Science.gov

Sample records for organic solid matter

  1. Electron Shuttling Capacity of Solid-Phase Organic Matter in Forest Soils

    NASA Astrophysics Data System (ADS)

    Patel, A.; Zhao, Q.; Yang, Y.

    2015-12-01

    Soil organic matter, as an electron shuttle, plays an important role in regulating the biogeochemical cycles of metals, especially the redox reactions for iron. Microorganisms can reduce soil organic matter under anaerobic conditions, and biotically-reduced soil organic matter can abiotically donate electrons to ferric oxides. Such soil organic matter-mediated electron transport can facilitate the interactions between microorganisms and insoluble terminal electron acceptors, i.e. iron minerals. Most previous studies have been focused on the electron shuttling processes through dissolved soil organic matter, and scant information is available for solid-phase soil organic matter. In this study, we aim to quantify the electron accepting capacity for solid-phase organic matter in soils collected from four different forests in the United States, including Truckee (CA), Little Valley (NV), Howland (ME) and Hart (MI). We used Shewanella oneidensisMR-1 to biotically reduce soil slurries, and then quantified the electrons transferred to solid-phase and solution-phase organic matter by reacting them with Fe(III)-nitrilotriacetic acid (Fe(III)-NTA). The generation of Fe(II) was measured by a ferrozine assay to calculate the electron accepting capacity of soil organic matter. Our preliminary results showed that the Truckee soil organic matter can accept 0.51±0.07 mM e-/mol carbon. We will measure the electron accepting capacity for four different soils and correlate them to the physicochemical properties of soils. Potential results will provide information about the electron accepting capacity of solid-phase soil organic matter and its governing factors, with broad implication on the coupled biogeochemical cycles of carbon and iron.

  2. Chemical compositions of dissolved organic matter from various sources as characterized by solid-state NMR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved organic matter (DOM) in surface waters plays an important role in biogeochemical and ecological processes. This study used solid-state NMR techniques to explore the molecular signatures of riverine DOM in relation to its point and nonpoint sources. DOM samples were isolated from (1) two st...

  3. Municipal solid waste incineration bottom ash: Characterization and kinetic studies of organic matter

    SciTech Connect

    Dugenest, S.; Casabianca, H.; Grenier-Loustalot, M.F.; Combrisson, J.

    1999-04-01

    Bottom ash is the main solid residue which is produced by municipal solid waste incineration (MSWI) facilities. To be reused in public works, it has to be stored previously a few months. This material is composed primarily of a mineral matrix but also contains unburnt organic matter. The mineral content and its change in the course of aging are relatively well-known, in contrast with the organic content. So in order to detect the phenomena responsible for changes in organic matter and their effects during aging, the concentrations of the main organic compounds previously characterized, the number of microorganisms, and the release of carbon dioxide were followed kinetically in model laboratory conditions. The results showed that the aging process led to the natural biodegradation of the organic matter available in bottom ash, composed essentially of carboxylic acids and n-alkanes (steroids and PAH`s to a lesser extent), and consequently that it would improve the bottom ash quality. Furthermore these results were confirmed by the study of aging conducted in conditions used in the industrial scale.

  4. Cu Binding to Iron Oxide-Organic Matter Coprecipitates in Solid and Dissolved Phases

    NASA Astrophysics Data System (ADS)

    Vadas, T. M.; Koenigsmark, F.

    2015-12-01

    Recent studies indicate that Cu is released from wetlands following storm events. Assymetrical field flow field fractionation (AF4) analyses as well as total and dissolved metal concentration measurements suggest iron oxide-organic matter complexes control Cu retention and release. Coprecipitation products of Fe oxide and organic matter were prepared under conditions similar to the wetland to assess Cu partitioning to and availability from solid phases that settle from solution as well as phases remaining suspended. Cu coprecipitation and sorption to organomineral precipitation solids formed at different Fe:organic carbon (OC) ratios were compared for net Cu removal and extractability. As more humic acid was present during precipitation of Fe, TEM images indicated smaller Fe oxide particles formed within an organic matrix as expected. In coprecipitation reactions, as the ratio of Fe:OC decreased, more Cu was removed from solution at pH 5.5 and below. However, in sorption reactions, there was an inhibition of Cu removal at low OC concentrations. As the pH increased from 5.5 to 7 and as solution phase OC concentration increased, more Cu remained dissolved in both coprecipitation and sorption reactions. The addition of Ca2+, glycine, histidine and citric acid or lowering the pH resulted in more extractable Cu from the coprecipitation compared with the sorption reactions. The variations in Cu extraction were likely due to a combination of a more amorphous structure in CPT products, and the relative abundance of available Fe oxide or OC binding sites. Suspended Fe oxide-organic matter coprecipitates were assessed using AF4 coupled to online TOC analysis and ICP-MS. In laboratory prepared samples, Cu was observed in a mixture of small 1-5 nm colloids of Fe oxide-organic matter precipitates, but the majority was observed in larger organic matter colloids and were not UV absorbing, suggesting more aliphatic carbon materials. In field samples, up to 60% of the dissolved Cu

  5. ENVIRONMENTAL RESEARCH BRIEF: CHARACTERIZATION OF ORGANIC MATTER IN SOIL AND AQUIFER SOLIDS

    EPA Science Inventory

    The focus of this work was the evaluation of analytical methods to determine and characterize fractions of subsurface organic matter. Major fractions of total organic carbon (TOC) include: particulate organic carbon (POC) in aquifer material, dissolved organic carbon (DOC) and ...

  6. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil.

    PubMed

    Salati, S; Quadri, G; Tambone, F; Adani, F

    2010-05-01

    In this study, the ability of the organic fraction of municipal solid wastes (OFMSW) to enhance heavy metal uptake of maize shoots compared with ethylenediamine disuccinic acid (EDDS) was tested on soil contaminated with heavy metals. Soils treated with OFMSW and EDDS significantly increased the concentration of heavy metals in maize shoots (increments of 302%, 66%, 184%, 169%, and 23% for Cr, Cu, Ni, Zn, and Pb with respect to the control and increments of 933%, 482%, 928%, 428%, and 5551% for soils treated with OFMSW and EDDS, respectively). In soil treated with OFMSW, metal uptake was favored because of the high presence of dissolved organic matter (DOM) (41.6x than soil control) that exhibited ligand properties because of the high presence of carboxylic acids. Because of the toxic effect of EDDS on maize plants, soil treated with OFMSW achieved the highest extraction of total heavy metals. PMID:19932537

  7. The use of solid-phase fluorescence spectroscopy in the characterisation of organic matter transformations.

    PubMed

    Albrecht, R; Verrecchia, E; Pfeifer, H-R

    2015-03-01

    Given its high sensitivity and non-destructive nature, fluorescence excitation-emission matrix (EEM) spectroscopy is widely used to differentiate changes and transformations of dissolved or water-extracted organic matter (OM) in natural environments. The same technique applied directly on solid samples (solid-phase fluorescence spectroscopy, SPF-EEM) provides accurate results when used with pharmaceutical products or food samples, but only a few studies have considered natural OM. This study reports on the use of SPF-EEM on solid compost samples and emphasises the way the different maturation phases can be distinguished with fluorophores closely resembling those found in dissolved samples. A very good correlation has been found with data from Rock-Eval pyrolysis, nuclear magnetic resonance ((13)C CPMAS NMR), and humic-fulvic acid ratios determined by conventional NaOH-extraction. SPF-EEM appears as a much simpler method than the conventional ones to detect transformations in natural OM samples with low mineral contents. However, direct application to soil samples requires some additional studies. PMID:25618693

  8. Heat impact caused molecular level changes in solid and dissolved soil organic matter

    NASA Astrophysics Data System (ADS)

    Hofmann, Diana; Steffen, Bernhard; Eckhardt, Kai-Uwe; Leinweber, Peter

    2015-04-01

    The ubiquitous abundance of pyrolysed, highly aromatic organic matter, called "Black Carbon" (BC), in all environmental compartments became increasingly important in different fields of research beyond intensive investigated atmospheric aerosol due to climatic relevance. Its predominant high resistance to abiotic and biotic degradation resulted in turnover times from less than a century to several millennia. This recalcitrance led to the enrichment of BC in soils, accounting for 1-6% (European forest soils) to 60% (Chernozems) of total soil organic matter (SOM). Hence, soil BC acts an important sink in the global carbon cycle. In contrast, consequences for the nitrogen cycle up to date are rather inconsistently discussed. Soil related dissolved organic matter (DOM) is a major controlling factor in soil formation, an important pathway of organic matter transport and one of the largest active carbon reservoirs on earth, if considering oceans and other bodies of water. The aim of this study was to evaluate the effects of artificially simulated wildfire by thermal treatment on the molecular composition of water extractable soil organic matter (DOM). Soils from two outdoor lysimeters with different management history were investigated. Soil samples, non-heated and heated up to 350°C were analyzed for elemental composition (carbon, nitrogen and sulfur) and for bulk molecular composition by Pyrolysis-Field Ionization Mass Spectrometry (Py-FIMS) and synchrotron-based X-ray Absorption Near-Edge Spectroscopy (XANES) at the C- and N K-edges. DOM-samples obtained by hot water extraction, desalting and concentration by solid phase extraction were subsequently analyzed by flow injection analysis in a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FTICR-MS), equipped with an ESI source and a 7 T supra-conducting magnet (LTQ-FT Ultra, ThermoFisher Scientific). This technique is the key technique for the analysis of complex samples due to its outstanding mass

  9. Competition Between Organic Matter and Solid Surface for Cation Sorption: Ce and Rare Earth Element as Proxy

    NASA Astrophysics Data System (ADS)

    Davranche, M.; Pourret, O.; Gruau, G.; Dia, A.

    2006-12-01

    Aquatic or soil organic matter are well-known to be strong adsorbent of many cations due to their adsorption capacity. Among these cations, the trivalent rare earth element (REE) and particularly Ce seem to be promising tools to investigate the impact of competition in between organic or inorganic ligands. Ce (III) is oxidized into Ce (IV) by oxidative surface such as Fe and Mn oxyhydroxides. Since Ce (IV) is preferentially adsorbed (as compared to other REE), a positive and negative Ce anomaly is developed respectively onto the solid and within the solution. Previous studies (Davranche et al., 2004, 2005) highlighted the suppression of this feature when Ce occurs to be complexed with organic matter (as humate species). Recent experiments were designed to evaluate the competition between humate and Mn oxide for REE complexation (each reactant being added simultaneously). Two parameters control the competition: time and pH. While organic matter does adsorb immediately the free REE, a desorption of REE occurs through time. Desorption is marked by the development of a Ce anomaly in the REE pattern that reflects the complexation with Mn oxide surface. Along the time, solid surface becomes thus more competitive than the organic matter. PH still influences the competition since at basic pH, REE and organic matter - probably as REE-organic complexes - are adsorbed onto the solid surface. Ultrafiltration analyses at 5 KD were also performed to separate organic matter and organic complexes from the solution. Results provide evidence that in presence of a solid surface, HREE (high rare earth element) desorption from the organic matter occurs through time. This leads to HREE enrichment in solution. All these results suggest that complexation of organic matter is kinetically favoured as compared to the complexation with solid surfaces. However, the organic complex formed during the first stage of the complexation process involves weak bindings. These bindings are easily broken

  10. Anaerobic co-digestion of solid waste: Effect of increasing organic loading rates and characterization of the solubilised organic matter.

    PubMed

    Ganesh, Rangaraj; Torrijos, Michel; Sousbie, Philippe; Steyer, Jean Philippe; Lugardon, Aurelien; Delgenes, Jean Philippe

    2013-02-01

    The impact of stepwise increase in OLR (up to 7.5kgVS/m(3)d) on methane production, reactor performance and solubilised organic matter production in a high-loading reactor were investigated. A reference reactor operated at low OLR (<2.0kgVS/m(3)d) was used solely to observe the methane potential of the feed substrate. Specific methane yield was 0.33lCH(4)/gVS at the lowest OLR and dropped by about 20% at the maximum OLR, while volumetric methane production increased from 0.35 to 1.38m(3)CH(4)/m(3)d. At higher loadings, solids hydrolysis was affected, with consequent transfer of poorly-degraded organic material into the drain solids. Biodegradability and size-fractionation of the solubilised COD were characterized to evaluate the possibility of a second stage liquid reactor. Only 18% of the organics were truly soluble (<1kD). The rest were in colloidal and very fine particulate form which originated from grass and cow manure and were non-biodegradable. PMID:23334011

  11. Dissolved organic matter: Fractional composition and sorbability by the soil solid phase (Review of literature)

    NASA Astrophysics Data System (ADS)

    Karavanova, E. I.

    2013-08-01

    The behavior of dissolved organic matter (DOM) in soils under varying environmental conditions represents a poorly studied aspect of the problem of organic matter loss from soils. The equilibrium and sustainable development of ecosystems in the northern latitudes are largely determined by the balance between the formation of DOM, its accumulation in the lower soil horizons, and its input with runoff into surface waters. The residence time, retention strength in the soil, and thermodynamic and biochemical stabilities depend on the localization of DOM in the pore space and its chemical structure. Amphiphilic properties represent a valuable diagnostic parameter, which can be used to predict the behavior of DOM in the soil. Acidic components of hydrophobic and hydrophilic nature constitute the major portion of DOM in forest soils of the temperate zone. The hydrophilic fraction includes short-chain aliphatic carboxylic acids, hydrocarbons, and amino acids and is poorly sorbed by the solid phase. However, the existence of this fraction in soil solution is also limited both in space (in the finest pores) and time because of higher accessibility to microbial degradation. The hydrophilic fraction composes the major portion of labile DOM in soils. The hydrophobic fraction consists of soluble degradation products of lignin; it is enriched in structural ortho-hydroxybenzene fragments, which ensure its selective sorption and strong retention in soils. Sorption is favored by low pH values (3.5-5), the high ionic strength of solution, the heavy texture and fine porous structure of soil, the high contents of oxalate- and dithionite-soluble iron (and aluminum) compounds, and hydrological conditions characterized by slow water movement. The adsorbed DOM is chemically and biochemically recalcitrant and significantly contributes to the humus reserves in the low mineral horizons of soils.

  12. Effect of organic matter and moisture on the calorific value of solid wastes: an update of the Tanner diagram.

    PubMed

    Komilis, Dimitrios; Kissas, Konstantinos; Symeonidis, Avraam

    2014-02-01

    Objective of the work was to experimentally determine the effect of the organic matter and moisture contents on the calorific value of organic solid wastes. Nine substrates (i.e. newsprint, biodried municipal solid wastes, municipal solid waste derived composts, wastewater sludges, and sea weed derived compost), with organic matter contents that ranged from 12% to 91% (dry weight) were used in the experiments. All substrates were dried and ground and deionized water was artificially added in order to achieve certain target moisture contents per substrate. The higher heating value (HHV) was, then, determined experimentally for each sample using a bomb calorimeter. Best reduced models were developed to describe the higher and lower heating values as a function of organic matter, ash and moisture contents. A triangular plot was constructed and the self-combustion area was determined and compared to that of the Tanner diagram. Response surfaces were drawn to visually assess the effect of organic matter and moisture contents on the calorific value of the wastes. PMID:24135625

  13. Chemical and biological characterization of organic matter during composting of municipal solid waste

    SciTech Connect

    Chefetz, B.; Yona Chen; Hadar, Y.; Hatcher, P.G.

    1996-07-01

    Composting of municipal solid waste (MSW) was studied in an attempt to elaborate transformations of organic matter (OM) during the process and define parameters for the degree of maturity of the product. Composting was performed in 1-m{sup 3} plastic boxes and the following parameters were measured in 13 samples during 132 d of composting: temperature, C/N ratio, ash content, humic substance contents, and fractions (humic acid, fulvic acid, and nonbumic fraction-HA, FA and NHF, respectively). Spectroscopic methods (CPMAS {sup 13}C-NMR, DRIFT) were used to study the chemical composition of the OM. A bioassay based on growth of cucumber (Cucumis satifus L. cv. Dlila) plants was correlated to other parameters. The C/N ratio and ash content showed a typical high rate of change during the first 60 d and reached a plateau thereafter. The HA content increased to a maximum at 112 d, corresponding to the highest plant dry weight and highest 1650/1560 (cm{sup {minus}1}/cm{sup {minus}1}) peak ratios calculated from DRIFT spectra. {sup 13}C-NMR and DRIFT spectra of samples taken from the composting MSW during the process showed that the residual OM contained an increasing level of aromatic structures. Plant-growth bioassay, HA content, and the DRIFT spectra indicated that MSW compost described in this study, stabilized and achieved maturity after about 110 d. 31 refs., 8 figs., 2 tabs.

  14. Proposed Guidelines for Solid Phase Extraction of Suwannee River Dissolved Organic Matter.

    PubMed

    Li, Yan; Harir, Mourad; Lucio, Marianna; Kanawati, Basem; Smirnov, Kirill; Flerus, Ruth; Koch, Boris P; Schmitt-Kopplin, Philippe; Hertkorn, Norbert

    2016-07-01

    This paper proposes improved guidelines for dissolved organic matter (DOM) isolation by solid phase extraction (SPE) with a styrene-divinylbenzene copolymer (PPL) sorbent, which has become an established method for the isolation of DOM from natural waters, because of its ease of application and appreciable carbon recovery. Suwannee River water was selected to systematically study the effects of critical SPE variables such as loading mass, concentration, flow rate, and up-scaling on the extraction selectivity of the PPL sorbent. High-field Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and proton nuclear magnetic resonance ((1)H NMR) spectroscopy were performed to interpret the DOM chemical space of eluates, as well as permeates and wash liquids with molecular resolution. Up to 89% dissolved organic carbon (DOC) recovery was obtained with a DOC/PPL mass ratio of 1:800 at a DOC concentration of 20 mg/L. With the application of larger loading volumes, low proportions of highly oxygenated compounds were retained on the PPL sorbent. The effects of the flow rate on the extraction selectivity of the sorbent were marginal. Up-scaling had a limited effect on the extraction selectivity with the exception of increased self-esterification with a methanol solvent, resulting in methyl ester groups. Furthermore, the SPE/PPL extract exhibited highly authentic characteristics in comparison with original water and reverse osmosis samples. These findings will be useful for reproducibly isolating DOM with representative molecular compositions from various sources and concentrations and minimizing potential inconsistencies among interlaboratory comparative studies. PMID:27176119

  15. Thermal reaction studies of organic model compound-mineral matter interactions in solids

    SciTech Connect

    Buchanan, A.C. III; Britt, P.F.; Thomas, K.B.

    1995-07-01

    The solid-state chemistry of silica-immobilized phenethyl phenyl ethers is being investigated in the presence of interdispersed aluininosilicates at temperatures relevant to coal processing to gain a better understanding of the impact of mineral matter on pyrolysis and liquefaction mechanisms. Results demonstrate the dramatic effect that aluminosilicates can have in altering the normal thermal reaction pathways for these models of ether linkages in lignin and low rank coals. An investigation of the chemistry of these model compounds at low temperatures (ca. 150-200{degrees}C) in the presence of aluminosilicates, including montmorillonite, is currently being investigated to delineate the chemical transformations that can occur during lignin maturation.

  16. Organic free radicals and micropores in solid graphitic carbonaceous matter at the Oklo natural fission reactors, Gabon

    SciTech Connect

    Rigali, M.J.; Nagy, B.

    1997-01-01

    The presence, concentration, and distribution of organic free radicals as well as their association with specific surface areas and microporosities help characterize the evolution and behavior of the Oklo carbonaceous matter. Such information is necessary in order to evaluate uranium mineralization, liquid bitumen solidification, and radio nuclide containment at Oklo. In the Oklo ore deposits and natural fission reactors carbonaceous matter is often referred to as solid graphitic bitumen. The carbonaceous parts of the natural reactors may contain as much as 65.9% organic C by weight in heterogeneous distribution within the clay-rich matrix. The solid carbonaceous matter immobilized small uraninite crystals and some fission products enclosed in this uraninite and thereby facilitated radio nuclide containment in the reactors. Hence, the Oklo natural fission reactors are currently the subjects of detailed studies because they may be useful analogues to support performance assessment of radio nuclide containment at anthropogenic radioactive waste repository sites. Seven carbonaceous matter rich samples from the 1968 {+-} 50 Ma old natural fission reactors and the associated Oklo uranium ore deposit were studied by electron spin resonance (ESR) spectroscopy and by measurements of specific surface areas (BET method). Humic acid, fulvic acid, and fully crystalline graphite standards were also examined by ESR spectroscopy for comparison with the Oklo solid graphitic bitumens. With one exception, the ancient Oklo bitumens have higher organic free radical concentrations than the modem humic and fulvic acid samples. The presence of carbon free radicals in the graphite standard could not be determined due to the conductivity of this material. 72 refs., 7 figs., 1 tab.

  17. Solid state nuclear magnetic resonance spectroscopy in the evaluation of soil organic matter changes following thermal variations

    NASA Astrophysics Data System (ADS)

    de Pasquale, C.; Berns, A. E.; Kucerik, J.; Conte, P.; Alonzo, G.

    2009-04-01

    Soil organic matter (SOM) is an ubiquitous, complex material which is produced by the degradation of plant tissues and animal bodies. It is the major indicator of soil quality since it is directly involved in the maintenance of soil fertility, prevention of erosion and desert encroachment and provision of suitable environment for biological activity. Organic matter is an important driving force in environmental global change as it acts as both a source and sink of atmospheric carbon. However, SOM is subjected to rapid changes due to environmental transformations such as massive deforestations, fires, intensive land uses, temperature increases and so on. In the present work, a characterization of humic substances was done in order to obtain information about the transformation occurring to SOM as affected by temperature increases. For the first time variable temperature cross polarization magic angle spinning (CPMAS) 13C NMR spectroscopy was applied in combination with thermal analyses (TG and DSC) on environmentally relevant soil organic matter. The results show that the conformational changes occurring in humic substances as temperature is raised can be associated to melting of alkyl components connected with sublimation of some organic compounds. The simultaneous application of solid phase micro extraction GC-MS also allowed the identification of the components which were released by sublimation processes.

  18. Soil organic matter dynamics as characterized with 1H and 13C solid-state NMR techniques

    NASA Astrophysics Data System (ADS)

    Jäger, Alex; Schwarz, Jette; Bertmer, Marko; Schaumann, Gabriele E.

    2010-05-01

    Soil organic matter (SOM) is a complex and heterogeneous matter. Characterization by solid-state NMR methods on 1H and 13C nuclei is therefore demanding. Our goal is to obtain information on the dynamic behaviour of soil samples and to study the influence of external parameters on both structure and dynamics. We regard water molecules to be the pivotal agent of soil dynamics by generating a network between organic matter via intermolecular hydrogen bonding, which leads to cross linking of organic matter and increases its rigidity. Although 1H solid-state NMR on non-rotating samples are not so commonly used for soil characterization, they enable the differentiation of proton mobilities via their linewidths which are resulting from differences in the dipole-dipole coupling strengths. Therefore, even weak molecular interactions such as hydrogen bonding can be differentiated and changes due to heat treatments and the short and long term behaviour followed. Though in principle a simple technique, static 1H measurements are complicated by several means, one of them is the high abundance in almost all matter including probe head material that has to be excluded for analysis. Finally, we selected 1H DEPTH [1] and Hahn-echo sequences to distinguish different mobilities in soil, mainly free moving water and water fixed in the soil matrix. After decomposition using Gaussian and Lorentzian lineshapes, the relative amounts of mobile and rigid water molecules can be obtained. By heating the samples above 100°C in sealed glass tubes, the proposed water network is destroyed and able to rebuild after cooling. This long term behaviour is studied on the course of months. Furthermore, the instant changes before and after heating are shown for a series of soil samples to characterize soils based on this water network model. To combine the information obtained on the 1H mobility with focus on water dynamics, 13C 2D WISE (wideline separation) measurements were done. This method yields 1

  19. The assessment of solid-phase organic matter transport in soils with the use of the magnetic tracer method

    NASA Astrophysics Data System (ADS)

    Koshovskii, Timur

    2015-04-01

    Soil organic matters are important product of soil-forming processes, which affects soil fertility, structural, and other soil properties. In addition, soil organic carbon (SOC) stocks of the soil are an significant reservoir of global carbon stock. In this paper we made an attempt to quantify the mass of carbon transported in the solid phase, in the watershed forest-steppe zone (Tula region). The basic erosion and accumulation zone of SOC was identifying in the watershed. Assume the factors that influence the distribution of SOC stocks in the watershed. We used the magnetic tracer method, allowing estimating the volume of soil substance, which transport in solid form. It is based on an assessment of the distribution fly ash in soils. Fly ash drop to the soil surface evenly, and their movement in the soil - it is the result of solid-phase migration. To calculate the volume of transported organic matter, we have assumed that the substance being transferred to the same extent saturated with humus, as well as the substance of the arable layer of chernozems. The transport of SOC in forest-steppe landscapes occurs in the form of dissolved organic carbon (DOC) in runoff water and particulate organic carbon (POC) in erosion sediments. The humus in chernozems is mainly in solid form and therefore poorly transport in a dissolved form. Thus, the calculation of the solid-phase soil material produced by the magnetic tracer method [1], the calculation of the transported POC - by multiplying the humus content on the amount of the transported solid-phase soil material. The object of study was a small watershed area of 0.96 square kilometers, in the Central Russian Upland, Tula region, Russia. Watershed fully plowed, except the steep slopes of the ravine. Predominant soil is a Luvic Chernozems. Within a watershed along 10 catens selected 70 samples from two depths (0-25 and 25-50 cm). In the samples was determined by total organic carbon content and the content of spherical

  20. Organic Solid Matter as a Coloring Agent in Outer Solar System Bodies

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; DalleOre, C. M.; Roush, T. L.; Khare, B. N.; Fonda, Mark (Technical Monitor)

    2002-01-01

    Small bodies in the outer Solar System OSS, exhibit a range of color, or slope of the reflectance in the photovisual spectral region, ranging from neutral to very red, sometimes with and sometimes without distinct absorption bands. These objects range in geometric albedo from 0.03 to 1.0, with the higher albedo objects typically showing clear evidence of water ice. Water ice has also been found in a few objects with albedo 0. 1 or less. We explore here the identification of the material or materials that color these icy and non-icy surfaces through scattering models that incorporate minerals, meteoritic material, and organic solids (tholins) produced ID the laboratory by energy deposition in ices and gases. These models must match not only the color in the photovisual region, but the spectral reflectance properties throughout the near-infrared. Among some classes of objects, such as Kuiper Belt objects, the coloring agent may be a single material that is present in greater or lesser abundance, thus accounting for the range in color from neutral to very red. This may also apply to the Centaur objects, the Jovian Trojans, and the outer-main belt asteroids, each taken as a separate class. If so, each class may be colored to varying degrees by a different material, or they all might be colored by a common material that is widespread throughout the OSS, from 3 to 50 AU, and beyond. In this paper, we model the reflectances of "Kuiper Belt objects, Centaurs, Trojans, outer ARAB asteroids, and planetary satellites. Our models show that the reddest surfaces cannot be colored by minerals or meteoritic materials, but can be matched throughout the photovisual and near-infrared by organic solids, specifically certain tholins.

  1. Solid organic matter in the atmosphere and on the surface of outer solar system bodies

    NASA Astrophysics Data System (ADS)

    Khare, B. N.; Bakes, E. L. O.; Cruikshank, D.; McKay, C. P.

    Many bodies in the outer Solar System display the presence of low albedo materials. These materials, evident on the surface of asteroids, comets, Kuiper Belt objects and their intermediate evolutionary step, Centaurs, are related to macromolecular carbon bearing materials such as polycyclic aromatic hydrocarbons and organic materials such as methanol and related light hydrocarbons, embedded in a dark, refractory, photoprocessed matrix. Many planetary rings and satellites around the outer gaseous planets display such component materials. One example, Saturn's largest satellite, Titan, whose atmosphere is comprised of around 90% molecular nitrogen N 2 and less than 10% methane CH 4, displays this kind of low reflectivity material in its atmospheric haze. These materials were first recorded during the Voyager 1 and 2 flybys of Titan and showed up as an optically thick pinkish orange haze layer. These materials are broadly classified into a chemical group whose laboratory analogs are termed "tholins", after the Greek word for "muddy". Their analogs are produced in the laboratory via the irradiation of gas mixtures and ice mixtures by radiation simulating Solar ultraviolet (UV) photons or keV charged particles simulating particles trapped in Saturn's magenetosphere. Fair analogs of Titan tholin are produced by bombarding a 9:1 mixture of N 2:CH 4 with charged particles and its match to observations of both the spectrum and scattering properties of the Titan haze is very good over a wide range of wavelengths. In this paper, we describe the historical background of laboratory research on this kind of organic matter and how our laboratory investigations of Titan tholin compare. We comment on the probable existence of polycyclic aromatic hydrocarbons in the Titan Haze and how biological and nonbiological racemic amino acids produced from the acid hydrolysis of Titan tholins make these complex organic compounds prime candidates in the evolution of terrestrial life and

  2. Solid organic matter in the atmosphere and on the surface of outer Solar System bodies.

    PubMed

    Khare, B N; Bakes, E L; Cruikshank, D; McKay, C P

    2001-01-01

    Many bodies in the outer Solar System display the presence of low albedo materials. These materials, evident on the surface of asteroids, comets, Kuiper Belt objects and their intermediate evolutionary step, Centaurs, are related to macromolecular carbon bearing materials such as polycyclic aromatic hydrocarbons and organic materials such as methanol and related light hydrocarbons, embedded in a dark, refractory, photoprocessed matrix. Many planetary rings and satellites around the outer gaseous planets display such component materials. One example, Saturn's largest satellite, Titan, whose atmosphere is comprised of around 90% molecular nitrogen N2 and less than 10% methane CH4, displays this kind of low reflectivity material in its atmospheric haze. These materials were first recorded during the Voyager 1 and 2 flybys of Titan and showed up as an optically thick pinkish orange haze layer. These materials are broadly classified into a chemical group whose laboratory analogs are termed "tholins", after the Greek word for "muddy". Their analogs are produced in the laboratory via the irradiation of gas mixtures and ice mixtures by radiation simulating Solar ultraviolet (UV) photons or keV charged particles simulating particles trapped in Saturn's magnetosphere. Fair analogs of Titan tholin are produced by bombarding a 9:1 mixture of N2:CH4 with charged particles and its match to observations of both the spectrum and scattering properties of the Titan haze is very good over a wide range of wavelengths. In this paper, we describe the historical background of laboratory research on this kind of organic matter and how our laboratory investigations of Titan tholin compare. We comment on the probable existence of polycyclic aromatic hydrocarbons in the Titan Haze and how biological and nonbiological racemic amino acids produced from the acid hydrolysis of Titan tholins make these complex organic compounds prime candidates in the evolution of terrestrial life and

  3. Solid-state 13C NMR studies of dissolved organic matter in pore waters from different depositional environments

    USGS Publications Warehouse

    Orem, W.H.; Hatcher, P.G.

    1987-01-01

    Dissolved organic matter (DOM) in pore waters from sediments of a number of different depositional environments was isolated by ultrafiltration using membranes with a nominal molecular weight cutoff of 500. This > 500 molecular weight DOM represents 70-98% of the total DOM in these pore waters. We determined the gross chemical structure of this material using both solid-state 13C nuclear magnetic resonance spectroscopy and elemental analysis. Our results show that the DOM in these pore waters appears to exist as two major types: one type dominated by carbohydrates and paraffinic structures and the second dominated by paraffinic and aromatic structures. We suggest that the dominance of one or the other structural type of DOM in the pore water depends on the relative oxidizing/reducing nature of the sediments as well as the source of the detrital organic matter. Under dominantly anaerobic conditions carbohydrates in the sediments are degraded by bacteria and accumulate in the pore water as DOM. However, little or no degradation of lignin occurs under these conditions. In contrast, sediments thought to be predominantly aerobic in character have DOM with diminished carbohydrate and enhanced aromatic character. The aromatic structures in the DOM from these sediments are thought to arise from the degradation of lignin. The large amounts of paraffinic structures in both types of DOM may be due to the degradation of unidentified paraffinic materials in algal or bacterial remains. ?? 1987.

  4. Selectivity of solid phase extraction of freshwater dissolved organic matter and its effect on ultrahigh resolution mass spectra.

    PubMed

    Raeke, Julia; Lechtenfeld, Oliver J; Wagner, Martin; Herzsprung, Peter; Reemtsma, Thorsten

    2016-07-13

    Solid phase extraction (SPE) is often used for enrichment and clean-up prior to analysis of dissolved organic matter (DOM) by electrospray ionization (ESI) coupled to ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). It is generally accepted that extraction by SPE is not quantitative with respect to carbon concentration. However, little information is available on the selectivity of different SPE sorbents and the resulting effect for the acquired DOM mass spectra. Freshwater samples were extracted by the widely used PPL, HLB and C18 sorbents and the molecular composition and size distribution of the DOM in the extracts and in the permeates was compared to the original sample. Dissolved organic carbon (DOC) recoveries ranged between 20% and 65% for the three tested SPE sorbents. Size-exclusion chromatography coupled to organic carbon detection (SEC-OCD) revealed that limited recovery by PPL and HLB was primarily due to incomplete elution of a fraction of apparent high molecular weight from the solid phase. In contrast, incomplete retention on the solid phase, mainly observed for the C18 cartridge, was attributed to a fraction of low molecular weight. The FT-ICR mass spectra of the original sample and the SPE extracts did not differ significantly in their molecular weight distribution, but they showed sorbent specific differences in the degree of oxygenation and saturation. We concluded that the selective enrichment of freshwater DOM by SPE is less critical for subsequent FT-ICR MS analysis, because those fractions that are not sufficiently recovered have comparatively small effects on the mass spectra. This was confirmed by the extraction of model compounds, showing that very polar and small molecules are poorly extracted, but also have a low response in ESI-MS. Of the three tested SPE cartridges the PPL material offered the best properties for DOM enrichment for subsequent FT-ICR MS analysis as it minimizes too strong and

  5. The Organic Solid State.

    ERIC Educational Resources Information Center

    Cowan, Dwaine O.; Wlygul, Frank M.

    1986-01-01

    Reviews interesting and useful electrical, magnetic, and optical properties of the organic solid state. Offers speculation as to areas of fruitful research. Discusses organic superconductors, conducting organic polymers, organic metals, and traces recent history of creation of organic metals. (JM)

  6. Influence of natural organic matter on the solid-phase extraction of organic micropollutants. Application to the water-extract from highly contaminated river sediment.

    PubMed

    Jeanneau, L; Faure, P; Jardé, E

    2007-11-30

    In freshwater systems, organic micropollutants are bound to natural organic matter (NOM), which is responsible for a decrease in their recoveries by solid-phase extraction (SPE). This "negative effect" has been investigated for the SPE of polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs, nitrated PAHs and n-alkanes from salt water using Aldrich humic acid as a model of NOM. The effect has been partially obviated by the addition of isopropanol as a surfactant. The SPE protocol, developed with isopropanol, has been applied to the water-extract of a highly contaminated sediment. The water-extract has been size fractionated by cross-flow ultrafiltration into particulate (PM), colloidal (CM) and truly dissolved matter (tDM). Organic extracts from SPE experiments have been analyzed by gas chromatography-mass spectrometry. The major classes of molecules are heteroaromatic PAHs and PAHs. Those molecules are mainly bound to the tDM, which highlights: (1) the competition between organic micropollutants and natural organic molecules for available sorption sites and (2) the toxicological hazard linked to the mobilization of sediments highly contaminated by both industrial and urban activities. PMID:17976632

  7. Chemical structure of soil organic matter in slickspots as investigated by advanced solid-state NMR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Slickspot soils are saline, and knowledge of their humic chemistry would contribute to our limited understanding how salinity affects soil C and N stocks. We characterized humic acids (HAs) from slickspot soils with solid-state 13C nuclear magnetic resonance (NMR). Expanding on previous use of cross...

  8. Development of solid-phase microextraction to study dissolved organic matter--polycyclic aromatic hydrocarbon interactions in aquatic environment.

    PubMed

    de Perre, Chloé; Le Ménach, Karyn; Ibalot, Fabienne; Parlanti, Edith; Budzinski, Hélène

    2014-01-01

    Solid-phase microextraction coupled with gas chromatography and mass spectrometry (SPME-GC-MS) was developed for the study of interactions between polycyclic aromatic hydrocarbons (PAHs) and dissolved organic matter (DOM). After the determination of the best conditions of extraction, the tool was applied to spiked water to calculate the dissolved organic carbon water distribution coefficient (K(DOC)) in presence of different mixtures of PAHs and Aldrich humic acid. The use of deuterated naphthalene as internal standard for freely dissolved PAH quantification was shown to provide more accuracy than regular external calibration. For the first time, K(DOC) values of 18 PAHs were calculated using data from SPME-GC-MS and fluorescence quenching; they were in agreement with the results of previous studies. Competition between PAHs, deuterated PAHs and DOM was demonstrated, pointing out the non-linearity of PAH-DOM interactions and the stronger interactions of light molecular weight PAHs (higher K(DOC) values) in absence of high molecular weight PAHs. PMID:24356220

  9. Organic matter-solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils.

    PubMed

    Williams, Paul N; Zhang, Hao; Davison, William; Meharg, Andrew A; Hossain, Mahmud; Norton, Gareth J; Brammer, Hugh; Islam, M Rafiqul

    2011-07-15

    Agroecological zones within Bangladesh with low levels of arsenic in groundwater and soils produce rice that is high in arsenic with respect to other producing regions of the globe. Little is known about arsenic cycling in these soils and the labile fractions relevant for plant uptake when flooded. Soil porewater dynamics of field soils (n = 39) were recreated under standardized laboratory conditions to investigate the mobility and interplay of arsenic, Fe, Si, C, and other elements, in relation to rice grain element composition, using the dynamic sampling technique diffusive gradients in thin films (DGT). Based on a simple model using only labile DGT measured arsenic and dissolved organic carbon (DOC), concentrations of arsenic in Aman (Monsoon season) rice grain were predicted reliably. DOC was the strongest determinant of arsenic solid-solution phase partitioning, while arsenic release to the soil porewater was shown to be decoupled from that of Fe. This study demonstrates the dual importance of organic matter (OM), in terms of enhancing arsenic release from soils, while reducing bioavailability by sequestering arsenic in solution. PMID:21692537

  10. Structural and compositional changes of dissolved organic matter upon solid-phase extraction tracked by multiple analytical tools.

    PubMed

    Chen, Meilian; Kim, Sunghwan; Park, Jae-Eun; Jung, Heon-Jae; Hur, Jin

    2016-09-01

    Although PPL-based solid-phase extraction (SPE) has been widely used before dissolved organic matter (DOM) analyses via advanced measurements such as ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), much is still unknown about the structural and compositional changes in DOM pool through SPE. In this study, selected DOM from various sources were tested to elucidate the differences between before and after the SPE utilizing multiple analytical tools including fluorescence spectroscopy, FT-ICR-MS, and size exclusion chromatography with organic carbon detector (SEC-OCD). The changes of specific UV absorbance indicated the decrease of aromaticity after the SPE, suggesting a preferential exclusion of aromatic DOM structures, which was also confirmed by the substantial reduction of fluorescent DOM (FDOM). Furthermore, SEC-OCD results exhibited very low recoveries (1-9 %) for the biopolymer fraction, implying that PPL needs to be used cautiously in SPE sorbent materials for treating high molecular weight compounds (i.e., polysaccharides, proteins, and amino sugars). A careful examination via FT-ICR-MS revealed that the formulas lost by the SPE might be all DOM source-dependent. Nevertheless, the dominant missing compound groups were identified to be the tannins group with high O/C ratios (>0.7), lignins/carboxyl-rich alicyclic molecules (CRAM), aliphatics with high H/C >1.5, and heteroatomic formulas, all of which were prevailed by pseudo-analogous molecular formula families with different methylene (-CH2) units. Our findings shed new light on potential changes in the compound composition and the molecular weight of DOM upon the SPE, implying precautions needed for data interpretation. Graphical Abstract Tracking the characteristics of DOM from various origins upon PPL-based SPE utilizing EEMPARAFAC, SEC-OCD, and FT-ICR-MS. PMID:27387996

  11. soil organic matter fractionation

    NASA Astrophysics Data System (ADS)

    Osat, Maryam; Heidari, Ahmad

    2010-05-01

    Carbon is essential for plant growth, due to its effects on other soil properties like aggregation. Knowledge of dynamics of organic matter in different locations in the soil matrix can provide valuable information which affects carbon sequestration and soil the other soil properties. Extraction of soil organic matter (SOM) fractions has been a long standing approach to elucidating the roles of soil organic matter in soil processes. Several kind fractionation methods are used and all provide information on soil organic matter function. Physical fractionation capture the effects on SOM dynamics of the spatial arrangement of primary and secondary organomineral particles in soil while chemical fractionation can not consider the spatial arrangement but their organic fractions are suitable for advanced chemical characterization. Three method of physical separation of soil have been used, sieving, sedimentation and densitometry. The distribution of organic matter within physical fractions of the soil can be assessed by sieving. Sieving separates soil particles based strictly on size. The study area is located on north central Iran, between 35° 41'- 36° 01' N and 50° 42'- 51° 14' E. Mean annual precipitation about 243.8 mm and mean annual air temperature is about 14.95 °C. The soil moisture and temperature regime vary between aridic-thermic in lower altitudes to xeric-mesic in upper altitudes. More than 36 surface soil samples (0-20 cm) were collected according to land-use map units. After preliminary analyzing of samples 10 samples were selected for further analyses in five size fractions and three different time intervals in September, January and April 2008. Fractionation carried out by dry sieving in five classes, 1-2 mm, 0.5-1 mm, 270 μm-0.5mm, 53-270 μm and <53 μm. Organic matter and C/N ratio were determined for all fractions at different time intervals. Chemical fractionation of organic matter also carried out according to Tan (2003), also Mineralogical

  12. Advanced solid-state NMR characterization of marine dissolved organic matter isolated using the coupled reverse osmosis/electrodialysis method.

    PubMed

    Mao, Jingdong; Kong, Xueqian; Schmidt-Rohr, Klaus; Pignatello, Joseph J; Perdue, E Michael

    2012-06-01

    Advanced (13)C solid-state techniques were employed to investigate the major structural characteristics of two surface-seawater dissolved organic matter (DOM) samples isolated using the novel coupled reverse osmosis/electrodialysis method. The NMR techniques included quantitative (13)C direct polarization/magic angle spinning (DP/MAS) and DP/MAS with recoupled dipolar dephasing, (13)C cross-polarization/total sideband suppression (CP/TOSS), (13)C chemical shift anisotropy filter, CH, CH(2), and CH(n) selection, two-dimensional (1)H-(13)C heteronuclear correlation NMR (2D HETCOR), 2D HETCOR combined with dipolar dephasing, and (15)N cross-polarization/magic angle spinning (CP/MAS). The two samples (Coastal and Marine DOM) were collected at the mouth of the Ogeechee River and in the Gulf Stream, respectively. The NMR results indicated that they were structurally distinct. Coastal DOM contained significantly more aromatic and carbonyl carbons whereas Marine DOM was markedly enriched in alkoxy carbon (e.g., carbohydrate-like moieties). Both samples contained significant amide N, but Coastal DOM had nitrogen bonded to aromatic carbons. Our dipolar-dephased spectra indicated that a large fraction of alkoxy carbons were not protonated. For Coastal DOM, our NMR results were consistent with the presence of the major structural units of (1) carbohydrate-like moieties, (2) lignin residues, (3) peptides or amino sugars, and (4) COO-bonded alkyls. For Marine DOM, they were (1) carbohydrate-like moieties, (2) peptides or amino sugars, and (3) COO-bonded alkyls. In addition, both samples contained significant amounts of nonpolar alkyl groups. The potential sources of the major structural units of DOM were discussed in detail. Nonprotonated O-alkyl carbon content was proposed as a possible index of humification. PMID:22553962

  13. Characterization of pyrogenic organic matter by 2-dimenstional HETeronucleus CORelation solid-state 13C NMR (HETCOR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Knicker, Heike

    2016-04-01

    During the last years, increasing evidences are provided that the common view of charcoal as a polyaromatic network is too much simplified. Experiments with model compounds indicated that it represents a heterogeneous mixture of thermally altered biomacromolecules with N, O and likely also S substitutions as common features. If produced from a N-rich feedstock, the so called black nitrogen (BN) has to be considered as an integral part of the aromatic charcoal network. In order to study this network one-dimensional (1D) solid-state nuclear magnetic resonance (NMR) spectroscopy is often applied. However, this technique suffers from broad resonance lines and low resolution. Applying 2D techniques can help but until recently, this was unfeasible for natural organic matter (NOM) due to sensitivity problems and the high complexity of the material. On the other hand, during the last decade, the development of stronger magnetic field instruments and advanced pulse sequences has put them into reach for NOM research. Although 2D NMR spectroscopy has many different applications, all pulse sequences are based on the introduction of a preparation time during which the magnetization of a spin system is adjusted into a state appropriate to whatever properties are to be detected in the indirect dimension. Then, the spins are allowed to evolve with the given conditions and after their additional manipulation during a mixing period the modulated magnetization is detected. Assembling several 1D spectra with incrementing evolution time creates a data set which is two-dimensional in time (t1, t2). Fourier transformation of both dimensions leads to a 2D contour plot correlating the interactions detected in the indirect dimension t1 with the signals detected in the direct dimension t2. The so called solid-state heteronuclear correlation (HETCOR) NMR spectroscopy represents a 2D technique allows the determination which protons are interacting with which carbons. In the present work this

  14. Effects of biochar on organic matter dynamics in unamended soils and soils amended with municipal solid waste compost and sewage sludge

    NASA Astrophysics Data System (ADS)

    Plaza, César; Giannetta, Beatrice; Fernández, José M.; López-de-Sá, Esther G.; Gascó, Gabriel; Méndez, Ana; Zaccone, Claudio

    2015-04-01

    Biochar is a loosely-defined C-rich solid byproduct obtained from biomass pyrolysis, which is intended for use as a soil amendment. A full understanding of the agronomic and environmental potential of biochar, especially its potential as a C sequestration strategy, requires a full understanding of its effects on native soil organic matter, as well as of its interactions with other organic amendments applied to soil. Here we determined the organic C distribution in an arable soil amended with biochar at rates of 0 and 20 t ha-1 in a factorial combination with two types of organic amendment (viz. municipal solid waste compost and sewage sludge) in a field experiment under Mediterranean conditions. The analysis of variance revealed that biochar and organic amendment factors increased significantly total organic C and mineral-associated organic C contents, and had little effect on intra-macroaggregate and intra-microaggregate organic C pools. Free soil organic C content was significantly affected by biochar application, but not by the organic amendments. Especially noteworthy were the interaction effects found between the biochar and organic amendment factors for mineral-associated organic C contents, which suggested a promoting action of biochar on C stabilization in organically-amended soils.

  15. Is old organic matter simple organic matter?

    NASA Astrophysics Data System (ADS)

    Nunan, Naoise; Lerch, Thomas; Pouteau, Valérie; Mora, Philippe; Changey, Fréderique; Kätterer, Thomas; Herrmann, Anke

    2016-04-01

    Bare fallow soils that have been deprived of fresh carbon inputs for prolonged periods contain mostly old, stable organic carbon. In order to shed light on the nature of this carbon, the functional diversity profiles (MicroResp™, Biolog™ and enzyme activity spectra) of the microbial communities of long-term barefallow soils were analysed and compared with those of the microbial communities from their cultivated counterparts. The study was based on the idea that microbial communities adapt to their environment and that therefore the catabolic and enzymatic profiles would reflect the type of substrates available to the microbial communities. The catabolic profiles suggested that the microbial communities in the long-term bare-fallow soil were exposed to a less diverse range of substrates and that these substrates tended to be of simpler molecular forms. Both the catabolic and enzyme activity profiles suggested that the microbial communities from the long-term bare-fallow soils were less adapted to using polymers. These results do not fit with the traditional view of old, stable carbon being composed of complex, recalcitrant polymers. An energetics analysis of the substrate use of the microbial communities for the different soils suggested that the microbial communities from the long-term bare-fallow soils were better adapted to using readily oxidizable,although energetically less rewarding, substrates. Microbial communities appear to adapt to the deprivation of fresh organic matter by using substrates that require little investment.

  16. Ozone uptake and formation of reactive oxygen intermediates on glassy, semi-solid and liquid organic matter

    NASA Astrophysics Data System (ADS)

    Berkemeier, Thomas; Steimer, Sarah S.; Krieger, Ulrich K.; Peter, Thomas; Pöschl, Ulrich; Ammann, Markus; Shiraiwa, Manabu

    2016-04-01

    Heterogeneous and multiphase reactions of ozone are important pathways for chemical ageing of atmospheric organic aerosols (Abbatt, Lee and Thornton, 2012). The effects of particle phase state on the reaction kinetics are still not fully elucidated and cannot be described by classical models assuming a homogeneous condensed phase (Berkemeier et al., 2013). We apply a kinetic multi-layer model, explicitly resolving gas adsorption, condensed phase diffusion and condensed phase chemistry (Shiraiwa et al., 2010), to systematic measurements of ozone uptake onto proxies for secondary organic aerosols (SOA). Our findings show how moisture-induced phase changes affect the gas uptake and chemical transformation of organic matter through change in the physicochemical properties of the substrate: the diffusion coefficients are found to be low under dry conditions, but increase by several orders of magnitude toward higher relative humidity (RH). The solubility of ozone in the dry organic matrix is found to be one order of magnitude higher than in the dilute aqueous solution. The model simulations reveal that at high RH, ozone uptake is mainly controlled by reaction throughout the particle bulk, whereas at low RH, bulk diffusion is retarded severely and reaction at the surface becomes the dominant pathway, with ozone uptake being limited by replenishment of unreacted organic molecules from the bulk phase. The experimental results can only be reconciled including a pathway for ozone self-reaction, which becomes especially important under dry and polluted conditions. Ozone self-reaction can be interpreted as formation and recombination of long-lived reactive oxygen intermediates at the aerosol surface, which could also explain several kinetic parameters and has implications for the health effects of organic aerosol particles. This study hence outlines how kinetic modelling can be used to gain mechanistic insight into the coupling of mass transport, phase changes, and chemical

  17. Arctic River organic matter transport

    NASA Astrophysics Data System (ADS)

    Raymond, Peter; Gustafsson, Orjan; Vonk, Jorien; Spencer, Robert; McClelland, Jim

    2016-04-01

    Arctic Rivers have unique hydrology and biogeochemistry. They also have a large impact on the Arctic Ocean due to the large amount of riverine inflow and small ocean volume. With respect to organic matter, their influence is magnified by the large stores of soil carbon and distinct soil hydrology. Here we present a recap of what is known of Arctic River organic matter transport. We will present a summary of what is known of the ages and sources of Arctic River dissolved and particulate organic matter. We will also discuss the current status of what is known about changes in riverine organic matter export due to global change.

  18. Numerical model for a watering plan to wash out organic matter from the municipal solid waste incinerator bottom ash layer in closed system disposal facilities.

    PubMed

    Ishii, Kazuei; Furuichi, Toru; Tanikawa, Noboru

    2009-02-01

    Bottom ash from municipal solid waste incineration (MSWI) is a main type of waste that is landfilled in Japan. The long-term elution of organic matter from the MSWI bottom ash layers is a concern because maintenance and operational costs of leachate treatment facilities are high. In closed system disposal facilities (CSDFs), which have a roof to prevent rainfall from infiltrating into the waste layers, water must be supplied artificially and its quantity can be controlled. However, the quantity of water needed and how to apply it (the intensity, period and frequency) have not been clearly defined. In order to discuss an effective watering plan, this study proposes a new washout model to clarify a fundamental mechanism of total organic carbon (TOC) elution behavior from MSWI bottom ash layers. The washout model considers three phases: solid, immobile water and mobile water. The parameters, including two mass transfer coefficients of the solid-immobile water phases and immobile-mobile water phases, were determined by one-dimensional column experiments for about 2 years. The intensity, period and frequency of watering and other factors were discussed based on a numerical analysis using the above parameters. As a result, our washout model explained adequately the elution behavior of TOC from the MSWI bottom ash layer before carbonation occurred (pH approximately 8.3). The determined parameters and numerical analysis suggested that there is a possibility that the minimum amount of water needed for washing out TOC per unit weight of MSWI bottom ash layer could be determined, which depends on the two mass transfer coefficients and the depth of the MSWI bottom ash layer. Knowledge about the fundamental mechanism of the elution behavior of TOC from the MSWI bottom ash layer before carbonation occurs, clarified by this study, will help an effective watering plan in CSDFs. PMID:18691865

  19. Sorption and desorption of organic matter on solid-phase extraction media to isolate and identify N-nitrosodimethylamine precursors.

    PubMed

    Hanigan, David; Liao, Xiaobin; Zhang, Jinwei; Herckes, Pierre; Westerhoff, Paul

    2016-07-01

    #x02010;Nitrosodimethylamine is mutagenic in rodents, a drinking water contaminant, and a byproduct of drinking water disinfection by chloramination. Nitrosodimethylamine precursor identification leads to their control and improved understanding of nitrosodimethylamine formation during chloramination. Mass balances on nitrosodimethylamine precursors were evaluated across solid-phase extraction cartridges and in eluates to select the best combination of solid-phase media and eluent that maximized recovery of nitrosodimethylamine precursors into a solvent amenable to time-of-flight mass spectrometry analysis. After reviewing literature and comparing various solid-phase cartridges and eluent combinations, a method was obtained to efficiently recover nitrosodimethylamine precursors. The approach with the greatest recoveries of nitrosodimethylamine precursors involved cation exchange resin loaded with water samples at pH 3 and eluted with 5% NH4 OH in methanol. This indicated that nitrosodimethylamine precursors are amines that protonate at low pH and deprotonate at high pH. Quaternary amines were irreversibly sorbed to the cation exchange cartridge and did not account for a large fraction of precursors. Overall, a median recovery of 82% for nitrosodimethylamine precursors was achieved from 11 surface waters and one wastewater. Applying this method allowed discovery of methadone as a new nitrosodimethylamine precursor in wastewater effluent and drinking water treatment plant intakes. PMID:27184503

  20. Sulfate and organic matter concentration in relation to hydrogen sulfide generation at inert solid waste landfill site - Limit value for gypsum.

    PubMed

    Asakura, Hiroshi

    2015-09-01

    In order to suggest a limit value for gypsum (CaSO4) for the suppression of hydrogen sulfide (H2S) generation at an inert solid waste landfill site, the relationship between raw material (SO4 and organic matter) for H2S generation and generated H2S concentration, and the balance of raw material (SO4) and product (H2S) considering generation and outflow were investigated. SO4 concentration should be less than approximately 100mg-SO4/L in order to suppress H2S generation to below 2000ppm. Total organic carbon (TOC) concentration should be less than approximately 200mg-C/L assuming a high SO4 concentration. The limit value for SO4 in the ground is 60mg-SO4/kg with 0.011wt% as gypsum dihydrate, i.e., approximately 1/10 of the limit value in inert waste as defined by the EU Council Decision (560mg-SO4/kg-waste). The limit value for SO4 in inert waste as defined by the EU Council Decision is high and TOC is strictly excluded. The cumulative amount of SO4 outflow through the liquid phase is much larger than that through the gas phase. SO4 concentration in pore water decreases with time, reaching half the initial concentration around day 100. SO4 reduction by rainfall can be expected in the long term. PMID:26123977

  1. Characterization of the Natural Organic Matter (NOM) in groundwater contaminated with (60)Co and (137)Cs using ultrafiltration, Solid Phase Extraction and fluorescence analysis.

    PubMed

    Caron, François; Siemann, Stefan; Riopel, Rémi

    2014-12-01

    Spot samples of shallow groundwaters have been taken between the years 2004 and 2010 near a site formerly used for the dispersal of radioactive liquid wastes. Three sampling points, one clean (upstream), and two downstream of the contamination source, were processed by ultrafiltration (5000 Da cut-off) and Solid Phase Extraction (SPE) to determine the association of selected artificial radionuclides ((60)Co, (137)Cs) with Natural Organic Matter (NOM). The last two sampling episodes (2008 and 2010) also benefited from fluorescence analysis to determine the major character of the NOM. The fluorescence signals are reported as humic-like, fulvic-like and protein-like, which are used to characterize the different NOM types. The NOM from the clean site comprised mostly fine material, whereas the colloidal content (retained by ultrafiltration) was higher (e.g., 15-40% of the Total Organic Carbon - TOC). Most of the 137Cs was present in the colloidal fraction, whereas (60)Co was found in the filtered fraction. Fluorescence analysis, on the other hand, indicated a contrasting behavior between the clean and contaminated sites, with a dominance of protein-like material, a feature usually associated with human impacts. Finally, SPE removed almost quantitatively the protein-like material (>90%), whereas it removed a much smaller fraction of the (137)Cs (<28%). This finding indicates that the (137)Cs preferential binding occurs with a fraction other than the protein-like NOM, likely the fulvic-like or humic-like portion. PMID:24476752

  2. Estrone degradation: does organic matter (quality), matter?

    PubMed

    Tan, David T; Temme, Hanna R; Arnold, William A; Novak, Paige J

    2015-01-01

    Understanding the parameters that drive E1 degradation is necessary to improve existing wastewater treatment systems and evaluate potential treatment options. Organic matter quality could be an important parameter. Microbial communities grown from activated sludge seeds using different dissolved organic matter sources were tested for E1 degradation rates. Synthetic wastewater was aged, filter-sterilized, and used as a carbon and energy source to determine if recalcitrant organic carbon enhances E1 degradation. Higher E1 degradation was observed by biomass grown on 8 d old synthetic wastewater compared to biomass grown on fresh synthetic wastewater (P = 0.033) despite much lower concentrations of bacteria. Minimal or no E1 degradation was observed in biomass grown on 2 d old synthetic wastewater. Organic carbon analyses suggest that products of cell lysis or microbial products released under starvation stress stimulate E1 degradation. Additional water sources were also tested: lake water, river water, and effluents from a municipal wastewater treatement plant and a treatment wetland. E1 degradation was only observed in biomass grown in treatment effluent. Nitrogen, dissolved organic carbon, and trace element concentrations were not causative factors for E1 degradation. In both experiments, spectrophotometric analyses reveal degradation of E1 is associated with microbially derived organic carbon but not general recalcitrance. PMID:25454582

  3. Ozone uptake on glassy, semi-solid and liquid organic matter and the role of reactive oxygen intermediates in atmospheric aerosol chemistry.

    PubMed

    Berkemeier, Thomas; Steimer, Sarah S; Krieger, Ulrich K; Peter, Thomas; Pöschl, Ulrich; Ammann, Markus; Shiraiwa, Manabu

    2016-05-14

    Heterogeneous and multiphase reactions of ozone are important pathways for chemical ageing of atmospheric organic aerosols. To demonstrate and quantify how moisture-induced phase changes can affect the gas uptake and chemical transformation of organic matter, we apply a kinetic multi-layer model to a comprehensive experimental data set of ozone uptake by shikimic acid. The bulk diffusion coefficients were determined to be 10(-12) cm(2) s(-1) for ozone and 10(-20) cm(2) s(-1) for shikimic acid under dry conditions, increasing by several orders of magnitude with increasing relative humidity (RH) due to phase changes from amorphous solid over semisolid to liquid. Consequently, the reactive uptake of ozone progresses through different kinetic regimes characterised by specific limiting processes and parameters. At high RH, ozone uptake is driven by reaction throughout the particle bulk; at low RH it is restricted to reaction near the particle surface and kinetically limited by slow diffusion and replenishment of unreacted organic molecules. Our results suggest that the chemical reaction mechanism involves long-lived reactive oxygen intermediates, likely primary ozonides or O atoms, which may provide a pathway for self-reaction and catalytic destruction of ozone at the surface. Slow diffusion and ozone destruction can effectively shield reactive organic molecules in the particle bulk from degradation. We discuss the potential non-orthogonality of kinetic parameters, and show how this problem can be solved by using comprehensive experimental data sets to constrain the kinetic model, providing mechanistic insights into the coupling of transport, phase changes, and chemical reactions of multiple species in complex systems. PMID:27095585

  4. Structural changes of humic acids from sinking organic matter and surface sediments investigated by advanced solid-state NMR: Insights into sources, preservation and molecularly uncharacterized components

    NASA Astrophysics Data System (ADS)

    Mao, Jingdong; Tremblay, Luc; Gagné, Jean-Pierre

    2011-12-01

    Knowledge of the structural changes that particulate organic matter (POM) undergoes in natural systems is essential for determining its reactivity and fate. In the present study, we used advanced solid-state NMR techniques to investigate the chemical structures of sinking particulate matter collected at different depths as well as humic acids (HAs) extracted from these samples and underlying sediments from the Saguenay Fjord and the St. Lawrence Lower Estuary (Canada). Compared to bulk POM, HAs contain more non-polar alkyls, aromatics, and aromatic C-O, but less carbohydrates (or carbohydrate-like structures). In the two locations studied, the C and N contents of the samples (POM and HAs) decreased with depth and after deposition onto sediments, leaving N-poor but O-enriched HAs and suggesting the involvement of partial oxidation reactions during POM microbial degradation. Advanced NMR techniques revealed that, compared to the water-column HAs, sedimentary HAs contained more protonated aromatics, non-protonated aromatics, aromatic C-O, carbohydrates (excluding anomerics), anomerics, OC q, O-C q-O, OCH, and OCH 3 groups, but less non-polar alkyls, NCH, and mobile CH 2 groups. These results are consistent with the relatively high reactivity of lipids and proteins or peptides. In contrast, carbohydrate-like structures were selectively preserved and appeared to be involved in substitution and copolymerization reactions. Some of these trends support the selective degradation (or selective preservation) theory. The results provide insights into mechanisms that likely contribute to the preservation of POM and the formation of molecules that escape characterization by traditional methods. Despite the depletion of non-polar alkyls with depth in HAs, a significant portion of their general structure survived and can be assigned to a model phospholipid. In addition, little changes in the connectivities of different functional groups were observed. Substituted and copolymerized

  5. Application of Organic Solid Electrolytes

    NASA Technical Reports Server (NTRS)

    Sekido, S.

    1982-01-01

    If ions are considered to be solid material which transport electric charges, polymer materials can then be considered as organic solid electrolytes. The role of these electrolytes is discussed for (1) ion concentration sensors; (2) batteries using lithium as the cathode and a charge complex of organic material and iodine in the anode; and (3) elements applying electrical double layer capability.

  6. Effects of dissolved organic matter (DOM) sources and nature of solid extraction sorbent on recoverable DOM composition: Implication into potential lability of different compound groups.

    PubMed

    Chen, Meilian; Kim, Sunghwan; Park, Jae-Eun; Kim, Hyun Sik; Hur, Jin

    2016-07-01

    Noting the source-dependent properties of dissolved organic matter (DOM), this study explored the recoverable compounds by solid phase extraction (SPE) of two common sorbents (C18 and PPL) eluted with methanol solvent for contrasting DOM sources via fluorescence excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Fresh algae and leaf litter extracts DOM, one riverine DOM, and one upstream lacustrine DOM were selected for the comparison. C18 sorbent was generally found to extract more diverse molecular formula, relatively higher molecular weight, and more heteroatomic DOM compounds within the studied mass range than PPL sorbent except for the leaf litter extract. Even with the same sorbent, the main molecular features of the two end member DOM were distributed on different sides of the axes of a multivariate ordination, indicating the source-dependent characteristics of the recoverable compounds by the sorbents. In addition, further examination of the molecular formula uniquely present in the two end members and the upstream lake DOM suggested that proteinaceous, tannin-like, and heteroatomic DOM constituents might be potential compound groups which are labile and easily degraded during their mobilization into downstream watershed. This study provides new insights into the sorbent selectivity of DOM from diverse sources and potential lability of various compound groups. PMID:27117255

  7. Multi-component trace analysis of organic xenobiotics in surface water containing suspended particular matter by solid phase extraction/gas chromatography-mass spectrometry.

    PubMed

    Erger, Christine; Balsaa, Peter; Werres, Friedrich; Schmidt, Torsten C

    2012-08-01

    Suspended particulate matter (SPM) often disturbs the analysis of surface water by conventional methods, such as liquid-liquid extraction (LLE) or solid phase extraction (SPE), caused by insufficient extraction or by plugging. Water and SPM are therefore often separately analysed, which is associated with high expenditure of time, work and costs. Hence, SPM is partly ignored, if the fraction of sorptively bound analytes is small compared to the total analyte concentration. However, the European Water Framework Directive (WFD, Directive 2000/60/EC) requires explicitly an investigation of the whole water sample including SPM, because many priority and priority hazardous substances can sorb substantially to SPM. Therefore, an SPE disk based method was developed for the determination of 54 priority and priority hazardous pollutants including polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), polybrominated diphenyl ethers (PBDE), organic chlorinated pesticides (OCP) and other pesticides in surface water containing SPM. The developed SPE disk method allows analysis of 1L surface water containing up to 1000 mg SPM without prior separation of SPM in about 2h including gas chromatography-mass (GC-MS) spectrometry analysis. The limits of quantification vary in a range of 0.8 to 38 ng/L. PMID:22749454

  8. Interstellar organic matter in meteorites

    NASA Technical Reports Server (NTRS)

    Yang, J.; Epstein, S.

    1983-01-01

    Deuterium-enriched hydrogen is present in organic matter in such meteorites as noncarbonaceous chondrites. The majority of the unequilibrated primitive meteorites contain hydrogen whose D/H ratios are greater than 0.0003, requiring enrichment (relative to cosmic hydrogen) by isotope exchange reactions taking place below 150 K. The D/H values presented are the lower limits for the organic compounds derived from interstellar molecules, since all processes subsequent to their formation, including terrestrial contamination, decrease their D/H ratios. In contrast, the D/H ratios of hydrogen associated with hydrated silicates are relatively uniform for the meteorites analyzed. The C-13/C-12 ratios of organic matter, irrespective of D/H ratio, lie well within those observed for the earth. Present findings suggest that other interstellar material, in addition to organic matter, is preserved and is present in high D/H ratio meteorites.

  9. Influence of salinity and natural organic matter on the solid phase extraction of sterols and stanols: application to the determination of the human sterol fingerprint in aqueous matrices.

    PubMed

    Jeanneau, L; Jardé, E; Gruau, G

    2011-05-01

    Faecal sterols have been proposed as direct chemical markers for the determination of faecal contamination in inland and coastal waters. In this study, we assess the impact of (a) the concentration of dissolved organic carbon (DOC), (b) the nature of DOC, (c) the salinity and (d) the concentration of sterols and stanols on their solid phase extraction. When natural organic matter (NOM) is modelled by humic acid, increasing DOC concentration from 2.7 to 15.4 mg/L has no significant impact on the recovery of sterols and stanols. The modelling of NOM by a mixture of humic acid and succinoglycan induces a significant (24%) decrease in the recovery of sterols and stanols. For all concentrations of target compounds, no significant increase in recovery is associated with increasing the salinity. Moreover, an increase in the recovery of target compounds is induced by an increase in their concentration. The nine target compounds and the recovery standard (RS) exhibit the same behaviour during the extraction step. Thus, we propose that (a) the concentration of target compounds can be corrected by the RS to calculate more realistic concentrations without modifying their profile and (b) the sterol fingerprint can be investigated in the colloidal fraction of aqueous samples without altering the information it could provide about the source. The application of this analytical method to waste water treatment plant influent and effluents yields results in agreement with previous studies concerning the use of those compounds to differentiate between sources of faecal contamination. We conclude that this analytical method is fully applicable to the determination of sterol fingerprints in the dissolved phase (<0.7 μm) of natural aqueous samples. PMID:21420686

  10. Solid-solution partitioning of organic matter in soils as influenced by an increase in pH or Ca concentration.

    PubMed

    Oste, L A; Temminghoff, E J M; van Riemsdijk, W H

    2002-01-15

    Organic matter is an important component of soil with regard to the binding of contaminants. Hence, the partitioning of organic matter influences the partitioning of soil contaminants. The partitioning of organic matter is, among other factors, influenced by the ionic composition and ionic strength of the soil solution. This study focuses on the behavior of organic matter after a change in the ionic composition of the soil solution, particularly in Ca concentration and pH. Different amounts of Ca(NO3)2 and NaOH were added to soil suspensions. The dissolved organic carbon (DOC) concentration increased with increasing pH (addition of NaOH), whereas an increase in Ca (addition of Ca(NO3)2) had the opposite effect. A stronger increase in DOC was observed if a single dose of NaOH was added, compared to a gradual addition of the same amount of NaOH. Cation binding by organic matter in the supernatant was calculated using the NICA-Donnan model. The log DOC concentration appeared to be correlated to the Donnan potential, calculated under the assumption that all DOC equals humic acid. This correlation was found for all eight neutral to acidic soils used in this study, although the slopes and elevations of the regression lines varied. The slope varied by a factor of 2 and the elevation appeared to be strongly influenced by the DOC concentration in the untreated soils, which is related to the total organic matter in the soil. Finally, we predicted the Donnan potential on the basis of an extraction of untreated soil with 0.03 M NaNO3, and the total additions of Ca(NO3)2 and NaOH. Comparison of these predictions with speciation calculations in solution showed a good correlation, indicating that a combination of one batch experiment and the presented calculation procedure can provide good estimations of DOC concentrations after addition of chemicals. PMID:11831217

  11. Organic Matter in the Outer Solar System

    NASA Technical Reports Server (NTRS)

    Cruiskshank, Dale P.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Many solid bodies in the outer Solar System are covered with ices of various compositions, including water, carbon dioxide, methane, nitrogen, and other molecules that are solid at the low temperatures that prevail there. These ices have all been detected by remote sensing observations made with telescopes on Earth, or more recently, spacecraft in orbit (notably Galileo at Jupiter). The data also reveal other solid materials that could be minerals or complex carbon-bearing organic molecules. A study in progress using large ground-based telescopes to acquire infrared spectroscopic data, and laboratory results on the optical properties of complex organic matter, seeks to identify the non-icy materials on several satellites of Saturn, Uranus, and Neptune. The work on the satellites of Saturn is in part preparatory to the Cassini spacecraft investigation of the Saturn system, which will begin in 2004 and extend for four years.

  12. Solid organ donation and transplantation.

    PubMed

    Furlow, Bryant

    2012-01-01

    Medical imaging plays a key role in solid organ donation and transplantation. In addition to confirming the clinical diagnosis of brain death, imaging examinations are used to assess potential organ donors and recipients, evaluate donated organs, and monitor transplantation outcomes. This article introduces the history, biology, ethics, and institutions of organ donation and transplantation medicine. The article also discusses current and emerging imaging applications in the transplantation field and the controversial role of neuroimaging to confirm clinically diagnosed brain death. PMID:22461345

  13. Similarities in chemical composition of soil organic matter across a millennia-old paddy soil chronosequence as revealed by advanced solid-state NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil organic matter (SOM) accumulation in paddy soils has aroused considerable attention due to its vital significance in global food, energy, climate, and environmental issues. Considerable progress has been made toward the understanding of changes in the quantity of SOM in paddy soils over a mille...

  14. Potential traceable markers of organic matter in organic and conventional dairy manure using ultraviolet–visible and solid-state 13C nuclear magnetic resonance spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic dairy (OD) production is drawing increasing attention because of public concerns about food safety, animal welfare and the potential environmental impacts of conventional dairy (CD) systems. However, very limited information is available on how organic farming practices affect the chemical ...

  15. Extraterrestrial organic matter: a review.

    PubMed

    Irvine, W M

    1998-10-01

    We review the nature of the widespread organic material present in the Milky Way Galaxy and in the Solar System. Attention is given to the links between these environments and between primitive Solar System objects and the early Earth, indicating the preservation of organic material as an interstellar cloud collapsed to form the Solar System and as the Earth accreted such material from asteroids, comets and interplanetary dust particles. In the interstellar medium of the Milky Way Galaxy more than 100 molecular species, the bulk of them organic, have been securely identified, primarily through spectroscopy at the highest radio frequencies. There is considerable evidence for significantly heavier organic molecules, particularly polycyclic aromatics, although precise identification of individual species has not yet been obtained. The so-called diffuse interstellar bands are probably important in this context. The low temperature kinetics in interstellar clouds leads to very large isotopic fractionation, particularly for hydrogen, and this signature is present in organic components preserved in carbonaceous chondritic meteorites. Outer belt asteroids are the probable parent bodies of the carbonaceous chondrites, which may contain as much as 5% organic material, including a rich variety of amino acids, purines, pyrimidines, and other species of potential prebiotic interest. Richer in volatiles and hence less thermally processed are the comets, whose organic matter is abundant and poorly characterized. Cometary volatiles, observed after sublimation into the coma, include many species also present in the interstellar medium. There is evidence that most of the Earth's volatiles may have been supplied by a 'late' bombardment of comets and carbonaceous meteorites, scattered into the inner Solar System following the formation of the giant planets. How much in the way of intact organic molecules of potential prebiotic interest survived delivery to the Earth has become an

  16. Extraterrestrial organic matter: a review

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.

