste heat recovery by organic Rankine cycle systems

    NASA Astrophysics Data System (ADS)

    Cain, W. G.; Drake, R. L.; Prisco, C. J.

    1984-10-01

    The recovery of industrial waste heat and the conversion thereof to useful electric power by use of Rankine cycle systems is studied. Four different aspects of ORC technology were studied: possible destructive chemical reaction between an aluminum turbine wheel and R-113 working fluid under wheel-to-rotor rub conditions; possible chemical reaction between stainless steel or carbon steel and any of five different ORC working fluids under rotor-stator rub conditions; effects on electric generator properties of extended exposure to an environment of saturated R-113 vapor/fluid; and operational proof tests under laboratory conditions of two 1070 kW, ORC, R-113 hermetic turbogenerator power module systems.

  11. The impact of component performance on the overall cycle performance of small-scale low temperature organic Rankine cycles

    NASA Astrophysics Data System (ADS)

    White, M.; Sayma, A. I.

    2015-08-01

    Low temperature organic Rankine cycles offer a promising technology for the generation of power from low temperature heat sources. Small-scale systems (∼10kW) are of significant interest, however there is a current lack of commercially viable expanders. For a potential expander to be economically viable for small-scale applications it is reasonable to assume that the same expander must have the ability to be implemented within a number of different ORC applications. It is therefore important to design and optimise the cycle considering the component performance, most notably the expander, both at different thermodynamic conditions, and using alternative organic fluids. This paper demonstrates a novel modelling methodology that combines a previously generated turbine performance map with cycle analysis to establish at what heat source conditions optimal system performance can be achieved using an existing turbine design. The results obtained show that the same turbine can be effectively utilised within a number of different ORC applications by changing the working fluid. By selecting suitable working fluids, this turbine can be used to convert pressurised hot water at temperatures between 360K and 400K, and mass flow rates between 0.45kg/s and 2.7kg/s, into useful power with outputs between 1.5kW and 27kW. This is a significant result since it allows the same turbine to be implemented into a variety of applications, improving the economy of scale. This work has also confirmed the suitability of the candidate turbine for a range of low temperature ORC applications.

  12. Thermal-economic analysis of organic Rankine combined cycle cogeneration. ITT Energy management report TR-82-3

    SciTech Connect

    Porter, R.W.

    1982-12-01

    This study presents an evaluation of Organic Rankine Cycles (ORC) as combined with topping cycles incorporating gas turbines or diesel engines, and with subsequent waste heat utilization. The potential benefit of the proposed organic-Rankine-combined-cycle cogeneration of useful heat and electricity is more flexibility in meeting demands for the two products, by varying the mode of operation of the system. A thermal-economic analysis is developed and illustrated with cost and performance data for commercially available equipment, and with general economic parameters reflecting current regulations and market conditions. The performance of the ORC and of the entire combined cycle is described. Equations are presented for evaluating the various thermodynamic and economic parameters, and the resultant cash flows. Criteria are developed in order to assess whether or not the addition of an ORC to a cogeneration system without ORC is viable based on rate of return on incremental investment. Examples are given to illustrate how the method may be applied, namely to serve proposed commercial energy facilities for the North Loop Project and for Illinois Center, in Chicago. While results indicate that the proposed system is potentially viable, it is not viable under conditions prevailing in Chicago for the selected case studies.

  13. Development of an Organic Rankine-Cycle power module for a small community solar thermal power experiment

    NASA Technical Reports Server (NTRS)

    Kiceniuk, T.

    1985-01-01

    An organic Rankine-cycle (ORC) power module was developed for use in a multimodule solar power plant to be built and operated in a small community. Many successful components and subsystems, including the reciever, power conversion subsystem, energy transport subsystem, and control subsystem, were tested. Tests were performed on a complete power module using a test bed concentrator in place of the proposed concentrator. All major single-module program functional objectives were met and the multimodule operation presented no apparent problems. The hermetically sealed, self-contained, ORC power conversion unit subsequently successfully completed a 300-hour endurance run with no evidence of wear or operating problems.

  14. Organic Rankine-Cycle Power Systems Working Fluids Study: Topical report No. 3, 2-methylpyridine/water

    SciTech Connect

    Cole, R.L.; Demirgian, J.C.; Allen, J.W.

    1987-09-01

    A mixture of 35 mole percent (mol %) 2-methylpyridine and 65 mol % water was tested at 575, 625, and 675/degree/F in a dynamic loop. Samples of the degraded fluid were chemically analyzed to determine the identities of major degradation products and the quantity of degradation. Computed degradation rates were found to be higher than those for Fluorinol 85 or toluene. For this reason (and other reasons, related to fluid handling), other fluids are recommended as the first choice for service in organic Rankine-cycle systems in preference to 2-methylpyridine/water. 7 refs., 39 figs., 39 tabs.

  15. Rankine-cycle heating and cooling systems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Design for domestic or commercial solar heating and cooling system based on rankine heat pump cycle includes detailed drawings, performance data, equipment specifications, and other pertinent information.

  16. Rankine cycle system and method

    SciTech Connect

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-09-09

    A Rankine cycle waste heat recovery system uses a receiver with a maximum liquid working fluid level lower than the minimum liquid working fluid level of a sub-cooler of the waste heat recovery system. The receiver may have a position that is physically lower than the sub-cooler's position. A valve controls transfer of fluid between several of the components in the waste heat recovery system, especially from the receiver to the sub-cooler. The system may also have an associated control module.

  17. Comparative investigation of working fluids for an organic Rankine cycle with geothermal water

    NASA Astrophysics Data System (ADS)

    Liu, Yan-Na; Xiao, Song

    2015-06-01

    In this paper, the thermodynamic investigation on the use of geothermal water (130 °C as maximum) for power generation through a basic Rankine has been presented together with obtained main results. Six typical organic working fluids (i.e., R245fa, R141b, R290, R600, R152a, and 134a) were studied with modifying the input pressure and temperature to the turbine. The results show that there are no significant changes taking place in the efficiency for these working fluids with overheating the inlet fluid to the turbine, i.e., efficiency is a weak function of temperature. However, with the increasing of pressure ratio in the turbine, the efficiency rises more sharply. The technical viability is shown of implementing this type of process for recovering low temperature heat resource.

  18. Preliminary analysis of compound systems based on high temperature fuel cell, gas turbine and Organic Rankine Cycle

    NASA Astrophysics Data System (ADS)

    Sánchez, D.; Muñoz de Escalona, J. M.; Monje, B.; Chacartegui, R.; Sánchez, T.

    This article presents a novel proposal for complex hybrid systems comprising high temperature fuel cells and thermal engines. In this case, the system is composed by a molten carbonate fuel cell with cascaded hot air turbine and Organic Rankine Cycle (ORC), a layout that is based on subsequent waste heat recovery for additional power production. The work will credit that it is possible to achieve 60% efficiency even if the fuel cell operates at atmospheric pressure. The first part of the analysis focuses on selecting the working fluid of the Organic Rankine Cycle. After a thermodynamic optimisation, toluene turns out to be the most efficient fluid in terms of cycle performance. However, it is also detected that the performance of the heat recovery vapour generator is equally important, what makes R245fa be the most interesting fluid due to its balanced thermal and HRVG efficiencies that yield the highest global bottoming cycle efficiency. When this fluid is employed in the compound system, conservative operating conditions permit achieving 60% global system efficiency, therefore accomplishing the initial objective set up in the work. A simultaneous optimisation of gas turbine (pressure ratio) and ORC (live vapour pressure) is then presented, to check if the previous results are improved or if the fluid of choice must be replaced. Eventually, even if system performance improves for some fluids, it is concluded that (i) R245fa is the most efficient fluid and (ii) the operating conditions considered in the previous analysis are still valid. The work concludes with an assessment about safety-related aspects of using hydrocarbons in the system. Flammability is studied, showing that R245fa is the most interesting fluid also in this regard due to its inert behaviour, as opposed to the other fluids under consideration all of which are highly flammable.

  19. Thermodynamic and design considerations of organic Rankine cycles in combined application with a solar thermal gas turbine

    NASA Astrophysics Data System (ADS)

    Braun, R.; Kusterer, K.; Sugimoto, T.; Tanimura, K.; Bohn, D.

    2013-12-01

    Concentrated Solar Power (CSP) technologies are considered to provide a significant contribution for the electric power production in the future. Different kinds of technologies are presently in operation or under development, e.g. parabolic troughs, central receivers, solar dish systems and Fresnel reflectors. This paper takes the focus on central receiver technologies, where the solar radiation is concentrated by a field of heliostats in a receiver on the top of a tall tower. To get this CSP technology ready for the future, the system costs have to reduce significantly. The main cost driver in such kind of CSP technologies are the huge amount of heliostats. To reduce the amount of heliostats, and so the investment costs, the efficiency of the energy conversion cycle becomes an important issue. An increase in the cycle efficiency results in a decrease of the solar heliostat field and thus, in a significant cost reduction. The paper presents the results of a thermodynamic model of an Organic Rankine Cycle (ORC) for combined cycle application together with a solar thermal gas turbine. The gas turbine cycle is modeled with an additional intercooler and recuperator and is based on a typical industrial gas turbine in the 2 MW class. The gas turbine has a two stage radial compressor and a three stage axial turbine. The compressed air is preheated within a solar receiver to 950°C before entering the combustor. A hybrid operation of the gas turbine is considered. In order to achieve a further increase of the overall efficiency, the combined operation of the gas turbine and an Organic Rankine Cycle is considered. Therefore an ORC has been set up, which is thermally connected to the gas turbine cycle at two positions. The ORC can be coupled to the solar-thermal gas turbine cycle at the intercooler and after the recuperator. Thus, waste heat from different cycle positions can be transferred to the ORC for additional production of electricity. Within this investigation

  20. Organic Rankine Cycle for Residual Heat to Power Conversion in Natural Gas Compressor Station. Part I: Modelling and Optimisation Framework

    NASA Astrophysics Data System (ADS)

    Chaczykowski, Maciej

    2016-06-01

    Basic organic Rankine cycle (ORC), and two variants of regenerative ORC have been considered for the recovery of exhaust heat from natural gas compressor station. The modelling framework for ORC systems has been presented and the optimisation of the systems was carried out with turbine power output as the variable to be maximized. The determination of ORC system design parameters was accomplished by means of the genetic algorithm. The study was aimed at estimating the thermodynamic potential of different ORC configurations with several working fluids employed. The first part of this paper describes the ORC equipment models which are employed to build a NLP formulation to tackle design problems representative for waste energy recovery on gas turbines driving natural gas pipeline compressors.

  1. Organic rankine cycle coupled to a solar pond by direct-contact heat exchange - selection of a working fluid

    NASA Astrophysics Data System (ADS)

    Wright, J. D.

    1982-06-01

    Heat from a solar pond may be used to drive an organic Rankine cycle and produce electricity. Due to the inherent low efficiency of low temperature cycles, large amounts of heat must be transferred, and heat exchangers may account for up to 50% of the plant cost. Use of a direct contact boiler, in which the organic fluid is bubbled through a stream of pond brine, may reduce the plant cost by about 25%. The choice of a working fluid affects plant efficiency, turbine cost, and the loss rate of the organic fluid. Low vapor pressure fluids maximize cycle efficiency by minimizing pumping requirements, but require a larger turbine. Efficiency affects the size and cost of the entire plant and low pressure fluids are preferred. The saturated and halogenated hydrocarbons were evaluated for use as working fluids. It is found that the working fluid is best suited to this application, because of high efficiency, low solubility in the pond, and a reasonable turbine cost.

  2. Rankine-cycle solar-cooling systems

    NASA Technical Reports Server (NTRS)

    Weathers, H. M.

    1979-01-01

    Report reviews progress made by three contractors to Marshall Space Flight Center and Department of Energy in developing Rankine-cycle machines for solar cooling and testing of commercially available equipment involved.

  3. Exergy analysis of an integrated solid oxide fuel cell and organic Rankine cycle for cooling, heating and power production

    NASA Astrophysics Data System (ADS)

    Al-Sulaiman, Fahad A.; Dincer, Ibrahim; Hamdullahpur, Feridun

    The study examines a novel system that combined a solid oxide fuel cell (SOFC) and an organic Rankine cycle (ORC) for cooling, heating and power production (trigeneration) through exergy analysis. The system consists of an SOFC, an ORC, a heat exchanger and a single-effect absorption chiller. The system is modeled to produce a net electricity of around 500 kW. The study reveals that there is 3-25% gain on exergy efficiency when trigeneration is used compared with the power cycle only. Also, the study shows that as the current density of the SOFC increases, the exergy efficiencies of power cycle, cooling cogeneration, heating cogeneration and trigeneration decreases. In addition, it was shown that the effect of changing the turbine inlet pressure and ORC pump inlet temperature are insignificant on the exergy efficiencies of the power cycle, cooling cogeneration, heating cogeneration and trigeneration. Also, the study reveals that the significant sources of exergy destruction are the ORC evaporator, air heat exchanger at the SOFC inlet and heating process heat exchanger.

  4. Organic Rankine-cycle power systems working fluids study: Topical report No. 1: Fluorinol 85. [85 mole % trofluoroethanol in water

    SciTech Connect

    Jain, M.L.; Demirgian, J.C.; Cole, R.L.

    1986-09-01

    An investigation to experimentally determine the thermal stability limits and degradation rates of Fluorinol 85 as a function of maximum cycle temperatures was initiated in 1982. Following the design and construction of a dynamic test loop capable of simulating the thermodynamic conditions of possible prototypical organic Rankine-cycle (ORC) power systems, several test runs were completed. The Fluorinol 85 test loop was operated for about 3800 h, covering a temperature range of 525-600/sup 0/F. Both liquid and noncondensable vapor (gas) samples were drawn periodically and analyzed using capillary column gas chromatography, gas chromatography/mass spectrometry and mass spectrometry. Results indicate that Fluorinol 85 would not decompose significantly over an extended period of time, up to a maximum cycle temperature of 550/sup 0/F. However, 506-h data at 575/sup 0/F show initiation of significant degradation. The 770-h data at 600/sup 0/F, using a fresh charge of Fluorinol 85, indicate an annual degradation rate of more than 17.2%. The most significant degradation product observed is hydrofluoric acid, which could cause severe corrosion in an ORC system. Devices to remove the hydrofluoric acid and prevent extreme temperature excursions are necessary for any ORC system using Fluorinol 85 as a working fluid.

  5. About the prediction of Organic Rankine Cycles performances integrating local high-fidelity turbines simulation and uncertainties

    NASA Astrophysics Data System (ADS)

    Congedo, Pietro; de Santis, Dante; Geraci, Gianluca

    2014-11-01

    Organic Rankine Cycles (ORCs) are of key-importance when exploiting energy systems with a high efficiency. The variability of renewable heat sources makes more complex the global performance prediction of a cycle. The thermodynamic properties of the complex fluids used in the process are another source of uncertainty. The need for a predictive and robust simulation tool of ORCs remains strong. A high-order accurate Residual Distribution scheme has been recently developed for efficiently computing a turbine stage on unstructured grids, including advanced equations of state in order to take into account the complex fluids used in ORCs. Advantages in using high-order methods have been highlighted, in terms of number of degrees of freedom and computational time used, for computing the numerical solution with a greater accuracy compared to lower-order methods, even for shocked flows. The objective of this work is to quantify the numerical error with respect to the various sources of uncertainty of the ORC turbine, thus providing a very high-fidelity prediction in the coupled physical/stochastic space.

  6. Exergoeconomic analysis and optimization of an evaporator for a binary mixture of fluids in an organic Rankine cycle

    NASA Astrophysics Data System (ADS)

    Li, You-Rong; Du, Mei-Tang; Wang, Jian-Ning

    2012-12-01

    This paper focuses on the research of an evaporator with a binary mixture of organic working fluids in the organic Rankine cycle. Exergoeconomic analysis and performance optimization were performed based on the first and second laws of thermodynamics, and the exergoeconomic theory. The annual total cost per unit heat transfer rate was introduced as the objective function. In this model, the exergy loss cost caused by the heat transfer irreversibility and the capital cost were taken into account; however, the exergy loss due to the frictional pressure drops, heat dissipation to surroundings, and the flow imbalance were neglected. The variation laws of the annual total cost with respect to the number of transfer units and the temperature ratios were presented. Optimal design parameters that minimize the objective function had been obtained, and the effects of some important dimensionless parameters on the optimal performances had also been discussed for three types of evaporator flow arrangements. In addition, optimal design parameters of evaporators were compared with those of condensers.

  7. Air Conditioning System using Rankine Cycle

    NASA Astrophysics Data System (ADS)

    Nagatomo, Shigemi; Yamaguchi, Hiroichi; Hattori, Hitoshi; Futamura, Motonori

    Natural gas is used as the energy source to cope with the recent situation of increasing demand for electricity especially in summer. In this paper, the performance of a Rankine cycle air conditioning system driven by natural gas was studied. The following results were obtained : (1) Basic equations of performance, refrigerant mass flow rate and expander volume were developed by using the values of heating efficiency, regeneration efficiency, expander efficiency and compressor efficiency. (2) R134a refrigerant has been considered to be suitable for the Rankine cycle air conditioning system, compared with other refrigerants. (3)A Rankine cycle cooling system using R134a refrigerant as a single working fluid was developed. System COP of 0.47 was attained at typical operating condition.

  8. Organic Fluids and Passive Cooling in a Supercritical Rankine Cycle for Power Generation from Low Grade Heat Sources

    NASA Astrophysics Data System (ADS)

    Vidhi, Rachana

    Low grade heat sources have a large amount of thermal energy content. Due to low temperature, the conventional power generation technologies result in lower efficiency and hence cannot be used. In order to efficiently generate power, alternate methods need to be used. In this study, a supercritical organic Rankine cycle was used for heat source temperatures varying from 125°C to 200°C. Organic refrigerants with zero ozone depletion potential and their mixtures were selected as working fluid for this study while the cooling water temperature was changed from 10-25°C. Operating pressure of the cycle has been optimized for each fluid at every heat source temperature to obtain the highest thermal efficiency. Energy and exergy efficiencies of the thermodynamic cycle have been obtained as a function of heat source temperature. Efficiency of a thermodynamic cycle depends significantly on the sink temperature. At areas where water cooling is not available and ambient air temperature is high, efficient power generation from low grade heat sources may be a challenge. Use of passive cooling systems coupled with the condenser was studied, so that lower sink temperatures could be obtained. Underground tunnels, buried at a depth of few meters, were used as earth-air-heat-exchanger (EAHE) through which hot ambient air was passed. It was observed that the air temperature could be lowered by 5-10°C in the EAHE. Vertical pipes were used to lower the temperature of water by 5°C by passing it underground. Nocturnal cooling of stored water has been studied that can be used to cool the working fluid in the thermodynamic cycle. It was observed that the water temperature can be lowered by 10-20°C during the night when it is allowed to cool. The amount of water lost was calculated and was found to be approximately 0.1% over 10 days. The different passive cooling systems were studied separately and their effects on the efficiency of the thermodynamic cycle were investigated. They were

  9. Bearing development program for a 25 kWe solar-powered organic Rankine-cycle engine

    NASA Technical Reports Server (NTRS)

    Nesmith, B.

    1985-01-01

    The bearing development program is summarized for a 25-kWe power conversion subsystem (PCS) consisting of an organic Rankine-cycle engine, and permanent magnetic alternator (PMA) and rectifier to be used in a 100-kWe point-focusing distributed receiver solar power plant. The engine and alternator were hermetically sealed and used toluene as the working fluid. The turbine, alternator, and feed pump (TAP) were mounted on a single shaft operating at speeds up to 60,000 rev/min. Net thermal-to-electric efficiencies in the range of 21 to 23% were demonstrated at the maximum working fluid temperature of 400 C (750 F). A chronological summary of the bearing development program is presented. The primary causes of bearing wear problems were traced to a combination of rotordynamic instability and electrodynamic discharge across the bearing surfaces caused by recirculating currents from the PMA. These problems were resolved by implementing an externally supplied, flooded-bearing lubrication system and by electrically insulating all bearings from the TAP housing. This program resulted in the successful development of a stable, high-speed, toluene-lubricated five-pad tilting-pad journal bearing and Rayleigh step thrust bearing system capable of operating at all inclinations between horizontal and vertical.

  10. Rankine cycle waste heat recovery system

    SciTech Connect

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-08-12

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  11. Rankine cycle waste heat recovery system

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2016-05-10

    This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.

  12. Final Report: Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    SciTech Connect

    Donna Post Guillen; Jalal Zia

    2013-09-01

    This research and development (R&D) project exemplifies a shared public private commitment to advance the development of energy efficient industrial technologies that will reduce the U.S. dependence upon foreign oil, provide energy savings and reduce greenhouse gas emissions. The purpose of this project was to develop and demonstrate a Direct Evaporator for the Organic Rankine Cycle (ORC) for the conversion of waste heat from gas turbine exhaust to electricity. In conventional ORCs, the heat from the exhaust stream is transferred indirectly to a hydrocarbon based working fluid by means of an intermediate thermal oil loop. The Direct Evaporator accomplishes preheating, evaporation and superheating of the working fluid by a heat exchanger placed within the exhaust gas stream. Direct Evaporation is simpler and up to 15% less expensive than conventional ORCs, since the secondary oil loop and associated equipment can be eliminated. However, in the past, Direct Evaporation has been avoided due to technical challenges imposed by decomposition and flammability of the working fluid. The purpose of this project was to retire key risks and overcome the technical barriers to implementing an ORC with Direct Evaporation. R&D was conducted through a partnership between the Idaho National Laboratory (INL) and General Electric (GE) Global Research Center (GRC). The project consisted of four research tasks: (1) Detailed Design & Modeling of the ORC Direct Evaporator, (2) Design and Construction of Partial Prototype Direct Evaporator Test Facility, (3) Working Fluid Decomposition Chemical Analyses, and (4) Prototype Evaluation. Issues pertinent to the selection of an ORC working fluid, along with thermodynamic and design considerations of the direct evaporator, were identified. The FMEA (Failure modes and effects analysis) and HAZOP (Hazards and operability analysis) safety studies performed to mitigate risks are described, followed by a discussion of the flammability analysis of the

  13. Development of an Organic Rankine Cycle system for exhaust energy recovery in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Cipollone, Roberto; Bianchi, Giuseppe; Gualtieri, Angelo; Di Battista, Davide; Mauriello, Marco; Fatigati, Fabio

    2015-11-01

    Road transportation is currently one of the most influencing sectors for global energy consumptions and CO2 emissions. Nevertheless, more than one third of the fuel energy supplied to internal combustion engines is still rejected to the environment as thermal waste at the exhaust. Therefore, a greater fuel economy might be achieved recovering the energy from exhaust gases and converting it into useful power on board. In the current research activity, an ORC-based energy recovery system was developed and coupled with a diesel engine. The innovative feature of the recovery power unit relies upon the usage of sliding vane rotary machines as pump and expander. After a preliminary exhaust gas mapping, which allowed to assess the magnitude of the thermal power to be recovered, a thermodynamic analysis was carried out to design the ORC system and the sliding vane machines using R236fa as working fluid. An experimental campaign was eventually performed at different operating regimes according to the ESC procedure and investigated the recovery potential of the power unit at design and off-design conditions. Mechanical power recovered ranged from 0.7 kW up to 1.9 kW, with an overall cycle efficiency from 3.8% up to 4.8% respectively. These results candidate sliding vane machines as efficient and reliable devices for waste heat recovery applications.

  14. Design of a condenser-boiler for a binary mercury-organic Rankine cycle solar dynamic space power system

    NASA Astrophysics Data System (ADS)

    Cotton, Randy M.

    1987-05-01

    A theoretical design was performed for the condenser/boiler of a space-based solar dynamic power system. The base system is a binary Rankine cycle with mercury and toluene as the working fluids. System output is 75 KWe with a combined efficiency of 41.1%. Design goals were to develop the most reliable, mass efficient unit possible for delivery to a space station. The design sized the unit based on toluene properties and used a computer generated heat balance to thermodynamically match the two fluids. Molybdenum was chosen as the material due to mass effectiveness in heat transfer, strength, and resistance to mercury corrosion. The unit transferred 137.46 kilowatts of thermal power and can operate at varying mass flow rates. Effectiveness in heat transfer is 0.96 and mass performance is 0.016 kg/KWth transferred. The design depends on using only existing technologies and the results call for no new developments.

  15. Rankine bottoming cycle safety analysis. Final report

    SciTech Connect

    Lewandowski, G.A.

    1980-02-01

    Vector Engineering Inc. conducted a safety and hazards analysis of three Rankine Bottoming Cycle Systems in public utility applications: a Thermo Electron system using Fluorinal-85 (a mixture of 85 mole % trifluoroethanol and 15 mole % water) as the working fluid; a Sundstrand system using toluene as the working fluid; and a Mechanical Technology system using steam and Freon-II as the working fluids. The properties of the working fluids considered are flammability, toxicity, and degradation, and the risks to both plant workers and the community at large are analyzed.

  16. Organic Rankine Cycle for Residual Heat to Power Conversion in Natural Gas Compressor Station. Part II: Plant Simulation and Optimisation Study

    NASA Astrophysics Data System (ADS)

    Chaczykowski, Maciej

    2016-06-01

    After having described the models for the organic Rankine cycle (ORC) equipment in the first part of this paper, this second part provides an example that demonstrates the performance of different ORC systems in the energy recovery application in a gas compressor station. The application shows certain specific characteristics, i.e. relatively large scale of the system, high exhaust gas temperature, low ambient temperature operation, and incorporation of an air-cooled condenser, as an effect of the localization in a compressor station plant. Screening of 17 organic fluids, mostly alkanes, was carried out and resulted in a selection of best performing fluids for each cycle configuration, among which benzene, acetone and heptane showed highest energy recovery potential in supercritical cycles, while benzene, toluene and cyclohexane in subcritical cycles. Calculation results indicate that a maximum of 10.4 MW of shaft power can be obtained from the exhaust gases of a 25 MW compressor driver by the use of benzene as a working fluid in the supercritical cycle with heat recuperation. In relation to the particular transmission system analysed in the study, it appears that the regenerative subcritical cycle with toluene as a working fluid presents the best thermodynamic characteristics, however, require some attention insofar as operational conditions are concerned.