    1998-01-01

    We review the nature of the widespread organic material present in the Milky Way Galaxy and in the Solar System. Attention is given to the links between these environments and between primitive Solar System objects and the early Earth, indicating the preservation of organic material as an interstellar cloud collapsed to form the Solar System and as the Earth accreted such material from asteroids, comets and interplanetary dust particles. In the interstellar medium of the Milky Way Galaxy more than 100 molecular species, the bulk of them organic, have been securely identified, primarily through spectroscopy at the highest radio frequencies. There is considerable evidence for significantly heavier organic molecules, particularly polycyclic aromatics, although precise identification of individual species has not yet been obtained. The so-called diffuse interstellar bands are probably important in this context. The low temperature kinetics in interstellar clouds leads to very large isotopic fractionation, particularly for hydrogen, and this signature is present in organic components preserved in carbonaceous chondritic meteorites. Outer belt asteroids are the probable parent bodies of the carbonaceous chondrites, which may contain as much as 5% organic material, including a rich variety of amino acids, purines, pyrimidines, and other species of potential prebiotic interest. Richer in volatiles and hence less thermally processed are the comets, whose organic matter is abundant and poorly characterized. Cometary volatiles, observed after sublimation into the coma, include many species also present in the interstellar medium. There is evidence that most of the Earth's volatiles may have been supplied by a 'late' bombardment of comets and carbonaceous meteorites, scattered into the inner Solar System following the formation of the giant planets. How much in the way of intact organic molecules of potential prebiotic interest survived delivery to the Earth has become an

  17. Photodissolution of soil organic matter

    USGS Publications Warehouse

    Mayer, L.M.; Thornton, K.R.; Schick, L.L.; Jastrow, J.D.; Harden, J.W.

    2012-01-01

    Sunlight has been shown to enhance loss of organic matter from aquatic sediments and terrestrial plant litter, so we tested for similar reactions in mineral soil horizons. Losses of up to a third of particulate organic carbon occurred after continuous exposure to full-strength sunlight for dozens of hours, with similar amounts appearing as photodissolved organic carbon. Nitrogen dissolved similarly, appearing partly as ammonium. Modified experiments with interruption of irradiation to include extended dark incubation periods increased loss of total organic carbon, implying remineralization by some combination of light and microbes. These photodissolution reactions respond strongly to water content, with reaction extent under air-dry to fully wet conditions increasing by a factor of 3-4 fold. Light limitation was explored using lamp intensity and soil depth experiments. Reaction extent varied linearly with lamp intensity. Depth experiments indicate that attenuation of reaction occurs within the top tens to hundreds of micrometers of soil depth. Our data allow only order-of-magnitude extrapolations to field conditions, but suggest that this type of reaction could induce loss of 10-20% of soil organic carbon in the top 10. cm horizon over a century. It may therefore have contributed to historical losses of soil carbon via agriculture, and should be considered in soil management on similar time scales. ?? 2011 Elsevier B.V.

  18. Conversion of organic solids to hydrocarbons

    DOEpatents

    Greenbaum, E.

    1995-05-23

    A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon. 5 Figs.

  19. Conversion of organic solids to hydrocarbons

    DOEpatents

    Greenbaum, Elias

    1995-01-01

    A method of converting organic solids to liquid and gaseous hydrocarbons includes impregnating an organic solid with photosensitizing ions and exposing the impregnated solid to light in a non-oxidizing atmosphere for a time sufficient to photocatalytically reduce the solid to at least one of a liquid and a gaseous hydrocarbon.

  20. The contentious nature of soil organic matter.

    PubMed

    Lehmann, Johannes; Kleber, Markus

    2015-12-01

    The exchange of nutrients, energy and carbon between soil organic matter, the soil environment, aquatic systems and the atmosphere is important for agricultural productivity, water quality and climate. Long-standing theory suggests that soil organic matter is composed of inherently stable and chemically unique compounds. Here we argue that the available evidence does not support the formation of large-molecular-size and persistent 'humic substances' in soils. Instead, soil organic matter is a continuum of progressively decomposing organic compounds. We discuss implications of this view of the nature of soil organic matter for aquatic health, soil carbon-climate interactions and land management. PMID:26595271

  1. Land Application of Wastes: An Educational Program. Organic Matter - Module 17, Objectives, and Script.

    ERIC Educational Resources Information Center

    Clarkson, W. W.; And Others

    This module sketches out the impact of sewage organic matter on soils. For convenience, that organic matter is separated into the readily decomposable compounds and the more resistant material (volatile suspended solids, refractory organics, and sludges). The fates of those organics are reviewed along with loading rates and recommended soil…

  2. Priming of native soil organic matter by pyrogenic organic matter

    NASA Astrophysics Data System (ADS)

    DeCiucies, Silene; Dharmakeerthi, Saman; Whitman, Thea; Woolf, Dominic; Lehmann, Johannes

    2015-04-01

    Priming, in relation to pyrogenic organic matter (PyOM), describes the change in mineralization rate of non-pyrogenic ("native") soil organic matter (nSOM) due to the addition of PyOM. Priming may be 'positive', in that the addition of pyC increases the mineralization rate of native SOM, or 'negative', in that the mineralization rate of nSOM is decreased. Reasons for increased mineralization may include: (i) co-metabolism: microbial decomposition of labile C-additions increases microbial activity, and facilitates additional decomposition of npSOC by active enzymes; (ii) stimulation: substrate additions result in lifted pH, nutrient, oxygen, or water constraints resulting in increased microbial activity. Decreased mineralization may be a result of: (i) inhibition: the opposite of stimulation whereby constraints are aggravated by substrate addition. Substrate addition may also cause inhibition by interfering with enzymes or signaling compounds; (ii) preferential substrate utilization: labile fraction of PyOM additions are preferentially used up by microbes thus causing a decrease in nSOC decomposition; (iii) sorption: organic compounds are adsorbed onto PyOM surfaces, decreasing their rate of mineralization; (iv) stabilization: formation of organo-mineral associations forms stable SOC pools. We have conducted a suite of experiments to investigate these potential interactions. In a seven year long incubation study, PyOM additions increased total OM mineralization for the first 2.5 years, was equal to control after 6.2 years, and was 3% lower after 7.1 years. Cumulative nSOM mineralization was 23% less with the PyOM additions than without, and over 60% of the added PyOM was present in the labile soil fraction after the 7.1 year incubation. Two additional incubation studies, one with and without plants, showed greater nSOM mineralization in the short term and lower nSOM mineralization over the long term. Increased nSOC mineralization due to the presence of plants was

  3. Hydrogenation of organic solid wastes

    SciTech Connect

    Wu, W.R.K.; Kawa, W.

    1980-02-01

    Eight organic solid wastes, six cellulosic and two noncellulosic, were hydrogenated batchwise with and without a catalyst. Conversions obtained range from 64 to 98 % of moisture- and ash-free (maf) raw material; oil yields, 10 to 59 %; and gaseous hydrocarbon yields, 7 to 16 %. Based on batch hydrogenation results, the oil production from large-scale hydrogenation of the wastes is projected to be 1.6 to 3.5 bbl/ton of maf raw material; the gaseous-hydrocarbon production, 2000 to 4100 standard cubic feet (scf). Activities of the two catalysts (SnCl/sub 2// and a combination of Fe/sub 2/O/sub 3/ and H/sub 2/S) used in the hydrogenation of the wastes are discussed. Also discussed are the chemical reactions and mechanisms involved in the hydrogenation, potential market for the product oil, and possible improvement of the oil yield. Elemental compositions of the hydrogenation oils and types of hydrocarbons including oxygenated hydrocarbons found in the oils are presented. The energy equivalent of the organic solid wastes generated in the United States in 1973 is shown to be 27 % of the nation's total 1972 energy production.

  4. Spectral fingerprinting of soil organic matter composition

    NASA Astrophysics Data System (ADS)

    Cecillon, L.; Certini, G.; Lange, H.; Forte, C.; Strand, L. T.

    2009-04-01

    The determination of soil organic matter (SOM) composition relies on a variety of chemical and physical methods, most of them time consuming and expensive. Hitherto, such methodological limitations have hampered the use of detailed SOM composition in process-based models of SOM dynamics, which usually include only three poorly defined carbon pools. Here we show a novel approach merging both near and mid infrared spectroscopy into a single fingerprint for an expeditious prediction of the molecular composition of organic materials in soil, as inferred from a molecular mixing model (MMM) based on 13C nuclear magnetic resonance (NMR), which describes SOM as a mixture of common biologically derived polymers. Infrared and solid-state 13C NMR spectroscopic measurements were performed on a set of mineral and organic soil samples presenting a wide range of organic carbon content (2 to 500 g kg-1), collected in a boreal heathland (Storgama, Norway). The implementation of the MMM using 13C NMR spectra allowed the calculation of five main biochemical components (carbohydrate, protein, lignin, lipids and black carbon) for each sample. Partial least squares regression models were developed for the five biopolymers using outer product analysis of near and mid infrared spectra (Infrared-OPA). All models reached ratios of performance to deviation (RPD) above 2 and specific infrared wavenumbers associated to each biochemical component were identified. Our results demonstrate that Infrared-OPA provides a robust and cost-effective fingerprint of SOM composition that could be useful for the routine assessment of soil carbon pools.

  5. Rosetta/COSIMA: Laboratory time-of-flight secondary ion mass spectra of PAHs for in-situ detection in the cometary solid organic matter

    NASA Astrophysics Data System (ADS)

    Bardyn, A.; Briois, C.; Cottin, H.; Fray, N.; LeRoy, L.; Thirkell, L.; Hilchenbach, M.

    2014-07-01

    ESA's spacecraft called ROSETTA will reach the comet 67P/Churyumov- Gerasimenko in August 2014. During the escort phase of the mission, beginning after the lander (Philae) is released, the COmetary Secondary Ion Mass Analyzer (COSIMA) [1] carried on board will collect and analyse dust grains in the cometary coma. COSIMA is a time-of-flight secondary ion mass spectrometer (TOF-SIMS) with a high mass resolution m/Δ m of 1400 at mass m=100 amu (from FWHM) and mass range from 1 to 3500 amu. The investigations performed by COSIMA on solid cometary grains are aimed to analyze in situ their molecular, elemental, and isotopic composition. The spectra obtained with COSIMA, will be a combination of mass peaks of mineral and organic elements. The organics are expected to be minor peaks, making their identification not simple. To prepare for the future COSIMA spectra interpretation, the COSIMA team members have started to establish a library database of standardized mass spectra [2,3]. High statistics of positive and negative spectra of the samples were then taken in order to get molecular structure information. Polycyclic Aromatic Hydrocarbons (PAHs) are organic macromolecules that could survive harsh radiation environment. They are suspected to be responsible for unidentified infrared bands observed in diverse astrophysical environments. Many attempts were made to demonstrate the presence of PAHs in comets. Tentative attributions of fluorescence emission bands have been made of spectra taken during the Vega-2 mission [4,5], and recently on Stardust samples returned [6]. In this work, we have used the COSIMA prototype based in Orléans to analyze PAHs and alkanes molecules deposition on gold targets.

  6. Cumulative effects of biochar, mineral and organic fertilizers on soil organic matter

    NASA Astrophysics Data System (ADS)

    Plaza, César; López-de-Sá, Esther G.; Gascó, Gabriel; Méndez, Ana; Zaccone, Claudio

    2016-04-01

    We investigated the effect of three consecutive annual applications of biochar at rates of 0 and 20 t ha-1, in a factorial combination with a mineral fertilizer (NPK and nitrosulfate) and two types of organic amendment (municipal solid waste compost and sewage sludge), on soil organic matter in a field experiment under Mediterranean conditions. Biochar increased significantly soil organic C content and C/N ratio. In biochar-amended soils, soil organic C increased significantly with the addition of municipal solid waste compost and sewage sludge. To capture organic matter protection mechanisms related to aggregation and mineral interaction, the soil samples will be fractionated into free (unprotected), intra-macroaggregate, intra-microaggregate, and mineral-associated organic matter pools, and the isolated fractions will be subjected to further chemical and spectroscopic analysis.

  7. Soil Organic Matter in Agricultural Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In agricultural systems, soil organic matter (SOM) has been recognized as an important source of nutrients and maintains favorable soil structure. Organic matter is considered a major binding agent that stabilizes soil aggregates. Soil aggregates especially, water stable aggregates, are important i...

  8. Kinetics of desorption of organic compounds from dissolved organic matter.

    PubMed

    Kopinke, Frank-Dieter; Ramus, Ksenia; Poerschmann, Juergen; Georgi, Anett

    2011-12-01

    This study presents a new experimental technique for measuring rates of desorption of organic compounds from dissolved organic matter (DOM) such as humic substances. The method is based on a fast solid-phase extraction of the freely dissolved fraction of a solute when the solution is flushed through a polymer-coated capillary. The extraction interferes with the solute-DOM sorption equilibrium and drives the desorption process. Solutes which remain sorbed to DOM pass through the extraction capillary and can be analyzed afterward. This technique allows a time resolution for the desorption kinetics from subseconds up to minutes. It is applicable to the study of interaction kinetics between a wide variety of hydrophobic solutes and polyelectrolytes. Due to its simplicity it is accessible for many environmental laboratories. The time-resolved in-tube solid-phase microextraction (TR-IT-SPME) was applied to two humic acids and a surfactant as sorbents together with pyrene, phenanthrene and 1,2-dimethylcyclohexane as solutes. The results give evidence for a two-phase desorption kinetics: a fast desorption step with a half-life of less than 1 s and a slow desorption step with a half-life of more than 1 min. For aliphatic solutes, the fast-desorbing fraction largely dominates, whereas for polycyclic aromatic hydrocarbons such as pyrene, the slowly desorbing, stronger-bound fraction is also important. PMID:22035249

  9. Environmental factors regulating soil organic matter chlorination

    NASA Astrophysics Data System (ADS)

    Svensson, Teresia; Montelius, Malin; Reyier, Henrik; Rietz, Karolina; Karlsson, Susanne; Lindberg, Cecilia; Andersson, Malin; Danielsson, Åsa; Bastviken, David

    2016-04-01

    Natural chlorination of organic matter is common in soils. Despite the widespread abundance of soil chlorinated soil organic matter (SOM), frequently exceeding soil chloride abundance in surface soils, and a common ability of microorganisms to produce chlorinated SOM, we lack fundamental knowledge about dominating processes and organisms responsible for the chlorination. To take one step towards resolving the terrestrial chlorine (Cl) puzzle, this study aims to analyse how environmental factors influence chlorination of SOM. Four factors were chosen for this study: soil moisture (W), nitrogen (N), chloride (Cl) and organic matter quality (C). These factors are all known to be important for soil processes. Laboratory incubations with 36Cl as a Cl tracer were performed in a two soil incubation experiments. It was found that addition of chloride and nitrogen seem to hamper the chlorination. For the C treatment, on the other hand, the results show that chlorination is enhanced by increased availability of labile organic matter (glucose and maltose). Even higher chlorination was observed when nitrogen and water were added in combination with labile organic matter. The effect that more labile organic matter strongly stimulated the chlorination rates was confirmed by the second separate experiment. These results indicate that chlorination was not primarily a way to cut refractory organic matter into digestible molecules, representing one previous hypothesis, but is related with microbial metabolism in other ways that will be further discussed in our presentation.

  10. Chemodestructive fractionation of soil organic matter

    NASA Astrophysics Data System (ADS)

    Popov, A. I.; Rusakov, A. V.

    2016-06-01

    The method of chemodestructive fractionation is suggested to assess the composition of soil organic matter. This method is based on determination of the resilience of soil organic matter components and/or different parts of organic compounds to the impact of oxidizing agents. For this purpose, a series of solutions with similar concentration of the oxidant (K2Cr2O7), but with linearly increasing oxidative capacity was prepared. Chemodestructive fractionation showed that the portion of easily oxidizable (labile) organic matter in humus horizons of different soil types depends on the conditions of soil formation. It was maximal in hydromorphic soils of the taiga zone and minimal in automorphic soils of the dry steppe zone. The portion of easily oxidizable organic matter in arable soils increased with an increase in the rate of organic fertilizers application. The long-lasting agricultural use of soils and burying of the humus horizons within the upper one-meter layer resulted in the decreasing content of easily oxidizable organic matter. It was found that the portion of easily oxidizable organic matter decreases by the mid-summer or fall in comparison with the spring or early summer period.

  11. Solid organ transplantation and HIV infection.

    PubMed

    Polak, Wojciech G; Gładysz, Andrzej

    2003-01-01

    HIV infection has been traditionally considered to be an absolute contraindication for solid organ transplantation. Recent advances in HIV treatment, as highly active antiretroviral therapy (HAART), significantly reduced HIV-related mortality and morbidity. At the same time the number of HIV-infected patients with end-stage organ diseases constantly increased. Current data describing solid organ transplantation in HIV-infected patients demonstrated comparable outcome to that in the HIV-negative population. In light of this, solid organ transplantation should be considered as a treatment option for selected HIV-positive patients with end-stage organ disease. PMID:15171000

  12. ENVIRONMENTAL PHOTOPROCESSES INVOLVING NATURAL ORGANIC MATTER

    EPA Science Inventory

    Current research is reviewed on the photoreactions that occur when sunlight interacts with soil and aquatic organic matter. The primary focus is on photoprocesses involving humic substances. Investigations of the direct photoreactions of humic substances are discussed, with empha...

  13. Protective glove material permeation by organic solids.

    PubMed

    Fricker, C; Hardy, J K

    1992-12-01

    A method has been developed for the determination of permeation characteristics of glove materials by organic solids. The system employs a stainless steel exposure cell and allows rapid and uniform contact of either solid disks or powders with minimal membrane bowing. A gas chromatograph equipped with a flame ionization detector was used for monitoring the permeation process, which provided detection limits of 0.9-1.2 ng for the organic solids evaluated. By using an automated system for instrument control and data collection, breakthrough times, steady-state times, and steady-state permeation rates have been determined for five common glove materials when exposed to nine organic solids. PMID:1471595

  14. NMR doesn't lie or how solid-state NMR spectroscopy contributed to a better understanding of the nature and function of soil organic matter (Philippe Duchaufour Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Knicker, Heike

    2016-04-01

    "Nuclear magnetic resonance (NMR) does not lie". More than anything else, this statement of a former colleague and friend has shaped my relation to solid-state NMR spectroscopy. Indeed, if this technique leads to results which contradict the expectations, it is because i) some parts of the instrument are broken, ii) maladjustment of the acquisition parameters or iii) wrong preparation or confusion of samples. However, it may be even simpler, namely that the expectations were wrong. Of course, for researchers, the latter is the most interesting possibility since it forces to reassess accepted views and to search for new explanations. As my major analytical tool, NMR spectroscopy has confronted me with this challenge often enough to turn this issue into the main subject of my talk and to share with the audience how it formed my understanding of function and nature of soil organic matter (SOM). Already shortly after its introduction into soil science in the 1980's, the data obtained with solid-state 13C NMR spectroscopy opened the stage for ongoing discussions, since they showed that in humified SOM aromatic carbon is considerably less important than previously thought. This finding had major implications regarding the understanding of the origin of SOM and the mechanisms by which it is formed. Certainly, the discrepancy between the new results and previous paradigms contributed to mistrust in the reliability of solid-state NMR techniques. The respective discussion has survived up to our days, although already in the 1980's and 1990's fundamental studies could demonstrate that quantitative solid-state NMR data can be obtained if i) correct acquisition parameters are chosen, ii) the impact of paramagnetic compounds is reduced and iii) the presence of soot in soils can be excluded. On the other hand, this mistrust led to a detailed analysis of the impact of paramagnetics on the NMR behavior of C groups which then improved our understanding of the role of carbohydrates

  15. Optimized strategy of 1H and 13C solid-state NMR methods to investigate water dynamics in soil organic matter as well as the influence of crystallinity of poly(methylene) segments

    NASA Astrophysics Data System (ADS)

    Bertmer, Marko; Jaeger, Alexander; Schwarz, Jette; Schaumann, Gabriele

    2010-05-01

    Water plays a crucial role in soil organic matter (SOM) having various different functions such as transport of material, elution of ,e. g., pollutants in soil, and also the sequestration of humic substances. Furthermore, the generation and quantification of hydrophilic and hydrophobic regions in soil has several effects on SOM which can also include the storage amount and time of certain material, especially chemical pollutants. The importance of water in soil is also documented by the multitude of scientific approaches to characterize soils including diffusion NMR to study the water channel structure in soil. Our focus is on the study of water dynamics and soil structure to elucidate mechanisms of physicochemical aging. The approach uses the application of various solid-state NMR techniques - including 1H and 13C NMR - to get a multitude of information on SOM. In non-rotating samples, 1H lines are usually very broad and unstructured. Nevertheless, this rather simple technique allows for a differentiation of 1H containing chemicals based on their dynamics in soil. This includes rather solid soil components and solid as well as mobile water molecules. Based on an optimized 1H solid-state NMR strategy to study soil material together with a straightforward lineshape analysis, a series of soils and peats are characterized. Although even 1H NMR with sample spinning (MAS) often gives only limited information on different structures, we present results on the application of 2D 1H-1H phase-modulated Lee-Goldburg sequences (PMLG), that show already at medium spinning speeds the separation of functional groups. Their quantification can be correlated with sample composition, type of sample conditioning, and other parameters such as cation type or concentration and heat treatment. We are especially interested to correlate NMR data with DSC measurements based on a certain heat treatment of the soils. Our proposed model describes the presence of water in soil as a matrix

  16. Ionic Liquid Extractions of Soil Organic Matter

    NASA Astrophysics Data System (ADS)

    Patti, Antonio; Macfarlane, Douglas; Clarke, Michael

    2010-05-01

    A large range of ionic liquids with the ability to dissolve different classes of natural biopolymers (e.g. cellulose, lignin, protein) have been reported in the literature. These have the potential to isolate different fractions of soil organic matter, thus yielding novel information that is not available through other extraction procedures. The ionic liquids dimethylammonium dimethylcarbamate (DIMCARB), alkylbenzenesulfonate and 1-butyl-3methylimidazolium chloride (Bmim Cl) can solubilise selected components of soil organic matter. Soil extractions with these materials showed that the organic matter recovered showed chemical properties that were consistent with humic substances. These extracts had a slightly different organic composition than the humic acids extracted using the traditional International Humic Substances Society (IHSS) method. The ionic liquids also solubilised some inorganic matter from the soil. Humic acids recovered with alkali were also partially soluble in the ionic liquids. DIMCARB appeared to chemically interfere with organic extract, increasing the level of nitrogen in the sample. It was concluded that the ionic liquid Bmim Cl may function as a useful solvent for SOM, and may be used to recover organic matter of a different character to that obtained with alkali

  17. [Solid organ transplantation in the Czech Republic].

    PubMed

    Kuman, Milan

    2015-01-01

    Solid organ transplantation (heart, lung, liver, kidney, pancreas, small interesting and their combinations) are standard therapy of terminal organ failure. Czech Republic belongs to the states with developed transplantation program. The results correspond with current knowledge and results of leading centers in the world, as demostrated in this article. Organ donor shortage is major factor limiting development of organ transplantations as elsewhere in the Europe or in the world. PMID:26375707

  18. Ground-fire effects on the composition of dissolved and total organic matter in forest floor and soil solutions from Scots pine forests in Germany: new insights from solid state 13C NMR analysis

    NASA Astrophysics Data System (ADS)

    Näthe, Kerstin; Michalzik, Beate; Levia, Delphis; Steffens, Markus

    2016-04-01

    Fires represent an ecosystem disturbance and are recognized to seriously pertubate the nutrient budgets of forested ecosystems. While the effects of fires on chemical, biological, and physical soil properties have been intensively studied, especially in Mediterranean areas and North America, few investigations examined the effects of fire-induced alterations in the water-bound fluxes and the chemical composition of dissolved and particulate organic carbon and nitrogen (DOC, POC, DN, PN). The exclusion of the particulate organic matter fraction (0.45 μm < POM < 500 μm) potentially results in misleading inferences and budgeting gaps when studying the effects of fires on nutrient and energy fluxes. To our best knowledge, this is the first known study to present fire-induced changes on the composition of dissolved and total organic matter (DOM, TOM) in forest floor (FF) and soil solutions (A, B horizon) from Scots pine forests in Germany. In relation to control sites, we test the effects of low-severity fires on: (1) the composition of DOM and TOM in forest floor and soil solutions; and (2) the translocated amount of particulate in relation to DOC and DN into the subsoil. The project aims to uncover the mechanisms of water-bound organic matter transport along an ecosystem profile and its compositional changes following a fire disturbance. Forest floor and soil solutions were fortnightly sampled from March to December 2014 on fire-manipulated and control plots in a Scots pine forest in Central Germany. Shortly after the experimental duff fire in April 2014 pooled solutions samples were taken for solid-state 13C NMR spectroscopy to characterize DOM (filtered solution < 0.8μm pore size) and TOM in unfiltered solutions. Independent from fire manipulation, the composition of TOM was generally less aromatic (aromaticity index [%] according to Hatcher et al., 1981) with values between 18 (FF) - 25% (B horizon) than the DOM fraction with 23 (FF) - 27% (B horizon). For DOM

  19. Organic Matter Loading Affects Lodgepole Pine Seedling Growth

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohua; Li, Qinglin; Waterhouse, M. J.; Armleder, H. M.

    2012-06-01

    Organic matter plays important roles in returning nutrients to the soil, maintaining forest productivity and creating habitats in forest ecosystems. Forest biomass is in increasing demand for energy production, and organic matter has been considered as a potential supply. Thus, an important management question is how much organic matter should be retained after forest harvesting to maintain forest productivity. To address this question, an experimental trial was established in 1996 to evaluate the responses of lodgepole pine seedling growth to organic matter loading treatments. Four organic matter loading treatments were randomly assigned to each of four homogeneous pine sites: removal of all organic matter on the forest floor, organic matter loading quantity similar to whole-tree-harvesting residuals left on site, organic matter loading quantity similar to stem-only-harvesting residuals, and organic matter loading quantity more similar to what would be found in disease- or insect-killed stands. Our 10-year data showed that height and diameter had 29 and 35 % increase, respectively, comparing the treatment with the most organic matter loading to the treatment with the least organic matter loading. The positive response of seedling growth to organic matter loading may be associated with nutrients and/or microclimate change caused by organic matter, and requires further study. The dynamic response of seedling growth to organic matter loading treatments highlights the importance of long-term studies. Implications of those results on organic matter management are discussed in the context of forest productivity sustainability.

  20. HEALTH ASSESSMENT DOCUMENT FOR POLYCYCLIC ORGANIC MATTER

    EPA Science Inventory

    The document responds to Section 122 of the Clean Air Act as Amended August 1977, which requires the Administrator to decide whether atmospheric emissions of polycyclic organic matter (POM) potentially endanger public health. This document reviews POM data on chemical and physica...

  1. Calculation of the thermodynamic properties at elevated temperatures and pressures of saturated and aromatic high molecular weight solid and liquid hydrocarbons in kerogen, bitumen, petroleum, and other organic matter of biogeochemical interest

    NASA Astrophysics Data System (ADS)

    Richard, Laurent; Helgeson, Harold C.

    1998-12-01

    To supplement the relatively sparse set of calorimetric data available for the multitude of high molecular weight organic compounds of biogeochemical interest, group additivity algorithms have been developed to estimate heat capacity power function coefficients and the standard molal thermodynamic properties at 25°C and 1 bar of high molecular weight compounds in hydrocarbon source rocks and reservoirs, including crystalline and liquid isoprenoids, steroids, tricyclic diterpenoids, hopanoids, and polynuclear aromatic hydrocarbons. A total of ninety-six group contributions for each coefficient and property were generated from the thermodynamic properties of lower molecular weight reference species for which calorimetric data are available in the literature. These group contributions were then used to compute corresponding coefficients and properties for ˜360 representative solid and liquid high molecular weight compounds in kerogen, bitumen, and petroleum for which few or no experimental data are available. The coefficients and properties of these high molecular weight compounds are summarized in tables, together with those of the groups and reference species from which they were generated. The tabulated heat capacity power function coefficients and standard molal thermodynamic properties at 25°C and 1 bar include selected crystalline and liquid regular, irregular and highly branched isoprenoids, tricyclic diterpanes, 17α(H)- and 17β(H)-hopanes, 5α(H),14α(H)-, 5β(H),14α(H)-, 5α(H),14β(H)-, and 5β(H),14β(H)-steranes, double ether- and ester-bonded n-alkanes, and various polynuclear aromatic hydrocarbons, including methylated biphenyls, naphthalenes, phenanthrenes, anthracenes, pyrenes, and chrysenes. However, corresponding coefficients and properties for many more saturated and unsaturated high molecular weight hydrocarbons can be estimated from the equations of state group additivity algorithms. Calculations of this kind permit comprehensive

  2. Calculation of the thermodynamic properties at elevated temperatures and pressures of saturated and aromatic high molecular weight solid and liquid hydrocarbons in kerogen, bitumen, petroleum, and other organic matter of biogeochemical interest

    SciTech Connect

    Richard, L.; Helgeson, H.C.

    1998-12-01

    To supplement the relatively sparse set of calorimetric data available for the multitude of high molecular weight organic compounds of biogeochemical interest, group additivity algorithms have been developed to estimate heat capacity power function coefficients and the standard molal thermodynamic properties at 25 C and 1 bar of high molecular weight compounds in hydrocarbon source rocks and reservoirs, including crystalline and liquid isoprenoids, steroids, tricyclic diterpenoids, hopanoids, and polynuclear aromatic hydrocarbons. A total of ninety-six group contributions for each coefficient and property were generated from the thermodynamic properties of lower molecular weight reference species for which calorimetric data are available in the literature. These group contributions were then used to compute corresponding coefficients and properties for {approximately}360 representative solid and liquid high molecular weight compounds in kerogen, bitumen, and petroleum for which few or no experimental data are available. The coefficients and properties of these high molecular weight compounds are summarized in tables, together with those of the groups and reference species from which they were generated. The tabulated heat capacity power function coefficients and standard molal thermodynamic properties at 25 C and 1 bar include selected crystalline and liquid regular, irregular and highly branched isoprenoids, tricyclic diterpanes, 17{alpha}(H)- and 17{beta}(H)-hopanes, 5{alpha}(H),14{alpha}(H)-, 5{beta}(H),14{alpha}(H)-, 5{alpha}(H),14{beta}(H)-, and 5{beta}(H),14{beta}(H)-steranes, double ether- and ester-bonded n-alkanes, and various polynuclear aromatic hydrocarbons, including methylated biphenyls, naphthalenes, phenanthrenes, anthracenes, pyrenes, and chrysenes. However, corresponding coefficients and properties for many more saturated and unsaturated high molecular weight hydrocarbons can be estimated from the equations of state group additivity algorithms

  3. Organic matter of urban soils: A review

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.

    2015-08-01

    Urban environment exerts an ambiguous effect on the organic pool of soils; it may decrease (as compared to the background values) in some parts of a city and increase in other parts. The organic matter accumulation in urban soils is promoted by the input of aerial organic pollutants; slowed down mineralization of plant residues under the influence of contamination; and increased productivity of the plants owing to elevated temperatures, high content of carbon dioxide in the air, and maintenance of green zones (sodding of vast areas in cities, application of peat, irrigation and drainage of soils.)

  4. Approaches to Establishing the Chemical Structure of Extraterrestrial Organic Solids

    NASA Technical Reports Server (NTRS)

    Cody, G. D.; Alexander, C. M. OD.; Wirick, Susan

    2003-01-01

    The majority of extraterrestrial organic matter in carbonaceous chondrites resides in a chemically complex, insoluble and perhaps macromolecular phase. We have been applying a series of independent solid state NMR experiments that are designed to provide a self consistent chemical characterization of this complex material. To date we have thoroughly analyzed 8 organic residues from different meteorites, including a CR2 (EET92042), CIl(Orgueil), CM2 (Murchison), Tagish Lake, CM2 (AlH83100), CM2 (Cold Bokkefeld), CM2 (Mighei), CM3 (Y86720). In fig 1. (1)H to (13)C cross polarization NMR spectra of four of these are shown. Note that there exists an enormous range in chemistry exhibited in organic solid [evident by the breadth of the spectral features both in the aliphatic region (sp(sup 3)) and the aromatic region (sp(sup 2))]. There is also considerable differences in the carbon chemistry across the meteorite groups.

  5. Molecular characterization of soil organic matter: a historic overview

    NASA Astrophysics Data System (ADS)

    Kögel-Knabner, Ingrid; Rumpel, Cornelia

    2014-05-01

    The characterization of individual molecular components of soil organic matter started in the early 19th century, but proceeded slowly. The major focus at this time was on the isolation and differentiation of different humic and fulvic acid fractions, which were considered to have a defined chemical composition and structure. The isolation and structural anlysis of specific individual soil organic matter components became more popular in the early 20th century. In 1936 40 different individual compounds had been isolated and a specific chemical strucutre had been attributed. These structural attributions were confirmed later for some, but not all of these individual compounds. In the 1950 much more individual compounds could be isolated and characterized, using complicated and time consuming chromatography. It became obvious that soil also contains a number of compounds of microbial origin, such as e.g., amino sugars and lipids. With the improvement of chrmoatographic separation techniques and the use of gas chromatography in combination with thin layerchromatography in the 1960 hundreds of individual compounds have been isolated and identified, most of them after chemical degradation of humic or fulvic acids. The chemical degradative techniques were amended with analytical pyrolysis in the 1970s. More and more, bulk soil organic matter was analyzed with these techniques and the advent of solid-stae 13C NMR spectroscopy around the 1980s allowed for the characterization of the composition of bulk soil organic matter. The gas chromatographic separation of organic matter can nowadays be combined with specific detectors, such that specific attributes ofindividual molecules can be analyzed, e.g. the radiocarbon content or the stable isotope composition.

  6. Organic matters: investigating the sources, transport, and fate of organic matter in Fanno Creek, Oregon

    USGS Publications Warehouse

    Sobieszczyk, Steven; Keith, Mackenzie; Goldman, Jami H.; Rounds, Stewart A.

    2015-01-01

    The U.S. Geological Survey (USGS), in cooperation with Clean Water Services, recently completed an investigation into the sources, transport, and fate of organic matter in the Fanno Creek watershed. The information provided by this investigation will help resource managers to implement strategies aimed at decreasing the excess supply of organic matter that contributes to low dissolved-oxygen levels in Fanno Creek and downstream in the Tualatin River during summer. This fact sheet summarizes the findings of the investigation.

  7. Organic matter and sandstone-type uranium deposits: a primer

    USGS Publications Warehouse

    Leventhal, Joel S.

    1979-01-01

    Organic material is intimately associated with sandstone-type uranium deposits in the western United States.. This report gives details of the types of organic matter and their possible role in producing a uranium deposit. These steps include mobilization of uranium from igneous rocks, transportation from the surface, concentration by organic matter, reduction by organic matter, and preservation of the uranium deposit.

  8. Establishing a molecular relationship between chondritic and cometary organic solids

    PubMed Central

    Cody, George D.; Heying, Emily; Alexander, Conel M. O.; Nittler, Larry R.; Kilcoyne, A. L. David; Sandford, Scott A.

    2011-01-01

    Multidimensional solid-state NMR spectroscopy is used to refine the identification and abundance determination of functional groups in insoluble organic matter (IOM) isolated from a carbonaceous chondrite (Murchison, CM2). It is shown that IOM is composed primarily of highly substituted single ring aromatics, substituted furan/pyran moieties, highly branched oxygenated aliphatics, and carbonyl groups. A pathway for producing an IOM-like molecular structure through formaldehyde polymerization is proposed and tested experimentally. Solid-state 13C NMR analysis of aqueously altered formaldehyde polymer reveals considerable similarity with chondritic IOM. Carbon X-ray absorption near edge structure spectroscopy of formaldehyde polymer reveals the presence of similar functional groups across certain Comet 81P/Wild 2 organic solids, interplanetary dust particles, and primitive IOM. Variation in functional group concentration amongst these extraterrestrial materials is understood to be a result of various degrees of processing in the parent bodies, in space, during atmospheric entry, etc. These results support the hypothesis that chondritic IOM and cometary refractory organic solids are related chemically and likely were derived from formaldehyde polymer. The fine-scale morphology of formaldehyde polymer produced in the experiment reveals abundant nanospherules that are similar in size and shape to organic nanoglobules that are ubiquitous in primitive chondrites. PMID:21464292

  9. The anaerobic digestion of solid organic waste.

    PubMed

    Khalid, Azeem; Arshad, Muhammad; Anjum, Muzammil; Mahmood, Tariq; Dawson, Lorna

    2011-08-01

    The accumulation of solid organic waste is thought to be reaching critical levels in almost all regions of the world. These organic wastes require to be managed in a sustainable way to avoid depletion of natural resources, minimize risk to human health, reduce environmental burdens and maintain an overall balance in the ecosystem. A number of methods are currently applied to the treatment and management of solid organic waste. This review focuses on the process of anaerobic digestion which is considered to be one of the most viable options for recycling the organic fraction of solid waste. This manuscript provides a broad overview of the digestibility and energy production (biogas) yield of a range of substrates and the digester configurations that achieve these yields. The involvement of a diverse array of microorganisms and effects of co-substrates and environmental factors on the efficiency of the process has been comprehensively addressed. The recent literature indicates that anaerobic digestion could be an appealing option for converting raw solid organic wastes into useful products such as biogas and other energy-rich compounds, which may play a critical role in meeting the world's ever-increasing energy requirements in the future. PMID:21530224

  10. Isotopic analysis of cometary organic matter

    NASA Technical Reports Server (NTRS)

    Kerridge, John F.

    1991-01-01

    Carbon isotope ratios have been measured for CN in the coma of Comet Halley and for several CHON particles emitted by Halley. Of these, only the CHON-particle data may be reasonably related to organic matter in the cometary nucleus, but the true range of (C-13)/(C-12) values in those particles is quite uncertain. The D/H ratio in H2O in the Halley coma resembles that in Titan/Uranus.

  11. Analysis of Organic matter from cloud particles

    NASA Astrophysics Data System (ADS)

    Bank, Shelton; Castillo, Raymond

    1987-03-01

    Organic matter collected from filtration of two separate cloud events was analysed by Fourier Transform Infrared Spectroscopy. Particles collected from different size filters were separated by color and each type of particle gave rise to a characteristic spectrum. The major constituents were identified as complex proteins and cellulose. Additionally, some degraded material (likely protein) and an unidentified orange-brown material were present. Finally some trace components were identified as wax, oil, silicon oil, polyvinyl chloride, calcium carbonate, clay, sand and polyethylene.

  12. Organic matter matters for ice nuclei of agricultural soil origin

    NASA Astrophysics Data System (ADS)

    Tobo, Y.; DeMott, P. J.; Hill, T. C. J.; Prenni, A. J.; Swoboda-Colberg, N. G.; Franc, G. D.; Kreidenweis, S. M.

    2014-04-01

    Heterogeneous ice nucleation is a~crucial process for forming ice-containing clouds and subsequent ice-induced precipitation. The importance for ice nucleation of airborne desert soil dusts composed predominantly of minerals is relatively well understood. On the other hand, the potential influence of agricultural soil dusts on ice nucleation has been poorly recognized, despite recent estimates that they may account for up to ∼25% of the global atmospheric dust load. We have conducted freezing experiments with various dusts, including agricultural soil dusts derived from the largest dust source region in North America. Here we show evidence for the significant role of soil organic matter (SOM) in particles acting as ice nuclei (IN) under mixed-phase cloud conditions. We find that the ice nucleating ability of the agricultural soil dusts is similar to that of desert soil dusts, but is reduced to almost the same level as that of clay minerals (e.g., kaolinite) after either H2O2 digestion or dry heating to 300 °C. In addition, based on chemical composition analysis, we show that organic-rich particles are more important than mineral particles for the ice nucleating ability of the agricultural soil dusts at temperatures warmer than about -36 °C. Finally, we suggest that such organic-rich particles of agricultural origin (namely, SOM particles) may contribute significantly to the ubiquity of organic-rich IN in the global atmosphere.

  13. Organic matter matters for ice nuclei of agricultural soil origin

    NASA Astrophysics Data System (ADS)

    Tobo, Y.; DeMott, P. J.; Hill, T. C. J.; Prenni, A. J.; Swoboda-Colberg, N. G.; Franc, G. D.; Kreidenweis, S. M.

    2014-08-01

    Heterogeneous ice nucleation is a crucial process for forming ice-containing clouds and subsequent ice-induced precipitation. The importance for ice nucleation by airborne desert soil dusts composed predominantly of minerals is widely acknowledged. However, the potential influence of agricultural soil dusts on ice nucleation has been poorly recognized, despite recent estimates that they may account for up to 20-25% of the global atmospheric dust load. We have conducted freezing experiments with various dusts, including agricultural soil dusts derived from the largest dust-source region in North America. Here we show evidence for the significant role of soil organic matter (SOM) in particles acting as ice nuclei (IN) under mixed-phase cloud conditions. We find that the ice-nucleating ability of the agricultural soil dusts is similar to that of desert soil dusts, but is clearly reduced after either H2O2 digestion or dry heating to 300 °C. In addition, based on chemical composition analysis, we demonstrate that organic-rich particles are more important than mineral particles for the ice-nucleating ability of the agricultural soil dusts at temperatures warmer than about -36 °C. Finally, we suggest that such organic-rich particles of agricultural origin (namely, SOM particles) may contribute significantly to the ubiquity of organic-rich IN in the global atmosphere.

  14. Isolation and chemical characterization of dissolved and colloidal organic matter

    USGS Publications Warehouse

    Aiken, G.; Leenheer, J.

    1993-01-01

    Commonly used techniques for the concentration and isolation of organic matter from water, such as preparative chromatography, ultrafiltration and reverse osmosis, and the methods used to analyze the organic matter obtained by these methods are reviewed. The development of methods to obtain organic matter that is associated with fractions of the dissolved organic carbon other than humic substances, such as organic bases, hydrophilic organic acids and colloidal organic matter are discussed. Methods specifically used to study dissolved organic nitrogen and dissolved organic phosphorous are also discussed. -from Authors

  15. Abiotic Bromination of Soil Organic Matter.

    PubMed

    Leri, Alessandra C; Ravel, Bruce

    2015-11-17

    Biogeochemical transformations of plant-derived soil organic matter (SOM) involve complex abiotic and microbially mediated reactions. One such reaction is halogenation, which occurs naturally in the soil environment and has been associated with enzymatic activity of decomposer organisms. Building on a recent finding that naturally produced organobromine is ubiquitous in SOM, we hypothesized that inorganic bromide could be subject to abiotic oxidations resulting in bromination of SOM. Through lab-based degradation treatments of plant material and soil humus, we have shown that abiotic bromination of particulate organic matter occurs in the presence of a range of inorganic oxidants, including hydrogen peroxide and assorted forms of ferric iron, producing both aliphatic and aromatic forms of organobromine. Bromination of oak and pine litter is limited primarily by bromide concentration. Fresh plant material is more susceptible to bromination than decayed litter and soil humus, due to a labile pool of mainly aliphatic compounds that break down during early stages of SOM formation. As the first evidence of abiotic bromination of particulate SOM, this study identifies a mechanistic source of the natural organobromine in humic substances and the soil organic horizon. Formation of organobromine through oxidative treatments of plant material also provides insights into the relative stability of aromatic and aliphatic components of SOM. PMID:26468620

  16. Soil organic matter composition affected by potato cropping managements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic matter is a small but important soil component. As a heterogeneous mixture of geomolecules and biomolecules, soil organic matter (SOM) can be fractionated into distinct pools with different solubility and lability. Water extractable organic matter (WEOM) fraction is the most labile and mobil...

  17. The neurology of solid organ transplantation.

    PubMed

    Avila, J David; Živković, Saša

    2015-07-01

    Transplantation is the rescue treatment for end-stage organ failure with more than 110,000 solid organs transplantations performed worldwide annually. Recent advances in transplantation procedures and posttransplantation management have improved long-term survival and quality of life of transplant recipients, shifting the focus from acute perioperative critical care needs toward long-term chronic medical problems. Neurologic complications affect up to 30-60 % of solid organ transplant recipients. Common etiologies include opportunistic infections and toxicities of antirejection medications, and wide spectrum of toxic and metabolic disturbances. Most complications are common to all allograft types, but some are relatively specific for individual allograft types (e.g., central pontine myelinolysis in liver transplant recipients). Close collaboration between neurologists and other transplant team members is essential for effective management. Early recognition of complications and accurate diagnosis leading to timely treatment is essential to reduce the morbidity and improve the overall transplant outcome. PMID:26008808

  18. Solid Solution Model for Interstellar Dust Grains and Their Organics

    NASA Astrophysics Data System (ADS)

    Freund, Minoru M.; Freund, Friedemann T.

    2006-03-01

    We present a dust grain model based on the fundamental principle of solid solutions. The model is applicable to the mineral (silicate) component of the dust in the interstellar medium (ISM). We show that nanometer-sized mineral grains, which condense in the gas-rich outflow of late-stage stars or expanding gas shells of supernova explosions, do not consist of just high melting point oxides or silicates. Instead they form solid solutions with gas-phase components H2O, CO, and CO2 that are omnipresent in environments where the grains condense. Through a series of thermodynamically well-understood solid-state processes, these solid solutions become ``parents'' of organic matter that precipitates inside the grains. Thus, the mineral dust grains and their organics become part of the same thermodynamically defined solid phase and, hence, physically inseparable. This model can account for many astronomical observations, which no prior model can adequately address, specifically: (1) Organics in the diffuse ISM are identified by a 3.4 μm IR band, characteristic of aliphatic hydrocarbons composed of CH2 and of CH3 groups. (2) The methylene-to-methyl ratio is nearly constant, implying a CH2:CH3 ratio of ~5:2. (3) The intensity ratio between the 9.7 and the 3.4 μm band is nearly constant, implying a silicate-to-organics ratio of ~10:1. (4) In dense clouds the complex 3.4 μm band is replaced by a weak, featureless 3.47 μm band. (5) Whereas silicate grains identified by their 9.7 μm band tend to align in magnetic fields, grains with a strong 3.4 μm organic signature do not tend to align.

  19. Editorial: Immune monitoring in solid organ transplantation.

    PubMed

    Shipkova, Maria; Wieland, Eberhard

    2016-03-01

    Solid organ transplantation is inevitably associated with the activation of the immune system of the graft recipient. An advanced knowledge of the immunological mechanisms leading to acute and chronic rejection, the advent of powerful immunosuppressive drugs, and refined surgical techniques have made solid organ transplantation a standard therapy to replace irretrievable loss of vital functions. The immune system is a complex network involving immune cells, cytokines, chemokines, antibodies, and the complement system. Monitoring and ideally influencing the allo-response of the organ recipient against the donor antigens may help to personalize the immunosuppressive therapy including the disclosure of those patients who are suitable for weaning or even discontinuation of immunosuppression. Immune monitoring comprises as plethora of candidate biomarkers capable of reflecting the donor specific and non-donor specific net activation state of the immune system in transplant recipients both before and after initiation of the immunosuppressive therapy. This special issue of Clinical Biochemistry on Immune Monitoring addresses the basic effects of immune activation in solid organ transplantation and critically reviews candidate biomarkers for immune monitoring and their analytical as well as clinical performance. PMID:26794634

  20. Soil organic matter prediction using environmental factors

    NASA Astrophysics Data System (ADS)

    Oueslati, I.; Allamano, P.; Claps, P.; Bonifacio, E.

    2009-04-01

    Organic matter is one of the most important properties affecting soil chemical and physical fertility, but it influences also soil hydrologic parameters. It is easily measured by chemical analyses, but in large scale studies its prediction is desirable. This study aims at predicting the spatial distribution of the soil organic matter concentration (SOM) in forest topsoils in Piedmont (North West Italy) using continuous predictors (in forms of auxiliary maps). As predictors we selected: the digital elevation model (DEM, 50 meter resolution), the mean annual precipitation, the soil dryness index and normal difference vegetation index (NDVI, 1 km resolution). Using the Geographic Information System SAGA, the terrain attributes were computed from the DEM, namely are: elevation, slope, aspect and mean curvature associated with hydrological parameters namely, the compound topographic index (CTI) and stream power index (SPI). From the long term monthly average of NDVI the mean annual value and the coefficient of variation (CV) were also derived. This data set was used to estimate the SOM concentration by regression analysis. To test the relationship between the SOM and the environmental variables, 66 soil profiles were used. Several variables were found to be significantly correlated with SOM concentration: elevation, slope, mean NDVI, CV(NDVI), precipitation and dryness index, with correlation coefficients, r, of the linear regressions ranging from 0.12 to 0.63. However, only precipitation and mean NDVI were retained when a stepwise multiple regression was used. Although these two predictors contribute only partially to explain SOM variability (R2=0.42). The importance of vegetation is clearly depicted by the significant effect of NDVI, while the precipitation may contribute to the explanation in a less direct way because of the complex links between climate and organic matter transformation in soils.

  1. Mapping Soil Organic Matter with Hyperspectral Imaging

    NASA Astrophysics Data System (ADS)

    Moni, Christophe; Burud, Ingunn; Flø, Andreas; Rasse, Daniel

    2014-05-01

    Soil organic matter (SOM) plays a central role for both food security and the global environment. Soil organic matter is the 'glue' that binds soil particles together, leading to positive effects on soil water and nutrient availability for plant growth and helping to counteract the effects of erosion, runoff, compaction and crusting. Hyperspectral measurements of samples of soil profiles have been conducted with the aim of mapping soil organic matter on a macroscopic scale (millimeters and centimeters). Two soil profiles have been selected from the same experimental site, one from a plot amended with biochar and another one from a control plot, with the specific objective to quantify and map the distribution of biochar in the amended profile. The soil profiles were of size (30 x 10 x 10) cm3 and were scanned with two pushbroomtype hyperspectral cameras, one which is sensitive in the visible wavelength region (400 - 1000 nm) and one in the near infrared region (1000 - 2500 nm). The images from the two detectors were merged together into one full dataset covering the whole wavelength region. Layers of 15 mm were removed from the 10 cm high sample such that a total of 7 hyperspectral images were obtained from the samples. Each layer was analyzed with multivariate statistical techniques in order to map the different components in the soil profile. Moreover, a 3-dimensional visalization of the components through the depth of the sample was also obtained by combining the hyperspectral images from all the layers. Mid-infrared spectroscopy of selected samples of the measured soil profiles was conducted in order to correlate the chemical constituents with the hyperspectral results. The results show that hyperspectral imaging is a fast, non-destructive technique, well suited to characterize soil profiles on a macroscopic scale and hence to map elements and different organic matter quality present in a complete pedon. As such, we were able to map and quantify biochar in our

  2. The fate of airborne polycyclic organic matter.

    PubMed Central

    Nielsen, T; Ramdahl, T; Bjørseth, A

    1983-01-01

    Biological tests have shown that a significant part of the mutagenicity of organic extracts of collected airborne particulate matter is not due to polycyclic aromatic hydrocarbons (PAH). It is possible that part of these unknown compounds are transformation products of PAH. This survey focuses on the reaction of PAH in the atmosphere with other copollutants, such as nitrogen oxides, sulfur oxides, ozone and free radicals and their reaction products. Photochemically induced reactions of PAH are also included. The reactivity of particle-associated PAH is discussed in relation to the chemical composition and the physical properties of the carrier. Recommendations for future work are given. PMID:6825615

  3. Organic matter oxidation and aragonite diagenesis in a coral reef

    SciTech Connect

    Tribble, G.W. Univ. of Hawaii, Honolulu )

    1993-05-01

    A combination of field and theoretical work is used to study controls on the saturation state of aragonite inside a coral-reef framework. A closed-system ion-speciation model is used to evaluate the effect of organic-matter oxidation on the saturation state of aragonite. The aragonite saturation state initially drops below 1 but becomes oversaturated during sulfate reduction. The C:N ratio of the organic matter affects the degree of oversaturation with N-poor organic material resulting in a system more corrosive to aragonite. Precipitation of sulfide as FeS strongly affects the aragonite saturation state, and systems with much FeS formation will have a stronger tendency to become oversaturated with respect to aragonite. Both precipitation and dissolution of aragonite are predicted at different stages of the organic reaction pathway if the model system is maintained at aragonite saturation. Field data from a coral-reef framework indicate that the system maintains itself at aragonite saturation, and model-predicted changes in dissolved calcium follow those observed in the interstitial waters of the reef. Aragonite probably acts as a solid-phase buffer in regulating the pH of interstitial waters. Because interstitial water in the reef has a short residence time, the observed equilibration suggests rapid kinetics.

  4. Partition of nonpolar organic pollutants from water to soil and sediment organic matters

    USGS Publications Warehouse

    Chiou, C.T.

    1995-01-01

    The partition coefficients (Koc) of carbon tetrachloride and 1,2-dichlorobenzene between normal soil/sediment organic matter and water have been determined for a large set of soils, bed sediments, and suspended solids from the United States and the People's Republic of China. The Koc values for both solutes are quite invariant either for the soils or for the bed sediments; the values on bed sediments are about twice those on soils. The similarity of Koc values between normal soils and between normal bed sediments suggests that natural organic matters in soils (or sediments) of different geographic origins exhibit comparable polarities and possibly comparable compositions. The results also suggest that the process that converts eroded soils into bed sediments brings about a change in the organic matter property. The difference between soil and sediment Koc values provides a basis for identifying the source of suspended solids in river waters. The very high Koc values observed for some special soils and sediments are diagnostic of severe anthropogenic contamination.

  5. DNA Extraction: Organic and Solid-Phase.

    PubMed

    Altayari, Wafa

    2016-01-01

    DNA extraction remains a critical step in DNA profiling of biological material recovered from scenes of crime. In the forensic community several methods have gained popularity, including Chelex(®), organic extraction, and solid-phase extraction. While some laboratories streamlined their processes and only use one method we have retained several methods and continue to use these for different sample types. In this chapter we present three methods that have been used for several years in our laboratory. PMID:27259731

  6. The composition and degradability of upland dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Moody, Catherine; Worrall, Fred; Clay, Gareth

    2016-04-01

    In order to assess controls on the degradability of DOM in stream water, samples of dissolved organic matter (DOM) and particulate organic matter (POM) were collected every month for a period of 24 months from an upland, peat-covered catchment in northern England. Each month the degradability of the DOM was assessed by exposing river water to light for up to 24 hours, and the change in the dissolved organic carbon (DOC) concentration in the water was measured. To provide context for the analysis of DOM and its degradability, samples of peat, vegetation, and litter were also taken from the same catchment and analysed. The organic matter samples were analysed by several methods including: elemental analysis (CHN and O), bomb calorimetry, thermogravimetric analysis, pyrolysis GC/MS, ICP-OES, stable isotope analysis (13C and 15N) and 13C solid state nuclear magnetic resonance (NMR). The water samples were analysed for pH, conductivity, absorbance at 400nm, anions, cations, particulate organic carbon (POC) and DOC concentrations. River flow conditions and meteorology were also recorded at the site and included in the analysis of the composition and degradability of DOM. The results of multiple regression models showed that the rates of DOC degradation were affected by the N-alkyl, O-alkyl, aldehyde and aromatic relative intensities, gross heat, OR and C:N. Of these, the N-alkyl relative intensity had the greatest influence, and this in turn was found to be dependent on the rainfall and soil temperature in the week before sampling.

  7. Thermodynamic modeling for organic solid precipitation

    SciTech Connect

    Chung, T.H.

    1992-12-01

    A generalized predictive model which is based on thermodynamic principle for solid-liquid phase equilibrium has been developed for organic solid precipitation. The model takes into account the effects of temperature, composition, and activity coefficient on the solubility of wax and asphaltenes in organic solutions. The solid-liquid equilibrium K-value is expressed as a function of the heat of melting, melting point temperature, solubility parameter, and the molar volume of each component in the solution. All these parameters have been correlated with molecular weight. Thus, the model can be applied to crude oil systems. The model has been tested with experimental data for wax formation and asphaltene precipitation. The predicted wax appearance temperature is very close to the measured temperature. The model not only can match the measured asphaltene solubility data but also can be used to predict the solubility of asphaltene in organic solvents or crude oils. The model assumes that asphaltenes are dissolved in oil in a true liquid state, not in colloidal suspension, and the precipitation-dissolution process is reversible by changing thermodynamic conditions. The model is thermodynamically consistent and has no ambiguous assumptions.

  8. Neurological Complications of Solid Organ Transplantation

    PubMed Central

    Pruitt, Amy A.; Graus, Francesc; Rosenfeld, Myrna R.

    2013-01-01

    Solid organ transplantation (SOT) is the preferred treatment for an expanding range of conditions whose successful therapy has produced a growing population of chronically immunosuppressed patients with potential neurological problems. While the spectrum of neurological complications varies with the type of organ transplanted, the indication for the procedure, and the intensity of long-term required immunosuppression, major neurological complications occur with all SOT types. The second part of this 2-part article on transplantation neurology reviews central and peripheral nervous system problems associated with SOT with clinical and neuroimaging examples from the authors’ institutional experience. Particular emphasis is given to conditions acquired from the donated organ or tissue, problems specific to types of organs transplanted and drug therapy-related complications likely to be encountered by hospitalists. Neurologically important syndromes such as immune reconstitution inflammatory syndrome (IRIS), posterior reversible encephalopathy syndrome (PRES), and posttransplantation lymphoproliferative disorder (PTLD) are readdressed in the context of SOT. PMID:24167649

  9. Soil organic matter mineralization in frozen soils

    NASA Astrophysics Data System (ADS)

    Harrysson Drotz, S.; Sparrman, T.; Schleucher, J.; Nilsson, M.; Öquist, M. G.

    2009-12-01

    Boreal forest soils are frozen for a large part of the year and soil organic matter mineralization during this period has been shown to significantly influence the C balance of boreal forest ecosystems. Mineralization proceeds through heterotrophic microbial activity, but the understanding of the environmental controls regulating soil organic matter mineralization under frozen conditions is poor. Through a series of investigations we have addressed this issue in order to elucidate to what extent a range of environmental factors control mineralization processes in frozen soils and also the microbial communities potential to oxidize organic substrates and grow under such conditions. The unfrozen water content in the frozen soils was shown to be an integral control on the temperature response of biogenic CO2 production across the freezing point of bulk soil water. We found that osmotic potential was an important contributor to the total water potential and, hence, the unfrozen water content of frozen soil. From being low and negligible in an unfrozen soil, the osmotic potential was found to contribute up to 70% of the total water potential in frozen soil, greatly influencing the volume of liquid water. The specific factors of how soil organic matter composition affected the unfrozen water content and CO2 production of frozen soil were studied by CP-MAS NMR. We concluded that abundance of aromatics and recalcitrant compounds showed a significant positive correlation with unfrozen water content and these were also the major soil organic fractions that similarly correlated with the microbial CO2 production of the frozen soils. Thus, the hierarchy of environmental factors controlling SOM mineralization changes as soils freeze and environmental controls elucidated from studies of unfrozen systems can not be added on frozen conditions. We have also investigated the potential activity of soil microbial communities under frozen conditions in order to elucidate temperature

  10. Stability of Ferrihydrite and Organic Matter in Ferrihydrite-Organic Matter Associations

    NASA Astrophysics Data System (ADS)

    Eusterhues, K.; Totsche, K. U.

    2015-12-01

    Iron oxides can bind particularly large amounts of organic matter (OM) and seem to be an important control on OM storage in many soils. To better understand the interactions between Fe oxides and OM, we produced ferrihydrite-OM associations by adsorption and coprecipitation in laboratory experiments. Because ferrihydrites are often formed in OM-rich solutions, we assume that coprecipitation is a common process in nature. In contrast to adsorption on pre-existing ferrihydrite surfaces, coprecipitation involves adsorption, occlusion (physical entrapment of OM), formation of Fe-OM complexes, and poisoning of ferrihydrite growth. The reactivity of coprecipitates may therefore differ from ferriydrites with adsorbed OM. Incubation experiments with an inoculum extracted from a Podzol forest-floor were carried out to quantify the mineralization of the adsorbed and coprecipitated organic matter. These experiments showed that the association with ferrihydrite stabilized the associated organic matter, but that differences in the degradability of adsorbed and coprecipitated organic matter were small. We therefore conclude that coprecipitation does not lead to a significant formation of microbial inaccessible organic matter domains. Microbial reduction experiments were performed using Geobacter bremensis. We observed that increasing amounts of associated OM led to decreasing initial reaction rates and a decreasing degree of dissolution. Reduction of coprecipitated ferrihydrites was faster than reduction of ferrihydrites with adsorbed OM. Our data demonstrate that the association with ferrihydrite can effectively stabilize labile polysaccharides. Vice versa, these polysaccharides may protect ferrihydrite from reduction by Geobacter-like bacteria. However, a challenge for future studies will be to link formation and degradation of mineral-organic associations to natural porous systems, that is, to the complex interplay of mass transport and microbial distribution in the

  11. Dissolved organic matter in anoxic pore waters from Mangrove Lake, Bermuda

    USGS Publications Warehouse

    Orem, W.H.; Hatcher, P.G.; Spiker, E. C.; Szeverenyi, N.M.; Maciel, G.E.

    1986-01-01

    Dissolved organic matter and dissolved inorganic chemical species in anoxic pore water from Mangrove Lake, Bermuda sediments were studied to evaluate the role of pore water in the early diagenesis of organic matter. Dissolved sulphate, titration alkalinity, phosphate, and ammonia concentration versus depth profiles were typical of many nearshore clastic sediments and indicated sulphate reduction in the upper 100 cm of sediment. The dissolved organic matter in the pore water was made up predominantly of large molecules, was concentrated from large quantities of pore water by using ultrafiltration and was extensively tudied by using elemental and stable carbon isotope analysis and high-resolution, solid state 13C nuclear magnetic resonance and infrared spectroscopy. The results indicate that this material has a predominantly polysaccharide-like structure and in addition contains a large amount of oxygen-containing functional groups (e.g., carboxyl groups). The 13C nulcear magnetic resonance spectra of the high-molecular-weight dissolved organic matter resemble those of the organic matter in the surface sediments of Mangrove Lake. We propose that this high-molecular-weight organic matter in pore waters represents the partially degraded, labile organic components of the sedimentary organic matter and that pore waters serve as a conduit for removal of these labile organic components from the sediments. The more refractory components are, thus, selectively preserved in the sediments as humic substances (primarily humin). ?? 1986.

  12. Cutaneous melanoma in solid organ transplant patients.

    PubMed

    Russo, I; Piaserico, S; Belloni-Fortina, A; Alaibac, M

    2014-08-01

    Solid organ transplant patients are at greatly increased risk of developing a wide variety of skin cancers, particularly epithelial skin cancers. On the other hand, it is well known that an intact immune system limits the development of benign melanocytic lesions. The eruptive nevi phenomenon, which we can observe in solid organ transplant recipients, is indicative of the relationship between melanocyte proliferation and immune system. Regression of melanocytic nevi after restoration of complete immune responsiveness is a further clinical example the role of immunosurveillance on melanocyte proliferation. However, melanoma incidence in organ transplant recipients appears only 2-3 folds higher than in general population. To this regard, organ transplant recipients who develop de novo melanomas thicker than 2mm seem to have a significantly worse outcome with a greatly increased risk of dying of metastatic melanoma, whereas those who develop a ≤2 mm thickness melanoma seem to have a prognosis similar to that of the general population. Furthermore, there is no evidence supporting an increased risk of melanoma recurrences after transplant in patients with a history of low-risk melanoma. Melanoma is also one of the most frequent and lethal donor-derived malignancies suggesting that a history of invasive melanoma should be considered an absolute contraindication to donation. The aim of this review is to investigate the relationship between immunosuppression and melanoma and to discuss its clinical implications for the management of transplant-associated melanoma. PMID:25068225

  13. Organic speciation of size-segregated atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Tremblay, Raphael

    Particle size and composition are key factors controlling the impacts of particulate matter (PM) on human health and the environment. A comprehensive method to characterize size-segregated PM organic content was developed, and evaluated during two field campaigns. Size-segregated particles were collected using a cascade impactor (Micro-Orifice Uniform Deposit Impactor) and a PM2.5 large volume sampler. A series of alkanes and polycyclic aromatic hydrocarbons (PAHs) were solvent extracted and quantified using a gas chromatograph coupled with a mass spectrometer (GC/MS). Large volume injections were performed using a programmable temperature vaporization (PTV) inlet to lower detection limits. The developed analysis method was evaluated during the 2001 and 2002 Intercomparison Exercise Program on Organic Contaminants in PM2.5 Air Particulate Matter led by the US National Institute of Standards and Technology (NIST). Ambient samples were collected in May 2002 as part of the Tampa Bay Regional Atmospheric Chemistry Experiment (BRACE) in Florida, USA and in July and August 2004 as part of the New England Air Quality Study - Intercontinental Transport and Chemical Transformation (NEAQS - ITCT) in New Hampshire, USA. Morphology of the collected particles was studied using scanning electron microscopy (SEM). Smaller particles (one micrometer or less) appeared to consist of solid cores surrounded by a liquid layer which is consistent with combustion particles and also possibly with particles formed and/or coated by secondary material like sulfate, nitrate and secondary organic aerosols. Source apportionment studies demonstrated the importance of stationary sources on the organic particulate matter observed at these two rural sites. Coal burning and biomass burning were found to be responsible for a large part of the observed PAHs during the field campaigns. Most of the measured PAHs were concentrated in particles smaller than one micrometer and linked to combustion sources

  14. Relating dissolved organic matter fluorescence to functional properties

    NASA Astrophysics Data System (ADS)

    Tipping, E.; Baker, A.; Thacker, S.; Gondar, D.

    2007-12-01

    The fluorescence excitation emission matrix properties of dissolved organic matter from three rivers and one lake in NW England are analysed. Sites are sampled in duplicate and for some sites seasonally to cover variations in dissolved organic matter composition, river flow, and carbon isotopic (13C, 14C) variability. Results are compared to the functional properties of the dissolved organic matter, the functional assays provide quantitative information on light absorption, fluorescence, photochemical fading, pH buffering, copper binding, benzo[a]pyrene binding, hydrophilicity and adsorption to alumina. Fluorescence characterization of the dissolved organic matter samples demonstrates that peak C fluorescence emission wavelength, the ratio of peak T to peak C fluorescence intensity, and the fluorescence : absorbance ratio best differentiate different dissolved organic matter samples. These parameters correspond to dissolved organic matter aromaticity, the ratio of labile to recalcitrant organic matter, and dissolved organic matter molecular weight. Peak C fluorescence emission wavelength, the ratio of peak T to peak C fluorescence intensity, and the fluorescence : absorbance ratio fluorescence parameters also have strong correlations with several of the functional assays, in particular the extinction coefficients, benzo(a)pyrene binding and alumina adsorption, and buffering capacity. In many cases, regression equations with a correlation coefficient >0.9 are obtained, suggesting that dissolved organic matter functional character can be predicted from DOM fluorescence properties. For one site, the relationship between dissolved organic matter source, fluorescence, function and carbon isotopic composition is discussed.

  15. Magnetoelectric effect in organic molecular solids

    PubMed Central

    Naka, Makoto; Ishihara, Sumio

    2016-01-01

    The Magnetoelectric (ME) effect in solids is a prominent cross correlation phenomenon, in which the electric field (E) controls the magnetization (M) and the magnetic field (H) controls the electric polarization (P). A rich variety of ME effects and their potential in practical applications have been investigated so far within the transition-metal compounds. Here, we report a possible way to realize the ME effect in organic molecular solids, in which two molecules build a dimer unit aligned on a lattice site. The linear ME effect is predicted in a long-range ordered state of spins and electric dipoles, as well as in a disordered state. One key of the ME effect is a hidden ferroic order of the spin-charge composite object. We provide a new guiding principle of the ME effect in materials without transition-metal elements, which may lead to flexible and lightweight multifunctional materials. PMID:26876424

  16. Magnetoelectric effect in organic molecular solids

    NASA Astrophysics Data System (ADS)

    Naka, Makoto; Ishihara, Sumio

    2016-02-01

    The Magnetoelectric (ME) effect in solids is a prominent cross correlation phenomenon, in which the electric field (E) controls the magnetization (M) and the magnetic field (H) controls the electric polarization (P). A rich variety of ME effects and their potential in practical applications have been investigated so far within the transition-metal compounds. Here, we report a possible way to realize the ME effect in organic molecular solids, in which two molecules build a dimer unit aligned on a lattice site. The linear ME effect is predicted in a long-range ordered state of spins and electric dipoles, as well as in a disordered state. One key of the ME effect is a hidden ferroic order of the spin-charge composite object. We provide a new guiding principle of the ME effect in materials without transition-metal elements, which may lead to flexible and lightweight multifunctional materials.

  17. Magnetoelectric effect in organic molecular solids.

    PubMed

    Naka, Makoto; Ishihara, Sumio

    2016-01-01

    The Magnetoelectric (ME) effect in solids is a prominent cross correlation phenomenon, in which the electric field (E) controls the magnetization (M) and the magnetic field (H) controls the electric polarization (P). A rich variety of ME effects and their potential in practical applications have been investigated so far within the transition-metal compounds. Here, we report a possible way to realize the ME effect in organic molecular solids, in which two molecules build a dimer unit aligned on a lattice site. The linear ME effect is predicted in a long-range ordered state of spins and electric dipoles, as well as in a disordered state. One key of the ME effect is a hidden ferroic order of the spin-charge composite object. We provide a new guiding principle of the ME effect in materials without transition-metal elements, which may lead to flexible and lightweight multifunctional materials. PMID:26876424

  18. Psychosocial Challenges in Solid Organ Transplantation.

    PubMed

    Kuntz, Kristin; Weinland, Stephan R; Butt, Zeeshan

    2015-09-01

    Organ transplantation is often a life-saving surgery for individuals with end-stage organ disease. However, for most types of solid organ transplant, the demand for organs outweighs the supply, resulting in the need to institute a waiting list for suitable patients who cannot immediately receive an organ. Individuals who need transplants must undergo an assessment process that includes medical, surgical, and psychosocial evaluations. The transplant psychosocial evaluation considers whether surgical candidates are able and willing to care for the transplanted organ for many years. The evaluation must also consider a number of psychosocial risk factors that can lead to complications, which may cause premature loss of the graft. Some of these risk factors include a history of poor medical adherence, psychopathology (including substance use disorders), poor social support, and cognitive dysfunction. This article briefly summarizes the assessment of each of these risk factors and how they can be mitigated to ensure the best outcomes for patients and their families. PMID:26370201

  19. Bloodstream infections after solid-organ transplantation.

    PubMed

    Kritikos, Antonios; Manuel, Oriol

    2016-04-01

    Solid-organ transplantation (SOT) has become the preferred strategy to treat a number of end-stage organ disease, because a continuous improvement in survival and quality of life. While preventive strategies has decreased the risk for classical opportunistic infections (such as viral, fungal and parasite infections), bacterial infections, and particularly bloodstream infections (BSIs) remain the most common and life-threatening complications in SOT recipients. The source of BSI after transplant depends on the type of transplantation, being urinary tract infection, pneumonia, and intraabdominal infections the most common infections occurring after kidney, lung and liver transplantation, respectively. The risk for candidemia is higher in abdominal-organ than in thoracic-organ transplantation. Currently, the increasing prevalence of multi-drug resistant (MDR) Gram-negative pathogens, such as extended-spectrum betalactamase-producing Enterobacteriaciae and carbapenem-resistant Klebsiella pneumoniae, is causing particular concerns in SOT recipients, a population which presents several risk factors for developing infections due to MDR organisms. The application of strict preventive policies to reduce the incidence of post transplant BSIs and to control the spread of MDR organisms, including the implementation of specific stewardship programs to avoid the overuse of antibiotics and antifungal drugs, are essential steps to reduce the impact of post transplant infections on allograft and patient outcomes. PMID:26766415

  20. Potential Marine Organisms Affecting Airborne Primary Organic Matter

    NASA Astrophysics Data System (ADS)

    Aller, J. Y.; Alpert, P. A.; Knopf, D. A.

    2012-12-01

    The oceans cover 70% of earth with the marine environment contributing ~50% of the global biomass. Particularly during periods of high biological activity associated with phytoplankton blooms, primary emitted aerosol particles dominated by organic compounds in the submicron size range, are ejected from surface waters increasing in concentration exponentially with overlying wind speeds. This is significant for clouds and climate particularly over nutrient rich polar seas, where seawater concentrations of biogenic particles can reach 109 cells per ml during spring phytoplankton blooms, and even 106 cells per ml in winter when empty frustules and fragments of diatoms are resuspensed from shallow shelf sediments by strong winds, and mix with living pico- and nanoplankton in surface sea waters. This organic aerosol fraction can have a significant impact on the ability of ocean derived aerosol to act as cloud condensation nuclei. It has been shown that small insoluble organic particles are aerosolized from the sea surface microlayer (SML) via bubble bursting. The exact composition and complexity of the SML varies spatially and temporally but includes phytoplankton cells, microorganisms, organic debris, and a complex mixture of proteins, polysaccharides, humic-type material and waxes, microgels and colloidal nanogels, and strong surface active lipids. The specific chemical composition is dependent on the fractionation of organic matter which originates from in-situ production, from underlying water and even from atmospheric deposition. These conditions will most likely determine the nature of the organic and biogenic material. Here we review the types, sizes, and properties of ocean-derived particles and organic material which present potential candidates for airborne biogenic and organic particles.

  1. Factors Affecting Morbidity in Solid Organ Injuries

    PubMed Central

    Baygeldi, Serdar; Karakose, Oktay; Özcelik, Kazım Caglar; Pülat, Hüseyin; Damar, Sedat; Eken, Hüseyin; Zihni, İsmail; Çalta, Alpaslan Fedai; Baç, Bilsel

    2016-01-01

    Background and Aim. The aim of this study was to investigate the effects of demographic characteristics, biochemical parameters, amount of blood transfusion, and trauma scores on morbidity in patients with solid organ injury following trauma. Material and Method. One hundred nine patients with solid organ injury due to abdominal trauma during January 2005 and October 2015 were examined retrospectively in the General Surgery Department of Dicle University Medical Faculty. Patients' age, gender, trauma interval time, vital status (heart rate, arterial tension, and respiratory rate), hematocrit (HCT) value, serum area aminotransferase (ALT) and aspartate aminotransferase (AST) values, presence of free abdominal fluid in USG, trauma mechanism, extra-abdominal system injuries, injured solid organs and their number, degree of injury in abdominal CT, number of blood transfusions, duration of hospital stay, time of operation (for those undergoing operation), trauma scores (ISS, RTS, Glasgow coma scale, and TRISS), and causes of morbidity and mortality were examined. In posttraumatic follow-up period, intra-abdominal hematoma infection, emboli, catheter infection, and deep vein thrombosis were monitored as factors of morbidity. Results. One hundred nine patients were followed up and treated due to isolated solid organ injury following abdominal trauma. There were 81 males (74.3%) and 28 females (25.7%), and the mean age was 37.6 ± 18.28 (15–78) years. When examining the mechanism of abdominal trauma in patients, the following results were obtained: 58 (53.3%) traffic accidents (22 out-vehicle and 36 in-vehicle), 27 (24.7%) falling from a height, 14 (12.9%) assaults, 5 (4.5%) sharp object injuries, and 5 (4.5%) gunshot injuries. When evaluating 69 liver injuries scaled by CT the following was detected: 14 (20.3%) of grade I, 32 (46.4%) of grade II, 22 (31.8%) of grade III, and 1 (1.5%) of grade IV. In 63 spleen injuries scaled by CT the following was present: grade I in

  2. Factors Affecting Morbidity in Solid Organ Injuries.

    PubMed

    Baygeldi, Serdar; Karakose, Oktay; Özcelik, Kazım Caglar; Pülat, Hüseyin; Damar, Sedat; Eken, Hüseyin; Zihni, İsmail; Çalta, Alpaslan Fedai; Baç, Bilsel

    2016-01-01

    Background and Aim. The aim of this study was to investigate the effects of demographic characteristics, biochemical parameters, amount of blood transfusion, and trauma scores on morbidity in patients with solid organ injury following trauma. Material and Method. One hundred nine patients with solid organ injury due to abdominal trauma during January 2005 and October 2015 were examined retrospectively in the General Surgery Department of Dicle University Medical Faculty. Patients' age, gender, trauma interval time, vital status (heart rate, arterial tension, and respiratory rate), hematocrit (HCT) value, serum area aminotransferase (ALT) and aspartate aminotransferase (AST) values, presence of free abdominal fluid in USG, trauma mechanism, extra-abdominal system injuries, injured solid organs and their number, degree of injury in abdominal CT, number of blood transfusions, duration of hospital stay, time of operation (for those undergoing operation), trauma scores (ISS, RTS, Glasgow coma scale, and TRISS), and causes of morbidity and mortality were examined. In posttraumatic follow-up period, intra-abdominal hematoma infection, emboli, catheter infection, and deep vein thrombosis were monitored as factors of morbidity. Results. One hundred nine patients were followed up and treated due to isolated solid organ injury following abdominal trauma. There were 81 males (74.3%) and 28 females (25.7%), and the mean age was 37.6 ± 18.28 (15-78) years. When examining the mechanism of abdominal trauma in patients, the following results were obtained: 58 (53.3%) traffic accidents (22 out-vehicle and 36 in-vehicle), 27 (24.7%) falling from a height, 14 (12.9%) assaults, 5 (4.5%) sharp object injuries, and 5 (4.5%) gunshot injuries. When evaluating 69 liver injuries scaled by CT the following was detected: 14 (20.3%) of grade I, 32 (46.4%) of grade II, 22 (31.8%) of grade III, and 1 (1.5%) of grade IV. In 63 spleen injuries scaled by CT the following was present: grade I in 21

  3. Maturation of organic matter during experimental simulation of carbonate diagenesis

    SciTech Connect

    Ferguson, J.; Bush, P.R.; Clarke, B.A. )

    1989-09-01

    An earlier investigation involving the simulation of the early stages of diagenesis of carbonate ooids has been extended to include skeletal carbonates and carbonate mud. The experiments, lasting up to 70 days at elevated hydrostatic pressure and temperatures of 180{degree}-210{degree}C, used natural sea water and recent calcitic and aragonitic carbonate materials collected from Florida Bay and the Bahamas. The results give insight into the processes of maturation and diagenesis of the organic and inorganic fractions. Analysis of the organic fraction, both before and after the experiments, gives indicates of possible pathways of maturation during early diagenesis. A small amount of data is also available on the fate of sugars and amino acids in the system. Overall, the experiments closely approximate the natural system. Reactions occurring in the inorganic components are closely allied to those in the organic fraction. Indeed, two of the critical factors in early carbonate diagenesis are the amount and quality of organic matter and the shape, size, and nature of the carbonate grains. Changes in the carbonate fraction taking place during and after the experiments have been deduced by monitoring the pore fluid chemistry and by analyzing the final solid product. These results are discussed briefly and related to changes in the organic phase.

  4. The effects of organic matter-mineral interactions and organic matter chemistry on diuron sorption across a diverse range of soils.

    PubMed

    Smernik, Ronald J; Kookana, Rai S

    2015-01-01

    Sorption of non-ionic organic compounds to soil is usually expressed as the carbon-normalized partition coefficient (KOC), because it is assumed that the main factor that influences the amount sorbed is the organic carbon content of the soil. However, KOC can vary by a factor of at least ten across a range of soils. We investigated two potential causes of variation in diuron KOC - organic matter-mineral interactions and organic matter chemistry - for a diverse set of 34 soils from Sri Lanka, representing a wide range of soil types. Treatment with hydrofluoric acid (HF-treatment) was used to concentrate soil organic matter. HF-treatment increased KOC for the majority of soils (average factor 2.4). We attribute this increase to the blocking of organic matter sorption sites in the whole soils by minerals. There was no significant correlation between KOC for the whole soils and KOC for the HF-treated soils, indicating that the importance of organic matter-mineral interactions varied greatly amongst these soils. There was as much variation in KOC across the HF-treated soils as there was across the whole soils, indicating that the nature of soil organic matter is also an important contributor to KOC variability. Organic matter chemistry, determined by solid-state (13)C nuclear magnetic resonance (NMR) spectroscopy, was correlated with KOC for the HF-treated soils. In particular, KOC increased with the aromatic C content (R=0.64, p=1×10(-6)), and decreased with O-alkyl C (R=-0.32, p=0.03) and alkyl C (R=-0.41, p=0.004) content. PMID:24972176

  5. Solid-phase fluorescence spectroscopy to characterize organic wastes.

    PubMed

    Muller, Mathieu; Milori, Débora Marcondes Bastos Pereira; Déléris, Stéphane; Steyer, Jean-Philippe; Dudal, Yves

    2011-01-01

    The production of solid organic waste (SOW) such as sewage sludge (SS) or municipal solid waste (MSW) has been continuously increasing in Europe since the beginning of the 1990'. Today, the European Union encourages the stabilization of these wastes using biologic processes such as anaerobic digestion and/or composting to produce bio-energy and organic fertilizers. However, the design and management of such biologic processes require knowledge about the quantity and quality of the organic matter (OM) contained in the SOW. The current methods to characterize SOW are tedious, time-consuming and often insufficiently informative. In this paper, we assess the potential of solid-phase fluorescence (SPF) spectroscopy to quickly provide a relevant characterization of SOW. First, we tested well known model compounds (tryptophan, bovine serum albumin, lignin and humic acid) and biologic matrix (Escherichia coli) in three dimensional solid-phase fluorescence (3D-SPF) spectroscopy. We recorded fluorescence spectra from proteinaceous samples but we could not record the fluorescence emitted by lignin and humic acid powders. For SOW samples, fluorescence spectra were successfully recorded for MSW and most of its sub-components (foods, cardboard) but impossible for SS, sludge compost (SC) and ligno-cellulosic wastes. Based on visual observations and additional assays, we concluded that the presence of highly light-absorptive chemical structures in such dark-colored samples was responsible for this limitation. For such samples, i.e. lignin, humic acid, SS, SC and ligno-cellulosic wastes, we show that laser induced fluorescence (LIF) spectroscopy enables the acquisition of 2D fluorescence spectra. PMID:21696938

  6. Kinetic quantification of vertical solid matter transfers in soils by a multi-tracers approach

    NASA Astrophysics Data System (ADS)

    Jagercikova, Mariannaa; Cornu, Sophiea; Bourl`es, Didierb; Evrard, Olivierc; Alainb, V.'eron; Hatt'e, Christinec; Ayrault, Sophiec; Jérômea, Balesdent

    2015-04-01

    We will present a novel multi-tracers method - combining different isotopic systems (137 Cs, 210 Pb (xs), meteoric 10 Be, 206/207 Pb, δ13 C, 14 C) with numerical modeling based on a non-linear diffusion-convection equation with depth dependent parameters - to quantify vertical transfer of solid matter in Luvisols, namely clay translocation and bioturbation. Our results show that as much as 91 ± 9 % and 80 ± 9 % of 137Cs and 10Be, respectively, are associated with the clay size fraction (0-2 µm) and provide therefore relevant tracers to investigate vertical transfer of solid matter in soils with pH > 5 and low organic carbon contents. Lead partitioning between different solid phases is more complex. Considering two spatial distributions of isotopes (macropores or soil matrix) depending on the contribution of a fraction inherited from the loess parent material to the soil concentration, we built up a multi-tracers modeling approach that simulates the experimental data with the common set of transfer parameters and allows us to quantify the relative contributions of vertical solid matter transfers to present-day 0-2 µm vertical distributions. Clay translocation is responsible for 9 to 66 % of clay accumulation in the Bt-horizon. The diffusion coefficients quantifying the rate of soil mixing by bioturbation yields values that are significantly higher than those estimated in previous ecological studies. Modeling the kinetics of solid matter transfer at various spatial and temporal scales should become a reference method in modern pedogenic and critical zone studies.

  7. Is organic matter found in glaciers similar to soil organic matter? A detailed molecular-level investigation of organic matter found in cryoconite holes on the Athabasca Glacier

    NASA Astrophysics Data System (ADS)

    Simpson, M. J.; Xu, Y.; Eyles, N.; Simpson, A. J.; Baer, A.

    2009-04-01

    Cryoconite is a dark-coloured, dust-like material found on the surfaces of glaciers. Cryoconite has received much interest recently because cryoconite holes, which are produced by accelerated ice melt, act as habitats for microbes on glacier surfaces and accelerate ice melt. To the best of our knowledge, cyroconite organic matter (COM) has not yet been chemically characterized at the molecular level. In this study, organic matter biomarkers and a host of Nuclear Magnetic Resonance (NMR) techniques were used to characterize COM from the Athabasca Glacier in the Canadian Rocky Mountains. The research questions that were targeted by this study include: 1) what are the sources of COM on the Athabasca Glacier; 2) are there any biomarker and/or NMR evidence for microbial community activity in the cryoconite holes; and 3) is the COM structurally similar to terrestrial OM? Solvent extracts contained large quantities of fatty acids, n-alkanols, n-alkanes, wax esters and sterols. A large contribution of C23, C25 and C27 relative to C29 and C31 n-alkanes suggests that allochthonous COM is mainly from lower order plants (mosses, lichens). This is confirmed by the absence of lignin phenols (after copper (II) oxidation) in extracts and NMR analyses of COM. Solution-state 1H NMR reveals prominent signals from microbial components, while solid-state 13C Cross Polarization Magic Angle Spinning NMR analysis shows an atypically high alkyl/O-alkyl ratio, suggesting that COM is unique compared to organic matter found in nearby soils. The NMR results suggest that COM is dominated by microbial-derived compounds which were confirmed by phospholipid fatty acid analysis, which showed a significant microbial contribution, primarily from bacteria and minor microeukaryotes. Both biomarker and NMR data suggest that COM likely supports active microbial communities on the Athabasca Glacier and that COM composition is uniquely different than that found in terrestrial environments. Our data

  8. Infections in solid-organ transplant recipients.

    PubMed Central

    Patel, R; Paya, C V

    1997-01-01

    Solid-organ transplantation is a therapeutic option for many human diseases. Infections are a major complication of solid-organ transplantation. All candidates should undergo a thorough infectious-disease screening prior to transplantation. There are three time frames, influenced by surgical factors, the level of immunosuppression, and environmental exposures, during which infections of specific types most frequently occur posttransplantation. Most infections during the first month are related to surgical complications. Opportunistic infections typically occur from the second to the sixth month. During the late posttransplant period (beyond 6 months), transplantation recipients suffer from the same infections seen in the general community. Opportunistic bacterial infections seen in transplant recipients include those caused by Legionella spp., Nocardia spp., Salmonella spp., and Listeria monocytogenes. Cytomegalovirus is the most common cause of viral infections. Herpes simplex virus, varicella-zoster virus, Epstein-Barr virus and others are also significant pathogens. Fungal infections, caused by both yeasts and mycelial fungi, are associated with the highest mortality rates. Mycobacterial, pneumocystis, and parasitic diseases may also occur. PMID:8993860

  9. Measuring Organic Matter with COSIMA on Board Rosetta

    NASA Astrophysics Data System (ADS)

    Briois, C.; Baklouti, D.; Bardyn, A.; Cottin, H.; Engrand, C.; Fischer, H.; Fray, N.; Godard, M.; Hilchenbach, M.; von Hoerner, H.; Höfner, H.; Hornung, K.; Kissel, J.; Langevin, Y.; Le Roy, L.; Lehto, H.; Lehto, K.; Orthous-Daunay, F. R.; Revillet, C.; Rynö, J.; Schulz, R.; Silen, J. V.; Siljeström, S.; Thirkell, L.

    2014-12-01

    Comets are believed to contain the most pristine material of our Solar System materials and therefore to be a key to understand the origin of the Solar System, and the origin of life. Remote sensing observations have led to the detection of more than twenty simple organic molecules (Bockelée-Morvan et al., 2004; Mumma and Charnley, 2011). Experiments on-board in-situ exploration missions Giotto and Vega and the recent Stardust sample return missions have shown that a significant fraction of the cometary grains consists of organic matter. Spectra showed that both the gaseous (Mitchell et al., 1992) and the solid phase (grains) (Kissel and Krueger, 1987) contained organic molecules with higher masses than those of the molecules detected by remote sensing techniques in the gaseous phase. Some of the grains analyzed in the atmosphere of comet 1P/Halley seem to be essentially made of a mixture of carbon, hydrogen, oxygen and nitrogen (CHON grains, Fomenkova, 1999). Rosetta is an unparalleled opportunity to make a real breakthrough into the nature of cometary matter, both in the gas and in the solid phase. The dust mass spectrometer COSIMA on Rosetta will analyze organic and inorganic phases in the dust. The organic phases may be refractory, but some organics may evaporate with time from the dust and lead to an extended source in the coma. Over the last years, we have prepared the cometary rendezvous by the analysis of various samples with the reference model of COSIMA. We will report on this calibration data set and on the first results of the in-situ analysis of cometary grains as captured, imaged and analyzed by COSIMA. References : Bockelée-Morvan, D., et al. 2004. (Eds.), Comets II. the University of Arizona Press, Tucson, USA, pp. 391-423 ; Fomenkova, M.N., 1999. Space Science Reviews 90, 109-114 ; Kissel, J., Krueger, F.R., 1987. Nature 326, 755-760 ; Mitchell, et al. 1992. Icarus 98, 125-133 ; Mumma, M.J., Charnley, S.B., 2011. Annual Review of Astronomy and

  10. Organic matter and containment of uranium and fissiogenic isotopes at the Oklo natural reactors

    USGS Publications Warehouse

    Nagy, B.; Gauthier-Lafaye, F.; Holliger, P.; Davis, D.W.; Mossman, D.J.; Leventhal, J.S.; Rigali, M.J.; Parnell, J.

    1991-01-01

    SOME of the Precambrian natural fission reactors at Oklo in Gabon contain abundant organic matter1,2, part of which was liquefied at the time of criticality and subsequently converted to a graphitic solid3,4. The liquid organic matter helps to reduce U(VI) to U(IV) from aqueous solutions, resulting in the precipitation of uraninite5. It is known that in the prevailing reactor environments, precipitated uraninite grains incorporated fission products. We report here observations which show that these uraninite crystals were held immobile within the resolidified, graphitic bitumen. Unlike water-soluble (humic) organic matter, the graphitic bituminous organics at Oklo thus enhanced radionu-clide containment. Uraninite encased in solid graphitic matter in the organic-rich reactor zones lost virtually no fissiogenic lan-thanide isotopes. The first major episode of uranium and lead migration was caused by the intrusion of a swarm of adjacent dolerite dykes about 1,100 Myr after the reactors went critical. Our results from Oklo imply that the use of organic, hydrophobic solids such as graphitic bitumen as a means of immobilizing radionuclides in pretreated nuclear waste warrants further investigation. ?? 1991 Nature Publishing Group.

  11. Sensitivity of soil organic matter in anthropogenically disturbed organic soils

    NASA Astrophysics Data System (ADS)

    Säurich, Annelie; Tiemeyer, Bärbel; Bechtold, Michel; Don, Axel; Freibauer, Annette

    2016-04-01

    Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agriculture. However, the variability of CO2 emissions increases with disturbance, and little is known on the soil properties causing differences between seemingly similar sites. Furthermore the driving factors for carbon cycling are well studied for both genuine peat and mineral soil, but there is a lack of information concerning soils at the boundary between organic and mineral soils. Examples for such soils are both soils naturally relatively high in soil organic matter (SOM) such as Humic Gleysols and former peat soils with a relative low SOM content due to intensive mineralization or mixing with underlying or applied mineral soil. The study aims to identify drivers for the sensitivity of soil organic matter and therefore for respiration rates of anthropogenically disturbed organic soils, especially those near the boundary to mineral soils. Furthermore, we would like to answer the question whether there are any critical thresholds of soil organic carbon (SOC) concentrations beyond which the carbon-specific respiration rates change. The German agricultural soil inventory samples all agricultural soils in Germany in an 8x8 km² grid following standardized protocols. From this data and sample base, we selected 120 different soil samples from more than 80 sites. As reference sites, three anthropogenically undisturbed peatlands were sampled as well. We chose samples from the soil inventory a) 72 g kg-1 SOC and b) representing the whole range of basic soil properties: SOC (72 to 568 g kg-1), total nitrogen (2 to 29 g kg-1), C-N-ratio (10 to 80) bulk density (0.06 to 1.41 g/cm³), pH (2.5 to 7.4), sand (0 to 95 %) and clay (2 to 70 %) content (only determined for samples with less than 190 g kg-1 SOC) as well as the botanical origin of the peat (if determinable). Additionally, iron oxides were determined for all samples. All samples were sieved (2 mm) and incubated at standardized water content and

  12. Influence of Dissolved Organic Matter and Fe (II) on the Abiotic Reduction of Pentachloronitrobenzene

    EPA Science Inventory

    Nitroaromatic pesticides (NAPs) are hydrophobic contaminants that can accumulate in sediments by the deposition of suspended solids from surface waters. Fe(II) and dissolved organic matter (DOM), present in suboxic and anoxic zones of freshwater sediments, can transform NAPs in n...

  13. Soil Organic Matter and Management of Plant-Parasitic Nematodes

    PubMed Central

    Widmer, T. L.; Mitkowski, N. A.; Abawi, G. S.

    2002-01-01

    Organic matter and its replenishment has become a major component of soil health management programs. Many of the soil's physical, chemical, and biological properties are a function of organic matter content and quality. Adding organic matter to soil influences diverse and important biological activities. The diversity and number of free-living and plant-parasitic nematodes are altered by rotational crops, cover crops, green manures, and other sources of organic matter. Soil management programs should include the use of the proper organic materials to improve soil chemical, physical, and biological parameters and to suppress plant-parasitic nematodes and soilborne pathogens. It is critical to monitor the effects of organic matter additions on activities of major and minor plant-parasitic nematodes in the production system. This paper presents a general review of information in the literature on the effects of crop rotation, cover crops, and green manures on nematodes and their damage to economic crops. PMID:19265946

  14. Soil organic matter and management of plant-parasitic nematodes.

    PubMed

    Widmer, T L; Mitkowski, N A; Abawi, G S

    2002-12-01

    Organic matter and its replenishment has become a major component of soil health management programs. Many of the soil's physical, chemical, and biological properties are a function of organic matter content and quality. Adding organic matter to soil influences diverse and important biological activities. The diversity and number of free-living and plant-parasitic nematodes are altered by rotational crops, cover crops, green manures, and other sources of organic matter. Soil management programs should include the use of the proper organic materials to improve soil chemical, physical, and biological parameters and to suppress plant-parasitic nematodes and soilborne pathogens. It is critical to monitor the effects of organic matter additions on activities of major and minor plant-parasitic nematodes in the production system. This paper presents a general review of information in the literature on the effects of crop rotation, cover crops, and green manures on nematodes and their damage to economic crops. PMID:19265946

  15. The evolution of organic matter in space.

    PubMed

    Ehrenfreund, Pascale; Spaans, Marco; Holm, Nils G

    2011-02-13

    Carbon, and molecules made from it, have already been observed in the early Universe. During cosmic time, many galaxies undergo intense periods of star formation, during which heavy elements like carbon, oxygen, nitrogen, silicon and iron are produced. Also, many complex molecules, from carbon monoxide to polycyclic aromatic hydrocarbons, are detected in these systems, like they are for our own Galaxy. Interstellar molecular clouds and circumstellar envelopes are factories of complex molecular synthesis. A surprisingly high number of molecules that are used in contemporary biochemistry on the Earth are found in the interstellar medium, planetary atmospheres and surfaces, comets, asteroids and meteorites and interplanetary dust particles. Large quantities of extra-terrestrial material were delivered via comets and asteroids to young planetary surfaces during the heavy bombardment phase. Monitoring the formation and evolution of organic matter in space is crucial in order to determine the prebiotic reservoirs available to the early Earth. It is equally important to reveal abiotic routes to prebiotic molecules in the Earth environments. Materials from both carbon sources (extra-terrestrial and endogenous) may have contributed to biochemical pathways on the Earth leading to life's origin. The research avenues discussed also guide us to extend our knowledge to other habitable worlds. PMID:21220279

  16. Aerobic methane production from organic matter

    NASA Astrophysics Data System (ADS)

    Vigano, I.

    2010-01-01

    Methane, together with H2O, CO2 and N2O, is an important greenhouse gas in th e Earth’s atmosphere playing a key role in the radiative budget. It has be en known for decades that the production of the reduced compound CH4 is possible almost exclusively in anoxic environments per opera of one of the most importan t class of microorganisms which form the Archaea reign. Methane can be produced also from incomplete combustion of organic material. The generation of CH4 in an oxygenated environment under near-ambient conditions is a new discovery made in 2006 by Keppler et. al where surprisingly they measured emissions of this green house gas from plants incubated in chambers with air containing 20% of oxygen. A lthough the estimates on a global scale are still object of an intensive debate, the results presented in this thesis clearly show the existence of methane prod uction under oxic conditions for non living plant material. Temperature and UV l ight are key factors that drive the generation of CH4 from plant matter in a wel l oxygenated environment.

  17. Transplantation immunology: Solid Organ and bone marrow

    PubMed Central

    Chinen, Javier; Buckley, Rebecca H.

    2010-01-01

    Development of the field of organ and tissue transplantation has accelerated remarkably since the human major histocompatibility complex (MHC) was discovered in 1967. Matching of donor and recipient for MHC antigens has been shown to have a significant positive effect on graft acceptance. The roles of the different components of the immune system involved in the tolerance or rejection of grafts and in graft-versus-host disease have been clarified. These components include: antibodies, antigen presenting cells, helper and cytotoxic T cell subsets, immune cell surface molecules, signaling mechanisms and cytokines that they release. The development of pharmacologic and biological agents that interfere with the alloimmune response and graft rejection has had a crucial role in the success of organ transplantation. Combinations of these agents work synergistically, leading to lower doses of immunosuppressive drugs and reduced toxicity. Reports of significant numbers of successful solid organ transplants include those of the kidneys, liver, heart and lung. The use of bone marrow transplantation for hematological diseases, particularly hematological malignancies and primary immunodeficiencies, has become the treatment of choice in many of these conditions. Other sources of hematopoietic stem cells are also being used, and diverse immunosuppressive drug regimens of reduced intensity are being proposed to circumvent the mortality associated with the toxicity of these drugs. Gene therapy to correct inherited diseases by infusion of gene-modified autologous hematopoietic stem cells has shown efficacy in two forms of severe combined immunodeficiency, providing an alternative to allogeneic tissue transplantation. PMID:20176267

  18. Role of organic matter in the Proterozoic Oklo natural fission reactors, Gabon, Africa

    SciTech Connect

    Nagy, B.; Rigali, M.J.; Gauthier-Lafaye, F.; Holliger, P.; Mossman, D.J.; Leventhal, J.S.

    1993-07-01

    Of the sixteen known Oklo and the Bangombe natural fission reactors (hydrothermally altered elastic sedimentary rocks that contain abundant uraninite and authigenic clay minerals), reactors 1 to 6 at Oklo contain only traces of organic matter, but the others are rich in organic substances. Reactors 7 to 9 are the subjects of this study. These organic-rich reactors may serve as time-tested analogues for anthropogenic nuclear-waste containment strategies. Organic matter helped to concentrate quantities of uranium sufficient to initiate the nuclear chain reactions. Liquid bitumen was generated from organic matter by hydrothermal reactions during nuclear criticality. The bitumen soon became a solid, consisting of polycyclic aromatic hydrocarbons and an intimate mixture of cryptocrystalline graphite, which enclosed and immobilized uraninite and the fission-generated isotopes entrapped in uraninite. This mechanism prevented major loss of uranium and fission products from the natural nuclear reactors for 1.2 b.y. 24 refs., 4 figs.

  19. TILLAGE AND RESIDUE MANAGEMENT EFFECTS ON SOIL ORGANIC MATTER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This college-level textbook is designed to help students and researchers understand the complexity of how to manage soil organic matter in a diversity of agroecosystems. This chapter describes the current state of knowledge on how tillage and residue management affect soil organic matter. Types of t...

  20. Complexation of trace metals by adsorbed natural organic matter

    USGS Publications Warehouse

    Davis, J.A.

    1984-01-01

    The adsorption behavior and solution speciation of Cu(II) and Cd(II) were studied in model systems containing colloidal alumina particles and dissolved natural organic matter. At equilibrium a significant fraction of the alumina surface was covered by adsorbed organic matter. Cu(II) was partitioned primarily between the surface-bound organic matter and dissolved Cu-organic complexes in the aqueous phase. Complexation of Cu2+ with the functional groups of adsorbed organic matter was stronger than complexation with uncovered alumina surface hydroxyls. It is shown that the complexation of Cu(II) by adsorbed organic matter can be described by an apparent stability constant approximately equal to the value found for solution phase equilibria. In contrast, Cd(II) adsorption was not significantly affected by the presence of organic matter at the surface, due to weak complex formation with the organic ligands. The results demonstrate that general models of trace element partitioning in natural waters must consider the presence of adsorbed organic matter. ?? 1984.

  1. Detection of organic matter in interstellar grains.

    PubMed

    Pendleton, Y J

    1997-06-01

    Star formation and the subsequent evolution of planetary systems occurs in dense molecular clouds, which are comprised, in part, of interstellar dust grains gathered from the diffuse interstellar medium (DISM). Radio observations of the interstellar medium reveal the presence of organic molecules in the gas phase and infrared observational studies provide details concerning the solid-state features in dust grains. In particular, a series of absorption bands have been observed near 3.4 microns (approximately 2940 cm-1) towards bright infrared objects which are seen through large column densities of interstellar dust. Comparisons of organic residues, produced under a variety of laboratory conditions, to the diffuse interstellar medium observations have shown that aliphatic hydrocarbon grains are responsible for the spectral absorption features observed near 3.4 microns (approximately 2940 cm-1). These hydrocarbons appear to carry the -CH2- and -CH3 functional groups in the abundance ratio CH2/CH3 approximately 2.5, and the amount of carbon tied up in this component is greater than 4% of the cosmic carbon available. On a galactic scale, the strength of the 3.4 microns band does not scale linearly with visual extinction, but instead increases more rapidly for objects near the Galactic Center. A similar trend is noted in the strength of the Si-O absorption band near 9.7 microns. The similar behavior of the C-H and Si-O stretching bands suggests that these two components may be coupled, perhaps in the form of grains with silicate cores and refractory organic mantles. The ubiquity of the hydrocarbon features seen in the near infrared near 3.4 microns throughout out Galaxy and in other galaxies demonstrates the widespread availability of such material for incorporation into the many newly forming planetary systems. The similarity of the 3.4 microns features in any organic material with aliphatic hydrocarbons underscores the need for complete astronomical observational

  2. Active viscoelastic matter: from bacterial drag reduction to turbulent solids.

    PubMed

    Hemingway, E J; Maitra, A; Banerjee, S; Marchetti, M C; Ramaswamy, S; Fielding, S M; Cates, M E

    2015-03-01

    A paradigm for internally driven matter is the active nematic liquid crystal, whereby the equations of a conventional nematic are supplemented by a minimal active stress that violates time-reversal symmetry. In practice, active fluids may have not only liquid-crystalline but also viscoelastic polymer degrees of freedom. Here we explore the resulting interplay by coupling an active nematic to a minimal model of polymer rheology. We find that adding a polymer can greatly increase the complexity of spontaneous flow, but can also have calming effects, thereby increasing the net throughput of spontaneous flow along a pipe (a "drag-reduction" effect). Remarkably, active turbulence can also arise after switching on activity in a sufficiently soft elastomeric solid. PMID:25793858

  3. Subcritical water extraction of organic matter from sedimentary rocks.

    PubMed

    Luong, Duy; Sephton, Mark A; Watson, Jonathan S

    2015-06-16

    Subcritical water extraction of organic matter containing sedimentary rocks at 300°C and 1500 psi produces extracts comparable to conventional solvent extraction. Subcritical water extraction of previously solvent extracted samples confirms that high molecular weight organic matter (kerogen) degradation is not occurring and that only low molecular weight organic matter (free compounds) are being accessed in analogy to solvent extraction procedures. The sedimentary rocks chosen for extraction span the classic geochemical organic matter types. A type I organic matter-containing sedimentary rock produces n-alkanes and isoprenoidal hydrocarbons at 300°C and 1500 psi that indicate an algal source for the organic matter. Extraction of a rock containing type II organic matter at the same temperature and pressure produces aliphatic hydrocarbons but also aromatic compounds reflecting the increased contributions from terrestrial organic matter in this sample. A type III organic matter-containing sample produces a range of non-polar and polar compounds including polycyclic aromatic hydrocarbons and oxygenated aromatic compounds at 300°C and 1500 psi reflecting a dominantly terrestrial origin for the organic materials. Although extraction at 300°C and 1500 psi produces extracts that are comparable to solvent extraction, lower temperature steps display differences related to organic solubility. The type I organic matter produces no products below 300°C and 1500 psi, reflecting its dominantly aliphatic character, while type II and type III organic matter contribute some polar components to the lower temperature steps, reflecting the chemical heterogeneity of their organic inventory. The separation of polar and non-polar organic compounds by using different temperatures provides the potential for selective extraction that may obviate the need for subsequent preparative chromatography steps. Our results indicate that subcritical water extraction can act as a suitable

  4. Dissolved Organic Matter and Emerging Contaminants in Urban Stream Ecosystems

    NASA Astrophysics Data System (ADS)

    Kaushal, S. S.; Findlay, S.; Groffman, P.; Belt, K.; Delaney, K.; Sides, A.; Walbridge, M.; Mayer, P.

    2009-05-01

    We investigated the effects of urbanization on the sources, bioavailability and forms of natural and anthropogenic organic matter found in streams located in Maryland, U.S.A. We found that the abundance, biaoavailability, and enzymatic breakdown of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and dissolved organic phosphorus (DOP) increased in streams with increasing watershed urbanization suggesting that organic nutrients may represent a growing form of nutrient loading to coastal waters associated with land use change. Organic carbon, nitrogen, and phosphorus in urban streams were elevated several-fold compared to forest and agricultural streams. Enzymatic activities of stream microbes in organic matter decomposition were also significantly altered across watershed land use. Chemical characterization suggested that organic matter in urban streams originated from a variety of sources including terrestrial, sewage, and in-stream transformation. In addition, a characterization of emerging organic contaminants (polyaromatic cyclic hydrocarbons, organochlorine pesticides, and polybrominated diphenyl ether flame retardents), showed that organic contaminants and dissolved organic matter increase with watershed urbanization and fluctuate substantially with changing climatic conditions. Elucidating the emerging influence of urbanization on sources, transport, and in-stream transformation of organic nutrients and contaminants will be critical in unraveling the changing role of organic matter in urban degraded and restored stream ecosystems.

  5. Sorption of Highly Hydrophobic Organic Chemicals to Organic Matter Relevant for Fish Bioconcentration Studies.

    PubMed

    Böhm, Leonard; Schlechtriem, Christian; Düring, Rolf-Alexander

    2016-08-01

    With regard to a potential underestimation of bioconcentration factors (BCF) in flow-through fish tests, sorption of 11 highly hydrophobic organic chemicals (HOCs) (log KOW 5.5-7.8) from different substance classes was systematically investigated for the first time in the presence of fish feed (FF) and filter residues (FR), the organic matter (OM) most relevant for fish bioconcentration studies. Sorption was investigated in batch-equilibrium experiments by solid-phase microextraction (SPME) resulting in partitioning coefficients of solid-water (Kd), total organic carbon-water (KTOC), and dissolved organic carbon-water (KDOC). Results prove a high affinity of HOCs for FF and FR supporting a significant impact on BCF studies and differing from sorption to Aldrich-humic acid (AHA) utilized as reference sorbent. Sorption is influenced by interactions between HOCs and OM characteristics. For FF, KDOC values were higher than KTOC values. Results help to assess the relevance of interaction of HOCs from different substance classes with OM relevant for BCF studies. PMID:27362743

  6. Solid organ transplant training objectives for residents.

    PubMed

    Masclans, J R; Vicente, R; Ballesteros, M A; Sabater, J; Roca, O; Rello, J

    2012-11-01

    With the aim of analyzing the current state of the educational objectives in the training of medical residents in solid organ transplantation (SOT), we conducted a review of the status of the official programs of the specialities involved in SOT, focusing particularly on lung transplantation. A survey of medical residents was also conducted to allow reflexion about the topic. We obtained 44 surveys from 4 University Hospitals with active programs in SOT, mainly from intensive care medicine and anesthesiology residents. We detected an important number of courses oriented to organ donation but very limited in terms of basic training in the management of the immediate postoperative period, principles of immunosuppression and updates on immunosuppressive therapy and complications (particularly rejection and infection). We also identified that these educational aspects should be directed not only to medical residents from specialities with a close retation to SOT, but also to all who may at some time have a relation to such patients. The use of information and communication techniques (ICTs), on-line courses and also simulations should be instruments to take into account in the biomedical training of medical residents. We conclude that we need a specific training program in complications of SOT, as well as fundamental principles in immunology and immunosuppressor pharmacology. PMID:22980670

  7. Changes in River Organic Matter Through Time.

    NASA Astrophysics Data System (ADS)

    Hudson, N.; Baker, A.; Ward, D.

    2006-12-01

    fluorescence, as an increase in pH was also observed in these samples. This work illustrates the dynamic character of river organic matter within a timescale and under conditions that are representative of the natural system.

  8. Degradation of natural organic matter: A thermodynamic analysis

    NASA Astrophysics Data System (ADS)

    LaRowe, Douglas E.; Van Cappellen, Philippe

    2011-04-01

    The oxidative degradation of organic matter is a key process in the biogeochemical functioning of the earth system. Quantitative models of organic matter degradation are therefore essential for understanding the chemical state and evolution of the Earth's near-surface environment, and to forecast the biogeochemical consequences of ongoing regional and global change. The complex nature of biologically produced organic matter represents a major obstacle to the development of such models, however. Here, we compare the energetics of the oxidative degradation of a large number of naturally occurring organic compounds. By relating the Gibbs energies of half reactions describing the complete mineralization of the compounds to their average nominal carbon oxidation state, it becomes possible to estimate the energetic potential of the compounds based on major element (C, H, N, O, P, S) ratios. The new energetic description of organic matter can be combined with bioenergetic theory to rationalize observed patterns in the decomposition of natural organic matter. For example, the persistence of cell membrane derived compounds and complex organics in anoxic settings is consistent with their limited catabolic potential under these environmental conditions. The proposed approach opens the way to include the thermodynamic properties of organic compounds in kinetic models of organic matter degradation.

  9. Spatial Complexity of Soil Organic Matter Forms at Nanometre Scales

    SciTech Connect

    Lehmann,J.; Solomon, D.; Kinyangi, J.; Dathe, L.; Wirick, S.; Jacobsen, C.

    2008-01-01

    Organic matter in soil has been suggested to be composed of a complex mixture of identifiable biopolymers1 rather than a chemically complex humic material2. Despite the importance of the spatial arrangement of organic matter forms in soil3, its characterization has been hampered by the lack of a method for analysis at fine scales. X-ray spectromicroscopy has enabled the identification of spatial variability of organic matter forms, but was limited to extracted soil particles4 and individual micropores within aggregates5, 6. Here, we use synchrotron-based near-edge X-ray spectromicroscopy7 of thin sections of entire and intact free microaggregates6 to demonstrate that on spatial scales below 50 nm resolution, highly variable yet identifiable organic matter forms, such as plant or microbial biopolymers, can be found in soils at distinct locations of the mineral assemblage. Organic carbon forms detected at this spatial scale had no similarity to organic carbon forms of total soil. In contrast, we find that organic carbon forms of total soil were remarkably similar between soils from several temperate and tropical forests with very distinct vegetation composition and soil mineralogy. Spatial information on soil organic matter forms at the scale provided here could help to identify processes of organic matter cycling in soil, such as carbon stability or sequestration and responses to a changing climate.

  10. Deformation behaviors of peat with influence of organic matter.

    PubMed

    Yang, Min; Liu, Kan

    2016-01-01

    Peat is a kind of special material rich in organic matter. Because of the high content of organic matter, it shows different deformation behaviors from conventional geotechnical materials. Peat grain has a non-negligible compressibility due to the presence of organic matter. Biogas can generate from peat and can be trapped in form of gas bubbles. Considering the natural properties of peat, a special three-phase composition of peat is described which indicates the existence of organic matter and gas bubbles in peat. A stress-strain-time model is proposed for the compression of organic matter, and the surface tension effect is considered in the compression model of gas bubbles. Finally, a mathematical model has been developed to simulate the deformation behavior of peat considering the compressibility of organic matter and entrapped gas bubbles. The deformation process is the coupling of volume variation of organic matter, gas bubbles and water drainage. The proposed model is used to simulate a series of peat laboratory oedometer tests, and the model can well capture the test results with reasonable model parameters. Effects of model parameters on deformation of peat are also analyzed. PMID:27247870

  11. Global Evolution of Solid Matter in Turbulent Protoplanetry Disks. Part 1; Aerodynamics of Solid Particles

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Valageas, P.

    1996-01-01

    The problem of planetary system formation and its subsequent character can only be addressed by studying the global evolution of solid material entrained in gaseous protoplanetary disks. We start to investigate this problem by considering the space-time development of aerodynamic forces that cause solid particles to decouple from the gas. The aim of this work is to demonstrate that only the smallest particles are attached to the gas, or that the radial distribution of the solid matter has no momentary relation to the radial distribution of the gas. We present the illustrative example wherein a gaseous disk of 0.245 solar mass and angular momentum of 5.6 x 10(exp 52) g/sq cm/s is allowed to evolve due to turbulent viscosity characterized by either alpha = 10(exp -2) or alpha = 10(exp -3). The motion of solid particles suspended in a viscously evolving gaseous disk is calculated numerically for particles of different sizes. In addition we calculate the global evolution of single-sized, noncoagulating particles. We find that particles smaller than 0.1 cm move with the gas; larger particles have significant radial velocities relative to the gas. Particles larger than 0.1 cm but smaller than 10(exp 3) cm have inward radial velocities much larger than the gas, whereas particles larger than 10(exp 4) cm have inward velocities much smaller than the gas. A significant difference in the form of the radial distribution of solids and the gas develops with time. It is the radial distribution of solids, rather than the gas, that determines the character of an emerging planetary system.

  12. Effect of organic matters on CO2 hydrate phase equilibrium conditions in Na-montmorillonite clay

    NASA Astrophysics Data System (ADS)

    Park, T.; Kyung, D.; Lee, W.

    2013-12-01

    Formation of gas hydrates provides an attractive idea for storing greenhouse gases in a long-term stable geological formation. Since the phase equilibrium conditions of gas hydrates indicate the stability of hydrates, estimation of the phase equilibrium conditions of gas hydrates in marine geological conditions is necessary. In this study, we have identified the effects of organic matters (glycine, glucose, and urea) and solid surface (montmorillonite (MMT)) on the three-phase (liquid-hydrate-vapor) equilibrium conditions of CO2 hydrate. CO2 phase equilibrium experiments were conducted using 0.5mol% organic matter solutions with and without 10g soil mineral were experimentally conducted. Addition of organic matters shifted the phase equilibrium conditions of CO2 hydrate to the higher pressure or lower pressure region because of higher competition of water molecules due to the dissolved organic matters. Presence of MMT also leaded to the higher equilibrium pressure due to the interaction of cations with water molecules. By addition of organic matters to the clay suspension, the hydrate phase equilibrium conditions were less inhibited compared to those of MMT and organic matters independently. The diminished magnitudes by addition of organic matters to the clay suspension (MMT > MMT+urea > MMT+glycine > MMT+glucose > DIW) were different to the order of inhibition degree without MMT (Glucose > glycine > urea > DIW). X-ray diffraction (XRD), scanning electron microscope (SEM), and ion chromatography (IC) analysis were conducted to support the hypothesis that the organic matters interact with cations in MMT interlayer space, and leads to the less inhibition of phase equilibrium conditions. The present study provides basic information for the formation and dissociation of CO2 hydrates in the geological formation when sequestering CO2 as a form of CO2 hydrate.

  13. Polycyclic aromatic hydrocarbons and organic matter associated to particulate matter emitted from atmospheric fluidized bed coal combustion

    SciTech Connect

    Mastral, A.M.; Callen, M.S.; Garcia, T.

    1999-09-15

    The polycyclic aromatic hydrocarbons (PAH) and the organic matter (OM) content associated with particulate matter (PM) emissions from atmospheric fluidized bed coal combustion have been studied. The two main aims of the work have been (a) to study OM and PAH emissions as a function of the coal fluidized bed combustion (FBC) variables in solid phase and (b) to check if there is any correlation between OM and PAH contained in the PM. The combustion was carried out in a laboratory scale plant at different combustion conditions: temperature, percentage of oxygen excess, and total air flow. PAH associated on the particulate matter have been analyzed by fluorescence spectroscopy in the synchronous mode (FS) after PM extraction by sonication with dimethylformamide (DMF). It can be concluded that there is not a direct relationship between the OM content and the PAH supported in the PM emitted. In addition, neither PM or OM show dependence between themselves.

  14. Geomorphic controls on the amount and quality of organic matter associated with mineral surfaces

    NASA Astrophysics Data System (ADS)

    Berhe, A.; Harden, J. W.; Torn, M. S.; Burton, S. D.; Kleber, M.; Harte, J.

    2005-12-01

    Soil minerals play a critical role in stabilization of organic matter. In eroding slopes and depositional settings, the question of whether and to what extent the processes of soil erosion and deposition constitute a carbon dioxide sink is closely associated with stability of the mineral-organic matter associations. Here we use (a) density fractionation to determine the amount of soil organic carbon (SOC) that is associated with the mineral or heavy fraction (HF); (b) solid state 13C-NMR of bulk vs. mineral associated fraction to determine chemical composition of the organic constituents and (c) amount of crystalline primary, non-crystalline and organically complexed Fe and Al to estimate the soil's overall chemical protective capacity. We found that although around 99% of the soil is composed of HF, the SOC matter associated with it was less than 50% of bulk SOC and this amount increases with decreasing slope (higher in depositional basins). The soil organic matter associated with the HF was found to be more decomposed - as evidenced by the higher Alkyl:O-Alkyl ratio and aromaticity. Moreover, the average inventory of metal ions that promote stabilization of SOC through stable or meta-stable associations of SOC with the HF was found to be at least twice as much in the depositional basins compared to the eroding slopes. This study shows that the amount and quality of organic matter associated with HF changes significantly with topography and associated geomorphic processes such as erosion and deposition.

  15. Role of dissolved organic matter in ice photochemistry.

    PubMed

    Grannas, Amanda M; Pagano, Lisa P; Pierce, Brittany C; Bobby, Rachel; Fede, Alexis

    2014-09-16

    In this study, we provide evidence that dissolved organic matter (DOM) plays an important role in indirect photolysis processes in ice, producing reactive oxygen species (ROS) and leading to the efficient photodegradation of a probe hydrophobic organic pollutant, aldrin. Rates of DOM-mediated aldrin loss are between 2 and 56 times faster in ice than in liquid water (depending on DOM source and concentration), likely due to a freeze-concentration effect that occurs when the water freezes, providing a mechanism to concentrate reactive components into smaller, liquid-like regions within or on the ice. Rates of DOM-mediated aldrin loss are also temperature dependent, with higher rates of loss as temperature decreases. This also illustrates the importance of the freeze-concentration effect in altering reaction kinetics for processes occurring in environmental ices. All DOM source types studied were able to mediate aldrin loss, including commercially available fulvic and humic acids and an authentic Arctic snow DOM sample isolated by solid phase extraction, indicating the ubiquity of DOM in indirect photochemistry in environmental ices. PMID:25157605

  16. Toward an experimental synthesis of the chondritic insoluble organic matter

    NASA Astrophysics Data System (ADS)

    Biron, Kasia; Derenne, Sylvie; Robert, FrançOis; Rouzaud, Jean-NoëL.

    2015-08-01

    Based on the statistical model proposed for the molecular structure of the insoluble organic matter (IOM) isolated from the Murchison meteorite, it was recently proposed that, in the solar T-Tauri disk regions where (photo)dissociation of gaseous molecules takes place, aromatics result from the cyclization/aromatization of short aliphatics. This hypothesis is tested in this study, with n-alkanes being submitted to high-frequency discharge at low pressure. The contamination issue was eliminated using deuterated precursor. IOM was formed and studied using solid-state nuclear magnetic resonance, pyrolysis coupled to gas chromatography and mass spectrometry, RuO4 oxidation, and high-resolution transmission electron microscopy. It exhibits numerous similarities at the molecular level with the hydrocarbon backbone of the natural IOM, reinforcing the idea that the initial precursors of the IOM were originally chains in the gas. Moreover, a fine comparison between the chemical structure of several meteorite IOM suggests either that (i) the meteorite IOMs share a common precursor standing for the synthetic IOM or that (ii) the slight differences between the meteorite IOMs reflect differences in their environment at the time of their formation i.e., related to plasma temperature that, in turn, dictates the dissociation-recombination rates of organic fragments.

  17. Spectral band selection for classification of soil organic matter content

    NASA Technical Reports Server (NTRS)

    Henderson, Tracey L.; Szilagyi, Andrea; Baumgardner, Marion F.; Chen, Chih-Chien Thomas; Landgrebe, David A.

    1989-01-01

    This paper describes the spectral-band-selection (SBS) algorithm of Chen and Landgrebe (1987, 1988, and 1989) and uses the algorithm to classify the organic matter content in the earth's surface soil. The effectiveness of the algorithm was evaluated comparing the results of classification of the soil organic matter using SBS bands with those obtained using Landsat MSS bands and TM bands, showing that the algorithm was successful in finding important spectral bands for classification of organic matter content. Using the calculated bands, the probabilities of correct classification for climate-stratified data were found to range from 0.910 to 0.980.

  18. Interstellar chemistry recorded in organic matter from primitive meteorites.

    PubMed

    Busemann, Henner; Young, Andrea F; Alexander, Conel M O'd; Hoppe, Peter; Mukhopadhyay, Sujoy; Nittler, Larry R

    2006-05-01

    Organic matter in extraterrestrial materials has isotopic anomalies in hydrogen and nitrogen that suggest an origin in the presolar molecular cloud or perhaps in the protoplanetary disk. Interplanetary dust particles are generally regarded as the most primitive solar system matter available, in part because until recently they exhibited the most extreme isotope anomalies. However, we show that hydrogen and nitrogen isotopic compositions in carbonaceous chondrite organic matter reach and even exceed those found in interplanetary dust particles. Hence, both meteorites (originating from the asteroid belt) and interplanetary dust particles (possibly from comets) preserve primitive organics that were a component of the original building blocks of the solar system. PMID:16675696

  19. Pyrogenic organic matter can alter microbial communication

    NASA Astrophysics Data System (ADS)

    Masiello, Caroline; Gao, Xiaodong; Cheng, Hsiao-Ying; Silberg, Jonathan

    2016-04-01

    Soil microbes communicate with each other to manage a large range of processes that occur more efficiently when microbes are able to act simultaneously. This coordination occurs through the continuous production of signaling compounds that are easily diffused into and out of cells. As the number of microbes in a localized environment increases, the internal cellular concentration of these signaling compounds increases, and when a threshold concentration is reached, gene expression shifts, leading to altered (and coordinated) microbial behaviors. Many of these coordinated behaviors have biogeochemically important outcomes. For example, methanogenesis, denitrification, biofilm formation, and the development of plant-rhizobial symbioses are all regulated by a simple class of cell-cell signaling molecules known as acyl homoserine lactones (AHLs). Pyrogenic organic matter in soils can act to disrupt microbial communication through multiple pathways. In the case of AHLs, charcoal's very high surface area can sorb these signaling compounds, preventing microbes from detecting each others' presence (Masiello et al., 2014). In addition, the lactone ring in AHLs is vulnerable to pH increases accompanying PyOM inputs, with soil pH values higher than 7-8 leading to ring opening and compound destabilization. Different microbes use different classes of signaling compounds, and not all microbial signaling compounds are pH-vulnerable. This implies that PyOM-driven pH increases may trigger differential outcomes for Gram negative bacteria vs fungi, for example. A charcoal-driven reduction in microbes' ability to detect cell-cell communication compounds may lead to a shift in the ability of microbes to participate in key steps of C and N cycling. For example, an increase in an archaeon-specific AHL has been shown to lead to a cascade of metabolic processes that eventually results in the upregulation of CH4 production (Zhang et al., 2012). Alterations in similar AHL compounds leads to

  20. Inorganic-organic composite solid polymer electrolytes

    SciTech Connect

    Abraham, K.M.; Koch, V.R.; Blakley, T.J.

    2000-04-01

    Inorganic-organic composite solid polymer electrolytes (CSPEs) have been prepared from the poly(ethylene oxide) (PEO)-like electrolytes of the general formula polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP)-PEO{sub n}-LiX and Li{sup +}-conducting ceramic powders. In the PEO-like electrolytes, PVdF-HFP is the copolymer of PVdF and HFP, PEO{sub n} is a nonvolatile oligomeric polyethylene oxide of {approximately}400 g/mol molecular weight, and LiX is lithium bis(trifluoroethylsulfonyl)imide. Two types of inorganic oxide ceramic powders were used: a highly Li{sup +}-conducting material of the composition 14 mol % Li{sub 2}O-9Al{sub 2}O{sub 3}-38TiO{sub 2}-39P{sub 2}O{sub 5}, and the poorly Li{sup +}-conducting Li-silicates Li{sub 4{minus}x}M{sub x}SiO{sub 4} where M is Ca or Mg and x is 0 or 0.05. The composite electrolytes can be prepared as thin membranes in which the Li{sup +} conductivity and good mechanical strength of the Li{sup +}-conducting inorganic ceramics are complemented by the structural flexibility and high conductivity of organic polymer electrolytes. Excellent electrochemical and thermal stabilities have been demonstrated for the electrolyte films. Li//composite electrolyte//LiCoO{sub 2} rechargeable cells have been fabricated and cycled at room temperature and 50 C.

  1. Organic matter diagenesis in shallow water carbonate sediments

    NASA Astrophysics Data System (ADS)

    Ingalls, Anitra E.; Aller, Robert C.; Lee, Cindy; Wakeham, Stuart G.

    2004-11-01

    Muddy carbonate deposits near the Dry Tortugas, Florida, are characterized by high organic carbon remineralization rates. However, approximately half of the total sedimentary organic matter potentially supporting remineralization is occluded in CaCO 3 minerals (intracrystalline). While a portion of nonintracrystalline organic matter appears to cycle rapidly, intracrystalline organic matter has an approximately constant concentration with depth, suggesting that as long as its protective mineral matrix is intact, it is not readily remineralized. Organic matter in excess of intracrystalline organic matter that is preserved may have a variety of mineral associations (e.g., intercrystalline, adsorbed or detrital). In surface sediment, aspartic acid contributed ˜22 mole % and ˜50 mole % to nonintracrystalline and intracrystalline pools, respectively. In deeper sediment (1.6-1.7m), the composition of hydrolyzable amino acids in both pools was similar (aspartic acid ˜40 mole %). Like amino acids, intracrystalline and nonintracrystalline fatty acids have different compositions in surface sediments, but are indistinguishable at depth. These data suggest that preserved organic matter in the nonintracrystalline pool is stabilized by its interactions with CaCO 3. Neutral lipids are present in very low abundances in the intracrystalline pool and are extensively degraded in both the intracrystalline and nonintracrystalline pools, suggesting that mineral interactions do not protect these compounds from degradation. The presence of chlorophyll- a, but absence of phytol, in the intracrystalline lipid pool demonstrates that chloropigments are present only in the nonintracrystalline pool. Sedimentary chloropigments decrease with depth at similar rates in Dry Tortugas sediments as found in alumino-silicate sediments from the Long Island Sound, suggesting that chloropigment degradation is largely unaffected by mineral interactions. Overall, however, inclusion and protection of

  2. Nanoscale Structure Of Organic Matter Explain Its Recalcitrance To Degradation

    NASA Astrophysics Data System (ADS)

    Spagnol, M.; Salati, S.; Papa, G.; Tambone, F.; Adani, F.

    2009-04-01

    Recalcitrance can be defined as the natural resistance of organic matter (OM) to microbial and enzymatic deconstruction (Himmel et al., 2007). The nature of OM recalcitrance remained not completely understood and more studies need above all to elucidate the role of the chemical topography of the OM at nanometer scale. Hydrolytic enzymes responsible of OM degradation have a molecular weight of 20-25 kD, corresponding to a size of about 4 nm, hardly penetrate into micropores (i.e. the pore having a diameter < 2 nm) and small mesopores (i.e. pores having a diameter 2 < 50 nm) of OM structures, so that their activities are confined only to a portion of the total surface (Zimmerman et al., 2004; Chesson, 1997; Adani et al., 2006). As consequence of that the characterization of the organic matter at nano-scale became interesting in view to explain OM recalcitrance. The aim of this work was to asses the effect of the nano-scale structure of OM versus its recalcitrance. The evolution of organic matter of organic matrices was studied in two systems: plant residue-soil system and simulated landfill system. Plant residues were incubated in soil for one year and recalcitrant fraction, i.e. humic acid, was isolated and studied. Laboratory simulated landfill considered organic fraction of municipal solid waste sampled at different stages of evolution from a full scale plant and incubated under anaerobic condition for one year. In addition the nano-scale structure of fossilized OM (leonardite, chair coal and graphite) was detected as used as model of recalcitrant OM. Nano-scale structures were detected by using meso and microporosity detection. In particular microporosity was determined by adsorption method using CO2 at 273 K and Non Local Density Functional Theory (NLDFT) method was applied to measure the CO2 adsorption isotherms. On the other hand mesoporosity was detected by using N2 adsorption method at 77 K. The BET (Brunauer-Emmett-Teller) equation and the BJH (Barret

  3. Spin Hall Effect in Disordered Organic Solids

    NASA Astrophysics Data System (ADS)

    Yu, Z. G.

    2015-07-01

    We study the spin Hall effect (SHE) in disordered π -conjugated organic solids, where individual molecules are oriented randomly and electrical conduction is via carrier hopping. The SHE, which arises from interference between direct (i →j ) and indirect (i →k →j ) hoppings in a triad consisting of three molecules i , j , and k , is found to be proportional to λ (ni×nj+nj×nk+nk×ni), where λ is the spin admixture of π electrons due to the spin-orbit coupling and ni is the orientation vector of molecule i . Electrical conductivity σq q (q =x ,y ,z ) and spin Hall conductivity σsh are computed by numerically solving the master equations of a system containing 32 ×32 ×32 molecules and summing over contributions from all triads in the system. The obtained value of the spin Hall angle Θsh is consistent with experimental data in PEDOT:PSS, with a predicted temperature dependence of log Θsh˜T-1 /4 .

  4. Extraction of organic compounds from solid samples

    SciTech Connect

    Junk, G.A.; Richard, J.J.

    1986-04-01

    Pyridine, benzene, cyclohexane, methylene chloride, dimethyl sulfoxide, dimethylformamide, and n-methylpyrrolidone have been compared for the extraction of polycyclic organic materials (POMs) from urban air, diesel, and stack particulate samples. Both sonic and Soxhlet techniques have been examined for both natural environmental particulates and particulates spiked with selected POMs. The extraction results vary for different polycyclic compounds adsorbed on different solid matrices, so no single solvent or extraction technique could be unambiguously recommended. However, comparative average results for 14 compounds spiked onto fly ash at 0.1, 0.25, and 1.0 ..mu..g/g showed pyridine to have 1.5 times more extraction efficiency than benzene. These and other reported results suggest that pyridine deserves more attention as an extractant for particulate samples. In separate tests, recoveries of POMs from fly ash were not improved by deactivation with aqueous solutions of ammonium hydroxide, thiocyanate and carbonate, and sodium nitrite prior to the extraction. 39 references, 5 tables.

  5. Microbial Mineralization of Soil Organic Matter: Role of Chemical Composition and Structural Organization

    NASA Astrophysics Data System (ADS)

    Khalaf, M. M. R.; Chilom, G.; Rice, J. A.

    2014-12-01

    The purpose of this study is to quantitatively assess the effect of organic matter self-assembly on its resistance to microbial mineralization. Humic acids isolated from leonardite, two peats and a mineral soil were used as organic matter samples because they provide a broad range of variability in terms of the origin and nature of their organic components. Using a solvent-based fractionation method, humic acid samples were disassembled into a humic-like component and a humic-lipid composite. The humic-lipid composite was further disassembled into an amphiphilic and a lipid component using an alkaline aqueous solution. Mixtures that reproduced the composition of self-assembled samples were prepared by mixing the solid individual fractions in the exact proportions that they were present in the original material. The original humic acids or their corresponding mixtures were added as the sole carbon source in separate aerobic cultures containing a microbial consortium isolated from a mineral soil. After incubation for 125 days mineralization of the self-assembled samples was shown to be higher by as much as 70% compared to their corresponding physical mixtures. The extent of mineralization of the self-assembled samples was not correlated to the material's chemical composition or hydrophobicity index obtained from their 13C solid-state NMR spectra. In contrast, mineralization of the physical mixtures and the individual fractions did vary with chemical composition and was accompanied by preferential mineralization of alkyl carbon. These results suggest the microbial mineralization of humic acids is related to their self-assembly.

  6. Investigation of the organic matter in inactive nuclear tank liquids

    SciTech Connect

    Schenley, R.L.; Griest, W.H.

    1990-08-01

    Environmental Protection Agency (EPA) methodology for regulatory organics fails to account for the organic matter that is suggested by total organic carbon (TOC) analysis in the Oak Ridge National Laboratory (ORNL) inactive nuclear waste-tank liquids and sludges. Identification and measurement of the total organics are needed to select appropriate waste treatment technologies. An initial investigation was made of the nature of the organics in several waste-tank liquids. This report details the analysis of ORNL wastes.

  7. Pyrolysis-GCMS Analysis of Solid Organic Products from Catalytic Fischer-Tropsch Synthesis Experiments

    NASA Technical Reports Server (NTRS)

    Locke, Darren R.; Yazzie, Cyriah A.; Burton, Aaron S.; Niles, Paul B.; Johnson, Natasha M.

    2015-01-01

    Abiotic synthesis of complex organic compounds in the early solar nebula that formed our solar system is hypothesized to occur via a Fischer-Tropsch type (FTT) synthesis involving the reaction of hydrogen and carbon monoxide gases over metal and metal oxide catalysts. In general, at low temperatures (less than 200 C), FTT synthesis is expected to form abundant alkane compounds while at higher temperatures (greater than 200 C) it is expected to product lesser amounts of n-alkanes and greater amounts of alkene, alcohol, and polycyclic aromatic hydrocarbons (PAHs). Experiments utilizing a closed-gas circulation system to study the effects of FTT reaction temperature, catalysts, and number of experimental cycles on the resulting solid insoluble organic products are being performed in the laboratory at NASA Goddard Space Flight Center. These experiments aim to determine whether or not FTT reactions on grain surfaces in the protosolar nebula could be the source of the insoluble organic matter observed in meteorites. The resulting solid organic products are being analyzed at NASA Johnson Space Center by pyrolysis gas chromatography mass spectrometry (PY-GCMS). PY-GCMS yields the types and distribution of organic compounds released from the insoluble organic matter generated from the FTT reactions. Previously, exploratory work utilizing PY-GCMS to characterize the deposited organic materials from these reactions has been reported. Presented here are new organic analyses using magnetite catalyst to produce solid insoluble organic FTT products with varying reaction temperatures and number of experimental cycles.

  8. Characterizing Variability In Ohio River Natural Organic Matter

    EPA Science Inventory

    Surface water contains natural organic matter (NOM) which reacts with disinfectants creating disinfection byproducts (DBPs), some of which are USEPA regulated contaminants. Characterizing NOM can provide important insight on DBP formation and water treatment process adaptation t...

  9. Ectomycorrhizal fungi - potential organic matter decomposers, yet not saprotrophs.

    PubMed

    Lindahl, Björn D; Tunlid, Anders

    2015-03-01

    Although hypothesized for many years, the involvement of ectomycorrhizal fungi in decomposition of soil organic matter remains controversial and has not yet been fully acknowledged as an important factor in the regulation of soil carbon (C) storage. Here, we review recent findings, which support the view that some ectomycorrhizal fungi have the capacity to oxidize organic matter, either by 'brown-rot' Fenton chemistry or using 'white-rot' peroxidases. We propose that ectomycorrhizal fungi benefit from organic matter decomposition primarily through increased nitrogen mobilization rather than through release of metabolic C and question the view that ectomycorrhizal fungi may act as facultative saprotrophs. Finally, we discuss how mycorrhizal decomposition may influence organic matter storage in soils and mediate responses of ecosystem C sequestration to environmental changes. PMID:25524234

  10. Enhanced dissolution of cinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades

    SciTech Connect

    Ravichandran, M.; Ryan, J.N.; Aiken, G.R.; Reddy, M.M.

    1998-11-01

    Organic matter isolated from the Florida Everglades caused a dramatic increase in mercury release from cinnabar (HgS), a solid with limited solubility. Hydrophobic (a mixture of both humic and fulvic) acids dissolved more mercury than hydrophilic acids and other nonacid fractions of dissolved organic matter (DOM). Cinnabar dissolution by isolated organic matter and natural water samples was inhibited by cations such as Ca{sup 2+}. Dissolution was independent of oxygen content in experimental solutions. Dissolution experiments conducted in Dl water had no detectable dissolved mercury. The presence of various inorganic (chloride, sulfate, or sulfide) and organic ligands (salicylic acid, acetic acid, EDTA, or cysteine) did not enhance the dissolution of mercury from the mineral. Aromatic carbon content in the isolates correlated positively with enhanced cinnabar dissolution. {zeta}-potential measurements indicated sorption of negatively charged organic matter to the negatively charged cinnabar at pH 6.0. Possible mechanisms of dissolution include surface complexation of mercury and oxidation of surface sulfur species by the organic matter.

  11. Invasive Mold Infections in Solid Organ Transplant Recipients

    PubMed Central

    Crabol, Yoann; Lortholary, Olivier

    2014-01-01

    Invasive mold infections represent an increasing source of morbidity and mortality in solid organ transplant recipients. Whereas there is a large literature regarding invasive molds infections in hematopoietic stem cell transplants, data in solid organ transplants are scarcer. In this comprehensive review, we focused on invasive mold infection in the specific population of solid organ transplant. We highlighted epidemiology and specific risk factors for these infections and we assessed the main clinical and imaging findings by fungi and by type of solid organ transplant. Finally, we attempted to summarize the diagnostic strategy for detection of these fungi and tried to give an overview of the current prophylaxis treatments and outcomes of these infections in solid organ transplant recipients. PMID:25525551

  12. Impact of organic-mineral matter interactions on thermal reaction pathways for coal model compounds

    SciTech Connect

    Buchanan, A.C. III; Britt, P.F.; Struss, J.A.

    1995-07-01

    Coal is a complex, heterogeneous solid that includes interdispersed mineral matter. However, knowledge of organic-mineral matter interactions is embryonic, and the impact of these interactions on coal pyrolysis and liquefaction is incomplete. Clay minerals, for example, are known to be effective catalysts for organic reactions. Furthermore, clays such as montmorillonite have been proposed to be key catalysts in the thermal alteration of lignin into vitrinite during the coalification process. Recent studies by Hatcher and coworkers on the evolution of coalified woods using microscopy and NMR have led them to propose selective, acid-catalyzed, solid state reaction chemistry to account for retained structural integrity in the wood. However, the chemical feasibility of such reactions in relevant solids is difficult to demonstrate. The authors have begun a model compound study to gain a better molecular level understanding of the effects in the solid state of organic-mineral matter interactions relevant to both coal formation and processing. To satisfy the need for model compounds that remain nonvolatile solids at temperatures ranging to 450 C, model compounds are employed that are chemically bound to the surface of a fumed silica (Si-O-C{sub aryl}linkage). The organic structures currently under investigation are phenethyl phenyl ether (C{sub 6}H{sub 5}CH{sub 2}CH{sub 2}OC{sub 6}H{sub 5}) derivatives, which serve as models for {beta}-alkyl aryl ether units that are present in lignin and lignitic coals. The solid-state chemistry of these materials at 200--450 C in the presence of interdispersed acid catalysts such as small particle size silica-aluminas and montmorillonite clay will be reported. Initial focus will be on defining the potential impact of these interactions on coal pyrolysis and liquefaction.

  13. Nitrogen isotopic fractionation during abiotic synthesis of organic solid particles

    NASA Astrophysics Data System (ADS)

    Kuga, Maïa; Carrasco, Nathalie; Marty, Bernard; Marrocchi, Yves; Bernard, Sylvain; Rigaudier, Thomas; Fleury, Benjamin; Tissandier, Laurent

    2014-05-01

    The formation of organic compounds is generally assumed to result from abiotic processes in the Solar System, with the exception of biogenic organics on Earth. Nitrogen-bearing organics are of particular interest, notably for prebiotic perspectives but also for overall comprehension of organic formation in the young Solar System and in planetary atmospheres. We have investigated abiotic synthesis of organics upon plasma discharge, with special attention to N isotope fractionation. Organic aerosols were synthesized from N2-CH4 and N2-CO gaseous mixtures using low-pressure plasma discharge experiments, aimed at simulating chemistry occurring in Titan's atmosphere and in the protosolar nebula, respectively. The nitrogen content, the N speciation and the N isotopic composition were analyzed in the resulting organic aerosols. Nitrogen is efficiently incorporated into the synthesized solids, independently of the oxidation degree, of the N2 content of the starting gas mixture, and of the nitrogen speciation in the aerosols. The aerosols are depleted in 15N by 15-25‰ relative to the initial N2 gas, whatever the experimental setup is. Such an isotopic fractionation is attributed to mass-dependent kinetic effect(s). Nitrogen isotope fractionation upon electric discharge cannot account for the large N isotope variations observed among Solar System objects and reservoirs. Extreme N isotope signatures in the Solar System are more likely the result of self-shielding during N2 photodissociation, exotic effect during photodissociation of N2 and/or low temperature ion-molecule isotope exchange. Kinetic N isotope fractionation may play a significant role in the Titan's atmosphere. On the Titan's night side, 15N-depletion resulting from electron driven reactions may counterbalance photo-induced 15N enrichments occurring on the day's side. We also suggest that the low δ15N values of Archaean organic matter (Beaumont and Robert, 1999) are partly the result of abiotic synthesis of

  14. Composition and reactivity of ferrihydrite-organic matter associations

    NASA Astrophysics Data System (ADS)

    Eusterhues, Karin; Hädrich, Anke; Neidhardt, Julia; Küsel, Kirsten; Totsche, Kai

    2014-05-01

    The formation of organo-mineral associations affects many soil forming processes. On the one hand, it will influence soil organic matter composition and development, because the complex organic matter mixtures usually fractionate during their association with mineral surfaces. Whereas the associated fraction is supposed to be stabilized, the non-associated fraction remains mobile and available to degradation by microorganisms. On the other hand, the organic coating will completely change the interface properties of Fe oxides such as solubility, charge and hydrophobicity. This in turn will strongly influence their reactivity towards nutrients and pollutants, the adsorption of new organic matter, and the availability of ferric Fe towards microorganisms. To better understand such processes we produced ferrihydrite-organic matter associations by adsorption and coprecipitation in laboratory experiments. As a surrogate for dissolved soil organic matter we used the water-extractable fraction of a Podzol forest-floor layer under spruce. Sorptive fractionation of the organic matter was investigated by 13C NMR and FTIR. Relative to the original forest-floor extract, the ferrihydrite-associated OM was enriched in polysaccharides but depleted in aliphatic C and carbonyl C, especially when adsorption took place. Liquid phase incubation experiments were carried out with an inoculum extracted from the podzol forest-floor under oxic conditions at pH 4.8 to quantify the mineralization of the adsorbed and coprecipitated organic matter. These experiments showed that the association with ferrihydrite stabilized the associated organic matter, but that differences in the degradability of adsorbed and coprecipitated organic matter were small. We therefore conclude that coprecipitation does not lead to a significant formation of microbial inaccessible organic matter domains. Microbial reduction experiments were performed using Geobacter bremensis. We observed that increasing amounts of

  15. The search for indigenous lunar organic matter.

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1972-01-01

    It is argued that the absence of organic compounds from returned lunar samples is to be expected even for a lunar history rich in primordial organics. The sites most likely to yield lunar organic compounds have not been investigated, and there may be an area of investigation conceivably critical to problems in prebiological chemistry and the early history of the solar system awaiting continued lunar exploration, manned or unmanned.

  16. Organic Matter in Space (IAU S251)

    NASA Astrophysics Data System (ADS)

    Kwok, Sun; Sanford, Scott

    2009-01-01

    Preface; From the local organising committee; Organising committee; Conference participants; Opening address of Symposium 251 C. Cesarsky; Session I. Observations of organic compounds beyond the Solar System William Irvine, Ewine van Dishoeck, Yvonne Pendleton and Hans Olofsson; Session II. Organic compounds within the Solar System Scott Sandford, Ernst Zinner and Dale Cruikshank; Session III. Laboratory analogues of organic compounds in space Max Bernstein and Thomas Henning; Banquet speech; Author index; Object index.