  17. Investigating potential efficiency improvement for light-duty transportation applications through simulation of an organic Rankine cycle for waste-heat recovery

    SciTech Connect

    Edwards, Kevin Dean; Wagner, Robert M

    2010-01-01

    Modern diesel engines used in light-duty transportation applications have peak brake thermal efficiencies in the range of 40-42% for high-load operation with substantially lower efficiencies at realistic road-load conditions. Thermodynamic energy and exergy analysis reveals that the largest losses from these engines are due to heat loss and combustion irreversibility. Substantial improvement in overall engine efficiency requires reducing or recovering these losses. Unfortunately, much of the heat transfer either occurs at relatively low temperatures resulting in large entropy generation (such as in the air-charge cooler), is transferred to low-exergy flow streams (such as the oil and engine coolant), or is radiated or convected directly to the environment. While there are significant opportunities for recovery from the exhaust and EGR cooler for heavy-duty applications, the potential benefits of such a strategy for light-duty applications are unknown due to transient operation, low-load operation at typical driving conditions, and the added mass of the system. We have developed an organic Rankine cycle model using GT-Suite to investigate the potential for efficiency improvement through waste-heat recovery from the exhaust and EGR cooler of a light-duty diesel engine. Results from steady-state and drive-cycle simulations are presented, and we discuss strategies to address operational difficulties associated with transient drive cycles and competition between waste-heat recovery systems, turbochargers, aftertreatment devices, and other systems for the limited thermal resources.

  18. Milestone Report #2: Direct Evaporator Leak and Flammability Analysis Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    SciTech Connect

    Donna Post Guillen

    2013-09-01

    The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammable hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.

  19. Diesel organic Rankine bottoming cycle powerplant program: Volume II. Industrial waste heat applications. Final report. [Using Fluorinol-85 as working fluid

    SciTech Connect

    Not Available

    1981-10-01

    Several industrial processes and facilities were evaluated as possible sites to demonstrate the application of an Organic Rankine Cycle system (ORCS) using Fluorinol-85 as the working fluid to effect industrial waste-heat recovery. The economic applications for ORCS's using Fluorinol as the working fluid are in situations where the temperature of the waste-heat stream is between 400/sup 0/ and 1000/sup 0/F. A literature review indicated that the greatest potential and economic advantage for an industrial application for the recovery of waste heat by means of an ORCS using Fluorinol as the working fluid is from the exhausts of high-temperature furnaces and boilers for six major industry categories. Together they expend 80% of the US annual energy consumption in the industrial sector. From these categories, four potential applications were selected, specific information about plant characteristics was obtained, and detailed performance predictions were carried out for an ORC waste-heat recovery system operating in these plants. In addition, the performance of the existing demonstration system hardware was predicted for two recommended applications, the petroleum refinery and the steel mill, utilizing only a portion of the available exhaust gas flow. Only nominal modifications would be required to make the existing hardware suitable for a demonstration program for either of these recommended applications.

  20. Assessment of Rankine cycle heat engines for small solar power applications

    SciTech Connect

    Meador, J.T.

    1983-11-01

    Performance evaluations of both ideal and actual Organic Rankine Cycles (ORC) and Steam Rankine Cycles (SRC) are made for systems, either available or being developed, that may be candidates in Solar Total Energy Systems (STES). Many organic fluids and turbines (or expanders), especially designed for ORCs, are being used in various current development programs. Only a few representative ORCs are evaluated. Some of the SRCs used with relatively small commercially available steam expanders are also evaluated. Most of the near term development projects of a STES probably will be relatively small, dispersed power, community size installations; therefore the electrical power outputs included range from 200 kW to 10 MW, with maximum cycle temperatures of 482/sup 0/C (900/sup 0/F). Some basic Rankine cycle efficiencies, without recuperation, resuperheating or feedwater heating, are evaluated and compared to Carnot cycle efficiencies when operating between the same limiting temperatures. The thermodynamic processes of a Toluene-ORC and a SRC are studied, including both isentropic (ideal) and actual expansions. Some actual organic and steam Rankine cycle efficiencies are compared to the criterion curves. Some estimates are also make of the potential improvements in performance due to addition of a recuperative heat exchanger and feedwater heaters for the ORCs and the SRCs, respectively.

  1. Method of optimizing performance of Rankine cycle power plants

    DOEpatents

    Pope, William L.; Pines, Howard S.; Doyle, Padraic A.; Silvester, Lenard F.

    1982-01-01

    A method for efficiently operating a Rankine cycle power plant (10) to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine (22) fluid inlet state which is substantially in the area adjacent and including the transposed critical temperature line (46).

  2. Thermodynamic analysis of a Rankine cycle powered vapor compression ice maker using solar energy.

    PubMed

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m(-2) and 7.61 kg m(-2) day(-1) at the generation temperature of 140 °C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker. PMID:25202735

  3. Potassium Rankine cycle vapor chamber (heat pipe) radiator study

    NASA Technical Reports Server (NTRS)

    Gerrels, E. E.; Killen, R. E.

    1971-01-01

    A structurally integrated vapor chamber fin (heat pipe) radiator is defined and evaluated as a potential candidate for rejecting waste heat from the potassium Rankine cycle powerplant. Several vapor chamber fin geometries, using stainless steel construction, are evaluated and an optimum is selected. A comparison is made with an operationally equivalent conduction fin radiator. Both radiators employ NaK-78 in the primary coolant loop. In addition, the Vapor Chamber Fin (VCF) radiator utilizes sodium in the vapor chambers. Preliminary designs are developed for the conduction fin and VCF concepts. Performance tests on a single vapor chamber were conducted to verify the VCF design. A comparison shows the conduction fin radiator easier to fabricate, but heavier in weight, particularly as meteoroid protection requirements become more stringent. While the analysis was performed assuming the potassium Rankine cycle powerplant, the results are equally applicable to any system radiating heat to space in the 900 to 1400 F temperature range.

  4. Potassium Rankine cycle nuclear power systems for spacecraft and lunar-mass surface power

    SciTech Connect

    Holcomb, R.S.

    1992-07-01

    The potassium Rankine cycle has high potential for application to nuclear power systems for spacecraft and surface power on the moon and Mars. A substantial effort on the development of Rankine cycle space power systems was carried out in the 1960`s. That effort is summarized and the status of the technology today is presented. Space power systems coupling Rankine cycle power conversion to both the SP-100 reactor and thermionic reactors as a combined power cycle are described in the paper.

  5. Rankine cycle waste heat recovery system

    SciTech Connect

    Ernst, Timothy C.; Nelson, Christopher R.

    2015-09-22

    A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.

  6. Solar-powered/fuel-assisted Rankine cycle power and cooling system - Sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Lior, N.; Koai, K.

    1984-11-01

    The subject of this analysis is a solar power/cooling system based on a novel hybrid steam Rankine cycle. Steam is generated by the use of solar energy collected at about 100 C, and it is then superheated to about 600 C in a fossil-fuel-fired superheater. The addition of about 20-26 percent of energy as fuel doubles the power cycle's efficiency as compared to organic fluid Rankine cycles operating at similar collector temperatures. A sensitivity analysis of the system's performance to the size and type of its components was performed by a transient (hourly) computer simulation over the month of August in two representative climatic regions (Washington, D.C. and Phoenix, Ariz.), and led to the description of a system configuration which provides optimal energy performance. The newly designed turbine's predicted efficiency is seen to be essentially invariant with system configuration, and has a monthly average value of about 73 percent.

  7. Importance of the specific heat anomaly in the design of binary Rankine cycle power plants

    SciTech Connect

    Pope, W.L.; Doyle, P.A.; Fulton, R.L.; Silvester, L.F.

    1980-05-01

    The transposed critical temperature (TPCT) is shown to be an extremely important thermodynamic property in the selection of working fluids and turbine states for geothermal power plants operating on a closed organic (binary) Rankine cycle. When the optimum working fluid composition and process states are determined for specified source and sink conditions, turbine inlet states consistently lie adjacent to the working fluids' TPCT line for all resource temperatures, constraints, and cost and efficiency factors investigated.

  8. 40 CFR 1036.615 - Engines with Rankine cycle waste heat recovery and hybrid powertrains.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Engines with Rankine cycle waste heat... HIGHWAY ENGINES Special Compliance Provisions § 1036.615 Engines with Rankine cycle waste heat recovery... vehicle wheels. These powertrains are tested using the hybrid engine test procedures of 40 CFR part...

  9. 40 CFR 1036.615 - Engines with Rankine cycle waste heat recovery and hybrid powertrains.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Engines with Rankine cycle waste heat... HIGHWAY ENGINES Special Compliance Provisions § 1036.615 Engines with Rankine cycle waste heat recovery... powertrains with the hybrid engine test procedures of 40 CFR part 1065 or with the post-transmission...

  10. 40 CFR 1036.615 - Engines with Rankine cycle waste heat recovery and hybrid powertrains.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Engines with Rankine cycle waste heat... HIGHWAY ENGINES Special Compliance Provisions § 1036.615 Engines with Rankine cycle waste heat recovery... vehicle wheels. These powertrains are tested using the hybrid engine test procedures of 40 CFR part...

  11. Comparison of Rankine-cycle power systems: effects of seven working fluids

    SciTech Connect

    Marciniak, T.J.; Krazinski, J.L.; Bratis, J.C.; Bushby, H.M.; Buyco, E.H.

    1981-06-01

    This study investigates the safety, health, technical, and economic issues surrounding the prime working-fluid candidates for industrial Rankine-cycle power systems in the range of 600 to 2400 kW. These fluids are water, methanol, 2-methyl pyridine/H/sub 2/O, Fluorinol 85, toluene, Freon R 11, and Freon R 113. Rankine-cycle power systems using water as a working fluid and boilers burning coal, refuse, oil, or gas - or driven by nuclear energy - have been the mainstay of power generation for about a century. Interest in energy conservation in the industrial sector is now encouraging the development of small Rankine power systems that use heat from a variety of waste streams. The temperature range of interest for industrial applications is from 500/sup 0/F to 1100/sup 0/F (260/sup 0/C to 593/sup 0/C) for gaseous streams and approximately 300/sup 0/F (149/sup 0/C) for condensing streams. At temperatures below about 700/sup 0/F (371/sup 0/C), steam systems become less efficient and too expensive to be used. However, other working fluids, usually organic compounds, can be economically attractive at the lower temperatures. This study shows that, at current and projected energy costs, Rankine-cycle power systems using any of the seven working fluids investigated here can exceed the minimum return on investment (ROI) criteria of most industries. The highest ROIs occur for those systems using a 300/sup 0/F (149/sup 0/C) condensing stream as the heat source. There appear to be no significant health or safety problems that would prevent the use of any of the candidate working fluids. The only limitation of an organic fluid is its maximum stability temperature, which may prevent its use with high-temperature waste-heat streams.

  12. Technical and economic study of Stirling and Rankine cycle bottoming systems for heavy truck diesel engines

    NASA Technical Reports Server (NTRS)

    Kubo, I.

    1987-01-01

    Bottoming cycle concepts for heavy duty transport engine applications were studied. In particular, the following tasks were performed: (1) conceptual design and cost data development for Stirling systems; (2) life-cycle cost evaluation of three bottoming systems - organic Rankine, steam Rankine, and Stirling cycles; and (3) assessment of future directions in waste heat utilization research. Variables considered for the second task were initial capital investments, fuel savings, depreciation tax benefits, salvage values, and service/maintenance costs. The study shows that none of the three bottoming systems studied are even marginally attractive. Manufacturing costs have to be reduced by at least 65%. As a new approach, an integrated Rankine/Diesel system was proposed. It utilizes one of the diesel cylinders as an expander and capitalizes on the in-cylinder heat energy. The concept eliminates the need for the power transmission device and a sophisticated control system, and reduces the size of the exhaust evaporator. Results of an economic evaluation indicate that the system has the potential to become an attractive package for end users.

  13. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    PubMed Central

    Hu, Bing; Bu, Xianbiao; Ma, Weibin

    2014-01-01

    To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m−2 and 7.61 kg m−2 day−1 at the generation temperature of 140°C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker. PMID:25202735

  14. Investigations of supercritical CO2 Rankine cycles for geothermal power plants

    SciTech Connect

    Sabau, Adrian S; Yin, Hebi; Qualls, A L; McFarlane, Joanna

    2011-01-01

    Supercritical CO2 Rankine cycles are investigated for geothermal power plants. The system of equations that describe the thermodynamic cycle is solved using a Newton-Rhapson method. This approach allows a high computational efficiency of the model when thermophysical properties of the working fluid depend strongly on the temperature and pressure. Numerical simulation results are presented for different cycle configurations in order to assess the influences of heat source temperature, waste heat rejection temperatures and internal heat exchanger design on cycle efficiency. The results show that thermodynamic cycle efficiencies above 10% can be attained with the supercritical brayton cycle while lower efficiencies can be attained with the transcritical CO2 Rankine cycle.

  15. Waste-heat research, development, demonstration and commercialization plan: Rankine-cycle bottoming systems. Executive summary

    SciTech Connect

    Not Available

    1980-01-01

    Organic and binary Rankine cycle (ORC) technology as potentially broad applications in recovering and converting waste heat to the useful energy form of electricity. ORC systems are particularly suited for recovering medium-grade exhaust heat (200 to 1000/sup 0/F), a form of waste energy released primarily in the generation of electricity and in industrial processes. Therefore, a Waste Heat Research, Development, Demonstration and Commercialization Plan (RDD and C Plan) has been formulated. The objective of the plan is to achieve significant market penetration of ORC technology by 1985. To accomplish this commercialization objective, the plan is structured around three key strategic elements: demonstration of technically and economically attractive ORC systems that meet the specific needs of commercial waste heat markets; stimulation of the demand for ORC products in these markets; and promotion of the development of a competitive industry to serve ORC markets efficiently. The development of this plan and ERDA's role in its implementation are discussed.

  16. DIPS organic rankine cycle heat rejection system

    SciTech Connect

    Pearson, R.

    1987-01-01

    The paper presents the results of an optimization study performed on the heat rejection system for a space based ORC power system using an isotope heat source. The radiator sizing depends on the heat rejection temperature, radiator configuration, and radiator properties such as the fin effectiveness, emissivity, and absorptivity. The optimization analysis to evaluate the effect of each of these parameters on the system weight and area is presented.

  17. Method of optimizing performance of Rankine cycle power plants. [US DOE Patent

    DOEpatents

    Pope, W.L.; Pines, H.S.; Doyle, P.A.; Silvester, L.F.

    1980-06-23

    A method is described for efficiently operating a Rankine cycle power plant to maximize fuel utilization efficiency or energy conversion efficiency or minimize costs by selecting a turbine fluid inlet state which is substantially on the area adjacent and including the transposed critical temperature line.

  18. Methods of increasing net work output of organic Rankine cycles for low-grade waste heat recovery with a detailed analysis using a zeotropic working fluid mixture and scroll expander

    NASA Astrophysics Data System (ADS)

    Woodland, Brandon Jay

    An organic Rankine cycle (ORC) is a thermodynamic cycle that is well-suited for waste heat recovery. It is generally employed for waste heat with temperatures in the range of 80 °C -- 300 °C. When the application is strictly to convert waste heat into work, thermal efficiency is not recommended as a key performance metric. In such an application, maximization of the net power output should be the objective rather than maximization of the thermal efficiency. Two alternative cycle configurations that can increase the net power produced from a heat source with a given temperature and flow rate are proposed and analyzed. These cycle configurations are 1) an ORC with two-phase flash expansion and 2) an ORC with a zeotropic working fluid mixture (ZRC). A design-stage ORC model is presented for consistent comparison of multiple ORC configurations. The finite capacity of the heat source and heat sink fluids is a key consideration in this model. Of all working fluids studied for the baseline ORC, R134a and R245fa yield the highest net power output from a given heat source. Results of the design-stage model indicate that the ORC with two-phase flash expansion offers the most improvement over the baseline ORC. However, the level of improvement that could be achieved in practice is highly uncertain due to the requirement of highly efficient two-phase expansion. The ZRC shows improvement over the baseline as long as the condenser fan power requirement is not negligible. At the highest estimated condenser fan power, the ZRC shows the most improvement, while the ORC with flash expansion is no longer beneficial. The ZRC was selected for detailed study because it does not require two-phase expansion. An experimental test rig was used to evaluate baseline ORC performance with R134a and with R245fa. The ZRC was tested on the same rig with a mixture of 62.5% R134a and 37.5% R245fa. The tested expander is a minimally-modified, of-the-shelf automotive scroll compressor. The high

  19. Advanced fusion MHD power conversion using the CFAR (compact fusion advanced Rankine) cycle concept

    SciTech Connect

    Hoffman, M.A.; Campbell, R.; Logan, B.G.; Lawrence Livermore National Lab., CA )

    1988-10-01

    The CFAR (compact fusion advanced Rankine) cycle concept for a tokamak reactor involves the use of a high-temperature Rankine cycle in combination with microwave superheaters and nonequilibrium MHD disk generators to obtain a compact, low-capital-cost power conversion system which fits almost entirely within the reactor vault. The significant savings in the balance-of-plant costs are expected to result in much lower costs of electricity than previous concepts. This paper describes the unique features of the CFAR cycle and a high- temperature blanket designed to take advantage of it as well as the predicted performance of the MHD disk generators using mercury seeded with cesium. 40 refs., 8 figs., 3 tabs.

  20. System and method for regulating EGR cooling using a rankine cycle

    DOEpatents

    Ernst, Timothy C.; Morris, Dave

    2015-12-22

    This disclosure relates to a waste heat recovery (WHR) system and method for regulating exhaust gas recirculation (EGR) cooling, and more particularly, to a Rankine cycle WHR system and method, including a recuperator bypass arrangement to regulate EGR exhaust gas cooling for engine efficiency improvement and thermal management. This disclosure describes other unique bypass arrangements for increased flexibility in the ability to regulate EGR exhaust gas cooling.

  1. Comparative thermodynamic performance of some Rankine/Brayton cycle configurations for a low-temperature energy application

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1977-01-01

    Various configurations combining solar-Rankine and fuel-Brayton cycles were analyzed in order to find the arrangement which has the highest thermal efficiency and the smallest fuel share. A numerical example is given to evaluate both the thermodynamic performance and the economic feasibility of each configuration. The solar-assisted regenerative Rankine cycle was found to be leading the candidates from both points of energy utilization and fuel conservation.

  2. Space reactor/organic Rankine conversion - A near-term state-of-the-art solution

    NASA Astrophysics Data System (ADS)

    Niggemann, R. E.; Lacey, D.

    The use of demonstrated reactor technology with organic Rankine cycle (ORC) power conversion can provide a low cost, minimal risk approach to reactor-powered electrical generation systems in the near term. Several reactor technologies, including zirconium hydride, EBR-II and LMFBR, have demonstrated long life and suitability for space application at the operating temperature required by an efficient ORC engine. While this approach would not replace the high temperature space reactor systems presently under development, it could be available in a nearer time frame at a low and predictable cost, allowing some missions requiring high power levels to be flown prior to the availability of advanced systems with lower specific mass. Although this system has relatively high efficiency, the heat rejection temperature is low, requiring a large radiator on the order of 3.4 sq m/kWe. Therefore, a deployable heat pipe radiator configuration will be required.

  3. Performance evaluation of a low-temperature solar Rankine cycle system utilizing R245fa

    SciTech Connect

    Wang, X.D.; Zhao, L.; Wang, J.L.; Zhang, W.Z.; Zhao, X.Z.; Wu, W.

    2010-03-15

    A low-temperature solar Rankine system utilizing R245fa as the working fluid is proposed and an experimental system is designed, constructed and tested. Both the evacuated solar collectors and the flat plate solar collectors are used in the experimental system; meanwhile, a rolling-piston R245fa expander is also mounted in the system. The new designed R245fa expander works stably in the experiment, with an average expansion power output of 1.73 kW and an average isentropic efficiency of 45.2%. The overall power generation efficiency estimated is 4.2%, when the evacuated solar collector is utilized in the system, and with the condition of flat plate solar collector, it is about 3.2%. The experimental results show that using R245fa as working fluid in the low-temperature solar power Rankine cycle system is feasible and the performance is acceptable. (author)

  4. Solar/gas Brayton/Rankine cycle heat pump assessment

    NASA Astrophysics Data System (ADS)

    Rousseau, J.; Liu, A. Y.

    1982-05-01

    A 10-ton gas-fired heat pump is currently under development at AiResearch under joint DOE and GRI sponsorship. This heat pump features a highly efficient, recuperated, subatmospheric Brayton-cycle engine which drives the centrifugal compressor of a reversible vapor compression heat pump. The investigations under this program were concerned initially with the integration of this machine with a parabolic dish-type solar collector. Computer models were developed to accurately describe the performance of the heat pump packaged in this fashion. The study determined that (1) only a small portion (20 to 50 percent) of the available solar energy could be used because of a fundamental mismatch between the heating and cooling demand and the availability of solar energy, and (2) the simple pay back period, by comparison to the baseline non-solar gas-fired heat pump, was unacceptable (15 to 36 years).

  5. Status of Rankine-cycle technology for space nuclear power applications

    SciTech Connect

    Holcomb, R.S.

    1991-01-01

    A substantial effort on the development of the liquid metal Rankine cycle space nuclear power system was carried out in programs jointly sponsored by the National Aeronautics and Space Administration (NASA) and the Atomic Energy Commission (AEC) during the period of 1960--1972. Component tests were conducted which have established a considerable technology base for the concept. The development effort and technology status of each component are presented. The key technology issues remaining for development of the system are: refractory metal parts fabrication, turbine blade endurance, turbine bearings and seals, and generator winding seal. 5 refs.

  6. Utilization of recently developed codes for high power Brayton and Rankine cycle power systems

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.

    1993-01-01

    Two recently developed FORTRAN computer codes for high power Brayton and Rankine thermodynamic cycle analysis for space power applications are presented. The codes were written in support of an effort to develop a series of subsystem models for multimegawatt Nuclear Electric Propulsion, but their use is not limited just to nuclear heat sources or to electric propulsion. Code development background, a description of the codes, some sample input/output from one of the codes, and state future plans/implications for the use of these codes by NASA's Lewis Research Center are provided.

  7. Advanced Rankine and Brayton cycle power systems: Materials needs and opportunities

    NASA Technical Reports Server (NTRS)

    Grisaffe, S. J.; Guentert, D. C.

    1974-01-01

    Conceptual advanced potassium Rankine and closed Brayton power conversion cycles offer the potential for improved efficiency over steam systems through higher operating temperatures. However, for utility service of at least 100,000 hours, materials technology advances will be needed for such high temperature systems. Improved alloys and surface protection must be developed and demonstrated to resist coal combustion gases as well as potassium corrosion or helium surface degradation at high temperatures. Extensions in fabrication technology are necessary to produce large components of high temperature alloys. Long time property data must be obtained under environments of interest to assure high component reliability.

  8. Advanced Rankine and Brayton cycle power systems - Materials needs and opportunities

    NASA Technical Reports Server (NTRS)

    Grisaffe, S. J.; Guentert, D. C.

    1974-01-01

    Conceptual advanced potassium Rankine and closed Brayton power conversion cycles offer the potential for improved efficiency over steam systems through higher operating temperatures. However, for utility service of at least 100,000 hours, materials technology advances will be needed for such high temperature systems. Improved alloys and surface protection must be developed and demonstrated to resist coal combustion gases as well as potassium corrosion or helium surface degradation at high temperatures. Extensions in fabrication technology are necessary to produce large components of high temperature alloys. Long-time property data must be obtained under environments of interest to assure high component reliability.

  9. Computer modeling of a regenerative solar-assisted Rankine power cycle

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1977-01-01

    A detailed interpretation of the computer program that describes the performance of one of these cycles; namely, a regenerative Rankine power cycle is presented. Water is used as the working medium throughout the cycle. The solar energy collected at relatively low temperature level presents 75 to 80% of the total heat demand and provides mainly the latent heat of vaporization. Another energy source at high temperature level superheats the steam and supplements the solar energy share. A program summary and a numerical example showing the sequency of computations are included. The outcome from the model comprises line temperatures, component heat rates, specific steam consumption, percentage of solar energy contribution, and the overall thermal efficiency.

  10. Preliminary thermodynamic study for an efficient turbo-blower external combustion Rankine cycle

    NASA Astrophysics Data System (ADS)

    Romero Gómez, Manuel; Romero Gómez, Javier; Ferreiro Garcia, Ramón; Baaliña Insua, Álvaro

    2014-08-01

    This research paper presents a preliminary thermodynamic study of an innovative power plant operating under a Rankine cycle fed by an external combustion system with turbo-blower (TB). The power plant comprises an external combustion system for natural gas, where the combustion gases yield their thermal energy, through a heat exchanger, to a carbon dioxide Rankine cycle operating under supercritical conditions and with quasi-critical condensation. The TB exploits the energy from the pressurised exhaust gases for compressing the combustion air. The study is focused on the comparison of the combustion system's conventional technology with that of the proposed. An energy analysis is carried out and the effect of the flue gas pressure on the efficiency and on the heat transfer in the heat exchanger is studied. The coupling of the TB results in an increase in efficiency and of the convection coefficient of the flue gas with pressure, favouring a reduced volume of the heat exchanger. The proposed innovative system achieves increases in efficiency of around 12 % as well as a decrease in the heat exchanger volume of 3/5 compared with the conventional technology without TB.

  11. On the coupled system performance of transcritical CO2 heat pump and rankine cycle

    NASA Astrophysics Data System (ADS)

    Wang, Hongli; Tian, Jingrui; Hou, Xiujuan

    2013-12-01

    As one of the natural refrigerants, CO2 is a potential substitute for synthesized refrigerants with favorable environmental properties. In order to improve the performance of rankine cycle (RankC), the coupled system cycle (CSC) was designed and the performance was analyzed in this paper, which the CSC is combined by the RankC and the transcritical CO2 heat pump cycle with an expander. Based on thermodynamic principles, the performance analysis platform was designed and the performance analysis was employed. The results show that the average efficiency of the RankC is about 30 %, and the extraction cycle is about 32 %, while the CSC is about 39 %, and the last one is better than the others at the same parameters. With increasing of the boiler feed water temperature, the efficiencies of the three kinds of cycles show increasing trend. With increasing of pressure in conderser-evaporator or outlet temperature of gas cooler, the efficiency of the CSC shows a downward trend. Some fundamental data were obtained for increasing the RankC efficiency by waste heat recovery, and play an active role in improvement the efficiency of power plants.

  12. Potassium Rankine cycle power conversion systems for lunar-Mars surface power

    SciTech Connect

    Holcomb, R.S.

    1992-07-01

    The potassium Rankine cycle has good potential for application to nuclear power systems for surface power on the moon and Mars. A substantial effort on the development of the power conversion was carried out in the 1960`s which demonstrated successful operation of components made of stainless steel at moderate temperatures. This technology could be applied in the near term to produce a 360 kW(e) power system by coupling a stainless steel power conversion system to the SP-100 reactor. Improved performance could be realized in later systems by utilizing niobium or tantalum refractory metal alloys in the reactor and power conversion system. The design characteristics and estimated mass of power systems for each of three technology levels are presented in the paper. 8 refs.

  13. Rankine cycle condenser pressure control using an energy conversion device bypass valve

    SciTech Connect

    Ernst, Timothy C; Nelson, Christopher R; Zigan, James A

    2014-04-01

    The disclosure provides a waste heat recovery system and method in which pressure in a Rankine cycle (RC) system of the WHR system is regulated by diverting working fluid from entering an inlet of an energy conversion device of the RC system. In the system, an inlet of a controllable bypass valve is fluidly coupled to a working fluid path upstream of an energy conversion device of the RC system, and an outlet of the bypass valve is fluidly coupled to the working fluid path upstream of the condenser of the RC system such that working fluid passing through the bypass valve bypasses the energy conversion device and increases the pressure in a condenser. A controller determines the temperature and pressure of the working fluid and controls the bypass valve to regulate pressure in the condenser.

  14. Dataset of working conditions and thermo-economic performances for hybrid organic Rankine plants fed by solar and low-grade energy sources

    PubMed Central

    Scardigno, Domenico; Fanelli, Emanuele; Viggiano, Annarita; Braccio, Giacobbe; Magi, Vinicio

    2016-01-01

    This article provides the dataset of operating conditions of a hybrid organic Rankine plant generated by the optimization procedure employed in the research article “A genetic optimization of a hybrid organic Rankine plant for solar and low-grade energy sources” (Scardigno et al., 2015) [1]. The methodology used to obtain the data is described. The operating conditions are subdivided into two separate groups: feasible and unfeasible solutions. In both groups, the values of the design variables are given. Besides, the subset of feasible solutions is described in details, by providing the thermodynamic and economic performances, the temperatures at some characteristic sections of the thermodynamic cycle, the net power, the absorbed powers and the area of the heat exchange surfaces. PMID:27054172

  15. Dataset of working conditions and thermo-economic performances for hybrid organic Rankine plants fed by solar and low-grade energy sources.

    PubMed

    Scardigno, Domenico; Fanelli, Emanuele; Viggiano, Annarita; Braccio, Giacobbe; Magi, Vinicio

    2016-06-01

    This article provides the dataset of operating conditions of a hybrid organic Rankine plant generated by the optimization procedure employed in the research article "A genetic optimization of a hybrid organic Rankine plant for solar and low-grade energy sources" (Scardigno et al., 2015) [1]. The methodology used to obtain the data is described. The operating conditions are subdivided into two separate groups: feasible and unfeasible solutions. In both groups, the values of the design variables are given. Besides, the subset of feasible solutions is described in details, by providing the thermodynamic and economic performances, the temperatures at some characteristic sections of the thermodynamic cycle, the net power, the absorbed powers and the area of the heat exchange surfaces. PMID:27054172

  16. ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS

    SciTech Connect

    Richard E. Waryasz; Gregory N. Liljedahl

    2004-09-08

    ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL), American Electric Company (AEP) and Parsons Energy and Chemical Group to conduct a comprehensive study evaluating coal fired steam power plants, known as Rankine Cycles, equipped with three different combustion systems: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}). Five steam cycles utilizing a wide range of steam conditions were used with these combustion systems. The motivation for this study was to establish through engineering analysis, the most cost-effective performance potential available through improvement in the Rankine Cycle steam conditions and combustion systems while at the same time ensuring that the most stringent emission performance based on CURC (Coal Utilization Research Council) 2010 targets are met: > 98% sulfur removal; < 0.05 lbm/MM-Btu NO{sub x}; < 0.01 lbm/MM-Btu Particulate Matter; and > 90% Hg removal. The final report discusses the results of a coal fired steam power plant project, which is comprised of two parts. The main part of the study is the analysis of ten (10) Greenfield steam power plants employing three different coal combustion technologies: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}) integrated with five different steam cycles. The study explores the technical feasibility, thermal performance, environmental performance, and economic viability of ten power plants that could be deployed currently, in the near, intermediate, and long-term time frame. For the five steam cycles, main steam temperatures vary from 1,000 F to 1,292 F and pressures from 2,400 psi to 5,075 psi. Reheat steam temperatures vary from 1,000 F to 1,328 F. The number of feedwater heaters varies from 7 to 9 and the associated feedwater temperature varies from 500 F to 626 F. The main part of the study

  17. Estimating the neutrally buoyant energy density of a Rankine-cycle/fuel-cell underwater propulsion system

    NASA Astrophysics Data System (ADS)

    Waters, Daniel F.; Cadou, Christopher P.

    2014-02-01

    A unique requirement of underwater vehicles' power/energy systems is that they remain neutrally buoyant over the course of a mission. Previous work published in the Journal of Power Sources reported gross as opposed to neutrally-buoyant energy densities of an integrated solid oxide fuel cell/Rankine-cycle based power system based on the exothermic reaction of aluminum with seawater. This paper corrects this shortcoming by presenting a model for estimating system mass and using it to update the key findings of the original paper in the context of the neutral buoyancy requirement. It also presents an expanded sensitivity analysis to illustrate the influence of various design and modeling assumptions. While energy density is very sensitive to turbine efficiency (sensitivity coefficient in excess of 0.60), it is relatively insensitive to all other major design parameters (sensitivity coefficients < 0.15) like compressor efficiency, inlet water temperature, scaling methodology, etc. The neutral buoyancy requirement introduces a significant (˜15%) energy density penalty but overall the system still appears to offer factors of five to eight improvements in energy density (i.e., vehicle range/endurance) over present battery-based technologies.

  18. Research in Support of the Use of Rankine Cycle Energy Conversion Systems for Space Power and Propulsion

    NASA Technical Reports Server (NTRS)

    Lahey, Richard T., Jr.; Dhir, Vijay

    2004-01-01

    This is the report of a Scientific Working Group (SWG) formed by NASA to determine the feasibility of using a liquid metal cooled nuclear reactor and Rankine energy conversion cycle for dual purpose power and propulsion in space. This is a high level technical report which is intended for use by NASA management in program planning. The SWG was composed of a team of specialists in nuclear energy and multiphase flow and heat transfer technology from academia, national laboratories, NASA and industry. The SWG has identified the key technology issues that need to be addressed and have recommended an integrated short term (approx. 2 years) and a long term (approx. 10 year) research and development (R&D) program to qualify a Rankine cycle power plant for use in space. This research is ultimately intended to give NASA and its contractors the ability to reliably predict both steady and transient multiphase flow and heat transfer phenomena at reduced gravity, so they can analyze and optimize designs and scale-up experimental data on Rankine cycle components and systems. In addition, some of these results should also be useful for the analysis and design of various multiphase life support and thermal management systems being considered by NASA.

  19. Alkali metal Rankine cycle boiler technology challenges and some potential solutions for space nuclear power and propulsion applications

    NASA Astrophysics Data System (ADS)

    Stone, James R.

    1994-07-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently. This report is aimed at evaluating alkali metal boiler

  20. Alkali Metal Rankine Cycle Boiler Technology Challenges and Some Potential Solutions for Space Nuclear Power and Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Stone, James R.

    1994-01-01

    Alkali metal boilers are of interest for application to future space Rankine cycle power conversion systems. Significant progress on such boilers was accomplished in the 1960's and early 1970's, but development was not continued to operational systems since NASA's plans for future space missions were drastically curtailed in the early 1970's. In particular, piloted Mars missions were indefinitely deferred. With the announcement of the Space Exploration Initiative (SEI) in July 1989 by President Bush, interest was rekindled in challenging space missions and, consequently in space nuclear power and propulsion. Nuclear electric propulsion (NEP) and nuclear thermal propulsion (NTP) were proposed for interplanetary space vehicles, particularly for Mars missions. The potassium Rankine power conversion cycle became of interest to provide electric power for NEP vehicles and for 'dual-mode' NTP vehicles, where the same reactor could be used directly for propulsion and (with an additional coolant loop) for power. Although the boiler is not a major contributor to system mass, it is of critical importance because of its interaction with the rest of the power conversion system; it can cause problems for other components such as excess liquid droplets entering the turbine, thereby reducing its life, or more critically, it can drive instabilities-some severe enough to cause system failure. Funding for the SEI and its associated technology program from 1990 to 1993 was not sufficient to support significant new work on Rankine cycle boilers for space applications. In Fiscal Year 1994, funding for these challenging missions and technologies has again been curtailed, and planning for the future is very uncertain. The purpose of this paper is to review the technologies developed in the 1960's and 1970's in the light of the recent SEI applications. In this way, future Rankine cycle boiler programs may be conducted most efficiently. This report is aimed at evaluating alkali metal boiler

  1. Optimal design of solid oxide fuel cell, ammonia-water single effect absorption cycle and Rankine steam cycle hybrid system

    NASA Astrophysics Data System (ADS)

    Mehrpooya, Mehdi; Dehghani, Hossein; Ali Moosavian, S. M.

    2016-02-01

    A combined system containing solid oxide fuel cell-gas turbine power plant, Rankine steam cycle and ammonia-water absorption refrigeration system is introduced and analyzed. In this process, power, heat and cooling are produced. Energy and exergy analyses along with the economic factors are used to distinguish optimum operating point of the system. The developed electrochemical model of the fuel cell is validated with experimental results. Thermodynamic package and main parameters of the absorption refrigeration system are validated. The power output of the system is 500 kW. An optimization problem is defined in order to finding the optimal operating point. Decision variables are current density, temperature of the exhaust gases from the boiler, steam turbine pressure (high and medium), generator temperature and consumed cooling water. Results indicate that electrical efficiency of the combined system is 62.4% (LHV). Produced refrigeration (at -10 °C) and heat recovery are 101 kW and 22.1 kW respectively. Investment cost for the combined system (without absorption cycle) is about 2917 kW-1.

  2. A Burst Mode, Ultrahigh Temperature UF4 Vapor Core Reactor Rankine Cycle Space Power System Concept

    NASA Technical Reports Server (NTRS)

    Dugan, E. T.; Kahook, S. D.; Diaz, N. J.

    1996-01-01

    Static and dynamic neutronic analyses have been performed on an innovative burst mode (100's of MW output for a few thousand seconds) Ulvahigh Temperature Vapor Core Reactor (UTVR) space nuclear power system. The NVTR employs multiple, neutronically-coupled fissioning cores and operates on a direct, closed Rankine cycle using a disk Magnetohydrodynamic (MHD) generater for energy conversion. The UTVR includes two types of fissioning core regions: (1) the central Ultrahigh Temperature Vapor Core (UTVC) which contains a vapor mixture of highly enriched UF4 fuel and a metal fluoride working fluid and (2) the UF4 boiler column cores located in the BeO moderator/reflector region. The gaseous nature of the fuel the fact that the fuel is circulating, the multiple coupled fissioning cores, and the use of a two phase fissioning fuel lead to unique static and dynamic neutronic characteristics. Static neutronic analysis was conducted using two-dimensional S sub n, transport theory calculations and three-dimensional Monte Carlo transport theory calculations. Circulating-fuel, coupled-core point reactor kinetics equations were used for analyzing the dynamic behavior of the UTVR. In addition to including reactivity feedback phenomena associated with the individual fissioning cores, the effects of core-to-core neutronic and mass flow coupling between the UTVC and the surrounding boiler cores were also included in the dynamic model The dynamic analysis of the UTVR reveals the existence of some very effectlve inherent reactivity feedback effects that are capable of quickly stabilizing this system, within a few seconds, even when large positive reactivity insertions are imposed. If the UTVC vapor fuel density feedback is suppressed, the UTVR is still inherently stable because of the boiler core liquid-fuel volume feedback; in contrast, suppression of the vapor fuel density feedback in 'conventional" gas core cavity reactors causes them to become inherently unstable. Due to the

  3. Scaling of Thermal-Hydraulic Experiments for a Space Rankine Cycle and Selection of a Preconceptual Scaled Experiment Design

    SciTech Connect

    Sulfredge, CD

    2006-01-27

    To assist with the development of a space-based Rankine cycle power system using liquid potassium as the working fluid, a study has been conducted on possible scaled experiments with simulant fluids. This report will consider several possible working fluids and describe a scaling methodology to achieve thermal-hydraulic similarity between an actual potassium system and scaled representations of the Rankine cycle boiler or condenser. The most practical scaling approach examined is based on the selection of perfluorohexane (FC-72) as the simulant. Using the scaling methodology, a series of possible solutions have been calculated for the FC-72 boiler and condenser. The possible scaled systems will then be compared and preconceptual specifications and drawings given for the most promising design. The preconceptual design concept will also include integrating the scaled boiler and scaled condenser into a single experimental loop. All the preconceptual system specifications appear practical from a fabrication and experimental standpoint, but further work will be needed to arrive at a final experiment design.

  4. Study of toluene rotary fluid management device and shear flow condenser performance for a space-based organic Rankine power system

    NASA Technical Reports Server (NTRS)

    Havens, Vance; Ragaller, Dana

    1988-01-01

    Management of two-phase fluid and control of the heat transfer process in microgravity is a technical challenge that must be addressed for an orbital Organic Rankine Cycle (ORC) application. A test program was performed in 1-g that satisfactorily demonstrated the two-phase management capability of the rotating fluid management device (RFMD) and shear-flow condenser. Operational tests of the RFMD and shear flow condenser in adverse gravity orientations, confirmed that the centrifugal forces in the RFMD and the shear forces in the condenser were capable of overcoming gravity forces. In a microgravity environment, these same forces would not have to compete against gravity and would therefore be dominant. The specific test program covered the required operating range of the Space Station Solar Dynamic Rankine Cycle power system. Review of the test data verified that: fluid was pumped from the RFMD in all attitudes; subcooled states in the condenser were achieved; condensate was pushed uphill against gravity; and noncondensible gases were swept through the condenser.

  5. Evaluation of hybrid solar/fossil Rankine-cooling concept

    SciTech Connect

    Curran, H M

    1980-11-01

    The hybrid solar/fossil Rankine cycle is analyzed thermodynamically to determine fuel use and efficiency. The hybrid system is briefly compared with solar organic Rankine systems with a fossil fuel auxiliary mode, and with geothermal resources. The economic evaluation compares the present value of the superheater fuel cost over the system lifetime with the first cost reduction obtained by substituting a hybrid solar/fossil Rankine engine for an organic Rankine engine. The economics analysis indicates that even if the hybrid solar/fossil Rankine cooling system were developed to the point of being a commercial product with an economic advantage over an otherwise equivalent solar organic Rankine cooling system, it would gradually lose that advantage with rising fuel costs and decreasing collector costs. From the standpoint of national fossil fuel conservation, the hybrid concept would be preferable only in applications where the operating duration in the solar/fossil mode would be substantially greater than in the fossil fuel-only auxiliary mode. (LEW)

  6. Reactor applications of the Compact Fusion Advanced Rankine (CFAR) cycle for a D-T tokamak fusion reactor

    NASA Astrophysics Data System (ADS)

    Hoffman, H. A.; Logan, B. G.; Campbell, R. B.

    1988-03-01

    A preliminary design of a D-T fusion reactor blanket and MHD power conversion system is made based on the CFAR concept, and it was found that performance and costs for the reference cycle are very attractive. While much remains to be done, the potential advantage of liquid metal Rankine cycles for fusion applications are much clearer now. These include low pressures and mass flow rates, a nearly isothermal module shell which minimizes problems of thermal distortion and stresses, and an insensitivity to pressure losses in the blanket so that the two-phase MHD pressure drops in the boiling part of the blanket and the ordinary vapor pressure drops in the pebble-bed superheating zones are acceptable (the direct result of pumping a liquid rather than having to compress a gas). There are no moving parts in the high-temperature MHD power generators, no steam bottoming plant is required, only small vapor precoolers and condensers are needed because of the high heat rejection temperatures, and only a relatively small natural-draft heat exchanger is required to reject the heat to the atmosphere. The net result is a very compact fusion reactor and power conversion system which fit entirely inside an 18 meter radius reactor vault. Although a cost analysis has not yet been performed, preliminary cost estimates indicate low capital costs and a very attractive cost of electricity.

  7. Test facility for the solar-powered/fuel-assisted hybrid Rankine cycle ('SSPRE'). A Phase III report

    SciTech Connect

    Subbiah, S.; Lior, N.

    1983-05-01

    This report describes the design and construction of an experimental test facility to test a novel hybrid steam Rankine cycle. Steam from the municipal pipes is conditioned to simulate that generated by a low temperature source, such as solar energy at about 100/sup 0/C. It is then superheated up to about 600/sup 0/C in a gas-fired superheater, and drives a novel counter-rotating radial turbine. Some of the heat is regenerated and the steam is then condensed. The design of the test facility was based on the ASME steam turbine test codes, and on a thorough error analysis which helped identify unacceptable errors. The test-bed was built in the power laboratory of the University of Pennsylvania. The lay-out of the components was based on a ''bread-board'' approach, to allow easy testing and replacement of components, and yet keep the pressure drop in the steam pipes to an acceptably low level. The facility is carefully instrumented to measure all variables of interest: 19 temperature sensors, 23 pressure sensors, 9 differential pressure sensors, 2 level gauges, 7 flowmeters, 1 torque and 1 RPM measuring sensor, and a dynamometer, are used. A computerized data acquisition system is used to scan and measure 32 of these variables, and programs were developed to have it perform real-time analysis and output the results. Turbine supervisory monitoring instrumentation was installed for speed, vibration, bearing oil temperature and pressure, and location of the rotors. The control system was designed to automatically shut the steam supply and the superheater, and brake the turbine, whenever any of turbine's supervisory monitors senses an unacceptable excursion, or by manual input from the operator. A detailed program for testing the turbine and cycle performance over a wide range of parameters is presented.

  8. Microfabricated rankine cycle steam turbine for power generation and methods of making the same

    NASA Technical Reports Server (NTRS)

    Frechette, Luc (Inventor); Muller, Norbert (Inventor); Lee, Changgu (Inventor)

    2009-01-01

    In accordance with the present invention, an integrated micro steam turbine power plant on-a-chip has been provided. The integrated micro steam turbine power plant on-a-chip of the present invention comprises a miniature electric power generation system fabricated using silicon microfabrication technology and lithographic patterning. The present invention converts heat to electricity by implementing a thermodynamic power cycle on a chip. The steam turbine power plant on-a-chip generally comprises a turbine, a pump, an electric generator, an evaporator, and a condenser. The turbine is formed by a rotatable, disk-shaped rotor having a plurality of rotor blades disposed thereon and a plurality of stator blades. The plurality of stator blades are interdigitated with the plurality of rotor blades to form the turbine. The generator is driven by the turbine and converts mechanical energy into electrical energy.

  9. Self-organizing biochemical cycles

    NASA Technical Reports Server (NTRS)

    Orgel, L. E.; Bada, J. L. (Principal Investigator)

    2000-01-01

    I examine the plausibility of theories that postulate the development of complex chemical organization without requiring the replication of genetic polymers such as RNA. One conclusion is that theories that involve the organization of complex, small-molecule metabolic cycles such as the reductive citric acid cycle on mineral surfaces make unreasonable assumptions about the catalytic properties of minerals and the ability of minerals to organize sequences of disparate reactions. Another conclusion is that data in the Beilstein Handbook of Organic Chemistry that have been claimed to support the hypothesis that the reductive citric acid cycle originated as a self-organized cycle can more plausibly be interpreted in a different way.

  10. Parametric and working fluid analysis of a combined organic Rankine-vapor compression refrigeration system activated by low-grade thermal energy.

    PubMed

    Saleh, B

    2016-09-01

    The potential use of many common hydrofluorocarbons and hydrocarbons as well as new hydrofluoroolefins, i.e. R1234yf and R1234ze(E) working fluids for a combined organic Rankine cycle and vapor compression refrigeration (ORC-VCR) system activated by low-grade thermal energy is evaluated. The basic ORC operates between 80 and 40 °C typical for low-grade thermal energy power plants while the basic VCR cycle operates between 5 and 40 °C. The system performance is characterized by the overall system coefficient of performance (COPS) and the total mass flow rate of the working fluid for each kW cooling capacity ([Formula: see text]). The effects of different working parameters such as the evaporator, condenser, and boiler temperatures on the system performance are examined. The results illustrate that the maximum COPS values are attained using the highest boiling candidates with overhanging T-s diagram, i.e. R245fa and R600, while R600 has the lowest [Formula: see text] under the considered operating conditions. Among the proposed candidates, R600 is the best candidate for the ORC-VCR system from the perspectives of environmental issues and system performance. Nevertheless, its flammability should attract enough attention. The maximum COPS using R600 is found to reach up to 0.718 at a condenser temperature of 30 °C and the basic values for the remaining parameters. PMID:27489732

  11. ANL/RBC: A computer code for the analysis of Rankine bottoming cycles, including system cost evaluation and off-design performance

    NASA Technical Reports Server (NTRS)

    Mclennan, G. A.

    1986-01-01

    This report describes, and is a User's Manual for, a computer code (ANL/RBC) which calculates cycle performance for Rankine bottoming cycles extracting heat from a specified source gas stream. The code calculates cycle power and efficiency and the sizes for the heat exchangers, using tabular input of the properties of the cycle working fluid. An option is provided to calculate the costs of system components from user defined input cost functions. These cost functions may be defined in equation form or by numerical tabular data. A variety of functional forms have been included for these functions and they may be combined to create very general cost functions. An optional calculation mode can be used to determine the off-design performance of a system when operated away from the design-point, using the heat exchanger areas calculated for the design-point.

  12. The dish-Rankine SCSTPE program (Engineering Experiment no. 1)

    NASA Astrophysics Data System (ADS)

    Pons, R. L.; Grigsby, C. E.

    1980-05-01

    Activities planned for phase 2 Of the Small Community Solar Thermal Power Experiment (PFDR) program are summarized with emphasis on a dish-Rankine point focusing distributed receiver solar thermal electric system. Major design efforts include: (1) development of an advanced concept indirect-heated receiver;(2) development of hardware and software for a totally unmanned power plant control system; (3) implementation of a hybrid digital simulator which will validate plant operation prior to field testing; and (4) the acquisition of an efficient organic Rankine cycle power conversion unit. Preliminary performance analyses indicate that a mass-produced dish-Rankine PFDR system is potentially capable of producing electricity at a levelized busbar energy cost of 60 to 70 mills per KWh and with a capital cost of about $1300 per KW.

  13. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 7: Metal vapor Rankine topping-steam bottoming cycles. [energy conversion efficiency in electric power plants

    NASA Technical Reports Server (NTRS)

    Deegan, P. B.

    1976-01-01

    Adding a metal vapor Rankine topper to a steam cycle was studied as a way to increase the mean temperature at which heat is added to the cycle to raise the efficiency of an electric power plant. Potassium and cesium topping fluids were considered. Pressurized fluidized bed or pressurized (with an integrated low-Btu gasifier) boilers were assumed. Included in the cycles was a pressurizing gas turbine with its associated recuperator, and a gas economizer and feedwater heater. One of the ternary systems studied shows plant efficiency of 42.3% with a plant capitalization of $66.7/kW and a cost of electricity of 8.19 mills/MJ (29.5 mills/kWh).

  14. Toluene stability Space Station Rankine power system

    NASA Technical Reports Server (NTRS)

    Havens, V. N.; Ragaller, D. R.; Sibert, L.; Miller, D.

    1987-01-01

    A dynamic test loop is designed to evaluate the thermal stability of an organic Rankine cycle working fluid, toluene, for potential application to the Space Station power conversion unit. Samples of the noncondensible gases and the liquid toluene were taken periodically during the 3410 hour test at 750 F peak temperature. The results obtained from the toluene stability loop verify that toluene degradation will not lead to a loss of performance over the 30-year Space Station mission life requirement. The identity of the degradation products and the low rates of formation were as expected from toluene capsule test data.

  15. Self-organizing biochemical cycles

    PubMed Central

    Orgel, Leslie E.