  17. Organic Matter in Space (IAU S251)

    NASA Astrophysics Data System (ADS)

    Kwok, Sun; Sanford, Scott

    2008-10-01

    Preface; From the local organising committee; Organising committee; Conference participants; Opening address of Symposium 251 C. Cesarsky; Session I. Observations of organic compounds beyond the Solar System William Irvine, Ewine van Dishoeck, Yvonne Pendleton and Hans Olofsson; Session II. Organic compounds within the Solar System Scott Sandford, Ernst Zinner and Dale Cruikshank; Session III. Laboratory analogues of organic compounds in space Max Bernstein and Thomas Henning; Banquet speech; Author index; Object index.

  18. High dimensional reflectance analysis of soil organic matter

    NASA Technical Reports Server (NTRS)

    Henderson, T. L.; Baumgardner, M. F.; Franzmeier, D. P.; Stott, D. E.; Coster, D. C.

    1992-01-01

    Recent breakthroughs in remote-sensing technology have led to the development of high spectral resolution imaging sensors for observation of earth surface features. This research was conducted to evaluate the effects of organic matter content and composition on narrowband soil reflectance across the visible and reflective infrared spectral ranges. Organic matter from four Indiana agricultural soils, ranging in organic C content from 0.99 to 1.72 percent, was extracted, fractionated, and purified. Six components of each soil were isolated and prepared for spectral analysis. Reflectance was measured in 210 narrow bands in the 400- to 2500-nm wavelength range. Statistical analysis of reflectance values indicated the potential of high dimensional reflectance data in specific visible, near-infrared, and middle-infrared bands to provide information about soil organic C content, but not organic matter composition. These bands also responded significantly to Fe- and Mn-oxide content.

  19. Solid organ fabrication: comparison of decellularization to 3D bioprinting.

    PubMed

    Jung, Jangwook P; Bhuiyan, Didarul B; Ogle, Brenda M

    2016-01-01

    Solid organ fabrication is an ultimate goal of Regenerative Medicine. Since the introduction of Tissue Engineering in 1993, functional biomaterials, stem cells, tunable microenvironments, and high-resolution imaging technologies have significantly advanced efforts to regenerate in vitro culture or tissue platforms. Relatively simple flat or tubular organs are already in (pre)clinical trials and a few commercial products are in market. The road to more complex, high demand, solid organs including heart, kidney and lung will require substantive technical advancement. Here, we consider two emerging technologies for solid organ fabrication. One is decellularization of cadaveric organs followed by repopulation with terminally differentiated or progenitor cells. The other is 3D bioprinting to deposit cell-laden bio-inks to attain complex tissue architecture. We reviewed the development and evolution of the two technologies and evaluated relative strengths needed to produce solid organs, with special emphasis on the heart and other tissues of the cardiovascular system. PMID:27583168

  20. Composition of structural fragments and the mineralization rate of organic matter in zonal soils

    NASA Astrophysics Data System (ADS)

    Larionova, A. A.; Zolotareva, B. N.; Kolyagin, Yu. G.; Kvitkina, A. K.; Kaganov, V. V.; Kudeyarov, V. N.

    2015-10-01

    Comparative analysis of the climatic characteristics and the recalcitrance against decomposition of organic matter in the zonal soil series of European Russia, from peat surface-gley tundra soil to brown semidesert soil, has assessed the relationships between the period of biological activity, the content of chemically stable functional groups, and the mineralization of humus. The stability of organic matter has been determined from the ratio of functional groups using the solid-state 13C NMR spectroscopy of soil samples and the direct measurements of organic matter mineralization from CO2 emission. A statistically significant correlation has been found between the period of biological activity and the humification indices: the CHA/CFA ratio, the aromaticity, and the alkyl/ O-alkyl ratio in organic matter. The closest correlation has been observed between the period of biological activity and the alkyl/ O-alkyl ratio; therefore, this parameter can be an important indicator of the soil humus status. A poor correlation between the mineralization rate and the content of chemically stable functional groups in soil organic matter has been revealed for the studied soil series. At the same time, the lowest rate of carbon mineralization has been observed in southern chernozem characterized by the maximum content of aromatic groups (21% Corg) and surface-gley peat tundra soil, where an extremely high content of unsubstituted CH2 and CH3 alkyl groups (41% Corg) has been noted.

  1. Modeling organic matter stabilization during windrow composting of livestock effluents.

    PubMed

    Oudart, D; Paul, E; Robin, P; Paillat, J M

    2012-01-01

    Composting is a complex bioprocess, requiring a lot of empirical experiments to optimize the process. A dynamical mathematical model for the biodegradation of the organic matter during the composting process has been developed. The initial organic matter expressed by chemical oxygen demand (COD) is decomposed into rapidly and slowly degraded compartments and an inert one. The biodegradable COD is hydrolysed and consumed by microorganisms and produces metabolic water and carbon dioxide. This model links a biochemical characterization of the organic matter by Van Soest fractionating with COD. The comparison of experimental and simulation results for carbon dioxide emission, dry matter and carbon content balance showed good correlation. The initial sizes of the biodegradable COD compartments are explained by the soluble, hemicellulose-like and lignin fraction. Their sizes influence the amplitude of the carbon dioxide emission peak. The initial biomass is a sensitive variable too, influencing the time at which the emission peak occurs. PMID:23393964

  2. Soil microstructure and organic matter: keys for chlordecone sequestration.

    PubMed

    Woignier, T; Fernandes, P; Soler, A; Clostre, F; Carles, C; Rangon, L; Lesueur-Jannoyer, M

    2013-11-15

    Past applications of chlordecone, a persistent organochlorine pesticide, have resulted in diffuse pollution of agricultural soils, and these have become sources of contamination of cultivated crops as well as terrestrial and marine ecosystems. Chlordecone is a very stable and recalcitrant molecule, mainly present in the solid phase, and has a strong affinity for organic matter. To prevent consumer and ecosystem exposure, factors that influence chlordecone migration in the environment need to be evaluated. In this study, we measured the impact of incorporating compost on chlordecone sequestration in andosols as a possible way to reduce plant contamination. We first characterized the transfer of chlordecone from soil to plants (radish, cucumber, and lettuce). Two months after incorporation of the compost, soil-plant transfers were reduced by a factor of 1.9-15 depending on the crop. Our results showed that adding compost modified the fractal microstructure of allophane clays thus favoring chlordecone retention in andosols. The complex structure of allophane and the associated low accessibility are important characteristics governing the fate of chlordecone. These results support our proposal for an alternative strategy that is quite the opposite of total soil decontamination: chlordecone sequestration. PMID:24056248

  3. Defining the quality of soil organic matter

    EPA Science Inventory

    Soils represent the largest terrestrial pool of carbon (C) and hold approximately two-thirds of all C held in these ecosystems. However, not all C in soils is of equal quality. Some fractions of the organic forms, i.e., soil organic carbon (SOC) have long residence times while ...

  4. Roles of organic matter in sediment diagenesis

    SciTech Connect

    Gautier, D.L.

    1986-01-01

    This book is a collection of papers presented at a 1984 symposium of the Society of Economic Paleontologists and Mineralogists (SEPM). It purpose, in the words of its editor, is to bring to the attention of the sedimentological community the importance of interaction of organic compounds with the inorganic sedimentary system and the degree to which organic compounds drive diagenetic systems. Its 16 papers cover topics ranging from laboratory carbonate dissolution to hydrocarbon source-rock evaluation. It contains an excellent group of papers on the role of organic-inorganic interactions in porosity enhancement. An excellent contribution is the paper on organic and inorganic diagenesis in the Shinjo oil field of Japan. At the other end of the scale, however, are several theoretical papers that present greatly oversimplified and/or underedited thermodynamic and mass-transfer models. Nearly all of the papers contribute to the dialogue between organic and inorganic sedimentologists. Because much of this interchange has occurred in support of petroleum exploration, the dialogue has waxed and waned with the ups and downs of the oil market. However, hydrocarbon prospects do not necessarily present the best opportunities for unraveling the complex interrelations between organic and inorganic diagenesis. These interrelations are important in a wide range of diagenetic settings, including early diagenesis in low-organic sediments that have little or no hydrocarbon potential. It is hoped that this book will pave the way for expanded basic research in one of the most important aspects of sediment diagenesis.

  5. Effects of Crayfish on Quality of Fine Particulate Organic Matter

    NASA Astrophysics Data System (ADS)

    Montemarano, J. J.; Kershner, M. W.; Leff, L. G.

    2005-05-01

    The origin and ontogeny of detritus often determines its bioavailability. Crayfish shred and consume detrital organic matter, influencing fine particulate organic matter (FPOM) availability, composition and quality. Given consumption of FPOM by many invertebrates, crayfish can indirectly affect these organisms by altering FPOM bioavailability through organic matter fragmentation, biofilm disturbance, and defecation. These effects may or may not vary among coarse particulate organic matter (CPOM) from different leaf species. To assess crayfish effects on FPOM quality, crayfish were fed stream-conditioned maple or oak leaves in hanging 1-mm mesh-bottom baskets in aquaria. After 12 h, crayfish and remaining leaves were removed. FPOM fragments that fell through the mesh were vacuum filtered and analyzed for percent organic matter, C:N ratio, and bacterial abundance. The same analyses were conducted on crayfish feces collected using finger cots encasing crayfish abdomens. C:N ratios did not differ between feces and maple leaf CPOM, but were lower in FPOM produced through fragmentation and disturbance (P = 0.023). Overall, crayfish alter the ontogeny of detritus, which may, in turn, affect stream FPOM dynamics.

  6. Organic Matter Application Can Reduce Copper Toxicity in Tomato Plants

    ERIC Educational Resources Information Center

    Campbell, Brian

    2010-01-01

    Copper fungicides and bactericides are often used in tomato cultivation and can cause toxic Cu levels in soils. In order to combat this, organic matter can be applied to induce chelation reactions and form a soluble complex by which much of the Cu can leach out of the soil profile or be taken up safely by plants. Organic acids such as citric,…

  7. Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Analysis of high-molecular-weight dissolved organic matter (DOM) from two estuaries in the northwest Atlantic Ocean reveals that black carbon (BC) is a significant component of previously uncharacterized DOM, suggesting that river-estuary systems are important exporters of recalcitrant dissolved organic carbon to the ocean.

  8. Pedogenesis evolution of mine technosols: focus onto organic matter implication

    NASA Astrophysics Data System (ADS)

    Grégoire, Pascaud; Marilyne, Soubrand; Laurent, Lemee; Husseini Amelène, El-Mufleh Al; Marion, Rabiet; Emmanuel, Joussein

    2014-05-01

    Keywords: Mine technosols, pedogenesis, organic matter, environmental impact, pyr-GC-MS Technosols include soils subject to strong anthropogenic pressure and particularly to soil influenced by human transformed materials. In this context, abandoned mine sites contain a large amount of transformed waste materials often enriched with metals and/or metalloids. The natural evolution of technosols (pedogenesis) may induces the change in contaminants behaviour in term of stability of bearing phases, modification of pH oxydo-reduction conditions, organic matter turnover, change in permeability, or influence of vegetation cover. The fate of these elements in the soil can induce major environmental problems (contamination of biosphere and water resource). This will contribute to a limited potential use of these soils, which represent yet a large area around the world. The initial contamination of the parental material suggests that the pedological cover would stabilize the soil; however, the chemical reactivity must be taken in consideration particularly with respect to potential metal leachings. In this case, it is quite important to understand the development of soil in this specific context. Consequently, the global aims of this study are to understand the functioning of mine Technosols focusing onto the organic matter implication in their pedogenesis. Indeed, soil organic matter constitutes an heterogeneous fraction of organic compounds that plays an important role in the fate and the transport of metals and metalloids in soils. Three different soil profiles were collected representative to various mining context (contamination, time, climat), respectively to Pb-Ag, Sn and Au exploitations. Several pedological parameters were determined like CEC, pH, %Corg, %Ntot, C/N ratio, grain size distribution and chemical composition. The evolution of the nature of organic matter in Technosol was studied by elemental analyses and thermochemolysis was realized on the total and

  9. Co-pyrolysis of coal with organic solids

    SciTech Connect

    Straka, P.; Buchtele, J.

    1995-12-01

    The co-pyrolysis of high volatile A bituminous coal with solid organic materials (proteins, cellulose, polyisoprene, polystyrene, polyethylene-glycolterephtalate-PEGT) at a high temperature conditions was investigated. Aim of the work was to evaluate, firstly, the changes of the texture and of the porous system of solid phase after high temperature treatment in presence of different types of macromolecular solids, secondly, properties and composition of the tar and gas. Considered organic solids are important waste components. During their co-pyrolysis the high volatile bituminous coal acts as a hydrogen donor in the temperature rank 220-480{degrees}C. In the rank 500- 1000{degrees}C the solid phase is formed. The co-pyrolysis was carried out at heating rate 3 K/min. It was found that an amount of organic solid (5-10%) affects important changes in the optical texture forms of solid phase, in the pore distribution and in the internal surface area. Transport large pores volume decreases in presence of PEGT, polystyrene and cellulose and increases in presence of proteins and polyisoprene. (image analysis measurements show that the tendency of coal to create coarse pores during co-pyrolysis is very strong and increases with increasing amount of organic solid in blend). An addition of considered materials changes the sorption ability (methylene blue test, iodine adsorption test), moreover, the reactivity of the solid phase.

  10. Chemical composition of dissolved organic matter draining permafrost soils

    NASA Astrophysics Data System (ADS)

    Ward, Collin P.; Cory, Rose M.

    2015-10-01

    Northern circumpolar permafrost soils contain roughly twice the amount of carbon stored in the atmosphere today, but the majority of this soil organic carbon is perennially frozen. Climate warming in the arctic is thawing permafrost soils and mobilizing previously frozen dissolved organic matter (DOM) from deeper soil layers to nearby surface waters. Previous studies have reported that ancient DOM draining deeper layers of permafrost soils was more susceptible to degradation by aquatic bacteria compared to modern DOM draining the shallow active layer of permafrost soils, and have suggested that DOM chemical composition may be an important control for the lability of DOM to bacterial degradation. However, the compositional features that distinguish DOM drained from different depths in permafrost soils are poorly characterized. Thus, the objective of this study was to characterize the chemical composition of DOM drained from different depths in permafrost soils, and relate these compositional differences to its susceptibility to biological degradation. DOM was leached from the shallow organic mat and the deeper permafrost layer of soils within the Imnavait Creek watershed on the North Slope of Alaska. DOM draining both soil layers was characterized in triplicate by coupling ultra-high resolution mass spectrometry, 13C solid-state NMR, and optical spectroscopy methods with multi-variate statistical analyses. Reproducibility of replicate mass spectra was high, and compositional differences resulting from interfering species or isolation effects were significantly smaller than differences between DOM drained from each soil layer. All analyses indicated that DOM leached from the shallower organic mat contained higher molecular weight, more oxidized, and more unsaturated aromatic species compared to DOM leached from the deeper permafrost layer. Bacterial production rates and bacterial efficiencies were significantly higher for permafrost compared to organic mat DOM

  11. GROUNDWATER TRANSPORT OF HYDROPHOBIC ORGANIC COMPOUNDS IN THE PRESENCE OF DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    The effects of dissolved organic matter (DOM) on the transport of hydrophobic organic compounds in soil columns were investigated. Three compounds (naphthalene, phenanthrene and DDT) that spanned three orders of magnitude in water solubility were used. Instead of humic matter, mo...

  12. Process for hot briquetting of organic solid materials

    SciTech Connect

    Janusch, A.

    1982-11-23

    For the purpose of briquetting organic solid materials, such as brown coal or bituminous coal, the materials are heated by hot water and/or steam and under super-atmospheric pressure to temperatures exceeding 160/sup 0/ C. After discharging the organic solid materials, which have become dried to a great extent, the generated steam is separated by sucking off the steam without substantially cooling effect, bitumen-forming substances present within the organic solid materials thereby rapidly becoming homogeneously distributed. These homogeneously distributed binding agents give the compressed briquettes obtained a high strength and good mechanical properties when using substantially reduced compacting pressures as compared with known briquetting processes.

  13. Interstellar and Solar System Organic Matter Preserved in Interplanetary Dust

    NASA Astrophysics Data System (ADS)

    Messenger, Scott R.; Nakamura-Messenger, Keiko

    2015-08-01

    Interplanetary dust particles (IDPs) collected in the Earth’s stratosphere derive from collisions among asteroids and by the disruption and outgassing of short-period comets. Chondritic porous (CP) IDPs are among the most primitive Solar System materials. CP-IDPs have been linked to cometary parent bodies by their mineralogy, textures, C-content, and dynamical histories. CP-IDPs are fragile, fine-grained (< um) assemblages of anhydrous amorphous and crystalline silicates, oxides and sulfides bound together by abundant carbonaceous material. Ancient silicate, oxide, and SiC stardust grains exhibiting highly anomalous isotopic compositions are abundant in CP-IDPs, constituting 0.01 - 1 % of the mass of the particles. The organic matter in CP-IDPs is isotopically anomalous, with enrichments in D/H reaching 50x the terrestrial SMOW value and 15N/14N ratios up to 3x terrestrial standard compositions. These anomalies are indicative of low T (10-100 K) mass fractionation in cold molecular cloud or the outermost reaches of the protosolar disk. The organic matter shows distinct morphologies, including sub-um globules, bubbly textures, featureless, and with mineral inclusions. Infrared spectroscopy and mass spectrometry studies of organic matter in IDPs reveals diverse species including aliphatic and aromatic compounds. The organic matter with the highest isotopic anomalies appears to be richer in aliphatic compounds. These materials also bear similarities and differences with primitive, isotopically anomalous organic matter in carbonaceous chondrite meteorites. The diversity of the organic chemistry, morphology, and isotopic properties in IDPs and meteorites reflects variable preservation of interstellar/primordial components and Solar System processing. One unifying feature is the presence of sub-um isotopically anomalous organic globules among all primitive materials, including IDPs, meteorites, and comet Wild-2 samples returned by the Stardust mission. We will present

  14. Compartmental model for organic matter digestion in facultative ponds.

    PubMed

    Giraldo, E; Garzón, A

    2002-01-01

    A model has been developed for the digestion of organic matter in facultative ponds in tropical regions. Complete mixing has been assumed for the aerobic and anaerobic compartments. Settling, aerobic layer oxidation, and anaerobic layer methanogenesis are the main processes for organic matter removal in the water column. Exchange processes between layers are dispersive or soluble exchange, solubilization and transport of organic matter from sediments to water column are also taken into account. Degradation of organic matter in the sediments produces gaseous emissions to the water column. The exchange between bubbles ascending and the water column was measured. The model was calibrated with data obtained from a pilot facultative pond built in Muña Reservoir in Bogotá. The pond was sampled during 4 months to compare data between its water hyacinth covered section and uncovered section. The results clearly show the relative importance of different BOD removal processes in facultative ponds and suggest modifications to further improve performance. The results from the model suggest that internal loadings to facultative ponds due to solubilization and return of organic matter from the sediments to the aerobic layer greatly influence the soluble BOD effluent concentration. Aerobic degradation activity in the facultative pond does not affect significantly the effluent concentration. Anaerobic degradation activity in the facultative pond can more easily achieve increases in the removal efficiencies of BOD. PMID:11833730

  15. Black carbon and organic matter stabilization in soil

    NASA Astrophysics Data System (ADS)

    Lehmann, J.; Liang, B.; Sohi, S.; Gaunt, J.

    2007-12-01

    Interaction with minerals is key to stabilization of organic matter in soils. Stabilization is commonly perceived to occur due to entrapment in pore spaces, encapsulation within aggregates or interaction with mineral surfaces. Typically only interactions between organic matter and minerals are considered in such a model. Here we demonstrate that black carbon may act very similar to minerals in soil in that it enhances the stabilization of organic matter. Mineralization of added organic matter was slower and incorporation into intra-aggregate fractions more rapid in the presence of black carbon. Added double-labeled organic matter was recovered in fractions with high amounts of black carbon. Synchrotron-based near-edge x-ray fine structure (NEXAFS) spectroscopy coupled to scanning transmission x-ray microscopy (STXM) suggested a possible interaction of microorganisms with black carbon surfaces and metabolization of residues. These findings suggest a conceptual model that includes carbon-carbon interactions and by-passing for more rapid stabilization of litter into what is commonly interpreted as stable carbon pools.

  16. Removal of dissolved organic matter by anion exchange: Effect of dissolved organic matter properties

    USGS Publications Warehouse

    Boyer, T.H.; Singer, P.C.; Aiken, G.R.

    2008-01-01

    Ten isolates of aquatic dissolved organic matter (DOM) were evaluated to determine the effect that chemical properties of the DOM, such as charge density, aromaticity, and molecular weight, have on DOM removal by anion exchange. The DOM isolates were characterized asterrestrial, microbial, or intermediate humic substances or transphilic acids. All anion exchange experiments were conducted using a magnetic ion exchange (MIEX) resin. The charge density of the DOM isolates, determined by direct potentiometric titration, was fundamental to quantifying the stoichiometry of the anion exchange mechanism. The results clearly show that all DOM isolates were removed by anion exchange; however, differences among the DOM isolates did influence their removal by MIEX resin. In particular, MIEX resin had the greatest affinity for DOM with high charge density and the least affinity for DOM with low charge density and low aromaticity. This work illustrates that the chemical characteristics of DOM and solution conditions must be considered when evaluating anion exchange treatment for the removal of DOM. ?? 2008 American Chemical Society.

  17. Organic matter on asteroid 130 Elektra

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Brown, R. H.

    1987-01-01

    Infrared absorption spectra of a low-albedo water-rich asteroid appear to show a weak 3.4-micrometer carbon-hydrogen stretching mode band, which suggests the presence of hydrocarbons on asteroid 130 Elektra. The organic extract from the primitive carbonaceous chondritic Murchison meteorite shows similar spectral bands.

  18. Organic Binder Developments for Solid Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Cooper, Ken; Mobasher, Amir A.

    2003-01-01

    A number of rapid prototyping techniques are under development at Marshall Space Flight Center's (MSFC) National Center for Advanced Manufacturing Rapid Prototyping Laboratory. Commercial binder developments in creating solid models for rapid prototyping include: 1) Fused Deposition Modeling; 2) Three Dimensional Printing; 3) Selective Laser Sintering (SLS). This document describes these techniques developed by the private sector, as well as SLS undertaken by MSFC.

  19. Sorptive stabilization of organic matter by amorphous Al hydroxide

    NASA Astrophysics Data System (ADS)

    Schneider, M. P. W.; Scheel, T.; Mikutta, R.; van Hees, P.; Kaiser, K.; Kalbitz, K.

    2010-03-01

    Amorphous Al hydroxides (am-Al(OH) 3) strongly sorb and by this means likely protect dissolved organic matter (OM) against microbial decay in soils. We carried out batch sorption experiments (pH 4.5; 40 mg organic C L -1) with OM extracted from organic horizons under a Norway spruce and a European beech forest. The stabilization of OM by sorption was analyzed by comparing the CO 2 mineralized during the incubation of sorbed and non-sorbed OM. The mineralization of OM was evaluated based in terms of (i) the availability of the am-Al(OH) 3, thus surface OM loadings, (ii) spectral properties of OM, and (iii) the presence of phosphate as a competitor for OM. This was done by varying the solid-to-solution ratio (SSR = 0.02-1.2 g L -1) during sorption. At low SSRs, hence limited am-Al(OH) 3 availability, only small portions of dissolved OM were sorbed; for OM from Oa horizons, the mineralization of the sorbed fraction exceeded that of the original dissolved OM. The likely reason is competition with phosphate for sorption sites favouring the formation of weak mineral-organic bindings and the surface accumulation of N-rich, less aromatic and less complex OM. This small fraction controlled the mineralization of sorbed OM even at higher SSRs. At higher SSRs, i.e., with am-Al(OH) 3 more available, competition of phosphate decreased and aromatic compounds were sorbed selectively, which resulted in pronounced resistance of sorbed OM against decay. The combined OC mineralization of sorbed and non-sorbed OM was 12-65% less than that of the original DOM. Sorbed OM contributed only little to the overall OC mineralization. Stabilization of OC increased in direct proportion to am-Al(OH) 3 availability, despite constant aromatic C (˜30%). The strong stabilization at higher mineral availability is primarily governed by strong Al-OM bonds formed under less competitive conditions. Due to these strong bonds and the resulting strong stabilization, the surface loading, a proxy for the

  20. Organic matter in the Saturn system

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Khare, B. N.; Lewis, J. S.

    1984-01-01

    Theoretical and experimental predictions of the formation (and outgassing) of organic molecules in the outer solar system are compared with Voyager IRIS spectral data for the Titan atmosphere. The organic molecules of Titan are of interest because the species and processes within the atmosphere of that moon may have had analogs in the early earth atmosphere 4 Gyr ago. The spacecraft data confirmed the presence of alkanes, ethane, propane, ethylene, alkynes, acetylene, butadiene, methylacetylene, nitriles, hydrogen cyanide, cyanoacetylene, and cyanogen, all heavier than the dominant CH4. Experimental simulation of the effects of UV photolysis, alpha and gamma ray irradiation, electrical discharges and proton and electron bombardment of similar gas mixtures has shown the best promise for modeling the reactions producing the Titan atmosphere chemicals.

  1. Stabilization of ancient organic matter in deep buried paleosols

    NASA Astrophysics Data System (ADS)

    Marin-Spiotta, E.; Chaopricha, N. T.; Mueller, C.; Diefendorf, A. F.; Plante, A. F.; Grandy, S.; Mason, J. A.

    2012-12-01

    Buried soils representing ancient surface horizons can contain large organic carbon reservoirs that may interact with the atmosphere if exposed by erosion, road construction, or strip mining. Paleosols in long-term depositional sites provide a unique opportunity for studying the importance of different mechanisms on the persistence of organic matter (OM) over millennial time-scales. We report on the chemistry and bioavailability of OM stored in the Brady soil, a deeply buried (7 m) paleosol in loess deposits of southwestern Nebraska, USA. The Brady Soil developed 9,000-13,500 years ago during a time of warming and drying. The Brady soil represents a dark brown horizon enriched in C relative to loess immediately above and below. Spanning much of the central Great Plains, this buried soil contains large C stocks due to the thickness of its A horizon (0.5 to 1 m) and wide geographic extent. Our research provides a unique perspective on long-term OM stabilization in deep soils using multiple analytical approaches. Soils were collected from the Brady soil A horizon (at 7 m depth) and modern surface A horizons (0-15 cm) at two sites for comparison. Soils were separated by density fractionation using 1.85 g ml-1 sodium polytungstate into: free particulate organic matter (fPOM) and aggregate-occluded (oPOM) of two size classes (large: >20 μm, and small: < 20 μm). The remaining dense fraction was separated into sand, silt, and clay size fractions. The distribution and age of C among density and particle-size fractions differed between surface and Brady soils. We isolated the source of the characteristic dark coloring of the Brady soil to the oPOM-small fraction, which also contained 20% of the total organic C pool in the Brady soil. The oPOM-small fraction and the bulk soil in the middle of the Brady A horizon had 14C ages of 10,500-12,400 cal yr BP, within the time that the soil was actively forming at the land surface. Surface soils showed modern ages. Lipid analyses of

  2. Do soils loose phosphorus with dissolved organic matter?

    NASA Astrophysics Data System (ADS)

    Kaiser, K.; Brödlin, D.; Hagedorn, F.

    2014-12-01

    During ecosystem development and soil formation, primary mineral sources of phosphorus are becoming increasingly depleted. Inorganic phosphorus forms tend to be bound strongly to or within secondary minerals, thus, are hardly available to plants and are not leached from soil. What about organic forms of phosphorus? Since rarely studied, little is known on the composition, mobility, and bioavailability of dissolved organic phosphorus. There is some evidence that plant-derived compounds, such as phytate, bind strongly to minerals as well, while microbial compounds, such as nucleotides and nucleic acids, may represent more mobile fractions of soil phosphorus. In some weakly developed, shallow soils, leaching losses of phosphorus seem to be governed by mobile organic forms. Consequently, much of the phosphorus losses observed during initial stages of ecosystem development may be due to the leaching of dissolved organic matter. However, the potentially mobile microbial compounds are enzymatically hydrolysable. Forest ecosystems on developed soils already depleted in easily available inorganic phosphorus are characterized by rapid recycling of organic phosphors. That can reduce the production of soluble forms of organic phosphorus as well as increase the enzymatic hydrolysis and subsequent plant uptake of phosphorus bound within dissolved organic matter. This work aims at giving an outlook to the potential role of dissolved organic matter in the cycling of phosphorus within developing forest ecosystems, based on literature evidence and first results of ongoing research.

  3. Isotopic composition of hydrogen in insoluble organic matter from cherts

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, R. V.; Epstein, S.

    1991-01-01

    Robert (1989) reported the presence of unusually enriched hydrogen in the insoluble HF-HCl residue extracted from two chert samples of Eocene and Pliocene ages. Since the presence of heavy hydrogen might be due to the incorporation of extraterrestrial materials, we desired to reexamine the same samples to isolate the D-rich components. Our experiments did not reveal any D-rich components, but the hydrogen isotope composition of the insoluble residue of the two chert samples was well within the range expected for terrestrial organic matter. We also describe a protocol that needs to be followed in the hydrogen isotope analysis of any insoluble organic matter.

  4. Andic soils : mineralogical effect onto organic matter dynamics, organic matter effect onto mineral dynamics, or both?

    NASA Astrophysics Data System (ADS)

    Basile-Doelsch, Isabelle; Amundson, Ronald; Balesdent, Jérome; Borschneck, Daniel; Bottero, Jean-Yves; Colin, Fabrice; de Junet, Alexis; Doelsch, Emmanuel; Legros, Samuel; Levard, Clément; Masion, Armand; Meunier, Jean-Dominique; Rose, Jérôme

    2014-05-01

    From a strictly mineralogical point of view, weathering of volcanic glass produces secondary phases that are short range ordered alumino-silicates (SRO-AlSi). These are imogolite tubes (2 to 3 nm of diameter) and allophane supposedly spheres (3.5 to 5 nm). Their local structure is composed of a curved gibbsite Al layer and Si tetrahedra in the vacancies (Q0). Proto-imogolites have the same local structure but are roof-shape nanoparticles likely representing the precursors of imogolite and allophanes (Levard et al. 2010). These structures and sizes give to the SRO-AlSi large specific surfaces and high reactivities. In some natural sites, imogolites and allophanes are formed in large quantities. Aging of these phases may lead to the formation of more stable minerals (halloysite, kaolinite and gibbsite) (Torn et al 1997). In natural environments, when the weathering of volcanic glass is associated with the establishment of vegetation, the soils formed are generally andosols. These soils are particularly rich in organic matter (OM), which is explained by the high ability of SRO-AlSi mineral phases to form bonds with organic compounds. In a first order "bulk" approach, it is considered that these bonds strongly stabilize the organic compounds as their mean age can reach more than 10 kyrs in some studied sites (Basile-Doelsch et al. 2005; Torn et al. 1997). However, the structure of the mineral phases present in andosols deserves more attention. Traditionally, the presence in the SRO-AlSi andosols was shown by selective dissolution approaches by oxalate and pyrophosphate. Using spectroscopic methods, mineralogical analysis of SRO-AlSi in andosols samples showed that these mineral phases were neither imogolites nor allophanes as originally supposed, but only less organized structures remained in a state of proto-imogolites (Basile-Doelsch al. 2005 ; Levard et al., 2012). The presence of OM would have an inhibitory effect on the formation of secondary mineral phases, by

  5. Correlation of soil and sediment organic matter polarity to aqueous sorption of nonionic compounds

    USGS Publications Warehouse

    Kile, D.E.; Wershaw, R. L.; Chiou, C.T.

    1999-01-01

    Polarities of the soiL/sediment organic matter (SOM) in 19 soil and 9 freshwater sediment sam pies were determined from solid-state 13C-CP/MAS NMR spectra and compared with published partition coefficients (K(oc)) of carbon tetrachloride (CT) from aqueous solution. Nondestructive analysis of whole samples by solid-state NMR permits a direct assessment of the polarity of SOM that is not possible by elemental analysis. The percent of organic carbon associated with polar functional groups was estimated from the combined fraction of carbohydrate and carboxylamide-ester carbons. A plot of the measured partition coefficients (K(oc)) of carbon tetrachloride (CT) vs. percent polar organic carbon (POC) shows distinctly different populations of soils and sediments as well as a roughly inverse trend among the soil/sediment populations. Plots of K(oc) values for CT against other structural group carbon fractions did not yield distinct populations. The results indicate that the polarity of SOM is a significant factor in accounting for differences in K(oc) between the organic matter in soils and sediments. The alternate direct correlation of the sum of aliphatic and aromatic structural carbons with K(oc) illustrates the influence of nonpolar hydrocarbon on solute partition interaction. Additional elemental analysis data of selected samples further substantiate the effect of the organic matter polarity on the partition efficiency of nonpolar solutes. The separation between soil and sediment samples based on percent POC reflects definite differences of the properties of soil and sediment organic matters that are attributable to diagenesis.Polarities of the soil/sediment organic matter (SOM) in 19 soil and 9 freshwater sediment samples were determined from solid-state 13C-CP/MAS NMR spectra and compared with published partition coefficients (Koc) of carbon tetrachloride (CT) from aqueous solution. Nondestructive analysis of whole samples by solid-state NMR permits a direct

  6. Composition of dissolved organic matter in groundwater

    NASA Astrophysics Data System (ADS)

    Longnecker, Krista; Kujawinski, Elizabeth B.

    2011-05-01

    Groundwater constitutes a globally important source of freshwater for drinking water and other agricultural and industrial purposes, and is a prominent source of freshwater flowing into the coastal ocean. Therefore, understanding the chemical components of groundwater is relevant to both coastal and inland communities. We used electrospray ionization coupled with Fourier-transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) to examine dissolved organic compounds in groundwater prior to and after passage through a sediment-filled column containing microorganisms. The data revealed that an unexpectedly high proportion of organic compounds contained nitrogen and sulfur, possibly due to transport of surface waters from septic systems and rain events. We matched 292 chemical features, based on measured mass:charge ( m/z) values, to compounds stored in the Kyoto Encyclopedia of Genes and Genomes (KEGG). A subset of these compounds (88) had only one structural isomer in KEGG, thus supporting tentative identification. Most identified elemental formulas were linked with metabolic pathways that produce polyketides or with secondary metabolites produced by plants. The presence of polyketides in groundwater is notable because of their anti-bacterial and anti-cancer properties. However, their relative abundance must be quantified with appropriate analyses to assess any implications for public health.

  7. Anesthetic Considerations for the Parturient After Solid Organ Transplantation.

    PubMed

    Moaveni, Daria M; Cohn, Jennifer H; Hoctor, Katherine G; Longman, Ryan E; Ranasinghe, J Sudharma

    2016-08-01

    Over the past 40 years, the success of organ transplantation has increased such that female solid organ transplant recipients are able to conceive and carry pregnancies successfully to term. Anesthesiologists are faced with the challenge of providing anesthesia care to these high-risk obstetric patients in the peripartum period. Anesthetic considerations include the effects of the physiologic changes of pregnancy on the transplanted organ, graft function in the peripartum period, and the maternal side effects and drug interactions of immunosuppressive agents. These women are at an increased risk of comorbidities and obstetric complications. Anesthetic management should consider the important task of protecting graft function. Optimal care of a woman with a transplanted solid organ involves management by a multidisciplinary team. In this focused review article, we review the anesthetic management of pregnant patients with solid organ transplants of the kidney, liver, heart, or lung. PMID:27285002

  8. Interstellar and Solar System Organic Matter Preserved in Interplanetary Dust

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Nakamura-Messenger, Keiko

    2015-01-01

    Interplanetary dust particles (IDPs) collected in the Earth's stratosphere derive from collisions among asteroids and by the disruption and outgassing of short-period comets. Chondritic porous (CP) IDPs are among the most primitive Solar System materials. CP-IDPs have been linked to cometary parent bodies by their mineralogy, textures, C-content, and dynamical histories. CP-IDPs are fragile, fine-grained (less than um) assemblages of anhydrous amorphous and crystalline silicates, oxides and sulfides bound together by abundant carbonaceous material. Ancient silicate, oxide, and SiC stardust grains exhibiting highly anomalous isotopic compositions are abundant in CP-IDPs, constituting 0.01 - 1 % of the mass of the particles. The organic matter in CP-IDPs is isotopically anomalous, with enrichments in D/H reaching 50x the terrestrial SMOW value and 15N/14N ratios up to 3x terrestrial standard compositions. These anomalies are indicative of low T (10-100 K) mass fractionation in cold molecular cloud or the outermost reaches of the protosolar disk. The organic matter shows distinct morphologies, including sub-um globules, bubbly textures, featureless, and with mineral inclusions. Infrared spectroscopy and mass spectrometry studies of organic matter in IDPs reveals diverse species including aliphatic and aromatic compounds. The organic matter with the highest isotopic anomalies appears to be richer in aliphatic compounds. These materials also bear similarities and differences with primitive, isotopically anomalous organic matter in carbonaceous chondrite meteorites. The diversity of the organic chemistry, morphology, and isotopic properties in IDPs and meteorites reflects variable preservation of interstellar/primordial components and Solar System processing. One unifying feature is the presence of sub-um isotopically anomalous organic globules among all primitive materials, including IDPs, meteorites, and comet Wild-2 samples returned by the Stardust mission.

  9. Caracterisation of anthropogenic contribution to the coastal fluorescent organic matter

    NASA Astrophysics Data System (ADS)

    El Nahhal, Ibrahim; Nouhi, Ayoub; Mounier, Stéphane

    2015-04-01

    It is known that most of the coastal fluorescent organic matter is of a terrestrial origin (Parlanti, 2000; Tedetti, Guigue, & Goutx, 2010). However, the contribution of the anthropogenic organic matter to this pool is not well defined and evaluated. In this work the monitoring of little bay (Toulon Bay, France) was done in the way to determine the organic fluorescent response during a winter period. The sampling campaign consisted of different days during the month of December, 2014 ( 12th, 15th, 17th, 19th) on 21 different sampling sites for the fluorescence measurements (without any filtering of the samples) and the whole month of December for the bacterial and the turbidity measurements. Excitation Emission Matrices (EEMs) of fluorescence (from 200 to 400 nm and 220 to 420 nm excitation and emission range) were treated by parallel factor analysis (PARAFAC).The parafac analysis of the EEM datasets was conducted using PROGMEEF software in Matlab langage. On the same time that the turbidity and bacterial measurement (particularly the E.Coli concentration) were determined. The results gives in a short time range, information on the the contribution of the anthropogenic inputs to the coastal fluorescent organic matter. In addition, the effect of salinity on the photochemical degradation of the anthropogenic organic matter (especially those from wastewater treatment plants) will be studied to investigate their fate in the water end member by the way of laboratory experiments. Parlanti, E. (2000). Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Organic Geochemistry, 31(12), 1765-1781. doi:10.1016/S0146-6380(00)00124-8 Tedetti, M., Guigue, C., & Goutx, M. (2010). Utilization of a submersible UV fluorometer for monitoring anthropogenic inputs in the Mediterranean coastal waters. Marine Pollution Bulletin, 60(3), 350-62. doi:10.1016/j.marpolbul.2009.10.018

  10. Adsorption combined with ultrafiltration to remove organic matter from seawater.

    PubMed

    Tansakul, Chatkaew; Laborie, Stéphanie; Cabassud, Corinne

    2011-12-01

    Organic fouling and biofouling are the major severe types of fouling of reverse osmosis (RO) membranes in seawater (SW) desalination. Low pressure membrane filtration such as ultrafiltration (UF) has been developed as a pre-treatment before reverse osmosis. However, UF alone may not be an effective enough pre-treatment because of the existence of low-molecular weight dissolved organic matter in seawater. Therefore, the objective of the present work is to study a hybrid process, powdered activated carbon (PAC) adsorption/UF, with real seawater and to evaluate its performance in terms of organic matter removal and membrane fouling. The effect of different PAC types and concentrations is evaluated. Stream-activated wood-based PAC addition increased marine organic matter removal by up to 70% in some conditions. Moreover, coupling PAC adsorption with UF decreased UF membrane fouling and the fouling occurring during short-term UF was totally reversible. It can be concluded that the hybrid PAC adsorption/UF process performed in crossflow filtration mode is a relevant pre-treatment process before RO desalination, allowing organic matter removal of 75% and showing no flux decline for short-term experiments. PMID:21996607

  11. A marine sink for chlorine in natural organic matter

    NASA Astrophysics Data System (ADS)

    Leri, Alessandra C.; Mayer, Lawrence M.; Thornton, Kathleen R.; Northrup, Paul A.; Dunigan, Marisa R.; Ness, Katherine J.; Gellis, Austin B.

    2015-08-01

    Chloride--the most abundant ion in sea water--affects ocean salinity, and thereby seawater density and ocean circulation. Its lack of reactivity gives it an extremely long residence time. Other halogens are known to be incorporated into marine organic matter. However, evidence of similar transformations of seawater chloride is lacking, aside from emissions of volatile organochlorine by marine algae. Here we report high organochlorine concentrations from 180 to 700 mg kg-1 in natural particulate organic matter that settled into sediment traps at depths between 800 and 3,200 m in the Arabian Sea, taken between 1994 and 1995. X-ray spectromicroscopic imaging of chlorine bonding reveals that this organochlorine exists primarily in concentrated aliphatic forms consistent with lipid chlorination, along with a more diffuse aromatic fraction. High aliphatic organochlorine in particulate material from cultured phytoplankton suggests that primary production is a source of chlorinated organic matter. We also found that particulate algal detritus can act as an organic substrate for abiotic reactions involving Fe2+, H2O2 or light that incorporate chlorine into organic matter at levels up to several grams per kilogram. We conclude that transformations of marine chloride to non-volatile organochlorine through biological and abiotic pathways represent an oceanic sink for this relatively unreactive element.

  12. Processing of Atmospheric Organic Matter by California Radiation Fogs

    NASA Astrophysics Data System (ADS)

    Collett, J. L.; Youngster, S. B.; Lee, T.; Chang, H.; Herckes, P.

    2005-12-01

    In many environments, organic compounds account for a significant fraction of fine particle mass. Because the lifetimes of accumulation mode aerosol particles are governed largely by interactions with clouds, it is important to understand how organic aerosol particles are processed by clouds and fogs. Recently we have examined the organic composition of radiation fogs in central California as well as how these fogs process organic aerosol particles and soluble organic trace gases. Observations indicate that organic matter is a significant component of the fog droplets, comprising approximately one-third of the total solute mass concentration. Concentrations of total organic carbon (TOC) range from approximately 2 to 41 ppmC. Approximately three-fourths of organic matter is typically found in solution as dissolved organic carbon (DOC). A variety of efforts have been made to characterize the composition of the fog organic matter, including analyses by GC/MS, HPLC, IC, NMR and IR. The most abundant species are typically low molecular weight carboxylic acids, small carbonyls and dicarbonyls, and sugar anhydrides. These species have been observed collectively to account for roughly 20-30 percent of the fog DOC. Dicarboxylic acids, frequently used as model compounds for organic CCN, typically account for only a few percent of the organic carbon, with oxalic acid the most important contributor. A significant portion of the fog DOC appears to be comprised of high molecular weight compounds (> 500 Da). Analyses also reveal the presence of organic molecular markers associated with particles produced by various combustion processes. Comparisons of pre-fog and interstitial aerosol samples reveal differences in the relative particle scavenging efficiencies of the fog drops between organic and elemental carbon and between different types of organic carbon. Measurements using a two-stage fog water collector reveal that organic matter tends to be enriched in smaller fog droplets

  13. Where is DNA preserved in soil organic matter?

    NASA Astrophysics Data System (ADS)

    Zaccone, Claudio; Beneduce, Luciano; Plaza, César

    2015-04-01

    Deoxyribonucleic acid (DNA) consists of long chains of alternating sugar and phosphate residues twisted in the form of a helix. Upon decomposition of plant and animal debris, this nucleic acid is released into the soil, where its fate is still not completely understood. In fact, although DNA is one of the organic compounds from living cells that is apparently broken down rapidly in soils, it is also potentially capable of being incorporated in (or interact with) the precursors of humic molecules. In order to track DNA occurrence in soil organic matter (SOM) fractions, an experiment was set up as a randomized complete block design with two factors, namely biochar addition and organic amendment. In particular, biochar (BC), applied at a rate of 20 t/ha, was combined with municipal solid waste compost (BC+MC) at a rate equivalent to 75 kg/ha of potentially available N, and with sewage sludge (BC+SS) at a rate equivalent to 75 kg/ha of potentially available N. Using a physical fractionation method, free SOM located between aggregates (unprotected C pool; FR), SOM occluded within macroaggregates (C pool weakly protected by physical mechanisms; MA), SOM occluded within microaggregates (C pool strongly protected by physical mechanisms; MI), and SOM associated with the mineral fractions (chemically-protected C pool; MIN) were separated from soil samples. DNA was then isolated from each fraction of the two series, as well as from the unamended soil (C) and from the bulk soils (WS), using Powersoil DNA isolation kit (MoBio, CA, USA) with a modified protocol. Data clearly show that the DNA survived the SOM fractionation, thus suggesting that physical fractionation methods create less artifacts compared to the chemical ones. Moreover, in both BC+MC and BC+SS series, most of the isolated DNA was present in the FR fraction, followed by the MA and the MI fractions. No DNA was recovered from the MIN fraction. This finding supports the idea that most of the DNA occurring in the SOM

  14. Analysis of the Organic Matter in Interplanetary Dust Particles: Clues to the Organic Matter in Comets, Asteroids, and Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Keller, L. P.

    2003-01-01

    Reflection spectroscopy suggests the C- , P-, and D-types of asteroids contain abundant carbon, but these Vis-nearIR spectra are featureless, providing no information on the type(s) of carbonaceous matter. Infrared spectroscopy demonstrates that organic carbon is a significant component in comets and as grains or grain coatings in the interstellar medium. Most of the interplanetary dust particles (IDPs) recovered from the Earth s stratosphere are believed to be fragments from asteroids or comets, thus characterization of the carbon in IDPs provides the opportunity to determine the type(s) and abundance of organic matter in asteroids and comets. Some IDPs exhibit isotopic excesses of D and N-15, indicating the presence of interstellar material. The characterization of the carbon in these IDPs, and particularly any carbon spatially associated with the isotopic anomalies, provides the opportunity to characterize interstellar organic matter.

  15. Aggregation of organic matter by pelagic tunicates

    SciTech Connect

    Pomeroy, L.R.; Deibel, D.

    1980-07-01

    Three genera of pelagic tunicates were fed concentrates of natural seston and an axenic diatom culture. Fresh and up to 4-day-old feces resemble flocculent organic aggregates containing populations of microorganisms, as described from highly productive parts of the ocean, and older feces resemble the nearly sterile flocculent aggregates which are ubiquitous in surface waters. Fresh feces consist of partially digested phytoplankton and other inclusions in an amorphous gelatinous matrix. After 18 to 36 h, a population of large bacteria develops in the matrix and in some of the remains of phytoplankton contained in the feces. From 48 to 96 h, protozoan populations arise which consume the bacteria and sometimes the remains of the phytoplankton in the feces. Thereafter only a sparse population of microorganisms remains, and the particles begin to fragment. Water samples taken in or below dense populations of salps and doliolids contained greater numbers of flocculent aggregates than did samples from adjacent stations.

  16. Search for Organic Matter in Leonid Meteoroids

    NASA Technical Reports Server (NTRS)

    Rairden, Richard L.; Jenniskens, Peter; Laux, Christophe O.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Near-ultraviolet 300-410 nm spectra of Leonid meteors were obtained in an effort to measure the strong B to X emission band of the radical CN in Leonid meteor spectra at 387 nm. CN is an expected product of ablation of nitrogen containing organic carbon in the meteoroids as well as a possible product of the aerothermochemistry induced by the kinetic energy of the meteor. A slitless spectrograph with objective grating was deployed on FISTA during the 1999 Leonid Multi-Instrument Aircraft Campaign. Fifteen first-order UV spectra were captured near the 02:00 UT meteor storm peak on November 18. It is found that neutral iron lines dominate the spectrum, with no clear sign of the CN band. The meteor plasma contains less than one CN molecule per three Fe atoms at the observed altitude of about 100 km.

  17. Ultrathin organic semiconductor films--soft matter effect.

    PubMed

    Wang, Tong; Yan, Donghang

    2014-05-01

    The growth of organic semiconductor thin films has been a crucial issue in organic electronics, especially the growth at the early stages. The thin-film phase has been found to be a common phenomenon in many organic semiconductor thin films, which is closely related with the weak van der Waals interaction between organic molecules, the long-range interaction between organic molecules and the substrate, as well as the soft matter characteristics of ultrathin films. The growth behavior and soft matter characteristics of the thin-film phase have great effects on thin film morphology and structure, for example, the formation and coalescence of grain boundaries, which further influences the performance of organic electronic devices. The understanding of thin-film phase and its intrinsic quality is necessary for fabricating large-size, highly ordered, continuous and defect-free ultrathin films. This review will focus on the growth behavior of organic ultrathin films, i.e., the level of the first several molecular layers, and provide an overview of the soft matter characteristics. PMID:24548597

  18. Condensed matter physics at surfaces and interfaces of solids

    SciTech Connect

    Mele, E.J.

    1992-01-01

    This research program is focused on structural and elastic properties of crystalline solids and interfaces between solids. We are particularly interested in novel forms of structural ordering and the effects of this ordering on the lattice dynamical properties. We are currently studying structural and vibrational properties of the surfaces of the elemental alkaline earths (particularly Be), and structural phenomena in the doped fullerites.

  19. Effect of influent aeration on removal of organic matter from coffee processing wastewater in constructed wetlands.

    PubMed

    Rossmann, Maike; Matos, Antonio Teixeira; Abreu, Edgar Carneiro; Silva, Fabyano Fonseca; Borges, Alisson Carraro

    2013-10-15

    The aim of the present study was to evaluate the influence of aeration and vegetation on the removal of organic matter in coffee processing wastewater (CPW) treated in 4 constructed wetlands (CWs), characterized as follows: (i) ryegrass (Lolium multiflorum) cultivated system operating with an aerated influent; (ii) non-cultivated system operating with an aerated influent, (iii) ryegrass cultivated system operating with a non-aerated influent; and (iv) non-cultivated system operating with a non-aerated influent. The lowest average chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of 87, 84 and 73%, respectively, were obtained in the ryegrass cultivated system operating with a non-aerated influent. However, ryegrass cultivation did not influence the removal efficiency of organic matter. Artificial aeration of the CPW, prior to its injection in the CW, did not improve the removal efficiencies of organic matter. On other hand it did contribute to increase the instantaneous rate at which the maximum COD removal efficiency was reached. Although aeration did not result in greater organic matter removal efficiencies, it is important to consider the benefits of aeration on the removal of the other compounds. PMID:23892132

  20. The Rusty Sink: Iron Promotes the Preservation of Organic Matter in Sediments

    NASA Astrophysics Data System (ADS)

    Lalonde, K. M.; Mucci, A.; Moritz, A.; Ouellet, A.; Gelinas, Y.

    2011-12-01

    The biogeochemical cycles of iron (Fe) and organic carbon (OC) are strongly interlinked. In oceanic waters, organic ligands have been shown to control the concentration of dissolved Fe [1], whereas in soils, solid Fe phases provide a sheltering and preservative effect for organic matter [2]. Until now however, the role of iron in the preservation of OC in sediments has not been clearly established. Here we show that 21.5 ± 8.6% of the OC in sediments is directly bound to reactive iron phases, which promote the preservation of OC in sediments. Iron-bound OC represents a global mass of 19 to 45 × 10^15 g of OC in surface marine sediments. This pool of OC is different from the rest of sedimentary OC, with 13C and nitrogen-enriched organic matter preferentially bound to Fe which suggests that biochemical fractionation occurs with OC-Fe binding. Preferential binding also affects the recovery of high molecular weight lipid biomarkers and acidic lignin oxidation products, changing the environmental message of proxies derived from these biomarkers. [1] Johnson, K. S., Gordon, R. M. & Coale, K. H. What controls dissolved iron in the world ocean? Marine Chemistry 57, 137-161 (1997). [2] Kaiser, K. & Guggenberger, G. The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Organic Geochemistry 31, 711-725 (2000).

  1. Bromination of marine particulate organic matter through oxidative mechanisms

    NASA Astrophysics Data System (ADS)

    Leri, Alessandra C.; Mayer, Lawrence M.; Thornton, Kathleen R.; Ravel, Bruce

    2014-10-01

    Although bromine (Br) is considered conservative in seawater, it exhibits a well established correlation with organic carbon in marine sediments. This carbon-bromine association was recently attributed to covalent bonding, with organobromine in sinking particulates providing a putative link between sedimentary organobromine and organic matter cycling in surface waters. We hypothesized that phytoplankton detritus, a major precursor of sedimentary organic matter, would be susceptible to bromination through oxidative attack. Through a series of model experiments, we demonstrate incorporation of Br into algal particulate detritus through peroxidative and photochemical mechanisms. Peroxidative bromination was enhanced by addition of exogenous bromoperoxidase, but the enzyme was not required for the reaction. Fenton-like reaction conditions also promoted bromination, especially under solar irradiation, implicating radical mechanisms in the euphotic zone as another abiotic source of brominated particulates. These reactions produced aliphatic and aromatic forms of organobromine, suggesting that lipid- and protein-rich components of algal membranes provide suitable substrates for bromination. Biogenic organobromines in certain genera of phytoplankton also appeared in both aliphatic and aromatic forms. Experimental evidence and samples from oceanic midwater sediment traps imply that the aromatic fraction is more stable than the aliphatic. These experiments establish Br as a versatile oxidant in the transformation of planktonic organic matter through both enzymatic and abiotic mechanisms. Organobromine may serve as a marker of oxidative breakdown of marine organic detritus, with the metastable component providing a short-lived indicator of early-stage oxidation. By altering the stability of aliphatic and aromatic moieties, bromination may affect the availability of organic matter to organisms, with consequences for the preservation and degradation of marine organic carbon.

  2. Selective capture of volatile iodine using amorphous molecular organic solids.

    PubMed

    Huang, Pin-Shen; Kuo, Chih-Hong; Hsieh, Chang-Chih; Horng, Yih-Chern

    2012-03-28

    A simple shape-persistent organic molecular container is capable of selective absorption and storage of I(2(g)) over water vapor and NO gas even in its amorphous solid state. In addition, the strongly associated I(2) can be efficiently released from the charged container in organic solvents under ambient conditions. PMID:22331261

  3. X-ray characterization of solid small molecule organic materials

    SciTech Connect

    Billinge, Simon; Shankland, Kenneth; Shankland, Norman; Florence, Alastair

    2014-06-10

    The present invention provides, inter alia, methods of characterizing a small molecule organic material, e.g., a drug or a drug product. This method includes subjecting the solid small molecule organic material to x-ray total scattering analysis at a short wavelength, collecting data generated thereby, and mathematically transforming the data to provide a refined set of data.

  4. Impact of wastewater treatment processes on organic carbon, organic nitrogen, and DBP precursors in effuent organic matter.

    PubMed

    Krasner, Stuart W; Westerhoff, Paul; Chen, Baiyang; Rittmann, Bruce E; Nam, Seong-Nam; Amy, Gary

    2009-04-15

    Unintentional, indirect wastewater reuse often occurs as wastewater treatment plant (WWTP) discharges contaminate receiving waters serving as drinking-water supplies. A survey was conducted at 23 WWTPs that utilized a range of treatment technologies. Samples were analyzed for typical wastewater and drinking-water constituents, chemical characteristics of the dissolved organic matter (DOM), and disinfection byproduct (DBP) precursors present in the effluent organic matter (EfOM). This was the first large-scale assessment of the critical water quality parameters that affect the formation of potential carcinogens during drinking water treatment relative to the discharge of upstream WWTPs. This study considered a large and wide range of variables, including emerging contaminants rarely studied at WWTPs and never before in one study. This paper emphasizesthe profound impact of nitrification on many measures of effluent water quality, from the obvious wastewater parameters (e.g., ammonia, biochemical oxygen demand) to the ones specific to downstream drinking water treatment plants (e.g., formation potentialsfor a diverse group of DBPs of health concern). Complete nitrification reduced the concentration of biodegradable dissolved organic carbon (BDOC) and changed the ratio of BDOC/DOC. Although nitrification reduced ultraviolet absorbance (UVA) at 254 nm, it resulted in an increase in specific UVA (UVA/DOC). This is attributed to preferential removal of the less UV-absorbing (nonhumic) fraction of the DOC during biological treatment. EfOM is composed of hydrophilic and biodegradable DOM, as well as hydrophobic and recalcitrant DOM, whose proportions change with advanced biological treatment. The onset of nitrification yielded lower precursor levels for haloacetic acids and nitrogenous DBPs (haloacetonitriles, N-nitrosodimethylamine). However, trihalomethane precursors were relatively unaffected by the level of wastewater treatment Thus, one design/operations parameter in

  5. The Relationship Between Dissolved Organic Matter Composition and Organic Matter Optical Properties in Freshwaters

    NASA Astrophysics Data System (ADS)

    Aiken, G.; Spencer, R. G.; Butler, K.

    2010-12-01

    Dissolved organic matter (DOM) chemistry and flux are potentially useful, albeit, underutilized, indicators of watershed characteristics, climate influences on watershed hydrology and soils, and changes associated with resource management. Source materials, watershed geochemistry, oxidative processes and hydrology exert strong influences on the nature and reactivity of DOM in aquatic systems. The molecules that comprise DOM, in turn, control a number of environmental processes important for ecosystem function including light penetration and photochemistry, microbial activity, mineral dissolution/precipitation, and the transport and reactivity of hydrophobic compounds and metals (e.g. Hg). In particular, aromatic molecules derived from higher plants exert strong controls on aquatic photochemistry, and on the transport and biogeochemistry of metals. Assessment of DOM composition and transport, therefore, can provide a basis for understanding watershed processes and biogeochemistry of rivers and streams. Here we present results of multi-year studies designed to assess the seasonal and spatial variability of DOM quantity and quality for 57 North American Rivers. DOM concentrations and composition, based on DOM fractionation on XAD resins, ultraviolet (UV)/visible absorption and fluorescence spectroscopic analyses, and specific compound analyses, varied greatly both between sites and seasonally within a given site. DOM in these rivers exhibited a wide range of concentration (<80 to >4000 µM C* L-1) and specific ultra-violet absorbance at 254 nm (SUVA254) (0.6 to 5 L *mg C-1 *m-1), an optical measurement that is an indicator of aromatic carbon content. In almost all systems, UV absorbance measured at specific wavelengths (e.g. 254 nm) correlated strongly with DOM and hydrophobic organic acid (HPOA) content (aquatic humic substances). The relationships between dissolved organic carbon (DOC) concentration and absorbance for the range of systems were quite variable due to

  6. Relating Soil Organic Matter Dynamics to its Molecular Structure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our understanding of the dynamics of soil organic matter (SOM) must be integrated with a sound knowledge of it biochemical complexity. The molecular structure of SOM was determined in 98% sand soils to eliminate the known protective effects of clay on the amount and turnover rate of the SOM constitu...

  7. Calculation of the enthalpy of formation of coal organic matter

    SciTech Connect

    A.M. Gyul'maliev; M.Ya. Shpirt

    2008-10-15

    The enthalpy of formation for the organic matter of coals in the coal rank series was calculated from the heat of the complete combustion reaction. Three variants were considered in which the experimental heating values and the values found from the correlation equation or calculated using the Mendeleev formula were taken as the heat of the complete combustion of coals.

  8. SOURCES OF FINE PARTICLE ORGANIC MATTER IN BOISE

    EPA Science Inventory

    Ambient concentrations of fine particle extracted organic matter (EOM) measured at the Elm Grove Park and Fire Station sites in Boise have been apportioned to their two principal sources, woodsmoke and motor vehicle emissions. A multiple linear regression method using lead and po...

  9. Lyophilization and Reconstitution of Reverse Osmosis Concentrated Natural Organic Matter

    EPA Science Inventory

    Disinfection by-product (DBP) research can be complicated by difficulties in shipping large water quantities and changing natural organic matter (NOM) characteristics over time. To overcome these issues, it is advantageous to have a reliable method for concentrating and preservin...

  10. Forms and Bioavailability of Phosphorus Associated With Natural Organic Matter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural organic matter (NOM) is an important ingredient in soil which can improve physical, chemical, and biological properties of soils and nutrient supplies. In this study, we investigated the spectral features and potential availability of phosphorus (P) in the IHSS Elliott Soil humic acid standa...

  11. Organic Matter Balance: Managing for Soil Protection and Bioenergy Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soils are an important natural resource allowing the production of food, feed, fiber and fuel. The growing demand for these services or products requires we protect the soil resource. Many characteristics of high quality soils can be related to the quantity and quality of soil organic matter (organi...

  12. Quenching and Sensitizing Fullerene Photoreactions by Natural Organic Matter

    EPA Science Inventory

    Effects of natural organic matter (NOM) on the photoreaction kinetics of fullerenes (i.e., C60 and fullerenol) were investigated using simulated sunlight and monochromatic radiation (365 nm). NOM from several sources quenched (slowed) the photoreaction of C60 aggregates in water ...

  13. Organic matter in a coal ball: Peat or coal?

    USGS Publications Warehouse

    Hatcher, P.G.; Lyons, P.C.; Thompson, C.L.; Brown, F.W.; Maciel, G.E.

    1982-01-01

    Chemical analyses of morphologically preserved organic matter in a Carboniferous coal ball reveal that the material is coalified to a rank approximately equal to that of the surrounding coal. Hence, the plant tissues in the coal ball were chemically altered by coalification processes and were not preserved as peat. Copyright ?? 1982 AAAS.

  14. Photoproduction of Carbon Monoxide from Natural Organic Matter

    EPA Science Inventory

    Pioneering studies by Valentine provided early kinetic results that used carbon monoxide (CO) production to evaluate the photodecomposition of aquatic natural organic matter (NOM) . (ES&T 1993 27 409-412). Comparatively few kinetic studies have been conducted of the photodegradat...

  15. Protection of Organic Matter from Enzyme Degradation by Mineral Mesopores

    NASA Astrophysics Data System (ADS)

    Zimmerman, A. R.; Chorover, J. D.; Brantley, S. L.

    2003-12-01

    Mineral mesopores (2-50 nm diameter) may sequester organic matter (natural and pollutant) and protect it from microbial and fungal enzymatic degradation in soils and sediments. Synthetic mesoporous alumina and silica minerals with uniform pore sizes and shapes were used to test the role of mesopores in protecting organic matter from enzymatic degradation. A model humic compound, L-3-4-dihydroxyphenylalanine (L-DOPA), was sorbed to the internal surfaces of mesoporous alumina (8.2 nm diameter pores) and mesoporous silica (3.4 nm diameter pores) as well as to the external surfaces of nonporous alumina and silica analogues. A fungal derived enzyme, laccase, was added to these sorbate-sorbent pairs in aqueous solution and activity was monitored by oxygen consumption. Though enzyme activity was suppressed in both cases by mineral-enzyme interaction (enzyme inhibition likely due to adsorption of the enzyme), both the rate and total extent of enzyme-mediated degradation of mesopore-sorbed L-DOPA was 3-40 times lower than that of the externally-sorbed analogue. These results provide, for the first time, direct evidence for the viability of the proposed mesopore protection mechanism for the sequestration and preservation of sedimentary organic matter and organic contaminants. Mesopore adsorption/desorption phenomena may also help explain the slow degradation of organic contaminants in soil and sediment and may prove useful as delivery vehicles for organic compounds to agricultural, medical or environmental systems.

  16. Organic and Inorganic Matter in Louisiana Coastal Waters: Vermilion, Atchafalaya, Terrebonne, Barataria, and Mississippi Regions.

    EPA Science Inventory

    Chromophoric dissolved organic matter (CDOM) spectral absorption, dissolved organic carbon (DOC) concentration, and the particulate fraction of inorganic (PIM) and organic matter (POM) were measured in Louisiana coastal waters at Vermilion, Atchafalaya, Terrebonne, Barataria, and...

  17. CHROMOPHORIC DISSOLVED ORGANIC MATTER (CDOM) DERIVED FROM DECOMPOSITION OF VARIOUS VASCULAR PLANT AND ALGAL SOURCES

    EPA Science Inventory

    Chromophoric dissolved organic (CDOM) in aquatic environments is derived from the microbial decomposition of terrestrial and microbial organic matter. Here we present results of studies of the spectral properties and photoreactivity of the CDOM derived from several organic matter...

  18. Transformations of particles, metal elements and natural organic matter in different water treatment processes.

    PubMed

    Yan, Ming-Quan; Wang, Dong-Sheng; Shi, Bao-You; Wei, Qun-Shan; Qu, Jiu-Hui; Tang, Hong-Xiao

    2007-01-01

    Characterizing natural organic matter (NOM), particles and elements in different water treatment processes can give a useful information to optimize water treatment operations. In this article, transformations of particles, metal elements and NOM in a pilot-scale water treatment plant were investigated by laser light granularity system, particle counter, glass-fiber membrane filtration, inductively coupled plasma-optical emission spectroscopy, ultra filtration and resin absorbents fractionation. The results showed that particles, NOM and trihalomethane formation precursors were removed synergistically by sequential treatment of different processes. Pre-ozonation markedly changed the polarity and molecular weight of NOM, and it could be conducive to the following coagulation process through destabilizing particles and colloids; mid-ozonation enhanced the subsequent granular activated carbon (GAC) filtration process by decreasing molecular weight of organic matters. Coagulation-flotation and GAC were more efficient in removing fixed suspended solids and larger particles; while sand-filtration was more efficient in removing volatile suspended solids and smaller particles. Flotation performed better than sedimentation in terms of particle and NOM removal. The type of coagulant could greatly affect the performance of coagulation-flotation. Pre-hydrolyzed composite coagulant (HPAC) was superior to FeCl3 concerning the removals of hydrophobic dissolved organic carbon and volatile suspended solids. The leakages of flocs from sand-filtration and microorganisms from GAC should be mitigated to ensure the reliability of the whole treatment system. PMID:17918586

  19. Characterization of water-soluble organic matter isolated from atmospheric fine aerosol

    NASA Astrophysics Data System (ADS)

    Kiss, Gyula; Varga, BáLint; Galambos, IstváN.; Ganszky, Ildikó

    2002-11-01

    Atmospheric fine aerosol (dp < 1.5 μm) was collected at a rural site in Hungary from January to September 2000. The total carbon concentration ranged from 5 to 13 μg m-3 and from 3 to 6 μg m-3 in the first three months and the rest of the sampling period, respectively. On average, water-soluble organic carbon (WSOC) accounted for 66% of the total carbon concentration independent of the season. A variable fraction of the water-soluble organic constituents (38-72% of WSOC depending on the sample) was separated from inorganic ions and isolated in pure organic form by using solid phase extraction on a copolymer sorbent. This fraction was experimentally characterized by an organic matter to organic carbon mass ratio of 1.9, and this value did not change with the seasons. Furthermore, the average elemental composition (molar ratio) of C:H:N:O ≈ 24:34:1:14 of the isolated fraction indicated the predominance of oxygenated functional groups, and the low hydrogen to carbon ratio implied the presence of unsaturated or polyconjugated structures. These conclusions were confirmed by UV, fluorescence, and Fourier transform infrared (FTIR) studies. On the basis of theoretical considerations, the organic matter to organic carbon mass ratio was estimated to be 2.3 for the nonisolated water-soluble organic fraction, resulting in an overall ratio of 2.1 for the WSOC. In order to extend the scope of this estimation to the total organic carbon, which is usually required in mass closure calculations, the aqueous extraction was followed by sequential extraction with acetone and 0.01 M NaOH solution. As a result, a total organic matter to total organic carbon mass ratio of 1.9-2.0 was estimated, but largely on the basis of experimental data.

  20. Colored dissolved organic matter in Tampa Bay, Florida

    USGS Publications Warehouse

    Chen, Z.; Hu, C.; Conmy, R.N.; Muller-Karger, F.; Swarzenski, P.

    2007-01-01

    Absorption and fluorescence of colored dissolved organic matter (CDOM) and concentrations of dissolved organic carbon (DOC), chlorophyll and total suspended solids in Tampa Bay and its adjacent rivers were examined in June and October of 2004. Except in Old Tampa Bay (OTB), the spatial distribution of CDOM showed a conservative relationship with salinity in June, 2004 (aCDOM(400) = − 0.19 × salinity + 6.78, R2 = 0.98, n = 17, salinity range = 1.1–32.5) with little variations in absorption spectral slope and fluorescence efficiency. This indicates that CDOM distribution was dominated by mixing. In October, 2004, CDOM distribution was nonconservative with an average absorption coefficient (aCDOM(400), ∼ 7.76 m-1) about seven times higher than that in June (∼ 1.11 m-1). The nonconservative behavior was caused largely by CDOM removal at intermediate salinities (e.g., aCDOM(400) removal > 15% at salinity ∼ 13.0), which likely resulted from photobleaching due to stronger stratification. The spatial and seasonal distributions of CDOM in Tampa Bay showed that the two largest rivers, the Alafia River (AR) and Hillsborough River (HR) were dominant CDOM sources to most of the bay. In OTB, however, CDOM showed distinctive differences: lower absorption coefficient, higher absorption spectral slopes, and lower ratios of CDOM absorption to DOC and higher fluorescence efficiency. These differences may have stemmed from (1) changes in CDOM composition by more intensive photobleaching due to the longer residence time of water mass in OTB; (2) other sources of CDOM than the HR/AR inputs, such as local creeks, streams, groundwater, and/or bottom re-suspension. Average CDOM absorption in Tampa Bay at 443 nm, aCDOM(443), was about five times higher in June and about ten times higher in October than phytoplankton pigment absorption, aph(443), indicating that blue light attenuation in the water column was dominated by CDOM rather than by phytoplankton absorption throughout the

  1. Bacterial biomarkers thermally released from dissolved organic matter

    USGS Publications Warehouse

    Greenwood, P.F.; Leenheer, J.A.; McIntyre, C.; Berwick, L.; Franzmann, P.D.

    2006-01-01

    Hopane biomarker products were detected using microscale sealed vessel (MSSV) pyrolysis gas chromatography-mass spectrometry (GC-MS) analysis of dissolved organic matter from natural aquatic systems colonised by bacterial populations. MSSV pyrolysis can reduce the polyhydroxylated alkyl side chain of bacteriohopanepolyols, yielding saturated hopane products which are more amenable to GC-MS detection than their functionalised precursors. This example demonstrates how the thermal conditions of MSSV pyrolysis can reduce the biologically-inherited structural functionality of naturally occurring organic matter such that additional structural fragments can be detected using GC methods. This approach complements traditional analytical pyrolysis methods by providing additional speciation information useful for establishing the structures and source inputs of recent or extant organic material. ?? 2006.

  2. Pre-biotic organic matter from comets and asteroids

    NASA Technical Reports Server (NTRS)

    Anders, Edward

    1989-01-01

    Only meteoritic fragments small enough to be gently decelerated by the atmosphere (10 to the -12th g to 10 to the -6th g) can deliver organic matter intact. The amount of such 'soft-landed' organic carbon can be estimated from data for the infall rate of meteoritic matter. At present rates, only about 0.0006 g/sq cm intact organic carbon would accumulate in 100 million years, but at the higher rates of about four billion yr ago, about 20 g/sq cm may have accumulated in the few hundred million years between the last cataclysmic impact and the beginning of life. It may have included some biologically important compounds that did not form by abiotic synthesis on earth.