    2000-01-01

    I examine the plausibility of theories that postulate the development of complex chemical organization without requiring the replication of genetic polymers such as RNA. One conclusion is that theories that involve the organization of complex, small-molecule metabolic cycles such as the reductive citric acid cycle on mineral surfaces make unreasonable assumptions about the catalytic properties of minerals and the ability of minerals to organize sequences of disparate reactions. Another conclusion is that data in the Beilstein Handbook of Organic Chemistry that have been claimed to support the hypothesis that the reductive citric acid cycle originated as a self-organized cycle can more plausibly be interpreted in a different way. PMID:11058157

  16. Multi-Megawatt Organic Rankine Engine power plant (MORE). Phase IA final report: system design of MORE power plant for industrial energy conservation emphasizing the cement industry

    SciTech Connect

    Bair, E.K.; Breindel, B.; Collamore, F.N.; Hodgson, J.N.; Olson, G.K.

    1980-01-31

    The Multi-Megawatt Organic Rankine Engine (MORE) program is directed towards the development of a large, organic Rankine power plant for energy conservation from moderate temperature industrial heat streams. Organic Rankine power plants are ideally suited for use with heat sources in the temperature range below 1100/sup 0/F. Cement manufacture was selected as the prototype industry for the MORE system because of the range of parameters which can be tested in a cement application. This includes process exit temperatures of 650/sup 0/F to 1110/sup 0/F for suspension preheater and long dry kilns, severe dust loading, multi-megawatt power generation potential, and boiler exhaust gas acid dew point variations. The work performed during the Phase IA System Design contract period is described. The System Design task defines the complete MORE system and its installation to the level necessary to obtain detailed performance maps, equipment specifications, planning of supporting experiments, and credible construction and hardware cost estimates. The MORE power plant design is based upon installation in the Black Mountain Quarry Cement Plant near Victorville, California.

  17. Test Requirements and Conceptual Design for a Potassium Test Loop to Support an Advanced Potassium Rankine Cycle Power Conversion Systems

    SciTech Connect

    Yoder, JR.G.L.

    2006-03-08

    Parameters for continuing the design and specification of an experimental potassium test loop are identified in this report. Design and construction of a potassium test loop is part of the Phase II effort of the project ''Technology Development Program for an Advanced Potassium Rankine Power Conversion System''. This program is supported by the National Aeronautics and Space Administration. Design features for the potassium test loop and its instrumentation system, specific test articles, and engineered barriers for ensuring worker safety and protection of the environment are described along with safety and environmental protection requirements to be used during the design process. Information presented in the first portion of this report formed the basis to initiate the design phase of the program; however, the report is a living document that can be changed as necessary during the design process, reflecting modifications as additional design details are developed. Some portions of the report have parameters identified as ''to be determined'' (TBD), reflecting the early stage of the overall process. In cases where specific design values are presently unknown, the report attempts to document the quantities that remain to be defined in order to complete the design of the potassium test loop and supporting equipment.

  18. The variable pressure supercritical Rankine cycle for integrated natural gas and power production from the geopressured geothermal resource

    NASA Astrophysics Data System (ADS)

    Goldsberry, F. L.

    1982-03-01

    A small-scale power plant cycle that utilizes both a variable pressure vaporizer (heater) and a floating pressure (and temperature) air-cooled condenser is described. Further, it defends this choice on the basis of classical thermodynamics and minimum capital cost by supporting these conclusions with actual comparative examples. The application suggested is for the geopressured geothermal resource. The arguments cited in this application apply to any process (petrochemical, nuclear, etc.) involving waste heat recovery.

  19. Experimental performance of a piston expander in a small- scale organic Rankine cycle

    NASA Astrophysics Data System (ADS)

    Oudkerk, J. F.; Dickes, R.; Dumont, O.; Lemort, V.

    2015-08-01

    Volumetric expanders are suitable for more and more applications in the field of micro- and small-scale power system as waster heat recovery or solar energy. This paper present an experimental study carried out on a swatch-plate piston expander. The expander was integrated into an ORC test-bench using R245fa. The performances are evaluated in term of isentropic efficiency and filling factor. The maximum efficiency and power reached are respectively 53% and 2 kW. Inside cylinder pressure measurements allow to compute mechanical efficiency and drown P-V diagram. A semi-empirical simulation model is then proposed, calibrated and used to analyse the different sources of losses.

  20. Technology for industrial waste heat recovery by organic Rankine cycle systems. Final report

    SciTech Connect

    Cain, W.G.; Drake, R.L.; Prisco, C.J.

    1984-10-01

    Four different aspects of ORC technology were studied: possible destructive chemical reaction between an aluminum turbine wheel and R-113 working fluid under wheel-to-rotor rub conditions; possible chemical reaction between stainless steel or carbon steel and any of five different ORC working fluids under rotor-stator rub conditions; effects on electric generator properties of extended exposure to an environment of saturated R-113 vapor/fluid; and operational proof tests under laboratory conditions of two 1070 kW, ORC, R-113 hermetic turbogenerator power module systems.

  1. Application of Organic Rankine Cycles (ORCs) to decentralized power generation, preliminary study

    NASA Astrophysics Data System (ADS)

    Huovilainen, Reino; Alamaeki, Jarmo; Tarjanne, Risto

    The study concentrates on MW-class ORC processes that could be utilized in connection with different kind of power plants. The use of an ORC-process may offer potential for improvements in two ways; first, an ORC-process can be suitable with low-grade thermal sources where water based power generation is not feasible. Second, an increase in power generation efficiency is achieved. The connection of an ORC-process to following plants were investigated; a gas burning heat-only boiler, a solid fuel boiler, a steam and gas turbine (co-generation) unit, a steam turbine and a heating reactor. In each case the following economical factors for adding an ORC-process were calculated; the cost for electricity, the return of investment (ROI) and the pay-back period. The most favorable cases to utilize an ORC-process are a heating reactor, a steam turbine and a gas turbine based co-generation plant. In connection with heat-only plants a better economy were achieved than with co-generation plants. The results indicate that there can be found economically promising applications for ORC-processes in industry and power plants. It is evident that those cases should be investigated more in detail. ORC-processes allow power generation in new circumstances and can increase the efficiency of power plants. More emphasis should be paid for the R and D of this relatively new technology.

  2. Thermal-hydraulic issues of flow boiling and condensation in organic Rankine cycle heat exchangers

    NASA Astrophysics Data System (ADS)

    Mikielewicz, Jarosław; Mikielewicz, Dariusz

    2012-08-01

    In the paper presented are the issues related to the design and operation of micro heat exchangers, where phase changes can occur, applicable to the domestic micro combined heat and power (CHP) unit. Analysed is the stability of the two-phase flow in such unit. A simple hydraulic model presented in the paper enables for the stability analysis of the system and analysis of disturbance propagation caused by a jump change of the flow rate. Equations of the system dynamics as well as properties of the working fluid are strongly non-linear. A proposed model can be applicable in designing the system of flow control in micro heat exchangers operating in the considered CHP unit.

  3. Design of Radial Turbo-Expanders for Small Organic Rankine Cycle System

    NASA Astrophysics Data System (ADS)

    Arifin, M.; Pasek, A. D.

    2015-09-01

    This paper discusses the design of radial turbo-expanders for ORC systems. Firstly, the rotor blades were design and the geometry and the perfromance were calculated using several working fluid such as R134a, R143a, R245fa, n-Pentane, and R123. Then, a numerical study was carried out in the fluid flow area with R134a and R123 as the working fluid. Analyses were performed using Computational Fluid Dynamics (CFD) ANSYS CFX on two real gas models, with the k-epsilon and SST (shear stress transport) turbulence models. The results analysis shows the distribution of Mach number, pressure, velocity and temperature along the rotor blade of the radial turbo-expanders and estimation of performance at various operating conditions. CFD analysis show that if the flow area divided into 250,000 grid mesh, and using real gas model SST at steady state condition, 0.4 kg/s of mass flow rate, 15,000 rpm rotor speed, 5 bar inlet pressure, and 373K inlet temperature, the turbo expander produces 6.7 kW, and 5.5 kW of power when using R134a and R123 respectively.

  4. Conceptual design and analysis of a Dish-Rankine solar thermal power system

    NASA Astrophysics Data System (ADS)

    Pons, R. L.

    1980-08-01

    A Point Focusing Distributed Receiver (PFDR) solar thermal electric system which employs small Organic Rankine Cycle (ORC) engines is examined with reference to its projected technical/economic performance. With mass-produced power modules (about 100,000 per year), the projected life-cycle energy cost for an optimized no-storage system is estimated at 67 mills/kWh (Levelized Busbar Energy Cost) without the need for advanced development of any of its components. At moderate production rates (about 50 MWe/yr) system energy costs are competitive with conventional power generation systems in special remote-site types of applications.

  5. The dish-Rankine SCSTPE program (Engineering Experiment no. 1). [systems engineering and economic analysis for a small community solar thermal electric system

    NASA Technical Reports Server (NTRS)

    Pons, R. L.; Grigsby, C. E.

    1980-01-01

    Activities planned for phase 2 Of the Small Community Solar Thermal Power Experiment (PFDR) program are summarized with emphasis on a dish-Rankine point focusing distributed receiver solar thermal electric system. Major design efforts include: (1) development of an advanced concept indirect-heated receiver;(2) development of hardware and software for a totally unmanned power plant control system; (3) implementation of a hybrid digital simulator which will validate plant operation prior to field testing; and (4) the acquisition of an efficient organic Rankine cycle power conversion unit. Preliminary performance analyses indicate that a mass-produced dish-Rankine PFDR system is potentially capable of producing electricity at a levelized busbar energy cost of 60 to 70 mills per KWh and with a capital cost of about $1300 per KW.

  6. Study of Supercritical Carbon Dioxide Power Cycle for Low Grade Heat Conversion

    SciTech Connect

    Vidhi, Rachana; Goswami, Yogi D.; Chen, Huijuan; Stefanakos, Elias; Kuravi, Sarada; Sabau, Adrian S

    2011-01-01

    Research on supercritical carbon dioxide power cycles has been mainly focused on high temperature applications, such as Brayton cycle in a nuclear power plant. This paper conducts a comprehensive study on the feasibility of a CO2-based supercritical power cycle for low-grade heat conversion. Energy and exergy analyses of the cycle were conducted to discuss the obstacles as well as the potentials of using supercritical carbon dioxide as the working fluid for supercritical Rankine cycle, Carbon dioxide has desirable qualities such as low critical temperature, stability, little environmental impact and low cost. However, the low critical temperature might be a disadvantage for the condensation process. Comparison between a carbon dioxide-based supercritical Rankine cycle and an organic fluid-based supercritical Rankine cycle showed that the former needs higher pressure to achieve the same efficiency and a heat recovery system is necessary to desuperheat the turbine exhaust and pre-heat the pressure charged liquid.

  7. Organic flash cycles for efficient power production

    DOEpatents

    Ho, Tony; Mao, Samuel S.; Greif, Ralph

    2016-03-15

    This disclosure provides systems, methods, and apparatus related to an Organic Flash Cycle (OFC). In one aspect, a modified OFC system includes a pump, a heat exchanger, a flash evaporator, a high pressure turbine, a throttling valve, a mixer, a low pressure turbine, and a condenser. The heat exchanger is coupled to an outlet of the pump. The flash evaporator is coupled to an outlet of the heat exchanger. The high pressure turbine is coupled to a vapor outlet of the flash evaporator. The throttling valve is coupled to a liquid outlet of the flash evaporator. The mixer is coupled to an outlet of the throttling valve and to an outlet of the high pressure turbine. The low pressure turbine is coupled to an outlet of the mixer. The condenser is coupled to an outlet of the low pressure turbine and to an inlet of the pump.

  8. Steam Rankine Solar Receiver, phase 2

    NASA Technical Reports Server (NTRS)

    Deanda, L. E.; Faust, M.

    1981-01-01

    A steam rankine solar receiver (SRSR) based on a tubular concept was designed and developed. The SRSR is an insulated, cylindrical coiled tube boiler which is mounted at the focal plane of a fully tracking parabolic solar reflector. The concentrated solar energy received at the focal plane is then transformed to thermal energy through steam generation. The steam is used in a small Rankine cycle heat engine to drive a generator for the production of electrical energy. The SRSR was designed to have a dual mode capability, performing as a once through boiler with and without reheat. This was achieved by means of two coils which constitute the boiler. The boiler core size of the SRSR is 17.0 inches in diameter and 21.5 inches long. The tube size is 7/16 inch I.D. by 0.070 inch wall for the primary, and 3/4 inch I.D. by 0.125 inch wall for the reheat section. The materials used were corrosion resistant steel (CRES) type 321 and type 347 stainless steel. The core is insulated with 6 inches of cerablanket insulation wrapped around the outer wall. The aperture end and the reflector back plate at the closed end section are made of silicon carbide. The SRSR accepts 85 kwth and has a design life of 10,000 hrs when producing steam at 1400 F and 2550 psig.

  9. Thermal and hydraulic performance tests of a sieve-tray direct-contact heat exchanger vaporizing pure and mixed-hydrocarbon Rankine-cycle working fluids

    SciTech Connect

    Mines, G.L.; Demuth, O.J.; Wiggins, D.J.

    1983-08-01

    Experiments investigating a sieve-tray direct-contact heat exchanger were conducted at the Raft River Geothermal Test Site in southeastern Idaho using the 60-kW Mobile Heat Cycle Research Facility operating in the thermal loop mode (without a turbine). Isobutane, propane, and several hydrocarbon mixtures were heated and boiled in the direct-contact column, which is approx. 12 in. in diameter and 19-1/2 ft. high, using the energy from a 280/sup 0/F geothermal resource. Using pure fluids, isobutane or propane, the column operated much as intended, with 17 trays used for preheating and one or two accomplishing the boiling. For the pure fluids, individual tray efficiencies were found to be 70% or higher for preheating, and close to 100% for boiling; column pinch points were projected to be well under 1/sup 0/F with some runs reaching values as low as approx. 0.02/sup 0/F. Maximum geofluid throughputs for the isobutane tests corresponded roughly to the terminal rise velocity of a 1/32 in. working fluid droplet in geofluid. Boiling was found to occur in as many as 12 trays for the mixtures having the highest concentrations of the minor component, with overall efficiencies in the boiling section estimated on the order of 25 or 30%. Preheating tray efficiencies appeared to be fairly independent of working fluid, with pinch points ranging from as low as approx. 0.03/sup 0/F for a 0.95 isobutane/0.05 hexane mixture to approx. 2.3/sup 0/F for a 0.85 isobutane/0.05 hexane mixture. Column operation was noticeably less stable for the mixtures than for the pure fluids, with maximum throughputs dropping to as low as 40 to 50% of those for the pure fluids.

  10. Rankine-Brayton engine powered solar thermal aircraft

    DOEpatents

    Bennett, Charles L.

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  11. Temporal Organization of the Cell Cycle

    PubMed Central

    Tyson, John J.; Novak, Bela

    2009-01-01

    Summary The coordination of growth, DNA replication and division in proliferating cells can be adequately explained by a ‘clock + checkpoint’ model. The clock is an underlying circular sequence of states; the checkpoints ensure that the cycle proceeds without mistakes. From the molecular complexities of the control system in modern eukaryotes, we isolate a simple network of positive and negative feedbacks that embodies a clock + checkpoints. The model accounts for the fundamental physiological properties of mitotic cell divisions, evokes a new view of the meiotic program, and suggests how the control system may have evolved in the first place. PMID:18786381

  12. Nuclear alkali metal Rankine power systems for space applications

    SciTech Connect

    Moyers, J.C.; Holcomb, R.S.

    1986-08-01

    Nucler power systems utilizing alkali metal Rankine power conversion cycles offer the potential for high efficiency, lightweight space power plants. Conceptual design studies are being carried out for both direct and indirect cycle systems for steady state space power applications. A computational model has been developed for calculating the performance, size, and weight of these systems over a wide range of design parameters. The model is described briefly and results from parametric design studies, with descriptions of typical point designs, are presented in this paper.

  13. Comparative evaluation of three alternative power cycles for waste heat recovery from the exhaust of adiabatic diesel engines

    NASA Technical Reports Server (NTRS)

    Bailey, M. M.

    1985-01-01

    Three alternative power cycles were compared in application as an exhaust-gas heat-recovery system for use with advanced adiabatic diesel engines. The power cycle alternatives considered were steam Rankine, organic Rankine with RC-1 as the working fluid, and variations of an air Brayton cycle. The comparison was made in terms of fuel economy and economic payback potential for heavy-duty trucks operating in line-haul service. The results indicate that, in terms of engine rated specific fuel consumption, a diesel/alternative-power-cycle engine offers a significant improvement over the turbocompound diesel used as the baseline for comparison. The maximum imporvement resulted from the use of a Rankine cycle heat-recovery system in series with turbocompounding. The air Brayton cycle alternatives studied, which included both simple-cycle and compression-intercooled configurations, were less effective and provided about half the fuel consumption improvement of the Rankine cycle alternatives under the same conditions. Capital and maintenance cost estimates were also developed for each of the heat-recovery power cycle systems. These costs were integrated with the fuel savings to identify the time required for net annual savings to pay back the initial capital investment. The sensitivity of capital payback time to arbitrary increases in fuel price, not accompanied by corresponding hardware cost inflation, was also examined. The results indicate that a fuel price increase is required for the alternative power cycles to pay back capital within an acceptable time period.

  14. Mission analysis for the potassium-Rankine NEP option

    NASA Astrophysics Data System (ADS)

    Cross, Elden H.; Widman, Frederick W.; North, D. Michael

    1992-01-01

    Mission analyses were conducted to select the design point of a nuclear electric propulsion (NEP) system for a manned mission to Mars. The propulsion system is comprised of ion thrusters with argon propellant and a potassium-Rankine cycle nuclear power plant. Mars parking orbits, departure dates, and outbound/return transfer times were varied to provide a minimum-mass system for a 390-day trip time. The study resulted in a power requirement of 46 MWe and an initial mass in low-Earth-orbit (IMLEO) of 700 tonnes.

  15. Potassium-Rankine Power Conversion Subsystem Modeling for Nuclear Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Johnson, Gregory A.

    1993-01-01

    A potassium-Rankine power conversion system model was developed under Contract No. NAS3-25808 for the NASA-LeRC. This model predicts potassium-Rankine performance for turbine inlet temperatures (TIT) from 1200 - 1600 K, TIT to condenser temperature ratios from 1.25-1.6, power levels from 100 to 10,000 kWe, and lifetimes from 2-10 years. The model is for a Rankine cycle with reheat for turbine stage moisture control. The model assumes heat is supplied from a lithium heat transport loop. The model does not include a heat source or a condenser/heat rejection system model. These must be supplied by the user.

  16. Sulfur and carbon cycling in organic-rich marine sediments

    NASA Technical Reports Server (NTRS)

    Martens, C. S.

    1985-01-01

    Nearshore, continental shelf, and slope sediments are important sites of microbially mediated carbon and sulfur cycling. Marine geochemists investigated the rates and mechanisms of cycling processes in these environments by chemical distribution studies, in situ rate measurements, and steady state kinetic modeling. Pore water chemical distributions, sulfate reduction rates, and sediment water chemical fluxes were used to describe cycling on a ten year time scale in a small, rapidly depositing coastal basin, Cape Lookout Bight, and at general sites on the upper continental slope off North Carolina, U.S.A. In combination with 210 Pb sediment accumulation rates, these data were used to establish quantitative carbon and sulfur budgets as well as the relative importance of sulfate reduction and methanogeneis as the last steps in the degradation of organic matter.

  17. Fabrication and life cycle assessment of organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Anctil, Annick

    2011-12-01

    Increasing demand for renewable energy has resulted in a new interest for alternative technologies such as organic photovoltaics. With efficiencies exceeding 8% for both polymer and small molecule photovoltaics, organic photovoltaics are now being commercialized due to their flexibility and low weight which allow for their adoption in new applications such as portable electronics, smart fabrics, and building-integrated photovoltaics. To date, most research efforts have been focused on increasing power efficiency with little assessment of potential negative impacts associated with their large scale production. It is generally assumed that organic photovoltaics have low environmental impacts and are by nature inexpensive to produce since they are often solution processed. In the present work, a comprehensive analysis of the life cycle embodied energy for C60 and C70 fullerenes which are the most common acceptor molecules in organic photovoltaics, has been performed from cradle-to-gate, including the relative contributions from synthesis, separation, purification, and functionalization processes. The embodied energy of all fullerenes was calculated to be an order of magnitude higher than most bulk chemicals. These results have enabled the life cycle impact associated with the production of various types of organic photovoltaics to be calculated, including polymer, small molecule and multi-junction devices. An outcome of the life cycle assessment for organic photovoltaics shows that small molecule devices require significant fabrication energy from high vacuum processing and their efficiency is limited by poor absorption in the near-infrared (NIR). Therefore, a solution processing approach with novel NIR absorbing molecules in multi-junction devices has been developed in order to minimize the total cumulative energy. The combined efforts have led to the first demonstration of a spray-coated small molecule photovoltaic NIR device, using a combination of ZnPc and Al

  18. Organic carbon cycling in landfills: Model for a continuum approach

    SciTech Connect

    Bogner, J.; Lagerkvist, A.

    1997-09-01

    Organic carbon cycling in landfills can be addressed through a continuum model where the end-points are conventional anaerobic digestion of organic waste (short-term analogue) and geologic burial of organic material (long-term analogue). Major variables influencing status include moisture state, temperature, organic carbon loading, nutrient status, and isolation from the surrounding environment. Bioreactor landfills which are engineered for rapid decomposition approach (but cannot fully attain) the anaerobic digester end-point and incur higher unit costs because of their high degree of environmental isolation and control. At the other extreme, uncontrolled land disposal of organic waste materials is similar to geologic burial where organic carbon may be aerobically recycled to atmospheric CO{sub 2}, anaerobically converted to CH{sub 4} and CO{sub 2} during early diagenesis, or maintained as intermediate or recalcitrant forms into geologic time (> 1,000 years) for transformations via kerogen pathways. A family of improved landfill models are needed at several scales (molecular to landscape) which realistically address landfill processes and can be validated with field data.

  19. Methane hydrate in the global organic carbon cycle

    USGS Publications Warehouse

    Kvenvolden, K.A.

    2002-01-01

    The global occurrence of methane hydrate in outer continental margins and in polar regions, and the magnitude of the amount of methane sequestered in methane hydrate suggest that methane hydrate is an important component in the global organic carbon cycle. Various versions of this cycle have emphasized the importance of methane hydrate, and in the latest version the role of methane hydrate is considered to be analogous to the workings of an electrical circuit. In this circuit the methane hydrate is a condenser and the consequences of methane hydrate dissociation are depicted as a resistor and inductor, reflecting temperature change and changes in earth surface history. These consequences may have implications for global change including global climate change.

  20. Deep Carbon Cycling in the Deep Hydrosphere: Abiotic Organic Synthesis and Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    Sherwood Lollar, B.; Sutcliffe, C. N.; Ballentine, C. J.; Warr, O.; Li, L.; Ono, S.; Wang, D. T.

    2014-12-01

    Research into the deep carbon cycle has expanded our understanding of the depth and extent of abiotic organic synthesis in the deep Earth beyond the hydrothermal vents of the deep ocean floor, and of the role of reduced gases in supporting deep subsurface microbial communities. Most recently, this research has expanded our understanding not only of the deep biosphere but the deep hydrosphere - identifying for the first time the extreme antiquity (millions to billions of years residence time) of deep saline fracture waters in the world's oldest rocks. Energy-rich saline fracture waters in the Precambrian crust that makes up more than 70% of the Earth's continental lithosphereprovide important constraints on our understanding of the extent of the crust that is habitable, on the time scales of hydrogeologic isolation (and conversely mixing) of fluids relevant to the deep carbon cycle, and on the geochemistry of substrates that sustain both abiotic organic synthesis and biogeochemical cycles driven by microbial communities. Ultimately the chemistry and hydrogeology of the deep hydrosphere will help define the limits for life in the subsurface and the boundary between the biotic-abiotic fringe. Using a variety of novel techniques including noble gas analysis, clumped isotopologues of methane, and compound specific isotope analysis of CHNOS, this research is addressing questions about the distribution of deep saline fluids in Precambrian rocks worldwide, the degree of interconnectedness of these potential biomes, the habitability of these fluids, and the biogeographic diversity of this new realm of the deep hydrosphere.

  1. Use of combined steam-water and organic rankine cycles for achieving better efficiency of gas turbine units and internal combustion engines

    NASA Astrophysics Data System (ADS)

    Gotovskiy, M. A.; Grinman, M. I.; Fomin, V. I.; Aref'ev, V. K.; Grigor'ev, A. A.

    2012-03-01

    Innovative concepts of recovering waste heat using low-boiling working fluids, due to which the the efficiency can be increased to 28-30%, are presented. If distributed generation of electricity or combined production of heat and electricity is implemented, the electrical efficiency can reach 58-60% and the fuel heat utilization factor, 90%.

  2. Solar-powered Rankine heat pump for heating and cooling

    NASA Technical Reports Server (NTRS)

    Rousseau, J.

    1978-01-01

    The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.

  3. Rankine engine solar power generation. I - Performance and economic analysis

    NASA Technical Reports Server (NTRS)

    Gossler, A. A.; Orrock, J. E.

    1981-01-01

    Results of a computer simulation of the performance of a solar flat plate collector powered electrical generation system are presented. The simulation was configured to include locations in New Mexico, North Dakota, Tennessee, and Massachusetts, and considered a water-based heat-transfer fluid collector system with storage. The collectors also powered a Rankine-cycle boiler filled with a low temperature working fluid. The generator was considered to be run only when excess solar heat and full storage would otherwise require heat purging through the collectors. All power was directed into the utility grid. The solar powered generator unit addition was found to be dependent on site location and collector area, and reduced the effective solar cost with collector areas greater than 400-670 sq m. The sites were economically ranked, best to worst: New Mexico, North Dakota, Massachusetts, and Tennessee.

  4. Overview-absorption/Rankine solar cooling program

    NASA Astrophysics Data System (ADS)

    Wahlig, M.; Heitz, A.; Boyce, B.

    1980-03-01

    The tasks being performed in the absorption and Rankine program areas run the gamut from basic work on fluids to development of chillers and chiller components, to field and reliability testing of complete cooling systems. In the absorption program, there are six current and five essentially completed projects. In the Rankine program, there are five current projects directly supported by DOE, and three projects funded through and managed by NASA/MSFC (Manned Space Flight Center, Huntsville, Alabama). The basic features of these projects are discussed. The systems under development in five of these current projects were selected for field testing in the SOLERAS program, a joint US-Saudi Arabian enterprise. Some technical highlights of the program are presented.

  5. Hidden cycle of dissolved organic carbon in the deep ocean

    PubMed Central

    Follett, Christopher L.; Repeta, Daniel J.; Rothman, Daniel H.; Xu, Li; Santinelli, Chiara

    2014-01-01

    Marine dissolved organic carbon (DOC) is a large (660 Pg C) reactive carbon reservoir that mediates the oceanic microbial food web and interacts with climate on both short and long timescales. Carbon isotopic content provides information on the DOC source via δ13C and age via Δ14C. Bulk isotope measurements suggest a microbially sourced DOC reservoir with two distinct components of differing radiocarbon age. However, such measurements cannot determine internal dynamics and fluxes. Here we analyze serial oxidation experiments to quantify the isotopic diversity of DOC at an oligotrophic site in the central Pacific Ocean. Our results show diversity in both stable and radio isotopes at all depths, confirming DOC cycling hidden within bulk analyses. We confirm the presence of isotopically enriched, modern DOC cocycling with an isotopically depleted older fraction in the upper ocean. However, our results show that up to 30% of the deep DOC reservoir is modern and supported by a 1 Pg/y carbon flux, which is 10 times higher than inferred from bulk isotope measurements. Isotopically depleted material turns over at an apparent time scale of 30,000 y, which is far slower than indicated by bulk isotope measurements. These results are consistent with global DOC measurements and explain both the fluctuations in deep DOC concentration and the anomalous radiocarbon values of DOC in the Southern Ocean. Collectively these results provide an unprecedented view of the ways in which DOC moves through the marine carbon cycle. PMID:25385632

  6. Piaget and Organic Chemistry: Teaching Introductory Organic Chemistry through Learning Cycles

    NASA Astrophysics Data System (ADS)

    Libby, R. Daniel

    1995-07-01

    This paper describes the first application of the Piaget-based learning cycle technique (Atkin & Karplus, Sci. Teach. 1962, 29, 45-51) to an introductory organic chemistry course. It also presents the step-by-step process used to convert a lecture course into a discussion-based active learning course. The course is taught in a series of learning cycles. A learning cycle is a three phase process that provides opportunities for students to explore new material and work with an instructor to recognize logical patterns in data, and devise and test hypotheses. In this application, the first phase, exploration, involves out-of-class student evaluation of data in attempts to identify significant trends and develop hypotheses that might explain the trends in terms of fundamental scientific principles. In the second phase, concept invention, the students and instructor work together in-class to evaluate student hypotheses and find concepts that work best in explaining the data. The third phase, application, is an out-of-class application of the concept to new situations. The development of learning cycles from lecture notes is presented as an 8 step procedure. The process involves revaluation and restructuring of the course material to maintain a continuity of concept development according to the instructor's logic, dividing topics into individual concepts or techniques, and refocusing the presentation in terms of large numbers of examples that can serve as data for students in their exploration and application activities. A sample learning cycle and suggestions for ways of limited implementation of learning cycles into existing courses are also provided.

  7. A review of test results on parabolic dish solar thermal power modules with dish-mounted Rankine engines and for production of process steam

    NASA Technical Reports Server (NTRS)

    Jaffe, Leonard D.

    1988-01-01

    This paper presents results of development testing of various solar thermal parabolic dish modules and assemblies. Most of the tests were at modules and assemblies that used a dish-mounted, organic Rankine cycle turbine for production of electric power. Some tests were also run on equipment for production of process steam or for production of electricity using dish-mounted reciprocating steam engines. These tests indicate that early modules achieve efficiencies of about 18 percent in converting sunlight to electricity (excluding the inverter but including parasitics). A number of malfunctions occurred. The performance measurements, as well as the malfunctions and other operating experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  8. The remote ischemic preconditioning algorithm: effect of number of cycles, cycle duration and effector organ mass on efficacy of protection.

    PubMed

    Johnsen, Jacob; Pryds, Kasper; Salman, Rasha; Løfgren, Bo; Kristiansen, Steen Buus; Bøtker, Hans Erik

    2016-03-01

    Remote ischemic preconditioning (rIPC), induced by cycles of transient limb ischemia and reperfusion (IR), is cardioprotective. The optimal rIPC-algorithm is not established. We investigated the effect of cycle numbers and ischemia duration within each rIPC-cycle and the influence of effector organ mass on the efficacy of cardioprotection. Furthermore, the duration of the early phase of protection by rIPC was investigated. Using a tourniquet tightened at the inguinal level, we subjected C57Bl/6NTac mice to intermittent hind-limb ischemia and reperfusion. The rIPC-protocols consisted of (I) two, four, six or eight cycles, (II) 2, 5 or 10 min of ischemia in each cycle, (III) single or two hind-limb occlusions and (IV) 0.5, 1.5, 2.0 or 2.5 h intervals from rIPC to index cardiac ischemia. All rIPC algorithms were followed by 5 min of reperfusion. The hearts were subsequently exposed to 25 min of global ischemia and 60 min of reperfusion in an ex vivo Langendorff model. Cardioprotection was evaluated by infarct size and post-ischemic hemodynamic recovery. Four to six rIPC cycles yielded significant cardioprotection with no further protection by eight cycles. Ischemic cycles lasting 2 min offered the same protection as cycles of 5 min ischemia, whereas prolonged cycles lasting 10 min abrogated protection. One and two hind-limb preconditioning were equally protective. In our mouse model, the duration of protection by rIPC was 1.5 h. These findings indicate that the number and duration of cycles rather than the tissue mass exposed to rIPC determines the efficacy of rIPC. PMID:26768477

  9. Staging Rankine Cycles Using Ammonia for OTEC Power Production

    SciTech Connect

    Bharathan, D.

    2011-03-01

    Recent focus on renewable power production has renewed interest in looking into ocean thermal energy conversion (OTEC) systems. Early studies in OTEC applicability indicate that the island of Hawaii offers a potential market for a nominal 40-MWe system. a 40-MWe system represents a large leap in the current state of OTEC technology. Lockheed Martin Inc. is currently pursuing a more realistic goal of developing a 10-MWe system under U.S. Navy funding (Lockheed 2009). It is essential that the potential risks associated with the first-of-its-kind plant should be minimized for the project's success. Every means for reducing costs must also be pursued without increasing risks. With this in mind, the potential for increasing return on the investment is assessed both in terms of effective use of the seawater resource and of reducing equipment costs.

  10. Rankine cycle load limiting through use of a recuperator bypass

    DOEpatents

    Ernst, Timothy C.

    2011-08-16

    A system for converting heat from an engine into work includes a boiler coupled to a heat source for transferring heat to a working fluid, a turbine that transforms the heat into work, a condenser that transforms the working fluid into liquid, a recuperator with one flow path that routes working fluid from the turbine to the condenser, and another flow path that routes liquid working fluid from the condenser to the boiler, the recuperator being configured to transfer heat to the liquid working fluid, and a bypass valve in parallel with the second flow path. The bypass valve is movable between a closed position, permitting flow through the second flow path and an opened position, under high engine load conditions, bypassing the second flow path.

  11. Advanced Low Temperature Geothermal Power Cycles (The ENTIV Organic Project) Final Report

    SciTech Connect

    Mugerwa, Michael

    2015-11-18

    Feasibility study of advanced low temperature thermal power cycles for the Entiv Organic Project. Study evaluates amonia-water mixed working fluid energy conversion processes developed and licensed under Kalex in comparison with Kalina cycles. Both cycles are developed using low temperature thermal resource from the Lower Klamath Lake Geothermal Area. An economic feasibility evaluation was conducted for a pilot plant which was deemed unfeasible by the Project Sponsor (Entiv).

  12. Interaction of a skewed Rankine vortex pair

    NASA Astrophysics Data System (ADS)

    Jayavel, S.; Patil, Pratish P.; Tiwari, Shaligram

    2008-08-01

    An analytical investigation is carried out to study the kinematics of a fluid particle in an interacting field of a skewed pair of fixed Rankine vortices. A general formulation governing the kinematics of a fluid particle has been presented based on the superposition of the velocity field due to each vortex in the pair. The kinematics of a Lagrangian fluid particle is found to be governed by a nonlinear dynamical system. The fixed or stationary points of the dynamical system have been identified analytically and their existence is confirmed by the nature of particle paths in the neighborhood of fixed points. The nature of the particle path and velocity signal is reported for general as well as special configurations of the vortex pair in the presence and absence of an external uniform flow. As a specific application of the proposed problem, superimposition of the translational velocity on a semi-infinite field of longitudinal vortices generated by vortex generators mounted on fin plates of heat exchangers has also been studied.

  13. Organics on Titan : Carbon Rings and Carbon Cycles (Invited)

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2010-12-01

    The photochemical conversion of methane into heavier organics which would cover Titan’s surface has been a principal motif of Titan science for the last 4 decades. Broadly, this picture has held up against Cassini observations, but organics on Titan turn out to have some surprising characteristics. First, the surface deposits of organics are segregated into at least two distinct major reservoirs - equatorial dune sands and polar seas. Second, the rich array of compounds detected as ions and molecules even 1000km above Titan’s surface has proven much more complex than expected, including two-ring anthracene and compounds with m/z>1000. Radar and near-IR mapping shows that Titan’s vast dunefields, covering >10% of Titan’s surface, contain ~0.3 million km^3 of material. This material is optically dark and has a low dielectric constant, consistent with organic particulates. Furthermore, the dunes are associated with a near-IR spectral signature attributed to aromatic compounds such as benzene, which has been sampled in surprising abundance in Titan’s upper atmosphere. The polar seas and lakes of ethane (and presumably at least some methane) may have a rather lower total volume than the dune sands, and indeed may contain little more, if any, methane than the atmosphere itself. The striking preponderance of liquid deposits in the north, notably the 500- and 1000-km Ligeia and Kraken, contrasts with the apparently shallow and shrinking Ontario Lacus in the south, and perhaps attests to volatile migration on astronomical (Croll-Milankovich) timescales as well as seasonal methane transport. Against this appealing picture, many questions remain. What is the detailed composition of the seas, and can chemistry in a nonpolar solvent yield compounds of astrobiological interest ? Are there ‘groundwater’ reservoirs of methane seething beneath the surface, perhaps venting to form otherwise improbable equatorial clouds? And what role, if any, do clathrates play today

  14. Self-organization and self-avoiding limit cycles

    NASA Astrophysics Data System (ADS)

    Hexner, D.; Levine, D.

    2015-02-01

    A simple periodically driven system displaying rich behavior is introduced and studied. The system self-organizes into a mosaic of static ordered regions with three possible patterns, which are threaded by one-dimensional paths on which a small number of mobile particles travel. These trajectories are self-avoiding and non-intersecting, and their relationship to self-avoiding random walks is explored. Near ρ=0.5 the distribution of path lengths becomes power-law-like up to some cutoff length, suggesting a possible critical state.

  15. Phase 2 Brayton/Rankine 10-ton gas-fired space-conditioning system

    NASA Astrophysics Data System (ADS)

    1982-07-01

    The technical accomplishments to date in the design, development, and demonstration program leading to commercialization of a 10 ton heat actuated space conditioning system for light commercialization of a 10 ton heat actuated space conditioning system for light commercial building applications are summarized. The system consists of a natural gas powered Brayton cycle engine and a Rankine cycle heat pump, combined in a single roof top package. The heat actuated space conditioning system provides more efficient use of natural gas and is intended as an all gas alternative to the electric heat pump. The system employs a subatmospheric natural gas fired heat pump. A centrifugal R-12 refrigerant compressor is driven directly from the Brayton engine rotating group through a hermetically sealed coupling. Unique features that offer high life cycle performance include a permanent magnet coupling, foil bearings, an atmospheric in-line combustor, and a high temperature recuperator.

  16. Complementary Enzymes Activities in Organic Phosphorus Mineralization and Cycling by Phosphohydrolases in Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inorganic and organic phosphates react strongly with soil constituents, resulting in relatively low concentrations of soluble phosphates in the soil solution. Multiple competing reactions control the solution-phase concentration and the cycling of phosphorus-containing organic substrates and the re...

  17. Annual Cycling of Dissolved Organic Matter in an Alpine Stream

    NASA Astrophysics Data System (ADS)

    Gabor, R. S.; McLoughlin, R.; McKnight, D. M.

    2009-12-01

    Boulder Creek, an alpine stream in the Colorado Front Range, runs through glacially-scoured landscapes and various alpine ecosystems from its headwaters at around 12,500 ft to the city of Boulder at around 6,000 ft. The flow in the lower potions of the creek is controlled by Barker Reservoir. As part of the Boulder Creek Critical Zone Observatory, water samples were collected from several sites along Boulder Creek at regular time intervals since May 2008. The concentration and quality of the Dissolved Organic Matter (DOM) in these samples was analyzed to understand the response to seasonal changes and variations in flow rates. Filtered samples were fractionated to isolate the humic material and both whole water and fulvic acid fractions were analyzed for dissolved organic carbon concentration as well as with fluorescence and UV-VIS spectroscopy. DOM concentration reached a maximum just before peak stream flow, likely due to dilution from the reservoir release. Near the end of summer, as flow slowed down and the dilution impact was minimized, the concentration began to rise again. In addition, the fluorescence index (FI), which can represent variations in DOM source, indicated a much higher microbial source during early snowmelt, likely due to microbial communities growing beneath the ice in the reservoir and lack of terrestrial runoff during the winter. The FI showed a slowly increasing terrestrial input throughout the summer as snowmelt and runoff from the watershed entered the stream. During late summer and fall the FI shifted back to a predominately microbial signal, indicative of less runoff and a greater percentage of DOM created in situ. In addition to stream measurements, surface soil samples along several transects were collected from a section of the watershed, as well as deeper samples from soil pits on both north-facing and south-facing slopes. DOM from these samples was leached with potassium sulfate and analyzed using the same techniques as the stream

  18. Biochar Decelerates Soil Organic Nitrogen Cycling but Stimulates Soil Nitrification in a Temperate Arable Field Trial

    PubMed Central

    Prommer, Judith; Wanek, Wolfgang; Hofhansl, Florian; Trojan, Daniela; Offre, Pierre; Urich, Tim; Schleper, Christa; Sassmann, Stefan; Kitzler, Barbara; Soja, Gerhard; Hood-Nowotny, Rebecca Clare

    2014-01-01

    Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N) cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem) in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50–80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers) and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies. PMID:24497947

  19. Rankin triple products and quantum chaos

    NASA Astrophysics Data System (ADS)

    Watson, Thomas Crawford

    2002-01-01

    In this dissertation we demonstrate the chaotic nature of some archetypical quantum dynamical systems, using machinery from analytic number theory. We consider the quantized geodesic flow on finite-volume hyperbolic surfaces G/H , with G⊂SL2R consisting of the norm-1 units of an Eichler order in an indefinite quaternion algebra B over Q . For G=SL2Z , we prove that high-energy bound eigen-states obey the Random Wave conjecture of Berry/Hejhal for third moments. In fact we show that the third moment of a wave's amplitude distribution decays like E-112+e . In the more general case of maximal orders, we reduce an optimal quantitative version of the Quantum Unique Ergodicity conjecture of Rudnick-Sarnak to the Lindelof Hypothesis for particular families of automorphic L-functions. Furthermore, our analysis shows that any lowering of the exponent in the Phragmen-Lindelof convexity bound implies QUE. In the moment problem as well, the maximum non-trivial exponents precisely agree when translated between physical and arithmetical formulations. We accomplish this translation by proving identities expressing triple-correlation integrals of eigenforms in terms of central values of the corresponding Rankin triple-product L-functions. Very general forms of such identities were proved by Harris-Kudla, and in using their method to prove our own classical identities, we have to solve two main problems. The first is to explicitly compute the adjoint of Shimizu's theta lift, which realizes the Jacquet-Langlands correspondence by transferring automorphic forms from GL2 to GO( B). We accomplish this for oldforms and newforms of square-free level, with (possibly imprimitive) neben-characters. As a byproduct of these calculations, we obtain explicit formulas for all relevant GL2 Whittaker functions. These play an important role in our second main problem: evaluation of Garrett/Rallis-Piatetsky-Shapiro local zeta integrals in terms of the standard functorial triple-product L

  20. Organic matter turnover in a tropical floodplain shows hysteresis during a flood cycle

    NASA Astrophysics Data System (ADS)

    Zuijdgeest, Alissa; Baumgartner, Simon; Wehrli, Bernhard

    2016-04-01

    Tropical inland waters are increasingly recognized for their role in the global carbon cycle, but uncertainty about the effects of such systems on the transported organic matter remains. The seasonal interactions between river, floodplain, and vegetation result in highly dynamic systems, which can exhibit markedly different biogeochemical patterns throughout a flood cycle. In this study, we investigated patterns and rates of organic matter turnover, and determined responsible processes. Multi-probes upstream and downstream of the Barotse Plains, a pristine floodplain in the Upper Zambezi (Zambia), provided a high-resolution data set over the course of a hydrological cycle. Concentrations of oxygen, carbon dioxide, dissolved organic carbon, and suspended particulate matter in water column of the main channel showed clear hysteresis trends relative to hydrological parameters. Considering that the respiration rate in the river water remained rather low and stable throughout the year, these patterns indicated that degradation of the terrestrial organic matter was mainly occurring on the floodplain. We suggest that the main location of terrestrially-derived organic matter degradation in river-floodplain systems shifts during a flood cycle from the water of the main channel, to the soil-water interface on the floodplain when the water spends more time on the floodplain.

  1. Coassimilation of organic substrates via the autotrophic 3-hydroxypropionate bi-cycle in Chloroflexus aurantiacus.

    PubMed

    Zarzycki, Jan; Fuchs, Georg

    2011-09-01

    Chloroflexus aurantiacus is a facultative autotrophic green nonsulfur bacterium that grows phototrophically in thermal springs and forms microbial mats with cyanobacteria. Cyanobacteria produce glycolate during the day (photorespiration) and excrete fermentation products at night. C. aurantiacus uses the 3-hydroxypropionate bi-cycle for autotrophic carbon fixation. This pathway was thought to be also suited for the coassimilation of various organic substrates such as glycolate, acetate, propionate, 3-hydroxypropionate, lactate, butyrate, or succinate. To test this possibility, we added these compounds at a 5 mM concentration to autotrophically pregrown cells. Although the provided amounts of H(2) and CO(2) allowed continuing photoautotrophic growth, cells immediately consumed most substrates at rates equaling the rate of autotrophic carbon fixation. Using [(14)C]acetate, half of the labeled organic carbon was incorporated into cell mass. Our data suggest that C. aurantiacus uses the 3-hydroxypropionate bi-cycle, together with the glyoxylate cycle, to channel organic substrates into the central carbon metabolism. Enzyme activities of the 3-hydroxypropionate bi-cycle were marginally affected when cells were grown heterotrophically with such organic substrates. The 3-hydroxypropionate bi-cycle in Chloroflexi is unique and was likely fostered in an environment in which traces of organic compounds can be coassimilated. Other bacteria living under oligotrophic conditions acquired genes of a rudimentary 3-hydroxypropionate bi-cycle, possibly for the same purpose. Examples are Chloroherpeton thalassium, Erythrobacter sp. strain NAP-1, Nitrococcus mobilis, and marine gammaproteobacteria of the OM60/NOR5 clade such as Congregibacter litoralis. PMID:21764971

  2. Tightly-Coupled Plant-Soil Nitrogen Cycling: Comparison of Organic Farms across an Agricultural Landscape.

    PubMed

    Bowles, Timothy M; Hollander, Allan D; Steenwerth, Kerri; Jackson, Louise E

    2015-01-01

    How farming systems supply sufficient nitrogen (N) for high yields but with reduced N losses is a central challenge for reducing the tradeoffs often associated with N cycling in agriculture. Variability in soil organic matter and management of organic farms across an agricultural landscape may yield insights for improving N cycling and for evaluating novel indicators of N availability. We assessed yields, plant-soil N cycling, and root expression of N metabolism genes across a representative set of organic fields growing Roma-type tomatoes (Solanum lycopersicum L.) in an intensively-managed agricultural landscape in California, USA. The fields spanned a three-fold range of soil carbon (C) and N but had similar soil types, texture, and pH. Organic tomato yields ranged from 22.9 to 120.1 Mg ha-1 with a mean similar to the county average (86.1 Mg ha-1), which included mostly conventionally-grown tomatoes. Substantial variability in soil inorganic N concentrations, tomato N, and root gene expression indicated a range of possible tradeoffs between yields and potential for N losses across the fields. Fields showing evidence of tightly-coupled plant-soil N cycling, a desirable scenario in which high crop yields are supported by adequate N availability but low potential for N loss, had the highest total and labile soil C and N and received organic matter inputs with a range of N availability. In these fields, elevated expression of a key gene involved in root N assimilation, cytosolic glutamine synthetase GS1, confirmed that plant N assimilation was high even when inorganic N pools were low. Thus tightly-coupled N cycling occurred on several working organic farms. Novel combinations of N cycling indicators (i.e. inorganic N along with soil microbial activity and root gene expression for N assimilation) would support adaptive management for improved N cycling on organic as well as conventional farms, especially when plant-soil N cycling is rapid. PMID:26121264

  3. Tightly-Coupled Plant-Soil Nitrogen Cycling: Comparison of Organic Farms across an Agricultural Landscape

    PubMed Central

    Bowles, Timothy M.; Hollander, Allan D.; Steenwerth, Kerri; Jackson, Louise E.

    2015-01-01

    How farming systems supply sufficient nitrogen (N) for high yields but with reduced N losses is a central challenge for reducing the tradeoffs often associated with N cycling in agriculture. Variability in soil organic matter and management of organic farms across an agricultural landscape may yield insights for improving N cycling and for evaluating novel indicators of N availability. We assessed yields, plant-soil N cycling, and root expression of N metabolism genes across a representative set of organic fields growing Roma-type tomatoes (Solanum lycopersicum L.) in an intensively-managed agricultural landscape in California, USA. The fields spanned a three-fold range of soil carbon (C) and N but had similar soil types, texture, and pH. Organic tomato yields ranged from 22.9 to 120.1 Mg ha-1 with a mean similar to the county average (86.1 Mg ha-1), which included mostly conventionally-grown tomatoes. Substantial variability in soil inorganic N concentrations, tomato N, and root gene expression indicated a range of possible tradeoffs between yields and potential for N losses across the fields. Fields showing evidence of tightly-coupled plant-soil N cycling, a desirable scenario in which high crop yields are supported by adequate N availability but low potential for N loss, had the highest total and labile soil C and N and received organic matter inputs with a range of N availability. In these fields, elevated expression of a key gene involved in root N assimilation, cytosolic glutamine synthetase GS1, confirmed that plant N assimilation was high even when inorganic N pools were low. Thus tightly-coupled N cycling occurred on several working organic farms. Novel combinations of N cycling indicators (i.e. inorganic N along with soil microbial activity and root gene expression for N assimilation) would support adaptive management for improved N cycling on organic as well as conventional farms, especially when plant-soil N cycling is rapid. PMID:26121264

  4. A combined power and ejector refrigeration cycle for low temperature heat sources

    SciTech Connect

    Zheng, B.; Weng, Y.W.

    2010-05-15

    A combined power and ejector refrigeration cycle for low temperature heat sources is under investigation in this paper. The proposed cycle combines the organic Rankine cycle and the ejector refrigeration cycle. The ejector is driven by the exhausts from the turbine to produce power and refrigeration simultaneously. A simulation was carried out to analyze the cycle performance using R245fa as the working fluid. A thermal efficiency of 34.1%, an effective efficiency of 18.7% and an exergy efficiency of 56.8% can be obtained at a generating temperature of 395 K, a condensing temperature of 298 K and an evaporating temperature of 280 K. Simulation results show that the proposed cycle has a big potential to produce refrigeration and most exergy losses take place in the ejector. (author)

  5. Elliptic instability in a Rankine vortex with axial flow

    NASA Astrophysics Data System (ADS)

    Lacaze, Laurent; Birbaud, Anne-Laure; Le Dizès, Stéphane

    2005-01-01

    The elliptic instability of a Rankine vortex with axial flow subject to a weak strain field perpendicular to its axis is analyzed by asymptotic methods in the limit of small strain rate. General unstable modes associated with resonant Kelvin modes of arbitrary azimuthal wavenumbers are considered. Both the effects of axial flow and viscosity are analyzed in details.

  6. Optical rankine vortex and anomalous circulation of light.

    PubMed

    Swartzlander, Grover A; Hernandez-Aranda, Raul I

    2007-10-19

    Rankine vortex characteristics of a partially coherent optical vortex are explored using classical and physical optics. Unlike a perfectly coherent vortex mode, the circulation is not quantized. Excess circulation is predicted owing to the wave nature of composite vortex fields. Based on these findings, we propose a vortex stellar interferometer. PMID:17995253

  7. Optical Rankine Vortex and Anomalous Circulation of Light

    SciTech Connect

    Swartzlander, Grover A. Jr.; Hernandez-Aranda, Raul I.