  3. Evalution of soil organic matter contents using spectral inhance indeces

    NASA Astrophysics Data System (ADS)

    Faghih, Athar; Heidari, Ahmad

    2010-05-01

    Topography composed of elevation, slope, and aspect, that through the influence microclimate and chemical and physical properties of land affects the amount of organic carbon. Because of the height difference between hydrology and temperature regime in mountainous regions are collaborating and that difference has led to differences in the composition and distribution patterns of vegetation, the soil and organic matter decomposition rate is. Effect of climate change on soil organic carbon storage and its distribution is different in different regions, and the main factors creating differences, temperature and rainfall levels are on the order and the growth rate plant species and organic carbon mineralization rate impact.to evaluate these factors first ETM+ satellite images of 2002 North range lands, Karaj river basin prepared, then image processing and image classification as supervision and unsupervision was done. Then NDVI, TNDVI, VI, IR/R, Square IR/R indices obtained for study area and on the basis of these indices study area units was specified. Digital elevation model (DEM) using the region as a 1:50000 topographic map was produced before. Using Arc- GIS image and maps physiographic, location sampling based physiographic units changes and temperature change with the opposite slope directions sample have been made. By using GPS, 24 positions for surface samples and 4 pedons determined and sampled. Physical and chemical sample properties have based on size and by using dry sieve and OC, N and C/N ratio respectively specified in them. Then, using Exel software existing relationships between different parameters were studied. The results showed that, with increases. In the slope of the north and west due to the ability to maintain more moisture, have organic matter, more than the southern and eastern slopes. Correlation coefficients obtained included: correlation coefficient between organic matter and elevation 0.84, correlation coefficient between organic matter

  4. Correlation between Organic Matter Degradation and the Rheological Performance of Waste Sludge During Anaerobic Digestion

    NASA Astrophysics Data System (ADS)

    Morel, Evangelina S.; Hernández-Hernándes, José A.; Méndez-Contreras, Juan M.; Cantú-Lozano, Denis

    2008-07-01

    Anaerobic digestion has demonstrated to be a good possibility to reduce the organic matter contents in waste activated sludge resulting in the effluents treatment. An anaerobic digestion was carried out in a 3.5 L reactor at 35 °C for a period of 20 days. An electronic thermostat controlled the temperature. The reactor was agitated at a rate of 200 rpm. The study of the rheological behavior of the waste activated sludge was done with an Anton Paar™ rheometer model MCR301 with a peltier plate for temperature control. Four-blade vane geometry was used with samples of 37 mL for determining rheological properties. Sampling (two samples) was taken every four days of anaerobic digestion through a peristaltic pump. The samples behavior was characterized by the Herschel-Bulkley model, with R2>0.99 for most cases. In all samples were found an apparent viscosity (ηap) and yield stress (τo) decrement when organic matter content diminishes. This demonstrates a relationship between rheological properties and organic matter concentration (% volatile solids). Also the flow activation energy (Ea) was calculated using the Ahrrenius correlation and samples of waste activated sludge before anaerobic digestion. In this case, samples were run in the rheometer at 200 rpm and a temperature range of 25 to 75 °C with an increment rate of 2 °C per minute. The yield stress observed was in a range of 0.93-0.18 Pa, the apparent viscosity was in a range of 0.0358-0.0010 Pa.s, the reduction of organic matter was in a range of 62.57-58.43% volatile solids and the average flow activation energy was 1.71 Calṡg-mol-1.

  5. Efficient removal of recalcitrant deep-ocean dissolved organic matter during hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Hawkes, Jeffrey A.; Rossel, Pamela E.; Stubbins, Aron; Butterfield, David; Connelly, Douglas P.; Achterberg, Eric P.; Koschinsky, Andrea; Chavagnac, Valérie; Hansen, Christian T.; Bach, Wolfgang; Dittmar, Thorsten

    2015-11-01

    Oceanic dissolved organic carbon (DOC) is an important carbon pool, similar in magnitude to atmospheric CO2, but the fate of its oldest forms is not well understood. Hot hydrothermal circulation may facilitate the degradation of otherwise un-reactive dissolved organic matter, playing an important role in the long-term global carbon cycle. The oldest, most recalcitrant forms of DOC, which make up most of oceanic DOC, can be recovered by solid-phase extraction. Here we present measurements of solid-phase extractable DOC from samples collected between 2009 and 2013 at seven vent sites in the Atlantic, Pacific and Southern oceans, along with magnesium concentrations, a conservative tracer of water circulation through hydrothermal systems. We find that magnesium and solid-phase extractable DOC concentrations are correlated, suggesting that solid-phase extractable DOC is almost entirely lost from solution through mineralization or deposition during circulation through hydrothermal vents with fluid temperatures of 212-401 °C. In laboratory experiments, where we heated samples to 380 °C for four days, we found a similar removal efficiency. We conclude that thermal degradation alone can account for the loss of solid-phase extractable DOC in natural hydrothermal systems, and that its maximum lifetime is constrained by the timescale of hydrothermal cycling, at about 40 million years.

  6. Loss of organic matter from riverine particles in deltas

    SciTech Connect

    Keil, R.G.; Quay, P.D.; Richey, J.E.

    1997-04-01

    In order to examine the transport and burial of terrigenous organic matter along the coastal zones of large river systems, we assessed organic matter dynamics in coupled river/delta systems using mineral surface area as a conservative tracer for discharged riverine particulate organic matter (POM). Most POM in the rivers studied (n = 6) is tightly associated with suspended mineral materiaL e.g., it is sorbed to mineral surfaces. Average organic loadings in the Amazon River (0.67 - 0.14 Mg C m{sup -2}), the river for which we have the largest dataset, are approximately twice that of sedimentary minerals from the Amazon Delta (-0.35 mg C m{sup -2}). Stable carbon isotope analysis indicate that approximately two-thirds of the total carbon on the deltaic particles is terrestrial. The combined surface-normalized, isotope-distinguished estimate is that >70% of the Amazon fluvial POM is not buried in the delta consistent with other independent evidence. Losses of terrestrial POM have also been quantified for the river/delta systems of Columbia in the USA, Fly in New Guinea. and Huange-He in China. If the losses of riverine POM observed in these river/delta systems are representative of rivers worldwide, then the surface-constrained analyses point toward a global loss of fluvial POM in delta regions of {approximately}0.1 x 10{sup 15} g C y{sup -1}. 28 refs., 2 figs., 1 tab.

  7. Rare earth elements and neodymium isotopes in sedimentary organic matter

    NASA Astrophysics Data System (ADS)

    Freslon, Nicolas; Bayon, Germain; Toucanne, Samuel; Bermell, Sylvain; Bollinger, Claire; Chéron, Sandrine; Etoubleau, Joel; Germain, Yoan; Khripounoff, Alexis; Ponzevera, Emmanuel; Rouget, Marie-Laure

    2014-09-01

    We report rare earth element (REE) and neodymium (Nd) isotope data for the organic fraction of sediments collected from various depositional environments, i.e. rivers (n = 25), estuaries (n = 18), open-ocean settings (n = 15), and cold seeps (n = 12). Sedimentary organic matter (SOM) was extracted using a mixed hydrogen peroxide/nitric acid solution (20%-H2O2-0.02 M-HNO3), after removal of carbonate and oxy-hydroxide phases with dilute hydrochloric acid (0.25 M-HCl). A series of experimental tests indicate that extraction of sedimentary organic compounds using H2O2 may be complicated occasionally by partial dissolution of sulphide minerals and residual carbonates. However, this contamination is expected to be minor for REE because measured concentrations in H2O2 leachates are about two-orders of magnitude higher than in the above mentioned phases. The mean REE concentrations determined in the H2O2 leachates for samples from rivers, estuaries, coastal seas and open-ocean settings yield relatively similar levels, with ΣREE = 109 ± 86 ppm (mean ± s; n = 58). The organic fractions leached from cold seep sediments display even higher concentration levels (285 ± 150 ppm; mean ± s; n = 12). The H2O2 leachates for most sediments exhibit remarkably similar shale-normalized REE patterns, all characterized by a mid-REE enrichment compared to the other REE. This suggests that the distribution of REE in leached sedimentary organic phases is controlled primarily by biogeochemical processes, rather than by the composition of the source from which they derive (e.g. pore, river or sea-water). The Nd isotopic compositions for organic phases leached from river sediments are very similar to those for the corresponding detrital fractions. In contrast, the SOM extracted from marine sediments display εNd values that typically range between the εNd signatures for terrestrial organic matter (inferred from the analysis of the sedimentary detrital fractions) and marine organic matter

  8. Extending the analytical window for water-soluble organic matter in sediments by aqueous Soxhlet extraction

    NASA Astrophysics Data System (ADS)

    Schmidt, Frauke; Koch, Boris P.; Witt, Matthias; Hinrichs, Kai-Uwe

    2014-09-01

    Dissolved organic matter (DOM) in marine sediments is a complex mixture of thousands of individual constituents that participate in biogeochemical reactions and serve as substrates for benthic microbes. Knowledge of the molecular composition of DOM is a prerequisite for a comprehensive understanding of the biogeochemical processes in sediments. In this study, interstitial water DOM was extracted with Rhizon samplers from a sediment core from the Black Sea and compared to the corresponding water-extractable organic matter fraction (<0.4 μm) obtained by Soxhlet extraction, which mobilizes labile particulate organic matter and DOM. After solid phase extraction (SPE) of DOM, samples were analyzed for the molecular composition by Fourier Transform Ion-Cyclotron Resonance Mass Spectrometry (FT-ICR MS) with electrospray ionization in negative ion mode. The average SPE extraction yield of the dissolved organic carbon (DOC) in interstitial water was 63%, whereas less than 30% of the DOC in Soxhlet-extracted organic matter was recovered. Nevertheless, Soxhlet extraction yielded up to 4.35% of the total sedimentary organic carbon, which is more than 30-times the organic carbon content of the interstitial water. While interstitial water DOM consisted primarily of carbon-, hydrogen- and oxygen-bearing compounds, Soxhlet extracts yielded more complex FT-ICR mass spectra with more peaks and higher abundances of nitrogen- and sulfur-bearing compounds. The molecular composition of both sample types was affected by the geochemical conditions in the sediment; elevated concentrations of HS- promoted the early diagenetic sulfurization of organic matter. The Soxhlet extracts from shallow sediment contained specific three- and four-nitrogen-bearing molecular formulas that were also detected in bacterial cell extracts and presumably represent proteinaceous molecules. These compounds decreased with increasing sediment depth while one- and two-nitrogen-bearing molecules increased

  9. Synthesis of refractory organic matter in the ionized gas phase of the solar nebula

    PubMed Central

    Kuga, Maïa; Marty, Bernard; Marrocchi, Yves; Tissandier, Laurent

    2015-01-01

    In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)−CO−N2−noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system. PMID:26039983

  10. Synthesis of refractory organic matter in the ionized gas phase of the solar nebula.

    PubMed

    Kuga, Maïa; Marty, Bernard; Marrocchi, Yves; Tissandier, Laurent

    2015-06-01

    In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)-CO-N2-noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system. PMID:26039983

  11. Catchment scale molecular composition of hydrologically mobilized dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Raeke, Julia; Lechtenfeld, Oliver J.; Oosterwoud, Marieke R.; Bornmann, Katrin; Tittel, Jörg; Reemtsma, Thorsten

    2016-04-01

    Increasing concentrations of dissolved organic matter (DOM) in rivers of temperate catchments in Europe and North Amerika impose new technical challenges for drinking water production. The driving factors for this decadal increase in DOM concentration are not conclusive and changes in annual temperatures, precipitation and atmospheric deposition are intensely discussed. It is known that the majority of DOM is released by few but large hydrologic events, mobilizing DOM from riparian wetlands for export by rivers and streams. The mechanisms of this mobilization and the resulting molecular composition of the released DOM may be used to infer long-term changes in the biogeochemistry of the respective catchment. Event-based samples collected over two years from streams in three temperate catchments in the German mid-range mountains were analyzed after solid-phase extraction of DOM for their molecular composition by ultra-high resolution mass spectrometry (FT-ICR MS). Hydrologic conditions, land use and water chemistry parameters were used to complement the molecular analysis. The molecular composition of the riverine DOM was strongly dependent on the magnitude of the hydrologic events, with unsaturated, oxygen-enriched compounds being preferentially mobilized by large events. This pattern is consistent with an increase in dissolved iron and aluminum concentrations. In contrast, the relative proportions of nitrogen and sulfur bearing compounds increased with an increased agricultural land use but were less affected by the mobilization events. Co-precipitation experiments with colloidal aluminum showed that unsaturated and oxygen-rich compounds are preferentially removed from the dissolved phase. The precipitated compounds thus had similar chemical characteristics as compared to the mobilized DOM from heavy rain events. Radiocarbon analyses also indicated that this precipitated fraction of DOM was of comparably young radiocarbon age. DOM radiocarbon from field samples

  12. Photochemical Degradation of Persistent Organic Pollutants: A Study of Ice Photochemistry Mediated by Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Bobby, R.; Pagano, L.; Grannas, A. M.

    2012-12-01

    It is well established that ice is a reactive medium in the environment and that active photochemistry occurs in frozen systems. Snow and ice contain a number of absorbing species including nitrate, peroxide and organic matter. Upon irradiation, they can generate a variety of reactive intermediates such as hydroxyl radical and singlet oxygen. It has been shown that dissolved organic matter is a ubiquitous component of snow and ice and plays an important role in overall light absorption properties of the sample. Additionally, the reactive intermediates produced can further react with contaminants present and alter their fate in the environment. Unfortunately, the role of dissolved organic matter in ice photochemistry has received little attention. Here we present results from laboratory-based studies aimed at elucidating the role of dissolved organic matter photochemistry on contaminant degradation in ice. Aqueous samples of our target pollutant, aldrin (20 μg/L), in liquid and frozen phases, were irradiated under Q-Panel 340 lamps to simulate the UV radiation profile of natural sunlight. Results indicated that frozen samples degraded more quickly than liquid samples and that the addition of dissolved organic matter increases the aldrin degradation rate significantly. Both terrestrial (Suwannee River, U.S.) and microbial sources (Pony Lake, Antarctica) of DOM were able to sensitize aldrin loss in ice. Scavengers of singlet oxygen, such as furfuryl alcohol and β-carotene, were also added to DOM solutions. Based on the type of organic matter present, the scavengers had different effects on the photochemical degradation of aldrin. Our results indicate that natural organic matter present in ice is an important component of ice photochemical processes.

  13. Soil type-depending effect of paddy management: composition and distribution of soil organic matter

    NASA Astrophysics Data System (ADS)

    Urbanski, Livia; Kölbl, Angelika; Lehndorff, Eva; Houtermans, Miriam; Schad, Peter; Zhang, Gang-Lin; Rahayu Utami, Sri; Kögel-Knabner, Ingrid

    2016-04-01

    Paddy soil management is assumed to promote soil organic matter accumulation and specifically lignin caused by the resistance of the aromatic lignin structure against biodegradation under anaerobic conditions during inundation of paddy fields. The present study investigates the effect of paddy soil management on soil organic matter composition compared to agricultural soils which are not used for rice production (non-paddy soils). A variety of major soil types, were chosen in Indonesia (Java), including Alisol, Andosol and Vertisol sites (humid tropical climate of Java, Indonesia) and in China Alisol sites (humid subtropical climate, Nanjing). This soils are typically used for rice cultivation and represent a large range of soil properties to be expected in Asian paddy fields. All topsoils were analysed for their soil organic matter composition by solid-state 13C nuclear magnetic resonance spectroscopy and lignin-derived phenols by CuO oxidation method. The soil organic matter composition, revealed by solid-state 13C nuclear magnetic resonance, was similar for the above named different parent soil types (non-paddy soils) and was also not affected by the specific paddy soil management. The contribution of lignin-related carbon groups to total SOM was similar in the investigated paddy and non-paddy soils. A significant proportion of the total aromatic carbon in some paddy and non-paddy soils was attributed to the application of charcoal as a common management practise. The extraction of lignin-derived phenols revealed low VSC (vanillyl, syringyl, cinnamyl) values for all investigated soils, being typical for agricultural soils. An inherent accumulation of lignin-derived phenols due to paddy management was not found. Lignin-derived phenols seem to be soil type-dependent, shown by different VSC concentrations between the parent soil types. The specific paddy management only affects the lignin-derived phenols in Andosol-derived paddy soils which are characterized by

  14. Thermochemical pretreatments of organic fraction of municipal solid waste from a mechanical-biological treatment plant.

    PubMed

    Álvarez-Gallego, Carlos José; Fdez-Güelfo, Luis Alberto; de los Ángeles Romero Aguilar, María; Romero García, Luis Isidoro

    2015-01-01

    The organic fraction of municipal solid waste (OFMSW) usually contains high lignocellulosic and fatty fractions. These fractions are well-known to be a hard biodegradable substrate for biological treatments and its presence involves limitations on the performance of anaerobic processes. To avoid this, thermochemical pretreatments have been applied on the OFMSW coming from a full-scale mechanical-biological treatment (MBT) plant, in order to pre-hydrolyze the waste and improve the organic matter solubilisation. To study the solubilisation yield, the increments of soluble organic matter have been measured in terms of dissolved organic carbon (DOC), soluble chemical oxygen demand (sCOD), total volatile fatty acids (TVFA) and acidogenic substrate as carbon (ASC). The process variables analyzed were temperature, pressure and NaOH dosage. The levels of work for each variable were three: 160-180-200 °C, 3.5-5.0-6.5 bar and 2-3-4 g NaOH/L. In addition, the pretreatment time was also modified among 15 and 120 min. The best conditions for organic matter solubilisation were 160 °C, 3 g NaOH/L, 6.5 bar and 30 min, with yields in terms of DOC, sCOD, TVFA and ASC of 176%, 123%, 119% and 178% respectively. Thus, predictably the application of this pretreatment in these optimum conditions could improve the H2 production during the subsequent Dark Fermentation process. PMID:25671816

  15. Thermochemical Pretreatments of Organic Fraction of Municipal Solid Waste from a Mechanical-Biological Treatment Plant

    PubMed Central

    Álvarez-Gallego, Carlos José; Fdez-Güelfo, Luis Alberto; Romero Aguilar, María de los Ángeles; Romero García, Luis Isidoro

    2015-01-01

    The organic fraction of municipal solid waste (OFMSW) usually contains high lignocellulosic and fatty fractions. These fractions are well-known to be a hard biodegradable substrate for biological treatments and its presence involves limitations on the performance of anaerobic processes. To avoid this, thermochemical pretreatments have been applied on the OFMSW coming from a full-scale mechanical-biological treatment (MBT) plant, in order to pre-hydrolyze the waste and improve the organic matter solubilisation. To study the solubilisation yield, the increments of soluble organic matter have been measured in terms of dissolved organic carbon (DOC), soluble chemical oxygen demand (sCOD), total volatile fatty acids (TVFA) and acidogenic substrate as carbon (ASC). The process variables analyzed were temperature, pressure and NaOH dosage. The levels of work for each variable were three: 160–180–200 °C, 3.5–5.0–6.5 bar and 2–3–4 g NaOH/L. In addition, the pretreatment time was also modified among 15 and 120 min. The best conditions for organic matter solubilisation were 160 °C, 3 g NaOH/L, 6.5 bar and 30 min, with yields in terms of DOC, sCOD, TVFA and ASC of 176%, 123%, 119% and 178% respectively. Thus, predictably the application of this pretreatment in these optimum conditions could improve the H2 production during the subsequent Dark Fermentation process. PMID:25671816

  16. Oxytetracycline sorption to organic matter by metal-bridging.

    PubMed

    MacKay, Allison A; Canterbury, Brian

    2005-01-01

    The sorption of oxytetracycline to metal-loaded ion exchange resin and to natural organic matter by the formation of ternary complexes between polyvalent metal cations and sorbent- and sorbate ligand groups was investigated. Oxytetracycline (OTC) sorption to Ca- and Cu-loaded Chelex-100 resin increased with increasing metal/sorbate ratio at pH 7.6 (OTC speciation: 55% zwitterion, 45% anion). Greater sorption to Cu- than Ca-loaded resin was observed, consistent with the greater stability constants of Cu with both the resin sites and with OTC. Oxytetracycline sorption to organic matter was measured at pH 5.5 (OTC speciation: 1% cation, 98% zwitterion, 1% anion). No detectable sorption was measured for cellulose or lignin sorbents that contain few metal-complexing ligand groups. Sorption to Aldrich humic acid increased from "clean" < "dirty" (no cation exchange pretreatment) < Al-amended < Fe(III)-amended clean humic acid with K(d) values of 5500, 32000, 48000, and 250000 L kg(-1) C, respectively. Calcium amendments of clean humic acid suggested that a portion of the sorbed OTC was interacting by cation exchange. Oxytetracycline sorption coefficients for all humic acid sorbents were well-correlated with the total sorbed Al-plus-Fe(III) concentrations (r(2) = 0.87, log-log plot), suggesting that sorption by ternary complex formation with humic acid is important. Results of this research indicate that organic matter may be an important sorbent phase in soils and sediments for pharmaceutical compounds that can complex metals by the formation of ternary complexes between organic matter ligand groups and pharmaceutical ligand groups. PMID:16221815

  17. Organic matter and benthic metabolism in Lake Illawarra, Australia

    NASA Astrophysics Data System (ADS)

    Qu, Wenchuan; Morrison, R. J.; West, R. J.; Su, Chenwei

    2006-10-01

    Carbon and nitrogen contents (total organic carbon and total nitrogen), chlorophyll-a concentrations in surface sediments and benthic sediment-water fluxes of oxygen and carbon dioxide were investigated at five stations in Lake Illawarra (Australia) to compare the sources/quality of sedimentary organic matter and the characteristics of diagenesis and benthic biogeochemical processes for different primary producers (e.g., seagrass, microphytobenthos and macroalgae) and/or sediment types (sand or mud). The unvegetated sediments showed lower C/N ratios (with the lowest value occurring in the deep organic-rich muddy site) than the seagrass ( Ruppia or Zostera) beds, which may be due to the contribution of microalgae (mainly diatoms) to the sedimentary organic matter pool. This was also supported by the detection of microalgal pigments in the bare sediments. On an annual basis, seagrass beds exhibited the highest gross primary productivity (O 2 or TCO 2 fluxes), while the lowest rates occurred in the deep central basin of the Lake. Seasonally, there was a general trend of highest production in spring or summer, and lowest production in winter or autumn. Organic carbon oxidation scenarios, evaluated by either calcium carbonate dissolution or sulfate reduction models, indicated that both models can explain organic matter mineralization. Trophic status was evaluated using different indices including benthic trophic state index, net O 2 fluxes and P/ R ratios for Lake Illawarra, which led to similar trophic classifications in general, and also the same trends in spatial and seasonal variations. Overall, these data indicated that the Lake was heterotrophic on an annual basis, as the total community carbon respiration exceeded production, and this supported an earlier LOICZ mass balance/stoichiometric modelling conclusion.

  18. Temperature sensitivity of organic-matter decay in tidal marshes

    USGS Publications Warehouse

    Kirwan, Matthew L.; Guntenspergen, Glenn R.; Langley, J.A.

    2014-01-01

    Approximately half of marine carbon sequestration takes place in coastal wetlands, including tidal marshes, where organic matter contributes to soil elevation and ecosystem persistence in the face of sea-level rise. The long-term viability of marshes and their carbon pools depends, in part, on how the balance between productivity and decay responds to climate change. Here, we report the sensitivity of labile soil organic-matter decay in tidal marshes to seasonal and latitudinal variations in temperature measured over a 3-year period. We find a moderate increase in decay rate at warmer temperatures (3-6% per °C, Q10 = 1.3-1.5). Despite the profound differences between microbial metabolism in wetlands and uplands, our results indicate a strong conservation of temperature sensitivity. Moreover, simple comparisons with organic-matter production suggest that elevated atmospheric CO2 and warmer temperatures will accelerate carbon accumulation in marsh soils, and potentially enhance their ability to survive sea-level rise.

  19. Flocculation of Clay and Organic Matter in Turbid Salt Water

    NASA Astrophysics Data System (ADS)

    Reed, A. H.; Yin, H.; Zhang, G.; Tan, X.; Furukawa, Y.

    2010-12-01

    Sediment transport and deposition in estuaries and tidal flats are often dominated by the aggregation of clay and organic matter into composite particles or “flocs”. The stability of the flocs is important in determining the distance over which the sediment is transported and the areas to which the sediment is deposited. During floc transport from riverine to oceanic environments, stability is determined by suspended sediment concentrations, sediment types, organic matter type, fluid flow rates and small scale turbulence. In a series of laboratory experiments, interactions between clay sediments and organic matter were evaluated within a flow column that was filled with saline water. The focus of this investigation was on changes in floc size, density and strength as flow velocities and turbulent stresses were altered. Significant changes in the floc shape, consolidation, density and behavior were determined for flow rates and Reynolds numbers that are common to riverine environments. The variability in floc composition was also shown to influence bulk sediment properties: heat transport, acoustic propagation and shear strength, while sediments were entrained in high-density suspensions and low-density deposits.

  20. Methylmercury production in estuarine sediments: role of organic matter

    PubMed Central

    Schartup, Amina T.; Mason, Robert P.; Balcom, Prentiss H.; Hollweg, Terill A.; Chen, Celia Y.

    2013-01-01

    Methylmercury (MeHg) affects wildlife and human health mainly through marine fish consumption. In marine systems, MeHg is formed from inorganic mercury (HgII) species primarily in sediments then accumulates and biomagnifies in the food web. Most of the fish consumed in the US are from estuarine and marine systems highlighting the importance of understanding MeHg formation in these productive regions. Sediment organic matter has been shown to limit mercury methylation in estuarine ecosystems, as a result it is often described as the primary control over MeHg production. In this paper, we explore the role of organic matter by looking at the effects of its changing sediment concentrations on the methylation rates across multiple estuaries. We measured sedimentary MeHg production at eleven estuarine sites that were selected for their contrasting biogeochemical characteristics, mercury (Hg) content, and location in the Northeastern US (ME, NH, CT, NY, and NJ). Sedimentary total Hg concentrations ranged across five orders of magnitude, increasing in concentration from the pristine, sandy sediments of Wells (ME), to industrially contaminated areas like Portsmouth (NH) and Hackensack (NJ). We find that methylation rates are the highest at locations with high Hg content (relative to carbon), and that organic matter does not hinder mercury methylation in estuaries. PMID:23194318

  1. In search of a reliable technique for the determination of the biological stability of the organic matter in the mechanical-biological treated waste.

    PubMed

    Barrena, Raquel; d'Imporzano, Giuliana; Ponsá, Sergio; Gea, Teresa; Artola, Adriana; Vázquez, Felícitas; Sánchez, Antoni; Adani, Fabrizio

    2009-03-15

    The biological stability determines the extent to which readily biodegradable organic matter has decomposed. In this work, a massive estimation of indices suitable for the measurement of biological stability of the organic matter content in solid waste samples has been carried out. Samples from different stages in a mechanical-biological treatment (MBT) plant treating municipal solid wastes (MSW) were selected as examples of different stages of organic matter stability in waste biological treatment. Aerobic indices based on respiration techniques properly reflected the process of organic matter biodegradation. Static and dynamic respirometry showed similar values in terms of aerobic biological activity (expressed as oxygen uptake rate, OUR), whereas cumulative oxygen consumption was a reliable method to express the biological stability of organic matter in solid samples. Methods based on OUR and cumulative oxygen consumption were positively correlated. Anaerobic methods based on biogas production (BP) tests also reflected well the degree of biological stability, although significant differences were found in solid and liquid BP assays. A significant correlation was found between cumulative oxygen consumption and ultimate biogas production. The results obtained in this study can be a basis for the quantitative measurement of the efficiency in the stabilization of organic matter in waste treatment plants, including MBT plants, anaerobic digestion of MSW and composting plants. PMID:18606494

  2. Organic matter in meteorites and comets - Possible origins

    NASA Technical Reports Server (NTRS)

    Anders, Edward

    1991-01-01

    At least six extraterrestrial environments may have contributed organic compounds to meteorites and comets: solar nebula, giant-planet subnebulae, asteroid interiors containing liquid water, carbon star atmospheres, and diffuse or dark interstellar clouds. The record in meteorites is partly obscured by pervasive reheating that transformed much of the organic matter to kerogen; nonetheless, it seems that all six formation sites contributed. For comets, the large abundance of HCHO, HCN, and unsaturated hydrocarbons suggests an interstellar component of 50 percent or more, but the contributions of various interstellar processes, and of a solar-nebula component, are hard to quantify. A research program is outlined that may help reduce these uncertainties.

  3. Comments on D/H ratios in chondritic organic matter

    NASA Astrophysics Data System (ADS)

    Smith, J. W.; Rigby, D.

    1981-06-01

    D/H ratios in chondritic organic matter are investigated. Demineralized organic residues obtained from previous experiments were dried in a quartz reaction vessel under vacuum for 60 minutes at 250-300 C and then combusted in oxygen for 20 minutes at 850 C. The apparatus is described and the results of the experiments such as D/H ratios in water and measurements on total carbon dioxide are given. Atomic H/C ratios calculated directly from the quantities of carbon dioxide and water recovered, are reported according to Standard Mean Ocean Water and Pee Dee Belemnite, using the customary notation.

  4. Carbon isotopic studies of organic matter in Precambrian rocks.

    NASA Technical Reports Server (NTRS)

    Oehler, D. Z.; Schopf, J. W.; Kvenvolden, K. A.

    1972-01-01

    A survey has been undertaken of the carbon composition of the total organic fraction of a suite of Precambrian sediments to detect isotopic trends possibly correlative with early evolutionary events. Early Precambrian cherts of the Fig Tree and upper and middle Onverwacht groups of South Africa were examined for this purpose. Reduced carbon in these cherts was found to be isotopically similar to photosynthetically produced organic matter of younger geological age. Reduced carbon in lower Onverwacht cherts was found to be anomalously heavy; it is suggested that this discontinuity may reflect a major event in biological evolution.

  5. Flood Pulse Influence on Export of Terrestrial Organic Matter

    NASA Astrophysics Data System (ADS)

    Dalzell, B. J.; Harbor, J. M.; Filley, T. R.

    2004-12-01

    While much attention has been placed on characterizing Terrestrial Organic Matter (TOM) export from large rivers, recent research has shown that in-stream processing of TOM in smaller streams and rivers over shorter time scales can be an important upland component of regional carbon budgets not detected at the outlets of large rivers. With predictions of climate change accompanied by more intense rainfall patterns in some areas, it is important to understand the linkage between flood events and watershed export of TOM. To this end, we have collected water samples from Big Pine Creek watershed, an 850km2 watershed located in west central Indiana. Organic carbon in dissolved, colloidal, and particulate size fractions has been described with molecular and stable carbon isotope techniques to track source, quantity, and compositional changes of TOM over changing flow conditions. Results from these samples show that flood conditions export dramatically more TOM; not only from increases in discharge, but also from increases in concentration of terrestrial organic carbon to all size fractions. While molecular biomarkers show increases in terrestrial organic matter, bulk stable carbon isotope values show that the sources of TOM do not remain constant. Rather, relative contributions from C4 plants (corn in this study area) increase during flood conditions by up to 40 percent. Finally, increases in rainfall intensity are likely to disproportionately increase organic carbon export from terrestrial systems, especially from smaller watersheds where short duration and high intensity flow events dominate annual discharge.

  6. Possible interactions between recirculated landfill leachate and the stabilized organic fraction of municipal solid waste.

    PubMed

    Calabrò, Paolo S; Mancini, Giuseppe

    2012-05-01

    The stabilized organic fraction of municipal solid waste (SOFMSW) is a product of the mechanical/biological treatment (MBT) of mixed municipal solid waste (MMSW). SOFMSW is considered a 'grey' compost and the presence of pollutants (particularly heavy metals) and residual glass and plastic normally prevents agricultural use, making landfills the typical final destination for SOFMSW. Recirculation of leachate in landfills can be a cost-effective management option, but the long-term sustainability of such a practice must be verified. Column tests were carried out to examine the effect of SOFMSW on leachate recirculation. The results indicate that organic matter may be biologically degraded and metals (copper and zinc) are effectively entrapped through a combination of physical (adsorption), biological (bacterial sulfate reduction), and chemical (precipitation of metal sulfides) processes, while other chemicals (i.e. ammonia nitrogen and chloride) are essentially unaffected by filtration through SOFMSW. PMID:22351654

  7. SORPTION OF ORGANICS ON WASTEWATER SOLIDS: CORRELATION WITH FUNDAMENTAL PROPERTIES.

    EPA Science Inventory

    Sorption of toxic organic compounds on primary, mixed-liquor, and digested solids from municipal wastewater treatment plants has been correlated with octanol/water partition coefficients arid with modified Randic indexes. he correlations developed are useful for assessing the rol...

  8. Source Separation and Composting of Organic Municipal Solid Waste.

    ERIC Educational Resources Information Center

    Gould, Mark; And Others

    1992-01-01

    Describes a variety of composting techniques that may be utilized in a municipal level solid waste management program. Suggests how composting system designers should determine the amount and type of organics in the waste stream, evaluate separation approaches and assess collection techniques. Outlines the advantages of mixed waste composting and…

  9. Why dissolved organic matter (DOM) enhances photodegradation of methylmercury

    SciTech Connect

    Qian, Yun; Yin, Xiangping Lisa; Brooks, Scott C; Liang, Liyuan; Gu, Baohua

    2014-01-01

    Methylmercury (MeHg) is known to degrade photochemically, but it remains unclear what roles naturally dissolved organic matter (DOM) and complexing organic ligands play in MeHg photodegradation. Here we investigate the rates and mechanisms of MeHg photodegradation using DOM samples with varying oxidation states and origins as well as organic ligands with known molecular structures. All DOM and organic ligands increased MeHg photodegradation under solar irradiation, but the first-order rate constants varied depending on the oxidation state of DOM and the type and concentration of the ligands. Compounds containing both thiols and aromatics (e.g., thiosalicylate and reduced DOM) increased MeHg degradation rates far greater than those containing only aromatic or thiol functional groups (e.g., salicylate or glutathione). Our results suggest that, among other factors, the synergistic effects of thiolate and aromatic moieties in DOM greatly enhance MeHg photodegradation.

  10. SOIL NITROGEN TRANSFORMATIONS AND ROLE OF LIGHT FRACTION ORGANIC MATTER IN FOREST SOILS

    EPA Science Inventory

    Depletion of soil organic matter through cultivation may alter substrate availability for microbes, altering the dynamic balance between nitrogen (N) immobilization and mineralization. Soil light fraction (LF) organic matter is an active pool that decreases upon cultivation, and...

  11. Polycyclic aromatic hydrocarbon adsorption on selected solid particulate matter fractions

    NASA Astrophysics Data System (ADS)

    Bozek, Frantisek; Huzlik, Jiri; Pawelczyk, Adam; Hoza, Ignac; Naplavova, Magdalena; Jedlicka, Jiri

    2016-02-01

    This article is directed to evaluating the proportion of polycyclic aromatic hydrocarbons (PAHs) captured on particulate matter (PM) classified as PM2.5-10 and PM2.5, i.e. particulate matter of aerodynamic diameter 2.5-10 μm and 2.5 μm. During three week-long and one 2-day campaigns, 22 paired air samples were taken in parallel of PM10 and PM2.5 fractions inside the Mrázovka tunnel in Prague, Czech Republic. Following sample preparation, concentrations of individual PAHs were determined using gas chromatography combined with mass spectrometry. Concentrations of individual pairs of each PAH were tested by the nonparametric method using Spearman's rank correlation coefficient. At significance level p < 0.01, it was demonstrated that all individual PAHs, including their totals, were bound to the PM2.5 fraction. Exceptions were seen in the cases of acenaphthylene, acenaphthene, and indeno[1,2,3-cd]pyrene, the concentrations of which fluctuated around the detection limit, where increased measurement error can be expected.

  12. Soil Quality of Restinga Forest: Organic Matter and Aluminum Saturation

    NASA Astrophysics Data System (ADS)

    Rodrigues Almeida Filho, Jasse; Casagrande, José Carlos; Martins Bonilha, Rodolfo; Soares, Marcio Roberto; Silva, Luiz Gabriel; Colato, Alexandre

    2013-04-01

    The restinga vegetation (sand coastal plain vegetation) consists of a mosaic of plant communities, which are defined by the characteristics of the substrates, resulting from the type and age of the depositional processes. This mosaic complex of vegetation types comprises restinga forest in advanced (high restinga) and medium regeneration stages (low restinga), each with particular differentiating vegetation characteristics. Of all ecosystems of the Atlantic Forest, restinga is the most fragile and susceptible to anthropic disturbances. The purpose of this study was evaluating the organic matter and aluminum saturation effects on soil quality index (SQI). Two locations were studied: State Park of the Serra do Mar, Picinguaba, in the city of Ubatuba (23°20' e 23°22' S / 44°48' e 44°52' W), and State Park of Cardoso Island in the city of Cananéia (25°03'05" e 25°18'18" S / 47°53'48" e 48° 05'42" W). The soil samples were collect at a depth of 0-10 cm, where concentrate 70% of vegetation root system. Was studied an additive model to evaluate soil quality index. The shallow root system development occurs due to low calcium levels, whose disability limits their development, but also can reflect on delay, restriction or even in the failure of the development vegetation. The organic matter is kept in the soil restinga ecosystem by high acidity, which reduces the decomposition of soil organic matter, which is very poor in nutrients. The base saturation, less than 10, was low due to low amounts of Na, K, Ca and Mg, indicating low nutritional reserve into the soil, due to very high rainfall and sandy texture, resulting in high saturation values for aluminum. Considering the critical threshold to 3% organic matter and for aluminum saturation to 40%, the IQS ranged from 0.95 to 0.1 as increased aluminum saturation and decreased the soil organic matter, indicating the main limitation to the growth of plants in this type of soil, when deforested.

  13. Influence of vegetation changes on soil organic matter

    NASA Astrophysics Data System (ADS)

    Nørnberg, Per

    In a heath region at Hjelm Hede in Denmark oak trees are invading a Calluna/Empetrum vegetation. In less than a century the oak invasion has caused considerable changes in the soil: what was once an O-horizon under Calluna has changed to an A-horizon under oak; the Calluna E-horizon has lost its distinct appearance; and the sharp boundary between E and Bh has been obliterated. The directly visible changes are associated with a rise in pH of about one unit in the top horizon under the oaks, an increasing content of organic matter in the E-horizon, a decreasing content of organic matter in the Bh-horizon, and a fall in the C/N ratio. In order to estimate the total microbiological activity, cotton strips were placed in the upper soil horizons. The loss in tensile strength during two summer months was 10-15% under Calluna, but more than 50% under oaks. Initial attempts to find differences in the type and content of organic matter showed that the most abundant low-molecular organic acids extracted from the Of-horizons were 3,4-dihydroxybenzoic acid (protocatechuic acid), 4-hydroxybenzoic acid and 4-hydroxy-3-methoxybenzoic acid (vanillic acid). The extraction was done in 0.1 M sodium pyrophosphate at pH 10.2. The organic compounds were determined by HPLC. The 3,4-dihydroxybenzoic acid was relatively the most important compound under the Calluna heath, whereas 4-hydroxy-3-methoxybenzoic acid was most important under oaks. Extractions were performed on water samples from field lysimeter experiments to determine whether the substituted benzoic acids in the soil water arose under transport. These extractions exposed a ppm concentration of 2,4-dichlorobenzoic acid, a compound believed to originate from microbial decomposition of lysimeter material.

  14. Soil organic matter regulates molybdenum storage and mobility in forests

    USGS Publications Warehouse

    Marks, Jade A; Perakis, Steven; King, Elizabeth K; Pett-Ridge, Julie

    2015-01-01

    The trace element molybdenum (Mo) is essential to a suite of nitrogen (N) cycling processes in ecosystems, but there is limited information on its distribution within soils and relationship to plant and bedrock pools. We examined soil, bedrock, and plant Mo variation across 24 forests spanning wide soil pH gradients on both basaltic and sedimentary lithologies in the Oregon Coast Range. We found that the oxidizable organic fraction of surface mineral soil accounted for an average of 33 %of bulk soil Mo across all sites, followed by 1.4 % associated with reducible Fe, Al, and Mn-oxides, and 1.4 % in exchangeable ion form. Exchangeable Mo was greatest at low pH, and its positive correlation with soil carbon (C) suggests organic matter as the source of readily exchangeable Mo. Molybdenum accumulation integrated over soil profiles to 1 m depth (τMoNb) increased with soil C, indicating that soil organic matter regulates long-term Mo retention and loss from soil. Foliar Mo concentrations displayed no relationship with bulk soil Mo, and were not correlated with organic horizon Mo or soil extractable Mo, suggesting active plant regulation of Mo uptake and/or poor fidelity of extractable pools to bioavailability. We estimate from precipitation sampling that atmospheric deposition supplies, on average, over 10 times more Mo annually than does litterfall to soil. In contrast, bedrock lithology had negligible effects on foliar and soil Mo concentrations and on Mo distribution among soil fractions. We conclude that atmospheric inputs may be a significant source of Mo to forest ecosystems, and that strong Mo retention by soil organic matter limits ecosystem Mo loss via dissolution and leaching pathways.

  15. Isotopic constraints on the origin of meteoritic organic matter

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.

    1991-01-01

    Salient features of the isotopic distribution of H, C and N in the organic material found in carbonaceous meteorites are noted. Most organic fractions are strongly enriched in D with respect to the D/H ratio characteristic of H2 in the protosolar system; substantial variations in C-13/C-12 ratio are found among different molecular species, with oxidised species tending to be C-13 enriched relative to reduced species; some homologous series reveal systematic decrease in C-13/C-12 with increasing C number; considerable variation in N-15/N-14 ratio is observed within organic matter, though no systematic pattern to its distribution has yet emerged; no interelement correlations have been observed between isotope enrichments for the different biogenic elements. The isotopic complexity echoes the molecular diversity observed in meteoritic organic matter and suggests that the organic matter was formed by multiple processes and/or from multiple sources. However, existence of a few systematic patterns points towards survival of isotopic signatures characteristic of one or more specific processes. The widespread D enrichment implies either survival of many species of interstellar molecule or synthesis from a reservoir containing a significant interstellar component. Several of the questions raised above can be addressed by more detailed determination of the distribution of the H, C and N isotopes among different well-characterized molecular fractions. Thus, the present study is aimed at discovering whether the different amino acids have comparable D enrichments, which would imply local synthesis from a D-enriched reservoir, or very viable D enrichments, which would imply survival of some interstellar amino acids. The same approach is also being applied to polycyclic aromatic hydrocarbons. Because the analytical technique employed (secondary ion mass spectrometry) can acquire data for all three isotopic systems from each molecular fraction, any presently obscured interelement

  16. Using Riverine Natural Organic Matter to Test the Hypothesis that Soil Organic Matter is Modified by Contact with Sodium Hydroxide

    NASA Astrophysics Data System (ADS)

    Perdue, E. Michael; Driver, Shamus; Hertkorn, Norbert; Harir, Mourad; Schmitt-Kopplin, Philippe

    2016-04-01

    It has been postulated by some scientists that soil humic acids and fulvic acids are an artifact of alkaline extractions of soil. Riverine natural organic matter (NOM) is obtained in part by dissolution and transport of organic matter from soils by meteoric waters at acidic to circumneutral pH. The NOM may be fractionated into humic acid (HA), fulvic acid (FA), and hydrophilic NOM by adsorption of HA and FA onto XAD-8 resin at pH < 2, followed by their desorption with NaOH at pH 13. Alternatively, riverine NOM may be concentrated using reverse osmosis (RO) and desalted by cation exchange. Several properties of Suwannee River NOM prior to its isolation, after concentration by RO, and after the XAD-8 process are compared to detect modifications that might have resulted from exposure of the sample to low and high pH.

  17. An analysis of the chemical character of dissolved organic matter and soluble soil organic matter within the same catchment

    NASA Astrophysics Data System (ADS)

    Gabor, R. S.; Russell, N.; McKnight, D. M.

    2010-12-01

    Trends of increasing dissolved organic matter (DOM) concentrations have been reported in many parts of the world. To better understand how organic matter is transported throughout and used within watersheds, it is important to measure not only how much there is, but to also its chemical character. In this study, spectroscopic techniques were used to analyze the DOM from Boulder Creek in Colorado, as well as the soluble organic matter in soil from a smaller catchment within the watershed. Samples from the creek were taken at regular intervals for several years and the DOM quantity and quality was analyzed to determine both seasonal impacts and the affect of Barker Dam halfway up the watershed. Observed trends followed similar patterns to that seen in other alpine ecosystems, with a peak in microbial DOM just before snowmelt, followed by increasing terrestrial input. However, the storage in the reservoir made the signal less clear below the dam. Soil organic matter samples were taken with an aim to observing both spatial and temporal patterns. A large number of both surface and deep samples were taken in one time snapshot, and surface samples were taken from the same plots over several months beginning during snowmelt and reaching the end of the growing season. Surface samples displayed a stronger correlation with DOM in the stream than samples taken at depth, indicating much of the DOM comes from overland flow. However, strong microbial signals from samples at depth indicated the possibility that microbes may be using OM as an electron acceptor during bedrock weathering processes. Little variation was shown temporally in surface samples, although there was some seen in the riparian zone during snowmelt.

  18. Long-term outcomes of children after solid organ transplantation.

    PubMed

    Kim, Jon Jin; Marks, Stephen D

    2014-01-01

    Solid organ transplantation has transformed the lives of many children and adults by providing treatment for patients with organ failure who would have otherwise succumbed to their disease. The first successful transplant in 1954 was a kidney transplant between identical twins, which circumvented the problem of rejection from MHC incompatibility. Further progress in solid organ transplantation was enabled by the discovery of immunosuppressive agents such as corticosteroids and azathioprine in the 1950s and ciclosporin in 1970. Today, solid organ transplantation is a conventional treatment with improved patient and allograft survival rates. However, the challenge that lies ahead is to extend allograft survival time while simultaneously reducing the side effects of immunosuppression. This is particularly important for children who have irreversible organ failure and may require multiple transplants. Pediatric transplant teams also need to improve patient quality of life at a time of physical, emotional and psychosocial development. This review will elaborate on the long-term outcomes of children after kidney, liver, heart, lung and intestinal transplantation. As mortality rates after transplantation have declined, there has emerged an increased focus on reducing longer-term morbidity with improved outcomes in optimizing cardiovascular risk, renal impairment, growth and quality of life. Data were obtained from a review of the literature and particularly from national registries and databases such as the North American Pediatric Renal Trials and Collaborative Studies for the kidney, SPLIT for liver, International Society for Heart and Lung Transplantation and UNOS for intestinal transplantation. PMID:24860856

  19. Long-term outcomes of children after solid organ transplantation

    PubMed Central

    Kim, Jon Jin; Marks, Stephen D.

    2014-01-01

    Solid organ transplantation has transformed the lives of many children and adults by providing treatment for patients with organ failure who would have otherwise succumbed to their disease. The first successful transplant in 1954 was a kidney transplant between identical twins, which circumvented the problem of rejection from MHC incompatibility. Further progress in solid organ transplantation was enabled by the discovery of immunosuppressive agents such as corticosteroids and azathioprine in the 1950s and ciclosporin in 1970. Today, solid organ transplantation is a conventional treatment with improved patient and allograft survival rates. However, the challenge that lies ahead is to extend allograft survival time while simultaneously reducing the side effects of immunosuppression. This is particularly important for children who have irreversible organ failure and may require multiple transplants. Pediatric transplant teams also need to improve patient quality of life at a time of physical, emotional and psychosocial development. This review will elaborate on the long-term outcomes of children after kidney, liver, heart, lung and intestinal transplantation. As mortality rates after transplantation have declined, there has emerged an increased focus on reducing longer-term morbidity with improved outcomes in optimizing cardiovascular risk, renal impairment, growth and quality of life. Data were obtained from a review of the literature and particularly from national registries and databases such as the North American Pediatric Renal Trials and Collaborative Studies for the kidney, SPLIT for liver, International Society for Heart and Lung Transplantation and UNOS for intestinal transplantation. PMID:24860856

  20. Biochemical resistance of pyrogenic organic matter in fire-affected mineral soils of Southern Europe

    NASA Astrophysics Data System (ADS)

    Knicker, H.; González Vila, F. J.; Clemente Salas, L.

    2012-04-01

    Incorporated into the soil, naturally formed pyrogenic organic matter (PyOM) is considered as highly recalcitrant, but direct estimation of PyOM decomposition rates are scarce. With this aim in mind, we subjected organic matter (OM) of fire-affected and unaffected soils to biochemical degradation under laboratory conditions and monitored CO2 production over a period of seven months. The soils derived from fire affected and unaffected areas of the Sierra de Aznalcóllar and the Doñana National Park, Southern Spain. Virtual fractionation of the solid-state 13C nuclear magnetic resonance (NMR) spectra of the fire affected soils into fire-unaffected soil organic matter (SOM) and PyOM yielded charcoal C contributions of 30 to 50% to the total organic C (Corg) of the sample derived from the Aznalcóllar region. Fitting the respiration data with a double exponential decay model revealed a fast carbon flush during the first three weeks of the experiment. Solid-state 13C NMR spectroscopy evidenced the contribution of aromatic moieties of the PyOM to this initial carbon release and to the biosynthesis of new microbial biomass. The input of PyOM resulted in an increase of the mean residence time (MRT) of the slow OM pool of the soil by a factor of 3 to 4 to approximately 40 years which rises doubts rises doubts about the presumed big influence of PyOM as an additional C-sink in soils. On the other hand, although being small the difference in turnover rates is evident and has some major implication with respect to long-term alteration of the chemical composition of OM in fire-affected soils. Based on the obtained results and the analysis of PyOM in other soil systems, a conceptual model is presented which can explain the different behavior of PyOM under different soil conditions.

  1. Photochemical flocculation of terrestrial dissolved organic matter and iron

    NASA Astrophysics Data System (ADS)

    Helms, John R.; Mao, Jingdong; Schmidt-Rohr, Klaus; Abdulla, Hussain; Mopper, Kenneth

    2013-11-01

    Dissolved organic matter (DOM) rich water samples (Great Dismal Swamp, Virginia) were 0.1-μm filtered and UV-irradiated in a solar simulator for 30 days. During the irradiation, pH increased, particulate organic matter (POM) and particulate iron formed. After 30 days, 7% of the dissolved organic carbon (DOC) was converted to POC while 75% was remineralized. Approximately 87% of the iron was removed from the dissolved phase after 30 days, but iron did not flocculate until a major fraction of DOM was removed by photochemical degradation and flocculation (>10 days); thus, during the initial 10 days, there were sufficient organic ligands present or the pH was low enough to keep iron in solution. Nuclear magnetic resonance and Fourier transform infrared spectroscopies indicated that photochemically flocculated POM was more aliphatic than the residual non-flocculated DOM. Photochemically flocculated POM was also enriched in amide functionality, while carbohydrate-like material was resistant to both photochemical degradation and flocculation. Abiotic photochemical flocculation likely removes a significant fraction of terrestrial DOM from the upper water column between headwaters and the ocean, but has previously been ignored. Preliminary evidence suggests that this process may significantly impact the transport of DOM and POM in ocean margin environments including estuaries.

  2. Formation of soil organic matter via biochemical and physical pathways of litter mass loss

    NASA Astrophysics Data System (ADS)

    Cotrufo, M. Francesca; Soong, Jennifer L.; Horton, Andrew J.; Campbell, Eleanor E.; Haddix, Michelle L.; Wall, Diana H.; Parton, William J.

    2015-10-01

    Soil organic matter is the largest terrestrial carbon pool. The pool size depends on the balance between formation of soil organic matter from decomposition of plant litter and its mineralization to inorganic carbon. Knowledge of soil organic matter formation remains limited and current C numerical models assume that stable soil organic matter is formed primarily from recalcitrant plant litter. However, labile components of plant litter could also form mineral-stabilized soil organic matter. Here we followed the decomposition of isotopically labelled above-ground litter and its incorporation into soil organic matter over three years in a grassland in Kansas, USA, and used laboratory incubations to determine the decay rates and pool structure of litter-derived organic matter. Early in decomposition, soil organic matter formed when non-structural compounds were lost from litter. Soil organic matter also formed at the end of decomposition, when both non-structural and structural compounds were lost at similar rates. We conclude that two pathways yield soil organic matter efficiently. A dissolved organic matter-microbial path occurs early in decomposition when litter loses mostly non-structural compounds, which are incorporated into microbial biomass at high rates, resulting in efficient soil organic matter formation. An equally efficient physical-transfer path occurs when litter fragments move into soil.

  3. Remote monitoring of organic matter in the ocean

    NASA Astrophysics Data System (ADS)

    Niccolai, Filippo; Bazzani, Marco; Cecchi, Giovanna; Innamorati, Mario; Massi, Luca; Nuccio, Caterina; Santoleri, Rosalia

    1999-12-01

    The monitoring of organic matter, suspended or dissolved in the water column, is relevant for the study of the aquatic environment. Actually, the Dissolved Organic Matter (DOM) represents a major reservoir of reactive carbon in the global carbon cycle, thus influencing significantly the marine ecosystem. Due to the strong absorption in the near ultraviolet, DOM reduces considerably the extinction path of solar light in the water column, affecting phytoplankton population and its vertical distribution. The measurement of the DOM absorption coefficient has to be regarded as a good parameter for the monitoring of water quality. This paper deals with the measurements carried out during the oceanographic campaign 'Marine Fronts,' which took place in the Western Mediterranean Sea and Atlantic Ocean from July 14 to August 5, 1998. In this measurement campaign, a high spectral resolution fluorescence lidar (FLIDAR) was installed on the rear-deck of the O/V 'Urania,' acquiring remote fluorescence spectra both in ship motion and in stations. A particular attention was devoted to the monitoring of DOM distribution in the different water masses in marine frontal areas. The lidar data were compared and integrated with SST satellite data and biological samplings. The results show that FLIDAR data agree with satellite imagery, particularly for marine front detection. The comparison with water sample data gave indications for retrieving the DOM absorption coefficient directly from fluorescence remote spectra. In addition, a protein like fluorescence band was detected in the measurements carried out on total suspended matter filtered from the water samplings.

  4. Competitive Sorption and Desorption of Chlorinated Organic Solvents (DNAPLs) in Engineered Natural Organic Matter

    SciTech Connect

    Tang, Jixin; Weber, Walter J., Jr.

    2004-03-31

    The effects of artificially accelerated geochemical condensation and maturation of natural organic matter on the sorption and desorption of trichloroethylene (TCE) and tetrachloroethylene (PCE) were studied. The sorption and desorption of TCE in the presence and absence of the competing PCE and 1,2-dichlorobenzene (DCB) were also examined. A sphagnum peat comprising geologically young organic matter was artificially ''aged'' using superheated water, thus increasing the aromaticity and the degree of condensation of its associated organic matter. The sorption of all solutes tested were increased remarkably and their respective desorptions reduced, by the aged peat. The sorption capacities and isotherm nonlinearities of the peat for both TCE and PCE were found to increase as treatment temperature increased. In the competitive sorption studies, both PCE and DCB were found to depress TCE sorption, with PCE having greater effects than DCB, presumably because the molecular structure o f the former is more similar to that of TCE.

  5. Photochemical production of singlet oxygen from particulate organic matter.

    PubMed

    Appiani, Elena; McNeill, Kristopher

    2015-03-17

    Dissolved organic matter is established as one of the most relevant photosensitizers in aquatic environments, producing singlet oxygen (1O2) alongside other photochemically produced reactive intermediates. While the production of 1O2 from DOM has been well studied, the relative importance of particulate organic matter (POM) to the overall 1O2 production is less well understood. POM is known to play an important role in pollutant fate through the sorption and transport of hydrophobic pollutants. If POM is directly involved in 1O2 production, sorbed molecules would be expected to undergo enhanced photodegradation. In this work, synthetic POM was prepared by coating silica particles with commercial humic acid. The photochemical behavior of these POM samples was compared to dissolved commercial humic acids (DOM). Suspended natural sediment was also studied to test the environmental relevance of the synthetic POM model. Synthetic POM particles appear to simulate well the 1O2-production of suspended sediment. The 1O2 concentrations experienced by POM-sorbed probe molecules was up to 30% higher than experienced by DOM-sorbed ones, even though the aqueous concentration of 1O2 in irradiated POM suspensions was much lower than the analogous DOM solutions. These results were interpreted with a reaction-diffusion model, which suggested that the production rate of 1O2 by POM is lower than DOM, but the loss of 1O2 from the POM-phase is also lower than DOM. Based on the experimental results of this study, calculations were conducted to estimate the impact of removing POM on 1O2-mediated processes. These calculations indicate that compounds with a log Koc value near 4 will be most affected by removal of POM and that the magnitude of the effect is proportional to the fraction of the total organic matter represented by POM. This study demonstrates that particles can play an important role in the degradation of organic compounds via aquatic photochemistry. PMID:25674663

  6. Missing links in the root-soil organic matter continuum.

    SciTech Connect

    O'Brien, S. L.; Iversen, C. M.; Biosciences Division; ORNL

    2009-01-01

    The soil environment remains one of the most complex and poorly understood research frontiers in ecology. Soil organic matter (SOM), which spans a continuum from fresh detritus to highly processed, mineral-associated organic matter, is the foundation of sustainable terrestrial ecosystems. Heterogeneous SOM pools are fueled by inputs from living and dead plants, driven by the activity of micro- and mesofauna, and are shaped by a multitude of abiotic factors (Fig. 1). The specialization required to measure unseen processes that occur on a wide range of spatial and temporal scales has led to the partitioning of soil ecology research across several disciplines. In the organized oral session 'Missing links in the root-soil organic matter continuum' at the annual Ecological Society of America meeting in Albuquerque, NM, USA, we joined the call for greater communication and collaboration among ecologists who work at the root-soil interface (e.g. Coleman, 2008). Our goal was to bridge the gap between scientific disciplines and to synthesize disconnected pieces of knowledge from root-centric and soil-centric studies into an integrated understanding of belowground ecosystem processes. We focused this report around three compelling themes that arose from the session: (1) the influence of the rhizosphere on SOM cycling, (2) the role of soil heterotrophs in driving the transformation of root detritus to SOM, and (3) the controlling influence of the soil environment on SOM dynamics. We conclude with a discussion of new approaches for gathering data to bridge gaps in the root-SOM continuum and to inform the next generation of ecosystem models.

  7. Organic matter dynamics and budgets in the turbidity maximum zone of the Seine Estuary (France)

    NASA Astrophysics Data System (ADS)

    Garnier, Josette; Billen, Gilles; Even, Stéphanie; Etcheber, Henri; Servais, Pierre

    2008-03-01

    Organic matter was studied in the turbidity maximum zone (TMZ) of the Seine Estuary during 8 tidal cycles from April to October in 2001, 2002 and 2003, covering a salinity range from 0 to 27. The hydrological conditions were quite varied (extremely wet in 2001, unusually dry in 2003). A particularly striking feature is the high organic matter content in the suspended solids (SS) of the Seine estuary (4-5%). By determining micro-organism activity and organic carbon partitioning, either linked to particles or in dissolved forms, and estimating the TMZ water volumes, together with SS, we extrapolated these activities and stocks to the whole TMZ. Carbon metabolism in the TMZ and fluxes upstream of the TMZ were compared on the dates of field surveys, and the routes and fate of carbon in the TMZ were quantified in order to learn about the trophic status of this estuarine zone in terms of autotrophy vs. heterotrophy. The upstream total organic carbon (TOC) fluxes (48% of particulate organic carbon (POC), 52% of dissolved organic carbon (DOC) on average) varied fourfold between the surveys, reaching the highest value of 280 TC d -1 during the wet summer of 2001; and the lowest value of about 70 TC d -1 in August 2003. Whereas nearly all of the DOC flux entering the TMZ reaches the coastal marine zone, mostly (at least 85%) in a refractory form, the POC accumulates in the TMZ of the estuarine channel, particle exportation being negligible. In the TMZ, biodegradation of DOC was, on average, much less (only a 2% decrease in the BDOC/DOC ratio between the TMZ upstream and downstream fluxes) than biodegradation of POC (11%). A simplified model of the TMZ (LIFT- Lumped Idealisation of the ecological Functioning in estuarine Turbidity maximum) was constructed for investigating the dynamics of organic matter on a seasonal scale. The agreement between observation and calculation allowed us to run sensitivity tests using new constraints; reductions of the upstream fluxes of

  8. Modelling of organic matter dynamics during the composting process.

    PubMed

    Zhang, Y; Lashermes, G; Houot, S; Doublet, J; Steyer, J P; Zhu, Y G; Barriuso, E; Garnier, P

    2012-01-01

    Composting urban organic wastes enables the recycling of their organic fraction in agriculture. The objective of this new composting model was to gain a clearer understanding of the dynamics of organic fractions during composting and to predict the final quality of composts. Organic matter was split into different compartments according to its degradability. The nature and size of these compartments were studied using a biochemical fractionation method. The evolution of each compartment and the microbial biomass were simulated, as was the total organic carbon loss corresponding to organic carbon mineralisation into CO(2). Twelve composting experiments from different feedstocks were used to calibrate and validate our model. We obtained a unique set of estimated parameters. Good agreement was achieved between the simulated and experimental results that described the evolution of different organic fractions, with the exception of some compost because of a poor simulation of the cellulosic and soluble pools. The degradation rate of the cellulosic fraction appeared to be highly variable and dependent on the origin of the feedstocks. The initial soluble fraction could contain some degradable and recalcitrant elements that are not easily accessible experimentally. PMID:21978424

  9. Release and transport of mobile organic matter and biocolloids: A combined physicochemical and microbiological study

    NASA Astrophysics Data System (ADS)

    Reichel, Katharina; Schaefer, Sabine; Babin, Doreen; Smalla, Konny; Totsche, Kai Uwe

    2016-04-01

    Biogeochemical interfaces within the aggregate system of soils are "hot spots" of microbial activity and turnover of organic matter. We explore turnover, release and transport of mobile organic matter (MOM), micro-organisms (bio-colloids) and organo-mineral associations using a novel experimental approach employing two-layer columns experiment with matured soil under unsaturated flow conditions. The top layer was spiked with phenanthrene as a tracer for studying the decomposer communities involved in the decomposition of aromatic compounds that derive from lignin in natural systems. Columns were irrigated with artificial rain water with several flow interrupts of different durations. Physicochemical and chemical parameters as well as the microbial community composition were analysed in effluent samples and in soil slices. Release of MOM from the columns was in general controlled by non-equilibrium. Export of total and dissolved organic matter differed significantly in response to the flow interrupts. Effluent comprised organic and organo-mineral components as well as vital competent cells. By molecular biological methods we were even able to show that bacterial consortia exported are rather divers. Depth distribution of the bacterial communities associated with the immobile solid phase indicated high similarities in bacterial communities of the different depth layers and treatments. According to phenanthrene high affinity to the immobile phases, only a small fraction was subject to downstream transport with a strong decrease of the amount residing at the solid phase Our experiments directly prove that intact and competent microorganisms and even communities can be transported under unsaturated flow conditions. Moreover, we found that the dominant carbon source will impact not only the activity of specific microbial taxa but also their mobilization and transport. While total contribution of microbial organism to the mobile organic matter pool seems to be small, the

  10. Soil dissolved organic matter export to coastal temperate rainforest streams

    NASA Astrophysics Data System (ADS)

    Edwards, R. T.; D'Amore, D. V.; Hood, E.; Johnson, A.

    2006-12-01

    The north coastal temperate rainforest is a dynamic area of biogeochemical exchange between terrestrial and aquatic ecosystems. Wetlands and poorly drained soils dominate the landscape, where wetlands alone comprise 30% of the watersheds. The region is experiencing warming with potentially profound impacts on soil processes, forest structure, stream productivity, and the large and valuable salmon fishery. There are few data on stream chemistry, biological productivity, or discharge among soils and streams in the region. To predict the impact of climate change, management practices or land use on streams we need better baseline data on soil-stream interactions in temperate rainforest watersheds. We measured weekly export of dissolved organic matter from 3 dominant soil vegetation communities (peat bogs, forested wetlands and mineral soil uplands) during spring through fall of 2006. Three replicate sites for each soil type were gauged with weirs and fluxes of major forms of carbon, nitrogen and phosphorus measured. Discharge dominated the seasonal flux dynamics but major differences in export and area-specific export emphasized differences in soil-specific transformations on nutrient export potential. Export per unit soil area varied from 0.01 to 25 kg C/ha/day. Peat bogs exported 2-5 times as much per unit area as the other two soils. Forested wetlands were intermediate between bogs and uplands in export per unit area. Mean daily carbon fluxes from gauged subcatchments ranged from 0.01 to 75 kg C/day. Because they are larger than bogs, forested wetlands exported the greatest amount of DOC at our study locations, with uplands exporting intermediate amounts during spring floods. Uplands and bogs exported far less than forested wetlands during normal flow conditions. Total nitrogen fluxes were dominated by organic forms and seasonal trends closely followed the patterns observed for DOC. Although wetlands of either type export more organic matter per unit area, the

  11. Covalent binding of aniline to humic substances and whole soil organic matter

    SciTech Connect

    Thorn, K.A.; Goldenberg, W.S.; Younger, S.J.

    1995-12-31

    Aromatic amines enter the environment from the chemical or microbial degradation of dyes, explosives, and the acylanilide, phenylcarbamate, and phenylurea classes of herbicides. One possible fate of aromatic amines in soils is covalent binding to naturally occurring organic matter. The binding of {sup 15}N-labelled aniline to the fulvic and humic acids extracted from an Elliot silt loam soil with and without catalysis by peroxidase or birnessite has been examined by a combination of liquid and solid state {sup 15}N NMR. In the absence of catalysts, aniline undergoes a complex series of nucleophilic addition reactions with the carbonyl functionality of the humic substances to form both heterocyclic and nonheterocyclic condensation products. In the presence of the catalysts, aniline undergoes free radical coupling reactions together with nucleophilic addition reactions with the humic substances. Reaction of aniline with the whole soil most closely resembled the noncatalyzed reactions with the humic substances, as determined by solid state {sup 15}N NMR.

  12. Processing of atmospheric organic matter by California radiation fogs

    NASA Astrophysics Data System (ADS)

    Collett, Jeffrey L., Jr.; Herckes, Pierre; Youngster, Sarah; Lee, Taehyoung

    2008-03-01

    Considerable effort has been put into characterizing the ionic composition of fogs and clouds over the past twenty-five years. Recently it has become evident that clouds and fogs often contain large concentrations of organic material as well. Here we report findings from a series of studies examining the organic composition of radiation fogs in central California. Organic compounds in these fogs comprise a major fraction of total solute mass, with total organic carbon sometimes reaching levels of several tens of mg/L. This organic matter is comprised of a wide variety of compounds, ranging from low molecular weight organic acids to high molecular weight compounds with molecular masses approaching several hundred to a thousand g/mole. The most abundant individual compounds are typically formic acid, acetic acid, and formaldehyde. High concentrations are also observed of some dicarboxylic acids (e.g., oxalate) and dicarbonyls (e.g., glyoxal and methylglyoxal) and of levoglucosan, an anhydrosugar characteristically emitted by biomass combustion. Many other compounds have been identified in fog water by GC/MS, including long chain n-alkanoic acids, n-alkanes, PAH, and others, although these compounds typically comprise a total of only a few percent of fog TOC. Measurements of fog scavenging of organic and elemental carbon reveal preferential scavenging of organic carbon. Tracking of individual organic compounds utilized as source type markers suggests the fogs differentially scavenge carbonaceous particles from different source types, with more active processing of wood smoke than vehicle exhaust. Observations of high deposition velocities of fog-borne organic carbon, in excess of 1 cm/s, indicate that fogs in the region represent an important mechanism for cleansing the atmosphere of pollution.

  13. Universal noninvasive detection of solid organ transplant rejection

    PubMed Central

    Snyder, Thomas M.; Khush, Kiran K.; Valantine, Hannah A.; Quake, Stephen R.

    2011-01-01

    It is challenging to monitor the health of transplanted organs, particularly with respect to rejection by the host immune system. Because transplanted organs have genomes that are distinct from the recipient's genome, we used high throughput shotgun sequencing to develop a universal noninvasive approach to monitoring organ health. We analyzed cell-free DNA circulating in the blood of heart transplant recipients and observed significantly increased levels of cell-free DNA from the donor genome at times when an endomyocardial biopsy independently established the presence of acute cellular rejection in these heart transplant recipients. Our results demonstrate that cell-free DNA can be used to detect an organ-specific signature that correlates with rejection, and this measurement can be made on any combination of donor and recipient. This noninvasive test holds promise for replacing the endomyocardial biopsy in heart transplant recipients and may be applicable to other solid organ transplants. PMID:21444804

  14. Ambulatory blood pressure monitoring in solid organ transplantation.

    PubMed

    Ramesh Prasad, G V

    2012-01-01

    Solid organ transplant recipients are at an increased risk for hypertension and cardiovascular disease. To assist in their management, 24-h ambulatory blood pressure monitoring (ABPM) has become increasingly used in both clinical research settings and practice. ABPM has been used to better define post-transplant hypertension incidence and prevalence in different solid organ transplantation populations. ABPM provides additional information on cardiovascular risk beyond that obtained by clinic-based readings, based on its ability to assess 24-h blood pressure (BP) load, detect nocturnal non-dipping, and predict target organ damage. It has provided some assurance about the safety of living kidney donation. Information from ABPM can be used to guide living kidney donor selection, and because ABPM-related data has been correlated with clinically important kidney and heart transplant recipient outcomes, it may be a valuable adjunct in their management. Despite these advantages, barriers to wider use of ABPM include expense, clinical inertia in hypertension management, lack of prospective clinical trial data, and clinical problems that compete with hypertension for attention such as acute or chronic allograft dysfunction. The increasing amount of research and clinical use for ABPM may allow for closer assessment and intervention to help address the increased cardiovascular risk faced by many solid organ transplant recipients. PMID:22220828

  15. Immunosuppression in Solid-Organ Transplantation: Essentials and Practical Tips.

    PubMed

    Jasiak, Natalia M; Park, Jeong M

    2016-01-01

    A multidisciplinary team approach is essential for successful management of patients with solid-organ transplant. Transplant nursing encompasses care and support of transplant recipients as well as caregivers and organ donors through all phases of transplantation, from pretransplant evaluation to posttransplant recovery and maintenance. The field of solid-organ transplantation has advanced rapidly, and new treatments continue to emerge. Nurses who are responsible for the care of transplant recipients should have a knowledge base in transplant immunology and pharmacology. This review discusses mechanism of action, indication, side effects, and drug interactions of commonly used immunosuppressive medications in solid-organ transplantation. Nonoral routes of drug administration, therapeutic drug monitoring, and patient monitoring strategies are also included as practical tips for bedside nurses who are responsible for delivery of direct patient care and education of patients and their caregivers. This review focuses on the following medications: antithymocyte globulins, basiliximab, alemtuzumab, corticosteroids, tacrolimus, cyclosporine, azathioprine, mycophenolate mofetil/mycophenolate sodium, sirolimus, everolimus, belatacept, intravenous immunoglobulin, and rituximab. PMID:27254639

  16. Soft X-Ray Photoionizing Organic Matter from Comet Wild 2: Evidence for the Production of Organic Matter by Impact Processes

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Wirick, S.; Flynn, G. J.; Jacobsen, C.; Na

    2011-01-01

    The Stardust mission collected both mineral and organic matter from Comet Wild 2 [1,2,3,4]. The organic matter discovered in Comet Wild 2 ranges from aromatic hydrocarbons to simple aliphatic chains and is as diverse and complex as organic matter found in carbonaceous chondrites and interplanetary dust particles.[3,5,6,7,8,9]. Compared to insoluble organic matter from carbonaceous chondrites the organic matter in Comet Wild 2 more closely resembles organic matter found in the IDPS both hydrous and anhydrous. Common processes for the formation of organic matter in space include: Fischer-Tropsch, included with this aqueous large body and moderate heating alterations; UV irradiation of ices; and; plasma formation and collisions. The Fischer-Tropsch could only occur on large bodies processes, and the production of organic matter by UV radiation is limited by the penetration depth of UV photons, on the order of a few microns or less for most organic matter, so once organic matter coats the ices it is formed from, the organic production process would stop. Also, the organic matter formed by UV irradiation would, by the nature of the process, be in-sensitive to photodissocation from UV light. The energy of soft X-rays, 280-300 eV occur within the range of extreme ultraviolet photons. During the preliminary examination period we found a particle that nearly completely photoionized when exposed to photons in the energy range 280-310eV. This particle experienced a long exposure time to the soft x-ray beam which caused almost complete mass loss so little chemical information was obtain. During the analysis of our second allocation we have discovered another particle that photoionized at these energies but the exposure time was limited and more chemical information was obtained.