    2007-10-19

    Rankine vortex characteristics of a partially coherent optical vortex are explored using classical and physical optics. Unlike a perfectly coherent vortex mode, the circulation is not quantized. Excess circulation is predicted owing to the wave nature of composite vortex fields. Based on these findings, we propose a vortex stellar interferometer.

  8. Optical Rankine Vortex and Anomalous Circulation of Light

    NASA Astrophysics Data System (ADS)

    Swartzlander, Grover A., Jr.; Hernandez-Aranda, Raul I.

    2007-10-01

    Rankine vortex characteristics of a partially coherent optical vortex are explored using classical and physical optics. Unlike a perfectly coherent vortex mode, the circulation is not quantized. Excess circulation is predicted owing to the wave nature of composite vortex fields. Based on these findings, we propose a vortex stellar interferometer.

  9. Rankine vortex evolution in a gas with heat release source

    NASA Astrophysics Data System (ADS)

    Zavershinskii, I. P.; Klimov, A. I.; Molevich, N. E.; Porfir'ev, D. P.

    2009-04-01

    The influence of a heat release source with temperature-dependent power on the stability of a Rankine vortex has been studied. A condition for the formation of a radially convergent swirling flow with increasing vorticity is found for a medium with a positive feedback between nonequilibrium heat release perturbations and the pressure at the vortex core.

  10. Mechanisms of dissolved organic carbon cycling in an ocean margin. Final technical report

    SciTech Connect

    Benner, R.

    1997-11-24

    Dissolved organic carbon (DOC) is the largest reservoir of organic carbon in the ocean, and the objectives of this project were to investigate the mechanisms and pathways of DOC formation and consumption in seawater. Carbohydrates are the most abundant form of DOC, and this project included measurements of dissolved carbohydrates as well as DOC to help delineate the cycling of DOC. Many of the methods and approaches for investigating DOC production were developed as part of this project.

  11. Soil organic carbon enrichment of dust emissions: Magnitude, mechanisms and its implications for the carbon cycle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion is an important component of the global carbon cycle. However, little attention has been given to the role of aeolian processes in influencing soil organic carbon (SOC) flux and the release of greenhouse gasses, such as carbon-dioxide (CO2), to the atmosphere. Understanding the magnitu...

  12. Effectively Serving the Needs of Today's Business Student: The Product Life Cycle Approach to Class Organization

    ERIC Educational Resources Information Center

    Eastman, Jacqueline K.; Aviles, Maria; Hanna, Mark

    2012-01-01

    We illustrate a class organization process utilizing the concept of the Product Life Cycle to meet the needs of today's millennial student. In the Introduction stage of a business course, professors need to build structure to encourage commitment. In the Growth stage, professors need to promote the structure through multiple, brief activities that…

  13. From Instructional Systems Design to Managing the Life Cycle of Knowledge in Organizations

    ERIC Educational Resources Information Center

    Salisbury, Mark

    2008-01-01

    This article describes a framework for managing the life cycle of knowledge in organizations. The framework emerges from years of work with the laboratories and facilities that are under the direction of the U.S. Department of Energy (DOE). The article begins by describing the instructional systems design (ISD) process and how it is used to…

  14. Variable C : N : P stoichiometry of dissolved organic matter cycling in the Community Earth System Model

    DOE PAGESBeta

    Letscher, R. T.; Moore, J. K.; Teng, Y. -C.; Primeau, F.

    2015-01-12

    Dissolved organic matter (DOM) plays an important role in the ocean's biological carbon pump by providing an advective/mixing pathway for ~ 20% of export production. DOM is known to have a stoichiometry depleted in nitrogen (N) and phosphorus (P) compared to the particulate organic matter pool, a fact that is often omitted from biogeochemical ocean general circulation models. However the variable C : N : P stoichiometry of DOM becomes important when quantifying carbon export from the upper ocean and linking the nutrient cycles of N and P with that of carbon. Here we utilize recent advances in DOM observationalmore » data coverage and offline tracer-modeling techniques to objectively constrain the variable production and remineralization rates of the DOM C : N : P pools in a simple biogeochemical-ocean model of DOM cycling. The optimized DOM cycling parameters are then incorporated within the Biogeochemical Elemental Cycling (BEC) component of the Community Earth System Model (CESM) and validated against the compilation of marine DOM observations. The optimized BEC simulation including variable DOM C : N : P cycling was found to better reproduce the observed DOM spatial gradients than simulations that used the canonical Redfield ratio. Global annual average export of dissolved organic C, N, and P below 100 m was found to be 2.28 Pg C yr-1 (143 Tmol C yr-1, 16.4 Tmol N yr-1, and 1 Tmol P yr-1, respectively, with an average export C : N : P stoichiometry of 225 : 19 : 1 for the semilabile (degradable) DOM pool. Dissolved organic carbon (DOC) export contributed ~ 25% of the combined organic C export to depths greater than 100 m.« less

  15. Inorganic and organic sulfur cycling in salt-marsh pore waters

    SciTech Connect

    Luther, G.W. III; Church, T.M.; Scudlark, J.R.; Cosman, M.

    1986-05-09

    Sulfur species in pore waters of the Great Marsh, Delaware, were analyzed seasonally by polarographic methods. The species determined (and their concentrations in micromoles per liter) included inorganic sulfides (less than or equal to3360), polysulfides (less than or equal to326), thiosulfate (less than or equal to104), tetrathionate (less than or equal to302), organic thiols (less than or equal to2411), and organic disulfides (less than or equal to139). Anticipated were bisulfide increases with depth due to sulfate reduction and subsurface sulfate excesses and pH minima, the result of a seasonal redox cycle. Unanticipated was the pervasive presence of thiols (for example, glutathione), particularly during periods of biological production. Salt marshes appear to be unique among marine systems in producing high concentrations of thiols. Polysulfides, thiosulfate, and tetrathionate also exhibited seasonal subsurface maxima. These results suggest a dynamic seasonal cycling of sulfur in salt marshes involving abiological and biological reactions and dissolved and solid sulfur species. The chemosynthetic turnover of pyrite to organic sulfur is a likely pathway for this sulfur cycling. Thus, material, chemical, and energy cycles in wetlands appear to be optimally synergistic.

  16. Role of organic soils in the world carbon cycle: problem analysis and research needs

    SciTech Connect

    Armentano, T.V.

    1980-02-01

    In May 1979, The Institute of Ecology held a workshop to determine the role of organic soils in the global carbon cycle and to ascertain their past, present and future significance in world carbon flux. Wetlands ecologists and soil scientists who participated in the workshop examined such topics as Soils as Sources of Atmospheric CO/sub 2/, Organic Soils, Primary Production and Growth of Wetlands Ecosystems, and Management of Peatlands. The major finding of the workshop is that the organic soils are important in the overall carbon budget. Histosols and Gleysols, the major organic soil deposits of the world, normally sequester organic carbon fixed by plants. They may now be releasing enough carbon to account for nearly 10% of the annual rise in atmospheric content of CO/sub 2/.

  17. Evaluating greenhouse gas impacts of organic waste management options using life cycle assessment.

    PubMed

    Kong, Dung; Shan, Jilei; Iacoboni, Mario; Maguin, Stephen R

    2012-08-01

    Efforts to divert organics away from landfills are viewed by many as an important measure to significantly reduce the climate change impacts of municipal solid waste management. However, the actual greenhouse gas (GHG) impacts of organics diversion from landfills have yet to be thoroughly evaluated and whether such a diversion provides significant environmental benefits in terms of GHG impacts must be answered. This study, using California-specific information, aimed to analyse the GHG impacts of organics diversion through a life-cycle assessment (LCA). This LCA considered all aspects of organics management including transportation, materials handling, GHG emissions, landfill gas capture/utilization, energy impacts, and carbon sequestration. The LCA study evaluated overall GHG impacts of landfilling, and alternative management options such as composting and anaerobic digestion for diverted organic waste. The LCA analysis resulted in net GHG reductions of 0.093, 0.048, 0.065 and 0.073 tonnes carbon equivalent per tonne organic waste for landfilling, windrow composting, aerated static pile composting, and anaerobic digestion, respectively. This study confirms that all three options for organics management result in net reductions of GHG emissions, but it also shows that organics landfilling, when well-managed, generates greater GHG reductions. The LCA provides scientific insight with regards to the environmental impacts of organics management options, which should be considered in decision and policy-making. The study also highlights the importance of how site and case-specific conditions influence project outcomes when considering organic waste management options. PMID:22588112

  18. Variable C : N : P stoichiometry of dissolved organic matter cycling in the Community Earth System Model

    DOE PAGESBeta

    Letscher, R. T.; Moore, J. K.; Teng, Y. -C.; Primeau, F.

    2014-06-16

    Dissolved organic matter (DOM) plays an important role in the ocean's biological carbon pump by providing an advective/mixing pathway for ~ 20% of export production. DOM is known to have a stoichiometry depleted in nitrogen (N) and phosphorus (P) compared to the particulate organic matter pool, a~fact that is often omitted from biogeochemical-ocean general circulation models. However the variable C : N : P stoichiometry of DOM becomes important when quantifying carbon export from the upper ocean and linking the nutrient cycles of N and P with that of carbon. Here we utilize recent advances in DOM observational data coveragemore » and offline tracer-modeling techniques to objectively constrain the variable production and remineralization rates of the DOM C / N / P pools in a simple biogeochemical-ocean model of DOM cycling. The optimized DOM cycling parameters are then incorporated within the Biogeochemical Elemental Cycling (BEC) component of the Community Earth System Model and validated against the compilation of marine DOM observations. The optimized BEC simulation including variable DOM C : N : P cycling was found to better reproduce the observed DOM spatial gradients than simulations that used the canonical Redfield ratio. Global annual average export of dissolved organic C, N, and P below 100 m was found to be 2.28 Pg C yr-1 (143 Tmol C yr-1), 16.4 Tmol N yr-1, and 1 Tmol P yr-1, respectively with an average export C : N : P stoichiometry of 225 : 19 : 1 for the semilabile (degradable) DOM pool. DOC export contributed ~ 25% of the combined organic C export to depths greater than 100 m.« less

  19. Effect of Hibiscus rosa sinensis Linn. on oestrous cycle & reproductive organs in rats.

    PubMed

    Kholkute, S D; Chatterjee, S; Udupa, K N

    1976-11-01

    The effect of Hibiscus rosa sinensis Linn. on the estrous cycle and reproductive organs was studied in female albino rats. Depending on the dose and duration of treatment, the benzene extract of the flowers disrupted the estrous cycle. Treatment for 30 days resulted in a significant (p less than .05) reduction in the weight of the ovaries, uterus, and pituitary gland. Ovarian follicular atresia and uterine atrophy were observed. Treatment resulted in degranulated gonadotrophs in the pituitary, with the extent of damage being dose-dependent. PMID:1035904

  20. Adaptation of Organisms by Resonance of RNA Transcription with the Cellular Redox Cycle

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor

    2012-01-01

    Sequence variation in organisms differs across the genome and the majority of mutations are caused by oxidation, yet its origin is not fully understood. It has also been shown that the reduction-oxidation reaction cycle is the fundamental biochemical cycle that coordinates the timing of all biochemical processes in that cell, including energy production, DNA replication, and RNA transcription. It is shown that the temporal resonance of transcriptome biosynthesis with the oscillating binary state of the reduction-oxidation reaction cycle serves as a basis for non-random sequence variation at specific genome-wide coordinates that change faster than by accumulation of chance mutations. This work demonstrates evidence for a universal, persistent and iterative feedback mechanism between the environment and heredity, whereby acquired variation between cell divisions can outweigh inherited variation.

  1. Organic amendment of crop soil and its relation to hotspots of bacterial nitrogen cycling

    NASA Astrophysics Data System (ADS)

    Pereg, Lily; McMillan, Mary

    2015-04-01

    Crop production in Australian soils requires a high use of fertilisers, including N, P and K for continues utilisation of the soil. Growers often grow crops in rotation of summer crop, such as cotton with winter crop, such as wheat in the same field. Growers are getting more and more aware about sustainability of the soil resources and the more adventurous ones use soil amendments, such as organic supplements in addition to the chemical fertilisers. We have collected soil samples from fields that were cultivated in preparation for planting cotton and tested the soil for its bacterial populations with potential to perform different functions, including those related to the nitrogen cycling. One of our aims was to determine whether organic amendments create hotspots for bacterial functions related to bacterial nitrogen cycling. This pan of the project will be discussed in this presentation.

  2. Numerical Analysis of Integral Characteristics for the Condenser Setups of Independent Power-Supply Sources with the Closed-Looped Thermodynamic Cycle

    NASA Astrophysics Data System (ADS)

    Vysokomorny, Vladimir S.; Vysokomornaya, Vladimir S.

    2016-02-01

    The mathematical model of heat and mass transfer processes with phase transition is developed. It allows analyzing of integral characteristics for the condenser setup of independent power-supply plant with the organic Rankine cycle. Different kinds of organic liquids can be used as a coolant and working substance. The temperatures of the working liquid at the condenser outlet under different values of outside air temperature are determined. The comparative analysis of the utilization efficiency of different cooling systems and organic coolants is carried out.

  3. Organic biomarkers to describe the major carbon inputs and cycling of organic matter in the central Great Barrier Reef region

    NASA Astrophysics Data System (ADS)

    Burns, Kathryn; Brinkman, Diane

    2011-06-01

    Controversy surrounds the sources and transport of land derived pollutants in the Great Barrier Reef ecosystem because there is insufficient knowledge of the mechanism of movement of organic contaminants and the cycling of organic matter in this dynamic system. Thus a sediment and sediment trap study was used to describe the composition of resuspended and surface sediments in the south central Great Barrier Reef and its lagoon. This region is characterised by strong tides (6-8 m at Mackay) and trade winds regularly about 15-20 knots. A series of organic biomarkers detailed the cyclical processes of sediment resuspension, recolonising with marine algae and bacteria, packaging into zooplankton faecal pellets and resettlement to sediments where the organics undergo further diagenesis. With each cycle the inshore sediments are diluted with CaCO 3 reef sediments and moved further offshore with the strong ebb tide currents. This results in transport of land derived materials offshore and little storage of organic materials in the lagoon or reef sediments. These processes were detailed by inorganic measurements such as %CaCO 3 and Al/Ca ratios, and by the compositions of hydrocarbon, sterol, alcohol, and fatty acid lipid fractions. Persistent contaminants such as coal dust from a coastal loading facility can be detected in high concentration inshore and decreasing out to the shelf break at 180 m approximately 40 nautical miles offshore. The normal processes would likely be amplified during cyclonic and other storms. The lipids show the sources of carbon to include diatoms and other phytoplankton, creanaerchaeota, sulfate reducing and other bacteria, land plants including mangrove leaves, plus coal dust and other petroleum contaminants.

  4. T-111 Rankine system corrosion test loop, volume 1

    NASA Technical Reports Server (NTRS)

    Harrison, R. W.; Hoffman, E. E.; Smith, J. P.

    1975-01-01

    Results are given of a program whose objective was to determine the performance of refractory metal alloys in a two loop Rankine test system. The test system consisted of a circulating lithium circuit heated to 1230 C maximum transferring heat to a boiling potassium circuit with a 1170 C superheated vapor temperature. The results demonstrate the suitability of the selected refractory alloys to perform from a chemical compatibility standpoint.

  5. Dynamic changes in CCAN organization through CENP-C during cell-cycle progression

    PubMed Central

    Nagpal, Harsh; Hori, Tetsuya; Furukawa, Ayako; Sugase, Kenji; Osakabe, Akihisa; Kurumizaka, Hitoshi; Fukagawa, Tatsuo

    2015-01-01

    The kinetochore is a crucial structure for faithful chromosome segregation during mitosis and is formed in the centromeric region of each chromosome. The 16-subunit protein complex known as the constitutive centromere-associated network (CCAN) forms the foundation for kinetochore assembly on the centromeric chromatin. Although the CCAN can be divided into several subcomplexes, it remains unclear how CCAN proteins are organized to form the functional kinetochore. In particular, this organization may vary as the cell cycle progresses. To address this, we analyzed the relationship of centromeric protein (CENP)-C with the CENP-H complex during progression of the cell cycle. We find that the middle portion of chicken CENP-C (CENP-C166–324) is sufficient for centromere localization during interphase, potentially through association with the CENP-L-N complex. The C-terminus of CENP-C (CENP-C601–864) is essential for centromere localization during mitosis, through binding to CENP-A nucleosomes, independent of the CENP-H complex. On the basis of these results, we propose that CCAN organization changes dynamically during progression of the cell cycle. PMID:26354420

  6. Isotope tracer investigations of organic C and N cycling at chemosynthetic sites

    NASA Astrophysics Data System (ADS)

    Woulds, Clare; Pancost, Richard; Tyler, Paul

    2013-04-01

    The cycling and burial of organic carbon in marine sediments is of interest both in terms of understanding this carbon sequestration term, and because organic detritus provides carbon and energy to benthic ecosystems. Benthic C-cycling at hydrothermal vent and cold seep settings is particularly interesting due to the relative paucity of knowledge of the functioning of such ecosystems, and due to the occurrence there of chemosynthesis. Chemosynthetic ecosystems have an in situ source of fixed carbon, as well as photosynthetic organic detritus sinking through the water column. However, it is unclear to what extent sedimentary faunal communities rely on each of these carbon sources, and whether that varies with taxon. Further, the relatively high biomass and organic carbon availability resulting from chemosynthesis mean that the biological processes which drive benthic carbon cycling are unlikely to show the same patterns and rates as at non-chemosynthetic deep-sea sites. In January-February 2011 isotope tracer experiments were conducted on recovered sediment cores at two diffuse hydrothermal venting, one methane rich, and one non-chemosynthetic background site in the Southern Ocean (Bransfield Strait and on the South Georgia margin). Pairs of cores were amended with either 13C and15N labelled algae, or 13C bicarbonate and 15N ammonia solution. They were incubated for 2.5 d under seafloor conditions, and time series water samples were taken. At the end of the experiments, sediment samples were preserved for extraction and isotopic analysis of fauna and microbial lipids. Initial data show that respiration of algal carbon to CO2 was more rapid at chemosynthetic sites compared to the background site. Chemosynthetic sites also showed evidence for the production and subsequent consumption/cycling of isotopically labelled dissolved organic carbon, which the non-chemosynthetic site did not. Faunal isotopic signatures indicate uptake of isotopic label into metazoans from both

  7. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 6: Closed-cycle gas turbine systems. [energy conversion efficiency in electric power plants

    NASA Technical Reports Server (NTRS)

    Amos, D. J.; Fentress, W. K.; Stahl, W. F.

    1976-01-01

    Both recuperated and bottomed closed cycle gas turbine systems in electric power plants were studied. All systems used a pressurizing gas turbine coupled with a pressurized furnace to heat the helium for the closed cycle gas turbine. Steam and organic vapors are used as Rankine bottoming fluids. Although plant efficiencies of over 40% are calculated for some plants, the resultant cost of electricity was found to be 8.75 mills/MJ (31.5 mills/kWh). These plants do not appear practical for coal or oil fired plants.

  8. The xanthophyll cycle pigments, violaxanthin and zeaxanthin, modulate molecular organization of the photosynthetic antenna complex LHCII.

    PubMed

    Janik, Ewa; Bednarska, Joanna; Zubik, Monika; Sowinski, Karol; Luchowski, Rafal; Grudzinski, Wojciech; Matosiuk, Dariusz; Gruszecki, Wieslaw I

    2016-02-15

    The effect of violaxanthin and zeaxanthin, two main carotenoids of the xanthophyll cycle, on molecular organization of LHCII, the principal photosynthetic antenna complex of plants, was studied in a model system based on lipid-protein membranes, by means of analysis of 77 K chlorophyll a fluorescence and "native" electrophoresis. Violaxanthin was found to promote trimeric organization of LHCII, contrary to zeaxanthin which was found to destabilize trimeric structures. Moreover, violaxanthin was found to induce decomposition of oligomeric LHCII structures formed in the lipid phase and characterized by the fluorescence emission band at 715 nm. Both pigments promoted formation of two-component supramolecular structures of LHCII and xanthophylls. The violaxanthin-stabilized structures were composed mostly of LHCII trimers while, the zeaxanthin-stabilized supramolecular structures of LHCII showed more complex organization which depended periodically on the xanthophyll content. The effect of the xanthophyll cycle pigments on molecular organization of LHCII was analyzed based on the results of molecular modeling and discussed in terms of a physiological meaning of this mechanism. Supramolecular structures of LHCII stabilized by violaxanthin, prevent uncontrolled oligomerization of LHCII, potentially leading to excitation quenching, therefore can be considered as structures protecting the photosynthetic apparatus against energy loses at low light intensities. PMID:26773208

  9. Life cycle analysis of management options for organic waste collected in an urban area.

    PubMed

    Di Maria, Francesco; Micale, Caterina

    2015-01-01

    Different options for managing the organic fraction (OF) of municipal solid waste generated in a given urban area were analyzed by life cycle assessment (LCA) for different source segregation (SS) intensities ranging from 0 to 52%. The best management option for processing the OF remaining in the residual organic fraction (ROF) for the different SS intensities was by incineration. Landfilling and mechanical biological treatment (MBT) of ROF gave higher impacts. Aerobic treatment alone or combined with anaerobic digestion (AD) for processing the source-segregated organic fraction (SSOF) led to relevant environmental impact reduction even if the difference between the two options was quite negligible. The weighted impact showed that scenarios using incineration always gave environmental gains, whereas there was a higher environmental burden with the scenarios using MBT. PMID:25060312

  10. Cycle of waste heat energy transformation

    NASA Astrophysics Data System (ADS)

    Bormann, H.; Voneynatten, C.; Krause, R.; Rudolph, W.; Gneuss, G.; Groesche, F.

    1983-08-01

    Transformation of industrial waste heat with temperatures up to 300 C into mechanical or electrical energy using organic Rankine cycles technique is considered. Behavior of working fluid was studied and plant components were optimized. A pilot plant (generated power 30 kW) was installed under industrial operating conditions. The working fluid is a fluorochlorohydrocarbon; the expansion machine is a piston type steam engine. The results of the pilot plant were used for the planning and building of a prototype plant (120 kW) with an additional power heat coupling for preheating the boiler heat water. The waste heat source is a calciner process. The predicted results are obtained although full working load is not reached due to reduced available waste heat of the calciner process.

  11. Glyoxylate cycle and metabolism of organic acids in the scutellum of barley seeds during germination.

    PubMed

    Ma, Zhenguo; Marsolais, Frédéric; Bernards, Mark A; Sumarah, Mark W; Bykova, Natalia V; Igamberdiev, Abir U

    2016-07-01

    During the developmental processes from dry seeds to seedling establishment, the glyoxylate cycle becomes active in the mobilization of stored oils in the scutellum of barley (Hordeum vulgare L.) seeds, as indicated by the activities of isocitrate lyase and malate synthase. The succinate produced is converted to carbohydrates via phosphoenolpyruvate carboxykinase and to amino acids via aminotransferases, while free organic acids may participate in acidifying the endosperm tissue, releasing stored starch into metabolism. The abundant organic acid in the scutellum was citrate, while malate concentration declined during the first three days of germination, and succinate concentration was low both in scutellum and endosperm. Malate was more abundant in endosperm tissue during the first three days of germination; before citrate became predominant, indicating that malate may be the main acid acidifying the endosperm. The operation of the glyoxylate cycle coincided with an increase in the ATP/ADP ratio, a buildup of H2O2 and changes in the redox state of ascorbate and glutathione. It is concluded that operation of the glyoxylate cycle in the scutellum of cereals may be important not only for conversion of fatty acids to carbohydrates, but also for the acidification of endosperm and amino acid synthesis. PMID:27181945

  12. Effects of global climate change and organic pollution on nutrient cycling in marine sediments

    NASA Astrophysics Data System (ADS)

    Sanz-Lázaro, C.; Valdemarsen, T.; Holmer, M.

    2015-01-01

    Increasing ocean temperature due to climate change is an important anthropogenic driver of ecological change in coastal systems, where sediments play a major role in nutrient cycling. Our ability to predict ecological consequences of climate change is enhanced by simulating real scenarios especially when the interactions among drivers may not be just additive. Based on predicted climate change scenarios, we tested the effect of temperature and organic pollution on nutrient release from coastal sediments to the water column in a mesocosm experiment. PO43- release rates from sediments followed the same trends as organic matter mineralization rates, and increased linearly with temperature and were significantly higher under organic pollution than under non-polluted conditions. NH4+ release only increased significantly when the temperature rise was above 6 °C, and was significantly higher in organic polluted compared to non-polluted sediments. Nutrient release to the water column was only a fraction from the mineralized organic matter, suggesting PO43- retention and NH4+ oxidation in the sediment. Bioturbation and bioirrigation appeared to be key processes responsible of this behaviour. Considering that the primary production of most marine basins is N-limited, the excess release of NH4+ at temperature rise >6 ° could enhance water column primary productivity, which may lead to the deterioration of the environmental quality. Climate change effects are expected to be accelerated in areas affected by organic pollution.

  13. Effects of temperature and organic pollution on nutrient cycling in marine sediments

    NASA Astrophysics Data System (ADS)

    Sanz-Lazaro, C.; Valdemarsen, T.; Holmer, M.

    2015-08-01

    Increasing ocean temperature due to climate change is an important anthropogenic driver of ecological change in coastal systems. In these systems sediments play a major role in nutrient cycling. Our ability to predict ecological consequences of climate change is enhanced by simulating real scenarios. Based on predicted climate change scenarios, we tested the effect of temperature and organic pollution on nutrient release from coastal sediments to the water column in a mesocosm experiment. PO43- release rates from sediments followed the same trends as organic matter mineralization rates, increased linearly with temperature and were significantly higher under organic pollution than under nonpolluted conditions. NH4+ release only increased significantly when the temperature rise was above 6 °C, and it was significantly higher in organic polluted compared to nonpolluted sediments. Nutrient release to the water column was only a fraction from the mineralized organic matter, suggesting PO43- retention and NH4+ oxidation in the sediment. Bioturbation and bioirrigation appeared to be key processes responsible for this behavior. Considering that the primary production of most marine basins is N-limited, the excess release of NH4+ at a temperature rise > 6 °C could enhance water column primary productivity, which may lead to the deterioration of the environmental quality. Climate change effects are expected to be accelerated in areas affected by organic pollution.

  14. Life cycle analysis of the model organism Rhodopirellula baltica SH 1T by transcriptome studies

    PubMed Central

    Wecker, Patricia; Klockow, Christine; Schüler, Margarete; Dabin, Jérôme; Michel, Gurvan; Glöckner, Frank O.

    2010-01-01

    Summary The marine organism Rhodopirellula baltica is a representative of the globally distributed phylum Planctomycetes whose members exhibit an intriguing lifestyle and cell morphology. The analysis of R. baltica's genome has revealed many biotechnologically promising features including a set of unique sulfatases and C1‐metabolism genes. Salt resistance and the potential for adhesion in the adult phase of the cell cycle were observed during cultivation. To promote the understanding of this model organism and to specify the functions of potentially useful genes, gene expression throughout a growth curve was monitored using a whole genome microarray approach. Transcriptional profiling suggests that a large number of hypothetical proteins are active within the cell cycle and in the formation of the different cell morphologies. Numerous genes with potential biotechnological applications were found to be differentially regulated, revealing further characteristics of their functions and regulation mechanisms. More specifically, the experiments shed light on the expression patterns of genes belonging to the organism's general stress response, those involved in the reorganization of its genome and those effecting morphological changes. These transcriptomic results contribute to a better understanding of thus far unknown molecular elements of cell biology. Further, they pave the way for the biotechnological exploitation of R. baltica's distinctive metabolic features as a step towards sourcing the phylum Planctomycetes at large. PMID:21255355

  15. A model for chromosome organization during the cell cycle in live E. coli

    PubMed Central

    Liu, Yuru; Xie, Ping; Wang, Pengye; Li, Ming; Li, Hui; Li, Wei; Dou, Shuoxing

    2015-01-01

    Bacterial chromosomal DNA is a highly compact nucleoid. The organization of this nucleoid is poorly understood due to limitations in the methods used to monitor the complexities of DNA organization in live bacteria. Here, we report that circular plasmid DNA is auto-packaged into a uniform dual-toroidal-spool conformation in response to mechanical stress stemming from sharp bending and un-winding by atomic force microscopic analysis. The mechanism underlying this phenomenon was deduced with basic physical principles to explain the auto-packaging behaviour of circular DNA. Based on our observations and previous studies, we propose a dynamic model of how chromosomal DNA in E. coli may be organized during a cell division cycle. Next, we test the model by monitoring the development of HNS clusters in live E. coli during a cell cycle. The results were in close agreement with the model. Furthermore, the model accommodates a majority of the thus-far-discovered remarkable features of nucleoids in vivo. PMID:26597953

  16. The price of play: self-organized infant mortality cycles in chimpanzees.

    PubMed

    Kuehl, Hjalmar S; Elzner, Caroline; Moebius, Yasmin; Boesch, Christophe; Walsh, Peter D

    2008-01-01

    Chimpanzees have been used extensively as a model system for laboratory research on infectious diseases. Ironically, we know next to nothing about disease dynamics in wild chimpanzee populations. Here, we analyze long-term demographic and behavioral data from two habituated chimpanzee communities in Taï National Park, Côte d'Ivoire, where previous work has shown respiratory pathogens to be an important source of infant mortality. In this paper we trace the effect of social connectivity on infant mortality dynamics. We focus on social play which, as the primary context of contact between young chimpanzees, may serve as a key venue for pathogen transmission. Infant abundance and mortality rates at Taï cycled regularly and in a way that was not well explained in terms of environmental forcing. Rather, infant mortality cycles appeared to self-organize in response to the ontogeny of social play. Each cycle started when the death of multiple infants in an outbreak synchronized the reproductive cycles of their mothers. A pulse of births predictably arrived about twelve months later, with social connectivity increasing over the following two years as the large birth cohort approached the peak of social play. The high social connectivity at this play peak then appeared to facilitate further outbreaks. Our results provide the first evidence that social play has a strong role in determining chimpanzee disease transmission risk and the first record of chimpanzee disease cycles similar to those seen in human children. They also lend more support to the view that infectious diseases are a major threat to the survival of remaining chimpanzee populations. PMID:18560519

  17. Liquid-metal binary cycles for stationary power

    NASA Technical Reports Server (NTRS)

    Gutstein, M.; Furman, E. R.; Kaplan, G. M.

    1975-01-01

    The use of topping cycles to increase electric power plant efficiency is discussed, with particular attention to mercury and alkali metal Rankine cycle systems that could be considered for topping cycle applications. An overview of this technology, possible system applications, the required development, and possible problem areas is presented.

  18. Chemistry of organic carbon in soil with relationship to the global carbon cycle

    SciTech Connect

    Post, W.M. III

    1988-01-01

    Various ecosystem disturbances alter the balances between production of organic matter and its decomposition and therefore change the amount of carbon in soil. The most severe perturbation is conversion of natural vegetation to cultivated crops. Conversion of natural vegetation to cultivated crops results in a lowered input of slowly decomposing material which causes a reduction in overall carbon levels. Disruption of soil matrix structure by cultivation leads to lowered physical protection of organic matter resulting in an increased net mineralization rate of soil carbon. Climate change is another perturbation that affects the amount and composition of plant production, litter inputs, and decomposition regimes but does not affect soil structure directly. Nevertheless, large changes in soil carbon storage are probable with anticipated CO2 induced climate change, particularly in northern latitudes where anticipated climate change will be greatest (MacCracken and Luther 1985) and large amounts of soil organic matter are found. It is impossible, given the current state of knowledge of soil organic matter processes and transformations to develop detailed process models of soil carbon dynamics. Largely phenomenological models appear to be developing into predictive tools for understanding the role of soil organic matter in the global carbon cycle. In particular, these models will be useful in quantifying soil carbon changes due to human land-use and to anticipated global climate and vegetation changes. 47 refs., 7 figs., 2 tabs.

  19. Higher Levels of Organization in the Interphase Nucleus of Cycling and Differentiated Cells

    PubMed Central

    Leitch, Andrew R.

    2000-01-01

    The review examines the structured organization of interphase nuclei using a range of examples from the plants, animals, and fungi. Nuclear organization is shown to be an important phenomenon in cell differentiation and development. The review commences by examining nuclei in dividing cells and shows that the organization patterns can be dynamic within the time frame of the cell cycle. When cells stop dividing, derived differentiated cells often show quite different nuclear organizations. The developmental fate of nuclei is divided into three categories. (i) The first includes nuclei that undergo one of several forms of polyploidy and can themselves change in structure during the course of development. Possible function roles of polyploidy is given. (ii) The second is nuclear reorganization without polyploidy, where nuclei reorganize their structure to form novel arrangements of proteins and chromosomes. (iii) The third is nuclear disintegration linked to programmed cell death. The role of the nucleus in this process is described. The review demonstrates that recent methods to probe nuclei for nucleic acids and proteins, as well as to examine their intranuclear distribution in vivo, has revealed much about nuclear structure. It is clear that nuclear organization can influence or be influenced by cell activity and development. However, the full functional role of many of the observed phenomena has still to be fully realized. PMID:10704477

  20. The role of metal–organic frameworks in a carbon-neutral energy cycle

    NASA Astrophysics Data System (ADS)

    Schoedel, Alexander; Ji, Zhe; Yaghi, Omar M.

    2016-04-01

    Reducing society's reliance on fossil fuels presents one of the most pressing energy and environmental challenges facing our planet. Hydrogen, methane and carbon dioxide, which are some of the smallest and simplest molecules known, may lie at the centre of solving this problem through realization of a carbon-neutral energy cycle. Potentially, this could be achieved through the deployment of hydrogen as the fuel of the long term, methane as a transitional fuel, and carbon dioxide capture and sequestration as the urgent response to ongoing climate change. Here we detail strategies and technologies developed to overcome the difficulties encountered in the capture, storage, delivery and conversion of these gas molecules. In particular, we focus on metal–organic frameworks in which metal oxide ‘hubs’ are linked with organic ‘struts’ to make materials of ultrahigh porosity, which provide a basis for addressing this challenge through materials design on the molecular level.

  1. Transport and cycling of iron and hydrogen peroxide in a freshwater stream: Influence of organic acids

    USGS Publications Warehouse

    Scott, D.T.; Runkel, R.L.; McKnight, Diane M.; Voelker, B.M.; Kimball, B.A.; Carraway, E.R.

    2003-01-01

    An in-stream injection of two dissolved organic acids (phthalic and aspartic acids) was performed in an acidic mountain stream to assess the effects of organic acids on Fe photoreduction and H2O2 cycling. Results indicate that the fate of Fe is dependent on a net balance of oxidative and reductive processes, which can vary over a distance of several meters due to changes in incident light and other factors. Solution phase photoreduction rates were high in sunlit reaches and were enhanced by the organic acid addition but were also limited by the amount of ferric iron present in the water column. Fe oxide photoreduction from the streambed and colloids within the water column resulted in an increase in the diurnal load of total filterable Fe within the experimental reach, which also responded to increases in light and organic acids. Our results also suggest that Fe(II) oxidation increased in response to the organic acids, with the result of offsetting the increase in Fe(II) from photoreductive processes. Fe(II) was rapidly oxidized to Fe(III) after sunset and during the day within a well-shaded reach, presumably through microbial oxidation. H2O 2, a product of dissolved organic matter photolysis, increased downstream to maximum concentrations of 0.25 ??M midday. Kinetic calculations show that the buildup of H2O2 is controlled by reaction with Fe(III), but this has only a small effect on Fe(II) because of the small formation rates of H2O2 compared to those of Fe(II). The results demonstrate the importance of incorporating the effects of light and dissolved organic carbon into Fe reactive transport models to further our understanding of the fate of Fe in streams and lakes.

  2. Technological and life cycle assessment of organics processing odour control technologies.

    PubMed

    Bindra, Navin; Dubey, Brajesh; Dutta, Animesh

    2015-09-15

    As more municipalities and communities across developed world look towards implementing organic waste management programmes or upgrading existing ones, composting facilities are emerging as a popular choice. However, odour from these facilities continues to be one of the most important concerns in terms of cost & effective mitigation. This paper provides a technological and life cycle assessment of some of the different odour control technologies and treatment methods that can be implemented in organics processing facilities. The technological assessment compared biofilters, packed tower wet scrubbers, fine mist wet scrubbers, activated carbon adsorption, thermal oxidization, oxidization chemicals and masking agents. The technologies/treatment methods were evaluated and compared based on a variety of operational, usage and cost parameters. Based on the technological assessment it was found that, biofilters and packed bed wet scrubbers are the most applicable odour control technologies for use in organics processing faculties. A life cycle assessment was then done to compare the environmental impacts of the packed-bed wet scrubber system, organic (wood-chip media) bio-filter and inorganic (synthetic media) bio-filter systems. Twelve impact categories were assessed; cumulative energy demand (CED), climate change, human toxicity, photochemical oxidant formation, metal depletion, fossil depletion, terrestrial acidification, freshwater eutrophication, marine eutrophication, terrestrial eco-toxicity, freshwater eco-toxicity and marine eco-toxicity. The results showed that for all impact categories the synthetic media biofilter had the highest environmental impact, followed by the wood chip media bio-filter system. The packed-bed system had the lowest environmental impact for all categories. PMID:25981938

  3. Maximum reservoir capacity of vegetation for persistent organic pollutants: Implications for global cycling

    NASA Astrophysics Data System (ADS)

    Dalla Valle, Matteo; Dachs, Jordi; Sweetman, Andrew J.; Jones, Kevin C.

    2004-12-01

    The concept of maximum reservoir capacity (MRC) or "equilibrium capacity ratio," the ratio of the capacities of the vegetation and of the atmospheric mixed layer (AML) to hold chemical under equilibrium conditions, is applied to selected persistent organic pollutants (POPs) in vegetation in order to assess its importance for the global cycling of POPs. Vegetation is found to have a significant storage capacity, and because of its intimate contact with the atmosphere may play an important role in global cycling of POPs. The vegetation MRC is calculated for some representative PCB congeners (PCB-28; -152; -180) at the global scale with a spatial resolution of 0.25° × 0.25°. It is shown to be comparable to that of the skin layer of the soil and to vary over many orders of magnitude, between compounds, locations, and time (seasonally/diurnally), depending on the vegetation type and on the temperature. The highest MRC values are observed in areas with low temperatures and coniferous forests (e.g., Siberia, Canada, Scandinavia), while the lowest values are typically located in warm and desert areas (e.g., Sahara). Large differences were also observed at the regional scale. Implications for the global cycling and long-range atmospheric transport (LRAT) of POPs are discussed, including comparisons with soil and ocean MRCs, which will drive net transfers of POPs between media and regions.

  4. Important role for organic carbon in subduction-zone fluids in the deep carbon cycle

    NASA Astrophysics Data System (ADS)

    Sverjensky, Dimitri A.; Stagno, Vincenzo; Huang, Fang

    2014-12-01

    Supercritical aqueous fluids link subducting plates and the return of carbon to Earth's surface in the deep carbon cycle. The amount of carbon in the fluids and the identities of the dissolved carbon species are not known, which leaves the deep carbon budget poorly constrained. Traditional models, which assume that carbon exists in deep fluids as dissolved gas molecules, cannot predict the solubility and ionic speciation of carbon in its silicate rock environment. Recent advances enable these limitations to be overcome when evaluating the deep carbon cycle. Here we use the Deep Earth Water theoretical model to calculate carbon speciation and solubility in fluids under upper mantle conditions. We find that fluids in equilibrium with mantle peridotite minerals generally contain carbon in a dissolved gas molecule form. However, fluids in equilibrium with diamonds and eclogitic minerals in the subducting slab contain abundant dissolved organic and inorganic ionic carbon species. The high concentrations of dissolved carbon species provide a mechanism to transport large amounts of carbon out of the subduction zone, where the ionic carbon species may influence the oxidation state of the mantle wedge. Our results also identify novel mechanisms that can lead to diamond formation and the variability of carbon isotopic composition via precipitation of the dissolved organic carbon species in the subduction-zone fluids.

  5. Halogenated methanesulfonic acids: A new class of organic micropollutants in the water cycle.

    PubMed

    Zahn, Daniel; Frömel, Tobias; Knepper, Thomas P

    2016-09-15

    Mobile and persistent organic micropollutants may impact raw and drinking waters and are thus of concern for human health. To identify such possible substances of concern nineteen water samples from five European countries (France, Switzerland, The Netherlands, Spain and Germany) and different compartments of the water cycle (urban effluent, surface water, ground water and drinking water) were enriched with mixed-mode solid phase extraction. Hydrophilic interaction liquid chromatography - high resolution mass spectrometry non-target screening of these samples led to the detection and structural elucidation of seven novel organic micropollutants. One structure could already be confirmed by a reference standard (trifluoromethanesulfonic acid) and six were tentatively identified based on experimental evidence (chloromethanesulfonic acid, dichloromethanesulfonic acid, trichloromethanesulfonic acid, bromomethanesulfonic acid, dibromomethanesulfonic acid and bromochloromethanesulfonic acid). Approximated concentrations for these substances show that trifluoromethanesulfonic acid, a chemical registered under the European Union regulation REACH with a production volume of more than 100 t/a, is able to spread along the water cycle and may be present in concentrations up to the μg/L range. Chlorinated and brominated methanesulfonic acids were predominantly detected together which indicates a common source and first experimental evidence points towards water disinfection as a potential origin. Halogenated methanesulfonic acids were detected in drinking waters and thus may be new substances of concern. PMID:27267477

  6. Soil organic matter cycling in novel and natural boreal forest ecosystems

    NASA Astrophysics Data System (ADS)

    Norris, C. E.; Mercier Quideau, S.

    2013-12-01

    The uplands of the western boreal forest of Canada are characterized by a mosaic of pure and mixed stands of aspen (Populus tremuloides Michx.) and spruce (Picea glauca (Moench) Voss). In addition to natural ecosystems, the region is now home to novel ecosystems; i.e., ecosystems composed of reclaimed stands formed from trees planted on constructed anthropogenic soils. To understand potential differences in functioning of these novel ecosystems, we must first better understand the functioning of their natural counterparts. Here we present results on both the characterization and cycling of soil organic matter in novel and natural ecosystems found in the Athabasca oil sands region. Soil organic matter from 42 long term monitoring sites was evaluated for long chain (≥ C21) n-alkane composition. The survey showed that n-alkanes were more concentrated and had distinct signatures in natural compared to novel ecosystems. Mineral soils from reclaimed stands showed a distinct microbial community structure from natural aspen and spruce stands, as was demonstrated using phospholipid fatty acids (PLFAs) as microbial biomarkers following addition of 13C-glucose in a laboratory incubation. Further probing by compound specific analysis of the 13C-enriched PLFAs determined that microbial incorporation of 13C-glucose was different among soils. In a field incubation using 15N labeled aspen litter added to the forest floor of reclaimed, harvested and mature natural aspen stands, the microbial community readily incorporated the tracer and nitrogen was cycled to the above-ground vegetation on all sites. In addition, the amendment of leaf litter to the forest floor also increased soil moisture and soil microbial biomass on both the reclaimed and harvested sites. Utilizing stable isotope tracers in addition to a multi-faceted experimental approach has provided insightful results on the development of soil biogeochemical cycling in novel ecosystems.

  7. Model-data comparison of soil organic oatter cycling: soil core scale

    NASA Astrophysics Data System (ADS)

    Wutzler, Thomas; Reichstein, Markus

    2010-05-01

    Soil organic matter (SOM) cycling is usually modeled as a donor controlled process, most often by first order kinetics. However, evidence of contradition of this donor-paradigm is appearing. One alternative hypothesis is that microbiological consumers of SOM play an important role and need to be taken into account more explicitely. Here we link SOM cycling to the modeling of microbial growth kinetics. We set up a suite of alternative models of microbial growth. Explicitly modelling the cycling of a label across carbon pools allowed to compare the model outputs to data of a soil priming experiment. The experimental data was taken from U. Hamer, & B. Marschner (2002 Journal of Plant Nutrition and Soil Science 165(3)), who incubated several 14C labelled substrates at 20°C in a model system that consisted of sand mixed with lignin for 26 days. Data streams of time series total respiration, respiration from labelled amendment and prior information on model parameters were used to determine the posterior probability density function of the model parameters of each of the model variants and to calculate Bayes-Factors, the ratios of the likelihood of the different model variants. This kind of data and Bayesian analysis is usable to compare model structures adapted to processes that determine the dynamics at this scale: co-limitation of depolymerization of older soil organic matter by both substrate and decomposers, prefererrential substrate usage, activation and deactivation and predation of microbes, and usage of both assimilated carbon and carbon of internal pools for maintenance and growth respiration.

  8. Organic Matter Remineralization Predominates Phosphorus Cycling in the Mid-Bay Sediments in the Chesapeake Bay

    SciTech Connect

    Sunendra, Joshi R.; Kukkadapu, Ravi K.; Burdige, David J.; Bowden, Mark E.; Sparks, Donald L.; Jaisi, Deb P.

    2015-05-19

    The Chesapeake Bay, the largest and most productive estuary in the US, suffers from varying degrees of water quality issues fueled by both point and non–point source nutrient sources. Restoration of the bay is complicated by the multitude of nutrient sources, their variable inputs and hydrological conditions, and complex interacting factors including climate forcing. These complexities not only restrict formulation of effective restoration plans but also open up debates on accountability issues with nutrient loading. A detailed understanding of sediment phosphorus (P) dynamics enables one to identify the exchange of dissolved constituents across the sediment- water interface and aid to better constrain mechanisms and processes controlling the coupling between the sediments and the overlying waters. Here we used phosphate oxygen isotope ratios (δ18Op) in concert with sediment chemistry, XRD, and Mössbauer spectroscopy on the sediment retrieved from an organic rich, sulfidic site in the meso-haline portion of the mid-bay to identify sources and pathway of sedimentary P cycling and to infer potential feedback effect on bottom water hypoxia and surface water eutrophication. Isotope data indicate that the regeneration of inorganic P from organic matter degradation (remineralization) is the predominant, if not sole, pathway for authigenic P precipitation in the mid-bay sediments. We interpret that the excess inorganic P generated by remineralization should have overwhelmed any bottom-water and/or pore-water P derived from other sources or biogeochemical processes and exceeded saturation with respect to authigenic P precipitation. It is the first research that identifies the predominance of remineralization pathway against remobilization (coupled Fe-P cycling) pathway in the Chesapeake Bay. Therefore, these results are expected to have significant implications for the current understanding of P cycling and benthic-pelagic coupling in the bay, particularly on the

  9. Closing the natural cycles - using biowaste compost in organic farming in Vienna

    NASA Astrophysics Data System (ADS)

    Erhart, Eva; Rogalski, Wojciech; Maurer, Ludwig; Hartl, Wilfried

    2014-05-01

    One of the basic principles of organic farming - that organic management should fit the cycles and ecological balances in nature - is put into practice in Vienna on a large scale. In Vienna, compost produced from separately collected biowaste and greenwaste is used on more than 1000 ha of organic farmland. These municipally owned farms are managed organically, but are stockless, like the vast majority of farms in the region. The apparent need for a substitute for animal manure triggered the development of an innovative biowaste management. Together with the Municipal Department 48 responsible for waste management, which was keen for the reduction of residual waste, the Municipal Department 49 - Forestry Office and Urban Agriculture and Bio Forschung Austria developed Vienna's biowaste management model. Organic household wastes and greenwastes are source-separated by the urban population and collected in a closely monitored system to ensure high compost quality. A composting plant was constructed which today produces a total of 43000 t compost per year in a monitored open windrow process. The quality of the compost produced conforms to the EU regulation 834/2007. A large part of the compost is used as organic fertilizer on the organic farmland in Vienna, and the remainder is used in arable farming and in viticulture in the region around Vienna and for substrate production. Vienna`s biowaste management-model is operating successfully since the 1980s and has gained international recognition in form of the Best Practice-Award of the United Nations Development Programme. In order to assess the effects of biowaste compost fertilization on crop yield and on the environment, a field experiment was set up near Vienna in 1992, which is now one of the longest standing compost experiments in Europe. The results showed, that the yields increased for 7 - 10 % with compost fertilization compared to the unfertilized control and the nitrogen recovery by crops was between 4 and 6

  10. TRF2 Controls Telomeric Nucleosome Organization in a Cell Cycle Phase-Dependent Manner

    PubMed Central

    Galati, Alessandra; Magdinier, Frédérique; Colasanti, Valentina; Bauwens, Serge; Pinte, Sébastien; Ricordy, Ruggero; Giraud-Panis, Marie-Josèphe; Pusch, Miriam Caroline; Savino, Maria

    2012-01-01

    Mammalian telomeres stabilize chromosome ends as a result of their assembly into a peculiar form of chromatin comprising a complex of non-histone proteins named shelterin. TRF2, one of the shelterin components, binds to the duplex part of telomeric DNA and is essential to fold the telomeric chromatin into a protective cap. Although most of the human telomeric DNA is organized into tightly spaced nucleosomes, their role in telomere protection and how they interplay with telomere-specific factors in telomere organization is still unclear. In this study we investigated whether TRF2 can regulate nucleosome assembly at telomeres. By means of chromatin immunoprecipitation (ChIP) and Micrococcal Nuclease (MNase) mapping assay, we found that the density of telomeric nucleosomes in human cells was inversely proportional to the dosage of TRF2 at telomeres. This effect was not observed in the G1 phase of the cell cycle but appeared coincident of late or post-replicative events. Moreover, we showed that TRF2 overexpression altered nucleosome spacing at telomeres increasing internucleosomal distance. By means of an in vitro nucleosome assembly system containing purified histones and remodeling factors, we reproduced the short nucleosome spacing found in telomeric chromatin. Importantly, when in vitro assembly was performed in the presence of purified TRF2, nucleosome spacing on a telomeric DNA template increased, in agreement with in vivo MNase mapping. Our results demonstrate that TRF2 negatively regulates the number of nucleosomes at human telomeres by a cell cycle-dependent mechanism that alters internucleosomal distance. These findings raise the intriguing possibility that telomere protection is mediated, at least in part, by the TRF2-dependent regulation of nucleosome organization. PMID:22536324

  11. Nitrogen cycling and microbial communities within soil microenvironments in integrated organic farming systems in Switzerland

    NASA Astrophysics Data System (ADS)

    Loaiza, Viviana; Pereira, Engil; van der Heijden, Marcel; Wittwer, Raphael; Six, Johan

    2015-04-01

    Soil tilling is part of standard agricultural field preparation practices both in conventional and organic cropping systems. Although used mostly for weed control, it presents several drawbacks including increased soil erosion, soil structure disruption and high soil moisture loss. The use of fast-growing cover crops to overcome weed pressure, in combination with conservation tillage has been identified as a possible management strategy in organic systems, yet the mechanisms by which these practices affect nitrogen dynamics is mostly unknown. In this study we use an existing 4-year-old field experiment that combines the use of different tilling intensities and four different cover crop treatments and analyze overall N cycling using 15N stable isotope techniques, physical fractionation methods, and quantitative functional gene assays. Preliminary results suggest that reduced tillage may promote the formation of large macroaggregates in organic systems. Lower proportions of small macroaggregates and microaggregates went to the assembly of large macroaggregates when a cover crop was present. Macroaggregates constitute the majority of soil volume and consequently contribute the most to overall carbon and nitrogen soil content. There is a trend of higher carbon content across all soil fractions in the organic tillage treatments with mixed and brassica cover crop treatments, although the differences were not significant, added effects may be seen with time. Overall, treatment effects are more pronounced in the 0-6cm soil layer. Ongoing quantitative functional gene expression assays will shed light on the role of microorganisms and contribute to understanding nitrogen availability, stabilization and loss in integrated organic systems.