  17. Mercury dilution by autochthonous organic matter in a fertilized mangrove wetland.

    PubMed

    Machado, Wilson; Sanders, Christian J; Santos, Isaac R; Sanders, Luciana M; Silva-Filho, Emmanoel V; Luiz-Silva, Wanilson

    2016-06-01

    A dated sediment core from a highly-fertilized mangrove wetland located in Cubatão (SE Brazil) presented a negative correlation between mercury (Hg) and organic carbon contents. This is an unusual result for a metal with well-known affinity to organic matter. A dilution of Hg concentrations by autochthonous organic matter explained this observation, as revealed by carbon stable isotopes signatures (δ(13)C). Mercury dilution by the predominant mangrove-derived organic matter counterbalanced the positive influences of algal-derived organic matter and clay contents on Hg levels, suggesting that deleterious effects of Hg may be attenuated. Considering the current paradigm on the positive effect of organic matter on Hg concentrations in coastal sediments and the expected increase in mangrove organic matter burial due to natural and anthropogenic stimulations of primary production, predictions on the influences of organic matter on Hg accumulation in mangrove wetlands deserve caution. PMID:26874872

  18. Unraveling the chemical space of terrestrial and meteoritic organic matter

    NASA Astrophysics Data System (ADS)

    Schmitt-Kopplin, Philippe; Harir, Mourad; Hertkorn, Norbert; Kanawati, Basem; Ruf, Alexander; Quirico, Eric; Bonal, Lydie; Beck, Pierre; Gabelica, Zelimir

    2015-04-01

    In terrestrial environments natural organic matter (NOM) occurs in soils, freshwater and marine environments, in the atmosphere and represents an exceedingly complex mixture of organic compounds that collectively exhibits a nearly continuous range of properties (size-reactivity continuum). In these materials, the "classical" biogeosignatures of the (biogenic and geogenic) precursor molecules, like lipids, lignins, proteins and natural products have been attenuated, often beyond recognition, during a succession of biotic and abiotic (e.g. photo- and redox chemistry) reactions. Because of this loss of biochemical signature, these materials can be designated non-repetitive complex systems. The access to extra-terrestrial organic matter is given i.e. in the analysis of meteoritic materials. Numerous descriptions of organic molecules present in organic chondrites have improved our understanding of the early interstellar chemistry that operated at or just before the birth of our solar system. However, many molecular analyses are so far targeted toward selected classes of compounds with a particular emphasis on biologically active components in the context of prebiotic chemistry. Here we demonstrate that a non-targeted ultrahigh-resolution molecular analysis of the solvent-accessible organic fraction of meteorite extracted under mild conditions allows one to extend its indigenous chemical diversity to tens of thousands of different molecular compositions and likely millions of diverse structures. The description of the molecular complexity provides hints on heteroatoms chronological assembly, shock and thermal events and revealed recently new classes of thousands of novel organic, organometallic compounds uniquely found in extra-terrestrial materials and never described in terrestrial systems. This high polymolecularity suggests that the extraterrestrial chemodiversity is high compared to terrestrial relevant biological and biogeochemical-driven chemical space. (ultra

  19. Gender issues in solid organ donation and transplantation.

    PubMed

    Ge, Fangmin; Huang, Tao; Yuan, Shunzong; Zhou, Yeqing; Gong, Weihua

    2013-01-01

    Gender as a critical, intrinsic, non-immunologic factor plays a pivotal role in the field of transplantation. The gender of donors and recipients is involved in the entire process, including organ donation and transplant surgery. This review article aims to summarize the literature related to the role of gender in solid organ donation and transplantation and to unveil the underlying mechanism by which gender mismatch between donor and recipient impacts transplant rejection. A systematic search was conducted through PubMed by using the following key words: "gender", or "sex", and "transplant", "organ donation" for published articles. The prima facie evidence demonstrated that females are more likely to donate their organs and are less willing than males to accept transplant surgery; however, their donated liver organs will have a higher risk of graft failure compared with males. With respect to kidney, heart, and lung transplantations, the role of gender remains controversial. Results of animal studies support the negative impact of gender mismatch on allograft function. In conclusion, our present study advances the knowledge of gender issues in the field of solid organ donation and transplantation. In general, gender mismatch is not advantageous to transplant outcome, as evidenced by many aspects of biological investigations on immunogenicity of H-Y antigen to females. Therefore, gender issues should be highlighted and an a priori intervention is needed to improve graft survival in clinical practice. PMID:24064859

  20. Organic Matter as an Indicator of Soil Degradation

    NASA Astrophysics Data System (ADS)

    Romero Diaz, Asuncion; Damian Ruiz Sinoga, Jose

    2010-05-01

    Numerous and expensive physical-chemical tests are often carried out to determine the level of soil degration. This study was to find one property, as Organic Matter, which is usually analyzed for determine the soil degradation status. To do this 19 areas in the south and southeast of the Iberian Peninsula (provinces of Málaga, Granada, Almería y Murcia) were selected and a wide sampling process was carried out. Sampling points were spread over a wide pluviometric gradient (from 1100 mm/yr to 232 mm/yr) covering the range from Mediterranean wet to dry. 554 soil surface samples were taken from soil (0-10 cm) and the following properties were analyzed: Texture, Organic Matter (OM), Electric Conductivity (EC), Aggregate Stability (AE) y Cation Exchange Capacity (CEC). These properties were intercorrelated and also with rainfall and the K factor of soil erosion, calculated for each sampling point. Los results obtained by applying the Pearson correlation coefficient to the database shows how as rainfall increases so does OM content (0,97) and la CEC (0,89), but K factor (-0,80) reacts inversely. The content of OM in the soil is related to its biological activity and this in turn is the result of available wáter within the system and, consequently, rainfall. This is specially important in fragile and complex ecogeomorphological systems as is the case of the Mediterranean, where greater or lesser rainfall is similarly reflected in the levels of increase or decrease of soil organic matter. This affirmation is reinforced by linking the organic matter of the soil with other indicative properties such as CEC and erosion, as has been shown by various authors (Imeson y Vis, 1984; De Ploey & Poesen, 1985; Le Bissonnais, 1996; Boix-Fayos et al., 2001; Cammeraat y Imeson, 1998; Cerdá, 1998). As has been stated, there is a direct relationship between rainfall, organic matter content, cation exchange capacity, structural stability, and the resistence to soil erosion factor

  1. Effects of Dissolved Organic Matter Source on Wetland Bacterial Metabolism

    NASA Astrophysics Data System (ADS)

    Ward, A. K.

    2005-05-01

    Wetlands are rich environments for organic matter production from a variety of wetland plant types. Investigations of the Talladega Wetland Ecosystem (TWE) in the southeastern U.S. show that bacterioplankton productivity is driven by dissolved organic carbon derived from wetland plants. The TWE is formed from a small coastal plain stream that has been dammed by beaver activity and resides in a forested catchment. In this study, bacterioplankton communities sampled from the wetland were amended with leachate from two different plants common in the TWE, the soft rush, Juncus effusus, and hazel alder, Alnus serrulata, and compared to unamended controls. The bacterioplankton response was examined by measuring bacterial carbon productivity and by an array of fluorescent microscope techniques used to distinguish metabolically active and non-active cells. Both plant leachates elicited rapid and significant increases in productivity and numbers of metabolically active bacterial cells. However, the timeframe of response, the magnitude of response, and the bacterial morphotypes varied depending on the leachate source. This study suggests that wetland bacterial communities contain different sub-component populations that may generally occur in low numbers, but that can adapt and respond rapidly to different sources of organic matter native to the wetland.

  2. Complexation of lead by organic matter in Luanda Bay, Angola.

    PubMed

    Leitão, Anabela; Santos, Ana Maria; Boaventura, Rui A R

    2015-10-01

    Speciation is defined as the distribution of an element among different chemical species. Although the relation between speciation and bioavailability is complex, the metal present as free hydrated ion, or as weak complexes able to dissociate, is usually more bioavailable than the metal incorporated in strong complexes or adsorbed on colloidal or particulate matter. Among the analytical techniques currently available, anodic stripping voltammetry (ASV) has been one of the most used in the identification and quantification of several heavy metal species in aquatic systems. This work concerns the speciation study of lead, in original (natural, non-filtered) and filtered water samples and in suspensions of particulate matter and sediments from Luanda Bay (Angola). Complexes of lead with organics were identified and quantified by differential pulse anodic stripping voltammetry technique. Each sample was progressively titrated with a Pb(II) standard solution until complete saturation of the organic ligands. After each addition of Pb(II), the intensity, potential and peak width of the voltammetric signal were measured. The results obtained in this work show that more than 95 % of the lead in the aquatic environment is bound in inert organic complexes, considering all samples from different sampling sites. In sediment samples, the lead is totally (100 %) complexed with ligands adsorbed on the particles surface. Two kinds of dominant lead complexes, very strong (logK >11) and strong to moderately strong (8< logK <11), were found, revealing the lead affinity for the stronger ligands. PMID:27624745

  3. Lead sequestration and species redistribution during soil organic matter decomposition

    USGS Publications Warehouse

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases (???20-35%) and SOM (???65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility. ?? 2008 American Chemical Society.

  4. Lead Sequestration and Species Redistribution During Soil Organic Matter Decomposition

    SciTech Connect

    Schroth,A.; Bostick, B.; Kaste, J.; Friedland, A.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases ({approx}20-35%) and SOM ({approx}65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility.

  5. Lead Sequestration And Species Redistribution During Soil Organic Matter Decomposition

    SciTech Connect

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2009-05-27

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-rayfluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest O{sub i} samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases ({approx}20--35%) and SOM ({approx}65--80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility.

  6. Missing links in the root-soil organic matter continuum

    SciTech Connect

    O'Brien, Sarah L.; Iversen, Colleen M

    2009-01-01

    The soil environment remains one of the most complex and poorly understood research frontiers in ecology. Soil organic matter (SOM), which spans a continuum from fresh detritus to highly processed, mineral-associated organic matter, is the foundation of sustainable terrestrial ecosystems. Heterogeneous SOM pools are fueled by inputs from living and dead plants, driven by the activity of micro- and mesofauna, and are shaped by a multitude of abiotic factors. The specialization required to measure unseen processes that occur on a wide range of spatial and temporal scales has led to the partitioning of soil ecology research across several disciplines. In the organized oral session 'Missing links in the root-soil organic matter continuum' at the annual Ecological Society of America meeting in Albuquerque, NM, USA, we joined the call for greater communication and collaboration among ecologists who work at the root-soil interface (e.g. Coleman, 2008). Our goal was to bridge the gap between scientific disciplines and to synthesize disconnected pieces of knowledge from root-centric and soil-centric studies into an integrated understanding of belowground ecosystem processes. We focused this report around three compelling themes that arose from the session: (1) the influence of the rhizosphere on SOM cycling, (2) the role of soil heterotrophs in driving the transformation of root detritus to SOM, and (3) the controlling influence of the soil environment on SOM dynamics. We conclude with a discussion of new approaches for gathering data to bridge gaps in the root-SOM continuum and to inform the next generation of ecosystem models. Although leaf litter has often been considered to be the main source of organic inputs to soil, Ann Russell synthesized a convincing body of work demonstrating that roots, rather than surface residues, control the accumulation of SOM in a variety of ecosystems. Living roots, which are chemically diverse and highly dynamic, also influence a wide

  7. Exploring the Solid Rocket Boosters and Properties of Matter

    NASA Technical Reports Server (NTRS)

    Moffett, Amy

    2007-01-01

    I worked for the United Space Alliance, LLC (USA) with the Solid Rocket Booster (SRB) Materials and Process engineers (M&P). I was assigned a project in which I needed to research and collect chemical and physical properties information, material safety data sheets (MSDS), and other product information from the vendor's websites and existing "inhouse" files for a select group of materials used in building and refurbishing the SRBs. This information was then compiled in a report that summarized the information collected. My work site was at the Kennedy Space Center (KSC). This allowed for many opportunities to visit and tour sites operated by NASA, by USA, and by the Air Force. This included the vehicle assembly building (VAB), orbital processing facilities (OPF), the crawler with the mobile launch pad (MLP), and the SRB assembly and refurbishment facility (ARF), to name a few. In addition, the launch, of STS- 117 took place within the first week of employment allowing a day by day following of that mission including post flight operations for the SRBs. Two Delta II rockets were also launched during these 7 weeks. The sights were incredible and the operations witnessed were amazing. I learned so many things I never knew about the entire program and the shuttle itself. The entire experience, especially my work with the SRB materials, inspired my plan for implementation into the classroom.

  8. Priming of soil organic matter decomposition in cryoturbated Arctic soils

    NASA Astrophysics Data System (ADS)

    Richter, A.; Wild, B.; Schnecker, J.; Rusalimova, O.

    2012-12-01

    The Arctic is subjected to particularly high rates of warming, with profound consequences for the carbon cycle: on the one hand plant productivity and C storage in plant biomass have been shown to increase strongly in many parts of the Arctic, on the other hand, increasing rates of soil organic matter (SOM) decomposition have been reported. One of the possibilities that could reconcile these observations is, that increased plant growth may lead to increased root exudation rates, which are known to stimulate microbial turnover of organic matter under certain circumstances, in a process termed "priming" of SOM. Two mechanisms have been brought forward that may be responsible for priming: first, easily assimilable material exuded by plant roots may help microbes to overcome their energy limitation and second, this input of labile carbon could lead to a nitrogen limitation of the microbial community and lead to nitrogen mining, i.e. decomposition of N-rich SOM. We here report on an incubation study with arctic soil investigating potential priming of SOM decomposition in organic topsoil horizons, cryoturbated organic matter and subsoil mineral horizons of tundra soil from the Taymyr peninsula in Siberia. We used arctic soils, that are characterized by cryoturbation (mixing of soil layers due to freezing and thawing), for this study. Turbated cryosols store more than 580 Gt C globally, a significant proportion of which is stored in the cryoturbated organic matter. We hypothesized that an increased availability of labile compounds would increase SOM decomposition rates, and that this effect would be strongest in horizons with a low natural availability of labile C, i.e. in the mineral subsoil. We amended soils with 13C labelled glucose, cellulose, amino acids or proteins, and measured the mineralization of SOM C as well as microbial community composition and potential activities of extracellular enzymes. Our results demonstrate that topsoil organic, cryoturbated and

  9. Comparison of carbonaceous particulate matter emission factors among different solid fuels burned in residential stoves

    NASA Astrophysics Data System (ADS)

    Shen, Guofeng; Xue, Miao; Chen, Yuanchen; Yang, Chunli; Li, Wei; Shen, Huizhong; Huang, Ye; Zhang, Yanyan; Chen, Han; Zhu, Ying; Wu, Haisuo; Ding, Aijun; Tao, Shu

    2014-06-01

    Uncertainty in the emission factor (EF) usually contributes largely to the overall uncertainty in the emission inventory. In the present study, the locally measured EFs of particulate matter (PM), organic carbon (OC), and elemental carbon (EC) for solid fuels burned in the residential sector are compiled and compared. These fuels are classified into seven sub-groups of anthracite briquette, anthracite chunk, bituminous briquette, bituminous chunk, crop residue, fuel wood log, and brushwood/branches. The EFs of carbonaceous particles for these fuels vary significantly, generally in the order of anthracite (briquette and chunk) < wood log < brushwood/branches < crop residue < bituminous (briquette and chunk), with an exception that the brushwood/branches have a relatively high EF of EC. The ratio of EC/OC varies significantly among different fuels, and is generally higher for biomass fuel than that for coal because of the intense flaming conditions formed during the biomass burning process in improved stoves. Distinct ratios calls for a future study on the potential health and climate impacts of carbonaceous PM from the residential combustions of different fuels. A narrow classification of these fuels significantly reduces the variations in the EFs of PM, OC, and EC, and the temporal and geographical distributions of the emissions could be better characterized.

  10. Persistence of soil organic matter as an ecosystem property

    SciTech Connect

    Schmidt, M.W.; Torn, M. S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; Nannipieri, P.; Rasse, D.P.; Weiner, S.; Trumbore, S.E.

    2011-08-15

    Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily—and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming.

  11. Persistence of soil organic matter as an ecosystem property.

    PubMed

    Schmidt, Michael W I; Torn, Margaret S; Abiven, Samuel; Dittmar, Thorsten; Guggenberger, Georg; Janssens, Ivan A; Kleber, Markus; Kögel-Knabner, Ingrid; Lehmann, Johannes; Manning, David A C; Nannipieri, Paolo; Rasse, Daniel P; Weiner, Steve; Trumbore, Susan E

    2011-10-01

    Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily--and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming. PMID:21979045

  12. Aquatic Organic Matter Fluorescence - from phenomenon to application

    NASA Astrophysics Data System (ADS)

    Reynolds, Darren

    2014-05-01

    The use of fluorescence to quantify and characterise aquatic organic matter in river, ocean, ground water and drinking and waste waters has come along way since its discovery as a phenomenon in the early 20th century. For example, there are over 100 papers published each year in international peer reviewed journals, an order of magnitude increase since a decade ago (see Figure taken from ISI database from 1989 to 2007 for publications in the fields of river water and waste water). Since then it has been extensively used as a research tool since the 1990's by scientists and is currently used for a wide variety of applications within a number of sectors. Universities, organisations and companies that research into aquatic organic matter have either recently readily use appropriate fluorescence based techniques and instrumentation. In industry and government, the technology is being taken up by environmental regulators and water and wastewater companies. This keynote presentation will give an overview of aquatic organic matter fluorescence from its conception as a phenomenon through to its current use in a variety of emerging applications within the sectors concerned with understanding, managing and monitoring the aquatic environment. About the Speaker Darren Reynolds pioneered the use of fluorescence spectroscopy for the analysis of wastewaters in the 1990's. He currently leads a research group within the Centre for Research in Biosciences and sits on the Scientific Advisory Board for the Institute of Bio-Sensing Technology at the University of the West of England, Bristol. He is a multidisciplinary scientist concerned with the development of technology platforms for applications in the fields of environment/agri-food and health. His current research interests include the development of optical technologies and techniques for environmental and biological sensing and bio-prospecting applications. He is currently involved in the development and use of synthetic biology

  13. Conservative or reactive? Mechanistic chemical perspectives on organic matter stability

    NASA Astrophysics Data System (ADS)

    Koch, Boris

    2016-04-01

    Carbon fixation by terrestrial and marine primary production has a fundamental seasonal effect on the atmospheric carbon content and it profoundly contributes to long-term carbon storage in form of organic matter (OM) in soils, water, and sediments. The efficacy of this sequestration process strongly depends on the degree of OM persistence. Therefore, one of the key issues in dissolved and particulate OM research is to assess the stability of reservoirs and to quantify their contribution to global carbon fluxes. Incubation experiments are helpful to assess OM stability during the first, early diagenetic turnover induced by sunlight or microbes. However, net carbon fluxes within the global carbon cycle also act on much longer time scales, which are not amenable in experiments. It is therefore critical to improve our mechanistic understanding to be able to assess potential future changes in the organic matter cycle. This session contribution highlights some achievements and open questions in the field. An improved mechanistic understanding of OM turnover particularly depends on the molecular characterization of biogeochemical processes and their kinetics: (i) in soils and sediments, aggregation/disaggregation of OM is primarily controlled by its molecular composition. Hence, the chemical composition determines the transfer of organic carbon from the large particulate to the small dissolved organic matter reservoir - an important substrate for microbial metabolism. (ii) In estuaries, dissolved organic carbon gradients usually suggest conservative behavior, whereas molecular-level studies reveal a substantial chemical modification of terrestrial DOM along the land-ocean interface. (iii) In the ocean, previous studies have shown that the recalcitrance of OM depends on bulk concentration and energy yield. However, ultrahigh resolution mass spectrometry in combination with radiocarbon analyses also emphasized that stability is tightly connected to molecular composition

  14. Management of Abdominal Solid Organ Injury After Blunt Trauma.

    PubMed

    Kohler, Jonathan E; Chokshi, Nikunj K

    2016-07-01

    Injury to the solid abdominal organs-liver, spleen, kidney, and pancreas-is one of the most common injury patterns in pediatric blunt trauma. Pediatric trauma centers are becoming increasingly successful in managing these injuries without operative intervention. Well-validated guidelines have been established for liver and spleen injury management, and operative intervention is reserved for patients who show evidence of active bleeding after resuscitation. No such guidelines yet exist for the management of traumatic injury of the kidney or pancreas. Exploratory laparotomy remains the treatment of choice in patients suffering hemodynamic collapse, but interventional radiologic or endoscopic procedures are increasingly used to manage all but the most devastating solid organ injuries. [Pediatr Ann. 2016;45(7):e241-e246.]. PMID:27403671

  15. Is ABPM clinically useful after pediatric solid organ transplantation?

    PubMed

    Soergel, Marianne

    2004-10-01

    When ambulatory blood pressure monitoring (ABPM) is performed in populations with a high risk for secondary hypertension, such as solid organ transplant recipients, hypertension or abnormalities in circadian blood pressure variability are often discovered even in patients with normal office blood pressure (BP). To discuss whether ABPM should be routinely assessed in pediatric solid organ recipients, the available information on pathological findings, association of ABPM abnormalities with outcome parameters, and treatment options is reviewed. ABPM is a useful tool to optimize therapy in the large proportion of transplant recipients with confirmed hypertension. Whether the use of ABPM on a routine basis should be recommended for pediatric transplantation patients without office hypertension remains to be determined. PMID:15367277

  16. Do organic matter matter? Contribution of organic matter on scavenging and fractionation of natural radionuclides in the Oceanic Flux Program (OFP) site of Bermuda

    NASA Astrophysics Data System (ADS)

    Chuang, C.; Santschi, P. H.; Conte, M. H.; Schumann, D.; Ayranov, M.

    2012-12-01

    Natural particle-reactive radionuclides, 234Th, 233Pa, 210Po, 210Pb and 7Be, have been used for estimating particulate organic carbon (POC) export flux in the ocean for decades. However, by simply relying on empirically determined isotope ratios to POC and other parameters, sometimes results from field studies are puzzling and become controversial (e.g., one is summarized in Li, 2005). The picture becomes clearer when it was noticed that a missing fraction, e.g., natural organic matter, could be the cause. For example, a series of field and lab studies demonstrated that biopolymers excreted by marine micro-organisms are likely carrier molecules for a number of these isotopes (e.g., Guo et al., 2002; Quigley et al., 2002; Santschi et al., 2003; Roberts et al., 2009; Hung et al., 2010; Xu et al., 2011; Hung et al., 2012; Yang et al., 2012). To examine the effect of organic composition of the particle on the scavenging and fractionation of selected natural radionuclides (e.g., Th, Pa, Pb, Po, Be), organic composition (e.g., protein, polysaccharides, uronic acid, siderophore and amino acid contents, and etc.) and particle-water partition coefficients (Kd) were determined for sediment trap material collected in the Oceanic Flux Program (OFP) site of Bermuda (500, 1500 and 3200 m). Results showed that different organic components contribute differently to the fractionation of different radionuclides from the three depths. We conclude that natural organic matter control on the particle-water partition coefficients cannot be ignored.

  17. Clear effects of soil organic matter chemistry, as determined by NMR spectroscopy, on the sorption of diuron.

    PubMed

    Ahangar, Ahmad Gholamalizadeh; Smernik, Ronald J; Kookana, Rai S; Chittleborough, David J

    2008-01-01

    Organic matter has long been recognized as the main sorbent phase in soils for hydrophobic organic compounds (HOCs). In recent times, there has been an increasing realization that not only the amount, but also the chemical composition, of organic matter can influence the sorption properties of a soil. Here, we show that the organic carbon-normalized sorption coefficient (K(OC)) for diuron is 27-81% higher in 10 A11 horizons than in 10 matching A12 horizons for soils collected from a small (2ha) field. K(OC) was generally greater for the deeper (B) horizons, although these values may be inflated by sorption of diuron to clays. Organic matter chemistry of the A11 and A12 horizons was determined using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. K(OC) was positively correlated with aryl C (r2=0.59, significance level 0.001) and negatively correlated with O-alkyl C (r2=0.84, significance level <0.001). This is only the second report of correlations between whole soil K(OC) and NMR-derived measures of organic matter chemistry. We suggest that this success may be a consequence of limiting this study to a very small area (a single field). There is growing evidence that interactions between organic matter and clay minerals strongly affect K(OC). However, because the soil mineralogy varies little across the field, the influence of these interactions is greatly diminished, allowing the effect of organic matter chemistry on K(OC) to be seen clearly. This study in some way reconciles studies that show strong correlations between K(OC) and the chemistry of purified organic materials and the general lack of such correlations for whole soils. PMID:17919682

  18. New solid electrolytes: substituted organic ammonium silver iodides

    SciTech Connect

    Ferraro, J.R.; Walling, P.L.; Sherren, A.T.

    1980-01-01

    Several new solid electrolytes were synthesized from the reaction of substituted organic ammonium hydroiodides (pyridinium and quinolinium type) and varying quantities of silver iodide. The inductive effects of nucleophilic and electrophilic substitution on the pyridinium or quinolinium ring, as well as substituent position on the ionic conductivity, were determined. Pressure and thermal studies were undertaken to determine if new nonambient conductive phases existed. 39 references, 4 figures, 2 tables.

  19. Primary Care of the Solid Organ Transplant Recipient.

    PubMed

    Wong, Christopher J; Pagalilauan, Genevieve

    2015-09-01

    Solid organ transplantation (SOT) is one of the major advances in medicine. Care of the SOT recipient is complex and continued partnership with the transplant specialist is essential to manage and treat complications and maintain health. The increased longevity of SOT recipients will lead to their being an evolving part of primary care practice, with ever more opportunities for care, education, and research of this rewarding patient population. This review discusses the overall primary care management of adult SOT recipients. PMID:26320047

  20. Polytraumatism and solid organ bleeding syndrome: The role of imaging.

    PubMed

    Thony, F; Rodière, M; Frandon, J; Vendrell, A; Jankowski, A; Ghelfi, J; Sengel, C; Arvieux, C; Bouzat, P; Ferretti, G

    2015-01-01

    In multiple injuries, features of bleeding from solid organs mostly involve the liver, spleen and kidneys and may be treated by embolization. The indications and techniques for embolization vary between organs and depend on the pathophysiology of the injuries, type of vascularization (anastomotic or terminal) and type of embolization (curative or preventative). Interventional radiologists should have a full understanding of these indications and techniques and management algorithms should be produced within each facility in order to define the respective place of the different treatment options. PMID:26206744

  1. The Divergent Roles of Macrophages in Solid Organ Transplantation

    PubMed Central

    Salehi, Sahar; Reed, Elaine F

    2015-01-01

    Purpose of review This review summarizes the phenotype and function of macrophages in the context of solid organ transplantation and will focus on fundamental insights into their paradoxical pro-inflammatory versus suppressive function. We will also discuss the therapeutic potential of regulatory macrophages in tolerance induction. Recent findings Macrophages are emerging as an essential element of solid organ transplantation. Macrophages are involved in the pathogenesis of ischemia reperfusion injury, as well as both acute and chronic rejection, exacerbating injury through secretion of inflammatory effectors and by amplifying adaptive immune responses. Notably, not all responses associated with macrophages are deleterious to the graft, and graft protection can in fact be conferred by macrophages. This has been attributed to the presence of macrophages with tissue-repair capabilities, as well as the effects of regulatory macrophages. Summary The explosion of new information on the role of macrophages in solid organ transplantation has opened up new avenues of research and the possibility of therapeutic intervention. However, the role of myeloid cells in graft rejection, resolution of rejection and tissue repair remains poorly understood. A better understanding of plasticity and regulation of monocyte polarization is vital for the development of new therapies for the treatment of acute and chronic transplant rejection. PMID:26154913

  2. The abiotic degradation of soil organic matter to oxalic acid

    NASA Astrophysics Data System (ADS)

    Studenroth, Sabine; Huber, Stefan; Schöler, H. F.

    2010-05-01

    The abiotic degradation of soil organic matter to volatile organic compounds was studied intensely over the last years (Keppler et al., 2000; Huber et al., 2009). It was shown that soil organic matter is oxidised due to the presence of iron (III), hydrogen peroxide and chloride and thereby produces diverse alkyl halides, which are emitted into the atmosphere. The formation of polar halogenated compounds like chlorinated acetic acids which are relevant toxic environmental substances was also found in soils and sediments (Kilian et al., 2002). The investigation of the formation of other polar halogenated and non-halogenated compounds like diverse mono- and dicarboxylic acids is going to attain more and more importance. Due to its high acidity oxalic acid might have impacts on the environment e.g., nutrient leaching, plant diseases and negative influence on microbial growth. In this study, the abiotic formation of oxalic acid in soil is examined. For a better understanding of natural degradation processes mechanistic studies were conducted using the model compound catechol as representative for structural elements of the humic substances and its reaction with iron (III) and hydrogen peroxide. Iron is one of the most abundant elements on earth and hydrogen peroxide is produced by bacteria or through incomplete reduction of oxygen. To find suitable parameters for an optimal reaction and a qualitative and quantitative analysis method the following reaction parameters are varied: concentration of iron (III) and hydrogen peroxide, time dependence, pH-value and influence of chloride. Analysis of oxalic acid was performed employing an ion chromatograph equipped with a conductivity detector. The time dependent reaction shows a relatively fast formation of oxalic acid, the optimum yield is achieved after 60 minutes. Compared to the concentration of catechol an excess of hydrogen peroxide as well as a low concentration of iron (III) are required. In absence of chloride the

  3. Release of biodegradable dissolved organic matter from ancient sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Schillawski, Sarah; Petsch, Steven

    2008-09-01

    Sedimentary rocks contain the largest mass of organic carbon on Earth, yet these reservoirs are not well integrated into modern carbon budgets. Here we describe the release of dissolved organic matter (DOM) from OM-rich sedimentary rocks under simulated weathering conditions. Results from column experiments demonstrate slow, sustained release of DOM from ancient sedimentary rocks under simulated weathering conditions. 1H-NMR analysis of shale-derived DOM reveals a highly aliphatic, carbohydrate-poor material distinct from other natural DOM pools. Shale-derived DOM is rapidly assimilated and biodegraded by aerobic heterotrophic bacteria. Consequently, no compositional signature of shale-derived DOM other than 14C-depletion is likely to persist in rivers or other surface reservoirs. Combined, these efforts show that dissolution provides a mechanism for the conversion of refractory kerogen into labile biomass, linking rock weathering with sedimentary OM oxidation and the delivery of aged OM to rivers and ocean margins.

  4. Nature and transformation of dissolved organic matter in treatment wetlands

    USGS Publications Warehouse

    Barber, L.B.; Leenheer, J.A.; Noyes, T.I.; Stiles, E.A.

    2001-01-01

    This investigation into the occurrence, character, and transformation of dissolved organic matter (DOM) in treatment wetlands in the western United States shows that (i) the nature of DOM in the source water has a major influence on transformations that occur during treatment, (ii) the climate factors have a secondary effect on transformations, (iii) the wetlands receiving treated wastewater can produce a net increase in DOM, and (iv) the hierarchical analytical approach used in this study can measure the subtle DOM transformations that occur. As wastewater treatment plant effluent passes through treatment wetlands, the DOM undergoes transformation to become more aromatic and oxygenated. Autochthonous sources are contributed to the DOM, the nature of which is governed by the developmental stage of the wetland system as well as vegetation patterns. Concentrations of specific wastewaterderived organic contaminants such as linear alkylbenzene sulfonate, caffeine, and ethylenediaminetetraacetic acid were significantly attenuated by wetland treatment and were not contributed by internal loading.

  5. Carbon isotope fractionation of sapropelic organic matter during early diagenesis

    USGS Publications Warehouse

    Spiker, E. C.; Hatcher, P.G.

    1984-01-01

    Study of an algal, sapropelic sediment from Mangrove Lake, Bermuda shows that the mass balance of carbon and stable carbon isotopes in the major organic constituents is accounted for by a relatively straightforward model of selective preservation during diagenesis. The loss of 13C-enriched carbohydrates is the principal factor controlling the intermolecular mass balance of 13C in the sapropel. Results indicate that labile components are decomposed leaving as a residual concentrate in the sediment an insoluble humic substance that may be an original biochemical component of algae and associated bacteria. An overall decrease of up to about 4??? in the ?? 13C values of the organic matter is observed as a result of early diagenesis. ?? 1984.

  6. Morphological Study of Insoluble Organic Matter Residues from Primitive

    NASA Technical Reports Server (NTRS)

    Changela, H. G.; Stroud, R. M.; Peeters, Z.; Nittler, L. R.; Alexander, C. M. O'D.; DeGregorio, B. T.; Cody, G. D.

    2012-01-01

    Insoluble organic matter (IOM) constitutes a major proportion, 70-99%, of the total organic carbon found in primitive chondrites [1, 2]. One characteristic morphological component of IOM is nanoglobules [3, 4]. Some nanoglobules exhibit large N-15 and D enrichments relative to solar values, indicating that they likely originated in the ISM or the outskirts of the protoplanetary disk [3]. A recent study of samples from the Tagish Lake meteorite with varying levels of hydrothermal alteration suggest that nanoglobule abundance decreases with increasing hydrothermal alteration [5]. The aim of this study is to further document the morphologies of IOM from a range of primitive chondrites in order to determine any correlation of morphology with petrographic grade and chondrite class that could constrain the formation and/or alteration mechanisms.

  7. Literature review of organic matter transport from marshes

    NASA Technical Reports Server (NTRS)

    Dow, D. D.

    1982-01-01

    A conceptual model for estimating a transport coefficient for the movement of nonliving organic matter from wetlands to the adjacent embayments was developed in a manner that makes it compatible with the Earth Resources Laboratory's Productive Capacity Model. The model, which envisages detritus movement from wetland pixels to the nearest land-water boundary followed by movement within the water column from tidal creeks to the adjacent embayment, can be transposed to deal with only the interaction between tidal water and the marsh or to estimate the transport from embayments to the adjacent coastal waters. The outwelling hypothesis postulated wetlands as supporting coastal fisheries either by exporting nutrients, such as inorganic nitrogen, which stimulated the plankton-based grazing food chain in the water column, or through the export of dissolved and particulate organic carbon which provided a benthic, detritus-based food web which provides the food source for the grazing food chain in a more indirect fashion.

  8. 1H to 13C Energy Transfer in Solid State NMR Spectroscopy of Natural Organic Systems

    NASA Astrophysics Data System (ADS)

    Berns, Anne E.; Conte, Pellegrino

    2010-05-01

    Cross polarization (CP) magic angle spinning (MAS) 13C-NMR spectroscopy is a solid state NMR technique widely used to study chemical composition of organic materials with low or no solubility in the common deuterated solvents used to run liquid state NMR experiments. Based on the magnetization transfer from abundant nuclei (with spin of 1 -2) having a high gyromagnetic ratio (γ), such as protons, to the less abundant 13C nuclei with low γ values, 13C-CPMAS NMR spectroscopy is often applied in environmental chemistry to obtain quantitative information on the chemical composition of natural organic matter (NOM) (Conte et al., 2004), although its quantitative assessment is still matter of heavy debates. Many authors (Baldock et al., 1997; Conte et al., 1997, 2002; Dria et al., 2002; Kiem et al., 2000; Kögel-Knabner, 2000; Preston, 2001), reported that the application of appropriate instrument setup as well as the use of special pulse sequences and correct spectra elaboration may provide signal intensities that are directly proportional to the amount of nuclei creating a NMR signal. However, many other papers dealt with the quantitative unsuitability of 13C-CPMAS NMR spectroscopy. Among those, Mao et al. (2000), Smernik and Oades (2000 a,b), and Preston (2001) reported that cross-polarized NMR techniques may fail in a complete excitation of the 13C nuclei. In fact, the amount of observable carbons via 13C-CPMAS NMR spectroscopy appeared, in many cases, lower than that measured by a direct observation of the 13C nuclei. As a consequence, cross-polarized NMR techniques may provide spectra where signal distribution may not be representative of the quantitative distribution of the different natural organic matter components. Cross-polarization is obtained after application of an initial 90° x pulse on protons and a further spin lock pulse (along the y axis) having a fixed length (contact time) for both nuclei (1H and 13C) once the Hartmann-Hahn condition is matched

  9. Terrestrial and marine perspectives on modeling organic matter degradation pathways.

    PubMed

    Burd, Adrian B; Frey, Serita; Cabre, Anna; Ito, Takamitsu; Levine, Naomi M; Lønborg, Christian; Long, Matthew; Mauritz, Marguerite; Thomas, R Quinn; Stephens, Brandon M; Vanwalleghem, Tom; Zeng, Ning

    2016-01-01

    Organic matter (OM) plays a major role in both terrestrial and oceanic biogeochemical cycles. The amount of carbon stored in these systems is far greater than that of carbon dioxide (CO2 ) in the atmosphere, and annual fluxes of CO2 from these pools to the atmosphere exceed those from fossil fuel combustion. Understanding the processes that determine the fate of detrital material is important for predicting the effects that climate change will have on feedbacks to the global carbon cycle. However, Earth System Models (ESMs) typically utilize very simple formulations of processes affecting the mineralization and storage of detrital OM. Recent changes in our view of the nature of this material and the factors controlling its transformation have yet to find their way into models. In this review, we highlight the current understanding of the role and cycling of detrital OM in terrestrial and marine systems and examine how this pool of material is represented in ESMs. We include a discussion of the different mineralization pathways available as organic matter moves from soils, through inland waters to coastal systems and ultimately into open ocean environments. We argue that there is strong commonality between aspects of OM transformation in both terrestrial and marine systems and that our respective scientific communities would benefit from closer collaboration. PMID:26015089

  10. Synergy of fresh and accumulated organic matter to bacterial growth.

    PubMed

    Farjalla, Vinicius F; Marinho, Claudio C; Faria, Bias M; Amado, André M; Esteves, Francisco de A; Bozelli, Reinaldo L; Giroldo, Danilo

    2009-05-01

    The main goal of this research was to evaluate whether the mixture of fresh labile dissolved organic matter (DOM) and accumulated refractory DOM influences bacterial production, respiration, and growth efficiency (BGE) in aquatic ecosystems. Bacterial batch cultures were set up using DOM leached from aquatic macrophytes as the fresh DOM pool and DOM accumulated from a tropical humic lagoon. Two sets of experiments were performed and bacterial growth was followed in cultures composed of each carbon substrate (first experiment) and by carbon substrates combined (second experiment), with and without the addition of nitrogen and phosphorus. In both experiments, bacterial production, respiration, and BGE were always higher in cultures with N and P additions, indicating a consistent inorganic nutrient limitation. Bacterial production, respiration, and BGE were higher in cultures set up with leachate DOM than in cultures set up with humic DOM, indicating that the quality of the organic matter pool influenced the bacterial growth. Bacterial production and respiration were higher in the mixture of substrates (second experiment) than expected by bacterial production and respiration in single substrate cultures (first experiment). We suggest that the differences in the concentration of some compounds between DOM sources, the co-metabolism on carbon compound decomposition, and the higher diversity of molecules possibly support a greater bacterial diversity which might explain the higher bacterial growth observed. Finally, our results indicate that the mixture of fresh labile and accumulated refractory DOM that naturally occurs in aquatic ecosystems could accelerate the bacterial growth and bacterial DOM removal. PMID:18985269

  11. Photosensitizing properties of water-extractable organic matter from soils.

    PubMed

    Nkhili, Ezzhora; Boguta, Patrycja; Bejger, Romualda; Guyot, Ghislain; Sokołowska, Zofia; Richard, Claire

    2014-01-01

    Water-extractable organic matter (WEOM) was extracted using pure water from two black soils and from the Elliott reference soil of the International Humic Substances Society (IHSS). WEOMs were characterized by chemical and spectroscopic methods. The apparent quantum yields of singlet oxygen, triplet excited states and hydroxyl radicals formation upon irradiation within the wavelength range 290-450 nm were determined using chemical probes and compared to those of standard Elliott humic substances. In general, the aromatic content, as measured by the SUVA value, was close in WEOMs and humic substances, while the E2/E3 was higher and the humification index lower in the former. Quantum yield values measured for WEOMs fell within the range of those found for basic medium extracted humic substances or were even higher in one case. Thus, water soluble aromatic moiety of the soil organic matter, especially those with low humification degree, is important for the photosensitizing properties. We also found that WEOMs sensitized the bisphenol A phototransformation with rates of the same order of magnitude for all the samples. PMID:24083904

  12. Wastewater disinfection and organic matter removal using ferrate (VI) oxidation.

    PubMed

    Bandala, Erick R; Miranda, Jocelyn; Beltran, Margarita; Vaca, Mabel; López, Raymundo; Torres, Luis G

    2009-09-01

    The use of iron in a +6 valence state, (Fe (VI), as FeO4(-2)) was tested as a novel alternative for wastewater disinfection and decontamination. The removal of organic matter (OM) and index microorganisms present in an effluent of a wastewater plant was determined using FeO4(-2) without any pH adjustment. It was observed that concentrations of FeO4(-2) ranging between 5 and 14 mg l(-1) inactivated up to 4-log of the index microorganisms (initial concentration c.a. 10(6) CFU/100 ml) and achieved OM removal up to almost 50%. The performance of FeO4(-2) was compared with OM oxidation and disinfection using hypochlorite. It was observed that hypochlorite was less effective in OM oxidation and coliform inactivation than ferrate. Results of this work suggest that FeO4(-2) could be an interesting oxidant able to deactivate pathogenic microorganisms in water with high OM content and readily oxidize organic matter without jeopardizing its efficiency on microorganism inactivation. PMID:19491501

  13. Photochemical and Nonphotochemical Transformations of Cysteine with Dissolved Organic Matter.

    PubMed

    Chu, Chiheng; Erickson, Paul R; Lundeen, Rachel A; Stamatelatos, Dimitrios; Alaimo, Peter J; Latch, Douglas E; McNeill, Kristopher

    2016-06-21

    Cysteine (Cys) plays numerous key roles in the biogeochemistry of natural waters. Despite its importance, a full assessment of Cys abiotic transformation kinetics, products and pathways under environmental conditions has not been conducted. This study is a mechanistic evaluation of the photochemical and nonphotochemical (dark) transformations of Cys in solutions containing chromophoric dissolved organic matter (CDOM). The results show that Cys underwent abiotic transformations under both dark and irradiated conditions. Under dark conditions, the transformation rates of Cys were moderate and were highly pH- and temperature-dependent. Under UVA or natural sunlight irradiations, Cys transformation rates were enhanced by up to two orders of magnitude compared to rates under dark conditions. Product analysis indicated cystine and cysteine sulfinic acid were the major photooxidation products. In addition, this study provides an assessment of the contributions of singlet oxygen, hydroxyl radical, hydrogen peroxide, and triplet dissolved organic matter to the CDOM-sensitized photochemical oxidation of Cys. The results suggest that another unknown pathway was dominant in the CDOM-sensitized photodegradation of Cys, which will require further study to identify. PMID:27172378

  14. Organic matter turnover in subsoils: current knowledge and future challenges

    NASA Astrophysics Data System (ADS)

    Marschner, Bernd

    2014-05-01

    In the past, carbon flux measurements and modelling have mostly considered the topsoil where C-concentrations, root densities and microbial activities are generally highest. However, depending on climate zone and land use, this soil compartment contains only 30-50% of the C-stocks of the first meter. If the deeper subsoil down to 3 m is also considered, the contribution of topsoil carbon stocks to total soil C-pools is only 20-40%. Another distinct property of subsoil organic matter is its high apparent 14C age. The 14C age of bulk soil organic matter below 30 cm depth generally increases continuously indicating mean residence times of several 103 to 104 years. Large pool size and high radiocarbon age suggest that subsoil OM has accumulated at very low rates over very long time periods and therefore appears to be very stable. In this review, several hypotheses for explaining why subsoil SOM is so seemingly old and inert are presented. These questions are being addressed in a recently granted German research unit consisting of 9 subprojects from all soil science disciplines using field measurements of C-fluxes, 14C analyses and conducting field and lab experiments.

  15. An enhanced capillary electrophoresis method for characterizing natural organic matter.

    PubMed

    Cottrell, Barbara A; Cheng, Wei Ran; Lam, Buuan; Cooper, William J; Simpson, Andre J

    2013-02-21

    Natural organic matter (NOM) is ubiquitous and is one of the most complex naturally occurring mixtures. NOM plays an essential role in the global carbon cycle; atmospheric and natural water photochemistry; and the long-range transport of trace compounds and contaminants. There is a dearth of separation techniques capable of resolving this highly complex mixture. To our knowledge, this is the first reported use of ultrahigh resolution counterbalance capillary electrophoresis to resolve natural organic matter. The new separation strategy uses a low pH, high concentration phosphate buffer to reduce the capillary electroosmotic flow (EOF). Changing the polarity of the electrodes reverses the EOF to counterbalance the electrophoretic mobility. Sample stacking further improves the counterbalance separation. The combination of these conditions results in an electropherogram comprised up to three hundred peaks superimposed on the characteristic "humic hump" of NOM. Fraction collection, followed by three-dimensional emission excitation spectroscopy (EEMs) and UV spectroscopy generated a distinct profile of fluorescent and UV absorbing components. This enhanced counterbalance capillary electrophoresis method is a potentially powerful technique for the characterization and separation of NOM and complex environmental mixtures in general. PMID:23289095

  16. The PROCESS experiment: an astrochemistry laboratory for solid and gaseous organic samples in low-earth orbit.

    PubMed

    Cottin, Hervé; Guan, Yuan Yong; Noblet, Audrey; Poch, Olivier; Saiagh, Kafila; Cloix, Mégane; Macari, Frédérique; Jérome, Murielle; Coll, Patrice; Raulin, François; Stalport, Fabien; Szopa, Cyril; Bertrand, Marylène; Chabin, Annie; Westall, Frances; Chaput, Didier; Demets, René; Brack, André

    2012-05-01

    The PROCESS (PRebiotic Organic ChEmistry on the Space Station) experiment was part of the EXPOSE-E payload outside the European Columbus module of the International Space Station from February 2008 to August 2009. During this interval, organic samples were exposed to space conditions to simulate their evolution in various astrophysical environments. The samples used represent organic species related to the evolution of organic matter on the small bodies of the Solar System (carbonaceous asteroids and comets), the photolysis of methane in the atmosphere of Titan, and the search for organic matter at the surface of Mars. This paper describes the hardware developed for this experiment as well as the results for the glycine solid-phase samples and the gas-phase samples that were used with regard to the atmosphere of Titan. Lessons learned from this experiment are also presented for future low-Earth orbit astrochemistry investigations. PMID:22680688

  17. Quantitative 13C NMR of whole and fractionated Iowa Mollisols for assessment of organic matter composition

    NASA Astrophysics Data System (ADS)

    Fang, Xiaowen; Chua, Teresita; Schmidt-Rohr, Klaus; Thompson, Michael L.

    2010-01-01

    Both the concentrations and the stocks of soil organic carbon vary across the landscape. Do the amounts of recalcitrant components of soil organic matter (SOM) vary with landscape position? To address this question, we studied four Mollisols in central Iowa, two developed in till and two developed in loess. Two of the soils were well drained and two were poorly drained. We collected surface-horizon samples and studied organic matter in the particulate organic matter (POM) fraction, the clay fractions, and the whole, unfractionated samples. We treated the soil samples with 5 M HF at ambient temperature or at 60 °C for 30 min to concentrate the SOM. To assess the composition of the SOM, we used solid-state nuclear magnetic resonance (NMR) spectroscopy, in particular, quantitative 13C DP/MAS (direct-polarization/magic-angle spinning), with and without recoupled dipolar dephasing. Spin counting by correlation of the integral NMR intensity with the C concentration by elemental analysis showed that NMR was ⩾85% quantitative for the majority of the samples studied. For untreated whole-soil samples with <2.5 wt.% C, which is considerably less than in most previous quantitative NMR analyses of SOM, useful spectra that reflected ⩾65% of all C were obtained. The NMR analyses allowed us to conclude (1) that the HF treatment (with or without heat) had low impact on the organic C composition in the samples, except for protonating carboxylate anions to carboxylic acids, (2) that most organic C was observable by NMR even in untreated soil materials, (3) that esters were likely to compose only a minor fraction of SOM in these Mollisols, and (4) that the aromatic components of SOM were enriched to ˜53% in the poorly drained soils, compared with ˜48% in the well drained soils; in plant tissue and particulate organic matter (POM) the aromaticities were ˜18% and ˜32%, respectively. Nonpolar, nonprotonated aromatic C, interpreted as a proxy for charcoal C, dominated the

  18. Sulfur species behavior in soil organic matter during decomposition

    NASA Astrophysics Data System (ADS)

    Schroth, Andrew W.; Bostick, Benjamin C.; Graham, Margaret; Kaste, James M.; Mitchell, Myron J.; Friedland, Andrew J.

    2007-12-01

    Soil organic matter (SOM) is a primary reservoir of terrestrial sulfur (S), but its role in the global S cycle remains poorly understood. We examine S speciation by X-ray absorption near-edge structure (XANES) spectroscopy to describe S species behavior during SOM decomposition. Sulfur species in SOM were best represented by organic sulfide, sulfoxide, sulfonate, and sulfate. The highest fraction of S in litter was organic sulfide, but as decomposition progressed, relative fractions of sulfonate and sulfate generally increased. Over 6-month laboratory incubations, organic sulfide was most reactive, suggesting that a fraction of this species was associated with a highly labile pool of SOM. During humification, relative concentrations of sulfoxide consistently decreased, demonstrating the importance of sulfoxide as a reactive S phase in soil. Sulfonate fractional abundance increased during humification irrespective of litter type, illustrating its relative stability in soils. The proportion of S species did not differ systematically by litter type, but organic sulfide became less abundant in conifer SOM during decomposition, while sulfate fractional abundance increased. Conversely, deciduous SOM exhibited lesser or nonexistent shifts in organic sulfide and sulfate fractions during decomposition, possibly suggesting that S reactivity in deciduous litter is coupled to rapid C mineralization and independent of S speciation. All trends were consistent in soils across study sites. We conclude that S reactivity is related to speciation in SOM, particularly in conifer forests, and S species fractions in SOM change during decomposition. Our data highlight the importance of intermediate valence species (sulfoxide and sulfonate) in the pedochemical cycling of organic bound S.

  19. Sulfur species behavior in soil organic matter during decomposition

    USGS Publications Warehouse

    Schroth, A.W.; Bostick, B.C.; Graham, M.; Kaste, J.M.; Mitchell, M.J.; Friedland, A.J.

    2007-01-01

    Soil organic matter (SOM) is a primary re??servoir of terrestrial sulfur (S), but its role in the global S cycle remains poorly understood. We examine S speciation by X-ray absorption near-edge structure (XANES) spectroscopy to describe S species behavior during SOM decomposition. Sulfur species in SOM were best represented by organic sulfide, sulfoxide, sulfonate, and sulfate. The highest fraction of S in litter was organic sulfide, but as decomposition progressed, relative fractions of sulfonate and sulfate generally increased. Over 6-month laboratory incubations, organic sulfide was most reactive, suggesting that a fraction of this species was associated with a highly labile pool of SOM. During humification, relative concentrations of sulfoxide consistently decreased, demonstrating the importance of sulfoxide as a reactive S phase in soil. Sulfonate fractional abundance increased during humification irrespective of litter type, illustrating its relative stability in soils. The proportion of S species did not differ systematically by litter type, but organic sulfide became less abundant in conifer SOM during decomposition, while sulfate fractional abundance increased. Conversely, deciduous SOM exhibited lesser or nonexistent shifts in organic sulfide and sulfate fractions during decomposition, possibly suggesting that S reactivity in deciduous litter is coupled to rapid C mineralization and independent of S speciation. All trends were consistent in soils across study sites. We conclude that S reactivity is related to spqciation in SOM, particularly in conifer forests, and S species fractions in SOM change, during decomposition. Our data highlight the importance of intermediate valence species (sulfoxide and sulfonate) in the pedochemical cycling of organic bound S. Copyright 2007 by the American Geophysical Union.

  20. Spectroscopic characteristics of soil organic matter as a tool to assess soil physical quality in Mediterranean ecosystems

    NASA Astrophysics Data System (ADS)

    Recio Vázquez, Lorena; Almendros, Gonzalo; Knicker, Heike; López-Martín, María; Carral, Pilar; Álvarez, Ana

    2014-05-01

    In Mediterranean areas, the loss of soil physical quality is of particular concern due to the vulnerability of these ecosystems in relation to unfavourable climatic conditions, which usually lead to soil degradation processes and severe decline of its functionality. As a result, increasing scientific attention is being paid on the exploration of soil properties which could be readily used as quality indicators, including organic matter which, in fact, represents a key factor in the maintenance of soil physical status. In this line, the present research tackles the assessment of the quality of several soils from central Spain with the purpose of identifying the physical properties most closely correlated with the organic matter, considering not only the quantity but also the quality of the different C-forms. The studied attributes consist of a series of physical properties determined in field and laboratory conditions-total porosity, aggregate stability, available water capacity, air provision, water infiltration rate and soil hydric saturation-.The bulk organic matter was characterised by solid-state 13C NMR spectroscopy and the major organic fractions (lipids, free particulate organic matter, fulvic acids, humic acids and humin) were quantified using standard procedures. The humic acids were also analysed by visible and infrared spectroscopies. The use of multidimensional scaling to classify physical properties in conjunction with molecular descriptors of soil organic matter, suggested significant correlations between the two set of variables, which were confirmed with simple and canonical regression models. The results pointed to two well-defined groups of physical attributes in the studied soils: (i) those associated with organic matter of predominantly aromatic character (water infiltration descriptors), and (ii) soil physical variables related to organic matter with marked aliphatic character, high preservation of the lignin signature and comparatively low

  1. Potential enzyme activities in cryoturbated organic matter of arctic soils

    NASA Astrophysics Data System (ADS)

    Schnecker, J.; Wild, B.; Rusalimova, O.; Mikutta, R.; Guggenberger, G.; Richter, A.

    2012-12-01

    An estimated 581 Gt organic carbon is stored in arctic soils that are affected by cryoturbtion, more than in today's atmosphere (450 Gt). The high amount of organic carbon is, amongst other factors, due to topsoil organic matter (OM) that has been subducted by freeze-thaw processes. This cryoturbated OM is usually hundreds to thousands of years old, while the chemical composition remains largely unaltered. It has therefore been suggested, that the retarded decomposition rates cannot be explained by unfavourable abiotic conditions in deeper soil layers alone. Since decomposition of soil organic material is dependent on extracellular enzymes, we measured potential and actual extracellular enzyme activities in organic topsoil, mineral subsoil and cryoturbated material from three different tundra sites, in Zackenberg (Greenland) and Cherskii (North-East Siberia). In addition we analysed the microbial community structure by PLFAs. Hydrolytic enzyme activities, calculated on a per gram dry mass basis, were higher in organic topsoil horizons than in cryoturbated horizons, which in turn were higher than in mineral horizons. When calculated on per gram carbon basis, the activity of the carbon acquiring enzyme exoglucanase was not significantly different between cryoturbated and topsoil organic horizons in any of the three sites. Oxidative enzymes, i.e. phenoloxidase and peroxidase, responsible for degradation of complex organic substances, showed higher activities in topsoil organic and cryoturbated horizons than in mineral horizons, when calculated per gram dry mass. Specific activities (per g C) however were highest in mineral horizons. We also measured actual cellulase activities (by inhibiting microbial uptake of products and without substrate addition): calculated per g C, the activities were up to ten times as high in organic topsoil compared to cryoturbated and mineral horizons, the latter not being significantly different. The total amount of PLFAs, as a proxy for

  2. Dry-thermophilic anaerobic digestion of organic fraction of municipal solid waste: Methane production modeling

    SciTech Connect

    Fdez-Gueelfo, L.A.; Alvarez-Gallego, C.; Sales, D.; Romero Garcia, L.I.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Methane generation may be modeled by means of modified product generation model of Romero Garcia (1991). Black-Right-Pointing-Pointer Organic matter content and particle size influence the kinetic parameters. Black-Right-Pointing-Pointer Higher organic matter content and lower particle size enhance the biomethanization. - Abstract: The influence of particle size and organic matter content of organic fraction of municipal solid waste (OFMSW) in the overall kinetics of dry (30% total solids) thermophilic (55 Degree-Sign C) anaerobic digestion have been studied in a semi-continuous stirred tank reactor (SSTR). Two types of wastes were used: synthetic OFMSW (average particle size of 1 mm; 0.71 g Volatile Solids/g waste), and OFMSW coming from a composting full scale plant (average particle size of 30 mm; 0.16 g Volatile Solids/g waste). A modification of a widely-validated product-generation kinetic model has been proposed. Results obtained from the modified-model parameterization at steady-state (that include new kinetic parameters as K, Y{sub pMAX} and {theta}{sub MIN}) indicate that the features of the feedstock strongly influence the kinetics of the process. The overall specific growth rate of microorganisms ({mu}{sub max}) with synthetic OFMSW is 43% higher compared to OFMSW coming from a composting full scale plant: 0.238 d{sup -1} (K = 1.391 d{sup -1}; Y{sub pMAX} = 1.167 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 7.924 days) vs. 0.135 d{sup -1} (K = 1.282 d{sup -1}; Y{sub pMAX} = 1.150 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 9.997 days) respectively. Finally, it could be emphasized that the validation of proposed modified-model has been performed successfully by means of the simulation of non-steady state data for the different SRTs tested with each waste.

  3. Encapsulation of microbiologically labile compounds within macromolecular organic matter in sedimentary systems as a means of preservation

    SciTech Connect

    Hatcher, P.G.; Knicker, H.; Rio, J.C. del

    1996-12-31

    The preservation of microbiologically labile organic compounds in the sedimentary geological record for times that are longer than what would be expected is a phenomenon recently touted as being due to physical entrapment within mesopores of mineral particles. Presumably, the mesopores offer protection from the action of microbial enzymes. Our recent studies of the preservation of organic compounds in mineral-free sediments indicates that protection from the action of enzymes can also be afforded by encapsulation within macromolecular organic matter, especially if this organic matter is strongly hydrophobic. The basis of this conclusion centers upon the observation that labile proteinaceous materials survive in these sediments for extended periods of time as deduced by solid-state {sup 15}N NMR and thermochemolysis with tetramethylammonium hydroxide.

  4. Risk for transmission of Naegleria fowleri from solid organ transplantation.

    PubMed

    Roy, S L; Metzger, R; Chen, J G; Laham, F R; Martin, M; Kipper, S W; Smith, L E; Lyon, G M; Haffner, J; Ross, J E; Rye, A K; Johnson, W; Bodager, D; Friedman, M; Walsh, D J; Collins, C; Inman, B; Davis, B J; Robinson, T; Paddock, C; Zaki, S R; Kuehnert, M; DaSilva, A; Qvarnstrom, Y; Sriram, R; Visvesvara, G S

    2014-01-01

    Primary amebic meningoencephalitis (PAM) caused by the free-living ameba (FLA) Naegleria fowleri is a rare but rapidly fatal disease of the central nervous system (CNS) affecting predominantly young, previously healthy persons. No effective chemotherapeutic prophylaxis or treatment has been identified. Recently, three transplant-associated clusters of encephalitis caused by another FLA, Balamuthia mandrillaris, have occurred, prompting questions regarding the suitability of extra-CNS solid organ transplantation from donors with PAM. During 1995-2012, 21 transplant recipients of solid organs donated by five patients with fatal cases of PAM were reported in the United States. None of the recipients developed PAM, and several recipients tested negative for N. fowleri by serology. However, historical PAM case reports and animal experiments with N. fowleri, combined with new postmortem findings from four patients with PAM, suggest that extra-CNS dissemination of N. fowleri can occur and might pose a risk for disease transmission via transplantation. The risks of transplantation with an organ possibly harboring N. fowleri should be carefully weighed for each individual recipient against the potentially greater risk of delaying transplantation while waiting for another suitable organ. In this article, we present a case series and review existing data to inform such risk assessments. PMID:24279908

  5. Risk for Transmission of Naegleria fowleri from Solid Organ Transplantation

    PubMed Central

    Roy, SL; Metzger, R; Chen, JG; Laham, FR; Martin, M; Kipper, SW; Smith, LE; Lyon, GM; Haffner, J; Ross, JE; Rye, AK; Johnson, W; Bodager, D; Friedman, M; Walsh, DJ; Collins, C; Inman, B; Davis, BJ; Robinson, T; Paddock, C; Zaki, SR; Kuehnert, M; DaSilva, A; Qvarnstrom, Y; Sriram, R; Visvesvara, GS

    2015-01-01

    Primary amebic meningoencephalitis (PAM) caused by the free-living ameba Naegleria fowleri is a rare but rapidly fatal disease of the central nervous system (CNS) affecting predominantly young, previously healthy persons. No effective chemotherapeutic prophylaxis or treatment has been identified. Recently, three transplant-associated clusters of encephalitis caused by another free-living ameba, Balamuthia mandrillaris, have occurred, prompting questions regarding the suitability of extra-CNS solid organ transplantation from donors with PAM. During 1995–2012, 21 transplant recipients of solid organs donated by five patients with fatal cases of PAM were reported in the United States. None of the recipients developed PAM and several recipients tested negative for N. fowleri by serology. However, historical PAM case reports and animal experiments with N. fowleri, combined with new post-mortem findings from four PAM patients, suggest that extra-CNS dissemination of N. fowleri can occur and might pose a risk for disease transmission via transplantation. The risks of transplantation with an organ possibly harboring N. fowleri should be carefully weighed for each individual recipient against the potentially greater risk of delaying transplantation while waiting for another suitable organ. In this article we present a case series and review existing data to inform such risk assessments. PMID:24279908

  6. Tacrolimus-associated posterior reversible encephalopathy syndrome after solid organ transplantation.

    PubMed

    Wu, Qisi; Marescaux, Christian; Wolff, Valérie; Jeung, Mi-Young; Kessler, Romain; Lauer, Valérie; Chen, Yangmei

    2010-01-01

    Tacrolimus (TAC) is an immunosuppressant drug discovered in 1984 by Fujisawa Pharmaceutical Co., Ltd. This drug belongs to the group of calcineurin inhibitors, which has been proven highly effective in preventing acute rejection after transplantation of solid organs. However, neurotoxicity and nephrotoxicity are its major adverse effects. Posterior reversible encephalopathy syndrome (PRES) is the most severe and dramatic consequence of calcineurin inhibitor neurotoxicity. It was initially described by Hinchey et al. in 1996 [N Engl J Med 1996;334:494-450]. Patients typically present with altered mental status, headache, focal neurological deficits, visual disturbances, and seizures. Magnetic resonance imaging is the most sensitive imaging test to detect this. With the more deep-going studies done recently, we have learnt more about this entity. It was noted that this syndrome is frequently reversible, rarely limited to the posterior regions of the brain, and often located in gray matter and cortex as well as in white matter. Therefore, in this review, the focus is on the current understanding of clinical recognition, pathogenesis, neuroimaging and management of TAC-associated PRES after solid organ transplantation. PMID:20699617

  7. Iron traps terrestrially derived dissolved organic matter at redox interfaces

    PubMed Central

    Riedel, Thomas; Zak, Dominik; Biester, Harald; Dittmar, Thorsten

    2013-01-01

    Reactive iron and organic carbon are intimately associated in soils and sediments. However, to date, the organic compounds involved are uncharacterized on the molecular level. At redox interfaces in peatlands, where the biogeochemical cycles of iron and dissolved organic matter (DOM) are coupled, this issue can readily be studied. We found that precipitation of iron hydroxides at the oxic surface layer of two rewetted fens removed a large fraction of DOM via coagulation. On aeration of anoxic fen pore waters, >90% of dissolved iron and 27 ± 7% (mean ± SD) of dissolved organic carbon were rapidly (within 24 h) removed. Using ultra-high-resolution MS, we show that vascular plant-derived aromatic and pyrogenic compounds were preferentially retained, whereas the majority of carboxyl-rich aliphatic acids remained in solution. We propose that redox interfaces, which are ubiquitous in marine and terrestrial settings, are selective yet intermediate barriers that limit the flux of land-derived DOM to oceanic waters. PMID:23733946

  8. Chemical mapping of proterozoic organic matter at submicron spatial resolution.

    PubMed

    Oehler, Dorothy Z; Robert, François; Mostefaoui, Smail; Meibom, Anders; Selo, Madeleine; McKay, David S

    2006-12-01

    A NanoSIMS ion microprobe was used to map the submicron-scale distributions of carbon, nitrogen, sulfur, silicon, and oxygen in organic microfossils and laminae in a thin section of the approximately 0.85 billion year old Bitter Springs Formation of Australia. The data provide clues about the original chemistry of the microfossils, the silicification process, and the biosignatures of specific microorganisms and microbial communities. Chemical maps of fossil unicells and filaments revealed distinct wall- and sheath-like structures enriched in C, N, and S, consistent with their accepted biological origin. Surprisingly, organic laminae, previously considered to be amorphous, also exhibited filamentous and apparently compressed spheroidal structures defined by strong enrichments in C, N, and S. By analogy to NanoSIMS data from the well-preserved microfossils, these structures were interpreted as being of biological origin, most likely representing densely packed remnants of microbial mats. Given that the preponderance of organic matter in Precambrian sediments is similarly "amorphous," our findings indicate that a re-evaluation of ancient specimens via in situ structural, chemical, and isotopic study is warranted. Our analyses have led us to propose new criteria for assessing the biogenicity of problematic kerogenous materials, and, thus, these criteria can be applied to assessments of poorly preserved or fragmentary organic residues in early Archean sediments and any that might occur in meteorites or other extraterrestrial samples. PMID:17155884

  9. Molecular composition of organic fine particulate matter in Houston, TX

    NASA Astrophysics Data System (ADS)

    Fraser, M. P.; Yue, Z. W.; Tropp, R. J.; Kohl, S. D.; Chow, J. C.

    Organic fine particulate matter collected in Houston, TX between March 1997 and March 1998 was analyzed to determine the concentration of individual organic compounds. Samples from four sites were analyzed including two industrial locations (Houston Regional Monitoring Corporation (HRM-3) site in Channelview and Clinton Drive site near the Ship Channel Turning Basin), one suburban location (Bingle Drive site in Northwest Houston) and one background site (Galveston Island). At the three urban locations, samples were divided into three seasonal sample aggregates (spring, summer and winter), while at the background site a single annual average sample pool was used. Between 10 and 16 individual samples were pooled to get aggregate samples with enough organic carbon mass for analysis. Overall, 82 individual organic compounds were quantified. These include molecular markers which are compounds unique to specific fine particle sources and can be used to track the relative contribution of source emissions to ambient fine particle levels. The differences both spatially and temporally in these tracers can be used to evaluate the variability in emission source strengths.

  10. DETOXIFICATION OF OUTFALL WATER USING NATURAL ORGANIC MATTER

    SciTech Connect

    Halverson, N.; Looney, B.; Millings, M.; Nichols, R.; Noonkester, J.; Payne, B.

    2010-07-13

    To protect stream organisms in an ephemeral stream at the Savannah River Site, a proposed National Pollutant Discharge Elimination System (NPDES) permit reduced the copper limit from 25 {micro}g/l to 6 {micro}g/l at Outfall H-12. Efforts to reduce copper in the wastewater and stormwater draining to this outfall did not succeed in bringing copper levels below this limit. Numerous treatment methods were considered, including traditional methods such as ion exchange and natural treatment alternatives such as constructed wetlands and peat beds, all of which act to remove copper. However, the very low target metal concentration and highly variable outfall conditions presented a significant challenge for these treatment technologies. In addition, costs and energy use for most of these alternatives were high and secondary wastes would be generated. The Savannah River National Laboratory developed an entirely new 'detoxification' approach to treat the outfall water. This simple, lower-cost detoxification system amends outfall water with natural organic matter to bind up to 25 {micro}g/l copper rather than remove it, thereby mitigating its toxicity and protecting the sensitive species in the ecosystem. The amendments are OMRI (Organic Materials Review Institute) certified commercial products that are naturally rich in humic acids and are commonly used in organic farming.

  11. Iron traps terrestrially derived dissolved organic matter at redox interfaces.

    PubMed

    Riedel, Thomas; Zak, Dominik; Biester, Harald; Dittmar, Thorsten

    2013-06-18

    Reactive iron and organic carbon are intimately associated in soils and sediments. However, to date, the organic compounds involved are uncharacterized on the molecular level. At redox interfaces in peatlands, where the biogeochemical cycles of iron and dissolved organic matter (DOM) are coupled, this issue can readily be studied. We found that precipitation of iron hydroxides at the oxic surface layer of two rewetted fens removed a large fraction of DOM via coagulation. On aeration of anoxic fen pore waters, >90% of dissolved iron and 27 ± 7% (mean ± SD) of dissolved organic carbon were rapidly (within 24 h) removed. Using ultra-high-resolution MS, we show that vascular plant-derived aromatic and pyrogenic compounds were preferentially retained, whereas the majority of carboxyl-rich aliphatic acids remained in solution. We propose that redox interfaces, which are ubiquitous in marine and terrestrial settings, are selective yet intermediate barriers that limit the flux of land-derived DOM to oceanic waters. PMID:23733946

  12. Significance of Isotopically Labile Organic Hydrogen in Thermal Maturation of Organic Matter

    SciTech Connect

    Arndt Schimmelmann; Maria Mastalerz

    2010-03-30

    Isotopically labile organic hydrogen in fossil fuels occupies chemical positions that participate in isotopic exchange and in chemical reactions during thermal maturation from kerogen to bitumen, oil and gas. Carbon-bound organic hydrogen is isotopically far less exchangeable than hydrogen bound to nitrogen, oxygen, or sulfur. We explore why organic hydrogen isotope ratios express a relationship with organic nitrogen isotope ratios in kerogen at low to moderate maturity. We develop and apply new techniques to utilize organic D/H ratios in organic matter fractions and on a molecular level as tools for exploration for fossil fuels and for paleoenvironmental research. The scope of our samples includes naturally and artificially matured substrates, such as coal, shale, oil and gas.

  13. Organic matter loss from cultivated peat soils in Sweden

    NASA Astrophysics Data System (ADS)

    Berglund, Örjan; Berglund, Kerstin

    2015-04-01

    The degradation of drained peat soils in agricultural use is an underestimated source of loss of organic matter. Oxidation (biological degradation) of agricultural peat soils causes a loss of organic matter (OM) of 11 - 22 t ha-1 y-1 causing a CO2 emission of 20 - 40 t ha-1 y-1. Together with the associated N2O emissions from mineralized N this totals in the EU to about 98.5 Mton CO2 eq per year. Peat soils are very prone to climate change and it is expected that at the end of this century these values are doubled. The degradation products pollute surface waters. Wind erosion of peat soils in arable agriculture can cause losses of 3 - 30 t ha-1 y-1 peat also causing air pollution (fine organic particles). Subsidence rates are 1 - 2 cm per year which leads to deteriorating drainage effect and make peat soils below sea or inland water levels prone to flooding. Flooding agricultural peat soils is in many cases not possible without high costs, high GHG emissions and severe water pollution. Moreover sometimes cultural and historic landscapes are lost and meadow birds areas are lost. In areas where the possibility to regulate the water table is limited the mitigation options are either to increase biomass production that can be used as bioenergy to substitute some fossil fuel, try to slow down the break-down of the peat by different amendments that inhibit microbial activity, or permanent flooding. The negative effects of wind erosion can be mitigated by reducing wind speed or different ways to protect the soil by crops or fiber sheets. In a newly started project in Sweden a typical peat soil with and without amendment of foundry sand is cropped with reed canary grass, tall fescue and timothy to investigate the yield and greenhouse gas emissions from the different crops and how the sand effect the trafficability and GHG emissions.

  14. Molecular simulation of a model of dissolved organic matter

    SciTech Connect

    Sutton, Rebecca; Sposito, Garrison; Diallo, Mamadou S.; Schulten,Hans-Rolf

    2004-11-08

    A series of atomistic simulations was performed to assess the ability of the Schulten dissolved organic matter (DOM) molecule, a well-established model humic molecule, to reproduce the physical and chemical behavior of natural humic substances. The unhydrated DOM molecule had a bulk density value appropriate to humic matter, but its Hildebrand solubility parameter was lower than the range of current experimental estimates. Under hydrated conditions, the DOM molecule went through conformational adjustments that resulted in disruption of intramolecular hydrogen bonds (H-bonds), although few water molecules penetrated the organic interior. The radius of gyration of the hydrated DOM molecule was similar to those measured for aquatic humic substances. To simulate humic materials under aqueous conditions with varying pH levels, carboxyl groups were deprotonated, and hydrated Na{sup +} or Ca{sup 2+} were added to balance the resulting negative charge. Because of intrusion of the cation hydrates, the model metal- humic structures were more porous, had greater solvent-accessible surface areas, and formed more H-bonds with water than the protonated, hydrated DOM molecule. Relative to Na{sup +}, Ca{sup 2+} was both more strongly bound to carboxylate groups and more fully hydrated. This difference was attributed to the higher charge of the divalent cation. The Ca-DOM hydrate, however, featured fewer H-bonds than the Na-DOM hydrate, perhaps because of the reduced orientational freedom of organic moieties and water molecules imposed by Ca{sup 2+}. The present work is, to our knowledge, the first rigorous computational exploration regarding the behavior of a model humic molecule under a range of physical conditions typical of soil and water systems.

  15. SNC Meteorites, Organic Matter and a New Look at Viking

    NASA Technical Reports Server (NTRS)

    Warmflash, David M.; Clemett, Simon J.; McKay, David S.