  12. Soil Carbon Cycling - More than Changes in Soil Organic Carbon Stocks

    NASA Astrophysics Data System (ADS)

    Lorenz, K.

    2015-12-01

    Discussions about soil carbon (C) sequestration generally focus on changes in soil organic carbon (SOC) stocks. Global SOC mass in the top 1 m was estimated at about 1325 Pg C, and at about 3000 Pg C when deeper soil layers were included. However, both inorganically and organically bound carbon forms are found in soil but estimates on global soil inorganic carbon (SIC) mass are even more uncertain than those for SOC. Globally, about 947 Pg SIC may be stored in the top 1 m, and especially in arid and semi-arid regions SIC stocks can be many times great than SOC stocks. Both SIC and SOC stocks are vulnerable to management practices, and stocks may be enhanced, for example, by optimizing net primary production (NPP) by fertilization and irrigation (especially optimizing belowground NPP for enhancing SOC stocks), adding organic matter (including black C for enhancing SOC stocks), and reducing soil disturbance. Thus, studies on soil C stocks, fluxes, and vulnerability must look at both SIC and SOC stocks in soil profiles to address large scale soil C cycling.

  13. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: Advances and prospects.

    PubMed

    Yin, Xian; Li, Jianghua; Shin, Hyun-Dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-11-01

    Organic acids, which are chemically synthesized, are also natural intermediates in the metabolic pathways of microorganisms, among which the tricarboxylic acid (TCA) cycle is the most crucial route existing in almost all living organisms. Organic acids in the TCA cycle include citric acid, α-ketoglutaric acid, succinic acid, fumaric acid, l-malic acid, and oxaloacetate, which are building-block chemicals with wide applications and huge markets. In this review, we summarize the synthesis pathways of these organic acids and review recent advances in metabolic engineering strategies that enhance organic acid production. We also propose further improvements for the production of organic acids with systems and synthetic biology-guided metabolic engineering strategies. PMID:25902192

  14. Modeling and analysis of advanced binary cycles

    SciTech Connect

    Gawlik, K.

    1997-12-31

    A computer model (Cycle Analysis Simulation Tool, CAST) and a methodology have been developed to perform value analysis for small, low- to moderate-temperature binary geothermal power plants. The value analysis method allows for incremental changes in the levelized electricity cost (LEC) to be determined between a baseline plant and a modified plant. Thermodynamic cycle analyses and component sizing are carried out in the model followed by economic analysis which provides LEC results. The emphasis of the present work is on evaluating the effect of mixed working fluids instead of pure fluids on the LEC of a geothermal binary plant that uses a simple Organic Rankine Cycle. Four resources were studied spanning the range of 265{degrees}F to 375{degrees}F. A variety of isobutane and propane based mixtures, in addition to pure fluids, were used as working fluids. This study shows that the use of propane mixtures at a 265{degrees}F resource can reduce the LEC by 24% when compared to a base case value that utilizes commercial isobutane as its working fluid. The cost savings drop to 6% for a 375{degrees}F resource, where an isobutane mixture is favored. Supercritical cycles were found to have the lowest cost at all resources.

  15. Dissolved organic carbon export and internal cycling in small, headwater lakes

    USGS Publications Warehouse

    Stets, Edward G.; Striegl, Rob; Aiken, George R.

    2010-01-01

    Carbon (C) cycling in freshwater lakes is intense but poorly integrated into our current understanding of overall C transport from the land to the oceans. We quantified dissolved organic carbon export (DOCX) and compared it with modeled gross DOC mineralization (DOCR) to determine whether hydrologic or within-lake processes dominated DOC cycling in a small headwaters watershed in Minnesota, USA. We also used DOC optical properties to gather information about DOC sources. We then compared our results to a data set of approximately 1500 lakes in the Eastern USA (Eastern Lake Survey, ELS, data set) to place our results in context of lakes more broadly. In the open-basin lakes in our watershed (n = 5), DOCX ranged from 60 to 183 g C m−2 lake area yr−1, whereas DOCR ranged from 15 to 21 g C m−2 lake area yr−1, emphasizing that lateral DOC fluxes dominated. DOCX calculated in our study watershed clustered near the 75th percentile of open-basin lakes in the ELS data set, suggesting that these results were not unusual. In contrast, DOCX in closed-basin lakes (n = 2) was approximately 5 g C m−2 lake area yr−1, whereas DOCR was 37 to 42 g C m−2 lake area yr−1, suggesting that internal C cycling dominated. In the ELS data set, median DOCX was 32 and 12 g C m−2 yr−1 in open-basin and closed-basin lakes, respectively. Although not as high as what was observed in our study watershed, DOCX is an important component of lake C flux more generally, particularly in open-basin lakes.

  16. Radiocarbon Signatures and Cycling of Dissolved Organic Carbon in the World Ocean

    NASA Astrophysics Data System (ADS)

    Druffel, E. R.; Griffin, S.; Walker, B. D.

    2012-12-01

    Radiocarbon (Delta14C) measurements of bulk dissolved organic carbon (DOC) in the deep ocean range from -390 per mil in the North Atlantic to -550 per mil in the Northeast Pacific. We report Delta14C measurements of DOC from six sites in the South Pacific and three sites in the South Atlantic collected on Repeat Hydrography cruises P6 (2010) and A10 (2011). We compare our new results with those reported earlier for the North central Pacific, Northeast Pacific, Southern Ocean and Sargasso Sea. We find that the Delta14C results from the deep South Pacific are lower than expected, given the range between Southern Ocean DOC Delta14C values (-500 per mil) and those from the North central Pacific (-525 per mil). Implications for DOC cycling in the world ocean are presented.

  17. Utilization, cycling and vertical transport of particulate organic matter in the coastal marine environment

    SciTech Connect

    Landry, M.R.

    1992-01-01

    This project was funded as part of the California Basin Study (CaBS), a DOE-funded regional program investigating production, cycling, transport, and fate of organic matter, chemical tracers, and pollutants in the Southern California Bight. The study area, adjacent to Los Angeles, was of programmatic interest due to its heavy concentration of energy-related activities, including offshore oil drilling and natural seeps, shipping, nuclear power facilities, and industrial and municipal ocean waste disposal. It was also of scientific interest because the wide continental margin in the region, pot-marked with natural sediment traps in the form of deep basins with restricted inputs and outputs, was ideal for integrating water-column and benthic studies and tracing the fates of in situ production and introduced pollutants. Our role in the CABS Program was to investigate the flux of particulate matter through the water column, emphasizing the relationship between macrozooplankton feeding and particle flux.

  18. Dissolved Organic Carbon Cycling in Forested Watersheds: A Carbon Isotope Approach

    NASA Astrophysics Data System (ADS)

    Schiff, S. L.; Aravena, R.; Trumbore, S. E.; Dillon, P. J.

    1990-12-01

    Dissolved organic carbon (DOC) is important in the acid-base chemistry of acid-sensitive freshwater systems; in the complexation, mobility, persistence, and toxicity of metals and other pollutants; and in lake carbon metabolism. Carbon isotopes (13C and 14C) are used to study the origin, transport, and fate of DOC in a softwater catchment in central Ontario. Precipitation, soil percolates, groundwaters, stream, beaver pond, and lake waters, and lake sediment pore water were characterized chemically and isotopically. In addition to total DOC, isotopic measurements were made on the humic and fulvic DOC fractions. The lake is a net sink for DOC. Δ14C results indicate that the turnover time of most of the DOC in streams, lakes, and wetlands is fast, less than 40 years, and on the same time scale as changes in acidic deposition. DOC in groundwaters is composed of older carbon than surface waters, indicating extensive cycling of DOC in the upper soil zone or aquifer.

  19. Selection of organic process and source indicator substances for the anthropogenically influenced water cycle.

    PubMed

    Jekel, Martin; Dott, Wolfgang; Bergmann, Axel; Dünnbier, Uwe; Gnirß, Regina; Haist-Gulde, Brigitte; Hamscher, Gerd; Letzel, Marion; Licha, Tobias; Lyko, Sven; Miehe, Ulf; Sacher, Frank; Scheurer, Marco; Schmidt, Carsten K; Reemtsma, Thorsten; Ruhl, Aki Sebastian

    2015-04-01

    An increasing number of organic micropollutants (OMP) is detected in anthropogenically influenced water cycles. Source control and effective natural and technical barriers are essential to maintain a high quality of drinking water resources under these circumstances. Based on the literature and our own research this study proposes a limited number of OMP that can serve as indicator substances for the major sources of OMP, such as wastewater treatment plants, agriculture and surface runoff. Furthermore functional indicators are proposed that allow assessment of the proper function of natural and technical barriers in the aquatic environment, namely conventional municipal wastewater treatment, advanced treatment (ozonation, activated carbon), bank filtration and soil aquifer treatment as well as self-purification in surface water. These indicator substances include the artificial sweetener acesulfame, the anti-inflammatory drug ibuprofen, the anticonvulsant carbamazepine, the corrosion inhibitor benzotriazole and the herbicide mecoprop among others. The chemical indicator substances are intended to support comparisons between watersheds and technical and natural processes independent of specific water cycles and to reduce efforts and costs of chemical analyses without losing essential information. PMID:25563167

  20. Radiocarbon Signature and Cycling of Dissolved Organic Carbon in the South Pacific

    NASA Astrophysics Data System (ADS)

    Druffel, E. R.; Griffin, S.

    2010-12-01

    The average radiocarbon (Delta14C) measurements of bulk dissolved organic carbon (DOC) in the deep ocean range from -390 per mil in the deep Sargasso Sea to -550 per mil in the deep Northeast Pacific. The data set used to estimate this range is based on only four sites in the world ocean. We participated in the P-6 Repeat Hydrography cruise in January to February 2010 along 30-32°S in the South Pacific and collected samples from four depth profiles. High-precision Delta14C measurements of bulk DOC are ongoing using AMS (accelerator mass spectrometry) techniques at the Keck Carbon Cycle AMS Laboratory. We will report completed Delta14C measurements from these South Pacific sites and compare them to those available from two other sites in the North Pacific and one in the Southern Ocean. It is anticipated that Delta14C values of deep South Pacific DOC are intermediate between those in the Southern Ocean (Delta14C = -500‰) and those in the North central Pacific (-525‰). These DOC Delta14C values will be used to assess the residence time and overall cycling of bulk DOC in deep waters of the Pacific.

  1. Photochemical alteration of dissolved organic matter and the subsequent effects on bacterial carbon cycling and diversity.

    PubMed

    Lønborg, Christian; Nieto-Cid, Mar; Hernando-Morales, Victor; Hernández-Ruiz, Marta; Teira, Eva; Álvarez-Salgado, Xosé Antón

    2016-05-01

    The impact of solar radiation on dissolved organic matter (DOM) derived from 3 different sources (seawater, eelgrass leaves and river water) and the effect on the bacterial carbon cycling and diversity were investigated. Seawater with DOM from the sources was first either kept in the dark or exposed to sunlight (4 days), after which a bacterial inoculum was added and incubated for 4 additional days. Sunlight exposure reduced the coloured DOM and carbon signals, which was followed by a production of inorganic nutrients. Bacterial carbon cycling was higher in the dark compared with the light treatment in seawater and river samples, while higher levels were found in the sunlight-exposed eelgrass experiment. Sunlight pre-exposure stimulated the bacterial growth efficiency in the seawater experiments, while no impact was found in the other experiments. We suggest that these responses are connected to differences in substrate composition and the production of free radicals. The bacterial community that developed in the dark and sunlight pre-treated samples differed in the seawater and river experiments. Our findings suggest that impact of sunlight exposure on the bacterial carbon transfer and diversity depends on the DOM source and on the sunlight-induced production of inorganic nutrients. PMID:26940087

  2. The global significance of omitting soil erosion from soil organic carbon cycling schemes

    NASA Astrophysics Data System (ADS)

    Chappell, Adrian; Baldock, Jeffrey; Sanderman, Jonathan

    2016-02-01

    Soil organic carbon (SOC) cycling schemes used in land surface models (LSMs) typically account only for the effects of net primary production and heterotrophic respiration. To demonstrate the significance of omitting soil redistribution in SOC accounting, sequestration and emissions, we modified the SOC cycling scheme RothC (ref. ) to include soil erosion. Net SOC fluxes with and without soil erosion for Australian long-term trial sites were established and estimates made across Australia and other global regions based on a validated relation with catchment-scale soil erosion. Assuming that soil erosion is omitted from previous estimates of net C flux, we found that SOC erosion is incorrectly attributed to respiration. On this basis, the Australian National Greenhouse Gas inventory overestimated the net C flux from cropland by up to 40% and the potential (100 year) C sink is overestimated by up to 17%. We estimated global terrestrial SOC erosion to be 0.3-1.0 Pg C yr-1 indicating an uncertainty of -18 to -27% globally and +35 to -82% regionally relative to the long-term (2000-2010) terrestrial C flux of several LSMs. Including soil erosion in LSMs should reduce uncertainty in SOC flux estimates with implications for CO2 emissions, mitigation and adaptation strategies and interpretations of trends and variability in global ecosystems.

  3. Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs

    SciTech Connect

    Yoder, G.L.

    2005-10-03

    This report documents the work performed during the first phase of the National Aeronautics and Space Administration (NASA), National Research Announcement (NRA) Technology Development Program for an Advanced Potassium Rankine Power Conversion System Compatible with Several Space Reactor Designs. The document includes an optimization of both 100-kW{sub e} and 250-kW{sub e} (at the propulsion unit) Rankine cycle power conversion systems. In order to perform the mass optimization of these systems, several parametric evaluations of different design options were investigated. These options included feed and reheat, vapor superheat levels entering the turbine, three different material types, and multiple heat rejection system designs. The overall masses of these Nb-1%Zr systems are approximately 3100 kg and 6300 kg for the 100- kW{sub e} and 250-kW{sub e} systems, respectively, each with two totally redundant power conversion units, including the mass of the single reactor and shield. Initial conceptual designs for each of the components were developed in order to estimate component masses. In addition, an overall system concept was presented that was designed to fit within the launch envelope of a heavy lift vehicle. A technology development plan is presented in the report that describes the major efforts that are required to reach a technology readiness level of 6. A 10-year development plan was proposed.

  4. Self-organizing biochemical cycle in dynamic feedback with soil structure

    NASA Astrophysics Data System (ADS)

    Vasilyeva, Nadezda; Vladimirov, Artem; Smirnov, Alexander; Matveev, Sergey; Tyrtyshnikov, Evgeniy; Yudina, Anna; Milanovskiy, Evgeniy; Shein, Evgeniy

    2016-04-01

    formulated as a sum of state variables products, with no need to introduce any saturation functions, such as Mikhaelis-Menten type kinetics, inside the model. Analyzed dynamic soil model is being further developed to describe soil structure formation and its effect on organic matter decomposition at macro-scale, to predict changes with external perturbations. To link micro- and macro-scales we additionally model soil particles aggregation process. The results from local biochemical soil organic matter cycle serve as inputs to aggregation process, while the output aggregate size distributions define physical properties in the soil profile, these in turn serve as dynamic parameters in local biochemical cycles. The additional formulation is a system of non-linear ordinary differential equations, including Smoluchowski-type equations for aggregation and reaction kinetics equations for coagulation/adsorption/adhesion processes. Vasilyeva N.A., Ingtem J.G., Silaev D.A. Nonlinear dynamical model of microbial growth in soil medium. Computational Mathematics and Modeling, vol. 49, p.31-44, 2015 (in Russian). English version is expected in corresponding vol.27, issue 2, 2016.

  5. The dark portion of the Mediterranean Sea is a bioreactor of organic matter cycling

    NASA Astrophysics Data System (ADS)

    Luna, G. M.; Bianchelli, S.; Decembrini, F.; de Domenico, E.; Danovaro, R.; Dell'Anno, A.

    2012-06-01

    Total prokaryotic abundance, prokaryotic heterotrophic production and enzymatic activities were investigated in epi-, meso- and bathypelagic waters along a longitudinal transect covering the entire Mediterranean Sea. The prokaryotic production and enzymatic activities in deep waters were among the highest reported worldwide at similar depths, indicating that the peculiar physico-chemical characteristics of the Mediterranean Sea, characterized by warm temperatures (typically 13°C also at abyssal depths), support high rates of organic carbon degradation and incorporation by prokaryotic assemblages. The higher trophic conditions in the epipelagic waters of the Western basin resulted in significantly higher prokaryotic production and enzymatic activities rates than in the Central-Eastern basin. While all of the variables decreased significantly from epi- to meso- and bathypelagic waters, cell-specific hydrolytic activity and cell-specific carbon production significantly increased. In addition, the deep-water layers were characterized by low half-saturation constants (Km) of all enzymatic activities. These findings suggest that prokaryotic assemblages inhabiting the dark portion of the Mediterranean Sea are able to channel degraded carbon into biomass in a very efficient way, and that prokaryotic assemblages of the deep Mediterranean waters work as a "bioreactor" of organic matter cycling. Since prokaryotic production and enzymatic activities in deep water masses were inversely related with oxygen concentration, we hypothesize a tight link between prokaryotic metabolism and oxygen consumption. As climate change is increasing deep-water temperatures, the predicted positive response of prokaryotic metabolism to temperature increases may accelerate oxygen depletion of deep Mediterranean waters, with cascade consequences on carbon cycling and biogeochemical processes on the entire deep basin.

  6. Organic matter remineralization predominates phosphorus cycling in the mid-Bay sediments in the Chesapeake Bay.

    PubMed

    Joshi, Sunendra R; Kukkadapu, Ravi K; Burdige, David J; Bowden, Mark E; Sparks, Donald L; Jaisi, Deb P

    2015-05-19

    Chesapeake Bay, the largest and most productive estuary in the U.S., suffers from varying degrees of water quality issues fueled by both point and nonpoint nutrient sources. Restoration of the Bay is complicated by the multitude of nutrient sources, their variable inputs, and complex interaction between imported and regenerated nutrients. These complexities not only restrict formulation of effective restoration plans but also open up debates on accountability issues with nutrient loading. A detailed understanding of sediment phosphorus (P) dynamics provides information useful in identifying the exchange of dissolved constituents across the sediment-water interface as well as helps to better constrain the mechanisms and processes controlling the coupling between sediments and the overlying waters. Here we used phosphate oxygen isotope ratios (δ(18)O(P)) in concert with sediment chemistry, X-ray diffraction, and Mössbauer spectroscopy on sediments retrieved from an organic rich, sulfidic site in the mesohaline portion of the mid-Bay to identify sources and pathway of sedimentary P cycling and to infer potential feedbacks on bottom water hypoxia and surface water eutrophication. Authigenic phosphate isotope data suggest that the regeneration of inorganic P from organic matter degradation (remineralization) is the predominant, if not sole, pathway for authigenic P precipitation in the mid-Bay sediments. This indicates that the excess inorganic P generated by remineralization should have overwhelmed any pore water and/or bottom water because only a fraction of this precipitates as authigenic P. This is the first research that identifies the predominance of remineralization pathway and recycling of P within the Chesapeake Bay. Therefore, these results have significant implications on the current understanding of sediment P cycling and P exchange across the sediment-water interface in the Bay, particularly in terms of the sources and pathways of P that sustain hypoxia

  7. Climate Change Impacts on the Organic Carbon Cycle at the Land-Ocean Interface

    NASA Astrophysics Data System (ADS)

    Canuel, E. A.; Cammer, S. S.; McIntosh, H.; Pondell, C. R.

    2012-12-01

    Humans have modified estuaries across the globe by altering the delivery of water, sediments and elements such as carbon and nitrogen that play important roles in biogeochemical processes. These activities have caused declines in the health and quality of estuarine ecosystems globally and this trend will likely continue due to increasing population growth in coastal regions, expected changes associated with climate change, and their interaction with each other, leading to serious consequences for the ecological and societal services they provide. A key function of estuaries is the transfer and transformation of carbon and biogenic elements between land and ocean systems. The anticipated effects of climate change on biogeochemical processes in estuaries are likely to be both numerous and complex but are poorly understood. Climate change has the potential to influence the carbon cycle in estuaries through anticipated changes to organic matter production, transformation, burial and export. Estuarine biogeochemical processes will likely be altered by: 1) sea level rise and increased storm intensity which will amplify the erosion and transfer of terrigenous materials, 2) increases in water temperatures which will enhance the rates of biological and biogeochemical processes (e.g., enzyme kinetics, decomposition rates, and remineralization), while simultaneously decreasing the concentration of dissolved oxygen, 3) changes in particle (or sediment) loadings in response to altered patterns of precipitation and river runoff, and 4) altered inputs of nutrients and dissolved organic materials to coastal waters, also resulting from changing precipitation and runoff. In this presentation, we review the effects of climate change on the carbon cycle in estuaries, with a focus on the temperate estuaries of North America.

  8. Bioavailability of dissolved organic carbon linked with the regional carbon cycle in the East China Sea

    NASA Astrophysics Data System (ADS)

    Gan, Shuchai; Wu, Ying; Zhang, Jing

    2016-02-01

    The regional carbon cycle on continental shelves has created great interest recently due to the enigma of whether these areas are a carbon sink or a source. It is vital for a precise carbon cycle model to take the bioavailability of dissolved organic carbon (DOC) into account, as it impacts the sink and source capacity, especially on dynamic shelves such as the East China Sea. Nine bio-decomposition experiments were carried out to assess differences in the bioavailability of DOC. Samples were collected from different water masses in the East China Sea, such as the Coastal Current, the Taiwan Current, and the Kuroshio Current, as well as from the Changjiang (Yangtze River), the main contributor of terrestrial DOC in the East China Sea. This study aimed to quantify and qualify bioavailable DOC (BDOC) in the East China Sea. Both the degradation constant of BDOC and the carbon output from microorganisms have been quantitatively evaluated. Qualitatively, excitation-emission matrix fluorescence spectra (EEMs) were used to evaluate the intrinsic reasons for BDOC variation. By using EEMs in conjunction with parallel factor analysis (PARAFAC), five individual fluorescent components were identified in this study: three humic-like and two protein-like components (P1, P2). The highest P1 and P2 fluorescence intensities were recorded in the coastal water during a phytoplankton algal bloom, while the lowest intensities were recorded in the Changjiang estuary. Quantitatively, BDOC observed during the incubation ranged from 0 to 26.1 μM. The DOC degradation rate constant varied from 0 to 0.027 (d-1), and was lowest in the Changjiang and highest in algal bloom water and warm shelf water (the Taiwan current). The Taiwan Current and mixed shelf water were the major contributors of BDOC flux to the open ocean, and the East China Sea was a net source of BDOC to the ocean. The results verified the importance of BDOC in regional carbon cycle modeling. Combining the data of BDOC and EEMs

  9. Organic carbon cycling as the keystone of Neoproterozoic climate evolution (Invited)

    NASA Astrophysics Data System (ADS)

    Pierrehumbert, R.

    2009-12-01

    Snowball glaciations are the most charismatic feature of the Neoproterozoic, but the central problem of Neoproterozoic climate evolution is the operation of the carbon cycle, as evidenced in the return of extreme 13C fluctuations after nearly a billion years of quiescence. A key organizing principle for the Neoproterozoic is the existence of a massive hypothetical organic carbon pool in the ocean, which is oxidized by the end of the Neoproterozoic (as laid out by Fike, et al. 2006 ). The carbon cycle couples to climate through its influence on atmospheric greenhouse gas content -- notably CO2 and CH4; accumulation of atmospheric O2 feeds back on this through atmospheric and oceanic chemistry. Evolution of oxygenic photosynthesis unquestionably occurred long before the dawn of the Neoproterozoic, so the Neoproterozoic climate and carbon turmoil is a product of the organic carbon storage dynamics rather than gross biological innovation. In this talk I will discuss how certain key components of the physical and geochemical system operate, though a comprehensive model accounting for all crucial aspects of the geological record is still lacking. Conversion of CO2 to O2 by photosynthesis and carbon burial, converts a greenhouse gas to a non-greenhouse gas,cooling the climate. Conversely, oxidation of an organic carbon pool either through respiration or sulfate reduction, releases CO2 and acts as a warming influence,also leading to a negative carbonate 13C excursion, as probably happened during the Shuram. If the Marinoan excursion has a similar mechanism we face the question of how such an event could initiate a glaciation, whereas the much stronger Shuram excursion did not. (The Gaskiers glaciation came long after the Shuram , and was not a Snowball). I will discuss how the climate response depends on the time scale of the exchange, with emphasis on buffering due to the response of silicate weathering. Insofar as the organic carbon pool existed at all, the key question

  10. RANKINE-HUGONIOT RELATIONS IN RELATIVISTIC COMBUSTION WAVES

    SciTech Connect

    Gao Yang; Law, Chung K.

    2012-12-01

    As a foundational element describing relativistic reacting waves of relevance to astrophysical phenomena, the Rankine-Hugoniot relations classifying the various propagation modes of detonation and deflagration are analyzed in the relativistic regime, with the results properly degenerating to the non-relativistic and highly relativistic limits. The existence of negative-pressure downstream flows is noted for relativistic shocks, which could be of interest in the understanding of the nature of dark energy. Entropy analysis for relativistic shock waves is also performed for relativistic fluids with different equations of state (EoS), denoting the existence of rarefaction shocks in fluids with adiabatic index {Gamma} < 1 in their EoS. The analysis further shows that weak detonations and strong deflagrations, which are rare phenomena in terrestrial environments, are expected to exist more commonly in astrophysical systems because of the various endothermic reactions present therein. Additional topics of relevance to astrophysical phenomena are also discussed.