    2001-01-01

    Recently, evidence has begun to grow supporting the possibility that the Viking GC-MS would not have detected certain carboxylate salts that could have been present as metastable oxidation products of high molecular weight organic species. Additionally, despite the instrument's high sensitivity, the possibility had remained that very low levels of organic matter, below the instrument's detection limit, could have been present. In fact, a recent study indicates that the degradation products of several million microorganisms per gram of soil on Mars would not have been detected by the Viking GC-MS. Since the strength of the GC-MS findings was considered enough to dismiss the biology packet, particularly the LR results, any subsequent evidence suggesting that organic molecules may in fact be present on the Martian surface necessitates a re-evaluation of the Viking LR data. In addition to an advanced mass spectrometer to look for isotopic signatures of biogenic processes, future lander missions will include the ability to detect methane produced by methanogenic bacteria, as well as techniques based on biotechnology. Meanwhile, the identification of Mars samples already present on Earth in the form of the SNC meteorites has provided us with the ability to study samples of the Martian upper crust a decade or more in advance of any planned sample return missions. While contamination issues are of serious concern, the presence of indigenous organic matter in the form of polycyclic aromatic hydrocarbons has been detected in the Martian meteorites ALH84001 and Nakhla, while there is circumstantial evidence for carbonaceous material in Chassigny. The radiochronological ages of these meteorites are 4.5 Ga, 1.3 Ga, and 165 Ma respectively representing a span of time in Earth history from the earliest single-celled organisms to the present day. Given this perspective on organic material, a biological interpretation to the Viking LR results can no longer be ruled out. In the LR

  16. Recent Alterations of Aerosol Concentration, Mercury Distribution And Organic Matter Deposition In The Arctic

    NASA Astrophysics Data System (ADS)

    Pempkowiak, Janusz; Zieliński, Tymon; Petelski, Tomasz; Zaborska, Agata; Bełdowski, Jacek

    2011-01-01

    Material fluxes in the Arctic and Antarctic have been, in several respects, strongly affected recently. For example, atmospheric turbidity conditions are frequently subject to strong changes due to haze and dust transport episodes, which can cause considerable perturbations in the radiation balance of the atmosphere beyond regional scale. This, directly or indirectly, contributes to the increased mercury deposition and organic matter fluxes to sediments. The results show that local emissions are not always the most important factors influencing the composition of aerosol in the atmosphere of the west Spitsbergen region. The direct radiative impact of polar aerosols on the surface and at the top of the atmosphere (TOA) need to be studied more closely through both theoretical studies on the aerosol radiative properties and measurements of the surface reflectance characteristics. Mercury dissolved/solid partitioning, both in the unconsolidated, fluffy layer of suspended matter covering the sediments, and the uppermost sediment layer, indicate that the influence of the athmospheric mercury deposition event (AMDE) can prolong well into summer (July/August), and can provide a pathway to the food chain for mercury contained in sediments. Since terrigenous supplies of organic carbon to the Barents Sea are minor (˜5%) compared to the marine supply, modern sediment deposits in this region sequester on average 6.0 g/m2year organic carbon, or 5.8% of the annual integrated pelagic primary production. This burial fraction exceeds, by a factor of 3, the burial fraction derived for the Holocene.

  17. Recent Alterations of Aerosol Concentration, Mercury Distribution and Organic Matter Deposition in the Arctic

    NASA Astrophysics Data System (ADS)

    Pempkowiak, Janusz; Zieliński, Tymon; Petelski, Tomasz; Bełdowski, Agata Zaborska Jacek

    2011-01-01

    Material fluxes in the Arctic and Antarctic have been, in several respects, strongly affected recently. For example, atmospheric turbidity conditions are frequently subject to strong changes due to haze and dust transport episodes, which can cause considerable perturbations in the radiation balance of the atmosphere beyond regional scale. This, directly or indirectly, contributes to the increased mercury deposition and organic matter fluxes to sediments. The results show that local emissions are not always the most important factors influencing the composition of aerosol in the atmosphere of the west Spitsbergen region. The direct radiative impact of polar aerosols on the surface and at the top of the atmosphere (TOA) need to be studied more closely through both theoretical studies on the aerosol radiative properties and measurements of the surface reflectance characteristics. Mercury dissolved/solid partitioning, both in the unconsolidated, fluffy layer of suspended matter covering the sediments, and the uppermost sediment layer, indicate that the influence of the athmospheric mercury deposition event (AMDE) can prolong well into summer (July/August), and can provide a pathway to the food chain for mercury contained in sediments. Since terrigenous supplies of organic carbon to the Barents Sea are minor (~5%) compared to the marine supply, modern sediment deposits in this region sequester on average 6.0 g/m2year organic carbon, or 5.8% of the annual integrated pelagic primary production. This burial fraction exceeds, by a factor of 3, the burial fraction derived for the Holocene.

  18. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Boutton, Thomas W.; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-05-01

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two 13C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change.

  19. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes.

    PubMed

    Wang, Hui; Boutton, Thomas W; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-01-01

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two (13)C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change. PMID:25960162

  20. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes

    PubMed Central

    Wang, Hui; Boutton, Thomas W.; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-01-01

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two 13C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change. PMID:25960162

  1. Partitioning and matrix-specific toxicity of bifenthrin among sediments and leaf-sourced organic matter.

    PubMed

    Maul, Jonathan D; Trimble, Andrew J; Lydy, Michael J

    2008-04-01

    Synthetic pyrethroids readily partition from the aqueous to the solid phase in aquatic systems. Previous work has focused on pyrethroid partitioning to sediment matrices. Within many aquatic systems, however, other carbon-containing materials are present and can be critically important to certain invertebrate species and ecosystem functioning. For example, some invertebrates readily process leaf material, and these processes may represent an additional route of contaminant exposure. To our knowledge, estimates for partitioning of pyrethroids to these nondissolved organic matter matrices and associated toxicity have not been examined. The objectives of the present study were to examine variation in organic carbon (OC)-based partition coefficient (K(OC)) among three size fractions of particulate organic matter from sugar maple (Acer saccharum) leaf litter and sediments for the pyrethroid insecticide bifenthrin and to examine variation in toxicity to Hyalella azteca among bifenthrin-bound organic matter matrices and sediment. Log K(OC) of [(14)C]bifenthrin was greatest within sediment (6.63+/-0.23; mean +/- standard deviation throughout) and lowest in coarse particulate leaf material (4.86+/-0.03). The H. azteca median lethal concentration was 0.07, 0.11, and 0.15 microg/g OC for leaf material, sediment, and a 50% mix of leaf and sediment, respectively. Nonoverlapping 95% confidence intervals occurred between the leaf treatment and the leaf-sediment treatment. This pattern was supported in an additional experiment, and at 0.22 microg/g OC, H. azteca survival was greater in the leaf-sediment mixture than in sediment or in leaf material alone (F=29.5, p<0.0001). In systems that contain sediment and leaf material, both greater partitioning of bifenthrin to the sediment fraction and preferential use of leaf substrates may drive H. azteca survival. PMID:18333691

  2. Influence of land use on soil organic matter

    NASA Astrophysics Data System (ADS)

    Rogeon, H.; Lemée, L.; Chabbi, A.; Ambles, A.

    2009-04-01

    Soil organic matter (SOM) is actually of great environmental interest as the amount of organic matter stored in soils represents one of the largest reservoirs of organic carbon on the global scale [1]. Indeed, soil carbon storage capacity represents 1500 to 2000 Gt for the first meter depth, which is twice the concentration of atmospheric CO2 [2]. Furthermore, human activities, such as deforestation (which represents a flux of 1.3 Gt C/year), contribute to the increase in atmospheric CO2 concentration for about one percent a year [3]. Therefore, carbon dioxide sequestration in plant and carbon storage in soil and biomass could be considered as a complementary solution against climate change. The stock of carbon in soils is greatly influenced by land use (ca 70 Gt for a forest soil or a grassland against 40 Gt for an arable land). Furthermore the molecular composition of SOM should be also influenced by vegetation. In this context, four horizons taken between 0-120 cm from the same profile of a soil under grassland and forest located in the vicinity of Poitiers (INRA Lusignan, ORE Prairie) were compared. For the surface horizon, the study is improved with the results from the cultivated soil from INRA Versailles. Soil organic matter was characterized using IR spectroscopy, elemental analysis and thermal analysis. Granulometric fractionation into sand (50-2000 μm), silt (2-50 μm) and clay (<2 μm) was conducted. The organic matter associated with the mineral fractions was thus characterized using thermochemolysis coupled with gas chromatography and mass spectrometry (Py-GC/MS). The total lipidic fractions were extracted with CH2Cl2/MeOH using an accelerated solvent extraction (ASE). In the three soils, lipids are concentrated into the superficial horizon (0-30 cm) which indicates a low mobilisation. Lipids from the superficial horizon are more abundant for the arable soil (1010 ppm) than for the two other (400 ppm). Lipids from the forest and the grassland were

  3. Storage and turnover of organic matter in soil

    SciTech Connect

    Torn, M.S.; Swanston, C.W.; Castanha, C.; Trumbore, S.E.

    2008-07-15

    Historically, attention on soil organic matter (SOM) has focused on the central role that it plays in ecosystem fertility and soil properties, but in the past two decades the role of soil organic carbon in moderating atmospheric CO{sub 2} concentrations has emerged as a critical research area. This chapter will focus on the storage and turnover of natural organic matter in soil (SOM), in the context of the global carbon cycle. Organic matter in soils is the largest carbon reservoir in rapid exchange with atmospheric CO{sub 2}, and is thus important as a potential source and sink of greenhouse gases over time scales of human concern (Fischlin and Gyalistras 1997). SOM is also an important human resource under active management in agricultural and range lands worldwide. Questions driving present research on the soil C cycle include: Are soils now acting as a net source or sink of carbon to the atmosphere? What role will soils play as a natural modulator or amplifier of climatic warming? How is C stabilized and sequestered, and what are effective management techniques to foster these processes? Answering these questions will require a mechanistic understanding of how and where C is stored in soils. The quantity and composition of organic matter in soil reflect the long-term balance between plant carbon inputs and microbial decomposition, as well as other loss processes such as fire, erosion, and leaching. The processes driving soil carbon storage and turnover are complex and involve influences at molecular to global scales. Moreover, the relative importance of these processes varies according to the temporal and spatial scales being considered; a process that is important at the regional scale may not be critical at the pedon scale. At the regional scale, SOM cycling is influenced by factors such as climate and parent material, which affect plant productivity and soil development. More locally, factors such as plant tissue quality and soil mineralogy affect

  4. Reactivity and mobilization of permafrost-derived organic matter along the Lena River Delta - Laptev Sea transition

    NASA Astrophysics Data System (ADS)

    Koch, Boris P.; Dubinenkov, Ivan; Flerus, Ruth; Schmitt-Kopplin, Philippe; Kattner, Gerhard

    2015-04-01

    The impact of global warming on organic carbon budgets in permafrost systems are not well constrained. Changes in organic carbon fluxes caused by permafrost thaw depend on microbial activity, coastal erosion, mobilization of organic matter by increased porewater fluxes, and the inherent chemical stability of organic matter in permafrost soils. Here we aim at the identification and molecular characterization of active and inactive dissolved organic matter (DOM) components within the river-ocean transition. We studied four transects in the coastal Laptev Sea characterized by steep physico-chemical gradients. Molecular information on solid-phase extracted DOM was derived from ultrahigh resolution mass spectrometry. Changes of the chemical composition with salinity were used as a measure for DOM reactivity. Although changes of dissolved organic carbon (DOC) in the estuary suggested conservative mixing, only 27% of the identified molecular formulas behaved conservatively, 32% were moderately affected, and 41% were actively involved in estuarine processes. The molecular complexity in the DOM samples increased with growing marine influence and the average elemental composition (i.e. relative contribution of organic nitrogen and oxygen compounds) changed significantly with increasing salinity. These chemical changes were consistent with the results of a 20-day microbial incubation experiment, during which more than half of the permafrost-derived DOC was mineralized. We conclude that, although the DOC gradient in the estuary suggests conservative behavior, terrestrial DOM is substantially affected by estuarine processes which in turn also impact organic carbon budgets in the Lena Delta.

  5. Size fractionated characterization of freshwater organic matter fluorescence

    NASA Astrophysics Data System (ADS)

    Baker, A.; Lead, J.; Elliott, S.; Demomi, A.; Liu, R.; Seredynska-Sobecka, B.; Hudson, N. J.

    2006-12-01

    We employ a range of optical (fluorescence, absorbance) techniques to freshwater organic matter, focusing on samples from urban catchments and using both traditional (filtration, cross flow ultrafiltration) and novel (split cell thin flow (SPLITT)) fractionation techniques to investigate the fluorescence characteristics of both dissolved and colloidal organic matter and to probe different fractions of the size range. We find: (1) As with previous studies, urban freshwaters have high tryptophan-like fluorescence in comparison to humic-like fluorescence. (2) After conventional filtration, our samples demonstrate that humic-like fluorescence is predominantly within the <25 nm fraction and pH dependent, suggesting that it is predominantly `dissolved'. Tryptophan-like fluorescence is associated with either dissolved, colloidal and particulate fractions, and is less pH dependent, depending on the sample, suggesting a variety of sources that are known to include microbial and biological cells and their exudates and the products of decomposition and feeding. (3) When the thermal quenching of fluorescence is investigated at different filter fractions, humic-like fluorescence quenching does not vary with filter fraction, whereas tryptophan-like fluorescence quenching exhibits a size dependency. This confirms at least two sources of tryptophan-like fluorescence that have different sizes and different thermal quenching properties. (4) SPLITT also shows that tryptophan-like fluorescence intensity is found mainly in the particulate material and is not pH dependent, while humic-like fluorescence intensities are dependent on pH but not on size. However, humic-like fluorescence intensity normalised to absorbance, related to fluorescence efficiency and molar mass, varies with size in the SPLITT samples. (5) Cross flow ultrafiltration confirms that, compared with tryptophan standards, freshwater tryptophan-like fluorescence is not dissolved and `free'. However, it is related to the

  6. Root Mediation of Soil Organic Matter Feedbacks to Climate Change

    NASA Astrophysics Data System (ADS)

    Pendall, E.; Carrillo, Y.; Nie, M.; Osanai, Y.; Nelson, L. C.; Sanderman, J.; Baldock, J.; Hovenden, M.

    2014-12-01

    The importance of plant roots in carbon cycling and especially soil organic matter (SOM) formation and decomposition has been recently recognized. Up to eighty percent of net primary production may be allocated to roots in ecosystems such as grasslands, where they contribute substantially to SOM formation. On the other hand, root induced priming of SOM decomposition has been implicated in the loss of soil C stocks. Thus, the accurate prediction of climate change impacts on C sequestration in soils largely depends upon improved understanding of root-mediated SOM formation and loss in the rhizosphere. This presentation represents an initial attempt to synthesize belowground observations from free-air CO2 enrichment and warming experiments in two grassland ecosystems. We found that the chemical composition of root carbon is similar to particulate organic matter (POM), but not to mineral associated organic matter (MOM), suggesting less microbial modification during formation of POM than MOM. While root biomass and production rates increased under elevated CO2, POM and MOM fractions did not increase proportionally. We also observed increased root decomposition with elevated CO2, which was likely due to increased soil water and substrate availability, since root C quality (determined by NMR) and decomposition (in laboratory incubations) were unaltered. Further, C quality and decomposition rates of roots differed between C3 and C4 functional types. Changes in root morphology with elevated CO2 have altered root functioning. Increased root surface area and length per unit mass allow increased exploration for nutrients, and potentially enhanced root exudation, rhizodeposition, and priming of SOM decomposition. Controlled chamber experiments demonstrated that uptake of N from SOM was linearly correlated with specific root length. Taken together, these results indicate that root morphology, chemistry and function all play roles in affecting soil C storage and loss, and that

  7. EXPLORING THE POTENTIAL FORMATION OF ORGANIC SOLIDS IN CHONDRITES AND COMETS THROUGH POLYMERIZATION OF INTERSTELLAR FORMALDEHYDE

    SciTech Connect

    Kebukawa, Yoko; Cody, George D.; David Kilcoyne, A. L. E-mail: yoko@ep.sci.hokudai.ac.jp

    2013-07-01

    Polymerization of interstellar formaldehyde, first through the formose reaction and then through subsequent condensation reactions, provides a plausible explanation for how abundant and highly chemically complex organic solids may have come to exist in primitive solar system objects. In order to gain better insight on the reaction, a systematic study of the relationship of synthesis temperature with resultant molecular structure was performed. In addition, the effect of the presence of ammonia on the reaction rate and molecular structure of the product was studied. The synthesized formaldehyde polymer is directly compared to chondritic insoluble organic matter (IOM) isolated from primitive meteorites using solid-state {sup 13}C nuclear magnetic resonance, Fourier transform infrared, and X-ray absorption near edge structure spectroscopy. The molecular structure of the formaldehyde polymer is shown to exhibit considerable similarity at the functional group level with primitive chondritic IOM. The addition of ammonia to the solution enhances the rate of polymerization reaction at lower temperatures and results in substantial incorporation of nitrogen into the polymer. Morphologically, the formaldehyde polymer exists as submicron to micron-sized spheroidal particles and spheroidal particle aggregates that bare considerable similarity to the organic nanoglobules commonly observed in chondritic IOM. These spectroscopic and morphological data support the hypothesis that IOM in chondrites and refractory organic carbon in comets may have formed through the polymerization of interstellar formaldehyde after planetesimal accretion, in the presence of liquid water, early in the history of the solar system.

  8. Exploring the Potential Formation of Organic Solids in Chondrites and Comets through Polymerization of Interstellar Formaldehyde

    NASA Astrophysics Data System (ADS)

    Kebukawa, Yoko; Kilcoyne, A. L. David; Cody, George D.

    2013-07-01

    Polymerization of interstellar formaldehyde, first through the formose reaction and then through subsequent condensation reactions, provides a plausible explanation for how abundant and highly chemically complex organic solids may have come to exist in primitive solar system objects. In order to gain better insight on the reaction, a systematic study of the relationship of synthesis temperature with resultant molecular structure was performed. In addition, the effect of the presence of ammonia on the reaction rate and molecular structure of the product was studied. The synthesized formaldehyde polymer is directly compared to chondritic insoluble organic matter (IOM) isolated from primitive meteorites using solid-state 13C nuclear magnetic resonance, Fourier transform infrared, and X-ray absorption near edge structure spectroscopy. The molecular structure of the formaldehyde polymer is shown to exhibit considerable similarity at the functional group level with primitive chondritic IOM. The addition of ammonia to the solution enhances the rate of polymerization reaction at lower temperatures and results in substantial incorporation of nitrogen into the polymer. Morphologically, the formaldehyde polymer exists as submicron to micron-sized spheroidal particles and spheroidal particle aggregates that bare considerable similarity to the organic nanoglobules commonly observed in chondritic IOM. These spectroscopic and morphological data support the hypothesis that IOM in chondrites and refractory organic carbon in comets may have formed through the polymerization of interstellar formaldehyde after planetesimal accretion, in the presence of liquid water, early in the history of the solar system.

  9. Method for determination of methane potentials of solid organic waste

    SciTech Connect

    Hansen, Trine L.; Schmidt, Jens Ejbye; Angelidaki, Irini; Marca, Emilia; Jansen, Jes la Cour; Mosboek, Hans; Christensen, Thomas H

    2004-07-01

    A laboratory procedure is described for measuring methane potentials of organic solid waste. Triplicate reactors with 10 grams of volatile solids were incubated at 55 deg. C with 400 ml of inoculum from a thermophilic biogas plant and the methane production was followed over a 50-day period by regular measurements of methane on a gas chromatograph. The procedure involves blanks as well as cellulose controls. Methane potentials have been measured for source-separated organic household waste and for individual waste materials. The procedure has been evaluated regarding practicality, workload, detection limit, repeatability and reproducibility as well as quality control procedures. For the source-separated organic household waste a methane potential of 495 ml CH{sub 4}/g VS was found. For fat and oil a lag-phase of several days was seen. The protein sample was clearly inhibited and the maximal methane potential was therefore not achieved. For paper bags, starch and glucose 63, 84 and 94% of the theoretical methane potential was achieved respectively. A detection limit of 72.5 ml CH{sub 4}/g VS was calculated from the results. This is acceptable, since the methane potential of the tested waste materials was in the range of 200-500 ml CH{sub 4}/g VS. The determination of methane potentials is a biological method subject to relatively large variation due to the use of non-standardized inoculum and waste heterogeneity. Therefore, procedures for addressing repeatability and reproducibility are suggested.

  10. Method for determination of methane potentials of solid organic waste.

    PubMed

    Hansen, Trine L; Schmidt, Jens Ejbye; Angelidaki, Irini; Marca, Emilia; Jansen, Jes la Cour; Mosbaek, Hans; Christensen, Thomas H

    2004-01-01

    A laboratory procedure is described for measuring methane potentials of organic solid waste. Triplicate reactors with 10 grams of volatile solids were incubated at 55 degrees C with 400 ml of inoculum from a thermophilic biogas plant and the methane production was followed over a 50-day period by regular measurements of methane on a gas chromatograph. The procedure involves blanks as well as cellulose controls. Methane potentials have been measured for source-separated organic household waste and for individual waste materials. The procedure has been evaluated regarding practicality, workload, detection limit, repeatability and reproducibility as well as quality control procedures. For the source-separated organic household waste a methane potential of 495 ml CH4/g VS was found. For fat and oil a lag-phase of several days was seen. The protein sample was clearly inhibited and the maximal methane potential was therefore not achieved. For paper bags, starch and glucose 63, 84 and 94% of the theoretical methane potential was achieved respectively. A detection limit of 72.5 ml CH4/g VS was calculated from the results. This is acceptable, since the methane potential of the tested waste materials was in the range of 200-500 ml CH4/g VS. The determination of methane potentials is a biological method subject to relatively large variation due to the use of non-standardized inoculum and waste heterogeneity. Therefore, procedures for addressing repeatability and reproducibility are suggested. PMID:15081067

  11. Relevance of wet deposition of organic matter for alpine ecosystems

    NASA Astrophysics Data System (ADS)

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Goss, N. R.; Reche, I.

    2011-12-01

    In barren, alpine environments, carbon inputs from atmospheric deposition may be very important for ecological processes. Recent findings suggest that atmospheric deposition influences the quality of dissolved organic matter (DOM) in alpine lakes on a global scale. Here, we evaluate the inputs of DOM in atmospheric wet deposition to alpine terrestrial ecosystems, in terms of both quantity and quality. We show that at the Niwot Ridge Long Term Ecological Research Station (Colorado, USA) wet deposition represents a seasonally variable (Figure 1) mass input of organic carbon, depositing on average 6 kg C/ha/yr or roughly 1500 kg C to the Green Lake 4 watershed at Niwot Ridge. Wet deposition is, therefore, a substantial input of dissolved organic carbon (DOC) to the catchment when compared to the annual DOC yield from Green Lake 4, estimated at just over 1800 kg C. In terms of DOM bioavailability for alpine microorganisms, our optical spectroscopic results showing high amounts of amino acid-like fluorescence and low aromaticity suggest that DOM in wet deposition may be particularly labile, especially in the summer months. The heterotrophic processing of this organic carbon input has important implications for the cycling of other nutrients, such as nitrogen, in alpine environments. We have also shown that the sources of DOM in wet deposition include bioaerosols, such as pollen, which represent much of the summer DOC loading. However, relationships with inorganic N and sulfate also suggest that organic pollutants in the atmosphere may have an equally important influence on DOM in wet deposition. Additionally, the quality of wet deposition DOM in the spring is similar to that of dust deposition observed near the Sahara and may be influenced by dust events, as shown from air mass trajectories originating in or near the Colorado Plateau. The seasonality of DOM quality appears to be related to these varying sources and is, therefore, a critical topic for future research.

  12. Sources, Ages, and Alteration of Organic Matter in Estuaries

    NASA Astrophysics Data System (ADS)

    Canuel, Elizabeth A.; Hardison, Amber K.

    2016-01-01

    Understanding the processes influencing the sources and fate of organic matter (OM) in estuaries is important for quantifying the contributions of carbon from land and rivers to the global carbon budget of the coastal ocean. Estuaries are sites of high OM production and processing, and understanding biogeochemical processes within these regions is key to quantifying organic carbon (Corg) budgets at the land-ocean margin. These regions provide vital ecological services, including nutrient filtration and protection from floods and storm surge, and provide habitat and nursery areas for numerous commercially important species. Human activities have modified estuarine systems over time, resulting in changes in the production, respiration, burial, and export of Corg. Corg in estuaries is derived from aquatic, terrigenous, and anthropogenic sources, with each source exhibiting a spectrum of ages and lability. The complex source and age characteristics of Corg in estuaries complicate our ability to trace OM along the river-estuary-coastal ocean continuum. This review focuses on the application of organic biomarkers and compound-specific isotope analyses to estuarine environments and on how these tools have enhanced our ability to discern natural sources of OM, trace their incorporation into food webs, and enhance understanding of the fate of Corg within estuaries and their adjacent waters.

  13. Sources, Ages, and Alteration of Organic Matter in Estuaries.

    PubMed

    Canuel, Elizabeth A; Hardison, Amber K

    2016-01-01

    Understanding the processes influencing the sources and fate of organic matter (OM) in estuaries is important for quantifying the contributions of carbon from land and rivers to the global carbon budget of the coastal ocean. Estuaries are sites of high OM production and processing, and understanding biogeochemical processes within these regions is key to quantifying organic carbon (Corg) budgets at the land-ocean margin. These regions provide vital ecological services, including nutrient filtration and protection from floods and storm surge, and provide habitat and nursery areas for numerous commercially important species. Human activities have modified estuarine systems over time, resulting in changes in the production, respiration, burial, and export of Corg. Corg in estuaries is derived from aquatic, terrigenous, and anthropogenic sources, with each source exhibiting a spectrum of ages and lability. The complex source and age characteristics of Corg in estuaries complicate our ability to trace OM along the river-estuary-coastal ocean continuum. This review focuses on the application of organic biomarkers and compound-specific isotope analyses to estuarine environments and on how these tools have enhanced our ability to discern natural sources of OM, trace their incorporation into food webs, and enhance understanding of the fate of Corg within estuaries and their adjacent waters. PMID:26407145

  14. Evaluation of thermophilic fungal consortium for organic municipal solid waste composting.

    PubMed

    Awasthi, Mukesh Kumar; Pandey, Akhilesh Kumar; Khan, Jamaluddin; Bundela, Pushpendra Singh; Wong, Jonathan W C; Selvam, Ammaiyappan

    2014-09-01

    Influence of fungal consortium and different turning frequency on composting of organic fraction of municipal solid waste (OFMSW) was investigated to produce compost with higher agronomic value. Four piles of OFMSW were prepared: three piles were inoculated with fungal consortium containing 5l each spore suspensions of Trichoderma viride, Aspergillus niger and Aspergillus flavus and with a turning frequency of weekly (Pile 1), twice a week (Pile 2) and daily (Pile 3), while Pile 4 with weekly turning and without fungal inoculation served as control. The fungal consortium with weekly (Pile 1) turning frequency significantly affected temperature, pH, TOC, TKN, C/N ratio and germination index. High degradation of organic matter and early maturity was observed in Pile 1. Results indicate that fungal consortium with weekly turning frequency of open windrows were more cost-effective in comparison with other technologies for efficient composting and yield safe end products. PMID:24507579

  15. Diagnostic Yields in Solid Organ Transplant Recipients Admitted With Diarrhea

    PubMed Central

    Echenique, Ignacio A.; Penugonda, Sudhir; Stosor, Valentina; Ison, Michael G.; Angarone, Michael P.

    2015-01-01

    Background. Although diarrhea is a frequent complaint among solid organ transplant recipients, the contribution of infectious etiologies remains incompletely defined. We sought to define the etiologies of diarrhea and the yields of testing at our institution. Methods. We performed a retrospective analysis over an 18-month period of hospitalized solid organ transplant recipients. We stratified diarrhea by community onset vs hospital onset of diarrhea. Results. We identified 422 admissions (representing 314 unique patients) with community-onset diarrhea, and 112 admissions (representing 102 unique patients) with hospital-onset diarrhea. The majority of community- and hospital-onset diarrheal episodes had no identified etiology (60.9% and 75.9%, respectively; P = .03), yet were also self-limited (91% and 91%, respectively; P = .894). Thereafter, the most frequently encountered infectious etiologies were Clostridium difficile infection (13.3% and 11.8%, respectively), norovirus enteritis (8.2% and 3%), cytomegalovirus disease or colitis (6.3% and 2.7%), and bacterial enterocolitis (0.9% and 0%) (P = .03). In aggregate, these entities represented 93.7% and 90.5% of the identified infectious etiologies, respectively. Protozoan causes were rarely seen. Coinfection, or the simultaneous detection of ≥2 pathogens, occurred in 8 (1.9%) and 2 (1.8%) community- and hospital-onset diarrheal admissions, respectively (P = .99). Conclusions. In solid organ transplant recipients who presented at our institution with diarrhea, approximately one-third had infectious etiologies identified, consisting predominantly of C. difficile, norovirus, cytomegalovirus, and bacterial enterocolitis. Other infectious etiologies were rare. PMID:25371488

  16. Modeling of natural organic matter transport processes in groundwater.

    PubMed Central

    Yeh, T C; Mas-Pla, J; McCarthy, J F; Williams, T M

    1995-01-01

    A forced-gradient tracer test was conducted at the Georgetown site to study the transport of natural organic matter (NOM) in groundwater. In particular, the goal of this experiment was to investigate the interactions between NOM and the aquifer matrix. A detailed three-dimensional characterization of the hydrologic conductivity heterogeneity of the site was obtained using slug tests. The transport of a conservative tracer (chloride) was successfully reproduced using these conductivity data. Despite the good simulation of the flow field, NOM breakthrough curves could not be reproduced using a two-site sorption model with spatially constant parameters. Preliminary results suggest that different mechanisms for the adsorption/desorption processes, as well as their spatial variability, may significantly affect the transport and fate of NOM. PMID:7621798

  17. [Dissolved organic matter (DOM) dynamics in karst aquifer systems].

    PubMed

    Yao, Xin; Zou, Sheng-Zhang; Xia, Ri-Yuan; Xu, Dan-Dan; Yao, Min

    2014-05-01

    Dissolved organic matter (DOM) and nutrients have a unique way of producing, decomposing and storing in southwest karst water systems. To understand the biogeochemical cycle of DOM in karst aquifer systems, we investigated the behavioral changes of DOM fluorescence components in Zhaidi karst river system. Two humic-like components (C1 and C2), and one autochthonous tyrosine-like component (C4) were identified using the parallel factor analysis (PARAFAC) model. Compared with the traditional physical and chemical indicators, spatial heterogeneity of DOM was more obvious, which can reflect the subtle changes in groundwater system. Traditional indicators mainly reflect the regional characteristics of karst river system, while DOM fluorescence components reflect the attribute gaps of sampling types. PMID:25055664

  18. Impact of natural organic matter (NOM) on freshwater amphipods.

    PubMed

    Timofeyev, Maxim A; Wiegand, Claudia; Kent Burnison, B; Shatilina, Zhanna M; Pflugmacher, Stephan; Steinberg, Christian E W

    2004-02-01

    Natural organic matter (NOM) isolated from the eutrophic Sanctuary Pond (Point Pelee National Park, Canada) has an adverse impact on amphipod species (Gammarus tigrinus and Chaetogammarus ischnus from Lake Müggelsee, Germany, and Eulimnogammarus cyaneus, from Lake Baikal, Russia). Increases in amphipod mortality, changes in peroxidase activity and increases of heat shock protein (hsp70) expression were observed upon exposure to NOM. The highest resistance to the adverse impact of NOM was observed with the endemic Baikalian amphipod E. cyaneus. However, the mechanisms behind this finding remains obscure. If differences in the sensitivity of the hsp70 antibody may be excluded, different modes of action may be postulated: because the adverse impact of NOM may be caused by reactive oxygen species (ROS) and the NOM itself, the observed differences may be due to the action of ROS alone (with E. cyaneus) and a combination of both adverse modes of action (European species). PMID:14967505

  19. Systematic approaches to comprehensive analyses of natural organic matter

    USGS Publications Warehouse

    Leenheer, Jerry A.

    2009-01-01

    The more that is learned of the chemistry of aquatic natural organic matter (NOM) the greater is the scientific appreciation of the vast complexity of this subject. This complexity is due not only to a multiplicity of precursor molecules in any environment but to their associations with each other and with other components of local environments such as clays, mineral acids and dissolved metals. In addition, this complex system is subject to constant change owing to environmental variables and microbial action. Thus, there is a good argument that no two NOM samples are exactly the same even from the same source at nearly the same time. When ubiquity of occurrence, reaction with water treatment chemicals, and subsequent human exposure are added to the list of NOM issues, one can understand the appeal that this subject holds for a wide variety of environmental scientists.

  20. A search for presolar organic matter in meteorite

    NASA Technical Reports Server (NTRS)

    Yang, J.; Epstein, S.

    1985-01-01

    The D/H ratios and the C-13/C-12 ratios of acid-insoluble organic matter of 4 meteorites, Ochansk (H4), Plainview (H5), Gladstone (H6) and Odessa (IA), were measured. delta-D values for hydrogen extracted by stepwise combustion were negative, down to -280 deg/infinity. delta-C-13 values were also negative except in the case of the carbon coming off at the highest temperature steps for Plainview and Odessa meteorites. The concentrations of C-13-rich carbon were 3-5 orders of magnitude smaller than those found in Murchison meteorite, suggesting that relic grains of stellar condensates were mostly destroyed in the meteorites examined.

  1. Grown organic matter as a fuel raw material resource

    NASA Technical Reports Server (NTRS)

    Roller, W. L.; Keener, H. M.; Kline, R. D.; Mederski, H. J.; Curry, R. B.

    1975-01-01

    An extensive search was made on biomass production from the standpoint of climatic zones, water, nutrients, costs and energy requirements for many species. No exotic species were uncovered that gave hope for a bonanza of biomass production under culture, location, and management markedly different from those of existing agricultural concepts. A simulation analysis of biomass production was carried out for six species using conventional production methods, including their production costs and energy requirements. These estimates were compared with data on food, fiber, and feed production. The alternative possibility of using residues from food, feed, or lumber was evaluated. It was concluded that great doubt must be cast on the feasibility of producing grown organic matter for fuel, in competition with food, feed, or fiber. The feasibility of collecting residues may be nearer, but the competition for the residues for return to the soil or cellulosic production is formidable.

  2. Soil Organic Matter Feedback to changes in soil moisture regimes

    NASA Astrophysics Data System (ADS)

    Kuhn, N. J.; Strunk, R.

    2012-04-01

    The reaction of the soil organic matter (SOM) pool to climate change is largely assessed based on simple models linking temperature and soil moisture, in more sophisticated models also Net Primary Productivity (NPP), to Carbon (C) stocks. Experiments on the sensitivity of vegetation growth and soil properties also mostly consider only temperature as a driver for NPP and thus SOM turnover in soils, while keeping moisture either constant or not distinguishing between moisture and temperature effects. All approaches ignore the feedback of secondary soil properties such aggregation and pore size distribution, to changes in rainfall regime and litter input. In this study, we present an experiment which is designed specifically to identifying the long-term effects of contrasting soil moisture regimes on NPP, soil C stocks and secondary soil properties such as aggregate stability and porosity. In addition, soil respiration as well as SOM quantity and quality are analyzed.

  3. Measuring and modeling continuous quality distributions of soil organic matter

    NASA Astrophysics Data System (ADS)

    Bruun, S.; Gren, G. I. Ã.; Christensen, B. T.; Jensen, L. S.

    2010-01-01

    An understanding of the dynamics of soil organic matter (SOM) is important for our ability to develop management practices that preserve soil quality and sequester carbon. Most SOM decomposition models represent the heterogeneity of organic matter by a few discrete compartments with different turnover rates, while other models employ a continuous quality distribution. To make the multi-compartment models more mechanistic in nature, it has been argued that the compartments should be related to soil fractions actually occurring and having a functional role in the soil. In this paper, we make the case that fractionation methods that can measure continuous quality distributions should be developed, and that the temporal development of these distributions should be incorporated into SOM models. The measured continuous SOM quality distributions should hold valuable information not only for model development, but also for direct interpretation. Measuring continuous distributions requires that the measurements along the quality variable are so frequent that the distribution approaches the underlying continuum. Continuous distributions lead to possible simplifications of the model formulations, which considerably reduce the number of parameters needed to describe SOM turnover. A general framework for SOM models representing SOM across measurable quality distributions is presented and simplifications for specific situations are discussed. Finally, methods that have been used or have the potential to be used to measure continuous quality SOM distributions are reviewed. Generally, existing fractionation methods will have to be modified to allow measurement of distributions or new fractionation techniques will have to be developed. Developing the distributional models in concert with the fractionation methods to measure the distributions will be a major task. We hope the current paper will help generate the interest needed to accommodate this.

  4. Measuring and modelling continuous quality distributions of soil organic matter

    NASA Astrophysics Data System (ADS)

    Bruun, S.; Gren, G. I.; Christensen, B. T.; Jensen, L. S.

    2009-09-01

    An understanding of the dynamics of soil organic matter (SOM) is important for our ability to develop management practices that preserve soil quality and sequester carbon. Most SOM decomposition models represent the heterogeneity of organic matter by a few discrete compartments with different turnover rates, while other models employ a continuous quality distribution. To make the multi-compartment models more mechanistic in nature, it has been argued that the compartments should be related to soil fractions actually occurring and having a functional role in the soil. In this paper, we make the case that fractionation methods that can measure continuous quality distributions should be developed, and that the temporal development of these distributions should be incorporated into SOM models. The measured continuous SOM quality distributions should hold valuable information not only for model development, but also for direct interpretation. Measuring continuous distributions requires that the measurements along the quality variable are so frequent that the distribution is approaching the underlying continuum. Continuous distributions leads to possible simplifications of the model formulations, which considerably reduce the number of parameters needed to describe SOM turnover. A general framework for SOM models representing SOM across measurable quality distributions is presented and simplifications for specific situations are discussed. Finally, methods that have been used or have the potential to be used to measure continuous quality SOM distributions are reviewed. Generally, existing fractionation methods have to be modified to allow measurement of distributions or new fractionation techniques will have to be developed. Developing the distributional models in concert with the fractionation methods to measure the distributions will be a major task. We hope the current paper will help spawning the interest needed to accommodate this.

  5. Priming-induced Changes in Permafrost Soil Organic Matter Decomposition

    NASA Astrophysics Data System (ADS)

    Pegoraro, E.; Schuur, E.; Bracho, R. G.

    2015-12-01

    Warming of tundra ecosystems due to climate change is predicted to thaw permafrost and increase plant biomass and litter input to soil. Additional input of easily decomposable carbon can alter microbial activity by providing a much needed energy source, thereby accelerating soil organic matter decomposition. This phenomenon, known as the priming effect, can increase CO2 flux from soil to the atmosphere. However, the extent to which this mechanism can decrease soil carbon stocks in the Arctic is unknown. This project assessed priming effects on permafrost soil collected from a moist acidic tundra site in Healy, Alaska. We hypothesized that priming would increase microbial activity by providing microbes with a fresh source of carbon, thereby increasing decomposition of old and slowly decomposing carbon. Soil from surface and deep layers were amended with multiple pulses of uniformly 13C labeled glucose and cellulose, and samples were incubated at 15° C to quantify whether labile substrate addition increased carbon mineralization. We quantified the proportion of old carbon mineralization by measuring 14CO2. Data shows that substrate addition resulted in higher respiration rates in amended soils; however, priming was only observed in deep layers, where 30% more soil-derived carbon was respired compared to control samples. This suggests that microbes in deep layers are limited in energy, and the addition of labile carbon increases native soil organic matter decomposition, especially in soil with greater fractions of slowly decomposing carbon. Priming in permafrost could exacerbate the effects of climate change by increasing mineralization rates of carbon accumulated over the long-term in deep layers. Therefore, quantifying priming effect in permafrost soils is imperative to understanding the dynamics of carbon turnover in a warmer world.

  6. Ocean Warming–Acidification Synergism Undermines Dissolved Organic Matter Assembly

    PubMed Central

    Chen, Chi-Shuo; Anaya, Jesse M.; Chen, Eric Y-T; Farr, Erik; Chin, Wei-Chun

    2015-01-01

    Understanding the influence of synergisms on natural processes is a critical step toward determining the full-extent of anthropogenic stressors. As carbon emissions continue unabated, two major stressors—warming and acidification—threaten marine systems on several scales. Here, we report that a moderate temperature increase (from 30°C to 32°C) is sufficient to slow— even hinder—the ability of dissolved organic matter, a major carbon pool, to self-assemble to form marine microgels, which contribute to the particulate organic matter pool. Moreover, acidification lowers the temperature threshold at which we observe our results. These findings carry implications for the marine carbon cycle, as self-assembled marine microgels generate an estimated global seawater budget of ~1016 g C. We used laser scattering spectroscopy to test the influence of temperature and pH on spontaneous marine gel assembly. The results of independent experiments revealed that at a particular point, both pH and temperature block microgel formation (32°C, pH 8.2), and disperse existing gels (35°C). We then tested the hypothesis that temperature and pH have a synergistic influence on marine gel dispersion. We found that the dispersion temperature decreases concurrently with pH: from 32°C at pH 8.2, to 28°C at pH 7.5. If our laboratory observations can be extrapolated to complex marine environments, our results suggest that a warming–acidification synergism can decrease carbon and nutrient fluxes, disturbing marine trophic and trace element cycles, at rates faster than projected. PMID:25714090

  7. Effects of warming on stream biofilm organic matter use capabilities.

    PubMed

    Ylla, Irene; Canhoto, Cristina; Romaní, Anna M

    2014-07-01

    The understanding of ecosystem responses to changing environmental conditions is becoming increasingly relevant in the context of global warming. Microbial biofilm communities in streams play a key role in organic matter cycling which might be modulated by shifts in flowing water temperature. In this study, we performed an experiment at the Candal stream (Portugal) longitudinally divided into two reaches: a control half and an experimental half where water temperature was 3 °C above that of the basal stream water. Biofilm colonization was monitored during 42 days in the two stream halves. Changes in biofilm function (extracellular enzyme activities and carbon substrate utilization profiles) as well as chlorophyll a and prokaryote densities were analyzed. The biofilm in the experimental half showed a higher capacity to decompose cellulose, hemicellulose, lignin, and peptidic compounds. Total leucine-aminopeptidase, cellobiohydrolase and β-xylosidase showed a respective 93, 66, and 61% increase in activity over the control; much higher than would be predicted by only the direct temperature physical effect. In contrast, phosphatase and lipase activity showed the lowest sensitivity to temperature. The biofilms from the experimental half also showed a distinct functional fingerprint and higher carbon usage diversity and richness, especially due to a wider use of polymers and carbohydrates. The changes in the biofilm functional capabilities might be indirectly affected by the higher prokaryote and chlorophyll density measured in the biofilm of the experimental half. The present study provides evidence that a realistic stream temperature increase by 3 °C changes the biofilm metabolism to a greater decomposition of polymeric complex compounds and peptides but lower decomposition of lipids. This might affect stream organic matter cycling and the transfer of carbon to higher trophic levels. PMID:24633338

  8. Molecular characterization of dissolved organic matter (DOM): a critical review.

    PubMed

    Nebbioso, Antonio; Piccolo, Alessandro

    2013-01-01

    Advances in water chemistry in the last decade have improved our knowledge about the genesis, composition, and structure of dissolved organic matter, and its effect on the environment. Improvements in analytical technology, for example Fourier-transform ion cyclotron (FT-ICR) mass spectrometry (MS), homo and hetero-correlated multidimensional nuclear magnetic resonance (NMR) spectroscopy, and excitation emission matrix fluorimetry (EEMF) with parallel factor (PARAFAC) analysis for UV-fluorescence spectroscopy have resulted in these advances. Improved purification methods, for example ultrafiltration and reverse osmosis, have enabled facile desalting and concentration of freshly collected DOM samples, thereby complementing the analytical process. Although its molecular weight (MW) remains undefined, DOM is described as a complex mixture of low-MW substances and larger-MW biomolecules, for example proteins, polysaccharides, and exocellular macromolecules. There is a general consensus that marine DOM originates from terrestrial and marine sources. A combination of diagenetic and microbial processes contributes to its origin, resulting in refractory organic matter which acts as carbon sink in the ocean. Ocean DOM is derived partially from humified products of plants decay dissolved in fresh water and transported to the ocean, and partially from proteinaceous and polysaccharide material from phytoplankton metabolism, which undergoes in-situ microbial processes, becoming refractory. Some of the DOM interacts with radiation and is, therefore, defined as chromophoric DOM (CDOM). CDOM is classified as terrestrial, marine, anthropogenic, or mixed, depending on its origin. Terrestrial CDOM reaches the oceans via estuaries, whereas autochthonous CDOM is formed in sea water by microbial activity; anthropogenic CDOM is a result of human activity. CDOM also affects the quality of water, by shielding it from solar radiation, and constitutes a carbon sink pool. Evidence in support

  9. Utility of monitoring mycophenolic acid in solid organ transplant patients.

    PubMed Central

    Oremus, Mark; Zeidler, Johannes; Ensom, Mary H H; Matsuda-Abedini, Mina; Balion, Cynthia; Booker, Lynda; Archer, Carolyn; Raina, Parminder

    2008-01-01

    OBJECTIVES To investigate whether monitoring concentrations of mycophenolic acid (MPA) in the serum or plasma of persons who receive a solid organ transplant will result in a lower incidence of transplant rejections and adverse events versus no monitoring of MPA. To investigate whether the incidence of rejection or adverse events differs according to MPA dose or frequency, type of MPA, the form of MPA monitored, the method of MPA monitoring, or sample characteristics. To assess whether monitoring is cost-effective versus no monitoring. DATA SOURCES The following databases were searched from their dates of inception (in brackets) until October 2007: MEDLINE (1966); BIOSIS Previews (1976); EMBASE (1980); Cochrane Database of Systematic Reviews (1995); and Cochrane Central Register of Controlled Trials (1995). REVIEW METHODS Studies identified from the data sources went through two levels of screening (i.e., title and abstract, full text) and the ones that passed were abstracted. Criteria for abstraction included publication in the English language, study design (i.e., randomized controlled trial [RCT], observational study with comparison group, case series), and patient receipt of allograft solid organ transplant. Additionally, any form of MPA had to be measured at least once in the plasma or serum using any method of measurement (e.g., AUC0-12, C0). Furthermore, these measures had to be linked to a health outcome (e.g., transplant rejection). Certain biomarkers (e.g., serum creatinine, glomular filtration rate) and all adverse events were also considered health outcomes. RESULTS The published evidence on MPA monitoring is inconclusive. Direct, head-to-head comparison of monitoring versus no monitoring is limited to one RCT in adult, kidney transplant patients. Inferences about monitoring can be made from some observational studies, although the evidence is equivocal for MPA dose and dose frequency, nonexistent for type of MPA, inconclusive for form of MPA monitored

  10. Role of organic matter fractions in the Montney tight gas reservoir quality

    NASA Astrophysics Data System (ADS)

    Sanei, Hamed; Wood, James M.; Haeri Ardakani, Omid; Clarkson, Chris R.

    2015-04-01

    This study presents a new approach in Rock-Eval analysis to quantify various organic matter fractions in unconventional reservoirs. The results of study on core samples from the Triassic Montney Formation tight gas reservoir in the Western Canadian Sedimentary Basin show that operationally-defined S1 and S2 hydrocarbon peaks from conventional Rock-Eval analysis may not adequately characterize the organic constituents of unconventional reservoir rocks. Modification of the thermal recipe for Rock-Eval analysis, in conjunction with manual peak integration, provides important information with significance for the evaluation of reservoir quality. An adapted Rock-Eval method, herein called the extended slow heating (ESH) cycle, was developed in which the heating rate was slowed to 10°C per minute over an extended temperature range (150 to 650°C). For Montney core samples from the wet gas window, this method provided quantitative distinctions between major organic matter components of the rock. We show that the traditional S1 and S2 peaks can now be quantitatively divided into three components: (S1ESH) free light oil, (S2a ESH) condensed hydrocarbon residue (CHCR), and (S2b ESH + residual carbon) solid bitumen (refractory, consolidated bitumen/pyrobitumen). The majority of the total organic carbon (TOC) in the studied Montney core samples consists of solid bitumen that represents a former liquid oil phase which migrated into the larger paleo-intergranular pore spaces. Subsequent physicochemical changes to the oil environment led to the precipitation of asphaltene aggregates. Further diagenetic and thermal maturity processes consolidated these asphaltene aggregates into "lumps" of solid bitumen (or pyrobitumen at higher thermal maturity). Solid bitumen obstructs porosity and hinders fluid flow, and thus shows strong negative correlations with reservoir qualities such as porosity and pore throat size. We also find a strong positive correlation between the quantities of

  11. Response of Dissolved Organic Matter to Warming and Nitrogen Addition

    NASA Astrophysics Data System (ADS)

    Choi, J. H.; Nguyen, H.

    2014-12-01

    Dissolved Organic Matter (DOM) is a ubiquitous mixture of soluble organic components. Since DOM is produced from the terrestrial leachate of various soil types, soil may influence the chemistry and biology of freshwater through the input of leachate and run-off. The increased temperature by climate change could dramatically change the DOM characteristics of soils through enhanced decomposition rate and losses of carbon from soil organic matter. In addition, the increase in the N-deposition affects DOM leaching from soils by changing the carbon cycling and decomposition rate of soil decay. In this study, we conducted growth chamber experiments using two types of soil (wetland and forest) under the conditions of temperature increase and N-deposition in order to investigate how warming and nitrogen addition influence the characteristics of the DOM leaching from different soil types. This leachate controls the quantity and quality of DOM in surface water systems. After 10 months of incubation, the dissolved organic carbon (DOC) concentrations decreased for almost samples in the range of 7.6 to 87.3% (ANOVA, p<0.05). The specific UV absorption (SUVA) values also decreased for almost samples after the first 3 months and then increased gradually afterward in range of 3.3 to 108.4%. Both time and the interaction between time and the temperature had the statistically significant effects on the SUVA values (MANOVA, p<0.05). Humification index (HIX) showed the significant increase trends during the duration of incubation and temperature for almost the samples (ANOVA, p<0.05). Higher decreases in the DOC values and increases in HIX were observed at higher temperatures, whereas the opposite trend was observed for samples with N-addition. The PARAFAC results showed that three fluorescence components: terrestrial humic (C1), microbial humic-like (C2), and protein-like (C3), constituted the fluorescence matrices of soil samples. During the experiment, labile DOM from the soils was

  12. Geochemical drivers of organic matter decomposition in Arctic tundra soils

    DOE PAGESBeta

    Herndon, Elizabeth M.; Yang, Ziming; Graham, David E.; Wullschleger, Stan D.; Gu, Baohua; Liang, Liyuan; Bargar, John; Janot, Noemie; Regier, Tom Z.

    2015-12-07

    Climate change is warming tundra ecosystems in the Arctic, resulting in the decomposition of previously-frozen soil organic matter (SOM) and release of carbon (C) to the atmosphere; however, the processes that control SOM decomposition and C emissions remain highly uncertain. In this study, we evaluate geochemical factors that influence anaerobic production of carbon dioxide (CO2) and methane (CH4) in the active layers of four ice-wedge polygons. Surface and soil pore waters were collected during the annual thaw season over a two-year period in an area containing waterlogged, low-centered polygons and well-drained, high-centered polygons. We report spatial and seasonal patterns ofmore » dissolved gases in relation to the geochemical properties of Fe and organic C as determined using spectroscopic and chromatographic techniques. Iron was present as Fe(II) in soil solution near the permafrost boundary but enriched as Fe(III) in the middle of the active layer, similar to dissolved aromatic-C and organic acids. Dissolved CH4 increased relative to dissolved CO2 with depth and varied with soil moisture in the middle of the active layer in patterns that were positively correlated with the proportion of dissolved Fe(III) in transitional and low-centered polygon soils but negatively correlated in the drier flat- and high-centered polygons. These results suggest that microbial-mediated Fe oxidation and reduction influence respiration/fermentation of SOM and production of substrates (e.g., low-molecular-weight organic acids) for methanogenesis. As a result, we infer that geochemical differences induced by water saturation dictate microbial products of SOM decomposition, and Fe geochemistry is an important factor regulating methanogenesis in anoxic tundra soils.« less

  13. Geochemical drivers of organic matter decomposition in Arctic tundra soils

    SciTech Connect

    Herndon, Elizabeth M.; Yang, Ziming; Graham, David E.; Wullschleger, Stan D.; Gu, Baohua; Liang, Liyuan; Bargar, John; Janot, Noemie; Regier, Tom Z.

    2015-12-07

    Climate change is warming tundra ecosystems in the Arctic, resulting in the decomposition of previously-frozen soil organic matter (SOM) and release of carbon (C) to the atmosphere; however, the processes that control SOM decomposition and C emissions remain highly uncertain. In this study, we evaluate geochemical factors that influence anaerobic production of carbon dioxide (CO2) and methane (CH4) in the active layers of four ice-wedge polygons. Surface and soil pore waters were collected during the annual thaw season over a two-year period in an area containing waterlogged, low-centered polygons and well-drained, high-centered polygons. We report spatial and seasonal patterns of dissolved gases in relation to the geochemical properties of Fe and organic C as determined using spectroscopic and chromatographic techniques. Iron was present as Fe(II) in soil solution near the permafrost boundary but enriched as Fe(III) in the middle of the active layer, similar to dissolved aromatic-C and organic acids. Dissolved CH4 increased relative to dissolved CO2 with depth and varied with soil moisture in the middle of the active layer in patterns that were positively correlated with the proportion of dissolved Fe(III) in transitional and low-centered polygon soils but negatively correlated in the drier flat- and high-centered polygons. These results suggest that microbial-mediated Fe oxidation and reduction influence respiration/fermentation of SOM and production of substrates (e.g., low-molecular-weight organic acids) for methanogenesis. As a result, we infer that geochemical differences induced by water saturation dictate microbial products of SOM decomposition, and Fe geochemistry is an important factor regulating methanogenesis in anoxic tundra soils.

  14. Distribution of some organic components in two forest soils profiles with evidence of soil organic matter leaching.

    NASA Astrophysics Data System (ADS)

    Álvarez-Romero, Marta; Papa, Stefania; Lozano-García, Beatriz; Parras-Alcántara, Luis; Coppola, Elio

    2015-04-01

    Soil stores organic carbon more often than we can find in living vegetation and atmosphere together. This reservoir is not inert, but it is constantly in a dynamic phase of inputs and losses. Soil organic carbon mainly depends on land cover, environment conditions and soil properties. After soil deposition, the organic residues of different origin and nature, the Soil Organic Matter (SOM) can be seen involved in two different processes during the pedogenesis: mineralization and humification. The transport process along profile happens under certain conditions such as deposition of high organic residues amount on the top soil, high porosity of the soil caused by sand or skeleton particles, that determine a water strong infiltrating capacity, also, extreme temperatures can slow or stop the mineralization and/or humification process in one intermediate step of the degradation process releasing organic metabolites with high or medium solubility and high loads of water percolating in relation to intense rainfall. The transport process along soil profile can take many forms that can end in the formation of Bh horizons (h means accumulation of SOM in depth). The forest cover nature influence to the quantity and quality of the organic materials deposited with marked differences between coniferous and deciduous especially in relation to resistance to degradation. Two soils in the Campania region, located in Lago Laceno (Avellino - Italy) with different forest cover (Pinus sp. and Fagus sp.) and that meets the requirements of the place and pedological formation suitable for the formation and accumulation of SOM in depth (Bh horizon) were studied. The different soil C fractions were determinated and were assessed (Ciavatta C. et al. 1990; Dell'Abate M.T. et al. 2002) for each soil profile the Total Extractable Lipids (TEL). Furthermore, the lignin were considered as a major component of soil organic matter (SOM), influencing its pool-size and its turnover, due to the high

  15. High brightness diode-pumped organic solid-state laser

    NASA Astrophysics Data System (ADS)

    Zhao, Zhuang; Mhibik, Oussama; Nafa, Malik; Chénais, Sébastien; Forget, Sébastien

    2015-02-01

    High-power, diffraction-limited organic solid-state laser operation has been achieved in a vertical external cavity surface-emitting organic laser (VECSOL), pumped by a low-cost compact blue laser diode. The diode-pumped VECSOLs were demonstrated with various dyes in a polymer matrix, leading to laser emissions from 540 nm to 660 nm. Optimization of both the pump pulse duration and output coupling leads to a pump slope efficiency of 11% for a DCM based VECSOLs. We report output pulse energy up to 280 nJ with 100 ns long pump pulses, leading to a peak power of 3.5 W in a circularly symmetric, diffraction-limited beam.

  16. High brightness diode-pumped organic solid-state laser

    SciTech Connect

    Zhao, Zhuang; Mhibik, Oussama; Nafa, Malik; Chénais, Sébastien; Forget, Sébastien

    2015-02-02

    High-power, diffraction-limited organic solid-state laser operation has been achieved in a vertical external cavity surface-emitting organic laser (VECSOL), pumped by a low-cost compact blue laser diode. The diode-pumped VECSOLs were demonstrated with various dyes in a polymer matrix, leading to laser emissions from 540 nm to 660 nm. Optimization of both the pump pulse duration and output coupling leads to a pump slope efficiency of 11% for a DCM based VECSOLs. We report output pulse energy up to 280 nJ with 100 ns long pump pulses, leading to a peak power of 3.5 W in a circularly symmetric, diffraction-limited beam.

  17. The origin and biogeochemistry of organic matter in surface sediments of Lake Shihwa and Lake Hwaong

    NASA Astrophysics Data System (ADS)

    Won, Eun-Ji; Cho, Hyen-Goo; Shin, Kyung-Hoon

    2007-12-01

    To understand the origin and biogeochemistry of the organic matter in surface sediments of Lake Shihwa and Lake Hwaong, organic nitrogen, inorganic nitrogen, labile organic carbon, and residual organic carbon contents as well as stable isotope ratios for carbon and nitrogen were determined by KOBr-KOH treatment. Ratios of organic carbon to organic nitrogen (Corg/Norg) (mean = 24) were much higher than ratios of organic carbon to total nitrogen (Corg/Ntot) (mean=12), indicating the presence of significant amounts of inorganic nitrogen in the surface sediments of both lakes. Stable isotope ratios for organic nitrogen were, on average, 5.2‰ heavier than ratios of inorganic nitrogen in Lake Shihwa, but those same ratios were comparable in Lake Hwaong. This might be due to differences in the origin or the degree of degradation of sedimentary organic matter between the two lakes. In addition, stable isotope ratios for labile organic carbon were, on average, 1.4‰ heavier than those for residual organic carbon, reflecting the preferential oxidation of13C-enriched organic matter. The present study demonstrates that KOBr-KOH treatment of sedimentary organic matter can provide valuable information for understanding the origin and degradation state of organic matter in marine and brackish sediments. This also suggests that the ratio of Corg/Norg and stable isotope ratios for organic nitrogen can be used as indexes of the degree of degradation of organic matter.

  18. Organic Matter Development and Turnover depending on Mineral Composition in an Artificial Soil Incubation Experiment

    NASA Astrophysics Data System (ADS)

    Pronk, G. J.; Heister, K.; Kogel-Knabner, I.

    2012-12-01

    Recent research indicates that minerals play an important role in the formation and stabilization of soil organic matter (SOM). However, it is difficult to determine the effect of mineral composition on SOM development in natural soils where mineral composition is usually not well defined and initial conditions are generally unknown. Therefore, we performed an incubation experiment with so-called "artificial soils" composed of mixtures of clean and well-defined model materials where the development of organic matter could be followed from known initial conditions. The artificial soils were composed of 8 different mixtures of quartz, illite, montmorillonite, ferrihydrite, boehmite and charcoal, manure as carbon substrate and a microbial inoculum extracted from a natural arable soil. These mixtures were incubated in the dark and sampled 4 times over a total incubation time of 18 months. The organic matter (OM) turnover during incubation was followed by measuring CO2 respiration and C and N contents and distribution over particle size fractions with time. Solid-state 13C nuclear magnetic resonance (NMR) spectroscopy and acid hydrolysis were used to determine the development of OM composition. The artificial soil mixtures developed quickly into complex, aggregated, soil-like materials. CO2 respiration was the same for all artificial soil compositions, indicating that microbial degradation was probably limited by nutrient or substrate availability. With increasing incubation time, nitrogen-rich, proteinaceous material, became enriched in the smallest particle size fraction, indicating the accumulation of microbial debris. There was some difference in the distribution of hydrolysable and non-hydrolysable N and organic carbon after 3 months of incubation depending on the type of clay mineral and charcoal presence. However, the artificial soils developed towards more similar systems with increasing incubation time. The artificial soil incubation experiment provided a

  19. Ectonucleotidases in Solid Organ and Allogeneic Hematopoietic Cell Transplantation

    PubMed Central

    Chernogorova, Petya; Zeiser, Robert

    2012-01-01

    Extracellular nucleotides are ubiquitous signalling molecules which modulate distinct physiological and pathological processes. Nucleotide concentrations in the extracellular space are strictly regulated by cell surface enzymes, called ectonucleotidases, which hydrolyze nucleotides to the respective nucleosides. Recent studies suggest that ectonucleotidases play a significant role in inflammation by adjusting the balance between ATP, a widely distributed proinflammatory danger signal, and the anti-inflammatory mediator adenosine. There is increasing evidence for a central role of adenosine in alloantigen-mediated diseases such as solid organ graft rejection and acute graft-versus-host disease (GvHD). Solid organ and hematopoietic cell transplantation are established treatment modalities for a broad spectrum of benign and malignant diseases. Immunological complications based on the recognition of nonself-antigens between donor and recipient like transplant rejection and GvHD are still major challenges which limit the long-term success of transplantation. Studies in the past two decades indicate that purinergic signalling influences the severity of alloimmune responses. This paper focuses on the impact of ectonucleotidases, in particular, NTPDase1/CD39 and ecto-5′-nucleotidase/CD73, on allograft rejection, acute GvHD, and graft-versus-leukemia effect, and on possible clinical implications for the modulation of purinergic signalling after transplantation. PMID:23125523

  20. [Involvement of endoplasmic reticulum stress in solid organ transplantation].

    PubMed

    Pallet, Nicolas; Bouvier, Nicolas; Beaune, Philippe; Legendre, Christophe; Anglicheau, Dany; Thervet, Eric

    2010-04-01

    Endoplasmic reticulum (ER) stress is a situation caused by the accumulation of unfolded proteins in the endoplasmic reticulum, triggering an evolutionary conserved adaptive response termed the unfolded protein response. When adaptation fails, excessive and prolonged ER stress triggers cell suicide. Important roles for ER-initiated cell death pathways have been recognized for several diseases, including diabetes, hypoxia, ischemia/reperfusion injury, neurodegenerative and heart diseases. The implication of the ER stress is not well recognized in solid organ transplantation, but increasing evidence suggests its implication in mediating allograft injury. The purpose of this review is to summarize the mechanisms of ER stress and to discuss its implication during tissue injury in solid organ transplantation. The possible implications of the ER stress in the modifications of cell functional properties and phenotypic changes are also discussed beyond the scope of adaptation and cell death. Increasing the understanding of the cellular and molecular mechanisms of acute and chronic allograft damages could lead to the development of new biomarkers and to the discovery of new therapeutic strategies to prevent the initiation of graft dysfunction or to promote the tissue regeneration after injury. PMID:20412745

  1. Global effects of agriculture on fluvial dissolved organic matter

    PubMed Central

    Graeber, Daniel; Boëchat, Iola G.; Encina-Montoya, Francisco; Esse, Carlos; Gelbrecht, Jörg; Goyenola, Guillermo; Gücker, Björn; Heinz, Marlen; Kronvang, Brian; Meerhoff, Mariana; Nimptsch, Jorge; Pusch, Martin T.; Silva, Ricky C. S.; von Schiller, Daniel; Zwirnmann, Elke

    2015-01-01

    Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing. PMID:26541809

  2. Precipitates in landfill leachate mediated by dissolved organic matters.

    PubMed

    Li, Zhenze; Xue, Qiang; Liu, Lei; Li, Jiangshan

    2015-04-28

    Clogging of landfill leachate collection system is so ubiquitous that it causes problems to landfills. Although precipitations of calcite and other minerals have been widely observed, the mechanism of precipitation remains obscure. We examined the clog composition, dissolved organic matters, leachate chemical compositions and the correlation of these variables in view of the precipitation process. It is shown that Dissolved Organic Carbon (DOC) inhibits precipitation of landfill leachate. Using the advanced NICA-Donnan model, the analysis of aqueous chemical reactions between Mg-Ca-DOC-CO2 suggests a good agreement with experimental observations. Calcite and dolomite are both found to be oversaturated in most of the landfill leachate samples. DOC is found to preferentially bind with Mg than Ca, leading to more likely precipitation of Calcite than dolomite from landfill leachate. The NICA-Donnan model gives a reasonable estimation of dolomite saturation index in a wide range of DOC. Modeling confirms the major precipitation mechanism in terms of alkaline earth metal carbonate. Uncertainties in model parameters are discussed with particular focus on DOC composition, functional group types and density concentration and the influential factors. PMID:25661175

  3. Removal of bromide and natural organic matter by anion exchange.

    PubMed

    Hsu, Susan; Singer, Philip C

    2010-04-01

    Bromide removal by anion exchange was explored for various water qualities, process configurations, and resin characteristics. Simulated natural waters containing different amounts of natural organic matter (NOM), bicarbonate, chloride, and bromide were treated with a polyacrylate-based magnetic ion exchange (MIEX) resin on a batch basis to evaluate the effectiveness of the resin for removal of bromide. While bromide removal was achieved to some degree, alkalinity (bicarbonate), dissolved organic carbon (DOC), and chloride were shown to inhibit bromide removal in waters with bromide concentrations of 100 and 300 microg/L. Water was also treated using a two-stage batch MIEX process. Two-stage treatment resulted in only a slight improvement in bromide removal compared to single-stage treatment, presumably due to competition with the high concentration of chloride which is present along with bromide in natural waters. In view of the relatively poor bromide removal results for the MIEX resin, a limited set of experiments was performed using polystyrene resins. DOC and bromide removal were compared by treating model waters with MIEX and two polystyrene resins, Ionac A-641 and Amberlite IRA910. The two polystyrene resins were seen to be more effective for bromide removal, while the MIEX resin was more effective at removing DOC. PMID:20045170

  4. Effects of agricultural practices on organic matter degradation in ditches

    PubMed Central

    Hunting, Ellard R.; Vonk, J. Arie; Musters, C.J.M.; Kraak, Michiel H.S.; Vijver, Martina G.

    2016-01-01

    Agricultural practices can result in differences in organic matter (OM) and agricultural chemical inputs in adjacent ditches, but its indirect effects on OM composition and its inherent consequences for ecosystem functioning remain uncertain. This study determined the effect of agricultural practices (dairy farm grasslands and hyacinth bulb fields) on OM degradation by microorganisms and invertebrates with a consumption and food preference experiment in the field and in the laboratory using natural OM collected from the field. Freshly cut grass and hyacinths were also offered to control for OM composition and large- and small mesh-sizes were used to distinguish microbial decomposition and invertebrate consumption. Results show that OM decomposition by microorganisms and consumption by invertebrates was similar throughout the study area, but that OM collected from ditches adjacent grasslands and freshly cut grass and hyacinths were preferred over OM collected from ditches adjacent to a hyacinth bulb field. In the case of OM collected from ditches adjacent hyacinth bulb fields, both microbial decomposition and invertebrate consumption were strongly retarded, likely resulting from sorption and accumulation of pesticides. This outcome illustrates that differences in agricultural practices can, in addition to direct detrimental effects on aquatic organisms, indirectly alter the functioning of adjacent aquatic ecosystems. PMID:26892243

  5. Quenching of excited triplet states by dissolved natural organic matter.

    PubMed

    Wenk, Jannis; Eustis, Soren N; McNeill, Kristopher; Canonica, Silvio

    2013-11-19

    Excited triplet states of aromatic ketones and quinones are used as proxies to assess the reactivity of excited triplet states of the dissolved organic matter ((3)DOM*) in natural waters. (3)DOM* are crucial transients in environmental photochemistry responsible for contaminant transformation, production of reactive oxygen species, and potentially photobleaching of DOM. In recent photochemical studies aimed at clarifying the role of DOM as an inhibitor of triplet-induced oxidations of organic contaminants, aromatic ketones have been used in the presence of DOM, and the question of a possible interaction between their excited triplet states and DOM has emerged. To clarify this issue, time-resolved laser spectroscopy was applied to measure the excited triplet state quenching of four different model triplet photosensitizers induced by a suite of DOM from various aquatic and terrestrial sources. While no quenching for the anionic triplet sensitizers 4-carboxybenzophenone (CBBP) and 9,10-anthraquinone-2,6-disulfonic acid (2,6-AQDS) was detected, second-order quenching rate constants with DOM for the triplets of 2-acetonaphthone (2AN) and 3-methoxyacetophenone (3MAP) in the range of 1.30-3.85 × 10(7) L mol(C)(-1) s(-1) were determined. On the basis of the average molecular weight of DOM molecules, the quenching for these uncharged excited triplet molecules is nearly diffusion-controlled, but significant quenching (>10%) in aerated water is not expected to occur below DOM concentrations of 22-72 mg(C) L(-1). PMID:24083647

  6. Benthic bacterial biomass supported by streamwater dissolved organic matter.

    PubMed

    Bott, T L; Kaplan, L A; Kuserk, F T

    1984-12-01

    Bacterial biomass in surface sediments of a headwater stream was measured as a function of dissolved organic carbon (DOC) flux and temperature. Bacterial biomass was estimated using epifluorescence microscopic counts (EMC) and ATP determinations during exposure to streamwater containing 1,788μg DOC/liter and after transfer to groundwater containing 693μg DOC/liter. Numbers of bacteria and ATP concentrations averaged 1.36×10(9) cells and 1,064 ng per gram dry sediment, respectively, under initial DOC exposure. After transfer to low DOC water, biomass estimates dropped by 53 and 55% from EMC and ATP, respectively. The decline to a new steady state occurred within 4 days from ATP assays and within 11 days from EMC measures. A 4°C difference during these exposures had little effect on generation times. The experiment indicated that 27.59 mg/hour of natural DOC supported a steady state bacterial biomass of approximately 10μg C/g dry weight of sediment (from EMC determinations). Steady state bacterial biomass estimates on sediments that were previously muffled to remove organic matter were approximately 20-fold lower. The ratio of GTP∶ATP indicated differences in physiological condition or community composition between natural and muffled sediments. PMID:24221176

  7. Mineral surface-organic matter interactions: basics and applications

    NASA Astrophysics Data System (ADS)

    Valdrè, G.; Moro, D.; Ulian, G.

    2012-03-01

    The ability to control the binding of biological and organic molecules to a crystal surface is central in several fields; for example, in biotechnology, catalysis, molecular microarrays, biosensors preparation and environmental sciences. The nano-morphology and nanostructure at the surface may have physico-chemical properties that are very different from those of the underlying mineral substrate. Recent developments in scanning probe microscopy (SPM) have widened the spectrum of possible investigations that can be performed at the nanometric level on the surface of minerals. They range from the study of physical properties such as surface potential, electric field topological determination, Brønsted-Lowry site distributions, to chemical and spectroscopic analysis in air, in liquid or in gaseous environments. After an introduction to SPM modes of operation and new SPM-based technological developments, we will present recent examples of applications in the study of interactions between organic matter and mineral surface and report on the advances in knowledge that have been made by the use of scanning probe microscopy.

  8. Global effects of agriculture on fluvial dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Graeber, Daniel; Boëchat, Iola G.; Encina-Montoya, Francisco; Esse, Carlos; Gelbrecht, Jörg; Goyenola, Guillermo; Gücker, Björn; Heinz, Marlen; Kronvang, Brian; Meerhoff, Mariana; Nimptsch, Jorge; Pusch, Martin T.; Silva, Ricky C. S.; von Schiller, Daniel; Zwirnmann, Elke

    2015-11-01

    Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing.

  9. Molecular-level dynamics of refractory dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Niggemann, J.; Gerdts, G.; Dittmar, T.

    2012-04-01

    Refractory dissolved organic matter (DOM) accounts for most of the global oceanic organic carbon inventory. Processes leading to its formation and factors determining its stability are still largely unknown. We hypothesize that refractory DOM carries a universal molecular signature. Characterizing spatial and temporal variability in this universal signature is a key to understanding dynamics of refractory DOM. We present results from a long-term study of the DOM geo-metabolome in the open North Sea. Geo-metabolomics considers the entity of DOM as a population of compounds, each characterized by a specific function and reactivity in the cycling of energy and elements. Ten-thousands of molecular formulae were identified in DOM by ultrahigh resolution mass spectrometry analysis (FT-ICR-MS, Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry). The DOM pool in the North Sea was influenced by a complex interplay of processes that produced, transformed and degraded dissolved molecules. We identified a stable fraction in North Sea DOM with a molecular composition similar to deep ocean DOM. Molecular-level changes in this stable fraction provide novel information on dynamics and interactions of refractory DOM.

  10. Contaminant-mediated photobleaching of wetland chromophoric dissolved organic matter.

    PubMed

    Langlois, Maureen C; Weavers, Linda K; Chin, Yu-Ping

    2014-09-20

    Photolytic transformation of organic contaminants in wetlands can be mediated by chromophoric dissolved organic matter (CDOM), which in turn can lose its reactivity from photobleaching. We collected water from a small agricultural wetland (Ohio), Kawai Nui Marsh (Hawaii), the Everglades (Florida), and Okefenokee Swamp (Georgia) to assess the effect of photobleaching on the photofate of two herbicides, acetochlor and isoproturon. Analyte-spiked water samples were irradiated using a solar simulator and monitored for changes in CDOM light absorbance and dissolved oxygen. Photobleaching did not significantly impact the indirect photolysis rates of either herbicide over 24 hours of irradiation. Surprisingly, the opposite effect was observed with isoproturon, which accelerated DOM photobleaching. This phenomenon was more pronounced in higher-CDOM waters, and we believe that the redox pathway between triplet-state CDOM and isoproturon may be responsible for our observations. By contrast, acetochlor indirect photolysis was dependent on reaction with the hydroxyl radical and did not accelerate photobleaching of wetland water as much as isoproturon. Finally, herbicide indirect photolysis rate constants did not correlate strongly to any one chemical or optical property of the sampled waters. PMID:24828085

  11. Effects of agricultural practices on organic matter degradation in ditches.

    PubMed

    Hunting, Ellard R; Vonk, J Arie; Musters, C J M; Kraak, Michiel H S; Vijver, Martina G

    2016-01-01

    Agricultural practices can result in differences in organic matter (OM) and agricultural chemical inputs in adjacent ditches, but its indirect effects on OM composition and its inherent consequences for ecosystem functioning remain uncertain. This study determined the effect of agricultural practices (dairy farm grasslands and hyacinth bulb fields) on OM degradation by microorganisms and invertebrates with a consumption and food preference experiment in the field and in the laboratory using natural OM collected from the field. Freshly cut grass and hyacinths were also offered to control for OM composition and large- and small mesh-sizes were used to distinguish microbial decomposition and invertebrate consumption. Results show that OM decomposition by microorganisms and consumption by invertebrates was similar throughout the study area, but that OM collected from ditches adjacent grasslands and freshly cut grass and hyacinths were preferred over OM collected from ditches adjacent to a hyacinth bulb field. In the case of OM collected from ditches adjacent hyacinth bulb fields, both microbial decomposition and invertebrate consumption were strongly retarded, likely resulting from sorption and accumulation of pesticides. This outcome illustrates that differences in agricultural practices can, in addition to direct detrimental effects on aquatic organisms, indirectly alter the functioning of adjacent aquatic ecosystems. PMID:26892243

  12. Molecular trickery in soil organic matter: hidden lignin.

    PubMed

    Hernes, Peter J; Kaiser, Klaus; Dyda, Rachael Y; Cerli, Chiara

    2013-08-20

    Binding to minerals is one mechanism crucial toward the accumulation and stabilization of organic matter (OM) in soils. Of the various biochemicals produced by plants, lignin-derived phenols are among the most surface-reactive compounds. However, it is not known to what extent mineral-bound lignin-derived phenols can be analytically assessed by alkaline CuO oxidation. We tested the potential irreversible binding of lignin from three litters (blue oak, foothill pine, annual grasses) to five minerals (ferrihydrite, goethite, kaolinite, illite, montmorillonite) using the CuO-oxidation technique, along with bulk organic carbon (OC) sorption. Up to 56% of sorbed lignin could not be extracted from the minerals with the CuO-oxidation technique. The composition of the irreversibly bound lignin component differed markedly between minerals and from that of the parent litter leachates, indicating different bonding strengths related to individual monomers and conformations. The difference in extractability of individual phenols suggests that abiotic processes, such as sorption/desorption, should be taken into account when using CuO oxidation data for assessing lignin turnover in mineral matrixes. However, given the apparent relationship between aromaticity as indicated by carbon-specific UV absorbance (SUVA) and bulk OC sorption, it is likely that irreversible sorption is a concern for any technique that addresses the broad class of aromatic/phenolic compounds in soils and sediments. PMID:23875737

  13. Global effects of agriculture on fluvial dissolved organic matter.

    PubMed

    Graeber, Daniel; Boëchat, Iola G; Encina-Montoya, Francisco; Esse, Carlos; Gelbrecht, Jörg; Goyenola, Guillermo; Gücker, Björn; Heinz, Marlen; Kronvang, Brian; Meerhoff, Mariana; Nimptsch, Jorge; Pusch, Martin T; Silva, Ricky C S; von Schiller, Daniel; Zwirnmann, Elke

    2015-01-01

    Agricultural land covers approximately 40% of Earth's land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing. PMID:26541809

  14. An amorphous solid state of biogenic secondary organic aerosol particles.

    PubMed

    Virtanen, Annele; Joutsensaari, Jorma; Koop, Thomas; Kannosto, Jonna; Yli-Pirilä, Pasi; Leskinen, Jani; Mäkelä, Jyrki M; Holopainen, Jarmo K; Pöschl, Ulrich; Kulmala, Markku; Worsnop, Douglas R; Laaksonen, Ari

    2010-10-14

    Secondary organic aerosol (SOA) particles are formed in the atmosphere from condensable oxidation products of anthropogenic and biogenic volatile organic compounds (VOCs). On a global scale, biogenic VOCs account for about 90% of VOC emissions and of SOA formation (90 billion kilograms of carbon per year). SOA particles can scatter radiation and act as cloud condensation or ice nuclei, and thereby influence the Earth's radiation balance and climate. They consist of a myriad of different compounds with varying physicochemical properties, and little information is available on the phase state of SOA particles. Gas-particle partitioning models usually assume that SOA particles are liquid, but here we present experimental evidence that they can be solid under ambient conditions. We investigated biogenic SOA particles formed from oxidation products of VOCs in plant chamber experiments and in boreal forests within a few hours after atmospheric nucleation events. On the basis of observed particle bouncing in an aerosol impactor and of electron microscopy we conclude that biogenic SOA particles can adopt an amorphous solid-most probably glassy-state. This amorphous solid state should provoke a rethinking of SOA processes because it may influence the partitioning of semi-volatile compounds, reduce the rate of heterogeneous chemical reactions, affect the particles' ability to accommodate water and act as cloud condensation or ice nuclei, and change the atmospheric lifetime of the particles. Thus, the results of this study challenge traditional views of the kinetics and thermodynamics of SOA formation and transformation in the atmosphere and their implications for air quality and climate. PMID:20944744

  15. The sorption of heavy metals on thermally treated sediments with high organic matter content.

    PubMed

    Dong, Xudong; Wang, Chi; Li, Hao; Wu, Min; Liao, Shaohua; Zhang, Di; Pan, Bo

    2014-05-01

    A sediment sample with organic matter higher than 60% was thermally treated and the sorption of Cu(II), Cd(II), and Pb(II) was investigated and compared to evaluate the potential use of sediments with high organic matter content to produce biochar. Cu(II) and Cd(II) sorption generally decreased with increasing pyrolysis temperature, concurred with decreased oxygen-containing functional groups of the adsorbents. Sediment particles pyrolyzed at 400 and 500 °C showed higher sorption to Pb(II) than other temperatures. The small hydrated ionic radius of Pb(II) may enable its close contact with solid particles and thus facilitated the diffusion of Pb(II) into the pores and the formation of cation-π bond with aromatic structures generated by pyrolysis. The sorption of heavy metals in thermally treated sediment showed comparable sorption to or higher sorption than natural adsorbents and biochars from biomass, suggesting their possible significant impact on the transport and risk of heavy metals. PMID:24486102

  16. CT, MRI and DWI Features of a Solid Organizing Hepatic Abscess

    PubMed Central

    Pellizzer, Giampiero; Di Grazia, Lorenzo

    2014-01-01

    Solid organizing hepatic abscess is a rare form of focal infection, which needs differentiation from benign and malignant solid masses. We report a case of a 30-year-old man with a solid organizing hepatic abscess, diagnosed by imaging and ex juvantibus criteria. CT and MRI findings are presented and role of DWI is outlined. Noninvasive diagnosis of a solid organizing hepatic abscess is possible in the appropriate clinical setting; percutaneous or surgical biopsy may be indicated in equivocal cases. PMID:25197604

  17. Annual Cycling of Dissolved Organic Matter in an Alpine Stream

    NASA Astrophysics Data System (ADS)

    Gabor, R. S.; McLoughlin, R.; McKnight, D. M.

    2009-12-01

    Boulder Creek, an alpine stream in the Colorado Front Range, runs through glacially-scoured landscapes and various alpine ecosystems from its headwaters at around 12,500 ft to the city of Boulder at around 6,000 ft. The flow in the lower potions of the creek is controlled by Barker Reservoir. As part of the Boulder Creek Critical Zone Observatory, water samples were collected from several sites along Boulder Creek at regular time intervals since May 2008. The concentration and quality of the Dissolved Organic Matter (DOM) in these samples was analyzed to understand the response to seasonal changes and variations in flow rates. Filtered samples were fractionated to isolate the humic material and both whole water and fulvic acid fractions were analyzed for dissolved organic carbon concentration as well as with fluorescence and UV-VIS spectroscopy. DOM concentration reached a maximum just before peak stream flow, likely due to dilution from the reservoir release. Near the end of summer, as flow slowed down and the dilution impact was minimized, the concentration began to rise again. In addition, the fluorescence index (FI), which can represent variations in DOM source, indicated a much higher microbial source during early snowmelt, likely due to microbial communities growing beneath the ice in the reservoir and lack of terrestrial runoff during the winter. The FI showed a slowly increasing terrestrial input throughout the summer as snowmelt and runoff from the watershed entered the stream. During late summer and fall the FI shifted back to a predominately microbial signal, indicative of less runoff and a greater percentage of DOM created in situ. In addition to stream measurements, surface soil samples along several transects were collected from a section of the watershed, as well as deeper samples from soil pits on both north-facing and south-facing slopes. DOM from these samples was leached with potassium sulfate and analyzed using the same techniques as the stream

  18. Natural Organic Matter and the Event Horizon of Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Hertkorn, N.; Frommberger, M.; Witt, M.; Koch, B. P.; Schmitt-Kopplin, P.; Perdue, E. M.

    2009-05-01

    Soils, sediments, freshwaters and marine waters contain natural organic matter (NOM) - an exceedingly complex mixture of organic compounds that collectively exhibit a nearly continuous range of properties (size- reactivity continuum). NOM is composed mainly of carbon, hydrogen and oxygen, with minor contributions from heteroatoms such as sulphur and phosphorus. Suwannee River fulvic acid (SuwFA) is a fraction of NOM that is relatively depleted in heteroatoms. Ultrahigh resolution Fourier transform ion cyclotron (FTICR) mass spectra of SuwFA reveal several thousand molecular formulae, corresponding in turn to several hundred thousand distinct chemical environments of carbon even without accountancy of isomers. The mass difference m among adjoining C,H,O-molecules between and within clusters of nominal mass is inversely related to molecular dissimilarity: any decrease of m imposes an ever growing mandatory difference in molecular composition. Molecular formulae that are expected for likely biochemical precursor molecules are notably absent from these spectra, indicating that SuwFA is the product of diagenetic reactions that have altered the major components of biomass beyond the point of recognition. The degree of complexity of SuwFA can be brought into sharp focus through comparison with the theoretical limits of chemical complexity, as constrained and quantized by the fundamentals of chemical binding. The theoretical C,H,O-compositional space denotes the isomer-filtered complement of the entire, very vast space of molecular structures composed solely of carbon, hydrogen and oxygen. The molecular formulae within SuwFA occupy a sizable proportion of the theoretical C,H,O-compositional space. A one-hundred percent coverage of the theoretically feasible C,H,O-compositional space by SuwFA molecules is attained throughout a sizable range of mass, H/C and O/C elemental ratios. The substantial differences between (and complementarity of) the SuwFA molecular formulae that

  19. Organic matter in the ancient Alpine Tethyan Ocean Continental Transition

    NASA Astrophysics Data System (ADS)

    Mateeva, Tsvetomila; Wolff, George; Kusznir, Nick; Wheeler, John; Manataschal, Gianreto

    2016-04-01

    Studies of hydrothermal vents in modern ocean settings suggest that methane produced by serpentinization can support methanotrophic bio-systems. Are such bio-systems locally restricted to hydrothermal vents or are more pervasive, being linked with the geology of serpentinized mantle in the subsurface? Answering this question has implications for our understanding of the global importance of hidden sub-surface bio-systems, the fate of methane and the carbon cycle. The ocean-continent transition (OCT) of magma-poor rifted continental margins, exhumed within mountain belts by continent collision, provides an opportunity to investigate this question. Initial data from the Totalp unit in the Eastern Swiss Alps, representing exhumed OCT of the Alpine Tethyan rifted continental margin, shows the presence of various hydrocarbons (Mateeva et al., in prep.). Samples from other Tethyan OCT locations, consisting of the Tasna nappe and Platta unit of the Eastern Swiss Alps and Chenaillet in the Western Alps, have also been analysed to investigate the presence or absence of methanotrophic biosystems within serpentinized exhumed mantle and associated ophicalcite and syn-rift sediments. Samples from these remnant Tethyan OCT locations are characterized by low and varied organic carbon concentrations that reflect the large lithological diversity of this area. The samples contain hydrocarbons in the form of n-alkanes mostly in the range C20 - C32, polynuclear aromatic hydrocarbons (PAHs) and various biomarkers (e.g. steranes, hopanes). A typical sample from the hydrothermal system in Platta shows the lithological characteristics of a black smoker, but with no indication of a more developed biosystem. Preliminary results from the examined Tethyan OCT locations (Tasna, Platta, Chenaillet) show evidence for the preservation of marine organic matter in the serpentinized mantle and overlying sediments, although there is no unequivocal indication that the organic matter is generated from

  20. Do Long-Term Changes in Organic Matter Inputs to Forest Soils Affect Dissolved Organic Matter Chemistry and Export?

    NASA Astrophysics Data System (ADS)

    Lajtha, K.; Strid, A.; Lee, B. S.

    2014-12-01

    Dissolved organic matter (DOM) production and transport play an important role in regulating organic matter (OM) distribution through a soil profile and ultimately, OM stabilization or export to aquatic systems. The contributions of varying OM inputs to the quality and amount of DOM as it passes through a soil profile remain relatively unknown. The Detrital Input and Removal Treatment (DIRT) site at the H. J. Andrews Experimental Forest in Oregon has undergone 17 years of litter, wood and root input manipulations and allows us to guage shifts in DOM chemistry induced by long-term changes to aboveground and belowground OM additions and exclusions. Using fluorescence and UV spectroscopy to characterize fluorescent properties, extent of decomposition, and sources of DOM in streams and soil solutions collected with lysimeters and soil extractions, we have assessed the importance of fresh OM inputs to DOM chemistry. Soil extracts from DIRT plots had a higher fluorescence index (FI) than lysimeter solutions or stream water. A high FI in surface water is generally interpreted as indicative of a high proportion of microbially-derived DOM. However, we suspect that the high FI in soil extracts is due to a higher proportion of non-aromatic DOM from fresh soil that microorganisms consume in transit through the soil profile to lysimeters or to streams. High redox index (RI) values were observed in lysimeters from the April 2014 sampling compared with the November 2013 sampling. These RI values show evidence of more reducing conditions at the end of the rainy season in the spring compared to the onset of the rainy season in the fall. Lysimeter water collected in No Input, No Litter, and No Root treatments contained high proportions of protein, suggesting the absence of carbon inputs changes activities of the microbial community. Observed variations reflect the viability of using fluorescent properties to explore the terrestrial-aquatic interface.

  1. Continuous high-solids anaerobic co-digestion of organic solid wastes under mesophilic conditions

    SciTech Connect

    Kim, Dong-Hoon; Oh, Sae-Eun

    2011-09-15

    Highlights: > High-solids (dry) anaerobic digestion is attracting a lot of attention these days. > One reactor was fed with food waste (FW) and paper waste. > Maximum biogas production rate of 5.0 m{sup 3}/m{sup 3}/d was achieved at HRT 40 d and 40% TS. > The other reactor was fed with FW and livestock waste (LW). > Until a 40% LW content increase, the reactor exhibited a stable performance. - Abstract: With increasing concerns over the limited capacity of landfills, conservation of resources, and reduction of CO{sub 2} emissions, high-solids (dry) anaerobic digestion of organic solid waste (OSW) is attracting a great deal of attention these days. In the present work, two dry anaerobic co-digestion systems fed with different mixtures of OSW were continuously operated under mesophilic conditions. Dewatered sludge cake was used as a main seeding source. In reactor (I), which was fed with food waste (FW) and paper waste (PW), hydraulic retention time (HRT) and solid content were controlled to find the maximum treatability. At a fixed solid content of 30% total solids (TS), stable performance was maintained up to an HRT decrease to 40 d. However, the stable performance was not sustained at 30 d HRT, and hence, HRT was increased to 40 d again. In further operation, instead of decreasing HRT, solid content was increased to 40% TS, which was found to be a better option to increase the treatability. The biogas production rate (BPR), CH{sub 4} production yield (MPY) and VS reduction achieved in this condition were 5.0 m{sup 3}/m{sup 3}/d, 0.25 m{sup 3} CH{sub 4}/g COD{sub added}, and 80%, respectively. Reactor (II) was fed with FW and livestock waste (LW), and LW content was increased during the operation. Until a 40% LW content increase, reactor (II) exhibited a stable performance. A BPR of 1.7 m{sup 3}/m{sup 3}/d, MPY of 0.26 m{sup 3} CH{sub 4}/g COD{sub added}, and VS reduction of 72% was achieved at 40% LW content. However, when the LW content was increased to 60

  2. Inhibition of precipitation and aggregation of metacinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades

    USGS Publications Warehouse

    Ravichandran, M.; Aiken, G.R.; Ryan, J.N.; Reddy, M.M.

    1999-01-01

    Precipitation and aggregation of metacinnabar (black HgS) was inhibited in the presence of low concentrations (???3 mg C/L) of humic fractions of dissolved organic matter (DOM) isolated from the Florida Everglades. At low Hg concentrations (??? x 10-8 M), DOM prevented the precipitation of metacinnabar. At moderate Hg concentrations (5 x 10-5 M), DOM inhibited the aggregation of colloidal metacinnabar (Hg passed through a 0.1 ??m filter but was removed by centrifugation). At Hg concentrations greater than 5 x 10-4 M, mercury formed solid metacinnabar particles that were removed from solution by a 0.1 ??m filter. Organic matter rich in aromatic moleties was preferentially removed with the solid. Hydrophobic organic acids (humic and fulvic acids) inhibited aggregation better than hydrophilic organic acids. The presence of chloride, acetate, salicylate, EDTA, and cysteine did not inhibit the precipitation or aggregation of metacinnabar. Calcium enhanced metacinnabar aggregation even in the presence of DOM, but the magnitude of the effect was dependent on the concentrations of DOM, Hg, and Ca. Inhibition of metacinnabar precipitation appears to be a result of strong DOM-Hg binding. Prevention of aggregation of colloidal particles appears to be caused by adsorption of DOM and electrostatic repulsion.Precipitation and aggregation of metacinnabar (black HgS) was inhibited in the presence of low concentrations (???3 mg C/L) of humic fractions of dissolved organic matter (DOM) isolated from the Florida Everglades. At low Hg concentrations (???5??10-8 M), DOM prevented the precipitation of metacinnabar. At moderate Hg concentrations (5??10-5 M), DOM inhibited the aggregation of colloidal metacinnabar (Hg passed through a 0.1 ??m filter but was removed by centrifugation). At Hg concentrations greater than 5??10-4 M, mercury formed solid metacinnabar particles that were removed from solution by a 0.1 ??m filter. Organic matter rich in aromatic moieties was preferentially

  3. Investigation of the reduction of lead dioxide by natural organic matter.

    PubMed

    Dryer, Deborah J; Korshin, Gregory V

    2007-08-01

    Experiments with immobilized lead dioxide showed that this solid was reduced by natural organic matter (NOM) isolated from Potomac River water. Kinetically, the process was slow and occurred throughout many weeks of exposure. The amount of mobilized lead was affected by the concentration of NOM and exposure time but not significantly influenced by the type of NOM used in the experiments. The interactions of NOM with PbO2 were quantified using differential absorbance spectroscopy. It showed that the oxidation of chromophoric groups in NOM was strongly correlated with lead release. Because lead release yields were higher thatthose predicted based on the depletion of the aromatic groups, it is hypothesized that NOM moieties otherthan aromatic functionalities are engaged in the reduction of PbO2 by NOM and/or lead mobilization involves the formation of mixed Pb(II)/Pb(IV) soluble and colloidal species. PMID:17822125

  4. Fractions and biodegradability of dissolved organic matter derived from different composts.

    PubMed

    Wei, Zimin; Zhang, Xu; Wei, Yuquan; Wen, Xin; Shi, Jianhong; Wu, Junqiu; Zhao, Yue; Xi, Beidou

    2014-06-01

    An experiment was conducted to determine the fractions of molecular weights (MW) and the biodegradability of dissolved organic matter (DOM) in mature composts derived from dairy cattle manure (DCM), kitchen waste (KW), cabbage waste (CW), tomato stem waste (TSW), municipal solid waste (MSW), green waste (GW), chicken manure (CM), sludge (S), and mushroom culture waste (MCW). There were distinct differences in the concentration and MW fractions of DOM, and the two measures were correlated. Fraction MW>5kDa was the major component of DOM in all mature composts. Determined 5day biochemical oxygen demand (BOD5) of DOM was correlated to the concentration of DOM and all MW fractions except MW>5kDa, indicating that the biodegradability of DOM was a function of the content and proportion of fraction MW<5kDa. This study suggests that the amount and distribution of low MW fractions affect DOM biodegradability. PMID:24704883

  5. Gout in solid organ transplantation: a challenging clinical problem.

    PubMed

    Stamp, Lisa; Searle, Martin; O'Donnell, John; Chapman, Peter

    2005-01-01

    Hyperuricaemia occurs in 5-84% and gout in 1.7-28% of recipients of solid organ transplants. Gout may be severe and crippling, and may hinder the improved quality of life gained through organ transplantation. Risk factors for gout in the general population include hyperuricaemia, obesity, weight gain, hypertension and diuretic use. In transplant recipients, therapy with ciclosporin (cyclosporin) is an additional risk factor. Hyperuricaemia is recognised as an independent risk factor for cardiovascular disease; however, whether anti-hyperuricaemic therapy reduces cardiovascular events remains to be determined. Dietary advice is important in the management of gout and patients should be educated to partake in a low-calorie diet with moderate carbohydrate restriction and increased proportional intake of protein and unsaturated fat. While gout is curable, its pharmacological management in transplant recipients is complicated by the risk of adverse effects and potentially severe interactions between immunosuppressive and hypouricaemic drugs. NSAIDs, colchicine and corticosteroids may be used to treat acute gouty attacks. NSAIDs have effects on renal haemodynamics, and must be used with caution and with close monitoring of renal function. Colchicine myotoxicty is of particular concern in transplant recipients with renal impairment or when used in combination with ciclosporin. Long-term urate-lowering therapy is required to promote dissolution of uric acid crystals, thereby preventing recurrent attacks of gout. Allopurinol should be used with caution because of its interaction with azathioprine, which results in bone marrow suppression. Substitution of mycophenylate mofetil for azathioprine avoids this interaction. Uricosuric agents, such as probenecid, are ineffective in patients with renal impairment. The exception is benzbromarone, which is effective in those with a creatinine clearance >25 mL/min. Benzbromarone is indicated in allopurinol-intolerant patients with

  6. Do aggregate stability and soil organic matter content increase following organic inputs?

    NASA Astrophysics Data System (ADS)

    Lehtinen, Taru; Gísladóttir, Guðrún; van Leeuwen, Jeroen P.; Bloem, Jaap; Steffens, Markus; Vala Ragnarsdóttir, Kristin

    2014-05-01

    Agriculture is facing several challenges such as loss of soil organic matter (SOM); thus, sustainable farming management practices are needed. Organic farming is growing as an alternative to conventional farming; in Iceland approximately 1% and in Austria 16% of utilized agricultural area is under organic farming practice. We analyzed the effect of different farming practices (organic, and conventional) on soil physicochemical and microbiological properties in grassland soils in Iceland and cropland soils in Austria. Organic farms differed from conventional farms by absence of chemical fertilizers and pesticide use. At these farms, we investigated soil physicochemical (e.g. soil texture, pH, CAL-extractable P and K) and microbiological properties (fungal and bacterial biomass and activity). The effects of farming practices on soil macroaggregate stability and SOM quantity, quality and distribution between different fractions were studied following a density fractionation. In Iceland, we sampled six grassland sites on Brown (BA) and Histic (HA) Andosols; two sites on extensively managed grasslands, two sites under organic and two sites under conventional farming practice. In Austria, we sampled four cropland sites on Haplic Chernozems; two sites under organic and two sites under conventional farming practice. We found significantly higher macroaggregate stability in the organic compared to the conventional grasslands in Iceland. In contrast, slightly higher macroaggregation in conventional compared to the organic farming practice was found in croplands in Austria, although the difference was not significant. Macroaggregates were positively correlated with fungal biomass in Iceland, and with Feo and fungal activity in Austria. In Austria, SOM content and nutrient status (except for lower CAL-extractable P at one site) were similar between organic and conventional farms. Our results show that the organic inputs may have enhanced macroaggregation in organic farming

  7. Key soil functional properties affected by soil organic matter - evidence from published literature

    NASA Astrophysics Data System (ADS)

    Murphy, Brian

    2015-07-01

    The effect of varying the amount of soil organic matter on a range of individual soil properties was investigated using a literature search of published information largely from Australia, but also included relevant information from overseas. Based on published pedotransfer functions, soil organic matter was shown to increase plant available water by 2 to 3 mm per 10 cm for each 1% increase in soil organic carbon, with the largest increases being associated with sandy soils. Aggregate stability increased with increasing soil organic carbon, with aggregate stability decreasing rapidly when soil organic carbon fell below 1.2 to 1.5 5%. Soil compactibility, friability and soil erodibility were favourably improved by increasing the levels of soil organic carbon. Nutrient cycling was a major function of soil organic matter. Substantial amounts of N, P and S become available to plants when the soil organic matter is mineralised. Soil organic matter also provides a food source for the microorganisms involved in the nutrient cycling of N, P, S and K. In soils with lower clay contents, and less active clays such as kaolinites, soil organic matter can supply a significant amount of the cation exchange capacity and buffering capacity against acidification. Soil organic matter can have a cation exchange capacity of 172 to 297 cmol(+)/kg. As the cation exchange capacity of soil organic matter varies with pH, the effectiveness of soil organic matter to contribute to cation exchange capacity below pH 5.5 is often minimal. Overall soil organic matter has the potential to affect a range of functional soil properties.

  8. Soil organic matter on citrus plantation in Eastern Spain

    NASA Astrophysics Data System (ADS)

    Cerdà, Artemi; Pereira, Paulo; Novara, Agata; Prosdocimi, Massimo

    2015-04-01

    Citrus plantations in Eastern Spain are the main crop and Valencia region is the largest world exporter. The traditional plantation are located on flood irrigated areas and the new plantation are located on slopes were drip irrigation is the source of the wetting. It has been demonstrate that the citrus plantations contribute to high erosion rates on slopes (Cerdà et al., 2009b) as it is usual on agriculture land (Cerdà et al., 2009a), but when organic farming is present the soil erosion is much lower (Cerdà and Jurgensen, 2008; Cerdà et al., 2009; Cerdà and Jurgensen, 2011). This is a worldwide phenomenon (Wu et al., 2007; Wu et al., 2011; Xu et al., 2010; Xu et al., 2012a; Xu et al., 2012b), which are a key factor of the high erosion rates in rural areas (García Orenes et al., 2009: García Orenes et al., 20010; García Orenes et al., 2012; Haregewyn et al., 2013; Zhao et al., 2013). The key factor of the contrasted response of soils to the rain in citrus is the organic matter cover. This is why the Soil Erosion and Degradation Research Team developed a survey to determine the soil erosion rates on citrus orchards under different managements. A hundred of samples were collected in a citrus plantation on slope under conventional management (Chemical management), one on organic farming, one on traditional flood irrigated organic farming and one on traditional chemical flooding farm. The organic farming soils were treated with 10000 Kg ha-1 of manure yearly. The results show that the mean soil organic matter content was 1.24 %, 3.54%, 5,43% and 2.1% respectively, which show a clear impact of organic farming in the recovery of the soil organic matter. meanwhile the on the slopes and the flood-irrigated soils are Acknowledgements The research projects GL2008-02879/BTE, LEDDRA 243857 and PREVENTING AND REMEDIATING DEGRADATION OF SOILS IN EUROPE THROUGH LAND CARE (RECARE)FP7- ENV-2013- supported this research. References Cerdà, A., Flanagan, D.C., le Bissonnais

  9. The flux of organic matter through a peatland ecosystem - evidence from thermogravimetric analysis

    NASA Astrophysics Data System (ADS)

    Worrall, Fred; Moody, Catherine; Clay, Gareth

    2016-04-01

    Carbon budgets of peatlands are now common and studies have considered nitrogen, oxygen and energy budgets, but no study has considered the whole composition of the organic matter as it transfers through and into a peatland. Organic matter samples were taken from each organic matter reservoir found in and each fluvial flux from a peatland and analysed the samples by thermogravimetric analysis. The samples analysed were: aboveground, belowground, heather, mosses and sedges, litter layer, a peat core, and monthly samples of particulate and dissolved organic matter. All organic matter samples were taken from a 100% peat catchment within Moor House National Nature Reserve in the North Pennines, UK, and collected samples were compared to standards of lignin, cellulose, humic acid and plant protein. Results showed that the thermogravimetric trace of the sampled organic matter were distinctive with the DOM traces being marked out by very low thermal stability relative other organic matter types. The peat profile shows a significant trend with depth from vegetation- to lignin-like composition. When all traces are weighted according to the observed dry matter and carbon budgets for the catchment then it is possible to judge what has been lost in the transition through and into the ecosystem. By plotting this "lost" trace it possible to assess its composition which is either 97% cellulose and 3% humic acid or 92% and 8% lignin. This has important implications for what controls the organic matter balance of peatlands and it suggests that the oxidation state (OR) of peatland is less than 1.

  10. Vehicular emissions of organic particulate matter in Sao Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Oyama, B. S.; Andrade, M. F.; Herckes, P.; Dusek, U.; Röckmann, T.; Holzinger, R.

    2015-12-01

    Vehicular emissions have a strong impact on air pollution in big cities. Many factors affect these emissions: type of vehicle, type of fuel, cruising velocity, and brake use. This study focused on emissions of organic compounds by Light (LDV) and Heavy (HDV) duty vehicle exhaust. The study was performed in the city of Sao Paulo, Brazil, where vehicles run on different fuels: gasoline with 25 % ethanol (called gasohol), hydrated ethanol, and diesel (with 5 % of biodiesel). The vehicular emissions are an important source of pollutants and the principal contribution to fine particulate matter (smaller than 2.5 μm, PM2.5) in Sao Paulo. The experiments were performed in two tunnels: Janio Quadros (TJQ) where 99 % of the vehicles are LDV, and Rodoanel Mario Covas (TRA) where up to 30 % of the fleet was HDV. The PM2.5 samples were collected on quartz filters in May and July 2011 at TJQ and TRA, respectively, using two samplers operating in parallel. The samples were analyzed by Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometry (TD-PTR-MS), and by Thermal-Optical Transmittance (TOT). The organic aerosol (OA) desorbed at TD-PTR-MS represented around 30 % of the OA estimated by the TOT method, mainly due to the different desorption temperatures, with a maximum of 870 and 350 °C for TOT and TD-PTR-MS, respectively. Average emission factors (EF) organic aerosol (OA) and organic carbon (OC) were calculated for HDV and LDV fleet. We found that HDV emitted more OA and OC than LDV, and that OC emissions represented 36 and 43 % of total PM2.5 emissions from LDV and HDV, respectively. More than 700 ions were identified by TD-PTR-MS and the EF profiles obtained from HDV and LDV exhibited distinct features. Nitrogen-containing compounds measured in the desorbed material up to 350 °C contributed around 20 % to the EF values for both types of vehicles, possibly associated with incomplete fuel burning. Additionally, 70 % of the organic compounds measured from the aerosol

  11. Characterization of biochars and dissolved organic matter phases obtained upon hydrothermal carbonization of Elodea nuttallii.

    PubMed

    Poerschmann, J; Weiner, B; Wedwitschka, H; Zehnsdorf, A; Koehler, R; Kopinke, F-D

    2015-01-01

    The invasive aquatic plant Elodea nuttallii was subjected to hydrothermal carbonization at 200 °C and 240 °C to produce biochar. About 58% w/w of the organic carbon of the pristine plant was translocated into the solid biochar irrespectively of the operating temperature. The process water rich in dissolved organic matter proved a good substrate for biogas production. The E. nuttallii plants showed a high capability of incorporating metals into the biomass. This large inorganic fraction which was mainly transferred into the biochar (except sodium and potassium) may hamper the prospective application of biochar as soil amendment. The high ash content in biochar (∼ 40% w/w) along with its relatively low content of organic carbon (∼ 36% w/w) is associated with low higher heating values. Fatty acids were completely hydrolyzed from lipids due to hydrothermal treatment. Low molecular-weight carboxylic acids (acetic and lactic acid), phenols and phenolic acids turned out major organic breakdown products. PMID:25879182

  12. Effects of Natural Organic Matter on Stability, Transport and Deposition of Engineered Nano-particles in Porous Media

    EPA Science Inventory

    The interaction of nano-particles and organic substances, like natural organic matter, could have significant influence on the fate, transport and bioavailability of toxic substances. Natural organic matter (NOM) is a mixture of chemically complex polyelectrolytes with varying m...

  13. Contents and composition of organic matter in subsurface soils affected by land use and soil mineralogy

    NASA Astrophysics Data System (ADS)

    Ellerbrock, Ruth H.; Kaiser, Michael

    2010-05-01

    Land use and mineralogy affect the ability of surface as well as subsurface soils to sequester organic carbon and their contribution to mitigate the greenhouse effect. This study aimed to investigate the long-term impact of land use (i.e., arable and forest) and soil mineralogy on contents and composition of soil organic matter (SOM) from subsurface soils. Seven soils different in mineralogy (Albic and Haplic Luvisol, Colluvic and Haplic Regosol, Haplic and Vertic Cambisol, Haplic Stagnosol) were selected within Germany. Soil samples were taken from forest and adjacent arable sites. First, particulate and water soluble organic matter were separated from the subsurface soil samples. From the remaining solid residues the OM(PY) fractions were separated, analyzed for its OC content (OCPY) and characterized by FTIR spectroscopy. For the arable subsurface soils multiple regression analyses indicate significant positive relationships between the soil organic carbon contents and the contents of i) exchangeable Ca and oxalate soluble Fe, and Alox contents. Further for the neutral arable subsurface soils the contents OCPY weighted by its C=O contents were found to be related to the contents of Ca indicating interactions between OM(PY) and Ca cations. For the forest subsurface soils (pH <5) the OCPY contents were positively related with the contents of Na-pyrophosphate soluble Fe and Al. For the acidic forest subsurface soils such findings indicate interactions between OM(PY) and Fe3+ and Al3+ cations. The effects of land use and soil mineralogy on contents and composition of SOM and OM(PY) will be discussed.

  14. Influence of soil organic matter composition on the partition of organic compounds

    USGS Publications Warehouse

    Rutherford, D.W.; Chiou, C.T.; Klle, D.E.

    1992-01-01

    The sorption at room temperature of benzene and carbon tetrachloride from water on three high-organic-content soils (muck, peat, and extracted peat) and on cellulose was determined in order to evaluate the effect of sorbent polarity on the solute partition coefficients. The isotherms are highly linear for both solutes on all the organic matter samples, which is consistent with a partition model. For both solutes, the extracted peat shows the greatest sorption capacity while the cellulose shows the lowest capacity; the difference correlates with the polar-to-nonpolar group ratio [(O + N)/C] of the sorbent samples. The relative increase of solute partition coefficient (Kom) with a decrease of sample polar content is similar for both solutes, and the limiting sorption capacity on a given organic matter sample is comparable between the solutes. This observation suggests that one can estimate the polarity effect of a sample of soil organic matter (SOM) on Kom of various nonpolar solutes by determining the partition coefficient of single nonpolar solute when compositional analysis of the SOM is not available. The observed dependence of Kom on sample polarity is used to account for the variation of Kom values of individual compounds on different soils that results from change in the polar group content of SOM. On the assumption that the carbon content of SOM in "ordinary soils" is 53-63%, the calculated variation of Kom is a factor of ???3. This value is in agreement with the limit of variation of most Kom data with soils of relatively high SOM contents.

  15. Detecting refractory organic matter on Mars: how derivatization will help

    NASA Astrophysics Data System (ADS)

    Freissinet, C.; Kashyap, S.; Glavin, D. P.; Buch, A.; Brault, A.; Mahaffy, P. R.

    2012-12-01

    The search for organic molecules on Mars can provide important first clues of extinct or extant biota on the planet. Gas Chromatography Mass Spectrometry (GC-MS) is currently the most relevant space-compatible analytical tool for the detection of organics. Nevertheless, GC separation is intrinsically restricted to volatile molecules, and a lot of the molecules of exobiological interest are refractory or polar. To analyze these organics such as amino acids, nucleobases and carboxylic acids, an additional derivatization step is required to transform them into volatile derivatives that are amenable to GC analysis. As part of the Sample Analysis at Mars (SAM) experiment onboard Mars Science Laboratory (MSL) Curiosity rover which successfully landed on Mars on August 5, 2012, a single-step protocol of extraction and chemical derivatization with the silylating reagent N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide MTBSTFA has been developed to reach a wide range of astrobiology-relevant refractory organic molecules. Seven cups on SAM are devoted to MTBSTFA derivatization. However, this chemical reaction adds a protective silyl group in place of each labile hydrogen, which make the molecule non-identifiable in common mass spectra libraries. We thus created an extended library of mass spectra of derivatized compounds of interest, considering their potential occurrence in Mars soils. We then looked specifically at these compounds using the existing and the newly created library, in various Mars analog soils. To enable a more accurate interpretation of the in situ derivatization GC-MS results that will be obtained by SAM, the lab experiments are performed in the restrictive conditions of the SAM flight instrument. First experiments display promising results, the system permitting an extraction and detection of several proteinic amino and carboxylic acids from Martian representative matrices. Preliminary results show a lack of derivatized organic molecules in

  16. Coupled Ocean-Atmosphere Loss of Refractory Marine Dissolved Organic Matter

    NASA Astrophysics Data System (ADS)

    Kieber, D. J.; Keene, W. C.; Frossard, A. A.; Long, M. S.; Russell, L. M.; Maben, J. R.; Kinsey, J. D.; Tyssebotn, I. M.; Quinn, P.; Bates, T. S.

    2013-12-01

    Marine aerosol produced in the oceans from bursting bubbles and breaking waves is number dominated by submicron aerosol that are highly enriched in marine organic matter relative to seawater. Recent studies suggest that these organic-rich, submicron aerosol have a major impact on tropospheric chemistry and climate. It has been assumed this marine-derived aerosol organic matter is of recent origin stemming from biological activity in the photic zone. However, we deployed a marine aerosol generator on a recent cruise in the Sargasso Sea with seawater collected from 2500 m and showed that the aerosol generated from this seawater was enriched with organic matter to the same level as observed in surface Sargasso seawater, implying that the marine organic matter flux from the oceans into atmospheric aerosol is partly due to marine organic matter not of recent origin. We propose that marine aerosol production and subsequent physical and photochemical atmospheric evolution is the main process whereby old, refractory organic matter is removed from the oceans, thereby closing the carbon budget in the oceans and solving a long-standing conundrum regarding the removal mechanism for this organic matter in the sea. The implications of this study for couplings in the ocean-atmosphere cycling of organic matter will be discussed.

  17. Microsporidiosis Acquired Through Solid Organ Transplantation: A Public Health Investigation

    PubMed Central

    Hocevar, Susan N.; Paddock, Christopher D.; Spak, Cedric W.; Rosenblatt, Randall; Diaz-Luna, Hector; Castillo, Isabel; Luna, Sergio; Friedman, Glen C.; Antony, Suresh; Stoddard, Robyn A.; Tiller, Rebekah V.; Peterson, Tammie; Blau, Dianna M.; Sriram, Rama R.; da Silva, Alexandre; de Almeida, Marcos; Benedict, Theresa; Goldsmith, Cynthia S.; Zaki, Sherif R.; Visvesvara, Govinda S.; Kuehnert, Matthew J.

    2015-01-01

    Background Encephalitozoon cuniculi, a microsporidial species most commonly recognized as a cause of renal, respiratory, and central nervous system infections in immunosuppressed patients, was identified as the cause of a temporally associated cluster of febrile illness among 3 solid organ transplant recipients from a common donor. Objective To confirm the source of the illness, assess donor and recipient risk factors, and provide therapy recommendations for ill recipients. Design Public health investigation. Setting Two transplant hospitals and community interview with the deceased donor’s family. Patients Three transplant recipients and the organ donor. Measurements Specimens were tested for microsporidia by using culture, immunofluorescent antibody, polymerase chain reaction, immunohistochemistry, and electron microscopy. Donor medical records were reviewed and a questionnaire was developed to assess for microsporidial infection. Results Kidneys and lungs were procured from the deceased donor and transplanted to 3 recipients who became ill with fever 7 to 10 weeks after the transplant. Results of urine culture, serologic, and polymerase chain reaction testing were positive for Encephalitozoon cuniculi of genotype III in each recipient; the organism was also identified in biopsy or autopsy specimens in all recipients. The donor had positive serologic test results for Encephalitozoon cuniculi. Surviving recipients received albendazole. Donor assessment did not identify factors for suspected Encephalitozoon cuniculi infection. Limitation Inability to detect organism by culture or polymerase chain reaction in donor due to lack of autopsy specimens. Conclusion Transmission of microsporidiosis through organ transplantation is described. Microsporidiosis is now recognized as an emerging transplant-associated disease and should be considered in febrile transplant recipients when tests for routinely encountered agents are unrevealing. Donor-derived disease is critical

  18. Subcritical-Water Extraction of Organics from Solid Matrices

    NASA Technical Reports Server (NTRS)

    Amashukeli, Xenia; Grunthaner, Frank; Patrick, Steven; Kirby, James; Bickler, Donald; Willis, Peter; Pelletier, Christine; Bryson, Charles

    2009-01-01

    An apparatus for extracting organic compounds from soils, sands, and other solid matrix materials utilizes water at subcritical temperature and pressure as a solvent. The apparatus, called subcritical water extractor (SCWE), is a prototype of subsystems of future instrumentation systems to be used in searching for organic compounds as signs of past or present life on Mars. An aqueous solution generated by an apparatus like this one can be analyzed by any of a variety of established chromatographic or spectroscopic means to detect the dissolved organic compound( s). The apparatus can be used on Earth: indeed, in proof-of-concept experiments, SCWE was used to extract amino acids from soils of the Atacama Desert (Chile), which was chosen because the dryness and other relevant soil conditions there approximate those on Mars. The design of the apparatus is based partly on the fact that the relative permittivity (also known as the dielectric constant) of liquid water varies with temperature and pressure. At a temperature of 30 C and a pressure of 0.1 MPa, the relative permittivity of water is 79.6, due to the strong dipole-dipole electrostatic interactions between individual molecular dipoles. As the temperature increases, increasing thermal energy causes increasing disorientation of molecular dipoles, with a consequent decrease in relative permittivity. For example, water at a temperature of 325 C and pressure of 20 MPa has a relative permittivity of 17.5, which is similar to the relative permittivities of such nonpolar organic solvents as 1-butanol (17.8). In the operation of this apparatus, the temperature and pressure of water are adjusted so that the water can be used in place of commonly used organic solvents to extract compounds that have dissimilar physical and chemical properties.

  19. Mechanical biological treatment of organic fraction of MSW affected dissolved organic matter evolution in simulated landfill.

    PubMed

    Salati, Silvia; Scaglia, Barbara; di Gregorio, Alessandra; Carrera, Alberto; Adani, Fabrizio

    2013-08-01

    The aim of this paper was to study the evolution of DOM during 1 year of observation in simulated landfill, of aerobically treated vs. untreated organic fraction of MSW. Results obtained indicated that aerobic treatment of organic fraction of MSW permitted getting good biological stability so that, successive incubation under anaerobic condition in landfill allowed biological process to continue getting a strong reduction of soluble organic matter (DOM) that showed, also, an aromatic character. Incubation of untreated waste gave similar trend, but in this case DOM decreasing was only apparent as inhibition of biological process in landfill did not allow replacing degraded/leached DOM with new material coming from hydrolysis of fresh OM. PMID:23743423

  20. Variation in assimilable organic carbon formation during chlorination of Microcystis aeruginosa extracellular organic matter solutions.

    PubMed

    Sun, Xingbin; Yuan, Ting; Ni, Huishan; Li, Yanpeng; Hu, Yang

    2016-07-01

    This study investigated the chlorination of Microcystis aeruginosa extracellular organic matter (EOM) solutions under different conditions, to determine how the metabolites produced by these organisms affect water safety and the formation of assimilable organic carbon (AOC). The effects of chlorine dosages, coagulant dosage, reaction time and temperature on the formation of AOC were investigated during the disinfection of M.aeruginosa metabolite solutions. The concentration of AOC followed a decreasing and then increasing pattern with increasing temperature and reaction time. The concentration of AOC decreased and then increased with increasing chlorination dosage, followed by a slight decrease at the highest level of chlorination. However, the concentration of AOC decreased continuously with increasing coagulant dosage. The formation of AOC can be suppressed under appropriate conditions. In this study, chlorination at 4mg/L, combined with a coagulant dose of 40mg/L at 20°C over a reaction time of 12hr, produced the minimum AOC. PMID:27372113

  1. Macroinvertebrate and organic matter export from headwater tributaries of a Central Appalachian stream

    EPA Science Inventory

    Headwater streams export organisms and other materials to their receiving streams and macroinvertebrate drift can shape colonization dynamics in downstream reaches while providing food for downstream consumers. Spring-time macroinvertebrate drift and organic matter export was me...

  2. Sources and Distribution of Organic Matter in Sediments of the Louisiana Continental Shelf

    EPA Science Inventory

    Both riverine and marine sources of organic matter (OM) contribute to sediment organic pools, and either source can contribute significantly to sediment accumulation, burial, and remineralization rates on river dominated continental shelf systems. For the Louisiana continental sh...

  3. Sustaining effect of soil warming on organic matter decomposition

    NASA Astrophysics Data System (ADS)

    Hou, Ruixing; Ouyang, Zhu; Dorodnikov, Maxim; Wilson, Glenn; Kuzyakov, Yakov

    2015-04-01

    Global warming affects various parts of carbon (C) cycle including acceleration of soil organic matter (SOM) decomposition with strong feedback to atmospheric CO2 concentration. Despite many soil warming studies showed changes of microbial community structure, only very few were focused on sustainability of soil warming on microbial activity associated with SOM decomposition. Two alternative hypotheses: 1) acclimation because of substrate exhaustion and 2) sustaining increase of microbial activity with accelerated decomposition of recalcitrant SOM pools were never proven under long term field conditions. This is especially important in the nowadays introduced no-till crop systems leading to redistribution of organic C at the soil surface, which is much susceptible to warming effects than the rest of the profile. We incubated soil samples from a four-year warming experiment with tillage (T) and no-tillage (NT) practices under three temperatures: 15, 21, and 27 °C, and related the evolved total CO2 efflux to changes of organic C pools. Warmed soils released significantly more CO2 than the control treatment (no warming) at each incubation temperature, and the largest differences were observed under 15 °C (26% increase). The difference in CO2 efflux from NT to T increase with temperature showing high vulnerability of C stored in NT to soil warming. The Q10 value reflecting the sensitivity of SOM decomposition to warming was lower for warmed than non-warmed soil indicating better acclimation of microbes or lower C availability during long term warming. The activity of three extracellular enzymes: β-glucosidase, chitinase, sulphatase, reflecting the response of C, N and S cycles to warming, were significantly higher under warming and especially under NT compared to two other respective treatments. The CO2 released during 2 months of incubation consisted of 85% from recalcitrant SOM and the remaining 15% from microbial biomass and extractable organic C based on the

  4. Natural organic matter fouling behaviors on superwetting nanofiltration membranes.

    PubMed

    Shan, Linglong; Fan, Hongwei; Guo, Hongxia; Ji, Shulan; Zhang, Guojun

    2016-04-15

    Nanofiltration has been widely recognized as a promising technology for the removal of micro-molecular organic components from natural water. Natural organic matter (NOM), a very important precursor of disinfection by-products, is currently considered as the major cause of membrane fouling. It is necessary to develop a membrane with both high NOM rejection and anti-NOM fouling properties. In this study, both superhydrophilic and superhydrophobic nanofiltration membranes for NOM removal have been fabricated. The fouling behavior of NOM on superwetting nanofiltration membranes has been extensively investigated by using humic acid (HA) as the model foulant. The extended Derjaguin-Landau-Verwey-Overbeek approach and nanoindentor scratch tests suggested that the superhydrophilic membrane had the strongest repulsion force to HA due to the highest positive total interaction energy (ΔG(TOT)) value and the lowest critical load. Excitation emission matrix analyses of natural water also indicated that the superhydrophilic membrane showed resistance to fouling by hydrophobic substances and therefore high removal thereof. Conversely, the superhydrophobic membrane showed resistance to fouling by hydrophilic substances and therefore high removal capacity. Long-term operation suggested that the superhydrophilic membrane had high stability due to its anti-NOM fouling capacity. Based on the different anti-fouling properties of the studied superwetting membranes, a combination of superhydrophilic and superhydrophobic membranes was examined to further improve the removal of both hydrophobic and hydrophilic pollutants. With a combination of superhydrophilic and superhydrophobic membranes, the NOM rejection (RUV254) and DOC removal rates (RDOC) could be increased to 83.6% and 73.3%, respectively. PMID:26900973

  5. Chemodiversity of dissolved organic matter in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Gonsior, Michael; Valle, Juliana; Schmitt-Kopplin, Philippe; Hertkorn, Norbert; Bastviken, David; Luek, Jenna; Harir, Mourad; Bastos, Wanderley; Enrich-Prast, Alex

    2016-07-01

    Regions in the Amazon Basin have been associated with specific biogeochemical processes, but a detailed chemical classification of the abundant and ubiquitous dissolved organic matter (DOM), beyond specific indicator compounds and bulk measurements, has not yet been established. We sampled water from different locations in the Negro, Madeira/Jamari and Tapajós River areas to characterize the molecular DOM composition and distribution. Ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) combined with excitation emission matrix (EEM) fluorescence spectroscopy and parallel factor analysis (PARAFAC) revealed a large proportion of ubiquitous DOM but also unique area-specific molecular signatures. Unique to the DOM of the Rio Negro area was the large abundance of high molecular weight, diverse hydrogen-deficient and highly oxidized molecular ions deviating from known lignin or tannin compositions, indicating substantial oxidative processing of these ultimately plant-derived polyphenols indicative of these black waters. In contrast, unique signatures in the Madeira/Jamari area were defined by presumably labile sulfur- and nitrogen-containing molecules in this white water river system. Waters from the Tapajós main stem did not show any substantial unique molecular signatures relative to those present in the Rio Madeira and Rio Negro, which implied a lower organic molecular complexity in this clear water tributary, even after mixing with the main stem of the Amazon River. Beside ubiquitous DOM at average H / C and O / C elemental ratios, a distinct and significant unique DOM pool prevailed in the black, white and clear water areas that were also highly correlated with EEM-PARAFAC components and define the frameworks for primary production and other aspects of aquatic life.

  6. Distributions of methyl group rotational barriers in polycrystalline organic solids

    SciTech Connect

    Beckmann, Peter A. E-mail: wangxianlong@uestc.edu.cn; Conn, Kathleen G.; Mallory, Clelia W.; Mallory, Frank B.; Rheingold, Arnold L.; Rotkina, Lolita; Wang, Xianlong E-mail: wangxianlong@uestc.edu.cn

    2013-11-28

    We bring together solid state {sup 1}H spin-lattice relaxation rate measurements, scanning electron microscopy, single crystal X-ray diffraction, and electronic structure calculations for two methyl substituted organic compounds to investigate methyl group (CH{sub 3}) rotational dynamics in the solid state. Methyl group rotational barrier heights are computed using electronic structure calculations, both in isolated molecules and in molecular clusters mimicking a perfect single crystal environment. The calculations are performed on suitable clusters built from the X-ray diffraction studies. These calculations allow for an estimate of the intramolecular and the intermolecular contributions to the barrier heights. The {sup 1}H relaxation measurements, on the other hand, are performed with polycrystalline samples which have been investigated with scanning electron microscopy. The {sup 1}H relaxation measurements are best fitted with a distribution of activation energies for methyl group rotation and we propose, based on the scanning electron microscopy images, that this distribution arises from molecules near crystallite surfaces or near other crystal imperfections (vacancies, dislocations, etc.). An activation energy characterizing this distribution is compared with a barrier height determined from the electronic structure calculations and a consistent model for methyl group rotation is developed. The compounds are 1,6-dimethylphenanthrene and 1,8-dimethylphenanthrene and the methyl group barriers being discussed and compared are in the 2–12 kJ mol{sup −1} range.

  7. Pyrolysis-combustion 14C dating of soil organic matter

    USGS Publications Warehouse

    Wang, Hongfang; Hackley, Keith C.; Panno, S.V.; Coleman, D.D.; Liu, J.C.-L.; Brown, J.

    2003-01-01

    Radiocarbon (14C) dating of total soil organic matter (SOM) often yields results inconsistent with the stratigraphic sequence. The onerous chemical extractions for SOM fractions do not always produce satisfactory 14C dates. In an effort to develop an alternative method, the pyrolysis-combustion technique was investigated to partition SOM into pyrolysis volatile (Py-V) and pyrolysis residue (Py-R) fractions. The Py-V fractions obtained from a thick glacigenic loess succession in Illinois yielded 14C dates much younger but more reasonable than the counterpart Py-R fractions for the soil residence time. Carbon isotopic composition (??13C) was heavier in the Py-V fractions, suggesting a greater abundance of carbohydrate- and protein-related constituents, and ??13C was lighter in the Py-R fractions, suggesting more lignin- and lipid-related constituents. The combination of 14C dates and ??13C values indicates that the Py-V fractions are less biodegradation resistant and the Py-R fractions are more biodegradation resistant. The pyrolysis-combustion method provides a less cumbersome approach for 14C dating of SOM fractions. With further study, this method may become a useful tool for analyzing unlithified terrestrial sediments when macrofossils are absent. ?? 2003 University of Washington. Published by Elsevier Inc. All rights reserved.

  8. On the spectral induced polarization signature of soil organic matter

    NASA Astrophysics Data System (ADS)

    Schwartz, N.; Furman, A.

    2014-01-01

    Although often composing a non-negligible fraction of soil cation exchange capacity (CEC), the impact of soil organic matter (OM) on the electrical properties of soil has not been thoroughly investigated. In this research the impact of soil OM on the spectral induced polarization (SIP) signature of soil was investigated. Electrical and chemical measurements for two experiments using the same soil, one with calcium as the dominant cation and the other with sodium, with different concentration of OM were performed. Our results show that despite the high CEC of OM, a decrease in polarization and an increase in relaxation time with increasing concentration of OM is observed. For the soil with calcium as the dominant cation, the decreases in polarization and the increase in relaxation time were stronger. We explain these non-trivial results by accounting for the interactions between the OM and the soil minerals. We suggest that the formation of organo-mineral complexes reduce ionic mobility, explaining both the decrease in polarization and the increase in relaxation time. These results demonstrate the important role of OM on SIP response of soil, and call for a further research in order to establish a new polarization model that will include the impact of OM on soil polarization.

  9. Spectral Induced Polarization Signature of Soil Organic Matter

    NASA Astrophysics Data System (ADS)

    Schwartz, Nimrod; Furman, Alex

    2015-04-01

    Although often composing a non-negligible fraction of soil cation exchange capacity (CEC), the impact of soil organic matter (OM) on the electrical properties of soil has not been thoroughly investigated. In this research the impact of soil OM on the spectral induced polarization (SIP) signature of soil was investigated. Electrical and chemical measurements for two experiments using the same soil, one with calcium as the dominant cation and the other with sodium, with different concentration of OM were performed. Our results show that despite the high CEC of OM, a decrease in polarization and an increase in relaxation time with increasing concentration of OM is observed. For the soil with calcium as the dominant cation, the decreases in polarization and the increase in relaxation time were stronger. We explain these non-trivial results by accounting for the interactions between the OM and the soil minerals. We suggest that the formation of organo-mineral complexes reduce ionic mobility, explaining both the decrease in polarization and the increase in relaxation time. These results demonstrate the important role of OM on SIP response of soil, and call for a further research in order to establish a new polarization model that will include the impact of OM on soil polarization.

  10. Natural organic matter enhanced mobility of nano zerovalent iron.

    PubMed

    Johnson, Richard L; Johnson, Graham O'Brien; Nurmi, James T; Tratnyek, Paul G

    2009-07-15

    Column studies showed that the mobility of nanometer-sized zerovalent iron (nZVI) through granular media is greatly increased in the presence of natural organic matter (NOM). At NOM concentrations of 20 mg/L or greater, the nZVI was highly mobile during transport experiments in 0.15-m long columns packed with medium sand. Below 20 mg/L NOM, mobility of the nZVI was less; however, even at 2 mg/L the nZVI showed significantly increased mobility compared to the no-NOM case. Spectrophotometric and aggregation studies of nZVI suspensions in the presence of NOM suggest that sorption of the NOM onto the nZVI, resulting in a reduced sticking coefficient, may be the primary mechanism of enhanced mobility. Modeling the mobility of nZVI in porous media with filtration theory is challenging, but calibration of a simple model with experimental results from the column experiments reported here allows simulation of transport distances during injection. The simulation results show that the increased mobility due to NOM combined with the decrease in mobility due to decreased velocity with distance from an injection well could produce an injection zone that is wide enough to be useful for remediation but small enough to avoid reaching unwanted receptors. PMID:19708381

  11. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria.

    PubMed

    Smriga, Steven; Fernandez, Vicente I; Mitchell, James G; Stocker, Roman

    2016-02-01

    The microenvironment surrounding individual phytoplankton cells is often rich in dissolved organic matter (DOM), which can attract bacteria by chemotaxis. These "phycospheres" may be prominent sources of resource heterogeneity in the ocean, affecting the growth of bacterial populations and the fate of DOM. However, these effects remain poorly quantified due to a lack of quantitative ecological frameworks. Here, we used video microscopy to dissect with unprecedented resolution the chemotactic accumulation of marine bacteria around individual Chaetoceros affinis diatoms undergoing lysis. The observed spatiotemporal distribution of bacteria was used in a resource utilization model to map the conditions under which competition between different bacterial groups favors chemotaxis. The model predicts that chemotactic, copiotrophic populations outcompete nonmotile, oligotrophic populations during diatom blooms and bloom collapse conditions, resulting in an increase in the ratio of motile to nonmotile cells and in the succession of populations. Partitioning of DOM between the two populations is strongly dependent on the overall concentration of bacteria and the diffusivity of different DOM substances, and within each population, the growth benefit from phycospheres is experienced by only a small fraction of cells. By informing a DOM utilization model with highly resolved behavioral data, the hybrid approach used here represents a new path toward the elusive goal of predicting the consequences of microscale interactions in the ocean. PMID:26802122

  12. Dissolved organic matter reduces algal accumulation of methylmercury

    USGS Publications Warehouse

    Luengen, Allison C.; Fisher, Nicholas S.; Bergamaschi, Brian A.

    2012-01-01

    Dissolved organic matter (DOM) significantly decreased accumulation of methylmercury (MeHg) by the diatom Cyclotella meneghiniana in laboratory experiments. Live diatom cells accumulated two to four times more MeHg than dead cells, indicating that accumulation may be partially an energy-requiring process. Methylmercury enrichment in diatoms relative to ambient water was measured by a volume concentration factor (VCF). Without added DOM, the maximum VCF was 32 x 104, and the average VCF (from 10 to 72 h) over all experiments was 12.6 x 104. At very low (1.5 mg/L) added DOM, VCFs dropped by approximately half. At very high (20 mg/L) added DOM, VCFs dropped 10-fold. Presumably, MeHg was bound to a variety of reduced sulfur sites on the DOM, making it unavailable for uptake. Diatoms accumulated significantly more MeHg when exposed to transphilic DOM extracts than hydrophobic ones. However, algal lysate, a labile type of DOM created by resuspending a marine diatom in freshwater, behaved similarly to a refractory DOM isolate from San Francisco Bay. Addition of 67 μM L-cysteine resulted in the largest drop in VCFs, to 0.28 x 104. Although the DOM composition influenced the availability of MeHg to some extent, total DOM concentration was the most important factor in determining algal bioaccumulation of MeHg.

  13. [Effects of dissolved organic matter on copper absorption by ryegrass].

    PubMed

    Tang, Chao; Wang, Bin; Liu, Man-Qiang; Hu, Feng; Li, Hui-Xin; Jiao, Jia-Guo

    2012-08-01

    In this study, dissolved organic matter (DOM) was extracted from earthworm casts and from the cattle manure with which the earthworms were fed, and a water culture experiment was conducted to study the effects of the DOM on the copper (Cu2+) absorption by ryegrass in the presence of different concentration Cu2+ (0, 5 and 10 mg x L(-1)). With the increasing concentration of Cu2+ in the medium, there was a gradual decrease in the dry mass of ryegrass shoots and roots and in the root length, surface area, volume, and tip number. In the presence of medium Cu2+, DOM increased the biomass of shoots and roots and the root length, surface area, volume, and tip number significantly. DOM reduced the Cu2+ concentration in roots, promoted the Cu2+ translocation from roots to shoots, and significantly increased the Cu2+ accumulation in shoots. The DOM from earthworm casts had better effects than that from cattle manure, and high concentration DOM had better effects than low concentration DOM. PMID:23189712

  14. Results of the 2008 dissolved organic matter fluorescence intercalibration study

    NASA Astrophysics Data System (ADS)

    Murphy, K. R.; Butler, K.; Spencer, R. G.; Boehme, J.; Aiken, G.

    2009-12-01

    In 2008, 20 laboratories around the world participated in an intercalibration study of organic matter fluorescence measurements via Excitation-Emission Matrix Spectroscopy (EEMS). The goal was to assess the variability of fluorescence measurements obtained for identical samples (n = 5 natural samples, Suwanee River Fulvic Acid, quinine sulphate and four Starna Fluorescence Reference cells) by different laboratories, and to examine potential sources of this variability. Operator error was found to be a significant source of variability, with 6 laboratories submitting erroneous EEMs in an initial round. Uncorrected EEMs were significantly different from corrected EEMs, particularly at relatively low and relatively high excitation (λex) and emission (λem) wavelengths. When data from each lab were corrected according to a standard set of algorithms, the variability between EEMs for the same sample measured by different labs was wavelength dependent, with EEMs normalized to raman areas more similar at low λex and λem, and EEMs normalized to quinine sulphate equivalents more similar at higher wavelengths. The results confirm the importance of (1) applying spectral corrections prior to comparing fluorescence data acquired on different instruments, (2) full reporting of correction procedures and implementation according to an agreed standard protocol, and (3) strict implementation of quality assurance protocols prior to reporting EEMs.

  15. Mercury reduction and complexation by natural organic matter

    SciTech Connect

    Gu, Baohua; Bian, Yongrong; Miller, Carrie L; Dong, Wenming; Jiang, Xin; Liang, Liyuan

    2011-01-01

    Mercuric Hg(II) species form complexes with natural dissolved organic matter (DOM) such as humic acid (HA), and this binding is known to affect the chemical and biological transformation and cycling of mercury in aquatic environments. Dissolved elemental mercury, Hg(0), is also widely observed in sediments and water. However, reactions between Hg(0) and DOM have rarely been studied in anoxic environments. Here, under anoxic dark conditions we show strong interactions between reduced HA and Hg(0) through thiol-ligand induced oxidative complexation with an estimated binding capacity of about 3.5 umol Hg(0)/g HA and a partitioning coefficient greater than 10^6 mL/g. We further demonstrate that Hg(II) can be effectively reduced to Hg(0) in the presence of as little as 0.2 mg/L reduced HA, whereas production of purgeable Hg(0) is inhibited by complexation as HA concentration increases. This dual role played by DOM in the reduction and complexation of mercury is likely widespread in anoxic sediments and water and can be expected to significantly influence the mercury species transformations and biological uptake that leads to the formation of toxic methylmercury.

  16. Pyrolysis-combustion 14C dating of soil organic matter

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Hackley, Keith C.; Panno, Samuel V.; Coleman, Dennis D.; Liu, Jack Chao-li; Brown, Johnie

    2003-11-01

    Radiocarbon ( 14C) dating of total soil organic matter (SOM) often yields results inconsistent with the stratigraphic sequence. The onerous chemical extractions for SOM fractions do not always produce satisfactory 14C dates. In an effort to develop an alternative method, the pyrolysis-combustion technique was investigated to partition SOM into pyrolysis volatile (Py-V) and pyrolysis residue (Py-R) fractions. The Py-V fractions obtained from a thick glacigenic loess succession in Illinois yielded 14C dates much younger but more reasonable than the counterpart Py-R fractions for the soil residence time. Carbon isotopic composition (δ 13C) was heavier in the Py-V fractions, suggesting a greater abundance of carbohydrate- and protein-related constituents, and δ 13C was lighter in the Py-R fractions, suggesting more lignin- and lipid-related constituents. The combination of 14C dates and δ 13C values indicates that the Py-V fractions are less biodegradation resistant and the Py-R fractions are more biodegradation resistant. The pyrolysis-combustion method provides a less cumbersome approach for 14C dating of SOM fractions. With further study, this method may become a useful tool for analyzing unlithified terrestrial sediments when macrofossils are absent.

  17. The Organic Matter Biogeochemistry of the Congo River

    NASA Astrophysics Data System (ADS)

    Spencer, R. G.; Hernes, P.; Wabakanghanzi, J.; Bienvenu, D. J.; Six, J.

    2015-12-01

    Organic matter (OM) represents a fundamental link between terrestrial and aquatic carbon cycles and plays an essential role in aquatic ecosystem biogeochemistry. The Congo River, which drains pristine tropical forest and savannah is the second largest exporter of terrestrial carbon to the ocean, and represents a historically understudied basin. Our ongoing projects in the Congo Basin aim to provide pertinent information on transport and emissions of carbon by rivers that need to be incorporated into carbon budgets of terrestrial ecosystems. To date the Congo Basin has seen only limited perturbation but the carbon locked away in the Congo, as in other tropical rainforests is increasingly vulnerable to release into the aquatic system and the atmosphere. However, riverine carbon transport (both of OM to the oceans and release of CO2 to the atmosphere) as a driver of global carbon cycling is still largely overlooked. Here we present data from a multi-season field campaign to quantify the transport fluxes, mineralization fluxes, and chemical character of Congo River OM, and to elucidate how these properties relate to each other and vary seasonally driven by hydrology within the Congo Basin. Existing data demonstrates that although tropical rivers do not experience the seasonal climatic extremes of temperate or northern high-latitude rivers, they all demonstrate similar effects due to changing hydrologic inputs with respect to OM dynamics. Specifically flushing periods appear to warrant further study as maximal export of reactive freshly leached plant material occurs during this time period.

  18. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria

    PubMed Central

    Smriga, Steven; Fernandez, Vicente I.; Mitchell, James G.; Stocker, Roman

    2016-01-01

    The microenvironment surrounding individual phytoplankton cells is often rich in dissolved organic matter (DOM), which can attract bacteria by chemotaxis. These “phycospheres” may be prominent sources of resource heterogeneity in the ocean, affecting the growth of bacterial populations and the fate of DOM. However, these effects remain poorly quantified due to a lack of quantitative ecological frameworks. Here, we used video microscopy to dissect with unprecedented resolution the chemotactic accumulation of marine bacteria around individual Chaetoceros affinis diatoms undergoing lysis. The observed spatiotemporal distribution of bacteria was used in a resource utilization model to map the conditions under which competition between different bacterial groups favors chemotaxis. The model predicts that chemotactic, copiotrophic populations outcompete nonmotile, oligotrophic populations during diatom blooms and bloom collapse conditions, resulting in an increase in the ratio of motile to nonmotile cells and in the succession of populations. Partitioning of DOM between the two populations is strongly dependent on the overall concentration of bacteria and the diffusivity of different DOM substances, and within each population, the growth benefit from phycospheres is experienced by only a small fraction of cells. By informing a DOM utilization model with highly resolved behavioral data, the hybrid approach used here represents a new path toward the elusive goal of predicting the consequences of microscale interactions in the ocean. PMID:26802122

  19. Solid-phase genotoxicity assay for organic compounds in soil

    SciTech Connect

    Alexander, R.R.; Chung, N.; Alexander, M.

    1999-03-01

    A genotoxicity assay was developed for samples from environments in which toxic organic compounds are largely sorbed. The assay entails measurement of the rate of mutation of a strain of Pseudomonas putida to rifampicin resistance. The ratio of induced to spontaneous mutants was a function of the concentration of a test mutagen in soil. In studies of the utility of the assay in samples amended with 2-aminofluorene as a test mutagen, the ratio of induced to spontaneous mutants declined with time. The decline paralleled the disappearance of extractable 2-aminofluorene from the soil. The ratio of induced to spontaneous mutants also feel in four other soils with dissimilar properties. The authors suggest that this solid-phase assay is more appropriate for the estimation of genotoxicants sorbed in soil than assays involving extractants or suspensions of soil or sediment samples.

  20. Organic Matter Transformation in the Peat Column at Marcell Experimental Forest: Humification and Vertical Stratification

    SciTech Connect

    Tfaily, Malak; Cooper, Bill; Kostka,; Chanton, Patrick R; Schadt, Christopher Warren; Hanson, Paul J; Iversen, Colleen M; Chanton, Jeff P

    2014-01-01

    A large-scale ecosystem manipulation (Spruce and Peatland Responses under Climatic and Environmental Change, SPRUCE) is being constructed in the Marcell Experimental Forest, Minnesota, USA, to determine the effects of climatic forcing on ecosystem processes in northern peatlands. Prior to the initiation of the manipulation, we characterized the solid-phase peat to a depth of 2 meters using a variety of techniques, including peat C:N ratios, 13C and 15N isotopic composition, Fourier Transform Infrared (FT IR), and 13C Nuclear Magnetic Resonance spectroscopy (13C NMR). FT IR determined peat humification-levels increased rapidly between and 75 cm, indicating a highly reactive zone. We observed a rapid drop in the abundance of O-alkyl-C, carboxyl-C, and other oxygenated functionalities within this zone and a concomitant increase in the abundance of alkyl- and nitrogen-containing compounds. Below 75-cm, minimal change was observed except that aromatic functionalities accumulated with depth. Incubation studies revealed the highest methane production rates and greatest CH4:CO2 ratios within this and 75 cm zone. Hydrology and surface vegetation played a role in belowground carbon cycling. Radiocarbon signatures of microbial respiration products in deeper porewaters resembled the signatures of dissolved organic carbon rather than solid phase peat, indicating that more recently photosynthesized organic matter fueled the bulk of subsurface microbial respiration. Oxygen-containing functionalities, especially O-alkyl-C, appear to serve as an excellent proxy for soil decomposition rate, and in addition should be a sensitive indicator of the response of the solid phase peat to the climatic manipulation.

  1. Occurrence and abundance of carbohydrates and amino compounds in sequentially extracted labile soil organic matter fractions.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study aimed to investigate the content of carbohydrates and amino compounds in three labile fraction of soil organic matter (SOM). Soil samples were collected from two agricultural fields in southern Italy and the light fraction (LF), the 500–53-µm particulate organic matter (POM) and the mobil...

  2. FACTORS INFLUENCING PHOTOREACTIONS OF DISSOLVED ORGANIC MATTER IN A COASTAL RIVER OF THE SOUTHEASTERN UNITED STATES

    EPA Science Inventory

    Photoreactions of dissolved organic